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Abstract
Strain gradient continuum damage modelling has been applied to quasistatic brittle fracture within an approach based on a
maximum energy-release rate principle. The model was implemented numerically, making use of the FEniCS open-source
library. The considered model introduces non-locality by taking into account the strain gradient in the deformation
energy. This allows for stable computations of crack propagation in differently notched samples. The model can take
wedges into account, so that fracture onset can occur at wedges. Owing to the absence of a damage gradient term in
the dissipated energy, the normal part of the damage gradient is not constrained on boundaries. Thus, non-orthogonal
and non-parallel intersections between cracks and boundaries can be observed.
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1. Introduction
Continuum mechanics has been widely used to study damage phenomena [1–13]. In continuum damage models,
the studied system is described not only by a displacement field, but also by a damage field. Thus, there is one

Corresponding author:
H Yang, Technische Universität Berlin, Berlin, Germany.
Email: hua.yang@campus.tu-berlin.de



326 Mathematics and Mechanics of Solids 26(3)

more independent variable when compared with the usual elasticity models. In this work, such a damage field
is considered, to take the local deterioration of the material into account. Furthermore, healing mechanisms are
not considered, so that damage is assumed to be non-decreasing in time.

1.1. Localization phenomena in damage mechanics

Continuum damage models usually involve localization phenomena [14–17]: the stress and the strain concen-
trate in small regions. This phenomenon must be taken into account by the numerical model to avoid instability
or mesh-dependence. The size of such regions of concentration can be considered as a length scale charac-
terizing the studied material. As such, it must also be acknowledged by the mathematical model. This is the
aim of non-local damage models: the length scale is introduced in order to control how much the deformation
varies in space. In a variational framework, this means regularizing the solution by penalizing the candidate
displacements that are too localized.

For example, in damage gradient models, the elastic strain energy depends on the gradient of the damage
field, allowing one to deal with localization and mesh-dependence. In this work, the non-locality is based on the
dependence of the deformation energy on strain gradient instead of damage gradient [4].

Damage may also be considered as a microstructure having macroscopic effects. Materials showing such
structures have at least been known since the nineteenth century [18–21] and were widely studied during the
last decades [22–28]. In particular, strain gradient models have been extensively applied to microstructured
materials [29–40].

1.2. Maximum energy-release principle to model damaging phenomena

In this work, the mathematical problem to be solved is derived from the maximum energy-release principle,
which is a variational inequality [41, 42] aimed at modelling dissipative systems, and generalizing the least
action principle. Using a variational approach has many advantages [43], one being that it is possible to derive
the boundary conditions, ensuring well-posedness of the problem [44, 45]. Furthermore, the weak form can be
simply recovered [46–51], this being convenient if the problem is solved using a numerical method based on
weak forms, such as finite-element methods [52–70]. The maximum energy-release principle used in this work
requires the specification of the energy released in damaging [4, 71, 72].

1.3. Strain gradient damage model for quasistatic brittle fracture

The model studied in this work considers an isotropic two-dimensional continuum, showing geometrically
non-linear elastic behaviour, and undergoing quasistatic brittle fracture. The kinematic description relies on
a displacement and a damage field, where the latter is assumed to be non-decreasing in time. The application
of the maximum energy-release principle yields both balance equations and Karush–Kuhn–Tucker conditions.
The considered energy terms include a dissipated energy depending on damage (but not on its gradient), and
a deformation energy depending on both strain and strain gradient. Moreover, the deformation energy involves
elastic coefficients, which are assumed to depend on the local damage.

1.4. Plan of the work

The paper is structured as follows. In Section 2, the mathematical model is presented. The frameworks of
elasticity and damage are introduced, followed by the variational derivation of the problem to be solved. The
numerical model is then presented in Section 3 by explaining the solution algorithm and the software imple-
mentation. Numerical results are given in Section 4 for two applications on notched samples. Finally, Section 5
presents concluding remarks.

2. Strain gradient modelling of brittle fracture
The reference configuration of the studied two-dimensional body is represented by an open set � ⊂ R

2 and its
boundary ∂�. A Cartesian coordinate system (O, (e1, e2)) is defined, in which any generic point X ∈ � has the
coordinates (X1, X2).
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Using a Lagrangian framework, the kinematics of the model, as well as the different energy quantities that
are used to derive the equations of the problem from the maximum energy-release principle, will be defined in
this section.

2.1. Elasticity framework

The modelling of an undamaged elastic body is described first. Damage effects are left to Subsection 2.2.

2.1.1. Kinematics – first independent variable. The placement χ : � → R
2 is defined to be the map that relates to

any point X ∈ � to its current position χ (X ). Thus, χ (�) is the current configuration. The displacement is then
defined as u(X ) = χ (X ) − X . It is the first independent variable of the problem.

At this point, the gradient of placement F = ∇χ with respect to the space variable in the reference configu-
ration, as well as the gradient of displacement ∇u = F − I , shall be introduced.1 The local deformation of the
body is described by the Green–Lagrange strain tensor G = (FTF − I)/2. As in brittle fracture only small zones
in the proximity of the crack tip undergo large deformations, the so-called small strain hypothesis is generally
accepted, where quadratic terms in ∇u are neglected, i.e. G = ε = (∇u + ∇uT)/2. Henceforth, we will make
use of such an assumption.

2.1.2. Strain gradient internal energy. The studied system is assumed to be isotropically elastic. Its deformation
energy (when undamaged, i.e. its recoverable elastic energy) Wdef is defined as the integration in space of a
quadratic form of the strain and its gradient:

Wdef =
∫

�

(
1

2
εijCijklεkl + 1

2
εij,kDijklmnεlm,n

)
dA (1)

with

Cijkl = c1δijδkl + c2(δikδjl + δilδjk),

Dijklmn = c3(δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm) + c4δijδknδml

+ c5(δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn) + c6(δilδjmδkn + δimδjlδkn)

+ c7(δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl) . (2)

Note that, when dealing with 2D isotropic materials, there are only four independent parameters out of the five
parameters c3, c4, c5, c6, c7 in Dijklmn, see a discussion in [73]. The first-gradient coefficients (Lamé coefficients)
can be expressed by the Young modulus E and Poisson ratio ν:

c1 = Eν

(1 + ν)(1 − 2ν)
, c2 = E

2(1 + ν)
. (3)

2.1.3. Exterior work. The considered external effects are modelled as the works of a bulk force b, a bulk double
force m per unit area, a contact force t and a contact double force s per unit length:

Wext =
∫

�

(
biui + mijui,j

)
dA +

∫
∂�

(
tiui + sijui,j

)
dl (4)

2.2. Damage modelling

It will now be shown how damage is taken into account in both the deformation and dissipation occurring in the
system. More details about the chosen model can be found in [4].

2.2.1. Kinematics – second independent variable. Damage is modelled as a scalar field ω : � → [0, 1], which is
the second independent variable of the problem. Although the elastic model takes into account both the first
and second gradients of deformation, we assume in this work that there is only one damage field, instead of
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considering one damage field acting on first-gradient deformation mechanisms and another field for the second
gradient. This assumption is made first for simplification, and shall be investigated in future works.

For every X ∈ �, ω(X ) represents the local damage state of the particle that was at point X in the reference
configuration. The damage values go from 0, for a non-damaged material, to 1, for a totally damaged material.
Since no healing mechanism is considered, the damage field is assumed to be non-decreasing in time.

2.2.2. Apparent stiffness loss and energy dissipation. The damage field has two effects on the energy of the system.
First, every damaged area undergoes an apparent loss of stiffness. This phenomenon is taken into account by
assuming that the stiffness coefficients Cijkl and Dijklmn depend on the local damage. Thus, the deformation
energy depends not only on the strain and strain gradient, but also on the damage field. Second, the energy lost
in damaging phenomena is also taken into account as a dissipation term Wdiss, which is added to the deformation
energy as part of the internal energy Wint = Wdef + Wdiss.

Deformation energy for the damaged material. As stated, the effectiveness of the stiffness coefficients Cijkl

and Dijklmn must correlate with the damage field ω. Two parameters, n, m ∈] − ∞, 1], are introduced for this
purpose, as follows:

Wint =
∫

�

(
(1 − mω)

1

2
εijCijklεkl + (1 − nω)

1

2
εij,kDijklmnεlm,n

)
dA. (5)

The n and m parameters allow one to model the behaviour of the damaged material. More specifically:

• If n, m > 0, then the more damaged the material is, the more its stiffness decreases locally. For the limit
value n = 1 or m = 1, the corresponding stiffness vanishes when the material is locally totally damaged.

• If n, m < 0, then an increasing damage also increases the local stiffness. This may happen, for example,
when the damage changes the microstructure of the material, resulting in an effective stiffening.

One should note that the problem is no longer well-posed for the limit value n = 1 or m = 1, since the
corresponding stiffnesses vanish. It is thus preferable to stop at a lower value, for example, n = 0.999 and
m = 0.999.

Dissipated energy. The dissipated energy is modelled by a functional Wdiss. It involves two parameters
K1, K2 ∈ R+. The former represents a threshold ruling the appearance and increase of damage, while the
latter models the resistance of the material to damaging phenomena:

Wdiss =
∫

�

(
K1ω + 1

2
K2ω

2

)
dA. (6)

It is added to the internal energy Wint, along with the deformation term:

Wint = Wdef + Wdiss

=
∫

�

(
(1 − mω)

1

2
εijCijklεkl + (1 − nω)

1

2
εij,kDijklmnεlm,n

)
dA +

∫
�

(
K1ω + 1

2
K2ω

2

)
dA. (7)

2.3. Discrete-time maximum energy-release principle

So far, the model has been presented by considering a reference configuration � and one current configuration
χ (�). The load parameter λ ∈ R shall now be introduced, so that one may consider a sequence of configurations
χλ(�).

2.3.1. Potential energy. At this point, the total potential energy Eλ associated to the configuration χλ(�) of the
system, defined for every admissible motion û and non-decreasing admissible damage ω̂, is introduced as:

Eλ(û, ω̂) = Wλ
int(ε̂ij, ε̂ij,k , ω̂) − Wλ

ext(û, ∇û)

= Wλ
def(ε̂ij, ε̂ij,k , ω̂) + Wλ

diss(ω̂) − Wλ
ext(û, ∇û). (8)
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Under the hypothesis of a quasistatic evolution, the kinetic energy is negligible with respect to that potential
energy. By applying the maximum energy-release principle, similarly to [4], every solution (uλ, ωλ) has to
satisfy2

δEλ
(
uλ, ωλ

) (

uλ, 
ωλ

)
� δEλ

(
uλ, ωλ

)
(δu, δω) (9)

for all admissible displacement and damage variations, δu and δω � 0, respectively, with 
uλ = uλ − uλ−
λ

and 
ωλ = ωλ − ωλ−
λ � 0, 
λ → 0 being the step between λ and the previous load parameter.

2.3.2. Equilibrium for a fixed damage field. For a null damage variation δω = 0, equation (9) yields the stationarity
condition usually met for undamaged elastic behaviour,

δEλ(uλ, ωλ)(δu, 0) = 0. (10)

This is on simplifying the notation,
δWint − δWext = 0, (11)

where the variation of internal energy reads

δWint = ∂Wint

∂εij
δεij + ∂Wint

∂εij,k
δεij,k + ∂Wint

∂ω
δω. (12)

Hence, the stationarity condition can be rewritten as

∂Wint

∂εij
δεij + ∂Wint

∂εij,k
δεij,k − δWext + ∂Wint

∂ω
δω = 0, (13)

i.e.,

∫
�

(
(1 − mω)εijCijklδεkl + (1 − nω)εij,kDijklmnδεlm,n

)
dA −

∫
�

(
biδui + mijδui,j

)
dA

−
∫

∂�

(
tiδui + sijδui,j

)
dl +

∫
�

(
−m

2
εijCijklεklδω − n

2
εij,kDijklmnεlm,nδω + K1δω + K2ωδω

)
dA = 0 . (14)

2.3.3. Karush–Kuhn–Tucker conditions for a fixed displacement field. For a null displacement variation, δu = 0, one can
derive the Karush–Kuhn–Tucker conditions from equation (9) [4], namely:⎧⎪⎪⎨

⎪⎪⎩
ωλ =

(m

2
εijCijklεkl + n

2
εij,kDijklmnεlm,n − K1

)
/K2,

or

ωλ = ωλ−1.

3. Numerical modelling: alternative minimization algorithm
The model presented previously showed a separation between the elastic behaviour for a fixed damage field, on
the one hand, and the evolution of damage for a fixed displacement field, on the other hand. This distinction is
exploited to implement the studied model numerically through a version of an alternative minimization algo-
rithm (also presented in [4]). In this algorithm, two minimization problems are solved, one after the other, for
each load parameter λ.

• First, while keeping the damage field ωλ−
λ of the previous step, the new displacement field uλ is
computed as the solution of the minimization of the potential energy,

E(uλ, ωλ−
λ) = min
{E(û, ωλ−
λ), û admissible displacement

}
. (15)

A standard mixed finite-element method for strain gradient mechanics has been employed [74–77], thus
introducing extra independent variables during the discretization of the weak form. The extra independent
variables were constrained using Lagrange multipliers.
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Figure 1. Flowchart for the numerical implementation. Here, the load parameter is denoted by λ. The quantity λh denotes the time
horizon.

• Second, the new damage field ωλ is computed by checking the Karush–Kuhn–Tucker conditions with the
previously computed displacement field uλ,

ωλ = max
[
min

(
ω(uλ), 1

)
, ωλ−
λ

]
, (16)

where ω(uλ) is the damage threshold value,

ω(uλ) =
(m

2
εijCijklεkl + n

2
εij,kDijklmnεlm,n − K1

)
/K2. (17)

In the undamaged state, this condition means that two events may happen. First, the deformation energy
may locally exceed the damage initiation level K1, in which case the local damage assumes the (non-zero)
difference value divided by K2. Second, the damage remains unchanged, thus being equal to zero.

This algorithm is summarized in Figure 1.

4. Numerical results
In what follows, numerical simulations of extension tests for two different samples will be presented. Both
samples have initial cracks implemented as an absence of matter (elements), outside of which the material is
initially undamaged (ω0 = 0).
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Figure 2. Geometry, boundary conditions and mesh for obliquely notched sample.

Table 1. Data used for numerical simulations.

Young modulus (GPa) Poisson ratio c3, c4, c5, c6, c7 (N) L (mm) W (mm) l (mm) w (mm) m, n

75 0.32 1 30 13 10 0.3 0.999

4.1. Case 1: oblique notch

4.1.1. Case 1: geometry and numerical data. The geometry is a rectangle (see Figure 2) of width W and length L, in
which emerges a straight notch. As one can see in the figure, the notch starts from the middle of the bottom side
with a 45◦ angle, has width w and length l.

The boundary conditions are fixed as follows:

• Left-hand side. Null horizontal displacement;
• Top. Null vertical displacement;
• Bottom. Free displacement;
• Right-hand side. Imposed displacement (extension).

It shall also be recalled that, in the considered model, it is meaningless to set boundary conditions for damage,
since the energy to be minimized does not involve a damage gradient. As a consequence, there is no boundary
term involving damage. This may also be seen in the numerical procedure, since the displacement field uλ is
computed by keeping the previous damage ωλ−
λ.

Numerically, the mesh is made of triangular elements. It is finer around the crack, and even more so in the
top-right of the sample, where fracture is expected to appear. Table 1 shows the values chosen for the parameters
in the simulations. Note that the parameters n and m have been chosen in such a way that, when the damage
field ω(X ) is equal to 1, a physically negligible, yet non-zero, amount of elastic energy is still stored at point
X of the continuum. This standard remedy is adopted with the aim of keeping the well-posedness of the elastic
problem during crack propagation, as mentioned before.

4.1.2. Case 1: results

Total displacement. The total displacement is plotted in Figure 3. The propagating crack is visible as a line
through which the displacement norm is discontinuous. The last picture shows the final step, when the crack
reaches the top side.

Damage. The propagation of the crack is more apparent when plotting the damage field (Figure 4). More
specifically, two interesting observations can be made:

• The width of the propagating crack is much smaller than the width of the initial notch.
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Figure 3. Case 1 – evolution of total displacement.

Figure 4. Case 1 – evolution of damage field.

• Consequently, it is clear that the crack appears at a wedge, and that its propagation is not orthogonal to the
sides of the notch.

Stress. The evolution of the three stress components is plotted in Figure 5. Once again, the propagation of the
crack is clearly apparent. Two interesting results are worth noticing:

• Every stress component is zero inside the propagating crack.
• Outside of the crack, the stress is much greater around the propagating crack tip than far from it.

4.2. Case 2: notch and hole

4.2.1. Case 2: geometry and numerical data. The geometry is again a rectangle (see Figure 6) of width W and length
L, but the initial cracks are different. Indeed, as can be seen in the figure, there are now:

• A horizontal notch starting from the left-hand side, of length l and width w;
• A hole of diameter 20 mm, whose centre is 28.5 mm from the right-hand side and 51 mm from the bottom.

Concerning the boundary conditions:

• Bottom. Null displacement;
• Lateral sides. Free displacement;
• Top. Imposed displacement (extension).

The mesh visible in Figure 6 is much finer around the initial notches, where cracks are expected to propagate.
The numerical values are given in Table 2.
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Figure 5. Case 1 – evolution of stress components.

Table 2. Data used for numerical simulations.

Young modulus (GPa) Poisson ratio c3, c4, c5, c6, c7 (N) L (mm) W (mm) l (mm) w (mm) m, n

75 0.32 1 120 65 10 1 0.999

4.2.2. Case 2: results

Damage and total displacement. The evolution of both damage and displacement fields are plotted in Figure
6, where a crack is propagating from the left-hand side notch towards the central hole. As in Case 1:

• The width of the propagating crack is small enough to see that it starts from a wedge.
• In the final step, the crack clearly reaches the central hole non-orthogonally.

Stress. The stress components are plotted in Figure 8. As in the previous case, the stress is concentrated
around the propagating crack tip, while being vanishing within the crack.
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Figure 6. Geometry, boundary conditions and mesh for notched sample with hole.

field.

Figure 7. Case 2 – evolution of damage and total displacement.

4.3. Interpretation: advantages of the considered model

The numerical results give interesting insight into how damage and stress fields behave in the considered model.

4.3.1. Stress results. There were no numerical instabilities, owing to the concentration of stress around the propa-
gating crack: it was always significantly large close to the crack tip, while being vanishing inside the crack itself.
This is due to the parameters m and n in equation 5, which had values close to 1 in the presented applications
(see Tables 1 and 2). The rationale behind this choice is that no elastic energy should be stored within a crack.

4.3.2. Crack propagation. The numerical results show that the width of the propagating crack is much smaller
than the initial notches. This can be clearly observed in Figure 9. Kinking angles of the cracks departing from
the notch tip are, for the first and second tests, approximately 80◦ and 25◦, respectively. A comparison with
predictions of the kinking angles made using other means, such as criteria based on stress intensity factors [78,
79], would potentially be beneficial. However, note that these criteria are strictly valid for sharp cracks under
external load and not for notches. Thus, they should be compared when the internal phase-field approximation
length introduced to approximate the crack is greater than the width of the initial notch, i.e., when fracture onset
within the notch is not resolved, as is usually done in damage gradient phase-field theories. A detailed analysis
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Figure 8. Case 2 – evolution of stress components.

is therefore left to future research. However, it is worth remarking here that the dependence of the deformation
energy on the strain gradient enables one to go further in the integration by parts when deriving the weak
form for the elastic problem, i.e., up to point contributions in the two-dimensional case. Consequently, cracks
can start at wedges, which is not possible in damage gradient theories if the second gradient of the damage is
not considered [45, 80, 81]. Note that, in damage gradient phase-field theories,3 essential boundary conditions
on the damage field, which are not usually considered as a datum in fracture problems, or natural boundary
conditions, enforcing the normal damage gradient to vanish, should be given. The latter condition implies that
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Figure 9. A close look at the crack near the notches.

cracks must intersect boundaries either orthogonally or in parallel, which is rather limiting in the description
of some real cracking phenomena. When damage gradient theories are applied, the regularization length is
chosen to be sufficiently large that the phase-field approximation of the propagating crack can “surround” the
initial notch. In this way, there is no more any constraint in terms of, e.g., kinking angle. Clearly, this remedy
prevents one from taking into account the effect of the notch tip geometry on the crack propagation. Such an
effect could be non-negligible when the ratio between the notch width and the total size of the specimen is
appreciably greater than zero. Finally, recall that in the second test the propagating crack reaches the central
hole non-orthogonally. As the aim is to resolve the intersection of the propagating crack with the central hole,
the regularization length introduced by the phase-field approach should be clearly smaller than the diameter
of the hole. In a damage gradient approach, the crack would intersect the central hole (as well as any other
boundary resolved by the regularization length) orthogonally (see, e.g., [82–87]).

5. Concluding remarks

5.1. Work done

In this work, quasistatic brittle fracture of a strain gradient elastic continuum has been modelled and numerically
simulated using the finite-element method through utilization of the FEniCS library. The displacement field and
the damage field were considered as the independent variables of the problem. Several energy functionals were
defined. First, a deformation energy was defined depending on strain, strain gradient and damage fields. The
involved effective stiffness coefficients were assumed to depend on damage. Second, the energy dissipated by
damage was taken into account through a dissipative term depending on the damage field. Finally, the interac-
tion with the external world was modelled using an external work term. Then, the solution of the weak form
elasticity problem, for fixed damage, and of the Karush–Kuhn–Tucker conditions, obtained as a result of the
maximum energy-release rate principle, has been addressed, aimed at finding the evolution of the two indepen-
dent variables. Set up in this way, the problem was solved using the alternate minimization algorithm. Every
iteration had two steps. First, the displacement field at equilibrium was computed while the damage field of the
previous iteration was retained. Second, the damage field was updated by applying the Karush–Kuhn–Tucker
conditions. The displacement field was computed by means of a finite-element method mixed formulation,
which was implemented numerically using the FEniCS library. Simulation results have then been presented for
two test cases on notched samples.

5.2. Results

The main outcomes of this work are the implementation itself, which is to, the authors’ best knowledge, the first
computational implementation by an open-source library of the strain gradient energy approach to phase-field
brittle fracture, and the validation of results obtained in [4] using commercial software. Results obtained in the
two test cases that were considered, addressing crack onset and propagation from an initial notch, hint at the
fact that using strain gradient modelling has many advantages, as well as in terms of physical accuracy, over
existing approaches, which do not include strain gradient effects:

• There is no instability when computing the stress, and the resulting fields vanish within the crack, while
being large around its tip and very much smaller far from it.

• Crack onset can be resolved within the notches, i.e., cracks do not necessarily have to surround the notch
tip to give realistic results, and cracks can depart from notch wedges.

• Cracks can intersect boundaries non-orthogonally.
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Thanks to the highly customizable computational platform that has been developed, it is possible to envision for
the future the following extensions of this work:

• Passing from a mixed formulation to a non-mixed one by, e.g., isogeometric analysis;
• Implementing tip-following adaptive meshing, aimed at increasing the computational efficiency;
• Addressing dynamic analyses for studying crack propagation velocity, crack branching, etc.;
• Addressing anisotropic damaging;
• Exploiting strain splits, aimed at being able to differentiate (local) damage occurring in extension from

that occurring in compression, or damage occurring in dilation from that occurring in shearing;
• Addressing ductile fracture;
• Running three-dimensional analyses.
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Notes

1. Here, I may be represented by the identity matrix in the previously defined Cartesian basis.
2. Here δE(u, ω)(δu, δω) denotes the Gateaux derivative of E at (u, ω) along the direction (δu, δω).
3. A single damage variable shall be considered, to better elucidate the question.
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