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SUMMARY

There are two common data representations in intelligemataizalysis, namely
the vectorial representation and the pairwise representathe translation of
latter into the former is called embedding. This is a nowidtissue of ongoing

scientific interest. While the pairwise representationdsgs less restriction
on the data and is thus potentially able to capture richacsire, the vectorial
representation has the advantage to offer many powerfalafalytical tools,

in particular as a consequence of the existence of probtibitlata models in
such spaces.

Pairwise data satisfying restrictive conditions can béhfally translated
into a vectorial representation. Pairwise data, for whiulk ts not possible
are callechon-metricpairwise data.

This thesis is about non-metric pairwise data. Itis an itigative and explo-
rative study of non-metric pairwise data, based on thezakéind conceptual
as well as empirical considerations. The reader is first nfadiar with the
two data representations. Pairwise data are illustratddiest issues raised.
Common embedding strategies are developed. It is then stimvthese two
data representations coincide for a certain class of legraigorithms, even
when the pairwise data is non-metric and traditional tegh@$ only obtain
approximate vector representations. The new embeddinglajeed isexact
with respect to structure.

The major focus lies on apprehending the nature and consegs®f met-
ric violations. While the scientific community seems awarsuzh an issue, it
has never been clearly formulated to the best of the authmwledge. Metric
violations have commonly been considered an accidentaidolyet of noise
and have received corresponding mathematical treatmteiststhown by sim-
ple modeling of metric violations that this assumption i®mg. A particular
embedding method is used to visualize and interpret thermtion coded by
metric violations.

Finally the structure coded by metric violations is showrb&efficiently
extracted by a simple algorithm which evaluates structaselt on a stability
index.

KEYWORDS. Pairwise data, exploratory data analysis, machine lagrelus-
tering, embedding, visualization, metric violations, tidimensional scaling,
feature discovery, structure learning.






ZUSAMMENFASSUNG

Inintelligenter Datenanalyse gibt es zwei gangige Dajamréigentationen, nam-
lich die vektorielle Représentation und die paarweise Bsgmtation. Die

Ubersetzung der letzteren in die erstgenannte nennt méefimg, eine nicht

triviale Problematik von stetem, wissenschaftlichen fegse. Wahrend die
paarweise Reprasentation den Daten weniger Einschréekumgerlegt und

so potentiell fahig ist, reichere Struktur festzuhalterartet die vektorielle

Repréasentation mit vielen méchtigen datenanalytisché&xgeigen auf, da man
in solchen Raumen Uber probabilistische Modelle fiir dieeDaterflgt.

Paarweise Daten, die restriktive Bedingungen erfillennled getreu in eine
vektorielle Reprasentation abgebildet werden. Paarw@aden, fir die dies
nicht moglich ist, werdenicht metrischgenannt.

Diese Doktorarbeit betrifft nicht-metrische, paarweisgdh. Es ist eine in-
vestigative und explorative Studie nicht metrischer, p&éser Daten, gestiitzt
auftheoretische und konzeptuelle, sowie auf empirischiaBltungen. Zuerst
wird der Leser mit den beiden Datenreprasentationen vergemacht. Paar-
weise Daten werden illustriert und die ersten Problemati&egesprochen.
Gangige Einbettungsmethoden werden dargestellt. Darh géreigt, dass
diese beiden Datenreprésentationen fiir eine gewissedassLernalgorith-
men Ubereinstimmen, sogar wenn die paarweisen Daten nietitsoh sind,
und traditionelle Techniken nur zu approximativen Vekepnésentation fihren.
Die neuentwickelte Einbettung iskaktin Bezug auf Struktur.

Das Hauptgewichtliegtim Erfassen der Natur und der Folgemvetrischen
Verletzungen. Obwohl die wissenschaftliche GemeinsctiiaftProblematik
wahrzuhaben scheint, wurde diese nach des Autors besteseMiige klar
formuliert. Metrische Verletzungen wurden gemeinhin al§aftiges Neben-
produkt von Rauschen betrachtet und wurden mathematisokrisprechend
behandelt. Eine einfache Modellierung metrischer Veueten zeigt, dass
diese Annahme falsch ist. Eine spezielle Einbettung wimbisg um den In-
formationsgehalt metrischer Stérungen zu visualisierahinterpretieren.

Schliesslich wird gezeigt, dass ein einfacher Algorithpues die Struktur
Uber einen Stabilitatsindex auswertet, effizient die Stryklie von metrischen
Verletzungen kodiert wird, extrahieren kann.

SCHLUSSELWORTER Paarweise Daten, explorative Datenanalyse, maschi-

nelles Lernen, Clustering, Einbettung, Visualisierungfnische Verletzungen,
multidimensional scaling, Merkmalentdeckung, Lernen Struktur.
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1. INTRODUCTION

The subject of this thesis is data analysis. Tautologicatyusefully defined,
data analysis is the process @fploring analyzingand understandinga set
of objects typically measurements from natural sciences or engingeData
analysis encompasses everything from the meticulous amdi#m by item
examination of Tycho Brahe’s astronomical observatiorthédarge scale au-
tomated gene finding with intelligent algorithms. It is threfequisite to every
inductive step from @ampleto arule, from the particular to the general, and
thus it is at least as old as modern science starting witHegali

The faster and richer data acquisition due to the multipbceof scientific
interests and invention of more sophisticated experinhéathniques called
for new tools to process the data. While statistic gives éharattically rigor-
ous approach to those problems, they were of little use iotigga The tools
capable of treating thousands or even millions of objectewealy developed

with the boom of thecomputer To such an extend that today, data analysis is

largely understood as a particular field of computer science

Alas, computers happen to be quite dumb when left to theraselad even
though one was now able to quickly compute statistical digtses like the
mean or the variance, as quickly it became clear that datédwather reveal
their mystery and hidden message to an expert in the fieldchmith, even
modest, a priori knowledge than to a machine. The fact thatlispose of
large data sets in a short time and that they could be fed tegalcomputers
turned out to be often insufficient. The computers had to bdeniatelligent,
at best replacing the human expert, at worst helping him.ikérielieved at
the dawn of the computer, the former would turn out to be a lvay into the
future, even at the beginning of the new century and millermi

Machine learnings the field of artificial intelligence which studies how ma-
chines could be led to apprehend and interpret their enwieott. The idea is
to implement generic algorithms which can learn from, adepand model a
given environment given by a set of objects. It is the attetmpiplement an
inductive procedure in a machine. The computer now no loageras a mere
tool of an human expert who has all the knowledge but participantof the
process of analysis and understanding.

This participation is still very basic and one should notetpmiracles from
a machine. Let us be fair: a few hundreds or thousands linesad and a
couple of minutes or hours of autistic learning versus a fiobs of neurons
and more than twenty years of apprenticeship aided by myidfgheople, it

Data analysis

Computer science

Artificial intelligence

Machine learning



Intelligent data analysis.

A possible definition.

Similarity

Two data types

The problem

2 ¢ 1. Introduction

should come to no surprise that machine learning is in itg gancy.

In science we do expect every analysis to be intelligent. &utve have
seen, the expert knowledge may be finite or not able to haadie data sets.
Intelligent data analysis combines the best of both woltd$evelops and uses
machines that learn and interact with the experimenter.rélfeea constant
interplay of these two very unequal actors who both need e#tdr. Also,
even in the field of machine learning, we should not be afrdidpeaking
abouthumanlearning.

This is the spirit of this thesis. Its goal is to understare phenomenon of
non-metric pairwise proximity data, its origin, its sigodtion and its repercus-
sions. This subject will be treated from the perspectivenftth the machine
and the human.

The mother of data analysis similarity. Exploring data is looking for equal,
similar, dissimilar or differing patterns in order to clégsgroup, discrimi-
nate. The objects composing the data set come from numeedds ¢if empir-
ical sciences ranging from astronomy and high energy phygienomics and
proteonomics, cognitive psychology and social sciencesdb mining and
financial stock market analysis. Many of these data sets ediffierently ana-
lyzed according to a special focus. The abstract data ajleemselves do not
predetermine the way to go. Similarity does. The similagitigodes meaning
and only given a similarity between objects will the datalgsia start.

There are two main data types, callesttorial dataandpairwise proximity
data The former ardeaturebased and the latter arelation based. These
two data types fostered two different approaches in igtefit data analysis,
the geometric approach and the syntactic, or structurabagp.

The geometric approach for vectors enjoys the presencernéraus and
powerful tools, famous ones beiupport Vector machineand Fisher Dis-
criminant Analysisbut it makes a rather strong assumption on the data, namely
that it fits into the quite restrictive structure of a Hilbepgace. The structural
approach is less developed but is able to treat more gerstdac d

Itis an ongoing issue of how these two data types and assd@gproaches
translate into each other. The attempts to unify them hadreranarginal
existence. The choice of a distance measure allows to passvictorial data
to pairwise proximity data. However, this choice is notiimsic to the data and
largely determines the outcome of the analysis.

Conversely, it can be shown that when pairwise proximitydatisfy a cer-
tain number of requirements, then there is a set of vectatsasarappropriate
distance measure such that the mutual distance betweeadtovis the same
as the set or pairwise proximitieddowever, this is not the case in general
This thesis studies such pairwise data, calted-metric It shows that there
is a simple and elegant unification of the pairwise and théovied representa-



tion in the context of a certain class of algorithms exengadifoy thek-means
algorithm. It further develops several models on how sudiwise data occur
and what different interpretations they admit. It unray®isperties related to
non-metricity which have so far gone unnoticed.

The study addresses both the issues of machine learningiandderstand-
ing of a certain data type. It is organized as follows:

CHAPTER2. The second chapter introduces pairwise data. It givew &Xe
amples and shows different possible representations ofvisai data. It then
recalls a few necessary definitions to the understandingeofiifference be-
tween vectorial data and pairwise data. Further, the toadit translation of
pairwise data to vectors by way embeddings presented both in its exact and
its approximated version. A discussion at the end of the ienagtaborates on
the issues raised and introduces the main contributionkisiitesis.

CHAPTER 3. The third chapter presents a new embedding strategydcalle
Constant Shift Embeddinglt shows that non-metric pairwise data can still
be embeddebbss-freeinto a Euclidean space when considering a certain class
of learning algorithms. This is a step forward both theaadly and practically.

It shows, on one hand, that a unification of vectorial andvga# data can be
found not with respect to metricity but with respect to thecome of some
learning algorithm. On the other hand, it makes a large aagsirwise data
available to many powerful tools in a vector space.

CHAPTER 4. The fourth chapter delves into the significance of metige v
lations. Itis mainly conceptual in nature. We distinguigiivbeen accidental
and inherent non-metricity. Several models are presehggdekplain the oc-
currence of inherent non-metricity. We show furthermore ltoe information

hidden in the systematic metric violations can be recovaretlillustrate that
indeed it must be considered for a deeper understanding afata.

CHAPTERS. In the fifth and last chapter, we make a modest but detednine
step towards automated structure discovery in non-mesilevise data. The
idea is to let the machines profit from the insight we gainethi previous
chapters. A small yet efficient algorithm is presented tledécks structure by
computing a simple stability index. It is shown that it desethe structure
coded by metric violations.

A brief discussion concludes this thesis.

Organization of the thesis
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NOTATION. This table summarizes the symbols and their explanatipm-S
bols may have a different signification in a different comtaxt the meaning of
a symbol is recalled when judged necessary. In generalceatdre denoted
by capital letters and their elements as indiced lower cztsers.

Symbol | Explanation
A, B | Usually some generic matrices
A dissimilarity matrix
A similarity matrix
A (pseudo-)covariance matrix
The counting matrix
The amplitude matrix
The projection matrix,, — ee
The identity matrixj;; = 1if i = j, 0 else
The matrix containing vectots;
The row matrix consisting of eigenvectors
The diagonal matrix consisting of eigenvalues
x; | A vector indexed by.
This is usuallynotthe ™ coordinate of some vectot
v; | Thei™ eigenvector
e | Thevector(1,1,...1)!
d;; | The dissimilarity between obje¢tind;
si; | The similarity between objeétand;j
d, | Areal constant
\; | Thei™ eigenvalue
a; | Thei" coefficient of an expansion
n | Usually the number of samples in a data set
p | Usually the dimension of a some vectqr
1,4, k,1 | Index variables
|E| | Cardinality of the set
a, b, ¢, d | Counting variables in binary image matching
wi; | Some weight
d(-,-) | Ametric
[I-1 | Anorm
(-,+) | Aninner product
-t | The transposed of its argument
¢ | The centralized of its argument
) | A partition of its input data set
L | The subspace of projections in classical scaling or PCA
R | The set of real number
Cp | The equivalence class 6f's yielding a givenD

BN O NQ®nUT




2. PAIRWISE DATA

In this chapter we discuss a specific type of data which arise variety of
fields in machine learning : We discugairwise data After an introduction
on two fundamentally different data types we will give selaxamples of
such data and illustrate representation of pairwise datathéh move on to a
mathematical formulation and give a definition for the raelewspaces. We have
a first glimpse on metric violations, the main topic of thiedfs, as well as the
issue of embedding pairwise data into a Euclidean space n@onembedding
strategies are presented.

§.2.1.
INTRODUCTION.

We will distinguish two data types in this work, nameigctorialandpairwise
data. Adata pointrefers to either of these two concepts.

Vectorial data, or simply vectors, are data representedviector space. A
vector space is very general in nature and there is no iitniregion of distance
in a vector space. At this point, however, our interest lisgwhere. As a
consequence of the axiom of choieggryvector space has a basis (Weisstein,
2004), that is, any vectar can be expressed as a linear combination of some
minimal set of vectorsy, es, . .. which span the whole space.

xTr = E Q;€;.
4

A (data) point in a vector space can thus be represented aBeatiom of
coefficientsw;, usually real numbers.

x = (a1,a,...).

(In Section 2.3 the definition of a vector space will be giyen.

The basis vectors represent and summarize the whole veetoe sin terms
of data analysis, they represdeatures measured quantities which determine
a data point.

Two main data types

Vectorial representation

Features



Pairwise representation

Proximity data

Vectorial vs. syntactic
approach

6 ¢ 2. Pairwise Data

The intuition on vector spaces is mainly fostered by phyaits the notion
of measurement. Every object is uniquely defined by sometdatve “vari-
able”, the coordinates. In classical mechanics, e.g. theghpace is defined as
the space spanned hyndp, whereq measures the location of a particle and
its linear momentum. The vector spagep) entirely determines the physical
state of a system. In data analysis we gahdp features, that is, characteris-
tics we are interested in and which describe our system dteetd be analyzed.

Data points from a pairwise data set hawefeatures. They do not exists
irrespectively of the other points like in a vector space mlevery point exists
as an entity independent of all others. An object in thissenily defined by its
relationships to all other objects. For pairwise data, tidblogue of features
is relationship We do not have access to a set of variables determining & poin
(such a set might not exist) but only to thairwiserelationships among the
points, hence their name.

These pairwise relationships are most often given as reabeus represent-
ing the degree either of similarity or dissimilarity of thespective pairs of
points. Pairwise data is then called pairwmseximity data.

sij € Rforalli=1,2,... andj =1,2,...

From now on, we will omit “proximity”, assuming that our paiise data is
given as similarities or dissimilarities. Note that thetitistion between vec-
torial data and pairwise data exists independently of th@naf similarity.
However, the notion of similarity (or dissimilarity) is tHeasis of data analy-
sis. Without the notion of similarity, there is no data asé&yand no machine
learning.

For vectorial data, one needs first to define a similarity. [@/tfiis is quite
natural as we shall see in Section 2.3, it still is subject tthaice which
strongly influences the outcome of the subsequent datasisaly pairwise
data, the similarities are given beforehand, taeythe data. These similarity
usually are of more general nature than the ones obtained laypmsteriori
choice of e.g. an inner product in a vector spaPairwise data can capture
structure which can inherently not be captured by vectatath.

These two main data types call for different analytical apghes. Follow-
ing Goldfarb (1985) we will distinguish between “geométrapproaches to
handle vectorial data and “syntactic” (or “structural”yapaches designed for
pairwise data. It is important to stress that these appemdtifer in nature
and do not naturally carry over one into the other. As we hagstianed in the
introduction, the bulk of analytical tools are only avallalor vectorial data.
This raises the issue of transforming pairwise data intdored data, a proce-
dure known agmbedding This problem is all but trivial. Embedding will be
the topic of Section 2.4 and Section 2.5.



2.2. Examples of pairwise datas 7

§.2.2.
EXAMPLES OF PAIRWISE DATA.

In this section we will give some of examples of pairwise ddtaparticular
we will speak about their different possible representegio
Whereas vectors in a vector space are the result of measoi®mith re- Occurrence of pairwise
spect to certain chosen characteristics, the pairwiseadisas direct compar- data
ison between different data points. These comparisons nadgtally express
a similarity of a dissimilarity of the respective two object
There are many possibilities for pairwise data to occur. i fields are:

— Bioinformatics. Pairwise data occur e.g. in genomicsligaiaent scores
between two DNA or protein sequences obtained by an alighaigo-
rithm, see for instance Altschul et al. (1997) or Pearson lapthan
(1988). These pairwise data are the starting point for lagée struc-
ture of function prediction of proteins.

— Text or web mining. Pairwise data occur as similaritiesMeen dif-
ferent texts. The similarity measure can be of simple nattwanting
e.g. co-occurrence of certain words, or more complex, maastopical
closeness. Subsequent data analysis permits to classifgdeuments
based on these pairwise comparisons. See e.g. Hofmann(2088),
Jacobs et al. (2000).

— Cognitive psychology and social sciences. Pairwise datar@as human
similarity judgments (Gati and Tversky, 1982, Goldstonalgt1991).
Human test subjects rate the similarity of a pair of objectaqrede-
fined scale. Psychologist gain insight into mental procebyeanalysis
these pairwise data. It can also occur as result of pairwisgparisons
in social sciences, called preference data, or as outputrogssocial
comparison of e.g. countries.

Table 2.2 gives a simple instance of pairwise data obtainah hhuman
similarity judgments of the auditory morse code (Everittl &abe-Hesketh,
1997). The entries correspond to the percentage of a largbeuof observers
who responded “same” to the row signal followed by the colwsigmal. We
note that this proximity matrix issymmetric Furthermore we note that there
is no one unique upper similarity indicating that two sigreale identical (given
by the diagonal of the matrix). For dissimilarities it is nal to request that
the diagonal be zeros, i.e. that the dissimilarity of an cidje itself be zero.
It is not uncommon for pairwise data to be asymmetric, i.etfie object Asymmetry
to have different similarity according to the order in whitley are presented.



Representation as a
graph...

8 ¢ 2. Pairwise Data

1 2 3 4 5 6 7 8 9 10
1(—) |84 63 13 8 10 8 19 32 57 55
)| 62 89 54 20 5 14 20 21 16 11
3(.-) |18 64 86 31 23 41 16 17 8 10
.-)| 5 26 44 89 42 44 32 10 3 3
5(..)|14 10 30 69 90 42 24 10 6 5

6(-..) |15 14 26 24 17 8 69 14 5 14
7(-.) |22 29 18 15 12 61 8 70 20 13
8(--.) |42 29 16 16 9 30 60 89 61 26
9(---) |57 39 9 12 4 11 42 56 91 78

10(----) |50 26 9 11 5 22 17 52 81 94

Table 2.1. Test subjects are asked to judge the pairwiséasitpiof auditory
morse code (long and short tones). The entries correspotigttpercentage of
a large number of observers who responded “same” to the rgwaifollowed
by the column signal.

In cognitive psychology, asymmetry comes as a consequéditice mere com-
plexity of the though process. Other examples of asymmedta involve e.g.
the well known salesman problem, where the journey time ftown A to
town B may very well vary from the journey time from towB to town A,
particularly in hilly regions. A further example is the slarity between peo-
ple: a child is often seen similar to one or both of its parentereas a parent
is rarely considered similar to his child (Borg and Groeri€97).

There are several standard ways to represent pairwise ldettais consider a
toy data set given bg5 x 25 dissimilarities of five pointsA throughE. Fig-
ure 2.1 gives the pairwise data represented by a weight@thgra weighted

Figure 2.1. Representation of pairwise
dissimilarities as a graph. The data D
points are given by the verticed to

E, the pairwise relation between them

by the weighted edges. Symmetric
similarities correspond to undirected

graphs. Note that the vertices must not

be confounded with points in a vector

space!

92

54

graph is a paifV, &) of verticesV and weighted edges In our example, the
vertices are given by the poingsto £ and the weighted edges by the dissim-
ilarities. If there are no missing values, i.e. all dissariiies are known, the
graph is fully connected.
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The representation of pairwise data as a graph mainly seniésstrate the-
oretic issues and concept. For real data sets it quicklyrhesaccumbersome
and untracktable. It must be stressed here that the vedeet correspond
to points in a two dimensional space: only in rare cases mawisa data be
represented in two dimensions.

A more common way to represent pairwise data—and the mastal@ne—is
to simply list the values of the similarity or dissimilariiy a table. Table 2.2
gives the same toy data set as seen from this representafidable naturally

A B C D E Table 2.2. Representation of pair-
Al 0 10 7 95 14 wise dissimilarities as a table or
B|10 0 55 99 54 as a matrix. This is a natural rep-
C| 7 55 0 44 72 resentation in the sense that simi-
D|95 99 44 0 9.2 larities or dissimilarities are given
El 14 54 72 92 0 as numbers. However, for large

data sets it becomes awkward to
print and quite illegible.

carries over to a matrix, thus making the dissimilaritiesikable to the myriad

of algebraic matrix operationgll subsequent treatments of pairwise data use
the matrix notationsWhile the table or matrix notation is the only mathemat-
ical usable one, it quickly becomes awkward to display lagfs of pairwise
data. To this effect, one replaces the matrix of values by @ixnaf e.g. gray
values representing these values: see Figure 2.2. Ong egaitezes thou-

Figure 2.2. Representation of pairwise dis-
similarities as a checkerboard pattern. The
values of the matrix are represented as colors
or gray values. This representation is of great
advantage for large data sets, consisting of
hundreds or thousands of elements. Note that
the values are taken from Figure 2.1: the gray
squares are symmetric around the diagonal.
Dark values represent small dissimilarities,
light values large dissimilarities.

A B C D FE

O QW >

sands of data points into such a representation. While wenotisingle out
individual similarity values, we have a good overview of tilebal structure.
Figure 3.8 on page 55 shows three dissimilarity matricep&inwise aligned
protein sequences. We see different structures which wédwayabably miss
when looking at the numbers.

A further advantage is that the structure is not swamped &l sehen com-
paring different pairwise data sets. The gray values orflgaestructure. See

... atable...

... or a checkerboard
pattern
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e.g. Figure A.3 on page 110 for three different matrices tizate a similar
structure while their individual values are on totally difént scales.

ISSUES

RELATIONSHIP BETWEEN SIMILARITY AND DISSIMILARITY. Up to now,
we invariably spoke of similarities or dissimilarities. dncertain way we will
continue to do so. There is no natural relationship betwieemt even though it
will often prove necessary to move between them, namelyfpassa similar-
ity measure to a dissimilarity measure. This point will bsadissed in further
detail in Section 2.4.

ASYMMETRY. We saw that pairwise data may be asymmetric. Asymmetry
calls for non standard procedures. We will not discuss asgtrienpairwise
data. Part of our results will be valid for asymmetric pagevdata, other will
not. Mention of the particular requirements will be madeire @ourse.

MISSING VALUES. Sometimes not all pairwise relationships are known. The
data set is said to have missing values. We do not discuss tases which
require special treatment.

§.2.3.
MATHEMATICAL STATEMENT.

In this section we will formalize pairwise data. We first wiititroduce the
definition of the spaces necessary for a mathematical texdtridve will recall
the definition of a distance function and the implicationgairwise proximity
data. Violations of the requirements on distance functamesdiscussed in a
first approach. The problem of embedding is reviewed.

DEFINITIONS.

We start by recalling the definitions of four important spgasamely a vec-
tor space, a metric space, a Hilbert space and a Euclideae.spéinimum
algebraic and analytic knowledge is taken as a prerequisite
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DEFINITION 2.3.1. LetK be a field. Avector spaceover K is an abelian Vector space
group(E, +) and an applicatio(\, ) — Az of K x E to F such that

Forall\, u € K andforallx € E, A(px) = (\u)z,
Forallh € K andforallz,y € E, \(z + y) = Az + Ay,
Forall\, € K andforallz € E, (A + p)z = Az + px,
Forallx € F,1xx = x.

Common vector spaces in data are the settfplesK? over a certain field
K. With K = C or K = R we recover the well known complex or real vector
space. For the remainder of this work, we invariably willddk = R and omit
the mention to more general fields.

If a set{e;, ez, ...} is minimal (i.e. no two vectors are a linear combination
of each other) and spans the vector space it is callegls&s The number of
basis vectors is called tiigmension It may be finite of infinite.

A vector space is a very general space and as abstract as siheswilt
has no notion of similarity and is, as such, of little impoea for us. We
need the concept afieasuremerdo that objects can be described as similar or
dissimilar.

DEFINITION 2.3.2. The paifE, d) is called ametric spacéf E is a non-empty Metric space
set and the functiod : £ x ' — R satisfies the following conditions:

d(z,y) > 0forallz,y € E,

d(z,y) =0ifand only ifx = y,

d(z,y) = d(y,z) forall x,y € E,

d(z,y) <d(z,z) +d(z,y) foral x,y,z € E.

A metric spacé E, d) is said to becompletdf every Cauchy sequence con-
verges inE. Note thatE' neednot be a vector space. Any set of object is a
metric space when endowed with a function that satisfies tbpep require-
ments, given above. We will come back to these requiremertgtzerefore
postpone a closer look at them.

A vector space and a metric space are two independent natigmsat gen-
erality and not restrictive enough for many situations tageful. We therefore
define the following:

DEFINITION 2.3.3. FE is called a reaHilbert spaceif FE is vector space and Hilbert space
if it has an complete inner product, that is, a functien) : £ x £ — R,
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(x,9) — {(x,y), such that

,x) > 0 forall z,
,z) = 0ifand only ifz = 0,

z,y) = (y, ) for all z andy,

T, A1y1 + A2y2) = A1 (x, y1) + Ae(z, yo) forall z ya1, ya, A1, Ae.

An inner product induces a natural norm Vjia|| = +/{(x, ), which in its
turn induces a natural distance vér,y) = ||z — y||. We thus have a vector
space in which we have a measure for the similarity of poifitse large ma-
jority of data analytical tools is formulated for pointsihg in a Hilbert space
This is in particular due to the fact that in such a space we hawobabilistic
formulation of the data, i.e. we can assume that it be draam Bome random
source with a certain distribution; ~ P(z). Sometimes, by abuse of lan-
guage, we say vector space instead of Hilbert space, asgtingipreexistence
of some inner product.

Hilbert spaces are ubiquitous. In physics they play a majley, not only in
quantum mechanics for the space of wave functions but alsueicial relativity
and in classical mechanics, in which a particularly simplbéit space is used,
namely the Euclidean space:

DEFINITION 2.3.4. E is called a (real) Euclidean spacefif= R? and if the
inner product and the norm are given by:

P
(x,y) = Zl’z% and||z|| = /(z, z). (2.2)
i=1

The norm||z|| = (3-F_, #2)'/2 is called theEuclidean normand is usually
denoted by - ||2. The Euclidean space is the mathematical replica of our intu
itions notion of space. Its the mother of all spaces. In thigeensions it is the
physical world we perceive. In machine learning low dimensi Euclidean
spaces are used e.g. for visualization purposes.

In data analysis and machine learning, points lying in a étillspacer are
called vectorial data, typically denoted

{xl,xg,...}, (22)

wherex; € E. If the set of points is finitep shall denote is cardinality.
We henceforth suppose that there be no repetition, i.e.ttieaé be no two
identical points with different subscripts. If the dimemsiof £ is finite, it
shall be denoted by. If n < oo andp < oo the set of vectors; is often
written as a matrix¥ € R?*"™ where the™ column represent;.
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Albeit its popularity and immediateness, Euclidean spacesiot the only
ones used in data analysis. Often the spEce: R? is endowed with other
norms than the Euclidean norm. A family of norms is given g/ ¢Minkowski

norm: v
llle = (3 Nl
7

Forl = 2 we recover the Euclidean norm. Ho& 1 we obtain the Manhattan
norm. The choice of the norm relates to the problem of modetten. The
Euclidean norm is only natural in appearance.

Hilbert spaces are very restrictive structures and are thesquisite for
many results in machine learning to hold. In general, theycatledfeature
space As we have noted, most machine learning algorithms have fore
mulated for feature space representation. In discrimiaaatysis, for exam-
ple, scalar functions are found that separate labeled pamtvell as possible
(Fisher, 1936, Fukunaga, 1990). Support vector machinesmee the mar-
gin between points of different classes (Vapnik, 1998, Véah®99, Miiller
et al., 2001). k-means clustering finds prototype vectorskofiroups in the
feature space (Duda et al., 2001), and Principal ComponealyAis finds di-
rection of high variance (Jolliffe, 1986).

For data which is naturally represented as vectors thedeauigtire power-
ful analytical tools. However, there are many situationsere there exists no
obvious vectorial representation. This brings us to paievdata.

1
7

(2.3)

PAIRWISE DATA.

Our starting point will be the (dis-)similarity matrix olited from some data.
Let us first fix the notation.

Similarity: S € R™*",
Dissimilarity: D € R™*".

n is the number of objects,; is an increasing function of similarity, whereas
d;; is an decreasing function of similarity.

Note that any similarity matrix can be converted to a diskirity matrix and
conversely by some decreasing function. Therefore we magriably speak
about similarity or dissimilarity matrices.

In the most general case, no further assumptions are madg onD. It
is only by adopting the semantics of distance to dissintiégithat one could
be tempted to introduce the minimal requirements that> 0 for all ¢, j =
1,2,...nand thatd;; = 0O foralli = 1,2,... n. In the following we will
focus on dissimilarity matrices.

Let be recalled the following:

Other norms

Feature space

S and D
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DEFINITION 2.3.5. LetE = {x;, 22, ...} be a set of points—not necessarily
vectors—with no repetition (i.e. no two identical pointsthvdifferent sub-
scripts), and letl : E x E — R. The functiond is called ametricif:

d(z;,z;) >0 forall z;,z; € E (2.4)
d(z;,z;) =0 ifand only if z; = z; (2.5)
d(z;, x;) = d(zj,2;) forall z;,z; € E (2.6)
d(z;, ) + d(zg, x;) > d(x;, x;) forall o,z € E (2.7)

We recognize the requirements of a metric space. The condifi.4 to 2.7
are respectively callegositivity, reflectivity symmetrandtriangle inequality

DEFINITION 2.3.6. A dissimilarity matrixD = (d;;) is calledmetricif there
exists a metric functiod such thatl;; = d(-, -).

This is equivalent to the statement thatifis metric, then its elemenit;;
satisfy the four conditions (2.4) to (2.7).

A generic dissimilarity matrix usually satisfies (2.5),aft(2.4), sometimes
(2.6) and rarely (2.7).

DEFINITION 2.3.7. A distance matriD = (d;;) is calledEuclideanif and
only if there exist vectors:, x2,... z, € RP such thatd;; = ||z; — z;|
where|| - || denotes the Euclidean norm.

2

PAIRWISE VS. VECTORIAL DATA. As we have seen, the definition of a simi-
larity is a definition on top of an existing vectorial data.plairwise proximity
data, the dis-/similarity is the data itself. There are natdees, i.e. there is
no basis from which to span the space. Whereas in vectottal dach single
data point comes as a vectorpéntries, the size of a pairwise representation
is never less than?. In pairwise data, there is no clear notion of inter point
distance, since one pointis only defined with respect tothéis. Therefore, if
one looks at the data as being generated by some physicalgsiatis unclear
how to formalize a generative model for pairwise data. Itrislear how the
semantics of e.g. source and noise carry over to a pairwisege

The lack of probabilistic model for pairwise data is the mrasvhy most
machine learning algorithms formulated for Hilbert spafadiso carry over to
pairwise data.

On the other hand, constraining data to fit the restrictivecstire of a Hilbert
space seems to limit possible understanding. An inner mtathd the derived
norm and distance can only account for a limited class oflanity measure-
ments. Pairwise data need not satisfy the metric condiiodsare thus poten-
tially able to capture much richer structure.
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METRIC VIOLATIONS.

There are no formalized assumptions on the similarity assiilarity matri-
ces except that they “somehow” represent similarity oridigarity and that
they be square matrices.

The freedom on similarities seems even larger than the draexh dissimi-
larities, since the latter are semantically bound to thendtefih of a metric and
one wishes them to conform at least to the requirement ofipitgi Negative
dissimilarities hurt the intuition like negative distascavhile for similarities
the same does not hold.

Very general dissimilarities usually satisfy none of thguieements imposed
upon a function to be metric. Let us have a brief glimpse onréspective
violations:

PosiTiviTY. Positivity can be accidentally violated, usually whenaing

a dissimilarity matrix from a similarity matrix via some deasing function.
Typical choices likeD = 1 — S or D = —log(.S) only yield positiveD’s with
prior assumptions of which are not always natural. Note that in many cases
positivity can be enforced by some trick without changing pinoblem.

REFLECTIVITY. Reflectivity can be violated in two ways, the usual one being
that a zero dissimilarity does not imply identity of the pisinThat is: we often
find zero elements on the off-diagonal of the dissimilarigtrix. Conversely
the case of non-zero elements on the diagonal does occlin, agaally as
an improper transformation froisi to D. But this violation might also be an
intrinsic feature of the data from cognitive psychologymsbody might find
himself less attractive than someone else, so the “distaad¢emself is larger
than the “distance” to the other person. The violation ofeaiVity in the
former case does not pose a particular problem in terms of alzlysis. In
the latter, the data may be considered so exotic that it fraligery individual
treatment anyway. Functions which do not satisfy refletiaie also called
partial metrics

SYMMETRY. Symmetry is violated rarely, yet in a natural way as is clear
from Section 2.2. Asymmetric dissimilarities usually ppseblems in as much
they may yield complex eigenvalues in subsequent calomstiThey are sym-

metrized vial (D + D*). For a specific treatment of asymmetric data, see e.g.

Everitt and Rabe-Hesketh (1997).

TRIANGLE INEQUALITY. Triangle inequality is often violated. Thisis the in-
teresting violation. While violations of positivity andflectivity seems above

... and its drawback
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all accidental and violation of symmetry are quite scarbe,violation of tri-
angle inequality calls for particular devotion. Let us haveloser look of the
violation of (2.7). Several cases should be distinguished.

— The triangle inequality may not be satisfied as a result libfa esti-
mates or a noisy data set. The comparison algorithm may yieisly
scores. Many of these algorithms rely upon some initialimadr some
elastic matching which may lead to violations of triangledquality or
even of symmetry (see Figure 2.3 to Figure 2.5 fechematidllustra-
tion).

— The violation may be an intrinsic feature of the distancasnee. The
Minkowsky distance given byz; — z;||; for some Minkowsky norm
Il - |l; given by Equation 2.3 is non-metric for< [ < 1. Other non-met-
ric distance measures are noise robust pseudo-metricé(likex;) =
median (|z;1 — z;1], |zi2 — xj 2], ... |zin — z;.|) Where mediapis
the k-th value of the ordered difference vector. Other examplesive
e.g. the Kullback-Leibler measure of cross-entropy. Isigrametric and
violates the triangle inequality (Kapur and Kesavan, 1998)Jacobs
et al. (2000) the problem specific advantages of such norigaéttance
measures are discussed.

— Many data sets are inherently non-metric. This partitylapplies on
data sets based upon some human judgment, for which manipnela
ships are not transitive, e.gX"likesY, Y likes Z = X likes Z”.

DEFINITION 2.3.8. Pairwise data will be calletbn-metricf the dissimilarity
matrix representing the pairwise data violates one or s¢oéithe conditions
(2.4) to (2.7). We will speak aboutetric violations

REMARK. We do not refer to non-metric data as a more general datdikgpe
data qualitative or ordinal in nature. Non-metric datadssfior data whose mu-
tual distances do not satisfy the requirements of a metrictfan. Also note
that the adjective “metric” in “metric violations” does nafer to the nature of
the violation but to the property violated.

We have already mentioned the problem of embedding whigs o find
points in a feature space such that their mutual distandees ¢y the dissimi-
larity matrix. If this were always possible there would beneed for structural
approaches, i.e. data analytical methods developed frwisaidata. A Hilbert
space is, a fortiori, a metric space, thus making it intdally impossible to
represent non-metric data in such a space.

Non-metricity in itself is no impediment for algorithms ofth analysis
which directly relay on pairwise input. The need for suchoailihms arose
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exactly because of the impossibility to embed pairwise.d&te popular al-
gorithms for pairwise data aré-:means and nearest neighbors.
However, from a data analytical perspective, pairwise dtllasuffers from

a lack of analytical tools. This is mainly due to the lack odipabilistic model

for pairwise data. The data only exists “as such”. Furtheanstructural
approaches are often expensive in computations since fihreniation is con-
tained inn x n relationships. So we again raise the question of embedding
pairwise data in a feature space. In particular, we will berigsted in the
embedding of non-metric pairwise data into a Euclidean spac

ISSUE OF EMBEDDING

Embedding tries to find a set afpoints in some space, usually a feature space,
such that their pairwise distancég:;, x;), ¢, 7 = 1,2, ... n, given by a metric
functiond(-, ), is “as close as possible” to the given dissimilarity matfix
with respect to some cost function, the mutual distancaesideally identical

to the original pairwise distances.

Embedding is a very general concept. It applies to findingoréd rep-
resentatives of pairwise data, possibly non-metric, as asto finding low
dimensional representations of high dimensional datagimecal to fit a data
set in a given space.

While it is possible to embed data in some general metricespate usually
is interested ifEuclidean embeddingse. embeddings into a Euclidean space.
We look for vectors in a Euclidean space to represent thealiagast to human
intuition and interpretability. This is particularly thase for low dimensional
embeddings, typically of two or three dimensions, whicbwlto visualize the
data in a familiar space. Figure 2.6 shows a schematic repteson of the

Embedding

v

X

Figure 2.6. Schematic representation of the embeddingl@nob On the left
hand side we have pairwise dissimilarity data represented aheckerboard
pattern. On the right hand side we have vectorial data: pointa proper
Hilbert space such that their mutual (pairwise) distancassclose as possible
to the original pairwise dissimilarities, as measured bynsocost function.

Concept
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embedding of pairwise data into a two dimensional Euclidgzate.

The crucial point of the embedding is the conservation ofiiksimilarities.
Pairwise representation naturally come about when theafastructural rep-
resentations outweight the featural presentation. Emhgdi such restrictive
structures as Hilbert spaces will not come without a priceis price is what
the present thesis is about.

A Hilbert space has an inner product and thus a natural métigctherefore
intrinsically impossible to find points such that their maitdistance will be
identical to the dissimilarities we started from. The entbied will incur a
loss in terms of metric. We will call this losgeometric loss This will be
treated in Section 2.5.

An Euclidean embedding is an even harder problem since veelthe free-
dom on the metric. Even metric pairwise data may not have afleg rep-
resentation in a Euclidean space. Only if the pairwise xligarities are Eu-
clidean this is possible, as will be seen in the followingtieec

§.2.4.
EMBEDDING INTO A EUCLIDEAN SPACE.

In this section we will discuss the special case of embedEingjidean dis-
similarities into a Euclidean space. We have seen that smorefor Euclidean
embeddings are not only their usefulness for existing diadédytical tools but
also their tangibility for the human experimenter. The ogaf®r choosing Eu-
clidean dissimilarities is that there is a powerful way téogce Euclideanness
for (quite) general dissimilarity matrices.

LetD = (d;;) be a Euclidean dissimilarity matrix. From Definition 2.3.@ w
recall that there exist vectots, xo, . .. z, € R? such thaid;; = ||x; — xj]|2.
The goal of this section is to find them.

We first need to introduce a few definitions and establish aréswlts.

DEFINITION 2.4.1. LetA = (a;;) be any matrix and lef) = I — Lee! be the
projection matrix on the orthogonal complementef (1,1,... 1)%.
Thecentralizedmatrix A€ is the matrix

A° = QAQ.

A centralized matrix has row and column sum equal to zeroklrapat the

1This is not a neologism. In very rare cases one also encaitieterm “Euclideanity”.
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components ofA¢

1 1 ¢ 1§
aij = ajj — E Zaik — E Zakj + m Z Qkl, (2.8)
=1 =1 k=1

one easily verifies thgtC;_ | af; = 0and_7_, a7 = 0.

To understand the semantic of the centralizing operationsider the fol-
lowing setting. Let{z, o, ... 2, } be some set of vectors of some vector
space in a given basis and gathered in the row maftixe. the:™ row of X
containse;. Let C'x be the corresponding covariance matrix:

1
OX:EXX# (2.9)

If 2 = 13" x; denotes the arithmetic mean ¢f1,z2,... z,,} then
{1 — Z,z2 — T ... x, — T} corresponds to the set of points shifted about
the origin.

THEOREM2.4.1. Let{z1, 2, ... 2, } be a set of points gathered in a matrix
X and letX denote the matrix of points — z, wherez denotes the arithmetic
mean.C denotes the covariance matrix as defined in Equation 2.9Ghib
the centralized covariance matrix. Then we ha¥g = Cx, in other words,

the diagram

centralizing &
X —— X

covl lcov
centralizing
Cx = oy

commutes.

Proof. Lete = (1,1,... 1)* as before. By simple algebra, one verifies that
z=1X'eandX = X —ez'. Then:

1 1 1
Cx=(- Eeet)ﬁXXt(I— Eeet)t
1 1 1 1
= _XXxt— —2XXteet — —26€tXXt + —BeetXXteet
n n n n
1 1 1

1
= XX — = XTet — ZeBt X + —ez'Tet
n n n n
1
= —(X — eg’ct) (X — eit)t
n
=Cx.
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Figure 2.7. Centralizing a covariance matrix: on the leftibside, we have
some vectorial data in a two dimensional Euclidean spacee ddvariance
matrix depends on the position of the points with respechéoarigin of the
space. Centralizing the data or the covariance matrix csp@nds to mov-
ing the origin to the center of gravity of the data, i.e. thampajiven by its
arithmetic mean.

Centralizing a covariance matrix thus corresponds to cengéecorrespond-
ing points around the origin, which in view of embedding, slaet change the
problem (see Figure 2.7).

LEMMA 2.4.1. A¢is unique.

Proof. Let A¢ and A< be two centralized matrices df. Simple algebra yields
ag; —ag; =0foralli, j=1,2,...n. O
DEFINITION 2.4.2. A dissimilarity matrixD = (d;;) is calledsquared Eu-
clideanif and only if there exist vectors, x2, ... z, € RP such thatd;; =
|z; — x]|3, where|| - ||2 denotes Euclidean norm.

REMARK. It will turn out to be more useful to speak about squared ifleah
dissimilarities. Therefore, unless stated otherwise,saiutilarity matrix D
will be taken squared.

Let D = (d;;) be squared Euclidean and fixef! can be decomposed as
follows:

dij = ¢y + Cjj — ZCij. (210)

C = (c¢;;) is not fixed by the choice oD, since we always may change its
diagonal elements, yet recover the same Let Cp denote the equivalence
class of allC yielding the saméD by Equation 2.10. In particular we note, by
simple algebra, that“ € Cp.

We have the following two important results:

LEMMA 2.4.2. Let C and D be two matrices related to each other 8y =
Ci; + Cjj — ZCij. Then

e = —%DC. (2.11)
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Proof. Substituting Equation 2.10 into Definition 2.8 of the celired C*
yields

1 n 1 n 1 n
¢y =Cij — — Cikk — — Ck'+— Chi
i J n n J n2
k=1 = =1

1 1 &
= —5((% — i) o > (da — Ckk)
k=1
RS 1 «
— Z dij = Ckk — ¢j5) + — Z (diki — crk —Clz))
Lyt =
1 n
= 5 (i - de——zdm 5> du)
k=1
1 C
= _2dlj

O

The next result is of paramount importance, since it esthb§ a strong link
between the squared Euclideanness of a dissimilarity amdpgbctrum of the
associated centralized covariance mafrix

THEOREM 2.4.2. D is squared Euclidean if and only @ is positive semi-
definite.
Proof. Torgerson (1958) referring to Young and Householder (1988}he

following simple algebra:£) BecauseD is squared Euclidean, we can take
vectorsry, xs, ... ¥, € RP (p < n—1)which satisfyd;; = ||z; —;|*>. Then,

n

C 1 - 1 Y 1
dijZdij—EkZ:ldik—ﬁ;dkj_i_— Z dyi

n

= il + a2 = 2i; — (Jlal® + Z loall? = 23 (i)
k 1

n

- (% Z HleQ + HQCJHQ 0 Z(xlxj))
=1

k=1
+ (;ZH@H + ;Z lanl? = = D2 D ()
= = k=11=1
= —2(z;x; — ;% — Tx; + TT)

= —2(zi — )(z; — 7),

Main theorem
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wherez = 13" | x;. Thatis,
D¢=-2XX"'" and C°=XX" (2.12)

whereX = (v; — #,22 — Z,... ¥, — z)'. From this equation, it is obvious
thatC¢ is positive semi-definite.
(<) When(Cc is positive semi-definite, there existsiax p (p < n — 1)
matrix X which satisfies
Cc= XXt (2.13)

Let X = (z1,m2,... )%, thatis,z;’s are the row vectors ok . Then, from
the relationships betwedn andC*,

dij = c5 + C§j — 2(3%
=TT + x5 — 2xixj
2
= |z — ;|-
This shows the matriX is squared Euclidean. O

This theorems gives us a necessary and sufficient conditidneospectrum
of C¢ for D to be loss-free embeddable in a Euclidean space.

REMARK. The condition ‘D metric” is not strong enough. One can construct
examples of metrid’s such that the associatéd is indefinite.

If C¢is positive semi-definite it is a Mercer kernel (i.e. a dotduret, for
example by the existence &f such thatCc = %XXt).

CONSEQUENCES (° = —%DC relates the distance matrix to the centralized
covariance matrix. The spectrum 6F tells us whetheD is a squared Eu-
clidean or not. Thus we really are only interested’f) a covariance matrix in
case it is positive semi-definite pseudo-covariancmatrix else. In the latter
case( is also calledyeneralized covariance

REMARK. A dissimilarity matrix may be called a metric if it satisfitlse
necessary conditions. On the other hand any distance caabigyrinterpreted
as a dissimilarity.

A similarity matrix.S may be interpreted as covariance if it is positive semi-
definite, or as a pseudo-covariance else. However, corygitss not always
straight forward to interpret a covariance matrix as a sintyy matrix since
the covariance takes into account the length of vectorsghwisi hard to jus-
tify passing to similarities—implying that to same points anore similar the
further away they are from the origin! depends on the origin!

There is nca priori relationship betwee andD. Since embedding yields
a representation in terms of distances, the quantity whishlation will be



2.4. Embedding into a Euclidean space 23

judged by, a direct embedding 6fdoes not seem appropriate, the semantics
of S being scalar products and not distances.

When starting fromS we first must choose an associated distance matrix
D. There are several standard ways to achieve this. One aftauaters the
choicesD =1 -8, dij = —lOg(Sij), dij = 4/ —lOg(Sij), dij = i —1lor
dij = si + sj; — 2s;5. This last choice will be assumed implicitly—unless
stated otherwise—for the remainder of this work, when we fglas starting
point. This choice corresponds to interpreting the sirtilamatrix S as a
covariance.

METRIC SPACE VS EUCLIDEAN SPACE It must be stressed here, th@t
non positive semi-definitdoes notmean that the correspondifigis not met-
ric. It means thaD is not squared Euclidean and hence may not be embedded
loss-free with respect to the Euclidean metric into a EgaitspaceD may be
metric and therefore there may be an embedding into a metimes However,
a metric space is still a very abstract structure and may elptih understand-
ing the data.

If D is non-metric, them fortiori it is not Euclidean and by the above the-
orem(C* is not positive semi-definitdt is important to keep in mind that the
converse is not true.

EXAMPLE. Because the metric property in Definition 2.3.7 assumefidaan
metric, it is stronger than the condition that all trianglequalities hold, i.e.

\/dij-l-\/djk >/dy, foralli#£j#Ek (2.14)
Let us consider the following distance matrix

0 3 41
5 2
0 3
3 0

VD = (2.15)

—_ s W
NN Ot O

It is easy to check Condition 2.7. The squared distance rad its central-
ized version become

0 9 16 1

9 0 25 4
D=116 25 0 of

1 4 9 0

-5 1 5 -1
e 1 -1
DP=1s 11 17 1

Non-euclidean %
non-metric

Non-metric =
non-Euclidean
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Because the eigenvaluesbf are{—26.05, —7.44, 0, 1.49}, D¢ is not neg-
ative semi-definite. This means® = %DC is not positive semi-definite, or
equivalentlyD is not metric in the sense of Definition 2.3.7. The intuitive e
planation of the example is as follows. The samplex and3 form a triangle
(with edges lengtl8, 4, and5). From the relationships of the distances, we
have

Vdig+/dy =14+2=3=+/dy2

< Point4 should be on the edges connecting the pairaad2,

\/d14—|— d43=1+3=4=\/d13

< Point4 should be on the edges connecting the pairaad3,

Vdog +/dys =24+3=5=+/do3

< Point4 should be on the edges connecting the padlraad3.

However, of course, it is not possible to find a poifitih Euclidean space. In
other word, we can not place four points in Euclidean spadeaithey have
the distance/D.

RECOVERING VECTORS FROM SQUAREIEUCLIDEAN D’S.

We are now ready to solve the problem proposed at the begjrfithis sec-
tion, namely finding the vectors; such that their mutual distance is given by
the initial dissimilarity matrix supposed to be squared|Eigan.

SinceD is squared Euclideaq;c is positive semi-definite by Theorem 2.4.2
and we have the following algorithm to recover the data @o{@bx and Cox,
2001):

1. Calculate centralized kernel matiix = —%QDQ from the distance
matrix D.

2. Get the eigenvalue decomposition(ef,
C®=VAV?,

whereV = (v1, v, ... v,) is the row matrix composed of the eigenvec-
torsv; andA = diag(A1, Ag, ... A\,,) the diagonal matrix with eigenval-
uesi; > --- > A\, > 0. Notice that due to the centralization, which
introduces a linear dependency between all vectors, atdeasigenva-
lue equals zero.

3. Calculate thes — 1 x n map matrix

X =A2V?, (2.16)
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whereV is the column-matrix of the eigenvectors andhe diagonal
matrix of the corresponding eigenvectors.

The columns ofX contain the vectors;, i = 1,2,... n, in then — 1-dimen-
sional subspac&he mutual distances coincide with i.e.d;; = ||z; — z;||?.
In other words: there is a direct algebraic transformatietwieenD and the
set ofz;’s.

One may choose not to retain the full setwof 1 eigenvectors, but use only
a subset. of the leading eigendirections = {vy,va,... v} with ¢ < n. In
this case the vectors represent the least squares apptegiaia set of vectors
whose mutual squared distance is given/byThis algorithm then effectively
amounts to PCA (Jolliffe, 1986).

The assumption thdd be squared Euclidean assured positive semi-definite-
ness ofC* so thatAz is well-defined for all eigendirections, which yields
identical mutual distances to the pairwise dissimilasitiee started from. For
non-metric pairwise data, this assumption does not holdthedbove algo-
rithm will fail because of complex eigenvalues. The embeddif non-metric
pairwise data will be discussed in the next section.

§.2.5.
EMBEDDING OF NON-METRIC PAIRWISE DATA.

Non-metricity of pairwise data, by implying non squared kde&anness, read-
ily translates into the spectrum 6f having negative eigenvalues. Therefore
C* cannot be looked at as a covariance matrix of some set of ngec{éor
an investigation of non-metricity not based upon the eiglresspectrum see
Appendix A.) A distortionless embedding into a vector sp@ceot possible,
even in high dimensions. It is a common misconception thgldr dimen-
sions could straighten out a faulty metric and represemnt éve most general
dissimilarity matrixD. It must be stressed here, once again, that for non-met-
ric D's, there is no loss-free embedding (in the sense of geoerless) in a
Hilbert space, be it of price of many supplementary dimemsidVe therefore
will always be confronted to particular workarounds.

In this section we will briefly pass in review common workands in these
cases, namely Multidimensional Scaling and embedding énfseudo-Eu-
clidean space.

Principal component
analysis

Consequence of
non-metricity
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MULTIDIMENSIONAL SCALING.

Presumingly the most popular embedding method for noniongdita isMul-
tidimensional ScalingMDS). See e.g. Cox and Cox (2001), Borg and Groe-
nen (1997), Everitt and Rabe-Hesketh (1997) and Buja e2@0X) for recent
overviews. MDS was invented for the analysis of proximityedend for dimen-
sion reduction. In MDS one seeks a vectorial representafidata—typically
in low dimension—such that the distortion of the pairwisssithilaritiesd;; is
minimal. The oldest form of MDS is due to Torgerson (1952,8)%nd Gower
(1952) and is calledlassical scaling It is of particular importance to us and
will be discussed in detail below. Today, the leading MDShmoés are based
upon works by Kruskal (1964a,b). The goodness of fit betwkerissimilar-
ities D and their vectorial representatives is measured by a costifun called
“stress” which has the form:

n

2
Stl’eS${E1,x2, e {,Cn) = E wij(Hxi — {EJ” — dlj) s (217)
ij=1
i‘]?éj

wherew;; are weights. Typically these weights read:
1 1 1

— W == O Wy = ———.
”(”—1)61123" N Zm d%l N dij Zm dri

The choice in Equation 2.18 relates to the minimization t#tiee, absolute or
intermediate error (Duda et al., 2001).
A simple case of cost function is given by the residual suntobses:

(2.18)

wij =

n 3
stres$wy, a2, ... x,) = ( > (i =l - dij)g) :

i#j=1

Another widely used cost function is the squared stressrait, denoted by
sstreséry, T2, . . . T, ), Where the difference between the squared nioem-—
z;||* and the squared dissimilaritiel§; is optimized (Takane et al., 1977).

MDS always finds a vectorial representation, whether or hetpairwise
data be metric. However, theepriori chosen cost function, possibly of high
complexity and with many parameters which can be tunednaiftakes it hard
to understand how the low-dimensional representationiado

The above MDS version via the optimization of st(@sszs, ... x,) Is
called theKruskal-Shepard distance scalindt is based upon direct fitting
of the vectorial distances to the original dissimilariti€dassical Torgerson-
Gower inner-product scaling.k.a classical scaling is based on converting the
dissimilarities into a form naturally fitted by inner prodsic
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CLASsICAL ScALING. Classical scaling is based upon Theorem 2.4.2 by  Algorithm
Young and Householder (1938). The idea underlying claksicaling is to
suppose that the dissimilarities are Euclidean distanadgteen to find coor-
dinates for exploring them.
Classical scaling proceeds similarly to the algorithm giwa page 24. How-
ever, since’° needs not to be positive semi-definite, the projection isdest
fined for the eigendirections associated to negative e@jans.

1. Calculate centralized matrix® = —%QDQ from the distance matrix
D.

2. Get the eigenvalue decomposition(gf
C°=VAV?,

whereV = (vq, v9, ... v,) is the row matrix composed of the eigenvec-
torsv; and the diagonal matrix = diag(\1, A2, ... A,) with eigenval-
Ues)\l > >Ap>Ap+1 :"':)\p+k:0>)\p+k+l >An

3. Select theé-dimensional subspade out of thep eigenvectors; associ-
ated to the positive eigenvalues and calculate the: map matrix

X, = A2V}, (2.19)

whereVy, is the column-matrix of the selected eigenvectors Apdhe
diagonal matrix of the corresponding eigenvectors.

The columns ofX;, contain the vectors;, : = 1,2,... n, in the chosern-
dimensional subspace.
There isno direct algebraic transformation betweé&nand the set of:;’s. Classical scaling vs. PCA
Furthermore, unlike in PCA, the;’s do not represent the least squares ap-
proximate of a set of vectors whose mutual squared distang&/én byD.
However, if D happens to be squared Euclidean, all eigenvalues arevegositi
and we recover the algorithm from page 24.
Classical scaling can also be formulated as an optimizgtioblem. The
corresponding cost function is callsttain. One possible form of strain is a
residual sum of squares:

strain(zy, za,... T,) =

(Beiastt)

In MDS literature, many further MDS variants can be foundtéNiat one of

it is namednon-metricMDS. In this case, the term non-metric does not refer
to the conditions imposed on pairwise data to be metric, &iars to ordinal
data, i.e. data for which only the rank order is taken intmaaot.
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PSEUDO-EUCLIDEAN SPACE

The pseudo-Euclidean approach to embedding is the fruih@fattempt to
unify vectorial and structural data into one global typesréby unifying the
vectorial and the structural approach to data analysissgo arofit of both
their respective advantages. It is based upon the works bgf&b (1984,
1985).

The pseudo-Euclidean space is a generalization of the wellk Euclidean
space to indefinite inner products. It effectively amouwntsvio Euclidean
spaces one of which has a positive semi-definite inner ptaahatthe other a
negative semi-definite inner product.

For squared Euclidean distances, the embedding procesdis@issed re-
lies on the centralized covariance maifix = —%DC with a subsequent spec-
tral decompositiorC¢ = %XXt. Dividing the embedding space into two
Euclidean spaces with positive and negative semi-definiteri products with
respective dimensionsandg amounts to posing

o= 1x (M ) X,
n Ok xk

I
7‘[ . PXp
( —Iq><q) ’

and0y« is thek x k matrix consisting of zeros. Note thatt ¢ + £ = n, so
that

where

XMX'=VAV' = V|A|Z M|A]2V?,

whereV is the column-matrix of the eigenvectors afidhe diagonal matrix
of the corresponding eigenvectors.
The vectors can be recovered as follows:

Xp = [AL]2 V],

whereVy, is the column-matrix of theelectedeigenvectors and ;, the diag-
onal matrix of the corresponding eigenvectaks, contains the vectors in the
pseudo-Euclidean space.

For L full index set, we recover the pseudo-covariance matrix

cov(X) = Lxtxn = l|A|M N
n n n

X is a result of a mapping the sense of a PCA projection and ttedding
procedure can thus be interpreted as kernel-PCA, whdsethe reproducing
kernel of the pseudo-Euclidean feature space (Greub, 1975)

An interesting interpretation of the distances in a pseldolidean space
is that they can be looked at as a difference of squared Eadidiistances
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from the “positive” and the “negative” space, by the decosifon R(»9) =
RP 4 ¢RY.
Thus
dij =df) —d. (2.20)

DETAILS. In this somewhat more technical exposé we follow Appendix A
from Pekalska et al. (2001). A pseudo-Euclidean spgadea real linear vec-
tor space equiped with a non-degenerate, indefinite, syrmimtinear func-
tion (-, -), called inner product (Greub, 1975). A pseudo-Euclideatsmn
be interpreted as composed from two Euclidean subspaee&,,i.of dimen-
sionalityp and E_ of dimensionalityg such thatt = E, & E_. The inner
product is positive definite ofv,. and negative definite oh_. FE is charac-
terized by the signatur@, ¢) (Goldfarb, 1984). A basige, ez, ... epiq} iS
called orthonormal in a pseudo-Euclidean space if

+1,i=1,2...p
<eiae’i>: .
—l,i=p+1,...p+¢q

and(x;,z;) = 0fori # j.
The inner product between two vectarsindy reads:

P p+q
(w,y) = wyi— Y wyi = ' My.
i=1 i=p+1

Thus, a sphere of equidistant points in a Euclidean spacentex a hyper-
boloid in a pseudo-Euclidean space.
The norm if a non-zero vectarin a pseudo-Euclidian space is defined as:

lz||? = (z,z) = ' M.

It can be positive, negative or zero (even for non-zero veatalledisotropic
vectors). The definition of a squared distances follows nadltu

D(z,y) =z —ylI> = (@ —y,x —y) = (z —y)' M(x — y).
Consider the decomposition

M=M;+M_ = Toxp +(° ;
0 —Iyxq

D(x,y) = (z —y)'M(z —y)
= (z—y)'(My + M_)(x —vy)
=(x—y) M (x—y)—(x—y)(-M_)(xz—y)
= D+ — Df,

then
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whereD = (z—y)'My(z—y)andD_ = (z—y)'(—M_)(z—y). D+ and
D_ belong to a Euclidian space of dimensipmesp. ¢. This decomposition
yields the formula 2.20.

REMARK. Pseudo-Euclidean spaces seem to be a quite “artificiabtoocr
tion and of mere mathematical interest. However they playgortant role in
fields as prominent as special relativity, where the linenelist of the Minkowski
space readés? = dx? + dy? +dz? — dt?, thus combining “space-like” vectors
and “time-like” vectors.

8. 2.6.
DISCUSSION.

Glimpses of possible issues and research directions havedieen along this
presentation of pairwise data. It seems at handnbatmetricityandembed-
dingare an ongoing issue.

On one hand, one allows pairwise data to be very general arsdap-
ture rich structure, possibly non-metric, on the other ceenss quite unable
to profit from the “rich” structure thus obtained: embeddinigsed to recover
vectors, preferably in a Euclidean space, so as to make thedailable to the
zoo of data analytical tools developed for vectors. Howeagely is embed-
ding not an enforcement where the initial freedom of striadttepresentation
is sacrificed to vectorial tractability. The pseudo-Euetid approach, however
elegant, has rather marginal an existence. It seems that¢tended unifica-
tion has failed in practice. This is not so surprising sin@gnanalytical tools
require the specific property of positive semi-definiteraddbe inner product
of a Hilbert space (called Mercer kernels in the correspoptiierature). This
is not the case in a pseudo-Euclidean space, hence itsdiimierest. We still
believe in a possible unification, but rather on a “local’'dkv.e. on the level of
the data analytical tools and not the representation. Teia will be explored
in the next chapter. It will be shown that the equivalencéhefrepresentation
should not only be considered from geometrical point of viéhe unification
will not come by unifying the data representation, but byfying the data with
the subsequently used analytical tools and showing thatiché results can be
obtained whatever the representation.

Furthermore, the structural approaches claim to profit floenless restric-
tive structure of pairwise data. However, if we look in peutar at metric
violations, it is yet to be proved that the captured strugtsricher in terms of
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information rather than simply noisier. At this point in ttieesis, it is still un-
clear what metric violations mean and whether at all we canecalong with
a sensible interpretation, or even model explaining me&tdtations. This will
be the topic of the fourth chapter.

§.2.7.
CONCLUSION.

In modern data analysis data arises in a variety of formshwvaquire appro-
priate treatment. For major fields, data is often not avilak feature vectors
in a vector space, thus precluding the use of well estaldistaa analytical
tools. For instance, genomics typically produce data mepreed as strings
from some alphabet, psychology yields sets of similarigjments, yet other
fields like social sciences measure so called preferenee dat

Non-vectorial data sets as such are difficult to handle, andlidta mining
purposes we need to relate them to some mathematical codceptinmon ap-
proachis to replace the initial data by a collection of reahiers representing
some “comparison” among the elements of the data set. Thibeastraight
forward, as for similarity judgments, or highly non trivias for string data,
where the similarity score may be derived by a complex aligntalgorithm.
This procedure yields a matrix gathering the pairwise prityi relations be-
tween the original objects. We have to stress here that satdtax is by no
means naturally related to the common viewpoint of objeetadpembedded
in some “well behaved” space with a vector space. In padigtibr pairwise
data, there is no probabilistic model.

There are two data analytical approaches, namely the valkapproach and
the structural approach. The advantage of the vectoriabagp is the myriad
of techniques which can be deployed in a vector space to zedhe data.
However, a normed vector space is a restrictive structutelan is where the
advantage of the structural approach lies relying upompsagrinput which has
the potential to capture much richer structure.

Embedding pairwise data into a vector space is the attemgiritbine the
best of both worlds. Several embedding procedures havepgresanted. The
discussion of their insufficiencies opened the main re$earés of the next
chapters.






3. OPTIMAL EMBEDDING

In this chapter we study properties of embedding stratdgi¢ise context of
clustering. We will proceed as follows: we begin with a shoverview of
proximity based data grouping, and then focus on reforrmgatuch prob-
lems with vectorial data representations. For the classaofyse clustering
methods that are related to minimizing a shift-invariargtéanction, our main
contribution is a new embedding strategy, which we E€ahstant Shift Em-
beddingas proposed in Roth et al. (2003a,b). A surprising propefiis
embedding ishe complete preservation of group structufiéhe original non-
metric pairwise clustering problem can be restated as ggmnguyroblem over
points in a vector space, yielding identical assignmenisbjécts to clusters.
Using the constant shift embedding principle, we then destrate the equiva-
lence between thpairwise clusteringcost function and the classicelmeans
grouping criterion in the embedding space.

§. 3.1
INTRODUCTION.

Unsupervised grouping alusteringaims at extracting hidden structure from Clustering
data (Duda et al., 2001). The term data refers to both a sebjets and a

set of corresponding object representations resultingfiem some physical

measurement process. As we have seen in the previous cldifiéeent types

of object representations are possible, the two most conahwhich arevec-

torial data andpairwise proximity dataIn the first case, a set af objects is

represented as points in ad-dimensional vector space, whereas in the second

case we are givensma x n pairwise proximity matrix.

The problem of grouping vectorial data has been widely st the liter-
ature, and many clustering algorithms have been proposadgBt al., 2001,
Jain et al., 1999). One of the most popular methok-means clustering. It
derives a set ok prototype vectors which quantize the data set with minimal
quantization error. Figure 3.1 shows a simple example of dimeensional
data and two possible clustering solutions. Other poplilstering algorithms
arehierarchical clusteringvhere the solution is obtained either by iteratively

33
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Figure 3.1. Clustering of some data in a Euclidean spacd)(lsblution with
two clusters (middle) and solution with three clusters tit)g The different
labels indicate the different clusters obtained. Theredsdefinitetrue solu-
tion. The choice of the number of clusters is related to tlobl@m of model
selection.

splitting up (divisive) or putting together (agglomerajidissimilar resp. sim-
ilar points, typically via some neighborhood proximity,spectralalgorithms
which are based upon spectral graph theory (Chung, 199 ¢erlg, new al-
gorithms have appeared, likeperparamagnetic clusterir(@latt et al., 1996)
which is based upon an analogy with physics, namely the Bottrsodel.

Clustering is an ill-defined problem, in as much a groundhtddes not ex-
ist. This poses the problem of validation. In supervisedieg the validation
is performed based upon the information given by the labkistwaccompany
every data point. In clustering we must rely on other critefihese can bex-
trinsic like the validation by an expert with a priori knowledgejwmirinsic like
the validation by e.g. stability analysis. Often it is onlg@mbination of both
which leads us towards new insights, as it has been explogedneSchéfer
and Laub (2005). The same problem arises in model seledtipitally con-
cerning the number of clusters. The interaction of machmed automation,
optimization of some optimality criterion and a subsequexpert interpreta-
tion, with possibility to change the preceding critericadis to intelligent data
analysis.

In particular, we have to give an answer to the question ofimany clusters
should be chosen. In Roth et al. (2002), cluster stabilitylieen shown to be
a suitable model selection criterion for unsupervised pitogi problems. The
term stability here refers to structural similarity of paonings for different
problem instances drawn from the same data source. Thidityueem be em-
pirically estimated by iteratively splitting the data intwo disjoint sets, and
measuring the distance between the grouping solutions eMemthe stability
concept is more than a pure heuristic approach, since it bbesaatheoretical
interpretation. In terms of statistical learning theohg principle of favoring
solutions with a high stability can be viewed as selectirgrttost self-consis-
tent labeling of the data. For details see Roth et al. (2002).
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§.3.2.
PROXIMITY BASED CLUSTERING.

Partitioning pairwise proximity data is considered a mueinder problem,
since the inherent structure is hiddemihpairwise relations. Figure 3.2 illus-
trates clustering pairwise data. It is the pairwmndantto Figure 3.1. Note
that in this representation the cluster membership is arbBrgoy the ordering;
the middle and right figures cannot be distinguished withloaiiabels.

Figure 3.2. Unordered pairwise data (left), ordered acdagito the solution
with two clusters (middle) and, identically, according betsolution with three
clusters (right). This figure is the pairwiggendantto Figure 3.1. Note the
usefulness of the checkerboard representation which alimwisualize the
cluster structure of the result.

As we have seen, the proximities can violate the requiresnafa distance
measure, i.e. they may be non-symmetric and negative, antfitingle in-
equality does not necessarily hold. A loss-free embedditma vector space
is therefore not possible, so that grouping problems ofiinid cannot directly
be transformed into geometricalgguivalentvectorial problems by means of
classical scaling.

When one forcefully embeds non-metric pairwise data by elding strate-
gies like MDS, the problem is that clustering the embedddd gactors in
general yields partitioningdifferentfrom those obtained by directly solving
the pairwise problem. Even worse, by guaranteeing low (lmzero) dis-
tortions of the proximities, it is still unclear how the objeassignments are
affected by the embedding.

Among several methods for clustering proximity based datthe follow-
ing we will focus on those techniques that explicitly minmmia certain cost
function. This subset of clustering methods includes ergplg-theoretic ap-
proaches like several variations Gut criteria (Shi and Malik, 2000), and
several methods derived from an axiomatization of pairwiz& functions in
Puzicha et al. (1999). From a theoretical viewpoint, costbalustering meth-

Non-metric pairwise data

Drawback of MDS

Cost based clustering



Shift invariant cost
functions

Pairwise clustering cost

function

Main result

Consequences of the
theorem

Compactness criterion

36 ¢ 3. Optimal Embedding

ods are interesting insofar, as many properties of the gngigolutions can be
derived by analyzing invariance properties of the cost fionc

Among the class of cost based criteria, the main focus ofwligk con-
cerns those cost functions which are invariant under cahatiditive shifts of
the pairwise dissimilarities. For this subset of clustgriniteria we show that
there always exists a set of vectorial data representagiaisthat the grouping
problem can be equivalently restated in terms of Euclidéstaidces between
these vectors. A special cost function of this kind is faégrwise clustering
cost function It is of particular interest, since it combines the projesrof
additivity, scale and shift invariance, and statisticdlustness (Puzicha et al.,
1999). In Hofmann and Buhmann (1997) this grouping problgmstated as
a combinatorial optimization problem, which is optimizeda deterministic
annealingframework after applying a mean-field approximation.

According to the Theorem 3.4.1 given on page 45, we can alfiaglsa
vectorial data representation such that the optimal pariitg with respect to
the pairwise cost function iglentical to k-means partitioning in the embed-
ding space. This property demonstrates that the embedditigoweh is optimal
with respect to to distortions of theata partition This distortion preserving
embedding has to be contrasted with alternative, in our viet.consistent, ap-
proaches that are optimal with respect to s@peiori chosen MDS distortion
measure.

Formulating pairwise clustering ascameans problem yields several advan-
tages, both of theoretical and technical nature:

1. The availability of prototype vectors defines a generie far using the
learned partitioning in a predictive way.

2. We can apply standard noise and dimensionality reductietihods in
order to separate the “signal” part of the data from undegyhnoise”.

3. Fast and efficient local search heuristics for optimizing clustering
cost functional often work much better in low dimensionalbemiding
spaces.

THE PAIRWISE CLUSTERING COST FUNCTION

The modeling idea behind the pairwise clustering cost fonds to minimize
the sum opairwiseintra-cluster distances, emphasizomnpactlusters. Op-
timizing a compactness criterion is certainly a very intgitmeta-principle
for exploratory data analysis. It should be noticed, howe¥mat other meta-
principles have been proposed, suclsa@garationmeasures, mixedompact-
ness/separatiomeasures oconnectivitymeasures. We will discuss the rela-
tion of pairwise clustering to some of these methods in 8a@i5.
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In order to formalize pairwise clustering, we define for eatlect a bi- Binary assignment matrix
nary assignment variable that indicates its cluster mesfiygrL et these vari-
ables be summarized in tlie x k) binary stochastic assignment matfik =
(mi;) € {0,1}"** such thatzfj:1 m;, = 1. Given a(n x n) dissimilarity
matrix D, the pairwise clustering cost function reads:

k

n
1 Z Zi,j:l miumjl/dij
5 n .
2 v=1 Zl:l Miy

The optimal assignment¥ are obtained by minimizingZ®. The minimiza-
tion itself is a/N P hard problem (Brucker, 1978), and some approximation
heuristics have been proposed: in Hofmann and Buhmann YE3@&an field
annealingframework has been presented (see the discussion in S8cRarf
this work for some comments and new results on annealindjulticha et al.
(1999) it has been shown that the time-hondiéatd’s methodtan be viewed

as a hierarchical approximation &f°°.

HP =

A SPECIAL CASE k-MEANS CLUSTERING

For the special case of squared Euclidean distances bewsetnisr, -, . . . z,, .
z; € RP, it is well known thatHP¢ is identical to the classical-means cost Figure 3.3.k-means pro-
function, see Duda et al. (2001). We now briefly review thlatienship. The totype vectors for three
k-means cost function is defined as clusters.
k n
= szw”xi -l (3.1)
v=111=1

It measures the sum of squared intra-cluster distanceg tortiiotype vectors

M
yV:ZL%T__ﬂ (3.2)

wheren, = >}, m;, denotes the number of objects in clustgFigure 3.3).
H*™ can be written in a pairwise fashion by exploiting a simptgediraic iden-
tity for squared Euclidean distances:

1 n
i =gl = 2 > mav s = 51~
v j=1

n

Z mjymmuy|zj — a?,

;

n
Z mmu ||z — .

n
meH‘Tl - yqu
i=1
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Substituting the latter into Equation 3.1, we obtain

k
Hkm _ 1 Z ZZj:l miumjuH:Ui - DCjH2 — fPC
D1 My

2
From this viewpointk-means clustering can be interpreted as a method for
minimizing the sum of squarepkirwiseintra-cluster distanced;; = ||x; —
z;||%. The reader should notice, however, that in the general alabitrary
dissimilaritiesd,; a direct algebraic re-transformation AF¢ into H*™ is not
possible since there is no algebraic relationship betweed 1's and||z; — ;||
as we have seen in the previous chapter. Despite this faailvehow that
it is still possible to obtain the optimal assignment valéahl/ with respect
to HP°(M) by minimizing a suitably transformedmeans problem. The key
ingredient will be theshift invariance propertyf the pairwise clustering cost
function described in the following subsection.

v=1

INVARIANCE PROPERTIES OF THE PAIRWISE CLUSTERING COST
FUNCTION.

The pairwise clustering cost function has two importanaimance properties:

1. HPCis invariant under symmetrizing transformations

dij = (dlj + dﬂ) = H = H. (33)

N =

2. HP®is invariant (up to a constant) under additive shifts of dfffediago-
nal elements of the dissimilarity matrix:

- 1
dij = dij +d0(1 _5ij) = H=H-+ §(n—k)d0 = H +const (3.4)

Note that the optimal assignments of objects to clustersiatenflu-
enced by adding a constant to the cost function M¢D) = M (D).

8. 3.3.
CONSTANT SHIFT EMBEDDING.

In Section 3.2 we have introduced the cost functiéff as a special instance
of pairwise clustering problems. Due to the shift-invadamproperty (Equa-
tion 3.4), the partitioning of the data set (i.e. the assignts of a set ofa
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objects tok clusters) is not affected by a constant additive shift onatfieli-
agonal elements of the pairwise dissimilarity matfix= (d;;) € R**". We
will consider general dissimilarity matricés, restricted only by the constraint
that all self-dissimilarities be zero, i.e. thathas zero diagonal elements. We
show that by exploiting the above shift invariance we caragtlsvembed such
data into a Euclidean space without influencing the cludtecaire. An off-
diagonal shifted dissimilarity matrix reads

D =D +dy(enet, — I,), (3.5)

wheree, = (1,1,... 1)t is a vectore R™ of ones and,, then x n identity
matrix. In other words, Equation 3.5 describes a constaditiad shift d;; =
di; +d, forall i # j.

Let us now consider onlgymmetriaissimilarity matrices. Note that for the
clustering criterionHP° this requirement imposes no restrictions on the gen-
eral applicability, sinced"° is invariant under symmetrizing transformations
(Equation 3.3). Given such a symmetric and zero-diagon#éixn®, let us
decompose it as in Equation 2.10 in the following way by idtraing a new
matrixC = (¢;;):

dij = Ci +¢j; — 201']'.
For general dissimilaritieg; will be indefinite. By shifting its diagonal ele-
ments, however, we can transform it into a positive seminitefimatrix: the
following lemma states that for any matrik, a positive semi-definite matrix
A can be derived by subtracting the smallest eigenvalue ftboiits diagonal
elements:

LEMMA 3.3.1. Let A = A — A\ (A) I, where), (-) is the minimal eigenvalue
of its argument. Therl is positive semi-definite.

Proof. The spectrum ofl is given by the roots\ of the characteristic polyno-
mial defined bydet(A — AI,,). det(A — AI,) = det (A — (A\n(A) + N)I,,),
so that\;(A) = \;(A) — A.(A). The smallest eigenvalue of is given by
An(A) = M, (A) = X\, (A) = 0. Therefored is positive semi-definite. [

Given a matrixD, there exists a unique matrix® by Lemma 2.4.2. IC¢ is
not positive semi-definite, Lemma 3.3.1 states that by agbirg),, (C°) from
its diagonal elements, we obtain a positive semi-defifiitReturning to Equa-
tion 2.10 with our fixed matrixC¢, such a diagonal shift af'“ corresponds to
anoff-diagonalshift of the dissimilarities

dij = Gy + &5 — 265 < D =D —20,(C%)(enel, — I,), (3.6)

sinceds; = G + &j; — 28 = & + &5 — 285 — A (CO) ((In)ii + (In)j5 —

2(]—71)”) =D — /\n(CC)((In)“ + (In)jj — 2(In)”) and ((In)u + (In)jj —
2(1,)i;) equalsd for i = j and2 for i # j.

Off-diagonal shift

Decomposition
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In other words, if we were give® instead of our originaD, thenC' would
be a positive semi-definite member of the equivalence dassf matrices
fulfilling the decompositiordij = ¢; + ¢ — 2¢;;. Theorem 2.4.2 then tells
us that this off-diagonally shifted matri® derives from a squared Euclidean
distance. Since every positive semi-definite matrix is aptotiuct matrix in
some vector space, there exists a makfigf vectors such thaf' = X X*. The
matrix D then contains squared Euclidean distances between theisese

We can now inserD into our clustering procedure (which is assumed shift-
invariant), and we will obtain the same partition of the @ltgeas if we had
clustered the original matrio. Contrary to directly using?, however, the
matrix D now contains squared Euclidean distances between a settofse
{z1,x2,... z,} which can be recovered according to the PCA algorithm pre-
sented in the previous chapter (see page 24).

The above procedure can be summarized as follows:

D
decomposition viali; = cii + ¢j; — 2¢ij
CelCp
centralization viaC® = QCQ
cc = —%DC
diagonal shift viaC' = C° — X\, (C)I,V
C=XX!

off-diag. shifted dissimilarities
dij = Ciy + 5jj - 2@‘]‘
lclustering assignments
M(D) = M (D).

Figure 3.4 illustrates this additive shift, based upon tlemgle in Figure 2.5
which violated triangle inequality because of its noisytaig€es. The triangle
in Figure 3.4 now satisfies the triangle inequality.

In principle, the above derivation holds true not only fog ttentralized ma-
trix C¢, but for any membe€ of the of the equivalence clagy,. Some of
these members, however, will eventually have very largatigeigenvalues,
which means that we would have to add a very large constaiittff-diagonal
entries ofD. For numerical reasons we want to avoid these problemshwhic
leads us to the question of theénimalnecessary shift. The next theorem states
that our above choice of using® is optimal in this sense:
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Oy Figure 3.4. Distance as
d, measured by some tool.
See Figure 2.5 for the
original triangle violating
d, the triangle inequality.
Thanks to the minimal
shift, the transformed
triangle now satisfies the
triangle inequality. The
clustering solution for
the dissimilarities thus
rendered metric does not
change.

THEOREM3.3.1. (Cox and Cox, 2001)d, = —2X,(C°) is the minimal con-
stant such thatD = D + d,(ene!, — I,) derives from squared Euclidean Minimal shift
distance.

Proof. A proof is given in Cox and Cox (2001). It also follows from Tdie
rem 2.4.2 and Lemma 3.3.1, or the following simple argument:
Suppose thab is non-metric. In order to get a metric distance, we add a
constantl, > 0, i.e.
Jij = dij + do(eet — In)

The centralized kernel matrix becomes
~c 1 neC 1 c 1 _ e 1
Ce= —§D = 2D + 2dOQ_C + 2doQ.

LetA; > - > XAy > A1 =0 2 Ao = -+ = Ay, be the eigenvalues.
Then,
d, do

Mtz 2t

d, d,
9 >)\p+2+32"'>An+_a)\p+1:07

2

therefore(C is positive semi-definite, ifl, > —2\,,.
The distortion caused by this change is (Cox and Cox, 2001)

tr(D — D)* =Y do(1 = 6ij)do(1 — 6;5) = n(n — 1)d>.
i.j
whered;; is the Kronecker symbobj;; = 1 fori = j andd;; = 0 for i # j.

Therefore, we must choosk as small as possible. This means that=
—2\,, gives the optimal constant shift to metric distarize O
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ExAaMPLE. LetD be a squared matrix such that

0 1 3
vD=1|1 0 V2],
3 V2 0
which does not satisfy triangle inequality sirce 1 + V2
C* is given by
2 1 _z
3 3
1 _1 0
3 3 ’
7 7
-3 0 3

with eigenvalueg —0.5166, —0.0000, 4.5166}.
Now, D = D +d,(eet — I,,) = D — 2),(C¢)(eet — I,,) so that

_ 0 14259 3.1675
VD=[14259 0 17416,
3.1675 1.7416 0

which “just” satisfies triangle inequality. The correspomgdC* is positive
semi-definite.

RECONSTRUCTING THE EMBEDDED VECTORS

Given a general dissimilarity matri®, in the last section we have shown how
to obtain a shifted matriXD which derives from squared Euclidean distances
between points:1, x5, . .. 2, in some vector space. This property Bfim-
plies that the corresponding mati¥ is positive semi-definite, and thus a dot
product matrixC© = X X*. According to Lemma 2.4.2, can be calculated
asC = —1/2D¢. The vectors:y, z, . .. -, can be recovered by an eigenva-
lue decomposition of ® as in the algorithm given in the previous chapter (see
page 24).

So far we have discussed an exact reconstruction of thetsteygreserving
vectors in the embedding space. While this has both impottiaeretical and
practical consequences (see Section 3.2), in many apphsate would like
to insert some preprocessing step in our clustering praeedutypical exam-
ple of this kind would be the suppression of noise. When fimguen noise
reduction, we are interested in some sort of approximageenstructions of
the exact vectors. The reader should notice that given tbenal represen-
tationsz1, 22, ... z, in a Euclidean space, the issue of separating the “noisy’
part of the data from the “signal” part can be handled withiwedl-defined
framework. On the contrary, in the original pairwise seftivithout a common
vector space structure, to our knowledge there exist norgeperpose denois-
ing methods. For instance, it is not clear how to define a dglobse model
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that specifies the amount of noise by which each single olgeobrrupted.
The semantics of a generative model which is responsiblg&ftsignal” part
is also unclear.

In Principal Component Analysis (PCA), one usually assutiatthe direc- PCA
tions corresponding to small eigenvalues contain the riM#ea et al., 1999).
We can thus obtain a representation in a space of reducedsiiomg(with the
well-defined error of PCA reconstruction) when choosing n — 1 dimen-
sions in the PCA algorithm of page 2&;; = VtAi/Q, whereV; consists of the
first ¢ column vectors o/ and A, is the topt x ¢ submatrix ofA. The vec-
tors inR? then differ the least from the vectorsIf in the sense of quadratic
approximation error. This means that the embedded vectertha best least
squares error approximation to the optimal vectors whigs@nve the group
structure. The mathematical tractability of error constis the main difference
to directly decomposing“ (i.e. without shifting) and projecting onto a subset
of eigenvectors with positive eigenvalue, as in classicalisg. In the latter
case, there exist no optimal vectors (in the sense of steigiteservation),
since only the positive eigenvalues can be used for der&inector represen-
tation. For classical scaling, it is thus unclear, what &alt§” are approximated
and with what error.

The processing pipeline of both the loss-free vector reitoatson and the Summary
PCA approximation is summarized in the following algorithm

D
constant shift embedding

D
decompositionl;; = &;; 4 &;; — 2&i;

C
centering

Ce = —1De
loss-free reconstruction
X =VAz

approximation and denoising

1
X, =VAZ, t<n—1.

It should be noticed, however, that given the exactly retanted vectors in
RP, we can also apply any other standard method for dimensipmatiuction Dimension reduction
or visualization, such agrojection pursuit(Huber, 1985)]ocally linear em-
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bedding(LLE) (Roweis and Saul, 2000)somap(Tenenbaum et al., 2000) or
Selforganizing map&ohonen, 1995). These methods can also be viewed as
approximations of the optimal structure preserving vesstemploying, how-
ever, an approximation criterion different from the squlegeror as in the case

of the above PCA framework.

PREDICTING THE CLUSTER MEMBERSHIP OF NEW DATA

First notice that due to the eigenvalue equatiii’ = VA, we can rewrite
Equation 2.19 in the form:

X =CVA™ 2,
Consider now the situation where we are givemew objects and the cor-
respondingn x n matrix of pairwise dissimilaritieg/]s" between these new
objects and alh original objects. In order to predict the cluster membersffii
the new objects, we first have to project them into the Eualidspace spanned
by the eigenvector¥ of the centered dot product matriX°. Then, we as-

sign each new object to the cluster with the closest centFadthe projection
itself, two steps are required. First compute the matkjx, defined by

new __ _new ~C new
dis" =i+ Chy = 20 (3.7)

Similar to the situation in Equation 2.10, we still have tmelgem of ambigu-
ities due to the freedom of choosingf". This problem, however, is automat-
ically overcome by re-expressing the mat€®¢" in the centered coordinate
system:

1O 1< IR
(5 = = SR - S+ D
k=1 k=1 k=1
Substituting Equation 3.7 into the above equation and mgfithatD andC*
are connected by;; = ¢, + ¢, — 2¢7;, we can restateC"*") solely in terms
of D" andD:

n

1 1 1 n _ 1 n _
k=1 k=1 k=1
that is,
1 1 1 ~ 1
(Gl —3 (D”eW(In — Eenefl) — Eemele(In — Eenefl)).

Second, project the objects representedd@y")¢ into the coordinate system
spanned by the eigenvectdrsof the matrixC*:

XMW = (CMW)C VAT (3.8)
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The whole process flow for predicting the cluster membershigw objects Summary
is summarized as follows:

Dnew

s new __ _new ~c new
erecomposmordij =cj; + &5 — 2¢y;

(new
JVCentering
(Crew)e — _% (D”e""(In — %eneﬁl) — %eme;[)(fn — %enefl))
D (R W
lassignment to closest centrofg, ya, - - - yx }
p(z"®W); = argmin, || (z"®); — vy, [|.

Prediction (schematic): from the preceding clustering ste are given the
squared Euclidean distancBs the centered dot-product mat@¢ = —%DC,

its eigenvectors and its eigenvaluigs A, and the cluster centroidg, }*_,.
Prediction step 1: decomposiig™" and re-expressing the matiiX"% in the
centered coordinate system@f. Step 2: projecting the new objects on the
eigenvectord’ of C*. Step 3: assigning objects to the cluster with the closest

centroid vectoy,.

8. 3.4.
SUMMARY.
For the special case of squared Euclidean distances, tiveigmcost function Relationship between
and thek-means cost function can be transformed into each other ing as k-means cost function
simple algebraic identity, cf. Section 3.2. With the resuf the last section, and pairwise cost
we are now able to prove that a similar relationship betwedh tost functions function

holds in the general setting:

THEOREM3.4.1. Given an arbitrary(n x n) dissimilarity matrixD with zero
self-dissimilarities, there exists a transformed maibbsuch that

1. the matrixD can be interpreted as a matrix of squared Euclidean dis-
tances between a set of vectfrs , z», . . . x,, } with dimensionality dirfi;) <
n—1,
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2. the original pairwise clustering problem defined by thestcfunction
HPY(D) is equivalent to the:-means problem with cost functidik™
in this vector space, i.e. the optimal cluster assignmeniabées 1,
are identical in both problemsd/P¢(D) = M*™(D).

Proof. 1. Let D be the symmetrized and off-diagonal shifted versiomof

1

Dsym = i(D + Dt) (3-9)
1 1

C° = —5QDsymQ = =5 Dy (3.10)

D = Dsym — 2Xu(C€)(enel, — I,). (3.11)

According to Section 3.3 and the theorems mentioned thgtene exists a set
of vectors{zy, xa, ... z,,} with dimensionality dinfz;) < n — 1 such thatD
contains squared Euclidean distances between thesese2t@inceD repre-
sents squared Euclidean distances, Equation 3.2 imphgght pairwise clus-
tering cost function is identical to tHemeans function?%(D) = H™(D).
According to the invariance properties given by Equatié@edhd Equation 3.4,
the optimal assignmen{sh;, } of objects to clusters are not influenced by the
transformations given by Equation 3.9 and Equation 3.1Ddhfto D, i.e.
M(D) = M(D). O

The above theorem has several important consequences.

INTERPRETATION AND REPRESENTATION Rewriting pairwise clustering as
ak-means problem naturally introduces the notion of clustatids or clus-
ter representants.

PREDICTION. The cluster prototypes define a generic prediction ruleéov
objects.

DATA PREPROCESSING AND DENOISING The vectorial representation of
the objects allows us to apply standard preprocessing amoisieg methods.
Note that the usual semantics of “signal” and “noise” is elgselated to some
sort of generative model in a vector space.

OPTIMIZATION. Minimizing the pairwise clustering cost function is ahP-
hard problem. The associatéemeans problem with loss-free reconstructed
vectors has the same complexity, since the dimensiondlityeosectors grows
with n, see Drineas et al. (1999). Thus, for handling real-wordlems, in
both cases efficient approximation algorithms or schemesmacessary. In
Hofmann and Buhmann (1997) it has been proposed to optiffitZedy way of
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deterministic annealingSince annealing methods are not our main focus, we
only mention that deterministic annealing is feasible dolyfactorial Gibbs
distributions Puzicha et al. (1999). F&f°°(D), this constraint requires the
use of amean-field approximatiampplying Theorem 3.4.1, however, we are
able to anneal the shiftéémeans cost functio*™(D), for which the mean-
field approximation become=sxact For details on annealing and mean-field
approximations, the interested reader is referred to Hofmend Buhmann
(1997), Rose et al. (1990).

If one decides to insert a denoising and dimensionalityctdn step into the Preprocessing and
clustering procedure, this will usually not only speed up¢bmputations, but optimization
it will also “robustify” optimization heuristics for thé&-means problem. For
instance, applying PCA approximations according to Sacsi@, the energy
landscape typically will be smoothed out, which makes |@=drch heuris-
tics (such as the classical iteratikemeans algorithm) less sensitive to being
trapped in local minima.

SUMMARIZING DIAGRAM .

Let D be a dissimilarity matrix possibly violating symmetry amgngle in-
equality. LetD be its symmetrized and shifted versioh/(-) denotes a par-
tition (assignment matrix) of the data contained in its angat. The first line
of the diagram represents the data on the level of pairwite dae second on
the level of a loss-free embedding with respect to clustsigasnent. Finally
the last on the level of a low dimensional approximation. Wfehalf of the
diagram shows what can be achieved with a general dissityitaatrix, the
right half with its symmetrized and shifted version.

k-means ~ k-means
- «—

M (D) — M (D) D
) M(z1,z2,... x,) Jrmeans (1, 2,... ;) € R*L

J,PCA

(x1,22,... Tp) € R

D

MDS

l
!

k-means k-means
A telad Phbdiatiking

(x1,22,... Tp) ER? M(z1,22,... Tpn) M(z1,32,... o)
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§. 3.5.

RELATIONS TO GRAPH-THEORETIC
CLUSTERING METHODS.

In this section we discuss the relations between graphr¢tiegrouping prin-
ciples and the constant shift embedding method for pairaefisstering. As
main result, we show that both theseraged Associatioand theAveraged
Cut cost function are shift-invariant. With this invarianceperty, theAver-
aged Associatioprinciple turns out to be equivalent to themeans clustering
algorithm in the embedding space. Using the same strategghaw thatv-
eraged Cutis equivalent to thgpairwise separatiorcost function. The latter
can also be stated in terms of Euclidean distances betweleadstad vectors.
For theNormalized Cutmethod, on the other hand, the constant shift embed-
ding method is not applicable. In the case of balanced arsitwith similar
structure among all clusters, however, the differencesdatAveraged Asso-
ciation, Averaged CuandNormalized Cubecome vanishingly small. In such
situations, all three methods can be reasonably well ajypaird byk-means.

A graphG = (V, E) can be partitioned into disjoint set8’, v = 1,...,k
by removing edgesU’;:1 AY =V, A N A" = () for v # p. Following Shi
and Malik (2000), we define the similarity between the sétandV — A" by
the total weight of the edges that have been removed

CUtl A,V — AY) =3 w(u,v),

u€A”
ve(V—AY)

where the weight on each edge(u, v), is a function of the similarity between
nodesu andv. We further introduce a measure of association between two
sets, assdal, B), as the total connection from nodes in geto the nodes in
setB. It follows immediately that both measures are connectettiéyormula

cut(A”,V — A”) = asso¢A”, V) — assoCA”, AY).

We further denote byl” the similarity (weight) matrix with unit self-similari-
ties:w;; = 1, foralli = 1,...,n. Based on this similarity matrix, we define
a dissimilarity matrix byD = e, el — W, withe,, = (1,1,... 1)t as before.
Together with the notation of the binary assignment vaesil;,, and the def-
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|A¥|, we can write the association measure in the form

inition n, =
asso¢A”,A”) = Z My M, Wij = Z mil,mj,,(l — dij)
=t n W= (3.12)
= TL,% — Z mi,,mj,,dij.
i,j=1
For two setsAU B =V, AN B = {, in Shi and Malik (2000) théwveraged
Averaged Association...

Associatiorcost function has been defined as
asso€A, A) asso€B, B)
AVAssoc= + .
|A| | B

It can be easily extended forkapartitioning problem:

assocA”, AY
AVASSOG, = Z #
ny
v=1
InsertingD = e,e!, — W and Equation 3.12, we see that maximizing the
averaged association is equivalent to minimizing plagwise clusteringcost

function HP¢:

k asso€A”, A)
AVAssog, (W) = ) ———=n- 2HP (el —W).  (3.13)
v=1 v
According to Theorem 3.4.1, it is always guaranteed thaffibesibly shifted)
i i ... Is identical to k-means

matrix C¢ = —%DC is a positive semi-definite dot-product matrix which can
be used to embed the data into a Euclidean space. In this ggapeoblem
of minimizing the pairwise clustering function reduces tstandardc-means
problem.
TheAveraged Cutost function, cf. Shi and Malik (2000), is defined as Averaged Cut...

k v AV k v _ y 5
AvCut, = 3 cuA”, v - A”) > asso¢A”, V) — asso¢A”, A”)

n n
v=1 v v=1 v

In the following we will show that AvCut is equivalent to tfairwise Separa-
tion cost functionHPs (in Puzicha et al. (1999) this cost function is denoted by

Hpsla)-
1 My

k n
-3 i Z
g 1m3u

v=11i=1 ,u;év

1 (&1 & oo
:_m(z_zmwdij_2H >
=1

n
v=1 """ ij=




.. is shift invariant

Normalized Cut...

.. Is almost shift invariant
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With Equation 3.13 and the identity

n n
asso€A”, V) = > mymi; =nn, — Y midij,

i,j=1 i,j=1

AvCut can be reformulated in terms &f°S;

k
AIJ
AvCuy = 3 assoCd”, V) 1 o pye

n
v=1 v

k n (3.14)

zkn—z ! me dij —n+ 2HP®

Vlyijl

=(k-1)n+(k—-1)H

Minimizing the averaged cut cost function based on the #&fimatrix W' is
thus equivalent to minimizingZ P with distancesD = e,e!, — W. Note that
the separation measufé’® has the same shift-invariance property as its com-
pactness counterpaktPc;

HPS(D + do(l — 5”)) = HPS 4 const

We can thus directly apply the constant shift embedding é&mark of Sec-
tion 3.3.

The Normalized Cutost function, cf. Shi and Malik (2000), is an interme-
diate grouping criterion that combines both the compastmesl separation
principle. Thek-cluster version is defined as

k v _ AV k v v
Ncutk:zcut(A ,V—AY) _ ZassocA ,AY)

asso€A”,V)  £= asso¢Av, V)’
Rewriting this in terms of distancd3 = e, ¢!, — W, we arrive at
- v mi;,m ’Vdi j
Neut, = k — Z( o Z” L / J). (3.15)
n— nu Z =1 mzu i

Contrary to AvAssoc and AvCut, the Ncut cost function is rtaftanvariant.
For non-metric (dis)similarities, it is thus not possibtedapply the constant
shift embedding trick to obtain a grouping problem in a vecjgace. How-
ever, for the special case of balanced partitionings= 7 for all v, and simi-
lar distribution of intra-cluster distances among all grsall the row-sums of
the distance matrix tend to be similar. Assumg_, d;; = const and substi-
tuting this into Equation 3.14, or Equation 3.15 respetyiwge see that in this
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special case both the AvGuand the Ncut criteria become equivalent to the
AvAssogq; criterion, and hence equivalent to th&° cost function. This equiv-
alence means that for clustering problems with similar grstaucture and bal-
anced partitions large differences between the modeld@ilbme vanishingly
small. The somewhat surprising results of a large-scalepenison study of
graph partitioning algorithms for image segmentation sagkSoundararajan
and Sarkar (2001) could be explained in the light of this ysial

8. 3.6.
APPLICATIONS.

We will illustrate the constant shift embedding by threelaapions from pro-
tenomics. The first example shows that CSE can be succegsafiplied to
denoise pairwise data in a mathematical rigorous fashidn¢twcannot be
achieved for non-metric pairwise data with traditionahteicues. The second
application is a worked through example of combining CSE lamddimen-
sionsal approximations, model selection and clusteringlodin protein se-
quences. In the third example, we apply CSE to cluster prateguences of
the ProDom database with respect to structural similarity.

BACTERIAL GyrB AMINO ACID SEQUENCES

Our first illustration involves the gyrase subunit B. Theadsét consists of 84
amino acid sequences from five generAatinobacteria 1: Corynebacterium
2: Mycobacterium3: Gordonia 4: Nocardiaand 5:RhodococcusA detailed
description can be found in Kasai et al. (1998). This datavastused in Tsuda
et al. (2002) for illustration of marginalized kernels. Tdugthors hinted at the
possibility of computing the distance matrix by using BLASJores (Altschul
et al., 1990), noting, however, that these scores could eatdnverted into
positive semi-definite kernels.

In our experiment, the sequences have been aligned by thin-Svater-
man algorithm (Pearson and Lipman, 1988) which yields pagwalignment
scores. The associated pseudo-covariance matrix exhifetg strongly nega-
tive eigenvalues as seen in Figure 3.5. Using constanteshiftedding goosi-
tive semi-definit&ernel is obtained, leaving the cluster assignment unang
for shift invariant cost functions.

The important step is the denoising. Several projectiofmaer dimensions
have been tested and= 5 turned out to be a good choice, eliminating the bulk
of noise while retaining the essential cluster structure.

Three applications

The GyrB data set

Computation of the
similarity matrix & CSE

Denoising
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Figure 3.5. The spectrum of the A
centralized covariance matrix. We
see that it exhibits strongly negative
eigenvalues pointing to severe met-
ric violations. It cannot be embed-
ded loss-free into a Euclidean space
with respect to a metric. Denois-

ing is not properly defined on such
data. Index of ordered eigenvalues

Eigenvalues

v

Figure 3.6 shows the striking improvement of the distancéimafter de-
noising. On the left hand side the ideal distance matrix Eated, consisting
solely of0’s (black) andl’s (white), reflecting the true cluster membership. In
the middle and on the right the original and the denoisedidcst matrix are
shown, respectively. Denoising visibly accentuates thetel structure in the
pairwise data.

Figure 3.6. Dissimilarity matrix: On the left the ideal distce matrix reflects
the true cluster structure. In the middle and on the rightstdhce matrix
before and after denoising. Dark values represent smafligigarities, light
values large dissimilarities.

Since we dispose of the true labels, we can quantitativedgsssthe im-
provement by denoising. We performed uskitheans clustering, followed by
a majority voting to match cluster labeling. For the dendidata we obtained
3 misclassifications3(61 %) whereas we gait7 (20.48 %) for the original data.
This simple experiment corroborates the usefulness of mineelding and de-
noising strategy for pairwise data.

In order to fulfill the spirit of the theory of constant shiftnedding, the
cost function of the data-mining algorithm subsequent ¢éoeimbedding needs
to be shift invariant. We may, however, go a step further gmpyaalgorithms
for which this condition does not hold. In doing so, howewveg, give up the
mathematical traceability of the error.

To illustrate that denoised pairwise data can act as standajuality data
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independent of the framework of algorithms based on shi#triant cost func-
tions, and in order to compare to the results obtained inda st al., 2002),
a linear SVM is trained on 25 % of the total data to mutuallyssiy the gen-
era-pairs: 3—4,3 -5 and 4 — 5. Genera 1 and 2 separate esrarldshave
therefore been omitted. Model selection over the regudion parametef’

has been performed by choosing the optimal value out of 18lggpaced val-

ues from[10~%,102]. The results have been averaged by a 1000-fold sampling

(cf. Table 3.1). The best values are emphazised.

Genera| FK | MCK2 | Undenoised Denoised

3-4 | 10.4| 8.48 5.06 5.43
3-5 [10.9]| 571 5.72 3.83
4-5 | 23.1] 116 7.55 3.17

Table 3.1. Comparison of mean test-error of supervisedsdiaation by linear
SVM of genera with training sample 25 % of the total samplee iEsults for
MCK2 (Marginalized Count Kernel) and FK (Fisher Kernel) ibtained by
kernel Fisher discriminant analysis which compares fawbydo the SVM in
several benchmarks (Tsuda et al., 2002).

For the classification of genera 3 — 5 and 4 — 5 we obtain a Suiitan-
provement by denoising. Interestingly this is not the casegknera 3 — 4
which may be due to the elimination of discriminative feagiby the denois-
ing procedure. The error still is significantly smaller thiaa error obtained by
MCK2 and FK, which is in agreement with the superiority of aisture pre-
serving embedding of Smith-Waterman scores even whenneftnoised: FK
and MCK are kernels derived from a generative model, whdteaalignment
scores are obtained from a matching algorithm specificalfyed for protein
sequences, reflecting much better the underlying struofyseotein data.

CLUSTERING OF PROTEIN SEQUENCES

In this experiment with globin sequences, we present a vabthkeough exam-
ple of combining constant shift embedding, low-dimensi@mproximations,
model selection and clustering in the embedding space. EnenSWISS-
PROT and TrEMBL databases (Boeckmann et al., 2003) we egttadl ap-
proximative 1200 sequences annotated as “globins” or asbiigllike”. The
heuristic FASTA scoring method (Pearson and Lipman, 1988 used for
computing pairwise alignment scores, which in turn weregthrcorrected,
a Bayesian approach for correcting local alignments, ¥aghg Durbin et al.
(1998), and normalized to the length of the alignment. Frbengair-scores
si;, we derived dissimilarities by setting; = s;; + s;; — 2s;; . Note that
other transformations (e.g. of the for#; = exp(—s;;)) may be applied as

Discussion

The globin data set
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well. Our experimental results, however, favor the firsticaoThe eigenvalue
Metric violations spectrum of the centered matkiX shows some highly negative entries, indi-
cating that the dissimilarities do not derive from squarediEean distances.
By way of the constant shift embedding procedure, howekiersequences are
represented as points in a vector space without distottiegtouping solution.
Given these vectors, we are left with two problems:

1. choosing an appropriate denoising mechanism and

2. minimizing thek-means cost function for different values lofand se-
lecting the “optimal” number of clusters In the following we present
details for both the model selection procedure and the filestering
results.

DENOISING. The left panel in Figure 3.7 shows the 25 leading eigengadfie
the centered matrig'“. The eigenvalue curve suggests that there are only very
few dominating directions in the embedding space. We thugldd to discard

all but the first ten leading eigenvectors. Since in this e@rexperiment we
have access to the ground-truth labels, we are able to testyhothesis about
“signal” and “noise”. The plotted denoised and originaltaiice matrices in
Figure 3.8 indicate that the space spanned by the first temedgtors indeed
accentuates the main structure of the protein (sub-)famili

OPTIMIZATION AND MODEL SELECTION. For minimizing the:-means func-
tional in the embedding space a deterministic annealindpotetvas applied.
Concerning the selection of the “correct” number of clustere used the con-
cept of cluster stabilitywhich has been introduced in Dudoit and Fridlyand
(2002) and refined in Lange et al. (2003). The main idea isdavdesamples
from the data set and then to compare the inferred dataipagtiacross these
resamples. The variations of the partitions are transfdrim& an instability
index, which is normalized such thatandomprocedure yields instability 1,
and a perfect correspondence between solutions yieldshifist 0. The right
panel in Figure 3.7 depicts the estimated instability fdfedént numbers of
clusters. The bars show the standard deviations estimattteiresampling
procedure. The most stable solution partitions the datathree clusters, and
two another distinct local minima occur fér= 5 andk = 9.

CLUSTERING RESULTS For the solutions withk = 3 andk = 9, we have
plotted the corresponding distance matrices in Figure Q@.the left panels
we have also depicted the “true” group membership of theeist as anno-
tated in the SWISS-PROT database. The groups Rtant (plant globins),
HB-a (hemoglobinea), MYG (myoglobin), HB-5 (hemoglobing) and GLB
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Figure 3.7. Clustering of globin proteins. Left: leadinggenvalues of the
centered matrixC¢. Right: instability of the partition vs. number of clustérs
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Figure 3.8. Dissimilarity matrices for the embedded clusig problems, per-
muted with respect to cluster labels. Left: original distamities (without
denoising, plotted in the permutation of the true labelsjddie: £ = 3 and
left: £k = 9. Dark values represent small dissimilarities, light vaduarge
dissimilarities.

(other globins, e.g. globin I-IV or insect globins). The woin markedPre-
lim indicates “preliminary” sequences from the TrEMBL databagth miss-
ing or uncertain annotations. The automatically found tohs divide the se-
quences into biologically meaningful groups: the 3-clustdution separates
both hemoglobinx and hemoglobins from the rest. The 9-cluster solution de-
fines a refinement of these groups, in the following sensefthemoglobins
are split into two subgroups (cluster no. 1 and no. 4), bothrttyoglobins
and the plant globins are now contained in individual clisstand the other
globins are also separated into two sub-clusters (the fisgh@h now mainly
contains insect globins). It is interesting to notice thatcessively increasing
the number of clusters automatically leads to a naturabhdbiical representa-
tion of the group structure, which hastbeen introduced by the algorithm as
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a modeling bias.

CoMPARISON WITHMDS. From a theoretical viewpoint, the constant shift
embedding principle has one major advantage over claddio& embedding:
for shift-invariant clustering cost functions, CSE yieldsster preserving em-
beddings im—1 dimensional vector spaces, while for MDS no such guarantees
are available. Taking a practical perspective, however,moight be interested
in differences between CSE and MDSIlaw dimensionakmbedding spaces.
Designing experiments which allow “fair” comparisons otkind, however,

is difficult, since both the CSE method (different reductioethods like PCA,
LLE, etc.) and MDS (different cost functions, choice of wig etc.) can be
varied in several ways. Nevertheless, we conclude thisosesfith a compar-
ison of k-means clustering results in two dimensions, once direstipedded
using MDS (stress cost function, relative weights, see Egu&.17), and the
second time embedded with CSE and PCA. In the upper left pdfédure 3.9
and Figure 3.10 the two-dimensional MDS embedding of thevaldata set is
depicted. The different point symbols refer to the SWISSSPRabels. Given
these two dimensional data set, we then minimized:thgeans clustering cost
function with & = 3, leading to the labels shown in the lower left panel. It
is interesting to note that the typical “ring artifacts” oM embedding pro-
duce elongated structures which cannot be recovered bythpactness based
k-means clustering criterion. In the case of CSE with sudogddCA embed-
ding, the situation looks very different: the embedded d&arly show three
relatively compact groups (upper right panel): one comasls to hemoglobin-

« proteins, another to hemoglobihproteins, the third one is a mixture of the
other protein families. These three compact groups aregiyfrecovered in
the 3-means solution (lower right panel).
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Figure 3.9. Embedded proteins with original SWISS-PRO€I&abLeft: MDS
(Stress, local weights), right: CSE with PCA embedding.
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Figure 3.10. Embedded proteins with inferréemeans labelsk = 3. Left:
MDS (Stress, local weights), right: CSE with PCA embedding.

CLUSTERING OFPRODOM SEQUENCES

The analysis described in this section aims at finding a tgartbf domain The ProDom data set
sequences from the ProDom database (Corpet et al., 20003 tm@aningful

with respect tostructural similarity In order to measure the quality of the

grouping solution, we use the computed solution in a predietay to assign

group labels to SCOP sequences, which have been labelegésteaccording

to their structure (Murzin et al., 1995). The predicted lalzge then compared

with the “true” SCOP labels.

For demonstration purposes, we select the following subSeequences
from pr odon2001. 2. srs: among all sequences we choose those which
are highly similar to at least one sequence contained in theffiur folds of
the SCOP databaseBetween these sequences, we compute pairwise (length-
corrected and standardized) Smith-Waterman alignmenmescsummarized in
the similarity matrixS = (s;;). These similarities are transformed into dissim-

ilarities by settingd;; = s;; + s;; — 2s;5. The centralized covariance matrix Similarity matrix
Ce = —%DC possesses some highly negative eigenvalues, indicagngt-

ric properties are violated. Applying the constant shifeaiding method, a

valid positive semi-definite kernel is derived, with an eigalue spectrum that CSE

shows only a few dominating components over a broad “naépetetrum (see
Figure 3.11). Extracting the first 16 leading principal cament$ leads to

a vector representation of the sequences as poiniin These points are
then clustered by minimizing thiemeans cost function within a deterministic
annealing framework. The model order was selected by applgire-sam-
pling basedstability analysis, which has been demonstrated to be a suitable

1“Highly similar” here means that the highest alignment scexceeds a predefined threshold.
The result is a subset of roughly 2700 ProDom domain seqsence

2subsampling techniques or deflation can be used to reducputational load for large-scale
problems. We only used a subseB6f) randomly chosen proteins for estimating the 16 leading
eigenvectors.
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model order selection criterion for unsupervised grougingblems in Roth
et al. (2002).

Figure 3.11. (Partial) eigenvalue
spectrum of the shifted score matrix.

Eigenvalues

Only the 16 leading eigenvalues ThreShOId‘

have been retained, thus conserving !

the main structure while eliminating .
the bulk of noise. This corresponds -
to a denoising of the pairwise data. Index of ordered eigenvalues

In order to measure the quality of the grouping solution1ab8 SCOP se-
guences from the first four folds are embedded into the 1&dgional space.
The predicted group structure on this test set is then compaith the true
SCOP fold-labels. Figure 3.12 shows both the predictedmneembership of
these sequences and their true SCOP fold-label in the foranbafr diagram:
the sequences are ordered by increasing group label (tke fowizontal bar),
and compared with the true fold classification (upper barprbler to quantify
the results, the inferred clusters are re-labeled (“revenl”) according to the
maximum number of correctly identifiable fold-labels. Thimcedure allows
us to correctly identify the fold label of roughly 94 % of thEQP sequences.
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|
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Cluster 2 Errors
Cluster 1

Figure 3.12. Visualization of cluster membership of thesgm1158 SCOP
sequences contained in folds 1 — 4.

Despite this surprisingly high percentage, it is necestageeper analyze
the biological relevance of the inferred grouping solutibnorder to check to
what extend the above “over-all” result is influenced byfacts due to highly
related (or even almost identical) SCOP sequences, wetszhtee analysis
based on the subset of 128 SCOP sequences with less than Sl#nse
identity (PDB-50). Predicting the group membership of é&28 sequences
and using the same re-labeling approach, we can correethifg 86 % of the
fold-labels (Figure 3.13). This result demonstrates thahave not only found
trivial groups of almost identical proteins, but that we dandeed extracted
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relevant structural information.
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Figure 3.13. Visualization of cluster membership of the RR#B-50 sequences.

§.3.7.
DISCUSSION.

We have introduced an optimal embedding procedure for fggralustering
by means of constant shift embedding (CSE). For the clashiftfisvariant
clustering methods, it optimizes a fundamentally différeniterion compared
to classical embedding approaches based on MDS. The mastr@wot prop-
erty of CSE is the complete preservation of the group stredtuthe embed-
ding space. For MDS methods, on the other hand, such a patisercan
only be guaranteed in the special (and rather unintergstasg of zero distor-
tions (“stress”) of the pairwise dissimilarities. For neero distortions, to our
knowledge no bounds astructuraldistortions are known.

For shift-invariant cost functions we can always embed matric pairwise
data in a Euclidean space and obtain a statistically eqniv@roblem formu-
lation. This represents a unification of the vectorial aridyiae data represen-
tation, not on the level of geometry, which incurs distartidy the embedding
procedure, but on the level of structure itself, which isspreed.

The possibility of restating a pairwise grouping problenaimector space
has important theoretical consequences. For instanceravalde to statis-
tically describe the clusters by defining cluster protog/pethe embedding
space, and by measuring the variance in each of the clusteese Prototypes,
in turn, define a generic rule for extending the grouping tsotuto a predic-
tive discrimination rule for estimating the cluster mendbgp of new objects.
Concerning the problem of finding efficient optimization@ighms for mini-
mizing clustering cost functions, the shown equivalengeaifwise clustering
andk-means shed light on the probabilistic structure of thetemiuspace: the

problem of minimizingH "¢ belongs to the class of combinatorial optimization

problems for which the classicalean-field approximatiobecomegxact
There are also a couple of practical consequences of CSEnaon vector

Summary

Outstanding property of
CSE

Unification of vectorial
and pairwise
representation

Theoretical
consequences

Practical consequences
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space representation renders the data accessible tostaimansionality and
noise reduction methods which lack a clear meaning for psndata. Such
preprocessing methods, however, have to be chosen cgrefepending on
the requirements and/or the prior knowledge availabledghespecial applica-
tion. For the task of clustering the globin proteins, it drout that a classical
PCA denoising worked surprisingly well. A comparison witfe tknown fam-

ily structure of these proteins revealed that the low-disi@mal PCA embed-
ding space accentuated the relevant structure while ssgipgethe alignment
noise. It should be noticed, however, that in general unsiges situations,

such high-level domain knowledge may be hardly availabtethkese situa-
tions, one should rely on general statistical descriptarsh as the form of the
eigenvalue spectrum of the covariance matrix.

Despite the fact that “wrong” preprocessing methods gjelaalve the po-
tential to distort the cluster structure (which we natyraant to preserve),
the CSE framework at least tells us that these distortiomsar caused by the
general restrictions of a vector space. We know that theveya exists a Eu-
clidean space which contains the optimal structure présgmectors, which
means that there might be hope to find more suitable low-dsineal approx-
imations.

8. 3.8.
CONCLUSION.

For several major applications of data analysis, objeatsoften not repre-
sented as feature vectors in a vector space, but rather bytrix mathering
pairwise proximities. Such pairwise data often violatedriogy and, there-
fore, cannot be naturally embedded in a vector space. Coingeihe problem
of unsupervised structure detectionotustering in this chapter a new embed-
ding method for pairwise data into Euclidean vector spacas wtroduced.
We have shown that all clustering methods, which are inmatiader additive
shifts of the pairwise proximities, can be reformulated esuging problems
in Euclidian spaces. The most prominent property of tusstant shift em-
beddingframework is the completereservation of the cluster structuie the
embedding space. Restating pairwise clustering problemesdtor spaces has
several important consequences, such as the statistieaiijgkton of the clus-
ters by way ofcluster prototypesthe generic extension of the grouping pro-
cedures to a discriminativerediction rule and the applicability of standard
preprocessing methodike denoising or dimensionality reduction.



4. FEATURE DISCOVERY

In this chapter we will study the issue of the significatior anterpretation
of metric violations. In literature, metric violations ansually discarded as
mathematical artifact of noise, and solutions to elude taghematical annoy-
ance of negative eigenvalues are ready at hand. Only a fdwm@itint at the
possibility of inherent non-metricity and the danger of ecéful metrization
of the data. The central and so far unanswered question isftle: Does
the negative part of the spectrum of a similarity matrix ceathing useful
other than noise?The answer to this question was given in Laub and Mdller
(2004) and will be presented here. We will systematicallgigtthe occurence
of negative spectra. Models are developed to explain thesera and simple
projection techniques are presented to visualize thenmdition coded by the
metric violations. Several applications will illustratesttheory.

8. 4.1.

INTRODUCTION.

From a geometric point of view, non-metric pairwise data nahbe embed-
ded distortionless into a Euclidean space. So, in genemabedding into a
Euclidean space (and often subsequent dimension reduetioounts to dis-
torting pairwise data to enforce Euclideanness. This mhoeeis exemplified
by MDS.

Little is known about the information loss incurred by emiog metricity,
when non-metric data is forcefully embedded into a vectacspon the as-
sumption that non-metricity be a mere artifact of noise.sTdgsumption cer-
tainly holds for many cases, especially when the pairwisaparison is the
output of some algorithm tuned to be metric but relying on ssemdom ini-
tialization. It does not hold for pairwise data which is iné¥etly non-metric,
e.g. for human similarity judgments, where geometricalt(mgand categorial
thinking (possibly non-metric) is superposed.

Technically, non-metricity translates into indefinite aoance matrices (The-
orem 2.4.2), a fact, which imposes severe constraints odataeanalysis pro-
cedures. Typical approaches to tackle these problemsvievahitting alto-
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gether the negative eigenvalues like in classical scalirgiifting the dissimi-

larities so as to enforce squared Euclideanness as in CSkinpartant point

is to notice that these issues will crucially depend on thgmitade of the neg-
ative eigenvalues. If the negative eigenvalues are smallignitude, they are
commonly associated to noise and leaving them away will sttingorove the

result, at worse leave it unchanged. If they are large, someahat classical
scaling is still an appropriate dimension reduction teghei (Cox and Cox,
2001).

In the previous chapter we have seen that non-metric pardasa may be
embedded without loss for subsequent clustering if the fuosition is shift
invariant. However, in practical applications, the needdicmension reduction
to speed up optimization and robustify solutions, effedfivesults in retaining
only the leading eigendirections and cutting off large pafthe spectrum. For
other cases than noise corrupted non-metric pairwise tiatan open question
whether the removal of negative eigenvalues leads to amiation loss.

Several authors (Jacobs et al., 2000, Torgerson, 195&)entbiat it may not
always be of advantage to embed the data, especially if iesaththe price of
high distortion. Violation of triangle equality or symmsgitas property of the
distance measure should not be regarded at as noise butiasiinteature of
the data set. Some problems (e.g. where transitivity isatéol) might get an
erroneous treatment when forcibly embedded in an Euclidpane.

In Pekalska et al. (2001) we readhere is still an open question about
the consequences on classification tasks of transformiagtbblem into a
Euclidean space, either by neglecting the negative eidaasaor by directly
enlarging D by a constant They show that the retention of the negative ei-
gendirection can be beneficial to the classification resudtia thus a sensible
choice in machine learning (for a similar finding, see Graepal. (1999)).
However, their positive results seems due to a particuktairce of denoising
and the question about the signification of metric violagi@md the thus in-
duced “negative variance” remains unsolved. Improvemeatalassification
rate suggests that it is other than noise. It is still utteriglear, whether we
should look at non-metricity as a mere mathematical atti&ao further im-
portance except for algorithmic reasons or whether it neveanewinsight
into the structure of the data.

We will not be interested in a classification task but menelgie explanation
of variance. In a sense, this means that we want to know whatlad there is
“something interesting” in the negative eigenvalues dls@ random noise.

We adopt the point of view that

1. embedding pairwise data in a Euclidian vector space ofdimaension
for visualization it is a good idea in a first approach to ustird the
data and that

2. variance can capture problem specific information.
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The fact that we are interested in Euclidean embedding#slis, via Theo-
rem 2.4.2, to consider the eigenspectra of pseudo-covarimatrices to mea-
sure the metric violations of the underlying dissimilaribatrix. For more
generic measures of metric violations and more general ddibgs, see Ap-
pendix A.

Itis important that we again stress our interestisualization This chapter
is conceptual in nature and relies upon visualization asstimplest way to
gaining insight into complex pairwise data (Everitt and B#besketh, 1997).

This study comprises a general look on different spectraeseral models
to explain them, illustrated by simple and intuitive exaaglWe will limit our
illustrations to embeddings in two dimensions, which alidar visual appre-
ciation, an unquestionable advantage in unsuperviseditgarWe will show
that the negative eigenvalues can indeed correspond @nea&rnon negligible
to the problem, in the sense that the latter can be relateg:kevant” features.

§.4.2.
UNDERSTANDING NEGATIVE EIGENVALUES.

We will start this study by some general considerations enrtature of the
spectrum of pseudo-covariance matrices associated tondasty matrices
violating metric requirements. We will discuss varianecdgpimation and the
loss thereof.

SHAPE OF THE SPECTRUM

The spectrum of a matrix is the set of its eigenvalues. Fdrsgametric
matrices it can be shown to be real (LlUthkepohl, 1996). Te ganse to notions
like shape we need to introduce an ordering. Assuming tleahtimbers are
real, we may simply order them in increasing values.

The spectrum can be of any shape, however, we will mainly teeasted in
the following two (common) cases (see Figure 4.1):

1. Flat negative spectrum: the negative eigenvalues doiffet chuch in
magnitude from the bulk of eigenvalues.

2. Strongly decreasing negative spectrum in the last feersigues.

The data distribution always gives us algorithmically tipectrum. The
converse is not true unfortunately.

Visualization

Sorting the spectrum

Trivial and non-trivial
spectra

Distribution = spectrum
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Figure 4.1. Spectrum with trivial (left) and non-trivialight) negative eigen-
values. The trivial negative spectrum is characterized Bloavly falling neg-
ative tail while the non-trivial negative spectrum exrsbé strongly falling
negative tail.

A rule of thumb is that whatever typical data distributiorlgis a given spec-
trum, there is always a “pathological” distribution whictelds a similar spec-
trum. “Pathological” in this context just means that thecdpem gives us no
valuable hint at the distribution expected by the typicak;ahis being a Gaus-
sian distribution or some regular distribution with finitgoport.

This fact is exemplified for simple statistics as means annee. Duda
et al. (2001) gives an example of four different distribnSowith identical
mean and variance (second order statistics).

One might ask what then justifies the use of “pathological’s éAmatter
of fact, second order statistics—and in the same vein theitdlison of the
eigenvalues—do give relevant information when one asswoee Gaussian
process produced the data, which in natural processesnigitareasonable.

Typically, for a flat spectrum, we will expect the data to batiispically dis-
tributed in space. (Note that notions like isotropic dizition only make sense
once an ordering fixed for the eigenvalues and hence for thesmonding
eigenvectors.) On the other hand, the directions spannedebgigenvectors
associated to large negative eigenvalues in magnitudelsmsngefy this inter-
pretation and we expect to find there non negligible variance

Pathological cases in this context may be, e.g. spectraevbloape is an
artifact of small sample size, missing values, outliermgéneral, very exotic
distributions.

VARIANCE EXPLAINED.

Recovering vectors from a squared Eucliddaraccording to the algorithm
(Cox and Cox, 2001) given on page 24 corresponds to a prinogmaponent
analysis (PCA). PCA has a nice interpretation as varianplaed: choosing
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the embedding subspace associated to the eigenvalyas, ... \x, where
1 < i < k < n, amounts to retaining the fraction

Ai + 0 A

— 4.1
Ei:l Ai @

of the total variance.

When the rigorous mathematical framework of PCA is not gives it is
the case in classical scaling—, we can still measure theuadypf a repre-
sentation by measures like Equation 4.1. In the case of natnigD’s, PCA is
not well defined because of negative eigenvalues. Instetieboheasure given
in Equation 4.1, one typically uses (Everitt and Rabe-Heski97)

il D
Lol ] 4.2
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or
A2 4
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Another choice involves counting only the positive eigduea in the denomi-
nator (Cox and Cox, 2001). Note that Equation 4.2 corresptmd formula-
tion of the variance in a pseudo-Euclidean space.

ON INFORMATION, RELEVANCE AND LOSS

Data analysis aims at extracting information from data.e@ig certain task, a
certain scientific question, one attempts to extract indiom relevantto the
specific problem. This is an intrinsically ill-defined preli, since there is no
rigorous definition of information, let alone of relevance.

As stated in the introduction, we adopt here a very modestianah to earth
approach: we look at variance and try to understand it.

We look at variance. So to tackle the problem of relevance, we watlter
address the issue of low dimensional visualization. We défiformation sim-
ply by the explained variance and leave notions like relegan the intuition
of the reader by the question: is a given explained variamegasting for this
problem?

This evasiveness on the definition of relevance does not theamninsuper-
vised learning aims at recovering features known beforghidnather stresses
the data explorative aspect of this study, not concealingjitistemological
limits.

In the realm of unsupervised learning there is a trade offrtd Between
pure explorative research and automation. Disposingsitrally of no ground
truth, one must be aware that no algorithm will produce such.

Measures when there are
negative eigenvalues

lll-definedness
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Trivial spectra For spectra with a flat negative part, the cut off on the eigkmas required for
embedding may not result in a loss of relevant informatiamcesa flat spec-
trum translates isotropic distributions commonly asseciavith noise. This
is not the case for spectra with a non-trivial negative pduictv could contain
essential information (variance).

Non-trivial spectra On the other hand, for spectra with a steeply falling tails tinterpreta-
tion does no longer hold and usual dimensionality redugtimcedures and
subspace methods retaining only leading eigenvalues arepo a loss of in-
formation. In general, all procedures relying on distanasel cost functions
may suffer the same drawbacks since they will only take imimoant large
variance. In the following section we will discuss non-ivspectra in more
detail.

8. 4.3.

CODING INFORMATION IN THE NEGATIVE
PART OF SPECTRUM.

We will first illustrate the coding ability of negative eigeaiues by a from-
scratch construction of a similarity matrix. We will speakthese construc-
tions about clusters, as prominent representants exptpigriance by a clear
separation.

SIMPLE MODEL .

Consider the following abstract setting: objects, labeled, 2, ... n, pre-
senting two salient features. Suppose that they cluster{int... %} and
% +1,... n} according to the first feature, and inf®, 3,5,... n — 1} and
{2,4,6, ... n} according to the second.
S; and S Let S; andSs; be the similarity matrices corresponding to featurand2
respectively.S; has a block structure; a line structure (gray areas correspond
to high similarities):

Sy = and S; =
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They both will obviously have a clear pronounced structuréhie positive
eigenvalues corresponding to the two clusters defined.

Combining similarity matrices is in no way trivial. Tsuéaal have stud-
ied different mix kernels (“similarity matrices”) in a supésed learning task
(Tsuda et al., 2004). In an unsupervised setting we gegédralle no a priori
idea of how to mix different similarity matrices.

A starting idea could be to pose:

S =aS: +b5,.

The most straight forward way would certainly be= 1 andb = 1 in which
case we expect to recover four clusters when projectingthietéirst few lead-
ing eigenvalues, namely1,3,... 5 —1},{2,4,... $},{5+1,5+3,... n—
1yand{3 +2,5 +4,... n}.

The information extracted from this four-cluster solutloywever is not sat-
isfactory given the initial setting of the problem, sinceeanay not be able to
relate the four clusters to the two coded features, in pddiaf there is no
clear hierarchical structure in the solution.

Interestingly, a recurrent mixing seems to be given by theeca= 1
andb = —1 yielding—save exception—a non-trivial negative spectiing-
ure 4.1, right). This corresponds to a “penalization”$yyof S;.

snapshot

Penalized similarities

The penalized similarities of are thes;; for which (S2);; is large. 1f(S2);;

is small or even zeray;; ~ (S1);, and the similarities remain unpenalized.
From S; and S, we obtain dissimilaritiedD; and D, via some decreasing

function, from which the corresponding covarianc¢gsandC; are computed.
Since(] is positive semi-definite and C5 is negative semi-definite, is

indefinite by the following theorem:

THEOREM4.3.1 (Weyl). Let A, B € M, be Hermitian and let the eigenvalues
Ai(A4), Xi(B) and A(A + B) be arranged in decreasing order. For eakh=
1,2,... nwe have

M (A) + M (B) < M(A+ B) < M\e(A) + M\ (B).
Proof. Horn and Johnson (1995) O

We posed = C; andB = —(C> and make the reasonable assumption that

An(C1) = A1 (—C2) = 0. From the above follows that, (A+B) = A, (C) <

Penalization
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0. Furthermore, excluding the unlikely case= 0 foralli = 1,2, ... n, there
existsk such that\, (C) < 0.

Note that this does not prove that the spectrum actually hasnatrivial
negative spectrum. We can only assess that it has negajimevailues.

Penalized similarities may form a structure on their ownakitby this con-
struction is encoded by the metric violations in the negagigenvalues of’.

The construction of = 5;—S52 may seem somewhat arbitrary, even defying
intuition. However, our concern in this section is to giveid@a how negative
spectra come about, regardless of interpretation. Notealbaconstruction of
S corresponds to the difference of squared Euclidean distaas presented in
the Section 2.5 on pseudo-Euclidean spaces.

In order to foster intuition on negative spectra, the syrtbolodel of a
difference of two similarities may be understood as a sum sifralarity and
a dissimilarity. The information contained in the simitsnvill be encoded by
the positive eigenvalues whereas the information contiméhe dissimilarity
will be encoded in the negative ones.

Conversely, the decomposition of the distances in a psé&iudtidean space
(or some generic, non-metric dissimilarity) into a diffece of squared Eu-
clidean distances may be looked at as a sum of a dissimikamitya similarity,
the roles of the positive and negative eigenvalues now bipyged. The in-
formation contained in the dissimilarity is encoded in tlosipve eigenvalues
and the one contained in the similarity in the negative.

The question on whether the sum of similarities and dissintiés makes
any sense for defining a similarity (or a dissimilarity) ist meell-defined, as
the notion of similarity and dissimilarity both lack a cleart definition. One
rather has to start from the fact, that non-metric dissirtiés do exist. The
penalization model as presented above is one first exptamati

EXAMPLE I.

Letn = 8 and the object grouped according to the scheme descrieethe
8 object cluster like{1,2,3,4} and {5,6, 7,8} in the one feature, and like
{1,3,5,7} and{2, 4,6, 8} in a second.

The similarities might look like follows (the matrices wewbtained by an
artificial from scratch construction):

=N
OO0 LN W
WO
e
COOOL it
R
QUGtO0
DO = =
cooomLIm
OO

OO
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_ 0 1.82 0 210 0 1.28 0 1.12
Sy = . 1. 2 1.

and
0.26 1.24 —0.02 1.58 —1.52 0 —1.74 0
1.24 0.43 1.50 —0.03 0 —1.29 0 —1.45
—0.02 1.50 0.26 1.70 —1.50 0 —1.52 0
S _ 1.58 —0.03 1.70 0.50 0 —1.28 0 —1.12
- —1.52 0 —1.50 0 0.18 1.88 —0.18 1.62
0 —1.29 0 —1.28 1.88 0.23 1.11 0.10
—1.74 0 —1.52 0 —0.18 1.11 0.55 1.54
0 —1.45 0 —1.12 1.62 0.10 1.54 —0.39

From this symmetricS we computeD via d;; = s + sj; — 2s;5, andC via
C= —%DC. The respective spectra are given in Figure 4.2.

Eigenvalues of C
4

Eigenvalues of Cy
vy

Eigenvalues of C

Index of ordered eigenvalues Index of ordered eigenvalues

Figure 4.2. Spectrum af; (left), Cy (middle) andC (right). The spectrum of
C'is non-trivial.

SIMPLE MODEL II.

The second model presented below treats a constructiomdésty encoun-
tered in many fields of data analysis. A simple approach isrgby posing:
(51)ij

T Sy

with the assumption thdtS,);; # Oforall ¢, j = 1,2,... n. Such similarity
scores occur in various image matching algorithms or in teixting via the
min-maxsimilarity, see e.g. Banerjee and Ghosh (2002) or Dagan €t395).

This second model acts similarly as the previous one, i.gédnalization.
The same discussion as the one following Model | holds for &ldd The
quotient of similarities usually is understood as some radiation procedure.
However, considering that the inverse of a similarity maydmked at as a dis-
similarity we now face the interpretation of a similarityaproduct of similar-
ity and dissimilarity. As before, we claim that the questadout its semantic
is ill-defined.

Index of ordered eigenvalues
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EXAMPLE 1.

The same setting as in example | is taken. Consider the foltpaimilarity
matrices:

2.451.38 1.48 1.70 0.18 0.18 0.13 0.15

1.43 2.66 1.60 1.99 0.11 0.14 0.14 0.15

1.42 1.62 2.96 1.86 0.17 0.15 0.12 0.10

S, = 1.74 1.94 1.86 2.76 0.18 0.12 0.13 0.14
1= 0.16 0.15 0.14 0.13 2.54 2.07 1.76 1.75 ’

0.18 0.14 0.17 0.19 2.06 2.68 1.24 1.74

0.15 0.12 0.12 0.19 1.78 1.23 2.87 1.68

0.13 0.19 0.12 0.12 1.80 1.71 1.74 2.55

2.17 0.13 1.43 0.14 1.67 0.20 1.93 0.13

0.10 2.24 0.18 1.96 0.19 1.48 0.17 1.61

1.42 0.11 2.76 0.12 1.60 0.11 1.70 0.13

Sy = 0.16 2.01 0.14 2.24 0.10 1.46 0.16 1.26
2= 1.71 0.18 1.60 0.14 2.38 0.16 1.95 0.14 ’

0.15 1.44 0.13 1.42 0.13 2.46 0.13 1.68

1.89 0.18 1.72 0.19 1.95 0.19 2.28 0.15

0.16 1.64 0.19 1.26 0.13 1.58 0.18 2.96

such that

1.13 10.93 1.03 12.16 0.10 0.89 0.07 1.17
13.79 1.19 9.10 1.02 0.56 0.09 0.83 0.09
1.00 14.95 1.07 15.86 0.10 1.35 0.07 0.76
S = 10.70 0.97 13.65 1.23 1.76 0.08 0.83 0.11
0.09 0.81 0.09 0.92 1.07 13.18 0.90 12.67
1.25 0.10 1.36 0.13 16.24 1.09 9.81 1.04
0.08 0.68 0.07 1.00 0.91 6.43 1.26 10.9
0.82 0.11 0.64 0.10 13.65 1.08 9.70 0.86

[=2]
—

[S28

TheS’s are symmetrized vi& + St and theC’s are computed in the usual way.
The respective spectra are are shown in Figure 4.3. (See¢hasapplication

Eigenvalues of C'

Eigenvalues of Cy

Index of ordered eigenvalues Index of ordered eigenvalues

Figure 4.3. Spectrum of’; (left), Cy (right) ands;; = g;;j (right). The
spectrum of”' is non-trivial.

on USPS handwritten digits for a negative spectrum exptainyethis model.)

SIMPLE MODEL IlI.

The last simple model to explain negative spectra is indiseapproaches in
cognitive psychology to explain human similarity judgnenthich typically
yield non-metric dissimilarities (Thomas and Maresch@B7). We will gen-
eralize them to explain the spectra often encountered srpiuiticular field.
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Let{f1, f2,... fn} be a set of feature vectors. A given data paintan be
decomposed as follows:
T = Z a,(f)fk.
k=1

The squared Euclidean distance betwggandz; therefore reads:
n . . 2
dig = lloi =512 = || 3 (o = ) 1
k=1

However this assumes constant feature-perception, i @nstant mental im-

age with respect to different tasks. In the realm of humaggion this is Feature perception
often not the case, as illustrated by the following well kmowvisual “traps”
(Figure 4.4).

Figure 4.4. Left: What do you see? A small cube in the corn@rrobm or a

large cube with a cubic hole or a small cube sticking with comer on a large

one? Right: What do you see? A young lady or an old woman? linae

to compare this picture to a large set of images of young kdieold women,
the (unwilling) perception switch could induce large iridival weights on the
similarity.

Our perception has several ways to interpret the figuresthwtao give rise
to large deviations of the perceived dissimilarities. Iti@ortant to notice here
that in the realm of human similarity judgments, one may petk of artifact
or erroneous judgments with respect to a Euclidean norm. |dtter seems
rather exceptional in these cases.

A possible way to model different interpretation of a givegeetric object
is to introduce weight§w®, w® ... W@}, w0 € R* forl = 1,2,...d,
affecting the features.

The similarity judgment between objects then depends ompéheeptual
state (weight) the observer is in. Assuming that he be ir stét the distance
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becomes:
n . . 2
dij = ||lzi — z;]|* = H Z (a,(f) - a,(cj))w,(f)ka . (4.3)
k=1

With no further restriction this model yields non-metristdince matricesSee
Example Il for a simple illustration.

In the worst caseéis random, but usually perception-switches can be mod-
eled and becomes some function ¢f, 7). Forl random, non-metricity is an
artifact of sample size, since when averagingdseverp observers the mean
dissimilarity is asymptotically metric ip ({(d) — metric ag — o0): the mean
weight becomes constant for allj equal to the expectation of its distribution.

On the other hand, if we suppose that the functio (¢, j) does not vary
much between observers, then the averaging does not flattémemon-metric
structure induced by the perception-switch.

EXAMPLE Ill.

Consider a weightv(") constant for all feature-vectors, taken to be the unit
vectorsey, in this example. Then Equation 4.3 becomes

n . . 2
dij = (wlij)QH Z (a,(;) o al(cj))ekH _ (Wlij)QHjS _ l’ngv
k=1

where|| - ||2 is the usual unweighted Euclidean norm.

For a simple illustration we take 16 points distributed imtgaussian blobs
(Figure 4.5, left) with squared Euclidean distance giverbyo represent the
objects to compare. Suppose a test person is to pairwisearertigese objects
(which are not points!) to give it a dissimilarity score amet his perception
is strongly affected for the paig, 3), (7,2) and(6, 5) translating in a strong
weighting of these dissimilarities. For the sake of the epl@nwe chose the
weights to bel 50, 70 and220 respectively.

The weights then acts as follows:

d(2,3) = dy(2,3) - 150,
d(7,2) = dy(7,2) - 70,
d(6,5) = dy(6,5) - 220.

The spectrum of the associated centralized pseudo-cacariaatrix is given
in Figure 4.5, right, and exhibits a clear negative spectrum

REMARK. Inapplications we only dispose Sfandnohandy decomposition.
By the preceding explicite construction, it is clear, the hegative eigenvalues
potentially code important information, even when themega®bvious process,
which is responsible for the negative part of these spectra.



4.4. Recovering the informatione 73

13

o
Eigenvalues

76480

x Index of ordered eigenvalues

Figure 4.5. Simple data distribution (left) and spectruns@sated to the
weighted distance matrix.

8. 4.4.

RECOVERING THE INFORMATION CODED BY
THE NEGATIVE PART OF THE SPECTRUM.

There are two simple algorithms to recover the informatioded by the neg-
ative part of the spectrum.

For the first one, we essentially follow the idea of the comisthift em-
bedding by metricizing” through a simple shift, except that we replace the
minimal shift by some offset ¢, (unidimensional constant). Projection fol-
lows like for the leading eigendirections. L&t be a non-squared Euclidean
dissimilarity matrix.

D

Cem—1De

C* with negative eigenvalues
shift

C¢ =C%+coly

spectral decomposition
VAV
3yt
X =A;VE,

with ¢, > |\, (C*)| to have a positive semi-definité and avoid singulari-

ties around the originL is the chosen subspace, given by the retained set of

eigendirections;.

Algorithm



Visualization

Non-metric part of C'

Drawback of this
algorithm

pseudo-Euclidean
approach

Algorithm

Visualization
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Retaining only the first two coordinatek & {v1, v2}) of the obtained vec-
tors corresponds to a projection onto the first two leadiggmiirections. Re-
taining the last two, = {v,,—1, v, }) is a projection onto the last two eigendi-
rections: This corresponds—up to a scaling factor of the ordeg/@f—to a
projection onto directions which corresponds to the nonrim@art of C.

DEFINITION 4.4.1. We define thaon-metricpart of C—or the spectrum the-
reof—to be the eigedirections resp. negative eigenvahgied by the metric
violations of the associatel.

The shifting procedures by the scaling factors tends to ewtrthe differ-
ences between the eigenvalues. In the majority of casesffait is negligible,
especially if the difference of the eigenvalues associtdeithe direction we
project is small. However ik; > )\, (and likewise\,,_; > \,) then the shift
might affect the interpretation of the embedded data, hsira stronger way
than by simply projecting onto the leading positive eigeactions (Mardia,
1978).

To elude this potential drawback, we consider the pseuddidaan ap-
proach, which comes down to taking the absolute value of gative eigen-
values and projecting onto the corresponding eigenvedessSection 2.5).

The algorithm then reads:

D
lC:—%QDQ
C with p positive and; negative eigenvalues
lspectral decomposition
VAV = V|A|z M|A]2V!
X = [AL]2 VY,

whereM is the block matrix consisting of the blocKs,,, —I;xq and0yx
(with s =n —p — q).

The columns ofX;, contain the vectors; in thel-dimensional subspade
At this point L can be very general. However, as for PCA, we will find it sen-
sible to choose a few leading eigendirectiavtich can also include eigendi-
rections associated to the negative part of the spectrum

Retaining only the first two coordinatek & {v1, v2}) of the obtained vec-
tors corresponds to a projection onto the first two leadiggmiirections. Re-
taining the last two X, = {v,,—1, v, }) is a projection onto the last two eigendi-
rections:This corresponds to a projection onto directions relatethi® metric
violations ofD.
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When considering two dimensional embeddings, it is eabibya that there Equivalence of these two
always exists a shift, namety = |\, | + |\,—1], such that the embedding be algorithms for two
identical to the one obtained in the pseudo-Euclidean spgce inversion of dimensional embeddings

the last and second last component (rotatiopyThis result is based on the
simple identities:

An + Co = )\n + |)\TL| + |A77«—1| = |/\77«—1|
)\n—l +Co = )\n + |)\n71| + |)\n71| = |)\n|a

which hold for),, < 0 and)\,,_; < 0 (see Figure 4.6).

Figure 4.6. Schematic repre-
sentation of the equivalence
of the shift procedure and
the embedding into pseudo-
Euclidean space. This equiv-
alence only holds in two di-
mensions. From the figure it is

An-1 evident that the projection are
identical only up to a rotation
An of %
oz
The above algorithms allow to extract the information cotgdhe nega- Consequences

tive eigenvalues induced by metric violations. On may distdeatures ac-
counted for in the negative eigenvalues which are “cut away’ otherwise
neglected—by usual embedding procedures. This is usualyway to go,
since we only dispose of afi for which a priori no obvious decomposition
exists.

INTERPRETING NEGATIVE EIGENSPACES For a positive semi-definit@ the
projections along the leading eigendirections can redudilinterpreted as pro-
jections along the axis of high variances of the data. Fougseovariance
matrices this still holds up to a scaling factor when shétihe spectrum so as
to assure positive semi-definiteness.

For projections onto the negative eigendirections therpméation is not Pseudo-Euclidean space
so straightforward since there is no clear intuition on wheggative vari- revisited
ance” represents. However, the second above presentesttaigoelies on
a pseudo-Euclidean-style decomposition of the embedgiages As we have
seen in the second chapter, the pseudo-Euclidean spactvefieamounts to
two Euclidean spaces one of which has a positive semi-defimiter product
and the other a negative semi-definite inner product. As we Baen in the
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second chapter, an interesting interpretation of the miigt® in a pseudo-Eu-
clidean space is that they can be looked at as a differencpiafed Euclidean
distances from the “positive” and the “negative” space, iy decomposition
R(®9) = RP 4 iRY, so thatd;; = d.; ' — d.; , where thed;; are squared-
Euclidean. This is the rationale behind the first constanctif a non-metrid>
via dij = (Dl — Dg)ij.
The power of this decomposition resides in the fact that #ymative eigen-

values now admit the natural interpretation of variancethefdata projected

onto directions irR?. Thus the variance along, is \/|\.|, the variance along

Un—1 is \/ |/\n—1|: etc.

EXAMPLE | (CONT.).

We project the data according to the above algorithm. As expge we re-

733

62 g

Second component
— %o
(0]
Last component

First component Second last component

Figure 4.7. Projection onto the two leading positive eigieaction (left), pro-
jection onto the two leading negative eigendirectionsH(tjg

cover the variance due to the cluster strucure2, 3,4} and{5, 6,7, 8} in the
positives, the cluster structufé, 3,5, 7} and{2, 4, 6, 8} in the negatives (See
Figure 4.7).

Neglecting the non-metric part would have resulted in theslof the sec-
ond cluster structureFigure 4.8 shows all possible projections onto the direc-
tions given by the components of the eigendecompositiohénpseudo-Eu-
clidean space. The cluster structufds2, 3,4}, {5,6,7,8} and{1,3,5,7},
{2,4, 6,8} are unidimensional and are only recovered by projectiorsing
the first or last index. Of course, other projections are iptessbut we claim
that as the current methods are based on large varianceyiheherently not
be able to capture the cluster struct{ite3, 5,7}, {2, 4,6, 8}.

EXAMPLE Il (CONT.).

We project the data according to the above algorithm. As e&xpge we re-
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Figure 4.8. Exhaustive projections in two dimensions ohtstx 8 possible
subspaces. The rows are a loop ovand give the abscissa, the columns are a
loop over;j and give the ordinate. The first row and first column systeraHyi
separate{1, 2, 3,4} from {5, 6, 7,8} while the last row and last column sys-
tematically separatél, 3,5, 7} from {2, 4, 6,8}. These two cluster structures
are unidimensional. They are not recovered by projectiomsliving other that
the first or last index.

cover the variance due to the cluster strucire2, 3,4} and{5, 6, 7,8} in the
positives, the cluster structufé, 3,5, 7} and{2, 4, 6, 8} in the negatives (See
Figure 4.9).

Neglecting the non-metric part would have resulted in thes lof the second
cluster structure.
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Figure 4.9. Projection onto the two leading positive eigeaction (left), pro-
jection onto the two leading negative eigendirectionsH(jg

EXAMPLE Il (CONT.).

Figure 4.10 shows the recovery of the points from the weijtiistance matrix
yields the same cluster solution in the positive part (left)l no definite struc-
ture in the negative (right). However, we see that the vagdn the negative
corresponds to the points whose mutual distance has beendlst) weighted.

88

Second component
[\V)
&
Last component

6 (63}

First component Second last component

Figure 4.10. Recovery from weighted distance matrix. Riige onto the two
leading positive eigendirection (left), projection onhettwo leading negative
eigendirections (right).

The information contained in the negative part here codeshi® individ-
ual weighting of the (dis)similarity. This also is encouet®, e.g. in pairwise
alignments of proteins, where the length itself of the coragarotein largely
contributes to the score and must be corrected so that the semslates the
genuine, evolutionary distance between the strings.

Note that the projection on the last two components admiipls expla-
nation with models | and Il as well. The individual weightin§ D can be
modeled by the addition t® of a sparse matrix with entries roughly given by
the weighted element dd times its weight factor. This addition translates into
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high similarity in the projection onto the last two compotgen

8. 45.
SUMMARY.

We summarize the procedure and the rationale behind itqseematialia-
gram Figure 4.12).
Consider the following illustrative setting: we have appdé different sizes Apples!
and two colors (Figure 4.11). There are two salient featwsize (geometric)
and color (categorial).

Figure 4.11. Initial data-objects: apples of differentesiand two colors. (The
images were kindly furnished by http://www.marzipanwadd/)

These apples are pairwise compared, either by a computaitaly, a hu- Obtention of D or S
man test subject or any other mechanism. This comparisdtusyaedissimilar-
ity matrix D or a similarity matrixs.

In the later case a problem specific dissimilarity matrixlisained froms.
Typical choices involv®) =1 — S, d;; = si; + 55 — 2545, dij = —log(si;),
dij = — IOg(Sij) or dij = % — 1.

The embedding procedure: fromwe compute the centralized pseudo-co- ~ Computation of ¢!
variance matrixC and we compute its spectruri’c is positive semi-definite
if and only if D is squared Euclidean.

We project the data onto the first two leading eigenvectopda@xing the Projection onto the
variance associated to the first feature (size). Second gjegbithe data onto leading positive and
the last two eigenvectors accounting for the variance ofséheond feature negative eigendirections

(color). This last step is done either by shifting the speatrthus enforcing
the distances to be squared Euclidean, or by going into tbedusEuclidean
space.
The second feature is lost by methods relying exclusivelizigh variance. Feature discovery
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Conversely we propose the exploration of the negative sigeetrum foffea-
ture discovery

@ D=1-S8
Define d..=—1
o <‘7\ o L Pairwise comparison= 5 dissimilarity ij Og(sw)
/ l \ | by some algorithm D

Embedding procedure
C=-1QDQ

Spectrum of C'

Projection

Second component

Index of ordered ev’s

\\ FEigenvalues

Projection via shift
or Pseudo-Euclidian space

Last component: color
= @
% )

Second last component

Figure 4.12. Summarizing diagram. The variance coded bydgative eigen-
values can code for features different in nature than theanted by positive
eigenvalues.
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8. 4.6.

APPLICATIONS.

We will illustrate with three real world problems the impamte of investigat-
ing the negative spectrum for a deeper understanding ofatee d

USPSHANDWRITTEN DIGITS.

The similarity matrix is obtained from binary image matahion the digits The data set
0 and7 of the USPS data set. Digitsand7 have been chosen since they

exhibit clear geometric difference. All images have beemesbaccording to

decreasing sum of pixel value (1 to 256) thus separating dfa digits from

the light ones. Shown in Figure 4.13 are the 25 boldest amddsy for thed’s

and the7’s. A total of 1844 samples have been retained. The images have been

normalized and discretized to have binary pixel valand1.

Figure 4.13. 100 handwritten
digits from the USPS database.
To illustrate how different fea-
tures can be coded by penal-
ization we chose a data set
consisting of two geometrical
shapes, namelg and 7. The
digits with boldest and light-
est stroke weight were chosen,
thereby obtaining categorical
distinction.
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BINARY IMAGE MATCHING . Letr ands denote the label of two images and
srs the score rating mutual similarity.
In the case of binary images,; is a function ofa, b, c andd, wherea counts Score matrix
the number of variables, where both objec@ndr scorel, b the number of
variables, where scoresl ands score9), etc. (see Table 4.1). The counting

Objects Table 4.1. Construction of similarity scores
1 0 for binary data. « to d are counting
1l a b variables that stand for different possibles
Objectr binary pixel-matiching. Thanks to these
0| ¢ d counting variables, a myriad of similarity

scores can be defined.
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variablesa, b, ¢ andd allow to define a variety of similarity scores;. See
e.g. Cox and Cox (2001), Everitt and Rabe-Hesketh (1997 Mat the same
constructions also appears in other fields of taxonomy (Gol@¥1).

We will be interested in th&impsorscore, defined by:

a
min (a + b,a +¢)’

(4.4)

Srs =

The Simpson score for every pair of images yields a simylaniatrix which is
converted to a dissimilarity matrix vid;; = s;; + s;; — 2s;;. The associated
pseudo-covariance matrX exhibits a strongly falling negative spectrum, cor-
responding to highly non-metric data for the chosen sulfd8¢8®S digits (see
Figure 4.14).

Figure 4.14. Spectrum @f°. As ex-
pected there are a couple of leading
eigenvalues indicating large con-
centration of variance. However,
on the other side of the spectrum,
a non-trivial tail of negative eigen-

values of large magnitude indicate :
severe metric violations. Index of ordered eigenvalues

Eigenvalues

Projection onto the eigenvectors associated to the firdirigeeigenvalues
and projection onto the eigenvectors associated to theeigstivalues yield
results of different nature: see Figure 4.15 and Figure.4.16

In each case there is a clear interpretation of the variacmarding to salient
features. The variance in the “positive” eigenvectorsesponds to the geo-
metrical distinction between the shapes of treeand the7’s. In the “nega-
tive” eigenvectors, however, the variance is associatebedeature of stroke
weight.

This interesting feature would have been lost if we had eaethe data by
conventional methods thereby cutting away the negativeqidhe spectrum.

The Simpson score allows for a nice interpretation in terfib@second sim-
ple model presented. If we po§8,),s = a and(S2),s = min (a + b,a + ¢),
srs Simply reads:

o (Sl)rs

ors (52)rs .

Figure 4.17 to Figure 4.19 show the corresponding projesticA subset of
only 100 digits has been used to stress the separation (see Fig®e FHe
figures depict the spectra and recovered point§,0fS; and S respectively.
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Second component

First component: shape

Figure 4.15. Projection onto the first two positive eigerdiions. The first
component separates the geometrical shapksm 7.

The variance along the first principal component separat8 from the7.
For S it separates bold from light. This latter variance is receddn the last
eigendirection of.

Note that the variance corresponding to the second leadgenealue of
C1 (covariance matrix associated £) also corresponds to a separation of
bold vs. light. We have four nicely separated clusters infits¢ two leading
eigenvalues, as obtained by other binary image matchingsco

However, we have to recall that in the generic casedw@aotdispose of a
decomposition of5' so that this information, even though it might exist, is not
available to us. Since we dispose only$ffinding the features associated to
the stroke weight of the digits requires to look at the negatigendirections.

CoMPARISON WITHMDS. Different projections obtained by MDS have been
confronted to our results. The experiments have been dastiewith the pro-
gramXGvi s (Buja et al., 2001) which allows for a variety of MDS cost func
tions. It allows to users to chose between four MDS variaramely between
the Torgerson-Gower inner-product scaling and Kruskalp@ind distance scal-
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W

Last component: stroke weight

Second last component

Figure 4.16. Projection onto the onto the last two negatigerdirections. The
last component separates the stroke weight into light arid.bo
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Figure 4.17. Spectrum of the covariance matrix associateth¢ numerator
S1 (left) and corresponding projection onto the leading twgegidirections.

ing. For each variant, one can choose between metric andnatrie scaling.
Remember that “non-metric” in this context refers to proityndata for which
only the rank order is taken into the account. To avoid canfusve will in-
stead call it “rank-only”.
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Figure 4.18. Spectrum of the covariance matrix associatetie¢ denominator
S (left) and corresponding projection onto the leading twgegidirections.
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Figure 4.19. Spectrum &f and the points recovered for the positive and nega-
tive eigenvalues.

The general Kruskal-Shepard distance scaling for metdtirsg optimizes:
n 2 %
(E” wijdijllTi — 333||)
Sy wigdy) (20 wiglles —=502) )

with w;; = df;, with —4 < r < 4 is a weight factor. Notice that id;; =
||{Ei — {EjH, stres$x1, T, ... {,Cn) =0.

stres$zy, za,. .. Tp,) = (1 — (



L
7
7 7

Second component
\]
=)
(@)
R
\!\E,:%"\l
SSY

First component

Drawbacks of MDS

86 ¢ 4. Feature Discovery

For the default parameter= 1 one obtains a projection separating e
from the7’s, corresponding to the projection along the first leadiiggedirec-
tions. This was to be expected since MDS is a distance bagedthim.

Figure 4.20 shows the result for classical scaling (left) fam Kruskal-Shep-
ard (Krsk/Sh) distance scaling (right). They both seem pmsste quite well
the0’s from the7’s, except in the central region for Krsk/Sh distance scpalin
which also heavily suffers the drawback of initializatianszen on Figure 4.21.
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Figure 4.20. Metric Classic (left), Metric Krsk/Sh distanscaling (right).
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Figure 4.21. Metric Krsk/Sh with three new initializationg/hile the(’s are
globally separated from th&'s except for the central region (see also Fig-
ure 4.20, right) the obtained projections vary a lot from dan#ialization to
the other.

Figure 4.22 also shows two instances of some exotic var@itDS, both
sensible (left) and very hard to interpret (right). Diffetarameters like the
data power and the weight factor have been tried, both foricnabd rank-
only variants XGvi s even implements a rank-only version of classical scaling
which seems to be a contradiction in terms since classiadihgcis geometric
in nature.

The main problem of MDS is that it does not tell the experireemthat to
do. Varying the parameters yields a myriad of projectiorth \htle handy in-
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Figure 4.22. Exotic MDS variants: rank-only classical sogl (left), Metric
Krsk/Sh withD?. Data Power and Minkowski Metric parameters turn out to
be of little importance (right).

terpretation, notwithstanding the problem of local minilsading to different
projections for different initializations (Figure 4.2The intuition is impaired
by the complexity of the cost function so that finding goodj@ctions seems
to be left to chance. MDS still leaves open the issue aboutetrgglection,
whereas our solution is obtained without choosing pararsete

But the main point to retain here, is that whatever choiceavhmeters we
have exploredMDS proves unable to separate the bold digits from the light
ones like in Figure 4.16As before, we claim that this is inherently impossible
with MDS which, as all current distance based methods, takesaccount
large variance.

TEXT-MINING.

We are interested in the semantic structure of nouns andtadje from differ-
ent text sources. In this application we chose two topiaatiyelated sources:
on one hand, Grimm’s Fairy Talgson the other popular science articles about
space exploratich Both sources contributei) documents containing roughly
betweerb00 and1500 words each.

A subset ofl 20 nouns and adjectives has been selected, containing bgth ver
specific and very general terms out of both data sources.

SIMILARITY MEASURE FOR WORDS. We are not interested in the absolute
recurrence of a word, i.e. how many times it occurs withinveegidocument.
We only consider whether a word appears or not in a document.

1Project Gutenberbt t p: / / pr oro. net / pg/
2gcience at  Nasa articleshtt p: // sci ence. nasa. gov/ headl i nes/ news_-
archi ve. htm

The data set



Contingency table

Keyword Semantic
Proximity

Results

88 ¢ 4. Feature Discovery

From a set ofp documents and a choice afkeywords we can construct
a contingency table, by simply indicating whether war@f = 1,2,... n)
appears in documeit (k = 1,2,... p) or not. This yields & x n boolean
matrix X, with zx; = 1 if word i appears in documerit and 0 else (see
Table 4.6).

| Word1l Word2 ---  Wordn
Doc 1 1 0 e 1
Doc 2 1 1 0
Docp 1 0 1

Table 4.2. The contingency tahle indicating whether word appears in doc-
umentk or not. This table does not take into account the frequentywiich
a given word appears.

Let X; denote theth column ofX (associated to word).

We will take theKeyword Semantic Proximigs similarity measure (Rocha
(2001) or Rocha and Bollen (2001) and references thereinichwexpresses
that two words are similar if they often appear together iroautnent. This
similarity is penalized if they individually spread overaage number of docu-
ments:

_ #{documents where woridandword j appeaf
~ #{documents where woridor word j appeay

B DX, 4x,=2
Dixim L+ 2 x o1l = Xk x=2 !

From this similarity measure, we obtain a dissimilarity matia, e.g.d;; =
—log(si;). In Rocha (2001) the author uség = 1/s;; — 1 which is an-
other possible choice. In either case, the resulting ditaiity matrix d is not
squared Euclidean such that the associated (pseudo-mosamatrix exhibits
strong negative eigenvalues (see inset in Figure 4.23).

The data is projected on the first two leading eigenvectotse rEBsult is
given in Figure 4.23.

On the far left we find the words stemming from the popularrsméearti-

cles whereas on the far right (e.g. “nuclear”, “computepghysics” etc.), we
have those from Grimm'’s Fairy Tales (e.g. “castle”, “que€einavens” etc.).
Towards the center they mix with words spreading over bothseurces. The
variance corresponds to the semantic context of the words.

Projection onto the last two eigendirections yields a itigtion over a new

interesting feature. The result is given in Figure 4.24.

Sij

(4.5)
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Figure 4.23. Projection onto the onto the first two eigendli@ens. The first

eigendirection separates the semantic context.

the sources (e.g. “astronauts”, “

We notice that in the upper half we find words of high specifiofteither of

wolf”, ‘witch™” etc.). the lower half we see

an accumulation of words with general, unspecific, meargxgected to be
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Figure 4.24. Projection onto the onto the last two negatigerdirections. The
last eigendirection separates the specificity of the words.
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found in a large variety of documents (e.g. “day”, “worldthing” etc.). Thus
the variance associated to the last eigendirection cayrespto the specificity

of the words.

This feature would have been lost by algorithms not spedifitaking into
account the negative part of the spectrum

Of course the notion of specificity respectively generaititynot absolute
but depends on the underlying data sources. “Day”, “worlttiing” etc. are
general with respect to the Grimm’s Fairy Tales and the NA8iklas.

HUMAN SIMILARITY JUDGMENTS FROM COGNITIVE PSYCHOLOGY

We finally present an example from human similarity judgrsentcognitive
psychology. This will also allow us to illustrate Model Iip@ge 70).

The pairwise dissimilarity data (Table 4.6) is obtainedrirGati and Tver-
sky (1982). The stimuli tested consist b images of flowers having leafs
of varying elongation and stems of increasing size (Figue®y% These two
stimuli were presented to a group of thirty undergraduatdestts from He-
brew University who, individually, evaluated their mutufissimilarity on a
20-point scale. (See Gati and Tversky (1982) for detailsEaiile 4.6 for the

The data set

averaged results.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 7.9 9.5 10.2 3.8 10.7 11.2 11.9 6.7 15.4 15.4 16.4 9 17.7 17.8.7 1
2 0 5.1 7.3 12.6 4.5 7.3 9.8 15.4 7.1 11.9 15 17.7 9.1 13.9 15.8
3 0 5 12.3 9 4.3 7.6 16.3 12.8 7.5 11.1 18.5 14.1 9.3 11.6
4 0 14.9 10.5 7.7 4.2 17.6 15.8 11 6.5 19.1 17.1 12.9 8.8
5 0 106 106 13 43 121 132 149 58 152 164 16.9
6 0 5.7 9.1 13.6 4.9 9.8 13.4 15.9 6.9 12.7 15.1
7 0 5.9 14.4 10.6 4.8 8.2 16.8 12.7 6.8 10.3
8 0 15.7 12.5 8.5 51 18.2 155 9.8 6
9 0 10 12 138 44 121 138 152
10 0 73 106 138 43 84 13
11 0 6.6 14.7 9.3 4.3 8.2
12 0 16.5 12.9 8.1 35
13 0 11.1 115 13.7
14 0 6.8 11.1
15 0 5.8
16 0
Table 4.3. Average ratings for dissimilarity between ptarfthe table is taken
to be symmetric.
We have processed the data according to the presentediafgori
Results

In the positive eigendirections we obtain a very neat reicanson of the
two geometric features, namely the elongation of the leadsthe size of the
stem. There seems to be no tendency to favor one over the ®tresfirst com-
ponent explains the variance in leaf elongation (horizantis), the second the

variance of the stem size (vertical axis).
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Figure 4.25. Images of the flowerpots presented to the tesbpeOn one hand
we have flowerpots with plants of increasing stem size, owtter we have
plants with varying leaf elongation.
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Figure 4.26. Left: Spectrum of the similarity matrix. Middl Projection
onto the leading two positive eigenvalues. Right; pro@tinto the last two
eigendirections.

The projection onto the last two negative eigendirectiactsitets further
information, as shown by Figure 4.26, right. The interpietg however, is
not so straight forward as previously. This is, where featliscovery begins.
Two cluster loosely form, separated by the last eigendoBdiertical axis).
They are{1,2, 5,6,11,12,15,16} and{3,4,7,8,9,10,13,14}. A possible
feature could be the oddness of a plant, such that the firsterhicontains
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the odd plants, and the second the “normal”-ones. Indeedemg:to expect
plants with small leafs to be of small size and plants witlydaleafs to be of
greater size. The odds here are the small plants with laede #nd the large
plants with small leafs. This would correspond to a cated@erception while
judging similarity.

Features like the concept of normality, or expectationnateincommon in
cognitive psychology, e.g. in Navarro and Lee (2002) fezdlike the normal-
ity or familiarity of faces are discussed in the context &f Modified Contrast
Model, along with certainly not easily graspable featuiks telationships in
parenthood. While the authors focus on common and distmdétiatures and
distinguish between conceptual and perceptual featunesinterpretation of
the discovered features remains—as in our three applitati@s a second in-
dependent step in data analysis.

MODELING THE FLOWERPOT EXPERIMENT We model the flowerpot exper-
iment according to Model 1l (page 70) by starting from a wnih distribution
of 16 points in three dimensions. The feature vectfitsk = 1,2,3 were
chosen to be the unit vectars = (1,0, 0) etc.

The weight vectors are obtained by fitting tideuristically to the exper-
imental dissimilarity by minimization of the mean over thi&atence of all
matrix elements.

We obtain a good model fit for six weight vectof&s.3,0,0), (0, 3.5,0),
(4.7,4.7,4.7), (6.4,6.4,0), (0,3.4,3.4), (3.1,0,3.1)}. See Figure 4.27.

In other words, following the semantics of the third modedganted, one
can explain the results of the obtained dissimilaritiesikysrceptual states of
the observer. These seem to outnumber the actually obstrardes (in the
two dimensional representations) which are three in nuiftbetwo geometric
features in the positives and the categorial one in the ivegat However,
we must keep in mind that one may reduce the number of requiegghts
to approximatel by a deeper knowledge of the initial feature presentation,
including its dimensionality. We have taken a uniform disition in three
dimensions for lack of this precise knowledge.

§.4.7.

DISCUSSION.

This chapter studies the potential of relevant informabiemg coded specifi-
cally by the non-metric part of the spectrum of a pseudo-Gaxae matrix.

Summary
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Figure 4.27. Left: Spectrum associated to the model. Middié right: Pre-
diction of flowerpot experiment.

To the best of the authors knowledge this issue has never dunnessed,
maybe partly because of the underlying ill-definednesssairitsupervised as-
pect and the difficulty of problems related to the eigenvalectrum.

We have first chosen a conceptual approach to metric vioktémd then
done an explorative research to show that the negative pim spectruntan
code for interesting variance. The stress is on “can” antefesting”. As a
matter of fact, every direction associated to some eigergatodes for some-
thing. The lesson here is that whatever relevant informatie look for about
a data set, it should not only be sought for in the few leadiggradirections.

We can not assess that for all spectra like Figure 4.1 (ritfye is relevant
structure coded by the negative eigenvalues, since one begh a situation of
e.g. some fancy noise. This study rather is an incentivertbéusystematically
study non-trivial spectra of pairwise data.

Beside this explorative research which heavily relies cemgxes, we tried
to gain some insight on how these spectra come about: patiatihy subtrac-
tion or division, individual scaling of dissimilarities lperception-switches or
algorithmic artifacts.

These models explain simple situations where one specitarfe is coded
in the non-metric part of the spectrum.

In more complex settings, like they arise in human simiajudgments it
becomes quite hazardous to speak of a definite number ofésatfiwe com-
pare for instance the images of different faces in ordertimase their similar-
ity, we face a virtually infinite number of features. Thislig#s, where feature
discovery begins.

In order not to deceive expectations, it must be stresseg] ket this is a
highly non-trivial task in the majority of problems. Thus w#en encounter
situations where we are utterly incapable of giving any g#@sneaning to
the distribution of the points along the directions asgeddo the negative
eigenvalues. It is here where the difficult second stejmiafrpretationhas to
setin.
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§.4.8.

CONCLUSION.

Pairwise data in empirical sciences typically violatesnogy, either due to
noise, fallible estimates, or due to intrinsic non-metaatfires, such as they
arise for human judgments. Non-metricity translates tefimite pseudo-co-
variance matrices which precludes the usual processing.

So far the problem of non-metric pairwise data has beeneddby cutting
away the negative eigenvalues or shifting the spectrum subsequent (Ker-
nel-) PCA analysis. However, little to none attention hasrbgaid to the neg-
ative part of the spectrum itself. In particular no answes wien to whether
the directions associated to the negative eigenvaluestcalh @de variance
other than noise related.

We have shown that the negative eigenvalcascode for relevant struc-
ture in the data, thus leading to the discovery of new featundich were
lost by common techniques. Three models explain the occareinon-trivial
negative spectra and show that relevant information canoded by metric
violations. The significance of the negative eigenvalues lastrated on sev-
eral real world applications, namely USPS handwrittentdjgext-mining and
human similarity judgments.






5. TOWARDS STRUCTURE
LEARNING

In this chapter we will go a first step towards automated stinecdiscovery
in non-metric pairwise data. A simple algorithm call8thbility Component
Analysisis developed to detect stable and potentially interestingcgure. It

can be applied to non-metric pairwise data and succes&iiacts the struc-
ture coded by non-metricity which can hide, as we have sedmeiprevious
chapter, further information about the data.

§.5.1.
INTRODUCTION.

Visualization is part of “human learning”. This is the reationale behind
projection onto subspaces of dimension2 or 3. In the previous chapter,
visualization allowed us to understand how metric violasican code for use-
ful information. In visualization, one often learns by lbaaspection of the
correlations. Structure is often recognized by our ingelice on the specific
field, by a priori knowledge on the data set rather than byrabstoncepts.
A biologist, for example, can learn much from a two dimenaiafata cloud
which may hardly be distinguished from a gaussian blob. Hlaak at local
correlations and relate unknown data points to their nesghban expert fash-
ion that machines have yet to equal. Far reaching data etjgarthus seems
rather hindered by strong model assumptions. Howeverailiimation requires
the choice of a subspace which critically determines therpretation. For
general problems, there are many candidate projectionthehthe subspace
be obtained by PCA or MDS (see for example Figure 4.8). Welaeefore
looking for a way toautomaticallyselect interesting directions.

We claim: let the machines learn! Only with their help are wtedo e.qg.
quantify results and rigorously asses their quality. Thimes at the price of
model assumptions, the first of which being a definition afctuire.

Structure is an ill-defined concept, intuitive on the firstgise, all but self-
explanatory on the second. We therefore are confrontedhibasiproblems
as in unsupervised learning and will never obtain sensigdalts unless we

97

Visualization

Let the machines learn!
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sacrifice generality to achievability, which usually is aden of modesty.

Based on the simple idea of stability analysis (see Roth. €2@02)) as in-
trinsic cluster validation, we will define structure as nmally stable cluster
solutions. This allows us to elude hefty model assumptiarspducing on
the other hand a dependence on the clustering algorithm. ei#awthis de-
pendence is not accidental, it rather reflects a de facttiorldetween the
structure and our way to perceive it (clustering algorithm)

These considerations will quickly lead us to a simple abtami first pro-
posed in Laub et al. (2004) which we will henceforth &tihbility Component
Analysis(SCA). It will be illustrated by a small toy example and an kiggtion
to USPS handwritten digits.

§.5.2.
STABILITY COMPONENT ANALYSIS.

Projections onto the leading negative eigendirectiongwsed to visually in-
spect the relevance of the structure coded by non-metrithlg now go an
important step further beyond visualization towards a tjtetive analysis of
the relevance of negative eigendirections by automayidaitecting, i.e. learn-
ing structure.

The first step towards structure learning is to define a ladsxthat is min-
imized by the structure that we are interested in. As we dexiifely most
interested in grouping the pairwise data imt@roups, we need to focus on
stablen-modal clustering solutions.

Resampling stability has been shown to be a good criterisasaing the
quality of a solution in unsupervised learning, see RotH.2802) and Mei-
necke et al. (2002). Let us only consider= 2, i.e. the stability index of
bimodal clustering solutions. Note that the stability inikea particular choice
of a projection index for projection pursuit (Huber, 1988§,it basically mea-
sures the probability of confusing the two estimated chsstén the view of
this instability index, interesting directions are thugied to be thesigendi-
rectionsthat allow a stable bimodal clustering solution in the cspending
subspace. The rationale for choosing eigendirectionsaistttey do not de-
pend on parameters, which means that there is no furtherlrselgetion step
required.

Let us first consider only the stability of individual direwnts, under the
strong assumption that one-dimensional subspaces areieniffto discover
interesting structure.
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ALGORITHM. The following algorithm computes the subspace of maximal

bimodal stability. LetD be some dissimilarity matrix and I&f be the column
matrix of the data projection onto a pseudo-Euclidean sfmeesubsection on
page 28).

1. Compute the bimodal stability for every columnXfaccording to Roth
et al. (2002).

2. Sort the instability index.

3. Choose the directions of maximal stability (minimal aistity index)
with respect to some threshold.

This yields the subspace of maximal bimodal stability infeafits directions.
This algorithm can be interpreted as stability componeatyais, hence its
name, since it sorts the components according to their dsitrg stability as
opposed to, say, decreasing variance with PCA.
We will now discuss how this algorithm can be used to asaegtiicture
coded by non-metricity as well as distinguish between suslructure and
non-metricity as artifact of noise.

DETECTING STRUCTURE CODED BY METRIC VIOLATIONS

One of the goals in studying the information coded by nonFritigt is to dis-
criminate between “interesting” information from intringion-metric data and
artifacts due to non-metricity induced by noise. Stabitimponent analysis
is used to systematically evaluate the stability of bimidalong the eigendi-
rections. For the purpose of visualization it is useful tat $loe eigenvectors
according to increasing values (e.g. like in Figure 4.1). tlm assumption
that stable structure is likely to be found in the directiohkigh variance, the
expected curves of the instability index are given in Figbfe(note that high
stability means a low value of the instability index).

Structure due to intrinsic non-metricity will reflect in oar like in Fig-
ure 5.1, right, whereas non-metricity as mere artifact aseavill translate
into a stability curves like in Figure 5.1, left; providedhtithe spectrum has
been sorted as in Figure 4.1.

EXAMPLE: STRUCTURE VS NOISE

We present a small toy example that highlights the diffeesngetween in-
herent non-metricity and non-metricity caused by noiseo fiwn-metric data
matrices are constructed. The second data set containarastilecture in the
negative eigenspace, whereas in the first data set noneiteisi an artifact
of noise. Figure 5.2 shows the spectrum of the associatagdpseovariance

Elementary stability
component analysis

Discriminate between
metric violations of
different nature

Illustration
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Instability index
Instability index

Index of ordered eigenvalues Index or ordered eigenvalues

Figure 5.1. Instability indices for sorted eigenspectraftt noise, right: struc-
ture.

matrix C' and the visualization of the data by projection onto the ilegg@os-
itive and negative eigendirections as indicated in theiptes/chapter. On the
left are the figures corresponding to the first data set, omidin, the figures
corresponding to the second data set (intrinsic non-nigtricl he fourth row
of Figure 5.2 shows the result obtained by SCA. In the firsecée insta-
bility index exhibits a shape like in the left panel of Figld (superposed in
light gray), indicating no presence of interesting infotima specifically coded
by non-metricity. In the second case, we obtain a curve amtd that in the
right panel of Figure 5.1, indicating the relevant struetisr the positiveand
negativepart of the spectrum.

This small example illustrates the relevance of negatiyeradirections when
non-metricity is an intrinsic property of the data. Afterleedding the non-
metric data into a pseudo-Euclidean space SCA effectivedyeaitomatically
selects the leading eigendirections based on the statyiltgrion.

8.5.3.
APPLICATION.

To illustrate our procedure of structure learning in northepairwise data
with a real world example we obtain non-metric pairwise deden the USPS
handwritten digits data set previously used.

The similarity matrix is obtained from binary image matdahion the digits
0 and7 of the USPS data set. Digitsand7 have been chosen since they
exhibit clear geometric difference. All images have beemesbaccording to
decreasing sum of pixel value (1 to 256) thus separating ¢t digits from
the light ones. A total 000 samples have been retained. The images have
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Eigenvalues
Eigenvalues

Index or ordered eigenvalues Index of ordered eigenvalues

A A

Second component

Second component

v

v

First component First component

Last component
Last component

Second last component Second last component

A

(In-)Stability index

(In-)Stability index

-

g

Index of ordered components Index of ordered components

Figure 5.2. Left: Pairwise data where non-metricity is artifact of noise.
Right: Pairwise data with intrinsic non-metricity.

been normalized and discretized to have binary pixel valuasd1. Binary
image matching is performed and the Simpson score (Equé&tdicomputed.
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The Simpson score for every pair of images yields a simylaniatrix which
is converted to a dissimilarity matrix vid; = s;; + s;; — 2s;5. The associ-
ated pseudo-covariance matéixexhibits a strongly falling negative spectrum,
corresponding to highly non-metric data (see Figure 5ghtyi

g
77%077‘9@ 8

Second component
e 5=
© =)
-2}
=
Last component

First component Second last component

Figure 5.3. Visualization of the USPS data. The light digits in gray. The
leading positive eigendirection separates thg from the7’s (left) while the
leading negative eigendirection separates the bold digits the light ones
(right).

The data (a random subset of 100 digits) is visualized adogtd the proce-
dure of Section 4.4. The information reflected in the leaglingitive eigendi-
rections corresponds to the geometric distinctiord’sfand 7's (Figure 5.3,
left). The information reflected in the leading negativeegidirections corre-
sponds to the categorical distinction of the bold and thet lifigits (Figure 5.3,
right).

g A A
e
= n
— [<5)
I= =
E & . A163 As0
»n 5 198
= 5
= 199
i
~—
Index of ordered components Chosen eigendirections

Figure 5.4. The instability index for bimodality as functiof the ordered com-
ponents (left) and the five chosen directions (right).

Note that in Figure 5.3 the second leading eigendirectioisan informa-
tive one (as will be seen by the chosen directions). The sirecelated to the
separation betwedrs and7’s is contained in the leading eigendirection alone,
the second being only good for the purpose of visualization.
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SCA s used on the embedded data to search for stable divechayure 5.4, Results
left, shows the instability index. While the shape is not e@npunced as in
Figure 5.1, right, it is yet clearly visible. The five mostldtaeigendirections
are:
[199, 1,198,163, 50].

Figure 5.4, right, shows the chosen eigendirection. Natrashingly, the lead-
ing eigendirection) is among the chosen stable directions. As is shown by
Figure 5.3, left, this corresponds to the geometric sejmaraf the0'’s and the
7’s. The majority of machine learning algorithms will detdiuis structure.

The interesting new structure can be learned from the negeigjenspace.
It corresponds to the leading negative eigendirecti®®sand199. Figure 5.3,
right, shows that this indeed makes sense: the two last @iiggtions separate
the bold digits from the light ones.

Note that the last eigendirection is r2fX0 since the embedding of anx n
matrix is of dimensiom — 1. In the matrix X, we can exclude the empty
direction where the coordinates are zero for all vectors.

Our procedure further illustrates the fact that directiasith high variance
are not automatically stable directions. The second lggéiigenvalues is not
informative in the sense of stability, as is well seen in FégB.3, left. On
the other hand, the algorithm selects two unexpected drestnamelyl 63
and50. These directions contain stable structure which canneglséy inter-
preted as for the leading positive and negative stable digestions and we
are tempted to label them as outlier due to the non negligiaimnce of the
instability index. As a matter of fact, these directions acelonger chosen
when one departs from the assumption of unidimensionalég ¢iscussion in
the following section).

8. 5.4.
DISCUSSION.

The presented stability component analysis admits a nuofbeatural exten- Generalization of SCA
sions which we will briefly discuss here.
The presented “basic version” of SCA considers the bimotiddility in
unidimensional subspaces. Itis capable to find structurehwgreviously went
unnoticed, since the information contained in the non-imetrt of the data is
not accounted for by the usual machine learning techniques.
A natural extension is to explore subspaces, say, pairsextitins to project
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on and calculate the instability index for thesex n — 1 ordered pairs. For
adjacent eigendirections in the sense of an ordering gikeiirl Figure 4.1 one
obtains the curve for the instability index in Figure 5.5.

Figure 5.5. Instability index for bi-
modality for adjacent eigendirections
(USPS data set). The structure discov-
ered in the positive and negative sub-
spaces is more pronounced than for
the unidimensional subspaces, which
shows that the assumption on unidi-
mensionality is abusive.

Obviously the stability “on both ends” is much more proncechas for the
unidimensional case (Figure 5.4, left), which speaks iorfaf this more com-
plex evaluation of the stability.

In its most general version, SCA would operatel @fimensional subspaces
and compute @-modal stability (i.e.k-means withk = p). However, for
subspaces of more than one dimensions, one easily runsantputational
problems because of the exponential number of possible icatitns.

§.5.5.
CONCLUSION.

We have presentedeimpleautomated structure learning approach to assess
relevant structure coded by non-metricity. It allows toawal structure ne-
glected by most exploratory learning algorithms.

This chapter shows that automated structure learning caaag»problem
relevant structure in the negative eigenspace which icassd to the structure
coded by metric violations.

The structure learning algorithm proceeds by defining amirah the prin-
ciple components obtained after embedding of the non-mptirwise data
into a pseudo-Euclidean space.



6. CONCLUSION

We have studied in this thesis several issues related tonedrie pairwise data,
i.e. pairwise proximity data which, when formulated as ididlarities, violate
the requirements of a metric function. Our interest focusaith on the nature
of these violations and their consequences for subseqatamdalysis. This
both theoretical and empirical study yielded important iresights in the rela-
tionship between vectorial and pairwise representatidreveonsidered from
a structural rather than geometrical point of view and inrtteehanisms which
are responsible for metric violations and which must be amed an integral
part of the problem rather than an accidental perturbation.

There are two main data types in intelligent data analysisely the vectorial
and the pairwise data. Only small subsets of these two dptesentations are
mutually equivalent. In order to make pairwise data avédlab the powerful
data analytical tools developed for the vectorial repreg@m, they are em-
bedded into a vector space, be it at the price of possiblgldistortion. Two
question naturally arose: can we find embeddings withotidisn? What are
the losses incurred when forcefully embedding pairwisa.dat

The first question has been answered. While it is not postitderbed non-
metric pairwise data when considering geometric distortithas been shown
that is still possible to find a set of vectors such thatdtnectureis conserved.
This is a great step forward since it associates repregamtatd interpretation
and shows that for a specific class of clustering algorithregwo data types
coincide in as much they yield the same interpretationcluestering results.

While traditional techniques proceed in two independespistfirst embed-
ding then clustering, by optimizing two unrelated cost fiots, the frame-
work of Constant Shift Embedding shows that we really musistter these
as one and that, by doing so, we obtain optimal embeddings.

The second question was answered by showing that metriaticiok can
carry valuable information about the data set. They canadderm a structure
on their own which is encoded, from an Euclidean point of viewhe negative
part of the eigenspectrum of the associated pseudo-cocariaatrix. While
several authors allude to the danger of forcefully embeglgairwise data, this
study is the first one to show why.

Several simple models for non-metric pairwise data have lpgesented.
They allow for a deeper understanding of the processes tigdrlie metric
violations and foster the intuition the experts needs wiaemf such data. It
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The issue: non-metric
pairwise data

Unification of vectorial
and pairwise
representation for a
certain class of cost
function based learning
algorithms

Understanding the
semantics of metric
violations
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has been shown how to extract the information coded by metniations.
The relevance of this information and the models have b&estriated by three
worked through applications.

Chapter 4 on feature discovery, after visually appreaigtire information
coded by metric violations, raised the question whetheretias a possible
automation of this task. General variance interpretatémuires great a priori
knowledge which the experimenter may not have. In orderiliqosofit from
possible information coded by non-metricity a simple aidpon called Stabil-
ity Component Analysis was developed. It was shown to effibjevork on
artificial and real world data.

This thesis is not an exhaustive treatment of non-metrioqisé data and it
does not solve all problems related to them. But it certaialy contributed its
due part to their demystification. It allowed to cast a défer mathematically
well funded look on metric violations and their consequance



A. APPENDIX: BEYOND
EIGENVALUES

In this appendix we briefly present an outlook on ongoing wamld possible
future research directions. In particular we have a brieklat measures of
non-metricity relying on a direct measurement of metridations rather than
the spectrum of a pseudo-covariance matrix.

8 ALl
INTRODUCTION.

In this thesis non-metricity has been investigated as imglpon-Euclidean-
ness and thus preventing the pairwise data to be embeddbd irbtquitous
Euclidean spaces. However, Euclideanness is a strong piension data,
and one might extend the understanding of non-metricityotoes “weaker”
spaces.

Furthermore, our approach to understanding the metriatitis passed
through the computation of the spectrum of the associateddzscovariance
matrix. We would like to present here a more direct way of appnding the
violation of triangle inequality.

If the pairwise data is metric it can obviously be represgntea metric
space. This might not be helpful if one wishes to visualizedhta, but it may
be of some theoretic implication. Recall the definition otrieedissimilarities.
As our major concern is Equation 2.7, we will, for sake of digify, assume
that Equation 2.4 to Equation 2.6 be fulfilled. In the follogiwe will only be
concerned with the triangle inequality. We will introdugestdirect measures
for its violations and discuss and illustrate a few of theoperties.
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8. A2

MEASURING TRIANGLE INEQUALITY
VIOLATIONS.

Let D = (d;;) be a symmetric dissimilarity matrix. (Note that we require¢o
be symmetric in order to have real spectra.)
Define thecounting matrixI” = (¢;;) to be

T simply counts the violations of the triangle inequalitycdin be easily shown
thatT" is positive, symmetric and reflective, so tHatan itself be interpreted
as some sort of—usually non-metric—dissimilarity matiaxd thatl” = 0
(ie.t;; = Oforalli,j = 1,2,...n) if and only if D satisfies the triangle
inequality. T' is a non-linear non-injective function d®» whose support is the
set of D violating at least once the triangle inequality.

T is sensitive to small perturbatio?(D + ¢) # T(D) + e. Thus, noise
corrupted data might yield positive counts for minor metimation. Usually
these counts will not exceetland thus be still different from large metric
deviation which cause large counts.

Define theabsolute amplitude matri® = (p;;) to be

- (D) = kI:nlaXn (|dij —dir — dkj|) if dir + dij < dij
0 else

The amplitude matrixP contains the maximal absolute deviations from the
triangle inequality.

P satisfies the same proprietiesiaand can also be interpreted as some sort
of dissimilarity matrix. P is not scale invariant sinc&(A\D) = AP(D). The
absolute amplitude of the non-metricity does depend onrttrnsic scale of
the data. HoweverP(D + ¢) ~ P(D) + ¢, so the influence of noise is not
beyond its own scale, as opposedto

Note thatT’ = 0 if and only if P = 0. This follows from the elementary
property ofl” and P to be zero if and only ifD satisfies the triangle inequality.

SinceT and P can be regarded at as dissimilarities, the same embedding
procedure as foD can be applied t@” and P as described in Section 4.4 of
the previous chapter.
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THE USPSDATA SET REVISITED.

To illustrate howI” and P work, we again visit a now well-known data set, lllustration
namely the data set consisting b#0 USPS digitsO and 7, bold and light.

The dissimilarity matrix is computed via the Simpson scoteis given in

Figure A.1, left. The counting matrik and amplitude matri¥’ are calculated

for this D (Figure A.1, middle and right).

Figure A.1. Distance matrix for the set ®90 USPS digit®) and 7, bold and
light (left). In the middle, the corresponding counting matl’ and on the
right P. Note the striking resemblance of their structure.

We immediately notice their striking resemblance. By mepglunting the
number of triangle inequality violations we get a dissimilamatrix with a
very similar structure. The same holds for the amplituderxaf his shows
that indeedhe violations of the triangle inequality are entirely stture deter-
mining.
In that sense, botfi" and P allow us to have a direct look at the violation Interpretation
induced structure. When the metric violations are due teaand are not in-
trinsic, this will automatically be reflected ifi and P. Figure A.2 shows an

Figure A.2. Distance matrix for four artificially generatetusters (left). In
the middle, the corresponding counting matfixand on the rightP. T still
somewhat resembld3 because of its sensitivity to noise, whifecan not be
related toD.

artificial data set of four clusters corrupted by some randoise.T" is sensi-
tive to noise and thus still keeps track of its origin, evesutigh the resemblance
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is not as strong as in the previous example for intrinsicadig-metric data. It
is P which shows the real difference, sinéehas no resemblance at all with
D which shows that the metric violations &f are not structure determining.
In order to further investigate hoWi and P capture structure by simply mea-
suring the metric violations we recall that both can be imteted themselves
as dissimilarity matrices and can receive proper treatniggtrre A.3 and Fig-
ure A.4 show the spectrum of the associated pseudo-coeariaatrix and the
projection of the data on the leading positive and negaiyerwalues.

g6 7 - |4 0 0 0
5] o) .
g 7 09 & @00 o) W
3 7 % g, Gl 0
)
3 ( g - 7 7
30 o | E| Y
2 7
S ol
N > P
First component Second last component
Figure A.3. Spectrum and projections wh&nis considered a dissimilarity
matrix.
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Index of ordered eigenvalues

First component

Second last component

Figure A.4. Spectrum and projections whéhis considered a dissimilarity
matrix.

Both forT and P the leading eigendirections separates bold from lights Thi
is not astonishing, since this is what the matrices measiueenetric violations
induced by the encoding of this feature. Interestingly,dbparation of) and
7 are (roughly) found in the leading negative eigendirectiich shows that
these similarities now act as penalization. In a certaisasgihey are the metric
violations of the measured metric violations!
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8. A3.

DECOMPOSITION OFD INTO A METRIC AND A
NON-METRIC PART.

We have seen in the previous chapter that different sirtylan dissimilarity Yet another look at

can be combined by subtraction or division to yield a nonrimé?. non-metricity
Here we want to briefly consider the converse approach, givexed D,

find a an additive or multiplication decomposition of thesilisilarity matrix

into a metric (possible Euclidean) and non-metric part.
The problem of the additive decomposition—which is not weig—into a Possible solutions

metric partM and a non-metric pardV can by solved e.g. by the constant

shift procedurel/ = D + N whereN = 2, (C)(ee! — I), C = —1QDQ,

e = (1,1,... 1) and\,(C) is the smallest eigenvalue 6f. MDS solves the

same problem by minimizing D — M || for some norm|| - ||. Yet another

way is to iteratively subtract’ or P until all metric requirements are met.

However, the author could not prove that this could be dorefinite number

of steps. Usually metricity is achieved within one or twadtitions. The results

of this procedure which we will not formalize more is showrFigure A.5 to

Figure A.7.

THREE LITTLE EXAMPLES REVISITED

Recall the three little examples I, 1l and Il given respeely on pages 68,
70, and 72. The dissimilarities were computed and decontplmgé@eratively
subtractindl”. We thus recover a metric matrix’ and are left with an non-
metric N.

D M N

Figure A.5. Decompostion d from small example I. The block structure and
the line structure are recovered.

Figure A.6 nicely shows the recovery from the block and limecture which
were put into it by the from scratch construction. Figure éxhibits the same
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% n R

D

Figure A.6. Decompostion d from small example II. The block structure and
the line structure are recovered.

el

Figure A.7. Decompostion d? from small example lll. The weighted distances
are recovered in the non-metric pa.

structure but it is less visible. Figure A.7 permits to vigethe “outliers” due
to the weighted measurements. These decompositions aaagtter way to
analyze and visualize metric violations.

8. A4,
CONCLUSION.

This outlook presented some new considerations on noriepatirwise data.
The previously adopted point of view which focuses on violatof Eucli-
deanness and negative spectra was abandoned in favor okeagereric one,
measuring directly the metric violations, namely the nundred severeness
of triangle inequality violation. These two measures wlustrated and were
proved to be able to capture the essence of non-metric [3&ihata.
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