
THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET

SCHEDULING

BRITTA PEIS AND ANDREAS WIESE

Abstract. In the periodic packet routing problem a number of tasks period-
ically create packets which have to be transported through a network. Due to
capacity constraints on the edges, it might not be possible to find a schedule
which delivers all packets of all tasks in a feasible way. In this case one aims
to find a feasible schedule for as many tasks as possible, or, if weights on the
tasks are given, for a subset of tasks of maximal weight. In this paper we inves-

tigate this problem on trees and grids with row-column paths. We distinguish
between direct schedules (i.e., schedules in which each packet is delayed only
in its start vertex) and not necessarily direct schedules. For these settings we
present constant factor approximation algorithms, separately for the weighted
and the cardinality case.

Our results combine discrete optimization with real-time scheduling. We
use new techniques which are specially designed for our problem as well as
novel adaptions of existing methods.

1. Introduction

In the periodic packet routing problem (formally defined below) an infinite num-
ber of packets (created periodically by a set of tasks) has to be sent through a
network without violating given capacities on the edges. This problem is well stud-
ied (see e.g. [2, 9]) and has numerous applications in theory and practice (e.g., on
communication networks with bounded bandwidth).

Networks occurring in practical applications are mostly of rather simple topology
such as paths, trees, or grids. Also, in communication networks the transmission
links can be used in both directions without interfering with each other. This
motivates us to investigate periodic packet routing primarily on bidirected trees
and bidirected grids with row-column paths.

In this paper we study the corresponding optimization problem of finding a
subset of tasks with maximum weight (w.r.t. given weights on the tasks) such
that a feasible schedule for these tasks exists. This problem, which we call the
Max-Task-problem, combines discrete optimization with real-time scheduling. For
this reason our algorithms partly are based on techniques from both of these two
research directions. On the other hand, some of our techniques designed for the
Max-Task-problem might as well be extendable for related discrete optimization
and scheduling problems.

Beside practical applications, there is also a second reason why we restrict
to trees and grids when searching for constant-factor approximations: even on

A row-column path moves along the row of its start vertex si to the column of its destination
vertex ti, and then along the column of ti to ti itself. Such paths have also been studied in [1, 5].

1

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 2

the simple class of chain graphs the Max-Task-problem contains the Maximum-

Independent-Set-problem (see Theorem 27) which is known to be NP -hard to

approximate within a factor of |T |1−ǫ
for all ǫ > 0 [13].

1.1. Periodic Packet Routing. The periodic packet routing problem is defined as
follows: Let G = (V, E) be a graph and p be an integer. Let T =

{

τ0, τ1, ..., τ|T |−1

}

be a set of tasks. Each task τi = (si, ti, wi) creates a new packet Mi,j at timesteps
t = j · p for all j ∈ N. These packets start in the vertex si and have to be delivered
to ti along a predefined path Pi. We assume that all packets move simultaneously,
it takes one timestep to transfer a packet over an edge and each edge can be used
by at most one packet at a time in each direction. In order to stress that the edges
can be used in both direction independently we will use later speak of bidirected

graphs.
We denote by Di the length of Pi and by P the set of all paths. The weight of

a task τi is given by a value wi. The tuple (G, T,P , p) forms an instance of the
periodic packet routing problem. We assume that all predefined paths are simple
paths. A schedule for (G, T,P , p) is given by a map task : E×{0, 1, ..., p− 1} → T :
The packets created by a task τi are allowed to use an edge e at time t only if
task (e, t mod p) = τi. Schedules of this kind were defined as template schedules

in [2]. A schedule is feasible if every packet which is ever created reaches its desti-
nation vertex eventually. Note that if in a feasible schedule two packets Mi,j , Mi′,j′

are located on the same vertex at the same time this implies that i 6= i′ (i.e., the
packets were created by different tasks). A schedule is direct if each packet which
is ever created is delayed only in its start vertex. For ease of notation we say a
schedule is indirect if it is not necessarily direct.

In this paper we focus on template schedules. Whenever we say that a feasible
schedule for a set of tasks exists, we mean that a template schedule exists. Note
that in the setting of indirect schedules a feasible (template) schedule for a set of
tasks T ′ exists if and only if no arc is used by more than p tasks in T ′ [9].

1.2. Maximum Task Problem. The Maximum-Task-problem (or short: Max-

Task-problem) is given by a tuple (G, T,P , p). The aim is to find a set T ′ ⊆ T
of maximum weight such that there exists a feasible schedule for (G, T ′,P , p). (If
the paths of the tasks are given implicitly, e.g., on trees, we will omit the set P
in the definition of the instances.) We distinguish between instances for which we
want to find a task selection which allows a direct schedule and instances where we
are interested in task selections which allow indirect schedules. W.l.o.g. we assume
that |T | > p since if |T | ≤ p then we can definitely schedule all tasks. In particular,
if |T | > p this implies that p is bounded by a polynomial in the input size. For an
instance I we denote by OPTindir(I) a subset of the tasks of I of maximum weight
such that there exists an indirect schedule for these tasks. Likewise, OPTdir(I)
denotes a subset of tasks with maximum weight which allows a direct schedule. For
any set of tasks T we denote by w(T) :=

∑

τi∈T wi their total weight.
For certain families of graphs G we study the price of directness. Denote by

I(G) the set of all Max-Task-instances on a graph in G. Intuitively, the price
of directness measures how much we lose at most on graphs in G when we re-
quire a direct schedule rather than an indirect schedule. Formally, it is defined by

maxI∈I(G)
w(OPTindir(I))
w(OPTdir(I)) .

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 3

Graph class indirect schedules direct schedules Complexity
cardinality weighted cardinality weighted (all cases)

Bidirected tree 2 max
{

2, 3 − 2
p

}

max
{

2, 3 − 2
p

}

3 MAXSNP -hard [4]

Bidirected grid 4 max
{

4, 6 − 4
p

}

max
{

4, 6 − 4
p

}

6 MAXSNP -hard [5]

Table 1. Overview of approximation factors for the respective
versions of the Max-Task-problem.

1.3. Our Contribution. We study the Max-Task-problem which to our knowl-
edge has not been investigated before. First, we show that on directed trees the
problem can be solved optimally in polynomial time. Then we prove that the price
of directness on directed trees is 1. On bidirected trees the unweighted case is of
the Max-Task-problem is already MAXSNP -hard (due to the contained Edge-

Disjoint-Path-problem [4]). We give a 2-approximation for indirect schedules
(based on the algorithm by Garg et al. [6] for the integral multi-commodity-flow-
problem on undirected trees) and a max{3 − 2

p
, 2}-approximation for direct sched-

ules. Interestingly, the latter is also a max{3 − 2
p
, 2}-approximation in comparison

to the optimal set of tasks allowing an indirect schedule. In the weighted case
we show how to compute a set of tasks T ′ which allows a direct schedule such
that w(T ′) ≥ w (OPTindir) /3 (and hence w(T ′) ≥ w (OPTdir) /3). This means
that the algorithm which computes T ′ is a 3-approximation for the weighted Max-

Task-problem in the setting of direct and indirect schedules (even though it always
outputs tasks which allow a direct schedule). The algorithm is based on techniques

by Erlebach et al. [5]. Then we give a max
{

2, 3 − 2
p

}

-approximation for the set-

ting of indirect schedules, extending the techniques of [5] to a more general setting
than independent set problems. Finally, we show that the price of directness on
bidirected trees is at least 6/5 and at most 2.

Then we study the problem on bidirected grid graphs. Like in [1, 5] we as-
sume that all paths are row-column-paths. In the unweighted case we obtain a
4-approximation algorithm (setting of indirect schedules) and a max{4, 6 − 4

p
}-

approximation algorithm (direct schedules). In the weighted setting we obtain an
algorithm which is a 6-approximation for the setting of indirect schedules as well
as for the setting of direct schedules (like in the weighted case for bidirected trees).

Also, for the weighted setting with indirect schedules we obtain a max
{

4, 6 − 4
p

}

-

approximation. We show that the price of directness on the grid is between 6/5
and 4. The used techniques for the grid are similar to the ones for the bidirected
tree.

Table 1 shows a summary of the approximation factors of our algorithms for the
respective settings.

1.4. Related Work. The Max-Task-problem is equivalent to the maximum Edge-

Disjoint-Path-problem if p = 1. In [4, 5] Erlebach et al. present algorithms for the
latter on bidirected trees and grid graphs with row-column-paths (i.e., each path Pi

moves along the row of si to the column of ti and then along the column of ti to ti
itself). They also show that the problem is MAXSNP -hard in these settings. This
implies that there can be no PTAS unless P = NP . Thus, the Max-Task-problem

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 4

is MAXSNP -hard as well. It is not hard to see that in general graphs (and even
in grid graphs with arbitrary paths) the edge-disjoint-path-problem contains the
maximum independent set problem and therefore, it is NP -hard to approximate

with a factor of |T |1−ǫ
for all ǫ > 0 [13].

In [1] Adler et al. consider the problem of scheduling a maximum number of
packets with given release times and deadlines through a network. They consider
trees and and grid graphs in which the paths are row-column-paths. They study
the cardinality case as well as the weighted case. In [5] Erlebach et al. give im-
proved approximation algorithms for the weighted case such that their respective
approximation factors match the factors for the unweighted case given in [1] (factor
3 for trees and factor 6 for grid graphs). All these schedules are direct.

If we are interested in indirect schedules, our problem is a special case of the
integral maximum multicommodity flow problem. For undirected trees there is a
2-approximation algorithm for the cardinality case [6] and a 4-approximation for
the weighted case [3]. In our case, all edges have the same capacity. If the capacity
of each edge is at least 2 there is even a 3-approximation for the weighted case [7].
However, this algorithm cannot be adjusted easily to the setting of bidirected trees.

For the periodic packet routing problem on general graphs, Andrews et al. [2]
prove the existence of a schedule which delivers each packet within O (di + 1/ri)
steps where di denotes the length of its path and ri denotes the insertion rate of its
task (1/ri = p in our notation). For trees and equal period lengths, Peis et al. [9]
give improved bounds on the delivery time of each packet. Also, they show that it
is NP -hard to decide whether for a set of tasks a direct schedule exists.

2. Greedy Algorithm

First we study a greedy algorithm for the Max-Task-problem. The algorithm
considers the tasks in an arbitrary order and adds a task to the output set if it
“fits in”. In general this algorithm can perform arbitrarily bad in terms of its
approximation factor. However, in the sequel we will use it as a subroutine with
a special ordering of the tasks. (Note that we will use it only in the unweighted
cases.)

First we discuss the greedy algorithm for direct schedules. Let I = (G, T,P , p)
denote an instance of the unweighted Max-Task-problem. We iterate over the
tasks. While we iterate, we define the map task : E × {0, 1, ..., p− 1} → T ∪
{none}. We initialize task (e, k) = none for all e and all k and GREEDYdir(I) :=
∅. In the ith iteration we consider the task τi. Denote by ej the jth edge on
Pi. We determine whether there is an offset oi ∈ {0, 1, ..., p − 1} for τi such that
task (ej , (oi + j) mod p) = none for all j = 0, 1, ..., |Pi|−1. If there is such an offset
oi then we define task (ej , (oi + j) mod p) := τi for all j = 0, 1, ..., |Pi| − 1 and add
τi to GREEDYdir(I). Finally, we output GREEDYdir(I).

For indirect schedules, in the ith iteration we check whether for each edge ej

on the path of Pi there is a value oi,j such that task (ej , oi,j) = none. If this is
the case then we define task (ej , oi,j) := τi for all edges ej on Pi and add τi to
GREEDYindir(I). We denote the resulting set by GREEDYindir(I).

In general, the greedy algorithm can perform arbitrarily bad as the following
proposition shows. Nevertheless, in the sequel we will use the greedy algorithm
with a special ordering of the tasks which will allow us to bound its approximation
ratio.

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 5

Proposition 1. For any k > 0 there is an instance Ik of the Max-Task-problem

such that |OPT (Ik)dir| = |OPT (Ik)undir| and |GREEDY (Ik)dir| = |GREEDY (Ik)undir|
and |OPT (Ik)dir| / |GREEDYdir (Ik)| ≥ k, where OPT (Ik) denotes an optimal

task selection for Ik.

Proof. Consider an instance on a path with vertices v0, v1, ..., vk. We have one task
τlong with start vertex v0 and destination vertex vk. Also, we have k tasks with
start vertex vi and destination vertex vi+1 for 0 ≤ i ≤ k − 1. We assume that
p = 1. When we run the greedy algorithm with the task order τlong, τ1, ..., τk then
GREEDYdir(I) = GREEDYindir(I) = {τlong}. However, the optimal solution
consists of the tasks τ1, ..., τk. Therefore, |OPT (Ik)| / |GREEDYdir (Ik)| ≥ k. �

3. Trees

We study the Max-Task-problem on trees. First, we show that on directed
trees the problem can be solved in polynomial time and we show that the price of
directness is 1. Then we study the case of bidirected trees. There, the problem is
MAXSNP -hard, already in the cardinality case and no matter whether we want
to compute a direct or indirect schedule. For the cardinality case we show that
with a special ordering of the tasks the greedy algorithm is a 2-approximation for
the case of indirect schedules and a max{3 − 2

p
, 2}-approximation for the case of

direct schedules. Interestingly, the resulting set of tasks in the direct case is also
by at most a factor of max{3 − 2

p
, 2} smaller than w (OPTindir) (i.e., the optimal

set of tasks which allows an indirect schedule). For the weighted case we show
how to compute a set of tasks which allows a direct schedule and which forms a 3-
approximation, again not only in comparison to w (OPTdir) but also in comparison

to w (OPTindir). Then we give a max
{

2, 3 − 2
p

}

-approximation algorithm for the

setting of indirect schedules, based on a linear program. Finally, we show that
the price of directness in bidirected trees is upper-bounded by 2. A lower bound
instance shows that it is at least 5/6.

Throughout this section we make the following assumptions: For the trees of the
instances which we solve we define an arbitrary vertex vr to be the root vertex. For
each task τi we denote by vi the vertex on Pi which is closest to vr. We define the
height of a task τi to be the distance between vr and vi. When executing the greedy
algorithm we assume that the tasks are ordered descendingly by their height. Since
the paths of the tasks are unique we will assume that they are given implicitly.

3.1. Directed Trees. Before discussing the setting of bidirected trees, we first
study the Max-Task-problem on directed trees, i.e., on instances on trees in which
each edge has an orientation such that it is used only in the direction given by
the orientation. First, we show that whenever for a set of tasks there is an indirect
schedule there is also always a direct schedule, i.e., the price of directness on directed
trees is 1. Therefore, in the sequel we discuss only the problem of finding a set of
tasks which allows an indirect schedule.

We show how to reduce the problem to the minimum-cost-flow-problem. Thus,
we can solve it optimally in polynomial time. This can also be seen in the wider con-
text of linear programs on network matrices. Network matrices are uni-modular and
linear programs on them can be reduced to the minimum-cost-flow-problem [11].

Now, we study the price of directness for directed trees.

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 6

Theorem 2. Let I = (G, T, p) be an instance of the Max-Task-problem on a

directed tree and let T ′ ⊆ T denote a set of tasks for which there is an indirect

schedule. Then there also exists a direct schedule for the tasks T ′.

Proof. We use similar techniques as introduced in [8]. Assume that the indirect
schedule for T ′ is given by a map taskundir. We have that each arc is used by
at most p tasks. In [8] it was shown that then there is a path coloring f : T ′ →
{0, 1, ..., p− 1} (i.e., with p colors) such that two paths which share an arc are
colored with different colors. We define a time-dependent edge-coloring c : E ×
{0, 1, ..., p− 1} → {0, 1, ..., p − 1}: For an arbitrary edge e∗ we define c (e∗, k) := k
for k ∈ {0, 1, ..., p− 1}. The other values of c are obtained from the following two
properties:

• For two consecutive arcs e = (u, v) and e′ = (v, w) we require that c (e, i) =
c (e′, (i + 1) mod p) for 0 ≤ i < p.

• For two adjacent arcs e = (u, v) and e′ = (u, v′) (or e = (u, v) and e′ =
(u′, v)) we require that c (e, i) = c (e′, i) for 0 ≤ i < p.

We now define the map taskdir : E×{0, 1, ..., p− 1} → {0, 1, ..., p− 1} as follows: If
there is a task τi ∈ Te such that f (τi) = c (e, k) we define taskdir (e, k) := τi. Since
f is a valid path coloring there can be at most one such task. If g(e, k) /∈ f (Te)
we define taskdir (e, k) := none. From the first property of c we conclude that the
schedule obtained by taskdir is a direct schedule. �

Theorem 2 implies the desired bound on the price of directness.

Corollary 3. The price of directness is on directed trees is 1.

Now we study how to solve the Max-Task-problem optimally on directed trees.
Since the price of directness is 1 in this setting we present an algorithm which
ensures only that for the computed set of tasks there is an indirect schedule. Due
to Theorem 2 we know that there exists also a direct schedule.

Let I = (G, T, p) be an instance of the weighted Max-Task-problem on a di-
rected tree G. We show how to reduce it to the min-cost-flow-problem. We define a
min-cost-flow instance I ′ as follows. We start with G as the underlying graph and
define for each arc e the capacity c(e) := p and the cost a(e) := 0. For each task
τi we introduce an arc ei := (ti, si) with capacity c(ei) := 1 and cost a(ei) := −wi.
All vertices have zero supply/demand. From the definition of I ′ it is immediate
that a task selection T ′ ⊆ T with total weight α corresponds to an integral flow in
I ′ with total cost −α. To show that both problems are in fact equivalent it remains
to prove the following lemma.

Lemma 4. Let f be an integral flow in I ′ with total cost −α. Then there is a task

selection T ′ ⊆ T in I with total weight α.

Proof. If α = 0 it suffices to define T ′ = ∅. So now assume that α > 0. Hence,
there must be an arc ei with negative cost such that f(ei) = 1. Since we assumed
G to be a directed tree, flow conservation implies that for all edges e on the path
between si to ti it has to hold that f(e) ≥ 1. We add the task τi to T ′ and reduce
f by one unit on ei and on all edges between si and ti. The resulting flow is still
integral and has cost −α+wi. To show the claim it remains to find a task selection
with total weight α−wi. The above procedure reduces the flow by at least one unit
in one edge. Hence, applying it iteratively will eventually result in the zero-flow.

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 7

Each task τi will be picked at most once (when the edge ei is considered). Thus,
the claim then follows from induction. �

Knowing that I and I ′ are equivalent yields the following theorem.

Theorem 5. Let I be an instance of the Max-Task-instance on a directed tree.

There is a polynomial time algorithm which computes a task selection T ′ ⊆ T which

allows a direct schedule such that w (T ′) = w (OPTdir(I)) = w (OPTindir(I)) .

Proof. In the instance I ′ of min-cost-flow obtained by the reduction above all capac-
ities and weights are integral. Hence, there are polynomial time algorithms which
compute an optimal integral flow for I ′ (e.g., see [12]). Then the claim follows from
Theorem 2 and Lemma 4. �

3.2. Unweighted Tasks on Bidirected Trees. We now study the Max-Task-
problem on bidirected trees with unweighted tasks. In contrast to the problem
on directed trees, this is already MAXSNP -hard [4]. For the problem of finding
tasks of maximum weight which allow an indirect schedule we show that the greedy
algorithm is a 2-approximation. Note that this problem is a special case of the
maximum multicommodity integral flow problem. If a direct schedule is desired we
show that the greedy algorithm is a η(p)-approximation in comparison to OPTdir

and OPTindir , where η(p) = max
{

2, 3 − 2
p

}

.

Theorem 6. Let I be a Max-Task-instance on a bidirected tree. Then |OPTindir(I)| ≤
2 · |GREEDYindir(I)|.

Proof. The claim can be shown using the primal-dual scheme as used in [6] for
showing a 2-approximation for the maximum integral multicommodity flow problem
(IMCF) on undirected trees. In fact, our problem is a special case of the IMCF-
problem: each task corresponds to one commodity with source si and sink ti and
each arc is given capacity p. To model that each task can be assigned at most once
we add an arc with capacity 1 to each si-ti-path.

As for the IMCF-problem on undirected trees, the dual problem is the minimum
multicut problem: We are looking for a set of edges S such that each si-ti-path
uses at least one of the edges in S. The construction of such a set can be done
as described in [6]. Also, it is possible to show that each si-ti-path uses at most
two arcs from the constructed set. With the primal-dual scheme this proves an
approximation factor of two. �

Now we analyze the greedy algorithm in the setting of direct schedules.

Theorem 7. Let I be an unweighted Max-Task-instance on a bidirected tree. It

holds that

|GREEDYdir(I)| ≥
1

η(p)
|OPTindir (T)| ≥

1

η(p)
|OPTdir (T)|

with η(p) = max
{

2, 3 − 2
p

}

.

Proof. We consider the set DIFF := OPTindir (T)\GREEDYdir(I). For each task
τj ∈ GREEDYdir(I) we introduce a variable βj . Now let τi ∈ DIFF be a task.
For each possible delay d ∈ {0, 1, ..., p − 1} there must be an edge ej ∈ Pi and a
task τi(d) ∈ GREEDYdir(I) with i(d) < i such that task (ej , (d + j) mod p) = τi(d).

For each task τi(d) with d ∈ {0, 1, ..., p − 1} we increase βi(d) by 1
p
. We say that

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 8

Pi

vr

vi

ē ẽ

Figure 3.1. The path Pi with the edges ē and ẽ as defined in the
proof of Theorem 7.

the tasks τi(d) pays for the task τi. We do this procedure for all tasks τi ∈ DIFF .
Note that after this

∑

i βi = DIFF .
We define T ′

1 := GREEDYdir(I) ∩ OPTindir (T) and T ′
2 := GREEDYdir(I) \

OPTindir (T). We claim that βi ≤ 2 · p−1
p

for all tasks τi ∈ T ′
1 and βi ≤ 2 for all

tasks τi ∈ T ′
2. Let τi ∈ GREEDYdir(I) and denote by Pi the path of τi and by

vi ∈ Pi the vertex on Pi which is closest to vr. Denote by ē and ẽ the edges on
Pi which are incident to vi, see Figure 3.1. Let τ̃ be a task which τi pays for. Let
h (τi) denote the height of vi. Since h (τ̃) ≤ h (τi) we conclude that τ̃ either uses
ē or ẽ. Since in the OPTindir (T) there can be at most 2p such tasks we conclude
that βi ≤ 2. Moreover, if τi ∈ OPTindir (T) then there can be at most 2 (p − 1)

tasks in DIFF which use ē or ẽ. Thus, if τi ∈ OPTindir (T) then βi ≤ 2 · p−1
p

. We

complete the proof by calculating that

|OPTdir(T)| = |DIFF | + |T ′
1|

≤
∑

i

βi + |T ′
1|

=
∑

i:τi∈T ′
1

βi + |T ′
1| +

∑

i:τi∈T ′
2

βi

≤ 2 ·
p − 1

p
· |T ′

1| + |T ′
1| + 2 · |T ′

2|

≤ max

{

2, 3 −
2

p

}

|GREEDYdir(I)|

= η(p) · |GREEDYdir(I)|

This shows that |GREEDYdir(I)| ≥ 1
η(p) |OPTindir (T)|. The fact that |OPTindir (T)| ≥

|OPTdir (T)| completes the proof. �

3.3. Weighted Tasks on Bidirected Tree. Now we study the weighted Max-

Task-problem on bidirected trees. Straight-forward examples show that in the
weighted setting the greedy algorithm can perform arbitrarily bad. Hence, we need
to find more sophisticated methods for solving the problem. We use techniques
based on [5]. The key idea is to formulate the problem as an integer program
and solve the LP-relaxation. From the obtained (fractional) solution we derive an

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 9

integral solution whose weight is at most by a constant factor smaller than the
weight of the fractional solution.

First, we present a 3-approximation algorithm for the setting of direct schedules.
Then we show that the total weight of the resulting set is also by at most a factor
of 3 smaller than w (OPTindir) and hence it also works as a 3-approximation in

the setting of indirect schedules. Finally, we show a max
{

2, 3 − 2
p

}

-approximation

algorithm for the setting of indirect schedules. We also prove that the respective

LP has an integrality gap of at most max
{

2, 3 − 2
p

}

.

Let I = (G, T, p) be an instance of the weighted Max-Task-problem on a bidi-
rected tree G in the setting of direct schedules. We reduce the problem to an
instance of the weighted maximum independent set problem. We define the graph
GMIS = (VMIS , EMIS) as follows: for each task τi we introduce p vertices 〈τi, k〉
with 0 ≤ k ≤ p−1. A vertex 〈τi, k〉 corresponds to scheduling the task τi such that
it uses the first edge on its path at times t with t mod p = k. We call such a value
k the offset of τi. We connect two vertices 〈τi, k〉, 〈τj , ℓ〉 by an edge if and only if
either

• τi = τj or
• Pi and Pj use an edge in the same direction and if τi and τj had the offsets

k and ℓ their packets would collide.

We assign each vertex 〈τi, k〉 the weight wi. Then any solution for weighted maxi-
mum independent set on GMIS corresponds to a solution for I with the same weight
and vice versa.

Note that the size of GMIS is bounded by a polynomial in the size of I. In
order to apply the framework by Erlebach et al. [5] we define the following linear
programs LPI and LPw. First, we consider the LP -relaxation LPI of the weighted
maximum independent set problem on GMIS . Denote by C the set of all maximal
cliques {〈τi1 , k1〉 , 〈τi2 , k2〉 , ..., 〈τim

, km〉} in GMIS which arise

• because τi1 = τi2 = τi3 = ... = τim
or

• because there is an edge e which is used by each of the tasks τi1 , ..., τim
at

the same time if they are assigned the offsets k1, ..., km

Note that the number of cliques in C is bounded by a polynomial in the size of
GMIS . We define LPI by

(LPI)max
∑

〈τi,k〉∈VMIS

wi · xi,k

s.t.
∑

〈τi,k〉∈C

xi,k ≤ 1 ∀C ∈ C

0 ≤ xi,k ≤ 1 ∀ 〈τi, k〉 ∈ VMIS

Since the size of LPI is bounded by a polynomial we can solve it optimally in
polynomial time. Let x∗ be an optimal solution of LPI . We now interpret each
value x∗

i,k as a cost value and define ci,k := x∗
i,k. We define a linear program

LPw which computes a fractional coloring for the vertices in VMIS . Each vertex
〈τi, k〉 ∈ VMIS has to be colored with colors whose total weight is at least ci,k. This
can be seen as assigning each vertex a set of disjoint intervals of total length ci,k

such that the intervals of two adjacent vertices do not intersect. For the definition

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 10

of LPw we denote by J the set of all independent sets in GMIS (note that a coloring
can be understood as a partition into independent sets).

(LPw)min
∑

J∈J

yJ

s.t.
∑

J∈J |〈τi,k〉∈VMIS

yJ ≥ ci,k ∀ 〈τi, k〉 ∈ VMIS

0 ≤ yJ ≤ 1 ∀J ∈ J

In ordinary graph coloring, the clique number ω(G) of a graph G is a lower bound
on the number of needed colors. Likewise, we define a fractional clique number
ωC (GMIS , c) := maxC∈C(G)

∑

〈τi,k〉∈C ci,k which is also a lower bound on the total

weight of the needed colors in our setting. After having computed the optimal
solution to LPI , we compute an approximative solution for LPw as described in the
following lemma.

Lemma 8. There is a polynomial time algorithm which computes a solution y for

LPw with
∑

J∈J yJ ≤ 3 · ωC (GMIS , c).

Proof. We order the vertices 〈τi, k〉 ascendingly by the height of their peak vertex vi.
Then we assign each vertex 〈τi, k〉 (greedily) color intervals of total length ci,k such
that the intervals of two adjacent vertices to not intersect. From this we can extract
a value yJ for each independent set J . When considering a vertex 〈τi, k〉 we observe
that colors of weight at most 2 ·ωC (GMIS , c)− 2ci,k cannot be used due to vertices
〈τj , ℓ〉 with τj 6= τi such that τj uses one of the edges on Pi adjacent to vi. Also,
at most ωC (GMIS , c) − ci,k cannot be used due to vertices 〈τi, ℓ〉 with ℓ 6= k. All
other colors are available. Therefore, colors of total weight 3 · ωC (GMIS , c) suffice
for the greedy algorithm. �

Having computed the solution y for LPw, we output the independent set J ∈ J of
maximum weight for which yJ > 0. Note that since y was computed in polynomial
time there can be only a polynomial number of such independent sets. Denote by
BTdir(I) the set of tasks corresponding to the vertices in J .

Theorem 9. Let I be a weighted Max-Task-instance on a bidirected tree. It holds

that w (BTdir(I)) ≥ 1
3w (OPTdir(I)).

Proof. Let w (x∗) denote the objective value of the optimal solution x∗ of LPI .
The key idea for the proof is that there is an independent set J with yJ > 0 such
that w(J) ≥ w (x∗) /3. So now assume on the contrary that all for all J ∈ J with
yJ > 0 we have that w(J) < w (x∗) /3. Note that any solution y for LPw satisfies
∑

J∈J w(J) · yJ ≥ w (x∗). We calculate that

w (x∗) ≤
∑

J∈J

w(J) · yJ <
w (x∗)

3

∑

J∈J

yJ ≤ w (x∗) · ωC (GMIS , c) ≤ w (x∗)

which is a contradiction. �

Now we show that BTdir(I) is also a 3-approximation in comparison with the
set of tasks with optimal weight which allows an indirect schedule. In the proof
of Theorem 9 we showed that w (BTdir(I)) ≥ w (x∗) /3 where x∗ is the optimal

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 11

solution for LPI . Now we prove that w (x∗) is also an upper bound on the optimal
weight obtained by a task selection which allows an indirect schedule. The latter
problem can be formulated by an integer program with the following LP-relaxation:

(LP ′
I) max

∑

τi∈T

wi · xi

s.t.
∑

τi∈C

xi ≤ p ∀C ∈ C

0 ≤ xi ≤ 1 ∀τi ∈ T

Here, we derive the set of cliques C by considering every arc e and taking the clique
consisting of all tasks which use e. (The original integer program is obtained by
additionally requiring xi ∈ {0, 1} for all xi.) Let x′ denote an optimal solution for
LP ′

I with value w (x′). Since LP ′
I is a relaxation of the original problem, w (x′) is

an upper bound on the total weight of tasks which allow an indirect schedule. Now
we show how to transform x′ to a solution x for LPI with the same weight. For each
variable xi,k with τi ∈ T and k ∈ {0, 1, ..., p − 1} we define xi,k := x′

i/p. Hence, for
the optimal value w (x∗) of LPI we have that w (x∗) ≥ w (x′). We conclude with
the following theorem.

Theorem 10. Let I be a weighted Max-Task-instance on a bidirected tree. It

holds that w (BTdir(I)) ≥ 1
3w (OPTindir(I)).

Proof. Follows from w (BTdir(I)) ≥ w (x∗) /3 ≥ w (x′) /3 ≥ w (OPTindir(I)) /3.
�

Above, we introduced the linear program LP ′
I which is the LP-relaxation of

an integer program which solves the weighted Max-Task-problem on bidirected
trees in the setting of indirect schedules. Based on LP ′

I , we now present a η(p)-

approximation algorithm for that problem (with η(p) = max
{

2, 3 − 2
p

}

). We give a

procedure (running in polynomial time) which takes an optimal (fractional) solution
x′ for LP ′

I with weight w(x′) and turns it into an integral solution whose weight is
at least 1

η(p)w(x′). Hence, this procedure yields a η(p)-approximation algorithm.

Let I be an instance of the weighted Max-Task-problem on bidirected trees
in the setting of indirect schedules. Note that the size of LP ′

I is bounded by a
polynomial in the length of I. Hence, we can solve LP ′

I optimally in polynomial
time. Let x′ be an optimal solution for LP ′

I with weight w(x′). If x′ is already
integral then we have found an optimal solution for our problem which we denote by
BTindir(I). Now assume that x′ contains at least one fractional entry. Recall that
above we used the linear program LPw to cover the vertices in GMIS (fractionally)
with independent sets where the overall aim was to compute an independent set with
maximum weight in GMIS . The set J denoted all independent sets (and hence all
valid solutions). Eventually, we picked the independent set with maximum weight
which is used in the solution for LPw.

In the current problem, the overall aim is no longer to compute an independent
set but to compute a set of tasks such that each arc is used by at most p tasks.
Our strategy is now to cover the tasks (fractionally) with valid solutions. Denote
by J ′ the set of all valid solutions to our problem. We interpret each value x′

i as a

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 12

cost value and define ci := x′
i. Consider the following linear program LP ′

w (which
takes the role of LPw in the algorithm for computing BTdir(I)).

(LP ′
w)min

∑

J∈J ′

y′
J

s.t.
∑

J∈J ′|τi∈J

y′
J ≥ ci ∀τi ∈ T

0 ≤ y′
J ≤ 1 ∀J ∈ J ′

In the following lemma we show how to compute a solution y′ for LP ′
w such that

∑

J∈J ′ y′
J ≤ η(p).

Lemma 11. Assume that the values ci in LP ′
w are constructed from a valid solution

x′ for LP ′
I . Then there is a polynomial time algorithm which computes a solution

y′ for LP ′
w such that

∑

J∈J ′ y′
J ≤ max

{

2, 3 − 2
p

}

= η(p).

Proof. We interpret the problem as assigning each task a set of disjoint subintervals
of [0, η(p)) with total length ci. We do this such that for each arc e we have that
for each t ∈ [0, η(p)) there are at most p task in using e which are assigned intervals
containing t. We call this property the packing property.

We sort the tasks ascendingly by the height of their peak vertices. We consider
the tasks in this order. The first task τ1 is assigned an arbitrary subinterval of
[0, η(p)) with length c1 ≤ 1 < η(p). For induction, consider the ith iteration in
which we consider the task τi which we want to assign intervals of total length
ci (obeying the packing property). Since we ordered the tasks by the height of
their peak vertices, it suffices to ensure the height property in the two arcs ē and
ẽ adjacent to vi. Denote by q̄ and q̃ the total length of the subintervals of [0, η(p))
which are already used by p tasks from Tē or Tẽ, respectively. Since the values
ci are constructed from a valid solution of LP ′

I we know that
∑

τj∈Tē
cj ≤ p and

∑

τj∈Tẽ
cj ≤ p, and hence q̄ ≤ 1 − ci

p
and q̃ ≤ 1 − ci

p
. We calculate that q̄ + q̃ +

ci ≤ 2 + ci

(

1 − 2
p

)

≤ max
{

2, 3 − 2
p

}

= η(p). Hence, there are always disjoint

subintervals of [0, η(p)) with total length ci for τi such that the packing property is
fulfilled. �

Let y′ denote the solution obtained for LP ′
w by the procedure described in the

proof of Lemma 11. Our integral solution for LP ′
I is obtained by taking the solution

J ∈ J ′ with maximum weight such that y′
J > 0. Denote by BTindir(I) the resulting

tasks.

Theorem 12. Let I be an instance of the weighted Max-Task-problem on a bidi-

rected tree in the setting of indirect schedules. For the solution BTindir(I) it holds

that w (BTindir(I)) ≥ 1
η(p)w (OPTindir(I)) with η(p) = max

{

2, 3 − 2
p

}

. Moreover,

the integrality gap of LP ′
I is bounded by η(p).

Proof. If our computed solution x′ with weight w(x′) for LP ′
I is already integral then

there is nothing to prove. So now assume that x′ contains at least one fractional
entry. We show both claims by proving that w (BTindir(I)) ≥ 1

η(p)w (x′). Assume

on the contrary that w (BTindir(I)) < 1
η(p)w (x′) and consider the solution y′ for

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 13

LP ′
w. We conclude that for all J ∈ J ′ with y′

J > 0 we have that w(J) < 1
η(p)w (x′).

Note that since y′ is a solution for LP ′
w we have that

∑

J∈J ′ w(J) · y′
J ≥ w (x′).

However, this implies that

w (x′) ≤
∑

J∈J ′

w(J) · y′
J <

w (x′)

η(p)

∑

J∈J ′

y′
J ≤ w (x′)

which is a contradiction. �

3.4. Price of Directness in Bidirected Trees. Now we analyze the price of
directness in the setting of bidirected trees. We show an upper bound of 2 and a
lower bound of 6/5.

Theorem 13. The price of directness for the Max-Task-problem on bidirected

trees is upper-bounded by 2.

Proof. Let I = (G, T, p) be a Max-Task-instance on a bidirected tree. We present
a procedure which splits the set OPTindir(I) ⊆ T into two sets T 1 and T 2 such that
there are direct schedules for T 1 and T 2. Since w

(

T 1
)

+w
(

T 2
)

= w (OPTindir(I))

we have that either w
(

T 1
)

≥ 1
2w (OPTindir(I)) or w

(

T 2
)

≥ 1
2w (OPTindir(I)).

This shows that the price of directness on bidirected trees is bounded by 2.
Now we present the mentioned procedure. For both sets T k we maintain a map

taskk : E × {0, 1, ..., p− 1} → T . We order the tasks in OPTindir(I) ascendingly

by the height of their peak vertex. We consider the tasks one by one. In the ith
iteration we consider the task τi ∈ OPTindir(I). Let e0, ..., e|Pi|−1 be the edges on
Pi. We try to assign τi a start offset d with which it fits into one of the maps
taskk. We say a value d is blocked in a map taskk if there is an edge ej such that
taskk(ej , d+ j mod p) 6= none. By the order of the tasks we observe that it suffices
to check whether a value d is blocked in one of the edges ē and ẽ incident to the
peak vertex vi of τi. There can be in total at most 2p − 2 task different from τi

using ē and ẽ. Each such task can block at most one value d in one of the maps
taskk. We conclude that there is always one value d which is not blocked in task1

or task2. Let taskk be the map in which a value d is not blocked. We then define
taskk(ej , d + j mod p) := τi for all edges ej ∈ Pi and we assign τi to the set T k.
This procedure defines the sets T 1 and T 2. �

Now we show a lower bound on the price of directness on bidirected trees of 6/5.

Proposition 14. There is an instance Ī of the Max-Task-problem on a bidirected

tree such that OPTindir(Ī)/OPTdir(Ī) = 6/5.

Proof. First we describe the instance Ī. The underlying (undirected) tree has the
vertices v0, v1, v2, v3, v4, v5 and the edges {v0, v2} , {v1, v2} , {v2, v3} , {v3, v4} , {v3, v5}.
We have six tasks of unit weight: τ1 = (v5, v4), τ2 = τ3 = (v5, v1), τ4 = (v0, v1),
and τ5 = τ6 = (v0, v4). See Figure 3.2 for a sketch. We define the period length
p by p := 3. We observe that each arc is used by at most three tasks and hence
OPTindir(Ī) = 6.

Now we want to show that OPTdir(Ī) ≤ 5. Assume on the contrary that
OPTdir(Ī) = 6. This implies that there is a direct schedule for the six tasks given by
a map taskdir : E×{0, 1, 2} → T . W.l.o.g. we can assume that taskdir ((v5, v3) , 0) =
τ1. This implies that {taskdir ((v5, v3) , 1) , taskdir ((v5, v3) , 2)} = {τ2, τ3} and
hence {taskdir ((v2, v1) , 0) , taskdir ((v2, v1) , 1)} = {τ2, τ3}. Thus, we have that

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 14

v0

v1
τ4 τ5

τ6

τ3

v5

τ1v3

v2

τ2
v4

Figure 3.2. The instance Ī with OPTindir(Ī)/OPTdir(Ī) = 6/5
(described in the proof of Proposition 14).

taskdir ((v0, v2) , 1) = τ4 and hence {taskdir ((v0, v2) , 0) , taskdir ((v0, v2) , 2)} =
{τ5, τ6}. However, this implies that either taskdir ((v3, v4) , 1) = τ5 or taskdir ((v3, v4) , 1) =
τ6 which contradicts that taskdir ((v3, v4) , 1) = τ1 (which is implied by taskdir ((v5, v3) , 0) =
τ1). We conclude that OPTdir(Ī) ≤ 5 (and with the above procedure a schedule
with five tasks can be found by omitting τ5 or τ6). �

4. Bidirected Grid Graph

We present our algorithms for the Max-Task-problem on bidirected grid graphs.
We assume that all paths are row-column-paths, i.e., all paths move along the row of
si to the column of ti and then along the column of ti to ti itself. In this setting, we
lose a factor of at most 2 if we restrict either to tasks which move left and up or right
and down or to tasks which move right and up or left and down. In either case we
can split the set of tasks into another two subsets which can be handled separately
(with all tasks moving in the same direction). For the Max-Task-problem on such
a subset we can use similar methods as for the Max-Task-problem on a bidirected
tree. Hence, our algorithms on the grid achieve approximation ratios which are
only by a factor 2 worse than the respective algorithms on bidirected trees. We
also show that the price of directness in bidirected grids is bounded from above
by 4 and bounded from below by 6/5.

Let
↔

G# =

(

V#,
↔

E#

)

denote the infinite bidirected grid graph, i.e., V# =

{vi,j |i, j ∈ Z} and
↔

E# = {{vi,j , vi′,j′} , {vi′,j′ , vi,j} | |i − i′| + |j − j′| = 1}. As gen-

eral notation, for a given instance

(

↔

G#, T, p

)

of the problem, we split the tasks

in the sets Tlu, Tru, Tld, Trd. The set Tlu contains the tasks which move to the
left and then up, the set Trd the tasks which move to the right and then down,
etc. Note that the tasks in the sets Tlu and Trd do not interfere with each other,
similarly the tasks in the sets Tru and Tld do not interfere with each other.

For our algorithms we will present subroutines which compute an approximative
solution ALG (Tru) ⊆ Tru for the set Tru. Let OPT (Tru) ⊆ Tru denote a feasible
task selection from Tru with maximum weight. The following lemma shows how
these subroutines yield algorithms for the entire problem.

Lemma 15. Assume there is a polynomial time algorithm ALG which computes a

set ALG (Tru) ⊆ Tru with w (ALG (Tru)) ≥ 1
α
w (OPT (Tru)) for any set of tasks

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 15

Tru on the bidirected grid whose paths move to the right and then up. Then there

is a polynomial time algorithm which computes a task selection ALG (T) ⊆ T with

w (ALG (T)) ≥ 1
2α

w (OPT (T)) for any instance I =

(

↔

G#, T, p

)

of the Max-

Task-problem on the bidirected grid.

Proof. Due to symmetry, ALG can also be applied to the sets Trd, Tlu, and Tld. We
output the set with maximum weight among the sets ALG (Tru) ∪ ALG (Tld) and
ALG (Trd)∪ALG (Tlu). Let OPT� (T) := OPT (T)∩(Tlu ∪ Trd) and OPT� (T) :=

OPT (T) ∩ (Tld ∪ Tru). W.l.o.g. we assume that w
(

OPT� (T)
)

≥ 1
2w (OPT (T)).

Then we conclude

w (ALG (T)) ≥ w (ALG (Trd) ∪ ALG (Tlu))

= w (ALG (Trd)) + w (ALG (Tlu))

≥
1

α
· w (OPT (Trd)) +

1

α
· w (OPT (Tlu))

≥
1

α
· w

(

OPT� (T)
)

≥
1

2α
· w (OPT (T))

�

In the remainder of this section we present subroutines which compute sub-
sets of Tru with high weight for the different scenarios (weighted/unweighted, di-
rect/indirect schedules). We assume the following ordering of the tasks in Tru: For
each task τi ∈ Tru we define vi to be the vertex at the bend of the path. If there
is no bend we define vi := ti if Pi moves only right and vi := si if Pi moves only
up. We denote by ei,1 and ei,2 the edges of Pi which use vi. We assume that the
grid columns increase when moving to the right and the grid rows increase when
moving down. We sort the tasks ascendingly by the grid column of their bend ver-
tex. Ties are broken by sorting tasks whose bend vertex has the same grid column
ascendingly by the grid row of their bend vertex. This ordering will be important
for the greedy algorithm which we will use later as a subroutine.

4.1. Unweighted Tasks on the Grid. In this section we study the cardinality
case on grid graphs. First, we consider the setting of indirect schedules. We show
that for the tasks Tru the greedy algorithm is a 2-approximation algorithm.

Lemma 16. Let I =

(

↔

G#, T, p

)

be an instance of the unweighted Max-Task-

problem on the grid. Then |GREEDYindir (Tru)| ≥ 1
2 |OPTindir (Tru)|.

Proof. For a task τi denote by Pi,1 the part of Pi from si to vi and by Pi,2 the
part of Pi from vi to ti. We define a map taskGRDY : GREEDYindir (Tru) × E →
{0, 1, ..., p− 1, none} with the following property:

• taskGRDY (τi, e) 6= none for all edges e which are on the path Pi

• taskGRDY (τi, e) = none for all edges e which are not on the path Pi

• taskGRDY (τi, e) = taskGRDY (τi, e
′) for all two edges e, e′ which lie on Pi,1

• taskGRDY (τi, e) = taskGRDY (τi, e
′) for all two edges e, e′ which lie on Pi,2

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 16

Computing values taskGRDY (τi, e) with these properties reduces to path color-
ing on interval graphs. Then, we define a map taskOPT : OPT (Tru) × E →
{0, 1, ..., p− 1, none} with the following properties:

• taskOPT (τi, e) = taskGRDY (τi, e) for all tasks τi with τi ∈ OPT (Tru) ∩
GREEDYindir (Tru) and all edges e

• taskOPT (τi, e) 6= none for all edges e which are on the path Pi

• taskOPT (τi, e) = none for all edges e which are not on the path Pi

Such a map clearly exists. In taskOPT we say a bend occurs if there is a tuple (τi, v),
consisting of a task τi, a vertex v, and two edges e = (u, v) and e′ = (v, w) on Pi in
the same row or in the same column such that taskOPT (τi, e) 6= taskOPT (τi, e

′).
In Figure 4.1 (left) task τi has a bend on the vertex v∗.

We denote by cost (r) the sum of the grid columns of the bends which occur in
a row r. Formally, let bend(r) denote the set of bends in grid row r. We define

cost(r) :=
∑

(τ,(r,i))∈bend(r)

i

We define cost (c) similarly for the bends which occur in a column c. W.l.o.g. we
assume that taskOPT is a map with the above properties which has the minimum
number of bends and among these maps one which maximizes the values cost (r)
and cost (c) for each grid row r and each grid column c. Note that this can be
achieved simultaneously for all grid rows and columns since the bends in all rows
and columns are independent of each other.

Now we establish a connection between the tasks in T1 := OPT (Tru)\GREEDYindir (Tru)
and T2 := GREEDYindir (Tru) \ OPT (Tru). For each task τi ∈ T1 we find a
task τj ∈ T2 which – informally speaking – prevents τi from being added to
GREEDYindir (Tru). We assign a task τi ∈ T1 to a task τj ∈ T2 if Pi uses
ej,1 or ej,2 and taskOPT (τi, ej,1) = taskGRDY (τj , ej,1) or taskOPT (τi, ej,2) =
taskGRDY (τj , ej,2), respectively. Clearly, each task τj ∈ T2 has at most two tasks
from T1 assigned to it. If now each task τi ∈ T1 is assigned to a task τj ∈ T2 then
|T1| ≤ 2 · |T2| and hence

|OPT (Tru)| = |OPT (Tru) \ GREEDYindir (Tru)| + |GREEDYindir (Tru) ∩ OPT (Tru)|

≤ 2 · |GREEDYindir (Tru) \ OPT (Tru)| + |GREEDYindir (Tru) ∩ OPT (Tru)|

≤ 2 · |GREEDYindir (Tru)|

In the remainder of this proof we show that each task τi ∈ T1 is indeed assigned
to a task in T2. Assume on the contrary that there is a task τi ∈ T1 which has not
been assigned to any task in T2. Denote by GRDYi ⊆ T2 all tasks in T2 which were
assigned to GREEDYindir (Tru) before iteration i. Since τi ∈ T1 there must be a
task τj ∈ GRDYi and an edge ej such that taskOPT (τi, ej) = taskGRDY (τj , ej)
(since otherwise the algorithm would have assigned τi to GREEDYindir (Tru)).
W.l.o.g. we assume that ej is a horizontal edge in row r. First we remark that Pi

must use the edge ej,1, since otherwise τj /∈ GRDYi. According to the definition
of taskGRDY we observe that τi must have a bend between ej and ej,1 (since
otherwise we would have assigned τi to τj). Let v∗ = (r, i∗) be the vertex of this
bend. We show now that we can change taskOPT such that we either save one bend
or increase cost(r) while keeping the total number of bends unchanged. This will
yield a contradiction.

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 17

Ti

Ti

ej e∗ ej,1

TjTi′

ej e∗ ej,1

TiTj

p

q

1

2

.
.

.
.

.
.

.
.

.

p

q

1

2

.
.

.
.

.
.

.
.

.

Ti′

Ti′

v∗ v∗

Figure 4.1. The figure depicts the edges for which the tasks τi,
τi′ , and τj are assigned the values p and q in the maps taskOPT ,
task′

OPT , and taskGRDY . The gray area indicates the edges for
which τj was assigned the value q in taskGRDY . The white bars
on the left indicate the edges for which the tasks τi and τi′ were
assigned the values p and q in taskOPT . The white bars on the
right show the edges for which the tasks τi and τi′ were assigned
the values p and q in task′

OPT . Note that on the left the task τi has
a bend on the vertex v∗ and on the right this bend was exchanged
to a bend of τi′ on a vertex further on the right.

Let e∗ = ((r, i∗) , (r, i∗ + 1)). Let τi′ denote the task such that taskOPT (τi′ , e
∗) =

taskOPT (τi, ej) (if there is no such task τi′ then cost(r) can be increased by swap-
ping taskOPT (τi, e

∗) and taskOPT (τi′ , e
∗) while not changing the number of bends).

Denote by P ∗
i′,1 ⊆ Pi′,1 the largest subpart of Pi′,1 which uses e∗ and which

does not contain a bend of τi′ . Similarly, denote by P ∗
i,1 ⊆ Pi,1 the largest sub-

part of Pi,1 which uses e∗ and which does not contain a bend of τi. Let P ∗ :=
P ∗

i,1 ∩ P ∗
i′,1. For all edges e ∈ P ∗ we now swap taskOPT (τi, e) and taskOPT (τi′ , e):

Let p := taskOPT (τi, e
∗) and q := taskOPT (τi′ , e

∗). We define a new map task′

by task′
OPT (τi′ , e) := p and task′

OPT (τi, e) := q for all edges e ∈ P ∗. For all
other tasks τ and all other edges e we define task′

OPT (τ, e) = taskOPT (τ, e) (see
Figure 4.1). We define cost′(r) based on bends of task′

OPT (like cost(r) based on
taskOPT). We observe that task′

OPT does not have more bends than taskOPT and
cost′(r) > cost(r). This contradicts that taskOPT is a map which maximizes cost(r)
in each grid row r while minimizing the total number of bends. �

Theorem 17. There is a 4-approximation algorithm for the unweighted Max-

Task-problem on the bidirected grid in the setting of indirect schedules.

Proof. Follows from Lemmas 15 and 16. �

Now we study the setting of direct schedules on the bidirected grid (unweighted
case). We prove an approximation guarantee for the greedy algorithm in this case.

Lemma 18. Let I =

(

↔

G#, T, p

)

be an instance of the unweighted Max-Task-

problem on the bidirected grid. It holds that |GREEDYdir (Tru)| ≥ 1
η(p) ·|OPTdir (Tru)|

where η(p) = max
{

2, 3 − 2
p

}

.

Proof. The analysis is similar to the analysis used in Theorem 7. We define
DIFF := OPTdir (Tru) \ GREEDYdir (Tru). Now consider a task τi ∈ DIFF.

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 18

Since τi /∈ GREEDYdir (Tru) the task τi it was considered in the ith iteration but
it was not added to GREEDYdir (Tru).

For each task τk ∈ GREEDYdir (Tru) we introduce a variable βk. Now let
τi ∈ DIFF be a task. For each initial waiting time w ∈ {0, 1, ..., p− 1} for
τi there must be an edge ej ∈ Pi and a task τi(w) with i(w) < i such that
task (ej , (w + j) mod p) = τi(w). For each task τi(w) with w ∈ {0, 1, ..., p− 1} we

increase βi(w) by 1
p
. We say that the tasks τi(w) pays for the task τi. We do this

procedure for all tasks τi ∈ DIFF . Note that after this
∑

i βi = DIFF .
We define T1 := GREEDYdir (Tru)∩OPTdir (Tru) and T2 := GREEDYdir (Tru)\

OPTdir (Tru). We claim that βi ≤ 2 · p−1
p

for all tasks τi ∈ T 1 and βi ≤ 2 for all

tasks τi ∈ T2. Let τi ∈ GREEDYdir (Tru) and denote by Pi the path of τi. Denote
by e1 and e2 the edges on Pi which are incident to the bend vertex of Pi (the case
where Pi has no bend can be handled similarly). Let τ̃ be a task which τi pays
for. This implies that τ̃ was considered after τi and thus τ̃ uses either e1 or e2.
Since in OPTdir (Tru) there can be at most 2p such tasks we conclude that βi ≤ 2.
Moreover, if τi ∈ OPTdir (Tru) then there can be at most 2 (p − 1) tasks in DIFF

which use e1 or e2. Thus, if τi ∈ OPTdir (Tru) then βi ≤ 2 · p−1
p

. We complete the

proof by calculating that

|OPTdir(T)| = |DIFF | + |T 1|

≤
∑

i

βi + |T 1|

=
∑

i:τi∈T ′
1

βi + |T 1| +
∑

i:τi∈T ′
2

βi

≤ 2 ·
p − 1

p
· |T 1| + |T 1| + 2 · |T 2|

≤ max

{

2, 1 + 2 ·
p − 1

p

}

|GREEDYdir (Tru)|

= η(p) · |GREEDYdir (Tru)|

This shows that |GREEDYdir (Tru)| ≥ 1
η(p) |OPTdir (T)|. �

Now we can prove the following theorem.

Theorem 19. Let I =

(

↔

G#, T, p

)

be an instance of the unweighted Max-Task-

problem on the bidirected grid. There is a polynomial time algorithm which computes

a set of tasks ALG (T) ⊆ T for which there exists a direct schedule and |ALG (T)| ≥
1

2η(p) |OPT (T)| where η(p) = max
{

2, 3 − 2
p

}

.

Proof. The existence of the direct schedule for the tasks in ALG (T) follows from
the map task as defined in the greedy algorithm. Then the claim follows from
Lemmas 15 and 18. �

The analysis in Lemma 18 is the base of the approximation ratio given in Theo-
rem 19. We now show with an example that this analysis is tight by giving a suitable
family of examples. Fix a period length p. We consider the following instance with

3p2 − 2p tasks. For each tuple (i, j) ∈ {1, ..., p}2
there is a task τi,j with path

((i, j), (i, j + 1), (i − 1, j + 1)). Denote by T1 the set of these tasks. Also, for each

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 19

T1

T2

τ2,1

τ3,1

τ2,2

τ3,2 τ3,3

τ2,3

τ1,2 τ1,3τ1,1

Figure 4.2. The tight example instance for Lemma 18 for the
case p = 3. When all tasks in T1 are assigned offset 0 then no task
in T2 can be scheduled in a direct schedule. However, assigning
each task τi,j ∈ T1 the offset (i + j) mod p allows to schedule all
tasks in a direct schedule.

i ∈ {1, ..., p} there are p − 1 identical tasks with path ((p + 1, i + 1), ..., (0, i + 1))
and p − 1 identical tasks with path ((i, 1), ..., (i, p + 2)), denoted by T2 (see Fig-
ure 4.2). Now the greedy algorithm could choose all tasks τi ∈ T1 with initial delay
di = 0. Then, no task in T2 could be chosen anymore since each possible delay is
blocked by some task in T1. However, it is possible to schedule all tasks. One needs
to assign each task τi,j ∈ T1 the initial delay (i + j) mod p. Then for the tasks in
T2 suitable offsets can be found greedily. Hence, we have that

|GREEDYdir (T1 ∪ T2)|

|OPTdir (T1 ∪ T2)|
≥

|T1| + |T2|

|T1|
=

p2 + 2p(p − 1)

p2
= 3 +

2

p

4.2. Weighted Tasks on the Grid. Now we study the weighted Max-Task-
problem on the grid. We employ similar methods as for the weighted setting on the
bidirected tree.

First, we study the case of direct schedules. We formulate the problem as a
weighted maximum independent set problem on a conflict graph GMIS . For each
task τi we introduce p vertices 〈τi, k〉 with 0 ≤ k < p. A vertex 〈τi, k〉 corresponds
to scheduling the task τi to use the first edge on its path at time k. We connect
two vertices 〈τi, k〉, 〈τj , ℓ〉 by an edge if and only if either

• τi = τj or
• Pi and Pj use an edge in the same direction and if τi and τj had the initial

offsets k and ℓ, respectively, their packets would collide.

We assign each vertex 〈τi, k〉 the weight wi. Then any solution for weighted maxi-
mum independent set on GMIS corresponds to a solution for I with the same weight
and vice versa. The linear programs LPI and LPw are defined as in Section 3.3. In

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 20

our algorithm, we first solve the linear program LPI optimally, obtaining a solution
x∗. We define a cost value ci,k by ci,k := x∗

i,k. Then we compute an approximative
solution for LPw.

Lemma 20. There is a polynomial time algorithm which computes a solution y for

LPw with
∑

J∈J yJ ≤ 3 · ωC (GMIS , c).

Proof. The algorithm works similarly as the respective algorithm for the linear
program LPw for the TCSWP-problem on grids in [5]: We order the vertices 〈τi, k〉
first decreasingly by the column of the bend vertex of τi. Ties are broken by ordering
the respective vertices decreasingly by the row of the bend vertex of τi. We consider
the vertices in this order. We assign each vertex 〈τi, k〉 (greedily) disjoint intervals
of total length ci,k such that the intervals of two adjacent vertices do not intersect.
Like in Lemma 8 we can prove that colors of total weight 3 · ωC (GMIS , c) suffice.
From this we can extract a value yJ for each independent set J . �

Finally, our algorithm outputs the independent set J ∈ J with maximum weight
among the sets J with yJ > 0. Denote by BGdir (Tru) the set of tasks corresponding
to the vertices in J .

Lemma 21. Let I be an instance of the weighted Max-Task-problem on the bidi-

rected grid. It holds that w (BGdir (Tru)) ≥ 1
3w (OPTdir (Tru)).

Proof. Can be shown similarly as in Theorem 9. �

We define BGdir(I) to be the set of tasks with maximal weight among the sets
BGdir (Tru) ∪ BGdir (Tld) and BGdir (Trd) ∪ BGdir (Tlu).

Theorem 22. Let I be an instance of the weighted Max-Task-problem on the

bidirected grid. It holds that w (BGdir(I)) ≥ 1
6w (OPTdir(I)).

Proof. Follows from Lemmas 15 and 21. �

Similarly as for the case of bidirected trees, we can show that BGdir(I) is by
at most a factor 6 away from the optimal weight of tasks which allow an indirect
schedule.

Theorem 23. Let I be an instance of the weighted Max-Task-problem on the

bidirected grid. It holds that w (BGdir(I)) ≥ 1
6w (OPTindir(I)).

Proof. Consider the set of tasks Tru and the problem of finding a subset of tasks
with maximum weight which allow an indirect schedule. We formulate this problem
as an integer program and consider the LP-relaxation LP ′

I . It turns out that any
solution for LP ′

I can be transformed to a solution for LPI (the relaxation of the
IP which finds the set of tasks of maximum weight which allows a direct schedule).
Hence, the optimal value w (x∗) for LPI is also an upper bound on the total weight
of a set of tasks which allows an indirect schedule. Hence, BGdir (Tru) ≥ 1

3w (x∗) ≥
1
3OPTindir (Tru). Then the claim follows from Lemma 15. �

Now consider the weighted Max-Task-problem on the grid in the setting of
indirect schedules. Restricted to the set Tru we can formulate the problem as an
integer program and take the LP-relaxation LP ′

I
ru. With similar arguments as

for trees we can bound the integrality gap by η(p) and show how to obtain η(p)-
approximative integral solutions. We conclude with the following theorem.

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 21

Theorem 24. Let I be an instance of the weighted Max-Task-problem on the

bidirected grid in the setting of indirect schedules. A solution GRindir(I) with weight

w (GRindir(I)) ≥ 1
2η(p)w (OPTindir(I)) can be found in polynomial time with η(p) =

max
{

2, 3 − 2
p

}

.

4.3. Price of Directness on the Grid. Now we show that the price of directness
on the grid is bounded from above by 4 and bounded from below by 6/5.

Theorem 25. The price of directness on the bidirected grid is at most 4.

Proof. Assume we are given a period length p and a set of tasks T on the bidirected
grid which allows an indirect schedule. We show how to select a set of tasks T ′

such that w(T ′) ≥ w(T)/4. We split the set T into subsets Tlu, Tru, Tld, and Trd.
We note that either w (Tlu) + w (Trd) ≥ w(T)/2 or w (Tru) + w (Tld) ≥ w(T)/2.
W.l.o.g. we assume that w (Tru)+w (Tld) ≥ w(T)/2. Note that the tasks in Tru do
not interfere with the tasks in Tld. Hence, we discuss the two sets independently.
Consider the set Tru. We order the tasks descendingly by the column of their bend
vertex. Ties are broken by ordering the respective tasks descendingly by the row
of their bend vertex. Like in the proof of Theorem 13 we split Tru into two sets
T 1

ru and T 2
ru which both allow a direct schedule. For each set T k

ru we maintain a
map taskk : E × {0, 1, ..., p− 1} → Tru which defines the direct schedule for the
tasks in the respective set. We consider the tasks in the above order. Assume that
in the ith iteration we consider the task τi. Since each edge is used by at most p
tasks (recall that the tasks in T allow an indirect schedule) we can find an offset
for τi such that it does not collide with any task in T 1

ru or it does not collide with
any task in T 2

ru (according to the maps taskk). We assign τi to the respective set
T k

ru and update the map taskk with a suitable offset for τi. Finally, we have that
either w

(

T 1
ru

)

≥ w (Tru) /2 or w
(

T 2
ru

)

≥ w (Tru) /2. Denote by T ∗
ru the set among

T 1
ru and T 2

ru with highest weight. With a similar procedure we obtain T ∗
ld. By

construction, there is a direct schedule for the tasks in T ∗
ru ∪T ∗

ld. We conclude that

w (T ∗
ru ∪ T ∗

ld) = w (T ∗
ru) + w (T ∗

ld)

≥
1

2
(w (Tru) + w (Tld))

≥
1

4
w(T)

�

Now we give an instance which shows that the price of directness is at least 6/5.
It is similar to the instance which shows that the price of directness on bidirected
trees is at least 6/5.

Proposition 26. There is an instance Ī# of the Max-Task-problem on the bidi-

rected grid such that OPTindir

(

Ī#

)

/OPTdir

(

Ī#

)

= 6/5.

Proof. We can embed the instance described in Proposition 14 into the bidirected
grid (recall Figure 3.2). We then obtain the lower bound of 6/5 with the same
reasoning. �

5. Complexity

Due to [4, 5] we already know that the Max-Task-problem on trees and bidi-
rected grid graphs with row-column-paths is MAXSNP -hard. Now we show that

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 22

...
... . . .

v0 v1 vn2
−1

vn2

Figure 5.1. The dotted and dashed lines denote the path of two
tasks τi and τj such that vi and vj are adjacent in G.

on arbitrary graphs and with fixed paths of the tasks the Max-Task-problem con-
tains the Independent-Set-problem and therefore, it cannot be approximated

with a better factor than |T |1−ǫ
for all ǫ > 0.

Theorem 27. For all ǫ > 0 it is NP -hard to approximate the Max-Task-problem

with fixed paths on chain graphs with an approximation ratio of |T |1−ǫ
. This holds

for the setting of direct schedules as well as for the setting of indirect schedules.

Proof. We present a reduction from Independent-Set. Given a graph G = (V, E)
we construct an instance I ′ = (G′, T, p) of the Max-Task-problem such that for
any k ∈ N the graph G has an independent set of size k if and only if there is a
set of tasks T ′ ⊆ T with |T ′| = k which allows a direct or an indirect schedule.
Moreover, we will ensure that |T | = |V |. A similar reduction was presented in [10].
For all ǫ > 0 it is NP -hard to approximate the Independent-Set-problem with
an approximation ratio of |V |1−ǫ, see [13] (note that the Clique-problem is the
same as the Independent-Set-problem on the complement graph). This implies
that it is NP -hard to approximate the Max-Task-problem with an approximation
ratio of |T |1−ǫ for all ǫ > 0.

Now we present the construction. Let G = (V, E) be a simple undirected graph
in which we look for an independent set. Let n = |V |. We construct a series parallel
graph G′ = (V ′, E′) with n2 +1 vertices v′0, ..., v

′
n2 . Each pair of adjacent vertices is

connected by n edges, see Figure 5.1 for a sketch. We define |V | unit weight tasks.
Each task τi =

(

v′0, v
′
n2 , 1

)

corresponds to a vertex vi ∈ V . The paths of the tasks
are defined such that the paths Pi and Pj of two tasks τi and τj share an edge if
and only if {vi, vj} ∈ E. Since |V ′| = n2 + 1 ≥ |E|+ 1 this can clearly be achieved.
Finally, we define the period length p of our Max-Task-instance by p := 1.

Since p = 1 no two tasks which share an edge can be assigned to a set of tasks
which allows a direct or indirect schedule. This implies that each independent set
in G yields a valid set of tasks for I ′ with the same cardinality and vice versa.

�

References

[1] M. Adler, S. Khanna, R. Rajaraman, and A. Rosén. Time-constrained scheduling of weighted
packets on trees and meshes. Algorithmica, 36:123–152, 2003.

[2] M. Andrews, A. Fernández, M. Harchol-Balter, F. Leighton, and L. Zhang. General dynamic
routing with per-packet delay guarantees of O (distance + 1/session rate). SIAM Journal of

Computing, 30:1594–1623, 2000.
[3] C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand flow in a tree and

packing integer programs. ACM Trans. Algorithms, 3:27, 2007.

[4] T. Erlebach and K. Jansen. The maximum edge-disjoint paths problem in bidirected trees.
SIAM Journal of Discrete Mathematics, 14:326–355, 2001.

[5] T. Erlebach and K. Jansen. Conversion of coloring algorithms into maximum weight inde-
pendent set algorithms. Discrete Applied Mathematics, 148:107 – 125, 2005.

THROUGHPUT MAXIMIZATION FOR PERIODIC PACKET SCHEDULING 23

[6] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

[7] J. Könemann, O. Parekh, and D. Pritchard. Max-weight integral multicommodity flow in
spiders and high-capacity trees. In Proceedings of the 6th Workshop on Approximation and

Online Algorithms, volume 5426 of LNCS, pages 1–14. Springer, 2009.
[8] B. Peis, M. Skutella, and A. Wiese. Packet routing: Complexity and algorithms. In Proceed-

ings of the 7th Workshop on Approximation and Online Algorithms, volume 5893 of LNCS,
pages 217–228, Berlin, 2010. Springer.

[9] B. Peis, S. Stiller, and A. Wiese. The periodic packet routing problem. Technical Report
008-2010, Technische Universität Berlin, April 2010.

[10] C. Puhl and S. Stiller. The maximum capacity of a line plan is inapproximable. Technical
Report 028-2007, Technische Universität Berlin, August 2007.

[11] A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete
Mathematics. J. Wiley & Sons, 1986.

[12] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin, 2003.
[13] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-

matic number. Theory of Computing, 3:103–128, 2007.

