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Abstract—Reducing power/energy consumption is an impor-
tant goal for all computer systems, from servers to battery-driven
hand-held devices. To achieve this goal, the energy consumption
of all system components needs to be reduced. One of the most
power-hungry components is the off-chip DRAM, even when it
is idle. DRAMs support different power-saving modes, such as
self-refresh and power-down, but employing them every time
the DRAM is idle, reduces performance due to their power-up
latencies. The self-refresh mode offers large power savings, but
incurs a long power-up latency. The power-down mode, on the
other hand, has a shorter power-up latency, but provides lower
power savings.

In this paper, we propose and evaluate a novel power-saving
policy that combines the best of both power-saving modes in
order to achieve significant power reductions with a marginal
performance penalty. To accomplish this, we use a history-based
predictor to forecast the duration of an idle period and then
either employ self-refresh, or power-down, or a combination
of both power saving modes. Significant refinements are made
to the predictor to maximize the energy savings and minimize
the performance penalty. The presented policy is evaluated
using several applications from the multimedia domain and
the experimental results show that it reduces the total DRAM
energy consumption between 68.8% and 79.9% at a negligible
performance penalty between 0.3% and 2.2%.

Index Terms—Predictor-based Power Saving Policy, Predictor,
DRAM-Memory, Self-Refresh, Power-Down.

I. INTRODUCTION

The power/energy consumption is an important constraint

for all kinds of computing systems, not only for battery-

powered embedded systems, but also for high-performance

servers and any computing system in between. Battery-driven

embedded systems, such as cell phones, have limited power

budgets as well as high performance requirements, and these

requirements do not go hand in hand. High-end server systems,

on the other hand, also require the energy to be reduced

because it brings down the operating costs and cooling effort.

DRAM memories contribute significantly to the overall

system energy consumption. For example, memory energy

consumption in mobile devices is up to 20% [22] and in

data center servers up to 25% [13]. The DRAM memory

energy consumption profile in [3] and [4] show that DRAMs

consume significant amounts of power even when they are idle.

To reduce DRAM energy consumption during idle periods,

different power-saving modes are available, such as power-

down and self-refresh. The drawback of the self-refresh mode

is that it takes several clock cycles to power up the DRAM,

whereas that of the power-down mode is that it saves much

less power than the former.
To make this discussion more concrete, let us consider

a 1 Gb DDR3-800 MICRON memory [12]. This memory

draws around 50 mA of current when idle, which corresponds

to about 75 mW of power. DDR3 memories support two

important power-saving modes, namely power-down and self-

refresh. The power-down mode reduces the power consump-

tion to 18 mW, while the self-refresh mode brings it down

to 9 mW [12]. Hence it is possible to reduce the power

consumption during idle periods by factors of 4.1 (76%) and

8.3 (88%), respectively.
Both modes, however, incur a performance penalty, due to

their power-up latencies. For the 1 Gb MICRON DDR3-800

memory, the power-down mode has a relatively small penalty

of around 25 ns (10 memory clock cycles), while the self-

refresh mode has a very large penalty of about 1280 ns (512

memory clock cycles) [7]. Thus the larger the power saving,

the larger the power-up latency and hence the performance

penalty, and a trade-off needs to be made.
In order to reduce power dissipation while not incurring

a large performance penalty, this paper employs and hones

a generic history-based predictor to anticipate the length of

the next memory idle period. Depending on the predicted

idle period length, the presented power-saving policy employs

either power-down, or self-refresh, or a combination of both

power-saving modes. Furthermore, in an effort to completely

avoid the power-up latency, the power-saving policy uses a

conservative prediction to power up the memory just in time

before it will be accessed again. The three main contributions

of this paper can be summarized as follows:

1) We significantly extend and fine tune a versatile prediction

algorithm to be able to apply it to the problem at hand.

For example, to be able to apply the prediction algorithm

to the problem of reducing DRAM energy consumption,

levels of idle period lengths need to be introduced because

the idle period lengths vary enormously (up to 4-5 orders

of magnitude).

2) We present a novel power-saving policy based on the fine-

tuned predictor that, depending on the predicted duration

of the idle period, employs either power-down, or self-

refresh, or a combination of both power-saving modes.
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Furthermore, to avoid powering down the memory during

short idle periods, which would hardly save any power but

incur a large penalty, a time-out strategy is employed.

3) We evaluate the proposed power-saving policy using sev-

eral applications from the multimedia domain. Experi-

mental results, obtained by employing a trace player that

simulates the application behavior in a SystemC model

of an MPSoC, show that we save between 68.6% and

79.9% of total memory energy with a marginal increase

of execution time between 0.3% and 2.2%.

The rest of this paper is organized as follows, Section II

presents a brief overview of related work that employ predic-

tion for different components of an MPSoC, as well as work

targeted at reducing DRAM energy consumption. Background

information, such as the baseline prediction algorithm and

basic DRAM operations and their power-saving modes, is

given in Section III. Section IV describes how the baseline

prediction algorithm needs to be extended and fine tuned

in order to be able to apply it to the problem of reducing

DRAM energy consumption. Based on the modified prediction

algorithm, the proposed power-saving policy is presented in

detail in Section V. The proposed policy is experimentally

evaluated in Section VI. Finally, Section VII summarizes and

highlights the contributions of this work and presents our final

conclusions.

II. RELATED WORK

Predictors have been used in many areas of MPSoC re-

search. In the Networks On Chip domain, [14], [20] used

predictors to forecast end-to-end traffic. In [20], a history-

based predictor is used to forecast traffic patterns by searching

for similar traffic shapes in a history buffer. In [14], a model

based on state space representation is used to predict the

availability of input buffers in routers.

In DRAM research, predictors have been used to reduce

memory access times for DRAMs connected to MPSoCs.

In [19], [23], a predictor was employed to reduce precharges

and activates and thereby reducing the average DRAM access

latency. This forecast is used to determine whether an open

DRAM row should be closed or kept open and which row to

open next to minimize the average access latency. Similarly

in [1], a predictor is used to track the number of accesses

to a given DRAM page to predict DRAM locality to make

page closing decisions. The work in [15] proposed a dynamic

memory mode control scheme with a predictor to predict

whether the next memory reference causes a page hit or not.

This is used to exploit locality and reduce the number of

activates and precharges to a bank. However, all of these

solutions that used predictors, targeted active power reduction

and not idle power reduction.

Other works have proposed DRAM power reduction so-

lutions without using explicit prediction logic. For instance

in [11], a DRAM precharge policy based on address analysis

is presented. Statistical information from instructions waiting

to access the memory are collected and analyzed to determine

the next bank access and decide on which bank to precharge,

thus reducing the average memory latency. In [10], the authors

proposed a hardware prefetching technique assisted by static

(design time) analysis of data access patterns for efficient

data prefetching. However, this idea would only be useful in

improving performance of caches and can lead to increased

main memory power consumption, due to the mispredicted

prefetches. [21] proposed combining read/write multiple times

within a single activate-precharge pair to obtain significant

energy savings and [8] achieves low power consumption in

DRAM memories by changing the processor and memory

clock frequencies. However, these solutions also target active

power reduction.

In [6], the authors proposed reducing idle memory power by

extending by using a compiler-directed selective power-down

and a hardware-assisted prediction-based run-time power-

down. However the former is not suitable for run-time use

and the latter only employs power-down mode and does not

exploit the self-refresh mode.

The hesitation of using the self-refresh mode stems from

the large power-up latency associated with it. As a result, there

has been no known effort to combine the use of prediction and

self-refresh modes to obtain memory idle energy savings. In

this paper, we propose an efficient power-saving policy that

with the help of a predictor employs both the self-refresh

and power-down modes to reduce idle energy consumption

significantly while keeping the penalty negligible.

III. BACKGROUND

This section introduces the history-based predictor used in

this paper and briefly discusses basic DRAM operations and

their different power-down modes.

A. Predictor

The generic history-based predictor used in this paper was

originally proposed in [20], where it was used to forecast

traffic pattern for rerouting in networks. In this paper, we

modify and employ this predictor to forecast memory idle

periods. The generic predictor is briefly introduced here.

The predictor probes a history of data points, considering

a current set of reference data points and searches for similar

patterns in the history. This is used to predict the future set of

data points. The prediction algorithm considers the latest set of

m data points as a reference pattern (shown in Figure 1) from

the history set Y (y0, y1, · · · , yn) of n+ 1 data points (where

m < n) and searches for similar patterns of the reference

pattern length in the past. A parameter width (w) is used to

identify whether a set of past data points fits the reference

pattern. In the set of data points from the history, if a particular

data point differs by more than |w/2| that pattern is neglected

by the predictor to forecast the next data point. The algorithm

continues to compare the reference pattern with all data points

in the history moving one data point at a time. If the algorithm

finds many similar patterns in the history, it forecasts the next

data point by considering all these patterns.
The predictor builds up a history before forecasting future

data points. The latest set of reference data points between

(yn) and (yn−m+1) are compared with the different patterns

from history. The algorithm also defines a parameter history

length, which gives the limit on the number of past data points
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Fig. 1. Working of the Predictor

to be taken into account for this prediction. In Figure 1,

the history includes all shown data points, but any size of

the history length can be used for the analysis. If there is

a pattern of length m in the past that is very similar to the

reference pattern, like the pattern between (yγ−m+1) and (yγ),
the algorithm predicts that the next future data point (yn+1)
is very similar to the data point that follows the past pattern

(yγ+1). As stated before, the matching to past data points

is not limited to just one reference pattern in the history. If

multiple past data patterns are similar to the current one, based

on the similarity, the weighted sum of the matching data points

is calculated to forecast the next data point [20].

In this paper, we adapt and extend this versatile generic

predictor to employ it for our memory power optimization

problem. We employ memory idle period lengths as data

points and predict lengths of future memory idle periods.

The predictor needs further extensions because the statically

computed width parameter can produce wrong estimations for

memory idle periods with large variations. The improvements

and extensions of this predictor are explained in Section IV.

B. DRAM Basics and Power-Saving Modes

Dynamic Random Access Memory (DRAM) is the most

used type of main memory in mobile phones, laptops, gaming

consoles and servers. DRAMs consist of several banks, where

data are stored in rows and columns. When reading or writing

data from or to the memory, the data from any given row

is moved to the row buffer, and then to the I/O buffers to

complete the data transfer. If data is retained in the row buffer

after the operation is finished, it keeps the memory in the

active state. If it is moved back to the memory row, it moves

the memory to the precharged state. The memory can be idle

in either of these two states.

Each bit of data is stored as charge in a capacitor. The

capacitors leak the charge over time. The memory has to be

refreshed at regular intervals to avoid losing data. Therefore,

DRAM is a volatile memory and data is lost when the memory

is turned off. However, when the memory is on, it is not used

all the time and depending on the application there can be

several memory idle periods of varying lengths. The memory

consumes a significant amount of energy during these idle

periods, which can be reduced using power-saving modes,

such as power-down or self-refresh. The power-down mode

can be employed in either the active or precharged state, while

the self-refresh mode can be employed only in the precharged

state. In general, the precharged state power-down saves more

power than the active state power-down. For simplicity in this

paper, we make sure the memory is in the precharged state at

the end of every read or write transaction, making it easier to

employ the precharge power-down and the self-refresh modes.

Comparing these two modes, the power-down mode saves

less power than the self-refresh mode, but the memory can

power-up from the power-down mode much faster than from

the self-refresh mode. The goal of this work is to use self-

refresh as often as possible to maximize the power savings

while keeping the performance penalty low.

For our analysis, we consider a MICRON 1 Gb DDR3-800

memory device [12]. For this memory, the current consumed

during power-up cycles and in the precharged idle mode

(denoted by IDD2N ) is 50 mA. When in self-refresh mode

(SR), the memory draws a current of 6 mA (denoted by IDD6)

and needs XSDLL clock cycles (equal to 512 cc) to power-up

the memory. In precharged power-down mode (PD), 12 mA of

current is consumed (denoted by IDD2P0) and the power-up

latency is given by XPDLL (equal to 10 cc).

IV. EXTENDING THE PREDICTOR

This section extends and fine tunes the generic predictor

from [20] to serve two purposes: (1) For efficient selection of

power-saving modes for any given idle period length, (2) To

apply the predictor to forecast idle periods in DRAMs.

A. Efficient Power-Saving Mode Selection

Selecting the best power-saving mode depends on the length

of the idle period. For short idle periods (up to a few thousand

clock cycles for DDR3-800), the power-down mode is more

gainful because of its short power-up latency compared to self-

refresh. For longer idle periods, the self-refresh mode becomes

more gainful because of its lower power consumption that

compensates for its long power-up latency.

To estimate the minimum idle period length at which the

self-refresh mode saves more power compared to power-down

(including powering-up time), we need to consider the energy

consumption when the memory is in the power-down or the

self-refresh mode, in addition to the energy consumption dur-

ing their corresponding power-up cycles. This minimum idle

duration defines the self-refresh threshold (SRT), employed by

the prediction algorithm in this paper.

To derive the SRT, we estimate energy consumption when

employing the self-refresh (ESR) and power-down (EPR)

modes (including their power-up latencies) in SRT clock

cycles. The self-refresh mode keeps the memory in the self-

refresh state for SRT − XSDLL clock cycles, and powers-

up the memory during XSDLL clock cycles (its power-up

latency). During the self-refresh period, IDD6 current is drawn

by the memory, and during the XSDLL cycles, it draws IDD2N

current, as shown in Equation (1). Similarly, when the power-

down mode is selected, the memory is in the power-down

state for SRT −XPDLL clock cycles and consumes IDD2P0

current. During its power-up period of XPDLL, it consumes

IDD2N current, as given by Equation (2). In these equations,

VDD corresponds to the supply voltage and clk to the clock
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period of the memory clock.

ESR = [IDD6 · (SRT −XSDLL)] ·VDD · clk

+ [IDD2N ·XSDLL] ·VDD · clk (1)

EPD = [IDD2P0 · (SRT −XPDLL)] ·VDD · clk

+ [IDD2N ·XPDLL] ·VDD · clk (2)

Equating them and solving for SRT , as shown in Equa-

tion (3), gives the minimum idle period length (rounded up)

when self-refresh saves more energy than power-down. For

the 1 Gb Micron DDR3-800 memory discussed in Section I,

SRT equates to 3691 clock cycles.

SRT =
XSDLL · (IDD6 − IDD2P0)

IDD6 − IDD2P0

−
XPDLL · (IDD2N − IDD2P0)

IDD6 − IDD2P0

(3)

B. Applying the Predictor to DRAMs

This section describes how we significantly extend and fine

tune the generic predictor described in Section III-A.

To adapt the predictor to predict idle periods in DRAM

memories, we define a set of values for the history length,

the reference pattern length and the width parameters (see

Section III-A). For this, we use the inferences of the impact of

these parameters on prediction accuracy from [20]. We do a

design-time analysis using a combination of useful values for

these parameters and statically select the ones with the best

prediction accuracy for a particular application.

After selecting the parameters for the problem at hand, we

observed that the width parameter, which defines the allowed

difference between the reference pattern and the patterns from

the history, has an adverse effect on the prediction accuracy

if there are large variations in the idle period lengths. This is

due to the fact that for a set of highly variable idle periods,

a small width ignores idle patterns in the history even for a

relatively small variation. To resolve this issue, we propose

an extension to the predictor to be able to accurately predict

length of idle periods even when there are large variations.

As an extension, we introduce a new parameter to the

prediction algorithm, called levels. Levels are used to classify

the different idle period lengths within a set of pre-defined

ranges. We employ the different levels of the idle periods

(representing their lengths) as data points in the generic

prediction algorithm, introduced in Section III-A. The width

parameter is now applied on the allowed difference in levels

and not on exact idle period lengths and hence, a small value

for the width parameter is sufficient. We show an illustrative

example of using levels to predict idle period lengths in

Figure 2.

As can be seen in the figure, the range from [xi−1, xi] refers

to level li. Assume SRT = 3691 as derived in Section IV-A.

To assure that that self-refresh mode is always better than

employing a power-down, level 1 includes all idle periods of

lengths from 0 cc to 3690 cc (SRT − 1 cc). Level 2 includes

all idle periods from 3691 cc (SRT) to 7381 cc. The bounds

of every sub-sequent level is derived by doubling the length

x0 x1

l1

x2

l2

x3

l3

x4

l4

p1

idle

Fig. 2. Idleness Prediction on levels

of the current one. Therefore, level 3 includes idle period

lengths from 7382 cc to 14762 cc. By choosing levels in this

manner, we employ level 1 to indicate that self-refresh is not

gainful and all other levels where self-refresh is the favoured

power-saving mode. The introduction of levels reduces the

variation in idleness to range from level 1 to level 7 instead

of 0 cc to 236162 cc. Hence, a small width parameter can

be successfully employed. However, since the prediction is

performed on levels, as shown in Figure 2, predicting a level

li equates to a conservative value xi−1, since we use the lower

bound of the range li as the predicted value, to reduce the mis-

prediction penalty. The history now consists of different levels

of idle periods in the past and the pattern comparison is done

on the basis of levels. Note that since levels represent ranges of

idleness, all predictions may not be accurate at the single clock

cycle level. Also since the predictor forecasts conservatively,

100% of all the idle cycles in some idle periods may not

exploited by the prediction.

V. POWER SAVING POLICY

In this section, we propose a novel power-saving policy that

employs the prediction algorithm form [20] in combination

with a time-out strategy to identify memory idleness. This

enables the use of either the self-refresh mode or the power-

down mode or both, while avoiding or reducing the penalty

cycles. The standard Time-Out strategy [16], briefly discussed

in Section V-A, is used to weed out any speculative usage of

the self-refresh mode. Additionally, we employ the prediction

algorithm multiple times in every idle period for effective use

of the self-refresh mode, described in Section V-B, and also

use the power-down mode speculatively when some idle cycles

are not exploited using the self-refresh mode (described in

Section V-C).

A. Time-Out

To avoid unnecessary usage of the self-refresh mode, the

standard time-out strategy is used that waits for a system to

be idle for a pre-defined time-out interval before powering

it down. The idle periods of the memory can vary between

a few and several thousand clock cycles, as explained in

Section IV-B. The self-refresh mode is not gainful for short

idle periods because of its long power-up latency. For short

idle periods, it always results in a performance penalty and no

energy gain. Hence, using a time-out interval can avoid the

unnecessary power-up penalty for short idle periods.

B. Prediction for Self-refresh

In this subsection, we analyse use of the prediction al-

gorithm for efficiently employing self-refresh in combination
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with the time-out strategy described earlier.
The predictor conservatively predicts idle periods longer

than SRT in order to avoid the penalty cycles when employing

the self-refresh mode. This allows the memory to power-up

expectantly before the next request arrives. Furthermore, by

employing the time-out strategy, the predictor forecasts only

idle periods larger than the pre-defined time-out period. If the

predictor forecasts an idle period shorter than SRT, these idle

periods are neglected and the self-refresh mode is not used.

It is possible that the predictor under or over-estimates the

idle period length. The former is more probable, since the

predictor always provides a conservative estimate for the idle

period length. How to solve the under/over-estimation problem

is explained in the following two subsections.
1) Reasons for Estimation Problems: If the predictor fore-

casts idle period lengths shorter than the actual idle period, it

can be for two reasons. One, since the prediction is done in

terms of levels and provides the lower bound of a particular

level as the prediction value, it may neglect some idle clock

cycles in the corresponding idle period. The second reason

for under-estimating the length of idle periods is that very

long idle periods can be rare and far apart. If a long idle

period has not been predicted before or it is already out of the

limited history buffer, the predictor under-estimate because of

the missing similar large value in the history. It is also possible

that the predictor over-estimates the idle period length due to

a mismatch in the history or an unexpected extreme variation

in the idleness.
2) Solution for Estimation Problems: To solve the under-

estimation problem, we propose to employ multiple predic-

tions in a given idle period. This extends the use of the self-

refresh mode if possible, and powers-up the memory as late as

possible, just in time before it is accessed again. This policy

is depicted in Figure 3.

r1 i1 r2 i2 r3

tout
e1p1 e2p2 tout

e3

pred11 pred12 pred21

SR11 SR12 SR21

PD SRtotal PD PD SRtotal

Fig. 3. Multiple predictions for Self-Refresh

In the figure, requests are shown as hatched bars and

denoted as rx and idle periods occurs as ix. The initial time-

out is denoted as tout. After this time-out, the predicted value

marked as pred11 is checked if it is greater than or equal to

level 1 (minimum SRT cycles) and if so, a self-refresh (SR11)

is scheduled. The memory is expected to start to power up at p1
to assure that it powers up completely at e1. However, at p1 the

history is temporarily updated with the elapsed idle cycles and

an additional prediction is invoked. If the predictor forecasts

that the new prediction is not gainful for an additional self-

refresh, the memory continues to power up. However, if the

predicted value is still gainful (pred12) the memory stays in

self-refresh. All predicted self-refresh periods (SR11, SR12)

are combined into a longer continuous self-refresh period

(SRtotal). At the end of the real idle period, the temporarily

set history value is overwritten by the real idle period length.

At every pi, an additional prediction can be done to extend the

self-refresh period. The maximum number of predictions per

idle period can be limited to avoid unnecessary penalty due to

over-estimations. However, the actual number of predictions

is lower than the defined maximum when either the predictor

forecasts that a self-refresh is not gainful or a misprediction

occurs. As already explained, the prediction is done conser-

vatively on levels and therefore a 100% exploitation of idle

cycles in every idle period is not possible using self-refresh.

Figure 3 also shows the idle period i2 which has an over-

estimation problem. After an initial time-out, a self-refresh

(SR12) is scheduled based on the length of the predicted

value (pred21). The predicted value is larger as the actual idle

period and a wake-up penalty arises. The wake-up penalty can

be either the total power-up latency or a fraction of it. The

latter occurs if the memory has already started powering-up

when the next request arrives. In this case, the penalty is the

difference between the power-up latency and the cycles the

memory is already into the power-up.

C. Proposed Power-Saving Policy

As stated in Section V-B, by performing multiple predic-

tions per idle period, it is possible to exploit most of the

idle cycles using the self-refresh mode. However, since the

prediction is done on levels, a 100% exploitation of idle cycles

is not possible for all idle periods. To resolve this issue for the

unexploited idle cycles, we propose to combine the multiple

predictions for self-refresh with speculative use of the power-

down mode, whenever all idle cycles in any given idle period

are not exploited by self-refresh. The power-down mode saves

a considerable amount of power, though lower than the savings

from self-refresh, but also at a much lower power-up penalty

(10 cc against 512 cc for self-refresh for DDR3-800). Thus,

the proposed policy uses (a) self-refresh, when the prediction

exploits all idle cycles of an idle period, (b) power-down,

when the prediction forecasts idle periods shorter than SRT
clock cycles (level 1) and (c) combination of the two modes

to exploit most idle cycles by self-refresh and the rest by the

power-down mode, all at a nominal performance penalty.

The idle cycles not covered by the self-refresh prediction

include (1) the short idle periods where using the self-refresh

mode is not gainful (level 1), (2) the cycles spent during the

initial time-out, and (3) the idle cycles not exploited by the

prediction and self-refresh due to the conservative estimates on

levels. The proposed power-saving policy thus uses prediction

for self-refresh and also schedules a speculative power-down

for idle clock cycles not covered by self-refresh, thereby

covering 100% of the idle cycles by either of the two power-

saving modes.

Figure 3 also depicts this proposed power-saving policy. All

cycles exploited by power-down are donated as PD. For all idle

periods not exploited by self-refresh, the power-down mode is

used and only marginally increases the execution time. In other

words, scheduling a speculative power down results in a minor

penalty for a considerable energy gain.

5



In the next section, we compare the proposed power-saving

policy, which uses multiple predictions for self-refresh or

speculative power-down or a combination of both modes

against a naive speculative usage of the self-refresh mode

using several applications from the multimedia domain.

VI. EXPERIMENTAL EVALUATION

The goal of the proposed power-saving policy is to reduce

memory energy consumption while only marginally increasing

the execution time due to the power-up latencies. In this

section, we first briefly introduce the experimental setup and

the usage of the predictor in the system setup in Section VI-A.

Later, in Section VI-B, we analyse the impact of (a) the

time-out strategy by speculatively employing the self-refresh

mode, (b) using multiple predictions for self-refresh in an idle

period, and (c) employing the power-down mode speculatively

for the idle cycles not exploited by the prediction in the

self-refresh mode. For these evaluations, different applications

from the multimedia domain like MediaBench [9] are used.

A. Experimental Setup

In our experiments, we employ a 1 Gb Micron DDR3-

800 [12] memory and evaluate the proposed predictor-based

power-saving policy with respect to energy savings and the

impact on execution time. Three different multimedia appli-

cations are used: (1) H263 decoder, (2) Ray Tracer, and (3)

JPEG encoder. To evaluate the proposed power saving policy,

we run each application on the Simplescalar simulator [2] with

a 16 kB L1-Data cache, 16 kB L1-Instruction cache, a 256 kB
shared L2 cache and 256 B cache line configuration. We filter

out the L2 cache misses and obtain the transactions to the

DRAM memory. We then employ a trace player to simulate

the application behavior in a SystemC simulation model of

the CompSOC platform [18]. We forward these transactions

from the trace player to a DRAM memory controller [17] in

platform, which is modified to employ our predictor and the

power saving policy logic.

For all our power analysis, we employed our open-source

DRAM energy estimation tool [5] based on the power model

presented in [4]. Current and voltage numbers are obtained

from the DRAM vendors datasheets [12].

The predictor is placed in the front-end of the memory

controller adjacent to the arbiter-bus. An overview of the

CompSOC platform including the predictor and the memory

controller is depicted in Figure 4.

The predictor monitors the inputs of the bus for incoming

requests and records the time stamps of the beginning of

the first transaction after every idle period and the end of

the last transaction before every idle period. The length of

the idle periods are encoded to levels. Using these levels, it

builds up a history of levels representing the lengths of idle

periods in a history buffer. The predictor uses the contents

of the history buffer to forecast the prospective levels, which

are decoded to conservative lengths of future idle periods,

as described in Section IV-B. Using the inferences from our

previous work [20] on the predictor and an initial design-time

analysis, we set the history buffer length (hl), the reference

pattern length (pl), and the predictor width parameter (w) as
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Fig. 4. CompSOC overview including the predictor

TABLE I
PREDICTOR PARAMETERS

Application. hl pl w to pi

H263 decoder 50 2 4 230 150
Ray Tracer 50 2 4 250 40
JPEG encoder 50 2 4 0 200

depicted in Table I. The table also includes the best initial time-

out (to) parameter (see Section V-A) as well as the maximum

number of predictor invocations (pi). These two parameters

are explained in more detail in Section VI-B.

B. Evaluation of the Proposed Policy

In this section, we evaluate the impact of (a) the time-

out strategy (Section V-A) on speculative use of the self-

refresh mode, (b) using multiple predictions for self-refresh

(Section V-B, and (c) employing speculative power-down

(Section V-C) for idle cycles not exploited by prediction.

The pareto plots in Figure 5 show the total memory energy

consumption and the performance penalty (in the form of

impact on execution time) for the different media applications

when employing the time-out strategy, multiple predictions

with self-refresh, and the proposed power-saving policy that

selects between self-refresh, power-down or a combination of

both modes for different idle periods. Figure 5a presents the

results for the H263 decoder, Figure 5b for the Ray Tracer,

and Figure 5c for the JPEG encoder, respectively. Additionally,

Table II explicitly presents in percentage as well as factor by

which the energy consumption reduces and the execution time

increases due to the power-up penalties.

In both Figure 5 and Table II, Base corresponds to the

baseline results when no prediction or power-saving mode is

employed. Therefore, Base has the lowest execution time (no

penalty) and the highest power consumption.

In our first experiment, we compare our solution against

speculative use of the self-refresh mode when the mem-

ory is idle. This is depicted in Figure 5 and Table II by

SSR(time) (Speculative Self-Refresh), where time gives

the time-out threshold employed. Table I indicates the best

time-out threshold values for the three applications. As can
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Fig. 5. Pareto plot of energy and execution time

be noticed in Figure 5a and 5b, by increasing the time-out

threshold up to a defined limit, the speculative self-refresh

gives improved energy savings and lower performance penalty.

This confirms the usefulness of using the time-out strategy for

these two applications, as there are many idle periods shorter

than the time-out threshold values and are ignored by the

speculative self-refresh by increasing the time-out thresholds.

However, in the case of the JPEG encoder (Figure 5c), the

TABLE II
POWER SAVINGS AND PENALTY CYCLES

H263 decoder Ray Tracer JPEG encoder
Inc.
Exe-
cution
Time
[%]

Savings
[%] /
Factor

Inc.
Exe-
cution
Time
[%]

Savings
[%] /
Factor

Inc.
Exe-
cution
Time
[%]

Savings
[%]
/Fac-
tor

Base 0 0 / 1 0 0 / 1 0 0 / 1
SSR 2.72 72.2 /

3.6
0.67 79.9 /

5
11.2 68.3 /

3.2
PSR 2.04 53.5 /

2.2
0.25 68.5 /

3.2
0.33 31.2 /

1.6
PSRS 2.2 73.1 /

3.7
0.32 79.9 /

5
0.55 68.6 /

3.2

design-time effort identifies that a time-out threshold value

greater than zero increases the energy consumption and only

marginally reduces the penalty and therefore results in a poor

trade-off. Hence, the time-out strategy is not employed for

this application. For all applications, the use of the time-out

strategy with the speculative self-refresh reduces the energy

consumption by factors between 3.2 (68.3%) and 5 (79.9%).

However, the speculative use of self-refresh without employing

prediction results in the very high penalties and an increase

in execution time by up to 11.2%. In short, high energy

savings are achieved because most of the idle cycles, except

those filtered out during time-out, are covered by the self-

refresh mode. The power-up penalties are unavoidable because

the self-refresh mode is used speculatively. Note that without

employing the time-out strategy speculative use of self-refresh

would result in a much higher penalties.

In our next experiment, we evaluate the use of multiple

predictions per idle period for employing the self-refresh

mode in combination with the previously mentioned time-

out strategy. This is represented by PSR(limit) (Prediction

for Self-Refresh), where the parameter limit gives the

maximum number of invocations of the predictor in a single

idle period. As can be seen in Figure 5, increasing the number

of predictions per idle period exploits more idle cycles using

the self-refresh mode and reduces the energy consumption. At

the same time the prediction is used to wake-up the memory

before the next request arrives and therefore avoids most of the

penalty observed when using self-refresh speculatively. This

can be noticed in Figure 5, where using prediction results in

only a small increase of the execution time compared to the

Base mode and also reduces the energy consumption.

Using design-time analysis, a limit is derived on the maxi-

mum number of predictor invocations per idle period, beyond

which employing additional predictions is not gainful. This

limit indicates the number of predictor invocations when the

predictor forecasts that it is no longer gainful to continue in

self-refresh or when the predictor starts over-estimating the

idleness that results in an increase in performance penalty.

The best values for the limit parameter for the different

applications are also shown in Table I. Using the prediction

for employing self-refresh reduces the energy consumption

significantly across the different applications by a factor be-

tween 1.6 (31.2%) and 3.2 (68.5%). These savings are lesser

than the speculative usage of the self-refresh mode, since the

7



predictions are done conservatively on levels and therefore

cover lesser number of idle cycles using the self-refresh mode

compared to the speculative self-refresh. On the other hand, the

use of the predictor avoids a lot of penalty cycles compared to

the speculative self-refresh mode, which results in a marginal

increase of execution time up to 2.04%. The energy savings

and the increase of execution time are shown in Table II.
In our final experiment, we evaluate the proposed power-

saving policy, which combines the time-out strategy and the

predictions for self-refresh and additionally schedules a specu-

lative power-down to maximize power savings, but still avoids

most of the power-up penalties. Using this policy, the self-

refresh mode is used when the prediction is above level 1 and

covers all idle cycles in that idle period, the power-down mode

is used for predictions of level 0 and cycles ignored due to

the time-out threshold and a combination of both the modes is

used when the prediction is inadequate in exploiting all the idle

cycles in that idle period using self-refresh alone. The policy is

denoted by PSRS(limit) (Prediction for Self-Refresh with

Speculative power-down), where limit corresponds to the

maximum number of predictor invocations. Using this policy

all idle periods are completely exploited using either the self-

refresh mode, or the power-down mode or a combination

of both power saving modes. The proposed policy has the

highest energy savings for all applications and reduces the

energy consumption by a factor between 3.2 (68.6%) and 5

(79.9%). This policy also results in a low performance penalty

between 0.32% and 2.2%.This policy harnesses the benefits

of the predictor and efficiently combines both the self-refresh

and the power-down modes to get maximum energy savings at

considerably lower performance penalties compared to using

the self-refresh mode speculatively.

VII. CONCLUSIONS

In this paper, we have significantly extended and fine

tuned a generic prediction algorithm to be able to employ it

for reducing DRAM power/energy consumption. Furthermore,

based on the prediction algorithm, we have proposed a novel

power-saving policy that leverages DRAM idle periods to put

the DRAM either in the self-refresh mode or the power-down

mode, or a combination of both power-saving modes in a

given idle period depending on the predicted duration of the

idle period. The power-saving policy, referred to as prediction

for self-refresh with speculative power-down (PSRS), places

the memory in self-refresh mode provided the predicted idle

period length is sufficient to save power. Otherwise it exploits

the idle period by scheduling a speculative power-down. If

the predicted idle period length is shorter than the actual idle

period length, it schedules a speculative power-down for the

clock cycles not exploited by the prediction. This policy hence

exploits all the idle cycles in all idle periods. Experimental

results for several multimedia benchmarks have shown that this

policy significantly reduces the total DRAM energy consump-

tion with negligible performance penalties when compared

to using the self-refresh mode speculatively. The proposed

policy results in very high energy savings (between 68.6%

and 79.9%) at very marginal performance penalty (between

0.32% and 2.2%).
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