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Abstract

In this dissertation, a discrete control approach is introduced and defined as
Generalized Feedback Control (GFC). Traditionally, feedback control is associ-
ated with a control signal being computed proportionally to the error between
the achieved response of the plant and the desired response. A summation point
providing the difference between both becomes a central element in the tradi-
tional paradigm. Constraining the feedback to a pure subtraction is essential
for the analysis of the control system by means of linear system theory.

The Generalized Feedback Control approach does not restrict the processing
of feedback to a functional processing but to algorithms. Two essential types
of feedback are identified: motivation matching and circumstance cognition.
A geometric-dynamic planning unit processes the plant’s state and interferes
it with a short term motivation. As a result, it delivers a set of parameters
specifying the nominal behavior for the following control interval, called gd-
plan. This gd-plan is then passed to a so called plan-to-action mapper. This
observes the plant’s state in order to determine the control parameters to achieve
the gd-plan for the given circumstances.

The depart from the summation point means at the same time a depart from
classical methods of analysis to test the reliability/stability of the controller.
This monography introduces an algorithmic approach to test for the reliability
of the controller: the criteria containability. It is based on the idea to determine
the ability to stay inside an admissible domain of system states.

A mathematical modeling of the short term motivation requires in depth
consideration. Therefore, an integrated mathematical approach to derive one
distinct preferred gd-plan from a set of preferences on the set of possible gd-
plans is introduced. The procedure is then defined as the method of target and
limit maps.

In order to clarify introduced concepts and in order to show its utility, the
approach is applied to the problem of combined lateral and longitudinal control
of a vehicle at limit handling conditions.
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Nomenclature

Symbols in this section are divided into latin letters, greek letters and functions.
A derivative of a variable with respect to time is expressed by a dot, e.g. ẋ =
d
d tx. A derivative of a variable with respect to distance is indicated by a prime,

e.g. κ′ = d
d sκ.

Latin Letters

A Domain of admissible system states.

Ac Domain of inadmissible system states.

Agd Domain of admissible gd-plans.

Am Domain of manageable system states.

As Domain of safe target system states.

B Width of the vehicle.

bgd Geometric-dynamic behavior of the plant during one control interval.

cp Control parameters.

D∗
∞ Domain that envelops D∞.

D∞ Domain that envelops all dilemma domains Dk.

Dk Dilemma domain of k-th order.

Fr Force related to air drag.

Fp Propulsive force.

Fs,f Side force on the front wheel.

Fs,r Side force on the rear wheel.

m Mass of the vehicle.

p Parameterization index.
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Pgd Space of gd-plans.

pgd GD-Plan. Describes nominal behavior over the subsequent control interval.

p∗ State dependent input parameters for control parameter computation inside
the plan-to-action mapper.

p̃ Fixed input parameters for circumstance cognition inside the plan-to-action
mapper.

< Set of real numbers.

~rf , ~rr Vector from center of gravity to center of front and rear axles.

s State of the plant. Note, that local to some sections this index can be used
to indicate a geometric length.

t Time.

Tc Length of control interval. Time between two control impulses.

Ts Length of the shaping function for control impulses.

v Velocity of the vehicle.

~v Velocity vector in the center of gravity.

~vf , ~vr Velocity vectors in front and rear.

~x Position of the vehicle’s center of gravity.

xcg , ycg X- and y-coordinates of the vehicle’s c.g.

ÿ Lateral acceleration in the center of gravity.

ÿmax,course Maximum lateral acceleration limit for considerations based on cur-
vature profile of the nominal course.

ÿmax,curv Maximum lateral acceleration limit for considerations of short term
curvature profile.

ÿmax,nestle Maximum lateral acceleration limit for Nestle Curves.

ÿmax Absolute value of maximum lateral acceleration limit.
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Chapter 1

Introduction

Control, that is modifying the environment corresponding to a specific motiva-
tion1 is an essential characteristic attributed to living beings. It is so essential
that enhancing the ability to influence the environment has become a motiva-
tion on its own. For this reason tools such as hammers and flint stones were
developed. Humankind, though, came up with a type of tools different from
tools developed by any other species: tools that perform control autonomously.
As an example for an early control system one may consider the greek Ktebios’
float regulator for a water clock [Mayr, 1971]. A cornerstone in control systems
marks the book ’Pneunematica’, written by Heron of Alexandria in the first
century C.E. [Mayr, 1970]. A cornerstone in the industrial age was set 1769
by James Watt with his flyball governor to control the speed of a steam en-
gine. In the nineteenth century, first sophisticated mathematical formulations
on control systems were accomplished by Maxwell [Maxwell, 1868] and Vyshne-
gradskii [Vyshnegradskii, 1877]. With advances made in mathematics, physics
and computational sciences, artificial control systems gain more and more au-
tonomy and flexibility. The robotic hand developed at MIT [Mason and Salis-
bury, 1985, Grupen and Coelho, 2000] and developments towards autonomous
walking robots [Buss et al., 2003,Menzel and D’Aluiso, 2000] demonstrate the
possibilities of todays highly advanced control systems.

Control systems are usually divided into open-loop and closed-loop systems
[Bode, 1964]. An open-loop system does not receive any feedback from the en-
vironment while it attempts to set control parameters. A closed-loop, however,
perceives the plant’s state and can observe the difference to a desired output.
Animals in nature usually perform closed-loop control since they see, hear, smell
or grope the consequences of their actions2.

Technically, closed-loop systems are more complex, since they require addi-

1A detailed definition of motivation is given later in section 2.2.
2However, animals not always process the received information. An interesting example is

the dung beetle applying a dung ball to plug its nest. When removing its dung ball en route,
the dung beetle keeps pantomiming plugging its nest with it, never noticing that something
is missing [Hanski and Cambefort, 1991].

1



2 CHAPTER 1. INTRODUCTION

tional components such as sensors and filters. Moreover, a closed-loop control
system is a recursive system and therefore potentially chaotic3, i.e. it may show
unpredictable and therefore potentially unstable behavior. However, the advan-
tages of a closed-loop system generously outweigh these disadvantages [Black,
1977, Newton et al., 1957]. Since the plant is under permanent observation,
closed-loop systems can compensate for disturbance signals and variation of pa-
rameters of the plant. For the same reason, they facilitate an adaption of the
transient response to design specifications. After the transient response has de-
cayed, a so called steady-state error may occur. It is easier to be compensated
when feedback is provided.

A traditional closed-loop system using linear systems is shown in figure 1.1.
The input to the system is a nominal value R that is pre-filtered by Gp. The
plant’s state is filtered through Gr and the difference of both results is passed
to a linear system Gc that produces the control parameters for the plant. A
summation point is the essential element to consider a nominal value in relation
to the actual plant’s state.

PSfrag replacements

input

R
output

feedback

Y
Gp

Gr

Gc plant

point
summation

Figure 1.1: Structural diagram of a closed-loop system

The advantage of a system representation as in figure 1.1 is that its behavior
can be investigated efficiently by means of the Laplace transform [Sarachik,
1997]. To compute the control signal based on the difference between an actual
value and a nominal value is very intuitive and at the same time facilitates the
mathematical handling of the problem. One disadvantage of a controller such
as in figure 1.1 is that the large majority of physical systems are not linear.

Linearizations can be accomplished through limiting the range of states
around an operating point [Kadiyala, 1993]. The major restriction focused on
in this dissertation is the functional processing of feedback. The following text
steps away from an understanding of a control system in terms of signals and
functions towards an understanding in terms of data and algorithms.

3Mathematically, a chaotic system is defined as an iterated map that is sensitive to its
initial conditions [Hilborn, 1993,Mandelbrot, 1988].



1.1. GENERALIZED FEEDBACK CONTROL 3

1.1 Generalized Feedback Control

Generalized Feedback Control tries to generalize certain concepts of control
towards its original meaning as mentioned in the first section. The first, central
hypothesis in this approach is that the observation of the plant serves basically
two purposes as can be seen in figure 1.2:

Motivation Matching: The control system has to relate the system’s state
to its motivations (i.e. nominal values or design specifications). It has to
have an idea of how the plant could transit into a state that is consistent
with its motivations.

Circumstance Cognition: The mapping from control parameters to the plant’s
output depends on its current state. In order to set the appropriate con-
trol parameters, the current state of the plant (i.e. the ’circumstances’)
has to be known.

motivation
matching

circumstance
cognition

short term
motivation

knowledge
about plant

PSfrag replacements
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Gr
Gc

plant

point
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output

feedback
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Gp
Gr
Gc

plant

point

summation

Figure 1.2: Two types of feedback in Generalized Feedback Control: motivation
matching and circumstance cognition.

The second hypothesis is that these two types of feedback can be treated in two
separate units inside the control system. The third hypothesis is that they are
sequential. The forth hypothesis is that whenever a control signal is computed
both types of feedback are processed.

The input to this time discrete controller is a short term motivation. In
vehicle control the short term motivation can be, for example, to drive as close
as possible to the nominal course, to reduce the angular distance to the nominal
course and not to exceed a maximum lateral acceleration. This input directly
includes what would be called the design specifications in classical control sys-
tems [Graham and Lathrop, 1953,Close and Frederick, 1993]. The output of the
plant can be measured by any means: state parameters of the plant, trajectories,
velocity profiles etc.

The present dissertation uses the idea of two types of feedback processing
to develop an algorithmic control structure based on two basic units for moti-
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vation matching and circumstance cognition. The application of this structure
in vehicle control emphasizes its abilities as an automated control system.

1.2 Overview and Outline

The chapters in this dissertation are lined up in a way, so that they reflect the
process of building a controller based on Generalized Feedback Control. The
flow of discussion is as follows:

1. A definition of the nominal behavior for one control interval has to be
defined. Therefore, section 2 introduces the concept of a gd-plan. This
concept is essential for the separation of the controller into two units:
plan-to-action mapper and gd-plan construction unit.

2. The plan-to-action mapper is identified as the unit for circumstance cog-
nition. It has the task to find appropriate control parameters to achieve
a given nominal behavior in a given state of the plant. The development
and application of a plan-to-action mapper is discussed in chapter 3.

3. A mathematical description for the short term motivation has to be found,
before one can discuss the interaction of motivation with the observed
plant’s state. A methodology to quantitatively describe motivation based
on utility functions is introduced in chapter 4, called the method of target
and limit maps.

4. Being able to describe motivation in mathematical terms, chapter 5 de-
scribes the module handling the interaction between the short term mo-
tivation and the information perceived about the plant, i.e. motivation
matching. The result of this interaction is the nominal behavior for the
next control interval, the gd-plan. Therefore, this module is called the
gd-plan construction unit.

5. When the gd-plan construction unit is build the controller is able to func-
tion. Its reliability, however, cannot be investigated by means of tradi-
tional stability measures, due to its rather algorithmic nature. Chapter 7
introduces a reliability criteria based on the idea of not leaving an admis-
sible domain of system states: the criteria of containability.

As practical reference in these chapters, the control of an automatically
guided vehicle offers a non-trivial problem. Step by step, it is described how to
build a path following system using the derived concepts. During the discussion
of step four, the performance of this controller with respect to precision and
speed can be observed.

The review of the historical background opens the appendices. Further, the
appendices describe the vehicle model being used for investigations and the
details of several mathematical derivations.



Chapter 2

The Geometric-Dynamic

Plan

The basic assumption of General Feedback Control is that the feedback from the
plant can be divided into two categories (section 1.1). The first type of feedback
is used for circumstance cognition in order to specify the exact mapping from
control parameters to the plant’s output for a given state. The second type of
feedback is used for motivation matching, i.e. to relate the current state of the
plant to a short term motivation.

Before control parameters can be determined, it must be specified what
behavior of the plant is to be achieved. A nominal behavior, though, can be
determined based on the relation between the short term motivation and the
current state of the plant. A description of the nominal behavior is therefore a
good candidate as an interface between the unit for circumstance cognition and
motivation matching. This is the central role of the ’gd-plan’, the geometric-
dynamic plan, indicating the nominal trajectories and velocity profiles of the
plant’s motion for the subsequent control interval. It is by this interface that
it is possible to treat circumstance cognition and motivation matching in two
separate, sequential units as shown in section 2.1.

The following sections discuss what a gd-plan represents and how it has to be
specified for a particular problem. The term ’episodic environment’, as discussed
in section 2.2 allows one to relate the gd-plan to a global design specification or
control goal. In section 2.3 it is discussed what requirements apply on a set of
physical parameters in order to represent a gd-plan.

2.1 Motivation Matching and Circumstance Cog-

nition

The gd-plan defines the interface between the two entities for circumstance
cognition and motivation matching. With this gd-plan the input and output of

5



6 CHAPTER 2. THE GEOMETRIC-DYNAMIC PLAN

two units can be distinctly defined as shown in figure 2.1. One unit has the task
to match the plant’s state with the short term motivation. It has to elaborate
an idea how the plant’s state could transit into a state more conform with its
motivation, i.e. it has to compute a gd-plan pgd. This nominal behavior for
the following control interval is the input to the unit that finds the appropriate
control parameters cp to accomplish the gd-plan correspondent to the current
state s of the plant. Congruously, the two entities called gd-plan construction
unit and plan-to-action mapper are defined as follows:

geometric−dynamic
plan construction

plan−to−action
mapper

PSfrag replacements

input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation
input
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output

feedback
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Gc

plant

point

summation

motivation
matching

circumstance
cognition

cppgd bgd

s
Plant

Figure 2.1: The concept of a gd-plan pgd allows the division of the control
process into gd-plan construction and plan-to-action mapping.

Geometric-dynamic plan construction: This unit uses information about
the plant’s state in order to relate it to its short term motivation. As
a result it computes short term plans for the system’s state transition
over the subsequent control interval. A geometric-dynamic planning unit
performs the mapping G(s)

G : s −→ pgd. (2.1)

where s is the plant’s state and pgd the plan for the system’s state tran-
sition over the subsequent control interval, i.e. the ’geometric-dynamic
plan’, or ’gd-plan’.

Plan-to-action mapping: A plan-to-action mapper has the task to compute
control parameters so that the plant performs the gd-plan pgd during the
following control interval. Information about the plant’s state is necessary
to specify the mapping from the gd-plan pgd to the control parameters cp.
A plan-to-action mapper P(s, pgd) performs the mapping

P : (s, pgd) −→ cp. (2.2)

where cp are the control parameters to be sent as input to the plant. The
function P(s, pgd) can be considered to incorporate knowledge about the
plant.

Correspondingly to the two concepts of feedback, motivation matching and cir-
cumstance cognition, the two control units incorporate concepts of motivation
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and knowledge about the system to be controlled. In the following subsection
it is discussed how the concept of compensation in classical control fits into the
scheme of Generalized Feedback Control.

2.1.1 Compensation

The main idea behind the summation point in classical control is compensation.
By this means, the control inputs are reinforced or attenuated correspondent
to the difference between nominal and achieved values. If a front wheel is
not inclined enough to achieve a certain curvature, it is intuitive to incline it
more correspondent to the deviation from the nominal curvature. Through this
mechanism the controller compensates for its inability to precisely match the
plant’s characteristics. Let the compensation process be represented by the
equation

i2 = i1 + c (on − o1), (2.3)

where i1 is a first ’guess’ of a control input to achieve the nominal output
on. The output o1 is the output actually achieved by i1. The difference between
nominal and achieved value (on−o1) is then multiplied by a compensation factor
c in order to reinforce or attenuate the control input. This process is shown in
figure 2.2.
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Now let the plan-to-action mapper

P(on) = P0(on) + cx on + dx. (2.4)

be the function that computes control input i1 in order to achieve the nominal
value on, where P0(on) is an arbitrary function that does the mapping. cx and
dx are two coefficients that exist but are zero for now. Thus, the first control
parameter i1 was produced by the function P0(on) only. In order to reduce the
error, the subsequent ’guess’ is made adding the compensation term as in (2.3)

i2 = i1 + c(on − o1) = P0(on) + c on − c o1 (2.5)

If i2 is to be computed by P(on), then the coefficients cx and dx have to be
adapted to

cx = c, and dx = −c o1. (2.6)

Accordingly, compensation in the classical sense performs a parameter modifi-
cation in the sense of Generalized Feedback Control. One type of modifications
has already been mentioned in Generalized Feedback Control: the circumstance
cognition. For circumstance cognition the mapping from the gd-plan to con-
trol parameters is adapted due to the current state of the plant. This relates
somehow to the adaption to an operating point in classical control.

The compensation discussed above, however, includes a modification of pa-
rameters due to an insufficient or erroneous description about the plant. It ap-
pears, for example, if the load transfer on the axles of a vehicle was neglected,
or the frictional coefficient of a tire is not correct. For the sake of clarity, let
this type of compensation be called parameter adaption or learning in the frame
of Generalized Feedback Control.

Parameter adaption requires a memory or a database inside the controller
so errors can be identified and corrected. As shown in figure 2.3 the gd-plan
pgd, the control parameters cp and the outcome s and bgd have to be stored in
a database in order to be able to adapt the parameters of the plan-to-action
mapper. As can be seen in the figure parameter adaption solely applies on
plan-to-action mapping.

Based on the difference between the desired and the actual geometric-dynamic
behaviors pgd and bgd, conclusions can be drawn on the need of adaption. Re-
lating cp to bgd allows to conclude on the parameter settings that have to be
made to reflect the plant’s system function. Where compensation in the sense of
circumstance cognition is extensively discussed in this dissertation, the subject
of parameter adaption or learning is left for further research.

2.2 The Episodic Environment

The plant’s state can be interpreted in terms of its geometric-dynamic behavior
bgd. Using bgd the task of a plan-to-action mapper can be defined as to min-
imize the error between bgd and and the desired geometric-dynamic plan pgd.
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However, a task description for a gd-plan construction unit requires more in
depth considerations. Before one can talk about motivation matching, the term
motivation has to be defined.

Definition: 1 (Motivation) In the frame of this dissertation, Motivation

is understood as a spur to action. A motivation assigns preferences to possible
changes of the environment state (e.g. specified as a gd-plan). The preferences
provided by Motivations are the bases for decision making.

Control problems are usually specified through global design specifications
on the time response of the system [Graham and Lathrop, 1953, Dorf, 1988].
Roughly speaking, the gd-plan construction unit has the task to develop a nom-
inal behavior so that the plant’s state develops as much as possible towards the
global control goals. An essential facilitation towards the determination of a
short term nominal behavior, i.e. a gd-plan, conform to long term control goals
is the concept of the episodic environment1. In an episodic environment, long
term goals can be projected onto isolated moments in time resulting in episodic
goals.

Example: Vehicle Control.

Global Goal: Driving a vehicle as fast and as precisely as possible around a
nominal course, i.e. continuous parameterized graph ~n(p).

Using this goal definition as a reference for one single moment in time
where control parameters have to be computed is extremely difficult.
When choosing a target point too close ahead on the nominal course, it
is crossed with an angle too high, and the vehicle might start oscillating.
With a faulty choice of acceleration the lateral acceleration may get too

1A definition of episodic environment can be found in [Russel and Norvig, 1995, section
2.4].
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high and the control system looses control over the vehicle. Many other
physical phenomena have to be handled at the same time. This is very
difficult as long as one always has to refer to the global goal.

Episodic Goals: The above control goal, however, can be reformulated for a
particular moment where control parameters can be set. It yields the
following definition of a situational driving motivation, as introduced in
this dissertation:

Definition: 2 (SDM) Given a nominal course, for a particular isolated
moment the Situational Driving Motivation SDM can be expressed
by four concurrently active goals:

• Minimize lateral deviation ∆d.

• Minimize deviation ∆ϑ between the angle of the velocity in the center
of gravity (c.g.) of the vehicle and the angle of the nominal course.

• Minimize lateral acceleration ÿ(t).

• Maximize velocity v.

These goals may have different priorities depending on the specific situa-
tion.

This particular redefinition of the driving task is carried through the whole
dissertation. Figure 2.4 illustrates the idea of the SDM2. Minimizing ∆d
targets nearness to the nominal course. Aiming to reduce the difference an-
gle ∆ϑ between the tangent of the trajectory and the angle of the nominal
course ensures that the car does not diverge from the course. Minimizing
the lateral acceleration results in smooth short term paths. Practically, it
restricts the amount of ’sensitivity’ of the vehicle’s input/output behavior,
which facilitates the control task. On the other hand, it is advantageous
to optimize velocity.

The situational driving motivation facilitates the task to define parameters
of a gd-plan, since it makes concrete assumptions about state variables in a
single isolated moment (displacement ∆d, lateral acceleration ÿ, etc.). It leads
towards a trajectory and velocity profile design defining the nominal behavior
of the plant for the following control interval.

In summary, it can be said that the reformulation of global control goals in
terms of episodic goals has two advantages. First of all, it allows to concretize a
short term motivation as a basis to build a gd-plan construction unit. Second,
it leads towards a parameterization of the nominal behavior, the gd-plan.

2The four goals are considered to be elementary pillars of a driving motivation. They
may result in different secondary goals dependent on the priority of each one of them. In
racing, for example, the goal to optimize velocity has a high priority. Therefore, one tries
to minimize the lateral acceleration only as much as to stay under the maximum lateral
acceleration ÿmax that the driver can handle. This way, the curvature profile of the nominal
course κnc(s) together with the maximum lateral acceleration ÿmax result in a velocity profile

vnc(s) =
√

ÿmax/κnc(s). The secondary goal derived for each particular situation is therefore:
’Keep velocity under velocity profile’.
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2.3 Definition of a GD-Plan

The purpose of a gd-plan is to specify the nominal behavior of system com-
ponents for one single control interval. Since, during the control interval no
further information can be passed from the gd-plan construction unit to the
plan-to-action mapper, physical parameters have to be chosen that are close to
constant. In general terms, a parameter γ̃ can only be part of a gd-plan, if it
can be optimized so that

dist
(

Γ[0,Tc], Γ̃[0,Tc]

)

< εγ , (2.7)

where dist(a, b) is a user defined distance measure for two graphs a and b.
Γ[0,Tc] is the graph of the ’real’ γ(t) over the control interval of length Tc. Γ̃[0,Tc]

is the graph over the control interval with a constant γ̃. εγ is a boundary
value that is appropriate for the particular problem. Second, the set of gd-plan
parameters should distinctly define all possible motions of the system for one
control interval. Using these two conditions a gd-plan can be defined as follows3.

Definition: 3 (GD-Plan) A GD-Plan is a set of parameters describing the
nominal behavior of a plant for one single control interval. The set of parameters
has to conform two conditions:

• Each one of the parameters in the GD-Plan is sufficiently constant over
the time span of one control interval.

3It is advantageous for a gd-plan to be as concise as possible, i.e. to describe the nominal
behavior with the fewest amount of parameters. In chapter 4 a methodology for gd-plan
construction is introduced that works best, when parameters for the geometry of the trajectory
are independent from parameters for the velocity profile. At this point these two requirements,
though, cannot be part of the general definition of a gd-plan.
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• The whole set of parameters distinctly describes the motion of all trajec-
tories and velocity profiles of system components to be controlled.

The following paragraphs show that a rate of curvature change κ′ and and
acceleration v̇ are suitable candidates to build a gd-plan in to control a vehicle.

Example Vehicle Control.

The motion of a ground vehicle under normal conditions can be
considered as a motion in a two dimensional plane. The center
of gravity moves along a trajectory, with a continuous curvature
profile4. At this point it is assumed, though, that the controller
can influence the derivative of the curvature over travel distance
κ′ = d/ds κ. Based on the instantaneous curvature κ0 and the rate
of curvature change κ′ a trajectory can be determined (see section
5.3). A possible distance measure for equation (2.7) is based on the
position of the vehicle at the end of the following control interval:

dist
(
{κ′(t)}t∈[0,Tc], {κ′}t∈[0,Tc]

)
≡ (2.8)

|~τ (κ(t), Tc) − ~τ (κ′ t, Tc) | , (2.9)

where ~τ (f(t), tend) delivers a vector indicating the position in space
that is reached at time tend with a curvature profile κ(t). The par-
ticular value of this function depends on the specific vehicle being
used. Experience in observing vehicle trajectories, though, makes it
plausible that the displacement between the two graphs are negligi-
ble for short control intervals Tc (i.e. in the range of 0 to 0.5 sec-
onds). Therefore, κ′ is a good candidate to determine the geometric
trajectory for short time periods. Considering the relatively slow
changes in velocity during driving, a similar argumentation leads to
the longitudinal acceleration v̇ as a suitable parameter to describe
the velocity profile. The nominal motion of the vehicle for one single
control interval can therefore be defined as:

pgd ≡ (κ′, v̇). (2.10)

Note, that the set of parameters in the gd-plan spans a multi-dimensional space
Pgd of possible gd-plans5. Physical aspects can directly be expressed using the
coordinates of this space. Consider a restriction of lateral acceleration on the
short term trajectory. As shown in a later section (equations (5.43) to (5.45),
page 80) the lateral acceleration with respect to time, can be computed as

ÿ(t) = (v + v̇ t)2
(

κ0 + κ′0

(

v +
1

2
v̇ Tc

)

t

)

. (2.11)

4As long as there is no impact with an obstacle in the environment.
5This may be reminiscent the signal space W in the Willem’s behavioral approach [Willems

and Polderman, 1997]. The space of possible gd-plans, here, corresponds the the space of
admissible trajectories, i.e. behavior B, in the Willem’s terminology. In the frame of this
dissertation, though, no considerations are made concerning the physical feasibility of the
whole space Pgd.
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The restriction of a maximum lateral acceleration ÿmax at the end of the control
interval Tc leads to a relation between κ′ and v̇

κ′min,max(v̇) =
± ÿmax

(v + v̇ Tc)2 Tc
− κ

Tc
. (2.12)

By this equation a set of admissible gd-plans 6 can be defined where for a given
v̇ the boundaries of κ′ are given by κ′min(v̇) and κ′max(v̇). The representation of
a gd-plan in a multi-dimensional space facilitates therefore the consideration of
physical phenomena. However, a particular representation of a gd-plan defined
under the constraints in definition (3) may not be suitable for some specific
views on the problem.

2.4 Interpretation of a GD-Plan

A gd-plan was defined as a set of parameters that describe the trajectory and
velocity profiles with as few parameters as possible. In this section, it is dis-
cussed how a gd-plan can be re-interpreted so that its description fits more
investigations required for a particular problem.

In the previous section, a gd-plan for vehicle control was determined in
terms of rate of curvature change κ′ and acceleration v̇. An important concept
in vehicle control, though, is that of a target point, i.e. a point to be driven
trough after a certain amount of time. The target point has then to be related
to a rate of curvature change κ′ as can be observed in figure 2.5. GD-Plan
Construction depends on the search for an appropriate target point (tx, ty).
Thus, a relation between the gd-plan (κ′, v̇) and the coordinates tx and ty is
required7. Let a general interpretation of a gd-plan be defined the following
way:

Definition: 4 (Interpretation of a GD-Plan) An Interpretation of a

GD-Plan igd is distinctly related to a given gd-plan pgd, i.e. it is based on a
function

f : Pgd −→ Igd (2.13)

where Igd is the space of possible values for igd. igd incorporates some aspects
of the gd-plan in a manner more suited for a particular problem.

Interpretations of gd-plans are very useful in many places. During gd-plan
construction different physical phenomena require different representations of
the gd-plan (e.g. a target point, target velocities, etc.). Since the output of
the gd-plan construction unit must be a gd-plan parameterized in its original

6See figure 4.3, page 41 for an example plot of the set of admissible gd-plans.
7Section E discusses how to determine a point on the trajectory with a constant rate of

curvature change, and vice verse, how to determine a rate of curvature change for a given
target point.
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way one has to require that f(pgd) is ’invertible’8. Another application for
interpretations of gd-plans is the comparison between a desired nominal behavior
pgd and a actually shown behavior of the plant bgd. For vehicle control it is
more intuitive to consider lateral displacements, for example, rather than errors
in rate of curvature change. In the latter type of application no injectivity is
required for f(pgd).

2.5 Conclusion

This chapter introduced the concept of a gd-plan as a nominal behavior of the
plant for one control interval. It was demonstrated how this concept allows
to separate circumstance cognition from motivation matching into two separate
sequential units, supporting hypothesis two and three in section 1.1. It was
further shown that compensation in the classical sense can be understood as a
combination of circumstance cognition and adaption.

The notion of an episodic environment facilitates the concretization of a gd-
plan through a set of parameters, and at the same time leads to a mathematical
formulation of a short term motivation. In section 2.3 constraints on a set
of parameters where defined, in order to constitute a gd-plan. Finally, it was
discussed how a gd-plan can be re-interpreted to fit the purpose of a specific
view on the control problem.

The main purpose of this chapter was to demonstrate the plausibility to
construct a Generalized Feedback Control system based on the two units gd-
plan construction and plan-to-action mapping. Having also clarified the concept
of a gd-plan, this chapter prepared the discussion of how to map from a gd-plan
to control parameters as an input to the plant. In this sense, the following
chapter discusses the construction of a plan-to-action mapper.

8See section 3.1 for an explanation of the concept of ’invertibility’ without requiring injec-
tivity.
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Chapter 3

The Plan-to-Action Mapper

A plan-to-action mapper has to find appropriate control parameters cp as in-
put to the plant so that it performs a given gd-plan pgd for a given state of
the plant s(t). The consideration of the plant’s state to achieve this is called
circumstance cognition. In optimal control [Kalman, 1960] and model predic-
tive control [Rawlings et al., 1994] it is strived for an optimal input function to
achieve a desired output over some fixed time interval [t, t + Tc]. The plan-to-
action mapper, however, only computes control inputs which are constant for
the length of one control interval. The inflexibility of the rigid shapes of the re-
sulting time profiles can be compensated by using derivatives of control inputs or
using control impulse template profiles that are amplified by the plan-to-action
mapper’s output. The essential idea for Generalized Feedback Control, though,
is that a minimum of control happens without the involvement of geometric-
dynamic planning. The constant control inputs, therefore, correspond to the
constant terms in the gd-plan (section 2.3). Figure 3.1 illustrates the problem
of plan-to-action mapping.
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Figure 3.1: The problem of plan-to-action mapping.

A plant’s behavior can be interpreted in geometric-dynamic terms bgd, i.e.
trajectories and velocity profiles of system components. Additionally, it’s state
is identified through a set of state indices s(t + 1), where t + 1 indicates the
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end of the subsequent control interval. Let R(cp, s(t)) be the response of the
plant on control parameters cp when applied in a given initial state s(t) over
one single control interval.

Constructing a plan-to-action mapper means finding a mapping P(s, pgd) so
that the difference between bgd and pgd becomes minimal, i.e.

pgd − R(cp, s(t)) = min. (3.1)

pgd −R(P(s, pgd), s(t)) = min. (3.2)

Using operator notation for a common s(t), i.e. defining Rcp ≡ R(cp, s(t)) and
P pgd ≡ P(pgd, s(t)), results in

pgd −RP pgd = min. (3.3)

it becomes clear that (3.1) is best fulfilled when RP becomes equal to identity.
Therefore, the plan-to-action mapper P has to be close to the inverse of the
system response function R−1.

In most cases, however, the equations that describe the plant’s behavior do
not lead to a closed analytical formula for R−1. In order to acquire, nevertheless,
a mathematical description for R−1 and its dependency on the initial state,
section 3.1 discusses an empirical method based on a state-space equation of
the plant.

In parallel to the theoretical discussion a plan-to-action mapper for a vehicle
control system is developed. A vehicle model with three degrees of freedom
performing a planar motion serves as a plant for the controller. It is controlled
by two parameters:

• δ̇: a front wheel angle velocity that is distributed to the two front tires.

• Fp: a propulsive force that is applied on the rear tires.

The geometric-dynamic plan for the subsequent control interval specifies a short
term trajectory and a velocity profile specified through

• κ′: a rate of curvature change of the vehicle’s trajectory. This specifies
the geometric curve to be driven.

• v̇: an acceleration specifying the velocity profile.

The vehicle control problem again serves as a experimentation platform.
Section 3.1 explains how to build a plan-to-action mapper with the derived
formula from section 3.1. It discusses in detail how to actually build a plan-to-
action mapper module for a vehicle controller.

3.1 Theoretical Considerations

The concern of the following sections is to find an expression for the inverse
system response R−1(bgd, s) that determines appropriate control parameters
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cp to fulfill a desired gd-plan pgd for a given state of the plant s. For simple
systems it may be possible to find a closed mathematical expression. In the
general case, however, closed analytical solutions cannot be achieved without
simplifications of the system’s equations. The more degrees of freedom, or
number of equations, are involved in the description of the plant, the more likely
it is that suitable simplifications neglects basic characteristics of the system. The
following sections introduce an approach that circumvents the complications of
solving for a closed mathematical formula. A systematical method is presented
based on hierarchical curve fitting of empirical data.

In a first step, for fixed initial states s0 of the plant the relationship between
control parameters cp and geometric-dynamic behavior bgd is investigated. Us-
ing curve fitting, template functions are adapted so that they approach as close
as possible the shape of the sampled data points. For a particular initial state
the relationship between control parameters and geometric-dynamic behavior is
then distinctly defined through the set of parameters p∗ of the adapted template
functions as shown in figure 3.2a.

In a second step, it is investigated how the parameters p∗ of the template
function change with respect to a given initial state s0. Again by means of
curve fitting techniques, template functions are adapted and the relationship is
described through a set of parameters p̃ as shown in figure 3.2b.
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Figure 3.2: Two steps in the process of building a plan-to-action mapper: a)
investigating the behavior for a fixed initial state of the plant. b) investigating
the change of the plant’s behavior with respect to the initial state.

With the parameter set p̃ and the appropriate template functions control
parameters for a specific gd-plan can be found for any given state. This process
of plan-to-action mapping is displayed in figure 3.3. Using the set of parameters
p̃, the state s is used to compute the parameters p∗. These parameters define
the relation between control parameters and geometric-dynamic behavior of the
plant for the specific state s. Now, the appropriate control parameters cp can
be computed for the specific gd-plan pgd.

The empirical data is obtained through massive simulation experiments sam-
pling the plant’s system response function

R : (cp, s) −→ bgd, (3.4)

where cp are the control parameters sent as input to the plant, s the initial
system state, and bgd the geometric-dynamic description of the behavior of the
plant during the control interval. Operator notation for a fixed initial state s0
facilitates the discussion, e.g.

R∗ : cp −→ bgd. (3.5)



20 CHAPTER 3. PLAN-TO-ACTION MAPPING

PSfrag replacements

input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation
input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation

motivation
matching

circumstance
cognition

cp
pgd
bgd

s
Plant
on
i1
i2

o = s(i)

o1
∆o

database
plant

gd-plan

construction
plan-to-action

mapper

adaption
pgd
cp

extrapolated trajectory

desired trajectory

vehicle’s
c.g.

target

point

x [m]
y [m]

s0
κ′

κ(s) = κ
κ(s) = κ+ κ′ s

(tx, ty)
s [m]

s0
κ(s) [radm−1]

plan-to-action

mapper

plant

s(t+ 1)
pgd
bgd
cp

R(cp, s(t))
P(s(t), pgd)

fixed state investigation
cp
bgd
p∗

state dependency investigation

s0
p∗

p̃

control
parameters

gd-plancurrent state
s0

cp

pgd

p∗p̃

Figure 3.3: Plan-to-action mapping in two steps.

is equivalent to R(cp, s0). Let all operators and variables with a star as in R∗

be initial state specific.
In the example of vehicle control, R∗

v(cp) is the mapping from an applied

front wheel angle velocity δ̇ and a propulsive force Fp to the achieved average
rate of curvature change κ′ and the average acceleration v̇, i.e.

R∗
v :

(

δ̇, Fp

)

−→ (κ′, v̇) . (3.6)

As mentioned earlier, the construction of a plan-to-action mapper requires to
search for a representation of the inverse system response, i.e. a mapping from
a geometric-dynamic plan pgd to control parameters cp. The inverse system
response, as it is used in this dissertation does not require the system response
R∗ to be injective. However, R∗−1 determines for a given geometric-dynamic
behavior bgd in a given range the appropriate control parameters cp. This idea
is demonstrated in figure 3.4 where the system function s(i) is not injective
(i1, i2, and i3 produce the same output o). But, an inverse si(o) finds a distinct
i for a desired output o. This dissertation proposes a systematic approach to
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determine a ’inverse’ si(o) that finds for a desired output o a required input i.

acquire R−1(bgd, s) separated into three steps:

Fixed initial state investigations: as described in section 3.1.1. In this step
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the response behavior R∗−1 bgd = cp for one particular initial state s0 and
changing cp is observed.

Initial state dependency investigations: as described in section 3.1.2. This
section tries to find a description of how R∗−1 changes with respect to the
initial state s. At this point the function R−1(pgd, s) is fully determined.

Identification of physical relationships: In this step the relationships be-
tween physical parameters of the plant to R−1(pgd, s) have to be investi-
gated. This topic, though, is not covered by this dissertation.

It is important to note that the gd-plan pgd as well as the control inputs cp
have to be described through parameters that can be considered to be constant
for the duration of one control interval. Intuitively, replacing them with their
average values should only cause negligible errors. In the vehicle control exam-
ple, it is assumed that the front wheel angle velocity δ̇, the propulsive force Fp,
the rate of curvature change κ′, and the acceleration v̇ to be constant for the
time period of one control interval. Due to the dynamics of the system, the
acceleration v̇, for example, is not exactly a constant term during the control
interval. However, since velocity changes relatively slow a constant acceleration
describes the system behavior sufficiently precise.

3.1.1 Fixed Initial State Investigation

The first step towards a formula for a plan-to-action mapper is to investigate the
plant’s input/output behavior in a particular initial state s0. Starting from this
state a set of control inputs cp is applied for the time of one control interval and
the correspondent geometric-dynamic behaviors bgd are measured. The results
are stored in a table

L∗[bgd : cp] ≡ Sampling(R∗, cp). (3.7)

containing samples of the relation between geometric-dynamic behaviors bgd =
R∗ cp for different settings of control parameters cp when applied in a specific
initial state s0.

Figure 3.5 shows the geometric-dynamic response R∗ cp of a vehicle when

exposed to a front wheel angle velocity δ̇ and a propulsive force Fp for a certain
amount of time (here 0.5 sec). When building a database a whole grid of possible
inputs {δ̇i, Fp,k}i,k has to be applied to the system and its output measured in
terms of average rate of curvature change κ′ and acceleration v̇. An example of
a table resulting from such simulation experiments can be viewed in figure 3.6.

Before one can apply curve fitting techniques, scalar template functions must
be provided. In case that R∗−1 bgd is multi-dimensional, i.e. if cp consists of
more than one control parameter, then R∗−1 bgd has to be broken up into a set
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Figure 3.5: Geometric-dynamic response of a vehicle being exposed to control
inputs starting from the initial state s0. a) resulting trajectory of the vehicle’s
c.g. b) velocity profile of the vehicle.
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of scalar functions:

R∗−1 bgd ≡







R∗−1
0 β0

R∗−1
1 β1

...
R∗−1
N βN

. (3.8)

where βi is the ’key’ number i for a specific input/output configuration of the
plant. It is called ’key’ because it opens the possibility to compute a factor. This
factor can then be used to build subsequent keys, and so on, until all control
parameters are computed.

A key βi can consist of any function of the geometric-dynamic behavior bgd
and the control parameters cp excluding the control parameter number i that
is to be computed. However, the first function R∗−1

0 in the sequence needs to
work with the original bgd, i.e. β0 = bgd since this is the original input to the
plan-to-action mapper. Later functions can be based on inputs βi, i = 1 . . .N
provided that they appear above in the sequence.

In order to capture vehicle behavior, it is advantageous1 to use the front
wheel angle velocity δ̇ to compute the propulsive force Fp for a desired acceler-
ation v̇. The physical reason behind this is the decelerating friction force of the
inclined front wheels. However, before it can be applied, the front wheel angle
velocity for the next control interval has to be computed based on the desired
rate of curvature change κ′ and acceleration v̇. Hence, the propulsive force Fp
can only be computed after the front wheel angle velocity δ̇. Therefore,

βv,0 ≡ (κ′, v̇), (3.9)

is the first key. It computes the factor δ̇ which can now be used in a key βv,1 to
compute the propulsive force.

βv,1 ≡ (δ̇, v̇). (3.10)

The inverse of geometric-dynamic response of the vehicle R∗−1
v bgd is then spec-

ified as

R∗−1
v bgd =

{
δ̇∗(κ′, v̇)
F ∗
p (δ̇, v̇)

. (3.11)

where δ̇∗ and F ∗
p are the operators representing δ̇(κ′, v̇, s) and Fp(δ̇, v̇, s) for a

fixed situation s = s0 (in analogy to R∗−1). Once R∗−1 is identified, the table
L∗[bgd : cp] can be used to find a functional representation of R∗−1 bgd by means
of curve fitting techniques.

Now, template functions have to be found that can be adapted to the shape of
the scalar functions in (3.8). A template function t∗η has a certain characteristic

1’Advantageous’ here means that the resulting curve fitting can be accomplished with fewer
coefficients.
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shape, i.e. a functional skeleton, that can be adapted through a set of coefficients
η. For the vehicle example, front wheel angle velocity and propulsive force may
be described by the template functions

t∗a = δ̇∗(κ′, v̇) (3.12)

t∗b = F ∗
p (δ̇, v̇). (3.13)

The diamonds in figure 3.7 show the propulsive forces for a sample set of front
wheel angle velocities δ̇ and acceleration v̇ given a specific initial state s0. Know-
ing this shape, it is possible to arrange an appropriate template function

t∗b(δ̇, v̇) ≡ b∗0 + b∗1 v̇ + b∗2 δ̇ + b∗3 δ̇
2 + b∗4 δ̇

3 (3.14)

The parameter set b∗ = (b∗0, b
∗
1, b

∗
2, b

∗
3, b

∗
4) can now be used to adapt the tem-

plate t∗b to the specific shape of the samples. The solid line surface in figure

3.7 shows the adapted template function t∗b(δ̇, v̇) once the parameters b∗ are
optimized through curve fitting.
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Figure 3.7: Sampled data of F ∗
p (δ̇, v̇) together with the adapted template

t∗b(δ̇, v̇).

The choice of appropriate template functions at this point is essential in
order to achieve sufficient precision and to reduce the number of coefficients
when adapting the sampled data. Once, appropriate template functions are
found, then the union of the adapted parameter sets

p∗ ≡ (a∗0, a
∗
1, . . . , b

∗
0, b

∗
1, . . . ). (3.15)

distinctly describes the relationship R∗−1 between control parameters cp and
the geometric-dynamic behavior bgd for one specific situation s0. All parameters
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such as a∗0, a
∗
1, . . . , b

∗
0,, describing an initial state specific mapping, are called

star parameters. This term is chosen to distinguish them from parameters on
the initial state dependency level as shown in the subsequent section.

3.1.2 Initial State Dependence

Regarding the relationship between front wheel angle velocity δ̇ and rate of
curvature change κ′ when driving a passenger car, it becomes clear that it
depends on situational circumstances, e.g. lateral acceleration and speed. This
section shows how to deal with changes in the input/output behavior dependent
on the initial state.

In equation (3.15) a set of star parameters p∗ was identified that distinctly
determines the relationship between control parameters cp and the performed
geometric dynamic behavior bgd for one particular initial state s0. Therefore, the
influence of specific circumstances on the mapping can be investigated through
changes in the star parameters. The idea is to find a function that describes the
relationship between any initial state s and each single star parameter in p∗.
The parameters that shape these functions are then called the tilde parameters
p̃.

The very first step to approach such a mapping is to identify key values of
an initial state that physically relate to R(cp, s) as directly as possible. The

roll angle φ of a vehicle may have some influence on the relationship between δ̇
and κ′. However, from vehicle dynamics it is known that the tire forces saturate
and that the curvature depends highly on the initial lateral acceleration ÿ0. The
initial curvature κ0, the velocity v0 or the initial front wheel angle δ0 might as
well be decisive factors in this example. These values are called state indices in
the frame of this dissertation.

In section 3.1.1 a database L∗[bgd : cp] was build to sample the input/output
relationship for one specific initial state s0. As a result of curve fitting the
parameter vector p∗ was determined that defines the mapping for a given initial
state. Now, this process has to be accomplished for a set of initial states so that
one gets a table L[χ(s) : p∗] recording the relationship between state indices and
the star parameters p∗ (see figure 3.8). Similar to the procedure in the previous
section, curve fitting has to be accomplished by means of template functions.

Usually, the graph of the star parameters behaves very roughly over the
domain of state indices. A trick to reduce the amount of coefficients required
during curve fitting is to transform the state indices by any kind of senseful
function. At this point, for each star parameter in p∗ a set of keys χi(s) has to
be determined. Similar to the keys βi that were used in the previous sections,
these keys allow to sequentially compute the star parameters based on state
indices. Now, the template functions ti(χi(s)) have to be determined that are
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able to capture the dependency of a p∗i on the keys χi(s):








p∗0
p∗1
...
p∗N








=








t0(χ0(s))
t1(χ1(s))

...
tN (χN (s))







. (3.16)

Using curve fitting techniques, the template functions ti(χi(s)) are adapted to
find the value of the star parameters p∗ based a given initial state.
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Figure 3.8: Table containing for each initial state its state indices as well as the
parameters used to adapt the template function.

The previous section used the template t∗b to fit the function F ∗
p for a given

state. As a result, a parameter set b∗ was determined, that adapted the template
to the particular shape of F ∗

p . To describe the change of the mapping F ∗
p with

respect to the initial state s0, one has to consider the changes in the parameter
set b∗. Let the key χb0 set for b∗0 be

χb0(s0) ≡
(

log(v0),
√

|δ0|
)

. (3.17)

where v0 is the initial velocity, and δ0 the initial front wheel angle. The diamonds
in figure 3.9 display the samples of the set L[(v0, δ0) : b∗0]. Using the template

tb0(x, y) ≡ b̃0,0 y
4 + b̃0,1 y

8 + b̃0,2 x
2 y7 + b̃0,3 x

3 y3

+b̃0,4 x
3 y4 + b̃0,5 x

3 y6 + b̃0,6 x
4 + b̃0,7 x

5 y2

+b̃0,8 x
5 y3 + b̃0,9 x

5 y4 + b̃0,10 x
6 y3 + b̃0,11 x

6 y5

+b̃0,12 x
7 + b̃0,13 x

7 y + b̃0,14 x
7 y4 + b̃0,15 x

7 y6 (3.18)

+b̃0,16 x
8 y2 + b̃0,17 x

8 y5 + b̃0,18 x
8 y9 + b̃0,19 x

8 y10 + b̃0,20 x
9

+b̃0,21 x
9 y2 + b̃0,22 x

9 y6 + b̃0,23 x
10 y3 + b̃0,24 x

10 y7,

where x = log(v0) and y =
√

|δ0| allows one to fit through the data sufficiently
close as shown by the solid line in figure 3.9 indicating the adapted template.
For the case of fixed initial state the keys, βi can contain control parameters as
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Figure 3.9: Sampled data of a∗0(v δ) together with the adapted template
tb0(χb0(s)) where χb0(s) = (log(v0),

√

|δ0|).

soon as they were computed by an earlier template. The same is obviously true
for the key sets χi that can contain star parameters p∗ as far as a template th
with h < i computes it earlier.

Once, all the templates in equation (3.16) are parameterized the function
R−1(pgd, s) is determined. Everything is set up for the plan-to-action mapper
to work. Figure 3.10 shows the whole process of control parameter calculation
for a given state s in order to achieve a specific gd-plan pgd. The tilde parameters
of each template function in (3.16) directly relate to the characteristics of the
plant. They are fixed during the whole control process.

For a given state s, with the given tilde parameters, the template functions
ta0(χa0), ta1(χa1), . . . compute the star parameters p∗ that specifies the behav-

ior of the templates t∗a(βa), t
∗
b(βb), . . . for R∗−1 (see section 3.1.1). Now, the

correspondent control parameters cp can be computed, in order to achieve the
desired gd-plan pgd.

The first step, i.e. the mapping from the given state s to the parameter set
p∗ can be interpreted as circumstance cognition. The result of this operation is
a vector p∗ specifying the mapping from the gd-plan pgd to control parameters
cp based on the current state s.

Now, the plan-to-action mapper is fully functional. Its precision is only
limited by the choice of appropriate template functions. The problem at this
point is that it requires an enormous amount of input parameters

p̃ ≡ (a0,0, a0,1, . . . b0,1, . . .). (3.19)

These parameters have to be specified by the user and change whenever the
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ã1,0, ã1,1, ...
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Figure 3.10: Diagram to show how to compute control parameter cp to achieve
the geometric-dynamic behavior pgd for a given state s.

plant configuration changes. In order to avoid this inconvenience, a similar curve
fitting can be done with respect to these parameters dependent on changes in
the configuration parameters. As a result only the configuration parameters
have to be specified when a different plant is used. This step is essential when it
is tried to add adaption to the controller as discussed in section 2.1.1. However,
is not investigated in this dissertation.

3.2 Practical Application

The following sections describe the construction of a plan-to-action mapper for
vehicle control. The plant used for the investigation is a three degree of freedom
vehicle model (see section B, page 135). It is controlled by the front wheel angle
velocity δ̇ and the propulsive force Fp. The geometric-dynamic plan for the
plan-to-action mapper is specified through a rate of curvature change κ′ and an
acceleration v̇ to be achieved during the subsequent control interval.

As mentioned earlier the task of the plan-to-action mapper is to compute
control parameters so that the geometric-dynamic behavior of the plant bgd
matches as much as possible the given gd-plan pgd. Thus, the first thing required
is an intuitive measure that tells the distance between two gd-plans using an
interpretation of a gd-plan (see definition 4, page 13).

In order to judge performance in lateral and longitudinal control, the rate
of curvature change κ′ and the acceleration v̇ are associated with a lateral dis-
placement ye and an end velocity ve to be expected at the end of the subsequent
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control interval, the interpretation follows

(κ′, v̇) −→ (ye, ve). (3.20)

ve can be computed through v0 + v̇ Tc. The computation of ∆ye is explained
in section 5.3. As can be seen in figure 3.11, the difference ∆ye between lateral
displacement and the difference ∆ve between the achieved velocities provide an
intuitive tool to judge the performance of the mapping. A lateral displacement
error allows to estimate the capability of path following. The error in velocity
allows to estimate the probability that a certain lateral acceleration is exceeded
(since ÿ = κ v2). However, considering only errors in the original gd-plan
parameters, i.e. rate of curvature change or acceleration, does not provide any
physical idea about the performance.
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Figure 3.11: Quality of plan-to-action mapping: a) rating by means of lateral
displacement ∆ ye. b) rating by means of error in velocity ∆ ve.

3.2.1 Fixed Initial State Investigation

The first step is to find template functions for a fixed initial state (see section
3.1.1). The criteria of quality for a template function is expressed by the number
of star parameters (cost) and the precision by which it is able to approximate
a given database samples (gain). Another problem of template function has to
deal with convergence during the process of curve fitting. As long as linear multi-
dimensional polynomials are applied, though, the data can be fit by solving a
linear system of equations [Lawson and Hanson, 1974].

Before scalar template functions can be searched for, the mapping has to
be separated into a set of scalar mappings correspondent the number of control
parameters. As explained in (3.11) for vehicle control δ̇∗(κ′, v̇) and F ∗

p (δ̇, v̇) are
good candidates to represent the inverse system function. As a starting point
let the following polynomials specify the templates

t∗a(x, y) =

Na∑

i=0

Ma∑

k=0

a∗(Ma+1) i+k x
i yk (3.21)
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t∗b(x, y) =

Nb∑

i=0

Mb∑

k=0

b∗(Mb+1) i+k x
i yk (3.22)

Na and Nb are the orders of the polynomials in x-direction. Ma and Mb

are the orders of the polynomials in y-direction. t∗b(δ̇, v̇) is supposed to model

F ∗
p (δ̇, v̇). t∗a(δ̇, v̇) is supposed to model κ′∗(δ̇, v̇). This means that it has to be

inverted with respect to κ′ in order to get δ̇∗(κ′, v̇). Next, it is required to build
a databases

L∗[bgd : cp] = L∗[(κ′, v̇) : (δ̇, Fp)] (3.23)

sampling the space of the vehicle’s input/output behavior for specific initial
states. For each initial state the correspondent database is used for curve fitting
in order to parameterize the template functions in (3.21).

Reducing the number of star parameters in the template functions is crucial
in order to reduce complexity2. The error that occurs when a coefficient is set
to zero, is a good indicator for its importance. Using the interpretations of the
gd-plans from the last section, figure 3.12 shows candlestick plots of the absence
error of each coefficient. A candlestick displays maximum and minimum values
that appeared for a certain setting as lines, while a rectangle covers a certain
range of the majority of cases. In our experiments the boxes covered by default
a range of 80%.
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Figure 3.12: Error distributions expressed through candlesticks. a) Displace-
ment error for coefficients of t∗a(x, y). b) Velocity error for coefficients of t∗b(x, y).

Obviously some star parameters only produce a tiny error when left out.
These are the coefficients that can be deleted from the template polynomial.
Through iterative deletion of star parameters, the following polynomials evolve:

t∗a(x, y) = a∗0 y + a∗1 y
2 + a∗2 x+ a∗3 x y + a∗4 x y

2 + a5 x
2, (3.24)

t∗b(x, y) = b∗0 + b∗1 y + b∗2 x+ b∗3 x
2. (3.25)

2Recall, that each coefficient has to be described by a function of state indices during initial
state dependency investigations
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These functions perform the mapping from a desired gd-plan to correspon-
dent control parameters. To verify that the total precision with which they work
is sufficient, the error distributions can be considered as shown in figure 3.13.
A maximum lateral deviation of 0.0005m for lateral control and a precision in
longitudinal control of 5 · 10−5m/s can, indeed, be considered as sufficient.

At this point, one still uses star parameters that are stored in a database for
each initial state. The next section discusses how to generalize the information
about the discrete set of initial states in order to find for any given state a set
of star parameters for (3.24) and (3.25). The precision, of course, will decrease
since one has to approximate the database through template functions. It is,
however, indispensable, when the controller has to be able to deal with any
given state.

3.2.2 Initial State Dependence

The next step in the construction of a plan-to-action mapper is to investigate
how the mapping from control parameters to the geometric-dynamic motion
of the plant changes with respect to the initial state. The star parameters in
equations (3.24) and (3.25) determine the mapping for one particular initial
situation. Relating the star parameters to state indices of an initial state allows
exactly to describe the desired relationship.

For this step, the template functions have to be computed and the star
parameter have to be stored in a table together with the state indices of the
initial state where they were computed. In the vehicle control example we use
the state indices velocity v0, front wheel angle δ0, lateral acceleration ÿ0 and
curvature κ′0. Computing the star parameters for a given set of initial states
results then in a table3

L[p∗ : s] = L[(a∗, b∗) : (v0, δ0, ÿ0, κ
′
0)]. (3.26)

For each of the parameters in a∗ and b∗ a function has to be found based on
the state indices of the initial states. Again, determining appropriate template
functions one has to consider the tradeoff between number of coefficients and
the precision achieved. So, the first step is to investigate the importance of each
coefficient for the global formula.

Figure 3.14 shows the importance of each single parameter. For example,
parameter two in (3.24) is very important, since a very high error occurs when it
is left out. Parameter one and four, however, are almost negligible. Dependent
on the importance of the parameter for the global formula the precision can be
determined with which it is described dependent on the state indices.

The next step is to watch the sample data of each coefficient with respect to
state indices. Figure 3.15a displays parameter five from (3.24) as the initial lat-
eral acceleration and the initial velocity changes. Since surfaces with edges and

3For practical reasons it is advantageous to split this table into two files: one for a∗ and
one for b∗.
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Figure 3.13: Error distributions when using formulae (3.24) and (3.25) for lateral
and longitudinal plan-to-action mapping.
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Figure 3.14: Error distributions for final parameters of fixed initial state tem-
plates in a) formula (3.24) and b) formula (3.25) where parameter one is indis-
pensable.

long flat planes are expensive to curve fit with polynomials it is advantageous
to stretch the domain. In the above example the choice was made to determine
the x and y coordinates of the template function by

xt = e
−v0
10 , yt = ÿ0. (3.27)

A software tool developed in the frame of this dissertation allows to deter-
mine an optimized polynomial structure for a given number of desired coeffi-
cients. This means that for the given number of coefficients the approximation
error is minimized. As a result, one can display the number of coefficients in
a template function versus curve fitting error achieved with the best possible
polynomial. Figure 3.15b shows the error in parameter five versus the number
of coefficients in the optimized configuration.

Another feature of the software tool mentioned above is the ability to pro-
duce C and Python code for the structure optimized polynomials where the user
only specifies the number of coefficients he desires. With the automatically pro-
duced modules it is then possible to compute an error distribution for the total
plan-to-action mapper as done in figure 3.13 with original star parameters, i.e.
star parameters as they result directly from the curve fitting process. The error
distributions for the case that the star parameters are computed as functions
based on state indices is of course higher, since an approximation is performed.
Indeed, the plots in figure 3.16 show that the error distribution using interpo-
lated star parameters moves towards higher errors comparing to the results with
original star parameters. However, for both parts it can be stated the provided
precision is largely enough for the task of vehicle control.

3.3 Conclusion

In this chapter the unit performing circumstance cognition was discussed. A
so called plan-to-action mapper was build based on a state space description
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Figure 3.15: Behavior of parameter five in (3.24). a) Parameter five as a function
of state indices v and ÿ. b) Error of curve fitting parameter five with respect to
the number of coefficients in an struture optimized polynomial.
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ÿ [m/s2]

κ0 [rad/m]

a∗0

a∗1

a∗2

a∗3

state indices s
star parameters p∗

v [ms−1]
δ [rad]
b∗0 [N ]

s
pgd
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Figure 3.16: Comparing error distributions when using formulae (3.24) and
(3.25) with original and interpolated star parameters. a) Errors of later dis-
placement. b) Errors of velocity.
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of the system to be controlled. It was shown, how to build a formula for plan-
to-action mapping in two basic steps once the system function is broken up
into scalar functions. Then, template functions have to be found that describe
the relationship between control parameters and geometric-dynamic output for
a fixed initial state. The parameters of those template functions are found
through curve fitting techniques. In a second step, the dependency of those
parameters on state indices are investigated for a set of representative initial
states. The result is a formula that allows to find control parameters for a
given gd-plan for any situation that is circumscribed in the database that was
used. The previous sections outlined a way to automize the construction of a
plan-to-action mapper4.

As an application, a plan-to-action mapper for vehicle control was devel-
oped. In this case, two scalar functions were defined determining front wheel
angle velocity and propulsive force. Following the above mentioned procedure
statistical plots showed the suitability of the developed plan-to-action mapper
for the vehicle control task. When relying on containability as a measure for the
controller’s reliability (to be shown section 7, page 103), constraints on precision
are sufficient. However, in the case that containability it not an acceptable re-
liability measure, no systematic method has been presented to proof the formal
stability of the plan-to-action mapper itself.

With the ability to compute control parameters based on a given gd-plan,
the task of motivation matching, i.e. gd-plan construction, can be targeted.
However, before this can be done it has to be discussed how motivations can be
mathematically described and through what procedure it is possible to find a
distinct gd-plan that matches all existing motivations. This is the focus of the
next chapter.

4Another example of a tool for identification of system models can be found in [King et al.,
2002].



Chapter 4

Target and Limit Maps

Before motivation matching can be discussed, a methodology has to be es-
tablished to express motivation in mathematical terms. Much work has been
accomplished in the field of decision theory. A very basic assumption in deci-
sion theory is that a rational agent chooses from a set of alternatives the one
which provides the maximal prefered outcome [Wellman and Doyle, 1991]. A
handy tool to describe preference relationships is the utility function [Ramsey,
1931,Keeney and Raiffa, 1976].

The aim of this chapter is to define a simple mathematical terminology to
handle the modeling of motivations in terms of utility functions for the task
of gd-plan construction. An important requirement is that it can be easily
implemented, fastly executed and possesses a transparent intuitive structure.
Where the argumentation consists purely of a chain of logical conclusions, the
following assumptions build the bases for the method of target and limit maps:

• Two basic kinds of motivations exists. One type of motivations restrict the
space of gd-plans, in order to avoid domains of disastrous system states.
These motivations are related to fear as shown in figure 4.1a. Another
type of motivation targets a specific system state and correspond to a
specific gd-plan. Motivations of this type are related to desire as shown
in figure 4.1b.

• It is assumed that all motivations can be described through scalar func-
tions, i.e. the correspondent preferences obey transitivity and orderability.

Section 4.1 discusses motivations of fear and the appendant limit maps.
Section 4.2 discusses desire motivations and the appendant target maps. In
section 4.3 it is discussed how the two types of maps can be combined into
one utility function. Section 4.4 finally discusses how to determine one distinct
gd-plan consistent with all related motivations.

37
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a) ’Fear’-concepts
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b) ’Desire’-concepts
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ã1,0, ã1,1, ...
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Figure 4.1: Concepts of ’desire-’ and ’fear-motivations’, with respect to the
space of plant states S and the space of possible gd-plans Pgd.

4.1 Limit Map

The following term defines a ’fear’ motivation as a bases for limit maps:

Definition: 5 (Fear Motivation) A Fear Motivation is a motivation that
manifests itself in a separation of the space of gd-plans Pgd into regions of
different admissibilities.

Consider vehicle control, for example: The fear to exceed a certain lateral accel-
eration ÿmax forbids whole sets of desired motions where lateral acceleration ÿ
becomes higher than ÿmax. The definition of a fear motivation directly leads to
the definition of a scalar function that expresses the preferences that are caused
by this motivation:

Definition: 6 (Admissibility Function) An Admissibility Function is a
function that assigns to each element pgd of the the space of gd-plans Pgd a value
in [0, 1], i.e.

A(pgd) : Pgd → [0, 1]. (4.1)

to indicate the amount of admissibility for each gd-plan pgd.

Due to the fact that, in some cases, it might be possible to precisely measure
the admissibility of a gd-plan A(pgd) is left to the continuous set of numbers
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between 0 and 1. The use of the binary range {0, 1}, however, could simplify
subsequent calculations tremendously1.

The question that arises now is: If there are multiple fear motivations, then
how can the corresponding admissibility functions be combined ? As insinuated
earlier, fear motivations express the fear of running into disaster. Therefore, a
gd-plan that is, to a certain degree, inadmissible by one fear motivation cannot
gain admissibility because another fear motivation fears it less, i.e. assigns
a higher admissibility to it. So, the overall admissibility shall never exceed
the lowest admissibility for a given gd-plan. Hence, the upper boundary for
a function that combines all admissibility functions is the minimum-operator.
The following definition specifies a limit map:

Definition: 7 (Limit Map) A Limit Map is a scalar function

L(pgd) : Pgd → [0, 1]. (4.2)

that represents all fear motivations. The correspondent admissibility functions
{Ai(pgd) : i = 0, 1, 2, ...} are combined to one single utility function L(pgd) that
obeys the constraint

L(pgd) ≤ min{Ai(pgd) : i = 0, 1, 2, ...}. (4.3)

Restricting the range of each Ai to [0, 1] allows to use the
∏

-operator for the
combination of multiple maps2, e.g.

L(pgd) =
N∏

i=0

pi (Ai(pgd)) , with pi(x) < x. (4.4)

Figure 4.2 explains how fear motivations are modeled. For a given situation,
each fear motivation has to be expressed by an admissibility function over the
space of possible motions Pgd. The deliberately chosen combination operator
finally produces one limit map, that includes considerations about all existing
fear motivations.

An example from vehicle control helps the understanding. In figure 4.3, a
gd-plan is defined as the composition of desired rate of curvature change κ′ and
desired acceleration v̇. One constraint that exists has to do with longitudinal
dynamics. In the simplest case, acceleration and deceleration are limited to con-
stant values. The dotted lines in figure 4.3 represent these limits. No admissible
gd-plan lies to the right of the line at v̇ = 5.7ms−2 (max. acceleration) or left
to v̇ = −8.3ms−2 (max. deceleration). Another constraint comes from lateral
dynamics. To avoid situations that are ’too difficult’ the lateral acceleration has
to be less then a certain maximum ÿmax. This introduces limits on curvature

1A binary set is also sufficient to treat aspects of containability as explained later in chapter
7.

2This is because multiplying a value ’x’ with a value that is between 0 and 1 results always
in something that is less than or equal ’x’. So, the result is always less than or equal the result
of the minimum-operator.
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Figure 4.2: Two-dimensional example for combination of different admissibility
functions A1(pgd), A2(pgd), etc. to one single limit map L(pgd).

dependent on the desired acceleration. In figure 4.3 these limits are indicated
by dashed lines. No admissible gd-plan lies above the upper dashed line or un-
derneath the lower dashed line. The intersection of both domains results in an
admissible domain, indicated by the shaded area.

4.2 Target Map

In order to classify motivations that have a preference for one specific nominal
motion, i.e. a ’prefered gd-plan,’ desire motivations are defined as follows:

Definition: 8 (Desire Motivation) A motivation that determines for each
situation one distinct preferred gd-plan is called a Desire Motivation. Its
primary manifestation is the Preferred GD-Plan pt ∈ Pgd.
It cannot be assumed that the preferred gd-plan pt is always practicable, since
it may lie outside the admissible domain Agd. In the general case, desire moti-
vations produce a preference structure in the whole space Pgd. So it is possible
to define an influence of the desire motivation, even if the preferred gd-plan
is outside the allowed domain. This is done by assigning each gd-plan pgd a
constructiveness value C(pgd).

In vehicle control, for example, one strives to drive along the nominal course
as accurately as possible. This motivation results in one specific gd-plan pt,
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Figure 4.3: Limit map in vehicle control: The gd-plan consists of rate of a
curvature change κ′ and an acceleration v̇.

represented by a rate of curvature change κ′t and an acceleration v̇t that leaves
the vehicle traveling as accurately and as quickly as possible along the nominal
course. The constructiveness of a gd-plan decreases with the deviation between
its rate of curvature change and κ′t and the deviation between its acceleration
and v̇t.

It is essential to understand that target maps only exist to describe the
preference relationship between two arbitrary gd-plans in Pgd. So adding an
offset to the constructiveness value of all gd-plans does not change the greater,
less or equal relationships. The constructiveness of a gd-plan has to always be
finite; therefore, a finite minimum over Pgd must exist. Since constant offsets
do not change the relationship between the gd-plans, one can require that the
constructiveness must always be greater than zero. Such a unipolar treatment of
desires3 facilitates the dicussion below. It expresses also that desire motivations
only describe the amount of ’constructiveness’ and never the ’destructiveness’ of
a gd-plan with respect to a specific desire motivation. The restriction C(pgd) > 0
allows later to combine multiple constructiveness functions in an efficient way.

Definition: 9 (Constructiveness Function) Given a specific desire motiva-
tion, the Constructiveness Function

C(pgd) : Pgd → <, (4.5)

expresses the constructiveness of each gd-plan in Pgd with respect to this specific
motivation by a real number. The constructiveness of a gd-plan decreases with
the distance to the preferred gd-plan pt, i.e.

dist(p0, pt) > dist(p1, pt) ⇔ C(p0) < C(p1), (4.6)

3For a bipolar example of modelling goals see [van der Torre and Weydert, 1998].
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where the distance function dist : (Pgd, Pgd) → < indicates the amount of dif-
ference between two gd-plans by a real number. Furthermore, one must be certain
that,

C(pgd) > 0 ∀ pgd ∈ Pgd. (4.7)

Applications may impose further constraints on the shape of the constructive-
ness function. Figure 4.4a shows an example from vehicle control, where it is
desired to follow a nominal course. The constructiveness C(κ′) is drawn with
respect to a rate of curvature change κ′ of a possible trajectory. Assuming that
C(κ′) is symmetric to the preferred gd-plan κ′opt would not reflect a realistic
judgment. In this case, κ′1 and κ′−1 have the same constructiveness. However,
figure 4.4b shows that the trajectory resulting from κ′1 is very likely able to fol-
low the nominal course, where else κ′−1 simply guides the vehicle away from the
track. A realistic shape of C(κ′) should therefore result in a higher construc-
tiveness for κ′1 than for κ′−1. This shows that the shape of the constructiveness
function is very important and at the same time relatively easy to determine.
In the example of figure 4.4, a first approach would be to decrease the construc-
tiveness value of a gd-plan proportionally to the predicted angular deviation
between the velocity vector and the nominal course.
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Figure 4.4: Example from vehicle control: Different gd-plans expressed by the
rate of curvature change κ′. a) A symatric constructiveness function C(κ̇) b)
Corresponding trajectories resulting from the different κ′.

It is possible that there is more than one desire motivation. Therefore,
multiple preffered gd-plans can also exist. The question then is: how can we
combine all desire motivations to one constructiveness function T (pgd) ?

As mentioned earlier, desire motivations only express constructiveness and
never destructiveness, i.e. negative constructiveness. Thus, a specific gd-plan p
that is of a certain constructiveness C1(pgd) with respect to a target motiviation
cannot be less constructive, because another constructiveness function C2(pgd)
assigns a lower value to it. Equivalently, the combined constructiveness has to
be greater than or equal to the maximum-operator. We are now ready to define
a target map.
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Definition: 10 (Target Map) A Target Map is a scalar function

T (pgd) : Pgd → <. (4.8)

that combines the preference relationships of all desire motivations. This is
done by combining the independent constructiveness functions Ci, i = 0, 1, 2, ...
into one function T (pgd). The total utility has to satisfy

T (pgd) ≥ max{Ci(pgd) : i = 0, 1, 2, . . .}. (4.9)

Since, by definition the constructiveness is always a positive value, the
∑

-
operator may be used to combine multiple target maps, e.g.

T (pgd) =

N∑

i=0

qi Ci(pgd), with qi ≥ 1. (4.10)

The chosen operator for the combination of different constructiveness func-
tions is very important. Figure 4.5 shows how two constructiveness functions
are combined by the maximum-operator and the ’

∑
’-operator. The use of a

maximum-operator ensures that no gd-plan has a higher constructiveness than
the gd-plans that directly relate to desire motivations. This may be an advan-
tage, since in this case the optimum of the total utility will always be related
to a gd-plan that is precisely calculated as best for a certain target motivation.
The disadvantage is that there cannot be a compromise in the sense of choosing
a gd-plan in the ’middle’. Such a compromise can be achieved by the summation
operator as depicted in figure 4.5b. With this operator, the resulting gd-plan
satisfies, to a certain degree, all desire motivations. It requires, however, that
the shape of the constructiveness functions is precise, i.e. reflects the preference
relationships in the space of gd-plans correctly. Otherwise, the compromise may
not be in the sense of any target motivation.

a) T (pgd) = max{C1(pgd), C2(pgd)}
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b) T (pgd) = C1(pgd) + C2(pgd)
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ã2,0, ã2,1, ...

b̃0,0, b̃0,1, ...

b̃1,0, b̃1,1, ...

...
p∗

p̃

a∗0

a∗1

a∗2

a∗3

b∗0

b∗1

b∗2

b∗3

cp,0
cp,1

ta0(χa0)

ta1(χa1)

ta2(χa2)

tb0(χb0)

tb1(χb1)

t∗a(βa)

t∗b (βb)

control
parameters

current state
gd-plan

control parameters

computation

plant

characteristics

circumstance
cognition

x [m]

y [m]

κ′ =0.0015 [radm−2]

κ′ =0.001 [radm−2]

∆ ye

t [s]

v [ms−1]

v̇= 0.45 [ms−2]

v̇=0.6 [ms−2]

∆ ve

∆ ye [m]

coefficient number
∆ ve [m/s]

coefficient number
∆ ve [m/s]

∆ ye [m]

error distribution
∆ ve [m/s]

∆ ye [m]

coefficient number

e
−v0
10

ÿ0
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Figure 4.5: Combining multiple target based utilities over a one-dimensional
space of gd-plans. a) Using the maximum-operator. b) Using the ’

∑
’-operator.

The process of calculating a target map is depicted in figure 4.6. Each target
motivation results in a constructiveness function that decreases with distance
to the preferred gd-plan. To get a representation of all target motivations, they
are combined into one single target map.
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4.3 Combining Target and Limit Maps

The previous sections introduced how fear and desire motivations, can be mod-
eled by utility functions. As a first step towards the gd-plan consistent with
all motivations, a combined utility function must be found. This section now
shows how the target map T (pgd) and the limit map L(pgd) can be combined
into a single utility function U(pgd).

The domains where the limit map is equal to zero form the absolutely in-
admissible domain. No utility should be less than the utility of absolutely
inadmissible gd-plans.

It is logical to say, that if two gd-plans are equal with respect to construc-
tiveness, then the preference relationship is exclusively determined by their ad-
missibility. In the same way, if two gd-plans are of equal admissibility then their
constructiveness is decisive for their preference relationship. This means

T (p1) = T (p2) ⇒
(
L(p1) > L(p2) ⇔ U(p1) > U(p2)

)
, (4.11)

L(p1) = L(p2) ⇒
(
T (p1) > T (p2) ⇔ U(p1) > U(p2)

)
(4.12)

and

L(p1) = L(p2) ∩ T (p1) = T (p2) ⇒ U(p1) = U(p2). (4.13)

It follows that for all gd-plans pgd that have the same constructiveness T0 the
total utility function increases consistently alongside the admissibility; for gd-
plans of the same admissibility the total utility is steadily increasing with con-
structiveness, i.e.

T (pgd) = T0 ⇒ U(pgd) = fT0(L(pgd)), (4.14)

L(pgd) = L0 ⇒ U(pgd) = fL0(T (pgd)). (4.15)

where fT0 and fL0 are steadily increasing functions. Now, the combined utility
function can be defined:

Definition: 11 (Combined Utility Function) A Combined Utility Func-

tion U(pgd) is a mapping from Pgd to <, that combines the constructiveness and
admissibility considerations of the target map and the limit map. The following
conditions have to be met:

• The absolutely inadmissible regions (L(pgd) = 0) must have the lowest
utility in the whole set, i.e.

L(p1) > 0 ∧ L(p2) = 0 ⇒ U(p1) > U(p2). (4.16)

• Indifference with respect to one map causes the ’rating’ to be based on the
other map, i.e.

T (p1) = T (p2) ⇒
(
L(p1) ≥ L(p2) ⇔ U(p1) ≥ U(p2)

)
, (4.17)

L(p1) = L(p2) ⇒
(
T (p1) ≥ T (p2) ⇔ U(p1) ≥ U(p2)

)
. (4.18)

The formulation of (4.14) enables a simple definition of the combined utility
function for the case of a binary range of admissibility, i.e. the case where gd-
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plans are either admissible or inadmissible, with nothing in between. In this
case, the total utility can be set to zero for all gd-plans pgd where L(pgd) =
0. The total utility of gd-plans that are admissible can be set equal to the
constructiveness value T (pgd). Since in this case the constructiveness is the
only factor that influences the preference relationships nothing is gained by
inventing a more complex function to conclude on the total utility. Note, that
the constraint on constructiveness C(pgd) > 0 (equation (4.7)) ensures that no
gd-plan that is allowed has a utility of zero. The combination process can be
considered as cutting inadmissible domains out of the target map. An example
of such a combination for a two-dimensional domain is shown in figure 4.7. At
this point, the decision making process has to find the plan pgd ∈ Pgd, where
U(pgd) is maximal.
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ã1,0, ã1,1, ...
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Figure 4.7: Combining target map T (pgd) and limit map L(pgd) into one single
utility function U(pgd).

4.4 The Single Consistent GD-Plan

The task of gd-plan construction is to determine one single gd-plan for the
subsequent control interval. This gd-plan has to be consistent with all related
motivations. The single consistent gd-plan is now to be determined through
an optimum search in the combined utility function. The definition of the
admissibility functions (definition 6) determines the possible choice of optimum
search algorithm. A definition of the range of L(pgd) as the binary set {0, 1}
simplifies the calculations significantly as opposed to the definition with a range
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as the continuous interval [0, 1]. First of all, the binary range of the limit map
supports a very simple definition of the combined utility

U(pgd) ≡
{

0 ∀ L(pgd) = 0
T (pgd) ∀ L(pgd) = 1

. (4.19)

Assuming that the target map is described as a differentiable function the set
of local optima Popt in T (pgd) can be determined analytically. Two cases are
possible:

• An optimum of T (pgd) determined by setting the derivative to zero. This
is true as long as the extrema ly inside the addmissible domain.

• The optimum lies on the border ∂Agd of the addmissible domain.

This motivates a definition of admissibility functions directly in terms of
borderlines ∂Agd of the admissible domain of gd-plans. Practically, in the two-
dimensional space a simple polygon chain may represent the limit map.

If the range of the limit map is left to be continuous, then things require much
more concentration on the design of the combination operator. As long as target
map, limit map and the combination procedure relies on differentiable functions,
the optimum search in U(pgd) may be accomplished straightforwardly. However,
the limit map has an influence on the shape of the combined utility function.
To ensure that the total utility function soundly combines all target and fear
motivations, the shapes of the functions have to be precisely defined, i.e. they
have to express the existing preference relationships in the space of gd-plans
correctly. Non-binary addmissiblity functions require much more sophisticated
algorithms to determine the target and the limit map.

Even with a binary range of L(pgd), though, the shape of the target map is
important if the space of gd-plans is multidimensional. It is by the shape of the
target map that preferences in precision between the parameters of the gd-plan
are expressed. This is best explained by an example: figure 4.8 demonstrates
how two different shapes of a target map, that are based on the same target
gd-plan, produce a different preferred gd-plan popt. Since the target gd-plan lies
outside the admissible domain the optimum of the function has to be searched
on the border ∂Agd of the allowed domain. In figure 4.8a T (pgd) decreases
very slowly with the distance in rate of curvature change v̇ as expressed by
the equipotential lines. In consequence, the rate of curvature change of the
preferred gd-plan popt is very similar to the one of the gd-plan of the target
pillar. Figure 4.8b however shows a function T (pgd) that decreases very slowly
with the distance in κ̇ which causes that the acceleration of the chosen gd-plan’s
acceleration is very similar to the one of the target gd-plan.

4.5 Conclusion

The method of target and limit maps establishes a way to describe the inter-
ference of motivations with the current state of the system to be controlled.
Motivations are classified into two basic types:
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Figure 4.8: Influences of shapes of utility function on the choice of single con-
sistent gd-plan from the example of vehicle control.

• Desire related motivations introduce preference relationships in the space
of gd-plans based on a specific preferred gd-plan. They are related to
performance of the controller. Each desire motivation is represented by a
constructiveness function.

• Fear motivations introduce preference relationships for subsets of gd-plans
striving to avoid inadmissible system states. A fear motivation is repre-
sented by an admissibility function.

In the general case, multiple fear and desire motivations exist. Therefore, the
constructiveness and admissibility functions have to be combined into one target
map T (pgd) and one limit map L(pgd).

The characteristics of both maps are summarized in table 4.1. For both
types of functions limits in the range can be defined. The limiting operators for
the combination of admissibility and constructiveness functions show a certain
symmetry. The limit map as a result of multiple fear motivations has to be less
or equal to the minimum operator applied on all related admissibility functions.
The target map has to be greater or equal to the maximum operator applied on
all related constructiveness functions. Based on the restrictions on the ranges
of the limit map and the target map, the multiplication operator is a valid
candidate for a combination of admissibility functions. On the other hand, the
summation operator is a valid candidate for the combination of constructiveness
functions.

Finally, it was discussed how the limit map and the target maps have to be
combined. It was derived that for binary admissibility functions, it is advanta-
geous to describe the limit map by border lines of the admissible domain, rather
than a utility function. Based on the combined utility function, an optimum
search has to find the gd-plan that is consistent with all related motivations.

It must be mentioned that the method of target and limit maps is not the
ultimate way to do gd-plan construction. Where it is possible to define one
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Table 4.1: Overview on modeling of fear and desire motivations.

Fear Motivations Desire Motivations

Basic Idea
Fears - Avoiding sets of dis-
astrous states.

Desires - Striving for a spe-
cific state.

Functions
Admissibility functions
Ai(pgd) : Pgd → [0, 1].

Constructiveness functions
Ci(pgd) : Pgd → [0, ∞).

Restriction
on map

L(pgd) ≤ min
i=0,1,2,...

Ai(pgd) T (pgd) ≥ max
i=0,1,2,...

Ci(pgd)

Example L(pgd) =

N∏

i=0

pi (Ai(pgd)) ,

with pi(x) ≤ x.

T (pgd) =

N∑

i=0

qi Ci(pgd),

with qi ≥ 1.

single algorithm or one single formula that combines all aspects of motion plan-
ning, this approach is preferable to the method of target and limit maps. How-
ever, problems where multiple physical aspects are involved in gd-planning or
problems of a higher-dimensional space of gd-plans, are most likely difficult to
describe in one single formula. Here, the method target and limit maps carries
a set of advantages:

• Aspects of admissibility and aspects of performance are discussed indepen-
dently. This allows to work on performance (i.e. target map construction)
without having to worry about admissibility (i.e. limit map construction)
and vice versa.

• The understanding of gd-plan construction as a process that combines
multiple motivations is very intuitive.

• The ability to model an unlimited amount of different concepts of gd-
planning in an isolated manner supports a conquest of the problem by
division into its different aspects.

In summary, the method of target and limit maps provides a deterministic and
precise method to accomplish gd-plan construction. The way how the influences
of motivation on the preference structure over the space of gd-plans is modeled,
is reminiscent of processes related to human motivations.
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Chapter 5

The Geometric Dynamic

Planning Unit

In the chapter dealing with circumstance cognition, i.e. plan-to-action map-
ping, it was discussed how to determine the appropriate control parameters cp
for a given gd-plan pgd. This chapter, now, discusses how to determine a gd-
plan which is consistent with all related design specifications. This process was
previously identified as motivation matching. Using the method of target and
limit maps it is possible to implement algorithms that model the interference of
motivations with informations about the environment resulting in one distinct
gd-plan.

Where the previous chapter was theoretical in nature, this chapter applies
the introduced concepts to vehicle control. The problem of vehicle control is
related to a variety of different concepts, such as target point search, compli-
ance of a maximal lateral acceleration, boundaries on curvature and so on. It
is shown, how target and limit maps can be applied to deal with each of these
problems separately. In particular, the investigation on target point search
demonstrates how subtle shortcomings related to purely geometric-dynamic is-
sues can be identified and expunged.

5.1 Overview

Previously, the situational driving motivation SDM was defined as a guideline
for gd-plan construction (definition 2, page 10). When applied to vehicle control
it results in multiple secondary concepts as they are: target point search, short
term curvature profile compliance, compliance of the curvature profile of the
nominal course, minimum and maximum rates of curvature change, and optional
velocity constraints. To combine all these concepts in a suitable way target and
limit maps are used. The structure of the gd-plan construction unit is shown in
figure 5.1.

Environment information about course geometries (nominal course ~n(p),

51
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Figure 5.1: Overview over gd-plan construction unit for vehicle control.

~κnc(p) and ~vnc(p)) and the vehicle state (v, β, ψ, β̇, . . .) are now used for the
determination of parameters related to each concept. With these parameters
the shapes of the target and the limit map are given and the method of target
and limit maps can be applied. This results, finally, in one distinct gd-plan
(κ′, v̇) that is consistent with all concurrent motivations involved.

5.1.1 Parameter Calculation

The concept that most obviously plays a significant role in gd-plan construction
is the target point, i.e. a point that lies a certain distance ahead and that the
driver strives to surpass. Striving to drive through a target point is supposed
to keep the vehicle close to the nominal course. Since striving to drive through
a target point results in a specific preferred gd-plan it corresponds to a desire
motivation (definition 8, page 40). In figure 5.2a it is shown how to calculate
the required rate of curvature change κ′t and the required acceleration v̇t to pass
through a target point.

First of all, a target point must be found that is appropriate for the current
situation. This is explained in section 5.2. Second, a rate of curvature change
κ′t = d

dsκ is determined in order to specify a trajectory through the target point
(section 5.3). Third, to prevent the vehicle from becoming uncontrollable, a
certain maximum lateral acceleration ÿmax,curv has to be respected when driving
the desired trajectory, as expressed by κ′t. The process for determination of a
maximum acceleration v̇t to respect the limit ÿmax,curv is illustrated in section
5.4. At this point, the gd-plan (κ′t, v̇t) specifies the preferred gd-plan of the
target point search algorithm. It is the position of the ’pillar’ in the target map.

On the other hand, there are concepts related to fear motivations (definition
5, page 38). In order to construct a limit map, methods have to be found that
allow its parameterization. Figure 5.2b shows how the parameters of the limit
map are calculated. It is assumed that the SDM-goal of maximizing velocity has
a high priority. By consequence the SDM-goal to minimize lateral acceleration is
reduced to the goal of respecting a maximum lateral acceleration limit. This goal
expresses the ’fear’ of losing control of the vehicle and is thus a limit motivation.
The lateral acceleration limit ÿmax,course together with the curvature profile of

the nominal course results in a velocity profile by vnc(p) =
√

ÿmax,course/κnc(p).
Now, a maximum acceleration can be determined in order to respect this velocity
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a) target map parameter calculation
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Figure 5.2: Calculation of parameters required to construct target and limit
maps.

profile. The method for doing this is explained in section 5.5.

To introduce lower limits on acceleration resulting from wheel slip, for ex-
ample, the maximum deceleration can be specified by the user. For some ma-
neuvers it is necessary to define additional lower and upper borders of velocity.
The way how optional velocity restrictions cut the admissible domain of accel-
erations is explained in section 5.6. Finally, the output of this module defines
the acceleration boundaries v̇min and v̇max.

Limits on rate of curvature change are calculated in a very simple way. First,
a position that lies a certain preview distance tp v ahead on the nominal course
is determined. From there one moves a distance εb to the left and the right to
get two points representing the left and the right border. The rates of curvature
change that are needed to pass through these two points establish the limits
κ′min and κ′max for the rate of curvature change.

The following sections focus on the algorithms for the parameter calculation.
Then, in Section 5.7 the application of target and limit maps is discussed. There,
it is explained how the calculated parameters are used to shape the target map
and the limit map.

5.2 Target Point Search

As shown in figure 5.2a, the parameters of the target map are computed based
on the concept of a target point. The aim of this procedure is to define constant
rate of curvature change κ′t and an acceleration v̇t for the subsequent control
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interval which is consistent with all related physical and geometrical concepts.
This section treats the details of target point search (see also [Schaefer et al.,
2000]). A target point must be defined in such a way that

• the resulting trajectory is physically feasible for the short and long term
and

• the vehicle is guided as close and as fast as possible along the track.

The situational driving motivation SDM (page 10) provides a direct guideline
for the design of a trajectory. According to the SDM, trajectory design has
to take into account the minimization of lateral deviation, angular deviation,
lateral acceleration and maximization of speed.

This section first introduces three target point search methods that are intu-
itively practicable but do not explicitly imply the SDM. The first one, Preview
Point, is based on a specific element of the vehicle state: velocity. The second
one, End Of Sight, is an approach based solely on course geometries. A third
method uses lateral and angular deviations from the nominal course to adapt
the preview time of the Preview Point method. It is therefore called Deviation
Dependent Preview Point. All of them show an unsatisfactory performance.
Their malfunction is then discussed by means of the SDM. Before new target
point methods are introduced a fundamental error is identified that causes all
three target point methods to fail.

As a consequence, yet another target point method is developed that di-
rectly uses the SDM as a guideline. This method is termed Nestle Curves. It
immediately causes a higher performance that is much less dependent on the
specific maneuver.

The quality of each of the methods was determined through simulation with
the absolute value of lateral deviation from the nominal course as the measure
for precision. Simulation experiments presented below were accomplished with
a vehicle model as described in appendix B. A test course, named ’Moby Dick’
(figure 5.3), contains a variety of different maneuvers for investigations of driving
behavior. The parameter settings are always chosen so that the driver model
has to manage situations with lateral acceleration of about 6 − 8ms−2.

The experiments that are mentioned here are, of course, only reproducible
with a structure of a driver model as introduced in this dissertation. However,
the results of the investigations are independent of the control structure that is
used. This is because the trajectory of any vehicle can be approximated by a
constant rate of curvature change over small control intervals1.

The extensive discussion on target point search demonstrates the advantage
of dealing with geometric-dynamic problems without dealing with the state
space equation of the plant explicitly. The treated concepts are rather physical
than mathematical in nature. This results in simple formulae and short intuitive
algorithms for the processes involved.

1The control intervals used in the developed driver model were chosen between 0.02 seconds
and 1 second.
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Figure 5.3: The fantasy course ’Moby Dick’ designed as simulation environment.
a) x- and y-coordinates. b) Curvature profile κ(p).
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5.2.1 Intuitive Target Point Search Methods

Preview Point

The first target search method to be examined is Preview Point, which is by
far the simplest and most intuitive target point search method. This or similar
methods are used in many driver models2 (e.g. [Kondo and Ajimine, 1968] and
[Voegel, 1997]). In this target search, first the point ~n(p0) on the nominal course
has to be determined that is nearest to the vehicle’s c.g. From this position one
looks a distance ahead on the course, equal to the current velocity v multiplied
by some specified preview time tp, and places the target point ~n(pp) there (figure
5.4). Preview Point makes sense, considering the parallels in the way human
drivers consider their view points. A human driver would look far ahead on a
road when he is moving at a high velocity, such as on a straight-away or in a
curve of low curvature, but would concentrate closer in front when greater road
curvatures require a lower speed.
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ÿ0

a∗5
error

number of coefficients
∆ ve [m/s]

∆ ye [m]

error distribution
interpolated star parameter

optimal star parameter

S
Pgd
s0
st

popt
popt

S
Pgd
Agd

s0
pa
pb
pc

admissibility

function 1

function 2

combination
operator

limit map
L(pgd)

p1

p2

A1(pgd)
A2(pgd)

admissible domain
κ′ [radm−2]
v̇
[
m/s−2

]

Agd

κ′
−3

κ′
−2

κ′
−1

κ′
t

κ′
3

κ′
2

κ′
1

κ′

C(κ′)

κ′
−3

κ′
−2

κ′
−1

κ′
t

κ′
3

κ′
2

κ′
1

v

trajectory(κ′)

pgd
utility

C1(pgd)

C2(pgd)

T (pgd)

pgd
utility

C1(pgd)

C2(pgd)

T (pgd)

constructiveness

function 1

function 2

combination
operator

target map
T (pgd)

p1

p2

C1(pgd)
C2(pgd)

combined
utility map

target map

limit map

p1

p2

T (pgd)
L(pgd)
U(pgd)

addmissible domain

inaddmissible domain
target

pillar

κ′ [rad/m−2 s]

v̇ [ms−2]

popt

∂Agd

course geometries

vehicle state
parameter calculation

gd-plan

parameter

target map

limit map

target and

limit maps

~n(p)

κnc(ν), vnc(p)

{v,β,ψ,β̇, ...}

κ′

v̇
κ′t
v̇t
v̇

κ̇t=κ
′
t (v+ v̇t Tc

2 )

section 5.2

section 5.3

section 5.4

target

point

target point

search
curv. change

calculation

max. v̇ for

curv. transition
limit map parameter calculation

v̇

κ′min
κ′max
v̇min
v̇max

section 5.5

section 5.6

max. deceleration

max v̇ for
velocity profile

calculation of points

on left and right border

optional

velocity

boundaries
calculation of curv. change

for border points

border
points

x [m]

y [m]

s [m]

κ(s) [radm−1]

c.g.

vehicle

nominal course

s = tp v ~n(pp)
~n(p0)

Figure 5.4: Preview Point search method.

Definition: 12 (Preview Point) Let ~n(p0) be the nearest point to the vehicles
position on the nominal course ~n(p). Then a Preview Point is the point ~n(pp)
ahead on the nominal course, where

∫ pp

p0

|~n′(p) | dp = tp v . (5.1)

With the given target point, the appropriate rate of curvature change can now
be determined in order to pass through it. This way, the desired trajectory is
determined.

2In fact, in the mentioned driver models the target point is not used to calculate a desired
trajectory in terms of a desired rate of curvature change. In [Voegel, 1997], for instance, the
target point is used to define a desired lateral displacement. Still the term target point is
referred to as a point to be passed through.
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Consider the results from a simulation run shown in figure 5.5, where the
absolute lateral deviation from the nominal course is depicted with respect to
travel distance on the course. Hand-optimized parameters are used in order to
achieve precision in path following. The control interval sizes Tc were chosen
to 0.4 and 0.2 seconds. It is shown that smaller control intervals do not cause
an observable increase in precision. On the contrary, using a control interval
of Tc = 0.2 s causes frequent deviations that are higher than 1m. In any case,
the deviation vacillates around 0.4m, which is not acceptable. The following
reasons can be suspected to cause this unsatisfactory behavior:
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Figure 5.5: Absolute value of lateral deviation from nominal course using the
Preview Point target point search method.

• The Preview Point method does not take into account the lateral deviation
of the trajectory that is laid out to pass through the target point. If the
velocity is high, then the target search picks a target point ~n(pp) that is
far ahead on the course as shown in figure 5.6a. In the case of high road
curvatures, the vehicle’s position ~p2 after the next control interval will be
even further removed from the nominal course than the actual position ~p1.
In the figure, it is shown how this problem causes the vehicle to cut the
curve. However, it is the same way, possible that the choice of a distant
target point results in planned trajectories that cause the vehicle to drive
outside the curve.

In segments on the course, where curvature changes quickly this leads to a
gradual return to the nominal course. In segments of constant curvature
this leads to a more or less constant deviation as for example in between
500 to 650 meters in figure 5.5.

These errors demonstrate the fact that the Preview Point method does not
explicitly conform to SDM. Namely, it does not ensure a minimization of
the lateral deviation.
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Figure 5.6: Two problems with Preview Point. a) The target point lies too far
in front. b) The target point comes too close.
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• A second failure of Preview Point is that it does not take into account the
angular deviation ∆ϑ between the planned trajectory and the nominal
course. This becomes a problem if the distance of the target point ahead
of the vehicle becomes short, as shown in figure 5.6b. Target points that
lie extremely close ahead, together with some deviation from the nominal
course, lead to high rates of curvature change to pass through them. This
can cause extremely high curvatures of the trajectory and therefore ends
in exceeding the maximum lateral acceleration.

This problem can be attributed to a conflict with the SDM. The Preview
Point method does not ensure a minimization of the angular error ∆ϑ and
does not consider a maximum curvature to restrict lateral acceleration.

The preview time tp is the only means to configure the target search behavior.
To prevent the first problem, the preview time tp would have to be decreased.
Avoiding the second problem requires the increase of preview time. Both rules
are contradictory and necessitate the development of new concepts for target
point search.

End of Sight

The Preview Point method is mainly oriented towards the vehicle state, given by
the current velocity. Alternatively, a concept is developed in this dissertation,
that is purely geometry-oriented. The idea is that the target point must be
placed at a position ahead on the nominal course where the course itself becomes
too unpredictable. This is done using an arc of constant radius to approximate
and ’predict’ the nominal course until a certain distance ahead. The minimal
distance where the approximation deviates too much from the nominal course
defines the target point. The following paragraphs define this method precisely
as the End of Sight concept for target point search.

For this method, an arc of constant curvature is calculated that passes
through the point on the nominal course ~n(p0) closest to the vehicle, is tan-
gent to the course at this point, and subsequently passes through a point ~n(pc)
ahead on the course. The point ~n(pc) is moved as far ahead as possible while
the error between the midpoint of the approximation and the nominal course is
less than some specified error εd. The forward-most point ~n(pc) where the error
limit εd is still not exceeded becomes the target point as shown in figure 5.7.

Definition: 13 (End of Sight Point) Let ~n(p) be a parameterization of the
nominal course and ~n(p0) be its nearest point to the vehicle’s c.g. Then let ~c(q)
be a circle that approximates the current nominal course to point ~n(pc) with
following constraints:

~c(q0) = ~n(p0) , ~c(q1) = ~n(pc) (5.2)

and

α(~c(q0)) = α(~n(p0)), (5.3)
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ã2,0, ã2,1, ...

b̃0,0, b̃0,1, ...

b̃1,0, b̃1,1, ...

...
p∗

p̃

a∗0

a∗1

a∗2

a∗3

b∗0

b∗1

b∗2

b∗3

cp,0
cp,1

ta0(χa0)

ta1(χa1)

ta2(χa2)

tb0(χb0)

tb1(χb1)

t∗a(βa)

t∗b (βb)

control
parameters

current state
gd-plan

control parameters

computation

plant

characteristics

circumstance
cognition

x [m]

y [m]

κ′ = 0.0015 [radm−2]

κ′ = 0.001 [radm−2]

∆ ye

t [s]

v [ms−1]

v̇=0.45 [ms−2]

v̇=0.6 [ms−2]

∆ ve

∆ ye [m]

coefficient number
∆ ve [m/s]

coefficient number
∆ ve [m/s]

∆ ye [m]

error distribution
∆ ve [m/s]

∆ ye [m]

coefficient number

e
−v0
10

ÿ0
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Figure 5.7: End of Sight target point search method.

where α(~c(q0)) indicates the angle of the circle at q0 and α(~n(p0)) the angle of
the tangent to the nominal course at p0. Let ~n(pmid) be at the middle of the
stretch between ~n(p0) and ~n(pc). Let dist(~c, ~n(pmid)) be the distance between
~n(pmid) and the nearest point on the circle. The End Of Sight Point ~n(peos)
is defined by

dist(~c, ~n(pmid)) > εd, (5.4)
∫ peos

p0

|~n′(p) | dp = min. (5.5)

With the End of Sight method the target is placed near the end of a segment
of the course that has an approximately constant curvature. For instance, if
the vehicle is on a long curve of constant curvature, the target is chosen at
the end of this curve where the curvature begins to decrease. This behavior
can be interpreted as striving to bring the vehicle on a trajectory of constant
curvature. Since the front wheel angle and trajectory’s curvature are station-
ary proportional this corresponds to a driver striving to hold the front wheel
constant. It theoretically has the effect of eliminating unwanted oscillations.
Furthermore, the target is placed very close to the vehicle if the course ahead
of it has a high rate of curvature change, and thus a high degree of difficulty.
Despite these theoretical advantages, however, the End Of Sight method does
create significant errors.

Results of a simulation run with control interval sizes Tc = 0.4 s and Tc =
0.2 s can be observed in figure 5.8. Parameter εd is optimized by hand in order to
improve precision of control. As predicted theoretically, this method enables the
vehicle to stabilize quickly in a segment of constant curvature, such as the stretch
between 400 to 500m. Much more obvious, however, is the poor performance on
the straight-ways at 300− 450m and 1200− 1600m. Here, a fundamental error
appears that has not been previously discussed. This primarily results from
the fact that the target point is chosen too far ahead, so that the trajectory
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ÿ0
a∗5

error

number of coefficients

e
−v0
10

ÿ0
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Figure 5.8: Absolute value of lateral deviation of the vehicle’s trajectory from
nominal course using the End Of Sight target point search method.

that it tries to pass through is not reasonable. A detailed discussion of this
phenomenon, however, is addressed in section 5.2.2.

Other errors can be explained by similar causes as mentioned in the discus-
sion concerning Preview Point. When curvature changes too abruptly, than it
is difficult to find an approximation of the nominal course, and target points
may approach to much. This explains the high errors in between 150 − 280m
and 1050− 1150m. Again this method does not include a way to prevent high
angular deviation. Further, there is nothing that ensures that the chosen tra-
jectory does not cause the lateral acceleration to get so high that the vehicle is
no longer manageable. The disregard of the goals of the SDM again leads to
unreliable system behavior and unsatisfactory results.

Deviation Dependent Preview Point

A third search method, called Deviation Dependent Preview Point, was derived,
as the name says, from deviations. It adapts the preview time tp to a given
situation by a simple formula. Two coefficients increase the preview time pro-
portionally to lateral and angular deviations. This is to prevent the target point
from coming too close, if one of those deviations becomes high. For the case
that both deviations are close to zero, the target point lies close ahead on the
nominal course. Since, in this case, both the vehicle and the target point lie
close together on the nominal course, the trajectory through the target point
can be planned very precisely. This is the theoretical idea behind this method.
The definition of the method follows:

Definition: 14 (Deviation Dependent Preview Point) Let ∆d be the ab-
solute value of the vehicle’s current lateral deviation from the nominal course,
let ∆ϑ be the absolute value of the current angular deviation from the nominal
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course. A Deviation Dependent Preview Point ~n(pp) is a point that lies
a certain distance tp · v ahead correspondent to

∫ pp

p0

|~n′(p) | dp = tp v . (5.6)

The preview time tp is given by

tp = c1 + c2 ∆d + c3 ∆ϑ. (5.7)

with

c1 ≥ 0. (5.8)

The parameters c2 and c3 may be chosen arbitrarily.

The coefficient c1 has to be positive, because otherwise the target point would
lie backwards, if lateral displacement ∆d and angular error ∆ϑ are both zero.

Results from a sample simulation with two optimized parameter sets for
{c1, c2, c3} that produce minimal deviation for control intervals Tc = 0.4 and
Tc = 0.2 are shown in figure 5.9. The graphs are produced based on optimized
coefficients c1, c2 and c3. The comparison with figure 5.5 makes it clear that no
improvements were achieved. By a simple formula, like (5.7), it is apparently
not possible to incorporate all required relationships that have to be considered
to choose an appropriate target point. The results of the last three sections
indicate that a much more systematic approach is required to handle target
point search.
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Figure 5.9: Absolute value of lateral deviation from nominal course using the
Deviation Dependent Preview Point search method.
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5.2.2 Fundamental Problem with Target Point Search

At this point, it is beneficial to search for a principal error in these target point
search methods. There is, in fact, one fundamental problem that causes many
inaccuracies:

The target point is being used in a way that violates the assumptions
on which it was founded. A target point is a means to provide a
constant rate of curvature change κ′ for exclusively the subsequent
control interval. However, each of the previously mentioned target
search methods indirectly uses the target point concept to make
plans with constant rates of curvature changes that span much longer
than one control interval, and this leads to disaster.

Consider the situation shown in figure 5.10. The target point is placed at the
end of the straight-away as desired, theoretically to eliminate oscillations. What
happens instead is that the driver makes a plan which spans several control
intervals into the future based on a constant rate of curvature change κ′ and
the initial curvature κ0. Of course, only the portion of this planned trajectory
that spans the subsequent control interval is actually driven (see point at ’v Tc’),
after which a new target is chosen. Nevertheless, it is still laid out as a segment
of a longer plan.
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Figure 5.10: Mathematical problem with a target point ~t that lies much further
ahead than one control interval. The planned trajectory is a swooping arc.

Furthermore, it is the disregard of the rules of the SDM that caused the
previous three target point search methods to fail. Figure 5.11a illustrates the
disparity between a geometric plan resulting from a target point ~tp using the
Preview Point method (dotted line) and an idealized geometric plan (solid line),
which guides the vehicle smoothly back to the nominal course. The geometric
plan that results from the Preview Point target ~tp does not respect angular devi-
ations and leads to very high curvatures (figure 5.11b). High curvatures produce
high lateral accelerations that threaten the stability of the system. Smoothly
guiding back means that all rules of the SDM are striven to be attained. Driving
along the solid line the vehicle approaches the nominal course and turns so that
it is parallel to the course angle. At the same time, the geometric plan does not
contain high curvatures so that the lateral acceleration to drive it is relatively
small.
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Figure 5.11: a) Comparison of an ideal trajectory and a trajectory derived from
a Preview Point target on the nominal course. b) Comparison of curvature
profile of geometric plans resulting from Preview Point, an ideal maneuver to
recover the nominal course and its approximation by segments of constant rate
of curvature change.
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It is clear that the curvature profile of this ideal trajectory can not be reached
by one single segment of constant rate of curvature change. However, figure
5.11b shows how, properly used within multiple control intervals, a sequence
of target points at s1 and s2 can very closely approximate the previously men-
tioned idealized behavior. It is therefore necessary to formulate an improved
target point search method, which is capable of properly placing the target point
to achieve accurate control. This target point does not necessarily lie on the
nominal course.

5.2.3 Systematic Target Point Search Methods

Nestle Curves of 1st Order

‘Nestle Curves’ are a systematic target point search method developed in this
dissertation. It takes into account the lateral and angular deviation of the vehicle
to form a geometric plan that allows a smooth return to the nominal course. It
is as direct as possible and explicitly satisfies three requirements of the SDM. To
accomplish this, a smooth curve, parameterized by q, is interpolated between
the vehicle and the nominal course subject to the following constraints:

• The curve starts at q = 0 in the c.g. of the vehicle and ends at q = 1
somewhere ahead on the nominal course.

• It is tangent to the vehicle’s actual trajectory at q = 0 and to the nominal
course at q = 1.

• It does not contain a curvature that causes, together with the current
velocity, a higher lateral acceleration than a predefined limit ÿmax,nestle.

• It is as short as possible, i.e the point on the nominal course lies as closely
as possible ahead of the vehicle.

In this way, the lateral and angular errors are reduced as quickly as possible
without exceeding the lateral acceleration limit. Once this curve is found, then
the target point is placed some specified preview time tp, theoretically in the
range of one control interval Tc, ahead on this curve. It is now assumed that
the nestle curve is a possible trajectory of the vehicle. Choosing a point on
the nestle curve makes it therefore plausible, that the vehicle follows the curve
precisely when driving through the target point. This was not necessarily the
case for the intuitive target point methods. A schematic picture of this idea is
shown in figure 5.12.
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Figure 5.12: Nestling to the nominal course.

Definition: 15 (1st Order Nestle Curve) Let ~x be the actual position of the
vehicle’s c.g., ψ and β its yaw and slip angle, v its velocity and ÿmax,nestle the
desired maximum lateral acceleration. Let ~n(p) denote the nominal course. A
Nestle Curve is defined as a continuous curve ~c(q), q ∈ [0, 1] that has the
following properties:

~c (0) = ~x, ~c (1) = ~n(pn),
α(~c(0)) = β + ψ, α(~c(1)) = α(~n(pn)),

(5.9)

so that

max
q∈[0,1]

{|κ(~c(q))|} ≤ κlim ≡ ÿmax,nestle
v2

(5.10)

and
∫ 1

0

|~c′(q)| dq = min. (5.11)

Nestle curves are restricted to no more than two sign changes in curvature from
~c(0) to ~c(1).

As a particular implementation of nestle curves, the following mathematical
parameterization of the form ~c(q) = (xc(q) yc(q))

T is used. The problem is
first transformed into a local coordinate system with the origin in the vehicle’s
c.g. and the x-axis along the velocity vector. In this coordinate system, the
conditions (5.9) transmute to

xc(0) = 0, yc(0) = 0,
yc(1) = tx, yc(1) = ty,

(5.12)

tan(α(~c(0))) = 0 ⇒ y′c(0) = 0,

tan(α(~c(1))) = α(~n(pn)) ⇒ y′c(1)
x′

c(1)
= α(~n(pn)) − (β + ψ) ≡ ξ1.

(5.13)
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with (tx ty)
T as the point ~n(pn) on the nominal course, transformed into the

local coordinate system. There are six constraints, and therefore, six unknown
variables which are required. In order to avoid loops in the nestle curve, the
x-parameterization is left as linear (since then ’x’ cannot go forward and back-
ward). The four other variables required are provided by a third order polyno-
mial for the y-coordinate, such that the parameterization for the nestle curve
becomes

~c(q) ≡
(
xc(q)
yc(q)

)

=

(
ax q + bx

ay q
3 + by q

2 + cy q + dy

)

. (5.14)

The constraints (5.12) and (5.13) result in the following setting of the coefficients

ax ≡ tx,
ay ≡ tx tan(ξ1) − 2 ty,
by ≡ −tx tan(ξ1) + 3 ty,
cy ≡ dy ≡ bx ≡ 0.

(5.15)

The curvature of a nestle curve is given by

κ(q) =
d

d l
α(~c(q)) =

(
dl

dq

)−1
d

d q
arctan

(
y′c(q)

x′c(q)

)

. (5.16)

It follows with dl2 = (x′c(q) dq)
2 + (y′c(q) dq)

2 and x′′c (q) = 0

κ(q) =
y′′c (q)x′c(q) − y′c(q)x

′′
c (q)

((x′c(q))
2 − (y′c(q))

2)
3
2

=
y′′c (q)x′c(q)

((x′c(q))
2 − (y′c(q))

2)
3
2

, (5.17)

=
(6 ay q + 2 by) ax

(a2
x + (3 ay q2 + 2 by q)2)

3
2

. (5.18)

Each point ahead on the nominal course defines a specific nestle curve by which
it can be nestled to the nominal course. A nestle curve is only allowed, if its
maximum curvature is less then the maximum curvature κlim = ÿmax,nestle/v

2.
Thus, the first point on the nominal course where this condition holds defines
the nestle curve. The process of searching for a suitable nestle curve in displayed
in figure 5.13. Having determined the nestle curve, nestle points can easily be
defined.

Definition: 16 (Nestle Point) Let ~c(q) describe a nestle curve that nestles
from the vehicle to the nominal course as defined in definition 15. Then a
Nestle Point is a point ~c(qn), qn ∈ [0, 1] that lies a certain distance v tp in
front on the nestle curve, thus

∫ qn

0

|~c′(q) |dq = v tp. (5.19)

tp should be set in the range of the control interval size Tc, since the resulting
curvature profile is also only laid out for one control interval.
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Figure 5.13: Iterative construction of nestle curves.

This search method has proven to be very powerful, independent of the
requirements of different situations. Figure 5.14 shows that this method pro-
duces excellent performance for almost every maneuver on the course ’Moby
Dick.’ Parameters tp and tpm are optimized to minimize lateral deviation. tpm
indicates the minimum preview distance to look ahead on the course. Where
Preview Points produce deviations that vacillate around 0.4m it is possible to
achieve deviations of less than 0.05m with Nestle Curves and control interval
sizes Tc = 0.1 s. In addition, the deviation error seems to be scalable by means
of the control interval size Tc. With this method the driver model is also capable
of returning to the nominal course rapidly after large deviations, as for instance
at s = 1000m. One must not forget that during these cornering maneuvers the
lateral acceleration is large, and therefore the vehicle is very sensitive to front
inputs. Finally, constant low deviations indicate that the resulting gd-plan sel-
dom runs the plan-to-action mapper into states that are out of its manageable
domain.

However, there is a potential for malfunction that comes from the fact that
always the shortest nestle curve possible is chosen. It is always the curve that
has the maximum curvature equal to the desired limit, even if the deviation
to the nominal course is small. The resulting geometric plans, with their high
curvature, prevent an increase in speed and can therefore be self-sustaining.
This phenomenon can be controlled by defining a minimum preview time tpm
that defines a distance v tpm ahead on the nominal course from which to start
searching for a nestle curve.
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Figure 5.14: Absolute value of lateral deviation from nominal course using the
Nestle Curve target point search method.
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The primary problem with nestle curves, however, is the fact that in many
situations, the geometric plan defined by a constant rate of curvature change
through a target point on the nestle curve is not always similar to the inter-
polated polynomial. This problem is a result of differing initial curvatures of
the trajectory and the nestle curve, and nearly always causes the lateral accel-
eration on the geometric plan to be higher than if the vehicle had followed the
nestle curve itself. Figure 5.15 shows an example of how it is impossible for the
geometric plan to be similar to the nestle curve. A second problem that arises
from this issue is that the curvature of the calculated path to the target point
becomes higher than expected from the shape of the nestle curve. These prob-
lems cause the majority of errors produced by nestle curves; therefore, a new
mathematical definition for nestle curves with an initial curvature constraint is
required.
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Figure 5.15: Problem with first order nestle curves.

Nestle Curves of 2nd Order

It is clear that an initial curvature constraint must be placed on the nestle curve.
The addition of this constraint creates what is called a 2nd order nestle curve.

Definition: 17 (2nd Order Nestle Curve) A 2nd Order Nestle Curve is
a curve that obeys the constraints of a 1st order nestle curve. Furthermore, it
ensures that the curvature at the starting point of the nestle curve is the same
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as the actual curvature of the vehicle’s trajectory, i.e.

d

ds
κ(~c(s))

∣
∣
∣
∣
s=0

= κ0 =
ψ̇ + β̇

v
, (5.20)

where s is a variable indicating the length of the curve.

The search for an appropriate parameterization develops into a complicated
affair. At first glance, only one degree of freedom has to be added to the
parameterization of (5.14). The constraint that there may not be loops in the
nestle curve forbids a quadratic term for the x-parameterization. However, a
polynomial of forth order for the y-coordinate can behave very strangely3. On
the other hand, a stretching of the x-parameterization would not fit for cases,
where the initial curvature is negative. To achieve a parameterization a more
complex idea is developed in this dissertation, as described in detail in appendix
D. The result is a parameterization of the following form for the vehicle local
coordinate system:

~c(s) ≡ 1

2

(
Rs cos(ξ0(s)) −R (1 − s) cos(ξ1(s)) + dx
Rs sin(ξ0(s)) −R (1 − s) sin(ξ1(s)) + dy

)

, (5.21)

with

ξ0(s) ≡ ax (s− 1)3 + cx, (5.22)

ξ1(s) ≡ ay s
3 + by s

2 + cy. (5.23)

The solution for a given target (tx ty)
T , target angle αt and initial curvature κ0

becomes

ax = 2A, cx = A, dx = tx,
ay = 2αt − 8A+ κ0 | cos(A)|R, by = −κ0 | cos(A)|R + 6A,
cy = A, dy = ty,

A = arctan(ty , tx), R =
√

t2x + t2y.

(5.24)

The expression for curvature κ(s) becomes

κc(s) =
2

R

κnom(s)

(κdenom(s))
3
2

. (5.25)

with

κnom(s) ≡
[

(1 − s)σ1(s)ξ
′2
1 (s) − s σ0(s)ξ

′2
0 (s)

3For cases, where there is no root of curvature the forth order polynomial may have a very
rough shape. As a consequence, it is possible that the angle constraint at the endpoint is
fulfilled, but the angle until an extremely small distance before does not change its direction
as wanted. Such a nestle curve does not really nestle. Furthermore, it contains extremely
high curvatures that are absolutely not necessary to nestle back to the course.
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+
(
2 ξ′0(s) + s ξ′′0 (s)

)
γ0(s) +

(
2 ξ′1(s) − (1 − s)ξ′′1 (s)

)
γ1(s)

]

·
[

γ0(s) + γ1(s) − s σ0(s)ξ
′
0(s) + (1 − s)σ1(s)ξ

′
1(s)

]

+

[

(1 − s) γ1(s)ξ
′2
1 (s) − s γ0(s)ξ

′2
0 (s)

+
(
2 ξ′0(s) + s ξ′′0 (s)

)
σ0(s) +

(
2 ξ′1(s) − (1 − s)ξ′′1 (s)

)
σ1(s)

]

·
[

σ0(s) + σ1(s) + s γ0(s)ξ
′
0(s) − (1 − s) γ1(s)ξ

′
1(s)

]

, (5.26)

κdenom(s) ≡
[

γ0(s) + γ1(s) − s σ0(s)ξ
′
0(s) + (1 − s)σ1(s)ξ

′
1(s)

]2

+
[

σ0(s) + σ1(s) + s γ0(s)ξ
′
0(s) − (1 − s) γ1(s)ξ

′
1(s)

]2

, (5.27)

and

σ0(s) = sin(ξ0(s)), γ1(s) = cos(ξ1(s)), (5.28)

γ0(s) = cos(ξ0(s)), σ1(s) = sin(ξ1(s)). (5.29)

A derivation of this formula is shown in appendix D. As for first order nestle
curves, a near point ahead on the nominal course has to be chosen. Then a
nestle curve is calculated from the vehicle’s c.g. to that point and checked for
a curvature greater than the desired maximum. If the curvature exceeds the
maximum at any point, the nestle curve is rejected and the subsequent point
on the nominal course has to be taken. This process is repeated until a nestle
curve is found that nestles back to the nominal course satisfying all constraints.
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Figure 5.16: Nestle curves of first (bold dashed line) vs. nestle curves of second
order (bold line). a) x- and y-coordinates of nestle curves and constant curvature
segments. b) Curvature profiles.
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A comparison between first and second order nestle curves is illustrated in
figure 5.16. The dash-dotted line indicates the segment of constant curvature
change to pass through the target point on the first order nestle curves. The
dashed line represents the segment to pass through the target point on the
second order nestle curve. Diamonds indicate target points. Having defined a
nestle curve, a target point has to be chosen on the nestle curves. Based on
this target point a segment of constant curvature, i.e. the geometric plan, is
determined in order to pass through it. In figure 5.16a, it becomes obvious that
the geometric plan resulting from the first order nestle curve matches the nestle
curve much less than the geometric plan based on second order nestle curves.
The geometric deviation between nestle curve and geometric plan becomes even
more obvious if one considers the curvature profiles in figure 5.16b. The sec-
ond order nestle curve and the resulting geometric plan have almost the same
curvature profile. The curvature profile of the first order nestle curve and its
resulting geometric plan, however, do not match at all.

Even though the considerations of this kind of nestle curves are based on
a very detailed analysis, there is a fundamental problem. It is not as signif-
icant as any problems pinpointed before, however, it decreases performance.
Consider figure 5.17 where a simple solution is required to nestle to a point
150 meters ahead with the same angle as the actual. The second order nes-
tle curve calculates a trajectory as an arc starting with an initial curvature of
κ0 = 0.0005 radm−1 and ending with and angle of zero. Correspondingly, the
vehicle is guided away from the track. In figure 5.17a it is predictable that it
may be displaced soon more than 0.2m from the nominal course.
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ã1,0, ã1,1, ...
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Figure 5.17: Nestling to a point that lies 150m straight ahead. The dash-dotted
line indicates the segment of constant curvature change to pass through the
target point on the first order nestle curves. The dashed line represents the
segment to pass through the target point on the second order nestle curve.
Diamonds indicate target points. a) Geometric behavior of the curves. b)
Curvature profiles.

First order nestle curves simply result in a straight line from the start to the
end. The resulting curvature profile of the segment of constant rate of curva-
ture change contains higher curvatures and does not really fit the nestle curve.
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However, this phenomenon becomes unimportant when curvatures are as low as
that. The fact that the vehicle is guided 0.2m away from the nominal course
by second order nestle curves is much more significant than fitting curvature
profiles of curves that can be considered to be straight lines.

Thus, the process of nestle curve determination has to switch between first
and second order nestle curves. For the following experiments, the first order
nestle curve is only taken, if the actual curvature has the same sign as the
curvature of the nestle curve and is greater than that. Otherwise, the second
order nestle curve is used.
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Figure 5.18: Absolute value of lateral deviation from nominal course using the
second order nestle curves.

A sample run with second order nestle curves is shown in figure 5.18. Like the
first order nestle curves, the second order nestle curves provide a mean to scale
the deviation error. Smaller control intervals really result in higher precision.
It is interesting to see that the preview times tp on the nestle curves can now
be chosen close or equal to the control interval length Tc. This is because the
approximation done by a segment of constant rate of curvature change is much
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closer to the real curve, than it was with the first order nestle curves. With
control intervals of 100ms it is possible to reduce the error practically to zero.

5.2.4 Conclusion on Target Points

The preceding sections discussed the problems of target point search. First,
a set of intuitive methods was developed. Three different intuitive methods
were derived to calculate the position of the target point. Preview Point used
the system state of the vehicle, i.e. the velocity, as a basis for target point
placement. End Of Sight placed the target point based on the geometry of the
nominal course. Deviation Dependent Preview Point uses lateral displacement
and angular deviation to adapt the distance to the target point. The three
methods were not convincing in terms of their performance.

Fundamental errors were attributed to a mathematical problem that arises
from initial curvature and target points that lie too far ahead as well as the
disregard of the situational driving motivation SDM. A new method, called
Nestle Curves, was introduced to immediately boost the performance of the
driver model. Nestle Curves, however, introduce a new piece of data in the
target point search procedure: a nominal course that is local to the current
situation. Where the previous three methods directly referred to the long term
nominal course for target point placement, the nestle curve method places the
target point on a temporary trajectory.

A nestle curve acts very similarly to a nominal course. However, a nestle
curve and a nominal course are fundamentally different concepts. Nestle curves
are constructed in order to nestle back to the nominal course. For every control
interval they are calculated in order to reduce the lateral and angular deviations
from the nominal course. The nominal course itself is designed by a strategic
unit correspondent to road geometries. Due to these considerations, target point
placement has to be understood as a three level process as depicted in figure
5.19:

1. Nominal course construction: Every time that errors exceed a certain
boundary, a new nominal course ~n(p) has to be created related to the road
geometries close ahead. The error check happens every control interval,
while the nominal course is only constructed when the threshold check
triggers.

2. Short term path planning: As long as errors are small enough, the vehicle
only has to be nestled back to the nominal course. The construction of a
short term plan ~c(p) happens every control time interval.

3. Target point determination: A suitable target point has to be chosen,
that can be reached in the time range of one control interval. This also
has to be accomplished every control interval. The target point ~t is then
directly related to a desired rate of curvature change κ′ for the next control
interval.
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Figure 5.19: Three levels of geometric plan construction.
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The development of a strategic unit that constructs a nominal course accord-
ing to road geometries is the next step in order to improve geometric dynamic
planning. It has to be located, however, on a layer above the Generalized Feed-
back Controller.

5.3 Rate of Curvature Change for Target Point

As can be seen in figure 5.2a, the calculation of parameters of the target map
is based on a target point. The search for an appropriate target point was
discussed in the previous section. This section discusses the computation of a
constant rate of curvature change κ′ that is required in order to pass through
the target point. Starting from an initial vehicle position ~X0, with an angle α
and a curvature κ, a curve with a constant rate of curvature change κ′ has to
be determined in order to pass through the target point ~Xt. A constant rate of
curvature change κ′ results in a profile of the tangent angle of the trajectory as
given by

α(s) = α+ κ s+ 1
2κ

′ s2, (5.30)

where s is the trajectory length. Such a curve is called a spiral. Examples for
opening and closing spirals can be observed in figure 5.20.
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ã0,0, ã0,1, ...
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ã2,0, ã2,1, ...

b̃0,0, b̃0,1, ...

b̃1,0, b̃1,1, ...

...
p∗

p̃

a∗0

a∗1

a∗2

a∗3

b∗0

b∗1

b∗2

b∗3

cp,0
cp,1

ta0(χa0)

ta1(χa1)

ta2(χa2)

tb0(χb0)

tb1(χb1)

t∗a(βa)

t∗b (βb)

control
parameters

current state
gd-plan

control parameters

computation

plant

characteristics

circumstance
cognition

x [m]

y [m]

κ′ =0.0015 [radm−2]

κ′ =0.001 [radm−2]

∆ ye

t [s]

v [ms−1]

v̇= 0.45 [ms−2]

v̇=0.6 [ms−2]

∆ ve

∆ ye [m]

coefficient number
∆ ve [m/s]

coefficient number
∆ ve [m/s]

∆ ye [m]

error distribution
∆ ve [m/s]

∆ ye [m]

coefficient number

e
−v0
10

ÿ0
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Figure 5.20: Pictures of closing (κ′ > 0) and opening (κ′ < 0) spirals as solid
lines. The extrapolated curve with constant curvature (κ > 0) is depicted as
dotted line. a) Closing spiral. Rate of curvature change has the same sign as
curvature at s = 0. b) Opening spiral. Rate of curvature change has a different
sign than curvature at s = 0.

To find the appropriate κ′ to pass through the target point ~Xt, a formula
is derived that describes the point on a spiral defined by κ and κ′ dependent
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on the trajectory length s. The resulting expression makes it clear that an
analytical solution to find the κ′ to pass through ~Xt is impossible. Therefore,
an approximation method has to be developed to find a numerical solution for
κ′. This is achieved by means of a two level minimization algorithm.

For the sake of simplicity, the problem is transformed into a local coordinate
system. It is assumed that the initial position lies in the origin and that the
initial angle is parallel to the x-axis, i.e.

~X0 = (0 0)T and α(s = 0) = α = 0. (5.31)

In the general case, this initial condition is achieved by a simple linear transfor-
mation consisting of a rotation and a translation. Curvature is defined as the
rate of angle change with respect to distance, i.e. κ(s) = d

dsα(s). The angle of

a trajectory ~Xκ′(s) is defined as arctan( ddy
~Xκ′(s)/ d

dx
~Xκ′(s)). Using equation

(5.30) the tangent vector can be specified as

~Tκ′(s) =

(
Tx(s)
Ty(s)

)

=

(
cos(κs+ 1

2κ
′ s2)

sin(κs+ 1
2κ

′ s2)

)

. (5.32)

Integrating ~Tκ′(s) yields the position

~Xκ′(s) =

∫

~Tκ′(σ)dσ =

( ∫ s

0
Tx(σ)dσ

∫ s

0
Ty(σ)dσ

)

. (5.33)

The integrals over Tx(s) and Ty(s) contain expression of the form s2 inside the
trigonometric functions cos and sin. Expanding the sine and cosine expressions
by Euler’s rule reveals the integral over e−x

2

which is analytically not solvable.
Instead, the arguments are transformed so that Fresnel Cosine and Sine can
be used to express the solution. Fresnel Cosine C(s) and Fresnel Sine S(s) are
defined as

C(s) ≡
∫ s

0

cos
(
π
2 x

2
)
dx and S(s) ≡

∫ s

0

sin
(
π
2 x

2
)
dx, (5.34)

To be able to use these expressions, the argument of the sine and cosine function
must now be reformulated:

κs+ 1
2κ

′ s2 −→
(

s+
κ

κ′

)2

− κ2

2κ′
. (5.35)

The term − κ2

2κ′ is independent of s and can thus be understood as the influence

of a rotation of curve ~Xκ′(s) by a constant angle λ = − κ2

2κ′ . Let A(λ) be the

necessary rotation matrix to get a simplified vector ~T ∗
κ′(s) = A(λ)~Tκ′(s) by

applying equation (5.35) in equation (5.32). ~T ∗
κ′(s), therefore, becomes

~T ∗
κ′(s) ≡ A(λ)~Tκ′(s) =




cos
((
s+ κ

κ′

)2
)

sin
((
s+ κ

κ′

)2
)



 . (5.36)
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Since A(λ) is independent of s, it behaves in integration like a constant factor.

Thus, first ~X∗
κ′(s) can be calculated as the integral of ~T ∗

κ′(s). Second, ~X∗
κ′(s) has

to be rotated by A−1(λ) to get ~Xκ′(s). Applying the substitutions u1 ≡ s+ κ
κ′

and u2 ≡
√

κ′/π u1 allows the integral to be expressed as:

~X∗
κ′(s) =

∫

~T ∗
κ′(σ)dσ =

√
π

κ′




C
(
κ′σ+κ√
πκ′

)

S
(
κ′σ+κ√
πκ′

)





∣
∣
∣
∣
∣
∣

σ=s

σ=0

. (5.37)

Since A(λ) carries out a pure rotation one can directly state that A−1(λ) =

A(−λ) which is a rotation in the opposite direction. ~Xκ′(s) is then given by

~Xκ′(s) = A−1(λ) ~X∗
κ′(s), (5.38)

= A(−λ)
√
π

κ′








C
(
κ′s+κ√
πκ′

)

S
(
κ′s+κ√
πκ′

)



−




C
(

κ√
πκ′

)

S
(

κ√
πκ′

)







 , (5.39)

where

A(−λ) ≡
[
cos(λ) −sin(λ)
sin(λ) cos(λ)

]

. (5.40)

Equation (5.39) defines the point ~Xκ′(s) that is reached by applying a certain
rate of curvature change κ′ over a distance s. The task is now to solve the
inverse problem, i.e. one has to find the appropriate κ′ to pass through a given
target point ~Xt. The fact that these formulae include sines, cosines as well as
their Fresnelian equivalents makes it impossible to find analytic solutions. To
solve this problem, a two level minimization procedure is derived:

1. First, a distance measure is defined that describes the distance between
a target point and a spiral of fixed κ′ as the minimum distance between
both, i.e.

dist( ~Xt, { ~Xκ′(s)}) ≡ min
s∈Ds

{∣
∣
∣ ~Xt − ~Xκ′(s)

∣
∣
∣

}

. (5.41)

Minimization algorithms are not discussed in the following text4. In gen-
eral however, rapid minimum search algorithms (like the Brent Algorithm
that was used in this case [Brent, 1973]) require that there is only one
minimum inside the search interval. Otherwise, the algorithm might find
a local minimum. Thus, section E.1 is dedicated to the elaboration of an
appropriate search interval Ds.

With the appropriate Ds a minimization algorithm can be run to find the
minimum distance between the spiral and the target point. This minimum
distance represents at the same time the distance measure between the
spiral and the target point.

4Literature provides a large overview over this topic [Press et al., 1992, chapter 10].
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2. Having a procedure to compute the distance between the target point and
a spiral it is now possible to find the closest spiral to the target point
by adapting κ′. The best spiral is the one where the distance between
target point and spiral is zero. Again, the variation of κ′ and searching
for the closest distance is best done with a minimization algorithm to get
the κ′min so that

dist( ~Xt, { ~Xκ′
min

(s)}) = min
κ′∈Dκ′

{

dist( ~Xt, { ~Xκ′(s)})
}

. (5.42)

To use an appropriate algorithm, a domain Dκ′ is required that does
not contain local minima. The derivation of this domain is illustrated in
section E.2.

Briefly, two procedures are required. The first needs to determine for a fixed
κ′ how far the resulting spiral is to the target point. This requires a suitable
domain Ds with a unique minimum over s. Then it is possible to apply a
second procedure that searches for the κ′ so that the resulting spiral hits the
target point.

5.4 Acceleration for Curvature Transition

Referring to figure 5.2a, the next step towards the preferred gd-plan of the target
map is to calculate an appropriate acceleration v̇ for the curvature transition
that is specified by κ′. For this, it is assumed that there is a maximum lat-
eral acceleration ÿmax,curv that must not be exceeded during the next control
interval.

For the following discussion the velocity profile v(t) over the next control
interval is approximated by a linear term, i.e v(t) ≈ v + v̇ t. A constant rate of
curvature change κ′ with respect to s results in an expression κ̇(t) as

κ̇(t) =
∂ κ

∂ s
· ∂ s
∂ t

= κ′ (v + v̇ t). (5.43)

Since κ′ is constant and assuming that the velocity change during one control
interval is relatively small, it is plausible that κ̇(t) can be effectively approxi-
mated by a constant. Concretely, this means that it is assumed that the trajec-
tory that results from applying a constant κ̇(t) = κ̇ is sufficiently close to the
shape of a spiral, given by a constant κ′(t) = κ′. Using equation (5.43) allows
one to calculate the average 〈κ̇(t)〉 that appears, if κ′(t) is constant. Assuming
the constant κ̇ to be exactly this average 〈κ̇(t)〉 minimizes the error between κ̇
and κ̇(t) over the control interval (0, Tc], i.e.

κ̇ = const. = 〈κ̇(t)〉 =
1

Tc

∫ Tc

0

κ′ (v + v̇ t) dt = κ′
(

v +
v̇ Tc
2

)

. (5.44)

With the linear approximations of curvature and velocity the lateral acceleration
profile ÿ(t) = v2(t)κ(t) can be expressed as

ÿ(t) = (v + v̇ t)2(κ+ κ̇ t), (5.45)
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ÿ0

a∗5
error

number of coefficients
∆ ve [m/s]

∆ ye [m]

error distribution
interpolated star parameter

optimal star parameter

S
Pgd
s0
st

popt
popt

S
Pgd
Agd

s0
pa
pb
pc

admissibility

function 1

function 2

combination
operator

limit map
L(pgd)

p1

p2

A1(pgd)
A2(pgd)

admissible domain
κ′ [radm−2]
v̇
[
m/s−2

]

Agd

κ′
−3

κ′
−2

κ′
−1

κ′
t

κ′
3

κ′
2

κ′
1

κ′

C(κ′)

κ′
−3

κ′
−2

κ′
−1

κ′
t

κ′
3

κ′
2

κ′
1

v

trajectory(κ′)

pgd
utility

C1(pgd)

C2(pgd)

T (pgd)

pgd
utility

C1(pgd)

C2(pgd)

T (pgd)

constructiveness

function 1

function 2

combination
operator

target map
T (pgd)

p1

p2

C1(pgd)
C2(pgd)

combined
utility map

target map

limit map

p1

p2

T (pgd)
L(pgd)
U(pgd)

addmissible domain

inaddmissible domain
target

pillar

κ′ [rad/m−2 s]

v̇ [ms−2]

popt

∂Agd

course geometries

vehicle state
parameter calculation

gd-plan

parameter

target map

limit map

target and

limit maps

~n(p)

κnc(ν), vnc(p)

{v,β,ψ,β̇, ...}

κ′

v̇
κ′t
v̇t
v̇

κ̇t=κ
′
t (v+

v̇t Tc
2 )

section 5.2

section 5.3

section 5.4

target

point

target point

search
curv. change

calculation

max. v̇ for

curv. transition
limit map parameter calculation

v̇

κ′min
κ′max
v̇min
v̇max

section 5.5

section 5.6

max. deceleration

max v̇ for
velocity profile

calculation of points

on left and right border

optional

velocity

boundaries
calculation of curv. change

for border points

border
points

x [m]

y [m]

s [m]

κ(s) [radm−1]

c.g.

vehicle

nominal course
s = tp v
~n(pp)
~n(p0)

∆d [m]
s [m]

Tc=0.2s, tp=0.4s

Tc=0.4s, tp=0.6s

nominal course

estimation of

nominal course
~c(q0) = ~n(p0)
~c(q1) = ~n(pc)

~c(q)
~n(pmid)

εd
εd [m]
s [m]

Tc=0.2s, εd=0.0005m

Tc=0.4s, εd=0.01m

∆d [m]
s [m]

Tc=0.2s, c1=0.37s, c2=0.09s/m, c3=0.05s/rad

Tc=0.4s, c1=0.64s, c2=0.03s/m, c3=0.0002s/rad

κ0=0.015

ψ0=−100

~t

v Tc

x [m]

y [m]

~x
s1 = v Tc

s2
~tp, s = st

~tp

s = sn
κ(s)
κ(s)

s
s1
s2
st
sn

κ(0)

nominal course

nestle curve

l
~x = ~c(0)

~v
x
y

β + ψ
~n(pn) = ~c(1)

β + ψ
α(~n(pn))

nominal course

vehicle
position

etc.
y [m]
x [m]

∆d [m]

s [m]

Tc=0.1s, tp=0.19s, tpm=0.2s

Tc=0.2s, tp=0.32s, tpm=0.32s

Tc=0.4s, tp=0.55s, tpm=0.56s

nominal course
nestle point

nestle curve
extrapolation κ = const.

nestle curve
vehicle’s trajectory

gd-plan

~c(0)
~c(1)
~c(0)

x [m]

y [m]

~x

~t

κ(s) [rad/m]

κ0=0.017 [rad/m]

κ0

s [m]

~x

~t

x [m]

y [m]

κ(s) [rad/m]

κ0=0.0005 [rad/m]

κ0=0.017 [radm−1]

s [m]

εd [m]

s [m]

nestle 2: Tc=0.4s, tp=0.4s, tpm=0.56s

nestle 1: tp=0.6s, tpm=0.6s

nestle 2: Tc=0.2s, tp=0.2s, tpm=0.2s

nestle 1: tp=0.6s, tpm=0.6s

nestle 2: Tc=0.1s, tp=0.19s, tpm=0.15s

nestle 1: tp=0.6s, tpm=0.6s

κ′

~x

~t

~n(s)

~n(s)

~c(s)

x [m]

y [m]

~Xt

α(s)=− π
2

α(s)= π
2

v(t)κ(s) ÿ(t)
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Figure 5.21: Principle diagrams to illustrate the derivation of a lateral acceler-
ation profile ÿ(t) from a constant rate of curvature change κ′ and a constant
acceleration v̇. The exact formula for ÿ(t) is given by equation (5.45).

= (v + v̇ t)2
(

κ+ κ′
(

v +
v̇ Tc
2

)

t

)

. (5.46)

The lateral acceleration must not exceed the maximum lateral acceleration
ÿmax,curv. Therefore, the extremum of the function ÿ(t) has to be determined.
For a fixed v̇ the lateral acceleration ÿ(t) has two extrema with respect to time.

ta = −v
v̇
, (5.47)

tb =







− 2κ′ v2+v κ′ v̇ Tc+4 v̇ κ
3 v̇ κ′ (2 v+ v̇ Tc) ∀ κ 6= 0 ∧ κ′ 6= 0

− v
3 v̇ ∀ κ = 0 ∧ κ′ 6= 0
ta ∀ κ 6= 0 ∧ κ′ = 0

. (5.48)

Note that in the case that κ and κ′ are both zero is a special case, where v̇ can
have an arbitrary value. In this case the vehicle is moving on a straight line
and lateral acceleration profiles do not have to be considered. Equation (5.45)
shows that lateral acceleration at the first extremum ta is zero, so the absolute
value can never be a maximum. The second extremum tb, however, has to be
considered as a possible candidate.

Let κ > 0 for all following considerations. In case of κ < 0 this assumption
implies an inversion of κ to κ∗ = −κ. Consequently inverting κ′ thus gives a
problem that is geometrically identical to the original.

Furthermore, it is supposed that the velocity is always positive5. Preventing
the velocity from becoming zero in the time interval (0, Tc) restricts the allowed
domain of accelerations I0 to

I0 ≡ (− v
Tc
, ∞). (5.49)

5Restricting the velocity to be greater than zero and not to cross zero during the control
interval does not at all restrict the validity of the discussion. Negative velocities can be han-
dled the same way as mentioned, treating the desired trajectory to be driven backwards. As
mentioned previously, velocity changes during the control interval are considered to be rela-
tively small. Thus the zero-crossings of the velocity happen at very low velocities, i.e. v(t) ≈ 0
during the control interval. In consequence of this, lateral acceleration ÿ(t) = v2(t)κ(t) will
be close to zero. In this case, the discussion about an exceeding of an lateral acceleration limit
would be superfluous, since limiting a lateral acceleration that is approximately zero does not
make sense.
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Starting from equation (5.45) several constraints can be defined on the lateral
accelerations profile. The first two constraints follow the restriction that the
maximum lateral acceleration limit ÿmax,curv cannot to be exceeded. The third
constraint follows from restrictions on the profile of the lateral acceleration over
time. Each constraint results in a set of admissible accelerations. Finally, the
intersection of all sets defines a domain of accelerations in which v̇ can be chosen.
The constraints are as follows:

1. Lateral acceleration at the end of the control interval has to be less than
or equal to the maximum value. That means

| ÿ(Tc) | =

∣
∣
∣
∣
(v + v̇ Tc)

2

(

κ+ κ′
(

v +
1

2
v̇ Tc

)

Tc

)∣
∣
∣
∣
≤ ÿmax. (5.50)

Correspondingly, one has to search for a subset Ia ⊂ I0 with the property

Ia ≡ {v̇ ∈ I0 : | ÿ(Tc) | ≤ ÿmax,curv} . (5.51)

2. If the extremum of lateral acceleration ta lies inside the control interval it
has to be less than or equal to the maximum lateral acceleration, i.e.

| ÿ(tb) | =

∣
∣
∣
∣
∣
− 2

27

(
2κ′ v2 + v̇ vκ′ Tc − 2 v̇ κ

)3

κ′2 (2 v + v̇ Tc)
2
v̇

∣
∣
∣
∣
∣
≤ ÿmax

∨ tb 6∈ (0, Tc]. (5.52)

To specify the subset Ib where this equation holds one defines

Ib,1 ≡ {v̇ ∈ I0 : | ÿ(tb) | ≤ ÿmax,curv} , (5.53)

Ib,2 ≡ {v̇ ∈ I0 : tb 6∈ (0, Tc] } . (5.54)

There are two special cases that have to be treated separately. These are
the cases where either κ = 0 or κ′ = 0. Naming the resulting set as Ib,spec
one can define Ib as

Ib ≡







Ib,spec ∀ κ 6= 0 ∧ κ′ = 0
⊕ κ = 0 ∧ κ′ 6= 0

Ib,1 ∪ Ib,2 else
. (5.55)

3. Since the lateral acceleration at the minimum ta is zero by (5.45) and
(5.47) it is preferable to avoid allowing it to lie in the interval (0, Tc). This
would mean that there are oscillations in lateral acceleration of shorter pe-
riods than the control interval Tc. Such oscillations in lateral accelerations
would make the front task enormously difficult. So must be required that

ta = − v
v̇ 6∈ (0, Tc]. (5.56)

By v > 0 it follows that

ta ≤ 0 ⇔ v̇ > 0, and ta > Tc ⇔ v̇ > − v

Tc
. (5.57)
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So the restriction of not to perform a full brake, i.e. v̇ > −v/Tc includes
totally the requirement of not having a minimum of lateral acceleration
between t = 0 and t = Tc. Recall, that for v̇ = 0 the minimum does not
exist.

The total allowed domain I , where v̇ satisfies all conditionscomputes to

I ≡ Ia ∩ Ib. (5.58)

The acceleration of the taget map’s preferred gd-plan is then chosen as the
maximum v̇ inside the domain I . The exact mathematical formulation of the
domain Ia and Ib is illustrated in appendix F.

5.5 Curvature Profile of Nominal Course

Now, that the algorithms for calculating parameters for the target map have
been discussed, the following sections focus on the calculation of parameters
for the limit map. As can be seen in figure 5.2b, it is necessary to respect a
velocity profile corresponding the nominal course. The velocity profile vnc(s)
of the nominal course can be derived from the curvature of the nominal course
κ(s) and a limiting lateral acceleration ÿmax,course. Let the maximum velocity
vnc(s) with respect to the distance s be defined as

vnc(s) ≡
√

ÿmax,course
κnc(s)

, (5.59)

where κnc(s) describes the curvature of the nominal course. The algorithm that
is presented here assumes a maximum amount of negative acceleration a0, i.e.
a deceleration, which the driving agent never desires to exceed. The velocity
profile of a vehicle that is decelerated with this negative acceleration a0 is given
by

v(s) =
√

v2
0 + 2a0 s. (5.60)

A velocity can only be considered to be admissible, if it is always possible to
decelerate enough, so that vnc(s) is never exceeded. Using (5.60) this means
that √

v2
0 + 2 a0 s ≤ vnc(s) ∀ s ∈ (0, smax]. (5.61)

smax indicates the maximum distance that the algorithm looks ahead on the
nominal course. A large value of smax can represent a very experienced driver
since he would know many of the curves ahead. A small value for smax represents
a less experienced driver since he might have difficulty anticipating the curves
lying ahead of him.

For the geometric-dynamic plan, the driver has to find an admissible ac-
celeration. An admissible acceleration has to ensure that the velocity during



84 CHAPTER 5. GEOMETRIC-DYNAMIC PLANNING

the next control interval lies under the velocity profile derived from the nomi-
nal course. Additionally, it must be confirmed that the velocity after the next
control interval can be adapted in a way so that the maximum deceleration is
enough to avoid a violation of the velocity profile in future.

First, a braking graph is introduced that describes the velocity profile that
reaches a point sx ahead with the velocity vnc(sx) by applying the acceleration
a0. A discussion follows which explains how to determine if a braking graph lies
above or beneath another one. Finally, having found the most critical braking
curve, the maximum acceleration that does not exceed this braking graph is
determined. For a given point sx ahead on the nominal course with a velocity
vnc(sx), the braking graph resulting from a negative acceleration a0 trough this
point is given by

vsx(s) ≡
√

v2
nc(sx) + 2a0 (s− sx), with s ∈ (0, sx]. (5.62)

Figure 5.22 shows such braking graphs that end up at given limiting velocities
on the nominal course. The dotted lines indicate braking graphs with accelera-
tion a0 = −1.9ms−2. Assuming a constant maximum deceleration a ’braking
graph’ represents the needed velocity profile to break down to the limit velocity
at a certain distance sx ahead. If the vehicle’s velocity is ever higher than one
of the braking graphs of a point sx ahead on the course, it is no longer pos-
sible to respect the maximum velocity vnc(sx) at this point. To avoid this, it
must be determined that none of the braking graphs is ever exceeded. These
considerations yield a specification of the dilemma domain D∗

∞ as defined in
the containability discussion in section 7.2. Fortunately, it can be proven that
if a braking graph lies underneath another one at one specific point s∗, it lies
underneath for all s:

If at some distance s∗ ahead two braking graphs vs1(s) and vs2(s)
are related by

vs1(s
∗) < vs2(s

∗), (5.63)

then it follows by equation (5.62) that

v2
nc(s1) + 2a0 (s∗ − s1) < v2

nc(s2) + 2a0 (s∗ − s2), (5.64)

v2
nc(s1) − 2a0 s1 < v2

nc(s2) − 2a0 s2, (5.65)

which is always true independent of the primarily considered distance
s∗. So, if one braking graph lies under another braking graph at a
certain point s∗, then it lies under it for all possible s, i.e.

vs1(s
∗) < vs2(s

∗) ⇒ vs1(s) < vs2(s) ∀ s ∈ <. (5.66)

Without any loss of generality, one can therefore restrict the comparison of the
braking curves to s = 0 and define the velocity of a braking graph at s = 0 as
a reference, i.e.

v0(sx) ≡
√

v2
nc(sx) − 2 a0 sx. (5.67)
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ÿ(t)

v(t0)

κ(s0)
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Figure 5.22: Limiting velocity profile for nominal course ahead of the car’s
position indicated by a bold line.

Thus, it is sufficient to respect the braking graph that has the lowest velocity at
s = 0. This most critical braking graph directly relates to the critical distance
scrit where the velocity has to be lower than vnc(scrit)

scrit whereby vscrit (0) = min
sx∈(0,smax]

{v0(sx)}. (5.68)

Any velocity profile that is admissible has to lie, therefore, under the most criti-
cal braking graph defined by equation (5.62) for sx = scrit. Since an acceleration
must finally be determined, the results have to be considered with respect to
time and not travel length. The braking curve for scrit with respect to time can
be defined as

vcrit(t) = v0(scrit) + a0 t. (5.69)

This is the velocity profile with respect to time that has to be followed. During
the next control interval, the following condition has to be fulfilled:

v(t) ≤ vcrit(t) ∀ t ∈ (0, Tc). (5.70)

Thus, for a linear transition of v(t), i.e. a constant acceleration v̇, it has to hold

v(t) = v + v̇ t ≤ v0(scrit) + a0 t ∀ t ∈ (0, Tc). (5.71)

It is now possible to define a maximum acceleration v̇max that ensures that the
vehicle can be slowed down to any limiting velocity ahead.

v̇max ≡ v0(scrit) − v

Tc
+ a0. (5.72)



86 CHAPTER 5. GEOMETRIC-DYNAMIC PLANNING

If the acceleration v̇ during the next control interval is not greater than this
v̇max, it is safe to assume that the vehicle never enters domains of unwanted
lateral acceleration caused by the curvature of the nominal course.

The previous paragraphs specified a dilemma domain D∗
∞ as introduced in

the containability discussion (section 7.1). A admissible acceleration has to
avoid to enter the dilemma domain, determined by the most critical braking
graph which is based on a maximal deceleration. For ’real’ vehicle guidance,
however, this dilemma domain is not sufficient, because it does not include
other important considerations about the frictional ellipse and influences of load
transfer.

5.6 Optional Velocity Restrictions

As illustrated in figure 5.2b, limit map construction includes a feature that
imposes limits on velocity. This feature is introduced in order to satisfy require-
ments raising from maneuvers like the lane-change maneuver ISO-3888 that
demands a constant velocity. If the acceleration would cause a violation of the
upper or lower velocity boundary, then its desired acceleration v̇ is adapted to
respect the boundaries. Figure 5.23 compares a velocity profile of the agent driv-
ing along a test course with and without velocity restrictions. In the first case,
figure 5.23a the velocity planning is only restricted by the velocity profile of the
nominal course and (not visible) restrictions coming from the curvature profile
through the local target point. Figure 5.23b shows a velocity profile for the case
that the driver model includes the velocity boundaries in its considerations.

5.7 Application of Target and Limit Maps

With the parameters, specified in the previous sections, the target map T (p)
and the limit map L(p) can be constructed. Both maps have to be combined
into one single utility function U(p). The gd-plan consistent with all related
motivations is then determined as the gd-plan that has the highest utility in
U(p). An overview of this procedure is shown in figure 5.24.

The parameter pair (κ̇t, v̇t) that results from the target point concepts is
now used as the preferred gd-plan of a target motivation utility function. As
mentioned earlier, this gd-plan acts like a pillar that spans the tent of the
constructiveness function C(pgd). The constructiveness decreases with distance
to the preferred gd-plan. By definition, the constructiveness function has to
have only positive values (see section 4.2, definition 9). Since there is only one
constructiveness function C(pgd) it directly represents the target map T (pgd).
Due to the aforementioned restrictions, it is defined as

T (pgd) = exp

(

−
√

κ−2
r (κ′ − κ′t)

2 + cκ′,v̇ (v̇ − v̇t)2
)

, (5.73)

where κr = 1/m is a reference value that is introduced to make the product
κ−2
r (κ′ − κ′t)

2 dimensionless. cκ′,v̇ is a factor that indicates the importance
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Figure 5.23: Influence of restrictions on velocity. The shaded areas indicates
the velocity profile resulting from maximum lateral acceleration considerations.
The solid line represents the vehicle’s velocity profile. a) Vehicle’s velocity if the
driver agent has no restriction on velocity. b) Velocity profile with minimum
and maximum borders chosen as vmin = 10ms and vmax = 20ms .
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Figure 5.24: Construction of target and limit maps, their combination and
optimum search.

of precision in curvature over precision in velocity. Such a factor is required,
anyway, because the values of κ′ in [rad s−1 m−1] are not in the same range as
the values of the acceleration v̇ in [ms−2]. Since the shape of the trajectory is
much more important than velocity constraints, cκ′,v̇ is chosen as a value close
to zero.

The boundaries for rate of curvature change κ′min and κ′max together with
the boundaries for acceleration v̇min and v̇max enable a limit map definition.
With these parameters the space of gd-plans can be separated into allowed and
disallowed regions. Thus, the limit map is defined as

L(p) ≡







1 ∀ κ′ ≥ κ′min ∧ κ′ ≤ κ′max
∧ v̇ ≥ v̇min ∧ v̇ ≤ v̇max.

0 else
(5.74)

The combination of the target and limit maps T (p) and L(p) is accomplished
by simply cutting the domains out of the target map where L(p) is zero. Thus,
the combined utility is chosen as

U(p) =

{
T (p) ∀ L(p) = 1

0 ∀ L(p) = 0
. (5.75)

The procedure to find the single consistent gd-plan (see section 4.4) deals with
two cases. If the preferred gd-plan of the target map (κ̇t, v̇t), i.e. the pillar,
lies inside the boundary of the admissible domain, than (κ̇t, v̇t) is the optimal
gd-plan with respect to the combined utility function. If it doesn’t, one has
to search for the maximum of T (p) along the borderlines of the domain where
L(p) = 1.
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5.8 Conclusion

The construction of a suitable gd-plan for a control interval requires a consider-
ation of various different ’motivations’, such as maximum lateral acceleration,
target points, curvature constraints and so on. The process to compute a dis-
tinct gd-plan is associated with the interference of a controller’s motivation and
information about the plant’s state.

Using the method of target and limit maps motivations are represented
through scalar functions. The function value for a particular gd-plan repre-
sents its utility or admissibility with respect to a specific motivation. A target
map is a utility functions based on a preferred gd-plan. A limit map makes
assumptions about the admissibility of sets of gd-plans. I this chapter it was
discussed what motivations are involved when building a gd-plan construction
unit for vehicle control and how they are represented.

The target map is based on a preferred gd-plan of a target motivation
(κ̇t, v̇t). It acts like a pillar in the utility function. The gd-plan is developed
based on the target point concept. Excessive investigations were done in order to
derive a systematic target point search method that improved the performance
of the controller tremendously.

The limit map includes limits on longitudinal acceleration based on the ve-
locity profile of the nominal course. Furthermore, the left and right border
of the road may be included that result in a maximum and minimum rate of
curvature change. Finally, optional velocity restrictions allow one to constrain
possible velocity profiles.

The gd-plan construction unit together with the plan-to-action mapper build
a fully functional Generalized Feedback Control unit. As an example, the perfor-
mance of the vehicle controller can be perceived from various plots in previous
sections. In order to judge the reliability of the controller the next chapter
derives the criteria of containability.
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Chapter 6

Observation of Control

Behavior

The algorithmic nature of Generalized Feedback Control directly leads to a mod-
ular structure. The division of functionality into independent modules with well
defined interfaces, however, supports systematic analysis and error tracing. In
the following sections it is shown how problematic situations can be identified.
The investigation of several plots allow to trace issues as being problems of
geometric-dynamic planning or problems of plan-to-action mapping. Further,
the performance of target and limit map parameter computation can be ob-
served.

6.1 Situational Observation

6.1.1 State Variables

The following paragraphs elaborate on data produced by the driver model and
its environment in order to identify misbehavior. Being able to relate quality
of control to categories of situations is a key for further analysis. A transparent
display of processes and transitions allow the parameterization of problematic
situations in terms of lateral displacement, curvature, amount of understeer,
etc.

For the identification of problematic situations the consideration of the ve-
hicle state is indispensable. The driver model environment produces data about
the position (see figure 6.1a), the lateral acceleration, velocity, longitudinal ac-
celeration, and front wheel angle directly together with the position of the center
of gravity (see figure 6.1b). The lateral acceleration is illustrated as an arrow
with the direction of the lateral acceleration starting from the vehicle’s center
of gravity. Lateral acceleration is an intuitive means to measure the difficulty of
a situation. One is now able to relate the amount of understeer to the driver’s
performance in terms of precision and speed.

91
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Also recorded are slip and yaw angle as well as their derivatives. As can
be seen in figure 6.2, slip angles at the rear and the front allow one to judge
the under-/oversteer behavior of the vehicle. In the figure, the absolute value
of the rear slip angle is always less than absolute value of the front wheel’s
slip angle. This is typical for understeer. By displaying the lateral and angular
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ã0,0, ã0,1, ...

ã1,0, ã1,1, ...
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ÿ(t)

v(t0)

κ(s0)
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Figure 6.1: Display of vehicle states. a) Driven trajectory (dotted line) of the
vehicle together with the nominal course (solid line). b) Zoom into the dashed
rectangle in figure 6.1a. Lateral acceleration is displayed by lines from center of
gravity of the vehicle to the side where it acts.

displacement to the nominal course, one is able to judge the overall performance
of the vehicle controller. However, these plots do not permit a detailed analysis
of the driver. They allow one to quickly determine situations where the driver
has problems, such as in figure 6.1 where the driver deviates enormously from
the nominal course.
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ÿ0
a∗5

error

number of coefficients

e
−v0
10

ÿ0
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Figure 6.2: Display of several angles. a) Front wheel angle. b) Slip angle in
front (solid line) and rear (dotted line).

6.1.2 Vehicle Picture

The illustration of the vehicle picture provides an intuitive view on specific sit-
uations as shown in Figure 6.3. These plots make it possible to simultaneously
observe a whole set of system parameters, such as front wheel angle, vehicle ori-
entation, vehicle position, lateral displacement and angular error to the nominal
course. In many situations plot of the vehicle picture are far more effective than
observations on time profiles of system parameters.

The abovementioned tools allow to identify situations of misbehavior. It
can be identified in terms of deviations, oscillations, etc. At the same time, one
develops first ideas about the circumstances under which certain errors occur.
In the vehicle example one might identify domains of yaw ratios, curvatures or
speeds that cause the control system to fail.

6.2 Plan-to-Action Mapping

Having identified problematic situations for the controller, it is now possible to
trace errors and unsatisfactory behavior down to the units of gd-plan construc-
tion and plan-to-action mapping. The quality of the plan-to-action mapper can
be determined by comparing the desired gd-plan (or one of its interpretations,
see section 2.4) to the actually performed geometric dynamic output.
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Figure 6.3: Graphical display of the vehicle as a bicycle model. The inclination
of the front wheel is five times amplified.

In order to localize errors and trace them further down into submodules of
the plan-to-action mapper, the driver model provides the following informations:

• The difference between desired and achieved geometric-dynamic behavior.

• The star parameters p∗ that were computed for each specific instant.

• Information about miscellaneous parameters inside the plan-to-action map-
per.

The difference between expected and achieved geometric-dynamic behavior
requires some more detailed discussion as provided in the following subsection.

6.2.1 Precision

An interpretation of a gd-plan as defined in section 2.4 is a useful tool for error
analysis of the plan-to-action mapper. When examining the precision of lateral
control, for example, a displacement error is certainly more meaningful than
errors in rate of curvature change. The implementation of the vehicle controller
produces a file which contains a comparison between expected and achieved
geometric-dynamic behavior. It contains a set of errors based on interpreta-
tions of gd-plans as well as some initial state parameters. Relating initial state
parameters to errors allows one to identify situations in which the plan-to-action
mapper performs with a low precision.

The principle of positional deviation is depicted in figure 6.4. The parameters
∆x and ∆y are calculated with respect to the coordinate system local to the
vehicle at the time when the previous control impulse was set. These two
displacements allow judgments about the precision of longitudinal and lateral
plan-to-action mapping. Figure 6.5 gives an example of how the plan-to-action
mapper behaves. In this case, it shows a very low deviation in lateral and
longitudinal control.

Another useful plot is the curvature error with respect to lateral acceleration.
It indicates the ’difficulty’ of the situation. A result of an intermediate version
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Figure 6.4: Longitudinal and lateral deviations.
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ÿ0
a∗5

error

number of coefficients

e
−v0
10

ÿ0
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Figure 6.5: Longitudinal deviations ∆x with respect to lateral deviations ∆y
between desired and real position recorded during simulation experiment.
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of the vehicle controller is depicted figure 6.6. The linear dependence between
lateral acceleration and the curvature error is indicated by a solid line.

As mentioned earlier, curvature increases with an increase of the front wheel
angle. From the plot in figure 6.6, it can be concluded that the vehicle controller
did not turn the front wheel angle enough at higher lateral accelerations. This
shows one way how to express the ’learning’-process a driver model has to
undergo in order to adapt itself to a new vehicle: The driver model has to learn
the required increase of front wheel input corresponding to lateral acceleration.
In other words, it has to learn the under- and oversteer behavior of the vehicle.
With the current implementation of the plan-to-action mapper such errors do
not occur any longer.
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Figure 6.6: Curvature deviation with respect to lateral acceleration.

6.3 Geometric-Dynamic Plan Construction

In the previous section it was demonstrated how control behavior can be as-
sociated with modules of plan-to-action mapping. This section deals with the
relation of geometric-dynamic behavior to modules of the gd-plan construction.
This procedure is by far the most complex part of a Generalized Feedback
Controller. Even with an almost perfect plan-to-action mapper the overall per-
formance may be bad when the gd-plan constructed in a specific situation is
inappropriate, i.e. leads the plant into undesired states. In order to trace the
information processing inside the gd-plan construction unit several data is pro-
vided:

• The planned trajectory for the subsequent control interval.

• Information about the target pillar being cut by the limit maps or not.
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• Target map parameter computation:

– Parameters of the target map.

– Lines from c.g. of the vehicle to the chosen target points.

– The planned trajectory through the computed target point.

– The curve chosen to nestle back to the nominal track.

• Limit map parameter computation:

– Velocity profile of the course computed based on its curvature profile
and a maximum lateral acceleration.

– Arrows from current speed and position to speed target at the end of
the subsequent control interval due to course geometry considerations
(see section 5.5).

– The most critical braking graphs due to course geometry considera-
tions.

The following two subsections discuss two most important of those issues:
trajectory and velocity profile planning.

6.3.1 Trajectory Planning

The search for a target point builds the core of the computation of a target map.
Therefore, the vehicle controller provides some output allowing investigations
on the behavior of different target point search methods. The discussion of
section 5.2 already mentioned the complexity of this issue. Figure 6.7 shows two
examples displaying the planned trajectory of the vehicle controller. In figure
6.7a line is drawn from the actual position of the vehicle to the target point that
the driver model planned to drive through. This allows one to observe if the
target point is chosen too far or to close to the actual position. Figure 6.7b shows
the planned trajectory resulting from the rate of curvature change κ′ that was
calculated for the target point. Figure 6.7b shows a very bad deviation between
planned and driven trajectory. It demonstrates that in this particular situation
the plan-to-action mapper performs obviously not very precise. However, this
plot was made with large control intervals Tc = 0.8 s to emphasize the effect.

Using nestle curve allows target points which are not necessarily located on
the nominal course (see section 5.2.3). Potentially, this may guide the vehicle
sequentially away from the track. By observation of the nestle curve plots this
phenomena is illustrated in figure 6.8. Each single one of the nestle curves
properly nestles back to the nominal course eventually. However, the sequence
of planned trajectories that result from the sequence of nestle curves guides the
vehicle away from the track. Fortunately, such phenomena are rare with the
current version of the driver.
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Figure 6.7: Investigations on the gd-plan. a) Lines from actual position to target
point. b) Comparison between planned trajectory and driven trajectory.
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Figure 6.8: Nestle curves that guide back to the nominal course.

6.3.2 Velocity Profile Planning

Longitudinal planning is essential for the reliability of the system. This becomes
obvious in lieu of the fact that a given curvature restricts the maximum velocity
by the lateral acceleration where the vehicle begins to slide. In the developed
driver model, there are two components that influence longitudinal control: the
curvature profile of the geometric short term plan and the curvature profile of
the nominal course.

Figure 6.9 shows an example. The shaded areas indicate the maximum ve-
locity that should be respected. The lower solid line indicates the real velocity
of the vehicle. Dashed lines indicate the desired acceleration by the velocity
profile that would be reached if the acceleration is directly applied. The dot-
ted lines finally represent the braking curves that ensure that it is possible to
brake back to the nominal velocity vnc(p). As can be seen, the driver acceler-
ates until 1535m, because the velocity profile that results form the curvature
profile can be easily respected. Then at 1550m, amazingly the driver deceler-
ates although there is no reason based on the velocity profile of the nominal
course. The need to brake therefore results from the short term geometric plan.
It can be concluded that the short term geometric-dynamic plan contains a
higher curvature than the nominal course. This might be caused by an error in
geometric-dynamic planning of the current situation or by a poor handling in
previous control intervals, which brought the vehicle too far from the nominal
course, so that strange geometric gd-plans were required.
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Figure 6.9: Investigating longitudinal planning: velocity profiles.

6.4 Conclusion

This chapter discussed the abilities to observe and analyze a Generalized Feed-
back Control unit using the example of a vehicle control unit as shown in figure
6.10. The module based, algorithmic structure facilitates an understanding of
the whole system in terms of causalities, i.e. inputs and outputs in the time
domain. Clearly defined interfaces allow discussions about responsibilities of
submodules and detailed error tracing. Misbehavior of a module is identified by
discrepancies in between nominal and actual outputs. The modular approach
has further the advantage to enable the hierarchical tracing down of reasons for
unsatisfactory behavior, rather than analyzing system functions as a whole.

The advantage of the algorithmic and modular approach comes with a major
disadvantage: traditional concepts of stability analysis cannot be applied. In
the following chapter, though, it is discussed a new methodology to determine
and ensure the reliability of the controller.
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Figure 6.10: A Generalized Feedback Control system.
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Chapter 7

Containability

Previous chapters discussed the construction of a controller based on Gener-
alized Feedback Control and its application to vehicle control. This chapter
focuses on the way how the reliability of the controller can be investigated. In
classical control the issue of stability is of crucial importance. It is a measure
for the reliability of a control system as it is defined:

A dynamic system that reacts with a bounded output to a bounded
input is a stable system.

Figure 7.1a shows an example of classical stability considerations. In this ex-
ample, the bounded input, bounded output criteria is investigated by means of
decaying attenuation (dotted lines) and ε/δ stability1 (solid lines). Criteria to
determine the stability of a system are usually based on the transfer function in
the Laplace domain2 or through Ljapunow’s stability theory3. However, these
kinds of investigations cannot be accomplished on Generalized Feedback Con-
trol, because it does not make restrictions on the algorithmic structure of its
elements. Now, this chapter introduces a measurement for the reliability of a
control system called containability through the following statement:

If the state of a plant, controlled by a control system, never exits
the domain of admissible systems states, then this control system
possesses containability.

1ε/δ stability means that for any specified distance ε > 0 around an equilibrium point, a
δ can be determined, so that the value x(t) with t > δ lies inside the ε environment.

2In linear systems, appropriate constraints on a controller can be formally expressed in
the Laplace Domain. If the poles of the system transfer function have only negative real
components, then it is sure that the plant’s state does not diverge.

3Mathematically, the stability issue is related to the qualitative theory of differential equa-
tions. It is used to consider stability of state space models that are defined by a differential
equation. Given a trajectory ζ(t) that is a solution of the differential equation, it is investi-
gated if another solution that starts close to ζ(t) stays always close to ζ(t). If this condition is
fulfilled, then the solution ζ(t) can be considered to be stable. Based on that idea, Ljapunow
in 1892 developed the stability theory [Khalil et al., 1996].
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ÿ0
a∗5

error

number of coefficients

e
−v0
10

ÿ0
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ÿ(t)

v(t0)

κ(s0)
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Figure 7.1: Classical stability and containability.

In figure 7.1b it is shown how to handle containability. First, an admissible
A and an inadmissible domain Ac have to be defined. Second, it has to be
made sure that the plan-to-action mapper is sufficiently precise. This is indi-
cated by the range R to be possibly achieved in the subsequent control interval.
Third, it has to be made sure, that the gd-plan does not target states that
make it impossible to avoid the inadmissible domain Ac. The following sections
demonstrate how to derive stringent mathematical conditions for the criteria of
containability. Its discussion is divided into two sections:

1. Avoiding to enter an inadmissible state during the subsequent control
interval (figure 7.2a). The definition of a manageable, and a safe target
state domain allow the specification of two criteria for containability on
the short term.

2. Avoiding inadmissible states on the long term (figure 7.2b).

Constraints are derived to prevent dilemmas, i.e. system states where the
’might’ of the controller is not sufficient to prevent the plant from running
into an inadmissible state.

The concept of containability, intuitively, provides a very strong criteria to
judge the reliability of a control system. If the criteria for containability on the
long term are fulfilled, the system can be considered to function well under the
assumptions made about the admissible domain of system states.

7.1 The Subsequent Control Interval

In this section, it is discussed what criteria have to be met in order to avoid
leaving the admissible domain of system states in the subsequent control inter-
val. For this reasons, terms such as the manageable domain of systems states,
target range, and the domain of safe target states are defined.

The bases for the whole discussing is the concept of an admissible domain
of system states. It basically describes the criteria on a plant’s state that have
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ã2,0, ã2,1, ...

b̃0,0, b̃0,1, ...

b̃1,0, b̃1,1, ...

...
p∗

p̃

a∗0

a∗1

a∗2

a∗3

b∗0

b∗1

b∗2

b∗3

cp,0
cp,1

ta0(χa0)

ta1(χa1)

ta2(χa2)

tb0(χb0)

tb1(χb1)

t∗a(βa)

t∗b (βb)

control
parameters

current state
gd-plan

control parameters

computation

plant

characteristics

circumstance
cognition

x [m]

y [m]

κ′ =0.0015 [radm−2]

κ′ =0.001 [radm−2]

∆ ye

t [s]

v [ms−1]

v̇= 0.45 [ms−2]

v̇=0.6 [ms−2]

∆ ve

∆ ye [m]

coefficient number
∆ ve [m/s]

coefficient number
∆ ve [m/s]

∆ ye [m]

error distribution
∆ ve [m/s]

∆ ye [m]

coefficient number

e
−v0
10

ÿ0
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Figure 7.2: Leaving the admissible domain of plant states: a) due to error
during the current control interval. b) due to a hopeless state where leaving the
admissible domain is unavoidable.

to be met in order to talk about a well functioning system. For path following
of a vehicle, the admissible domain A may be defined as the domain of states,
where the absolute value of lateral acceleration is less than a certain maximum
and the vehicle’s position lies in a certain boundary around the nominal track,
i.e.

A =

{

s :
|ÿ| < ÿmax

∧ |∆yn| < ∆yn,max

}

(7.1)

For a perfect plan-to-action mapper, the desired state of the plant (deter-
mined by pgd) and the achieved state of the plant are identical. In reality,
however, the state at the end of the subsequent control interval can only be es-
timated as to lie inside a certain range. Let a target range R(pgd, s) be defined
as the set of system states possibly reached when striving for a gd-plan pgd in
a given plant state s. It indicates the precision with which the plan-to-action
mapper operates in a state s when a gd-plan pgd is to be established.

If the plant is in a state where there is no gd-plan pgd that can be fulfilled
without risking to leave the admissible domain of system states, then this state
cannot be considered to be manageable. Based on this idea, the manageable
domain of system states can be defined as indicated in figure 7.3:

Definition: 18 (Manageable Domain of System States) A set of system
states Am where for each element s there exists at least one gd-plan pgd whose
target range R(pgd, s) lies entirely inside the admissible domain A is called
Manageable Domain of System States. This means

s ∈ Am ⇔ ∃ pgd ∈ Pgd, with R(pgd, s) ⊆ A. (7.2)
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Figure 7.3: The manageable domain system states Am.

Practically, the domain Am circumscribes the system states that are suffi-
ciently ’known’ by the plan-to-action mapper. When following the construction
rules in section 3.1 it is determined by the set of initial states considered for
the curve fitting process and the precision performed by the template functions.
Assuming that for the given set of samples a sufficient precision is achieved, the
manageable domain is equal to the domain that the samples were taken from.
In section 3.2, where the example of vehicle control is discussed, the space of
initial states is restricted by the initial speed and the initial front wheel angle,
therefore the manageable domain Am is given by

Am =

{

s :
|δ| < δmax

∧ vmin < v < vmax

}

(7.3)

For the plan-to-action mapper, any state in the admissible domain A has
to be manageable in order for the controller to work properly. This is the first
condition to be met for containability.

A second condition is that the gd-plan construction unit shall never target
a system state where the plan-to-action mapper is not able to ensure that the
plant’s state will be admissible after applying a control action. Since the plan-
to-action mapper operates with a certain error, a certain boundary along the
inadmissible domain Ac cannot be targeted. This leads to the (temporary4)
definition of a domain of safe target states As(s).

Definition: 19 (Domain of Safe Target States) Given a system state s, an
inadmissible domain Ac, a target range R(pgd, s), and a state to be reached
SD(pgd, s) by pgd, the domain of safe target states As(s) is determined
by

As(s) = {sd(pgd, s) ∀ pgd with R(pgd, s) ∩ Ac = ∅} (7.4)

Imagine a plan-to-action mapper for vehicle control that achieves a system
state with a precision E(ÿ) with respect to lateral acceleration ÿ. Further, the

4In the next section, the safe target domain is redefined to meet the requirements of long
term considerations.
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lateral displacement never lies more than E(∆ye) away from the nominal value
∆ye. Using equation (7.1), it is only safe to target states that lie inside the
boundaries of

As(s) =

{

s :
|ÿ| < ÿmax − E(ÿ)

∧ |∆yn| < ∆yn,max − E(∆yn)

}

(7.5)

Summarizing the above results, there are two criteria that have to be fulfilled
in order to keep the system state admissible during the subsequent control
interval:

1. Any state s in the admissible domain A must be part of the manageable
domain Am. This is a requirement to be met during the construction of
the plan-to-action mapper.

2. For a given state s in the manageable domain Am any gd-plan developed
by the gd-plan construction unit has to target a safe target state.

In layman’s terms, it can be said that the plan-to-action mapper has to possess
enough accuracy and knowledge (expressed in Rm(pgd, s) and Am) so that for
any admissible state there exists at least one gd-plan pgd so that the subsequent
state is with certainty admissible. The gd-plan construction must always be
able to find such an admissible gd-plan.

The above discussion deals with the issue of a single control interval without
alluding to effects of current actions on situation further ahead in time. There
are two scenarios where long term effects of actions can be ignored:

• The plant ends in a motionless state after the control action is performed.
An example of such a system can be a light switch that is turned on or
off.

• The controller possesses an unlimited ’might’ to apply control inputs. An
unlimited might to control a point mass’ trajectory would be the ability
to apply an arbitrarily large acceleration force in an arbitrary direction.

For these two scenarios the above mentioned criteria are enough to judge the
ability to keep the plant in an admissible state. In the general case, however,
the current action limits the possibilities of future states. For this reason, the
following section discusses how containability can be investigated regarding the
long term.

7.2 The Long Term

In general, parts of the state change of a system is caused by its own current
state. For a moving particle in space the state variable velocity causes a change
of the state variables of position. The amount of force that has to be applied
from outside to effect a velocity change depends on the body’s mass. This
phenomenon is usually referred to as inertia. Let the intuitive term inertia
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indicate a system’s inherent resistance against externally caused state changes.
Inertia together with a restricted ’might’ of the controller results in the following
problem:

The interaction of the plant’s inertia with the limited ’might’ of an
agent results in a restricted ability to effect changes on the plant’s
states. It is possible that a certain system state is admissible but in
this state the system may have a tendency towards the inadmissible
domain that cannot be ’braked’ sufficiently due to the limited might
of the agent.

The investigation in the following paragraph results in a more detailed require-
ment on the gd-plan construction unit. Based on the concept of dilemmas, the
concept of the safe target state domain As(s) is adapted including long term
considerations. With the new safe target state domain, the criteria of the last
section allow a general judgment on containability.

It is conceivable that the gd-plan construction unit may target a completely
admissible system state from where, however, the plan-to-action mapper cannot
target any admissible successor states. Consider, for example, driving a car as
quickly as possible on a given track. Approaching a curve requires one to brake
early enough to slow down to the velocity that is necessary to avoid losing
control of the car. Before the vehicle reaches the curve, its state is always in
the admissible domain independent on its velocity. Upon entering, however,
the velocity may be too high to brake sufficiently enough to maintain control.
Therefore, considerations about influences of current actions on future states
are required. The following definition of a dilemma supports the discussion of
the above mentioned problem:

Definition: 20 (Dilemma) A Dilemma is a system state s where there is
no sequence of gd-plans pgd,0, pgd,1, pgd,2, . . . that allows the avoidance of the
inadmissible domain of system states Ac with certainty.

In case that the manageable domain covers the admissible domain, it never
appears that there is no gd-plan allowing the avoidance of the inadmissible
domain for the subsequent control interval. However, it is conceivable that
there may be states where some of the reachable states are admissible, but all
of the successor states of the reachable states are inadmissible. Let system states
beyond the manageable domain be called dilemmas of 1st order, and the second
kind be called dilemmas of 2nd order. The following definition determines the
order of a dilemma

Definition: 21 (Dilemma of N th Order) A dilemma of order N is a system
state, in which the longest sequence of actions avoiding the inadmissible domain
Ac with certainty is of length N − 1.

Therefore, in a dilemma of first order, no state can be targeted without risking
to leave the admissible domain during the subsequent control interval. In a
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dilemma of second order, the system is lost after two control intervals, etc.
Figure 7.4 shows first, second and third order dilemmas assuming that the space
of system states is discrete. It becomes more and more complicated to detect if
a targeted state is a dilemma correspondent to the number of levels one desires
to investigate.
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Figure 7.4: Dilemmas of different orders when actions taken by the controller
are discrete.

For the general task of system control, the set of successor states is not
discrete, but continuous, since the control parameters are also chosen from a
continuous set of real variables <, e.g. the front wheel angle velocity and the
propulsive force in a vehicle.

Figure 7.5 shows dilemmas in a continuous state space. R1 indicates the
total domain of states that can be reached from the current state sact. The case
that a subset of R1 is inadmissible is covered by the discussion in the previous
section that dealt with the short term considerations. Now, consider the case in
figure 7.5a. The domain R1 lies completely inside the admissible domain. How-
ever, it contains a shaded subset of states that have only inadmissible successor
states (the set Rs

2). Obviously, this shaded area is part of a subset D1 where
inadmissible states are unavoidably reached after the next control interval. Let
the set D1 be the set of first order dilemmas. The gd-plan construction unit
has to know this domain in order to avoid constructions of gd-plans that guides
into a dilemma.

In figure 7.5b the shaded area in R1 again makes problems. Even that all its
successor states Rs

2 are admissible, they lie inside the dilemma domain D1 and
therefore after two control intervals an inadmissible system state is unavoidable.
The shaded area, in this case has to be considered as being part of the domain of
second order dilemmas D2. In order to handle dilemma domains of N-th order
the following definition is given.

Definition: 22 (Dilemma Domain) A Dilemma Domain of N th order DN
is a domain of system states, that contains all dilemmas of N-th order. This
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ÿ(t)

v(t0)

κ(s0)
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Figure 7.5: Dilemma in a continuous state space a) of first order and b) of higher
order.

means, that if the system state is element of DN it will be at latest after N − 1
steps in an inadmissible state.

Logically, it follows that

Dk ⊇ Di, ∀ k > i. (7.6)

Further, the complementary set Ac
m of the manageable domain can be consid-

ered as the dilemma domain of order zero D0:

D0 ≡ Ac
m. (7.7)

By statement (7.6), it can be concluded that the volume of the domains DN

never decreases with growing N . However, as indicated in figure 7.5b there is
a possibility that the dilemma domains Dk converge against a dilemma domain
D∞ for increasing k. This way, it would be sufficient for the gd-plan construction
unit to know the structure of D∞ in order to avoid any possible dilemma.

Since it might be too difficult to describe precisely the domain D∞ let us
assume that it is possible to find a description for a set D′

∞ that contains all
dilemmas, i.e.

D′
∞ ⊇ D∞ = lim

n→∞

n⋃

i=1

Di. (7.8)

If one is not able to find a domain D′
∞, then no assumptions about containability

can be made, since it is never safe to say that a state is not a dilemma. An
example from vehicle control shows how to specify a dilemma domain D′

∞.
Example

Consider the task of driving as fast as possible under a given velocity
profile5 v(l) with respect to the distance length l as described in
figure 7.6. Let the acceleration and braking capabilities be restricted

5This task directly evolves from the task to drive around a course with a given curvature
profile without exceeding a maximum lateral acceleration (see section 5.5).
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to amax and amin. The velocity profile v(l) directly defines the
admissible domain A as the domain under the shaded graph of v(l).
Let us start from the current state sact characterized by a velocity
vact at a certain distance on the track lact. Let R1 be the range
of possible states that can be reached in the next control interval.
It results from applying all possible accelerations between amin and
amax.
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Figure 7.6: Example: domain of system states parameterized as velocity v and
travel distance l. The admissible domain lies underneath the graph of v(l).

How is it possible to avoid entering a state of a dilemma, i.e. a
situation where it is not possible to brake enough? Assume, one
is able to determine a point sextr on the velocity profile v(l) which
demands the most braking effort. The velocity profile to brake with
the maximum deceleration given by amin to this point is given by
the graph of L(l). It will now be shown that any state (vs, ls) ∈ R1

where vs > L(ls) is a dilemma, even if one does not know of which
order.

Consider the dark subset of R1, where the states lie above L(l).
Since, it is not possible to brake harder than with amin all actions
that result from these states will produce a later state that lies above
L(l). The set of the states that can be reached from inside the dark
subset of R1 is designated as Rs

2. Some elements of Rs
2 already

enter the shaded area of the inadmissible domain Ac. But even
some of the states in Rs

2 that are still admissible will later result
in an inadmissible state. This is due to the limited deceleration
that makes it impossible to fall below the line L(l). Independent of
how many steps there are until the vehicle reaches the point sextr
it will not be able to brake down enough and it will certainly run
into the inadmissible domain Ac. Thus, for this case there exists a
dilemma domain D′

∞ as postulated in equation (7.8) that includes



112 CHAPTER 7. CONTAINABILITY

the dilemma domains of any order. It can be defined as

D′
∞ ≡ {(v, l) : v ≥ L(l)} . (7.9)

This example, which has a practical application in vehicle guidance, is treated in
section 5.5 in detail. It showed that a description of the domain D′

∞ is practical
and not something abstract.

At this point a sufficient condition can be stated that disproves containability
for a given system when fulfilled:

Criterion: 1 (No Containability) (sufficient condition) If there exists an N
so that DN covers the whole admissible domain A, i.e.

DN ⊇ A, (7.10)

or respectively no limit domain D′
∞ can be specified that does not cover the whole

admissible domain, then the control task cannot be accomplished with certainty.
The control unit cannot possess Containability.

For the short term considerations it was enough to require from the gd-plan
construction unit not to target a system state outside the domain of safe tar-
get states As(s). Together with the concept of the dilemma domain D′

∞ the
promised redefinition of the safe target state domain can be accomplished:

Definition: 23 (Safe Target Domain of System States) Given a system
state s, an inadmissible domain Ac, a target range R(pgd, s), and a state to
be reached sd(pgd, s) by pgd, the domain of safe target states As(s) is
determined by

As(s) = {sd(pgd, s) ∀ pgd with R(pgd, s) ∩ D′
∞ = ∅} (7.11)

With this redefinition the criteria derived for short term considerations (sec-
tion 7.1) are still valid and are sufficient to determine containability, i.e. the
ability of the controller to keep the plant in an admissible state.

7.3 Conclusion

Due to the fact, that Generalized Feedback Control does not make any assump-
tions on the algorithmic structure of the gd-plan construction unit or the plan-
to-action mapper, standard stability analysis tools cannot be applied. Therefore,
a new means to judge the controller’s reliability was introduced based on the
idea of keeping the plant’s state inside an admissible domain: containability.

The discussion was split up into two sections. In the first section a criteria
for the plan-to-action mapper and the gd-plan construction unit was derived
on the short term, i.e. for one single control interval. First, the manageable
domain Am of the plan-to-action mapper has to cover the admissible domain A
as specified by the control task. Second, the gd-plan construction unit shall only
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compute gd-plans that target a state inside a so called domain of safe target
states As. The example of vehicle control provided intuitive examples for the
derived concepts.

The avoidance of inadmissible states on the long term led to the definition
of dilemmas, i.e. states in which it is impossible to avoid running into an
inadmissible state sometime ahead in future. The notion of a dilemma domain
including all dilemmas D′

∞ allowed a redefinition of the domain of safe target
states As. With this new understanding of safe target states, the same criteria
as for short term considerations allows a judgment about the containability of
a controller on the long term.

The examples treating vehicle control gave an impression how to proceed
in order to determine the containability of a controller. The first criteria, i.e.
that the manageable domain has to cover the admissible domain can be achieved
through a sufficient precision when constructing the plan-to-action mapper. The
second criteria, i.e. that only gd-plans shall be computed targeting safe target
states can be achieved by transforming the safe target domain As(s) into a
domain of safe gd-plans Agd and using it as a limit map.
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Chapter 8

Conclusion and Outlook

In this dissertation, the discrete control method Generalized Feedback Control
was developed and applied to vehicle control. With this method feedback is
divided into two categories: motivation matching and circumstance cognition.
Whenever a control signal is computed both types of feedback are processed.

Interfering the current state of the plant with a motivation results in a
nominal motion, i.e. a gd-plan, for the subsequent control interval. Knowing
the current circumstances (the plant’s state) control parameters can be found,
in order to establish the gd-plan. The correspondent two units were named
gd-plan construction unit and plan-to-action mapper.

A procedure was specified to construct a plan-to-action mapper based on
a hierarchical curve fitting procedure. As a bases, a huge database was build
storing the plant’s reactions to different control inputs for varying initial states.
Investigating the samples of this database, functions were determined to map
from a given gd-plan to appropriate control parameters for one particular initial
state. Then it was investigated how these functions change dependent on the
initial state. The result was a universal formula allowing to find appropriate
control parameters for the range of all possible initial states covered by the
database. Through these formula the circumstance cognition feedback has been
implemented.

In order to implement a unit for motivation matching a mathematical ter-
minology has been developed called target and limit maps. This methodology
separates motivations into motivations of ’fear’, i.e. the avoidance of inadmis-
sible states and ’desire’, i.e. the targeting for a specific state. Using these con-
cepts the utility of each gd-plan with respect to a motivation can be described
through a scalar function. A combination procedure is described that results in
one single utility function for all related motivations. An optimum search then
allows to find one distinct gd-plan for a given situation that is consistent with
all related motivations.

Using target and limit maps, a gd-plan construction unit was developed for
vehicle control. The different physical aspects of driving, such as maximum lat-
eral acceleration, a target point etc. resulted in different motivations modeled
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through target and limit maps. The discussion about the target point prob-
lem, in particular, unsealed the big advantage of being able to treat geometric-
dynamic problems completely independent from problems related to the plant’s
system function. Together with the high performance of the plan-to-action map-
per, a gd-plan construction unit was developed that was able to perform a very
precise path following at high speeds. It was even possible to drive at lateral
accelerations of 7 m/s−2 and higher. A similar performance was also achieved
using non-linear decoupling [Freund, 1982]. Furthermore, the controller’s devi-
ation from the nominal track could be decreased to a few centimeters (see figure
5.18).

Having accomplished a functioning control system one question remains:
How can the reliability of the system be investigated? Since traditional stabil-
ity analysis cannot be applied, another means of showing the reliability of the
controller using the idea of an admissible domain of system states was intro-
duced. Two criteria for containability were identified that allowed to determine
the ability of a controller to maintain the plant’s state admissible on the long and
the short term. The first criteria imposes precision constraints on plan-to-action
mapping. The second criteria imposes requirements on gd-plan construction.

8.1 Future Work

The method of Generalized Feedback Control introduced in this dissertation is
disruptive with respect to existing control methods. In order to fully exploit
the potential of this method a variety of different control problems would have
to be treated.

The aspect of adaption, mentioned in section 2.1.1, was not at all treated this
dissertation. In order to do this the amount of parameters of the plan-to-action
mapper has to be reduced, by determining their dependency on configuration
parameters. It is however, important for systems ’on the fly’ to be able to adapt.
A vehicle may experience a different frictional coefficient when driving on ice,
different air drag coefficients dependent on air pressure and so on.

The concept of containability provided a reliability measure based on two
criteria for plan-to-action mapping and gd-plan construction. Even that, the
examples mentioned in the correspondent chapter lead straightforward to the
containability proof for the vehicle controller, it was not accomplished in every
detail. Concerning the example application of a vehicle control unit the following
improvements can be accomplished:

1. Plan-to-Action Mapping:

(a) Other physical concepts that affect the vehicle’s motion could be
included, like the rolling resistance and the phase shift in the steering
system.

(b) Different vehicle models can be used and a formula for a general-
ized plan-to-action mapper could be derived for the class of ground
vehicles.
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(c) Methods have to be developed in order to capture relationships be-
tween the tilde parameters p̃ and physical parameters of the plant.
This is necessary, as mentioned in section 3.1, in order to be inde-
pendent of one particular plant.

2. GD-Plan Construction:

(a) Limit maps could be created including calculations on the frictional
ellipse. This could be done including the influence of aero-dynamics
on wheel load. Figure 8.1a shows an example of the frictional ellipse
with a slightly higher maximum on lateral acceleration than longi-
tudinal acceleration. The frictional ellipse has a direct equivalent in
the space of gd-plans. A qualitative plot on the domain of admissible
gd-plans is depicted in figure 8.1b. Limit maps provide an excellent
means to model the influence of the frictional ellipse.
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ã0,0, ã0,1, ...
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Figure 8.1: Frictional ellipse for a specific situation and influence on the domain
of admissible gd-plans. a) Frictional ellipse. b) Admissible domain of gd-plans
based on frictional ellipse.

(b) Maximization of velocity. This could be accomplished by creating a
new type of nestle curves that include velocity considerations. How-
ever, this is difficult, since there are two goals that have to be consid-
ered at the same time. First, the nestling to the nominal course has
to happen as early as possible. Second, the resulting curve should be
as smooth as possible. These two goals are contradictory.

Another way to handle the optimization of velocity would be to use
directly the mechanisms of target and limit maps. This means that a
second target map should be developed for the optimization of speed.

The promising results using Generalized Feedback Control for vehicle con-
trol, insinuate the potentials of this approach that are waiting to be exploited.
At no point its methods rely on a description of a plant in terms of linear sys-
tems. This makes it an interesting approach for any kind of non-linear control.
Even that, no stability proof in the classical sense can be provided, the concept
of containability allows a stringent measure of the reliability of the system. With
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these two basic features Generalized Feedback Control spans a wide spectrum
of interesting future research topics.



Appendix A

Historical Background

When reviewing the historical background of Generalized Feedback Control it
is good to understand that it evolved from the field of vehicle path following
control, i.e. a control problem that is hard to handle with classical control
techniques. In the following chapter examples of different vehicle control systems
demonstrate advantages and shortcomings of present control methods.

The discussion starts of with a classical linear feedback control approach
developed in the seventies of the last century. A more recent approach, the
so called non-linear decoupling of differential equations is discussed and shows
a decent performance. A brief discussion of Fuzzy Control an Neural Net-
works demonstrates how insights about human control influenced the evolution
of control methods. An approach based on classification techniques is shown to
work towards the concept of circumstance cognition. Finally, when discussing a
controller for featuring non-holonmic path following, it becomes clear how Gen-
eralized Feedback Control was impending to find a mathematical concretization
as established in this dissertation. Born out of an algorithmic necessity, the
approach allows to quantify at the same time concepts such as motivation and
knowledge that are very intuitive attributes to a ’natural’ control system. The
following sections provide an understanding of the control philosophies that
inspired the development of Generalized Feedback Control. It is clearly demon-
strated how it satisfies certain needs that lack all other approaches.

A.1 Linear Feedback Control

In linear feedback control, the calculation of control parameters is based on the
weighted sum of several deviations between a nominal state and the current
or the predicted state of the plant. In application to vehicle control, physical
values are chosen that are related to the vehicle and the road geometries.

Two categories of approaches have to be mentioned representing linear feed-
back control concepts. The first category uses a nominal course that the driver
wants to follow (figure A.1a). A second category uses the concept of road borders
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to draw conclusions about the steering action [Godthelp and Konings, 1981]1.
It is based on the distance between the current position of the vehicle and the
point of an estimated crossing of road borders. The conclusions drawn from
the nominal course related control approaches, however, can be extended to
the road border related approaches. The following paragraphs, therefore, only
discusses nominal course related controllers.
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Figure A.1: Deriving the vehicle control action based on a nominal course.
Lateral displacement ∆d, the predicted displacement ∆dp and the predicted
angular deviation ∆ϑp are suitable candidates as inputs for the controller.

Research accomplished in the area of human driver modeling resulted in a
variety of different approaches to handle vehicle control based on linear feedback
control. In the seventies, a two layer model to describe human steering behavior
has been introduced by McRuer [Weir and McRuer, 1973,McRuer and Krendl,
1974,McRuer et al., 1973]. This model consists of a subsystem for compensatory
(closed-loop) and another for anticipatory (open-loop) steering control. The
following section discusses a variant of it: the Donges [Donges, 1978] model.

Donges’ driver model as shown in figure A.2 consists of an open-loop unit
and a closed-loop unit. The open-loop unit uses an anticipated curvature of the
nominal course κn(t− τ) to compute a part of the front wheel angle δa.

The closed-loop unit calculates the compensatory part based on differences
between the nominal curvature κn(t) and the actual curvature κ as well as the
lateral displacement ∆d and the angular displacement ∆ψ of the vehicle from
the nominal course. Such a system can be transcribed mathematically as

δa(t) = cκ,n(t) ∗ κn(t), (A.1)

δc(t) = cκ(t) ∗ (κn(t− τ) − κ(t)) + cy(t) ∗ ∆d(t)

+cψ(t) ∗ ∆ψ(t− τ). (A.2)

with cκ(t), cy(t), cψ(t) and cκ,n(t) are the impulse responses of the correspon-

1The TLC concept is widely applied in different driver models (e.g. [Kopf, 1992] and
[Jürgensohn, 1997, pages 256–262]) to get a measure for the call for action of the driver.



A.1. LINEAR FEEDBACK CONTROL 121

geometry
road
and

vehiclecompensatory
control
(closed loop)

anticipatory
control
(open loop)

PSfrag replacements

input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation
input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation

motivation
matching

circumstance
cognition

cp
pgd
bgd

s
Plant
on
i1
i2

o = s(i)

o1
∆o

database
plant

gd-plan

construction
plan-to-action

mapper

adaption
pgd
cp

extrapolated trajectory

desired trajectory

vehicle’s
c.g.

target

point

x [m]
y [m]

s0
κ′

κ(s) = κ
κ(s) = κ+ κ′ s

(tx, ty)
s [m]

s0
κ(s) [radm−1]

plan-to-action

mapper

plant

s(t+ 1)
pgd
bgd
cp

R(cp, s(t))
P(s(t), pgd)

fixed state investigation
cp
bgd
p∗

state dependency investigation

s0
p∗

p̃

control
parameters

gd-plan

current state
s0
cp
pgd
p∗

p̃

i1
i2
i3
o

s(i)

i
o

si(o)

s0

x [m]

y [m]

s0

t [s]

v [ms−1]

δ̇ [rad/s]

Fp [N ]

κ′ [rad/m2]

v̇ [m/s]

control inputs cp
gd-behavior bgd

Fp [N ]
δ̇ [rad s−1]
v̇ [ms−2]

L∗[bgd : cp]

t∗b(δ̇, v̇)
v0 [m/s]

δ0 [rad]
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Figure A.2: A two layer model of driver steering behavior. Following: [Donges,
1978].

dent linear systems2. The separation of the front wheel input δ(t) into an
anticipatory part δa(t) and a compensatory part δc(t) is very reminiscent of
common experience in driving. It is intuitive that human drivers set the front
wheel angle based on two components:

• One anticipatory component δa(t) corresponds to the ’learned behavior’,
i.e. the process of setting a distinct front wheel angle due to the curvature
that has to be driven. This component is characteristically smooth, since
it only depends on the smooth curvature profile of driveable tracks.

• The compensatory part δc(t) of the control signal based on differences
between the desired state and the state that is reached by the ’learned
behavior’. This part is characterized by a relatively rough shape, since
compensation happens relative to errors of the smooth ’learned behavior’.

The front wheel input is a result of a concurrent activity of both kinds of learned
and compensatory behavior. It is assumed that their interaction can be ex-
pressed by a plain sum

δ(t) = δa(t) + δc(t). (A.3)

Since this sum remains a sum in the frequency domain, it is possible to identify
the learned behavior as the low frequency parts caused by the smooth signal
δa(t). The higher frequency parts can be considered to be brought about by the
rough compensation signal δc(t).

This model works satisfactorily in as long as the vehicle stays in a well defined
operating point, i.e. at low lateral accelerations. However, implementations of

2The ’∗’-sign in equation (A.1) denotes the convolution. The effect of the convolution
corresponds to a certain delay in reaction of the human driver.
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this concept show an unsatisfactory performance at higher lateral accelerations3.
At this point two structural deficiencies can be identified:

• A linearization of the plant about an operating point is required. These
linearizations do not provide a sufficiently precise description of the system
function, especially not for longer control intervals or in situations where
the system is sensitive to control parameters.

• The control problem has two subtasks, lateral (curvature) and longitudinal
(speed) control. These two problems are handled in separate independent
units.

However, in reality, there is a coupling between lateral and longitudinal
control. Longitudinal control should consider the influence of the front
wheel angle, since frictional forces on the front wheels decelerate in lon-
gitudinal direction. On the other hand, the lateral control unit should
include considerations about the future profile of lateral acceleration4.
Lateral acceleration depends on velocity providing a coupling between
longitudinal and lateral control. A completely isolated treatment of both
does not reflect the physical reality.

Nevertheless, further research has been accomplished based on linear feed-
back control. A recent contribution on driver models can be found in [Modjta-
hedzadeh and Hess, 1993]. A review on the subject of linear control for the use
of driver models may be examined in [Guo and Guan, 1993].

The two concepts of anticipation and compensation have a close relationship
to the two basic concepts of Generalized Feedback Control. Anticipation can
be considered as a means to accomplish motivation matching, i.e. to determine
a suitable transition of the plant state into a desired state. Compensation as
discussed earlier (section 2.1.1, page 7) consists of circumstance cognition and
parameter adaption (i.e. learning).

A.2 Non-Linear Decoupling

A concept called non-linear decoupling of state variables [Mayr, 1991, Freund
and Mayr, 1989,Voegel, 1997] provides another means to compute control pa-
rameters for vehicle control. Non-linear decoupling of differential equations was
originally used to control industrial robots, but has also proven to be effec-
tive in the automated control of vehicles. The following paragraphs describe
only the fundamental concepts. For an explicit discussion of the mathematical
background one may refer to the aforementioned literature.

3To overcome this problem, Post [Post et al., 1997] uses input-output, model reference
adaptive control and was able to produce more stable results at lateral accelerations of about
6m s−2.

4This is because, lateral acceleration mainly determines the mapping from desired curvature
to the appropriate front wheel angle.
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The method of non-linear decoupling is based on the so called state space
formulation. In the general non-linear case, it is defined the following way
[Freund, 1982]:

~̇x(t) = a(~x(t)) +B(~x(t)) ~u(t), (A.4)

~y(t) = c(~x(t)) +D(~x(t)) ~u(t), (A.5)

where the vector ~x(t) represents the current state of the system. ~u(t) contains
the system inputs and ~y(t) the system outputs. The system vector a(~x(t))
describes the dynamic characteristics and B(~x(t)) describes the influence of the
input ~u(t) on the system’s state. c(~x(t)) defines how the output values can
be derived from the system’s current state and the matrix D(~x(t)) defines the
direct influence of the input values ~u(t) on the output values ~y(t).

For vehicle control, the state vector ~x(t), the input vector ~u(t) and the output
vector ~y(t) vectors are defined as:

~x(t) =











β(t)
ψ(t)

ψ̇(t)
v(t)
xcg(t)
ycg(t)











, ~u(t) =

(
Fs,f (t)
Fp(t)

)

, ~y(t) =

(
xcg(t)
ycg(t)

)

, (A.6)

where β(t) is the slip angle in the center of gravity of the vehicle, ψ(t) is the
yaw angle, ψ̇(t) is the yaw rate, v is the velocity, and xcg(t) and ycg(t) are the
coordinates of the vehicle’s center of gravity. The control input is specified here
by the side force Fs,f (t) on the front tire and the rear propulsive force Fp(t).
Based on the required forces, the front wheel angle and the propulsive force can
be calculated. This last step, however, is neglected in the following paragraphs.

The aim is now to derive a control rule, i.e. a formula that allows to com-
pute the control parameters ~u(t) as a function of the actual state ~x(t) and a
desired output. The desired output is later defined in terms of a target point
(tx(t), ty(t)).

According to equation (A.5) and (A.6) forces, i.e. the elements of the input
vector ~u(t), are related to a position (xgd, ycg) as elements of the output of the
system. Since a force directly causes acceleration it is preferable to describe the
output in terms of accelerations. This means a new output vector ~y∗(t) has to
be defined as

~y∗(t) ≡
(
ẍcg(t)
ÿcg(t)

)

. (A.7)

In order to get an output equation, equation (A.5) can be reformulated as

~y∗(t) ≡ c∗(~x(t)) +D∗(~x(t)) ~u(t). (A.8)

D∗(~x) and c∗(~x) have to be derived from c(~x) and D(~x). Let the desired output
be defined as

~y∗(t) ≡ Λ

(
tx(t)
ty(t)

)

− q∗(~y(t)). (A.9)
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where Λ is a weighting matrix defined as

Λ ≡
[
λ1 0
0 λ2

]

. (A.10)

That means that the desired acceleration in x- and y-direction is a function of
the target point (tx(t), ty(t)) to drive through and the current position ~y(t) =
(xcg(t) ycg(t))

T . Therefore, equation (A.9) can be considered as a description
of the dynamic behavior of the system. Assuming D∗(~x) to be invertible, the
following control rule can be defined based on the last two equations:

~u(t) ≡ (D∗(~x(t)))−1

(

−c∗(~x(t)) + Λ

(
tx(t)
ty(t)

)

− q∗(~y)

)

, (A.11)

Next, the vector q∗(~y) has to be specified. In order to relate real and nominal
values directly, the first row has to contain the x-coordinate of the c.g. and the
second row has to contain the y-coordinate of the c.g. According to equation
(A.9), the difference of x-coordinates correspond to the x-acceleration and the
difference of y-coordinates correspond to the acceleration. In order to gain
another degree of freedom, the first derivative is also included. Therefore, the
vector q∗(~y) can be specified as

q∗(~y(t)) ≡
(
α1,1 xcg(t) + α1,2 ẋcg(t)
α2,1 ycg(t) + α2,2 ẏcg(t)

)

. (A.12)

The constants {αi,k}i, k∈{1, 2} are arbitrary. Based on the equations (A.10)
(A.12), the dynamic behavior of the decoupled system, given in equation (A.9),
can be specified more precisely as

ẍcg + α1,2 ẋcg(t) + α1,1 xcg(t) = λ1 tx(t), (A.13)

ÿcg + α2,2 ẏcg(t) + α2,1 ycg(t) = λ2 ty(t). (A.14)

For the bicycle model as described by (B.14), (B.15) and (B.16), one gets finally
the following control rule [Voegel, 1997]

~u(t) =

(
−Fs,r
Fr

)

+ Z

(
λ1 tx(t) − α1,1 xcg(t) + α1,2 ẋcg(t)
λ2 ty(t) − α2,1 ycg(t) + α2,2 ẏcg(t)

)

,(A.15)

where Fr indicates the air-drag and Z is defined as

Z ≡ m

[
−β(t) f1(t) + f2(t) −β(t) f2(t) + f1(t)

f1(t) f2(t)

]

. (A.16)

The abbreviations f1(t) and f2(t) are defined as

f1(t) ≡ cos(ψ(t) + β(t)) and f2(t) ≡ sin(ψ(t) + β(t)). (A.17)

Even though these investigations are based on the relatively simple bicycle
vehicle model, Voegel and Chucholowski showed a decent performance of the
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control algorithm for controlling a complex vehicle model [Chucholowski et al.,
1999]. Their controller succeeded in driving with a lateral acceleration of about
7ms−2 with a lateral displacement less than 0.4m from the nominal course.
Mayr [Mayr, 1991, chapter 10] showed that a more complicated model for the
control algorithm does not have significant influence on performance. This ap-
proach, however, leaves an essential problem unanswered:

The placement of the target point. When the target point is chosen
too far ahead on the course, then the vehicle cuts the curves. When
it comes too close, the vehicle crosses the nominal course with an
angle too high and starts to oscillate.

The malfunctioning of this controller in certain situations insinuates the need
for a short term path planning for each single control interval.

A.3 Non-holonomic Motion Planning

From the previous discussion, it became clear that for a complicated task such
as vehicle control it is necessary for the controller to possess a unit for dynamic
path following. Where the layer of navigation [Borenstein and Koren, 1991] and
planning [Svestka and Overmars, 1995, Murray and Sastry, 1993,Koga et al.,
1994, Fraichard, 1991] has been extensively investigated, the research on the
topic of dynamic path following is very recent. Approaches dealing with this
subject usually fall into the category of non-holomic path following systems.

The name ’non-holonomic’ comes from the area of Lagrangian/Hamiltonian
dynamics [Greenwood, 1988,Wells, 1967]. In this terminology, constraints on a
mechanic system can be either holonomic, or non-holonomic. A holonomic con-
straint can be expressed in terms of the generalized coordinates, and is therefore
geometric. A non-holonomic constraint restricts the first derivative of the gen-
eralized coordinates and is therefore kinematic, i.e. it restricts velocities. A
vehicle is a typical example of a mechanical system with non-holonmic con-
straints. Instead of being able to move in any direction, the possible movements
of a vehicle are restricted by its current orientation and the configuration of the
front wheels.

Considering the constraints on possible motions, non-holonomic motion plan-
ning introduces the concept of ’feasible’ trajectories. In detail, it tries to solve
the task to follow a path as close as possible, while satisfying the kinematic
and possibly dynamic constraints. In [Frezza et al., 1998,Sarkar et al., 1994] a
controller is introduced that computes connecting contours towards the nominal
course for each control interval through splines [DeBoor, 1978]. This approach
is the closest one in its nature to the approach of Generalized Feedback Con-
trol. The mentioned literature shows a smoothening effect through the dynamic
path planning in every control step. The following section describe approaches
that are inspired by ’natural’ control systems. This shows the motivation why
Generalized Feedback Control generalized the concept of non-holonomic path
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following towards a control concept that is intuitively close to a human under-
standing of control.

A.4 Classification Approach

Probability theory is a powerful means whenever there is a lack of knowledge
about causal relationships. In fact, every probability for an event is a conditional
probability where the condition is the rest of unknown causal influences [Pearl,
1988].

With todays techniques of sensor devices it is not possible to measure quan-
titatively possible reasons inside a human operator, for example, why he did
act in a situation in a specific way. The classification approach treats the in-
trinsic causalities as an unknown causal influence. The known influences, i.e.
certain attributes of the plant, are used to specify conditional probabilities. As
a result, an operator can be mimicked with respect to his input/output behav-
ior described through probability distributions. The classification approach5

considers the agent a priori as a black box that performs the mapping

situation −→ action. (A.18)

Grashey introduces in his dissertation [Grashey, 1999] an approach for human
driver modeling where the driving action consists of the longitudinal acceleration
v̇ and the change of the front wheel angle ∆δ, i.e.

action ≡ (v̇, ∆δ). (A.19)

The control action results from an output of a classification unit. In term of
classification methods, it has to be considered as a class in a finite set of classes,
and the space of possible control actions has to be discrete. The redeemable
sub-sampled space of actions can be indexed by an integer k

action(k) ≡ (v̇k , ∆δk), (A.20)

where the pairs (v̇k, ∆δk) should be distributed over the space of possible actions
in a such a way that the errors between the actions (v̇, ∆δ) that appear during
a driving experiment and their ’nearest neighbors’ (v̇k, ∆δk) become minimal
on average.

An attribute vector ~xa provides a quantitative description of the situation.
It contains essential environment information such as the slip and yaw angle of
the vehicle, ’time-to-line-crossing’ values6 (so called TLCs) for the left and the

5Another probabilistic approach using Bayesian Networks in order to conclude for the
driver’s action can be found in [Forbes et al., 1995]

6The term ’time-to-line crossing’ refers to the estimated trespassing of the road’s bor-
derlines when the trajectory is extrapolated with the instantaneous radius [Godthelp and
Konings, 1981].
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right border etc.

~xa ≡












β
ψ

ψ̇
TLCleft
TLCright

...












. (A.21)

The exact definition of the attribute vector depends on the maneuver that has
to be driven. Its constitution is decisive for the performance of the controller.
~xa should exclusively contain such attributes of a driving situation that entail
the most information to conclude to the action. Furthermore, they should not
be conditionally dependent on each other. The mapping from a situation to an
action in (A.18) can now be made concrete:

~xa −→ k ∈ {0, 1, 2, 3, . . .N}, (A.22)

with k as the class number. The value k = 0 is usually considered to indicate
the outcasts, i.e. the class of not classifiable vectors ~xa.

To produce a mapping from situation to action (A.18) that is able to steer
a car, an exemplary driver has to be observed. His actions can be described as
a stochastic process characterized by the probability density function

p(~xa, k) = p(~xa| k) p(k). (A.23)

This function indicates the probability that a vector ~xa and an action of class
k appear at the same time. The class specific probability p(~xa| k) can be esti-
mated by a probability distribution. For the complexity of problems of higher
dimensions only the Gauß-Distribution is useful for practical applications [Patel
and Read, 1996]. This distribution is defined as

p(~xa| k) ≡ 1
√

(2π)N |Ck|
e−

1
2 (~xa−~mk)T C−1

k
(~xa−~mk). (A.24)

With Ck as the covariance matrix and ~mk as the ’center of gravity’ of class
k, i.e. the average vector of all vectors that belong to class k. Ck and ~mk

distinctly define the shape of the distribution function for class k. Now, the
maximum-likelihood classifier is used to determine if a situation results in an
action of a specific class, as described as follows. So called decision functions
assign to a vector ~xa a value indicating the ’strength’ that it should be believed
to belong to class k̂

dk̂(~xa) ≡ p(~xa| k̂). (A.25)

According to [Grashey, 1999], the strength to believe that ~xa is rejected, i.e. an
outcast is given by

d0(~xa) ≡
∑

k 6=0

p(~xa| k) −
p(~xa)

p(k)

cr
cf

(A.26)
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where cr has to be specified as the cost of rejection, i.e. a constant that specifies
a weight for classifying a situation as an outcast. The constant cf has to be
set as the cost for a false decision, i.e. when a class ka is chosen where a class
kb should have been chosen. Then, it can be said that an attribute vector ~xa
belongs to class k̂ if dk̂(~xa) is the maximum of all decision functions and this
value is greater than the value of the decision of rejection d0(~xa). This means

that for ~xa being of class k̂ it has to hold

dk∗(~xa) = max
k=1, 2, 3, ...

dk(~xa) ∧ dk∗(~xa) > d0(~xa). (A.27)

The way to determine an action (v̇k, ∆δk) for a given situation ~xa is depicted
in figure A.3. First, a unit for situation analysis has to describe the actual
situation by means of the attribute vector ~xa. Second, for each class k the
decision function dk(~xa) is determined (equations (A.25) and (A.26)). Finally,
the appropriate class k∗ is chosen (equation (A.27)) and associated with the
correspondent action (v̇k∗ , ∆δk∗) that is set as control input for the vehicle
(equation (A.20)). For each class the covariance matrices Ck and the vectors
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∆ÿ [ms−2]
∆κ [rad/m]

x [m]

y [m]

x [m]

y [m]

x [m]
y [m]

v [ms−1]
s [m]

gd-plan construction

plan-to-action mapping

parameter calculation

plant

gd-plan

pgd

control
parameter

cp
p̃
p∗

parameter

target map

limit map

target and

limit maps

δ

2 ε
x(t)

t [s]

A
c

R

s0

s1

s2a

s3a

s2b

s3b

s2c

s3c

admissible domain

st
st+1

S(P(pgd, s0))

R(pgd,s)

Am

A
1rst order

2nd order

3rd order

inadmissible state

sk,i
s1,i+1

s2,i+1

s3,i+1

s4,i+1

s1,i+2

s2,i+2

s3,i+2

s4,i+2

1rst order dilemma possible

2nd order dilemma possible

error possible

A
Ac

D1

D2

D∞

R1

Rs
2

Rs
3

sact

∆d
∆dp
∆ϑp

∆d
κ
κn
δ

∆ψ

δa
δc
0
−
+

d0(~xa)

d1(~xa)

d2(~xa)

dN (~xa)

~xa
k∗ v̇k∗

∆δk∗

Figure A.3: Classification approach to model skill based driving behavior. Fol-
lowing [Grashey, 1999, figure 3.1].

~mk in equation (A.24) have to be determined during the learning process. This
process would be extremely expensive with respect to calculation time if the
dimensions of the attribute vector can not be reasonably reduced. To achieve
this, Grashey uses the work of [Feraric, 1999] to divide the space of possible
situations into subspaces related to maneuvers. For each maneuver the compo-
sition of the attribute vector ~xa has to be determined and then the classificator
(A.24) has to be parameterized. Aiming for stability the learning process has to
provide enough different situations to the system. The amount of learned situ-
ations should cover the whole domain of possible situations. However presently,
no system based on this approach exists that can guarantee stable driving with
high precision under limited handling conditions.

It is important to note at this point that the term ’situation’ in the con-
text of classification approaches, is somehow identical to the ’initial state’ in
Generalized Feedback Control. The process described in figure A.3 is clearly
not circumstance cognition. Instead, both the driver’s motivation matching as
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well as circumstance cognition are captured together when sampling the in-
put/output relationship. In this approach, circumstance cognition and motiva-
tion matching cannot be identified separately. The approach allows to imitate
the input/output behavior of the driver. It does not allows, though, any greater
insight into the process of dynamic planning or control.

In chapter 3 it is explained how to construct a unit for circumstance cogni-
tion, i.e. a plan-to-action mapper, based on empirical data. The classification
approach tries to capture causal relationships considering the relationship be-
tween environment state and control parameters, targeting to mimick an exem-
plary operator. When constructing a unit for circumstance cognition one goes
more into detail. Here causal relationships are to be discovered about the in-
put/output relationship between the plant’s input and the plant’s output. Even
not treated explicitly, the methodology using curve fitting introduced there is
related the the subject of capturing causal relationships through conditional
probabilities computed out of raw data [Pearl, 1999].

A.5 Neural Networks

Neural Networks provide an approach to mimick the information processing of
’natural’ agents based on connectivity theory [Haykin, 1994]. In the style of
the brain, a neural network consists of a number of neurons that are strongly
interconnected. The output of each neuron is a weighted sum of its inputs
coming from other neurons. It has been shown, that those networks can be
trained to accomplish a large of tasks, such as pattern recognition [LeCun et al.,
1995] or analog computation [Siegelmann and Sontag, 1994].

An approach in vehicle control is the system ALVINN7, developed by Pomer-
leau [Pomerleau, 1993] at Carnegie Mellon University. Pomerleau’s work focused
on the application of Neural Networks for vision based systems in mobile robot
control8. Visual information is used because of its ability to ’quickly provide a
dense representation of the environment’ [Pomerleau, 1993]. The direct map-
ping from visual information to control action fits the idea of unconscious reflex
reaction, that a driver performs during vehicle control on the skill based layer.

Figure A.4 contains the structure of the architecture of the Neural Network:
A multi-layered-perceptron. A two-dimensional input matrix represents the
’retina’ of the visual system. Four hidden neurons are fully connected to all
entries of that matrix. The output of this hidden layer is passed to the output
layer consisting of 30 units performing motor commands from ’sharp left’ to
’sharp right’ that are applied on the front wheel angle.

7ALVINN is thought to be an abbreviation for ’Autonomous Land Vehicle In a Neural
Network’.

8The significance of his work, however, exceeds vehicle control systems. It was used not
only to drive two different kinds of cars but also to determine control commands for a walking
robot [Ueno et al., 1990], designed for the Space Station Freedom.
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ÿ [m/s2]

κ0 [rad/m]

a∗0

a∗1

a∗2

a∗3

state indices s
star parameters p∗

v [ms−1]
δ [rad]
b∗0 [N ]

s
pgd
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Figure A.4: Pomerleau’s Neural Network System ALVINN for vehicle control.
Following: [Pomerleau, 1993, figure 1.3].
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To get an insight into the way environment information is mapped to steering
commands the network is investigated in two ways:

1. Weight analysis of the input retina. The functioning of the network at
this level is understood as a composition of filtering, feature detection,
region finding and edge detection in the input matrix. In other words, the
control process is understood in terms of image processing.

2. Hidden unit sensitivity analysis. It is based on a method adapted from
neuro-science [Hubel, 1979]. Systematically, situations are identified that
cause an individual neuron to respond. By this way situations can be
identified, where the Neural Network is likely to fail.

Using characteristics of Neural Networks is a step towards the modeling of the
intrinsic structure of the controller in a natural way. However, a precise analysis
of the information processing inside the system in term of physical values is not
possible. There is no way to determine tactics used to accomplish the control
task. However, since the output of the network can be viewed as a weighted
superposition of the neuron functions, the process of ’learning’ is indeed a multi-
dimensional curve fitting on the example data. The Neural Network acts like a
template function for a curve fitting algorithm. Once the network has learned,
it is an approximation to the inverse input/output function of the plant. This
inverse is usually hard to determine in a closed mathematical form.

A.6 Fuzzy Logic

Fuzzy Logic describes information processing of a system by rulesets that are
’fuzzy’ [Zadeh, 1965] avoiding the sharp edges of ’if-then’ blocks as they appear
in usual description languages for algorithms. In standard logic a statement
is true or false but nothing in between. Fuzzy Logic allows to attribute to a
statement a non-integer truth value. Respectively in standard (boolean) logic
and element belongs to a set if it fulfills certain requirements or it does not. In
Fuzzy Logic, an element can be assigned a non-integer membership value which
is equivalent to the truth value of the statement that the element belongs to a
certain set.

Multiple statements in Fuzzy Logic can be combined by logical operators
working on the truth value of each single statement. A logical AND operation
can, for example be expressed by a maximum operator, a logical OR can be
expressed through a minimum operator9.

When creating a control system, one applies expert knowledge expressed in
linguistic terms rather than the differential equations of the system. It requires
an operator that is able to explain the way he performs the control task in
statements like

9Note, that such a choice is consistent with the logical AND and OR operators in case that
the truth values a binary, i.e. 1 for true and 0 for false.
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If the front wheel angle is large positive and lateral acceleration is
high then front wheel angle velocity is large negative.

If velocity is high and road curvature is very small then propulsive
force is high positive.

If velocity is low or road curvature is medium then propulsive force
is very low.

... and so on.

Different methods were developed to determine a quantitative value for the out-
put variable given the truth value of the statement that triggers it. Approaches
for driver modeling may be reviewed in [Holve et al., 1995,Kageyama and Pace-
jka, 1991,Protzel et al., 1993,Xi, 1993,Kramer and Rohr, 1982].

Generalized Feedback Control was inspired by this approach with respect to
the ability to express the interference of certain control rules in linguistic terms.
Combining this idea with utility functions leads to the concept of target and
limit maps as explained in chapter 4.

A.7 Conclusion

This chapter discussed the historical background in front of which Generalized
Feedback Control has evolved. Two types of control approaches were discussed:
methods based on mathematical/physical formulations of the control problem
and methods that attempt to mimick natural (human) operators.

The first category treated the control problem on a mathematical level. Non-
linear decoupling of the differential equations could avoid a linearization around
an operating point and a separate treatment of sub-units, e. g. lateral and
longitudinal control, such as in linear feedback control. However, it became
clear that in the presence of error it is necessary to provide a dynamic path
following, such as discussed in section A.3.

The second category consists of approaches that are rather inspired by natu-
ral agents. Using probability theory, the classification approach tries to mimick
an exemplary operator based on conditional probabilities ignoring its internal
tactics to perform the control task. The idea of using conditional probabilities
to identify causal relationships led towards the approach of building a plan-to-
action mapper based on empirical data, rather than based on physical formulae.

Neural Networks inspired the idea to find a inverse input/output function
based on curve-fitting techniques. This is very practical since in the large ma-
jority of cases no closed mathematical solution for this problem can be found.
The curve fitting of sample data is an essential element when building a plan-
to-action mapper (see chapter 3). Fuzzy Logic inspired the use of continuous
functions to model the interference of different rules during reasoning. In Gen-
eralized Feedback Control utility functions are used (see chapter 4) to model
different motivations and operations are described how they have to be inter-
fered to produce one single parameter set for nominal motions.
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Not mentioned in the previous sections is the approach of model predic-
tive control [Qin and Badgewell, 1997] as being used in industrial engineering.
Similar to plan-to-action mapping the control process for one control interval
is considered open-loop. In model predictive control, though, the plant state
is predicted and used for control parameter computation [Allgöwer and Zheng,
2000]. Also, the terminology of containability in GFC as a measure for reliability
displays fundamental differences in the understanding of the control process.

The Generalized Feedback Control method consist of motivation matching
and circumstance cognition. These two concepts correspond somehow to a dy-
namic path following system dealing with short term path generation and short
term path following. Generalized Feedback Control, though, separates these two
processes conceptually very precisely. As a result, the control parameter calcu-
lation to achieve a nominal motion can be treated independently of the problem
to determine nominal motions appropriate for specific design specification. It
provides a terminology to quantify the control motivation of an agent and to
quantify the knowledge an agent has about the input/output relationship of the
plant. In the following chapter the circumstance cognition type of feedback is
described as it is performed by the plan-to-action mapper. Chapter 5 describes
the subject of motivation matching.
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Appendix B

Vehicle Model

B.1 Bicycle Model

The text refers multiple times to a vehicle model known as the bicycle model.
The general idea is to model the behavior of the two tires in front and the two
tires in the rear, with one single tire in front and one single tire in the rear. Such
a vehicle model with three degrees of freedom and rear wheel drive is depicted
in figure B.1. The variables used are displayed in table B.1. The following para-
graphs derive the differential equations that were used to simulate the vehicle
used for investigations of this dissertation. Applying Newton’s Second Law for
rotational and translatory systems results in a set of equations for the vehicle
as depicted in figure B.1:

∑
Fx : m v̇x = Fp − sin(δ)Fs,f (αf ) − cos(β)Fr + sin(β)Flat.

∑
Fy : m v̇y = Fs,r(αr) + cos(δ)Fs,f (αf ) − sin(β)Fr − cos(β)Flat.

∑
M cg
z : ψ̈ Iz = cos(δ)Lf Fs,f (αf ) − Lr Fs,r(αr).

(B.1)

The acceleration in x- and y-direction calculates to

v̇x =
∂

∂ t

(
v cos(β)

)
= v̇ cos(β) − v sin(β) β̇, (B.2)

v̇y = v̇ sin(β) + v cos(β) β̇. (B.3)

Describing the curvature as

κ =
∂

∂ s
(β + ψ) =

d t

d s

∂

∂ t
(β + ψ), =

1

v

(

β̇ + ψ̇
)

, (B.4)

the lateral acceleration force becomes

Flat = mv2 κ = mv
(

β̇ + ψ̇
)

. (B.5)
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Figure B.1: Bicycle model with rear wheel drive reduced from a vehicle with four wheels.
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Table B.1: Variables to describe the state of the bicycle model and their mean-
ing.

Value Meaning
c.g. Center of Gravity. Coordinates are xcg and ycg.
δ Front wheel angle.
β Side slip angle in center of gravity (c.g.).
ψ Yaw angle of vehicle with respect to the inertia system.
αf , αr Side slip angle at front and rear tire.
Fp Longitudinal propulsive force.
Fs,f (αf ), Fs,r(αr) Side force at front and rear tire dependent on

slip angles αf and αr.
Fr Sum of resistance forces, e.g. air drag.
v Velocity in center of gravity.
vf , vr Velocity at center of front and rear tire.
Flat Lateral acceleration force, caused by current

curvature κ = (β̇ + ψ̇)/v and velocity.
Lf , Lr Distance between front tire and c.g., respectively

between c.g. and rear tire.
Iz Moment of inertia, around z-axis.

Using (B.1), (B.2), (B.3) and applying (B.5) the vehicle’s behavior can then
be expressed in the state space equations

ẋ1 =
−sin(δ − x2)Fs,f (αf ) − Fr + sin(x2)Fs,r(αr) + cos(x2)Fp

m
,

ẋ2 =
cos(δ − x2)Fs,f (αf ) + cos(x2)Fs,r(αr) − sin(x2)Fp

2mx1
− x3

2
, (B.6)

ẋ3 =
cos(δ)Lf Fs,f (αf ) − Lr Fs,r(αr)

Iz
.

where x1 = v, x2 = β and x3 = ψ̇. The velocity at the front and the rear can
be calculated using

~vf/r = ω × ~rf/r + ~v, (B.7)

with ω = (0 0 ψ̇)T . ~vf and ~vr are the velocity vectors in the front and the rear.
~rf and ~rr are the vectors from the center of gravity to center of the front and
the rear axles. ~v indicates the velocity vector in the center of gravity. Then, the
following equations can be derived for the front and rear side slip angle αf and
αr:

tan(−αf ) =
−v cos(β) sin(δ) + (v sin(β) + ψ̇ Lf )cos(δ)

v cos(β) cos(δ) + (v sin(β) + ψ̇ Lf )sin(δ)
, (B.8)
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tan(−αr) =
v sin(β) − ψ̇ Lr

v cos(β)
. (B.9)

Pacejka [Bakker et al., 1987] suggests the so called ’magic formula’ to describe
the characteristics of a tire by the relation of the side force with respect to
the slip angle. By applying his equation to the front and rear tire, one gets a
formulation for front and rear side forces as

Fs,f (αf ) = Df sin(Cf atan(Bf αf −Ef (Bf αf − atan(Bf αf )))),
Fs,r(αr) = Dr sin(Cr atan(Br αr −Er (Br αr − atan(Br αr)))),

(B.10)

where Df/r, Cf/r, Bf/r and Ef/r have to be chosen to fit the characteristic
behavior of the tires. This is the model that was used for the investigations
made in the frame of this dissertation. The resulting forces at the front and
rear tire are displayed in figure B.2a. Note, that the side force of the rear tire
is always higher than the side force of the front tire. Consequently, the front
tire has less resistance to lateral acceleration and slips, therefore, easier than
the rear tire. This corresponds to a understeer-behavior, since for a fixed front
wheel angle the curvature decreases with increasing lateral acceleration.

The equations in (B.6) describe a bicycle model as it was used for simula-
tion runs in the frame of this dissertation. Other approaches usually use the
linearized bicycle model. It is based on simplifications of the formulation in
(B.6). It is assumed that the angles β and δ are very small, i.e. |β|, |δ| � 1.
Thus, it follows that

cos(Angle) = 1, sin(Angle) = Angle, (B.12)

Angle · Force � OtherForces ⇒ Angle · Force ≈ 0. (B.13)

Hence, a simplified set of equations which is often referred to as the linear bicycle
model can be described as:

v̇ =
1

m
(Fp − Fr) , (B.14)

β̇ =
1

2mv
(Fs,r(αr) + Fs,f (αf )) −

ψ̇

2
, (B.15)

ψ̈ =
1

Iz
(Lf Fs,f (αf ) − Lr Fs,r(αr)) . (B.16)

For small angles the tire slip angles from (B.8) and (B.9) can be approximated
as

αf = −β − Lf
v
ψ̇ + δ and αr = −β +

Lr
v
ψ̇. (B.17)

A further linearization of the tire forces again simplifies the equations:

Fs,f (αf ) = C∗
f αf and Fs,r(αr) = C∗

r αr, (B.18)



B.1. BICYCLE MODEL 139

a)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

PSfrag replacements

input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation
input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation

motivation
matching

circumstance
cognition

cp
pgd
bgd

s
Plant
on
i1
i2

o = s(i)

o1
∆o

database
plant

gd-plan

construction
plan-to-action

mapper

adaption
pgd
cp

extrapolated trajectory

desired trajectory

vehicle’s
c.g.

target

point

x [m]
y [m]

s0
κ′

κ(s) = κ
κ(s) = κ+ κ′ s

(tx, ty)
s [m]

s0
κ(s) [radm−1]

plan-to-action

mapper

plant

s(t+ 1)
pgd
bgd
cp

R(cp, s(t))
P(s(t), pgd)

fixed state investigation
cp
bgd
p∗

state dependency investigation

s0
p∗

p̃

control
parameters

gd-plan

current state
s0
cp
pgd
p∗

p̃

i1
i2
i3
o

s(i)

i
o

si(o)

s0

x [m]

y [m]

s0

t [s]

v [ms−1]

δ̇ [rad/s]

Fp [N ]

κ′ [rad/m2]

v̇ [m/s]

control inputs cp
gd-behavior bgd

Fp [N ]
δ̇ [rad s−1]
v̇ [ms−2]

L∗[bgd : cp]

t∗b(δ̇, v̇)

v0 [m/s]

δ0 [rad]
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(B.11)

Figure B.2: The ’magic formula’ for describing tire forces with respect to tire
slip angle. a) Diagram of front and rear side forces. b) Coefficients of equations
(B.10) to produce the depicted graph.
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with C∗
f as the front tire stiffness and C∗

r as the tire stiffness in the rear. The
resulting simplified state space equation is
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 . (B.19)

Note, that this equation is still not linear (x1 = v still appears in some de-
nominators). It becomes linear, however, if the velocity can be assumed to be
constant. Then the vehicle model would be reduced to a model of two degrees
of freedom.



Appendix C

Control Impulses

For some applications of control it is necessary to model the frequency charac-
teristic of control parameters1. This section discusses a method to influence the
frequency characteristics of a control parameter by using impulses to model its
derivative. This, however, only works under the following assumption:

Assumption: It is assumed, that the system behavior does not sig-
nificantly change if the constant time profile of the control parameter
under investigation is replaced by a time profile that has the same
average level over one control interval.

Conversely, this means that the derivative of this control parameter can be
synthesized by a sequence of discrete impulses. In the following discourse the
front wheel angle velocity is considered as an example and placeholder for any
other possible control parameter. Let δ̇d be the desired front wheel angle velocity
that has to appear at the output of the control unit over one control interval.

The impulses in the δ̈(t) time profile are generated using a general shaping
function stretching it to a specific height. This way the average level of δ̇(t)
is equal to the constant term δ̇d. In figure C.1, impulses in δ̈(t) of heights h0,
h1, and h2 are applied to reach for each control interval an average front wheel
angles velocities δ̇0, δ̇1, and δ̇2. Using impulse sequences in the derivative the
time profile of the control parameter itself is, of course, not piecewise constant.

In the example of figure C.1b, the profile of δ̇(t) of the segments of δ̇0, δ̇1,
and δ̇2 differs enormously from the profile of δ̇(t) that results from integrating
the impulses in δ̈(t). However, this might not have a significant influence on
the total system behavior. The integration of δ̇(t) results in profiles δ(t) as they
are displayed in figure C.2. A bold line indicates the profile based on piecewise
a constant δ̇d(t) the solid line indicates the profile based on the impulse chain
in δ̈(t). Since the average of both profiles in the derivative must be identical,
the profiles meet, after each control interval, at a common point. Although the
front wheel angle velocities in the example of figure C.1b differ enormously, it
can be seen that the resulting profiles of the front wheel angle are very similar.

1This is particulary true for appliciation in human driver modelling [Schuller et al., 1999].
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Figure C.1: Modeling control impulses in a control parameter’s derivative: a)
impulses in the derivative. b) resulting time profile of the control parameter
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Figure C.2: Influence of impulse based synthesized control parameter and piece-
wise constant control parameter on total system.

In the following discussion, impulses in the second derivative δ̈(t) is computed
to achieve a desired average in front wheel angle velocity δ̇(t). This is first done
for the case those impulses do not overlap. Using the resulting equations, it is
demonstrated that the spectrum of the front wheel angle velocity can be modeled
by two parts: the spectrum of the control parameters sent by the control unit
and the spectrum of the shaping function. To handle the general case, the use
of overlapping control impulses to model δ̈(t) is demonstrated.

C.1 Non-Overlapping Control Impulses

The control unit determined a constant front wheel angle velocity δ̇ that must
be affected during the next control interval. Impulse character in the second
derivative is not directly compatible with this task. Instead, a formula is derived
to model the impulses in such a way that a desired front wheel angle velocity
δ̇d is performed in average.

The desired average 〈δ̇(t)〉 = δ̇d is achieved by multiplying a generalized
impulse shaping function in δ̈(t) with a factor Cδ̈ that controls its ’height’.
Then, a normalization on the shaping function is derived that allows one to
change the shaping function without having to modify the mapping from the
desired average δ̇d to the appropriate factor Cδ̈ .
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For one control interval of length Tc, the second derivative δ̈(t) inside the
actual control interval has a continuous shape that is described by a shaping
function fs(τ) multiplied by a control coefficient Cδ̈

δ̈(t) = Cδ̈ fs(t/Tc), where fs(τ) = 0 ∀ τ 6∈ [0, 1], (C.1)

with an fs(τ) normalized to the interval [0, 1] in order to be independent of
the control interval size Tc. It is zero outside this interval to avoid overlapping
between two control intervals. The constant factor Cδ̈ allows one to model the
height of the impulse. An example of a normalized impulse is shown in figure
C.3a. The output signal consisting of a concatenation of such impulses is shown
in figure C.3b. With definition (C.1), the velocity of the front wheel angle δ̇(t)
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Figure C.3: Control impulses using the normalized lifted sine impulse fs(τ) =
4 sin2(π τ). a) Shaping function. b) Output signal.

becomes

δ̇(t) =

∫ t

0

δ̈(ϑ) dϑ+ δ̇(0), (C.2)

=

∫ t

0

Cδ̈ fs(ϑ/Tc) dϑ+ δ̇(0) = Cδ̈ Tc

∫ t/Tc

0

fs(ϑ) dϑ+ δ̇(0), (C.3)

= Cδ̈ Tc
(
Fs(t/Tc) − Fs(0)

)
+ δ̇(0), (C.4)

with Fs(τ) denoting the antiderivative of fs(τ). Since fs(τ) is continuous and
fs(t) = 0 for all t 6∈ [0, 1], it follows that Fs(0) = 0 and therefore

δ̇(t) = Cδ̈ Tc Fs(t/Tc) + δ̇(0). (C.5)

By defining an arbitrary impulse character in δ̈(t), it is not admissible to assume
a constant front wheel angle velocity δ̇(t) during the next control interval. To
approximate a constant δ̇, the continuous function δ̇(t) must be designed in such
a way that the average deviation between δ̇(t) and the desired constant δ̇ = δ̇d
is minimized. To minimize the Euclidean distance2 between δ̇d and δ̇(t), the

2The Euclidean distance between two signals g1(t) and g2(t) calculates to the square root

of
∫

∞

−∞

|g1(t) − g2(t)|
2 dt.
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average of δ̇(t) has to be equal to the desired constant δ̇d, thus

δ̇d =
1

Tc

∫ Tc

0

δ̇(t) dt =
1

Tc

∫ Tc

0

(

Cδ̈ Tc Fs(t/Tc) + δ̇(0)
)

dt, (C.6)

= Cδ̈ Tc

∫ 1

0

Fs(τ) dτ + δ̇(0). (C.7)

Therefore, the constant Cδ̈ can be deliberately chosen so that the average of

δ̇(t) is as close as possible to the desired value δ̇d.

Cδ̈ =
δ̇d − δ̇(0)

Tc
∫ 1

0
Fs(τ) dτ

. (C.8)

If the calculation of the control impulses can now be made independent of the
shape of the function fs(τ), then it is possible to change the shaping function
without having to modify the way Cδ̈ is calculated from δ̇d. This results in
making the integral over Fs(τ) from zero to one, independent of the shape of
fs(τ). It is now possible to define a module of non-overlapping control impulses
as follows:

Definition: 24 (Module of Non-Overlapping Control Impulses) Given
a shaping function normalized to the interval [0, 1] with

fs(τ) = 0 ∀ τ 6∈ [0, 1] (C.9)

and imposing on the antiderivative Fs(τ) of fs(τ) that

∫ 1

0

Fs(τ) dt =

∫ 1

0

∫ ϑ

0

fs(τ) dτdϑ = 1, (C.10)

then fs(τ) defines an Module of Non-Overlapping Control Impulses.
A desired average of a time profile of a control parameter δ̇ can be achieved by
defining its derivative δ̈ as

δ̈(t) = Cδ̈ fs(t/Tc), (C.11)

where the coefficient Cδ̈ is derived from the desired δ̇d by the formula

Cδ̈ =
1

Tc

(

δ̇d − δ̇(0)
)

. (C.12)

The freedom of modeling the shape of fs(τ) enables one to modify the frequency
spectrum of the front wheel angle. This can be done without any effect on
the performance of the controller since the desired average front wheel angle
velocity is always achieved. Describing the whole signal δ̈(t) as a concatenation
of impulses fs(τ) weighted by control stimuli Cδ̈(n) one gets

δ̈(t) ≡
∞∑

n=−∞
Cδ̈(n) fs

(
t− nTc
Tc

)

. (C.13)
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The Fourier Transform becomes

˜̈δ(iω) = Tc

∞∑

n=−∞
F
{

Cδ̈(n) fs

(
t− nTc
Tc

)}

(iω), (C.14)

= TcF {fs(τ)}(i ω Tc)
∞∑

n=−∞
Cδ̈(n) e−iω n Tc , (C.15)

= TcF {fs(τ)}(i ω Tc)FD
{
Cδ̈(n)

}
(i ω Tc), (C.16)

= Tc F̃s(i ω Tc) C̃δ̈(i ω Tc). (C.17)

The Time Discrete Fourier Transform C̃δ̈(i ω) produces a spectrum that is pe-

riodic and infinite. Its period is ωT = 2π
Tc

. The fact that the terms F̃s(i ω Tc)

and C̃δ̈(i ω Tc) appear independently facilitates the spectral forming of the front
wheel angle. The spectrum consists of two multiplicative terms:

• The spectrum C̃δ̈(i ω Tc) of the control impulses that are sent to the control
unit every time step Tc. In the ideal case of a perfect plan-to-action
mapper, they are distinctly defined by the course geometry and the driving
task.

• The spectrum F̃s(i ω Tc) of the shape of control impulses which can be
determined arbitrarily.

This creates the opportunity to model the spectrum of δ̇(t) in such a way that
special types of effectors may be modeled. If the approximation of δ̇(t) is close
enough to the constant front wheel angle velocity δ̇d, then the control unit does
not perceive any difference between different shapes of control impulses. Fur-
thermore, the spectrum C̃δ̈(i ω Tc) is, in fact, distinctly defined by the course
that has to be driven. Under the previous assumptions, it can be concluded that
the spectrum of δ̈(t) can be modeled arbitrarily. As shown in section C.3, the
current implementation does not provide an independence of the computations
of the plan-to-action mapper from the control impulse shape. Nevertheless, this
way of modeling represents a first step towards implementing spectral charac-
teristics that are associated with different classes of actuators.

C.2 Overlapping Control Impulses

Having defined how to model non-overlapping control impulses, we are ready
to investigate a generalization of that concept. The following paragraphs treat
the case where the control impulses overlap. This appears, for example, in
cases where the actuators are expected to show an integrating behavior. An
example of a control signal consisting of superposed overlapping impulses may
be considered in figure C.4b.

In this case it is not possible to provide a convenient normalization for the
shaping function as it was achieved in definition 24. Therefore, the control con-
stants Cδ̈(n) can no longer be chosen independently from the shaping function
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fs(τ). It is shown how the factor Cδ̈(0) for the current control impulse can
then be derived using the previous factors {Cδ̈(1), Cδ̈(2), . . .} and the set of
coefficients {ζ1, ζ2, . . .} that sufficiently describes the shaping function.

The shaping function is normalized in time to the interval [0, 1]. To achieve
a certain length Ts, the shaping function is stretched. The impulses appear
in distances of Tc at times −k Tc. With these constraints, the influence of an
impulse set at time −k Tc on the total second derivative of the front wheel angle
becomes (analogous to equation (C.1))

δ̈k(t) ≡ Cδ̈(k) fs

(
t+ k Tc
Ts

)

, (C.18)

with

fs(τ) = 0 ∀ τ 6∈ [0, 1]. (C.19)

The superposition of all those impulses results in the signal of the second deriva-
tive of the front wheel angle

δ̈(t) ≡
∑

k≥0

δ̈k(t). (C.20)

Here again, t = 0 represents the actual moment. The restriction of k ≥ 0
is deliberately chosen. It means, that no impulses can be set in the future.
Impulses are only set in the past, i.e. at times −k Tc < 0, and at the actual
moment t = 0. The following paragraphs explain a formula describing the
influence of the control impulses on the average of the front wheel angle velocity
〈δ̇(t)〉[0, Tc]

. Finally, an expression is found that allows one to set the height of
the actual control impulse to achieve a desired average front wheel angle velocity
δ̇d. The front wheel angle velocity δ̇(t) as the integral of δ̈(t) results in

δ̇(t) =

∫ t

−∞

∑

k≥0

δ̈k(τ)dτ =
∑

k≥0

∫ t

−∞
δ̈k(τ)dτ. (C.21)

This expression can be split up as follows

δ̇(t) =
∑

k≥ Ts
Tc

∫ t

−∞
δ̈k(τ)dτ (C.22)

+
∑

Ts
Tc
>k≥0

(∫ 0

−∞
δ̈k(τ)dτ +

∫ t

0

δ̈k(τ)dτ

)

. (C.23)

δ̈k(t) is only non-zero in case that t ∈ [−k Tc, Ts − k Tc]. This can be used to
cut out a part of the domain of integration. It follows

δ̇(t) =
∑

k≥ Ts
Tc

∫ Ts−k Tc

−k Tc

δ̈k(τ)dτ +
∑

Ts
Tc
>k≥0

∫ 0

−k Tc

δ̈k(τ)dτ

︸ ︷︷ ︸

=const.

(C.24)
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+
∑

Ts
Tc
>k≥0

∫ t

0

δ̈k(τ)dτ. (C.25)

Regarding the case where t = 0 revolves that the constant term is equal to δ̇(0)
so that δ̇(t) can be expressed as

δ̇(t) = δ̇(0) +
∑

Ts
Tc
>k≥0

∫ t

0

δ̈k(τ)dτ. (C.26)

This way of writing δ̇(t) carries a great advantage. It allows one to consider
the influence of all previous control impulses k > Ts/Tc by one single constant
term δ̇(0). Otherwise, all previous impulses would have to be stored somewhere.
In order to compute the average front wheel angle velocity, it is preferable to
calculate the front wheel angle.

δ(t) =

∫ t

−∞
δ̇(0) +

∑

Ts
Tc

≥k≥0

∫ ϑ

0

δ̈k(τ)dτ dϑ, (C.27)

= δ(0) + δ̇(0) t+
∑

Ts
Tc

≥k≥0

∫ t

0

∫ ϑ

0

δ̈k(τ) dτ dϑ, (C.28)

where the integral evaluates to

∫ t

0

∫ ϑ

0

δ̈k(τ) dτ dϑ = Cδ̈(k)Ts

∫ t

0

∫ ϑ+k Tc
Ts

k Tc
Ts

fs(u) du dϑ, (C.29)

= Cδ̈(k)T
2
s

∫ t+k Tc
Ts

k Tc
Ts

Fs(v) − Fs

(
k Tc
Ts

)

dv, (C.30)

= Cδ̈(k)T
2
s

[

F [2]
s

(
t+ k Tc
Ts

)

− F [2]
s

(
k Tc
Ts

)

−t Fs
(
k Tc
Ts

)]

. (C.31)

The aim is to set the intensity of the impulses in the second derivative so that
the front wheel angle velocity over the next control interval is in average equal
to the desired δ̇d. The average of δ̇(t) can be expressed as

〈δ̇(t)〉[0, Tc]
=

δ(Tc) − δ(0)

Tc
, (C.32)

= δ̇(0) +
∑

Ts
Tc
>k≥0

Cδ̈(k)
T 2
s

Tc

[

F [2]
s

(
(1 + k)Tc

Ts

)

−F [2]
s

(
k Tc
Ts

)

− Tc Fs

(
k Tc
Ts

)]

. (C.33)
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It is useful to define a shorthand

ζk ≡ T 2
s

Tc

[

F [2]
s

(
(1 + k)Tc

Ts

)

− F [2]
s

(
k Tc
Ts

)

− Tc
Ts
Fs

(
k Tc
Ts

)]

. (C.34)

Thus, the factor Cδ̈(0) of the actual impulse can be determined. For a de-

sired average front wheel angle velocity 〈δ̇(t)〉[0, Tc]
= δ̇d this factor becomes by

equation (C.34) and (C.33)

Cδ̈(0) =
1

ζ0

[

δ̇d − δ̇(0) −
∑

Ts
Tc
>k≥1

Cδ̈(k) ζk

︸ ︷︷ ︸

X

]

. (C.35)

Term X is the accumulated influence from previous control impulses. Since the
impulses last only for a period of Ts it is clear that only control impulses hang
over where k < Ts/Tc

This is reminiscent of equation (C.8). In the case that Ts = Tc, the results
are identical. In this case, however, it is not possible to introduce a convenient
normalization without restricting the shape of the function. It suffices, however,
to provide a set of constants {ζk}k=0,1...K as in the following definition of an
module of overlapping control impulses

Definition: 25 (Module of Overlapping Control Impulses) Given a
shaping function fs(τ) normalized to the interval [0, 1] with

fs(τ) = 0 ∀ τ 6∈ [0, 1]. (C.36)

and the corresponding constants

ζk ≡ T 2
s

Tc

[

F [2]
s

(
(1 + k)Tc

Ts

)

− F [2]
s

(
k Tc
Ts

)

− Tc
Ts
Fs

(
k Tc
Ts

)]

, (C.37)

then fs(τ) defines an Module of Overlapping Control Impulses. A
desired average of a control parameter δ̇ can be achieved by defining its derivative
δ̈ as

K∑

k=0

Cδ̈(k)fs

(
t+ Tc k

Ts

)

, (C.38)

where the coefficient Cδ̈(0) to achieve the desired δ̇ is calculated based on the
previous control coefficients {Cδ̈(1), Cδ̈(2), . . .} by

Cδ̈(0) =
1

ζ0

(

δ̇d − δ̇(0) −
N∑

k=1

Cδ̈(k) ζk

)

. (C.39)
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Example

fs(τ) =

{
τ e−9 τ ∀ τ ∈ [0, 1]
0 else

. (C.40)

This shaping function decays fast, is approximately zero beyond
t = 1 and has a Fourier transform that is easy to calculate.

F {fs(t/Ts)} =
Ts

(9 + i ω Ts)2
. (C.41)

The higher frequencies are therefore damped with the term ω−2, so
it behaves like a ’strong’ low pass filter.

The maximum of fs(τ) happens to appear approximately in the
middle of the first quarter of [0, 1], so let Ts = 4Tc. Thus, an
overlapping occurs with the last three control impulses. Figure C.4
shows how a set of preceeding impulses are superimposed to the
actual front wheel angle acceleration δ̈(t) with an interval size Tc =
0.4 s. The dashed line represents the profile that would appear, if
the actual added signal is zero. Obviously, the influence of impulses
that lie more than 3Tc backwards is absolutely negligible. Using
equation (C.37), the ζk ’s are calculated as

ζk = Tc

(
4281

159898
k +

2382

388747

)

e−
9
4 k. (C.42)

Note that these coefficients are constant as long as the basic shape
of the control impulses stays the same. To calculate the factor Cδ̈(0)

that is required to achieve a desired average δ̇d the only information
that is needed about the shape of the impulses are the four fixed
coefficients ζ0, ζ1, ζ2 and ζ3.
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Figure C.4: Overlapping control impulses. a) Parts of impulses initiated in
previous control intervals. b) Superimposed signal.
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C.3 Spectra

This section describes how the shapes of control impulses influence the spectrum
of the control signal. Equation (C.17) showed that the spectrum of the second
derivative of the front wheel angle is the product of the spectrum of the control
impulses and the spectrum of the shaping function. Signal theory indicates
that a time window of ∆t only allows one to make precise conclusions about
frequency parts in the spectrum that lie beyond 1/∆t [Gabor, 1946]. This means
that the shape of the control impulses primarily influences the frequency parts
that are greater than 1/Tc. For frequencies less than 1/Tc, the spectrum of the
control impulses dominates.

The following experiments were done with control interval sizes of 0.4 sec-
onds. To show the potential of spectral forming, three different shaping func-
tions are used. First, consider the smooth ’lifted sine’-function

frc(τ) ≡ 4 sin2(π τ). (C.43)

The results of a simulation with Tc = 0.4 s are shown in figure C.5. Typically,
the frequency components until 1/Tc are relatively constant and decay quickly.
An extremely rough shaping function is the ’descending sawtooth’-function

fds(τ) ≡ 3 − 3 τ. (C.44)

Figure C.6 illustrates the results of a simulation using this impulse shape. The
signal energy decays much slower with respect to the frequency than in case of
the lifted sine impulse. A ’quadratic’-function may be defined as

fq(τ) ≡ −12 τ2 + 12 τ. (C.45)

A simulation result is depicted in figure C.7. The signal energy does not decay
as quickly as with the lifted sine function, but much faster than the descending
sawtooth function.

Equation (C.8) defines the height of the control impulses, expressed by the
coefficient Cδ̈ , as being proportional to the desired average front wheel angle

velocity 〈δ̇〉. Regarding the time signals in figure C.5a, figure C.6a and figure
C.7 it becomes obvious that the heights, and therefore the desired 〈δ̇〉s, differ
dependent on the shape of the control impulses. Since the control unit calculates
the 〈δ̇〉 in a deterministic way, it can be concluded that the environment situa-
tions that cause the 〈δ̇〉s are not the same. Although the desired average front
wheel angle velocity is always achieved, the vehicle behavior changes depending
upon the profile of the impulses in δ̈(t). In other words, the requirement for
performing an average front wheel angle velocity 〈δ̇〉 is not enough to precisely
determine the vehicle’s trajectory. The ideal situation of a complete indepen-
dence between control parameters and the shape of the control impulses cannot
be achieved.
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ÿ(t)

v(t0)

κ(s0)
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Figure C.5: Lifted sine impulses. a) 10 seconds of the time signal. b) Fourier
transformation over the whole time signal of 200 seconds.
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ÿ0
a∗5

error

number of coefficients

e
−v0
10

ÿ0
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Figure C.6: Descending Sawtooth impulses. a) 10 seconds of the time signal.
b) Fourier transformation over the whole time signal of 200 seconds.
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∆ÿ [ms−2]
∆κ [rad/m]

x [m]

y [m]

x [m]

y [m]

x [m]
y [m]

v [ms−1]
s [m]

gd-plan construction

plan-to-action mapping

parameter calculation

plant

gd-plan

pgd

control
parameter

cp
p̃
p∗

parameter

target map

limit map

target and

limit maps

δ

2 ε
x(t)

t [s]

A
c

R

s0

s1

s2a

s3a

s2b

s3b

s2c

s3c

admissible domain

st
st+1

S(P(pgd, s0))

R(pgd,s)

Am

A
1rst order

2nd order

3rd order

inadmissible state

sk,i
s1,i+1

s2,i+1

s3,i+1

s4,i+1

s1,i+2

s2,i+2

s3,i+2

s4,i+2

1rst order dilemma possible

2nd order dilemma possible

error possible

A
Ac

D1

D2

D∞

R1

Rs
2

Rs
3

sact

∆d
∆dp
∆ϑp

∆d
κ
κn
δ

∆ψ
δa
δc
0
−
+

d0(~xa)

d1(~xa)

d2(~xa)

dN (~xa)

~xa
k∗

v̇k∗

∆δk∗

xi
yi
αf
αr
β

δ
c.g.

Fr
Ft

Fs,f (αf )
Fs,r(αr)

vr
v
vf

Flat
Lr
Lf
ψ
ψ̇

∑
Fx∑
Fy

∑
M cg
z

x
y

(xcg , ycg)

t

Tc

δ̇0

δ̇1

δ̇2

δ̇(t)

t

Tc

h0

h1

h2

δ̈(t)

t

Tc

δ(t)

τ [1]

fs(τ) [1]

t [s]

δ̈ [rad s−2]

t [s]

δ̈ [rad s−2]

k=1

k=2

k=3

k=4

t [s]

δ̈ [rad s−2]

1/Tc

f [Hz]

F
{δ̈
}[
r
a
d
s
−

1
]

t [s]

δ̈ [rad s−2]

Figure C.7: Quadratic impulses. a) 10 seconds of the time signal. b) Fourier
transformation over the whole time signal of 200 seconds.
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C.4 Conclusion

In order model frequency domain characteristics of a control parameter δ̇ the
profile of its derivative δ̈ was described as a chain of impulses. The basic as-
sumption, hereby, was that the system behavior does not significantly change
when the constant time profile of a control parameter is replaced by a time
profile of the same average level. In a first step, impulses were chosen that do
not overlap. Based on a normalized shape of impulses, a formula was derived
that allows calculation of an amplification factor corresponding to the desired
constant front wheel angle velocity δ̇, as it was specified by the plan-to-action
mapper.

In the second step, a formula was derived for impulses that overlap. This
formula was more general than the previous one. In fact, in the case that the
impulse length was chosen to be equal to the control interval length, the formula
became the same as the one for non-overlapping impulses.

Some simulation experiments showed how the spectrum of the control values
can be influenced by the choice of control impulse shapes. The impulse shapes
basically allowed one to model the frequency parts higher than 1/Tc. The fre-
quency parts lower than 1/Tc were basically determined by the geometry of the
nominal course and the velocity at which it was driven.



Appendix D

Mathematics of Second

Order Nestle Curves

Section 5.2.3 elaborated on nestle curves of second order. This chapter explains
the mathematical background and shows how the solution mentioned in equation
(5.24) was derived. Remember, that the considerations are made with respect
to a coordinate system, which has the origin in the vehicle’s c.g. and the x-axes
along the velocity vector. The constraints for a second order nestle curve ~c(q)
parameterized by q are the following:

1. Starting point ~c(q = 0) = ~0.

2. End point ~c(q = 1) = (tx ty)
T .

3. Angle at the origin (q = 0) is zero, i.e. αc(0) = 0. That means, that the
tangent at q = 0 is parallel to the x-axes.

4. Angle at the end of the curve (q = 1) is fixed, i.e. αc(1) = αt. This
specifies the tangent at the end of the nestle curve.

5. Curvature of the nestle curve at q = 0 is equal the specified κ0, i.e.
κ(~c(0)) = κ0.

6. The curve has to be smooth. The curve must have a reasonable shape in
all possible circumstances. Especially, loops shall never occur.

To fulfill these constraints the following idea was developed: The basis is a
straight line from the origin ~0 to the target point (tx ty)

T . This line has then
to be warped in a way that the lasting angular and curvature constraints are
fulfilled. A first rotational field warps the line around the origin and results in
a curve ~c0(q). A second field rotates the line around the target point and the
result is the curve ~c1(q). Each field is supposed to influence the final curve in a
way so that the constraints are fulfilled that concern the correspondent center
of rotation.
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Finally, both fields are superposed and the nestle curve is the line that
results from averaging the points ~c0(q) and ~c1(q) for each q. The end points at
q = 0 and q = 1 have to be fixed points for both rotational fields. By this way,
the conditions 1) and 2) on the starting point and end point are automatically
fulfilled. The first rotational field warps the initial line from (0 0)T to (tx ty)

T

around the origin by rotating each vector (q tx q ty)
T

~c0(q) ≡ %(λ0(q))

(
q tx
q ty

)

, (D.1)

with %(γ) as a matrix that rotates a point with an angle of γ around the origin.
An example is to be considered in figure D.1a. The second rotational field warps
the line around the target point; mainly to achieve the target angle αt.

~c1(q) ≡ %(λ1(q))

[(
q tx
q ty

)

−
(
tx
ty

)]

+

(
tx
ty

)

. (D.2)

This field should be mainly active close to the target point and its rotational
influence for q = 0 should vanish as depicted in the example of figure D.1b. The
superposition is supposed to give a curve that is able to satisfy all constraints.
This superposition is achieved by averaging the vectors ~c0(q) and ~c0(q) for all
q ∈ [0, 1]. Thus,

~c(q) ≡
(
xc(q)
yc(q)

)

=
1

2

(

~c0(q) + ~c1(q)
)

, (D.3)

=
1

2

[

%(λ0(q))

(
q tx
q ty

)

+ %(λ1(q))

(
(q − 1) tx
(q − 1) ty

)

+

(
tx
ty

)]

.(D.4)

The effect of such a superposition may be considered in figure D.2. It depicts the
superposition of the curves from figure D.1a and figure D.1b. From geometric
considerations the following simplification can be derived:

~c(q) =
1

2

(
R q cos(ξ0(q)) −R (1 − q) cos(ξ1(q)) + tx
Rq sin(ξ0(q)) −R (1 − q) sin(ξ1(q)) + ty

)

, (D.5)

with

ξ0(q) ≡ A+ λ0(q), ξ1(q) ≡ A+ λ1(q),

A = arctan(ty , tx) and R =
√

t2x + t2y.
(D.6)

The precise form of the two functions ξ0(q) and ξ1(q) that indicate the angle of
rotation for a given q are left open. Later this allows one to simplify equations
by adding constraints on these functions. Finally, it carries the advantage to
fulfill condition 6, the smoothness issue, a posteriori - when the solution for all
other constraints is found.

The fixed points of the two rotational fields introduce a border condition for
the rotational angles ξ0(q) and ξ1(q).

λ0(1) = 0 ⇒ ξ0(1) = A, (D.7)

λ1(0) = 0 ⇒ ξ1(0) = A. (D.8)
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ÿ(t)

v(t0)

κ(s0)
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ã2,0, ã2,1, ...

b̃0,0, b̃0,1, ...

b̃1,0, b̃1,1, ...

...
p∗

p̃

a∗0

a∗1

a∗2

a∗3

b∗0

b∗1

b∗2

b∗3

cp,0
cp,1

ta0(χa0)

ta1(χa1)

ta2(χa2)

tb0(χb0)

tb1(χb1)

t∗a(βa)

t∗b (βb)

control
parameters

current state
gd-plan

control parameters

computation

plant

characteristics

circumstance
cognition

x [m]

y [m]

κ′ =0.0015 [radm−2]

κ′ =0.001 [radm−2]

∆ ye

t [s]

v [ms−1]

v̇= 0.45 [ms−2]

v̇=0.6 [ms−2]

∆ ve

∆ ye [m]

coefficient number
∆ ve [m/s]

coefficient number
∆ ve [m/s]

∆ ye [m]

error distribution
∆ ve [m/s]

∆ ye [m]

coefficient number

e
−v0
10

ÿ0
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Figure D.1: Two rotational fields that warp the direct connection from the origin
to the target point. They produce formulae that can be easily parameterized to
fulfill angular and curvature constraints.
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ÿ(t0)

t

s

t0

s0

s [m]

v [ms−1]

vmin

vmax

target map

limit map

optimization

T (p)

L(p)

U(p)

κ′

v̇
κ′t
v̇t

κ′min
κ′max
v̇min
v̇max
κ′opt
v̇opt

x [m]
y [m]
x [m]
y [m]
t [s]

δ [rad]
t [s]

αf , αr [rad]
x [m]
y [m]

previous

position

gd-plan

position

desired

actual
trajectory

∆x
∆ y

∆x [m]
∆y [m]

∆ÿ [ms−2]
∆κ [rad/m]

x [m]

y [m]

x [m]

y [m]

x [m]
y [m]

v [ms−1]
s [m]

gd-plan construction

plan-to-action mapping

parameter calculation

plant

gd-plan

pgd

control
parameter

cp
p̃
p∗

parameter

target map

limit map

target and

limit maps

δ

2 ε
x(t)

t [s]

A
c

R

s0

s1

s2a

s3a

s2b

s3b

s2c

s3c

admissible domain

st
st+1

S(P(pgd, s0))

R(pgd,s)

Am

A
1rst order

2nd order

3rd order

inadmissible state

sk,i
s1,i+1

s2,i+1

s3,i+1

s4,i+1

s1,i+2

s2,i+2

s3,i+2

s4,i+2

1rst order dilemma possible

2nd order dilemma possible

error possible

A
Ac

D1

D2

D∞

R1

Rs
2

Rs
3

sact

∆d
∆dp
∆ϑp

∆d
κ
κn
δ

∆ψ

δa
δc
0
−
+

d0(~xa)

d1(~xa)

d2(~xa)

dN (~xa)

~xa
k∗

v̇k∗

∆δk∗

xi
yi
αf
αr
β

δ
c.g.
Fr
Ft

Fs,f (αf )
Fs,r(αr)

vr
v
vf

Flat
Lr
Lf
ψ
ψ̇

∑
Fx∑
Fy

∑
M cg
z

x
y

(xcg , ycg)

t

Tc

δ̇0

δ̇1

δ̇2

δ̇(t)

t

Tc

h0

h1

h2

δ̈(t)

t

Tc

δ(t)

τ [1]

fs(τ) [1]

t [s]

δ̈ [rad s−2]

t [s]

δ̈ [rad s−2]

k=1

k=2

k=3

k=4

t [s]

δ̈ [rad s−2]

1/Tc

f [Hz]

F{δ̈} [rad s−1]

t [s]

δ̈ [rad s−2]

x [m]
y [m]
~c0(q)
~c1(q)
λ0(q)
λ1(q)

q
(q tx q ty)

T

~0
~t

x [m]

y
[m

]

~c0(q)
~c1(q)
~c(q)

κc(0)

αc(0)

αc(1)

~0

~t

Figure D.2: Superposition of two warped curves ~c0(q) and ~c1(q) to one single
nestle curve ~c(q) that obeys all constraints.

This parameterization already fulfills the constraints 1 and 2. Now, the func-
tions ξ0(q) and ξ1(q) have to be designed in a way so that the mathematical
expressions do not become too complicated and the lasting constraints 3,4,5,
and 6 can still be fulfilled.

D.1 Angular Constraints

Conditions 3 and 4 introduced constraints on the angles at the starting point
and the end point of the nestle curve. Using the parameterization (D.5) of the
nestle curve the tangent of αc(q) becomes

tan(αc(q)) ≡ y′c(q)

x′c(q)

=
sin(ξ0(q)) + q cos(ξ0(q))ξ

′
0(q) + sin(ξ1(q)) − (1 − q) cos(ξ1(q))ξ

′
1(q)

cos(ξ0(q)) − q sin(ξ0(q))ξ′0(q) + cos(ξ1(q)) + (1 − s) sin(ξ1(q))ξ′1(q)
.

The tangent angle at q = 0 and q = 1 therefore becomes

tan(αc(0)) =
sin(ξ0(0)) − cos(A)ξ′1(0) + sin(A)

cos(ξ0(0)) + sin(A)ξ′1(0) + cos(A)
, (D.9)

tan(αc(1)) =
sin(A) + cos(A)ξ′0(1) + sin(ξ1(1))

cos(A) − sin(A)ξ′0(1) + cos(ξ1(1))
. (D.10)

The condition αc(1) = αt and α(0) = 0 results in

ξ′0(1) =
− sin(A− αt) + sin(−ξ1(1) + αt)

cos(A− αt)
, (D.11)
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ξ′1(0) =
sin(ξ0(0)) + sin(A)

cos(A)
. (D.12)

In order to make the conditions more handleable new constraints on ξ0(q) and
ξ1(q) are introduced.

ξ1(1) = 2αt −A ⇒ ξ′0(1) = 0, (D.13)

ξ0(0) = −A ⇒ ξ′1(0) = 0. (D.14)

In a later step, the constraints on ξ′0(1) and ξ′1(0) are easier to handle than the
general form in equations (D.9) and (D.10).

D.2 Curvature Constraints

In order to accomplish condition 5, constraints on curvature at q = 0 have to
be considered. The curvature of the nestle curve as a function of q calculates to

κc(q) ≡ ∂

∂ q
αc(q) =

y′′c (q)x
′
c(q) − y′c(q)x

′′
c (q)

((x′c(q))
2 + (y′c(q))

2)
3
2

. (D.15)

With a symbolic algebra tool the following expression for κc(q) can be derived

κc(q) =
2

R

κnom(q)

(κdenom(q))
3
2

, (D.16)

with

κnom(q) ≡
[

(1 − q)σ1(q)ξ
′2
1 (q) − q σ0(q)ξ

′2
0 (q)

+
(
2 ξ′0(q) + q ξ′′0 (q)

)
γ0(q) +

(
2 ξ′1(q) − (1 − q)ξ′′1 (q)

)
γ1(q)

]

·
[

γ0(q) + γ1(q) − q σ0(q)ξ
′
0(q) + (1 − q)σ1(q)ξ

′
1(q)

]

+

[

(1 − q) γ1(q)ξ
′2
1 (q) − q γ0(q)ξ

′2
0 (q)

+
(
2 ξ′0(q) + q ξ′′0 (q)

)
σ0(q) +

(
2 ξ′1(q) − (1 − q)ξ′′1 (q)

)
σ1(q)

]

·
[

σ0(q) + σ1(q) + q γ0(q)ξ
′
0(q) − (1 − q) γ1(q)ξ

′
1(q)

]

. (D.17)

κdenom(q) ≡
[

γ0(q) + γ1(q) − q σ0(q)ξ
′
0(q) + (1 − q)σ1(q)ξ

′
1(q)

]2

+
[

σ0(q) + σ1(q) + q γ0(q)ξ
′
0(q) − (1 − q) γ1(q)ξ

′
1(q)

]2

(D.18)

with

σ0(q) = sin(ξ0(q)), γ1(q) = cos(ξ1(q)), (D.19)

γ0(q) = cos(ξ0(q)), σ1(q) = sin(ξ1(q)). (D.20)
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Using all previous constraints (D.7), (D.8), (D.13) and (D.14) the curvature for
s = 0 becomes

κc(0) =
1

2

2 ξ′0(0) − 2 ξ′′1 (0)

| cos(A)|R = κ0. (D.21)

This condition on ξ′0(0) and ξ′′1 (0) is easy to treat for further solution finding.

D.3 Solution

Now, appropriate functions ξ0(q) and ξ1(q) have to be chosen, so that all con-
straints are fulfilled. The sections D.1 and D.2 derived the following constraints
from the initial conditions:

1. Fixed points of rotational fields at start (q = 0) and end (q = 1):

ξ0(1) = A, ξ1(0) = A. (D.22)

2. Angular constraints at the beginning q = 0 and at the end q = 1:

ξ0(0) = −A, ξ1(1) = 2αt −A, ξ′1(0) = 0, ξ′0(1) = 0. (D.23)

3. Curvature constraint for q = 0:

1

2

2 ξ′0(0) − 2 ξ′′1 (0)

| cos(A)|R = κ0. (D.24)

As long as the above constraints on ξ0(q) and ξ1(q) are fulfilled the initial
conditions 1-5 will be fulfilled also. The exact form of ξ0(q) and ξ1(q), is not
fixed. Condition 6, however, forces to choose such functions so that the resulting
nestle curve is sufficiently smooth.

The following paragraphs derive a composition of ξ0(q) and ξ1(q) that is
’polynomial like’. ξ0(q) requires a constant term in order to accomplish ξ0(0) =
−A. The derivative ξ′0(q) cannot be constant. Instead, it changes from ξ′0(1) = 0
to something that rises from the curvature constraint (D.24). Therefore, at least
a quadratic term is required. The condition ξ′0(1) = 0 can directly be included
by using a term ax (q− 1)N , with N ≥ 2. N allows to model the slope of decay
of the influence of the first rotational field. Finally, ξ0(q) is chosen to

ξ0(q) ≡ ax (q − 1)3 + cx. (D.25)

The condition ξ′1(0) = 0 requires that the polynomial that describes ξ1(q) does
not have a linear term. There are still three equations that require three un-
knowns in order to perform a system that has a unique solution. Thus, ξ1(q) is
chosen as

ξ1(q) ≡ ay q
3 + by q

2 + cy. (D.26)
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With the definitions (D.25) and (D.26) used in the parameterization (D.5) and
applying the conditions that were collected in the front of this section, the
solution for the parameter set {ax, cx, ay, by, cy} becomes

ax = 2A, cx = A.

ay = 2αt − 8A+ κ0 | cos(A)|R, by = −κ0 | cos(A)|R + 6A, (D.27)

cy = A.

Example

Given a current position (0, 0), a current angle αc(0) = 0, and a
current curvature κ0 = 0.01 radm−1 it has to be nestled to the
point ~t = (100m, −10m) with the angle αc(1) = 5o. For this case,
the coefficients ax, cx, ay, by and cy compute to

ax = −0.199337 rad, (D.28)

cx = cy = −0.0996687 rad, (D.29)

ay = 1.97188 rad, (D.30)

by = −1.59801 rad. (D.31)

The graph of the resulting nestle curve is shown in figure D.3. Its angular
profile with respect to the parameterization index q is shown in figure D.4a.
The correspondent curvature profile can be seen in figure D.4b.
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Figure D.3: Example of a nestle curve of second order. X- and y-coordinates of
the trajectory ~c(q) for q = 0 until q = 1.
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Figure D.4: Example of a nestle curve of second order. a) Angular profile. b)
Curvature profile.



Appendix E

Rate of Curvature Change

Determination

In order to find a rate of curvature change κ′ section 5.3 defined a two layered
procedure. It is based on two domains. The domain Dκ′ defines a suitable
boundary for the rates of curvature change that have to be investigated. Further,
for a given κ′ a domain Ds defines boundaries for s, in order to bracket the point
of minimum distance between the spiral and the target point. These two issues
are handled in the following sections.

E.1 Distance between Spiral and Target Point

The initial curvature κ and the constant rate of curvature change κ′ define a
spiral given by equation (5.39). The distance of this spiral to the target was
defined by equation (5.41) as the minimum distance of the points on the spiral

to the target point. Therefore, one has to search the s where ~Xκ′(s) is as
close as possible to the target point. An example of such a minimum distance
finding process is illustrated in figure E.1. The following paragraphs determine
an appropriate interval Ds = [slow, sup] around the position smin. The domain
Ds is derived such that it does not contain a second local minimum.

To avoid loops one has to make restrictions on the maximum angle change.
For the driver model, it does not make sense to take a target point where the
vehicle model changes the angle to its actual position more than 90 degree.
Thus, one can state based on equation (5.30)

0 ≤ |α(s)| ≤ π
2 ,

0 ≤
∣
∣κ s+ 1

2 κ
′ s2
∣
∣ ≤ π

2 .
(E.1)

Furthermore, the nearest point is not allowed to lie backwards so s > 0. It
will now be searched for the sup where |α(sup)| = π

2 . From this point, different
cases need to be investigated. Without any loss of generality one can assume
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Figure E.1: Iterative search for the place ~Xκ′(smin) on the spiral that lies

closest to the target point ~Xt. A minimization algorithm calculates repeatedly
candidates for smin until the distance converges to dmin.

that κ ≥ 0, because the case κ < 0 can be treated as if κ > 0 by inverting the
y-coordinate of the target point and the sign of the rate of curvature change.
The following cases remain for investigation:

1. κ′ > 0:

The angle α(s) increases, so one has to search for a s to satisfy

α(s) = κ s+ 1
2 κ

′ s2 = π
2 . (E.2)

The two possible solutions are

s1/2 = 1
κ′

(

−κ±
√

κ2 + κ′ π
)

. (E.3)

Note that for κ′ > 0 it can always be stated that s2 < 0 and therefore
only s1 can be a solution, i.e.

sup = 1
κ′

(

−κ+
√

κ2 + κ′ π
)

. (E.4)

2. κ′ < 0:

In this case, one must distinguish between two sub cases. Figure E.2 may
be given to illustrate the problem. If the angle becomes π

2 before the
curvature changes sign, then one has to find the place where the angle



E.1. DISTANCE BETWEEN SPIRAL AND TARGET POINT 163

0 10 20 30 40

π/2

−π/2

0

PSfrag replacements

input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation
input

R
output

feedback

Y
Gp
Gr
Gc

plant

point

summation

motivation
matching

circumstance
cognition

cp
pgd
bgd

s
Plant
on
i1
i2

o = s(i)

o1
∆o

database
plant

gd-plan

construction
plan-to-action

mapper

adaption
pgd
cp

extrapolated trajectory

desired trajectory

vehicle’s
c.g.

target

point

x [m]
y [m]

s0
κ′

κ(s) = κ
κ(s) = κ+ κ′ s

(tx, ty)
s [m]

s0
κ(s) [radm−1]

plan-to-action

mapper

plant

s(t+ 1)
pgd
bgd
cp

R(cp, s(t))
P(s(t), pgd)

fixed state investigation
cp
bgd
p∗

state dependency investigation

s0
p∗

p̃

control
parameters

gd-plan

current state
s0
cp
pgd
p∗

p̃

i1
i2
i3
o

s(i)

i
o

si(o)

s0

x [m]

y [m]

s0

t [s]

v [ms−1]

δ̇ [rad/s]

Fp [N ]

κ′ [rad/m2]

v̇ [m/s]

control inputs cp
gd-behavior bgd

Fp [N ]
δ̇ [rad s−1]
v̇ [ms−2]

L∗[bgd : cp]

t∗b(δ̇, v̇)
v0 [m/s]

δ0 [rad]
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Figure E.2: Angle profile with respect to way length s for a segment of constant
rate of curvature change.

becomes π
2 and make it the upper bound sup. If curvature switches sign

before the angle becomes π
2 , then one has to consider an intersection with

−π
2 , i.e. a negative angle. Since the angle is a continuous function over

the distance s, it suffices to calculate the distance scs where the curvature
switches sign and then the angle that arises at this point. If the angle
at scs is less than π

2 , then it is not greater than π
2 in the whole interval

[0, scs]. From κ(s) = κ+κ′s, the position scs where the curvature changes
sign simply calculates to

scs = − κ

κ′
. (E.5)

By equation (5.30) the angle change at this point becomes

α(scs) = −κ
2

κ′
+

1

2

κ2

κ′
= −1

2

κ2

κ′
. (E.6)

The distinction between α(scs) greater or less than π
2 leads to the following

cases

(a) α(scs) >
π
2 :

This is equivalent to κ′ > −κ2

π . One has therefore to search for
the intersection with π

2 before scs. The same equation (E.2) and its
solutions s1 and s2 in (E.3) have to be considered. Obviously, the
square root always exists. Since, κ′ < 0 it follows directly that both,
s1 and s2, are always positive. s2 is always greater than s1 so that
sup becomes

sup = 1
κ′

(

−κ−
√

κ2 + κ′ π
)

. (E.7)

(b) α(scs) <
π
2 :
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This is equivalent to κ′ < −κ2

π . Here it is searched for the intersection
with π

2 . Respectively to equation (E.2) the two solutions are

s1/2 = 1
κ′

(

−κ±
√

κ2 − κ′ π
)

. (E.8)

s1 and s2 are always defined, but only s2 is greater than zero. Thus
sup becomes

sup = − 1
κ′

(

κ+
√

κ2 − κ′ π
)

. (E.9)

(c) α(scs) = π
2 :

This is equivalent to κ′ = −κ2

π . The solution, of course, is simple.

sup = − κ

κ′
=

π

κ
. (E.10)

Collecting the results from theses cases one can determine sup by

sup =







− 1
κ′

(
κ−

√
κ2 + κ′ π

)
∀ κ′ > 0

− 1
κ′

(
κ+

√
κ2 + κ′ π

)
∀ −κ2

π < κ′ ≤ 0
π
κ ∀ κ′ = −κ2

π

− 1
κ′

(
κ+

√
κ2 − κ′ π

)
∀ κ′ < −κ2

π

. (E.11)

The minimum distance length slow is without any prove estimated as the x-
coordinate of the target point, i.e.

slow = tx. (E.12)

A rate of curvature change κ′ for which slow > sup would be plausibly
senseless. This would mean that the spiral turns around before even coming
close to the target point. The following hypothesis shall be the basis for choosing
the interval [slow, sup] as the desired domain Ds in equation (5.41).

Hypothesis: 1 Let ~Xκ′(s) be a parameterization of a spiral index by the dis-
tance s. It starts from the origin (0, 0) with an angle of zero and is defined by a
starting curvature κ and constant rate of curvature change κ′. Let the distance
between any point on the spiral and a specific point ~Xt be

d(s) = | ~Xκ′(s) − ~Xt|. (E.13)

Then there is only one distinct s0 ∈ [slow, sup] for which

d

ds
d(s)

∣
∣
∣
∣
s=s0

= 0, and
d2

ds2
d(s)

∣
∣
∣
∣
s=s0

> 0. (E.14)

That means that there is only one point in [slow, sup] on the spiral where the
distance gets minimal.

With this assumption it can be concluded that the domain Ds only contains
the absolute minimum and no other local ones. An ordinary minimum search
algorithm can be applied to search for the minimal distance in the specified
interval.
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E.2 Spiral to hit Target Point

The previous section showed that it is possible to define a distance between
a point ~Xt and a spiral as the minimum distance between both. With the
fixed initial curvature the spiral’s shape is distinctly defined by the rate of
curvature change κ′. With the distance measure between the target point ~Xt

and the spiral, it is possible to search systematically in the set of spirals the
one that is closest to the target point. Again, an interval of rates of curvature
change [κ′low, κ

′
up] has to be determined that includes the spiral with the minimal

distance to the target point. The closer the borders can be determined in which
the absolute minimum lies, the faster a minimization algorithm finds a solution.

This section, therefore, focuses on appropriate borders for the rate of curva-
ture change κ′ that are assumed to contain only one local minimum that is at
the same time the absolute minimum. This assumption is not proven. However,
it is proven that the absolute minimum has to lie in the former calculated bor-
ders. For the same reason as in the previous section, the initial curvature κ is
supposed to be greater or equal zero. As mentioned before, the case κ < 0 can
be transformed into a identical situation with κ > 0 (see page 161). Therefore,
this constraint does not introduce any restrictions on the general validity of the
following discussion.

Let us assume, that we already found the solution κ′ and the s, where the
spiral hits the target point. By convention, the angle α(s) at this point has to
be less than π

2 . Remembering equation (E.1) it can be stated for this κ′ that

∆α ≥ 0 ⇒ 2κ
s ≤ κ′ ≤ π

s2 − 2κ
s ,

∆α < 0 ⇒ − π
s2 − 2κ

s < κ′ < − 2κ
s .

(E.15)

It is not trivial in the general case to determine if the angle α(s) is positive
or negative when the spiral hits the target. There are, however, two sufficient
conditions that can be stated. If the target lies inside the circle of the constant
initial curvature, than the curvature κ(s) has to increase and the angle is positive
(since it can not be greater than π/2) when the spiral hits the target point. With
the point (0, 1

κ ) as the center of the extrapolated circle it follows that

tx + (ty − 1
κ )2 < 1

κ2 ⇒ α ≥ 0. (E.16)

On the other hand, the convention that κ is positive implies that if the target
point lies in the lower half plane, then the trajectory has to change direction
from upwards to downwards. Correspondingly, the angle at the end will be
negative, i.e.

ty ≤ 0 ⇒ α < 0. (E.17)

Equation (E.15) predicates for any case that

− π

s2
− 2κ

s
≤ κ′ ≤ π

s2
− 2κ

s
. (E.18)
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This relation will be used if it cannot be determined if α is negative or positive
when the spiral hits the target point. The absolute minimum distance that one
has to travel on the spiral to reach the target point is the direct line from the
origin to the target point, i.e.

smin =
√

t2x + t2y. (E.19)

Assuming that the spiral that does not turn more than π
2 , the longest possible

distance from the origin to the target point along the spiral would be the addition
of the x- and y-coordinates of the target point, i.e.

smax = | tx | + | ty | (E.20)

Thus, one can define the domain Dκ′ = [κ′low, κ′up] that is needed for equation
(5.42) as

κ′low ≡
{

2κ
| tx |+| ty | ∀ x2

t,1 + (ty − 1
κ )2 < 1

κ2

− π
x2

t,1+x
2
t,2

− 2κ√
x2

t,1+x2
t,2

else (E.21)

and

κ′up ≡
{

− 2κ
| tx |+| ty | ∀ ty < 0
π

x2
t,1+x

2
t,2

− 2 κ
| tx |+| ty | else

. (E.22)

These boundaries frame the best κ′ that is required to pass through or as close
as possible to the target point ~Xt. Although it was not proven in this section,
practical experience shows that the distance to the target point as a function
of κ′ does not contain a second local minimum besides the absolute minimum.
For this reason, it is possible to use [κ′low, κ′up] as the domain Dκ′ . The mini-
mization algorithm is then used to find the numerical solution for the constant
rate of curvature change κ′ that has to be applied to pass through the target
point.



Appendix F

Derivation of Admissible

Domains of Acceleration

Section 5.4 pointed out the general aspects of how to calculate the domains
of admissible accelerations for a given curvature profile with a constant rate
of curvature change. The following sections derive analytical formula for these
domains. It is advisable to use a symbolic algebra tool such as MapleTM or
MuPADTM in order to trace the reasoning.
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∨ tb 6∈(0, Tc]

∨ tb 6∈(0, Tc]
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Figure F.1: Overview over structure of the admissible domain of accelerations
I . Each box contains the condition that is fulfilled for all v̇ in the specific sub-
domain. The name of the sub-domain is given on top of each box. The section
where the domain is discussed is specified under the box.

F.1 Calculation of Ia

Ia is defined as the domain of v̇ where the lateral acceleration at the end of
the control interval is less than ÿmax. Recalling equation (5.50) this can be
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expressed as

| ÿ(Tc) | =

∣
∣
∣
∣
(v + v̇ Tc)

2

(

κ+ κ′
(

v +
1

2
v̇ Tc

)

Tc

)∣
∣
∣
∣
≤ ÿmax. (F.1)

To examine the domain where this condition holds it is useful to study the
behavior of the function ÿ(Tc) with respect to v̇. The roots of ÿ(Tc) with respect
to v̇ are

v̇a,r,1/2 = − v

Tc
and v̇a,r,3 = −2

v κ′ Tc + κ

κ′ Tc
2 . (F.2)

Deriving ÿ(Tc) with respect to v̇ from equation (F.1) one gets two possible
extrema

v̇a,1 = − v

Tc
and v̇a,2 = −4κ+ 5 v κ′ Tc

3κ′ Tc
2 . (F.3)

The position of the first extremum is independent of κ′. It is identical to the
left border of I0 (see (5.49), page 81). The second one always lies on the right
hand side of − v

Tc
for a certain range of κ′. It can directly be derived that

v̇a,2 ∈ I0 ⇔ κ′ ∈ (−2 κ
v Tc

, 0). (F.4)

The second derivatives at v̇a,1 and v̇a,2 are

∂2

∂ v̇2
ÿ(Tc)

∣
∣
∣
∣
v̇=v̇a,1

= (v κ′ Tc + 2κ) Tc
2, (F.5)

∂2

∂ v̇2
ÿ(Tc)

∣
∣
∣
∣
v̇=v̇a,2

= − (v κ′ Tc + 2κ) Tc
2. (F.6)

So it can be stated that

v̇a,1 produces a minimum ⇔ κ′ > − 2κ

v Tc
, (F.7)

v̇a,2 produces a maximum ⇔ κ′ ∈ (−2κ
v Tc

, 0). (F.8)

Referring to condition (F.4) it is obvious that if v̇ lies in I0, then v̇a,1 will always
produce a minimum and v̇a,2 will always produce a maximum. The values of
ÿ(Tc) at v̇a,1 and v̇a,2 are

ÿ(Tc)|v̇=v̇a,1
= 0 and ÿ(Tc)|v̇=v̇a,2

=
2

27

(v κ′ Tc + 2κ)
3

κ′2 Tc
2 . (F.9)

By these results it is possible to draw a graph of ÿ(Tc) with respect to v̇.
This can be seen in figure F.2. The shaded area indicates the forbidden domain,
since there is v̇ < −v/Tc. If κ′ 6∈ (− 2 κ

v Tc
, 0] as illustrated in figure F.2a it is

relatively easy to define the domain, where ÿ(Tc) < ÿmax. Since there is no
extremum at the right hand side (see (F.4)) there can be only one intersection
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a) κ′ 6∈ (− 2 κ
v Tc

, 0]
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ÿ(tb)≤ÿmax
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ã0,0, ã0,1, ...
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Figure F.2: Graph of ÿ(Tc) with respect to v̇ depending on different domains of
κ′.

with ±ÿmax dependent on v̇a,1 being a minimum or a maximum. The admissible
interval for v̇ ranges from − v

Tc
to v̇a,α. v̇a,α can now be defined as

v̇a,α > − v

Tc
∧ ÿ(Tc)|v̇=v̇a,α

=

{
ÿmax ∀ κ′ > 0
−ÿmax ∀ κ′ < − 2κ

v Tc

. (F.10)

In case of κ′ ∈ (− 2κ
v Tc

, 0) the extremum lies as a maximum in I0. Here, one
has to distinguish between the case when the extremum lies under the desired
maximum lateral acceleration ÿmax and the case when it lies above it. For the
second case, one can define v̇a,β and v̇a,γ

v̇a,β ∈ (− v
Tc
, v̇a,2] ∧ ÿ(Tc)|v̇ = ÿmax, (F.11)

v̇a,γ ∈ [v̇a,2, v̇a,r,3] ∧ ÿ(Tc)|v̇ = ÿmax. (F.12)

The third point v̇δ is determined by the intersection with −ÿmax, i.e.

v̇a,δ ∈ (v̇a,r,3, ∞) ∧ ÿ(Tc)|v̇ = −ÿmax. (F.13)

If the maximum at v̇a,2 lies under ÿmax then one only has to take into account the
point v̇a,δ where the lateral acceleration intersects with −ÿmax. The concrete
values for v̇a,α, v̇a,β , v̇a,γ and v̇a,δ are calculated by a root search algorithm
based on the equation ÿ(Tc) ± ÿmax = 0.

In case that κ 6= 0 and κ′ = 0 the solution is special. Then the only
restriction on v̇ evolves to

− v

Tc
< v̇ ≤ 1

Tc

(√

ÿmax
κ

− v

)

. (F.14)

By means of all these results, we are now able to define the domain Ia, where
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condition (F.1) holds.

Ia ≡







(− v
Tc
, v̇a,α] ∀ κ′ 6∈ (− 2κ

v Tc
, 0]

(− v
Tc
, v̇a,β] ∪ [v̇a,γ , v̇a,δ ] ∀ κ′ ∈ (− 2κ

v Tc
, 0)

∧ ÿ(Tc)|v̇=v̇a,2
> ÿmax

(− v
Tc
, v̇a,δ ] ∀ κ′ ∈ (− 2κ

v Tc
, 0)

∧ ÿ(Tc)|v̇=v̇a,2
≤ ÿmax

(

− v
Tc
, 1
Tc

(√
ÿmax

κ − v

)]

∀ κ 6= 0 ∧ κ′ = 0 .

(F.15)

F.2 Calculation of Ib,1

The subset Ib considers the cases where condition (5.52) holds. This means
that it determines the domain of v̇ where the absolute value ÿ(tb) is less or
equal ÿmax.

Root search in the derivative of ÿ(tb) with respect to v̇ results in

v̇b,1 = − 2κ′ v2

v κ′ Tc + 4κ
and v̇b,2/3 = − 2κ′ v2

v κ′ Tc − 2κ
. (F.16)

The second derivatives show that v̇b,1 is always a minimum and v̇b,2/3 is a double
point of inflection:

∂2

∂ v̇2
ÿ(tb)

∣
∣
∣
∣
v̇=v̇b,1

=
(v κ′ Tc + 4κ)

4

96κ v2κ′2
> 0, (F.17)

∂2

∂ v̇2
ÿ(tb)

∣
∣
∣
∣
v̇=v̇b,2/3

= 0. (F.18)

The value of ÿ(tb) for v̇ = v̇b,1 calculates to

ÿ(tb)|v̇=v̇b,1
= v2 κ. (F.19)

Solving ÿ(tb) = 0 results in a triple root at the same point as the point of
inflection v̇b,2/3, i.e.

v̇b,r,1/2/3 = − 2κ′ v2

v κ′ Tc − 2κ
. (F.20)

ÿ(tb) has two poles at v̇ = −2 v
Tc

and v̇ = 0. The correspondent left and right
hand limits are

lim
v̇→− 2 v

Tc
±
ÿ(tb) = sgn(κ)∞ and lim

v̇→0±
ÿ(tb) = ∓sgn(κ′)∞. (F.21)

Further, ÿ(tb) strives to a constant value for v̇ → ∞

ÿlim = lim
v̇→∞

ÿ(tb) = − 2

27

(v κ′ Tc − 2κ)
3

κ′2Tc
2 . (F.22)
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Table F.1: Domains of the extrema v̇b,1 and v̇b,2 of the function ÿ(tb) dependent
on intervals where κ′ is located.

Domains of κ′

(−∞, − 4κ
v Tc

) (− 4 κ
v Tc

, 0) (0, 2κ
v Tc

) ( 2κ
v Tc

, ∞)

v̇b,1 (−∞, − 2 v
Tc

) (0, ∞) (− 2 v
Tc
, 0)

v̇b,2 (− 2 v
Tc
, 0) (0, ∞) (−∞, − 2 v

Tc
)

In order to search intersections with ±ÿmax by a root search algorithm in a
reliable manner one has to divide up the domain into intervals, that do not
contain any local minima. The first separation comes at the poles at − 2 v

Tc
and

0. The second separation happens at the minimum v̇b,1. Dependent on κ′ it
lies in (−2 v

Tc
, 0), (0, ∞) or (−∞, −2 v

Tc
]. κ′ also directly defines the domain,

where v̇b,2 lies in. The dependency can be seen in table F.1.

With the information of the former equations one is now able to draw a
schematic picture of the function ÿ(tb) for κ′ > 0 and κ′ < 0 as depicted in Figure
F.3. The two domains in that ÿ(tb) ≤ ÿmax are [v̇b,α, v̇b,β ] and [v̇b,γ , v̇b,δ ]. The
second interval does not always exist and v̇b,δ may also lie in infinity. v̇b,α, v̇b,β ,
v̇b,γ , and v̇b,δ can be found by means of an ordinary root search algorithm since
I0 is now separated into domains where the function behaves monotonously.

a) κ′ > 0
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ã2,0, ã2,1, ...

b̃0,0, b̃0,1, ...

b̃1,0, b̃1,1, ...

...
p∗

p̃

a∗0

a∗1

a∗2

a∗3

b∗0

b∗1

b∗2

b∗3

cp,0
cp,1

ta0(χa0)

ta1(χa1)

ta2(χa2)

tb0(χb0)

tb1(χb1)

t∗a(βa)

t∗b (βb)

control
parameters

current state
gd-plan

control parameters

computation

plant

characteristics

circumstance
cognition

x [m]

y [m]

κ′ =0.0015 [radm−2]

κ′ =0.001 [radm−2]

∆ ye

t [s]

v [ms−1]

v̇= 0.45 [ms−2]

v̇=0.6 [ms−2]

∆ ve

∆ ye [m]

coefficient number
∆ ve [m/s]

coefficient number
∆ ve [m/s]

∆ ye [m]

error distribution
∆ ve [m/s]

∆ ye [m]

coefficient number

e
−v0
10

ÿ0
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−ÿmax

v̇a,1

v̇a,2

v̇a,r,3

v̇a,α

v̇a,β

v̇a,γ

v̇a,δ

κ>0
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ÿlim
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ÿ0

a∗5
error

number of coefficients
∆ ve [m/s]

∆ ye [m]

error distribution
interpolated star parameter

optimal star parameter

S
Pgd
s0
st

popt
popt

S
Pgd
Agd

s0
pa
pb
pc

admissibility

function 1

function 2

combination
operator

limit map
L(pgd)

p1

p2

A1(pgd)
A2(pgd)

admissible domain
κ′ [radm−2]
v̇
[
m/s−2

]

Agd

κ′
−3

κ′
−2

κ′
−1

κ′
t

κ′
3

κ′
2

κ′
1

κ′

C(κ′)

κ′
−3

κ′
−2

κ′
−1

κ′
t

κ′
3

κ′
2

κ′
1

v

trajectory(κ′)

pgd
utility

C1(pgd)

C2(pgd)

T (pgd)

pgd
utility

C1(pgd)

C2(pgd)

T (pgd)

constructiveness

function 1

function 2

combination
operator

target map
T (pgd)

p1

p2

C1(pgd)
C2(pgd)

combined
utility map

target map

limit map

p1

p2

T (pgd)
L(pgd)
U(pgd)

addmissible domain

inaddmissible domain
target

pillar

κ′ [rad/m−2 s]

v̇ [ms−2]

popt

∂Agd

course geometries

vehicle state
parameter calculation

gd-plan

parameter

target map

limit map

target and

limit maps

~n(p)

κnc(ν), vnc(p)

{v,β,ψ,β̇, ...}

κ′

v̇
κ′t
v̇t
v̇

κ̇t=κ
′
t (v+

v̇t Tc
2 )

section 5.2

section 5.3

section 5.4

target

point

target point

search
curv. change

calculation

max. v̇ for

curv. transition
limit map parameter calculation

v̇

κ′min
κ′max
v̇min
v̇max

section 5.5

section 5.6

max. deceleration

max v̇ for
velocity profile

calculation of points

on left and right border

optional

velocity

boundaries
calculation of curv. change

for border points

border
points

x [m]

y [m]

s [m]

κ(s) [radm−1]

c.g.

vehicle

nominal course
s = tp v
~n(pp)
~n(p0)

∆d [m]
s [m]

Tc=0.2s, tp=0.4s

Tc=0.4s, tp=0.6s

nominal course

estimation of

nominal course
~c(q0) = ~n(p0)
~c(q1) = ~n(pc)

~c(q)
~n(pmid)

εd
εd [m]
s [m]

Tc=0.2s, εd=0.0005m

Tc=0.4s, εd=0.01m

∆d [m]
s [m]

Tc=0.2s, c1=0.37s, c2=0.09s/m, c3=0.05s/rad

Tc=0.4s, c1=0.64s, c2=0.03s/m, c3=0.0002s/rad

κ0=0.015

ψ0=−100

~t

v Tc

x [m]

y [m]

~x
s1 = v Tc

s2
~tp, s = st

~tp

s = sn
κ(s)
κ(s)

s
s1
s2
st
sn

κ(0)

nominal course

nestle curve

l
~x = ~c(0)

~v
x
y

β + ψ
~n(pn) = ~c(1)

β + ψ
α(~n(pn))

nominal course

vehicle
position

etc.
y [m]
x [m]

∆d [m]

s [m]

Tc=0.1s, tp=0.19s, tpm=0.2s

Tc=0.2s, tp=0.32s, tpm=0.32s

Tc=0.4s, tp=0.55s, tpm=0.56s

nominal course
nestle point

nestle curve
extrapolation κ = const.

nestle curve
vehicle’s trajectory

gd-plan

~c(0)
~c(1)
~c(0)

x [m]

y [m]

~x

~t

κ(s) [rad/m]

κ0=0.017 [rad/m]

κ0

s [m]

~x

~t

x [m]

y [m]

κ(s) [rad/m]

κ0=0.0005 [rad/m]

κ0=0.017 [radm−1]

s [m]

εd [m]

s [m]

nestle 2: Tc=0.4s, tp=0.4s, tpm=0.56s

nestle 1: tp=0.6s, tpm=0.6s

nestle 2: Tc=0.2s, tp=0.2s, tpm=0.2s

nestle 1: tp=0.6s, tpm=0.6s

nestle 2: Tc=0.1s, tp=0.19s, tpm=0.15s

nestle 1: tp=0.6s, tpm=0.6s

κ′

~x

~t

~n(s)

~n(s)

~c(s)

x [m]

y [m]

~Xt

α(s)=− π
2

α(s)= π
2

v(t)

κ(s)
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|ÿ(t)|≤ÿmax
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ÿmax
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Ib,1 has the following form:

Ib,1 ≡







[v̇b,α, v̇b,β ] ∀ v̇b,α > − v
Tc

∧ v2 κ ≤ ÿmax
(− v

Tc
, v̇b,β ] ∀ v̇b,α < − v

Tc
∧ v̇b,β > − v

Tc

∧ v2 κ ≤ ÿmax
∅ else

∪







[v̇b,γ , v̇b,δ] ∀ κ′ > 0 ∧ ÿlim > ÿmax
[v̇b,γ , ∞] ∀ κ′ > 0 ∧ ÿlim ∈ (−ÿmax, ÿmax]
[v̇b,γ , v̇b,δ] ∀ κ′ ∈ [− 4κ

v Tc
, 0) ∧ ÿlim > ÿmax

∧ v2 κ ≤ ÿmax
[v̇b,γ , ∞] ∀ κ′ < 0 ∧ ÿlim < ÿmax
∅ else

.

(F.23)

F.3 Calculation of Ib,2

Equation (5.47) defined the time of the extremum of lateral acceleration as a
function of v̇. The following sections discuss the search for the subset Ib,2 ⊂ I0
where tb 6∈ [0, Tc). The discussion is divided into two parts, which correspond
to two sub-domains. These sub-domains are defined as

Ib,2a ≡ {v̇ ∈ I0 : tb < 0} and Ib,2b ≡ {v̇ ∈ I0 : tb ≥ Tc}. (F.24)

Thus, the domain Ib,2 becomes then

Ib,2 ≡ Ib,2a ∪ Ib,2b. (F.25)

F.3.1 Calculation of Ib,2a

First, the v̇ where tb < 0 is calculated, namely

tb = −2κ′ v2 + vκ′ v̇ Tc + 4 v̇ κ

3 v̇ κ′ (2 v + v̇ Tc)
< 0 . (F.26)

Regarding the denominator of tb in equation (F.26) leads to two poles but only
one of them lies inside the allowed interval I0. Considering the right and left
hand limits to the poles we get

lim
v̇→0±

tb = ∓∞, (F.27)

lim
v̇→− 2 v

Tc

±
tb = ∓sign(κ′)∞. (F.28)

Further, tb has one single root at

v̇t,r = −2
κ′ v2

v κ′ Tc + 4κ
. (F.29)

The two poles, together with the root, enable assumptions to be made about
the conditions for which tb is negative. There are three cases corresponding to
the diagrams in figure F.4:
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1. κ′ ≥ 0 (figure F.4a):

The right hand limit at the pole at − 2 v
Tc

is negative, where else the left
hand limit at 0 is alway positive. vt,r has therefore to lie in between
(− 2 v

Tc
, 0). If v̇ > 0, then tb is always negative. The second domain where

it could be negative is within − v
Tc

and vt,r as long as vt,r lies in (− v
Tc
, 0).

It can now be shown that

v̇t,r ∈ (− v
Tc
, 0) ⇔ κ′ ∈ (0, 4κ

v Tc
). (F.30)

2. κ′ < 0:

The right hand limit at the pole − 2 v
Tc

is positive. From (F.29) it follows

that the root never lies in the interval (− 2 v
Tc
, 0). Here, two sub cases have

to be distinguished:

• v̇t,r > 0 (figure F.4b):

The appropriate condition for κ′ can be formulated as

v̇t,r > 0 ⇔ κ′ ∈ (− 4 κ
v Tc

, 0). (F.31)

In this case, tb is never negative in the allowed domain I0, except if
v̇ ∈ (0, v̇t,r).

• v̇t,r < − 2 v
Tc

(figure F.4c):

The condition for κ′ computes to

v̇t,r < 0 ⇔ κ′ < − 4κ

v Tc
. (F.32)

where tb is only negative if v̇ > 0.
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ÿ [m/s2]

κ0 [rad/m]

a∗0

a∗1

a∗2

a∗3

state indices s
star parameters p∗

v [ms−1]
δ [rad]
b∗0 [N ]

s
pgd
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ã1,0, ã1,1, ...
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tb 6∈(0, Tc]

tb<0

tb≥0

section 5.4

section F.1

section F.2

section F.3

section F.3.1

section F.3.2

section F.4

v̇
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ÿ(Tc)≤ÿmax
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−ÿmax

v̇b,1

v̇b,2

v̇b,α

v̇b,β

v̇b,γ

v̇b,δ
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|ÿ(t)|≤ÿmax
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Figure F.4: Shapes of the function tb(v̇) dependent on different cases for κ′.

With the above considerations in mind it is possible to state

Ib,2a ≡







(0, v̇t,r) ∀ κ′ ∈ (− 4κ
v Tc

, 0)

(− v
Tc
, v̇t,r) ∪ (0, ∞) ∀ κ′ ∈ (0, 4κ

v Tc
)

(0, ∞) ∀ κ′ 6∈ (− 4κ
v Tc

, 4 κ
v Tc

)
. (F.33)
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F.3.2 Calculation of Ib,2b

Next, to calculate the v̇ where tb ≥ Tc one has to consider different cases.
Starting from the inequality

tb = −2κ′ v2 + vκ′ v̇ Tc + 4 v̇ κ

3 v̇ κ′ (2 v + v̇ Tc)
≥ Tc. (F.34)

In the allowed domain, where v̇ > − v
Tc

, it is equivalent to

v̇ +
7

3

v

Tc
+

4

3

κ

T 2
c κ

′ +
2

3

v2

T 2
c

1

v̇
≤ 0. (F.35)

To simplify further arguments, let us define

p =
7

3

v

Tc
+

4

3

κ

T 2
c κ

′ , q =
2

3

v2

T 2
c

. (F.36)

So that one writes

v̇ + p+
q

v̇
≤ 0. (F.37)

The roots of the left hand side of the inequality are

v̇0,1/2 ≡ −p
2
±
√

p2

4
− q. (F.38)

For simplicity of further considerations, let us define

v̇0,min ≡ min{v̇0,1, v̇0,2}, v̇0,max ≡ max{v̇0,1, v̇0,2}, (F.39)

Depending on v̇ one has to distinguish two separate cases:

1. v̇ < 0:

Then (F.37) is equivalent to

v̇2 + p v̇ + q ≥ 0, (F.40)

where the left hand of this expression strives to positive infinity for v̇ →
±∞. If the roots from (F.38) do not exist, then the left hand side is
entirely positive for all v̇. If they exist then the left hand side is only
negative in the domain (v̇0,min, v̇0,max). Regarding the term under the
root in (F.38) and following the argumentation chain back the equations
(F.37), (F.35), and (F.34), it can be stated

tb ≥ Tc ⇔
{

true ∀ p2

4 − q < 0

v̇ 6∈ (v̇0,min, v̇0,max) ∀ p2

4 − q ≥ 0
(F.41)
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2. v̇ > 0: Then (F.37) is equivalent to

v̇2 + p v̇ + q ≤ 0. (F.42)

The above argumentation applied to this equation leads directly to the
assumption

tb ≥ Tc ⇔ v̇ ∈ [v̇0,min, v̇0,max] ∧
p2

4
− q ≥ 0. (F.43)

3. v̇ = 0:

This case is not covered by (F.35). Equation (F.34) but shows that tb is
infinite. So, in this case it is always true that tb ≥ Tc.

The conditions in (F.41) and (F.43) can therefore be reformulated. Basing
on that one can now define the domain Ib2b, where tb ≥ Tc:

Ib,2b ≡







I0 ∀ v̇ < 0 ∧ p2

4 < q

(v̇0,min, v̇0,max)
c ∀ v̇ < 0 ∧ p2

4 ≥ q

[v̇0,min, v̇0,max] ∀ v̇ > 0 ∧ p2

4 ≥ q
{0} ∀ v̇ = 0

, (F.44)

=







(− v
Tc
, 0] ∀ p2

4 < q

(v̇0,min, v̇0,max)
c ∩ (−∞, 0]

∪ [v̇0,min, v̇0,max] ∩ [0, ∞) ∀ p2

4 ≥ q

. (F.45)

Thus,

Ib,2b =







(− v
Tc
, 0] ∀ p2

4 < q

(v̇0,min, v̇0,max)
c ∩ (−∞, 0] ∀ p2

4 ≥ q
∧ v̇min < v̇max ≤ 0

[v̇0,min, v̇0,max] ∩ (−∞, 0] ∀ p2

4 ≥ q
∧ v̇max > v̇min ≥ 0

(−∞, v̇0,min) ∩ [0, v̇0,max] ∀ p2

4 ≥ q
∧ v̇max > 0 > v̇min .

(F.46)

Recall that v̇min and v̇max can never be the same, since by v 6= 0 it follows that
q from (F.36) can never be zero. Thus, the term under the root in (F.38) is
never equal to zero and therefore v̇min 6= v̇max.

F.4 Calculation of Ib,spec

For the cases where either κ = 0 or κ′ = 0 the conditions for tb and the lateral
acceleration are not covered by previous considerations on Ib. The following
paragraphs construct the domain Ib,spec of admissible v̇ for this cases.
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1. κ 6= 0 ∧ κ′ = 0:

In this case ÿ(tb) = (v + v̇ tb)
2 κ, with tb = − v

v̇ . Thus, ÿ(tb) = 0 and
therefore |ÿ(tb)| ≤ ÿmax for all possible values of v̇. It follows, that

Ib,spec ≡ I0. (F.47)

2. κ = 0 ∧ κ′ 6= 0:

Here, the lateral acceleration at tb becomes:

ÿ(tb) = − 2

27

κ′ v3 (2 v + v̇ tb)

v̇
. (F.48)

The intersections with ± ÿmax are therefore

v̇+ = − 4κ′ v4

2κ′ v3 + 27 ÿmax
and v̇− = − 4κ′ v4

2κ′ v3 − 27 ÿmax
. (F.49)

The monotony of the function, respectively the sign of the derivative, only
depends on κ′ since

∂

∂ v̇
ÿ(ttb) =

4

27

κ′ v4

v̇2
. (F.50)

If there was no pole at v̇ = 0 (see (F.48)) this monotony would allow to
say that ÿ(tb) ≥ ÿmax is equivalent to κ′ > 0 ∧ v̇ ≥ v̇+. Fortunately this
function is injective, i.e.

ÿ(tb)|v̇=v̇1 = ÿ(tb)|v̇=v̇2 ⇔ v̇1 = v̇2. (F.51)

This allows a couple of statements:

(a) κ′ > 0: It follows that v̇+ < 0. Thus one gets

ÿ(tb) ≤ ÿmax ∀ v̇ 6∈ (v̇+, 0], (F.52)

ÿ(tb) ≥ −ÿmax ∀ v̇− < 0 ∧ v̇ ∈ [v̇−, 0), (F.53)

ÿ(tb) ≥ −ÿmax ∀ v̇− > 0 ∧ v̇ 6∈ [0, v̇−). (F.54)

By assuming κ′ > 0, it follows that ÿ(tb) is increasing with respect
to v̇. Combining this with the fact that ÿ(tb)|v̇=v̇− = −ÿmax < 0 <
ÿmax = ÿ(tb)|v̇=v̇+ makes it clear that in this case v̇− < v̇+. The
former statements can now be transformed into statements about
δ̇(tb) lying in [−ÿmax, ÿmax].

v̇ ∈ [v̇−, v̇+] ∀ v̇− < 0, (F.55)

v̇ 6∈ (v̇+, v̇−) ∀ v̇− > 0. (F.56)

(b) κ′ < 0: It follows that v̇− < 0. Thus, it follows

ÿ(tb) ≤ ÿmax ∀ v̇+ > 0 ∧ v̇ 6∈ [0, v̇+), (F.57)

ÿ(tb) ≤ ÿmax ∀ v̇+ < 0 ∧ v̇ ∈ [v̇+, 0), (F.58)

ÿ(tb) ≥ −ÿmax ∀ v̇ 6∈ (v̇−, 0]. (F.59)
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Respective to the above case, it can be concluded from κ′ > 0 that
v̇− > v̇+. It is now possible to make statements about δ̇(tb) lying in
[−ÿmax, ÿmax].

v̇ ∈ [v̇+, v̇−] ∀ v̇+ < 0, (F.60)

v̇ 6∈ (v̇+, v̇−) ∀ v̇+ > 0. (F.61)

Note that v̇+ as well as v̇− can never be zero since it was assumed that
κ′ 6= 0. The interval Ib,spec can be defined by collecting the different cases.

Ib,spec ≡







[v̇−, v̇+] ∀ v̇− < 0 ∧ κ′ > 0
(v̇+, v̇−)c ∀ v̇− > 0 ∧ κ′ > 0
[v̇+, v̇−] ∀ v̇+ < 0 ∧ κ′ < 0
(v̇+, v̇−)c ∀ v̇+ > 0 ∧ κ′ < 0

. (F.62)
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