High Resolution Soft X-ray
Fourier Transform Holography

vorgelegt von
Jan Geilhufe, M. Sc.
aus Freiberg (Sachsen)

Von der Fakultat II — Mathematik und Naturwissenschaften
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Mario Dahne
1. Gutachter: Prof. Dr. Stefan Eisebitt
2. Gutachter: Prof. Dr. Thomas Wilhein

Tag der wissenschaftlichen Aussprache: 24. November 2014

Berlin 2015

D83






To my wife, O Teemane yame! Ke a leboga. Pula!






Abstract

Fourier transform holography is a coherent, lensless imaging method. In the most common
soft X-ray implementation of Fourier transform holography, the source of the phase
encoding reference beam is a small pinhole which is integrated into a metal film adjacent to
an object aperture that defines the field-of-view. By illuminating this integrated mask with
coherent X-rays, a hologram can be recorded in the far-field. The reconstruction of the exit
wave in the object aperture is retrieved by Fourier transforming the hologram. While this
configuration is very robust against sample drifts and vibrations, the efficiency is limited
by the reference pinhole. Smaller reference pinholes improve the resolution whereas the
reference signal on the detector and ultimately the image contrast in the reconstruction
diminishes. The choice of the reference pinhole size is therefore a compromise that trades
image resolution for photon efficiency.

The first part of this thesis contains a theoretical discussion of the imaging properties
for X-ray Fourier transform holography (FTH) and derives a model for the determination
of reasonable pinhole diameters that ensure photon efficient imaging. Typical imaging
artifacts are characterized and strategies for their prevention are discussed. Two of
these strategies can additionally be utilized to enhance the spatial resolution for certain
configurations of reference pinhole based FTH. The findings are successfully verified by a
proof-of-principle experiment.

The second part presents a new approach that replaces the reference pinhole by a
Fresnel zone plate lens (FZP). The method drastically enhances the signal strength of
the reference beam and effectively decouples the spatial resolution in the reconstruction
from image contrast. Related to the FZP diffraction orders, the method yields several
differently strong defocused reconstructions which superpose along the beam axis. The FZP
diffraction efficiency is much improved by combining several focal order reconstructions
which are individually refocused by numeric wave field propagation. To separate a focused
reconstruction of a particular FZP focal order from the remaining defocused reconstructions,
a novel algorithm is proposed. The superiority of the FZP based reconstruction over the
conventional pinhole reconstruction is experimentally demonstrated.

The extraction of depth information from three-dimensional specimen imaged by con-
ventional FTH with pinhole references is discussed and experimentally demonstrated in
the third part. The approach exploits the holographically encoded phase information from
a hologram of an artificial three-dimensional test structure. Object features outside the
depth-of-field are numerically refocused by propagating the reconstructed object wave
along the beam axis into focus. Contrary to tomographic approaches, a three-dimensional
model of the test structure is obtained from a single view measurement.






Zusammenfassung

Fourier-Transformationsholographie ist eine linsenlose Abbildungsmethode, die sich aus-
gezeichnet fiir Experimente mit kohdrenten Rontgenstrahlen eignet. Eine gebréduchliche
Implementierung von Fourier-Transformationsholographie fiir kohérente Rontgenstrahlung
(FTH) baut auf einem integrierten Maskendesign auf. Dabei maskiert ein absorbierender
Metallfilm die Objektebene. Ein kleines Pinhole in dieser Maske dient als Quelle fiir den
Referenzstrahl. Das Bildfeld ist durch eine Objektapertur definiert, die auf der Maske neben
dem Referenzpinhole integriert wird. Das Hologramm entsteht durch Interferenz zwischen
Objekt- und Referenzwelle und wird durch einen Detektor im Fernfeld aufgenommen.
Aufgrund dieses integrierten Maskendesigns reagiert FTH auflerordentlich tolerant auf
Vibrationen und Verschiebungen der Probe relativ zum Strahl. Ein Nachteil dieser Konfi-
guration ist jedoch, dass die GroBe des Referenzpinholes die Photoneneffizienz limitiert.
Kleine Referenzdurchmesser verbessern einerseits die Auflosung, schwéchen jedoch auch
das Referenzsignal und verschlechtern dadurch den Bildkontrast in der Rekonstruktion. Die
Wahl der Referenzlochgréfie erfolgt daher oftmals als Kompromiss indem die gewtinschten
Auflosung gegen die erforderlichen Photoneneffizienz abgewogen wird.

Im ersten Teil dieser Arbeit geht es um die Charakterisierung von FTH Systemen mit
Pinholereferenzen. Dabei wird die theoretisch mdgliche Abbildungsleistung in Abhén-
gigkeit von verschieden FTH Designparametern diskutiert. Mit den Erkenntnissen aus
dieser Diskussion wird ein Ansatz zur Bestimmung einer idealen Referenzlochgrofie fiir
FTH Experimente abgeleitet. Ein weiterer Schwerpunkt dieses Teils der Arbeit ist die
Charakterisierung von fiir bestimmte FTH Konfigurationen typische Bildartefakte sowie
deren Beseitigung. Abgesehen von der Beseitigung der Bildartefakte, erméglichen zwei
der vorgestellten Strategien dabei eine Erhéhung der rdumlichen Auflésung in der Rekon-
struktion. Die Erkenntnisse aus diesem Abschnitt konnten durch ein FTH Experiment mit
koharenter Rontgenstrahlung bestatigt werden.

Der zweite Teil der Arbeit beschéaftigt sich mit einer neuen Methode zur Effizienzstei-
gerung von FTH. Bei dieser Methode wird sowohl die Photoneneffizienz, als auch die
theoretisch erreichbare, rdumliche Auflésung erhoht, indem anstatt eines Pinholes eine
Fresnel Zonenplatte (FZP) als Quelle fiir den Referenzstrahl genutzt wird. Abgesehen von
der erhohten Effizienz, hat diese Methode den Vorteil, dass die rdumlichen Auflésung in
der Rekonstruktion unabhéngig vom Bildkontrast ist. Im Gegensatz zum konventionellen
Ansatz mit Pinholereferenzen, liefert dieses Verfahren fiir jede FZP Beugungsordnung
eine Rekonstruktion. Diese Rekonstruktionen sind verschieden stark defokussiert und
iiberlagern sich auf der Strahlachse. Die Effizienz der verwendeten FZP-Referenz kann
weiterhin gesteigert werden, indem mehrere Rekonstruktionen von verschieden Bergungs-



ordnungen kombiniert werden. Dazu kénnen die Rekonstruktion der verschiedenen FZP
Ordnung individuell refokussiert werden, indem die rekonstruierte Objektwelle numerisch
entlang der Strahlachse propagiert wird. Der fokussierte Anteil wird dabei durch einen
neuartigen Ansatz vom defokussierten Anteil der iibrigen Beugungsordnungen getrennt.
Die gesteigerte Effizienz der FZP Referenz gegeniiber dem konventionellen Referenzpinhole
konnte experimentell verifiziert werden.

Ein dritter Schwerpunkt der Arbeit ist die Extraktion von Tiefeninformationen von
konventionellen Fourier-Transformationhologrammen dreidimensionaler Testobjekte. Der
experimentell gezeigte Ansatz nutzt die holographisch encodierten Phaseninformationen,
um die rekonstruierte Objektwelle numerisch entlang der Strahlachse zu propagieren.
Anteile der Probe die aulerhalb des Schérfentiefebereichs liegen werden so refokussiert.
Auf diese Art kann das Testobjekt vermessen und dreidimensional dargestellt werden. Im
Gegensatz zu tomographischen Verfahren werden dabei die Tiefeninformationen der Probe
aus einer einzigen Perspektive gewonnen.
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1 Introduction and motivation

The development of scientific theories that formed the present understanding of our world,
considerably relied on microscopic imaging. Simple microscopes used as early as in the
17" century were nothing more than magnifying glasses (cf. van Leeuwenhoek microscope)
which already reached magnifications of 270 and led to fundamental insights such as the
discovery of the red blood cells [Bur0O1]. Since then, microscopy evolved into numerous
techniques, utilizing not only photons as a probe but also atomic forces, electrons or even
neutrons. Modern microscopes are capable to resolve single atoms and to give insight into
ultra-fast processes at nanometer resolution. Furthermore, present day microscopy can be
used to visualize magnetic fields or to map distributions of elements or molecules.

Conventional light microscopy in the visible spectrum relies on refractive lenses and
the resolution limit is in the order of the wavelength of the illumination light. In this
spectral region, the photon energies are resonant to the valance electron transitions. In
order to perform element specific experiments, it is necessary to increase the photon
energy to probe the core electrons with higher binding energies. The spectral band of
electromagnetic radiation that covers primary atomic resonances of numerous elements
extends from extreme ultraviolet (EUV) radiation (30eV) to soft X-rays (~ 4keV). Photons
within this energy band provide accurate means for element specific experiments such as
magnetic imaging or elemental and chemical identification for instance. Furthermore, the
wavelength in this spectral region is much decreased compared to the visible spectrum,
facilitating significantly higher resolution limits. On the other side, the large number
of atomic resonances lead to short absorption lengths in condensed matter of typically
around one micrometer or less. Experiments relying on the EUV /soft-X-ray spectrum of
photon energies are therefore performed in an evacuated environment. Additionally, the
materials refractive index for these energies is close to unity and significant refraction can
not be obtained within one absorption length [Att07].

For this reason, microscopy with soft X-rays can not rely on refractive lenses to form
real spaces images. At EUV energies, image formation is oftentimes provided by curved
reflective, multilayer optics. Common soft X-ray microscopes however, rely on circular
diffraction gratings called Fresnel zone plate (FZP). Soft X-ray microscopy with FZPs
is a powerful method that yields high quality images with record resolution and strong
contrast over a large field of view. The measurement can be evaluated instantaneously as
the real space image is directly retrieved from the detector and does not necessitate further
processing [Att07]. While lens based techniques have pioneered soft X-ray microscopy, the
application of FZPs has also disadvantages for some applications.

The fabrication of state of the art FZPs is very challenging and the implementation
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into the experiment is mechanically difficult due to short FZP focal lengths. State of the
art FZPs have focal lengths of only a few hundred micro meter [Chal2] and need to be
positioned in close proximity of the object. The positioning of the FZP relative to the
object needs to be very accurate and robust in order to avoid motion blur caused by drifts
or vibrations. Access to the sample is much restricted and it is difficult to implement
special sample environments such as cryostats, heaters or magnetic fields in the experiment.
Also for time resolved studies, FZP based imaging methods are often disadvantageous.
Apart from the fact that it is very difficult to reach the sample with an optical pump
laser, time resolved experiments are often performed at free-electron laser (FEL) facilities
in a diffract-before-destruct approach [ChaO6a; Seil0]. Such experiments utilize a very
bright, ultra-short and destructive X-ray pulse to capture the diffraction pattern just
before destruction takes place. This is possible since the destruction of the sample by
the illumination pulse occurs at timescales much longer than the time the scattered light
wave is propagating to the detector. For common lens based, soft X-ray microscopes, such
experiments bear the risk that the illumination pulse destroys not only the sample but
also the FZP.

Imaging of nanoscopic structures and their dynamic behavior on ever shorter timescales
is an emerging research area of multidisciplinary importance. For such experiments, the
application of FZPs is impractical or even impossible and lensless approaches are an
alternative. X-ray Fourier transform holography (FTH) is a lensless imaging technique
that attracted much attention in recent years [Eis04]. The method found its application
mainly in the research of magnetic nano-structures [Giin08; Giin10; Hau08; Pfall] but
also of biological specimen [Gue09; GuelO; Guel2; Mar(08]. In FTH, the interference
pattern of the scattered wave field from the sample and an additional reference wave
is directly recorded on a two-dimensional detector. The reference wave that encodes
the phase information originates from a small aperture that is fabricated into an X-ray
opaque metal film, next to an object aperture defining the field of view. The image is
reconstructed by a Fourier transform of the recorded hologram. The main advantages of
the method lie in the easy implementation without the need for dedicated instrumentation
and in the simple, robust and unambiguous image reconstruction process. In contrast
to lens-based microscopy, information on the complex wave field leaving the sample is
recorded, i.e., the reconstruction contains both amplitude and phase information. FTH
enables a vast amount of empty space around the sample suitable for the realization
of various sample environments and in particular the possibility of optical pump-probe
experiments. Contrary to lens based imaging methods which are ideally diffraction limited,
resolution in soft X-ray FTH is usually set by the lateral extent of the reference pinhole.
Most common resolution criteria however, were developed for diffraction limited systems
and are not directly applicable to FTH.

One objective of this thesis is to provide a frame work to calculate the resolving power
of FTH experiments and to derive suggestions for optimized FTH setups. The drawback
of FTH with pinhole references is the low photon efficiency. The interference signal that
encodes the object wave field on the detector is typically limited by the number of photons
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coherently scattered by the reference structure. Small reference pinholes as desired for
high-resolutions therefore adversely affect the efficiency of FTH. Improving the efficiency
of FTH by utilizing a novel mask design is another key aspect of this thesis. A third major
topic is the exploitation of the holographically recorded phase information in FTH, to
extract depth information from three-dimensional specimen.

1.1 Structure

A short review of the FTH imaging method is given subsequently to this introduction in
chapter 2. In addition to the generalized FTH imaging theory, this chapter describes how
FTH is implemented for soft X-rays.

Theoretical resolution limits of X-ray FTH with pinhole references are investigated and
discussed in chapter 3. This chapter contains a closer examination of the X-ray FTH
imaging properties and identifies some aspects that fundamentally differ from conventional
diffraction limited systems. Two-point resolution limits are developed for reference and
diffraction limited soft X-ray FTH systems. This chapter also yields new insights about
how to optimize the experimental FTH design and introduces methods that improve the
image quality of typical reference-limited holograms. The chapter closes by presenting
results of a proof-of-principle resolution test experiment.

In chapter 4, a new method which drastically improves the efficiency of high resolution X-
ray Fourier transform holography while retaining the mechanical stability is described. The
approach generates an out-of-focus reconstruction which is refocused post-experimentally
by numerical wavefield propagation.

The extraction of depth information from a conventional soft X-ray Fourier transform
hologram is described in chapter 5. For the experiment, the hologram of an artificial
three-dimensional test specimen with dedicated nanometer and micrometer scale features
is recorded. Contrary to tomographic approaches, the method relies on just one hologram
view and can thus be utilized for single shot experiments. Depth information is extracted
from the object by numerically propagating the reconstructed wave fronts emerging from
particular object features into focus.

A summary of the results from chapter 3-4 is provided in chapter 6. This chapter also
gives an outlook for future FTH experiments.

Sections of this thesis including figures that have been published at peer reviewed
journals are marked at the end with the following identifiers:

1 J. Geilhufe, B. Pfau, M. Schneider, F. Biittner, C. M. Giinther, S. Werner, S.
Schaffert, E. Guehrs, S. Frommel, M. Klaui & S. Eisebitt, Monolithic Focussed
Reference Beam X-ray Holography, Nat. Comm. 5, 3008 (2014).

t J. Geilhufe, C. Tieg, B. Pfau, C. M. Giinther, E. Guehrs, S. Schaffert, & S. Eisebitt,
Extracting depth information of 3-dimensional structures from a single-view X-ray
Fourier-transform hologram, Optics Express 22, 24959 (2014)
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Minor modifications such as changes to the format of text and figures as well as small
adaptions of the text such as stylistic improvements or adjustments to the current context
may have been performed without further notice.



2 X-ray Fourier transform holography

Holography is a lensless imaging method which was first proposed by Denise Gabor in
1948 [Gab48]. In this context, the term lensless refers to the image forming objective lens.
Instead of a real space image of the object wave’s intensity as delivered by conventional
lens based systems, a holographic wavefront reconstruction yields the entire (greek, holos;
whole) object wave information, i.e., amplitude and phase. The reconstructed object wave
can be utilized to retrieve three-dimensional object information or phase contrast images
of weakly scattering specimen.

Since image formation for soft X-rays cannot rely on refraction, the prospect of a lensless
imaging method is a major motivation to use holographic approaches. For common lens
based systems, the objective lens works as a Fourier transformer which accepts the complex
wave information scattered by the specimen in the far field. The result is a real space
image which is either directly recorded on a detector or serves as an intermediate image for
subsequent optics such as an ocular for instance. The quantity recorded by the detector is
the light field’s intensity. Intensity however represents the squared modulus of the light
field and the measurement is incomplete as it lacks the phase information. As long as
the object wave is recorded in real space, this circumstance is not very tragic since the
intensity image is oftentimes sufficient.

If the intensity of the diffraction pattern is however recorded in reciprocal space, the
object’s real space image can not be retrieved by a Fourier transform. In order to obtain a
real space image of the object, the availability of the phase information in the diffraction
pattern is essential. In holography, the diffraction pattern’s phase information is exploited
in two distinct operations: a recording or detection step, and a reconstruction step.
In the first step, the diffracted object wave’s intensity pattern is directly recorded in
the far field. In order to retain the complete objects wave’s complex information, the
phase needs to be converted into an intensity variation. Therefore, the object wave is
coherently superposed with a well defined reference wave. The phase information is thereby
interferometically encoded into the diffraction pattern. If such an inference pattern is
recorded on a holographic film, the object wave field can be reconstructed in the second step
by re-illuminating the hologram with the reference wave. For holograms that are recorded
with electronic detectors such as a charge-coupled device (CCD), the reconstruction is
obtained computationally. [Goo96]

Since it was first proposed, holography evolved into numerous techniques with different
constraints and capabilities. One technique that is particularly well suited for microscopic
X-ray imaging is Fourier transform holography. In the following, basic principles of X-ray
Fourier transform holography are reviewed and typical setups are discussed.
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2.1 X-ray Fourier transform holography image formation

The lensless Fourier transform holography method applies primary to transparency objects
and was first demonstrated by George W. Stroke [Str65] for coherent illumination light in
the visible spectrum. The reference beam is provided by a lens which produces a focal
spot representing the point reference in the object plane. The object and the focusing lens
are coherently illuminated by a far away point source. The wave scattered by the object
interferes with the reference wave and the diffraction pattern is recorded in the far field
(Fig 2.1).

point object detector
source plane plane
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zf lens Zo
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Figure 2.1: Schematic representation of the original Fourier transform holography setup as
proposed by G. W. Stroke. The reference wave is focused in the object plane. The interference
pattern of object wave and reference wave is recorded in the far field.

In general, Fourier transform holography necessitates a reference structure in the object
plane (r = [z;y]). In its simplest implementation, this reference structure is a point
reference which is separated from the object by ro = [xo;yo]. For the transmission
functions of an object o(r) and a reference pinhole h(r — r¢), the hologram which is
recorded as the intensity distribution in the far field can be described as follows:

I(fr) = |Flh(r — 70)] + Flo(r)][?
= F[h(r — ro) + o(r)|F[h(r — ro) + o(r)]*
= [H(f2)? +0(F)? + O(fr) H(fr)e'Frme)
+ O(fr) H(fr)e”"Urmo), (2.1)

where capital letters correspond to the wave fields in reciprocal space and f, = [f; f,] are
the corresponding frequency coordinates. The complex conjugation is indicated by *. The
first two terms of Eq. 2.1 are the intensities of the object and the reference waves whereas
the last two terms represent the object wave field which is modulated by the reference
wave.

If such a interference pattern is recorded on holographic film, the object wavefront can
be reconstructed by utilizing a plane wave which is focused by a Fourier transforming lens
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after transmission through the hologram [Str65]. For electronically recorded holograms,

the Fourier transform is done numerically. The reconstruction of the hologram can be
described by:

FHI(fr)] = o(r) ® o (=r) + h(r) @ r* (=)
+o(r) @ h*(r 4+ 7o) + 0*(—7) @ h(r — 7o), (2.2)

where ® indicates the convolution operation. Eq. 2.2 can be simplified by applying
shifting theorem and by expressing the convolution of a function with its mirror by the
auto-correlation:

FHIL(£r)] = o(r) % o(r) + h(r) * h(r)
+o(r +79) @ h(r) + 0" (—r — ro) ® h(r), (2.3)

where * denotes the correlation operation. The last two conjugated terms of Eq. 2.3
describe the reconstructions as a convolution of the transmission functions of reference
and object. For a object diameter d,,; and separation distance |rg| > 1.5do;, the two
redundant reconstructions are spatially separated from the central auto-correlation in the
reconstruction.

dobj
|<—> x T
K
Yy o Yy
r0 Yo —70
o*xo+T*xT _ /
; o® h* @
D
xo

(a) (b)

Figure 2.2: Object plane in Fourier transform holography and holographic reconstruction.
(a) In order to obtain a focused reconstruction, the reference source (h) is a small spot in the
object plane. (b) The reconstruction yields central auto-correlations of object and reference
as well as two redundant, conjugated reconstructions. In order to assure that the central
auto-correlation does not overlap with the desired reconstructions, the point reference needs
to be sufficiently separated from the object

For the experimental layout, the distance z, defines the system’s opening angle a ~
asin(dy/(2z,)) in Fourier transform holography, where dg is the detector diameter. As
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further discussed in chapter 3, the opening angle affects the imaging properties in Fourier
transform holography. Furthermore, the distance z, has not only to consider the size
of the detector but also the detector’s resolution. In this context, the resolution of the
detector needs to be sufficient to sample the phase encoding high frequency modulation
P = 2oA/|To| in the hologram. This frequency is related to |r,| which represents the largest
spatial separation in the mask plane.

The choice of zy needs to assure that the illumination with a point source of diameter
ds yields approximately plane waves in the object plane. Most importantly, the spatial
coherence length ljans = 2y A/ (2mdy) [Att07] is required to cover reference optics as well
as object.

2.2 Focussed reference X-ray Fourier transform holography

The X-ray implementation of Fourier transform holography was first demonstrated by
Ian Mc. Nulty in 1992 [McN92]. The refractive lens that produces the point reference
by generating a focal spot in the object plane is replaced by a FZP. One benefit of this
configuration is that the object can be illuminated through the FZP. This is possible
as diffractive optics share the property that a significant proportion of the incident flux
transverses them without changing the propagation direction. The illumination of the
object with this undiffracted light (the FZP’s zero order) is beneficial as location and
size of the focusing FZP is not directly restricted by |r|. Apart from this detail, the
experimental setup is virtually identical with the setup for visible light as proposed by
George W. Stroke.

In the following, design and imaging properties of FZPs are briefly reviewed. Subse-
quently, characteristics of the X-ray Fourier transform holography setup with FZPs are
discussed.

2.2.1 Fresnel zone plate lenses

The FZP is effectively a rotationally symmetric transmission grating with grating periods
that decrease for larger radii. For X-ray optics, the FZP usually has a binary profile, i.e.,
a rectangular profile that ideally shows lines and spaces of equal width. The numerical
aperture (NA) of a FZP is set by the outermost zone width Ar:

A

NA=—. 2.4
2Ar (2.4)
Therefore, the focal spot diameter dy is directly connected to Ar:
1.22)
df = =22 — 2.44Ar (2.5)

NA
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For a FZP with focal length f, the radius 7, for the n** zone can be calculated by

2)\2
ri:n)\f+n4 . (2.6)

The second term of Eq. 2.6 represents spherical aberrations and can be neglected for small
NAs with f > nA/2 [Att07]. Due to the small diffraction angles for high photon energies,
X-ray FZPs cannot be fabricated with a Ar that allows for large NA’s as known from
refractive lenses in the visible spectrum. For this reason, NAs for X-ray FZPs remain
relatively small and Eq. 2.6 can be simplified to:

T = VnAf. (2.7)

Focusing light by relying on diffraction causes several implications. Most importantly, the
FZP has several diffraction orders. Contrary to refractive lenses that either disperse the
light or focus it, a FZP acts like a focusing lens and a dispersing lens simultaneously. This
effect is attributed to the negative and positive diffraction orders. Additionally, the FZP
has several focal lengths fi/m originating from the rectangularly shaped zones and the
corresponding orders m. For ideal FZPs where subsequent opaque and transparent zones
have an equal width, even diffraction orders m cancel at focus. The diffraction efficiency
for the remaining m considering an ideal FZP is given by:

N = 21 5 Vm odd and 179 =0.25 for m =0. (2.8)
m2m

A large fraction of the light incident on the FZP transmits the FZP thus undisturbed

while only a factor of 11 ~ 0.1 is focused into a particular first order focus. Compared to

refractive lenses, FZP are thus much less efficient. The theoretical diffraction efficiency

represents the optimum for ideal binary zone plates where the transparent zones do not

absorb any light and the opaque zones fully block the beam [Att07].

The diameter of a FZP with a total amount of IV zones is given by D = 4N Ar. The
first order focal length dependent on the diameter is f; = DAr/A. Typical X-ray imaging
FZPs with N = 100 therefore have diameters of a few pm and hence short focal lengths
(contrary to their small NA) [Att07]. For high resolution X-ray imaging, the FZP needs to
be placed very close to the specimen. High resolution X-ray imaging with FZPs is thus
mechanically challenging.

Another disadvantage is that FZPs are strongly chromatic. FZPs utilized for imaging
applications with an illumination light of broad spectral bandwidth yields thus a poor
image quality. For such applications, the illumination light needs to be monochromatized.
For Fourier transform holography with coherent illumination light of narrow spectral
bandwidth, chromatic aberrations are however irrelevant [Att07].
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2.2.2 Focussed reference X-ray Fourier transform holography setup

By producing a strongly focused point reference in the object plane, the object wave is
amplified as the reconstructed contribution of the diffraction pattern is the modulation
of reference and object wave (Eq. 2.1). In real space, this amplification turns out as the
convolution of the object transmission function with a spot that is much more intense
than the object (Eq. 2.3).

Since the resolution in Fourier transform holography is defined by the size of the point
reference, the reference wave needs to be focused by a FZP with small Ar. Due to the
corresponding small focal length, the FZP needs to be positioned in close proximity to the
object. The separation of reference source and object potentially causes relative drift and
vibration between both elements. The spatial resolution might thus be degraded by motion
blur. Stability of the setup is thus of considerable importance [McN92]. Additionally,
modern X-ray sources such as FELs and high harmonic generation (HHG) sources that
deliver fs pulses, typically feature a very low pointing stability. This leads to focal spot
locations that vary from shot to shot. For exposures over many shots, the moving reference
leads to resolution degradation similar to motion blur [Mall3].

beamline reference object detector
focus FzP plane plane
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Figure 2.3: Schematic representation of a Fourier transform holography experiment. The
mask is coherently illuminated monochromatic light. A reference wave originates from a small
pinhole fabricated into the mask. The interference pattern of object and reference wave is
recorded in the far field.

2.3 Monolithic reference X-ray Fourier transform holography

The image quality of X-ray Fourier transform holography was much improved by utilizing
an approach that monolithically couples the reference source to the object. The object
is placed in an aperture that is produced into a X-ray opaque metal film and defines
the field of view. Instead from a FZP focal spot, the point reference originates from a
small pinhole that is generated adjacent to the object. This integrated mask design which
was first proposed by Stefan Eisebitt in 2004 [Eis04] has triggered an avalanche of X-ray
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holography experiments, in particular with applications in the field of nanomagnetism
[Biit13; Giinl0; Pfall; Still; Wan12] and bio-imaging [Gue09; Guel0; Guel2; Mar08]. In
the following, the abbreviation FTH specifically refers to this integrated mask soft X-ray
implementation of Fourier transform holography.

Due to the fixed relation between the reference wave source and the object, the method
is inherently insensitive against drift, vibration and pointing instabilities of the source. In
addition, the integrated mask design enables a vast amount of empty space around the
sample for the realization of various sample environments, in particular the possibility of
pump-probe experiments.
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Figure 2.4: Schematic representation of a FTH experiment with an integrated mask. The
mask is coherently illuminated with X-rays. A reference wave originates from a small pinhole
fabricated into the mask. The interference pattern of object and reference wave is recorded in
the far field.

The drawback of point-like apertures generating reference waves is the entanglement of
spatial resolution and contrast in the reconstruction. If the reference diameter is decreased,
the resolution limit will scale linearly with the reference size while the reference signal
strength, and ultimately the image contrast, is reduced quadratically. A high-resolution
FTH imaging experiment is therefore commonly designed as a compromise between the
desired resolution and the required reference signal. As long as the reference signal exceeds
the detector’s noise level, the decrease in flux through an ever smaller reference could in
principle be accounted for by extending exposure times up to a certain practical limit.
However, resolution limits as reported for Fresnel zone plate (FZP)-based X-ray microscopy
[Chal2] have not been achieved for FTH using reference pinholes with high aspect ratio
up to now.ft

The maximum diffraction angle recorded by the detector is determined by the detector
size and the distance of the detector from the holographic mask, i.e., the distance z,.
Due to the trade off between flux and spatial resolution, a reasonable choice of the FTH
system’s opening angle considers the diameter of the reference pinhole. A reasonable
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configuration of the F'TH system’s parameters for optimal resolution is discussed in chapter
3.

2.4 Numeric wave field propagation

Due to the Hygens-Fresnel principle, the knowledge of the object’s wave complex amplitude
in a certain reconstruction plane allows to anticipate how the wave is advancing along
the optical axis. In FTH, it is therefore possible to obtain a focused reconstruction by
utilizing a point reference that is not located in the object plane. From the physics
perspective, the hologram can be thought to represent the object’s transmission function
that is decomposed into amplitude and phase of elementary plane waves. Dependent on
their scattering angle, all plane waves are mapped to points in the hologram, i.e., on the
recording medium in the far field. Upon reconstruction, the plane waves are recomposed
in proper phase relation. An elementary plane wave can be described by:

Py, z) = elherthoythez), (2.9)

where k = [ky; ky; k.] is the wave-vector [Pag06]. For our discussion, let z be the optical
axis while the zy plane is the initial reconstruction plane containing the reference point.

With k., = /|k[* — k2 — k2, Eq. 2.9 can be written as:

() = elbserh)giske _ itk gisy/E-FEF, (2.10)

The first factor of Eq. (2.10) describes the plane wave recorded on the hologram for
z = 0. The second factor is called free-space propagator [Pag06]. In order to calculate
the particular, elementary wave front at any distance z from the reference plane, the
corresponding point in the hologram needs to be multiplied by this phase factor. In order
to retrieve the whole reconstruction after propagation to z, the free space propagator can
be applied point by point to the entire hologram. The object wave field at distance z
is obtained by recomposing all elementary waves with their new phase factor by Fourier
transforming the modified hologram. In the real space, the object wave front reconstruction
retrieved by such a calculation, however, assumes that the propagated distance is free of
disturbances. Strongly absorbing features within the propagation distance or a propagation
through a medium with real valued, inhomogeneous refractive index, will lead to deviations
from the predictions via free space propagation. An error evaluation for applications in
the water-window is provided in chapter 5.1.1.



3 Spatial resolution in X-ray Fourier transform
holography

The spatial resolution of an imaging system is one of the most important performance
figures when determining whether or not the system is appropriate to investigate a certain
specimen of interest. Generally, the resolving power of imaging systems is fundamentally
limited by a lower boundary. This phenomenon was first described by Ernst Abbe in 1873.
Abbe investigated the resolution limit of a full field optical microscope by imaging line
gratings under coherent illumination with monochromatic light of wavelength A. In order
to resolve a line grating with spatial period p, which is illuminated by a far away point
source located on the optical axis (central illumination or collinear illumination), the
microscope’s entrance pupil needs to be sufficiently large to collect not only the gratings
zero diffraction order but also at least the grating’s first orders [Abb73].

The first diffraction orders appear at an angle o = arcsin(A/p) to the optical axis and a
grating enclosed in a medium of refractive index n can be resolved for microscopes with
numerical apertures NA > \/p. Here, the numerical aperture is defined as NA= nsina. For
a given opening angle, the microscopes resolving power can be improved if the illumination
light contains rays that do not originate from the optical axis (oblique illumnination).
For such off-axis rays, the image formation relies on the collection of just one of the first
diffraction orders besides the central zero order. In practice, such an off-axis illumination
is achieved by using a condenser lens to illuminate the specimen. For aberration free
microscopes and a condenser lens with a numerical aperture equal or larger than the
numerical aperture of the objective lens, the ideal resolution limit is thus doubled compared
to the central illumination type. The smallest feature size (dang) that ideally can be resolved

by a diffraction limited imaging system ,i.e., the angular resolution limit, is therefore
determined by [Abb73]:

A A
2n sin(a)  2NA’ (3.1)

dang =

Nearly perfect imaging systems that fulfill relation (3.1) are said to be diffraction limited.
Only in special cases it is possible to accomplish a resolution beyond the diffraction
limit. Approaches to break the diffraction barrier include methods based on non-uniform
illumination types [Gus05; Hel94; Sch03] or near field detection of the specimen diffraction
pattern [Amb56].

Lens based systems that do not reach the diffraction limit are usually regarded as devia-
tions from the theoretical ideal with degraded resolution caused by imaging aberrations.

13
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The most common criteria for resolution limits were developed for diffraction limited
imaging systems with circular entrance pupils, due to the overwhelming abundance of such
systems. In the case of X-ray FTH however, the resolution is often limited by the reference
pinhole and not by the system’s opening angle [Eis04]. One purpose of this chapter is
to discuss the applicability of the resolution theory of conventional diffraction limited
lens-based systems for FTH. Therefore, the image formation of diffraction limited systems
is briefly reviewed. Subsequently, important aspects are adapted to the FTH system
and the effects of the reference limitation on the image quality are discussed. From the
insights of this discussion, theoretical FTH resolution limits are defined and suggestions
for optimized FTH experiments with pinhole references are derived.

3.1 Image formation for diffraction limited systems

The resolving capabilities of diffraction limited imaging systems depend on the question of
how the information on the object’s spatial frequencies are processed and transferred into
the image. The modification of the input spatial frequencies induced by an imaging system
can conveniently be modeled by the linear systems formalism as described in Ref. [Goo96]
and as briefly summarized here. This formalism is later used to develop a description of
the image formation in FTH (Chap. 3.4).

In the following, a generalized imaging system is briefly reviewed and the terminology
necessary for the system’s characterization in the Fourier formalism is introduced. For
instance, a single magnifying lens is a good representative for a simple imaging system. The
maximum diffraction angle accepted by such a system is defined by the lens’s numerical
aperture. The system thus accepts diffraction angles up to the corresponding NA by an
amplitude transmission that is non-zero. Depending on the lens properties, incident waves
with diffraction angles accepted by the system might be transferred into the image with
amplitude and/or phase distortions.

The complex valued pupil function P describes how the lens affects amplitude and
phase of the incoming wave dependent on the position in the entrance pupil. The pupil
function P can thus be evaluated by probing the lens point-by-point with the corresponding
diffraction angles or equivalently, by the associated spatial periods in the object plane. Due
to the system’s property of linearity, such an evaluation can be done more conveniently by
utilizing a point-like input signal with a wide and uniform spatial frequency spectrum. In
Fourier theory, such an impulse signal is represented by the Dirac delta function (0). The
Fourier transform of a d-like object is constant and the system’s response to that input is
called point-spread function (PSF).

An unknown linear and space-invariant imaging system S can thoroughly be characterized
by utilizing a d-pulse as input and by analyzing the impulse response, i.e., the system’s
PSF. In this context, the unknown system can be understood as a black box. The
response of a system to an arbitrary input is then expressed in terms of the responses
to elementary functions into which the input can be decomposed. Depending on the
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illumination conditions — coherent or incoherent — the system’s linear quantity is either
the electric field amplitude (U) or the intensity (/) of the output signal. The linear system
is called space-invariant, if the response to a point-like input signal does not change in
shape but only in location as the input signal moves within the object field.

yoA yiA
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Figure 3.1: Generalized imaging system illuminated from the left side. The object g, is
given by the transmission function in the object plane. The system accepts only the fraction
of the objects diffraction pattern that lies within the system’s finite entrance pupil P. The
frequency distribution of the image g; is thus low pass filtered, i.e., the image is blurred

With the notations given in Fig. 3.1, the response (g;) of a linear and space-invariant
imaging system in the image plane to an arbitrary input g, is filtered by the system’s P
in the system’s entrance pupil. If g, is a unit impulse ¢ located at z, =z, y, = ., in the
object plane, the image g; produced by S defines the system’s impulse response h:

hw: = x5, v = vo) = S{0(wo — 26,50 — Yo) }- (3-2)

The image ¢;(xi, yi) of more complex objects produced by a space-invariant linear system is
the convolution of the image predicted by geometrical optics, g, (), y)) with the elementary
function h:

—+o00
gi(zi, yi) = // 9ol yo) (i — 2, yi — yb) daldy, = h @ g (3.3)
—00

For diffraction limited systems, the PSF represents therefore a low-pass filtered point signal
and A is therefore entirely described by the shape of the low-pass filter P. Both h and P
define the imaging system equivalently and can be converted into each other. Instead of P
which is a function of the location in the entrance pupil, it is more convenient to express
the transmission of amplitude and phase in terms of the object’s spatial frequencies f,
and f,. The resulting function is known as the system’s transfer function. The relation
between h, P and the system’s transfer function depends thereby on the spatial coherence
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of the illumination light.

3.1.1 Coherent illumination

Under coherent illumination, the diffraction limited system is linear in amplitude and the
transfer function is also called amplitude transfer function (H). All primary waves that
are originating from a coherent light source have a fixed phase relation which results in
a combined superpositioned secondary plane wavefront. Also the waves that illuminate
the imaging system’s entrance pupil after diffraction by the object, are well defined and
constant over time. For a J-like object on the optical axis, the far field distribution
within the imaging system’s entrance pupil under coherent illumination is thus the Fourier
transform of the (centered) d-function, i.e., a plane wave with constant phase. Therefore, H
resembles the pupil function P with a constant field within the entrance pupil and zero field
outside. Due to the plane-wave illumination, also extended objects result in time-constant
wave fronts incident to the system’s entrance pupil in the far field. The image intensity
I; for coherent illumination is given by the squared modulus of the convolution of the
amplitude image predicted by geometric optics U, with h:

I = |h® Uyl (3.4)

The amplitude transfer function H can be expressed as the Fourier transform of the
system’s impulse response h:

H(fas fy) = FIhGoi, )] = - POifo \ay), (3.5)

where f, and f, are the spatial frequencies in the object plane and A is a constant
amplitude. By applying the autocorrelation theorem and denoting the autocorrelation by
*, the impact of H on the image intensity frequency spectrum can be expressed by:

F{L} = HGy » HG,, (3.6)

where G, represents the spatial frequency spectrum of the object’s transmission function.
To conclude, for coherent illumination, the input frequency spectrum Gy is affected by
a point-by-point multiplication with H in the frequency domain. For an aberration free
and diffraction limited imaging system, the frequency components within the system’s
passband are not distorted, neither in phase nor in amplitude (see also Fig. 3.2).

3.1.2 Incoherent illumination

The incoherently illuminated system is linear in intensity and the image is given by:

I = | ® |Ug . (3.7)
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While the coherent H is a scaled image of P, the incoherent transfer function () is given
by the scaled autocorrelation of P:

Fllh(@i, yi) 2] = P(Azifa, Azify) * P(Azifo, A2ify)
:H(fm;fy)*H(fx;fy) :%(fxafy)~ (3.8)

Compared to the coherent H, the incoherent transfer function H has thus a doubled cut-off
frequency (see Fig. 3.2(b)). H is also called optical transfer function.
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Figure 3.2: (a) Profile of the pupil function P in units of the entrance pupil diameter dj, for
a diffraction limited imaging system (b) The coherent amplitude transfer function H and the
incoherent optical transfer function H for the pupil function shown in panel (a). The coherent
H represents a scaled image of the pupil function P whereas the incoherent # is the scaled
autocorrelation of P.

An intuitive explanation from the physics perspective for Eq. (3.8) can be derived from
the insight that under incoherent illumination, there is no fixed phase relation between
the primary waves approaching the object. The superposition of these waves results
in a combined secondary wavefront that is not planar and changes rapidly over time.
For a single d-like object on the optical axis, the result is still similar to the coherent
illumination type as the impulse response h is independent on the illumination’s degree of
spatial coherence (a single d-like point source in the object plane will always illuminate
the entrance pupil in the far field spatially coherently). Contrary to coherent illumination
however, the waves that approach the system’s entrance pupil after diffraction by an
extended object under incoherent illumination have time-varying wave vectors. Since the
wave vector corresponds to the propagation direction of the wave front, the entrance pupil
appears to be illuminated from directions that statistically vary over time. The extension
of the frequency passband due to a low degree of coherence can thus be seen as analogous
to off-axis illumination where the spatial frequency cut-off is also twice as large compared
to the on-axis illumination type.
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In frequency space, the image formation can be described by:
F{Li} = [H « H][Gg * G4] = H[Gg * Gg]. (3.9)

Even though the frequency cut-off of H is doubled compared to the coherently illuminated
system’s H, it can be shown that the resolution limit is not generally superior compared
to the coherent illumination type [Go0o96]. The modulus of H is the system’s modulation
transfer function (MTF) while the phase is called phase transfer function (PhTF). The
MTF is usually of greater interest compared to the PhTF when characterizing an imaging
system. The MTF describes how the contrast of a thoroughly modulated periodic signal
with a certain frequency in the object plane is affected by the imaging system. Spatial
shifts of this input signal in the image are determined by PhTF. The image contrast
depends on the extremal values of the image intensity I;:
max([;) — min([;)

¢= max(I;) + min(Z;) (3:.10)

Descriptions of contrast or image contrast throughout this thesis refer to Eq (3.10).
The normalized intensity of h in the image plane depending on the radius r; = (z;;y;)
from the central maximum for a circular pupil function of diameter d), is given by:
2
2J1(kdpri/2z)
ILiry) = | ——————| , 3.11
Z(TZ) [ kde‘i/QZi ( )

where, J; is the Bessel function of the first kind, grade one and k& = 27/ is the wave
number. The intensity distribution described by Eq. (3.11) is also called Airy pattern. The
inner part of the Airy pattern within the radius of the first minimum at rmin = 1.22)\/d,
is often referred to as the central Airy disk.

The diffraction limited FTH system’s entrance pupil is usually a charge-coupled device
(CCD) detector of rectangular — most commonly square — shape. The impulse response h
of a such shaped entrance pupil is a two-dimensional sinc function (see Eq. (3.22)). Fig.
3.3 shows the impulse response of a circular and a rectangular entrance pupil. Compared to
the Airy pattern of a circular entrance pupil with diameter d,, the intensity profile of the
square-shaped aperture with a side length of sc.q = d, is more confined in its central region
and shows more pronounced side-lobes. Apart from the shape of the pupil function of the
typical FTH setup, another notable difference to most common imaging systems is that
the reconstructed quantity is not the transmission intensity but the complex amplitude of
the wave field at the exit of the object. As further discussed in chapter 3.4, both properties
affect the theoretical resolution limit for the diffraction limited FTH setup.
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Figure 3.3: Normalized impulse response (intensity) of a diffraction limited system with
a circular and a rectangular entrance pupil. The plot shows the profile through the center
of the PSF in the image plane. For the circular pupil function, the intensity profile of the
PSF describes an Airy-pattern, which shows the first minimum at r; = 0.61\/NA. The
PSF for a rectangular entrance pupil is a two-dimensional sinc pattern with first minima at
x; = £0.50/NA or y; = £0.5A/NA

3.2 The Rayleigh criterion

The Rayleigh criterion describes the minimal distance between two incoherent point sources
that allows to just resolve these two points when imaged by a diffraction limited imaging
system with circular aperture. For systems described in the linear system’s formalism, the
two incoherent points are represented by d-distributions and the point-spread function h
is an Airy disk. If the distance between the two d-peaks is gradually reduced, the system
will eventually fail to reproduce the point-sources distinctly in the image. The Rayleigh
criterion states that the imaged points are barely resolved when the maximum of one
Airy disk coincides with the first minimum of the other Airy disk. The distance between
both points — commonly referred to as the Rayleigh-distance — is hence the radius of the
central Airy disk, i.e., 0.61A\/NA. In the superposed intensity image, an intensity reduction
of 27% of the maximum value separates the images of the two points and makes them
distinguishable. Instead of imaged intensity, the rayleigh resolution can also be expressed
in terms of contrast. The image contrast for two point sources separated by one Rayleigh
distance is 15.3% [Goo96].

For imaging applications like microscopy, the usability of §-like test objects with various
spacings has practical implications since such features deliver weak signals and are difficult
to manufacture. In microscopy the Rayleigh criterion is thus oftentimes adapted to
different test objects like line gratings, sector stars or sharp edges. Fig. 3.4 shows the
convolution of an Airy profile with different input functions. The results suggest that
a strict interpretation of the Rayleigh criterion actually forbids its direct application to
the most common class of test objects, namely periodic structures, especially those with
equally wide lines and spaces (Fig. 3.4(c)). For such test patterns, the 15.3% image
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Figure 3.4: Rayleigh criterion as applied for two points and periodic test structures. These
plots show the profile of the diffraction limited system response. The geometric input is
convolved with an Airy disk. Input functions are: (a) two d-peaks, (b) a Dirac-comb and (c) a
line grating with equally wide lines and spaces. The distance between the J-peaks as well as
the period of the Dirac-comb and the line grating corresponds to 0.61\/NA

contrast criterion may be applied to determine the resolution cut-off by analyzing the
contrast of the imaged gratings for different grating-periods. However, the period that
corresponds to the resolution limit found by such a measurement exceeds the (two-point
resolution) Rayleigh distance of 0.61\/NA (Fig. 3.4(a)). For gratings with much wider
lines than spaces ,i.e., gratings that resemble a Dirac comb, the difference in contrast
is marginal compared to the image of two points (Fig. 3.4(b)). If applied to periodic
patterns, the Rayleigh distance corresponds to a full spatial period [Att07]. Another type
of convenient resolution test structures are knife-edge patterns. The intensity transition of
the imaged edge over the distance 0.61\/NA is approximately 10% to 90% [Hec98].

Since the Rayleigh criterion is strictly defined for incoherently illuminated objects,
the degree of coherence of the illumination needs to be sufficiently small for its direct
application. For coherent illumination, the actual two-point resolution limit depends
strongly on the phase between both points [Goo96]. Fig. 3.5 shows the profile of two
imaged point-sources spaced by one Rayleigh distance [Tho69]. In panel (a), the two point
sources have fixed phase relations, i.e., the illumination is coherent. The image intensity
between both points for coherent illumination depends on the points phase difference.
For a relative phase of § = 0 the intensity midway between both points shows a global
maximum, resulting in a contrast of 0%. For § = 7 the normalized intensity profile between
both points shows a minimum with zero intensity and the image contrast reaches thus
100%. For # = /2 the normalized intensity profile shows a local minimum between both
points. Similarly to incoherent illumination, the intensity at this local minimum is reduced
by 27% and the image contrast is 15.3%. Fig. 3.5(b) shows two point-sources spaced
by one Rayleigh distance with similar phase for different degrees of coherence (). For
~ > 0, the local minimum of the normalized intensity profile vanishes and transforms into
a global maximum for v > 0.5
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Also for imaging applications with coherent object illumination and a uniform phase
across the image, the resolution limit can be determined similar to the Rayleigh criterion
by defining the contrast cut-off for closely spaced points to 15.3%. In this case, the
maximum of one Airy disk does not coincide with the minimum of its counterpart and
the corresponding distance between the two barely resolved point sources in the intensity
image yields 0.82)\/NA [Bor99]
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Figure 3.5: Rayleigh criterion applied to fully coherent and partly coherent point-sources.
(a) Two coherently superposed Airy disks spaced by one Rayleigh distance for different relative
phases. The vertical lines represent the positions of the point-sources. Only for a phase
difference of § = 7/2, the contrast between the two Airy patterns equals 15.3% while for
f = 7 the contrast is unity and in case of a similar phase both points can not be resolved, i.e.,
the contrast is zero. (b) Two Airy disks of similar phase separated by one Rayleigh distance,
superposed with different degrees of coherence.

3.3 Sparrow criterion

The Sparrow-criterion defines the smallest resolvable separation between two closely spaced
and just resolved point-sources as the distance, at which the second derivative of the
resultant image intensity vanishes midway between the connection of both points. The
intensity profile yields thus a plateau with maximum intensity between the two points.
The Sparrow criterion has been extensively used to characterize imaging systems with
partially coherent illumination. The Sparrow resolution limits for incoherent and coherent
illumination are 0.47A/NA and 0.73\/NA respectively [Tho69].

Fig. 3.6 shows the Sparrow criterion for two closely spaced points for incoherent and
coherent illumination. The separation (s) between both points is expressed in units
[A/NA]. Panel (a) shows the normalized intensity profile of both points for incoherent
illumination. For small separations between the two point-sources, the maxima of the
intensity profile deviate the more from the corresponding d-peak positions (colored circles)
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the closer the Sparrow resolution limit is approached. The mismatch of the actual
separation of the two points relative to the separation of the intensity maxima is shown
in panel (b). For separations larger than the Rayleigh distance (s = 0.61\/NA), the
intensity maxima approximate the positions of the points. Fig. 3.5(c) and (d) show similar
graphs for coherent illumination. Here, the positions of the intensity maxima match the
positions of the points for the adapted Rayleigh distance of s = 0.82\/NA. Compared to
incoherent illumination, the position of the intensity maxima for separations s > 0.82\/NA
deviates more strongly from the actual point positions [Tho69]. Imaging small features
with coherently illuminated diffraction limited imaging systems, can therefore lead to
misinterpretations.
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Figure 3.6: Illustration of the Sparrow criterion for spatial resolution. (a) Profile of two
incoherently superposed Airy disks with spacings approaching the Sparrow-limit. The positions
of the centers of the individual Airy disks are indicated with colored circles. (b) Deviation of
the separation between the two maxima of an incoherently superposed intensity profile similar
to (a) relative to the distance between both Airy disks. Panels (¢) and (d) show similar curves
for coherently superposed Airy disks. For small separations around the resolution limit, the
separation of the maxima in the image does not match the separation between both Airy
disks. For coherent illumination, the mismatch is more significant compared to incoherent
illumination.
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3.4 Resolution as applied to X-ray Fourier transform holography

For the definition of common resolution criteria as reviewed above, it was possible to
rely on an Airy shape of the PSF. However, such a PSF is typical for a certain class of
imaging systems, i.e., diffraction limited, space-invariant imaging systems that produce
intensity images and have with a circular entrance pupil. In FTH, the form of the PSF
differs from the shape of an Airy-pattern for several reasons. Firstly, the reconstructed
quantity upon Fourier transforming the hologram is usually not the intensity but rather the
complex amplitude of the wave-field within the field of view in the object plane. Secondly,
the resolution is typically not diffraction limited and thirdly, the pupil function P in
FTH cannot be described by a circular disk that transmits all spatial frequencies without
distorting amplitude or phase. For these reasons, FTH can not rely on common two-point
resolution criteria such as the Rayleigh criterion or the Sparrow limit. This also applies to
knife-edge resolution tests that relate the intensity transition of an imaged edge to two
point resolution limits like the Rayleigh criterion [Hec98|. For instance, the transition
of the signal over an imaged edge from 10% to 90% in an FTH reconstruction does not
correspond to any common two-point resolution limit.

For the layout of FTH imaging experiments, it is desirable to precisely predict the
diffraction limited resolution cut-off in order to determine the reference pinhole diameter
that ensures imaging with maximum photon efficiency without loss of resolution. For a
definition of an FTH resolution limit, the form of the PSF and the corresponding transfer
function needs to be evaluated. In order to review FTH using the notations of Fig. 3.1,
the distance z; from the entrance pupil (i.e., the detector surface) to the image plane needs
to be defined. While this quantity has no practical meaning in an FTH experiment, in
the generalized model z; relates the FTH system’s magnified reconstruction to the image
plane.

In the following, the detector is assumed to be aligned to the coordinate system in the
pupil plane as shown in Fig 3.1, i.e., the edges of the detector are aligned in direction x;,
and yp,. In FTH, the magnification is given by peed/Po, where pecq is the pixel size of the
detector, po = 2o\/Sccq is the pixel size in the reconstruction, corresponding to the imaged
object and s.cq is the CCD’s side length. The magnification in the generalized model is
M = zi/z, [Hec02] and the distance z; is thus given by:

_ Pccd _ PcedSced

zi=Mz, = b Zo = . (3.12)

For a generalized discussion of the FTH system, an expression for the FTH system’s pupil
function Pyj needs to be derived. A theoretical model of Py, allows to derive expressions
for the FTH system’s transfer function (Hgy,) and the point-spread function hgy,. Similar
to the diffraction limited P, Py is a complex function of the location (zp,y,) in the
entrance pupil which describes how amplitude and phase of an incoming wave is affected
by the FTH system. Instead of the Fourier transforming lens of a diffraction-limited,
lens based imaging system, the entrance pupil of the FTH system is the surface of the
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hologram recording detector. For the coherent diffraction limited system, P is defined
as the normalized, complex amplitude of a plane wave within the entrance pupil. As
the plane wave originates from a d-object on the optical axis, the phase of the plane
wave is zero and P is real valued. Since P is constant over the entrance pupil, all spatial
frequencies within the coherent, diffraction limited system’s passband are transmitted
with the same amplitude, i.e., the contrast of features within the system’s passband is
independent from the spatial frequency. The contrast in the FTH reconstruction however
is determined by the interference of the reference beam with the object wave within the
detector area. Depending on the reference size relative to the FTH system’s NA, higher
frequencies are more or less suppressed by the reference pinhole of an FTH system. For
this reason, also the source of the phase encoding reference beam acts as a low-pass filter
(besides the finite detector area). In order to discuss the resolving power of the FTH
system, the impact of the reference pinhole on Py needs thus to be considered. For the
following discussion, the reference pinhole in the object plane is assumed to be centered on
the optical axis. According to this convention and due to the required separation between
object and reference (rq, see Fig.2.2) the location of the object is then off-axis.

Corresponding to detector and reference pinhole, Py, has two contributions. The first
contribution is the detector pupil function P..q. Similarly to the description of P for
the diffraction limited system in the Fourier formalism, P..q can be understood as the
normalized, complex amplitude of a d-object’s diffraction pattern within the system’s
entrance pupil in the far field, i.e., the contribution of a plane wave that covers the detector.
P,.q is thus a complex function of the location in the detector plane and has an amplitude
which is constant over the detector area and zero outside. Due to the off-axis layout of
the FTH mask however, the J-object is not centered on the optical axis and the resulting
P.cq has no constant phase of zero but rather a phase ramp. The second contribution is
represented by the reference pinhole pupil function on the detector Pes. Considering a
perfectly circular symmetric disk as reference pinhole (and the above convention that the
reference pinhole is centered on the optical axis), P is a real valued function, representing
the far-field amplitude pattern of the reference pinhole:

_ 2J1(mdyet Tp/ A20)

P = , 3.13
f(rp) 7_{_dref Tp/)\zo ( )

where, J; is the Bessel function of the first kind, grade one and r, = (zp;yp) is the radius
from the optical axis on the detector plane. Note that P, is not an Airy intensity pattern
but represents the reference pinhole’s electric field amplitude on the detector.

With the theoretical models for P..q and P,ef, the FTH transfer function Py, can be
derived by probing the entire FTH system with a J-object. Considering Eq. (2.1) The
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hologram recorded by the detector is given by:

| Fldvet(r)] + Flo(r — 70)]* =
| Pret(Tp) + Pccd(rp)|2 = |Pref(7°p)|2 + ‘Pccd(rp)‘2
+ Pecd(Tp) Pret(Tp)" + Peca(Tp)™ Pret(Tp), (3.14)

where 7 = (x,;Y,) is the radius from the optical axis in the object plane. |Pccd|2 is a
constant offset while the intensity |P,cf|> describes an Airy pattern. The contributions
that yield the (redundant) conjugated reconstructions are the last two terms of Eq. (3.14).
These two terms describe the interference pattern between the plane wave from the §-peak
and the diffraction pattern of the reference pinhole:

Pcch;;f + Pc*chref = 2R6[Pcchref]- (315)

The factor 2 corresponds to the two conjugated redundant images in the reconstruction
and is therefore neglected in the following discussion. The FTH pupil function which
determines the frequency distribution of the object’s reconstructed wave field thus given
by:

Pren = Re[Peea Pret]- (3.16)

Therefore, Py, represents the FTH system’s entrance pupil (Peeq) which is modulated by
a second contribution (Pf) from the reference pinhole. The fact that the imaginary part
is not transferred by the FTH-system, results in a Fourier transform of the hologram that
is Hermitian symmetric, i.e., it consists of two redundant, conjugated twin images that
are located symmetrically to the center of the matrix.

From the physics perspective, the two conjugated twin-images reflect the off-axis geome-
try of the FTH-system. The separation between object and reference pinhole (rq in Fig.
2.2) results in a relative phase difference 6(rp) between the object and the reference wave
on the detector as both waves arrive at different angles to the optical axis. For this reason,
the interference of P.cqPef is complex and Py =Re[PecqPref] disposes the imaginary part.
Apart from real and imaginary part, the encoded phase can also be seen as the cosine of
the entire object wave’s phase:

PrefP:cd + Pr*efpccd = ArefAccdew(Tp) + ArefAccdeiw(Tp)
= 2A,etAcca cos[0(rp)], (3.17)

where Aer and Agq are the amplitudes of the waves from the reference and the d-object in
the far field. This cosine represents the high frequency modulation that encodes the object
wave’s phase information into the diffraction pattern. From the cosine of the phase (or
equivalently from the real part of the interference pattern) alone, it can not be determined
whether the object wave originated from r, or —r, as both scenarios lead to identical
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Figure 3.7: FTH pupil functions Pt and Ppy. (a) The real valued reference pinhole pupil
function Pyt on the detector. The reference source is centered on the optical axis. (b) The
pupil function of the FTH system Py as generated by interference of P,er with the detector
pupil function P..q. The d-function representing the object is separated from the reference
pinhole by r¢ = (¢, ¢), where ¢ is exemplary constant.

results. The reconstruction therefore shows two redundant "solutions" corresponding to
both possible separation vectors.

Fig. 3.7(a) shows the central part of the real valued P,s. The FTH transfer function
Py, for an exemplary constant ¢ for the separation vector r, = (¢, ¢) is shown in panel
(b). For ro = (0,0), Py equals P on the detector as Pe.q is then real valued.

The modulation of Py, describes the location of the two redundant object reconstructions
in the Fourier transform of the hologram, whereas, the spatial frequency distribution of
the desired object wave reconstructions within the object hole is determined by the shape
of the reference diffraction pattern P, on the detector. For the following discussion of
the FTH imaging properties, the modulation due to 7, is therefore ignored and the phase
factor of Pe.q is dropped. Py, is then represented by the real valued function of Eq. (3.13)
multiplied by one within the detector area and zero outside.

From the pupil functions Per and Pecq, the FTH system’s transfer function Hen (fz, fy) =
Heed(fo, fy)Hret(fa, fy) can be calculated. The pinhole’s transfer function Hyer can be
found by substituting r, = filzo in Pree(rp):

2J1 (wdyet fr
Href(fr) = 17T(Ci—ffff)’

where f. = (fx; fy) is the radius from the center (0;0) in the frequency domain. The PSF
hyet = F[Hyef] corresponds to an unfiltered reference pinhole of diameter dor. With the

(3.18)
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system’s magnification M = peeqSced/A20 (Eq. (3.12)), A can be specified by:

s . drcf ccdSced
1 if < —LQ)\ZO

href(Ti) :{ , (3.19)
re 1 0 if ;> dref%g\cﬁjccd

where r; = (zi; ;) is the radius from the center of the object reconstruction in the image
plane. The pupil function of the CCD is a square:

Peca(xp, yp) = rect ( Tp ) rect (y—p> , (3.20)

Sced Sced

The transfer function of the CCD (Hcq) can be found by the substitutions z, = fz Az,
and yp = fyAzo:

Heed(fr, fy) = rect (w) rect (@) , (3.21)

Sced Sced

where f, and f, represent the object’s spatial frequencies in x, and y, direction. The PSF
heed = F[Heeq] is then given by:

. TiSced . iSecd
heea (i, 1) = sinc ( ‘)\Z ) sinc (Z/l)\z )
:Sinc( . )Smc( . ) (3.22)
DPeed Peced

From the transfer function Hgy,, the FTH system’s PSF hgy, can be calculated as follows:

hfth - ]:(Hfth) = ]:(HccdHref) = hccd & href (323)

Considering Eq. (3.19) and Eq. (3.22), the PSF of an FTH system with a circular pinhole
reference is given by the convolution of a two-dimensional sinc pattern and a circular
disk. The particular shape of hgp, however, depends on the geometric setup, the reference
pinhole diameter and the energy of the illumination light. In the following, the extremes
of diffraction limited and reference limited resolution are examined. In the first case, hgp
is strongly dominated by hccq and he is assumed to be a constant which is neglected. In
the second case, heeq is constant (over an infinite area) and hgy, is thus represented by
href. Subsequently, the insights of how detector and reference affect the reconstruction are
combined and the FTH system is examined for more realistic conditions.

In the following treatment of diffraction limited FTH, conditions are idealized as follows:
(i) a square-shaped CCD is assumed to be sufficiently far away from the object to justify
the far field approximations of the Fraunhofer diffraction theory, (ii) the object is assumed
to be illuminated by a fully coherent plane wave, and (iii) the FTH system is assumed to
be space-invariant.
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3.4.1 Ideal diffraction limited resolution

The idealized, diffraction limited FTH system has a reference source that is assumed to be
an infinitesimally small §-like point-source which yields a plane wave-front at the CCD
of finite size. The system’s response to a second d-peak representing the object is the
diffraction limited PSF h¢eq. The system’s transfer function H..q has the square-shape of
the CCD and the PSF h¢q describes a two-dimensional sinc pattern (Eq. (3.22)). Similar
to the coherent, two-point resolution limit for circular entrance pupils, it is reasonable
to define the diffraction limited resolution cut-off for FTH as the distance between two
coherently superposed hceq-profiles that yields an image contrast of 15.3%. Such a defined
separation can be found empirically by increasing the displacement between two coherently
superposed sinc profiles continuously, starting from full overlap. For a square shape
CCD, the diffraction limited resolution cut-off that yields 15.3% image contrast of the
reconstructed wave field in y; as well as in z; direction is:

damp = 0.755X/NA. (3.24)

The distance damp thus represents the displacement between two point sources that can just
be resolved by the diffraction-limited FTH-system. Fig. 3.8 shows an illustration of the
diffraction limited resolution determination for the square-shaped H..q. The sinc-profile
of heeq for the reconstructed wave field has pronounced side-lobes (see blue curve in Fig.
3.8(a)). Corresponding to an intensity image, the green curve in Fig. 3.8(a) shows the
squared modulus (|heeq|?) of the sinc profile. The side-lobes for |he.q|? are much suppressed
compared to hecq. Additionally, |hCCd|2 is more confined compared to h¢eq. The separation
between two coherently superposed hcq-profiles that yields 15.3% image contrast is thus
slightly larger compared to the distance that yields similar contrast for two coherently
superposed |hecq|? profiles (green curve in Fig. 3.8(b)). The corresponding resolution
cut-off for the reconstructed intensity is:

ding = 0.724)\/NA. (3.25)

The profile of two coherently superposed hecqs separated by din, shows only 7.7% contrast
(blue curve in Fig. 3.8(b)). Fig. 3.8(c) shows the conditions for a separation of damp.
Here, the coherently superposed |hecq|?-profiles (green curve) yield 29.9% image contrast
(cf. 15.3% contrast for the coherently superposed heeq profiles). In special cases of (non-
magnetic) FTH applications with complete diffraction patterns (without a central beam
stop shadow), it might be worth wile to use the squared modulus of the reconstruction ,i.e.,
the reconstructed intensity, rather than the wave field’s complex amplitude to suppress
ringing artifacts and improve the image contrast of high frequency features.
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Figure 3.8: Resolution limit for the rectangular transfer function H..q. The green colored
curves correspond to reconstructed intensity while the blue color represents the reconstructed
wave field. (a) Line-profile of the diffraction-limited PSFs hecq (blue) and |heeq|? (green).
(b) Two-point resolution for a separation of 0.724\/NA. Corresponding to 15.3% image
contrast, the signal in the center between both maxima in the intensity reconstruction (green)
is diminished by 27%. (¢) Two-point resolution for a separation of 0.755A/NA. Here, the
amplitude reconstruction (blue) shows an image contrast of 15.3% while the intensity profile
shows a contrast of 29.9% (green).

3.4.2 ldeal reference limited resolution

The idealized reference-limited FTH system has a circular reference source with a finite
diameter of d..f and an infinite-size detector area. The system’s impulse response h.qf is
thus the geometric image of the reference pinhole (see Eq. (3.19)). Contrary to diffraction-
limited PSFs which have a point-like maximum in the center, h,f is a circular disk so that
the profile through the center is a rectangle.

Considering two closely spaced J-peaks as objects, the results in the image can be
characterized by analyzing the convolution of the d-peaks with the rect-profile of hyet. For
a clear distinction of the two points in the image, the separation between the J-peaks
needs to be larger than d..;. Separations of both d-peaks smaller than d,ef, result in an
overlap of the circular h,es in the image and thus yield an extended central maximum
with a signal strength twice of hes (Fig. 3.9(a)). For separations larger than d,ef, the
overlap disappears and the contrast inverses as the reconstructed amplitude between both
hres-profiles drops to zero (Fig. 3.9(b)). Contrary to incoherent diffraction limited systems
where the Rayleigh resolution limit corresponds to the radius of the PSF, the two-point
resolution limit of the reference limited FTH system is the diameter d,s.

Considering a binary grating of equally wide lines and spaces as a test pattern, the
resolution capabilities of the FTH system can conveniently be evaluated by a gradual
variation of the grating period. In Fig. 3.9, the resolution cut-off of such periodic test
patterns is illustrated by convolving the rect-function of At with a rectangular pulse-train
of period p which represents the grating (see red curve in Fig. 3.9(f)). In order to afford a
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comparison to conventional diffraction limited, incoherent systems with a circular entrance
pupil, the pulse-train is also convolved with an Airy pattern (see green curve in Fig. 3.9(f)).
The diameter of the central Airy disk equals thereby dyef, i.e., dyer = 1.22X/NA.

This result shows that the contrast of the grating in the image vanishes when the
grating-period approaches d,er. Unlike diffraction limited systems where the contrast
decreased strictly monotonic and features with sizes beyond the resolution limit are absent
in the image, reference limited FTH may yield high contrast images also for feature-sizes
smaller than d.t. The contrast for reference limited FTH alternates around zero for
decreasing p and culminates at -33% in a global minimum for p=2/3d,ct. The simulations
presented in Fig 3.9(f) show that the grating contrast in the image dependent on p has
zeros for:

dre
p= Sy, (3.26)

and extremal values for:

2dyef

The analysis of (strongly scattering) unknown features with sizes smaller than def in
the reconstruction of a reference-limited FTH setup is thus difficult and may result in
misinterpretation.
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Figure 3.9: Reference-limited FTH contrast inversion simulated for small features. All
line-profiles (blue) are obtained by convolving the input function (black) with the rectangular
profile of hyer. Input functions are two J-peaks separated by 0.9def (a) and 1.1d,e (b) as well
as profiles of binary line gratings with equally wide lines and spaces. For periods p>2d,¢f the
contrast is 100% (c). For p=1.54d,¢s the contrast is 15.3% (d). Periods approaching p=d, ¢
yield a vanishing contrast which inverses for periods with 0.5d,ef<p<d,et. A peak contrast of
-33% is reached for p=2/3d,c¢ (e). Panel (f) shows the grating contrast in the image dependent
on p. For p<d,.s the contrast alternates and converges to zero for p < d,ef. The green curve
shows the contrast dependent on the grating period for a conventional diffraction limited
system with an Airy disk PSF. The central Airy disk has a diameter of d,ef.

Plane of least confusion

The specific shape of h.s may also impact reference-limited FTH reconstructions of
features that are not in the plane of the integrated mask ,e.g., extended three-dimensional
objects (see chapter 5), particularly if imaged with references that are much larger than the
FTH system’s diffraction limited PSF h..q. Such applications rely on a numeric refocusing
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of the reconstruction by an application of the free-space propagator [Goo96; Pag06]. The
refocus distance is then found as the plane of least confusion, i.e., the plane of optimal
sharpness.

For small d-like features in the object plane, the circumstances can be simulated by a
numeric propagation of hyes. Figure 3.10(a) shows the beam shape for a propagated pinhole
of diameter dyef in units of d2,/4\, i.e., in units of the inverse Fresnel number (F~1). For
comparison to a conventional, diffraction limited system with circular entrance pupil, an
Airy-disk is propagated in units of d2;,/4\ (Fig. 3.10(b)). Here, dp,;, corresponds to the
diameter of the central Airy disk. In order to recognize the beam’s full width at half
maximum (FWHM), the colormap is adjusted so that a signal strength of 0.5 corresponds
to the color red.

For a propagation distance of lpop = 0 (F = 00), the simulation for the diffraction
limited system shows the Airy pattern which is the most confined form (in terms of
FWHM) of the diffraction limited beam and shows maximum signal strength in the center
(Fig. 3.10(d) and (f)). The depth-of-field for the diffraction limited case corresponds to
the distance from the focus position on-axis where the signal drops by 20% [Att07].

The simulation for the reference limited FTH setup indicates that due to the extended
maximum of h.f, the plane of the mask does neither coincide with the plane of least
confusion nor with the plane of maximum signal on axis (Fig. 3.10(c) and (e)). Instead,
the diffraction pattern of the circular reference pinhole for different propagation lengths
results in two beam waists that are located symmetrically before and behind the mask
at lprop = £d%;/4\ (F = 1). In between the two waists, the beam-diameter in terms
of FWHM cannot continuously be specified as the central beam shows on-axis minima
and side-lobes stronger than half of the maximum. The on-axis signal at the beam waist
positions has a maximum and drops sharply for a propagation in mask direction (Fig
3.10(c)). The two depth-of-fields therefore extend asymmetrically around the planes of
least confusion.

Fig. 3.11 shows the beam profiles at the waist positions in comparison to the initial
PSF in the mask plane. The beam-width can be further reduced by high-pass filtering the
hologram. As discussed in chapter 3.4.3, the resolution limit of two-dimensional, strongly
reference limited reconstructions can be improved by propagating the reconstructed object
wave field into one of the beam waists (such a reconstruction can be further treated to
remove superimposed artifacts from the opposite beam-waist, see chapter 4). In this
context, the reference pinhole may be regarded as a primitive single-zone FZP and the
waist positions at lpop = Fd2;/4) can be interpreted as focal lengths. The relation
between focal length and beam waist becomes clear if d,ef is understood as the diameter
2rg,p of the first FZP zone. The first order focal lengths for an FZP with N zones are
given by fi,p :irgzp /(N ) and coincide for N = 1 with +d? /4.
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Figure 3.10: Longitudinal shape and signal of the reference PSF h,o compared to a PSF of
a conventional diffraction limited system with circular aperture. (a) Shape of h,er along the
beam axis. The diameter for propagation distance lp.op = 0 is drer (b) Shape of a diffraction
limited beam along the beam axis. Here, dp,;, corresponds to the diameter of the central Airy
disk at lprop = 0. Plots (a) and (b) are obtained by numerical propagation of the respective
PSF. The signal for each propagation distance is normalized to the maximum signal at the
particular propagation distance. Panels (c¢) and (d) show the signal on axis, normalized to the
signal at [,.op = 0 dependent on the propagation distance. The depth-of-field corresponding
to a 20% drop of signal intensity on axis is indicated by the green color. The initial position of
distance lpyop = 0 is indicated by a blue circle. The gray line in (¢) and (f) show the full width
at half maximum (FWHM) dependent on {p.,, = 0 as obtained from the pixelated simulation.
The blue curve is a smoothing spline which was fitted to the measured FWHM. The FWHM
is minimal at the zero position only for the diffraction limited beam (f). The FWHM of the
simulation for the reference limited beam (e) can not continuously be specified. Maximum
signal intensity on-axis as well as minimal beam width do not match the zero propagation
distance.
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A pinhole that is large compared to the diffraction limited hc.q of an FTH setup may
thus be seen as a defocused image of a more confined PSF. In fact, artifacts similar as
discussed for Fig. 3.9 have also been described for diffraction limited imaging systems as
defocus aberrations. The shape of the defocused, diffraction limited PSF then deviates
from the Airy pattern which results in frequency-dependent contrast inversions in the
image [Goo96].
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Figure 3.11: Profiles of the reference PSF in the mask plane (blue) and after propagation
by lprop = +£d2;/4X (red). The beam width is further reduced if the hologram is high-pass
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filtered (green)

3.4.3 High resolution imaging with X-ray Fourier transform holography

So far, the determination of the resolution cut-off and the descriptions of imaging character-
istics of the FTH system were based on idealized assumptions. Some of these assumptions,
namely, infinitesimally small references or infinite-sized detectors, are extremes and can
not represent reality. The next step is to anticipate how high spatial frequency features are
transferred into the image by a more realistically modeled FTH system. In the following,
the FTH system is assumed to have a reference of finite diameter, as well as a finite size
CCD detector. Technical limitations like limited photon flux or detector noise are ignored
and the resolution capabilities of the FTH setup can be understood as a limiting boundary
which can be achieved when conditions are ideal.

The square-shaped Hc.q as well as the finite-sized reference pinhole impact the system’s
transfer function (Hgy,) contiguously. Depending on the side length of the CCD (Sceq)
relative to the diameter of the central Airy disk of the reference pinhole on the detector
(dairy = 2.442,)\/dycf), the system’s impulse response is filtered by the CCD transfer
function He.q. In FTH, the relation of the diameter of the central Airy disk versus the
detector dimensions is a decisive factor, even though the reference pinhole’s pupil function
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P,ef is actually not an Airy intensity pattern and rather corresponds to the real part of the
reference wave on the detector (see Eq. (3.13)). Nevertheless, P has identical zero values
with the corresponding Airy pattern |_Pref|2. The central contribution of P,e within the
region bound by the first zero value has therefore the same size as the reference pinhole’s
central Airy disk. In order to investigate FTH image formation, the ratio Raj., can thus
be defined as follows:
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Figure 3.12: Normalized FTH pupil function Py, for different ratios of Rairy. For detector
dimensions much smaller than the central Airy disk of the reference on the detector (Raiy <
1), the FTH pupil function is approximately constant (blue curve). For more common
configurations, the central reference Airy disk fits on the detector (Rairy & 1) and high spatial
frequencies are strongly suppressed by the FTH system. Transfer functions with Rajy > 1
have negative contributions and show contrast inversion for corresponding frequencies (cyan
and purple curves).

Fig. 3.12 shows normalized FTH pupil functions for different values of Raj.y. For
Rairy > 1, the diameter of the central Airy disk from |Pref|2 is smaller than the detector
side length s..q. In this case, Py contains frequency bands that negate the amplitudes
of the corresponding spatial frequencies of the object. For Rajy < 1, the CCD side
length is smaller than the central part of the reference pinhole’s Airy disk. Fig. 3.12
indicates that for high-resolution FTH, the aim of nearly diffraction limited imaging is
challenging. For coherent, diffraction-limited imaging, Pyp is required to be constant.
An approximately constant Py can only be realized by using a small Rajy, i.e., a small
reference pinhole. However, the reference signal is proportional to the pinhole area and
depends thus quadratically on the reference diameter. Due to the fact that the resolution
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of an approximately diffraction-limited F'TH setup is not set by the reference pinhole
diameter but by the system’s opening angle, the decrease in signal strength of the reference
beam does not necessarily pay off with significantly improved resolution. For this reason,
the aim of diffraction limited imaging necessitates unreasonably small reference diameters
and thus contradicts a highly photon efficient FTH setup.

Realistically, large diffraction angles within the angular resolution limit of the detector
are more or less suppressed by common FTH systems, depending on the finite reference
pinhole diameter d,t and the resulting shape of Hgy. Therefore, the signal for finer
features declines in the image, even for specimen that generate strong scattering signals
at large diffraction angles. Fig. 3.13 shows hgy for different Rasy. For Rawy < 1, hgen
strongly deviates from the circular symmetric shape of h.et due to the rectangular shape
of Hccq. The resolution limit in the reconstruction depends thus on the angle in the image
plane. Utilizing a Rajy > 1 results in a hgp, that approximates the circular symmetric
hyet and yields an angle independent resolution in the reconstruction.
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Figure 3.13: The PSF hgn dependent on Raiy (amplitude). (a) Rawy = 0.5, hgn is
dominated by the detector PSF hgea. (b) hgen for Rainy = 1, the impact of heeq and the
reference PSF A is clearly visible. (c) For Rairy = 10, hgn is dominated by hyef.

Since the resolution limit is directly connected to the width of the PSF, it is desirable
to anticipate an optimal configuration which yields the most confined PSF. Fig. 3.14(a)
shows the profile of hgy, for characteristic Rjy. For large Rajy > 1, the shape of hgy
approximates rectangular profile of hyef whereas for small Rajry < 1, hgy converges to the
diffraction limited sinc profile of hgeq.
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Figure 3.14: (a) Profile of hgp in x; direction dependent on Rajyy normalized to the maximum
signal. For Rairy = 1, hgn shows a global point-like maximum in the center. Larger Rairy
show secondary local extrema for the central part of hgy, within the radius of the first zero
value. (b) The signal in the center of hgy,, normalized to the maximum of hgy, dependent
on Raiyy. Only for Rasy < 1.2 the central part of hgy shows a global maximum without
secondary extrema within the radius of the first zero.

Apart from the width of the PSF, also the signal in the center of hg), dependent on
Ry is interesting. Airy-shaped PSFEs with a central, point-like maximum are optimally
confined, i.e., the shape corresponds to the beam-waist (Fig. 3.10(f)). Additionally, such
PSFs do not cause imaging artifacts of small features beyond the resolution limit (Fig.
3.9(f)). Similar to the Airy pattern, a beneficial shape of hgy presumably shows a global
maximum in the center without additional local extrema within the radius of the first zero
value. The signal in the center of hgp, normalized to the global maximum of hgy, dependent
on Rajry is shown in panel (b). For Rajy approaching 1.2, the central maximum flattens
out and changes into an extended plateau. For Rajy > 1.2, the central part of hgy, within
the first zero shows several local extrema.

Enhancing reference limited FTH by applying a low-pass filter

From Fig. 3.14 it can be concluded that large Raj, are not beneficial for the following
reasons. Firstly, the width of hgy, for Rajry > 1 does not significantly improve, secondly,
spatial frequencies beyond the first zero value of H,¢ potentially cause imaging artifacts,
and thirdly, hgy, does not seem to be optimally confined. The imaging artifacts can already
be inferred from the transfer function (Fig. 3.12). Frequencies outside the radius of the
first zero of Hygyp do thus not contribute to the resolving power of the FTH system when
imaging unknown specimen. For these reasons it should be possible to low-pass filter the
hologram (hence effectively reducing Rairy) and thereby avoid imaging artifacts without
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degrading the resolution in the reconstruction.
In order to find the optimal filter radius (reyt) for the low-pass filter that filters the
hologram, a cut-off ratio (Cairy) is defined as:

dref Teut

Cairy = 1222\ (3.29)
Cairy is thus the ratio of the cut-off radius of the low-pass filter in the detector plane,
relative to the radius of the central Airy disk on the detector. In order to find an optimal
Cairy, the FWHM of hgy, is evaluated while rey is varied. Fig. 3.15(a) shows the FWHM
dependent on Cpjy with a global minimum for Cajry = 1. The FWHM of hgy, is thus
most confined if all frequencies outside the radius of the first zero of Hgy, are deleted.
Panel (b) shows hf, = F[Hj,,|, with Hf, representing the FTH transfer function cut
at feut = 1.22/dyef, i.e., in the recorded hologram, all pixels with reyy > 1.222,)/dpes
are multiplied by zero. The shape of hf, is now transformed into a more beneficial
form with a central, point-like maximum and the FWHM is reduced to 0.78d.er. The
two-point resolution limit for a such filtered hf, that yields 15.3% image contrast (Fig.
3.15(c)) is reduced to dgn = 0.93dyes. Since the filtered Hy,, is apodized, hf, has less
pronounced side-lobes compared to hgy. Therefore, ringing artifacts that potentially affect
the reconstruction of strongly scattering specimen are suppressed.
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Figure 3.15: Resolution obtained by low-pass filtering of hA.et. (a) The FWHM of hgy, after
low-pass filtering in units of der dependent on Caipy. For Cayy = 1 (e = 1.22X0%, /dyer),
the FWHM is minimal and hy, is optimally confined. (b) The line profile of the unfiltered
hyef versus hy, which is low-pass filtered with Cairy = 1, the FWHM of hg, is reduced by a
factor of 0.78. (c) For hi,, two points separated by 0.93d,¢ yield 15.3% image contrast. (d)
Contrast of line gratings dependent on grating period. The contrast inversion as seen for hyes
is circumvented by the filtered hf,;,. (e¢) Normalized signal on axis for different propagation
lengths of hf,,,. The signal shows a global maximum for I,,,, = 0. (f) The beam width of A,
(FWHM) dependent on the propagation length. The FWHM shows a global minimum for
lprop = 0. The green color in panels (e) and (f) show the depth-of-field corresponding to a
20% drop of the signal on axis. The gray line in panel (a) and (f) show the FWHM obtained
from the pixelated simulation. The green and blue curves in panel (a) and (f) are smoothing
splines.
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Fig. 3.15(d) shows the image contrast for gratings of period p with equally wide lines
and spaces convoluted with hf, . For such gratings, the 15.3% contrast criterion for hg
improves to 1de versus 1.15d,ef for unfiltered hgy,. Furthermore, the contrast inversion of
href which occurs for small features can be avoided.

Fig. 3.15(e) and (f) show the on-axis signal and FWHM of hf,, for different propagation
distances lprop respectively. Unlike hyef (Fig. 3.10), the filtered hg, has a single beam
waist which extends symmetrically around the plane of least confusion at Iy, = 0.
Similar to the diffraction limited depth-of-field of Airy-shaped PSFs; the signal on axis
is maximal at lpop = 0. Another advantage of hf, over the unfiltered hgy is that hgy
is circular symmetric and the resolution in the reconstruction is thus expected to be
angle-independent.

As already suggested for the diffraction limited case, the image quality is theoretically
further improvable if the reconstruction of the image intensity instead of the complex
amplitude is considered (Fig. 3.16). In such an intensity reconstruction, the much
suppressed side-lobes of hf; almost vanish and the contrast of small features in the image
is enhanced. The FWHM for |hf,;, [* improves to 0.56de (c.f. 0.78def for hfyy,). For two
points spaced by 0.93d,ef, the contrast improves from 15.3% to 30.5%. The resolution
limit defined by 15.3% image contrast for two closely spaced points in the intensity
reconstruction is improved to 0.87d..s. A non-linear manipulation such as squaring the
modulus of the reconstruction might be justifiable since intensity images are the standard
for most imaging systems including the human eye.
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Figure 3.16: Beam width (FWHM) and two-point resolution limit for a low pass filtered
|hfi,|? compared to hfy,. (a) The width of hf, compared to the width |k}, |?>. For the
reconstructed image intensity, the width of the PSF reduces to 0.56d,.s. Compared to the
reconstructed amplitude (blue), the side-lobes for |hf,, |* are significantly suppressed. (b) Two
points spaced by 0.93d,¢ show 30.5% image contrast for reconstructed intensity.

Apart from the resolution limit, it is desirable that the reconstruction represents the
transmission function of the object as realistically as possible. Another way to approach
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the question whether low pass filtering a reference limited hologram is beneficial or not is
to compare the reconstruction of a specimen with a broad bandwidth of spatial frequencies
(gi) to the original test pattern (g,). A reasonable frequency cut-off for Hy, should deliver
an output that optimally resembles the input. Such a resemblance can be determined by
comparing the correlation coefficients of input and output for different cut-offs r¢y; of the
FTH pupil function (Pf,;,). The correlation coefficient (CC) is a measure of the linear
association between two variables and is defined as follows [Bod09]:

> [9i(zi,yi) — Gil[90 (o, Yo) — To)
C= o , (3.30)
> lgi(ziyi) = G2, | 2 [9o(Tos Yo) — To)?

LiYi Zo,Yo

where g, and gj are the arithmetic means of the original test pattern in the object plane
and the reconstruction in the image plane respectively. For identical g, and g;, the CC' is
one while for an inverse relationship between both variables the CC' is minus one. For
entirely uncorrelated g, and ¢g; CC is zero. Fig 3.17 shows a comparison of the correlation
coefficient for different sector stars with outermost periods (p,) between 4d,ef and 10d,f.
The correlation coefficient is plotted dependent on Cpjyy and shows a maximum for a
cut-off radius 7, that coincides with the first zero of Py, i.e., at Cayry = 1. For specimen
with larger features, the curves in Fig. 3.17(a) become more flat, indicating that the
results of filtering Hyy, are less significant for such patterns. While filtering the hologram
seems to be advantageous for specimen with small features, it does not seem to negatively
affect the reconstruction of larger features.
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Figure 3.17: Correlation coefficient of a simulated FTH reconstruction (g;) correlated with
the original input (g,) dependent on Cairy. The test pattern for the simulation are sector
stars with differently large outermost periods p,. In all cases, the correlation coefficient is
maximal at Cajry =1

Resolution enhancement of strongly reference limited FTH

For transfer functions Hyy, with sufficiently large Rajry, the evaluation in chapter 3.4.2
indicates that the resolution is improvable by propagating the reconstruction into one of
the reference beam waists. So far, the beam waist positions for Rajy > 1 were identified
t0 lprop = :I:d?ef/ 4)\. For Cpyry < 1, the beam-waist is at lrop = 0. In order to estimate
whether or not a propagation into the reference beam waist is beneficial, the FWHM for
different values of Cajy is evaluated.
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Figure 3.18: Focused hgy for different Cairy. (a) Profile in a; direction of hgy for different
Cairy after propagating into the beam waist. The dashed line represents the unfiltered profile
of Ryef at lprop = 0. In order to remove the pinhole’s undiffracted zero order contribution, hsp
is high pass filtered. (b) Beam width of the focused hgy (wy) relative to the width of hgp
in the mask plane (wy) dependent on Cairy. (c) Beam waist positions of hgn dependent on
Ciry- The colored circles in panel (b) and (c) correspond to the legend in panel (a)

Fig 3.18(a) shows the beam profiles of hgp in their respective beam waist position
for different Cajry between 1 and 4. The beam waist positions were found by observing
the FWHM dependent on l,0p. In order to remove undiffracted zero order light, the
propagated hgy are high-pass filtered. The ratio of the beam width (FWHM) for hgy, at
the beam waist position (wy) relative to the width at lprop = 0 (wo) dependent on Cajry
is shown in Fig. 3.18(b). For Caiy > 2 the beam width approximates 40% (FWHM)
of the initial value (before propagation) and does not improve significantly for larger
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Cairy. For large Cajry, the FWHM of the beam in the mask plane is therefore larger by a
factor of approximately 2.5 compared to the FWHM of the reference beam in one of the
beam waists. The beam waist position in units of d2;/4\ is shown in Fig. 3.18(c). For
Cairy < 1.2, hgy is not most confined at lop = 0 and shows two distinct beam waists.
The beam waist position approximate lprop = :I:dfef/ 4\ for Cairy > 2.

Apart from a numerical propagation of the reconstruction into the reference beam waist,
also the knowledge of the transfer function Hyy, allows to circumvent the contrast inversion
and to improve the resolution of a strongly reference limited FTH reconstruction. In
this case, an enhanced image can be retrieved by the deconvolution of the object wave
reconstruction from the PSF hgy, = F(Hgy). In an FTH experiment, Hegy, can be retrieved
by measuring the reference intensity pattern (|Pgy|?) without the object wave on the
detector. From |Pqpu|?, Pun can easily be calculated as the zeros are identical and the
function is real valued (Eq. (3.16)). Also the sign of the side-lobes between the zeros is
known (central positive maximum with alternating side-lobes for larger radii). Another
more simple way to improve the reconstruction is to negate the negative parts of Hyer. This
can already be accomplished if only the zeros of H,.t are known. The zeros of Hyy, can be
measured with a sector star which is manufactured next to the object to be imaged. Object
and sector star can be arranged that their reconstructions rely on the same reference.

Fig. 3.19(a) shows the transfer function and the simulated reconstruction of a sector star
test pattern. In consistency with the transfer function, the simulation shows the contrast
inversion for small periods as described above. Panel (b) shows the reconstruction after
multiplying specific regions of the hologram by minus one. The negated regions thereby
correspond to the negative parts of the original transfer function. The enhanced transfer
function is non-negative but the zeros are still unchanged. Therefore the reconstruction of
the sector star shows very weak contrast at corresponding periods. The reconstruction
might be further improvable — via reference multiplexing [Sch06] — by utilizing a second
reference with a transfer function that shows a local maximum at the first zero position
of the initial transfer function. By combining the reconstructions of both pinholes, the
spatial frequencies at the first zero of Hygy can be retained.
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Figure 3.19: Resolution enhancement by modifying the FTH transfer function Hyy,. (a)
Transfer function and simulated reconstruction of a sector star test pattern. The center
shows an inverse contrast at frequencies that correspond to the negative contributions of
the transfer function. (b) The same reconstruction with a non-negative transfer function.
Spatial frequency bands within the hologram that correspond to negative values of the transfer
function are multiplied by minus one. The reconstruction shows very weak contrast at the
periods corresponding to the zero positions of the transfer function

Experimental verification

In order to verify the results of the simulations, a simple FTH experiment with soft
X-rays was carried out at BESSY II beamline U41-PGM. The sample consists of a sector
star which was fabricated by focused ion beam (FIB) lithography into a 1 pm thick gold
film on a silicon nitride membrane. The sector star has a diameter of 5.27 pm and consists
of 24 zones, i.e., the outermost sector star period is 1.38 pm. In order to investigate the
effects of reference limited FTH, a reference pinhole with a diameter of 370 nm was milled
into the metal mask at a distance of 12 pm from the center of the sector star. Fig 3.20 (a)
shows the integrated mask test sample.
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Figure 3.20: Scanning electron micrograph of a sector star test sample. (a) The sector star
was milled into a 1 pm thick gold film utilizing a focused ion beam. The sector star has a
outer period of 1.38 pm and a diameter of 5.27 pm.(b) The reference pinhole is fabricated
into the same metal film at a distance of 12 pm from the sector star center. The reference
diameter is 370 nm. (c) Diffraction pattern in logarithmic intensity scale.

For the experiment, the mask was illuminated with coherent light of £ = 400 eV and
the detector was placed 332 mm downstream of the mask. The experimental setup yields
a numerical aperture of NA = 0.042 and results in a diffraction limited resolution cut-off
of 15.3% image contrast for dang = 0.755A/NA = 55 nm (see Eq. (3.24)). With Ry ~ 4,
the setup is strongly reference limited. A central beam stop was used to extend the CCD’s
dynamic range by blocking the intense central part of the (unscattered) beam. The beam
stop effectively works as a high pass filter and shapes the propagated PSF to the more
confined form described in Fig. 3.18.

Fig 3.20(b) shows the recorded diffraction pattern, depicted in logarithmic intensity
scale. Fig 3.21(a-d) show the reconstruction and the sector star contrast averaged over all
sectors dependent on the sector star period. The faint colors and the error bars corresponds
to the threefold standard deviation of the contrast. The reconstruction of the sector star
is given in the upper left of the diagrams. A zoom-in of the sector star center is presented
in the lower right.
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Figure 3.21: Resolution test experiment with large Rairy. The reconstruction of the sector
star is shown in the upper left of the diagrams. A zoom-in of the sector star center is provided
in the lower right. The curves show the contrast of the sector star averaged over all sectors
dependent on the corresponding period. The contrast is normalized to the maximum value.
The faint colored areas and the error bars correspond to the three-fold s.d. of the contrast. (a)
Untreated reconstruction in the mask plane. The center of the sector star appears inverted.
(b) Low pass filtered reconstruction obtained by erasing all pixels in the hologram with radii
larger than the reference Airy disks first minimum. The previously inverted center of the sector
star is now blurred while the resolution limit is not significantly affected. (c¢) Reconstruction
after propagating the unfiltered reconstruction by l,.op = 16 pm. (d) Reconstruction with
non-negative transfer function Hgy. Pixels in the hologram that correspond to negative
frequencies in the reconstruction were multiplied by minus one. In panel (¢) and (d), the
center of the reconstruction is not inverted and resembles the sector original star pattern.
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The initial reconstruction upon Fourier transforming the hologram (Fig 3.21(a)) shows
the contrast inversion described above in the center of the sector star with maximum
inverse contrast at a spatial period of p = 270 nm. For larger periods p, the contrast
increases (i.e., decreases in magnitude) and reaches zero for p = 350 nm. For p = 420 nm
the contrast reaches 15.3%. At the outer parts of the sector star where p > 2d,.. the
contrast saturates.

Fig 3.21(b) shows the reconstruction after low-pass filtering by multiplying all pixels
of the hologram with r¢ys > 1.222,\/d;er by zero. Contrary to the initial reconstruction
(blue), the filtered hologram shows a diminishing contrast (red) towards the center of the
sector star without any contrast inversion. The 15.3% contrast resolution criteria is reached
at p = 440 nm and does not deviate significantly from the unfiltered reconstruction.

The contrast inversion can also be precluded if the reconstructed wave field is propagated
by 16 nm (Fig 3.21(c)). The propagation distance was found by visual inspection of the
sector star. The theoretical value for the propagation distance with dpes = 370 nm is
lprop = d%;/4X\ = 11 pm. Instead of the inverse contrast artifact, the center of the test
pattern now reproduces the sectors (green). Since the contrast in the center of the sector
star is faint, the 15.3% contrast criterion is not significantly shifted towards smaller periods.

Panel (d) of Fig 3.21 shows the reconstruction for a non-negative transfer function. The
zeros of the contrast curve in panel (a) where utilized to locate the negative sidelobe
of the transfer function Pyyn. The hologram was multiplied with minus one at locations
that correspond to this negative side lobe. The contrast in the center is slightly better
compared to the propagated reconstruction.

3.5 Conclusion

Based on the evaluations in this chapter it can be summarized that an FTH setup should
ideally be adjusted such that the diameter of the central Airy disk of the reference pinhole
matches the detector side length (Raipy = 1). Smaller references dier with Rajy < 1
unnecessarily decrease the reference signal and do not pay off with higher resolution.
For nearly diffraction limited imaging (Rairy < 1) the resolution cut-off defined by the
separation between two points that yields 15.3% image contrast of the reconstructed
amplitude is 0.755A/NA (Eq. (3.24)). Apart from drastically decreased photon efficiency
of such a configuration, it is also disadvantageous that the transfer function Hgy, of the
diffraction limited setup is not circular symmetric and has sharp boundaries. Depending on
the application, the recorded hologram might need to be multiplied by a window function
— which essentially is a low pass filter — to suppress ringing artifacts of strong scattering
specimen.

For strongly reference limited setups (Rairy > 1), the resolution limit is equal to the
diameter of the reference pinhole. Feature sizes below this resolution limit potentially
result in imaging artifacts. The reconstruction in the plane of the reference (Iprop = 0) does
not match the plane of least confusion. For setups with Rajy > 1, it is thus advantageous
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to filter the reconstruction by multiplying all pixels in the hologram with rce.q > 1.222,Adef
by zero to circumvent imaging artifacts and to shape of the reference beam along the
optical axis into the common form with a single plane of least confusion. While such
filtering seems to be reasonable especially for scattering signals with large diffraction
angles, it does not show negatives effects in the simulations or in the experiment carried
out in chapter 3.4.3. The central Airy disk of such a filtered hologram serves thereby as
a naturally apodized window function, which suppresses ringing artifacts [Goo96]. The
two-point resolution limit for such filtered holograms which yields 15.3% image contrast
is dggh, = 0.93dyes. The image quality might be further improvable for experiments where
an intensity reconstruction can be considered, i.e., holograms of amplitude modulating
specimen without central beam stop shadow. For such experiments, the modulus of all
pixels in the reconstruction of a complete hologram without central beam stop shadow
can be squared to suppress ringing artifacts and improve the contrast of small features.

The resolution limit of strongly reference limited holograms with Ry, % 2 can poten-
tially be improved by a factor of approximately 2.5 (cf. Fig. 3.19(b)) if the reconstruction
is numerically propagated by lprop = id?ef/4)\. For this reason, the reference pinhole
diameter can theoretically by increased by a factor of Ay = 2.5 (Rayy = 2.5) without
sacrificing resolution compared to the proposed configuration of Raiy = 1. However, such
a strategy is disputable for the following reason. If the pinhole is regarded as a single
zone FZP and by implying a first order diffraction efficiency equally good as for FZPs
with many zones (7 = 772) [Att07], the reference signal strength in a particular beam
waist can be expected to deviate by factor of A%/4m s 0.5 from the configuration with
Rasy = 1. Even if both beam waists are exploited for the reconstruction, the reference
signal is therefore not stronger compared to the configuration with Raj, = 1. In order
to reach a certain resolution limit, it is therefore not beneficial to intentionally plan a
strongly reference limited FTH setup with Ry, Z 2 in order to improve the resolution by
propagation. Apart from the photon efficiency, another disadvantage of this configuration
is the more complex reconstruction algorithm which potentially necessitates the removal of
the defocused contribution from the opposite beam waist that superpose the reconstruction.

Enhancing the resolution of reference limited holograms with Rajy > 1 can be accom-
plished if the transfer function Hgy, is known. A simple approach relies on the knowledge
of the zeros of the transfer function Hygy and precludes imaging artifacts. The zeros of the
transfer function can thereby be measured by utilizing a sector star test pattern which
is fabricated next to the object to be imaged. In order to achieve efficient FTH imaging
with large references, this is a promising method which can be further developed.

In addition to the theoretical motivation of these strategies to improve the spatial
resolution, all concepts introduced for Rajy > 1 where verified experimentally.






4 Monolithic focused reference beam X-ray
holography

One major disadvantage of conventional FTH with reference pinholes is the entanglement
of the spatial resolution and contrast in the reconstruction. If the reference diameter
is decreased, the resolution limit will scale linearly with the reference size while the
reference signal strength, and ultimately the image contrast, is reduced quadratically. A
high-resolution FTH imaging experiment is therefore commonly designed as a compromise
between the desired resolution and the required reference signal. As long as the reference
signal exceeds the detector’s noise level, the decrease in flux through an ever smaller
reference could in principle be accounted for by extending exposure times up to a certain
practical limit. However, resolution limits as reported for Fresnel zone plate (FZP)-based
X-ray microscopy [Chal2] have not been achieved for FTH using reference pinholes with
high aspect ratio up to now. Moreover, for the growing class of dynamic studies relying
on femtosecond X-ray pulses, the signal has to be collected from a limited number of
photons [Cha07; GaulO; Rav09; Wan12|. It has been demonstrated that the image contrast
can be improved in a monolithic approach by using multiple reference pinholes. The
final image is then retrieved either by the sum of all independent reconstructions [Sch06;
Sta08] or by a Hadamard convolution if the references have been arranged in a so-called
uniform redundant array [Mar08]. However, the number of pinholes required to keep the
total reference beam intensity constant while decreasing the pinhole diameters scales with
the inverse square of the spatial resolution. At the same time, the space available for
the object-reference arrangement shrinks according to the detector specifications [Pfal0)].
With present-day nanofabrication tools, the density of pinholes is insufficient to prepare
an adequate number of such reference holes in sub-10 nm spatial resolution-imaging
experiments. To avoid the dilemma of entanglement between resolution and contrast in
the object reconstruction, the reference beam cannot be provided by pinhole apertures.f

Following the original idea of holography as proposed by Denis Gabor [Gab48], we have
replaced the pinhole aperture by an X-ray lens, realized by a FZP. The flux in the FZP
focus, that is, the intensity integrated over the size of the focus, which determines the
contrast in the image reconstruction, is proportional to the FZP’s diameter D, whereas the
focal spot size is defined by the outermost zone width Ar (ref. [Att07]). The FZP diameter
D can easily be adjusted by altering the number of zones N such that ideally the flux
through the FZP approximates the flux through the object. For conventional lens-based
imaging techniques like X-ray microscopy, the small focal length f of high-resolution FZPs
complicates sample positioning and limits the space available for additional instruments in
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the vicinity of the sample. Similar to conventional soft-X-ray FTH [Eis04], and contrary to
previous off-axis and in-line holography experiments employing FZPs [Gor11; Heill; Mall3,;
McN92] we have fabricated the FZP directly into the integrated sample-mask structure,
retaining the mechanical stability and flexibility with regard to sample environments of
the FTH set-up. Particularly with respect to application scenarios at modern femtosecond
X-ray sources such as high harmonic generation and free-electron laser sources, our method
overcomes crucial limitations of previous implementations. First, our method is fully
compatible with time-resolved optical pumping experiments as the reference FZP does
not occupy the vicinity upstream of the sample and, second, owing to the monolithically
integrated design, the resolution is not affected by pointing instabilities that are common
at those sources [Mall3]. The high stability of our implementation allows for very long
integration times over many thousand X-ray pulses as required at photon-limited sources
like high harmonic generation to achieve high spatial resolution.f}

4.1 Focused reference beam concept

For the integrated mask design, the FZP focal length can be chosen as a free parameter
(since no mechanical restrictions need to be considered), facilitating the flexible adjustment
of the remaining FZP parameters. In contrast to conventional FTH reconstructions, which
yield a focused image of the object exit wave in the mask plane, the reconstruction of the
FZP-generated hologram describes the object exit wave field in the FZP focal planes, as
sketched in Fig. 4.1. The geometric separation of the FZP focus and the specimen along
the optical axis can be accounted for by numerically propagating the reconstructed object
wave from the focal plane to the sample plane [Goo96; GuelO; Pag06]. A binary FZP
focuses up to 10% of the transmitted light into each first-order focus at a focal distance
+f (ref. [Att07]) and significant further efficiency increase is possible in more refined
FZP schemes. The remaining light is either transmitted unperturbed (zeroth order) or
focused at smaller focal distances f/n (where n is the FZP diffraction order that can take
any odd positive or negative integer value). In our holographic imaging scheme, all FZP
foci give rise to independent (defocused) images and by using the appropriate numerical
propagation length (p = —f/n) each image can be brought into focus. The desired image
is obtained as the cross-correlation between the specimen exit wave and the FZP focus
beam profile. Depending on the propagation direction, the obtained image originates
either from the real (n > 0) or the virtual focal plane (n < 0). Focused images related to
different foci can be added together to further improve the signal-to-noise ratio. For an
ideal binary FZP, the reference signal therefore approaches 25% of the flux incident on
the FZP if many diffraction orders are considered for the reconstruction. In this case, the
efficiency even approximates that of a perfect lens if FZPs with phase-shifting zones are
utilized [Kir74]. f
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Figure 4.1: (a) Experimental geometry and imaging scheme for FTH with the FZP first-
order foci. The integrated mask contains both the object (1) to be imaged as well as a FZP
(2). Positive and negative FZP diffraction orders are focused in a real and a virtual focal
plane, respectively. The reference beams corresponding to these focal planes encode the phase
information of the object beam by interference. In each focal plane, the object exit wave appears
to be defocused by the FZP focal length f. (b) The Fourier transform of the recorded hologram
is depicted on the left side, containing a defocused holographic object reconstruction (black
box). A focused reconstruction can be obtained by numerically propagating the defocused
reconstruction by +f, yielding an in-focus image that is superimposed by the reconstruction
of the opposite focal plane (middle). After defocusing the undesired opposite focal-plane
contributions for both FZP diffraction orders, virtual and real-image reconstructions can be
added to further improve the signal (right) T
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In contrast to FZP-based full-field imaging, our method capitalizes exclusively on the
FZP focal spot generated on-axis. Off-axis aberrations such as astigmatism and field
curvature observed for FZPs with a low number of zones [You72] do not have to be
considered. We can therefore use simple and disposable FZPs with very few zones, which
make our method particularly suitable for destructive single-shot studies at free-electron
laser facilities. Note that a correction of the hologram distortion due to a flat area detector
may have to be considered for high scattering angles [Sch13].t

4.1.1 Image reconstruction

In the following, we describe our method on the basis of a first-order reconstruction as
illustrated in Fig. 4.2. The numerical propagation of the initial reconstruction (R) from the
real focal plane (n = 1) back to the mask plane (p = —f) yields the desired focused object
reconstruction, which is superimposed by the cross-correlations of the remaining defocused
FZP orders with the object. The intense zero-order offset can be eliminated by a central
beam block, effectively acting as a high-pass filter, which is widely used in diffractive
imaging experiments to protect the charge-coupled device (CCD) or to sense small signals
at high diffraction angles without saturating the detector in the centre. Attention should
be drawn to the contribution of the reconstructions related to the remaining unfocused
FZP diffraction orders n # 0, in particular the contribution from the virtual FZP focus
(n = —1). A similar problem is well known from in-line holography as the twin-image
problem and several solutions have been proposed [Bra51; Bry68; Lat07; McEOS8].t

focused virtual inital focused real
image reconstruction image

of i i-3f P
' ‘ of ' of '
e &)
Rf = = R»f = R_3f =
Ry+R5, RY+Rp R+ R RYy4RTy,

Figure 4.2: The superposed virtual image contribution (RY%;) in the first-order recon-
struction (R.f) can be gradually defocused by subtracting equivalently defocused real-image
reconstructions at different propagation distances p. Note that the propagated (cumulative)
reconstructions (R,) are indexed by the applied propagation distance p, while the individ-
ual contributions from the real image and virtual image have an index according to the
displacement (R”Ap) from the respective focal plane.}

Methods requiring further measurements from reference beams or additional holograms
recorded at different energy or distance are unsuitable for destructive single-shot imaging.
Other methods are based on segmenting and erasing undesired on-axis reconstructions
in their particular focal plane and imply some prior knowledge about the sample being
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investigated. Since the desired object reconstruction arises as a defocused superposition in
the opposite focal plane, the erasure of the unwanted reconstruction in the respective focal
plane causes a loss of desired object information and therefore results in artefacts. Here we
introduce a new, few-cycle iterative method that does not require additional information
about the sample or the reference beam from a priori knowledge or reference measurements,
illustrated in Fig. 4.2. Considering the reconstruction (R_¢) propagated to p = —f, the
most perturbing overlay (RY;) on the focused reconstruction (Rf)) from the n = 1 focus is
generated in the opposite (virtual) focal plane (n = —1). This overlay image is defocused
corresponding to a propagation distance of —2f. A similar —2f defocused image (R'y) is
part of the R_3f reconstruction obtained by propagating the specimen wave to the threefold
focal distance p = —3f, that is, R.3f = RY;; + R’y Therefore, the —2f defocused image
is removed from the R_f reconstruction via calculation of the difference Ry — R_3;. This
procedure gives a substantial improvement over the simple R_s reconstruction, since the
perturbing virtual image is now defocused by —4f instead of —2f (and has negative sign).
Similarly, by adding R_s¢, the virtual image is further defocused to —6f. Consequently,
an enhanced reconstruction (R/;) can be obtained by gradually defocusing the undesired
virtual image contribution:

M
R =Ri+ Y (=1™R_(14om)s- (4.1)
m=1

After a few iterations up to a certain maximum depth M, the disturbing background is
sufficiently defocused and approaches a homogenous offset, that is, structure from the
unwanted image is effectively removed. For contributions of higher FZP orders, this
method can be repeated in a similar fashion. However, the impact of defocused higher-
order superpositions in the reconstruction is much weaker since the diffraction efficiency
of an ideal binary FZP drops with n — 2 (ref. [Att07]). In addition, the FZP focal length
shortens for increasing diffraction orders, and contributions of higher orders are strongly
defocused in a particular lower-order plane. We therefore restrict our attention exclusively
to the first orders.}

4.2 Experimental demonstration

To demonstrate our method, we have fabricated a sample (Fig. 4.3(a)) consisting of a
40-zone FZP with an outermost zone width of 50 nm, a conventional pinhole reference
aperture and a test object. The test object comprises a gecko-shaped aperture surrounding
a quadrant of a Siemens sector star, which allows evaluating the resolution achieved in the
reconstruction. The conventional pinhole reference has a diameter of 60 nm, rendering the
pinhole reconstruction directly comparable to the FZP-based FTH image. All objects are
produced on a 100-nm-thick silicon nitride (SizN4) support membrane, which is coated by
a l-pum-thick gold film. In Fig. 4.3, selected object features are presented as magnifications,
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including the geckos right feet (cyan, blue), an alignment hole closed by a deposited
platinum dot (red) and some dirt grains (green, yellow) within the gecko object. The Pt
deposit and the dirt grains are depicted from the SigNy side where they are located. The
gecko feet including the toes are shown from both sides. These features are not patterned
completely through the entire gold mask thickness owing to the limited aspect ratio and
the finite resolution achieved in fabrication via focused ion beam (FIB).

The sector star is 4 pm in diameter, comprises 64 periods and facilitates an evaluation
of smallest resolvable feature sizes from 98 nm down to 23 nm (196-46 nm period). A FIB
was used to mill a reference pinhole of 60 nm diameter and the gecko-shaped aperture
as well as to unmask the FZP and the sector star. The apertures were positioned with
the help of small alignment holes. After alignment, all alignment markers were closed by
FIB-assisted deposition of 1 pm thick Pt dots on both membrane sides. The alignment
hole located within the gecko aperture was closed from the SizNy side only. In the scanning
electron microscopic images in Fig. 4.3(a), the deposited dots are visible as bright squares
and disks.T

4.2.1 Experimental setup

The experiment was performed at the UE52-SGM beamline of BESSY II in Berlin, Germany.
The integrated mask was placed 170 mm downstream of the beamline focus and 325 mm
in front of a back-illuminated, in-vacuum CCD camera (2048 x 2048 pixels) with pixels
of 13.5 pm edge lengths. To increase the dynamic range of the holograms beyond the
CCD limitations, a diffraction pattern recorded with a central beam stop was numerically
combined with a diffraction pattern of the centre region, which was recorded by attenuating
the incident X-ray beam with a gold filter of 150 nm thickness.}

4.2.2 Results

The mask is illuminated with coherent synchrotron radiation of 400 eV photon energy and
the recorded hologram is presented in Fig. 4.3(b). The maximum momentum transfer
recorded on the detector is 86 pm ™' and corresponds to a diffraction-limited resolution
of 36 nm (half-period) in the reconstruction. The resolution of both pinhole and FZP
reconstructions is therefore limited by the spatial extent of the reference structures. In
Fig. 4.3(c) and (d), we show the second quadrant of the Fourier-transformed hologram
before and after numerical propagation of p = —1f, respectively. To provide a uniform
contrast of the different features in the overview figure, the reconstruction is high-pass
filtered and depicted in logarithmic scale (amplitude).}



4.2 Experimental demonstration 57

10 pm

10°

=
o
'

Po

Ju
=)
w

Amplitude [a.u.]
=
1)
M

10!

50 pm™!

Photons per Pixel
Amplitude [a.u.]

Figure 4.3: (a) Integrated mask with test object, conventional reference pinhole and FZP
reference imaged by scanning electron microscopy (SEM) from the Au side of the sample
(high dynamic range image to visualize features at front and back of the membrane). The
bright squares and disks correspond to Pt deposits used to close alignment holes. These
structures are opaque to soft X-rays. In the magnified inset (dimensions: 7x7 pm?), selected
features of the object have been marked. SEM-imaged sections of these features with a size of
1x1 pm? were taken from the SizN* or Au side as indicated. Scale bar, 5 pm distance. (b)
Far-field X-ray diffraction pattern depicted in logarithmic intensity scale. Scale bar, 50 pm™!
momentum transfer. (¢) High-pass filtered holographic reconstruction (logarithmic amplitude)
containing the cross-correlation of FZP and test object (R), the cross-correlation of test object
and reference pinhole (P,), and the cross-correlation of reference pinhole and FZP (Przp).
Scale bar, 10 pm distance. (d) Holographic reconstruction after numerical propagation by the
FZP focal length. (e) Cropped reconstruction of the desired image (real part) after numerical
propagation by the FZP focal length. (f) The same image after removal of the zeroth order
offset by high-pass filtering. Scale bar, 2 pm distance. (g) Image reconstruction after gradual
defocusing the unwanted contribution from the opposite focal plane reconstruction. The
arrows point to the features that were selected from SEM images in panel a. Scale bar, 2 pm
distance.t

Apart from the central autocorrelation, the Fourier transform of the hologram consists
of three contributions: (R) the cross-correlation of the FZP exit wave with the exit wave
from the object, emerging as a superposition of defocused images related to all FZP foci,
(P,) the cross-correlation of the exit waves of the pinhole and the object, and (Przp) the
pinhole reconstruction of the FZP. After numerically propagating the wave field by the
FZP first-order focal length (Fig. 4.3 (d)), P, appears defocused while Ppzp shows a
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bright first-order focus. The desired reconstruction R is now focused but superposed by
defocused reconstructions from all other FZP foci. The propagated FZP reconstruction
without high-pass filtering is enlarged in Fig. 4.3(¢). The zeroth order is removed by
suppressing low-frequency signals in the hologram with a Gauss function filter, and the
sum of both filtered first-order reconstructions is shown in Fig. 4.3(f). The final image is
retrieved after applying M = 5 iterations of our method to remove the associated image
contribution in the opposite focal plane individually on both first-order reconstructions
before summation (Fig. 4.3(g)). To demonstrate the efficiency of our method, holograms
with different exposure times have been recorded, and the fully filtered FZP reconstructions
are compared with the pinhole reconstructions in Fig. 4.4(a).}

FZP

pinhole

Figure 4.4: (a) The images show the reconstructions of our test object (real part) via
the pinhole reference and the Fresnel zone plate (FZP) reference, obtained from the same
holograms of the integrated mask (Fig. 4.3(a)) for different exposure times. Focused reference
beam holographic images are reconstructed with our algorithm to remove contributions from
the associated reconstruction in the opposite focal plane. The FZP reference reconstructions
feature an improved signal-to-noise ratio and a higher spatial resolution. (b) Combined object
reconstruction. In contrast to Fig. 4.3(g), low-frequency components of the object are now
included via summation of pinhole and FZP reconstructions. Scale bars, 2 pm distance.f

4.3 Discussion

Evidently, reconstructions of the FZP feature a significantly improved signal-to-noise ratio
for short exposures and a superior spatial resolution due to the small FZP focal spot. The
superior resolution in FZP reconstruction is also evident at the gecko’s right hind foot,
which shows clearly resolved toes. Most of the other toes transmit the X-rays too faintly
to be resolved. As an option, one can to some extent recover low-frequency components of
the test object not present in the FZP reconstruction via a pixel-wise summation of the
pinhole reconstruction containing low-frequency data and the FZP, as illustrated in Fig.
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4.4(b). The resolution limit for the pinhole and the FZP reconstruction is determined
by evaluating the contrast of the sector star in the centre of the test object for different
radii (Fig.4.5). The Rayleigh resolution limit [Att07] is found at 124 nm full period for the
pinhole (62 nm feature size) and 92 nm (46 nm feature size) for the FZP reconstruction.
By using state-of-the-art FZPs with outermost zone widths approaching 10 nm [Chal2]
and the possibility to utilize higher diffraction orders [Reh09; Sch97] sub-10 nm spatial
resolution will become accessible on this basis in FTH.7}
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Figure 4.5: The plot shows the normalized image contrast in the sector star depending on
the sector star’s line width for pinhole (red) and zone plate reconstruction (blue). Since the
image background is not perfectly homogenous, the contrast is determined for the four central
sectors (covered by the white arc) individually. The lines show the mean image contrast,
whereas minima and maxima for normalization are obtained by averaging the contrast along
the dashed lines. The confidence intervals according to the onefold s.d. of the contrast in
the four different sectors are indicated by error bars and by the pale-coloured areas. The
smallest resolvable feature sizes according to the Rayleigh resolution limit is determined with
62 nm (124 nm period) for the pinhole and 46 nm (92 nm period) for the FZP reconstruction
(indicated by the points in the plot and by white arcs in the images).f

In conclusion, monolithic focused reference beam X-ray holography enhances signal
strength and resolution of FTH images even when employing rather primitive FZPs.
In particular, the approach decouples the formation of image contrast from the spatial
resolution. Focused reference beam X-ray holography is straightforward to implement and
permits the application of easy-to-fabricate FZPs, that is, by FIB milling [Ovel2]. We
provide a robust algorithm to remove image artefacts arising from the diffractive nature
of the FZP lens, yiclding high-quality images. We note that the energy dispersion of a
FZP and the resulting spatial separation of foci from distinct photon energies opens the
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possibility to encode the spectral response of an object in a multi-colour experiment into
a single hologram, even in a single-shot exposure. In conjunction with the possibility to
holographically encode images of multiple samples [Sch06] and dynamic processes [Cha07;
Giin10; Giinll1], we envision the approach to enable dynamic studies on the few-nanometre
level in particular at coherent X-ray sources.t



5 Extracting depth information from a single-view
X-ray Fourier-transform hologram

In microscopy in general and nanoscience in particular, the extraction of depth information
from three-dimensional (3D) objects of interest is often important. In optical microscopy,
where numerical apertures are large, the depth-of-field can be of the same order as the
lateral resolution limit and 3D objects are predominantly investigated by combining images
from different focal depths [Dub99; Str85]. On the other hand, when using an X-ray
probe, the depth of field is typically orders of magnitude larger than the lateral resolution
limit, allowing to obtain in good approximation a projection image of a sample. A 3D
reconstruction of the object can then be retrieved in a tomographic approach by utilizing
a set of projection images from different angular perspectives. These 2-dimensional (2D)
projection images can be obtained by different imaging methods such as X-ray full-field
microscopy [Wei00], coherent diffraction imaging (CDI) [Mia02; Pfe06], ptychography
[Diel0] or holography [Guel2]. CDI alternatively allows reconstructing a 3D model of
the specimen from a 3D reciprocal-space data set that again was composed out of many
2D diffraction patterns taken from different sample orientations [Cha06b; Loh12]. Even
though tomographic methods are powerful in that they can achieve a depth resolution as
high as the lateral resolution, the requirement of several exposures can be a limitation.
This can for example be the case in the study of non-triggerable or non-deterministic
dynamical phenomena [Cha07] such as fluctuations in thermal equilibrium or in general in
situations when single-shot experiments are indicated, e.g. in order to follow a “diffract
before destroy” approach for delicate samples via intense and ultrashort X-ray pulses
[Cha06a; Seil0].4

Two techniques that have proven to be compatible with femtosecond snapshot imaging
at the nanometer scale are X-ray holography [Cha07; Giinll; Mar08; Pfal0] and CDI
[ChaO6a; Seil0]. Both imaging methods record the specimen’s diffraction pattern in
the far-field without any optical elements between sample and detector. When using
holographic methods, the specimen’s exit wave is reconstructed using the phase information
encoded in the diffraction pattern by the interference of object and reference wave [Eis04;
McN92; Pag06]. In the case of CDI, a solution of the phase problem is iteratively retrieved
from the sample’s diffraction pattern alone. In order to minimize the solution space,
phase retrieval algorithms rely on certain constraint conditions which necessitate a priori
information about the specimen [Cha0O6b; Loh12; Pfe06]. For CDI experiments, it has
already been suggested that 3D structures can be determined from a single view. The
2D diffraction pattern needs to be recorded with sufficiently fine sampling and projected
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on an Ewald sphere within a 3D coordinate space [Rail0]. Therefore, the reconstruction
algorithm is computationally intensive and requires many iterations involving 3D Fourier
transformations.f

In contrast, the non-iterative approach demonstrated here is based on a conventional
X-ray Fourier-transform holography (FTH) experiment and determines an unambiguous
reconstruction by exploiting the information contained in a single hologram recorded on a
2D pixel detector. The holographic reconstruction of the wave field in the plane of the
reference source allows to propagate the angular spectrum of the reconstructed object wave
along the beam axis [Go096; Guel0] and thereby refocus specimen features outside the
depth-of-field. The finite depth-of-field resulting from the scattering geometry can be used
to measure the distance between features along the beam axis as has been demonstrated
for holography experiments using soft X-rays [22] and extreme ultra-violet (EUV) radiation
[23,24]. In this work, the depth information is used to reconstruct a complete 3D model of
a specimen. The method can be seen as an analogue to digital holographic microscopy
(DHM) [2,24] as the position of different features along the optical axis (i.e. the longitudinal
position) is determined by bringing the feature into focus. Similar to DHM and contrary
to non-holographic methods, this information is retrieved post-experimentally from a
single Fourier-transform hologram, which can hence be recorded in a single exposure if
required. As specimen we use an artificial, extended 3D test structure whose longitudinal
dimension exceeds the optical setup’s depth-of-field. From the hologram reconstructions
at different longitudinal coordinates, the displacements of the specimen features from the
sample substrate are measured and transferred into a 3D model reconstruction. A suitable
specimen feature is utilized to determine the transversal and longitudinal resolution. The
results are compared to the theoretical prediction.

5.1 Refocus method and depth measurement

In the single pinhole reference case further considered here, the image reconstruction is
retrieved by a 2D spatial Fourier transformation of the recorded hologram and results in a
2D information of the amplitude and phase of the object’s exit wave, i.e. one obtains the
2D, complex wavefield leaving the object. The in-focus contribution of this wavefield is
obtained from the plane parallel to the detector which includes the reference source. The
2D reconstruction of a conventional Fourier-transform hologram shows optimally resolved
features for the portion of the specimen that has a sufficiently small longitudinal separation
from this plane of the reference source, i.e. features within the depth-of-field. However, the
holographic reconstruction of the wave field in the plane of the reference source allows to
propagate the angular spectrum of the reconstruction [Goo96; Pag06] along the beam axis
and thereby refocus specimen features outside the depth-of-field. It has been shown that
the plane of least confusion can be separated from the plane of the reference by numerically
propagating the reconstructed specimen wave front according to the physical separation
between both planes [Geildb; Guel0]. Similarly, a thoroughly focused reconstruction of an
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extended 3D object can be obtained by numerically propagating the reconstructed wave
fronts of individual object features outside the depth-of-field into focus. Additionally, the
finite depth-of-field can be used to measure the position of a particular feature along the
optical axis by examining the feature’s reconstruction for different propagation lengths
[Mon14; Wacl0]. We thus consider the depth-of-field as the longitudinal resolution limit
that allows a clear distinction between features that are closely displaced along the optical
axis.f

The application of the free-space propagator requires a homogeneous wavelength through-
out the object, i.e. the refractive index is assumed to be constant. For large spatial
deviations of the specimen refractive index within the propagation distance, the actual
wave front is distorted and might deviate significantly from the numerically retrieved
reconstruction. Generally, in the X-ray regime, the refractive index is close to unity [Att07]
and spatial distortions caused by an inhomogeneous refractive index within one attenuation
length are expected to be much smaller than the longitudinal and lateral resolution limits.§

In the following we assume that the geometry of the FTH experiment allows to record
sufficiently large scattering angles such that the limit for the lateral spatial resolution is set
by the lateral size of the reference aperture and not by the maximum momentum transfer.
The phase information in the hologram is encoded by the object-reference interference
and is accessible only up to scattering angles with sufficiently high fringe contrast, i.e. up
to scattering angles with adequate reference and object beam intensity. For a circular
reference pinhole of diameter d, illuminated by a plane wave, the intensity distribution
of the reference beam in the mask plane is a circular disk with constant intensity. In
the far-field, the reference beam intensity on the detector is given by the Airy pattern.
Typically, image information is gathered predominantly for scattering angles within the
radius of the central Airy disk, still containing sufficient intensity of the reference beam.
Considering the Airy disk’s first minimum as the upper limit for the definition of the
system’s effective numerical aperture (NAeg = 1.220/d), both the lateral resolution Ar
and depth-of-field are defined by the diameter of the reference pinhole. For illumination
with radiation of wavelength ), the modulus of the depth of field (Az = +\/2NA?) [Att07]
can be assessed by substituting NA with NAg:

1/ d\?

Remarkably, in the case of reference-limited FTH, the lateral resolution only depends
on the size of the reference aperture (Ar = d) while the depth-resolution additionally
depends on the wavelength of the illumination and improves for larger wavelengths. This
at first sight counterintuitive effect is the result of the increasing divergence of the reference
beam with increasing wavelength. Please note, that relation (5.1) represents the lower
boundary of the depth-of-field given by the first minimum (with zero intensity) of the
diverging reference beam. For real detection systems affected by noise and limited photon
statistics, the maximum detected scattering angle with sufficient signal-to-noise ratio and
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the corresponding NA.g will be smaller resulting in a larger depth-of-field than the given
boundary.

5.1.1 Error estimation for biological applications in the water window

For soft X-ray energies, the absorption is generally strong and the refractive index is close
to unity [Att07]. Deviations of the numerically anticipated wavefront from the actual truth
for propagation distances up to one absorption length can therefore expected to be small.

Fig. 5.1 shows an estimation of the maximum error expectable due to an inhomogeneous
refractive index (real part) for FTH in the water window. Biological imaging in the water
window is one application where deviations of the refractive index potentially play a role. A
simple model of a biological cell with inhomogeneous refractive index is a water body that
consists of gas bubbles. The refractive index (real part) of the gas bubble is approximated
by n1 = 1. For the evaluation only the real part of the refractive index of water ne < 1 is
taken into account. Fig. 5.1(a) shows the scenario for an error in z-direction. Here, the
free space propagator is utilized under the assumption of a homogenous refractive index of
n1. The wavelength within the medium of refractive index ny however is slightly larger
than the wavelength for n;. The numerically retrieved wavefront is found for propagation
distance that deviates by e, from the real conditions.

Apart from the propagation error in z direction, also the numerically propagated wave
front in the image might be distorted. Fig. 5.1(b) shows the scenario for a laterally
distorted wavefront. Here, only a part of the wave travels through a different refractive
index. The numerically retrieved wavefront deviates from the real wave front which
is refracted at the interfaces between both mediums. Panel (c) shows an estimation
of the maximum error along the beam (|é.|) and in the zy-plane (|é,|) relative to the
corresponding resolution limits. The resolution limits are typical values for a high resolution
FTH setup with a reference diameter d,of = 50 nm. Assuming a large detector, the lateral
resolution limit will be the pinhole diameter whereas the longitudinal resolution is set by
the reference limited depth of field Az = £0.5A71(d/1.22)? (Eq. (5.1)). For this chart,
the maximum longitudinal error is evaluated by calculating AN = |A\; — n1A2/na|. The
result is extrapolated to the propagation distance, i.e., one attenuation length.

The maximum lateral error depends on the deviation of the incoming wave front’s angle
caused by refraction. Therefore, the lateral error increases for larger «; and the estimation
needs to based on the largest diffraction angle in the reconstruction. For the reference
limited setup, the largest diffraction angle is assumed to be set by the pinhole reference
a1 = asin(1.22)\/d,.y). For the estimation of the maximum lateral error, the wave front is
expected to travel one attenuation length after refraction.

The results show that the longitudinal and lateral errors within one attenuation length
in the water window are much smaller than the corresponding resolution limits. The atten-
uation length of water dependent on the energy as shown by the green curve corresponds
to the right vertical axis of the chart whereas the relative errors correspond to the left
axis.
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Figure 5.1: Estimation of the deviation of the numerically propagated wavefront from the
true wavefront for photon energies around the water window. (a) Scenario for a longitudinal
deviation. The medium with refractive index n; is optically more dense compared to no. The
numerically retrieved solution converges for smaller propagation distances compared to the
true wavefront. (b) Scenario for an lateral deviation. Only one part of the wave travels through
a medium with different refractive index. The numerically predicted wavefront converges on
the optical axis while the true wavefront converges off-axis. (c¢) Estimation of the maximum
longitudinal (blue) and lateral (red) propagation error dependent on the photon energy within
one attenuation length in water (left axis). The attenuation length in water is shown with the
green curve which corresponds to the right axis.

5.1.2 Sample design

The 3D test object was produced together with the holographic mask on a 350 nm thick
silicon nitride membrane coated with a 1.3 nm gold film. In a first step, an object aperture
of 4.4 pm in diameter was milled into the metal film utilizing a focused ion beam (FIB).
Subsequently, the reference pinhole was produced at a distance of 10 pm from the centre
of the object aperture with an exit diameter of 80 nm. The actual test structure was
fabricated by FIB-assisted deposition of platinum (Fig. 5.2). The sample includes a
diagonal ramp that extends over the object aperture and a group of five differently shaped
bodies deposited within the object aperture on the silicon nitride substrate. The ramp is
1.1 pm wide and has an inclination angle of 45° relative to the substrate. Apertures of
different shape were milled into the ramp corresponding to four different elevations above
the substrate.f



66 5 Extracting depth information from a single-view X-ray Fourier-transform hologram

(b)

9.6 pm

2 pm

Figure 5.2: Scanning electron microscopy images of the test sample made of 3D platinum
structures. The side view of the sample (a) shows the structured ramp which extends above
the object hole. The ramp is deposited with 45° inclination on a gold mask. The small pinhole
seen on the upper left represents the reference source, while the large circular aperture seen at
the bottom right constitutes the object aperture. The top view (b) shows different platinum
structures deposited on the silicon nitride membrane on a SigN4 membrane at the bottom
of the object aperture. Corresponding to four equidistant height levels, differently shaped
marker apertures have been milled into the ramp. The width of the vertical slit in the centre
of the white box is measured to 43 £+ 7 nm.

5.2 Experimental demonstration

The masked-based FTH experiment was performed at the undulator beamline U41-PGM
at the BESSY II synchrotron source, in a configuration described in Ref [Eis04]. The
sample was placed 220 mm upstream of a back-illuminated charge-coupled device (CCD)
with 2048 x 2048 pixels (pixel size 13.5 pm). Soft X-rays with a photon energy of 400 eV
corresponding to a wavelength of A = 3.1 nm were used to illuminate the sample. The
hologram was recorded by accumulating 200 frames with 250 ms exposure time each. In
this configuration we expect a lower boundary for the depth of field of |Az| >693 nm in
the reconstruction. The direct beam was blocked by a circular beamstop to reduce the
dynamic range of the scattering signal to the technical capabilities of the CCD detector.
The missing intensity at low scattering angles corresponds to high-pass filtering of the
hologram. In addition to the first measurement, the centre of the diffraction pattern
was recorded in a second exposure without beamstop, but using a 150 nm thick gold
filter to attenuate the beam. In order to decrease the CCD readout time, the region of
interest was limited to a 200 x 200 pixel matrix which was centred in the hologram. The
centre was recorded by accumulating 1000 frames with 0.9 s exposure time each. In the
final single-view hologram, both exposures where patched together after matching the
intensities in the overlap region. The patched hologram shown in 5.3(b) was reconstructed
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by a 2D Fourier transformation after zero-padding the hologram to 4096 x 4096 pixels.
The focus was shifted along the beam axis by applying the free space propagator to the
reconstruction as described in Refs. [Goo96; Pag06].1
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Figure 5.3: Fourier-transform holography experiment. (a) Scheme of FTH setup. With a
coherent X-ray beam incident from the left side, the holographic mask defines a reference
wave and the object illumination. The blue curve on the right side corresponds to the far field
as recorded on the detector and shows the normalized intensity (Inorm) profile of the phase
encoding reference beam which originates from the small pinhole of diameter d in the mask
plane. (b) Coherent diffraction pattern from the 3D test structure in Fig. 5.2 constituting
a Fourier transform hologram, recorded with soft X-rays with A = 3.1 nm. The intensity is
plotted in logarithmic scale. The white circle has a radius of g0 = 96 pm~™! momentum
transfer and corresponds to the first minimum of Airy pattern of the reference pinhole. The
evaluation of depth-of-field and smallest resolved spot size in the reconstruction relies on
a small real space feature that corresponds to a momentum transfer of gmax = 73 pm™!
indicated by the red circle.

5.3 Results

Figure 5.4(a) shows the reconstruction of the patched hologram without application of
the free space propagator. By default, the focus is in the plane of the reference-wave
source, i.e. in the mask plane. This initial reconstruction, hence, corresponds to a zero
propagation length. As seen in Fig. 5.4(a), features on the bottom of the object hole
(marked by arrows) are reproduced without defocus blurring while the ramp is out of
focus. Depending on the longitudinal separation from mask plane, the ramp shows ever
more pronounced diffraction fringes towards the top. At the photon energy utilized for
illumination, the object shows strong absorption without significant phase shift. For a
numeric identification of the refocus distance of a particular feature from the mask plane,
suitable focus criteria thus rely on an analysis of the reconstructed amplitudes [Che09;
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Dub06; Gil89]. Numerically indentifying the optimal focus is especially promising for a
single extended focal plane with many features [Dub06; Gil89], or for small objects that
are well separated [Che09]. In our reconstruction a numerical focussing was hampered
by two aspects: (i) For extended features that are permeating different focal planes (the
platinum ramp), the common numeric approaches would rely only on a limited amount of
pixels that can be brought into focus at a time. (ii) The in-focus part of the specimen is
often superimposed by fringes of nearby features of a different focal plane. Additionally,
Fourier transform holograms are often high-pass filtered via use of a central beam block
(in contrast to this work). In these cases, edge ringing is amplified in the reconstruction of
high-pass filtered holograms and a numeric evaluation is even more challenging. On the
other hand, the optimal propagation length can conveniently be determined by a visual
inspection of the reconstruction.

(c)

Figure 5.4: Real part of the reconstructed object wave field corresponding to different
longitudinal displacements from the substrate. Reconstruction (a) corresponds to the mask
plane whereas (b) and (c) are retrieved after numerically propagating the reconstructed wave
field upstream by 6 pm and 9 nm, respectively. Focused features are indicated by black arrows.

By observing the reconstruction for different propagation lengths, fringes of defocused
edges are seen to converge for the propagation distance approaching the separation between
the particular feature and the mask plane. It is thus possible to reliably find the optimal
propagation length of sharp features without any a priori knowledge. For the evaluation
of the recorded hologram data, the visual approach delivered results that were superior
over numeric methods relying on an analysis of the variance [Ma04], modulus [Dub06] or
entropy [Gil89] of the reconstructed amplitude.

In Fig. 5.4(b) we present the reconstructed wave field after numerically propagating
the initial reconstruction 6 pm upstream. This distance corresponds to a separation from
the mask plane that shifts the lower part of the ramp into focus. As a result, the height
markers on the low side of the ramp are in focus and clearly resolved while features at
the bottom of the object hole and at the top of the ramp are defocused. The associated
propagation length was found by minimizing fringes around the features of interest. The
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tip of the ramp including the markers located at this position can be brought into focus
by propagating the initial reconstruction 9 pm upstream (Fig. 5.4(c)). This value is in
agreement with the total longitudinal extent of our sample as determined via scanning
electron microscopy.f
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Figure 5.5: Determination of lateral and longitudinal resolution limits in the reconstruction.
The line scan (a) is obtained in the region indicated by the white box in (b) and evaluates
the reconstructed exit wave associated with the fine slit as marked in the close-up image
(c). For the same line, this procedure was repeated as a function of longitudinal propagation
distance to determine the depth-of-field, the result is compiled in (d) along the dashed blue
line, the intensity of the real part decreases by 20% after propagating by 1.2 pm. For the
resolution determination the sampling in the reconstruction was increased by a factor of 8 via
zero-padding the original hologram prior to Fourier transformation.

The lateral resolution and the depth-of-field of the reconstruction were evaluated in a
certain region of interest (ROI) on the ramp indicated by the white box in Fig. 5.5 (b).
Features in the 1 pm x 1 pm ROT as magnified in Fig. 5.5 (c¢) are focused at a propagation
distance of 7 pm. The lateral resolution was determined by evaluating the pixels indicated
by a red line through the fine central slit. In the scanning electron micrograph, the width
of the slit was measured to 43 + 7 nm. Figure 5.5 (a) shows the normalized values (real
part) of the corresponding pixels in the reconstruction. The smallest reconstructed feature
size in lateral direction, corresponding to the full width at half maximum (FWHM) as
determined from Fig. 5.5 (a) is 64 nm. In the reconstruction, the measured feature
size corresponds to the finite width of the fine slit which is convoluted with the FTH
point spread function. Considering Gaussian transmission profiles of slit and reference, we
estimate a resolution limit of 4848 nm (FWHM). In Fig. 5.5 (d) we show the reconstructed
wave field (real part) along the slice marked by the red line in Fig. 5.5 (c) for different
numerical propagation distances of the reconstruction. The data plotted in Fig. 5.5 (a)
is thus identical to a transverse line profile at zero propagation distance in Fig. 5.5 (d).
A longitudinal line profile (dotted blue line) is extracted on the right side of Fig. 5.5
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(d). The depth-of-field, identified by a 20% drop of the reconstructed real part [Att07] is
determined to be +1.2 pm.f{

From the quantitave assessment of the longitudinal position of the reconstructed features,
we are able to compile a 3D model of our object. As in-focus features are distinguished
visually by the appearance or disappearance of fringes at their edges, we aim to identify
these edges and their respective longitudinal height in a second step. The edges were
found by computing the variance of the real parts in a 9 x 9 pixel matrix (corresponding to
225 pm x 225 pm) that was shifted pixelwise across the whole reconstruction resulting in
2D variance map. These variance maps were calculated for different propagation lengths.
The presence of edges within the depth-of-field results in a strong increase in variance
[Ma04] and corresponding pixels could be isolated by simply thresholding the variance
map. The resulting wireframe style 3D model maps the specimen edges at their respective
longitudinal positions and is presented in Fig. 5.6 (a). A visualisation of the 3D surface
topography information in a 2D plot is illustrated in Fig. 5.6 (b).

(a) (b)

Height [pum]

Figure 5.6: 3D representations of the reconstructions at different longitudinal coordinate
z (“height”). (a) Wireframe model only displaying feature boundaries at their respective
in-focus propagation distance relative to the mask plane. (b) Color-coded representation of the
longitudinal coordinate of the test sample surface. For object parts not placed close to sharp
features (such as the non-structured parts in the center of the ramp) the height coordinate
was obtained by interpolation.

Here, we have combined reconstructions for different propagation lengths into an entirely
focused, color-coded reconstruction. The color overlay in this reconstruction corresponds
to the longitudinal height of the particular feature while the local image brightness still



5.4 Conclusion 71

corresponds to the reconstructed specimen wave field (real part). The longitudinal feature
positions are taken from the model presented in Fig. 5.6 (a) and were interpolated between
feature boundaries. The longitudinal position of edges from strongly absorbing features
as plotted in Fig. 5.6 corresponds to distance from the FTH mask where the respective
edge first intercepts the beam. Once a strong absorber brings the beam to extinction,
no information on downstream objects shadowed in this way can be obtained. This
is a principal limitation and fully analogous the situation encountered when recording
focus series in microscopy, e.g. using visible light. For this reason, specimen that are
best dedicated for this 3D imaging method show features that are well separated or
semi-transparent. f

As expected from the geometry of the experimental setup, the lateral resolution is far
superior to the longitudinal resolution limit. The measured depth-of-field in the experiment
deviates considerably from the predicted lower boundary of relation (5.1) for two reasons.
Firstly, the feature used for the evaluation of the depth-of-field is not point-like but has
a finite width of 43 = 7 nm. In the reconstruction, the intensity profile through the
slit is wider than the profile of the point spread function of the FTH imaging process.
As a consequence, the depth-of-field of the FTH setup is overestimated. Secondly, the
detection of the hologram is affected by noise of the CCD and the limited photon statistic,
in particular, at high scattering angles (cf. Fig. 5.3). The phase-encoding interference
signal on the detector is not recorded with sufficient signal-to-noise ratio up to the given
zero-intensity boundary of the reference wave’s Airy disk at guero = 96 pm ™! (white circle
in Fig. 5.3 (b)). Instead, the effective maximum scattering angle up to which the hologram
is modulated will be smaller, resulting in a larger depth-of-field The effective maximum
momentum transfer of qmax= 73 pm~! considering both the finite feature width and the
detection limitations is shown as red circle in Fig. 5.3 (b). It can be concluded that the
true effective depth-of-field of the FTH setup considering hologram signal-to-noise (and
not considering the limitations of the finite test feature) lies between 0.7 pm and 1.2 pm.

Relation (5.1) for Az above also suggests that the longitudinal resolution can be improved
by using lower photon energies while still maintaining sub-100 nm lateral resolution. For
instance, the lower boundary for the longitudinal resolution reduces to Az = +£159 nm
when the FTH mask in this experiment would have been illuminated with a wavelength of
A = 13.5 nm, i.e., a prominent wavelength for destructive single-shot experiments at the
free-electron laser in Hamburg (FLASH) [Ack07; Seil0].4

5.4 Conclusion

We demonstrate the extraction of depth information from a single soft-X-ray Fourier
transform hologram. Our approach allows a precise and intuitive measurement of longi-
tudinal displacements of object features, analogous to a focus series “through an object”
in light microscopy. Using this information, we are able to reconstruct a 3D model of
a test object. In the reconstruction, we estimate a lateral resolution of 50 nm and a
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longitudinal resolution of £1.2 pm. The depth resolution can significantly be improved
by either increasing the wavelength of the X-ray illumination or by further reducing the
size of the reference wave source, given that the coherent photon flux and the resulting
signal-to-noise ratio is not a limiting factor. As the method is compatible to FTH with
more complex reference structures for increased efficiency, [Geildb; Mar08] a reduction
of the reference wave intensity when reducing the reference aperture diameter can be
compensated to optimize the hologram fringe visibility.f

Given the limitations of the approach demonstrated here as compared to obtaining
3D information via tomography [Guel2; Wei00], we anticipate the application of this 3D
imaging method especially for weakly absorbing samples, e.g. for research in life science,
in situations where the acquisition of many projection images is not possible. In particular,
this is the case when the sample is structurally changing in time due to dynamic processes
such as inherent or triggered dynamics or radiation damage. In this case, our approach
allows to obtain 3D information on the sample from a single-view snapshot hologram in a
diffract-before-destruct [ChaO6a; Seil0] approach.f
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FTH is a powerful, lensless imaging method with numerous application possibilities in
physics, material science and biology. As the source of the reference beam, FTH comprises
a small pinhole which is monolithically integrated into a metal film next to an object
aperture that defines the field-of-view [Eis04]. Due to this integrated mask design, the
optical setup is very simple and the method is remarkably robust against sample drifts and
vibrations. By illuminating such an integrated mask with coherent X-rays, the hologram
can conveniently be recorded on a CCD detector placed in the far-field. Contrary to non-
holographic CDI where the phase information of the object wave is iteratively anticipated
from a far-field, intensity diffraction pattern [DielO; Mia02; Pfe06], a hologram represents
a direct measurement of the object wave’s complex amplitude, i.e., amplitude and phase
information of the object wave. The reconstruction of the recorded hologram is therefore
a unique solution which is numerically accomplished by a Fourier transform. Contrary to
lens based microscopy where the image represents a spatial distribution of intensities, the
holographic reconstruction reproduces the complex amplitude of the object wave in the
plane of the integrated mask.

The efficiency of FTH depends largely on the extent of the source of the reference
wave. For common configurations with pinhole references, the reference pinhole’s exit
wave approximates the FTH system’s point-spread function. For smaller references, the
resolution of the FTH reconstruction thus improves whereas the reference signal on the
detector and ultimately the image contrast in the reconstruction diminishes. For this
reason, the choice of the reference pinhole’s diameter is a compromise that trades photon
efficiency for image resolution. One aspect of this dissertation is the formulation of a
theoretical framework that allows a determination of the resolving capabilities for an FTH
configuration dependent on basic design parameters. For a convenient discussion of an
FTH setup, these basic design parameters have been combined in a single quality factor
(RAiry), i-e., the ratio of the diameter of the Airy disk from the reference wave relative to
the side length of the (quadratic) detector. Nearly diffraction limited FTH configurations
correspond to Raiy < 1 and the imaging properties of such a setup are characterized
by the shape of the CCD detector. For larger Rajiy the reference source increasingly
affects the reconstruction which for Rajy > 1 is sufficiently characterized by the reference
pinhole alone. An optimal configuration of the FTH setup is found for Rajy = 1. This
configuration represents a reasonable compromise between photon efficiency and spatial
resolution limit.

For strongly reference limited setups, imaging artifacts are identified and characterized.
For such configurations, it is demonstrated that a numeric low-pass filter can be applied

73
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to the hologram to improve the image quality and to prevent imaging artifacts. In
addition, it is also demonstrated that the reference beam of strongly reference limited
FTH configurations is not optimally confined in the reconstruction plane of the reference
pinhole, i.e., in the holographic reconstruction as retrieved by the Fourier transform of
the hologram. The resolution of strongly reference limited holograms can therefore be
enhanced by propagating the reconstructed object wave along the beam axis into a plane
of least confusion. The theoretically expectable photon efficiency by an application of
this approach however is much reduced compared to conventional FTH and a practical
application of the method does not seem beneficial. Another more promising approach to
enhance the image resolution in the reconstruction is to characterize and directly modify
the FTH transfer function in reciprocal space. This approach allows to improve the
resolution of a pinhole based FTH reconstruction without decreasing the photon efficiency
of the FTH system. By performing a proof-of-principle FTH experiment with soft X-ray
synchrotron radiation, the existence of the imaging artifacts anticipated for reference
limited holograms as well as the effectiveness of the proposed numeric treatments to
enhance the image quality are demonstrated. Characterizing and modifying the FTH
transfer function utilizing a dedicated test pattern which is fabricated adjacent to the
object aperture into the integrated mask is a promising outlook with significantly enhanced
resolution limits for future FTH experiments.

The efficiency of FTH can drastically be improved by implementing a new and innovative
mask design. Instead of a reference pinhole, this novel mask layout relies on a focusing FZP
which serves as reference structure. The corresponding new holographic imaging method
is another key aspect of this dissertation. Similar to the conventional, pinhole reference,
the FZP is directly fabricated into the metal mask adjacent to the object. Due to this
monolithic design, FTH is very robust against sample drifts and vibrations. In contrast
to the conventional, pinhole based mask design where the FTH system’s point-spread
function is related to the mask plane, an FZP based reference beam is monolithically
focused into several focal planes. In order to obtain a focused image, the reconstructed
complex amplitude of the object needs to be numerically propagated from a particular FZP
focus to the mask plane. After propagation, the particular focal order reconstruction is
focused but superposed by the defocused contributions of the remaining FZP focal orders.
The reconstruction algorithm for FTH with monolithically focusing references thus includes
an additional processing step that separates the desired focal order reconstruction from
the remaining defocused focal order contributions. This newly developed, iterative method
further defocusses the undesired focal order plane contributions until the image background
is sufficiently homogenous. Focused reconstructions of different diffraction orders can
be added to a combined reconstruction with enhanced image contrast. The efficiency
of FTH with monolithically focusing references is demonstrated by a proof-of-principle
experiment with soft X-ray synchrotron radiation. Both, image contrast and resolution
are significantly enhanced compared to conventional, pinhole based FTH. The method
prospects dynamic single shot FTH experiments with high resolution and strong contrast.
Due to the vibration robustness, the method gives also prospect to FTH experiments
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with long exposure times at low flux facilities such as HHG sources. Another promising
outlook for synchrotron experiments is to utilize the FZP’s higher diffraction orders to
improve the spatial resolution of the reconstruction beyond the FZP outermost zone width.
Since the FZP diffraction efficiency declines for higher orders, exposure times for higher
order imaging significantly increase [Reh09]. For this reason, an FTH experiment that
capitalizes on higher FZP diffraction orders benefits from the vibration robustness of the
FTH method. The signal of a higher order reference beam can be improved by utilizing a
dedicated FZP design [Sch97].

Another major topic of this dissertation is the exploitation of the holographically recorded
phase information to obtain structural information of three-dimensional specimen from the
hologram. The reconstruction of the object exit wave’s complex amplitude in the plane of
the integrated mask can numerically be propagated along the beam axis. By this approach,
the focus plane in the reconstruction is effectively separated from the point reference in the
plane of the integrated mask. Features of extended three-dimensional specimen outside
the depth-of-field can thus be refocused by numeric wave field propagation. The finite
depth-of-field is used to measure the displacement of the particular feature from the mask
plane. For such measurements, the resolution along the propagation axis is set by the FTH
system’s depth-of-field. The wave front retrieved by numeric wave propagation is thereby
an anticipation that implies a homogenous phase velocity throughout the specimen. For
potential applications with inhomogeneous phase velocities such as FTH bio-imaging in
the water window, distortions of the numerically anticipated object wave reconstruction
are however estimated to be much below the resolution limits of common FTH setups.
Contrary to tomographic approaches [Guel2], the propagation method extracts three-
dimensional information from a single view measurement. The method is experimentally
demonstrated by utilizing an artificial, three-dimensional test structure which is illuminated
with coherent synchrotron radiation of 400 eV photon energy. The structural information
obtained from a single exposure hologram are combined in a three-dimensional model of
the test structure. In the reconstruction, the spatial resolution in the direction lateral
to the beam axis is 55 nm whereas the resolution in beam direction is determined to 1.2
pm. The depth resolution along the propagation direction in the reconstruction of the
recorded hologram is thus far inferior to the lateral resolution. For applications with soft
X-ray illumination light, the method can be seen as a complementary approach to extract
depth information when tomographic methods are impractical or impossible. The depth
resolution is expected to improve for lower photon energies [Geilda] and a repetition of the
experiment with EUV energies prospects an isotropic spatial resolution limit significantly
below 100 nm. Another interesting perspective is to perform a similar experiment in
reflection geometry. In such an experiment, the phase information in the reconstruction can
be expected to interferometically encode the three-dimensional structure of the specimen
and depth information should be extractable with an accuracy in the order of the wave
length of the illumination light.

The integrated mask design as first demonstrated ten years ago [Eis04], represented a
kick start for a new class of coherent X-ray imaging experiments. During the past years,
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the method has been constantly developed and FTH is now routinely applied to numerous
experiments, predominantly to investigate magnetic thin films [Biit13; But14; Kor14; Pfall,
Pfal2; Sch13]. The scientific insights of magnetism and its dynamics is an interesting
research area with promising potential for industrial applications. FEfficient reference
schemes [Geildb; Mar08; Sch06] in conjunction with FELs already enable future FTH
experiments with unprecedented temporal and spatial resolutions. Combining CXI and
FTH is a promising path to gain diffraction limited resolution on a photon budget [Mar08§]
or over a wide field of view [Hesl4]. New technical developments like X-ray detectors
with short readout times [Kis13] promise holograms with drastically enhanced dynamic
ranges. Increasingly powerful computers provides additional means for the development of
coherent lensless imaging methods by facilitating numerically demanding reconstructions
in ever shorter processing times. For this reasons, FTH can be expected to continue
strengthening it’s established position in the future by routinely offering quality X-ray
images with nanometer resolution on ultra-short timescales.
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