Elias Rohrer, Jann-Frederik LalR, Florian Tschorsch

Towards a Concurrent and Distributed
Route Selection for Payment Channel
Networks

Conference paper | Accepted manuscript (Postprint)
This version is available at https://doi.org/10.14279/depositonce-8377

iz

The final authenticated version is available online at https://doi.org/10.1007/978-3-319-67816-0_23.

Rohrer, Elias; La, Jann-Frederik; Tschorsch, Florian (2017). Towards a Concurrent and Distributed
Route Selection for Payment Channel Networks. Data Privacy Management, Cryptocurrencies and
Blockchain Technology, 411-419. (Lecture Notes in Computer Science ; 10436)
https://doi.org/10.1007/978-3-319-67816-0_23

Terms of Use
Copyright applies. A non-exclusive, non-transferable and limited l.. y
right to use is granted. This document is intended solely for wissen v zentrum Forsms

personal, non-commercial use.

Berlin



Towards a Concurrent and Distributed Route
Selection for Payment Channel Networks

Elias Rohrer!, Jann-Frederik Laf?, and Florian Tschorsch!

! Technical University of Berlin,
{elias.rohrer, florian.tschorsch}@tu-berlin.de
2 Humboldt University of Berlin,
lassjann@informatik.hu-berlin.de

Abstract. Payment channel networks use off-chain transactions to pro-
vide virtually arbitrary transaction rates. In this paper, we provide a new
perspective on payment channels and consider them as a flow network.
We propose an extended push-relabel algorithm to find payment flows
in a payment channel network. Our algorithm enables a distributed and
concurrent execution without violating capacity constraints. To this end,
we introduce the concept of capacity locking. We prove that flows are
valid and present first results.

1 Introduction

It seems that blockchain-based systems such as Bitcoin [9] will, due to their
requirements regarding storage, processing power, and bandwidth, not be able
to natively scale to high transaction rates [2]. Off-chain approaches [3,10], how-
ever, offer a way to create long-lived payment channels between two nodes. The
payments transferred via a payment channel are processed locally and therefore
eliminate the need to commit each individual transaction to the blockchain.

In order to enable payments between any two nodes—whether they are di-
rectly connected or not—payment channels form a network in which payments
can be routed over more than one hop. Finding a route that can process a cer-
tain transaction volume is challenging, though. Related approaches [11] cannot
guarantee to utilize the available capacities as they focus on finding a single
path from payer to payee that meets the capacity constraints. We argue that
single-path routing restricts the transferable amount and misses many payment
opportunities due to bottleneck capacities in the network. Particularly, if pay-
ment channel networks may ultimately become a viable payment alternative and
process large transaction volumes that exceed channel capacities, single-path
routing will probably fail.

In this paper, we propose to aggregate multiple paths to a payment flow,
which can in sum provide larger transaction volumes. We believe that algorithms
from the domain of flow networks in general and the push-relabel algorithm [5]
in particular are appropriate candidates for route selection in payment networks.

Our main contribution is a new route selection algorithm, which is based
on the push-relabel algorithm. It can find feasible flows in a payment channel



network. While it may be executed in a centralized setup, it is also safe for
concurrent fully distributed execution. To this end, we introduce the concept of
capacity locking. We show that our algorithm guarantees that routes are feasi-
ble flows and at the same time does not violate any capacity constraints. Our
first results confirm that the approach is able to handle a high number of flows
and transaction volumes. The results emphasize that our approach succeeds in
scenarios where single-path routing schemes are bound to fail. In summary, we
offer a new perspective on payment channel networks.

The remainder is structured as follows. Sec. 2 discusses related work. Sub-
sequently, Sec. 3 introduces payment flows and describes the basic algorithmic
design. Sec. 4 develops a distributed and concurrent route selection algorithm.
In Sec. 5, we present and discuss first results, before Sec. 6 concludes the paper.

2 Background and Related Work

Payment channels are a new and unexplored concept. The specifications [6] of
the Lightning Network [10], for example, are subject to constant change. For the
sake of clarity, we abstract from any specific payment channel design [3,10].

Routing in a payment channel network poses many challenges, e. g., regarding
the routing paradigm (per-hop routing vs. source routing) and the topology
(hub-and-spoke vs. peer-to-peer). In this paper, we focus on route selection, i.e.,
finding a route in a payment channel network that meets certain constraints.
Flare [11], a proposed routing system for the Lightning Network, creates a list
of candidate routes from the set of channels with sufficient capacity. So far,
however, Flare and current implementations [4,7, 8] of the Lightning Network
opt for selecting single-path routes only. In our work, we consider a payment as
a flow and provide an algorithm that finds and aggregates multiple paths based
on local knowledge.

We identify flow network algorithms as a promising direction to find multi-
path routes. While multi-commodity flows address a similar problem, most of the
existing approaches require global knowledge and/or a centralized routing coor-
dinator. The approach in [1] allows a distributed and concurrent execution but
solves the feasible-flow problem only approximately. Our distributed algorithm,
in contrast, guarantees that the selected route is a feasible flow. Moreover, it
can be executed concurrently without violating capacity constraints and enables
route selection in a fully distributed scenario.

3 Payment Flows

Payment flows describe a flow of units between pairs of nodes in a payment chan-
nel network. Figure 1 shows an example of a payment channel network in which
node s wants to send a payment to node t. We consider the payment channel
network as a peer-to-peer network in which nodes communicate directly with
each other and build an overlay network congruent with the payment channel
network. That is, we aim for a decentralized route selection.



Path Vol.

s —>wvg —>t

3/@\1

s —> vy >t
2 S — vy — vz —t
X /3)

N R

maximum flow

Fig. 1. Payment channel network example.

In order to process the payment, a path between s and ¢t must exist. Every
path is a concatenation of payment channels. Since payment channels have a
capacity, as indicated by the edge labeling in Figure 1, a path’s transaction
volume is limited by the smallest payment channel capacity of this path. While
we cannot eliminate this limit, we can use multiple paths, which in sum provide
a higher transaction volume.

Determining the maximum transferable amount poses a challenge. For exam-
ple, simply finding all paths from source to sink and summing up their respective
capacities does not suffice; paths may have common edges and thus need to share
the respective capacities. For the example in Figure 1, this naive approach would
violate payment channel capacities.

The problem of finding the largest payment flow between two nodes s and ¢
in a capacitated flow network is known as the mazimum-flow problem. Several
algorithmic solutions to the maximum-flow problem exist. In the following, we
elaborate on the efficient and well-studied push-relabel [5] algorithm and adopt
it for the route selection of payment flows in payment channel networks.

We consider a network of payment channels as a directed graph G = (V, E)
and a non-negative function ¢ : V' x V — R>(. We call ¢ the capacity function,
which determines a channel’s capacity c(u,v) with u,v € V and (u,v) € E.
Moreover, nodes s and t are the source and sink of the flow. The resulting
network F' = (G, ¢, s,t) is called a flow network.

Definition 1 (pseudo-flow, pre-flow, feasible flow). A pseudo-flow on
the capacitated graph (G, c) is a mapping f:V x V — R with the properties:

fu,v) < c(u,v), Y(u,v) € E (capacity constraint)
flu,v) = —=f(v,u), V(u,v) € E (skew symmetry)

Note that pseudo-flows do not require incoming and outgoing flows of a node
to be equal. Therefore, nodes can hold excess flow, denoted by

J:f(u) = Zf(U,U)— Zf(u,v)

veV veV



A pre-flow and a feasible flow are special kinds of pseudo-flows with one of the
following constraints. A pre-flow requires

zp(v) >0, Vv e V\ {s,t} (non-negativity constraint)
and a feasible flow requires
z5(v) =0, Vo € V\ {s,t} (conservation constraint).

Definition 2 (residual capacity and residual graph). The residual ca-
pacity c; with regard to the pseudo-flow f of an edge (u,v) € E is defined as
the difference between the edge’s capacity and its flow:

cr(u,v) = c(u,v) — f(u,v).

Then, the residual graph G;(V,Ey) indicates when changes can be made
to flow f in the network G(V, E), where

Er ={(u,v) e VxV :cp(u,v) > 0}
Note that edges (u,v) do not have to be in the original set of edges E.

Definition 3 (height function). A mapping h : V — N is a height function
for the push-relabel algorithm, if

h(s) = |V|, h(t) =0, h(u) < h(v) +1, Y(u,v) € Ey.

At the beginning, the generic push-relabel algorithm initializes node heights
and flow excess, as well as the edge pre-flow values with 0. Please note that
source node s, in contrast to all other nodes, is set to a height |V|. Moreover, s’s
outgoing edges are saturated according to the height function’s third condition.
After these initialization steps, the algorithm repeatedly selects a node u as
active node and applies one of the two basic operations push and relabel. Both
operations have mutually exclusive conditions, which ensure that either push or
relabel is applicable at a time.

The push procedure (cf. Procedure 1) tries to push an excess ¢ from node u
towards a neighbor v with a smaller height. The maximum possible § is deter-
mined as the minimum between the excess flow and the residual capacity of edge
(u,v). Accordingly, edge capacities and excess values are updated to reflect flow
changes in the residual graph. The procedure requires that u has excess flow and
that an unsaturated edge (u,v) to a neighbor v one level below u exists.

Eventually, node u will saturate all outgoing edges that lead to neighbors on
a lower level. In this case, the relabel procedure (cf. Procedure 2) “raises” node
u to a higher level. The procedure calculates the minimal height of its neighbor
nodes and sets u’s height to the level above this minimum. Therefore, the excess
of node u is guaranteed to be “pushable” in the next step.

The generic push-relabel algorithms continues until the conditions fail for all
nodes. That means, the highest possible transaction volume has been pushed



Procedure 1 push(u,v)

Conditions: zf(u) > 0,c(u,v) > 0,h(u) = h(v) +1
6 :=min(zys(u), cf(u,v))
f(u,v) = f(u,v) +6; f(v,u) = f(v,u) =9
zp(u) :=zp(u) =6 zy(v) :===zs(v) +6

Procedure 2 relabel(u)
Conditions: zs(u) > 0,Y(u,v) € E : h(u) < h(v)
h(u) := 1+ min (h(v) : (u,v) € E)

Fig. 2. Push-relabel algorithm [5], which solves the maximum-flow and the feasible-flow
problem in flow networks.

to the sink ¢ and all network excess has been pushed back to the source, i.e.,
xzs(v) = 0, Vv € V. At this point, the push-relabel algorithm has transformed
the pre-flow into a maximum flow and hence solved the maximum-flow problem.

In a payment channel network, however, it is often not necessary to know the
maximum transaction volume. Rather, we want to find a payment flow that can
process a certain amount only. This is a slightly different problem, which is known
as the feasible-flow problem. Fortunately, the push-relabel can easily be modified
to solve the feasible-flow problem: in order to find a payment flow from source
s to sink ¢ with a transaction volume d, we can simply insert a new (virtual)
node to the payment network. We call it the pre-source s’, with a single edge
(s',s) and capacity c¢(s’,s) = d. The virtual edge caps the transferable amount
at exactly d. Note that this slight modification of the input data enables the
push-relabel algorithm, as described before, to find feasible flows in the network.

So far, we assumed only one instance of the push-relabel algorithm. If multiple
flows ought to be found subsequently in the same network, the initial flow of
one instance is the result of the last instance. A generalization for subsequent
flows, however, is easily possible. This subsequent approach can be used to find
payment flows in a centralized or federated fashion. The following section is
dedicated to show how the push-relabel algorithm can be adapted to enable
route selection for concurrent and distributed payment flows.

4 Concurrent and Distributed Payment Flows

In payment channel networks, it is desirable to allow a concurrent execution of
the route selection algorithm. To this end, simply running multiple instances of
the push-relabel algorithm in parallel is not enough: one instance for flow fi,
for example, could consume the reverse edges’ residual capacity that belong to
another instance for flow fo. We call this issue capacity stealing.



The problem domain of finding flows f1, ..., fx for k commodities with source-
sink pairs (s1,%1), ..., (sk, tx) that meet the total capacity constraint

k
F(u,v) = Zfi(u,v) < e(u,v), Y(u,v) € E,

=1

are known as multi-commodity flow problems.

As our main contribution, we propose a modified push-relabel algorithm that
allows to find feasible flows in a concurrent multi-commodity scenario. To this
end, we introduce the concept of capacity locking: flow volumes are accounted for
every commodity independently, while still respecting each payment channel’s
total capacity constraint. The capacities on the reverse edges created by a flow
f1 are therefore locked for another flow fo, which prevents capacity stealing.

Definition 4 (locked capacities and new residual capacity). Let the locked
capacity and total locked capacity of flow f; on edge (u,v) be

li(u,v) = maz(0, f;(u,v)) and L(u,v) = Z li(u,v).

Accordingly, the residual capacity is redefined as
Ci(u7 U) = C(U, ’U) - L(ua U) + li(vv U),
which yields an individual residual graph G;(V, E;) for each commodity i.

Definition 4 ensures that there is always enough residual capacity on the
reverse edges available to push the existing excess back to the source. Except for
this augmented definition of the residual capacity, the locked-push procedure
(cf. Procedure 3) is similar to the original push procedure. Note, however, that
the modified push-relabel algorithm does not necessarily yield optimal flows in
the multi-commodity scenario. It guarantees wvalidity, though, which makes it
superior compared to other approaches from this domain [1].

In the following, we prove validity for our proposed algorithm. As the skew-
symmetry and flow-conservation constraints follow directly from the definition
of the algorithm, it suffices to show that it yields flows that respect the total
capacity constraint.

Lemma 1. The total capacity constraint F'(u,v) < ¢(u,v), ¥(u,v) € E is never
violated.

Proof. For a locked-push of commodity ¢ on edge (u,v), the change in flow
volume ¢ is always chosen to be at maximum the remaining residual capacity
of the flow on this edge. Accordingly, lock [;(u,v) cannot be greater than .
Therefore, the locked capacity never exceeds the edge capacity for each individual
edge. It follows that the total capacity constraint is never violated:

k k

F(“?”) = Zfl(u?v) < L(uvv) = le(uﬂv) < Zci(u7v) < c(u,v).

=1 i=1 i=1 O



Procedure 3 locked-push(i,u,v)

Conditions: z;(u) > 0,c¢i(u,v) > 0, hi(u) > hi(v)
li(u,v) := max(0, fi(u,v)); l;(v,u) := max(0, f;(v,u))
ci(u,v) = c(u,v) — L(u,v) + l;(v,u)

0 := min(z;(u), ¢;(u,v))

filu,0) := fi(u,0) + 65 fi(v,u) := fi(v,u) =0
L(u,v) := L(u,v) + &; L(v,u) := L(v,u) — §
zi(u) == z;i(u) — 6 z;(v) =z (v) + 8

Fig. 3. Capacity locking enables concurrent push-relabel execution without violating
capacity constraints, i.e., capacity stealing.

In order to execute the modified algorithm in a distributed scenario, the
asynchronous distributed algorithm, introduced in [5], is adapted to our needs:
each node maintains a local view on flow states, channel capacities, and its
neighbors’ height. Furthermore, each node maintains routing information and its
own height. Then, every node u with positive excess tries to push its excess along
an unsaturated outgoing edge to a neighbor v of smaller height. A locked-push
can only be committed, if v acknowledges u that it is has indeed a smaller height.
Alternatively, v can reject the locked-push and respond with its actual height.
This way, u learns its neighbors’ height and can trigger relabel, if necessary.
After relabeling, u sends height updates to its neighbors. The source and sink
node can determine the termination of the algorithm and communicate the result
to finalize route selection. The payment flow, i.e., the selected multi path, is
secured with Hashed Timelock Contracts (HTLC) in the same way as a single
path. Therefore, the payment flow can be atomically resolved.

5 Evaluation

In order to evaluate our approach, we constructed a Watts-Strogatz graph with
B = 0.5, n =200, and a node degree of 10. Channel capacities were generated by
uniform random sampling from [0, 10]. In the following, we compare the sequen-
tial (seq., cf. Sec. 3) and the concurrent (conc., cf. Sec. 4) algorithm. Moreover,
we contrast our results with the capabilities of single-path approaches.

First, we are interested in the number of flows that each algorithm can handle.
To this end, we sampled the transaction volume from [0, 20] and calculated the
mean success rate over 10 runs, i.e., the share of successfully found flows. The
results, shown on the left of Figure 4, indicate that both algorithms are able to
find a large number of flows (relative to the network size). At some point, when
network capacities are exhausted, the success rate eventually drops. Single-path
approaches, in contrast, achieve in the best case a 0.5 success rate (cf. horizontal
line in the plot): while the maximum channel capacity is 10, on average every
second transaction volume is in (10, 20] and therefore not feasible with a single
path. Effectively, this reduces the utilization of the available capacities by 50%.



Success Rate
Success Rate

90 92 g4 96 98 9l0 gl2
No. of Flows TX. Volume

Fig. 4. Flow Network Simulation: mean success rate over 10 runs, dependant on the
number of flows and transaction volume. Error bars show the 95% confidence interval.

Second, we are interested in the transaction volume that we can achieve by
aggregating multiple paths. To this end, we set the number of flows to 128,
increased the transaction volume, and calculated the mean success rate. The
results, shown on the right of Figure 4, suggest that again both variations are able
to route relatively large volumes. In more than 50% of the cases, the concurrent
algorithm still manages to process all 128 flows for up to a volume of 15 each. This
is especially noteworthy, as a single-path approach would not be able to route a
single payment with a volume exceeding 10 in our scenario (cf. vertical line in
the plot). These first results illustrate that our approach is superior compared
to single-path route selection schemes.

6 Conclusion

In this paper, we argued that currently deployed single-path routing schemes
for payment channel networks suffer from a number of drawbacks. Most promi-
nently, they utilize the available capacities in the network inefficiently. Eventu-
ally, single-path routes will lead to on-chain transactions as a fallback strategy
and therefore subvert the idea of payment channels.

We addressed this issue by presenting a novel perspective on route selection
that considers payment channel networks as flow networks. Flow network algo-
rithms utilize the available capacity by aggregating multiple paths, which allow
to route transactions of larger volume. We proposed an extended push-relabel
algorithm that finds flows based on local knowledge. Thus, it is suitable for the
concurrent and distributed scenario encountered in payment channel networks.
We proved the validity of the flows and showed that our algorithm is indeed able
to satisfy demands, where single-path based approaches fail.



References

11.

. Awerbuch, B., Leighton, T.: Improved approximation algorithms for the multi-

commodity flow problem and local competitive routing in dynamic networks. In:
STOC ’94: Proceedings of the 26th Annual ACM Symposium on Theory of Com-
puting. pp. 487-496 (May 1994)

Croman, K., Decker, C., Eyal, 1., Gencer, A.E., Juels, A., Kosba, A.E., Miller, A.,
Saxena, P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.: On scaling decentral-
ized blockchains - (A position paper). In: BITCOIN ’16: Proceedings of the 3nd
Workshop on Bitcoin Research. pp. 106-125 (Feb 2016)

Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: SSS '15: Proceedings of the 17th International
Symposium on Stabilization, Safety, and Security of Distributed Systems. pp. 3—-18
(Aug 2015)

Elements Project: c-lightning, https://github.com/ElementsProject/
lightning, accessed on 28.7.2017.

Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921-940 (1988)

Lightning Network: In-progress specifications, https://github.com/
lightningnetwork/lightning-rfc, accessed on 14.6.2017.

Lightning Network: Ind, https://github.com/lightningnetwork/1lnd, accessed
on 28.7.2017.

MIT Digital Currency Initiative: lit, https://github.com/mit-dci/1lit, accessed
on 28.7.2017.

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-

ments (Jan 2016)
Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: An
approach to routing in lightning network (2016)



