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S U M M A R Y

There are two common data representations in intelligent data analysis, namely
the vectorial representation and the pairwise representation. The translation of
latter into the former is called embedding. This is a non-trivial issue of ongoing
scientific interest. While the pairwise representation imposes less restriction
on the data and is thus potentially able to capture richer structure, the vectorial
representation has the advantage to offer many powerful data analytical tools,
in particular as a consequence of the existence of probabilistic data models in
such spaces.

Pairwise data satisfying restrictive conditions can be faithfully translated
into a vectorial representation. Pairwise data, for which this is not possible
are callednon-metricpairwise data.

This thesis is about non-metric pairwise data. It is an investigative and explo-
rative study of non-metric pairwise data, based on theoretical and conceptual
as well as empirical considerations. The reader is first madefamiliar with the
two data representations. Pairwise data are illustrated and first issues raised.
Common embedding strategies are developed. It is then shownthat these two
data representations coincide for a certain class of learning algorithms, even
when the pairwise data is non-metric and traditional techniques only obtain
approximate vector representations. The new embedding developed isexact
with respect to structure.

The major focus lies on apprehending the nature and consequences of met-
ric violations. While the scientific community seems aware of such an issue, it
has never been clearly formulated to the best of the authors knowledge. Metric
violations have commonly been considered an accidental byproduct of noise
and have received corresponding mathematical treatment. It is shown by sim-
ple modeling of metric violations that this assumption is wrong. A particular
embedding method is used to visualize and interpret the information coded by
metric violations.

Finally the structure coded by metric violations is shown tobe efficiently
extracted by a simple algorithm which evaluates structure based on a stability
index.

KEYWORDS. Pairwise data, exploratory data analysis, machine learning, clus-
tering, embedding, visualization, metric violations, multidimensional scaling,
feature discovery, structure learning.
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Z U S A M M E N F A S S U N G

In intelligenter Datenanalyse gibt es zwei gängige Datenrepräsentationen, näm-
lich die vektorielle Repräsentation und die paarweise Repräsentation. Die
Übersetzung der letzteren in die erstgenannte nennt man Einbettung, eine nicht
triviale Problematik von stetem, wissenschaftlichen Interesse. Während die
paarweise Repräsentation den Daten weniger Einschränkungen auferlegt und
so potentiell fähig ist, reichere Struktur festzuhalten, wartet die vektorielle
Repräsentation mit vielen mächtigen datenanalytische Werkzeugen auf, da man
in solchen Räumen über probabilistische Modelle für die Daten verfügt.

Paarweise Daten, die restriktive Bedingungen erfüllen, können getreu in eine
vektorielle Repräsentation abgebildet werden. PaarweiseDaten, für die dies
nicht möglich ist, werdennicht metrischgenannt.

Diese Doktorarbeit betrifft nicht-metrische, paarweise Daten. Es ist eine in-
vestigative und explorative Studie nicht metrischer, paarweiser Daten, gestützt
auf theoretische und konzeptuelle, sowie auf empirische Betrachtungen. Zuerst
wird der Leser mit den beiden Datenrepräsentationen vertraut gemacht. Paar-
weise Daten werden illustriert und die ersten Problematiken angesprochen.
Gängige Einbettungsmethoden werden dargestellt. Dann wird gezeigt, dass
diese beiden Datenrepräsentationen für eine gewisse Klasse von Lernalgorith-
men übereinstimmen, sogar wenn die paarweisen Daten nicht metrisch sind,
und traditionelle Techniken nur zu approximativen Vektorrepräsentation führen.
Die neuentwickelte Einbettung istexaktin Bezug auf Struktur.

Das Hauptgewicht liegt im Erfassen der Natur und der Folgen von metrischen
Verletzungen. Obwohl die wissenschaftliche Gemeinschaftdie Problematik
wahrzuhaben scheint, wurde diese nach des Autors bestem Wissen nie klar
formuliert. Metrische Verletzungen wurden gemeinhin als zufälliges Neben-
produkt von Rauschen betrachtet und wurden mathematisch dementsprechend
behandelt. Eine einfache Modellierung metrischer Verletzungen zeigt, dass
diese Annahme falsch ist. Eine spezielle Einbettung wird benutzt um den In-
formationsgehalt metrischer Störungen zu visualisieren und interpretieren.

Schliesslich wird gezeigt, dass ein einfacher Algorithmus, der die Struktur
über einen Stabilitätsindex auswertet, effizient die Struktur, die von metrischen
Verletzungen kodiert wird, extrahieren kann.

SCHLÜSSELWÖRTER. Paarweise Daten, explorative Datenanalyse, maschi-
nelles Lernen, Clustering, Einbettung, Visualisierung, metrische Verletzungen,
multidimensional scaling, Merkmalentdeckung, Lernen vonStruktur.
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1. I N T R O D U C T I O N

Data analysisThe subject of this thesis is data analysis. Tautologicallyyet usefully defined,
data analysis is the process ofexploring, analyzingandunderstandinga set
of objects, typically measurements from natural sciences or engineering. Data
analysis encompasses everything from the meticulous and slow item by item
examination of Tycho Brahe’s astronomical observations tothe large scale au-
tomated gene finding with intelligent algorithms. It is the prerequisite to every
inductive step from asampleto a rule, from the particular to the general, and
thus it is at least as old as modern science starting with Galilei.

Computer scienceThe faster and richer data acquisition due to the multiplication of scientific
interests and invention of more sophisticated experimental techniques called
for new tools to process the data. While statistic gives a mathematically rigor-
ous approach to those problems, they were of little use in practice. The tools
capable of treating thousands or even millions of objects were only developed
with the boom of thecomputer. To such an extend that today, data analysis is
largely understood as a particular field of computer science.

Artificial intelligenceAlas, computers happen to be quite dumb when left to themselves and even
though one was now able to quickly compute statistical descriptors like the
mean or the variance, as quickly it became clear that data would rather reveal
their mystery and hidden message to an expert in the field armed with, even
modest, a priori knowledge than to a machine. The fact that wedispose of
large data sets in a short time and that they could be fed to powerful computers
turned out to be often insufficient. The computers had to be made intelligent,
at best replacing the human expert, at worst helping him. Unlike believed at
the dawn of the computer, the former would turn out to be a longway into the
future, even at the beginning of the new century and millennium.

Machine learningMachine learningis the field of artificial intelligence which studies how ma-
chines could be led to apprehend and interpret their environment. The idea is
to implement generic algorithms which can learn from, adaptto, and model a
given environment given by a set of objects. It is the attemptto implement an
inductive procedure in a machine. The computer now no longeracts as a mere
tool of an human expert who has all the knowledge but as aparticipantof the
process of analysis and understanding.

This participation is still very basic and one should not expect miracles from
a machine. Let us be fair: a few hundreds or thousands lines ofcode and a
couple of minutes or hours of autistic learning versus a few billions of neurons
and more than twenty years of apprenticeship aided by myriads of people, it

1



2 � 1. Introduction

should come to no surprise that machine learning is in its very infancy.
Intelligent data analysis.
A possible definition.

In science we do expect every analysis to be intelligent. Butas we have
seen, the expert knowledge may be finite or not able to handle large data sets.
Intelligent data analysis combines the best of both worlds.It develops and uses
machines that learn and interact with the experimenter. There is a constant
interplay of these two very unequal actors who both need eachother. Also,
even in the field of machine learning, we should not be afraid of speaking
abouthumanlearning.

This is the spirit of this thesis. Its goal is to understand the phenomenon of
non-metric pairwise proximity data, its origin, its signification and its repercus-
sions. This subject will be treated from the perspective from both the machine
and the human.

Similarity The mother of data analysis issimilarity. Exploring data is looking for equal,
similar, dissimilar or differing patterns in order to classify, group, discrimi-
nate. The objects composing the data set come from numerous fields of empir-
ical sciences ranging from astronomy and high energy physics, genomics and
proteonomics, cognitive psychology and social sciences toweb mining and
financial stock market analysis. Many of these data sets can be differently ana-
lyzed according to a special focus. The abstract data objects themselves do not
predetermine the way to go. Similarity does. The similarityencodes meaning
and only given a similarity between objects will the data analysis start.

Two data types There are two main data types, calledvectorial dataandpairwise proximity
data. The former arefeaturebased and the latter arerelation based. These
two data types fostered two different approaches in intelligent data analysis,
the geometric approach and the syntactic, or structural approach.

The geometric approach for vectors enjoys the presence of numerous and
powerful tools, famous ones beingSupport Vector machinesandFisher Dis-
criminant Analysis, but it makes a rather strong assumption on the data, namely
that it fits into the quite restrictive structure of a Hilbertspace. The structural
approach is less developed but is able to treat more generic data.

The problem It is an ongoing issue of how these two data types and associated approaches
translate into each other. The attempts to unify them had a rather marginal
existence. The choice of a distance measure allows to pass from vectorial data
to pairwise proximity data. However, this choice is not intrinsic to the data and
largely determines the outcome of the analysis.

Conversely, it can be shown that when pairwise proximity data satisfy a cer-
tain number of requirements, then there is a set of vectors and an appropriate
distance measure such that the mutual distance between the vectors is the same
as the set or pairwise proximities.However, this is not the case in general.
This thesis studies such pairwise data, callednon-metric. It shows that there
is a simple and elegant unification of the pairwise and the vectorial representa-
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tion in the context of a certain class of algorithms exemplified by thek-means
algorithm. It further develops several models on how such pairwise data occur
and what different interpretations they admit. It unravelsproperties related to
non-metricity which have so far gone unnoticed.

The study addresses both the issues of machine learning and our understand-
ing of a certain data type. It is organized as follows:

Organization of the thesisCHAPTER 2. The second chapter introduces pairwise data. It gives a few ex-
amples and shows different possible representations of pairwise data. It then
recalls a few necessary definitions to the understanding of the difference be-
tween vectorial data and pairwise data. Further, the traditional translation of
pairwise data to vectors by way ofembeddingis presented both in its exact and
its approximated version. A discussion at the end of the chapter elaborates on
the issues raised and introduces the main contributions on this thesis.

CHAPTER 3. The third chapter presents a new embedding strategy called
Constant Shift Embedding. It shows that non-metric pairwise data can still
be embeddedloss-freeinto a Euclidean space when considering a certain class
of learning algorithms. This is a step forward both theoretically and practically.
It shows, on one hand, that a unification of vectorial and pairwise data can be
found not with respect to metricity but with respect to the outcome of some
learning algorithm. On the other hand, it makes a large classof pairwise data
available to many powerful tools in a vector space.

CHAPTER 4. The fourth chapter delves into the significance of metric vio-
lations. It is mainly conceptual in nature. We distinguish between accidental
and inherent non-metricity. Several models are presented that explain the oc-
currence of inherent non-metricity. We show furthermore how the information
hidden in the systematic metric violations can be recoveredand illustrate that
indeed it must be considered for a deeper understanding of the data.

CHAPTER 5. In the fifth and last chapter, we make a modest but determined
step towards automated structure discovery in non-metric pairwise data. The
idea is to let the machines profit from the insight we gained inthe previous
chapters. A small yet efficient algorithm is presented that detects structure by
computing a simple stability index. It is shown that it detects the structure
coded by metric violations.

A brief discussion concludes this thesis.



4 � 1. Introduction

NOTATION. This table summarizes the symbols and their explanation. Sym-
bols may have a different signification in a different context but the meaning of
a symbol is recalled when judged necessary. In general matrices are denoted
by capital letters and their elements as indiced lower case letters.

Symbol Explanation
A, B Usually some generic matrices

D A dissimilarity matrix
S A similarity matrix
C A (pseudo-)covariance matrix
T The counting matrix
P The amplitude matrix
Q The projection matrixIn − eet

I The identity matrix,iij = 1 if i = j, 0 else
X The matrix containing vectorsxi

V The row matrix consisting of eigenvectors
Λ The diagonal matrix consisting of eigenvalues
xi A vector indexed byi.

This is usuallynot theith coordinate of some vectorx!
vi Theith eigenvector
e The vector(1, 1, . . . 1)t

dij The dissimilarity between objecti andj
sij The similarity between objecti andj
do A real constant
λi Theith eigenvalue
αi Theith coefficient of an expansion
n Usually the number of samples in a data set
p Usually the dimension of a some vectorxi

i, j, k, l Index variables
|E| Cardinality of the setE

a, b, c, d Counting variables in binary image matching
ωij Some weight

d(·, ·) A metric
‖ · ‖ A norm
〈·, ·〉 An inner product
·t The transposed of its argument
·c The centralized of its argument

M(·) A partition of its input data set
L The subspace of projections in classical scaling or PCA
R The set of real number
CD The equivalence class ofC ’s yielding a givenD



2. P A I R W I S E D A T A

In this chapter we discuss a specific type of data which arise in a variety of
fields in machine learning : We discusspairwise data. After an introduction
on two fundamentally different data types we will give several examples of
such data and illustrate representation of pairwise data. We then move on to a
mathematical formulation and give a definition for the relevant spaces. We have
a first glimpse on metric violations, the main topic of this thesis, as well as the
issue of embedding pairwise data into a Euclidean space. Common embedding
strategies are presented.

§. 2.1.

I N T R O D U C T I O N.

Two main data typesWe will distinguish two data types in this work, namelyvectorialandpairwise
data. Adata pointrefers to either of these two concepts.

Vectorial representationVectorial data, or simply vectors, are data represented in avector space. A
vector space is very general in nature and there is no intrinsic notion of distance
in a vector space. At this point, however, our interest lies elsewhere. As a
consequence of the axiom of choice,everyvector space has a basis (Weisstein,
2004), that is, any vectorx can be expressed as a linear combination of some
minimal set of vectorse1, e2, . . . which span the whole space.

x =
∑

i

αiei.

A (data) point in a vector space can thus be represented as a collection of
coefficientsαi, usually real numbers.

x = (α1, α2, . . .).

(In Section 2.3 the definition of a vector space will be given.)
FeaturesThe basis vectors represent and summarize the whole vector space. In terms

of data analysis, they representfeatures, measured quantities which determine
a data point.

5



6 � 2. Pairwise Data

The intuition on vector spaces is mainly fostered by physicsand the notion
of measurement. Every object is uniquely defined by some quantitative “vari-
able”, the coordinates. In classical mechanics, e.g. the phase space is defined as
the space spanned byq andp, whereq measures the location of a particle andp
its linear momentum. The vector space(q, p) entirely determines the physical
state of a system. In data analysis we callq andp features, that is, characteris-
tics we are interested in and which describe our system, the data to be analyzed.

Pairwise representation Data points from a pairwise data set haveno features. They do not exists
irrespectively of the other points like in a vector space where every point exists
as an entity independent of all others. An object in this set is only defined by its
relationships to all other objects. For pairwise data, the homologue of features
is relationship. We do not have access to a set of variables determining a point
(such a set might not exist) but only to thepairwise relationships among the
points, hence their name.

Proximity data These pairwise relationships are most often given as real numbers represent-
ing the degree either of similarity or dissimilarity of the respective pairs of
points. Pairwise data is then called pairwiseproximitydata.

sij ∈ R for all i = 1, 2, . . . andj = 1, 2, . . .

From now on, we will omit “proximity”, assuming that our pairwise data is
given as similarities or dissimilarities. Note that the distinction between vec-
torial data and pairwise data exists independently of the notion of similarity.
However, the notion of similarity (or dissimilarity) is thebasis of data analy-
sis. Without the notion of similarity, there is no data analysis and no machine
learning.

For vectorial data, one needs first to define a similarity. While this is quite
natural as we shall see in Section 2.3, it still is subject to achoice which
strongly influences the outcome of the subsequent data analysis. In pairwise
data, the similarities are given beforehand, theyare the data. These similarity
usually are of more general nature than the ones obtained by an a posteriori
choice of e.g. an inner product in a vector space.Pairwise data can capture
structure which can inherently not be captured by vectorialdata.

Vectorial vs. syntactic
approach

These two main data types call for different analytical approaches. Follow-
ing Goldfarb (1985) we will distinguish between “geometric” approaches to
handle vectorial data and “syntactic” (or “structural”) approaches designed for
pairwise data. It is important to stress that these approaches differ in nature
and do not naturally carry over one into the other. As we have mentioned in the
introduction, the bulk of analytical tools are only available for vectorial data.
This raises the issue of transforming pairwise data into vectorial data, a proce-
dure known asembedding. This problem is all but trivial. Embedding will be
the topic of Section 2.4 and Section 2.5.



2.2. Examples of pairwise data� 7

§. 2.2.

E X A M P L E S O F P A I R W I S E D A T A.

In this section we will give some of examples of pairwise data. In particular
we will speak about their different possible representations.

Occurrence of pairwise
data

Whereas vectors in a vector space are the result of measurements with re-
spect to certain chosen characteristics, the pairwise dataarise as direct compar-
ison between different data points. These comparisons mostnaturally express
a similarity of a dissimilarity of the respective two objects.

There are many possibilities for pairwise data to occur. A few fields are:

– Bioinformatics. Pairwise data occur e.g. in genomics, as alignment scores
between two DNA or protein sequences obtained by an alignment algo-
rithm, see for instance Altschul et al. (1997) or Pearson andLipman
(1988). These pairwise data are the starting point for largescale struc-
ture of function prediction of proteins.

– Text or web mining. Pairwise data occur as similarities between dif-
ferent texts. The similarity measure can be of simple nature, counting
e.g. co-occurrence of certain words, or more complex, measuring topical
closeness. Subsequent data analysis permits to classify text documents
based on these pairwise comparisons. See e.g. Hofmann et al.(1998),
Jacobs et al. (2000).

– Cognitive psychology and social sciences. Pairwise data occur as human
similarity judgments (Gati and Tversky, 1982, Goldstone etal., 1991).
Human test subjects rate the similarity of a pair of objects on a prede-
fined scale. Psychologist gain insight into mental processes by analysis
these pairwise data. It can also occur as result of pairwise comparisons
in social sciences, called preference data, or as output of some social
comparison of e.g. countries.

Table 2.2 gives a simple instance of pairwise data obtained from human
similarity judgments of the auditory morse code (Everitt and Rabe-Hesketh,
1997). The entries correspond to the percentage of a large number of observers
who responded “same” to the row signal followed by the columnsignal. We
note that this proximity matrix isasymmetric. Furthermore we note that there
is no one unique upper similarity indicating that two signals are identical (given
by the diagonal of the matrix). For dissimilarities it is natural to request that
the diagonal be zeros, i.e. that the dissimilarity of an object to itself be zero.

AsymmetryIt is not uncommon for pairwise data to be asymmetric, i.e. for two object
to have different similarity according to the order in whichthey are presented.
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1 2 3 4 5 6 7 8 9 10
1 (.----) 84 63 13 8 10 8 19 32 57 55
2 (..---) 62 89 54 20 5 14 20 21 16 11
3 (...--) 18 64 86 31 23 41 16 17 8 10
4 (....-) 5 26 44 89 42 44 32 10 3 3
5 (.....) 14 10 30 69 90 42 24 10 6 5
6 (-....) 15 14 26 24 17 86 69 14 5 14
7 (--...) 22 29 18 15 12 61 85 70 20 13
8 (---..) 42 29 16 16 9 30 60 89 61 26
9 (----.) 57 39 9 12 4 11 42 56 91 78
10(-----) 50 26 9 11 5 22 17 52 81 94

Table 2.1. Test subjects are asked to judge the pairwise similarity of auditory
morse code (long and short tones). The entries correspond tothe percentage of
a large number of observers who responded “same” to the row signal followed
by the column signal.

In cognitive psychology, asymmetry comes as a consequence of the mere com-
plexity of the though process. Other examples of asymmetricdata involve e.g.
the well known salesman problem, where the journey time fromtown A to
town B may very well vary from the journey time from townB to town A,
particularly in hilly regions. A further example is the similarity between peo-
ple: a child is often seen similar to one or both of its parents, whereas a parent
is rarely considered similar to his child (Borg and Groenen,1997).

Representation as a
graph...

There are several standard ways to represent pairwise data.Let us consider a
toy data set given by25 × 25 dissimilarities of five pointsA throughE. Fig-
ure 2.1 gives the pairwise data represented by a weighted graph. A weighted

Figure 2.1. Representation of pairwise
dissimilarities as a graph. The data
points are given by the verticesA to
E, the pairwise relation between them
by the weighted edges. Symmetric
similarities correspond to undirected
graphs. Note that the vertices must not
be confounded with points in a vector
space! A

B

C

D

E

10

7

9.5

14
5.5

9.9

5.4

4.4 7.2

9.2

graph is a pair(V, E) of verticesV and weighted edgesE . In our example, the
vertices are given by the pointsA to E and the weighted edges by the dissim-
ilarities. If there are no missing values, i.e. all dissimilarities are known, the
graph is fully connected.
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The representation of pairwise data as a graph mainly servesto illustrate the-
oretic issues and concept. For real data sets it quickly becomes cumbersome
and untracktable. It must be stressed here that the verticesdo not correspond
to points in a two dimensional space: only in rare cases may pairwise data be
represented in two dimensions.

... a table...A more common way to represent pairwise data—and the most natural one—is
to simply list the values of the similarity or dissimilarityin a table. Table 2.2
gives the same toy data set as seen from this representation.A table naturally

A B C D E
A 0 10 7 9.5 14
B 10 0 5.5 9.9 5.4
C 7 5.5 0 4.4 7.2
D 9.5 9.9 4.4 0 9.2
E 14 5.4 7.2 9.2 0

Table 2.2. Representation of pair-
wise dissimilarities as a table or
as a matrix. This is a natural rep-
resentation in the sense that simi-
larities or dissimilarities are given
as numbers. However, for large
data sets it becomes awkward to
print and quite illegible.

... or a checkerboard
pattern

carries over to a matrix, thus making the dissimilarities available to the myriad
of algebraic matrix operations.All subsequent treatments of pairwise data use
the matrix notations. While the table or matrix notation is the only mathemat-
ical usable one, it quickly becomes awkward to display largesets of pairwise
data. To this effect, one replaces the matrix of values by a matrix of e.g. gray
values representing these values: see Figure 2.2. One easily squeezes thou-

A B C D E

A

B

C

D

E

Figure 2.2. Representation of pairwise dis-
similarities as a checkerboard pattern. The
values of the matrix are represented as colors
or gray values. This representation is of great
advantage for large data sets, consisting of
hundreds or thousands of elements. Note that
the values are taken from Figure 2.1: the gray
squares are symmetric around the diagonal.
Dark values represent small dissimilarities,
light values large dissimilarities.

sands of data points into such a representation. While we cannot single out
individual similarity values, we have a good overview of theglobal structure.
Figure 3.8 on page 55 shows three dissimilarity matrices forpairwise aligned
protein sequences. We see different structures which we would probably miss
when looking at the numbers.

A further advantage is that the structure is not swamped by scale when com-
paring different pairwise data sets. The gray values only reflect structure. See
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e.g. Figure A.3 on page 110 for three different matrices thathave a similar
structure while their individual values are on totally different scales.

ISSUES.

RELATIONSHIP BETWEEN SIMILARITY AND DISSIMILARITY . Up to now,
we invariably spoke of similarities or dissimilarities. Ina certain way we will
continue to do so. There is no natural relationship between them, even though it
will often prove necessary to move between them, namely passfrom a similar-
ity measure to a dissimilarity measure. This point will be discussed in further
detail in Section 2.4.

ASYMMETRY. We saw that pairwise data may be asymmetric. Asymmetry
calls for non standard procedures. We will not discuss asymmetric pairwise
data. Part of our results will be valid for asymmetric pairwise data, other will
not. Mention of the particular requirements will be made in due course.

M ISSING VALUES. Sometimes not all pairwise relationships are known. The
data set is said to have missing values. We do not discuss these cases which
require special treatment.

§. 2.3.

M A T H E M A T I C A L S T A T E M E N T.

In this section we will formalize pairwise data. We first willintroduce the
definition of the spaces necessary for a mathematical treatment. We will recall
the definition of a distance function and the implication forpairwise proximity
data. Violations of the requirements on distance functionsare discussed in a
first approach. The problem of embedding is reviewed.

DEFINITIONS.

We start by recalling the definitions of four important spaces, namely a vec-
tor space, a metric space, a Hilbert space and a Euclidean space. Minimum
algebraic and analytic knowledge is taken as a prerequisite.
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Vector spaceDEFINITION 2.3.1. LetK be a field. Avector spaceover K is an abelian
group(E, +) and an application(λ, x)→ λx of K × E to E such that

For allλ, µ ∈ K and for allx ∈ E, λ(µx) = (λµ)x,

For allλ ∈ K and for allx, y ∈ E, λ(x + y) = λx + λy,

For allλ, µ ∈ K and for allx ∈ E, (λ + µ)x = λx + µx,

For allx ∈ E, 1Kx = x.

Common vector spaces in data are the set ofp-tuplesKp over a certain field
K. With K = C or K = R we recover the well known complex or real vector
space. For the remainder of this work, we invariably will takeK = R and omit
the mention to more general fields.

If a set{e1, e2, . . .} is minimal (i.e. no two vectors are a linear combination
of each other) and spans the vector space it is called abasis. The number of
basis vectors is called thedimension. It may be finite of infinite.

A vector space is a very general space and as abstract as one wishes. It
has no notion of similarity and is, as such, of little importance for us. We
need the concept ofmeasurementso that objects can be described as similar or
dissimilar.

Metric spaceDEFINITION 2.3.2. The pair(E, d) is called ametric spaceif E is a non-empty
set and the functiond : E × E → R satisfies the following conditions:

d(x, y) > 0 for all x, y ∈ E,

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x) for all x, y ∈ E,

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ E.

A metric space(E, d) is said to becompleteif every Cauchy sequence con-
verges inE. Note thatE neednot be a vector space. Any set of object is a
metric space when endowed with a function that satisfies the proper require-
ments, given above. We will come back to these requirements and therefore
postpone a closer look at them.

A vector space and a metric space are two independent notionsof great gen-
erality and not restrictive enough for many situations to beuseful. We therefore
define the following:

Hilbert spaceDEFINITION 2.3.3. E is called a realHilbert spaceif E is vector space and
if it has an complete inner product, that is, a function〈·, ·〉 : E × E → R,
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(x, y) 7→ 〈x, y〉, such that

〈x, x〉 > 0 for all x,

〈x, x〉 = 0 if and only if x = 0,

〈x, y〉 = 〈y, x〉 for all x andy,

〈x, λ1y1 + λ2y2〉 = λ1〈x, y1〉+ λ2〈x, y2〉 for all x,y1, y2, λ1, λ2.

An inner product induces a natural norm via‖x‖ =
√

〈x, x〉, which in its
turn induces a natural distance viad(x, y) = ‖x − y‖. We thus have a vector
space in which we have a measure for the similarity of points.The large ma-
jority of data analytical tools is formulated for points lying in a Hilbert space.
This is in particular due to the fact that in such a space we have a probabilistic
formulation of the data, i.e. we can assume that it be drawn from some random
source with a certain distributionxi ∼ P (x). Sometimes, by abuse of lan-
guage, we say vector space instead of Hilbert space, assuming the preexistence
of some inner product.

Hilbert spaces are ubiquitous. In physics they play a major role, not only in
quantum mechanics for the space of wave functions but also inspecial relativity
and in classical mechanics, in which a particularly simple Hilbert space is used,
namely the Euclidean space:

Euclidean space DEFINITION 2.3.4. E is called a (real) Euclidean space ifE = Rp and if the
inner product and the norm are given by:

〈x, y〉 =
p
∑

i=1

xiyi and‖x‖ =
√

〈x, x〉. (2.1)

The norm‖x‖ = (
∑p

i=1 x2
i )

1/2 is called theEuclidean normand is usually
denoted by‖ · ‖2. The Euclidean space is the mathematical replica of our intu-
itions notion of space. Its the mother of all spaces. In threedimensions it is the
physical world we perceive. In machine learning low dimensional Euclidean
spaces are used e.g. for visualization purposes.

In data analysis and machine learning, points lying in a Hilbert spaceE are
called vectorial data, typically denoted

{x1, x2, . . .}, (2.2)

wherexi ∈ E. If the set of points is finite,n shall denote is cardinality.
We henceforth suppose that there be no repetition, i.e. thatthere be no two
identical points with different subscripts. If the dimension of E is finite, it
shall be denoted byp. If n < ∞ andp < ∞ the set of vectorsxi is often
written as a matrixX ∈ Rp×n where theith column representxi.
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Other normsAlbeit its popularity and immediateness, Euclidean spacesare not the only
ones used in data analysis. Often the spaceE = Rp is endowed with other
norms than the Euclidean norm. A family of norms is given by the Minkowski
norm:

‖x‖l =
(

p
∑

i

‖xi‖l
)

1
l

. (2.3)

For l = 2 we recover the Euclidean norm. Forl = 1 we obtain the Manhattan
norm. The choice of the norm relates to the problem of model selection. The
Euclidean norm is only natural in appearance.

Feature spaceHilbert spaces are very restrictive structures and are the prerequisite for
many results in machine learning to hold. In general, they are calledfeature
space. As we have noted, most machine learning algorithms have been for-
mulated for feature space representation. In discriminantanalysis, for exam-
ple, scalar functions are found that separate labeled points as well as possible
(Fisher, 1936, Fukunaga, 1990). Support vector machines maximize the mar-
gin between points of different classes (Vapnik, 1998, Wahba, 1999, Müller
et al., 2001).k-means clustering finds prototype vectors ofk groups in the
feature space (Duda et al., 2001), and Principal Component Analysis finds di-
rection of high variance (Jolliffe, 1986).

For data which is naturally represented as vectors these methods are power-
ful analytical tools. However, there are many situations, where there exists no
obvious vectorial representation. This brings us to pairwise data.

PAIRWISE DATA.

S and DOur starting point will be the (dis-)similarity matrix obtained from some data.
Let us first fix the notation.

Similarity: S ∈ Rn×n,

Dissimilarity: D ∈ Rn×n.

n is the number of objects.sij is an increasing function of similarity, whereas
dij is an decreasing function of similarity.

Note that any similarity matrix can be converted to a dissimilarity matrix and
conversely by some decreasing function. Therefore we may invariably speak
about similarity or dissimilarity matrices.

In the most general case, no further assumptions are made onS or D. It
is only by adopting the semantics of distance to dissimilarities that one could
be tempted to introduce the minimal requirements thatdij > 0 for all i, j =
1, 2, . . . n and thatdii = 0 for all i = 1, 2, . . . n. In the following we will
focus on dissimilarity matrices.

Let be recalled the following:
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Metric function DEFINITION 2.3.5. LetE = {x1, x2, . . .} be a set of points—not necessarily
vectors—with no repetition (i.e. no two identical points with different sub-
scripts), and letd : E × E → R. The functiond is called ametric if:

d(xi, xj) > 0 for all xi, xj ∈ E (2.4)

d(xi, xj) = 0 if and only if xi = xj (2.5)

d(xi, xj) = d(xj , xi) for all xi, xj ∈ E (2.6)

d(xi, xk) + d(xk, xj) > d(xi, xj) for all xi, xj , xk ∈ E (2.7)

We recognize the requirements of a metric space. The conditions 2.4 to 2.7
are respectively calledpositivity, reflectivity, symmetryandtriangle inequality.

Metric dissimilarity matrix DEFINITION 2.3.6. A dissimilarity matrixD = (dij) is calledmetric if there
exists a metric functiond such thatdij = d(·, ·).

This is equivalent to the statement that ifD is metric, then its elementdij

satisfy the four conditions (2.4) to (2.7).
A generic dissimilarity matrix usually satisfies (2.5), often (2.4), sometimes

(2.6) and rarely (2.7).

Euclidean dissimilarity
matrix

DEFINITION 2.3.7. A distance matrixD = (dij) is calledEuclideanif and
only if there exist vectorsx1, x2, . . . xn ∈ Rp such thatdij = ‖xi − xj‖2,
where‖ · ‖2 denotes the Euclidean norm.

PAIRWISE VS. VECTORIAL DATA . As we have seen, the definition of a simi-
larity is a definition on top of an existing vectorial data. Inpairwise proximity
data, the dis-/similarity is the data itself. There are no features, i.e. there is
no basis from which to span the space. Whereas in vectorial data, each single
data point comes as a vector ofp entries, the size of a pairwise representation
is never less thann2. In pairwise data, there is no clear notion of inter point
distance, since one point is only defined with respect to all others. Therefore, if

Generative process one looks at the data as being generated by some physical process, it is unclear
how to formalize a generative model for pairwise data. It is unclear how the
semantics of e.g. source and noise carry over to a pairwise setting.

The lack of probabilistic model for pairwise data is the reason why most
machine learning algorithms formulated for Hilbert spacesfail to carry over to
pairwise data.

Power of pairwise data... On the other hand, constraining data to fit the restrictive structure of a Hilbert
space seems to limit possible understanding. An inner product and the derived
norm and distance can only account for a limited class of similarity measure-
ments. Pairwise data need not satisfy the metric conditionsand are thus poten-
tially able to capture much richer structure.
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METRIC VIOLATIONS.

There are no formalized assumptions on the similarity and dissimilarity matri-
ces except that they “somehow” represent similarity or dissimilarity and that
they be square matrices.

The freedom on similarities seems even larger than the freedom on dissimi-
larities, since the latter are semantically bound to the definition of a metric and
one wishes them to conform at least to the requirement of positivity. Negative
dissimilarities hurt the intuition like negative distances, while for similarities
the same does not hold.

... and its drawbackVery general dissimilarities usually satisfy none of the requirements imposed
upon a function to be metric. Let us have a brief glimpse on therespective
violations:

POSITIVITY . Positivity can be accidentally violated, usually when obtaining
a dissimilarity matrix from a similarity matrix via some decreasing function.
Typical choices likeD = 1− S or D = − log(S) only yield positiveD’s with
prior assumptions onS which are not always natural. Note that in many cases
positivity can be enforced by some trick without changing the problem.

REFLECTIVITY. Reflectivity can be violated in two ways, the usual one being
that a zero dissimilarity does not imply identity of the points. That is: we often
find zero elements on the off-diagonal of the dissimilarity matrix. Conversely
the case of non-zero elements on the diagonal does occur, again, usually as
an improper transformation fromS to D. But this violation might also be an
intrinsic feature of the data from cognitive psychology: somebody might find
himself less attractive than someone else, so the “distance” to himself is larger
than the “distance” to the other person. The violation of reflectivity in the
former case does not pose a particular problem in terms of data analysis. In
the latter, the data may be considered so exotic that it callsfor very individual
treatment anyway. Functions which do not satisfy reflectivity are also called
partial metrics.

SYMMETRY . Symmetry is violated rarely, yet in a natural way as is clear
from Section 2.2. Asymmetric dissimilarities usually poseproblems in as much
they may yield complex eigenvalues in subsequent calculations. They are sym-
metrized via1

2 (D + Dt). For a specific treatment of asymmetric data, see e.g.
Everitt and Rabe-Hesketh (1997).

TRIANGLE INEQUALITY . Triangle inequality is often violated. This is the in-
teresting violation. While violations of positivity and reflectivity seems above
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all accidental and violation of symmetry are quite scarce, the violation of tri-
angle inequality calls for particular devotion. Let us havea closer look of the
violation of (2.7). Several cases should be distinguished.

– The triangle inequality may not be satisfied as a result of fallible esti-
mates or a noisy data set. The comparison algorithm may yieldnoisy
scores. Many of these algorithms rely upon some initialization or some
elastic matching which may lead to violations of triangle inequality or
even of symmetry (see Figure 2.3 to Figure 2.5 for aschematicillustra-
tion).

Oi Oj

Figure 2.3. Distance as
measured by some tool.
The oscillation about the
straight line fromOi to
Oj represents the noise.

Oi Oj

Figure 2.4. Distance as
measured by some tool
with more noise.

Oi Oj

Ok

Figure 2.5. The triangle
inequality is violated.

– The violation may be an intrinsic feature of the distance measure. The
Minkowsky distance given by‖xi − xj‖l for some Minkowsky norm
‖ · ‖l given by Equation 2.3 is non-metric for0 < l < 1. Other non-met-
ric distance measures are noise robust pseudo-metrics liked(xi, xj) =
mediank(|xi,1 − xj,1|, |xi,2 − xj,2|, . . . |xi,n − xj,n|) where mediank is
thek-th value of the ordered difference vector. Other examples involve
e.g. the Kullback-Leibler measure of cross-entropy. It is asymmetric and
violates the triangle inequality (Kapur and Kesavan, 1992). In Jacobs
et al. (2000) the problem specific advantages of such non-metric distance
measures are discussed.

– Many data sets are inherently non-metric. This particularly applies on
data sets based upon some human judgment, for which many relation-
ships are not transitive, e.g. “X likesY , Y likesZ ; X likesZ”.

DEFINITION 2.3.8. Pairwise data will be callednon-metricif the dissimilarity
matrix representing the pairwise data violates one or several of the conditions
(2.4) to (2.7). We will speak aboutmetric violations.

REMARK. We do not refer to non-metric data as a more general data typelike
data qualitative or ordinal in nature. Non-metric data stands for data whose mu-
tual distances do not satisfy the requirements of a metric function. Also note
that the adjective “metric” in “metric violations” does notrefer to the nature of
the violation but to the property violated.

Embedding
We have already mentioned the problem of embedding which tries to find
points in a feature space such that their mutual distance is given by the dissimi-
larity matrix. If this were always possible there would be noneed for structural
approaches, i.e. data analytical methods developed for pairwise data. A Hilbert
space is, a fortiori, a metric space, thus making it intrinsically impossible to
represent non-metric data in such a space.

Non-metricity in itself is no impediment for algorithms of data analysis
which directly relay on pairwise input. The need for such algorithms arose
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exactly because of the impossibility to embed pairwise data. Two popular al-
gorithms for pairwise data are:k-means andk nearest neighbors.

However, from a data analytical perspective, pairwise datastill suffers from
a lack of analytical tools. This is mainly due to the lack of probabilistic model
for pairwise data. The data only exists “as such”. Furthermore, structural
approaches are often expensive in computations since the information is con-
tained inn × n relationships. So we again raise the question of embedding
pairwise data in a feature space. In particular, we will be interested in the
embedding of non-metric pairwise data into a Euclidean space.

ISSUE OF EMBEDDING.

ConceptEmbedding tries to find a set ofn points in some space, usually a feature space,
such that their pairwise distancesd(xi, xj), i, j = 1, 2, . . . n, given by a metric
functiond(·, ·), is “as close as possible” to the given dissimilarity matrixD
with respect to some cost function, the mutual distances being ideally identical
to the original pairwise distances.

Embedding is a very general concept. It applies to finding vectorial rep-
resentatives of pairwise data, possibly non-metric, as well as to finding low
dimensional representations of high dimensional data, in general to fit a data
set in a given space.

While it is possible to embed data in some general metric space, one usually
is interested inEuclidean embeddings, i.e. embeddings into a Euclidean space.
We look for vectors in a Euclidean space to represent the dataclosest to human
intuition and interpretability. This is particularly the case for low dimensional
embeddings, typically of two or three dimensions, which allow to visualize the
data in a familiar space. Figure 2.6 shows a schematic representation of the
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Figure 2.6. Schematic representation of the embedding problem. On the left
hand side we have pairwise dissimilarity data represented as a checkerboard
pattern. On the right hand side we have vectorial data: points in a proper
Hilbert space such that their mutual (pairwise) distance isas close as possible
to the original pairwise dissimilarities, as measured by some cost function.
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embedding of pairwise data into a two dimensional Euclideanspace.
The crucial point of the embedding is the conservation of thedissimilarities.

Pairwise representation naturally come about when the gainof structural rep-
resentations outweight the featural presentation. Embedding in such restrictive
structures as Hilbert spaces will not come without a price. This price is what
the present thesis is about.

Geometric loss A Hilbert space has an inner product and thus a natural metric. It is therefore
intrinsically impossible to find points such that their mutual distance will be
identical to the dissimilarities we started from. The embedding will incur a
loss in terms of metric. We will call this lossgeometric loss. This will be
treated in Section 2.5.

An Euclidean embedding is an even harder problem since we loose the free-
dom on the metric. Even metric pairwise data may not have a loss-free rep-
resentation in a Euclidean space. Only if the pairwise dissimilarities are Eu-
clidean this is possible, as will be seen in the following section.

§. 2.4.

E M B E D D I N G I N T O A E U C L I D E A N S P A C E.

In this section we will discuss the special case of embeddingEuclidean dis-
similarities into a Euclidean space. We have seen that the reason for Euclidean
embeddings are not only their usefulness for existing data analytical tools but
also their tangibility for the human experimenter. The reason for choosing Eu-
clidean dissimilarities is that there is a powerful way to enforce Euclideanness1

for (quite) general dissimilarity matrices.
LetD = (dij) be a Euclidean dissimilarity matrix. From Definition 2.3.7 we

recall that there exist vectorsx1, x2, . . . xn ∈ Rp such thatdij = ‖xi − xj‖2.
The goal of this section is to find them.

We first need to introduce a few definitions and establish a fewresults.

Centralized matrix DEFINITION 2.4.1. LetA = (aij) be any matrix and letQ = I − 1
neet be the

projection matrix on the orthogonal complement ofe = (1, 1, . . . 1)t.
ThecentralizedmatrixAc is the matrix

Ac = QAQ.

A centralized matrix has row and column sum equal to zero. Looking at the

1This is not a neologism. In very rare cases one also encounters the term “Euclideanity”.
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components ofAc

ac
ij = aij −

1

n

n
∑

k=1

aik −
1

n

n
∑

k=1

akj +
1

n2

n
∑

k,l=1

akl, (2.8)

one easily verifies that
∑n

i=1 an
ij = 0 and

∑n
j=1 an

ij = 0.
To understand the semantic of the centralizing operation, consider the fol-

lowing setting. Let{x1, x2, . . . xn} be some set ofn vectors of some vector
space in a given basis and gathered in the row matrixX , i.e. theith row of X
containsxi. Let CX be the corresponding covariance matrix:

CX =
1

n
XXt. (2.9)

If x̄ = 1
n

∑n
i=1 xi denotes the arithmetic mean of{x1, x2, . . . xn} then

{x1 − x̄, x2 − x̄ . . . xn − x̄} corresponds to the set of points shifted about
the origin.

THEOREM 2.4.1. Let {x1, x2, . . . xn} be a set of points gathered in a matrix
X and letX̄ denote the matrix of pointsxi− x̄, wherex̄ denotes the arithmetic
mean.C denotes the covariance matrix as defined in Equation 2.9 andCc is
the centralized covariance matrix. Then we haveCc

X = CX̄ , in other words,
the diagram

X
centralizing−−−−−−→ X̄

cov





y





y

cov

CX
centralizing−−−−−−→ CX̄

commutes.

Proof. Let e = (1, 1, . . . 1)t as before. By simple algebra, one verifies that
x̄ = 1

nXte andX̄ = X − ex̄t. Then:

Cc
X =

(

I − 1

n
eet
) 1

n
XXt

(

I − 1

n
eet
)t

=
1

n
XXt − 1

n2
XXteet − 1

n2
eetXXt +

1

n3
eetXXteet

=
1

n
XXt − 1

n
Xx̄et − 1

n
ex̄tX +

1

n
ex̄tx̄et

=
1

n

(

X − ex̄t
)(

X − ex̄t
)t

= CX̄ .
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Figure 2.7. Centralizing a covariance matrix: on the left hand side, we have
some vectorial data in a two dimensional Euclidean space. The covariance
matrix depends on the position of the points with respect to the origin of the
space. Centralizing the data or the covariance matrix corresponds to mov-
ing the origin to the center of gravity of the data, i.e. the point given by its
arithmetic mean.

Centralizing a covariance matrix thus corresponds to center the correspond-
ing points around the origin, which in view of embedding, does not change the
problem (see Figure 2.7).

LEMMA 2.4.1. Ac is unique.

Proof. Let Ac andAc′ be two centralized matrices ofA. Simple algebra yields
ac

ij − ac′

ij ≡ 0 for all i, j = 1, 2, . . . n.

Squared Euclidean
dissimilarity matrix

DEFINITION 2.4.2. A dissimilarity matrixD = (dij) is calledsquared Eu-
clidean if and only if there exist vectorsx1, x2, . . . xn ∈ Rp such thatdij =
‖xi − xj‖22, where‖ · ‖2 denotes Euclidean norm.

REMARK. It will turn out to be more useful to speak about squared Euclidean
dissimilarities. Therefore, unless stated otherwise, a dissimilarity matrixD
will be taken squared.

Let D = (dij) be squared Euclidean and fixed.D can be decomposed as
follows:

Decomposition dij = cii + cjj − 2cij . (2.10)

C = (cij) is not fixed by the choice ofD, since we always may change its
diagonal elements, yet recover the sameD. Let CD denote the equivalence
class of allC yielding the sameD by Equation 2.10. In particular we note, by
simple algebra, thatCc ∈ CD.

We have the following two important results:

Relation between C and
D

LEMMA 2.4.2. Let C andD be two matrices related to each other bydij =
cii + cjj − 2cij . Then

Cc = −1

2
Dc. (2.11)
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Proof. Substituting Equation 2.10 into Definition 2.8 of the centralized Cc

yields

cc
ij = cij −

1

n

n
∑

k=1

cik −
1

n

n
∑

k=1

ckj +
1

n2

n
∑

k,l=1

ckl

= −1

2

(

(dij − cii − cjj)−
1

n

n
∑

k=1

(dik − cii − ckk)

− 1

n

n
∑

k=1

(dkj − ckk − cjj) +
1

n2

n
∑

k,l=1

(dkl − ckk − cll)
)

= −1

2

(

dij −
1

n

n
∑

k=1

dik −
1

n

n
∑

k=1

dkj +
1

n2

n
∑

k,l=1

dkl

)

= −1

2
dc

ij .

The next result is of paramount importance, since it establishes a strong link
between the squared Euclideanness of a dissimilarity and the spectrum of the
associated centralized covariance matrixCc.

Main theorem
THEOREM 2.4.2. D is squared Euclidean if and only ifCc is positive semi-
definite.

Proof. Torgerson (1958) referring to Young and Householder (1938), or the
following simple algebra: (⇒) BecauseD is squared Euclidean, we can take
vectorsx1, x2, . . . xn ∈ Rp (p 6 n−1) which satisfydij = ‖xi−xj‖2. Then,

dc
ij = dij −

1

n

n
∑

k=1

dik −
1

n

n
∑

k=1

dkj +
1

n2

n
∑

k,l=1

dkl

= ‖xi‖2 + ‖xj‖2 − 2xixj −
(

‖xi‖2 +
1

n

n
∑

k=1

‖xk‖2 −
2

n

n
∑

k=1

(xixk)
)

−
( 1

n

n
∑

l=1

‖xl‖2 + ‖xj‖2 −
2

n

n
∑

k=1

(xlxj)
)

+
( 1

n

n
∑

l=1

‖xl‖2 +
1

n

n
∑

k=1

‖xk‖2 −
2

n2

n
∑

k=1

n
∑

l=1

(xlxk)
)

= −2(xixj − xix̄− x̄xj + x̄x̄)

= −2(xi − x̄)(xj − x̄),
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wherex̄ = 1
n

∑n
k=1 xk. That is,

Dc = −2X̄X̄t and Cc = X̄X̄t, (2.12)

whereX̄ = (x1 − x̄, x2 − x̄, . . . xn − x̄)t. From this equation, it is obvious
thatCc is positive semi-definite.

(⇐) WhenCc is positive semi-definite, there exists an × p (p 6 n − 1)
matrixX which satisfies

Cc = XXt. (2.13)

Let X = (x1, x2, . . . xn)t, that is,xi’s are the row vectors ofX . Then, from
the relationships betweenD andCc,

dij = cc
ii + cc

jj − 2cc
ij

= xixi + xjxj − 2xixj

= ‖xi − xj‖2.

This shows the matrixD is squared Euclidean.

This theorems gives us a necessary and sufficient condition on the spectrum
of Cc for D to be loss-free embeddable in a Euclidean space.

REMARK. The condition “D metric” is not strong enough. One can construct
examples of metricD’s such that the associatedCc is indefinite.

If Cc is positive semi-definite it is a Mercer kernel (i.e. a dot product, for
example by the existence ofX such thatCc = 1

nXXt).

CONSEQUENCES. Cc = − 1
2Dc relates the distance matrix to the centralized

covariance matrix. The spectrum ofCc tells us whetherD is a squared Eu-
clidean or not. Thus we really are only interested inCc, a covariance matrix in
case it is positive semi-definite, apseudo-covariancematrix else. In the latter
case,C is also calledgeneralized covariance.

Dissimilarity and metric REMARK. A dissimilarity matrix may be called a metric if it satisfiesthe
necessary conditions. On the other hand any distance can be readily interpreted
as a dissimilarity.

Similarity and covariance A similarity matrixS may be interpreted as covariance if it is positive semi-
definite, or as a pseudo-covariance else. However, conversely, it is not always
straight forward to interpret a covariance matrix as a similarity matrix since
the covariance takes into account the length of vectors, which is hard to jus-
tify passing to similarities—implying that to same points are more similar the
further away they are from the origin.C depends on the origin!

Relation between S and
D

There is noa priori relationship betweenS andD. Since embedding yields
a representation in terms of distances, the quantity which asolution will be
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judged by, a direct embedding ofS does not seem appropriate, the semantics
of S being scalar products and not distances.

When starting fromS we first must choose an associated distance matrix
D. There are several standard ways to achieve this. One often encounters the
choicesD = 1 − S, dij = − log(sij), dij =

√

− log(sij), dij = 1
sij
− 1 or

dij = sii + sjj − 2sij . This last choice will be assumed implicitly—unless
stated otherwise—for the remainder of this work, when we take S as starting
point. This choice corresponds to interpreting the similarity matrix S as a
covariance.

Non-euclidean ;
non-metric

METRIC SPACE VS. EUCLIDEAN SPACE. It must be stressed here, thatCc

non positive semi-definitedoes notmean that the correspondingD is not met-
ric. It means thatD is not squared Euclidean and hence may not be embedded
loss-free with respect to the Euclidean metric into a Euclidean space.D may be
metric and therefore there may be an embedding into a metric space. However,
a metric space is still a very abstract structure and may not help in understand-
ing the data.

Non-metric ⇒

non-Euclidean
If D is non-metric, thena fortiori it is not Euclidean and by the above the-

oremCc is not positive semi-definite.It is important to keep in mind that the
converse is not true.

EXAMPLE. Because the metric property in Definition 2.3.7 assumes Euclidean
metric, it is stronger than the condition that all triangle inequalities hold, i.e.

√

dij +
√

djk >
√

dik, for all i 6= j 6= k (2.14)

Let us consider the following distance matrix

√
D =









0 3 4 1
3 0 5 2
4 5 0 3
1 2 3 0









. (2.15)

It is easy to check Condition 2.7. The squared distance matrix and its central-
ized version become

D =









0 9 16 1
9 0 25 4
16 25 0 9
1 4 9 0









,

Dc =









−5 1 5 −1
1 −11 11 −1
5 11 −17 1
−1 −1 1 1









.
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Because the eigenvalues ofDc are{−26.05, −7.44, 0, 1.49}, Dc is not neg-
ative semi-definite. This meansCc = 1

2Dc is not positive semi-definite, or
equivalentlyD is not metric in the sense of Definition 2.3.7. The intuitive ex-
planation of the example is as follows. The samples1, 2, and3 form a triangle
(with edges length3, 4, and5). From the relationships of the distances, we
have

√

d14 +
√

d42 = 1 + 2 = 3 =
√

d12

⇔ Point4 should be on the edges connecting the points1 and2,
√

d14 +
√

d43 = 1 + 3 = 4 =
√

d13

⇔ Point4 should be on the edges connecting the points1 and3,
√

d24 +
√

d43 = 2 + 3 = 5 =
√

d23

⇔ Point4 should be on the edges connecting the points2 and3.

However, of course, it is not possible to find a point (4) in Euclidean space. In
other word, we can not place four points in Euclidean space sothat they have
the distance

√
D.

RECOVERING VECTORS FROM SQUAREDEUCLIDEAN D’ S.

We are now ready to solve the problem proposed at the beginning of this sec-
tion, namely finding the vectorsxi such that their mutual distance is given by
the initial dissimilarity matrix supposed to be squared Euclidean.

Algorithm SinceD is squared Euclidean,Cc is positive semi-definite by Theorem 2.4.2
and we have the following algorithm to recover the data points (Cox and Cox,
2001):

1. Calculate centralized kernel matrixCc = − 1
2QDQ from the distance

matrixD.

2. Get the eigenvalue decomposition ofCc,

Cc = V ΛV t,

whereV = (v1, v2, . . . vn) is the row matrix composed of the eigenvec-
torsvi andΛ = diag(λ1, λ2, . . . λn) the diagonal matrix with eigenval-
uesλ1 > · · · > λn > 0. Notice that due to the centralization, which
introduces a linear dependency between all vectors, at least one eigenva-
lue equals zero.

3. Calculate then− 1× n map matrix

X = Λ
1
2 V t, (2.16)
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whereV is the column-matrix of the eigenvectors andΛ the diagonal
matrix of the corresponding eigenvectors.

The columns ofX contain the vectorsxi, i = 1, 2, . . . n, in then − 1-dimen-
sional subspace.The mutual distances coincide withD, i.e.dij = ‖xi − xj‖2.
In other words: there is a direct algebraic transformation betweenD and the
set ofxi’s.

Principal component
analysis

One may choose not to retain the full set ofn− 1 eigenvectors, but use only
a subsetL of the leading eigendirectionsL = {v1, v2, . . . vt} with t 6 n. In
this case the vectors represent the least squares approximates of a set of vectors
whose mutual squared distance is given byD. This algorithm then effectively
amounts to PCA (Jolliffe, 1986).

The assumption thatD be squared Euclidean assured positive semi-definite-
ness ofCc so thatΛ

1
2 is well-defined for all eigendirections, which yields

identical mutual distances to the pairwise dissimilarities we started from. For
non-metric pairwise data, this assumption does not hold andthe above algo-
rithm will fail because of complex eigenvalues. The embedding of non-metric
pairwise data will be discussed in the next section.

§. 2.5.

E M B E D D I N G O F N O N - M E T R I C P A I R W I S E D A T A.

Consequence of
non-metricity

Non-metricity of pairwise data, by implying non squared Euclideanness, read-
ily translates into the spectrum ofCc having negative eigenvalues. Therefore
Cc cannot be looked at as a covariance matrix of some set of vectors. (For
an investigation of non-metricity not based upon the eigenvalue spectrum see
Appendix A.) A distortionless embedding into a vector spaceis not possible,
even in high dimensions. It is a common misconception that higher dimen-
sions could straighten out a faulty metric and represent even the most general
dissimilarity matrixD. It must be stressed here, once again, that for non-met-
ric D’s, there is no loss-free embedding (in the sense of geometric loss) in a
Hilbert space, be it of price of many supplementary dimensions. We therefore
will always be confronted to particular workarounds.

In this section we will briefly pass in review common workarounds in these
cases, namely Multidimensional Scaling and embedding intoa pseudo-Eu-
clidean space.
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MULTIDIMENSIONAL SCALING.

Presumingly the most popular embedding method for non-metric data isMul-
tidimensional Scaling(MDS). See e.g. Cox and Cox (2001), Borg and Groe-
nen (1997), Everitt and Rabe-Hesketh (1997) and Buja et al. (2001) for recent
overviews. MDS was invented for the analysis of proximity data and for dimen-
sion reduction. In MDS one seeks a vectorial representationof data—typically
in low dimension—such that the distortion of the pairwise dissimilaritiesdij is
minimal. The oldest form of MDS is due to Torgerson (1952, 1958) and Gower

Classical scaling (1952) and is calledclassical scaling. It is of particular importance to us and
will be discussed in detail below. Today, the leading MDS methods are based
upon works by Kruskal (1964a,b). The goodness of fit between the dissimilar-
itiesD and their vectorial representatives is measured by a cost function called
“stress” which has the form:

Stress

stress(x1, x2, . . . xn) =

n
∑

i,j=1
i6=j

ωij

(

‖xi − xj‖ − dij

)2
, (2.17)

whereωij are weights. Typically these weights read:

ωij =
1

n(n− 1)d2
ij

, ωij =
1

∑

k,l d
2
kl

or ωij =
1

dij

∑

k,l dkl
. (2.18)

The choice in Equation 2.18 relates to the minimization of relative, absolute or
intermediate error (Duda et al., 2001).

A simple case of cost function is given by the residual sum of squares:

stress(x1, x2, . . . xn) =

( n
∑

i6=j=1

(

‖xi − xj‖ − dij

)2
)

1
2

.

Another widely used cost function is the squared stress criterion, denoted by
Sstress sstress(x1, x2, . . . xn), where the difference between the squared norm‖xi −

xj‖2 and the squared dissimilaritiesd2
ij is optimized (Takane et al., 1977).

MDS always finds a vectorial representation, whether or not the pairwise
data be metric. However, thea priori chosen cost function, possibly of high
complexity and with many parameters which can be tuned, often makes it hard
to understand how the low-dimensional representation is found.

Kruskal-Shepard
distance scaling

The above MDS version via the optimization of stress(x1, x2, . . . xn) is
called theKruskal-Shepard distance scaling. It is based upon direct fitting
of the vectorial distances to the original dissimilarities. Classical Torgerson-
Gower inner-product scalinga.k.a classical scaling is based on converting the
dissimilarities into a form naturally fitted by inner products.
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AlgorithmCLASSICAL SCALING. Classical scaling is based upon Theorem 2.4.2 by
Young and Householder (1938). The idea underlying classical scaling is to
suppose that the dissimilarities are Euclidean distances and then to find coor-
dinates for exploring them.

Classical scaling proceeds similarly to the algorithm given on page 24. How-
ever, sinceCc needs not to be positive semi-definite, the projection is notde-
fined for the eigendirections associated to negative eigenvalues.

1. Calculate centralized matrixCc = − 1
2QDQ from the distance matrix

D.

2. Get the eigenvalue decomposition ofCc

Cc = V ΛV t,

whereV = (v1, v2, . . . vn) is the row matrix composed of the eigenvec-
torsvi and the diagonal matrixΛ = diag(λ1, λ2, . . . λn) with eigenval-
uesλ1 > · · · > λp > λp+1 = · · · = λp+k = 0 > λp+k+1 > λn.

3. Select thet-dimensional subspaceL out of thep eigenvectorsvi associ-
ated to the positive eigenvalues and calculate thet× n map matrix

XL = Λ
1
2

LV t
L, (2.19)

whereVL is the column-matrix of the selected eigenvectors andΛL the
diagonal matrix of the corresponding eigenvectors.

The columns ofXL contain the vectorsxi, i = 1, 2, . . . n, in the chosent-
dimensional subspace.

Classical scaling vs. PCAThere isno direct algebraic transformation betweenD and the set ofxi’s.
Furthermore, unlike in PCA, thexi’s do not represent the least squares ap-
proximate of a set of vectors whose mutual squared distance is given byD.
However, ifD happens to be squared Euclidean, all eigenvalues are positive
and we recover the algorithm from page 24.

Classical scaling can also be formulated as an optimizationproblem. The
corresponding cost function is calledstrain. One possible form of strain is a
residual sum of squares:

strain(x1, x2, . . . xn) =

(

∑n
i,j=1(c

c
ij − 〈xi, xj〉)2

∑n
i,j=1〈xi, xj〉2

)
1
2

.

In MDS literature, many further MDS variants can be found. Note that one of
it is namednon-metricMDS. In this case, the term non-metric does not refer
to the conditions imposed on pairwise data to be metric, but refers to ordinal
data, i.e. data for which only the rank order is taken into account.
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PSEUDO-EUCLIDEAN SPACE.

Unify vectorial and
pairwise representation

The pseudo-Euclidean approach to embedding is the fruit of the attempt to
unify vectorial and structural data into one global type, thereby unifying the
vectorial and the structural approach to data analysis, so as to profit of both
their respective advantages. It is based upon the works by Goldfarb (1984,
1985).

The pseudo-Euclidean space is a generalization of the well known Euclidean
space to indefinite inner products. It effectively amounts to two Euclidean
spaces one of which has a positive semi-definite inner product and the other a
negative semi-definite inner product.

For squared Euclidean distances, the embedding procedure as discussed re-
lies on the centralized covariance matrixCc = − 1

2Dc with a subsequent spec-
tral decompositionCc = 1

nXXt. Dividing the embedding space into two
Euclidean spaces with positive and negative semi-definite inner products with
respective dimensionsp andq amounts to posing

Cc =
1

n
X

(

M
0k×k

)

Xt,

where

M =

(

Ip×p

−Iq×q

)

,

and0k×k is thek × k matrix consisting of zeros. Note thatp + q + k = n, so
that

XMXt = V ΛV t = V |Λ| 12 M |Λ| 12 V t,

whereV is the column-matrix of the eigenvectors andΛ the diagonal matrix
of the corresponding eigenvectors.

The vectors can be recovered as follows:

XL = |ΛL|
1
2 V t

L,

whereVL is the column-matrix of theselectedeigenvectors andΛL the diag-
onal matrix of the corresponding eigenvectors.XL contains the vectors in the
pseudo-Euclidean space.

ForL full index set, we recover the pseudo-covariance matrix

cov(X) =
1

n
XtXM =

1

n
|Λ|M =

1

n
Λ.

X is a result of a mapping the sense of a PCA projection and the embedding
procedure can thus be interpreted as kernel-PCA, whereC is the reproducing
kernel of the pseudo-Euclidean feature space (Greub, 1975).

Distances in a
pseudo-Euclidean space

An interesting interpretation of the distances in a pseudo-Euclidean space
is that they can be looked at as a difference of squared Euclidean distances
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from the “positive” and the “negative” space, by the decomposition R(p,q) =
Rp + iRq.

Thus
dij = d

(Rp)
ij − d

(Rq)
ij . (2.20)

DETAILS. In this somewhat more technical exposé we follow Appendix A1
from Pȩkalska et al. (2001). A pseudo-Euclidean spaceE is a real linear vec-
tor space equiped with a non-degenerate, indefinite, symmetric bilinear func-
tion 〈·, ·〉, called inner product (Greub, 1975). A pseudo-Euclidean space an
be interpreted as composed from two Euclidean subspaces, i.e.E+ of dimen-
sionalityp andE− of dimensionalityq such thatE = E+ ⊕ E−. The inner
product is positive definite onE+ and negative definite onE−. E is charac-
terized by the signature(p, q) (Goldfarb, 1984). A basis{e1, e2, . . . ep+q} is
called orthonormal in a pseudo-Euclidean space if

〈ei, ei〉 =

{

+1, i = 1, 2 . . . p

−1, i = p + 1, . . . p + q

and〈xi, xj〉 = 0 for i 6= j.
The inner product between two vectorsx andy reads:

〈x, y〉 =

p
∑

i=1

xiyi −
p+q
∑

i=p+1

xiyi = xtMy.

Thus, a sphere of equidistant points in a Euclidean space becomes a hyper-
boloid in a pseudo-Euclidean space.

The norm if a non-zero vectorx in a pseudo-Euclidian space is defined as:

‖x‖2 = 〈x, x〉 = xtMx.

It can be positive, negative or zero (even for non-zero vectors calledisotropic
vectors). The definition of a squared distances follows naturally:

D(x, y) = ‖x− y‖2 = 〈x− y, x− y〉 = (x − y)tM(x− y).

Consider the decomposition

M = M+ + M− =

(

Ip×p

0

)

+

(

0
−Iq×q

)

,

then

D(x, y) = (x− y)tM(x− y)

= (x− y)t(M+ + M−)(x − y)

= (x− y)tM+(x− y)− (x− y)t(−M−)(x− y)

= D+ −D−,
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whereD+ = (x− y)tM+(x− y) andD− = (x− y)t(−M−)(x− y). D+ and
D− belong to a Euclidian space of dimensionp resp. q. This decomposition
yields the formula 2.20.

Pseudo-Euclidean space
in physics

REMARK. Pseudo-Euclidean spaces seem to be a quite “artificial” construc-
tion and of mere mathematical interest. However they play animportant role in
fields as prominent as special relativity, where the line element of the Minkowski
space readsds2 = dx2 +dy2 +dz2−dt2, thus combining “space-like” vectors
and “time-like” vectors.

§. 2.6.

D I S C U S S I O N.

Glimpses of possible issues and research directions have been given along this
presentation of pairwise data. It seems at hand thatnon-metricityandembed-
dingare an ongoing issue.

On one hand, one allows pairwise data to be very general and thus cap-
ture rich structure, possibly non-metric, on the other one seems quite unable
to profit from the “rich” structure thus obtained: embeddingis used to recover
vectors, preferably in a Euclidean space, so as to make the data available to the
zoo of data analytical tools developed for vectors. However, rarely is embed-
ding not an enforcement where the initial freedom of structural representation
is sacrificed to vectorial tractability. The pseudo-Euclidean approach, however
elegant, has rather marginal an existence. It seems that thepretended unifica-
tion has failed in practice. This is not so surprising since many analytical tools
require the specific property of positive semi-definitenessof the inner product
of a Hilbert space (called Mercer kernels in the corresponding literature). This
is not the case in a pseudo-Euclidean space, hence its limited interest. We still

Chapter 3 believe in a possible unification, but rather on a “local” level, i.e. on the level of
the data analytical tools and not the representation. This idea will be explored
in the next chapter. It will be shown that the equivalence of the representation
should not only be considered from geometrical point of view. The unification
will not come by unifying the data representation, but by unifying the data with
the subsequently used analytical tools and showing that identical results can be
obtained whatever the representation.

Chapter 4 Furthermore, the structural approaches claim to profit fromthe less restric-
tive structure of pairwise data. However, if we look in particular at metric
violations, it is yet to be proved that the captured structure is richer in terms of
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information rather than simply noisier. At this point in thethesis, it is still un-
clear what metric violations mean and whether at all we can come along with
a sensible interpretation, or even model explaining metricviolations. This will
be the topic of the fourth chapter.

§. 2.7.

C O N C L U S I O N.

In modern data analysis data arises in a variety of forms which require appro-
priate treatment. For major fields, data is often not available as feature vectors
in a vector space, thus precluding the use of well established data analytical
tools. For instance, genomics typically produce data represented as strings
from some alphabet, psychology yields sets of similarity judgments, yet other
fields like social sciences measure so called preference data.

Non-vectorial data sets as such are difficult to handle, and for data mining
purposes we need to relate them to some mathematical concept. A common ap-
proach is to replace the initial data by a collection of real numbers representing
some “comparison” among the elements of the data set. This can be straight
forward, as for similarity judgments, or highly non trivialas for string data,
where the similarity score may be derived by a complex alignment algorithm.
This procedure yields a matrix gathering the pairwise proximity relations be-
tween the original objects. We have to stress here that such amatrix is by no
means naturally related to the common viewpoint of objects being embedded
in some “well behaved” space with a vector space. In particular, for pairwise
data, there is no probabilistic model.

There are two data analytical approaches, namely the vectorial approach and
the structural approach. The advantage of the vectorial approach is the myriad
of techniques which can be deployed in a vector space to analyze the data.
However, a normed vector space is a restrictive structure and this is where the
advantage of the structural approach lies relying upon pairwise input which has
the potential to capture much richer structure.

Embedding pairwise data into a vector space is the attempt tocombine the
best of both worlds. Several embedding procedures have beenpresented. The
discussion of their insufficiencies opened the main research axis of the next
chapters.





3. O P T I M A L E M B E D D I N G

In this chapter we study properties of embedding strategiesin the context of
clustering. We will proceed as follows: we begin with a shortoverview of
proximity based data grouping, and then focus on reformulating such prob-
lems with vectorial data representations. For the class of pairwise clustering
methods that are related to minimizing a shift-invariant cost function, our main
contribution is a new embedding strategy, which we callConstant Shift Em-
beddingas proposed in Roth et al. (2003a,b). A surprising property of this
embedding isthe complete preservation of group structure. The original non-
metric pairwise clustering problem can be restated as a grouping problem over
points in a vector space, yielding identical assignments ofobjects to clusters.
Using the constant shift embedding principle, we then demonstrate the equiva-
lence between thepairwise clusteringcost function and the classicalk-means
grouping criterion in the embedding space.

§. 3.1.

I N T R O D U C T I O N.

ClusteringUnsupervised grouping orclusteringaims at extracting hidden structure from
data (Duda et al., 2001). The term data refers to both a set of objects and a
set of corresponding object representations resulting e.g. from some physical
measurement process. As we have seen in the previous chapter, different types
of object representations are possible, the two most commonof which arevec-
torial data andpairwise proximity data. In the first case, a set ofn objects is
represented asn points in ad-dimensional vector space, whereas in the second
case we are given an× n pairwise proximity matrix.

The problem of grouping vectorial data has been widely studied in the liter-
ature, and many clustering algorithms have been proposed (Duda et al., 2001,
Jain et al., 1999). One of the most popular method isk-means clustering. It
derives a set ofk prototype vectors which quantize the data set with minimal
quantization error. Figure 3.1 shows a simple example of twodimensional
data and two possible clustering solutions. Other popular clustering algorithms
arehierarchical clusteringwhere the solution is obtained either by iteratively

33
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Figure 3.1. Clustering of some data in a Euclidean space (left), solution with
two clusters (middle) and solution with three clusters (right). The different
labels indicate the different clusters obtained. There is no definitetrue solu-
tion. The choice of the number of clusters is related to the problem of model
selection.

splitting up (divisive) or putting together (agglomerative) dissimilar resp. sim-
ilar points, typically via some neighborhood proximity, orspectralalgorithms
which are based upon spectral graph theory (Chung, 1997). Recently, new al-
gorithms have appeared, likesuperparamagnetic clustering(Blatt et al., 1996)
which is based upon an analogy with physics, namely the Pott spin model.

Ill-definedness Clustering is an ill-defined problem, in as much a ground truth does not ex-
ist. This poses the problem of validation. In supervised learning the validation
is performed based upon the information given by the labels which accompany
every data point. In clustering we must rely on other criteria. These can beex-

Extrinsic vs. intrinsic
validation

trinsic like the validation by an expert with a priori knowledge, orintrinsic like
the validation by e.g. stability analysis. Often it is only acombination of both
which leads us towards new insights, as it has been explored e.g. in Schäfer
and Laub (2005). The same problem arises in model selection,typically con-
cerning the number of clusters. The interaction of machine driven automation,
optimization of some optimality criterion and a subsequentexpert interpreta-
tion, with possibility to change the preceding criterion, leads to intelligent data
analysis.

Stability as intrinsic
criterion for model
selection and validation

In particular, we have to give an answer to the question of howmany clusters
should be chosen. In Roth et al. (2002), cluster stability has been shown to be
a suitable model selection criterion for unsupervised grouping problems. The
term stability here refers to structural similarity of partitionings for different
problem instances drawn from the same data source. This quantity can be em-
pirically estimated by iteratively splitting the data intotwo disjoint sets, and
measuring the distance between the grouping solutions. However, the stability
concept is more than a pure heuristic approach, since it has aclear theoretical
interpretation. In terms of statistical learning theory, the principle of favoring
solutions with a high stability can be viewed as selecting the most self-consis-
tent labeling of the data. For details see Roth et al. (2002).
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§. 3.2.

P R O X I M I T Y B A S E D C L U S T E R I N G.

Non-metric pairwise dataPartitioning pairwise proximity data is considered a much harder problem,
since the inherent structure is hidden inn2 pairwise relations. Figure 3.2 illus-
trates clustering pairwise data. It is the pairwisependantto Figure 3.1. Note
that in this representation the cluster membership is only given by the ordering;
the middle and right figures cannot be distinguished withoutthe labels.

Figure 3.2. Unordered pairwise data (left), ordered according to the solution
with two clusters (middle) and, identically, according to the solution with three
clusters (right). This figure is the pairwisependantto Figure 3.1. Note the
usefulness of the checkerboard representation which allows to visualize the
cluster structure of the result.

As we have seen, the proximities can violate the requirements of a distance
measure, i.e. they may be non-symmetric and negative, and the triangle in-
equality does not necessarily hold. A loss-free embedding into a vector space
is therefore not possible, so that grouping problems of thiskind cannot directly
be transformed into geometricallyequivalentvectorial problems by means of
classical scaling.

Drawback of MDSWhen one forcefully embeds non-metric pairwise data by embedding strate-
gies like MDS, the problem is that clustering the embedded data vectors in
general yields partitioningsdifferent from those obtained by directly solving
the pairwise problem. Even worse, by guaranteeing low (but nonzero) dis-
tortions of the proximities, it is still unclear how the object assignments are
affected by the embedding.

Cost based clusteringAmong several methods for clustering proximity based data,in the follow-
ing we will focus on those techniques that explicitly minimize a certain cost
function. This subset of clustering methods includes e.g. graph-theoretic ap-
proaches like several variations ofCut criteria (Shi and Malik, 2000), and
several methods derived from an axiomatization of pairwisecost functions in
Puzicha et al. (1999). From a theoretical viewpoint, cost based clustering meth-
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ods are interesting insofar, as many properties of the grouping solutions can be
derived by analyzing invariance properties of the cost function.

Shift invariant cost
functions

Among the class of cost based criteria, the main focus of thiswork con-
cerns those cost functions which are invariant under constant additive shifts of
the pairwise dissimilarities. For this subset of clustering criteria we show that
there always exists a set of vectorial data representationssuch that the grouping
problem can be equivalently restated in terms of Euclidean distances between
these vectors. A special cost function of this kind is thepairwise clustering

Pairwise clustering cost
function

cost function. It is of particular interest, since it combines the properties of
additivity, scale and shift invariance, and statistical robustness (Puzicha et al.,
1999). In Hofmann and Buhmann (1997) this grouping problem is stated as
a combinatorial optimization problem, which is optimized in a deterministic
annealingframework after applying a mean-field approximation.

Main result According to the Theorem 3.4.1 given on page 45, we can alwaysfind a
vectorial data representation such that the optimal partitioning with respect to
the pairwise cost function isidentical to k-means partitioning in the embed-
ding space. This property demonstrates that the embedding method is optimal
with respect to to distortions of thedata partition. This distortion preserving
embedding has to be contrasted with alternative, in our viewnot consistent, ap-
proaches that are optimal with respect to somea priori chosen MDS distortion
measure.

Consequences of the
theorem

Formulating pairwise clustering as ak-means problem yields several advan-
tages, both of theoretical and technical nature:

1. The availability of prototype vectors defines a generic rule for using the
learned partitioning in a predictive way.

2. We can apply standard noise and dimensionality reductionmethods in
order to separate the “signal” part of the data from underlying “noise”.

3. Fast and efficient local search heuristics for optimizingthe clustering
cost functional often work much better in low dimensional embedding
spaces.

THE PAIRWISE CLUSTERING COST FUNCTION.

Compactness criterion The modeling idea behind the pairwise clustering cost function is to minimize
the sum ofpairwiseintra-cluster distances, emphasizingcompactclusters. Op-
timizing a compactness criterion is certainly a very intuitive meta-principle
for exploratory data analysis. It should be noticed, however, that other meta-
principles have been proposed, such asseparationmeasures, mixedcompact-
ness/separationmeasures orconnectivitymeasures. We will discuss the rela-
tion of pairwise clustering to some of these methods in Section 3.5.



3.2. Proximity based clustering� 37

Binary assignment matrixIn order to formalize pairwise clustering, we define for eachobject a bi-
nary assignment variable that indicates its cluster membership. Let these vari-
ables be summarized in the(n× k) binary stochastic assignment matrixM =

(mij) ∈ {0, 1}n×k such that
∑k

ν=1 miν = 1. Given a(n × n) dissimilarity
matrixD, the pairwise clustering cost function reads:

Hpc =
1

2

k
∑

ν=1

∑n
i,j=1 miνmjνdij
∑n

l=1 mlν
.

The optimal assignmentŝM are obtained by minimizingHpc. The minimiza-
tion itself is aNP hard problem (Brucker, 1978), and some approximation
heuristics have been proposed: in Hofmann and Buhmann (1997) a mean field
annealingframework has been presented (see the discussion in Section3.2 of
this work for some comments and new results on annealing). InPuzicha et al.
(1999) it has been shown that the time-honoredWard’s methodcan be viewed
as a hierarchical approximation ofHpc.

A SPECIAL CASE: k-MEANS CLUSTERING.
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Figure 3.3.k-means pro-
totype vectors for three
clusters.

For the special case of squared Euclidean distances betweenvectorsx1, x2, . . . xn,
xi ∈ Rp, it is well known thatHpc is identical to the classicalk-means cost
function, see Duda et al. (2001). We now briefly review this relationship. The
k-means cost function is defined as

Hkm =

k
∑

ν=1

n
∑

i=1

miν‖xi − yν‖2. (3.1)

It measures the sum of squared intra-cluster distances to the prototype vectors

yν =

∑n
i=1 miνxi

nν
, (3.2)

wherenν =
∑n

l=1 mlν denotes the number of objects in clusterν (Figure 3.3).
Hkm can be written in a pairwise fashion by exploiting a simple algebraic iden-
tity for squared Euclidean distances:

‖xi − yν‖2 =
1

nν

n
∑

j=1

mjν‖xi − xj‖2−

1

2n2
ν

n
∑

j,l=1

mjνmlν‖xj − xl‖2,

n
∑

i=1

miν‖xi − yν‖2 =
1

2nν

n
∑

j,l=1

mjνmlν‖xj − xl‖2.
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Substituting the latter into Equation 3.1, we obtain

Hkm =
1

2

k
∑

ν=1

∑n
i,j=1 miνmjν‖xi − xj‖2

∑n
l=1 mlν

= Hpc.

From this viewpoint,k-means clustering can be interpreted as a method for
minimizing the sum of squaredpairwise intra-cluster distancesdij = ‖xi −
xj‖2. The reader should notice, however, that in the general caseof arbitrary
dissimilaritiesdij a direct algebraic re-transformation ofHpc into Hkm is not
possible since there is no algebraic relationship between thedij ’s and‖xi−xj‖
as we have seen in the previous chapter. Despite this fact, wewill show that
it is still possible to obtain the optimal assignment variables M̂ with respect
to Hpc(M) by minimizing a suitably transformedk-means problem. The key
ingredient will be theshift invariance propertyof the pairwise clustering cost
function described in the following subsection.

INVARIANCE PROPERTIES OF THE PAIRWISE CLUSTERING COST

FUNCTION.

Important invariance
properties

The pairwise clustering cost function has two important invariance properties:

1. Hpc is invariant under symmetrizing transformations

d̃ij =
1

2
(dij + dji) ⇒ H̃ = H. (3.3)

2. Hpc is invariant (up to a constant) under additive shifts of theoff-diago-
nal elements of the dissimilarity matrix:

d̃ij = dij +d0(1− δij) ⇒ H̃ = H +
1

2
(n−k)d0 = H +const. (3.4)

Note that the optimal assignments of objects to clusters arenot influ-
enced by adding a constant to the cost function, i.e.M̂(D̃) = M̂(D).

§. 3.3.

C O N S T A N T S H I F T E M B E D D I N G.

Consequence of
shift-invariance

In Section 3.2 we have introduced the cost functionHpc as a special instance
of pairwise clustering problems. Due to the shift-invariance property (Equa-
tion 3.4), the partitioning of the data set (i.e. the assignments of a set ofn



3.3. Constant shift embedding� 39

objects tok clusters) is not affected by a constant additive shift on theoff-di-
agonal elements of the pairwise dissimilarity matrixD = (dij) ∈ Rn×n. We
will consider general dissimilarity matricesD, restricted only by the constraint
that all self-dissimilarities be zero, i.e. thatD has zero diagonal elements. We
show that by exploiting the above shift invariance we can always embed such
data into a Euclidean space without influencing the cluster structure. An off-

Off-diagonal shiftdiagonal shifted dissimilarity matrix reads

D̃ = D + do(enet
n − In), (3.5)

whereen = (1, 1, . . . 1)t is a vector∈ Rn of ones andIn then × n identity
matrix. In other words, Equation 3.5 describes a constant additive shift d̃ij =
dij + do for all i 6= j.

Let us now consider onlysymmetricdissimilarity matrices. Note that for the
clustering criterionHpc this requirement imposes no restrictions on the gen-
eral applicability, sinceHpc is invariant under symmetrizing transformations
(Equation 3.3). Given such a symmetric and zero-diagonal matrix D, let us
decompose it as in Equation 2.10 in the following way by introducing a new
matrixC = (cij):

Decompositiondij = cii + cjj − 2cij .

For general dissimilarities,Cc will be indefinite. By shifting its diagonal ele-
ments, however, we can transform it into a positive semi-definite matrix: the
following lemma states that for any matrixA, a positive semi-definite matrix
Ã can be derived by subtracting the smallest eigenvalue from all of its diagonal
elements:

LEMMA 3.3.1. Let Ã = A− λn(A)In, whereλn(·) is the minimal eigenvalue
of its argument. TheñA is positive semi-definite.

Proof. The spectrum of̃A is given by the rootsλ of the characteristic polyno-
mial defined bydet(Ã − λIn). det(Ã − λIn) = det

(

A − (λn(A) + λ)In

)

,
so thatλi(Ã) = λi(A) − λn(A). The smallest eigenvalue of̃A is given by
λn(Ã) = λn(A) − λn(A) = 0. ThereforeÃ is positive semi-definite.

Given a matrixD, there exists a unique matrixCc by Lemma 2.4.2. IfCc is
not positive semi-definite, Lemma 3.3.1 states that by subtractingλn(Cc) from
its diagonal elements, we obtain a positive semi-definiteC̃. Returning to Equa-
tion 2.10 with our fixed matrixCc, such a diagonal shift ofCc corresponds to
anoff-diagonalshift of the dissimilarities

d̃ij = c̃ii + c̃jj − 2c̃ij ⇔ D̃ = D − 2λn(Cc)(enet
n − In), (3.6)

sinced̃ij = c̃ii + c̃jj − 2c̃ij = c̃c
ii + c̃c

jj − 2c̃c
ij − λn(Cc)

(

(In)ii + (In)jj −
2(In)ij

)

= D − λn(Cc)
(

(In)ii + (In)jj − 2(In)ij

)

and
(

(In)ii + (In)jj −
2(In)ij

)

equals0 for i = j and2 for i 6= j.
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In other words, if we were giveñD instead of our originalD, thenC̃ would
be a positive semi-definite member of the equivalence classCD̃ of matrices
fulfilling the decompositioñdij = c̃ii + c̃jj − 2c̃ij . Theorem 2.4.2 then tells
us that this off-diagonally shifted matrix̃D derives from a squared Euclidean
distance. Since every positive semi-definite matrix is a dotproduct matrix in
some vector space, there exists a matrixX of vectors such that̃C = XXt. The
matrix D̃ then contains squared Euclidean distances between these vectors.

Preservation of cluster
assignments

We can now insert̃D into our clustering procedure (which is assumed shift-
invariant), and we will obtain the same partition of the objects as if we had
clustered the original matrixD. Contrary to directly usingD, however, the
matrix D̃ now contains squared Euclidean distances between a set of vectors
{x1, x2, . . . xn} which can be recovered according to the PCA algorithm pre-
sented in the previous chapter (see page 24).

Summary The above procedure can be summarized as follows:

D




y

decomposition viadij = cii + cjj − 2cij

C ∈ CD




y
centralization viaCc = QCQ

Cc = − 1
2Dc





y
diagonal shift viaC̃ = Cc − λn(Cc)InV

C̃ = XXt





y

off-diag. shifted dissimilarities

d̃ij = c̃ii + c̃jj − 2c̃ij




y

clustering assignments

M(D̃) = M(D).

Figure 3.4 illustrates this additive shift, based upon the triangle in Figure 2.5
which violated triangle inequality because of its noisy distances. The triangle
in Figure 3.4 now satisfies the triangle inequality.

In principle, the above derivation holds true not only for the centralized ma-
trix Cc, but for any memberC of the of the equivalence classCD. Some of
these members, however, will eventually have very large negative eigenvalues,
which means that we would have to add a very large constant to all off-diagonal
entries ofD. For numerical reasons we want to avoid these problems, which
leads us to the question of theminimalnecessary shift. The next theorem states
that our above choice of usingCc is optimal in this sense:
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Oi Oj

Ok

do

do

do

Figure 3.4. Distance as
measured by some tool.
See Figure 2.5 for the
original triangle violating
the triangle inequality.
Thanks to the minimal
shift, the transformed
triangle now satisfies the
triangle inequality. The
clustering solution for
the dissimilarities thus
rendered metric does not
change.

THEOREM 3.3.1. (Cox and Cox, 2001).do = −2λn(Cc) is the minimal con-
Minimal shiftstant such thatD̃ = D + do

(

enet
n − In

)

derives from squared Euclidean
distance.

Proof. A proof is given in Cox and Cox (2001). It also follows from Theo-
rem 2.4.2 and Lemma 3.3.1, or the following simple argument:

Suppose thatD is non-metric. In order to get a metric distance, we add a
constantdo > 0, i.e.

d̃ij = dij + do(ee
t − In).

The centralized kernel matrix becomes

C̃c = −1

2
D̃c = −1

2
Dc +

1

2
doQ = Cc +

1

2
doQ.

Let λ1 > · · · > λp > λp+1 = 0 > λp+2 > · · · > λn be the eigenvalues.
Then,

λ1 +
do

2
> · · · > λp +

do

2
> λp+2 +

do

2
> · · · > λn +

do

2
, λp+1 = 0,

therefore,C̃c is positive semi-definite, ifdo > −2λn.
The distortion caused by this change is (Cox and Cox, 2001)

tr(D̃ −D)2 =
∑

i,j

do(1− δij)do(1− δji) = n(n− 1)d2
o.

whereδij is the Kronecker symbol,δij = 1 for i = j andδij = 0 for i 6= j.
Therefore, we must choosedo as small as possible. This means thatdo =
−2λn gives the optimal constant shift to metric distanceD̃.
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EXAMPLE. Let D be a squared matrix such that

√
D =





0 1 3

1 0
√

2

3
√

2 0



 ,

which does not satisfy triangle inequality since3 
 1 +
√

2
Cc is given by





2 1
3 − 7

3
1
3 − 1

3 0
− 7

3 0 7
3



 ,

with eigenvalues{−0.5166,−0.0000, 4.5166}.
Now, D̃ = D + do(ee

t − In) = D − 2λn(Cc)(eet − In) so that

√

D̃ =





0 1.4259 3.1675
1.4259 0 1.7416
3.1675 1.7416 0



 ,

which “just” satisfies triangle inequality. The corresponding C̃c is positive
semi-definite.

RECONSTRUCTING THE EMBEDDED VECTORS.

Given a general dissimilarity matrixD, in the last section we have shown how
to obtain a shifted matrix̃D which derives from squared Euclidean distances
between pointsx1, x2, . . . xn in some vector space. This property ofD̃ im-
plies that the corresponding matrix̃Cc is positive semi-definite, and thus a dot
product matrixC̃c = XXt. According to Lemma 2.4.2,̃Cc can be calculated
asC̃c = −1/2D̃c. The vectorsx1, x2, . . . xn can be recovered by an eigenva-
lue decomposition of̃Cc as in the algorithm given in the previous chapter (see
page 24).

Preprocessing So far we have discussed an exact reconstruction of the structure preserving
vectors in the embedding space. While this has both important theoretical and
practical consequences (see Section 3.2), in many applications we would like
to insert some preprocessing step in our clustering procedure. A typical exam-

Denoising ple of this kind would be the suppression of noise. When focusing on noise
reduction, we are interested in some sort of approximative reconstructions of
the exact vectors. The reader should notice that given the vectorial represen-
tationsx1, x2, . . . xn in a Euclidean space, the issue of separating the “noisy”
part of the data from the “signal” part can be handled within awell-defined
framework. On the contrary, in the original pairwise setting without a common
vector space structure, to our knowledge there exist no general purpose denois-
ing methods. For instance, it is not clear how to define a global noise model
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that specifies the amount of noise by which each single objectis corrupted.
The semantics of a generative model which is responsible forthe “signal” part
is also unclear.

PCAIn Principal Component Analysis (PCA), one usually assumesthat the direc-
tions corresponding to small eigenvalues contain the noise(Mika et al., 1999).
We can thus obtain a representation in a space of reduced dimension (with the
well-defined error of PCA reconstruction) when choosingt < n − 1 dimen-
sions in the PCA algorithm of page 24:Xt = VtΛ

1/2
t , whereVt consists of the

first t column vectors ofV andΛt is the topt × t submatrix ofΛ. The vec-
tors inRt then differ the least from the vectors inRp in the sense of quadratic
approximation error. This means that the embedded vectors are the best least
squares error approximation to the optimal vectors which preserve the group
structure. The mathematical tractability of error constitutes the main difference
to directly decomposingCc (i.e. without shifting) and projecting onto a subset
of eigenvectors with positive eigenvalue, as in classical scaling. In the latter
case, there exist no optimal vectors (in the sense of structure preservation),
since only the positive eigenvalues can be used for derivinga vector represen-
tation. For classical scaling, it is thus unclear, what “objects” are approximated
and with what error.

SummaryThe processing pipeline of both the loss-free vector reconstruction and the
PCA approximation is summarized in the following algorithm:

D




y

constant shift embedding

D̃




y
decompositioñdij = c̃ii + c̃jj − 2c̃ij

C̃




y

centering

C̃c = − 1
2D̃c





y
loss-free reconstruction

X = V Λ
1
2





y

approximation and denoising

Xt = VtΛ
1
2

t , t < n− 1.

It should be noticed, however, that given the exactly reconstructed vectors in
Dimension reductionRp, we can also apply any other standard method for dimensionality reduction

or visualization, such asprojection pursuit(Huber, 1985),locally linear em-
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bedding(LLE) (Roweis and Saul, 2000),Isomap(Tenenbaum et al., 2000) or
Selforganizing maps(Kohonen, 1995). These methods can also be viewed as
approximations of the optimal structure preserving vectors, employing, how-
ever, an approximation criterion different from the squared error as in the case
of the above PCA framework.

PREDICTING THE CLUSTER MEMBERSHIP OF NEW DATA.

First notice that due to the eigenvalue equationC̃cV = V Λ, we can rewrite
Equation 2.19 in the form:

X = C̃cV Λ− 1
2 .

Consider now the situation where we are givenm new objects and the cor-
respondingm × n matrix of pairwise dissimilaritiesdnew

ij between these new
objects and alln original objects. In order to predict the cluster membership of
the new objects, we first have to project them into the Euclidean space spanned
by the eigenvectorsV of the centered dot product matrix̃Cc. Then, we as-
sign each new object to the cluster with the closest centroid. For the projection
itself, two steps are required. First compute the matrixCnew defined by

dnew
ij = cnew

ii + c̃c
jj − 2cnew

ij . (3.7)

Similar to the situation in Equation 2.10, we still have the problem of ambigu-
ities due to the freedom of choosingcnew

ii . This problem, however, is automat-
ically overcome by re-expressing the matrixCnew in the centered coordinate
system:

(cnew)c
ij = cnew

ij −
1

n

n
∑

k=1

cnew
ik −

1

n

n
∑

k=1

c̃c
kj +

1

n2

n
∑

k,l=1

c̃c
kl.

Substituting Equation 3.7 into the above equation and noticing thatD̃ andC̃c

are connected bỹdij = c̃c
ii + c̃c

jj − 2c̃c
ij , we can restate(Cnew)c solely in terms

of Dnew andD̃:

(cnew)c
ij = −1

2

(

dnew
ij −

1

n

n
∑

k=1

dnew
ik −

1

n

n
∑

k=1

d̃kj +
1

n2

n
∑

k,l=1

d̃kl

)

,

that is,

(Cnew)c = −1

2

(

Dnew(In −
1

n
enet

n)− 1

n
emet

nD̃(In −
1

n
enet

n)
)

.

Second, project the objects represented by(Cnew)c into the coordinate system
spanned by the eigenvectorsV of the matrixC̃c:

Xnew = (Cnew)c V Λ− 1
2 . (3.8)
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SummaryThe whole process flow for predicting the cluster membershipof new objects
is summarized as follows:

Dnew





y

decompositiondnew
ij = cnew

ii + c̃c
jj − 2cnew

ij

Cnew





y

Centering

(Cnew)c = − 1
2

(

Dnew(In − 1
nenet

n)− 1
nemet

nD̃(In − 1
nenet

n)
)

Xnew = (Cnew)cV Λ− 1
2





y
assignment to closest centroid{y1, y2, . . . yk}

ν̂(xnew)i = argminν ‖(xnew)i − yν‖2.

Prediction (schematic): from the preceding clustering step we are given the
squared Euclidean distancesD̃, the centered dot-product matrix̃Cc = − 1

2D̃c,
its eigenvectors and its eigenvaluesV, Λ, and the cluster centroids{yν}kν=1.
Prediction step 1: decomposingDnew and re-expressing the matrixCnew in the
centered coordinate system ofC̃c. Step 2: projecting the new objects on the
eigenvectorsV of C̃c. Step 3: assigning objects to the cluster with the closest
centroid vectoryν .

§. 3.4.

S U M M A R Y.

Relationship between
k-means cost function
and pairwise cost
function

For the special case of squared Euclidean distances, the pairwise cost function
and thek-means cost function can be transformed into each other by using a
simple algebraic identity, cf. Section 3.2. With the results of the last section,
we are now able to prove that a similar relationship between both cost functions
holds in the general setting:

THEOREM 3.4.1. Given an arbitrary(n× n) dissimilarity matrixD with zero
self-dissimilarities, there exists a transformed matrixD̃ such that

1. the matrixD̃ can be interpreted as a matrix of squared Euclidean dis-
tances between a set of vectors{x1, x2, . . . xn}with dimensionality dim(xi) 6

n− 1,
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2. the original pairwise clustering problem defined by the cost function
Hpc(D) is equivalent to thek-means problem with cost functionHkm

in this vector space, i.e. the optimal cluster assignment variables m̂iν

are identical in both problems:̂Mpc(D) = M̂ km(D̃).

Proof. 1. LetD̃ be the symmetrized and off-diagonal shifted version ofD:

Dsym =
1

2
(D + Dt) (3.9)

Cc = −1

2
QDsymQ = −1

2
Dc

sym (3.10)

D̃ = Dsym− 2λn(Cc)(enet
n − In). (3.11)

According to Section 3.3 and the theorems mentioned therein, there exists a set
of vectors{x1, x2, . . . xn} with dimensionality dim(xi) 6 n − 1 such thatD̃
contains squared Euclidean distances between these vectors. 2. SinceD̃ repre-
sents squared Euclidean distances, Equation 3.2 implies that the pairwise clus-
tering cost function is identical to thek-means function:Hpc(D̃) = Hkm(D̃).
According to the invariance properties given by Equation 3.3 and Equation 3.4,
the optimal assignments{m̂iν} of objects to clusters are not influenced by the
transformations given by Equation 3.9 and Equation 3.11 ofD into D̃, i.e.
M̂(D) = M̂(D̃).

Consequences The above theorem has several important consequences.

INTERPRETATION AND REPRESENTATION. Rewriting pairwise clustering as
ak-means problem naturally introduces the notion of cluster centroids or clus-
ter representants.

PREDICTION. The cluster prototypes define a generic prediction rule fornew
objects.

DATA PREPROCESSING AND DENOISING. The vectorial representation of
the objects allows us to apply standard preprocessing and denoising methods.
Note that the usual semantics of “signal” and “noise” is closely related to some
sort of generative model in a vector space.

OPTIMIZATION . Minimizing the pairwise clustering cost function is anNP -
hard problem. The associatedk-means problem with loss-free reconstructed
vectors has the same complexity, since the dimensionality of the vectors grows
with n, see Drineas et al. (1999). Thus, for handling real-word problems, in
both cases efficient approximation algorithms or schemes are necessary. In
Hofmann and Buhmann (1997) it has been proposed to optimizeHpc by way of
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deterministic annealing. Since annealing methods are not our main focus, we
only mention that deterministic annealing is feasible onlyfor factorial Gibbs
distributions Puzicha et al. (1999). ForHpc(D), this constraint requires the
use of amean-field approximation. Applying Theorem 3.4.1, however, we are
able to anneal the shiftedk-means cost functionHkm(D̃), for which the mean-
field approximation becomesexact. For details on annealing and mean-field
approximations, the interested reader is referred to Hofmann and Buhmann
(1997), Rose et al. (1990).

Preprocessing and
optimization

If one decides to insert a denoising and dimensionality reduction step into the
clustering procedure, this will usually not only speed up the computations, but
it will also “robustify” optimization heuristics for thek-means problem. For
instance, applying PCA approximations according to Section 3.3, the energy
landscape typically will be smoothed out, which makes localsearch heuris-
tics (such as the classical iterativek-means algorithm) less sensitive to being
trapped in local minima.

SUMMARIZING DIAGRAM .

Let D be a dissimilarity matrix possibly violating symmetry and triangle in-
equality. LetD̃ be its symmetrized and shifted version.M(·) denotes a par-
tition (assignment matrix) of the data contained in its argument. The first line
of the diagram represents the data on the level of pairwise data. The second on
the level of a loss-free embedding with respect to cluster assignment. Finally
the last on the level of a low dimensional approximation. Theleft half of the
diagram shows what can be achieved with a general dissimilarity matrix, the
right half with its symmetrized and shifted version.

D
k-means−−−−→ M(D) M(D̃)

k-means←−−−− D̃




y





y

∥

∥

∥





y

∅ ∅ M(x1, x2, . . . xn)
k-means←−−−− (x1, x2, . . . xn) ∈ Rn−1

MDS





y





y
PCA

(x1, x2, . . . xn) ∈ Rt k-means−−−−→ M(x1, x2, . . . xn) M(x1, x2, . . . xn)
k-means←−−−− (x1, x2, . . . xn) ∈ Rt
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§. 3.5.

R E L A T I O N S T O G R A P H - T H E O R E T I C
C L U S T E R I N G M E T H O D S.

Equivalence of several
cost functions to k-means

In this section we discuss the relations between graph-theoretic grouping prin-
ciples and the constant shift embedding method for pairwiseclustering. As
main result, we show that both theAveraged Associationand theAveraged
Cut cost function are shift-invariant. With this invariance property, theAver-
aged Associationprinciple turns out to be equivalent to thek-means clustering
algorithm in the embedding space. Using the same strategy, we show thatAv-
eraged Cutis equivalent to thepairwise separationcost function. The latter
can also be stated in terms of Euclidean distances between embedded vectors.
For theNormalized Cutmethod, on the other hand, the constant shift embed-
ding method is not applicable. In the case of balanced partitions with similar
structure among all clusters, however, the differences betweenAveraged Asso-
ciation, Averaged CutandNormalized Cutbecome vanishingly small. In such
situations, all three methods can be reasonably well approximated byk-means.

A graphG = (V, E) can be partitioned into disjoint setsAν , ν = 1, . . . , k

by removing edges:
⋃k

ν=1 Aν = V, Aν ∩ Aµ = ∅ for ν 6= µ. Following Shi
and Malik (2000), we define the similarity between the setsAν andV −Aν by
the total weight of the edges that have been removed

cut(Aν , V −Aν) =
∑

u∈Aν

v∈(V −Aν)

w(u, v),

where the weight on each edge,w(u, v), is a function of the similarity between
nodesu andv. We further introduce a measure of association between two
sets, assoc(A, B), as the total connection from nodes in setA to the nodes in
setB. It follows immediately that both measures are connected bythe formula

cut(Aν , V −Aν) = assoc(Aν , V )− assoc(Aν , Aν).

We further denote byW the similarity (weight) matrix with unit self-similari-
ties: wii = 1, for all i = 1, . . . , n. Based on this similarity matrix, we define
a dissimilarity matrix byD = enet

n −W , with en = (1, 1, . . . 1)t as before.
Together with the notation of the binary assignment variablesmiν and the def-
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inition nν = |Aν |, we can write the association measure in the form

assoc(Aν , Aν) =

n
∑

i,j=1

miνmjνwij =

n
∑

i,j=1

miνmjν(1 − dij)

= n2
ν −

n
∑

i,j=1

miνmjνdij .

(3.12)

For two sets,A ∪B = V , A ∩ B = ∅, in Shi and Malik (2000) theAveraged
Averaged Association...Associationcost function has been defined as

AvAssoc=
assoc(A, A)

|A| +
assoc(B, B)

|B| .

It can be easily extended for ak-partitioning problem:

AvAssock =

k
∑

ν=1

assoc(Aν , Aν)

nν
.

InsertingD = enet
n − W and Equation 3.12, we see that maximizing the

averaged association is equivalent to minimizing thepairwise clusteringcost
functionHpc:

AvAssock(W ) =

k
∑

ν=1

assoc(Aν , Aν)

nν
= n− 2Hpc(enet

n −W ). (3.13)

According to Theorem 3.4.1, it is always guaranteed that the(possibly shifted)
... is identical to k-meansmatrix Cc = − 1

2Dc is a positive semi-definite dot-product matrix which can
be used to embed the data into a Euclidean space. In this spacethe problem
of minimizing the pairwise clustering function reduces to astandardk-means
problem.

Averaged Cut...TheAveraged Cutcost function, cf. Shi and Malik (2000), is defined as

AvCutk =
k
∑

ν=1

cut(Aν , V −Aν)

nν
=

k
∑

ν=1

assoc(Aν , V )− assoc(Aν , Aν)

nν
.

In the following we will show that AvCut is equivalent to thePairwise Separa-
tion cost functionHps (in Puzicha et al. (1999) this cost function is denoted by
Hps1a):

Hps = −
k
∑

ν=1

n
∑

i=1

miν
1

k − 1

∑

µ6=ν

∑n
j=1 mjµdij
∑n

j=1 mjµ

= − 1

k − 1

( k
∑

ν=1

1

nν

n
∑

i,j=1

miνdij − 2Hpc

)

.
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With Equation 3.13 and the identity

assoc(Aν , V ) =

n
∑

i,j=1

miνmij = nnν −
n
∑

i,j=1

miνdij ,

AvCut can be reformulated in terms ofHps:

AvCutk =

k
∑

ν=1

assoc(Aν , V )

nν
− n + 2Hpc

= kn−
k
∑

ν=1

1

nν

n
∑

i,j=1

miνdij − n + 2Hpc

= (k − 1)n + (k − 1)Hps.

(3.14)

Minimizing the averaged cut cost function based on the affinity matrix W is
thus equivalent to minimizingHps with distancesD = enet

n −W . Note that
the separation measureHps has the same shift-invariance property as its com-
pactness counterpartHpc:

Hps
(

D + d0(1 − δij)
)

= Hps + const.

We can thus directly apply the constant shift embedding framework of Sec-
... is shift invariant tion 3.3.

Normalized Cut... TheNormalized Cutcost function, cf. Shi and Malik (2000), is an interme-
diate grouping criterion that combines both the compactness and separation
principle. Thek-cluster version is defined as

Ncutk =

k
∑

ν=1

cut(Aν , V −Aν)

assoc(Aν , V )
= k −

k
∑

ν=1

assoc(Aν , Aν)

assoc(Aν , V )
.

Rewriting this in terms of distancesD = enet
n −W , we arrive at

Ncutk = k −
k
∑

ν=1

(nν − n−1
ν

∑n
i,j=1 miνmjνdij

n− n−1
ν
∑n

i,j=1 miνdij

)

. (3.15)

Contrary to AvAssoc and AvCut, the Ncut cost function is not shift invariant.
... is almost shift invariant For non-metric (dis)similarities, it is thus not possible to apply the constant

shift embedding trick to obtain a grouping problem in a vector space. How-
ever, for the special case of balanced partitionings,nν = n

k for all ν, and simi-
lar distribution of intra-cluster distances among all groups, all the row-sums of
the distance matrix tend to be similar. Assuming

∑n
j=1 dij = const and substi-

tuting this into Equation 3.14, or Equation 3.15 respectively, we see that in this
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special case both the AvCutk and the Ncutk criteria become equivalent to the
AvAssock criterion, and hence equivalent to theHpc cost function. This equiv-
alence means that for clustering problems with similar group structure and bal-
anced partitions large differences between the models willbecome vanishingly
small. The somewhat surprising results of a large-scale comparison study of
graph partitioning algorithms for image segmentation tasks in Soundararajan
and Sarkar (2001) could be explained in the light of this analysis.

§. 3.6.

A P P L I C A T I O N S.

Three applicationsWe will illustrate the constant shift embedding by three applications from pro-
tenomics. The first example shows that CSE can be successfully applied to
denoise pairwise data in a mathematical rigorous fashion, which cannot be
achieved for non-metric pairwise data with traditional techniques. The second
application is a worked through example of combining CSE andlow-dimen-
sionsal approximations, model selection and clustering toglobin protein se-
quences. In the third example, we apply CSE to cluster protein sequences of
the ProDom database with respect to structural similarity.

BACTERIAL GyrB AMINO ACID SEQUENCES.

The GyrB data setOur first illustration involves the gyrase subunit B. The data set consists of 84
amino acid sequences from five genera inActinobacteria: 1: Corynebacterium,
2: Mycobacterium, 3: Gordonia, 4: Nocardiaand 5:Rhodococcus. A detailed
description can be found in Kasai et al. (1998). This data setwas used in Tsuda
et al. (2002) for illustration of marginalized kernels. Theauthors hinted at the
possibility of computing the distance matrix by using BLASTscores (Altschul
et al., 1990), noting, however, that these scores could not be converted into
positive semi-definite kernels.

Computation of the
similarity matrix & CSE

In our experiment, the sequences have been aligned by the Smith-Water-
man algorithm (Pearson and Lipman, 1988) which yields pairwise alignment
scores. The associated pseudo-covariance matrix exhibitsa few strongly nega-
tive eigenvalues as seen in Figure 3.5. Using constant shiftembedding aposi-
tive semi-definitekernel is obtained, leaving the cluster assignment unchanged
for shift invariant cost functions.

DenoisingThe important step is the denoising. Several projections tolower dimensions
have been tested andt = 5 turned out to be a good choice, eliminating the bulk
of noise while retaining the essential cluster structure.
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Figure 3.5. The spectrum of the
centralized covariance matrix. We
see that it exhibits strongly negative
eigenvalues pointing to severe met-
ric violations. It cannot be embed-
ded loss-free into a Euclidean space
with respect to a metric. Denois-
ing is not properly defined on such
data.
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Figure 3.6 shows the striking improvement of the distance matrix after de-
noising. On the left hand side the ideal distance matrix is depicted, consisting
solely of0’s (black) and1’s (white), reflecting the true cluster membership. In
the middle and on the right the original and the denoised distance matrix are
shown, respectively. Denoising visibly accentuates the cluster structure in the
pairwise data.

Figure 3.6. Dissimilarity matrix: On the left the ideal distance matrix reflects
the true cluster structure. In the middle and on the right: distance matrix
before and after denoising. Dark values represent small dissimilarities, light
values large dissimilarities.

Improvement obtained by
denoising

Since we dispose of the true labels, we can quantitatively assess the im-
provement by denoising. We performed usualk-means clustering, followed by
a majority voting to match cluster labeling. For the denoised data we obtained
3 misclassifications (3.61 %) whereas we got17 (20.48 %) for the original data.
This simple experiment corroborates the usefulness of our embedding and de-
noising strategy for pairwise data.

In order to fulfill the spirit of the theory of constant shift embedding, the
cost function of the data-mining algorithm subsequent to the embedding needs
to be shift invariant. We may, however, go a step further and apply algorithms
for which this condition does not hold. In doing so, however,we give up the
mathematical traceability of the error.

Comparison to previous
results

To illustrate that denoised pairwise data can act as standalone quality data



3.6. Applications � 53

independent of the framework of algorithms based on shift invariant cost func-
tions, and in order to compare to the results obtained in (Tsuda et al., 2002),
a linear SVM is trained on 25 % of the total data to mutually classify the gen-
era-pairs: 3 – 4, 3 – 5 and 4 – 5. Genera 1 and 2 separate errorless and have
therefore been omitted. Model selection over the regularization parameterC
has been performed by choosing the optimal value out of 10 equally spaced val-
ues from[10−4, 102]. The results have been averaged by a 1000-fold sampling
(cf. Table 3.1). The best values are emphazised.

Genera FK MCK2 Undenoised Denoised
3 – 4 10.4 8.48 5.06 5.43
3 – 5 10.9 5.71 5.72 3.83
4 – 5 23.1 11.6 7.55 3.17

Table 3.1. Comparison of mean test-error of supervised classification by linear
SVM of genera with training sample 25 % of the total sample. The results for
MCK2 (Marginalized Count Kernel) and FK (Fisher Kernel) is obtained by
kernel Fisher discriminant analysis which compares favorably to the SVM in
several benchmarks (Tsuda et al., 2002).

DiscussionFor the classification of genera 3 – 5 and 4 – 5 we obtain a substantial im-
provement by denoising. Interestingly this is not the case for genera 3 – 4
which may be due to the elimination of discriminative features by the denois-
ing procedure. The error still is significantly smaller thanthe error obtained by
MCK2 and FK, which is in agreement with the superiority of a structure pre-
serving embedding of Smith-Waterman scores even when left undenoised: FK
and MCK are kernels derived from a generative model, whereasthe alignment
scores are obtained from a matching algorithm specifically tuned for protein
sequences, reflecting much better the underlying structureof protein data.

CLUSTERING OF PROTEIN SEQUENCES.

The globin data setIn this experiment with globin sequences, we present a worked-through exam-
ple of combining constant shift embedding, low-dimensional approximations,
model selection and clustering in the embedding space. Fromthe SWISS-
PROT and TrEMBL databases (Boeckmann et al., 2003) we extracted all ap-
proximative 1200 sequences annotated as “globins” or as “globin-like”. The
heuristic FASTA scoring method (Pearson and Lipman, 1988) was used for
computing pairwise alignment scores, which in turn were length-corrected,
a Bayesian approach for correcting local alignments, following Durbin et al.
(1998), and normalized to the length of the alignment. From the pair-scores
sij , we derived dissimilarities by settingdij = sii + sjj − 2sij . Note that
other transformations (e.g. of the formdij = exp(−sij)) may be applied as
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well. Our experimental results, however, favor the first choice. The eigenvalue
Metric violations spectrum of the centered matrixCc shows some highly negative entries, indi-

cating that the dissimilarities do not derive from squared Euclidean distances.
By way of the constant shift embedding procedure, however, the sequences are
represented as points in a vector space without distorting the grouping solution.

Given these vectors, we are left with two problems:

1. choosing an appropriate denoising mechanism and

2. minimizing thek-means cost function for different values ofk and se-
lecting the “optimal” number of clustersk. In the following we present
details for both the model selection procedure and the final clustering
results.

DENOISING. The left panel in Figure 3.7 shows the 25 leading eigenvalues of
the centered matrixCc. The eigenvalue curve suggests that there are only very
few dominating directions in the embedding space. We thus decided to discard
all but the first ten leading eigenvectors. Since in this control experiment we
have access to the ground-truth labels, we are able to test this hypothesis about
“signal” and “noise”. The plotted denoised and original distance matrices in
Figure 3.8 indicate that the space spanned by the first ten eigenvectors indeed
accentuates the main structure of the protein (sub-)families.

OPTIMIZATION AND MODEL SELECTION. For minimizing thek-means func-
tional in the embedding space a deterministic annealing method was applied.
Concerning the selection of the “correct” number of clusters, we used the con-
cept of cluster stabilitywhich has been introduced in Dudoit and Fridlyand
(2002) and refined in Lange et al. (2003). The main idea is to draw resamples
from the data set and then to compare the inferred data-partitions across these
resamples. The variations of the partitions are transformed into an instability
index, which is normalized such that arandomprocedure yields instability 1,
and a perfect correspondence between solutions yields instability 0. The right
panel in Figure 3.7 depicts the estimated instability for different numbers of
clusters. The bars show the standard deviations estimated in the resampling
procedure. The most stable solution partitions the data into three clusters, and
two another distinct local minima occur fork = 5 andk = 9.

CLUSTERING RESULTS. For the solutions withk = 3 andk = 9, we have
plotted the corresponding distance matrices in Figure 3.8.On the left panels
we have also depicted the “true” group membership of the proteins, as anno-
tated in the SWISS-PROT database. The groups are:Plant (plant globins),
HB-α (hemoglobin-α), MYG (myoglobin), HB-β (hemoglobin-β) and GLB
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Figure 3.8. Dissimilarity matrices for the embedded clustering problems, per-
muted with respect to cluster labels. Left: original dissimilarities (without
denoising, plotted in the permutation of the true labels). Middle: k = 3 and
left: k = 9. Dark values represent small dissimilarities, light values large
dissimilarities.

(other globins, e.g. globin I-IV or insect globins). The column markedPre-
lim indicates “preliminary” sequences from the TrEMBL database with miss-
ing or uncertain annotations. The automatically found solutions divide the se-
quences into biologically meaningful groups: the 3-cluster solution separates
both hemoglobin-α and hemoglobin-β from the rest. The 9-cluster solution de-
fines a refinement of these groups, in the following sense: theβ-hemoglobins
are split into two subgroups (cluster no. 1 and no. 4), both the myoglobins
and the plant globins are now contained in individual clusters, and the other
globins are also separated into two sub-clusters (the first of which now mainly
contains insect globins). It is interesting to notice that successively increasing
the number of clusters automatically leads to a natural hierarchical representa-
tion of the group structure, which hasnot been introduced by the algorithm as
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a modeling bias.

COMPARISON WITH MDS. From a theoretical viewpoint, the constant shift
embedding principle has one major advantage over classicalMDS embedding:
for shift-invariant clustering cost functions, CSE yieldscluster preserving em-
beddings inn−1 dimensional vector spaces, while for MDS no such guarantees
are available. Taking a practical perspective, however, one might be interested
in differences between CSE and MDS inlow dimensionalembedding spaces.
Designing experiments which allow “fair” comparisons of this kind, however,
is difficult, since both the CSE method (different reductionmethods like PCA,
LLE, etc.) and MDS (different cost functions, choice of weights, etc.) can be
varied in several ways. Nevertheless, we conclude this section with a compar-
ison ofk-means clustering results in two dimensions, once directlyembedded
using MDS (stress cost function, relative weights, see Equation 2.17), and the
second time embedded with CSE and PCA. In the upper left panelof Figure 3.9
and Figure 3.10 the two-dimensional MDS embedding of the above data set is
depicted. The different point symbols refer to the SWISS-PROT labels. Given
these two dimensional data set, we then minimized thek-means clustering cost
function with k = 3, leading to the labels shown in the lower left panel. It
is interesting to note that the typical “ring artifacts” of MDS embedding pro-
duce elongated structures which cannot be recovered by the compactness based
k-means clustering criterion. In the case of CSE with succeeding PCA embed-
ding, the situation looks very different: the embedded dataclearly show three
relatively compact groups (upper right panel): one corresponds to hemoglobin-
α proteins, another to hemoglobin-β proteins, the third one is a mixture of the
other protein families. These three compact groups are perfectly recovered in
the 3-means solution (lower right panel).
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Figure 3.9. Embedded proteins with original SWISS-PROT labels. Left: MDS
(Stress, local weights), right: CSE with PCA embedding.
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Figure 3.10. Embedded proteins with inferredk-means labels,k = 3. Left:
MDS (Stress, local weights), right: CSE with PCA embedding.

CLUSTERING OFPRODOM SEQUENCES.

The ProDom data setThe analysis described in this section aims at finding a partition of domain
sequences from the ProDom database (Corpet et al., 2000) that is meaningful
with respect tostructural similarity. In order to measure the quality of the
grouping solution, we use the computed solution in a predictive way to assign
group labels to SCOP sequences, which have been labeled by experts according
to their structure (Murzin et al., 1995). The predicted labels are then compared
with the “true” SCOP labels.

For demonstration purposes, we select the following subsetof sequences
from prodom2001.2.srs: among all sequences we choose those which
are highly similar to at least one sequence contained in the first four folds of
the SCOP database.1 Between these sequences, we compute pairwise (length-
corrected and standardized) Smith-Waterman alignment scores, summarized in
the similarity matrixS = (sij). These similarities are transformed into dissim-

Similarity matrixilarities by settingdij = sii + sjj − 2sij . The centralized covariance matrix
Cc = − 1

2Dc possesses some highly negative eigenvalues, indicating that met-
ric properties are violated. Applying the constant shift embedding method, a

CSEvalid positive semi-definite kernel is derived, with an eigenvalue spectrum that
shows only a few dominating components over a broad “noise”-spectrum (see
Figure 3.11). Extracting the first 16 leading principal components2 leads to
a vector representation of the sequences as points inR16. These points are
then clustered by minimizing thek-means cost function within a deterministic
annealing framework. The model order was selected by applying a re-sam-
pling basedstability analysis, which has been demonstrated to be a suitable

1“Highly similar” here means that the highest alignment score exceeds a predefined threshold.
The result is a subset of roughly 2700 ProDom domain sequences.

2Subsampling techniques or deflation can be used to reduce computational load for large-scale
problems. We only used a subset of800 randomly chosen proteins for estimating the 16 leading
eigenvectors.
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model order selection criterion for unsupervised groupingproblems in Roth
et al. (2002).

Figure 3.11. (Partial) eigenvalue
spectrum of the shifted score matrix.
Only the 16 leading eigenvalues
have been retained, thus conserving
the main structure while eliminating
the bulk of noise. This corresponds
to a denoising of the pairwise data.
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Results In order to measure the quality of the grouping solution, all1158 SCOP se-
quences from the first four folds are embedded into the 16-dimensional space.
The predicted group structure on this test set is then compared with the true
SCOP fold-labels. Figure 3.12 shows both the predicted group membership of
these sequences and their true SCOP fold-label in the form ofa bar diagram:
the sequences are ordered by increasing group label (the lower horizontal bar),
and compared with the true fold classification (upper bar). In order to quantify
the results, the inferred clusters are re-labeled (“re-colored”) according to the
maximum number of correctly identifiable fold-labels. Thisprocedure allows
us to correctly identify the fold label of roughly 94 % of the SCOP sequences.

SCOP fold
label

Prediction
relabed

Cluster 1
Cluster 2

Cluster 3
Errors

Figure 3.12. Visualization of cluster membership of the chosen 1158 SCOP
sequences contained in folds 1 – 4.

Despite this surprisingly high percentage, it is necessaryto deeper analyze
the biological relevance of the inferred grouping solution. In order to check to
what extend the above “over-all” result is influenced by artifacts due to highly
related (or even almost identical) SCOP sequences, we repeated the analysis
based on the subset of 128 SCOP sequences with less than 50 % sequence
identity (PDB-50). Predicting the group membership of these 128 sequences
and using the same re-labeling approach, we can correctly identify 86 % of the
fold-labels (Figure 3.13). This result demonstrates that we have not only found
trivial groups of almost identical proteins, but that we have indeed extracted
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relevant structural information.

SCOP fold
label

Prediction
relabed

Figure 3.13. Visualization of cluster membership of the 128PDB-50 sequences.

§. 3.7.

D I S C U S S I O N.

SummaryWe have introduced an optimal embedding procedure for pairwise clustering
by means of constant shift embedding (CSE). For the class of shift-invariant
clustering methods, it optimizes a fundamentally different criterion compared
to classical embedding approaches based on MDS. The most prominent prop-
erty of CSE is the complete preservation of the group structure in the embed-

Outstanding property of
CSE

ding space. For MDS methods, on the other hand, such a preservation can
only be guaranteed in the special (and rather uninteresting) case of zero distor-
tions (“stress”) of the pairwise dissimilarities. For non-zero distortions, to our
knowledge no bounds onstructuraldistortions are known.

Unification of vectorial
and pairwise
representation

For shift-invariant cost functions we can always embed non-metric pairwise
data in a Euclidean space and obtain a statistically equivalent problem formu-
lation. This represents a unification of the vectorial and pairwise data represen-
tation, not on the level of geometry, which incurs distortions by the embedding
procedure, but on the level of structure itself, which is preserved.

Theoretical
consequences

The possibility of restating a pairwise grouping problem ina vector space
has important theoretical consequences. For instance, we are able to statis-
tically describe the clusters by defining cluster prototypes in the embedding
space, and by measuring the variance in each of the clusters.These Prototypes,
in turn, define a generic rule for extending the grouping solution to a predic-
tive discrimination rule for estimating the cluster membership of new objects.
Concerning the problem of finding efficient optimization algorithms for mini-
mizing clustering cost functions, the shown equivalence ofpairwise clustering
andk-means shed light on the probabilistic structure of the solution space: the
problem of minimizingHpc belongs to the class of combinatorial optimization
problems for which the classicalmean-field approximationbecomesexact.

Practical consequencesThere are also a couple of practical consequences of CSE: a common vector
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space representation renders the data accessible to standard dimensionality and
noise reduction methods which lack a clear meaning for pairwise data. Such
preprocessing methods, however, have to be chosen carefully, depending on
the requirements and/or the prior knowledge available for each special applica-
tion. For the task of clustering the globin proteins, it turned out that a classical
PCA denoising worked surprisingly well. A comparison with the known fam-
ily structure of these proteins revealed that the low-dimensional PCA embed-
ding space accentuated the relevant structure while suppressing the alignment
noise. It should be noticed, however, that in general unsupervised situations,
such high-level domain knowledge may be hardly available. In these situa-
tions, one should rely on general statistical descriptors,such as the form of the
eigenvalue spectrum of the covariance matrix.

Despite the fact that “wrong” preprocessing methods clearly have the po-
tential to distort the cluster structure (which we naturally want to preserve),
the CSE framework at least tells us that these distortions are not caused by the
general restrictions of a vector space. We know that there always exists a Eu-
clidean space which contains the optimal structure preserving vectors, which
means that there might be hope to find more suitable low-dimensional approx-
imations.

§. 3.8.

C O N C L U S I O N.

For several major applications of data analysis, objects are often not repre-
sented as feature vectors in a vector space, but rather by a matrix gathering
pairwise proximities. Such pairwise data often violates metricity and, there-
fore, cannot be naturally embedded in a vector space. Concerning the problem
of unsupervised structure detection orclustering, in this chapter a new embed-
ding method for pairwise data into Euclidean vector spaces was introduced.
We have shown that all clustering methods, which are invariant under additive
shifts of the pairwise proximities, can be reformulated as grouping problems
in Euclidian spaces. The most prominent property of thisconstant shift em-
beddingframework is the completepreservation of the cluster structurein the
embedding space. Restating pairwise clustering problems in vector spaces has
several important consequences, such as the statistical description of the clus-
ters by way ofcluster prototypes, the generic extension of the grouping pro-
cedures to a discriminativeprediction rule, and the applicability of standard
preprocessing methodslike denoising or dimensionality reduction.



4. F E A T U R E D I S C O V E R Y

In this chapter we will study the issue of the signification and interpretation
of metric violations. In literature, metric violations areusually discarded as
mathematical artifact of noise, and solutions to elude the mathematical annoy-
ance of negative eigenvalues are ready at hand. Only a few authors hint at the
possibility of inherent non-metricity and the danger of a forceful metrization
of the data. The central and so far unanswered question is therefore: Does
the negative part of the spectrum of a similarity matrix codeanything useful
other than noise?The answer to this question was given in Laub and Müller
(2004) and will be presented here. We will systematically study the occurence
of negative spectra. Models are developed to explain these spectra and simple
projection techniques are presented to visualize the information coded by the
metric violations. Several applications will illustrate the theory.

§. 4.1.

I N T R O D U C T I O N.

Distortion of embeddingsFrom a geometric point of view, non-metric pairwise data cannot be embed-
ded distortionless into a Euclidean space. So, in general, embedding into a
Euclidean space (and often subsequent dimension reduction) amounts to dis-
torting pairwise data to enforce Euclideanness. This procedure is exemplified
by MDS.

Possible loss of
information

Little is known about the information loss incurred by enforcing metricity,
when non-metric data is forcefully embedded into a vector space on the as-
sumption that non-metricity be a mere artifact of noise. This assumption cer-
tainly holds for many cases, especially when the pairwise comparison is the
output of some algorithm tuned to be metric but relying on some random ini-
tialization. It does not hold for pairwise data which is inherently non-metric,
e.g. for human similarity judgments, where geometrical (metric) and categorial
thinking (possibly non-metric) is superposed.

Traditional approaches
for pseudo-covariance
matrices

Technically, non-metricity translates into indefinite covariance matrices (The-
orem 2.4.2), a fact, which imposes severe constraints on thedata analysis pro-
cedures. Typical approaches to tackle these problems involve omitting alto-
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gether the negative eigenvalues like in classical scaling or shifting the dissimi-
larities so as to enforce squared Euclideanness as in CSE. Animportant point
is to notice that these issues will crucially depend on the magnitude of the neg-
ative eigenvalues. If the negative eigenvalues are small inmagnitude, they are
commonly associated to noise and leaving them away will at best improve the
result, at worse leave it unchanged. If they are large, some argue that classical
scaling is still an appropriate dimension reduction technique (Cox and Cox,
2001).

Possible loss for CSE? In the previous chapter we have seen that non-metric pairwise data may be
embedded without loss for subsequent clustering if the costfunction is shift
invariant. However, in practical applications, the need for dimension reduction
to speed up optimization and robustify solutions, effectively results in retaining
only the leading eigendirections and cutting off large parts of the spectrum. For
other cases than noise corrupted non-metric pairwise data it is an open question
whether the removal of negative eigenvalues leads to an information loss.

Inherent non-metricity Several authors (Jacobs et al., 2000, Torgerson, 1958) notice that it may not
always be of advantage to embed the data, especially if it comes at the price of
high distortion. Violation of triangle equality or symmetry as property of the
distance measure should not be regarded at as noise but as intrinsic feature of
the data set. Some problems (e.g. where transitivity is violated) might get an
erroneous treatment when forcibly embedded in an Euclideanspace.

Non-metricity in
classification

In Pȩkalska et al. (2001) we read:There is still an open question about
the consequences on classification tasks of transforming the problem into a
Euclidean space, either by neglecting the negative eigenvalues or by directly
enlargingD by a constant. They show that the retention of the negative ei-
gendirection can be beneficial to the classification result and is thus a sensible
choice in machine learning (for a similar finding, see Graepel et al. (1999)).
However, their positive results seems due to a particular instance of denoising
and the question about the signification of metric violations and the thus in-
duced “negative variance” remains unsolved. Improvement of a classification
rate suggests that it is other than noise. It is still utterlyunclear, whether we
should look at non-metricity as a mere mathematical artifact of no further im-
portance except for algorithmic reasons or whether it reveals usnew insight
into the structure of the data.

Non-metricity in
intelligent data analysis

We will not be interested in a classification task but merely in the explanation
of variance. In a sense, this means that we want to know whether at all there is
“something interesting” in the negative eigenvalues else than random noise.

We adopt the point of view that

1. embedding pairwise data in a Euclidian vector space of lowdimension
for visualization it is a good idea in a first approach to understand the
data and that

2. variance can capture problem specific information.
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VisualizationThe fact that we are interested in Euclidean embeddings allows us, via Theo-
rem 2.4.2, to consider the eigenspectra of pseudo-covariance matrices to mea-
sure the metric violations of the underlying dissimilaritymatrix. For more
generic measures of metric violations and more general embeddings, see Ap-
pendix A.

It is important that we again stress our interest invisualization. This chapter
is conceptual in nature and relies upon visualization as thesimplest way to
gaining insight into complex pairwise data (Everitt and Rabe-Hesketh, 1997).

This study comprises a general look on different spectra, onseveral models
to explain them, illustrated by simple and intuitive examples. We will limit our
illustrations to embeddings in two dimensions, which allows for visual appre-
ciation, an unquestionable advantage in unsupervised learning. We will show
that the negative eigenvalues can indeed correspond to variance non negligible
to the problem, in the sense that the latter can be related to “relevant” features.

§. 4.2.

U N D E R S T A N D I N G N E G A T I V E E I G E N VA L U E S.

We will start this study by some general considerations on the nature of the
spectrum of pseudo-covariance matrices associated to dissimilarity matrices
violating metric requirements. We will discuss variance, information and the
loss thereof.

SHAPE OF THE SPECTRUM.

Sorting the spectrumThe spectrum of a matrix is the set of its eigenvalues. For real symmetric
matrices it can be shown to be real (Lüthkepohl, 1996). To give sense to notions
like shape we need to introduce an ordering. Assuming that the numbers are
real, we may simply order them in increasing values.

Trivial and non-trivial
spectra

The spectrum can be of any shape, however, we will mainly be interested in
the following two (common) cases (see Figure 4.1):

1. Flat negative spectrum: the negative eigenvalues do not differ much in
magnitude from the bulk of eigenvalues.

2. Strongly decreasing negative spectrum in the last few eigenvalues.

Distribution ⇒ spectrumThe data distribution always gives us algorithmically the spectrum. The
converse is not true unfortunately.
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Figure 4.1. Spectrum with trivial (left) and non-trivial (right) negative eigen-
values. The trivial negative spectrum is characterized by aslowly falling neg-
ative tail while the non-trivial negative spectrum exhibits a strongly falling
negative tail.

Spectrum ; distribution A rule of thumb is that whatever typical data distribution yields a given spec-
trum, there is always a “pathological” distribution which yields a similar spec-
trum. “Pathological” in this context just means that the spectrum gives us no
valuable hint at the distribution expected by the typical case, this being a Gaus-
sian distribution or some regular distribution with finite support.

This fact is exemplified for simple statistics as means and variance. Duda
et al. (2001) gives an example of four different distributions with identical
mean and variance (second order statistics).

One might ask what then justifies the use of “pathological”. As a matter
of fact, second order statistics—and in the same vein the distribution of the
eigenvalues—do give relevant information when one assumessome Gaussian
process produced the data, which in natural processes certainly is reasonable.

Typcial distributions Typically, for a flat spectrum, we will expect the data to be isotropically dis-
tributed in space. (Note that notions like isotropic distribution only make sense
once an ordering fixed for the eigenvalues and hence for the corresponding
eigenvectors.) On the other hand, the directions spanned bythe eigenvectors
associated to large negative eigenvalues in magnitude somehow defy this inter-
pretation and we expect to find there non negligible variance.

Pathological cases Pathological cases in this context may be, e.g. spectra whose shape is an
artifact of small sample size, missing values, outlier or, in general, very exotic
distributions.

VARIANCE EXPLAINED.

PCA Recovering vectors from a squared EuclideanD according to the algorithm
(Cox and Cox, 2001) given on page 24 corresponds to a principal component
analysis (PCA). PCA has a nice interpretation as variance explained: choosing
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the embedding subspace associated to the eigenvaluesλ1, λ2, . . . λk, where
1 6 i < k 6 n, amounts to retaining the fraction

λi + · · · λk
∑n

i=1 λi
(4.1)

of the total variance.
When the rigorous mathematical framework of PCA is not given—as it is

the case in classical scaling—, we can still measure the adequacy of a repre-
sentation by measures like Equation 4.1. In the case of non-metricD’s, PCA is

Measures when there are
negative eigenvalues

not well defined because of negative eigenvalues. Instead ofthe measure given
in Equation 4.1, one typically uses (Everitt and Rabe-Hesketh, 1997)

|λi|+ · · · |λk|
∑n

i=1 |λi|
, (4.2)

or
λ2

i + · · · λ2
k

∑n
i=1 λ2

i

.

Another choice involves counting only the positive eigenvalues in the denomi-
nator (Cox and Cox, 2001). Note that Equation 4.2 corresponds to a formula-
tion of the variance in a pseudo-Euclidean space.

ON INFORMATION, RELEVANCE AND LOSS.

Ill-definednessData analysis aims at extracting information from data. Given a certain task, a
certain scientific question, one attempts to extract information relevantto the
specific problem. This is an intrinsically ill-defined problem, since there is no
rigorous definition of information, let alone of relevance.

As stated in the introduction, we adopt here a very modest anddown to earth
approach: we look at variance and try to understand it.

We look at variance. So to tackle the problem of relevance, we would rather
address the issue of low dimensional visualization. We define information sim-
ply by the explained variance and leave notions like relevance to the intuition
of the reader by the question: is a given explained variance interesting for this
problem?

This evasiveness on the definition of relevance does not meanthat unsuper-
vised learning aims at recovering features known beforehand. It rather stresses
the data explorative aspect of this study, not concealing its epistemological
limits.

In the realm of unsupervised learning there is a trade off to find between
pure explorative research and automation. Disposing intrinsically of no ground
truth, one must be aware that no algorithm will produce such.
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Trivial spectra For spectra with a flat negative part, the cut off on the eigenvalues required for
embedding may not result in a loss of relevant information, since a flat spec-
trum translates isotropic distributions commonly associated with noise. This
is not the case for spectra with a non-trivial negative part which could contain
essential information (variance).

Non-trivial spectra On the other hand, for spectra with a steeply falling tail, this interpreta-
tion does no longer hold and usual dimensionality reductionprocedures and
subspace methods retaining only leading eigenvalues are prone to a loss of in-
formation. In general, all procedures relying on distance based cost functions
may suffer the same drawbacks since they will only take into account large
variance. In the following section we will discuss non-trivial spectra in more
detail.

§. 4.3.

C O D I N G I N F O R M A T I O N I N T H E N E G A T I V E
P A R T O F S P E C T R U M.

We will first illustrate the coding ability of negative eigenvalues by a from-
scratch construction of a similarity matrix. We will speak in these construc-
tions about clusters, as prominent representants explaining variance by a clear
separation.

SIMPLE MODEL I.

Consider the following abstract setting:n objects, labeled1, 2, . . . n, pre-
senting two salient features. Suppose that they cluster into {1, . . . n

2 } and
{n

2 + 1, . . . n} according to the first feature, and into{1, 3, 5, . . . n − 1} and
{2, 4, 6, . . . n} according to the second.

S1 and S2 Let S1 andS2 be the similarity matrices corresponding to feature1 and2
respectively.S1 has a block structure,S2 a line structure (gray areas correspond
to high similarities):

S1 =

























and S2 =

























.
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They both will obviously have a clear pronounced structure in the positive
eigenvalues corresponding to the two clusters defined.

Combining similarity matrices is in no way trivial. Tsudaet al. have stud-
ied different mix kernels (“similarity matrices”) in a supervised learning task
(Tsuda et al., 2004). In an unsupervised setting we generally have no a priori
idea of how to mix different similarity matrices.

A starting idea could be to pose:

S = aS1 + bS2.

The most straight forward way would certainly bea = 1 andb = 1 in which
case we expect to recover four clusters when projecting ontothe first few lead-
ing eigenvalues, namely:{1, 3, . . . n

2 −1}, {2, 4, . . . n
2 }, {n

2 +1, n
2 +3, . . . n−

1} and{n
2 + 2, n

2 + 4, . . . n}.
The information extracted from this four-cluster solutionhowever is not sat-

isfactory given the initial setting of the problem, since one may not be able to
relate the four clusters to the two coded features, in particular if there is no
clear hierarchical structure in the solution.

PenalizationInterestingly, a recurrent mixing seems to be given by the case a = 1
andb = −1 yielding—save exception—a non-trivial negative spectrum(Fig-
ure 4.1, right). This corresponds to a “penalization” byS2 of S1.

S =

























snapshot−−−−−−−−→
Penalized similarities

.

The penalized similarities ofS are thesij for which (S2)ij is large. If(S2)ij

is small or even zero,sij ∼ (S1)ij , and the similarities remain unpenalized.
FromS1 andS2 we obtain dissimilaritiesD1 andD2 via some decreasing

function, from which the corresponding covariancesC1 andC2 are computed.
SinceC1 is positive semi-definite and−C2 is negative semi-definite,C is

indefinite by the following theorem:

THEOREM4.3.1 (Weyl).LetA, B ∈ Mn be Hermitian and let the eigenvalues
λi(A), λi(B) andλ(A + B) be arranged in decreasing order. For eachk =
1, 2, . . . n we have

λk(A) + λn(B) 6 λk(A + B) 6 λk(A) + λ1(B).

Proof. Horn and Johnson (1995)

We poseA = C1 andB = −C2 and make the reasonable assumption that
λn(C1) = λ1(−C2) = 0. From the above follows thatλn(A+B) = λn(C) 6
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0. Furthermore, excluding the unlikely caseλi = 0 for all i = 1, 2, . . . n, there
existsk such thatλk(C) < 0.

Note that this does not prove that the spectrum actually has anon-trivial
negative spectrum. We can only assess that it has negative eigenvalues.

Penalized similarities may form a structure on their own which by this con-
struction is encoded by the metric violations in the negative eigenvalues ofC.

Discussion The construction ofS = S1−S2 may seem somewhat arbitrary, even defying
intuition. However, our concern in this section is to give anidea how negative
spectra come about, regardless of interpretation. Note that the construction of
S corresponds to the difference of squared Euclidean distances as presented in
the Section 2.5 on pseudo-Euclidean spaces.

In order to foster intuition on negative spectra, the symbolic model of a
difference of two similarities may be understood as a sum of asimilarity and
a dissimilarity. The information contained in the similarity will be encoded by
the positive eigenvalues whereas the information contained in the dissimilarity
will be encoded in the negative ones.

Conversely, the decomposition of the distances in a pseudo-Euclidean space
(or some generic, non-metric dissimilarity) into a difference of squared Eu-
clidean distances may be looked at as a sum of a dissimilarityand a similarity,
the roles of the positive and negative eigenvalues now beingflipped. The in-
formation contained in the dissimilarity is encoded in the positive eigenvalues
and the one contained in the similarity in the negative.

The question on whether the sum of similarities and dissimilarities makes
any sense for defining a similarity (or a dissimilarity) is not well-defined, as
the notion of similarity and dissimilarity both lack a clearcut definition. One
rather has to start from the fact, that non-metric dissimilarities do exist. The
penalization model as presented above is one first explanation.

EXAMPLE I.

Let n = 8 and the object grouped according to the scheme described, i.e. the
8 object cluster like{1, 2, 3, 4} and {5, 6, 7, 8} in the one feature, and like
{1, 3, 5, 7} and{2, 4, 6, 8} in a second.

The similarities might look like follows (the matrices wereobtained by an
artificial from scratch construction):

S1 =







2.30 1.24 1.28 1.58 0 0 0 0
1.24 2.54 1.50 1.79 0 0 0 0
1.28 1.50 2.85 1.70 0 0 0 0
1.58 1.79 1.70 2.64 0 0 0 0
0 0 0 0 2.44 1.88 1.65 1.62
0 0 0 0 1.88 2.52 1.11 1.58
0 0 0 0 1.65 1.11 2.68 1.54
0 0 0 0 1.62 1.58 1.54 2.42






,
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S2 =







2.04 0 1.30 0 1.52 0 1.74 0
0 2.11 0 1.82 0 1.29 0 1.45

1.30 0 2.59 0 1.50 0 1.52 0
0 1.82 0 2.10 0 1.28 0 1.12

1.52 0 1.50 0 2.26 0 1.83 0
0 1.29 0 1.28 0 2.29 0 1.48

1.74 0 1.52 0 1.83 0 2.13 0
0 1.45 0 1.12 0 1.48 0 2.81






,

and

S =











0.26 1.24 −0.02 1.58 −1.52 0 −1.74 0
1.24 0.43 1.50 −0.03 0 −1.29 0 −1.45
−0.02 1.50 0.26 1.70 −1.50 0 −1.52 0
1.58 −0.03 1.70 0.50 0 −1.28 0 −1.12
−1.52 0 −1.50 0 0.18 1.88 −0.18 1.62

0 −1.29 0 −1.28 1.88 0.23 1.11 0.10
−1.74 0 −1.52 0 −0.18 1.11 0.55 1.54

0 −1.45 0 −1.12 1.62 0.10 1.54 −0.39











.

From this symmetricS we computeD via dij = sii + sjj − 2sij , andC via
C = − 1

2Dc. The respective spectra are given in Figure 4.2.
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Figure 4.2. Spectrum ofC1 (left), C2 (middle) andC (right). The spectrum of
C is non-trivial.

SIMPLE MODEL II.

The second model presented below treats a construction of similarity encoun-
tered in many fields of data analysis. A simple approach is given by posing:

sij =
(S1)ij

(S2)ij
,

with the assumption that(S2)ij 6= 0 for all i, j = 1, 2, . . . n. Such similarity
scores occur in various image matching algorithms or in textmining via the
min-maxsimilarity, see e.g. Banerjee and Ghosh (2002) or Dagan et al. (1995).

This second model acts similarly as the previous one, i.e. bypenalization.
The same discussion as the one following Model I holds for Model II. The
quotient of similarities usually is understood as some normalization procedure.
However, considering that the inverse of a similarity may belooked at as a dis-
similarity we now face the interpretation of a similarity asa product of similar-
ity and dissimilarity. As before, we claim that the questionabout its semantic
is ill-defined.



70 � 4. Feature Discovery

EXAMPLE II.

The same setting as in example I is taken. Consider the following similarity
matrices:

S1 =







2.45 1.38 1.48 1.70 0.18 0.18 0.13 0.15
1.43 2.66 1.60 1.99 0.11 0.14 0.14 0.15
1.42 1.62 2.96 1.86 0.17 0.15 0.12 0.10
1.74 1.94 1.86 2.76 0.18 0.12 0.13 0.14
0.16 0.15 0.14 0.13 2.54 2.07 1.76 1.75
0.18 0.14 0.17 0.19 2.06 2.68 1.24 1.74
0.15 0.12 0.12 0.19 1.78 1.23 2.87 1.68
0.13 0.19 0.12 0.12 1.80 1.71 1.74 2.55






,

S2 =







2.17 0.13 1.43 0.14 1.67 0.20 1.93 0.13
0.10 2.24 0.18 1.96 0.19 1.48 0.17 1.61
1.42 0.11 2.76 0.12 1.60 0.11 1.70 0.13
0.16 2.01 0.14 2.24 0.10 1.46 0.16 1.26
1.71 0.18 1.60 0.14 2.38 0.16 1.95 0.14
0.15 1.44 0.13 1.42 0.13 2.46 0.13 1.68
1.89 0.18 1.72 0.19 1.95 0.19 2.28 0.15
0.16 1.64 0.19 1.26 0.13 1.58 0.18 2.96






,

such that

S =







1.13 10.93 1.03 12.16 0.10 0.89 0.07 1.17
13.79 1.19 9.10 1.02 0.56 0.09 0.83 0.09
1.00 14.95 1.07 15.86 0.10 1.35 0.07 0.76
10.70 0.97 13.65 1.23 1.76 0.08 0.83 0.11
0.09 0.81 0.09 0.92 1.07 13.18 0.90 12.67
1.25 0.10 1.36 0.13 16.24 1.09 9.81 1.04
0.08 0.68 0.07 1.00 0.91 6.43 1.26 10.95
0.82 0.11 0.64 0.10 13.65 1.08 9.70 0.86






.

TheS’s are symmetrized viaS+St and theC ’s are computed in the usual way.
The respective spectra are are shown in Figure 4.3. (See alsothe application
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Figure 4.3. Spectrum ofC1 (left), C2 (right) and sij =
(S1)ij

(S2)ij
(right). The

spectrum ofC is non-trivial.

on USPS handwritten digits for a negative spectrum explained by this model.)

SIMPLE MODEL III.

Cognitive psychology The last simple model to explain negative spectra is inspired by approaches in
cognitive psychology to explain human similarity judgments which typically
yield non-metric dissimilarities (Thomas and Mareschal, 1997). We will gen-
eralize them to explain the spectra often encountered in this particular field.
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Let {f1, f2, . . . fn} be a set of feature vectors. A given data pointxi can be
decomposed as follows:

xi =

n
∑

k=1

α
(i)
k fk.

The squared Euclidean distance betweenxi andxj therefore reads:

dij = ‖xi − xj‖2 =
∥

∥

∥

n
∑

k=1

(

α
(i)
k − α

(j)
k

)

fk

∥

∥

∥

2

.

However this assumes constant feature-perception, i.e. a constant mental im-
Feature perceptionage with respect to different tasks. In the realm of human perception this is

often not the case, as illustrated by the following well known visual “traps”
(Figure 4.4).

Figure 4.4. Left: What do you see? A small cube in the corner ofa room or a
large cube with a cubic hole or a small cube sticking with one corner on a large
one? Right: What do you see? A young lady or an old woman? If youwere
to compare this picture to a large set of images of young ladies or old women,
the (unwilling) perception switch could induce large individual weights on the
similarity.

Our perception has several ways to interpret the figures which can give rise
to large deviations of the perceived dissimilarities. It isimportant to notice here
that in the realm of human similarity judgments, one may not speak of artifact
or erroneous judgments with respect to a Euclidean norm. Thelatter seems
rather exceptional in these cases.

A possible way to model different interpretation of a give geometric object
is to introduce weights{ω(1), ω(2) . . . ω(d)}, ω(l) ∈ Rn for l = 1, 2, . . . d,
affecting the features.

The similarity judgment between objects then depends on theperceptual
state (weight) the observer is in. Assuming that he be in stateω(l) the distance
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becomes:

dij = ‖xi − xj‖2 =
∥

∥

∥

n
∑

k=1

(

α
(i)
k − α

(j)
k

)

ω
(l)
k fk

∥

∥

∥

2

. (4.3)

With no further restriction this model yields non-metric distance matrices.See
Example III for a simple illustration.

Perception switches and
non-metricity

In the worst casel is random, but usually perception-switches can be mod-
eled andl becomes some function of(i, j). For l random, non-metricity is an
artifact of sample size, since when averaging thed’s overp observers the mean
dissimilarity is asymptotically metric inp (〈d〉 →metric asp→∞): the mean
weight becomes constant for alli, j equal to the expectation of its distribution.

On the other hand, if we suppose that the functionl of (i, j) does not vary
much between observers, then the averaging does not flatten out the non-metric
structure induced by the perception-switch.

EXAMPLE III.

Consider a weightω(l) constant for all feature-vectors, taken to be the unit
vectorsek in this example. Then Equation 4.3 becomes

dij =
(

ωlij
)2
∥

∥

∥

n
∑

k=1

(

α
(i)
k − α

(j)
k

)

ek

∥

∥

∥

2

=
(

ωlij
)2‖xi − xj‖22,

where‖ · ‖2 is the usual unweighted Euclidean norm.
For a simple illustration we take 16 points distributed in two gaussian blobs

(Figure 4.5, left) with squared Euclidean distance given byd2 to represent the
objects to compare. Suppose a test person is to pairwise compare these objects
(which are not points!) to give it a dissimilarity score and that his perception
is strongly affected for the pairs(2, 3), (7, 2) and(6, 5) translating in a strong
weighting of these dissimilarities. For the sake of the example, we chose the
weights to be150, 70 and220 respectively.

The weights then acts as follows:

d(2, 3) = d2(2, 3) · 150,

d(7, 2) = d2(7, 2) · 70,

d(6, 5) = d2(6, 5) · 220.

The spectrum of the associated centralized pseudo-covariance matrix is given
in Figure 4.5, right, and exhibits a clear negative spectrum.

REMARK. In applications we only dispose ofS andnohandy decomposition.
By the preceding explicite construction, it is clear, that the negative eigenvalues
potentially code important information, even when there isno obvious process,
which is responsible for the negative part of these spectra.
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Figure 4.5. Simple data distribution (left) and spectrum associated to the
weighted distance matrix.

§. 4.4.

R E C O V E R I N G T H E I N F O R M A T I O N C O D E D B Y
T H E N E G A T I V E P A R T O F T H E S P E C T R U M.

There are two simple algorithms to recover the information coded by the neg-
ative part of the spectrum.

AlgorithmFor the first one, we essentially follow the idea of the constant shift em-
bedding by metricizingC through a simple shift, except that we replace the
minimal shift by some offset> co (unidimensional constant). Projection fol-
lows like for the leading eigendirections. LetD be a non-squared Euclidean
dissimilarity matrix.

D




y
Cc=− 1

2
Dc

Cc with negative eigenvalues




y
shift

Cc
+ = Cc + coIn





y

spectral decomposition

V ΛV t

XL = Λ
1
2

LV t
L,

with co > |λn(Cc)| to have a positive semi-definiteCc
+ and avoid singulari-

ties around the origin.L is the chosen subspace, given by the retained set of
eigendirectionsvi.
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Visualization Retaining only the first two coordinates (L = {v1, v2}) of the obtained vec-
tors corresponds to a projection onto the first two leading eigendirections. Re-
taining the last two (L = {vn−1, vn}) is a projection onto the last two eigendi-
rections:This corresponds—up to a scaling factor of the order of

√
co—to a

projection onto directions which corresponds to the non-metric part of C.

Non-metric part of C DEFINITION 4.4.1. We define thenon-metricpart ofC—or the spectrum the-
reof—to be the eigedirections resp. negative eigenvalues induced by the metric
violations of the associatedD.

Drawback of this
algorithm

The shifting procedures by the scaling factors tends to evenout the differ-
ences between the eigenvalues. In the majority of cases thiseffect is negligible,
especially if the difference of the eigenvalues associatedto the direction we
project is small. However ifλ1 � λ2 (and likewiseλn−1 � λn) then the shift
might affect the interpretation of the embedded data, usually in a stronger way
than by simply projecting onto the leading positive eigendirections (Mardia,
1978).

pseudo-Euclidean
approach

To elude this potential drawback, we consider the pseudo-Euclidean ap-
proach, which comes down to taking the absolute value of the negative eigen-
values and projecting onto the corresponding eigenvectors(see Section 2.5).

Algorithm The algorithm then reads:

D




y
C=− 1

2
QDQ

C with p positive andq negative eigenvalues




y

spectral decomposition

V ΛV t = V |Λ| 12 M |Λ| 12 V t

XL = |ΛL| 12 V t
L,

whereM is the block matrix consisting of the blocksIp×p, −Iq×q and0k×k

(with k = n− p− q).
The columns ofXL contain the vectorsxi in thel-dimensional subspaceL.

At this pointL can be very general. However, as for PCA, we will find it sen-
sible to choose a few leading eigendirectionswhich can also include eigendi-
rections associated to the negative part of the spectrum.

Visualization Retaining only the first two coordinates (L = {v1, v2}) of the obtained vec-
tors corresponds to a projection onto the first two leading eigendirections. Re-
taining the last two (L = {vn−1, vn}) is a projection onto the last two eigendi-
rections:This corresponds to a projection onto directions related tothe metric
violations ofD.
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Equivalence of these two
algorithms for two
dimensional embeddings

When considering two dimensional embeddings, it is easily shown that there
always exists a shift, namelyco = |λn| + |λn−1|, such that the embedding be
identical to the one obtained in the pseudo-Euclidean space, up to inversion of
the last and second last component (rotation byπ

2 ). This result is based on the
simple identities:

λn + co = λn + |λn|+ |λn−1| = |λn−1|
λn−1 + co = λn + |λn−1|+ |λn−1| = |λn|,

which hold forλn < 0 andλn−1 < 0 (see Figure 4.6).

λn

λn−1

|λn|

|λn−1|
λn + co

λn−1 + co

Figure 4.6. Schematic repre-
sentation of the equivalence
of the shift procedure and
the embedding into pseudo-
Euclidean space. This equiv-
alence only holds in two di-
mensions. From the figure it is
evident that the projection are
identical only up to a rotation
of π

2 .

ConsequencesThe above algorithms allow to extract the information codedby the nega-
tive eigenvalues induced by metric violations. On may discover features ac-
counted for in the negative eigenvalues which are “cut away”—or otherwise
neglected—by usual embedding procedures. This is usually the way to go,
since we only dispose of anS for which a priori no obvious decomposition
exists.

INTERPRETING NEGATIVE EIGENSPACES. For a positive semi-definiteC the
projections along the leading eigendirections can readilybe interpreted as pro-
jections along the axis of high variances of the data. For pseudo-covariance
matrices this still holds up to a scaling factor when shifting the spectrum so as
to assure positive semi-definiteness.

Pseudo-Euclidean space
revisited

For projections onto the negative eigendirections the interpretation is not
so straightforward since there is no clear intuition on what“negative vari-
ance” represents. However, the second above presented algorithm relies on
a pseudo-Euclidean-style decomposition of the embedding space. As we have
seen in the second chapter, the pseudo-Euclidean space effectively amounts to
two Euclidean spaces one of which has a positive semi-definite inner product
and the other a negative semi-definite inner product. As we have seen in the
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second chapter, an interesting interpretation of the distances in a pseudo-Eu-
clidean space is that they can be looked at as a difference of squared Euclidean
distances from the “positive” and the “negative” space, by the decomposition
R(p,q) = Rp + iRq, so thatdij = d

(Rp)
ij − d

(Rq)
ij , where thedij are squared-

Euclidean. This is the rationale behind the first construction of a non-metricD
via dij = (D1 −D2)ij .

The power of this decomposition resides in the fact that the negative eigen-
values now admit the natural interpretation of variances ofthe data projected
onto directions inRq. Thus the variance alongvn is

√

|λn|, the variance along
vn−1 is

√

|λn−1|, etc.

EXAMPLE I (CONT.).

We project the data according to the above algorithm. As expected, we re-
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Figure 4.7. Projection onto the two leading positive eigendirection (left), pro-
jection onto the two leading negative eigendirections (right).

cover the variance due to the cluster structure{1, 2, 3, 4} and{5, 6, 7, 8} in the
positives, the cluster structure{1, 3, 5, 7} and{2, 4, 6, 8} in the negatives (See
Figure 4.7).

Neglecting the non-metric part would have resulted in the loss of the sec-
ond cluster structure.Figure 4.8 shows all possible projections onto the direc-
tions given by the components of the eigendecomposition in the pseudo-Eu-
clidean space. The cluster structures{1, 2, 3, 4}, {5, 6, 7, 8} and{1, 3, 5, 7},
{2, 4, 6, 8} are unidimensional and are only recovered by projections involving
the first or last index. Of course, other projections are possible, but we claim
that as the current methods are based on large variance, theywill inherently not
be able to capture the cluster structure{1, 3, 5, 7}, {2, 4, 6, 8}.

EXAMPLE II ( CONT.).

We project the data according to the above algorithm. As expected, we re-
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Figure 4.8. Exhaustive projections in two dimensions onto the8 × 8 possible
subspaces. The rows are a loop overi and give the abscissa, the columns are a
loop overj and give the ordinate. The first row and first column systematically
separate{1, 2, 3, 4} from {5, 6, 7, 8} while the last row and last column sys-
tematically separate{1, 3, 5, 7} from {2, 4, 6, 8}. These two cluster structures
are unidimensional. They are not recovered by projections involving other that
the first or last index.

cover the variance due to the cluster structure{1, 2, 3, 4} and{5, 6, 7, 8} in the
positives, the cluster structure{1, 3, 5, 7} and{2, 4, 6, 8} in the negatives (See
Figure 4.9).

Neglecting the non-metric part would have resulted in the loss of the second
cluster structure.
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Figure 4.9. Projection onto the two leading positive eigendirection (left), pro-
jection onto the two leading negative eigendirections (right).

EXAMPLE III ( CONT.).

Figure 4.10 shows the recovery of the points from the weighted distance matrix
yields the same cluster solution in the positive part (left)and no definite struc-
ture in the negative (right). However, we see that the variance in the negative
corresponds to the points whose mutual distance has been (strongly) weighted.
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Figure 4.10. Recovery from weighted distance matrix. Projection onto the two
leading positive eigendirection (left), projection onto the two leading negative
eigendirections (right).

The information contained in the negative part here codes for the individ-
ual weighting of the (dis)similarity. This also is encountered, e.g. in pairwise
alignments of proteins, where the length itself of the compared protein largely
contributes to the score and must be corrected so that the score translates the
genuine, evolutionary distance between the strings.

Note that the projection on the last two components admits a simple expla-
nation with models I and II as well. The individual weightingof D can be
modeled by the addition toD of a sparse matrix with entries roughly given by
the weighted element ofD times its weight factor. This addition translates into
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high similarity in the projection onto the last two components.

§. 4.5.

S U M M A R Y.

We summarize the procedure and the rationale behind it (seeschematicdia-
gram Figure 4.12).

Apples!Consider the following illustrative setting: we have apples of different sizes
and two colors (Figure 4.11). There are two salient features: size (geometric)
and color (categorial).

Figure 4.11. Initial data-objects: apples of different size and two colors. (The
images were kindly furnished by http://www.marzipanworld.com/)

Obtention of D or SThese apples are pairwise compared, either by a computer algorithm, a hu-
man test subject or any other mechanism. This comparison yields a dissimilar-
ity matrix D or a similarity matrixS.

In the later case a problem specific dissimilarity matrix is obtained fromS.
Typical choices involveD = 1− S, dij = sii + sjj − 2sij , dij = − log(sij),
dij =

√

− log(sij) or dij = 1
sij
− 1.

Computation of CThe embedding procedure: fromD we compute the centralized pseudo-co-
variance matrixCc and we compute its spectrum.Cc is positive semi-definite
if and only if D is squared Euclidean.

Projection onto the
leading positive and
negative eigendirections

We project the data onto the first two leading eigenvectors explaining the
variance associated to the first feature (size). Second we project the data onto
the last two eigenvectors accounting for the variance of thesecond feature
(color). This last step is done either by shifting the spectrum, thus enforcing
the distances to be squared Euclidean, or by going into the pseudo-Euclidean
space.

Feature discoveryThe second feature is lost by methods relying exclusively onhigh variance.
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Conversely we propose the exploration of the negative eigenspectrum forfea-
ture discovery.
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Figure 4.12. Summarizing diagram. The variance coded by thenegative eigen-
values can code for features different in nature than the onecoded by positive
eigenvalues.
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§. 4.6.

A P P L I C A T I O N S.

We will illustrate with three real world problems the importance of investigat-
ing the negative spectrum for a deeper understanding of the data.

USPSHANDWRITTEN DIGITS.

The data setThe similarity matrix is obtained from binary image matching on the digits
0 and7 of the USPS data set. Digits0 and7 have been chosen since they
exhibit clear geometric difference. All images have been sorted according to
decreasing sum of pixel value (1 to 256) thus separating the bold digits from
the light ones. Shown in Figure 4.13 are the 25 boldest and lightest for the0’s
and the7’s. A total of1844 samples have been retained. The images have been
normalized and discretized to have binary pixel value0 and1.
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Figure 4.13. 100 handwritten
digits from the USPS database.
To illustrate how different fea-
tures can be coded by penal-
ization we chose a data set
consisting of two geometrical
shapes, namely0 and 7. The
digits with boldest and light-
est stroke weight were chosen,
thereby obtaining categorical
distinction.

BINARY IMAGE MATCHING . Let r ands denote the label of two images and
srs the score rating mutual similarity.

Score matrixIn the case of binary images,srs is a function ofa, b, c andd, wherea counts
the number of variables, where both objectss andr score1, b the number of
variables, wherer scores1 ands scores0, etc. (see Table 4.1). The counting

Objects
1 0

1 a b
Objectr

0 c d

Table 4.1. Construction of similarity scores
for binary data. a to d are counting
variables that stand for different possibles
binary pixel-matiching. Thanks to these
counting variables, a myriad of similarity
scores can be defined.
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variablesa, b, c andd allow to define a variety of similarity scoressrs. See
e.g. Cox and Cox (2001), Everitt and Rabe-Hesketh (1997). Note that the same
constructions also appears in other fields of taxonomy (Gower, 1971).

Simpson score We will be interested in theSimpsonscore, defined by:

srs =
a

min (a + b, a + c)
. (4.4)

The Simpson score for every pair of images yields a similarity matrix which is
converted to a dissimilarity matrix viadij = sii + sjj − 2sij . The associated
pseudo-covariance matrixC exhibits a strongly falling negative spectrum, cor-
responding to highly non-metric data for the chosen subset of USPS digits (see
Figure 4.14).

Figure 4.14. Spectrum ofCc. As ex-
pected there are a couple of leading
eigenvalues indicating large con-
centration of variance. However,
on the other side of the spectrum,
a non-trivial tail of negative eigen-
values of large magnitude indicate
severe metric violations.
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Results Projection onto the eigenvectors associated to the first leading eigenvalues
and projection onto the eigenvectors associated to the lasteigenvalues yield
results of different nature: see Figure 4.15 and Figure 4.16.

In each case there is a clear interpretation of the variance according to salient
features. The variance in the “positive” eigenvectors corresponds to the geo-
metrical distinction between the shapes of the0’s and the7’s. In the “nega-
tive” eigenvectors, however, the variance is associated tothe feature of stroke
weight.

This interesting feature would have been lost if we had embedded the data by
conventional methods thereby cutting away the negative part of the spectrum.

Simpson decomposed The Simpson score allows for a nice interpretation in terms of the second sim-
ple model presented. If we pose(S1)rs = a and(S2)rs = min (a + b, a + c),
srs simply reads:

srs =
(S1)rs

(S2)rs
.

Figure 4.17 to Figure 4.19 show the corresponding projections. A subset of
only 100 digits has been used to stress the separation (see Figure 4.13). The
figures depict the spectra and recovered points ofS1, S2 andS respectively.
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Figure 4.15. Projection onto the first two positive eigendirections. The first
component separates the geometrical shapes0 from7.

The variance along the first principal component separates the 0 from the7.
ForS2 it separates bold from light. This latter variance is recovered in the last
eigendirection ofS.

Note that the variance corresponding to the second leading eigenvalue of
C1 (covariance matrix associated toS1) also corresponds to a separation of
bold vs. light. We have four nicely separated clusters in thefirst two leading
eigenvalues, as obtained by other binary image matching scores.

However, we have to recall that in the generic case, wedo notdispose of a
decomposition ofS so that this information, even though it might exist, is not
available to us. Since we dispose only ofS, finding the features associated to
the stroke weight of the digits requires to look at the negative eigendirections.

COMPARISON WITHMDS. Different projections obtained by MDS have been
confronted to our results. The experiments have been carried out with the pro-
gramXGvis (Buja et al., 2001) which allows for a variety of MDS cost func-
tions. It allows to users to chose between four MDS variants,namely between
the Torgerson-Gower inner-product scaling and Kruskal-Shepard distance scal-
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Figure 4.16. Projection onto the onto the last two negative eigendirections. The
last component separates the stroke weight into light and bold.
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Figure 4.17. Spectrum of the covariance matrix associated to the numerator
S1 (left) and corresponding projection onto the leading two eigendirections.

ing. For each variant, one can choose between metric and non-metric scaling.
Remember that “non-metric” in this context refers to proximity data for which
only the rank order is taken into the account. To avoid confusion we will in-
stead call it “rank-only”.
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Figure 4.18. Spectrum of the covariance matrix associated to the denominator
S2 (left) and corresponding projection onto the leading two eigendirections.
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Figure 4.19. Spectrum ofS and the points recovered for the positive and nega-
tive eigenvalues.

The general Kruskal-Shepard distance scaling for metric scaling optimizes:

stress(x1, x2, . . . xn) =

(

1−
(
∑n

i,j ωijdij‖xi − xj‖
)2

(
∑n

i,j ωijd2
ij

)(
∑n

i,j ωij‖xi − xj‖2
)

)
1
2

,

with ωij = dr
ij , with −4 6 r 6 4 is a weight factor. Notice that ifdij =

‖xi − xj‖, stress(x1, x2, . . . xn) = 0.
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For the default parameterr = 1 one obtains a projection separating the0’s
from the7’s, corresponding to the projection along the first leading eigendirec-
tions. This was to be expected since MDS is a distance based algorithm.

Figure 4.20 shows the result for classical scaling (left) and for Kruskal-Shep-
ard (Krsk/Sh) distance scaling (right). They both seem to separate quite well
the0’s from the7’s, except in the central region for Krsk/Sh distance scaling
which also heavily suffers the drawback of initialization as seen on Figure 4.21.
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Figure 4.20. Metric Classic (left), Metric Krsk/Sh distance scaling (right).
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Figure 4.21. Metric Krsk/Sh with three new initializations. While the0’s are
globally separated from the7’s except for the central region (see also Fig-
ure 4.20, right) the obtained projections vary a lot from oneinitialization to
the other.

Figure 4.22 also shows two instances of some exotic variantsof MDS, both
sensible (left) and very hard to interpret (right). Different parameters like the
data power and the weight factor have been tried, both for metric and rank-
only variants.XGvis even implements a rank-only version of classical scaling
which seems to be a contradiction in terms since classical scaling is geometric
in nature.

Drawbacks of MDS The main problem of MDS is that it does not tell the experimenter what to
do. Varying the parameters yields a myriad of projections with little handy in-
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Figure 4.22. Exotic MDS variants: rank-only classical scaling (left), Metric
Krsk/Sh withD5. Data Power and Minkowski Metric parameters turn out to
be of little importance (right).

terpretation, notwithstanding the problem of local minimaleading to different
projections for different initializations (Figure 4.21).The intuition is impaired
by the complexity of the cost function so that finding good projections seems
to be left to chance. MDS still leaves open the issue about model selection,
whereas our solution is obtained without choosing parameters.

But the main point to retain here, is that whatever choice of parameters we
have exploredMDS proves unable to separate the bold digits from the light
ones like in Figure 4.16. As before, we claim that this is inherently impossible
with MDS which, as all current distance based methods, takesinto account
large variance.

TEXT-M INING.

The data setWe are interested in the semantic structure of nouns and adjectives from differ-
ent text sources. In this application we chose two topicallyunrelated sources:
on one hand, Grimm’s Fairy Tales1, on the other popular science articles about
space exploration2. Both sources contributed60 documents containing roughly
between500 and1500 words each.

A subset of120 nouns and adjectives has been selected, containing both very
specific and very general terms out of both data sources.

SIMILARITY MEASURE FOR WORDS. We are not interested in the absolute
recurrence of a word, i.e. how many times it occurs within a given document.
We only consider whether a word appears or not in a document.

1Project Gutenberghttp://promo.net/pg/
2Science at Nasa articles http://science.nasa.gov/headlines/news_-
archive.htm
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Contingency table From a set ofp documents and a choice ofn keywords we can construct
a contingency table, by simply indicating whether wordi (i = 1, 2, . . . n)
appears in documentk (k = 1, 2, . . . p) or not. This yields ap × n boolean
matrix X , with xki = 1 if word i appears in documentk and 0 else (see
Table 4.6).

Word 1 Word 2 · · · Wordn
Doc 1 1 0 · · · 1
Doc 2 1 1 · · · 0

...
...

...
...

...
Docp 1 0 · · · 1

Table 4.2. The contingency tableX indicating whether wordi appears in doc-
umentk or not. This table does not take into account the frequency with which
a given word appears.

Let Xi denote theith column ofX (associated to wordi).
Keyword Semantic
Proximity

We will take theKeyword Semantic Proximityas similarity measure (Rocha
(2001) or Rocha and Bollen (2001) and references therein), which expresses
that two words are similar if they often appear together in a document. This
similarity is penalized if they individually spread over a large number of docu-
ments:

sij =
#{documents where wordi andword j appear}
#{documents where wordi or wordj appear}

=

∑

Xi+Xj=2 1
∑

Xi=1 1 +
∑

Xj=1 1−∑Xi+Xj=2 1
.

(4.5)

From this similarity measure, we obtain a dissimilarity matrix via, e.g.dij =
− log(sij). In Rocha (2001) the author usesdij = 1/sij − 1 which is an-
other possible choice. In either case, the resulting dissimilarity matrix d is not
squared Euclidean such that the associated (pseudo-)covariancematrix exhibits
strong negative eigenvalues (see inset in Figure 4.23).

Results The data is projected on the first two leading eigenvectors. The result is
given in Figure 4.23.

On the far left we find the words stemming from the popular science arti-
cles whereas on the far right (e.g. “nuclear”, “computer”, “physics” etc.), we
have those from Grimm’s Fairy Tales (e.g. “castle”, “queen”, “ravens” etc.).
Towards the center they mix with words spreading over both text sources. The
variance corresponds to the semantic context of the words.

Projection onto the last two eigendirections yields a distribution over a new
interesting feature. The result is given in Figure 4.24.
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Figure 4.23. Projection onto the onto the first two eigendirections. The first
eigendirection separates the semantic context.

We notice that in the upper half we find words of high specificity of either of
the sources (e.g. “astronauts”, “wolf”, ‘witch‘” etc.). Inthe lower half we see
an accumulation of words with general, unspecific, meaning,expected to be
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last eigendirection separates the specificity of the words.
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found in a large variety of documents (e.g. “day”, “world”, “thing” etc.). Thus
the variance associated to the last eigendirection corresponds to the specificity
of the words.

This feature would have been lost by algorithms not specifically taking into
account the negative part of the spectrum.

Of course the notion of specificity respectively generalityis not absolute
but depends on the underlying data sources. “Day”, “world”,“thing” etc. are
general with respect to the Grimm’s Fairy Tales and the NASA articles.

HUMAN SIMILARITY JUDGMENTS FROM COGNITIVE PSYCHOLOGY.

We finally present an example from human similarity judgments in cognitive
psychology. This will also allow us to illustrate Model III (page 70).

The data setThe pairwise dissimilarity data (Table 4.6) is obtained from Gati and Tver-
sky (1982). The stimuli tested consist of16 images of flowers having leafs
of varying elongation and stems of increasing size (Figure 4.25). These two
stimuli were presented to a group of thirty undergraduate students from He-
brew University who, individually, evaluated their mutualdissimilarity on a
20-point scale. (See Gati and Tversky (1982) for details andTable 4.6 for the
averaged results.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 7.9 9.5 10.2 3.8 10.7 11.2 11.9 6.7 15.4 15.4 16.4 9 17.7 17.2 18.7
2 0 5.1 7.3 12.6 4.5 7.3 9.8 15.4 7.1 11.9 15 17.7 9.1 13.9 15.8
3 0 5 12.3 9 4.3 7.6 16.3 12.8 7.5 11.1 18.5 14.1 9.3 11.6
4 0 14.9 10.5 7.7 4.2 17.6 15.8 11 6.5 19.1 17.1 12.9 8.8
5 0 10.6 10.6 13 4.3 12.1 13.2 14.9 5.8 15.2 16.4 16.9
6 0 5.7 9.1 13.6 4.9 9.8 13.4 15.9 6.9 12.7 15.1
7 0 5.9 14.4 10.6 4.8 8.2 16.8 12.7 6.8 10.3
8 0 15.7 12.5 8.5 5.1 18.2 15.5 9.8 6
9 0 10 12 13.8 4.4 12.1 13.8 15.2
10 0 7.3 10.6 13.8 4.3 8.4 13
11 0 6.6 14.7 9.3 4.3 8.2
12 0 16.5 12.9 8.1 3.5
13 0 11.1 11.5 13.7
14 0 6.8 11.1
15 0 5.8
16 0

Table 4.3. Average ratings for dissimilarity between plants. The table is taken
to be symmetric.

We have processed the data according to the presented algorithm.
ResultsIn the positive eigendirections we obtain a very neat reconstruction of the

two geometric features, namely the elongation of the leafs and the size of the
stem. There seems to be no tendency to favor one over the other. The first com-
ponent explains the variance in leaf elongation (horizontal axis), the second the
variance of the stem size (vertical axis).
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 4.25. Images of the flowerpots presented to the test person. On one hand
we have flowerpots with plants of increasing stem size, on theother we have
plants with varying leaf elongation.
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Figure 4.26. Left: Spectrum of the similarity matrix. Middle: Projection
onto the leading two positive eigenvalues. Right: projection onto the last two
eigendirections.

The projection onto the last two negative eigendirections exhibits further
information, as shown by Figure 4.26, right. The interpretation, however, is
not so straight forward as previously. This is, where feature discovery begins.
Two cluster loosely form, separated by the last eigendirection (vertical axis).
They are{1, 2, 5, 6, 11, 12, 15, 16} and{3, 4, 7, 8, 9, 10, 13, 14}. A possible
feature could be the oddness of a plant, such that the first clusters contains
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the odd plants, and the second the “normal”-ones. Indeed, wetend to expect
plants with small leafs to be of small size and plants with large leafs to be of
greater size. The odds here are the small plants with large leafs and the large
plants with small leafs. This would correspond to a categorial perception while
judging similarity.

Features like the concept of normality, or expectation, arenot uncommon in
cognitive psychology, e.g. in Navarro and Lee (2002) features like the normal-
ity or familiarity of faces are discussed in the context of the Modified Contrast
Model, along with certainly not easily graspable features like relationships in
parenthood. While the authors focus on common and distinctive features and
distinguish between conceptual and perceptual features, the interpretation of
the discovered features remains—as in our three applications—as a second in-
dependent step in data analysis.

MODELING THE FLOWERPOT EXPERIMENT. We model the flowerpot exper-
iment according to Model III (page 70) by starting from a uniform distribution
of 16 points in three dimensions. The feature vectorsfk, k = 1, 2, 3 were
chosen to be the unit vectorse1 = (1, 0, 0) etc.

The weight vectors are obtained by fitting thed heuristically to the exper-
imental dissimilarity by minimization of the mean over the difference of all
matrix elements.

We obtain a good model fit for six weight vectors{(8.3, 0, 0), (0, 3.5, 0),
(4.7, 4.7, 4.7), (6.4, 6.4, 0), (0, 3.4, 3.4), (3.1, 0, 3.1)}. See Figure 4.27.

In other words, following the semantics of the third model presented, one
can explain the results of the obtained dissimilarities by six perceptual states of
the observer. These seem to outnumber the actually observedfeatures (in the
two dimensional representations) which are three in number(the two geometric
features in the positives and the categorial one in the negatives). However,
we must keep in mind that one may reduce the number of requiredweights
to approximated by a deeper knowledge of the initial feature presentation,
including its dimensionality. We have taken a uniform distribution in three
dimensions for lack of this precise knowledge.

§. 4.7.

D I S C U S S I O N.

SummaryThis chapter studies the potential of relevant informationbeing coded specifi-
cally by the non-metric part of the spectrum of a pseudo-covariance matrix.
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Figure 4.27. Left: Spectrum associated to the model. Middleand right: Pre-
diction of flowerpot experiment.

To the best of the authors knowledge this issue has never beenaddressed,
maybe partly because of the underlying ill-definedness of its unsupervised as-
pect and the difficulty of problems related to the eigenvaluespectrum.

Nature of this study We have first chosen a conceptual approach to metric violations and then
done an explorative research to show that the negative part of the spectrumcan
code for interesting variance. The stress is on “can” and “interesting”. As a
matter of fact, every direction associated to some eigenvalues codes for some-
thing. The lesson here is that whatever relevant information we look for about
a data set, it should not only be sought for in the few leading eigendirections.

We can not assess that for all spectra like Figure 4.1 (right), there is relevant
structure coded by the negative eigenvalues, since one might be in a situation of
e.g. some fancy noise. This study rather is an incentive to further systematically
study non-trivial spectra of pairwise data.

Simple penalization
models

Beside this explorative research which heavily relies on examples, we tried
to gain some insight on how these spectra come about: penalization by subtrac-
tion or division, individual scaling of dissimilarities byperception-switches or
algorithmic artifacts.

These models explain simple situations where one specific feature is coded
in the non-metric part of the spectrum.

Complex weighting
models

In more complex settings, like they arise in human similarity judgments it
becomes quite hazardous to speak of a definite number of features. If we com-
pare for instance the images of different faces in order to estimate their similar-
ity, we face a virtually infinite number of features. This really is, where feature
discovery begins.

Limits In order not to deceive expectations, it must be stressed here, that this is a
highly non-trivial task in the majority of problems. Thus weoften encounter
situations where we are utterly incapable of giving any sensible meaning to
the distribution of the points along the directions associated to the negative
eigenvalues. It is here where the difficult second step ofinterpretationhas to
set in.
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§. 4.8.

C O N C L U S I O N.

Pairwise data in empirical sciences typically violates metricity, either due to
noise, fallible estimates, or due to intrinsic non-metric features, such as they
arise for human judgments. Non-metricity translates to indefinite pseudo-co-
variance matrices which precludes the usual processing.

So far the problem of non-metric pairwise data has been tackled by cutting
away the negative eigenvalues or shifting the spectrum for asubsequent (Ker-
nel-) PCA analysis. However, little to none attention has been paid to the neg-
ative part of the spectrum itself. In particular no answer was given to whether
the directions associated to the negative eigenvalues can at all code variance
other than noise related.

We have shown that the negative eigenvaluescan code for relevant struc-
ture in the data, thus leading to the discovery of new features, which were
lost by common techniques. Three models explain the occurence of non-trivial
negative spectra and show that relevant information can be coded by metric
violations. The significance of the negative eigenvalues was illustrated on sev-
eral real world applications, namely USPS handwritten digits, text-mining and
human similarity judgments.





5. T O WA R D S S T R U C T U R E
L E A R N I N G

In this chapter we will go a first step towards automated structure discovery
in non-metric pairwise data. A simple algorithm calledStability Component
Analysisis developed to detect stable and potentially interesting structure. It
can be applied to non-metric pairwise data and successfullyextracts the struc-
ture coded by non-metricity which can hide, as we have seen inthe previous
chapter, further information about the data.

§. 5.1.

I N T R O D U C T I O N.

VisualizationVisualization is part of “human learning”. This is the real rationale behind
projection onto subspaces of dimension1, 2 or 3. In the previous chapter,
visualization allowed us to understand how metric violations can code for use-
ful information. In visualization, one often learns by local inspection of the
correlations. Structure is often recognized by our intelligence on the specific
field, by a priori knowledge on the data set rather than by abstract concepts.
A biologist, for example, can learn much from a two dimensional data cloud
which may hardly be distinguished from a gaussian blob. He will look at local
correlations and relate unknown data points to their neighbor in an expert fash-
ion that machines have yet to equal. Far reaching data exploration thus seems
rather hindered by strong model assumptions. However, visualization requires
the choice of a subspace which critically determines the interpretation. For
general problems, there are many candidate projections whether the subspace
be obtained by PCA or MDS (see for example Figure 4.8). We are therefore
looking for a way toautomaticallyselect interesting directions.

Let the machines learn!We claim: let the machines learn! Only with their help are we able to e.g.
quantify results and rigorously asses their quality. This comes at the price of
model assumptions, the first of which being a definition of structure.

Ill-definedness of the
problem

Structure is an ill-defined concept, intuitive on the first glimpse, all but self-
explanatory on the second. We therefore are confronted to similar problems
as in unsupervised learning and will never obtain sensible results unless we

97
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sacrifice generality to achievability, which usually is a lesson of modesty.
Stability as structure
determining

Based on the simple idea of stability analysis (see Roth et al. (2002)) as in-
trinsic cluster validation, we will define structure as maximally stable cluster
solutions. This allows us to elude hefty model assumptions,introducing on
the other hand a dependence on the clustering algorithm. However, this de-
pendence is not accidental, it rather reflects a de facto relation between the
structure and our way to perceive it (clustering algorithm).

These considerations will quickly lead us to a simple algorithm first pro-
posed in Laub et al. (2004) which we will henceforth callStability Component
Analysis(SCA). It will be illustrated by a small toy example and an application
to USPS handwritten digits.

§. 5.2.

S T A B I L I T Y C O M P O N E N T A N A L Y S I S.

Projections onto the leading negative eigendirections were used to visually in-
spect the relevance of the structure coded by non-metricity. We now go an
important step further beyond visualization towards a quantitative analysis of
the relevance of negative eigendirections by automatically detecting, i.e. learn-
ing structure.

Loss index The first step towards structure learning is to define a loss index that is min-
imized by the structure that we are interested in. As we are effectively most
interested in grouping the pairwise data inton groups, we need to focus on
stablen-modal clustering solutions.

Bimodal stability Resampling stability has been shown to be a good criterion assessing the
quality of a solution in unsupervised learning, see Roth et al. (2002) and Mei-
necke et al. (2002). Let us only considerk = 2, i.e. the stability index of
bimodal clustering solutions. Note that the stability index is a particular choice
of a projection index for projection pursuit (Huber, 1985),as it basically mea-
sures the probability of confusing the two estimated clusters. In the view of
this instability index, interesting directions are thus defined to be theeigendi-
rectionsthat allow a stable bimodal clustering solution in the corresponding
subspace. The rationale for choosing eigendirections is that they do not de-
pend on parameters, which means that there is no further model selection step
required.

Let us first consider only the stability of individual directions, under the
strong assumption that one-dimensional subspaces are sufficient to discover
interesting structure.
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Elementary stability
component analysis

ALGORITHM. The following algorithm computes the subspace of maximal
bimodal stability. LetD be some dissimilarity matrix and letX be the column
matrix of the data projection onto a pseudo-Euclidean space(see subsection on
page 28).

1. Compute the bimodal stability for every column ofX according to Roth
et al. (2002).

2. Sort the instability index.

3. Choose the directions of maximal stability (minimal instability index)
with respect to some threshold.

This yields the subspace of maximal bimodal stability in each of its directions.
This algorithm can be interpreted as stability component analysis, hence its

name, since it sorts the components according to their decreasing stability as
opposed to, say, decreasing variance with PCA.

We will now discuss how this algorithm can be used to ascertain structure
coded by non-metricity as well as distinguish between such astructure and
non-metricity as artifact of noise.

DETECTING STRUCTURE CODED BY METRIC VIOLATIONS.

Discriminate between
metric violations of
different nature

One of the goals in studying the information coded by non-metricity is to dis-
criminate between “interesting” information from intrinsic non-metric data and
artifacts due to non-metricity induced by noise. Stabilitycomponent analysis
is used to systematically evaluate the stability of bimodality along the eigendi-
rections. For the purpose of visualization it is useful to sort the eigenvectors
according to increasing values (e.g. like in Figure 4.1). Onthe assumption
that stable structure is likely to be found in the directionsof high variance, the
expected curves of the instability index are given in Figure5.1 (note that high
stability means a low value of the instability index).

Structure due to intrinsic non-metricity will reflect in curve like in Fig-
ure 5.1, right, whereas non-metricity as mere artifact of noise will translate
into a stability curves like in Figure 5.1, left; provided that the spectrum has
been sorted as in Figure 4.1.

EXAMPLE : STRUCTURE VS. NOISE.

IllustrationWe present a small toy example that highlights the differences between in-
herent non-metricity and non-metricity caused by noise. Two non-metric data
matrices are constructed. The second data set contains a clear structure in the
negative eigenspace, whereas in the first data set non-metricity is an artifact
of noise. Figure 5.2 shows the spectrum of the associated pseudo-covariance
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Figure 5.1. Instability indices for sorted eigenspectra. Left: noise, right: struc-
ture.

matrix C and the visualization of the data by projection onto the leading pos-
itive and negative eigendirections as indicated in the previous chapter. On the
left are the figures corresponding to the first data set, on theright, the figures
corresponding to the second data set (intrinsic non-metricity). The fourth row
of Figure 5.2 shows the result obtained by SCA. In the first case, the insta-
bility index exhibits a shape like in the left panel of Figure5.1 (superposed in
light gray), indicating no presence of interesting information specifically coded
by non-metricity. In the second case, we obtain a curve similar to that in the
right panel of Figure 5.1, indicating the relevant structure in the positiveand
negativepart of the spectrum.

This small example illustrates the relevance of negative eigendirections when
non-metricity is an intrinsic property of the data. After embedding the non-
metric data into a pseudo-Euclidean space SCA effectively and automatically
selects the leading eigendirections based on the stabilitycriterion.

§. 5.3.

A P P L I C A T I O N.

The data set To illustrate our procedure of structure learning in non-metric pairwise data
with a real world example we obtain non-metric pairwise datafrom the USPS
handwritten digits data set previously used.

The similarity matrix The similarity matrix is obtained from binary image matching on the digits
0 and7 of the USPS data set. Digits0 and7 have been chosen since they
exhibit clear geometric difference. All images have been sorted according to
decreasing sum of pixel value (1 to 256) thus separating the bold digits from
the light ones. A total of200 samples have been retained. The images have
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Figure 5.2. Left: Pairwise data where non-metricity is an artifact of noise.
Right: Pairwise data with intrinsic non-metricity.

been normalized and discretized to have binary pixel values0 and1. Binary
image matching is performed and the Simpson score (Equation4.4) computed.
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The Simpson score for every pair of images yields a similarity matrix which
is converted to a dissimilarity matrix viadij = sii + sjj − 2sij . The associ-
ated pseudo-covariance matrixC exhibits a strongly falling negative spectrum,
corresponding to highly non-metric data (see Figure 5.4, right).
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Figure 5.3. Visualization of the USPS data. The light digitsare in gray. The
leading positive eigendirection separates the0’s from the7’s (left) while the
leading negative eigendirection separates the bold digitsfrom the light ones
(right).

Visualization The data (a random subset of 100 digits) is visualized according to the proce-
dure of Section 4.4. The information reflected in the leadingpositive eigendi-
rections corresponds to the geometric distinction of0’s and7’s (Figure 5.3,
left). The information reflected in the leading negative eigendirections corre-
sponds to the categorical distinction of the bold and the light digits (Figure 5.3,
right).
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Figure 5.4. The instability index for bimodality as function of the ordered com-
ponents (left) and the five chosen directions (right).

Note that in Figure 5.3 the second leading eigendirection isnot an informa-
tive one (as will be seen by the chosen directions). The structure related to the
separation between0’s and7’s is contained in the leading eigendirection alone,
the second being only good for the purpose of visualization.
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ResultsSCA is used on the embedded data to search for stable directions. Figure 5.4,
left, shows the instability index. While the shape is not as pronounced as in
Figure 5.1, right, it is yet clearly visible. The five most stable eigendirections
are:

[199, 1, 198, 163, 50].

Figure 5.4, right, shows the chosen eigendirection. Not astonishingly, the lead-
ing eigendirection (1) is among the chosen stable directions. As is shown by
Figure 5.3, left, this corresponds to the geometric separation of the0’s and the
7’s. The majority of machine learning algorithms will detectthis structure.

The interesting new structure can be learned from the negative eigenspace.
It corresponds to the leading negative eigendirections198 and199. Figure 5.3,
right, shows that this indeed makes sense: the two last eigendirections separate
the bold digits from the light ones.

Note that the last eigendirection is not200 since the embedding of ann× n
matrix is of dimensionn − 1. In the matrixX , we can exclude the empty
direction where the coordinates are zero for all vectors.

Our procedure further illustrates the fact that directionswith high variance
are not automatically stable directions. The second leading eigenvalues is not
informative in the sense of stability, as is well seen in Figure 5.3, left. On
the other hand, the algorithm selects two unexpected directions, namely163
and50. These directions contain stable structure which cannot beeasily inter-
preted as for the leading positive and negative stable eigendirections and we
are tempted to label them as outlier due to the non negligiblevariance of the
instability index. As a matter of fact, these directions areno longer chosen
when one departs from the assumption of unidimensionality (see discussion in
the following section).

§. 5.4.

D I S C U S S I O N.

Generalization of SCAThe presented stability component analysis admits a numberof natural exten-
sions which we will briefly discuss here.

The presented “basic version” of SCA considers the bimodal stability in
unidimensional subspaces. It is capable to find structure which previously went
unnoticed, since the information contained in the non-metric part of the data is
not accounted for by the usual machine learning techniques.

A natural extension is to explore subspaces, say, pairs of directions to project
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on and calculate the instability index for thesen × n − 1 ordered pairs. For
adjacent eigendirections in the sense of an ordering given like in Figure 4.1 one
obtains the curve for the instability index in Figure 5.5.

Figure 5.5. Instability index for bi-
modality for adjacent eigendirections
(USPS data set). The structure discov-
ered in the positive and negative sub-
spaces is more pronounced than for
the unidimensional subspaces, which
shows that the assumption on unidi-
mensionality is abusive.

Obviously the stability “on both ends” is much more pronounced as for the
unidimensional case (Figure 5.4, left), which speaks in favor of this more com-
plex evaluation of the stability.

In its most general version, SCA would operate onl-dimensional subspaces
and compute ap-modal stability (i.e.k-means withk = p). However, for
subspaces of more than one dimensions, one easily runs into computational
problems because of the exponential number of possible combinations.

§. 5.5.

C O N C L U S I O N.

We have presented asimpleautomated structure learning approach to assess
relevant structure coded by non-metricity. It allows to unravel structure ne-
glected by most exploratory learning algorithms.

This chapter shows that automated structure learning can extract problem
relevant structure in the negative eigenspace which is associated to the structure
coded by metric violations.

The structure learning algorithm proceeds by defining an index on the prin-
ciple components obtained after embedding of the non-metric pairwise data
into a pseudo-Euclidean space.
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SummaryWe have studied in this thesis several issues related to non-metric pairwise data,
i.e. pairwise proximity data which, when formulated as dissimilarities, violate
the requirements of a metric function. Our interest focusedboth on the nature
of these violations and their consequences for subsequent data analysis. This
both theoretical and empirical study yielded important newinsights in the rela-
tionship between vectorial and pairwise representations when considered from
a structural rather than geometrical point of view and in themechanisms which
are responsible for metric violations and which must be considered an integral
part of the problem rather than an accidental perturbation.

The issue: non-metric
pairwise data

There are two main data types in intelligent data analysis, namely the vectorial
and the pairwise data. Only small subsets of these two data representations are
mutually equivalent. In order to make pairwise data available to the powerful
data analytical tools developed for the vectorial representation, they are em-
bedded into a vector space, be it at the price of possibly large distortion. Two
question naturally arose: can we find embeddings without distortion? What are
the losses incurred when forcefully embedding pairwise data.

Unification of vectorial
and pairwise
representation for a
certain class of cost
function based learning
algorithms

The first question has been answered. While it is not possibleto embed non-
metric pairwise data when considering geometric distortion, it has been shown
that is still possible to find a set of vectors such that thestructureis conserved.
This is a great step forward since it associates representation and interpretation
and shows that for a specific class of clustering algorithms the two data types
coincide in as much they yield the same interpretation, i.e.clustering results.

While traditional techniques proceed in two independent steps, first embed-
ding then clustering, by optimizing two unrelated cost functions, the frame-
work of Constant Shift Embedding shows that we really must consider these
as one and that, by doing so, we obtain optimal embeddings.

Understanding the
semantics of metric
violations

The second question was answered by showing that metric violations can
carry valuable information about the data set. They can indeed form a structure
on their own which is encoded, from an Euclidean point of view, in the negative
part of the eigenspectrum of the associated pseudo-covariance matrix. While
several authors allude to the danger of forcefully embedding pairwise data, this
study is the first one to show why.

Several simple models for non-metric pairwise data have been presented.
They allow for a deeper understanding of the processes that underlie metric
violations and foster the intuition the experts needs when facing such data. It
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has been shown how to extract the information coded by metricviolations.
The relevance of this information and the models have been illustrated by three
worked through applications.

Automated structure
learning

Chapter 4 on feature discovery, after visually appreciating the information
coded by metric violations, raised the question whether there was a possible
automation of this task. General variance interpretation requires great a priori
knowledge which the experimenter may not have. In order to still profit from
possible information coded by non-metricity a simple algorithm called Stabil-
ity Component Analysis was developed. It was shown to efficiently work on
artificial and real world data.

Quintessence This thesis is not an exhaustive treatment of non-metric pairwise data and it
does not solve all problems related to them. But it certainlyhas contributed its
due part to their demystification. It allowed to cast a different, mathematically
well funded look on metric violations and their consequences.



A. A P P E N D I X : B E Y O N D
E I G E N VA L U E S

In this appendix we briefly present an outlook on ongoing workand possible
future research directions. In particular we have a brief look at measures of
non-metricity relying on a direct measurement of metric violations rather than
the spectrum of a pseudo-covariance matrix.

§. A.1.

I N T R O D U C T I O N.

Beyond EuclideannessIn this thesis non-metricity has been investigated as implying non-Euclidean-
ness and thus preventing the pairwise data to be embedded in the ubiquitous
Euclidean spaces. However, Euclideanness is a strong assumptions on data,
and one might extend the understanding of non-metricity to some “weaker”
spaces.

Beyond eigenvaluesFurthermore, our approach to understanding the metric violations passed
through the computation of the spectrum of the associated pseudo-covariance
matrix. We would like to present here a more direct way of apprehending the
violation of triangle inequality.

Return to the root of
metricity

If the pairwise data is metric it can obviously be represented in a metric
space. This might not be helpful if one wishes to visualize the data, but it may
be of some theoretic implication. Recall the definition of metric dissimilarities.
As our major concern is Equation 2.7, we will, for sake of simplicity, assume
that Equation 2.4 to Equation 2.6 be fulfilled. In the following we will only be
concerned with the triangle inequality. We will introduce two direct measures
for its violations and discuss and illustrate a few of their properties.
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§. A.2.

M E A S U R I N G T R I A N G L E I N E Q U A L I T Y
V I O L A T I O N S.

Let D = (dij) be a symmetric dissimilarity matrix. (Note that we requireD to
be symmetric in order to have real spectra.)

The counting matrix T Define thecounting matrixT = (tij) to be

tij(D) =

n
∑

k=1
dik+dkj<dij

1.

T simply counts the violations of the triangle inequality. Itcan be easily shown
Properties thatT is positive, symmetric and reflective, so thatT can itself be interpreted

as some sort of—usually non-metric—dissimilarity matrix,and thatT ≡ 0
(i.e. tij = 0 for all i, j = 1, 2, . . . n) if and only if D satisfies the triangle
inequality.T is a non-linear non-injective function ofD whose support is the
set ofD violating at least once the triangle inequality.

T is sensitive to small perturbation:T (D + ε) 6= T (D) + ε. Thus, noise
corrupted data might yield positive counts for minor metricviolation. Usually
these counts will not exceed1 and thus be still different from large metric
deviation which cause large counts.

The amplitude matrix P Define theabsolute amplitude matrixP = (pij) to be

pij(D) =

{

max
k=1... n

(

|dij − dik − dkj |
)

if dik + dkj < dij

0 else.

The amplitude matrixP contains the maximal absolute deviations from the
triangle inequality.

Properties P satisfies the same proprieties asT and can also be interpreted as some sort
of dissimilarity matrix.P is not scale invariant sinceP (λD) = λP (D). The
absolute amplitude of the non-metricity does depend on the intrinsic scale of
the data. However,P (D + ε) ∼ P (D) + ε, so the influence of noise is not
beyond its own scale, as opposed toT .

Note thatT ≡ 0 if and only if P ≡ 0. This follows from the elementary
property ofT andP to be zero if and only ifD satisfies the triangle inequality.

Consequence SinceT andP can be regarded at as dissimilarities, the same embedding
procedure as forD can be applied toT andP as described in Section 4.4 of
the previous chapter.
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THE USPSDATA SET REVISITED.

IllustrationTo illustrate howT andP work, we again visit a now well-known data set,
namely the data set consisting of100 USPS digits0 and7, bold and light.
The dissimilarity matrix is computed via the Simpson score.It is given in
Figure A.1, left. The counting matrixT and amplitude matrixP are calculated
for thisD (Figure A.1, middle and right).

Figure A.1. Distance matrix for the set of100 USPS digits0 and7, bold and
light (left). In the middle, the corresponding counting matrix T and on the
right P . Note the striking resemblance of their structure.

We immediately notice their striking resemblance. By merely counting the
number of triangle inequality violations we get a dissimilarity matrix with a
very similar structure. The same holds for the amplitude matrix. This shows
that indeedthe violations of the triangle inequality are entirely structure deter-
mining.

InterpretationIn that sense, bothT andP allow us to have a direct look at the violation
induced structure. When the metric violations are due to noise and are not in-
trinsic, this will automatically be reflected inT andP . Figure A.2 shows an

Figure A.2. Distance matrix for four artificially generatedclusters (left). In
the middle, the corresponding counting matrixT and on the rightP . T still
somewhat resemblesD because of its sensitivity to noise, whileP can not be
related toD.

artificial data set of four clusters corrupted by some randomnoise.T is sensi-
tive to noise and thus still keeps track of its origin, even though the resemblance
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is not as strong as in the previous example for intrinsicallynon-metric data. It
is P which shows the real difference, sinceP has no resemblance at all with
D which shows that the metric violations ofD are not structure determining.
In order to further investigate howT andP capture structure by simply mea-

T and P as dissimilarity
matrices

suring the metric violations we recall that both can be interpreted themselves
as dissimilarity matrices and can receive proper treatment. Figure A.3 and Fig-
ure A.4 show the spectrum of the associated pseudo-covariance matrix and the
projection of the data on the leading positive and negative eigenvalues.
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Figure A.3. Spectrum and projections whenT is considered a dissimilarity
matrix.
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Figure A.4. Spectrum and projections whenP is considered a dissimilarity
matrix.

Both forT andP the leading eigendirections separates bold from light. This
is not astonishing, since this is what the matrices measure:the metric violations
induced by the encoding of this feature. Interestingly, theseparation of0 and
7 are (roughly) found in the leading negative eigendirection, which shows that
these similarities now act as penalization. In a certain sense, they are the metric
violations of the measured metric violations!
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§. A.3.

D E C O M P O S I T I O N O F D I N T O A M E T R I C A N D A
N O N - M E T R I C P A R T.

Yet another look at
non-metricity

We have seen in the previous chapter that different similarity or dissimilarity
can be combined by subtraction or division to yield a non-metric D.

Here we want to briefly consider the converse approach, givena fixedD,
find a an additive or multiplication decomposition of the dissimilarity matrix
into a metric (possible Euclidean) and non-metric part.

Possible solutionsThe problem of the additive decomposition—which is not unique!—into a
metric partM and a non-metric partN can by solved e.g. by the constant
shift procedureM = D + N whereN = 2λn(C)(eet − I), C = − 1

2QDQ,
e = (1, 1, . . . 1) andλn(C) is the smallest eigenvalue ofC. MDS solves the
same problem by minimizing‖D − M‖ for some norm‖ · ‖. Yet another
way is to iteratively subtractT or P until all metric requirements are met.
However, the author could not prove that this could be done ina finite number
of steps. Usually metricity is achieved within one or two iterations. The results
of this procedure which we will not formalize more is shown inFigure A.5 to
Figure A.7.

THREE LITTLE EXAMPLES REVISITED.

Recall the three little examples I, II and III given respectively on pages 68,
70, and 72. The dissimilarities were computed and decomposed by iteratively
subtractingT . We thus recover a metric matrixM and are left with an non-
metricN .

D M N

Figure A.5. Decompostion ofD from small example I. The block structure and
the line structure are recovered.

Figure A.6 nicely shows the recovery from the block and line structure which
were put into it by the from scratch construction. Figure A.5exhibits the same
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D M N

Figure A.6. Decompostion ofD from small example II. The block structure and
the line structure are recovered.

D M N

Figure A.7. Decompostion ofD from small example III. The weighted distances
are recovered in the non-metric partN .

structure but it is less visible. Figure A.7 permits to visualize the “outliers” due
to the weighted measurements. These decompositions are yetanother way to
analyze and visualize metric violations.

§. A.4.

C O N C L U S I O N.

This outlook presented some new considerations on non-metric pairwise data.
The previously adopted point of view which focuses on violation of Eucli-
deanness and negative spectra was abandoned in favor of a more generic one,
measuring directly the metric violations, namely the number and severeness
of triangle inequality violation. These two measures were illustrated and were
proved to be able to capture the essence of non-metric pairwise data.
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E. Pȩkalska, P. Paclík, and R. P. W. Duin. A generalized kernel approach to
dissimilarity-based classification.Journal of Machine Learning Research,
2:175–211, 2001.

W. R. Pearson and D. J. Lipman. Improved tools for biologicalsequence anal-
ysis. Proc. Natl. Acad. Sci, 85:2444–2448, 1988.

J. Puzicha, T. Hofmann, , and J. Buhmann. A theory of proximity based clus-
tering: Structure detection by optimization.Pattern Recognition, 33(4):617–
634, 1999.



Bibliography � 117

L. M. Rocha. Talkmine: A soft computing approach to adaptiveknowledge
recommendation.Soft Computing Agents: New Trends for Designing Au-
tonomous Systems, pages 89–116, 2001.

L. M. Rocha and J. Bollen. Biologically motivated distributed designs for
adaptive knowledge management?Design Principles for the Immune System
and other Distributed Autonomous Systems, pages 305–334, 2001.

K. Rose, E. Gurewitz, , and G. C. Fox. A deterministic annealing approach to
clustering.Pattern Recognition Letters, 11(9):589–594, 1990.

V. Roth, T. Lange, M. Braun, and J. M. Buhmann. A resampling approach to
cluster validation.Statistics–COMPSTAT, pages 123–128, 2002.

V. Roth, J. Laub, J. M. Buhmann, and K.-R. Müller. Going metric: Denoising
pairwise data. In S. Becker, S. Thrun, and K. Obermayer, editors,Advances
in Neural Information Processing Systems, volume 15, pages 817–824. MIT
Press: Cambridge, MA, 2003a.

V. Roth, J. Laub, M. Kawanabe, and J. M. Buhmann. Optimal cluster preserv-
ing embedding of non-metric proximity data.IEEE Transaction on Pattern
Analysis and Machine Intelligence, 25(12):1540–1551, 2003b.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding.Science, 290(5500), 2000.

C. Schäfer and J. Laub. Anneald k-means clustering and decision trees. In
Weihs, editor,Classification, the ubiquitous challenge. Proc. 28th Annual
GfKl Conference, Heidelberg-Berlin, 2005. Springer-Verlag.

J. Shi and J. Malik. Normalized cuts and image segmentation.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

P. Soundararajan and S. Sarkar. Investigation of measures for grouping by
graph partitioning.Computer Vision and Pattern Recognition–CVPR2001,
pages 239–246, 2001.

Y. Takane, F. W. Young, , and de Leeuw J. Nonmetric individualdifferences
multidimensional scaling: an alternating least squares method with optimal
scaling features.Psychometrica, 42:7–67, 1977.

J. B. Tenenbaum, V. Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction.Science, 290:2319–2323, 2000.

M. S. C. Thomas and D. Mareschal. Connectionism and psychological notions
of similarity. Proceedings of the 19th Annual Conference of the Cognitive
Science Society, 1997.



118 � Bibliography

W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychome-
trika, 17:401–419, 1952.

W. S. Torgerson.Theory and Methods of Scaling. John Wiley and Sons, New
York, 1958.

K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences.
Proc. ISMB, 2002.

K. Tsuda, S. Uda, T. Kin, and K. Asai. Minimizing the cross validation error
to mix kernel matrices of heterogeneous biological data.Neural Processing
Letters, 19:63–72, 2004.

V.N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

G. Wahba. Support vector machines, reproducing hilbert spaces and the ran-
domized gacv. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors,Ad-
vances in Kernel Methods — Support Vector Learning, pages 69–88, Cam-
bridge, MA, 1999. MIT Press.

E. W. Weisstein. Basis. InFrom MathWorld–A Wolfram Web Resource., 2004.

G. Young and A. S. Householder. Discussion of a set of points in terms of their
mutual distances.Psychometrika, 3:19–22, 1938.


