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We derive a complete asymptotic expansion for the singularly perturbed problem of acoustic wave propagation

inside gases with small viscosity. This derivation is for the non-resonant case in smooth bounded domains in
two dimensions. Close to rigid walls the tangential velocity exhibits a boundary layer of size O(

√
η) where η

is the dynamic viscosity. The asymptotic expansion, which is based on the technique of multiscale expansion
is expresed in powers of

√
η and takes into account curvature effects. The terms of the velocity and pressure

expansion are defined independently by partial differential equations, where the normal component of veloc-

ities or the normal derivative of the pressure, respectively, are prescribed on the boundary. The asymptotic
expansion is rigorously justified with optimal error estimates.
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1. Introduction

In this article, we are investigating the acoustic equations in the framework of Landau and Lifschitz 17

as a perturbation of the Navier-Stokes equations around a stagnant (U0 = 0) uniform fluid with

mean density ρ0, mean pressure p0 where heat flux is not taken into account. Such conditions are

distinguished in literature as a quiescent fluid 10,25. Similar acoustic equations have been derived and

studied in Ref. 10, 25, 17 for no mean flow and in Ref. 2, 22, 10, 9, 23 for the case that a mean flow is

present. The aim of this study is to take into account viscous effects in the boundary layer near rigid

walls.

We consider time-harmonic acoustic velocity v and acoustic pressure p (the time regime is e−iωt,

ω ∈ R+), which are described by the coupled system

−iωρ0v +∇p− η∆v − η′∇div v = f , in Ω, (1.1a)

−iωp+ ρ0c
2 div v = 0, in Ω, (1.1b)

v = 0, on ∂Ω. (1.1c)

In the momentum equation (1.1a) with some known source term f the viscous dissipation in the

momentum is not neglected as we consider near wall regions. Here, η > 0 is the dynamic viscosity and

η′ = 1
3η + ζ with ζ ≥ 0 the second (volume) viscosity. Since in this article we are mainly interested

in the viscous effects, we neglect non-linear convection. The continuity equation (1.1b) relates the

acoustic pressure linearly to the divergence of the acoustic velocity, where c is the sound velocity. The

system is completed by no-slip boundary conditions.

For gases the viscosities η and η′ are very small and lead to viscosity boundary layers close to walls.

The comprehension of these boundary layers makes for the subject of many scientific works 2,11,23,27.

In order to resolve the boundary layers with (quasi-)uniform meshes, the mesh size has to be at the
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same order, which leads to very large linear systems to be solved. This is especially the case for the

very small boundary layers of acoustic waves. A common procedure for singularly perturbed problems

with small layers close to boundaries is the method of matched asymptotic expansions 30,13, which

matches different ansaetze close to the wall and far away. For various model problems with boundary

layers, finite schemes or meshes adapted in special ways close to walls have been proposed, so by

Il’in 12, Bakhvalov 3 or Shishkin 28,29, which regain the optimal convergence rate of the numerical

schemes; see also the review articles Ref. 18, 14.

Mainly based on experiments, the physics community has introduced slip boundary conditions for

tangential velocity components, also known as wall laws, see for example Ref. 11, 23, 24. The boundary

layers of incompressible and compressible fluid flows have been addressed by many authors 7,8,16,20.

For acoustic boundary layers on straight (and rough) walls in presence of a shear flow Aurégan et. al. 2

derived effective impedance boundary conditions of first order accuracy with the multiscale expansion

(the authors call the method composite expansion). However, there is no mathematical justification

of wall laws for acoustic boundary layers in literature. In this work we are going to derive a complete

asymptotic expansion using the method of multiscale expansion which we will rigorously justify.

The present paper consists of three parts. In Section 2 we state the problem and present the main

results of our work. In Section 3 the complete asymptotic expansion under curvilinear coordinates will

be derived, and the far field equations including boundary conditions, as well as the near field equations

will be explicitly given up to order 1. The last section (Section 4) is devoted to the justification of the

results for the asymptotic analysis. It comprises the proofs for stability and regularity of the solution

as well as the error analysis.

2. Formulation of the problem and main results

2.1. The geometrical setting

Let Ω ⊂ R2 be a bounded domain with boundary ∂Ω. The boundary shall be described by a mapping

x∂Ω(t) from an interval Γ ⊂ R. We assume the boundary to be Lipschitz, which is enough to define a

weak solution of (1.1) (or its version for asymptotically small viscosity), and we will indicate whenever

we will rely on a C∞ boundary, which will particularly be needed for the definition of an asymptotic

expansion. In the latter case the points close to ∂Ω can be uniquely written as

x(t, s) = x∂Ω(t)− sn(t) (2.1)

where n(t) is the outer normalised normal vector and s the distance from the boundary (see Fig. 1).

Without loss of generality we can assume |x′∂Ω(t)| = 1 for all t ∈ Γ. The orthogonal unit vectors in

these tangential and normal coordinate directions are et(t) = −n⊥(t) and es(t) = −n(t), where we

use the notation u⊥ = (u2,−u1)> for a vector rotated clockwise by 90◦. Furthermore, let s0 ∈ R such

that all points with distance smaller than s0 to ∂Ω have a unique closest point on the boundary.

s
t

n(t)

∂Ω

Ω

Fig. 1. Definition of a local coordinate system (t, s) close to the wall.
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2.2. The time-harmonic Navier-Stokes equation for viscous gases

Obviously, the acoustic velocity and pressure can be decoupled(
1− i(η + η′)ω

ρ0c2

)
∇div v +

ω2

c2
v

+
iηω

ρ0c2
curl2D curl2D v =

iω

ρ0c2
f , in Ω (2.2a)

v = 0, on ∂Ω, (2.2b)

p = − iρ0c
2

ω
div v, in Ω (2.2c)

Here, we have used the 2D rotation operators

curl2D u := ∂1u2 − ∂2u1, curl2D u :=

(
∂2u

−∂1u

)
.

The first equation (2.2a) is a ∇ div-Helmholtz equation with absorption terms in the two highest

derivatives. The ∇ div-Helmholtz equation, naturally stated in H(div,Ω), needs only a prescribed

normal component of the velocity. The prescribed tangential component is the essential boundary

condition for the curl2D curl2D operator. As there is a small factor – η is assumed to be small – in

front of the curl2D curl2D operator, the system is singularly perturbed, i. e., first, its formal limit

η → 0 does not provide a meaningful solution, and secondly, a boundary layer close to the wall

∂Ω appears. Since only the curl2D curl2D operator has a small factor, only the tangential velocity

component exhibits a boundary layer, whose size is of the order

δ =

√
η

ρ0ω
. (2.3)

This observation will be justified later on in this article by asymptotic expansion. In case of non-

smooth curl2D f there appear also (internal) boundary layers at discontinuities of curl2D f or its higher

derivatives. To exclude those, we assume curl2D f ∈ Hm(Ω) for any m ∈ N0.

2.3. The equations for asymptotically small viscosity

To investigate the solution of (1.1) for small viscosities, we introduce a small parameter ε ∈ R+

and replace η, η′ by ε2η0, ε2η′0 with η0, η
′
0 ∈ R+. In this way the boundary layer width will become

proportional to ε. We will label the solution of (1.1) or (2.2), respectively, vε and pε due to its

dependence on ε, which satisfy

−iωρ0v
ε +∇pε − ε2η0∆vε − ε2η′0∇ div vε = f , in Ω, (2.4a)

−iωpε + ρ0c
2 div vε = 0, in Ω, (2.4b)

vε = 0, on ∂Ω. (2.4c)

In this study we consider the non-resonant case, i. e., for vanishing viscosity, and so absorption

the kernel of the system is empty – there is no eigensolution. The eigenvalues of the limit problem

coincide with the Neumann eigenvalues of −∆, a fact that we will address in the proof – which will

be given later in Sec. 4.3 – of the following lemma.

Lemma 2.1 (Stability for the non-resonant case). For any f ∈ (H0(div,Ω) ∩ H(curl2D,Ω))′

the system (2.4) has a unique solution (vε, pε) ∈ H0(div,Ω) ∩ H(curl2D,Ω) × L2(Ω). If ω2

c2 is not a

Neumann eigenvalue of −∆, then there exists a constant C > 0 independent of ε such that

‖vε‖H(div,Ω) + ε ‖ curl2D vε‖L2(Ω) + ‖pε‖L2(Ω) ≤ C ‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ , (2.5a)

‖∇pε‖L2(Ω) ≤ C ‖f‖L2(Ω). (2.5b)
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For any ω > 0 and for C∞ boundary ∂Ω it holds

ε‖vε‖(H1(Ω))2 ≤ C ‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ . (2.5c)

The proof will be given later in Sec. 4.3. See Sec. 4.1 for the definition of the used Sobolev spaces.

2.4. Asymptotic expansion

The solution vε, pε should be approximated by a two-scale asymptotic expansion in the framework of

Vishik and Lyusternik 31 in the form

vε ≈ vε,N (x) :=

N∑
j=0

εj
(
vj(x) + vjBL,ε(x)

)
, (2.6a)

pε ≈ pε,N (x) :=

N∑
j=0

εj
(
pj(x) + pjBL,ε(x)

)
, (2.6b)

where vj and pj are the far field and vjBL,ε and pjBL,ε are the near field velocity and pressure. The

subscript ·BL,ε stands for “boundary layer” expressing the nature of the near field terms, which in fact

depend on ε.

Lemma 2.2 (Asymptotic exactness of the two-scale asymptotics). If ω2

c2 is not a Neumann

eigenvalue of −∆ and ∂Ω is C∞ then there exist functions vj ∈ (H1
0 (Ω))2, pj ∈ L2(Ω), vjBL,ε ∈

(H1
0 (Ω))2 such that for any N ∈ N0 the approximate solution vε,N , pε,N defined by (2.6a) with

pjBL,ε ≡ 0 for any j ∈ N0 satisfies

‖vε − vε,N‖H(div,Ω) +
√
ε‖ curl2D(vε − vε,N )‖L2(Ω) + ‖pε − pε,N‖H1(Ω) ≤ C εN+1, (2.7)

where the constant C > 0 does not depend on ε. Furthermore, for any δ > 0 there is a constant Cδ > 0

independent of ε such that outside a δ-neighbourhood Ωδ of ∂Ω holds

‖vε −
∑N

j=0
εjvj‖(H1(Ω\Ωδ))2 ≤ Cδ ε

N+1. (2.8)

The far field velocity and pressure terms vj and pj in Lemma 2.2 can not be defined uniquely unless

we do not assume them to be independent of ε. We will give a unique definition of the ε-independent

terms in Sec. 2.4.1 or Sec. 2.4.2, respectively. The near field velocity terms vjBL,ε depend on ε and are

in general not unique. We will give a (unique) choice in Sec. 3.2. The proof of Lemma 2.2 will be given

in Sec. 4.5.

Remark 2.1. The estimate (2.8) shows that the far field velocity taken alone, i. e., with correction

by the near field velocity, is an optimal approximation for any N ∈ N0 when measuring the error only

in some distance from the boundary. The pressure approximation does not include a correcting near

field close to the wall (pjBL,ε ≡ 0), hence the far field pressure pε,N =
∑N
j=0 ε

jpj is according to (2.7)

an optimal approximation, even up to the boundary. Note, that curl2D v0 is even accurate up to O(ε2)

in some distance from the wall as curl2D v1 ≡ 0, which we observe after applying curl2D to (2.9a)

below.

The far field terms of velocity and pressure can equivalently be defined by solving a PDE for the far

field velocity, where the far field pressure follows by an explicit equation, or by solving an Helmholtz

equation for the far field pressure, where an explicit equation fixes the far field velocity. We prefer

the first characterisation, which will be given in Sec. 2.4.1 for the analysis of the modelling error. The

second characterisation is easier for the numerical computation of the far field pressure and associated

impedance boundary conditions, which we will address in a forthcoming article.
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2.4.1. First characterisation of the far field terms

Lemma 2.2 holds with a particular family of far field terms which is intrinsic to the problem. They

will be derived later on in this article as solutions to the partial differential equations

∇div vj +
ω2

c2
vj =

iω

ρ0c2
f · δj=0 +

iη0ω

ρ0c2
∆vj−2 +

iη′0ω

ρ0c2
∇ div vj−2, in Ω, (2.9a)

vj · n =

j∑
`=1

G` div vj−` +Hj(f), on ∂Ω, (2.9b)

where v−1 = v−2 = 0, G` and H` are tangential differential operators acting on terms of lower orders

or the trace of f on ∂Ω, respectively. Furthermore, δj=0 stands for the Kronecker symbol which is 1 if

j = 0 and 0 otherwise. The reader shall be easily convinced, that in contrast to the PDEs (2.9a) the

boundary conditions (2.9b) will be derived in several steps, where the main ingredient is the solution

of ordinary differential equation in normalised coordinates. This will be detailed in Sec. 3 and in the

Appendix the operators G` and H` for general orders will be iteratively derived, see Cor. A.2.

Let us state now the boundary conditions (2.9b) up to j = 2, which are given by

v0 · n = 0,

v1 · n = (1 + i)

√
η0

2ωρ0

( c2
ω2
∂2
t div v0 +

i

ωρ0
∂t(f · n⊥)

)
,

v2 · n =
c2

ω2

(
(1 + i)

√
η0

2ωρ0
∂2
t div v1 +

iη0

2ωρ0
∂t(κ∂t div v0)

)
− η0

2ω2ρ2
0

∂t(κ f · n⊥).

(2.10)

Applying recursively curl2D to (2.9a) for j = 0, 1, . . . we get expressions for curl2D vj by the source

term only

curl2D vj =

0 j is odd,

i
ωρ0

(
− iη0
ωρ0

curl2D curl2D

)j/2
curl2D f , j is even,

in Ω. (2.11)

These terms are well-defined by the regularity assumption on curl2D f in Sec. 2.2.

When the far field velocity is computed we may obtain a-posteriori the far field pressure by

pj = − iρ0c
2

ω
div vj , in Ω. (2.12)

The far field terms vj , pj are well-defined as stated in the following:

Lemma 2.3 (Existence and uniqueness of vj, pj). Let ∂Ω be C∞ and for any m ∈ N0 the right

hand side of (2.9a) f ∈ (H0(div,Ω))′∩(Hm(Ω̃))2 in some neighbourhood Ω̃ ⊂ Ω of ∂Ω, i. e., ∂Ω ⊂ ∂Ω̃,

and curl2D f ∈ Hm(Ω). Then (2.9) provides a unique solution vj ∈ (H1(Ω))2 and (2.12) a unique

function pj ∈ L2(Ω) for any integer j ≥ 0.

The proof will be given in Sec. 4.4.

Remark 2.2. In fact the velocity and the pressure need higher regularity close to the wall, such that

the differential operators can be applied. This is assured by the assumption of C∞ boundary and of

more regular source term f .

2.4.2. ksAn alternative characterisation of the far field terms

It is easy to verify that the far field pressure terms pj defined by (2.9) solve the Helmholtz equation

∆pj +
ω2

c2
pj = div f · δj=0 + (η0 + η′0)

iω

ρ0c2
∆pj−2, (2.13a)
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which has to be completed by boundary conditions

∇pj · n =

j∑
`=1

J`p
j−` +Kj(f), (2.13b)

which will be derived to any order in the Appendix. Here, J` and K` are tangential differential

operators acting on pressure terms of lower orders or the source term, respectively.

Let us introduce the boundary conditions (2.13b) up to j = 2 which are given by

∇p0 · n = f · n,

∇p1 · n = −(1 + i)

√
η0

2ωρ0

(
∂2
t p

0 + ∂t(f · n⊥)
)
, (2.14)

∇p2 · n = −(1 + i)

√
η0

2ωρ0
∂2
t p

1 − iη0

2ωρ0

(
∂t(κ∂tp

0) + ∂t(κf · n⊥)
)

(2.15)

+
iω(η0 + η′0)

ρ0c2
f · n− iη0

ωρ0
curl2D curl2D f · n.

When the far field pressure is computed we may obtain a-posteriori the far field velocity by

vj =
i

ρ0ω
(f · δj=0 −∇pj)−

η0 + η′0
ρ2

0c
2
∇pj−2 − iη0

ρ0ω
curl2D curl2D vj−2, in Ω, (2.16)

where curl2D curl2D vj−2 is given by (2.11) as expression of f .

In this way the far field terms vj , pj are well-defined as well, where a higher regularity of f has to

be assumed.

Lemma 2.4 (Existence and uniqueness of vj, pj). Let ∂Ω be C∞ and for any m ∈ N0 the

right hand side of (2.9a) f ∈ (L2(Ω))2 ∩ (Hm(Ω̃))2 be in some neighbourhood Ω̃ ⊂ Ω of ∂Ω, i. e.,

∂Ω ⊂ ∂Ω̃, and curl2D f ∈ Hm(Ω). Then, (2.13) provide a unique solution pj ∈ H1(Ω) and (2.16) a

unique function vj ∈ (H1(Ω))2 for any integer j ≥ 0.

The proof uses elements of the proof of Lemma 2.3 and will be let to the reader.

Remark 2.3. Note, that the boundary conditions for vj and pj are local since G` and J` in (2.9b)

and (2.13b) are differential operators on Γ.

3. Formal asymptotic expansion

3.1. Decomposition into far and near fields

In (2.6a) we have introduced the two-scale expansion ansatz, which expresses an approximation to the

exact solution as a two-fold decomposition, first

• into far field terms, which model the macroscopic picture of the solution,

• which are corrected in the neighbourhood of the boundary by near field terms,

and second

• into terms of different order of magnitude, measured in terms of the small parameter ε.

The far field terms will be defined in physical coordinates in the whole domain Ω where we assume

∂Ω to be C∞. Inserting the expansion (2.6a) into the system (2.4) for vε, pε for a particular coordinate

x ∈ Ω and letting ε tend to zero, the near field terms concentrate closer and closer to the wall and

vanish – even their higher derivatives – on x. Collecting terms of the same order in ε the far field

equations results, which can be written as (2.9a), and (2.12) follows. The far field equations will be

completed by boundary conditions, which we will specify in Sec. 3.3. As a matter of fact the far field
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expansion can only fulfil one of the two boundary conditions and has to be corrected by the near field

expansion close to the walls.

To separate the two scales we use the technique of multiscale expansion, which defines the near

field terms in a local normalised coordinate system (2.1) such that they decay away from the wall and

are set to zero there where the local coordinate system is not defined. The decay property requires

the near field terms and their higher derivatives to vanish on a fixed point x for ε tending to 0, or

more precisely, that there exists for any x ∈ Ω some α > 0 such that for any differential operator Di
β

of degree i = 0, 1, 2 in the direction β ∈ {1, 2}i it holds

lim
ε→0

eαs(x)/εDi
β

(
vjBL,ε(x)

qjBL,ε(x)

)
= 0. (3.1)

3.2. Deriving the near field equations

The near field terms are defined in two steps, first inside an s1-neighbourhood of the boundary for

some s1 < s0, not depending on ε. Then, they will be continuously extended into the subdomain

s1 < s < s0 such that they and their derivatives vanish at s = s0.

We begin by the definition for s < s1. The standard way would be to take the asymptotic expansion

ansatz (2.6a) as “educated guess” with near field terms vjBL,ε = uj(t, sε ) and pjBL,ε = qj(t, sε ) for some

functions uj(t, S), qj(t, S) not depending on ε. The terms are then chosen such that the ansatz solves

the system (2.4) with zero source term for any order in ε.

However, we are going to use the special structure of (2.4) to show that

• the near field pressure terms pjBL,ε vanish at any order and, hence, the near field velocity

terms are divergence free by (2.4b), and so

• the near field velocity can be modelled as

vjBL,ε := ε curl2D φ
j(t, sε ) (3.2)

where φj shall not depend on ε. We take here the weighted operator ε curl2D as it is of order 1

in ε.

Absence of near field pressure Applying the divergence to (2.4a), inserting (2.4b) and using the

operator identity div∇ div = div ∆ we get a Helmholtz equation for the pressure(
1− ε2(η0 + η′0)

iω

ρ0c2

)
∆pε +

ω2

c2
pε = div f . (3.3)

Note, that the far field pressure
∑N
j=0 ε

jpj , where pj are defined by (2.12) or equivalently by (2.13a),

solves (3.3) with source term div f up to a residual of order εN+2. Hence, the correcting near field∑N
j=0 ε

jpjBL,ε has to solve (3.3) with zero source term as best as possible in terms of orders in ε.

Inserting the near field pressure with the ansatz pjBL,ε = qj(t, sε ) we obtain for order 0

∂2
Sq

0(t, S) = 0 ⇒ q0 ≡ 0 (3.4a)

by the decay condition (3.1). For any higher order j we have the relation

∂2
Sq

j(t, S) = A3
ε

5∑
`=1

F`(q
j−`) (3.4b)

for some differential operators F` in t, S, and the near field pressure terms vanish by induction in j. The

only solution to this equation, which is decaying exponentially as assumed in (3.1) is pjBL,ε = qj ≡ 0 —

there is no near field pressure. The equations (3.4) are very different from usual near field equations,
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as not any of the two functions in the kernel of the second order differential operator ∂2
S fulfil the

decay property (3.1).

The absence of the near field pressure has in view of (2.4b) the consequence that the near field

velocity is divergence free, i. e., div vjBL,ε = 0 for all j, and we can express vjBL,ε by (3.2).

Equations for the divergence-free near field velocity In the following we will derive conditions

on the near field functions φj , such that the near field velocity expansion
∑N
j=0 ε

j+1 curl2D φ
j(t, sε )

inserted into (2.4a) leaves a residual as small as possible in powers of ε. For a divergence free velocity

v = ε curl2D φ and vanishing pressure the residual is simply given by

Rε(v, p = 0) := −iωρ0v + ε2η0 curl2D curl2D v

= ε curl2D(−iωρ0φ+ ε2η0 curl2D curl2D φ).

Since for a function φ(t, S) with S = s
ε we have

curl2D curl2D φ = −ε−2∂2
Sφ+ ε−1κAε∂Sφ+A2

ε∂
2
t φ+ εκ′SA3

ε∂tφ,

where κ is the curvature on the boundary ∂Ω given by

κ(t) :=
x′1(t)x′′2(t)− x′2(t)x′′1(t)

(x′1(t)2 + x′2(t)2)3/2
, and Aε = Aε(t, S) =

1

1− εκ(t)S
,

we can write the residual Rε as

Rε(ε curl2D φ(t, sε ), p = 0) = ε curl2D A
3
ε

(
iωρ0φ+ η0∂

2
Sφ−

3∑
`=1

ε`C`(φ)
)
, (3.5)

where we use the functions

C1(φ) = κ
(
3 iωρ0S + 3η0S∂

2
S + η0∂S

)
φ,

C2(φ) = −η0∂
2
t φ− κ2

(
3 iωρ0S

2 + 3η0S
2∂2
S + 2η0S∂S

)
φ,

C3(φ) =
(
iωρ0κ

3S3 + η0κ
3S3∂2

S + η0κ
3S2∂S + η0κS∂

2
t − η0κ

′S∂t
)
φ.

Now, inserting the near field velocity expansion into (3.5) we get

Rε(

N∑
j=0

εjvjBL,ε, 0) = ε curl2D A
3
ε

N∑
j=0

εj
(

iωρ0φ
j + η0∂

2
Sφ

j −
3∑
`=1

ε`C`(φ
j)
)

=

= ε curl2D A
3
ε

( N∑
j=0

εj
(

iωρ0φ
j + η0∂

2
Sφ

j −
3∑
`=1

C`(φ
j−`)

)

− εN+1
2∑
j=0

3∑
`=1+j

ε`−1−jC`(φ
N−j)

)
Since ε curl2D is an operator of order 1, the residuals are all (at least) of order εN+1 if the terms of

the expansions φj , j = 0, . . . , N satisfy the near field equation

iωρ0φ
j + η0∂

2
Sφ

j =

3∑
`=1

C`(φ
j−`). (3.6a)

The second differential operator iω+ η0∂
2
S has a kernel of dimension one if we allow only for exponen-

tially decreasing functions by demanding

lim
S→∞

φj(t, S) eαS = 0, (3.6b)
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2s0 2s0

0

1
χ̂(s)

s

Fig. 2. An example of a cut-off function χ(x) = χ̂(s), which is used to add smoothly truncated near fields at O(1)

distance to the wall to the far fields.

which is equivalent to (3.1). The single function in the kernel is fixed by the homogeneous Dirichlet

boundary condition for the tangential component (vjBL,ε(t, 0) + vj(t, 0)) · et(t) = 0, see (2.4c), where

the terms of same order in ε are collected. This condition turns out to be an inhomogeneous Neumann

boundary condition for φj

∂Sφ
j(t, 0) = −vjt (t) := −vj(t, 0) · et(t). (3.6c)

Definition of the near field velocity into the whole domain The terms φj(t, S) are defined

for any S ∈ R+, but are only used for 0 ≤ S ≤ s0
ε to define vjBL,ε in the s0-neighbourhood of the

boundary. We define the near field velocity in the whole domain by

vjBL,ε(x) := ε curl2D
(
φj(t, sε )χ(x)

)
,

where the cut-off function χ(x) ∈ C2(Ω) (see Fig. 2) is zero for distances larger s0 and a function of

the distance to the boundary χ(x) = χ̂(s(x)) otherwise. In this form the near field velocity terms are

divergence-free in the whole domain and fulfil (with non-existing near field pressure) (2.4b) exactly.

Remark 3.1. Note, that the family of functions φj is intrinsic and thus essential to achieving the

approximation result (2.7) of vε,N in the form (2.6a) to vε. In contrast, the cut-off function χ is

arbitrary and (2.7) holds for any of those cut-off functions. Replacing cut-off functions leads to an

exponentially small change of the solution.

The near field term of order 0 It is easy to see that for j = 0 the unique solution of (3.6) is given

by

φ0(t, S) =
1

λ0
v0
t (t) e−λ0S , where λ0 = (1− i)

√
ωρ0

2η0
. (3.7)

This is the dominating boundary layer term close to the wall and with η = η0ε
2 and s = S/ε we

observe the boundary layer thickness to be of order δ as given in (2.3).

The near field term of order 1 The unique solution of (3.6) for j = 1 is given by

φ1(t, S) =
1

λ0

(
v1
t (t) +

κ(1 + λ0S)

2λ0
v0
t (t)

)
e−λ0S . (3.8)

Existence and uniqueness of the near field terms We have observed that the near field terms

up to order 1 are polynomials in S multiplied with a function, which is exponentially decreasing in

S. With the near field terms of lower order on the right hand sides of the near field equations (3.6),

which is a simple example of a linear second-order ODE with constant coefficient, the terms of higher

order have the same form as well (see the Appendix for more details). Here, the tangential variable t



10 K. Schmidt and A. Thöns-Zueva

is a parameter which is easily transported by the equations. Let us introduce the function space

Π(λ,X) :=
{
u(t, S) = e−λS

J∑
j=0

aj(t)S
j , for some J ∈ N0,

aj ∈ C, ‖aj‖X <∞, j = 0, . . . , J
}
,

where X is related to the smoothness in tangential direction. For functions depending on ε we call

them member of Π(λ,X) if the coefficients aj are bounded independently of ε.

The only data to the system of near field equations (3.6) are the tangential traces vjt of the far field

terms on the boundary. So, the near field terms φj exist only in some Sobolev space Hs(Ω), s ≥ 1, if

the tangential traces of the far field velocities are smooth enough.

Lemma 3.1 (Existence and uniqueness of the near field equations). Let for some non-negative

integer N vjt ∈ Hs−j+N (Γ) for j = 0, . . . , N and some s ∈ R. Then, (3.6) for all j ≤ N has a unique

solution in the form φj ∈ Π(λ0, H
s(Γ)). Hence, ε curl2D φ

j ∈ Π(λ0, H
s−1(Γ))2.

3.3. Far field boundary conditions

Boundary conditions for the far field velocity The normal trace vε,N · n vanishes up to order

N in ε, cf. (2.4c), the normal trace of the far field terms has to fulfil condition

vj(t, 0) · n = vj−1
BL,ε(t, 0) · es(t) = ∂tφ

j−1(t, 0), (3.9)

which can be expressed in terms of v0
t , v1

t , . . . . Up to order 2 this is

v0(t, 0) · n = 0, v1(t, 0) · n = − 1

λ0
∂tv

0
t (t),

v2(t, 0) · n = − 1

λ0

(
∂tv

1
t (t) +

1

2λ0
∂t(κv

0
t (t))

)
.

(3.10)

We can express these terms, if they are smooth enough, in terms of their natural Neumann traces

which is div v0, div v1, . . .. Using (2.9a) and (2.11) we can express

vjt (t) = − c
2

ω2
∂t div vj +

i(η0 + η′0)

ωρ0
∂t div vj−2(t, 0)

+
i

ωρ0

(
− iη0

ωρ0
curl2D curl2D

)j/2
f · et · δj is even. (3.11)

Inserting these expressions for vjt into (3.10) results in (2.10) and will also be used for the derivation

of the boundary conditions (2.9b) to any order in the Appendix.

Boundary conditions for the far field pressure Applying div to (2.9a), inserting (2.12) and using

the fact that div curl2D ≡ 0, we get the Helmholtz equation for the pressure (2.13a). Inserting (2.12)

directly in (2.9a), we have

∇pj · n = iωρ0v
j · n + (η0 + η′0)

iω

ρ0c2
∇pj−2 · n

− η0 curl2D curl2D vj−2 · n + f · n · δj=0, (3.12)

and using (2.10) and (2.12) leads to (2.14). We refer to the Appendix for the derivation of the boundary

conditions to any order.
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4. Justification of the asymptotic expansion

4.1. Preliminaries

We start by introducing some notation and properties of the considered equations.

Besides the usual Sobolev spaces Hm(Ω) and Hm+1/2(∂Ω), m ∈ Z we define the Hilbert spaces

H(div,Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)}
H(curl2D,Ω) := {v ∈ L2(Ω) : curl2D v ∈ L2(Ω)}

where for the differential operator D ∈ {div, curl2D} we have the semi-norm and norm

|v|H(D,Ω) := ‖Dv‖L2(Ω), ‖v‖2H(D,Ω) := ‖v‖2L2(Ω) + |v|2H(D,Ω).

Furthermore, we define for some g ∈ H−1/2(∂Ω)

Hg(div,Ω) := {v ∈ H(div,Ω) : v · n = g on ∂Ω},

and

H0(div 0,Ω) := {v ∈ H(div,Ω) : div v = 0,v · n = 0 on ∂Ω},
H(curl2D 0,Ω) := {v ∈ H(curl2D,Ω) : curl2D v = 0}.

Furthermore, for vector fields u,v ∈ H(curl2D,Ω) we will use the integration by parts formula∫
Ω

curl2D u v dx =

∫
∂Ω

u · n⊥ v dσ(x) +

∫
Ω

u · curl2D v dx. (4.1)

Note, that u · n⊥ and curl2D u are the Dirichlet and Neumann traces for curl2D curl2D u and u · n
and div u for grad div u, as we see by twice applying integration by parts∫

Ω

curl2D curl2D u · vdx =

∫
Ω

u · curl2D curl2D vdx

+

∫
∂Ω

(curl2D u)︸ ︷︷ ︸
Neumann trace

v · n⊥ − (u · n⊥)︸ ︷︷ ︸
Dirichlet trace

curl2D vdσ(x),

∫
Ω

grad div u · vdx =

∫
Ω

u · grad div vdx

+

∫
∂Ω

(div u)︸ ︷︷ ︸
Neumann trace

(v · n)− (u · n)︸ ︷︷ ︸
Dirichlet trace

div v dσ(x).

For C∞ smooth domains in two dimensions the spaces (H1(Ω))2 ∩ H0(div,Ω) and H0(div,Ω) ∩
H(curl2D,Ω) are equivalent, meaning that there exists two constants 0 < C1 < C2, such that for

any v ∈ H0(div,Ω) ∩H(curl2D,Ω) it holds

C1‖v‖2(H1(Ω))2 ≤ ‖v‖
2
H(div,Ω)∩H(curl2D,Ω) := ‖v‖2L2(Ω) + ‖ div v‖2L2(Ω) + ‖ curl2D v‖2L2(Ω)

≤ C2‖v‖2(H1(Ω))2 .

This follows from the fact that a gradient of a vector field can be bounded by its divergence, its

rotation and its normal trace32,21,15,

‖grad v‖L2(Ω) ≤ C
(
‖ div v‖L2(Ω) + ‖ curl2D v‖L2(Ω) + ‖v · n‖H1/2(∂Ω)

)
, (4.2)

since so called Neumann fields do not exist in two dimension.
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4.2. Eigensolutions and well-posedness of the limit equations

We claim that in the limit ε→ 0 the far field terms vj satisfy a system of the form

∇ div v +
ω2

c2
v = f , in Ω,

v · n = g, on ∂Ω,

(4.3)

and for particular choice of f and g the system (4.3) coincides with the far field equations (2.9). The

source term in the first equation is not necessarily the original source term f .

The weak formulation for (4.3) is: Seek v ∈ Hg(div,Ω) such that for all∫
Ω

div v div v′ − ω2

c2
v · v′dx = f(v′), ∀v′ ∈ H0(div,Ω) (4.4)

where f(v′) = −
∫

Ω
f · v′dx. We would like to extend the source terms by allowing the functional f

to include distributions, e. g.,
∫

Γ
f v′ · n dσ(x) for some function f ∈ H1/2(Γ) on an one-dimensional

submanifold Γ ⊂ Ω with normal vector n.

The system (4.3) has a similar form as the Helmholtz equation, where the Laplace operator is

replaced by the operator ∇grad. In contrast to the vectorial Helmholtz equation with the vector

Laplace operator there is only one boundary condition, which is consistent with the variational formu-

lation (4.4) in H(div,Ω). Unlike for the (vectorial) Helmholtz equation the Sobolev space H(div,Ω)

is not compactly embedded in L2(Ω) and the proof for well-posedness (see Lemma 4.2) uses the Fred-

holm alternative after a Helmholtz decomposition of H0(div,Ω). To do so, the eigenvalues of (4.3)

have to be excluded. Let us now specify these eigenvalues.

Lemma 4.1. The positive part of the spectrum of (4.3) with homogeneous source terms consists only

of eigenvalues ω2

c2 which coincide with the Neumann eigenvalues of −∆.

Proof. Let w be a solution of (4.3) for vanishing source terms. For ω2

c2 > 0 it is evident that curl2D w =

0. We use the decomposition (see Sec. 3.e in Ref. 1) for functions w′ ∈ (L2(Ω))2

w′ = ∇φ′ + w′c,

where φ′ ∈ H1(Ω) and w′c ∈ H0(div 0,Ω). The decomposition is orthogonal since∫
Ω

∇φ′ ·w′0dx = −
∫

Ω

φ′ div w′0dx +

∫
∂Ω

φ′wc · ndσ(x) = 0.

Due to the orthogonality of the two parts ∇φ and wc of w they fulfil (4.3) independently. Then, with

div wc = 0 it follows wc = 0. The scalar potential φ has to fulfil

∇
(
∆φ+ ω2

c2 φ
)

= 0,

∇φ · n = 0.
⇔

∆φ+ ω2

c2 φ = C,

∇φ · n = 0.
(4.5)

for some constant C ∈ C. Note, that (4.5) is Fredholm with index 0, and we can apply the Fredholm

alternative:

(i) If ω2

c2 is not a Neumann eigenvalue of −∆ the system (4.5) has a unique solution φ = c2

ω2C

and so w = ∇φ = 0. Hence, ω
2

c2 is not an eigenvalue of (4.3). The system is uniquely solvable.

(ii) If ω2

c2 is a Neumann eigenvalue of −∆ the system (4.5) is not uniquely solvable, and so (4.3).

This means that ω2

c2 is an eigenvalue and ∇φ an non-trivial solution of (4.3). Contrarily,

w = ∇φ+ wc can only be in the kernel of (4.3), if wc = 0 and φ solves (4.5).

Now, we are in the position to state the well-posedness, where we begin with the case of vanishing

normal trace, g = 0. The case for general normal trace will be considered in Lemma 4.4. The statement

of the lemma is applicable for a wide class of functionals f , where the bound simplifies for the common
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case of curl2D-free source terms f . For this let us introduce the notation f ◦ curl2D : L2(Ω) → C for

functionals, which are defined as (f ◦ curl2D)(ψ) = f(curl2D ψ).

Remark 4.1. If f(v′) =
∫

Ω
f · v′dx, then curl2D f ∈ L2(Ω) is sufficient to have f ◦ curl2D ∈ L2(Ω),

since

‖f ◦ curl2D ‖L2(Ω) = sup
ψ∈C∞0 (Ω)

|
∫

Ω
f · curl2D ψdx|
‖ψ‖L2(Ω)

= sup
ψ∈C∞0 (Ω)

|
∫

Ω
curl2D fψdx|
‖ψ‖L2(Ω)

≤ ‖ curl2D f‖L2(Ω),

and f ◦ curl2D = 0 for curl2D-free sources. As second example, for f(v′) =
∫

Γ
fv′ · ndσ(x) with

f ∈ H3/2(Γ) it is f ◦ curl2D ∈ L2(Ω) since

‖f ◦ curl2D ‖L2(Ω) = sup
ψ∈C∞0 (Ω)

|
∫

Γ
f curl2D ψ · ndσ(x)|
‖ψ‖L2(Ω)

= sup
ψ∈C∞0 (Ω)

|
∫

Γ
f∇ψ · n⊥dσ(x)|
‖ψ‖L2(Ω)

≤ ‖f‖H3/2(Γ).

Lemma 4.2. Let ω2

c2 be distinct from the Neumann eigenvalues of −∆, f ∈ (H0(div,Ω) ∩
H(curl2D,Ω))′ whereas f ◦ curl2D ∈ L2(Ω), and g = 0. Then, (4.4) has a unique solution v ∈
H0(div,Ω) ∩H(curl2D,Ω), and there exists a constant C > 0 such that

‖v‖H0(div,Ω)∩H(curl2D,Ω) ≤ C(‖f‖(H0(div,Ω)∩H(curl2D 0,Ω))′ + ‖f ◦ curl2D ‖L2(Ω)).

If furthermore ∂Ω is C∞ then

‖v‖(H1(Ω))2 ≤ C(‖f‖(H0(div,Ω)∩H(curl2D 0,Ω))′ + ‖f ◦ curl2D ‖L2(Ω)).

Proof. The uniqueness of v follows by assumption and Lemma 4.1.

In the remaining we prove existence and stability in three steps.

(i) Testing (4.4) with v′ = curl2D ψ
′ for ψ′ ∈ C∞0 (Ω) we find

f(curl2D ψ
′) = −ω

2

c2

∫
Ω

v · curl2D ψ
′dx = −ω

2

c2

∫
Ω

curl2D v ψ′dx

and so curl2D v can be identified with the functional f ◦ curl2D which is by assumption

bounded in L2(Ω). Hence,

‖ curl2D v‖L2(Ω) =
c2

ω2
‖f ◦ curl2D ‖L2(Ω),

and v ∈ H0(div,Ω) ∩H(curl2D,Ω).

(ii) Now, we use the unique Helmholtz decomposition 21 for v ∈ H0(div,Ω) as sum of a curl-free

part v0 ∈ N (curl2D) := H0(div,Ω) ∩ H(curl2D 0,Ω) and a soleinodal part vc = curl2D ψ,

ψ ∈ H1
0 (Ω), where in fact ψ has a higher regularity since curl2D v = curl2D vc ∈ L2(Ω). Note,

that ψ ≡ 0 on ∂Ω implies curl2D ψ·n = ∇ψ·n⊥ ≡ 0 and so in fact curl2DH
1
0 (Ω) ⊂ H0(div,Ω).

Functions in N (curl2D) and in curl2DH
1
0 (Ω) possess the property to be mutually orthogonal.

Since any function v′0 ∈ N (curl2D) is a gradient of a scalar function φ′0 ∈ H1(Ω)\C, we have

for any v′c ∈ curl2DH
1
0 (Ω)∫

Ω

v′c · v′0dx =

∫
Ω

v′c · ∇φ′0dx = −
∫

Ω

div v′cφ
′
0dx +

∫
∂Ω

v′c · nφ′0 dσ(x) = 0.

Testing (4.4) now with v′ = curl2D ψ
′, ψ′ ∈ H1

0 (Ω) arbitrarily, using the Helmholtz decom-

position and the orthogonality we get∫
Ω

curl2D ψ · curl2D ψ
′dx = f(curl2D ψ

′),
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which uniquely defines ψ ∈ H1
0 (Ω) and so vc ∈ L2(Ω). By the Lax-Milgram lemma it holds

for some constant C > 0

‖vc‖L2(Ω) ≤ ‖ψ‖H1(Ω) ≤ C‖f ◦ curl2D ‖L2(Ω).

(iii) Finally, testing (4.4) with v′ ∈ N (curl2D) we get a variational formulation: Seek v0 ∈
N (curl2D) such that

(v0,v
′)H(div,Ω) − (1 + ω2

c2 ) 〈v0,v
′〉L2(Ω) = f(v′) ∀v′ ∈ N (curl2D). (4.6)

The first term is the H(div,Ω)-inner product which is N (curl2D)-elliptic and the associated

operator is the identity I. Since N (curl2D) as a subspace of (H1(Ω))2 is compactly embedded

in (L2(Ω))2 by the Rellich-Kondrachov theorem, see Chapter 2 in Ref. 4, the operator K

associated to the bilinear form 〈v0,v
′〉L2(Ω) is compact. Hence, the sum I + K is a Fredholm

operator with index (I + K) = 0 26, i. e., the dimension of its kernel coincides with the codi-

mension of its range. Since we have uniqueness of v and so of v0 the Fredholm alternative 26

implies existence of a solution v0 with

‖v0‖H(div,Ω) ≤ C‖f‖(H0(div,Ω)∩H(curl2D 0,Ω))′ .

Using (4.2) the stability result for C∞ boundary follows. This completes the proof.

Lemma 4.3. For any g ∈ H−1/2(∂Ω) there exists a function E(g) ∈ Hg(div,Ω) ∪ H(curl2D 0,Ω)

and a constant C > 0 such that ‖E(g)‖H(div,Ω) ≤ C‖g‖H−1/2(∂Ω) and for all v′ ∈ H0(div,Ω) it holds∫
Ω

div E(g) div v′dx = 0. If furthermore ∂Ω is C1,1 then ‖E(g)‖(H1(Ω))2 ≤ C‖g‖H1/2(∂Ω).

Proof. Let φ(g) ∈ H1(Ω)\C be the unique solution of

∆φ(g) =
1

|Ω|
〈g, 1〉L2(Ω) in Ω,

∇φ(g) · n = g on ∂Ω,

and by the Lax-Milgram lemma we have ‖φ(g)‖H1(Ω) ≤ C‖g‖H−1/2(∂Ω) for some C > 0.

We define E(g) = ∇φ(g) which is curl2D-free in Ω, and obviously ‖E(g)‖(L2(Ω))2 ≤ C‖g‖H−1/2(∂Ω).

Since ‖ div E(g)‖L2(Ω) = 1√
|Ω|
| 〈g, 1〉L2(Ω) | the first part of the lemma follows. Since div E(g) = ∆φ(g)

is constant in Ω the Stokes theorem implies the second part.

With Theorem 4.18 in Ref. 19 we conclude in ‖E(g)‖(H1(Ω))2 ≤ ‖φ(g)‖H2(Ω) ≤ C‖g‖H1/2(∂Ω).

Lemma 4.4. Let ω2

c2 be distinct from the Neumann eigenvalues of −∆, f ∈ (H0(div,Ω) ∩
H(curl2D 0,Ω))′ whereas f ◦ curl2D ∈ L2(Ω) and g ∈ H−1/2(∂Ω). Then, (4.4) has a unique solu-

tion v ∈ H(div,Ω) ∩H(curl2D,Ω), and there exists a constant C > 0 such that

‖v‖H(div,Ω)∩H(curl2D,Ω) ≤ C
(
‖f‖(H0(div,Ω)∩H(curl2D 0,Ω))′

+ ‖f ◦ curl2D ‖(H1
0 (Ω))′ + ‖g‖H−1/2(∂Ω)

)
.

If furthermore ∂Ω is C∞ then

‖v‖(H1(Ω))2 ≤ C(‖f‖(H0(div,Ω)∩H(curl2D 0,Ω))′ + ‖f ◦ curl2D ‖(H1
0 (Ω))′ + ‖g‖H1/2(∂Ω)).

Proof. By linearity of (4.4) and in view of Lemma 4.2 we can restrict us to the case f = 0. Let E(g)

be the extension as defined in Lemma 4.3. Then, the difference w := v −E(g) ∈ H0(div,Ω) satisfies∫
Ω

div w · div v′ − ω2

c2
w · v′dx =

ω2

c2

∫
Ω

E(g) · v′dx =: fg(v
′), ∀v′ ∈ H0(div,Ω),
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where fg ◦ curl2D = 0 as curl2D E(g) = 0 (see Remark 4.1) and ‖fg‖L2(Ω) ≤ ‖g‖H−1/2(∂Ω). This

variational formulation fulfils the assumptions of Lemma 4.2 and there exists a unique w which

bounded in H(div,Ω) ∩H(curl2D,Ω) by ‖g‖H−1/2(∂Ω). Since the same bound holds for the L2-norms

of E(g) and div E(g) and curl2D E(g) = 0, we obtain first statement of the lemma. Using the statements

in Lemma 4.2 and Lemma 4.3 for C∞ boundaries we conclude in the second statement of the lemma.

4.3. Stability of the original problem

We have stated in Lemma 2.1 the stability of the solution of the original singularly perturbed sys-

tem (2.4). That is, that the acoustic velocity is bounded by the source term in the H(div,Ω)-norm

with a constant independent of ε and in the H(curl2D,Ω)-(semi-)norm like ε−1, whereas the pressure

is bounded with a constant independent of ε.

This shall be proved in the following. With the absorbing terms due to the viscosity the solution

can be bounded, however, with a constant like ε−2. Taking the small absorbing terms on the right hand

side of a system of the form of the limit system for ε→ 0, we cannot directly apply the well-posedness

result of the last section as boundary terms appear by integration by parts as a consequence that

this system is posed in H0(div,Ω) in which the tangential component (of the test functions) does not

vanish in general. The estimation of these boundary terms is a key point in the proof.

Proof. [Proof of Lemma 2.1] Similarly to (2.2a) we can write a boundary value problem for vε only.

This is (
1− ε2 i(η0 + η′0)ω

ρ0c2

)
∇ div vε +

ω2

c2
vε + ε2 iη0ω

ρ0c2
curl2D curl2D vε =

iω

ρ0c2
f , (4.7)

completed by homogeneous Dirichlet boundary conditions. The associated variational formulation is:

Seek vε ∈ (H1
0 (Ω))2 such that for all v′ ∈ (H1

0 (Ω))2∫
Ω

(
1− ε2 i(η0 + η′0)ω

ρ0c2

)
div vε div v′ − ω2

c2
vε · v′

− ε2 iη0ω

ρ0c2
curl2D vε curl2D v′ dx =

iω

ρ0c2
〈f ,v′〉L2(Ω) . (4.8)

This formulation can alternatively be written as

aε(v
ε,v′)− (1 +

ω2

c2
) 〈vε,v′〉L2(Ω) =

iω

ρ0c2
〈f ,v′〉L2(Ω)

with the sesquilinear form

aε(v,v
′) =

∫
Ω

(
1− ε2 i(η0 + η′0)ω

ρ0c2

)
div v div v′ + v · v′

− ε2 iη0ω

ρ0c2
curl2D v curl2D v′ dx,

which corresponds for ε small enough to an isomorphism Aε : (Aεv,v
′)ε = aε(v,v

′). The subspace

(H1
0 (Ω))2 of (H1(Ω))2 is compactly embedded in L2(Ω) by the Rellich-Kondrachov theorem (Chapter

2 in Ref. 4) and K : (Kv,v′)ε = −(1 + ω2

c2 ) 〈vε,v′〉L2(Ω) is a compact perturbation of Aε. Hence, the

sum Aε + K is a Fredholm operator with index (Aε + K) = 0 26, i. e., the dimension of its kernel

coincides with the codimension of its range, and by the Fredholm alternative 26 uniqueness implies

the existence.

Now, we are going to show stability, and so uniqueness. This will be done in four steps, (i) the

proof of a non-optimal stability result for vε, (ii) an estimate of vε by f and the Neumann trace

curl2D vε, (iii) an estimate of the Neumann trace curl2D vε by f , which leads to the desired estimate

for vε and the L2(Ω)-norm of pε, and (iv) the estimate of ∇pε.
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(i) Testing (4.8) with v′ = vε and taking the imaginary part we get

‖div vε‖2L2(Ω) + ‖ curl2D vε‖2L2(Ω) ≤ Cε
−2| 〈f ,vε〉L2(Ω) | (4.9)

with a constant C > 0 independent of ε. Now, taking the real part we can assert that

‖vε‖2L2(Ω) ≤ C(| 〈f ,vε〉L2(Ω) |+ ‖ div vε‖2L2(Ω) + ε2‖ curl2D vε‖2L2(Ω)). (4.10)

Summing (4.9) and (4.10) and using the Cauchy-Schwarz and Young’s inequality we get the

non-optimal stability estimate

‖vε‖H(div,Ω)∩H(curl2D,Ω) ≤ C ε−1‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ , (4.11)

and so uniqueness. This result is independent of the regularity of the boundary and holds

also for the resonant case where ω2

c2 is a Neumann eigenvalue of −∆. In the same way and

using (4.2) we obtain for C∞ boundaries the estimate (2.5c).

(ii) We can rewrite the system for vε as

∇ div vε +
ω2

c2
vε =

iω

ρ0c2
f + ε2 i(η0 + η′0)ω

ρ0c2
∇ div vε

− ε2 iη0ω

ρ0c2
curl2D curl2D vε =: fε,

vε · n = 0.

Applying Lemma 4.2 we can bound with constants C1, C2 > 0 independent of ε

‖vε‖H(div,Ω) ≤ C1

(
‖f‖(H0(div,Ω)∩H(curl2D,Ω))′

+ ε2‖∇ div vε‖(H0(div,Ω)∩H(curl2D,Ω))′

+ ε2‖ curl2D curl2D vε‖(H0(div,Ω)∩H(curl2D,Ω))′

)
= C1(‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ + ε2‖ div vε‖L2(Ω)

+ ε2‖ curl2D vε‖L2(Ω) + ε2‖ curl2D vε‖H−1/2(∂Ω))

≤ C2(‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ + ε2‖ curl2D vε‖H−1/2(∂Ω)) (4.12)

where we used integration by parts for ∇ div vε and curl2D curl2D vε leading to a term with

the Neumann trace curl2D vε, and applied then the estimate (4.11).

(iii) Now, for any w ∈ H1/2(∂Ω) we define a function w0 ∈ N (curl2D) with w0 · n⊥ = w, which is

for all w′0 ∈ N (curl2D) and λ′ ∈ H−1/2(∂Ω) solution of

〈div w0,div w′0〉L2(Ω) −
ω2

c2 〈w0,w
′
0〉L2(Ω)

+
〈
λ,w′0 · n⊥

〉
L2(∂Ω)

= 0,〈
w0 · n⊥, λ′

〉
L2(∂Ω)

= 〈w, λ′〉L2(∂Ω) .

Since the operator related to 〈div w0,div w′0〉L2(Ω)−
ω2

c2 〈w0,w
′
0〉L2(Ω) is Fredholm with index 0

(see proof of Lemma 4.2) and invertible, as we excluded the kernel, the system has by the

theory of saddle point problems 5 a unique solution (w0, λ), where λ = 0 (since curl2D w0 = 0)

and for some constant C > 0

‖w0‖H0(div,Ω)∩H(curl2D,Ω) ≤ C‖w‖H1/2(∂Ω). (4.13)

Now, deriving a variational formulation for (4.7) with test functions w0 ∈ N (curl2D), that

are functions which may have a non-zero tangential component, we get(
1− ε2 i(η0 + η′0)ω

ρ0c2
)
〈div vε,div w0〉L2(Ω) −

ω2

c2
〈vε,w0〉L2(Ω)

+ ε2 iη0ω

ρ0c2
〈
curl2D vε,w0 · n⊥

〉
L2(∂Ω)

=
iω

ρ0c2
〈f ,w0〉L2(Ω) ,
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and so

ε2 〈curl2D vε, w〉L2(∂Ω) =
1

η0
〈f ,w0〉L2(Ω) + ε2 η0 + η′0

η0
〈div vε,div w0〉L2(Ω) .

Taking the supremum over all w ∈ H1/2(∂Ω) and using the estimates (4.11) and (4.13) we

find

ε2‖ curl2D vε‖H−1/2(∂Ω) ≤ C‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ .

Inserting this expression into (4.12) we get

‖vε‖H(div,Ω) ≤ C‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ .

and (2.4b) leads the bound of pε.

(iv) Multiplying (4.7) with ∇div vε − ε2 iη0ω
ρ0c2

curl2D curl2D vε and taking the real part we get

‖∇ div vε‖2L2(Ω) +

(
η0ω

ρ0c2

)2

‖ε2 curl2D curl2D vε‖2L2(Ω)

− ε2η0(η0 + η′0)

(
ω

ρ0c2

)2

Re
〈
grad div vε, ε2 curl2D curl2D vε

〉
L2(Ω)

= Re
〈
f +

ω2

c2
vε,∇div vε

〉
L2(Ω)

+
η0ω

ρ0c2
Im
〈
f +

ω2

c2
vε, ε2 curl2D curl2D vε

〉
L2(Ω)

.

With the Cauchy-Schwarz inequality, Youngs inequality and (2.5a) we find for ε small enough

that

‖∇ div vε‖L2(Ω) + ‖ε2 curl2D curl2D vε‖L2(Ω) ≤ C‖f‖L2(Ω),

and with (2.4b) the estimate (2.5b) follows.

Using Lemma 4.3 it is easy to prove the following strengthening of Lemma 2.1.

Corollary 4.1. Let the assumption of Lemma 2.1 hold and vε, pε satisfy (2.4a), (2.4b) and

vε · n = g ∈ H−1/2(∂Ω), vε · n⊥ = 0. (4.14)

Then, it holds with a constant C not depending on ε that

‖vε‖H(div,Ω) + ε ‖ curl2D vε‖L2(Ω) + ‖pε‖L2(Ω) (4.15a)

≤ C
(
‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ + ‖g‖H−1/2(∂Ω)

)
,

‖∇pε‖L2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖H−1/2(∂Ω)

)
. (4.15b)

If furthermore ∂Ω is C∞ then

‖vε‖(H1(Ω))2 ≤ C
(
‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ + ‖g‖H1/2(∂Ω)

)
. (4.15c)
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4.4. Well-posedness of the far field equations

In the definition of the sequence of far field velocities vj and far field pressures pj terms of lower order

appear on the right hand side, see (2.9) and (2.13), to which differential operators are applied. For

well-defined far field terms we have therefor to study the regularity. The proof relies on the regularity

theory for strongly elliptic operators (see Chapter 4 in Ref. 19). As the present operator −∇div−ω
2

c2

is not strongly elliptic as −∇ div has a kernel of functions curl2D ψ ∈ (H1
0 (Ω))2, we will consider the

operator −∆− ω2

c2 , which differs from the present operator only by curl2D curl2D.

For sake of completeness we will reproduce Theorem 4.18 in Ref. 19 for the strongly elliptic operator

−∆− ω2

c2 .

Lemma 4.5. Let Ω1, Ω2 as well as Γ1, Γ2 defined like in Lemma 4.6, and Γ2 being Cr+1,1 for some

integer r ≥ 0. Then, the solution u ∈ H1(Ω2) of −∆u− ω2

c2 u = f , f ∈ Hr(Ω2) satisfies

‖u‖Hr+2(Ω1) ≤ C
(
‖u‖H1(Ω2) + ‖u‖Hr+3/2(Γ2) + ‖f‖Hr(Ω2)

)
,

‖u‖Hr+2(Ω1) ≤ C
(
‖u‖H1(Ω2) + ‖∂nu‖Hr+1/2(Γ2) + ‖f‖Hr(Ω2)

)
,

for some positive constant C.

Now, we are in the position to transfer the regularity result to the system (4.3).

Lemma 4.6. Let Ω1, Ω2 be subdomains of Ω intersecting the boundary ∂Ω in Γ1, Γ2 respectively and

(Ω1\Γ1) ⊂ Ω2, Γ1 ⊂ Γ2. Suppose, for an integer r ≥ 0, that Γ2 is Cr+1,1. Assume further that in

(4.3) v ∈ (H1(Ω2))2, f ∈ (Hr(Ω2))2, curl2D f ∈ Hr+1(Ω2), and g ∈ Hr+3/2(Γ2). Then, there exists a

constant C > 0 such that

‖v‖(Hr+2(Ω1))2 ≤ C
(
‖v‖(H1(Ω2))2 + ‖f‖(Hr(Ω2))2

+ ‖ curl2D f‖Hr+1(Ω2) + ‖g‖Hr+3/2(Γ2)

)
.

Proof. First, we rewrite the system (4.3) in terms of the strongly elliptic operator −∆− ω2

c2

∆v +
ω2

c2
v = f − c2

ω2
curl2D curl2D f , in Ω, (4.16a)

v · n = g, on ∂Ω, (4.16b)

curl2D v =
c2

ω2
curl2D f , on ∂Ω, (4.16c)

where equation (4.16c) which is consistent to (4.16a) is added to obtain two boundary conditions

on ∂Ω. With the assumption that curl2D f ∈ Hr+1(Ω2) the trace of curl2D f to Γ2 is bounded in

Hr+1/2(Γ2). With its Dirichlet boundary condition (4.16b) we would like to apply the first bound in

Lemma 4.5 for the normal component vs, and since

curl2D v = ∂tvs − ∂svt, on ∂Ω,

the second bound in Lemma 4.5 for the tangential component vt. However, in the curvilinear coordinate

system the Laplace operator is not fully decoupled for the tangential and normal component. Inserting

its expression and

curl2D curl2D f = ∂s curl2D f et −A∂t curl2D f es, in Ω,

we find that the normal component satisfies

∆vs +

(
ω2

c2
− κ2A2

)
vs = f · es −

c2

ω2
A∂t curl2D f

−A2(2κ∂t + κ′A)vt =: f̃1, in Ω,
(4.17)

vs = g, on ∂Ω,
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whereas the tangential component solves

∆vt +

(
ω2

c2
− κ2A2

)
vt = f · et +

c2

ω2
∂s curl2D f

+A2(2κ∂t + κ′A)vs := f̃2, in Ω,
(4.18)

∂nvt = −∂svt = curl2D v − ∂tvs

=
c2

ω2
curl2D f − ∂tvs =: g̃, on ∂Ω.

The coupling between vt and vs is with at most their first tangential derivative which enable us to

prove the regularity step by step.

For this we introduce subsets Ω1,`, ` = 0, . . . , r + 1 intersecting ∂Ω in Γ1,` with

Ω1,0 := Ω2, Ω1,r+1 := Ω1, Ω1,` ⊂ Ω1,`−1, Γ1,` ⊂ Γ1,`−1, ` = 1, . . . , r + 1.

Let us assume that v ∈ H`+1(Ω1,`) for some ` ∈ {0, . . . , r}. Then, f̃1 ∈ H`(Ω1,`), g ∈ H`+3/2(Γ1,`) ⊂
Hr+3/2(Γ2), f̃2 ∈ H`(Ω1,`), and g̃ ∈ H`+1/2(Γ1,`), and in view of Lemma 4.5 v ∈ H`+2(Ω1,`+1). Since

by assumption v ∈ H1(Ω1,0) the statement of the Lemma follows by induction in `.

Proof. [Proof of Lemma 2.3] We will prove the lemma by induction in j. Consider first j = 0. As

f ∈ (H0(div,Ω))′, v0 ·n = 0 and curl2D f ∈ L2(Ω) by assumption, by Lemma 4.2 with ω2

c2 distinct from

the Neumann eigenvalues of −∆ there exists a unique solution v0 ∈ (H1(Ω))2. So, div v0 ∈ L2(Ω) and

by (2.12) p0 ∈ L2(Ω). As f ∈ (Hm(Ω̃))2 for any m ∈ N0 in a neighbourhood Ω̃ of ∂Ω using Lemma 4.6

and the trace theorem we can bound the trace div v0 ∈ Hm−1/2(∂Ω) for any m ∈ N0.

Now, let j > 0 and v` ∈ (H1(Ω))2, div v` ∈ Hm−1/2(∂Ω) for any m ∈ N0 and ` = 0, . . . , j − 1. By

assumption we have f ∈ (Hm(Ω̃))2 and so with (2.11) curl2D vj ∈ L2(Ω) ∩Hm−1(Ω̃) and, as G` and

H` are differential operators, with (2.9b) vj ·n ∈ Hm+1/2(∂Ω) for any m ∈ N0. So, by Lemma 4.2 there

exists a unique solution vj ∈ (H1(Ω))2 and by Lemma 4.6 and the trace theorem div vj ∈ Hm−1/2(∂Ω)

for any m ∈ N0. Furthermore, (2.12) implies pj ∈ L2(Ω).

Hence, by complete induction in j the proof is complete.

4.5. Estimate of the modelling error

The near field functions have been defined in (t, s)-coordinates close to the wall which is assumed to

be C∞. Since integrals over the physical domain can be transformed into such over the (t, s)-domain

where a factor 1− κs appears, the following equivalence follows easily.

Lemma 4.7. For any function û : [0,∞] × Γ → C with u ≡ 0 for s ≥ s0 and v(x) := û(t, s) there

exists a constant C = C(‖κ‖L∞(Γ)s0) > 0 such that

‖v‖L2(Ω) ≤ C ‖û‖L2(Γ×[0,∞]).

The near field equations have been derived in a neighbourhood of the boundary where the cut-off

function χ(x) is the constant 1. With the cut-off function χ(x) we can state the following

Lemma 4.8. For any function u ∈ Π(λ, L2(Γ)) with Reλ > 0 and û(t, s) = u(t, sε ) there exists a

constant C > 0 independent of ε such that

‖û χ̂‖L2(Γ×[0,∞]) ≤ C
√
ε,

where χ(x) = χ̂(s) is a cut-off function for the near field introduced in Sec. 3.2 and Fig. 2. Furthermore,

there exist two positive constants C and γ independent of ε such that such that for n = 1, 2, 3

‖û χ̂(n)‖L2(Γ×[0,∞]) ≤ C exp(−γ/ε).
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Proof. Since u ∈ Π(λ, L2(Γ)) it holds |u|2 ∈ Π(2λ, L1(Γ)) and so∫ ∞
0

|u(t, S)|2dS = −U(t, 0)

where U(t, S) ∈ Π(2λ, L1(Γ)) such that ∂SU(t, S) = |u(t, S)|2. Since U(t, 0) ∈ L1(Γ)

‖û χ̂‖2L2(Γ×[0,∞]) =

∫
Γ

∫ ∞
0

|û(t, s)|2χ̂2dsdt ≤ ε
∫

Γ

∫ ∞
0

|u(t, S)|2dS dt ≤ C ε.

The second part of the lemma can be easily proven as in Theorem 2.2 in Ref. 6.

Now, we can prove the error estimate of the derived expansion.

Proof. [Proof of Lemma 2.2] The proof is in two parts, (i) for the sum of far and near field, (ii) for

the far field approximation only.

(i) The asymptotic expansion solution (vε,N , pε,N ) has been defined in (2.6a) and (3.2), where

the far field terms (vj , pj) solve (2.9) and the near field terms φj satisfy (3.6). By its def-

inition (2.6a) and (3.2) (vε,N , pε,N ) solves (2.4b) exactly and vε,N has vanishing tangential

component on ∂Ω. The momentum equation (2.4b) is satisfied only up to the residual

Rε1(vε,N , pε,N )− f

which we are going to estimate in the L2(Ω)-norm. The contribution of the far field to the

residual is

fε,N := Rε1

(∑N

j=0
εjvj ,

∑N

j=0
εjpj

)
− f

= −εN+1
(
η0∆(vN−1 + εvN )− η′0∇ div(vN−1 + εvN )

)
,

and so with some constant C independent of ε

‖fε,N‖L2(Ω) ≤ C εN+1. (4.19a)

The contribution of the near field is

fε,NBL := Rε1(vε,NBL , 0) = −ε curl2D

(
A3
ε ε

N+1
2∑
j=0

3∑
`=1+j

ε`−1−jC`(φ
N−j)

)
χ(x)

+ εM
2∑
j=1

Uε
j(t,

s
ε )χ̂(j)(s),

where Uε
1,U

ε
2,U

ε
3 ∈ Π(λ0, L

2(Γ)) for all ε ≤ |Ω|, some integer M ≤ N+1 and with a constant

independent of ε. Note, that we use the local coordinates t = t(x), s = s(x), and S = s
ε , and

that χ(x) = χ̂(s(x)) if the (smallest) distance to the wall is less than s1 and 0 otherwise.

Using Lemma 4.7 and 4.8 we can bound (remember, that ε curl2D is of order 1)

‖fε,NBL ‖L2(Ω) ≤ C εN+ 3
2 . (4.19b)

The near field is constructed such that in sum with the far field the tangential velocity

component on the boundary is zero. The normal velocity component of vε,N is with (3.10)

given as

vε,N · n = εNvNBL,ε(t, 0) · n = εN+1∂tφ
N (t, 0).

Since φN is bounded by derivatives of v0
t , ..., vNt which are bounded by Lemma 4.6, we have

‖vε,N · n‖H−1/2(∂Ω) ≤ C ε
N+1.
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Hence, by Corollary 4.1 we obtain

‖vε − vε,N‖H(div,Ω) + ε‖ curl2D vε − curl2D vε,N‖L2(Ω)

+ ‖pε − pε,N‖H1(Ω) ≤ C εN+1.

We can improve the estimate for curl2D vε,N . By Lemma 4.7 and Lemma 4.8 it is

‖(ε curl2D ε curl2D φ
j)χ‖L2(Ω) ≤ C

√
ε

and the same bound holds for ε curl2D ε curl2D(φjχ) which differ from (ε curl2D ε curl2D φ
j)χ

only in terms in χ̂′ and χ̂′′. Since curl2D vj do not depend on ε for no j ∈ N0 we find the

desired estimate

√
ε‖ curl2D vε − curl2D vε,N‖L2(Ω)

≤
√
ε
(
‖ curl2D vε − curl2D vε,N+1‖L2(Ω) + εN+1‖ curl2D vN+1‖L2(Ω)

+ εN+1‖ curl2D ε curl2D(φN+1χ)‖L2(Ω)

)
≤ C εN+1.

(ii) We can use the triangle inequality and (2.7) to bound

‖vε −
∑N

j=0
εjvj‖H(div,Ω\Ωδ)+

√
ε‖ curl2D vε − curl2D

∑N

j=0
εjvj‖L2(Ω\Ωδ) ≤ C ε

N+1

since the L2(Ω \ Ωδ)-norm of vε,NBL decays faster than any order in ε, which can be shown

analogously to the estimates with cut-off functions in Lemma 4.8. We can improve the result

in the same way as in (i) as vj and pj do not depend on ε and so

‖ curl2D vε − curl2D
∑N

j=0
εjvj‖L2(Ω\Ωδ)

≤ ‖ curl2D vε − curl2D
∑N+1

j=0
εjvj‖L2(Ω\Ωδ)

+ εN+1‖ curl2D vN+1‖L2(Ω\Ωδ) ≤ C ε
N+1.

This completes the proof.

5. Conclusion

In this article the multiscale behaviour of the acoustic velocity and pressure in viscous gases inside

a bounded two-dimensional domain have been studied using the multiscale expansion, this for the

case that the frequency is not an eigenfrequency of the limit problem of zero viscosity. The linearised

Navier-Stokes equations are decoupled in equations for the velocity and pressure, where the pressure

equation lacks a boundary condition. With the technique of multiscale expansion we could define a

sequence of terms approximating the velocity and pressure for small viscosities, this separately inside

and outside a O(
√
η)-neighbourhood of the boundary. The derivation and mathematical justification

of the expansion include curvature effects. We have derived the terms of the velocity and pressure

expansion explicitly up to order 2, where the far field terms of the velocity and the pressure fulfil each

partial differential equations in the whole domain. This differential equations include as boundary

conditions a given normal component of the velocity (Dirichlet trace) or the normal derivative of the

pressure (Neumann trace), respectively. The Neumann trace of the velocity or the Dirichlet trace of

the pressure defines then the near field terms, which decay exponentially away from the boundary.

The asymptotic expansion to any order is rigorously justified by a stability and error analysis.

The presented study is a starting point to derive impedance conditions of higher order and can be

extended to the case of resonances of the limit problem in bounded domains, to unbounded domains

or to domains with non-smooth boundaries.
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Appendix A. Derivation of the boundary conditions to any order

The definition of the impedance boundary conditions is closely related to the solution of the ordinary

equations (3.6) for the near field terms φj(t, S). We can decompose (3.6) into two problems, an ODE

with a source term ψ, say, and homogeneous Neumann data,

η0(λ2
0 + ∂2

S)φ(t, S) = ψ(t, S), (A.1a)

∂Sφ(t, 0) = 0, (A.1b)

and into an ODE without source term and with Neumann boundary data −vjt (t). For ψ of the form

ψ(t, S) = q(t, S)e−λ0S for some polynomial q in S the problem (A.1) has a unique (decaying) solution

φ of the form φ(t, S) = p(t, S) e−λ0S for some polynomial p in S. Let L be the solution operator which

maps the source term (A.1) to its solution, or equivalently, the polynomial q to the polynomial p.

Using L we can write the near field terms to any order as expression of the tangential trace of the

far field terms as given in the following

Lemma A.1. The near field terms of any order j ∈ N0 can be expressed as

φj(t, S) =

j∑
`=0

(E`v
j−`
t )(t, S), (A.2)

where Ej = 0 for j < 0, E0v = 1
λ0

e−λ0Sv and for j > 0 Ej : C∞(Γ)→ C∞(Γ× [0,∞)) are differential

operators in t given by the recursion relation

(Ejv)(t, S) =

3∑
`=1

(L(C`(Ej−`v)))(t, S). (A.3)

Furthermore, φj(t, S) are polynomials in S multiplied by e−λ0S.

Proof. We verify the two conditions defining φj . First, the Neumann boundary conditions is fulfiled,

∂Sφ
j(t, 0) =

j∑
`=0

∂S(E`v
j−`
t )(t, 0) = ∂S(E0v

j
t )(t, 0) = −vjt (t, 0),

since ∂S(Lψ)(t, 0) = 0 for any ψ by (A.1b). Second, with iωρ0 + η0∂
2
S = η0(λ2

0 + ∂2
S) the ordinary

differential equation is satisfied,

iωρ0φ
j(t, S) + η0∂

2
Sφ

j(t, S)−
3∑

m=1

Cm(φj−m)(t, S)

=

j∑
`=0

η0(λ2
0 + ∂2

S)(E`v
j−`
t )(t, S)− (

3∑
m=1

Cm(

j−m∑
`=0

E`v
j−m−`
t ))(t, S)

=

j∑
`=0

η0(λ2
0 + ∂2

S)

3∑
m=1

(L(Cm(E`−mv
j−`
t )))(t, S)

−
3∑

m=1

(Cm(

j−m∑
`=0

E`v
j−m−`
t ))(t, S)

=

3∑
m=1

(Cm(

j∑
`=0

E`−mv
j−`
t −

j−m∑
`=0

E`v
j−m−`
t ))(t, S) = 0,
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where we used E`−m = 0 for ` < m and simple resorting.

That φj are polynomials in S times e−λ0S follows by recursion in j and the properties of the

solution operator L.

Now, we are able to express the normal trace of the far field velocity by lower order tangential

velocities to any order (see (3.10) up to order 2).

Corollary A.1. The normal trace of the far field velocity of any order j ∈ N0 can be written as

vj(t, 0) · n =

j∑
`=1

(D`v
j−`
t )(t), (A.4)

where D` = 0 for ` ≤ 0, D1(t) = − 1
λ0
∂t and D` : C∞(Γ) → C∞(Γ) for ` ≥ 2 are the differential

operators on Γ

(D`v)(t) = ∂t(E`−1v)(t, 0). (A.5)

Proof. Since vj(t, 0)·n =
∑j
`=1(D`v

j−`
t )(t) =

∑j−1
`=0 ∂t(E`v

j−1−`
t )(t) = ∂tφ

j−1(t) we have equivalence

to (3.9).

Now, we can represent the operators G` and H` in the expressions of the normal (Dirichlet) trace

of the far field velocity in terms of the Neumann trace and the source on the boundary, see (2.9b) to

any order. For this we use the Kronecker symbol δτ with truth values τ where δτ = 1 if τ is true and

0 otherwise.

Corollary A.2. The relation (2.9b) holds with

(G`v)(t) =
((
− c2

ω2
E`−1 +

i(η0 + η′0)

ωρ0
E`−3

)
∂2
t v
)

(t, 0),

Hj(f) = − i

ωρ0

j∑
`=1

E`−1

(
− iη0

ωρ0
curl2D curl2D

) j−`
2

∂t(f · n⊥) · δj−` is even.

Proof. Using (3.11), (A.5) and et = −n⊥ we can write

vj(t, 0) · n =

j∑
`=1

(D`v
j−`
t )(t) =

j∑
`=1

∂t(E`−1v
j−`
t )(t, 0),

=

j∑
`=1

∂t

(
− c2

ω2
E`−1∂t div vj−` +

i(η0 + η′0)

ωρ0
E`−1∂t div vj−`−2

− i

ωρ0
E`−1

(
− iη0

ωρ0
curl2D curl2D

) j−`
2

f · n⊥ · δj−` is even

)
(t, 0)

=

j∑
`=1

(G` div vj−`)(t) +Hj(f),

which is (2.9b). Here, we resorted the sum and used the fact that differential operators in t commute.

Finally, we show the expressions for the boundary conditions of the far field pressure.
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Lemma A.2. The relation (2.13b) holds with

J` = −ω
2

c2

b `−1
2 c∑

m=0

(
i(η0 + η′0)ω

ρ0c2

)m
G`−2m,

Kj(f) =

b j−1
2 c∑

m=0

(
i(η0 + η′0)ω

ρ0c2

)m(
iωρ0Hj−2m(f)

+
(
− iη0

ωρ0
curl2D curl2D

)j−2m

f · n · δj−2m≥2δj is even

)
.

Proof. Inserting (2.9b) and (2.12) into (3.12) we get

∇pj · n = −ω
2

c2

j∑
`=1

G`p
j−` + iωρ0Hj(f) + (η0 + η′0)

iω

ρ0c2
∇pj−2 · n

+
(
− iη0

ωρ0
curl2D curl2D

)j/2
f · n · δj is even.

Here we use the convention pj ≡ 0 for j < 0. This boundary condition depends only on far field

pressure terms of lower orders and the source term f on the boundary. For j = 0 with H0(f) = 0 we

have the well-known limit condition (2.14) for the far field pressure. Now, inserting the expression for

∇pj−2 ·n into that for ∇pj ·n and continuing with ∇pj−2m ·n up to m = b j−1
2 c and using ∇p0 ·n = f ·n

leads to (2.13b) with operators J` and Kj defined in the lemma.
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