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  Abstract:   The investigation of functional neuronal synchro-

nization has recently become a growing field of research. 

With high temporal resolution, electroencephalography 

and magnetoencephalography are well-suited measure-

ment techniques to identify networks of interacting sources 

underlying the recorded data. The analysis of the data in 

terms of effective connectivity, nevertheless, contains intrin-

sic issues such as the problem of volume conduction and 

the non-uniqueness of the inverse solution. Here, we briefly 

introduce a series of existing methods assessing these 

problems. To determine the locations of interacting brain 

sources robust to volume conduction, all computations are 

solely based on the imaginary part of the cross-spectrum 

as a trustworthy source of information. Furthermore, we 

demonstrate the feasibility of estimating causal relation-

ships of systems of neuronal sources with the phase slope 

index in realistically simulated data. Finally, advantages 

and drawbacks of the applied methodology are highlighted 

and discussed.  
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      Introduction 
 Besides the pure location of neuronal sources, a distinct 

interaction pattern including different brain regions is 

hypothesized to determine the function of the brain within a 

particular task [ 34 ,  35 ,  37 ,  38 ]. Whereas the location of brain 

activity can be well determined with high spatially resolved 

functional imaging techniques, such as functional magnetic 

resonance imaging (fMRI), temporal resolution makes it diffi-

cult to capture dynamics inside the brain. In contrast to fMRI, 

non-invasive measurement techniques such as electroen-

cephalography (EEG) and magnetoencephalography (MEG) 

suffer from poor spatial resolution. Nevertheless, temporal 

resolution in the millisecond range makes them well suitable 

to study neuronal synchronization, which is understood as a 

mechanism of functional communication (e.g., [ 8 ]). 

 One of the fundamental problems arising from the iden-

tification of interacting neuronal sources from EEG or MEG 

data is the so-called problem of  “ volume conduction ”  or 

 “ field spread ”  [ 28 ]. As the electric (EEG) or magnetic (MEG) 

field produced by a single source propagates through the 

whole head, it is captured by at least a couple of sensors on 

the scalp. Hence, an interaction, determined between two 

different sensors can arise only due to a single source and 

does not necessarily reveal information about the underly-

ing network. To overcome this problem, Nolte et al. proposed 

to use only the imaginary part of the complex valued coher-

ency as a robust measure of interaction on sensor level [ 25 ]. 

However, the interpretation of relationships between sensors 

in terms of brain sources is quite difficult in many cases. 

Therefore, the final aim is to estimate the activity of neuronal 

sources and then apply appropriate connectivity measures. It 

is often argued that the procedure of first calculating source 

activity also completely solves the problem of volume con-

duction. However, although the effect of volume conduction 

is most dominant on sensor level, it also affects estimates of 

source activity, that is, the determination of synchronized 

neuronal sources from scalp recordings [ 33 ]. One more fun-

damental issue is that the inverse problem is not uniquely 

solvable as it is highly underdetermined and, therefore, 

mathematically ill-posed. Many different source configura-

tions could give rise to the same EEG/MEG measurement. 

Therefore, additional information or constraints are required 

for the determination of the underlying sources [ 3 ]. 
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 In the present paper, we describe two different meth-

odological procedures to potentially overcome these 

problems and to identify networks of directed informa-

tion flow within the brain. They are based on appropriate 

preprocessing to diminish the effect of volume conduc-

tion and, in addition, to bound the search space for the 

estimation of interacting neuronal sources. We utilize 

the properties of the imaginary part of the cross-spec-

trum (ImCs) by using it as a basis to estimate neuronal 

source activity. Given the time courses of the interacting 

brain sources, we finally apply the phase slope index 

(PSI) to determine the directional coupling between 

them in order to obtain an interpretable picture of neu-

ronal interaction. In the Methods section, an overview 

about the methodology is given and individual methods 

are described briefly. In the Results section, we specify 

how we simulated EEG data in a realistic manner and 

present results of the applied methods to demonstrate 

the feasibility of the proposed procedure. Finally, results 

are discussed.  

  Methods 
 In this section, an overview about the used methodology 

is given including a more detailed description of each 

individual method. 

  Overview 

 A well-established method to estimate a linear relation-

ship between two time series in the frequency domain 

is coherence ( “ coherence ”  usually denotes the absolute 

value of the normalized, complex valued cross-spec-

trum. To avoid confusion about the terminology we call 

the complex valued quantity  “ coherency ” ). To assess the 

problem of volume conduction, it was proposed to focus 

on the imaginary part of coherency (ImC), as independent 

sources do not contribute systematically to the imaginary 

part of the cross-spectrum [ 25 ]. Based on this finding, we 

describe two different ways to estimate networks of brain 

sources, as shown in  Figure 1 .  

 The left branch of this  “ methodological tree ”  starts 

with the determination of subspaces containing inter-

acting source pairs. To localize pairwise interacting 

sources from the imaginary part of the cross-spectrum or 

 coherency, respectively, two different methods have been 

established. Pairwise interacting source analysis (PISA) 

decomposes the imaginary part of the cross-spectrum 

 Figure 1      Methodological overview. Two different ways to estimate 

a causal network of neuronal sources underlying measured EEG 

or MEG data, robust to artifacts of volume conduction. A blue box 

indicates a method acting on sensor level and a red box a method in 

source space.    

into pairs of interacting sources [ 26 ]. It is technically 

related to standard second order blind source separation 

methods while the meaning is somewhat opposite as it 

decomposes only that part of the cross-spectrum which 

is inconsistent with independent sources. The other 

method (MaxImC), which is used in the present paper, 

determines spatial patterns such that the imaginary 

part of coherency is maximized and, therefore, extracts 

major large-scale interactions. Furthermore, it is inde-

pendent of the actual mapping from sources to sensors 

[ 5 ]. The result of both methods is a subspace containing 

the scalp patterns of two interacting sources. These pat-

terns have to be demixed using further assumptions to 

estimate the truly interacting sources. This is formulated 

within minimum overlap component analysis (MOCA) 

where linear source estimates are demixed assuming 

that the true source distribution has minimal spatial 

overlap. To separate interacting sources a spatial rather 

than a dynamic criterion has to be defined. We make the 

assumption that separate sources occupy separate brain 

regions and hence do not overlap spatially. But even if 

the true sources do not overlap the respective estimated 

distributed sources in general will. To come as close to 

the true separation as possible we, therefore, minimize 

the spatial overlap. This was tested extensively in [ 19 ] for 

dipolar sources reconstructed with weighted minimum 

norm estimates (WMNEs), which was also used here as 

an inverse method [ 12 ]. 
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 A different way to estimate interacting sources robust 

to volume conduction is to apply RAP-MUSIC (see [ 21 ]) on 

a subspace determined by the imaginary part of the cross-

spectrum, as also shown in [ 1 ]. At the end of each meth-

odological branch, a beamformer-like projection is used 

to determine the time courses of the estimated sources. 

Finally, the PSI is applied as an indicator for the direction 

of the information flow between different time series [ 27 ]. 

In contrast to the original research paper, where the PSI is 

shown on sensor level, we use it here to identify the driver 

and the recipient from the estimated time series of macro-

scopic neuronal sources. By analyzing the imaginary part 

of the cross-spectrum prior to source reconstructions, we 

focus on interacting sources and, hence, diminish arti-

facts due to non-relevant non-interacting or noise sources.  

  Robustness of volume conduction of the 
imaginary part of the cross-spectrum 

 A key idea of the present paper is to base the localization 

of interacting sources on the imaginary part of the cross-

spectrum (ImCs) as the only available reliable source of 

information. Therefore, we want to review the special role 

of the ImCs shortly. Let us consider the Fourier transform 

  ( ) i p
p px f r e φ=  in a segment (e.g., an event-related epoch) of 

measured EEG/MEG data in sensor  p . Then, the complex 

valued cross-spectrum is defined for each frequency  f  and 

for each pair of sensors  p  and  q  by 

   
( ) ( ) ( ) ( - )* ,

i p q
pq p q p qC f x f x f r r e φ φ= =

 
(1)

 

 where * denotes the complex conjugate and   .  describes 

the expectation value which is usually approximated by 

averaging over a large number of trials [ 4 ]. Furthermore, 

the signal in an EEG/MEG sensor  p  can be described as the 

linear superposition or mixture of  K  brain sources  s k  (   f   ), 
leading to 

   

( ) ( )
=1

.
K

p pk k
k
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 If we assume an instantaneous mapping from sources to 

sensors, the mixing coefficients  a pk   are real valued and the 

signal phases   φ  p   in sensor space are not distorted. This can 

be derived from the validity of the quasi-static approxima-

tion of the Maxwell equations below 2 kHz, and therefore 

in the range of EEG/MEG frequencies of interest [ 31 ,  36 ]. 

Further assuming only independent, that is, non-phase-

locked or interacting sources, and plugging Equation (2) 

into Equation (1), leads to 
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 which is purely real-valued. Hence, independent brain 

sources are mapped only in the real part of the cross-spec-

trum and all significant deviation from zero of the ImCs 

can be interpreted as true brain interaction. Another point 

of view is that zero-phase interactions are neglected or not 

interpreted as they are confounded by artifacts of volume 

conduction. This line of arguments is also valid for com-

plex-valued coherency, the normalized cross-spectrum, as 

the normalization 

   

( )
( - )

2 2

i p q
p q

pq
p q

r r e
Coh f

r r

φ φ

=

 

(4)

 

 is also real-valued for independent sources.  

  Maximizing imaginary coherency 

 One way of preprocessing to increase signal-to-noise ratio 

in terms of the imaginary part of coherency (ImC) is to 

determine spatial filters maximizing the ImC [ 5 ]. These 

filters can be converted to spatial patterns (see [ 22 ]) that 

themselves can be interpreted as mixed topographies of 

the  “ most dominant ”  interacting brain sources. Let us con-

sider a prewhitened imaginary part of the cross-spectrum 

  D(   f   ) = C  R  (   f   ) -1/2 C  I  (   f   )C  R  (   f   ) -1/2  ∈ C  N     ×     N     ×     F   (5) 

 for all  N   ×   N  sensor pairs and  F  frequencies where 

  ( ) ( )( )R f  f=ℜC C  denotes the real part of the cross-spectrum 

and   ( ) ( )( )I f  f=ℑC C  the imaginary part (for details of the 

prewhitening please refer to [ 5 ]). Let us  furthermore con-

sider the Fourier transform of the data for all  N   channels 

x(   f   ) = [ x  
1
 (   f   ) …  x  N (   f   )]  T   and its whitened form y(   f   ) = C  R  (   f   ) -1/2 x(   f   ). 

Then, weights or spatial filters a ∈ R  N     ×    1  and b ∈ R  N     ×    1  can be 

defined, such that the ImC between the two virtual chan-

nels  z  
a
 (   f   ) = a  T  (   f   )y(   f   ) and  z  b (   f   ) = b  T  (   f   )y(   f   ) is maximized. The 

ImC between z  a  (   f   ) and z  b  (   f   ) can be derived to be 

   

( ) ( ) ( ) ( )
( ) ( )

T

z
f f

f f
fImC f =

a D b
a b

 

(6)

 

 and maximization of Equation (6) is achieved by solving 

the eigenvalue equations 

    D(   f  ) T  D(   f   )b(   f   ) =   λ   2 b(   f   ) and D(   f   )D(   f  ) T  a(   f   ) =   λ   2 a(   f   ) (7) 
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 According to the previous derivations, the eigenvectors 

belonging to the largest eigenvalues of D(   f)   T  D(   f   ) and 

D(   f   )D(   f  ) T   are the spatial filters a and b that maximize the 

imaginary part of coherency. These filters could in general 

be converted into patterns by 

   
( ) ( ) ( ) ( ) ( ) ( )and .R Rf f f f f f= =a C a b C b��

 
(8)

 

 as described in [ 5 ,  22 ] and, hence, being interpreted as 

topographies of interacting sources. But the eigenvalues 

from Equation (7) are degenerate and occur in complex 

conjugate pairs. Therefore, the eigenvectors are not unique 

up to a rotation and every linear combination of the two 

eigenvectors is an eigenvector itself fulfilling Equation 

(7). In other words, the calculated topographies in Equa-

tion (8) only span a subspace of the real topographies of 

the underlying brain sources. Therefore, additional con-

straints have to be employed to demix the orthogonal 

topographies, which is addressed below (see the section 

on  “ Demixing sources with MOCA ” ). 

 A further connectivity measure that can be derived by 

maximizing the imaginary part of coherency as described 

above is the global interaction measure (GIM) [ 5 ]. The GIM 

itself is the frequency dependent maximized ImC, that 

is, the value obtained in Equation (6), and illustrates at 

which frequency we observe neuronal synchronization. In 

this paper, the GIM is used to select the frequency bin of 

interest from the simulated EEG data. 

 As an additional remark, we would like to point out 

another method that determines a subspace of topogra-

phies of interacting sources based on completely differ-

ent assumptions. PISA is an adaptation of common blind 

source separation techniques such as Independent Com-

ponent Analysis (e.g., [ 15 ]) with a focus on interactions 

[ 26 ]. Hence, PISA is also well suited as a starting point to 

determine a subspace of pairwise interacting sources and 

for further processing, as shown in [ 24 ].  

  Demixing sources with MOCA 

 The two spatial patterns   ( )fa�  and   ( )fb�  from Equation 

(8) that are obtained by maximizing the ImC are unique 

up to a rotation, as described above. Therefore, further 

constraints have to be applied to find a unique repre-

sentation of underlying source distributions. Here, we 

use the MOCA method, introduced in [ 19 ]. As the idea of 

minimally overlapping sources can only be implemented 

in source space, source distributions belonging to the pat-

terns in Equation (8) have to be estimated. For simplicity, 

we employ a weighted minimum norm (WMN) solution 

(see, e.g., [ 16 ] and [ 17 ]). The underlying source distribu-

tion   as �  giving rise to the spatial pattern   a=a As ��  can be 

estimated by solving 

   

2 2

2 2
arg min - ,a a aλ= +

s
s a As Ws� � ��

 
(9)

 

 with   λ   being a regularization parameter and W a weighting 

matrix, here chosen to penalize deep sources. The matrix 

A denotes the lead field that describes the linear mapping 

from given brain sources to measurement sensors. It is cal-

culated using a realistic volume conductor, as described in 

[ 23 ]. Please note that applying more sophisticated linear 

inverse solutions might help to improve the performance 

of using the PSI on source level. For example, the   2�  norm 

used in Equation (9) leads to very smooth and, therefore, 

often too extended source distributions, whereas an   1�  

norm would generate an often too sparse distribution. To 

resolve this trade-off, Haufe et al. have proposed an inter-

mediate measure [ 13 ]. However, an exhaustive discussion 

on particular inverse solutions is out of the scope of this 

paper and, to apply MOCA, it is necessary to use a linear 

inverse method. 

 As stated above the source distributions   
/a bs ��  have 

to be demixed as the respective topographies are unique 

up to mixing within the respective two-dimensional 

subspaces. After transforming to spatially uncorrelated 

source distributions, named   
/

ˆ ,a bs ��  a rotational ambiguity 

remains and the optimally demixed distributions can be 

expressed as 

   

( )
( )

( )
( )

ˆ,

- ˆ,

a a

b b

j cos sin j
sin cosj j

ϕ ϕ ϕ

ϕ ϕϕ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

m s
m s
� �

� �
 

(10)

 

 with   ϕ   being the rotation angle and  j  being all brain voxels 

on a predefined grid. Achieving minimum spatial overlap 

of the source distributions   ( ),a j ϕm �  and   ( ),b j ϕm �  can be 

realized by analytically minimizing the function 

   
( ) ( ) ( )( )2

, ,a b
j

O j jϕ ϕ ϕ=∑ m m ��

 

(11)

 

 defining the overlap [ 19 ].  

  RAP-MUSIC 

 A different way of estimating interacting source distribu-

tions based on the imaginary part of the cross-spectrum 

is recursively applied and projected multiple signal 

classification (RAP MUSIC, [ 21 ]), a variant of the MUSIC 
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algorithm [ 32 ]. The basic idea behind MUSIC is to define a 

 p  <<  N  dimensional low-rank subspace projection of data 

in  N  measurement channels and an orthogonal noise 

space. The so-called signal subspace S is usually spanned 

by the first  p   eigenvectors of an eigenvalue (or singular 

value) decomposition of the covariance matrix   N N×∈C �  

of the data. The orthogonal noise subspace is estimated 

by the span of the remaining  N–  p  eigenvectors of   .C  Given 

the subspaces, a scan over all predefined grid points in 

the brain is performed to determine whether a source at 

grid point  j  is consistent with the signal subspace S which, 

for simplicity, is assumed to be defined by normalized and 

mutually orthogonal columns of S. This consistency can 

be expressed in terms of the angle   ϑ   between S and the 

forward model, that is, the projection of a dipolar brain 

source onto the scalp, at grid point  j . If   ϑ  is small or even 

zero, a source at grid point  j  is likely to be contained in the 

data subspace. With the forward model L  j   ∈ R  N     ×    1  the angle 

  ϑ  can be defined as 

   

( )2 , .cos

T T
j j

j T
j j

ϑ =
L S SLL S L L

 

(12)

 

 Please note that the previous formulation is valid for 

given dipole orientations. For unknown dipole directions, 

the forward model L  j   can be expressed by   =j j jαL L�  where 

  jL�  is an  N   ×  3 matrix for unit dipole directions in  x, y  and  z  

 direction and   α  j   is 3  ×  1 vector defining the dipole direction 

at grid point  j . Now, the forward model L  j    can be deter-

mined by optimizing over   α  j  , which can be done analyti-

cally [ 1 ]. 

 One drawback of the MUSIC algorithm is its failure 

in the presence of increasing numbers of sources which 

leads to several maxima for a single scan. As this is the 

case for interacting sources or even systems of interacting 

sources, we make use of a variant of the MUSIC algorithm 

called RAP-MUSIC [ 21 ]. Here, the strongest source found in 

an initial MUSIC scan is projected out and the MUSIC scan 

is repeated. Then the second strongest source is projected 

out and so on. This procedure is repeated iteratively for all 

 p  sources. 

 The major modification to RAP-MUSIC that is done for 

the work presented in this paper is that we do not define 

the signal subspace in terms of the covariance matrix as 

stated before. Instead, we apply RAP-MUSIC in the fre-

quency domain on the imaginary part of the cross-spec-

trum, defined in Equation (1). The reason is to focus on 

reliable interactions robust to volume conduction and to 

diminish artifacts from non-interacting sources. Please 

note that the cross-spectrum is frequency-dependent, 

and hence calculations in this paper are done for a single 

frequency. In general, it is also conceivable to average the 

cross-spectrum over frequencies and, therefore, to apply 

the proposed methodology in a specific band. However, 

the determination of sender and recipient of information 

as described in the following section is based on a broader 

frequency range. Therefore, also a distinct frequency band 

is taken into account for the whole procedure described in 

this paper.  

  The phase slope index 

 The PSI is a method to estimate the direction of informa-

tion flow between two time series [ 27 ]. The fundamental 

concept behind PSI is that in general the cause precedes 

the effect and interaction is accompanied by a certain 

time delay   τ  . Let us consider two time series   ( )ˆpx t  and 

  ( )ˆqx t  where one is the delayed version of the other 

   
( ) ( )ˆ ˆ -q px t cx t τ=

 
(13)

 

 including an amplification ( c   >  1) or damping (0  <   c   <  1) con-

stant  c . With the definition of the cross-spectrum in Equa-

tion (1), the relation in Equation (13) of the Fourier trans-

formed signals  x p  (   f   ) and  x q  (   f   ) leads to 

   
( ) ( ) ( ) ( )2 2* 2 .

i i f
pq p q pC f x f x f r c e e eπ τ π τ φ= = ∼ ≡f fi

 
(14)

 

 From Equation (14) we can observe that the phase 

spectrum 

    φ  (   f   ) = 2  π f τ   (15) 

 itself is linearly dependent on frequency and propor-

tional to the time delay   τ  . Therefore, a positive slope of the 

function   φ  (   f   ) indicates a positive   τ   and according to the 

example in Equation (13) an information flow from   ( )ˆpx t  

to   ( )ˆ .qx t  A negative slope and, hence, a negative   τ   would 

indicate a directed information flow from   ( )ˆqx t  to   ( )ˆ .px t  

Including further requirements, such as  statistical robust-

ness and insensitivity to non-interacting signal parts (see 

[ 27 ]), the final formulation of the PSI is given by 

   

( ) ( ) ( )*

pq pq
f F

f Coh f Coh f  fδ
∈

⎛ ⎞
Ψ =ℑ +⎜ ⎟⎝ ⎠∑

 

(16)

 

 where  Coh  pq (   f   ) is the complex coherency as defined in 

Equation (4) and   δ f  is the frequency resolution in the 

frequency band  F  in which the phase slope is estimated. 

As a reasonable property, the value for PSI in Equation 

(16) fluctuates around zero. Including the estimation of 

the standard deviation, for example, with a Jackknife 
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procedure [ 20 ], the significance level of PSI can be evalu-

ated. Hence, a result within a certain confidence interval 

around zero would be neglected as not interpretable. 

In this way, robustness and reliability of the method is 

enhanced. 

 As evaluating the direction of information flow with 

PSI is based on temporal assumptions, the time series of 

the individual sources have to be determined. This can be 

achieved by projecting the measured sensor data onto the 

topographies of the calculated sources. This procedure is 

formally equivalent to a beamformer with spatially white 

noise.   

  Results 
 In this section, the results of the simulations are pre-

sented. In the following section, it is described how data 

were simulated to reveal EEG/MEG properties. Further-

more, the result of first maximizing the ImC, then apply-

ing MOCA to demix topographies and, finally, using PSI 

to estimate the direction of information flow is illustrated. 

In the section on RAP-MUSIC and PSI, the simulation of 

an interacting system of four sources is demonstrated and 

how RAP-MUSIC and PSI are applied to determine the 

locations of neuronal sources and the causal relationships 

among them. 

  Maximizing imaginary coherency, MOCA and 
PSI 

 To realistically simulate EEG data of two interacting 

sources, we generated random data according to an 

autoregressive (AR) model of order 10, with 60,000 time 

points and additional noise of 20% of the signal power. 

All coefficients of the AR model were randomly chosen 

but coefficients on the respective off-diagonal were set 

to zero such that the second time course was simulated 

to be driven by the first one. The cross-spectrum was 

obtained by segmenting the data in 512 data points long 

epochs and performing an fast Fourier transform on the 

Hanning windowed data. As the calculations described in 

the Methods section are performed in a specific band in 

the frequency domain, we assured that minimum 30% of 

the signal power of the two simulated time courses is con-

tained in a specific band. This band, that is, the most dom-

inant frequency bin, is then automatically selected with 

the GIM for further processing (see the section on  “ Maxi-

mizing imaginary coherency ” ). In general, the suggested 

procedure can be applied in any frequency range below 

2 kHz and, therefore, in any band relevant for EEG/MEG 

analysis. Although it is common in practice to analyze 

oscillations in the  α  range (9 – 13 Hz) or the  β  range (17 – 25 

Hz) as strong brain oscillation occurs in these bands, the 

investigation of any EEG/MEG relevant band is conceiva-

ble as long as a prominent oscillatory signal is detectable. 

Hence, the choice of frequency in the presented simula-

tions is arbitrary and only the presence of a signal in a 

specific band matters. 

 In addition to the dynamics, source locations were 

defined by two dipoles, one in each hemisphere. As a 

head model we used a standardized Montreal Neurologi-

cal Institute head obtained from an average of 152 sub-

jects [ 6 ,  7 ]. According to the previous definition of the 

time courses, the source in the left hemisphere drives 

the source in the right hemisphere. These resulting time 

courses were projected to sensor space (59 EEG channels) 

by the randomly mixed patterns of the two source dipoles. 

Again, noise was added with 10% of the size of the simu-

lated EEG signal.  Figure 2  shows the simulated dipoles, 

the resulting EEG topographies for 56 sensors, the mixed 

topographies, the imaginary part of coherency for each 

channel pair, and the GIM of the modeled source data.  

 One of the main motivations to apply measures of 

effective connectivity on source level is the interpret-

ability of the results.  Figure 3  shows the results of the PSI 

between each pair of sensors. At a particular frequency, 

here the one selected with the GIM (see vertical line in 

 Figure 2 D), these bivariate connectivities can be visual-

ized in a so-called head in head plot. Each small circle 

inside the big schematic scalp shows the connectivity of 

this particular EEG electrode to all other electrodes. For 

orientation purposes, a small black dot is shown inside 

each small circle again indicating the position of the par-

ticular reference electrode on the scalp. A cold color and 

a negative value of PSI shows that the particular measure-

ment channel receives information from a distinct record-

ing site, whereas a warm color indicates that the channel 

is sending information. One can observe that the result 

does not clearly reflect the underlying simulated source 

structure. Even with simple interaction schemes these 

head-in-head plots are not easy to interpret in terms of 

interacting brain sources. Furthermore, results on sensor 

level always depend on the choice of reference which may 

distort locations of brain regions on sensor level [ 14 ].  

 The results of the source localization and demixing 

can be found in  Figure 4 . Based on the spatial patterns that 

are obtained by maximizing the imaginary part of coher-

ency (see the section on  “ Maximizing imaginary coher-

ency ” ), the underlying source distributions are calculated 
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 Figure 2      The simulated system of two interacting sources. (A) Two dipoles that are simulated in different hemispheres. For display pur-

poses only, the relevant MRI slice is shown. Data were simulated such that the source on the left drives the sources on the right. (B) Topog-

raphies of the underlying sources. (C) Artificial mixture of the two topographies with a random mixing matrix. As the data were scaled by the 

mean of the signal power, the scale of the topographies is irrelevant for this simulation and color bars are neglected. (D) The imaginary part 

of coherency for each channel pair and the GIM over frequency. By choosing the maximum value of the GIM a particular frequency band (or a 

single bin) of interest is selected.    
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 Figure 3      The results of the phase slope index on sensor level.    

problem is addressed with MOCA. The results in  Figure 

4 B demonstrate that the sources are being well demixed 

in the present example and match the originally defined 

dipoles.  

 Given the sources, the time courses were estimated by 

projecting onto the source topographies and PSI was cal-

culated for the two time series. To estimate PSI, we used 

the whole frequency spectrum of the data. Furthermore, 

the standard deviation was approximated with a Jackknife 

estimator. We assume that  PSI / StdDev  is approximately 

Gaussian distributed with unit standard deviation. Then 

a p-value of 0.05 corresponds to  |  PSI / StdDev  |   >  1.96 which 

was approximated by 2 for simplicity. Even though this is 

not exactly true we consider this as reasonable. In  Figure 5  

we show results of a simulation with 4% false detections 

for mixtures of sources, which is formally equivalent to 

zero delay, indicating that our approach is slightly over-

conservative.  Table 1  shows the results for this particular 

simulation case. A positive PSI of 0.4 indicates an informa-

tion flow from the first source (left one in  Figure 4 B) to the 

with a minimum norm estimator and shown in  Figure 4 A. 

Comparing with the initially simulated dipoles, one can 

observe that the sources are not separated properly. This 
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second source (right one in  Figure 4 B), which resembles 

the way the data were simulated. The standard deviation 

is approximately an order of magnitude smaller that the 

value for PSI itself. Hence, we would consider the result as 

significant, which is also indicated by the ratio of PSI and 

its standard deviation.   

 In an additional simulation we have varied the gener-

ation of noise. Here, only a single time course is modeled 

by an AR model to generate data with a distinct frequency 

component. The time course of the second source is 

obtained by shifting the first source by four data points. 

Now, noise was randomly generated for each voxel inside 

the brain and projected onto the scalp. Thus, many more 

noise sources are present than brain sources. Finally, data 

and noise were normalized with their mean power and 

added. To investigate the behavior of the proposed pro-

cessing scheme, we run the simulation n = 1300 times with 

randomly chosen source dipole locations and orientations 

inside the brain. The results are shown in  Figure 6 .  

 The upper left plot in  Figure 6  shows the result of PSI 

divided by its standard deviation over the source localiza-

tion error for each run. If the run showed the correct causal 

information flow is color-coded. Depending on which 

 Figure 5      Statistical results for two modeled brain sources with zero phase delay. Almost no statistical significant result is obtained due to 

the properties of the imaginary part of the cross-spectrum.    

 Figure 4      Source localization and demixing. (A) The resulting 

sources obtained with a weighted minimum norm solution on the 

basis of the topographies found by maximizing the imaginary part 

of coherency. (B) The sources demixed with MOCA and the dipoles 

that have been initially simulated.    
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source is found as the first source by the source locali-

zation procedure, PSI can either be negative or positive, 

which can be observed from the two centroids of the point 

clouds. To judge the correctness of a run and to assign the 

sources, the distances between the modeled and the esti-

mated sources have been calculated and minimized. 

 From the n = 1300 runs, 74.46% turned out to be signif-

icantly ( |  PSI/StdDev  |   >  2) correct and 23.45% significantly 

incorrect. The fairly large number of incorrect results is a 

consequence of mislocalizations. Apparently, even if an 

estimated source is closer to, say, the first true source, it is 

in general possible that it picks up more activity from the 

second true source. Specifically, the randomly assigned 

sources could have been located too close to each other 

such that assumptions of minimal spatial overlap of 

MOCA do not hold for respective source estimates. If the 

source locations remain fixed and well separated, that 

 Figure 6      The results of the statistics for PSI between the two modeled sources with a constant phase shift of four data points.    

 Table 1      The phase slope index and its standard deviation as an 

example of two interacting sources.  

 Phase slope index (PSI)  Standard deviation  PSI/StdDev 

 0.39695  0.047187  8.4124 

is, as in the previous simulation shown in  Figure 4 , the 

described methodology always returns the correct result. 

 Figure 7  shows a histogram for this simulation.   

 As a kind of sanity check for the statistical  properties 

of the imaginary part of the cross-spectrum, we have 

executed the same simulation but with zero phase delay 

between the modeled sources. As expected, the PSI 

returned mostly no significant result as shown in  Figure 5 .  

  RAP-MUSIC and PSI 

 A further simulation consists of a system of four interact-

ing sources. The locations of the sources, again modeled 

as dipoles, are shown in  Figure 8 A. Time courses of the 

individual brain sources are simulated by an autoregres-

sive model of order 10 with the same noise structure as 

described in the section on  “ Maximizing imaginary coher-

ency, MOCA and PSI ” . The information flow goes from the 

left source to the second left source, from the second left 

source to the second right source and from the second 

right source to the right source. Hence, the source on the 

right only receives information. 
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 Figure 7      Histogram for PSI over the standard deviation with two causally connected sources modeled in somatosensory areas as shown in 

Figure 8A.    
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 Figure 8      Simulated system of four interacting sources. (A) The location of the sources simulated as dipoles. The information flow is 

modeled from left to right, that is, the left source sends to the next one on the right and so on. The source on the right only receives 

information from its neighboring left one. (B) The imaginary part of coherency for all pairs of sensors and the selection of frequency with 

the global interaction measure (GIM, red line). (C) The bivariate phase slope index on sensor level visualized as a head-in-head plot at the 

frequency selected with GIM.    
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 The EEG data were simulated the same way as before. 

The modeled time series were projected to 59 EEG sensors 

by the topographies of the four sources. Again, noise was 

added.  Figure 8 B shows the imaginary part of coherency 

for all pairs of sensors. Furthermore, the GIM is shown 

and used to determine the frequency of interest, that is, 

the frequency bin where the most prominent interaction 

is present. A couple of peaks are visible that exceed the 

present noise level and the one with the maximum GIM is 

selected for further processing. 

  Figure 8 C illustrates the PSI (divided by its standard 

deviation) on sensor level at the chosen frequency bin. 

The plot shows that there is significant directed interac-

tion present in the data. Concerning the location of the 

underlying interaction one would interpret this head-in-

head plot as information passing from frontal to occipital 

brain areas. According to the simulated sources and the 

simulated information, the picture provided on sensor 

level is not correct. As in the example before, the need for 

reliable calculations in source space is encouraged. 

  Figure 9  shows the results of the RAP-MUSIC scan. 

Please note that results from a MUSIC scan do not neces-

sarily represent source  “ distributions ”  as for every voxel  

   
2

1

1- ( )cos ϑ  
(17)

 

Source 1 Source 2

Source 3 Source 4

 Figure 9      The four sources found with RAP-MUSIC as color coded 

 “ distributions ” . To compare, the originally simulated dipoles are 

also displayed.    

 (  ϑ  being the angle between a source at a particular 

voxel and the data subspace, see the section on  “ RAP-

MUSIC ” ) is plotted and color coded. However, by plotting 

the results for all voxels and not only the maximum, one 

can judge the quality of the source reconstruction. If, for 

instance, a source would be distributed through the whole 

head and no clear maximum is visible, the results would 

be questionable. In the example shown in  Figure 9 , one 

can observe that especially for sources  “ 1 ”  and  “ 4 ”  the 

found locations coincide almost perfectly with the previ-

ously modeled dipoles. For sources  “ 2 ”  and  “ 3 ”  it seems 

that the sources could not be completely demixed, that 

is, projected out in the process of the RAP-MUSIC itera-

tion (see the section on  “ RAP-MUSIC ” ). However, maxima 

are found close to the locations of the modeled dipoles. 

We used the resulting dipoles of the RAP-MUSIC scan (as 

stated in the section on  “ RAP-MUSIC ” , dipole orientations 

are found by an optimization) to estimate the time series 

at these four locations with an appropriate projection of 

the measured sensor data to source space. 

 Having calculated the time series of the individual 

sources found in the RAP-MUSIC scan, the phase slope 

index was evaluated as a bivariate measure between all 

sources.  Table 2  shows the value of PSI over its standard 

deviation estimated with a Jackknife procedure for all com-

binations of sources. The sources in the rows serve as ref-

erences and denote the coupling of the particular source 

to all other sources listed in the columns. For example, a 

positive value between source  “ 1 ”  (row) and source  “ 2 ”  

(column) is interpreted as source  “ 1 ”  being the driver and 

source  “ 2 ”  being the recipient of information flow between 

these two sources. Please note that the result table shows 

an antisymmetric structure: If coupling between source 

 “ 1 ”  and  “ 2 ”  two is positive, the coupling between source 

 “ 2 ”  and  “ 1 ”  has to be equal in magnitude and negative.  

 The results shown in  Table 2  reflect the dynamics 

that have been simulated. Source  “ 1 ” , the most left one 

(see  Figures 8  and 9), is sending to its neighboring one 

on the right. As information is passed further to the right, 

source  “ 1 ”  is sending to all other sources. This effect is 

also visible as the first row in  Table 2  only has positive 

values. According to that, source  “ 2 ” , the one on the very 

 Table 2      The phase slope index over its standard deviation for the 

simulated system of four interacting sources.  

 PSI/StdDev  Source 1  Source 2  Source 3  Source 4 

 Source 1  0  30.80  28.02  36.35 

 Source 2  -30.80  0  -54.17  -68.53 

 Source 3  -28.02  54.17  0  46.10 

 Source 4  -36.35  68.53  -46.10  0 
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right, receives information from all other sources, and 

the second row only has negative values. The finding 

of the other sources are also in line with the simulated 

dynamics: source  “ 3 ”  receives information (negative 

value) from source  “ 1 ”  and sends (positive value) to 

source  “ 2 ”  and  “ 4 ” . Finally, source  “ 4 ”  receives from 

source  “ 1 ”  and source  “ 3 ”  and sends to source  “ 2 ” . One 

can also observe from  Table 2  that all values are highly 

significant concerning the ratio of PSI and its standard 

deviation. As described above, we suggest to consider a 

value of  |  PSI / StdDev  |   >  2 as significant [ 27 ].   

  Discussion 
 In the present study, we introduced a combination of 

existing methods to estimate directed coupling between 

neuronal sources from EEG or MEG data. The focus of 

the applied processing scheme lies on reliability which is 

addressed in three different ways. First, artifacts of volume 

conduction are avoided by using the imaginary part of the 

cross-spectrum as a reliable basis for all further calcula-

tions. Second, subspace methods are used to infer addi-

tional constraints for bounding the non-unique inverse 

problem. Third, a method for calculating the directional-

ity of information flow between brain sources is used that 

incorporates the estimation of the standard deviation and 

the definition of a confidence interval. Hence, certain 

findings of directionality can be easily neglected as not 

interpretable [ 27 ]. Please note that the central concept 

of  causality behind PSI is that the cause temporally pre-

cedes the effect. Hence, a signal feature observed earlier 

in signal  “ A ”  and later in signal  “ B ”  would lead to clas-

sify  “ A ”  as the driver. This temporal argument does not 

prove causality and one can construct counter examples. 

However, using random dynamic systems it can be seen 

that such counter examples are extremely rare, and we 

therefore consider a significant PSI as a strong argument 

for a causal relation. 

 In particular, we showed how to determine causal 

relationships between two sources in a distinct frequency 

band that are obtained by maximizing the imaginary part 

of coherency. This procedure is generally extendable to 

more than two sources by using more pairs of eigenvec-

tors obtained by maximization. However, this methodol-

ogy is bound to determine pairs of interacting sources and 

no entire systems. As an inverse method for this methodo-

logical approach, we used WMNE and the results shown 

are rather too smooth distributions centered around the 

modeled dipole. Here, we see some room for improvement 

by applying more sophisticated linear inverse solutions. 

However, MOCA was able to demix the overlapping 

sources in the given example. The question remains if 

MOCA introduces a bias towards remote interactions. For 

very localized interactions the assumption of spatially 

non-overlapping sources may be violated. In combination 

with different inverse methods, for example, based on 

the   1�  norm, this problem needs to be evaluated, which 

is outside the scope of this paper. After estimating time 

courses of the sources, the directionality of coupling was 

determined correctly and significantly by PSI. Addition-

ally, we have performed statistics to determine the per-

formance of the proposed methodology with a different 

noise structure. In contrast to dominantly correct results 

on source level, the picture provided for bivariate connec-

tions on sensor level was rather fuzzy and not interpret-

able in terms of brain sources. The comparison between 

source and sensor level illustrates the urgent need for the 

application of analysis methods on source level to obtain 

a clear picture if interacting brain sources. 

 The second approach also supports this finding. Here, 

RAP-MUSIC applied on a subspace based on the imagi-

nary part of the cross-spectrum was used to determine the 

sources. Although RAP-MUSIC was not able to separate all 

four sources perfectly, the estimation of causal relation-

ships worked out accurately. It seems that RAP-MUSIC can 

be improved especially in the context of interacting sources 

which is an ongoing research subject. A further issue is the 

definition of the numbers of sources for RAP-MUSIC that 

has to be defined in advance. To our knowledge, no feasi-

ble algorithm has been discovered yet to answer this ques-

tion. However, the causal relationships between more than 

two interacting sources can be estimated reliably by apply-

ing RAP-MUSIC on the ImCs and PSI. 

 The aim of this study was to investigate the feasibility of 

applying the PSI in source space and to use the imaginary 

part of the cross-spectrum as a trustworthy and fundamen-

tal information source for EEG/MEG connectivity analysis. 

To further evaluate the practical applicability of the whole 

procedure, it would be necessary to evaluate the perfor-

mance of both presented approaches in order to compare 

them with other existing techniques such as  standardized 

low resolution brain electromagnetic tomography, exact 

low resolution brain electromagnetic tomography [(s/e)

LORETA], directed transfer function, partial directed coher-

ence, dynamic imaging of coherent sources, Granger causal-

ity, dynamic causal modeling, combinations among them 

and with combinations of methods used in this paper [ 2 ,  9 , 

 10 ,  11 ,  18 ,  29 ,  30 ]. Furthermore, the behavior of the presented 

approach in the presence of more noise or different noise 

structures needs to be investigated and evaluated by further 
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statistics. In a final step, the proposed methodology needs 

to be evaluated on real data with a known underlying causal 

structure of known brain sources. This can only be achieved 

in comparison with invasively recorded data at relevant 

brain sites or even in the entire brain.   
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