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Linear Absorbance and Volume Fraction

CdSe nanoplatelets (NPLs) of 4.5 monolayers thickness (a single monolayer is ∼0.305 nm)

and 24x12 nm2 and 29x6 nm2 lateral size were dispersed in a polystyrene matrix. Their

synthesis is described in Ref. 1. Size and shape of the NPLs were determined by TEM-

images, see figs. 1 and 2, respectively. We remark that TEM was done with the platelet

dispersion, dried on TEM grids. Stacking does not occur in the polystyrene embedded

samples.

Figure 3 shows the linear absorption of the used CdSe nanoplatelets (NPLs). Follow-

ing Hens et al.2 the volume fraction can be estimated by
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Figure 1: TEM of 24x12 nm2 NPLs.

Figure 2: TEM of 29x6 nm2 NPLs.
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Figure 3: Absorption spectra of both NPLs (dispersed in PS) under consideration.

fV =
ln(10) A(λ)

L µi(λ)
, (1)

where A, L and µi represent the absorbance, sample’s thickness and the intrinsic absorption

coefficient of a specific NPL, respectively. Volume fractions in the order of 7·10−5 (see

main text) are estimated for both platelets, referring to reported µi from Achtstein et. al.3

The thicknesses of both colloidal samples (entirety of NPL dispersion in solid polystyrene

matrix) are 0.95 mm (24x12 nm2) and 0.90 mm (29x6 nm2).

Excitation Beam Diameter Determination

Figure 4 displays the excitation power dependent emission of the NPLs and CdS bulk.

The observed linear dependence in the logarithmic presentation corresponds to a near

quadratic power dependence. Beam A and B were switched on independently to acquire

the two data sets. Since the beam profiles of beam A and B differ slightly, the same

input power delivers different signals, due to the changing excitation density. However,

differences in the signal can ultimately be related to the distinct beam diameters (of Beam
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A and B) at a given position of the sample on the optical axis. This means, once the

beam profiles (as functions of the optical axis z) are known, the effective beam diameter

exciting a sample can be determined. To retrieve the beam diameters according to eq. 2,

the mismatch parameter K (see figure 4) is evaluated. In logarithmic depiction a relative

shift (here: of the data points of Beam B) of log(K) along the ordinate is done to overlay

the data of Beam A and B. In the linear regime this is equivalent to a scaling factor applied

to the signal generated by Beam B. Since both signals exhibit inherent dependence on the

square of input intensity (see main text), the ratio of both signals can be reduced to the

ratio of beam diameters and thus be linked to K.
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Figure 4: Collected fluorescence signal over average input power for CdSe NPLs of 174 nm2

and 288 nm2 area, respectively, as well as CdS bulk.

K =
S(PA)

S(PB)
=

(
wB(z)2

wA(z)2

)2

(2)

Assuming gaussian beams, of which the functions of the beam radii w(z) are known, the

equation can be solved to give the position z. In turn, knowledge about the (effective)

beam diameters (for A and B) can be used to plot the signal over excitation intensity (see

main text, Fig. 3).
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Measured pulse width vs. input power
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Figure 5: Measured pulse duration vs. second order input power for two nanoplatelets
(NPL) differing in size. The obtained pulse durations agree with the reference value of 171
fs given by a BBO-SHG autocorrelation measurement (depicted in green).

In order to asses the reliability of the two different NPL-autocorrelators (174 nm2 and

288 nm2) at diffrent input powers, we plot the results of autocorrelation measurements

against the input power to second order. Since the TPA autocorrelation signal, our figure

of merit, relies on the product of input powers (Pi) delivered by both beams (A and B), the

pulse duration is depicted against the product of PA and PB. The results agree reasonably

within their standard deviation among each other as well as with the BBO reference (Fig.

5). Hence the TPA autocorrelation is shown to be independent on the input power.

Fluorescence Quantum Yield of CdS Bulk

The absolute fluorescence quantum yield of CdS bulk (wurtzite) is gained by a comparative

measurement with respect to Coumarin 307 (C307) in chloroform. Starting from the

most general definition of fluorescence quantum yield, we are looking at the number of
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Figure 6: PL signal of CdS bulk sample and Coumarin 307 over wavelength.

fluorescence photons NEm with respect to the number of initially absorbed photons NAbs

related via the quantum yield.

η =
NFls
NAbs

(3)

This equation can be formulated for two different materials, allowing for determination

of η (sample) by comparison between a sample (s) and a reference (r).

ηs = ηr
NFls,s NAbs,r

NFls,r NAbs,s
(4)

At first we relate the number of fluorescence photons to the integral over the luminescence

spectrum F. The detected luminescence is reduced by reflection of the excitation beam

(800nm) upon entering and reflection of the leaving fluorescence (see main text).

NFls ∝
1

(1 − Rin)
2 (1 − Rout)

∫ ∞

0
F(λ)dλ (5)

To find the number of absorbed photons we start with the two photon absorption rate ΓAbs.

Considering only the ratio of absorbed photons as in eq. 4, it is equally valid to look at the
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ratio of absorption rates.

ΓAbs =
β I2

exc
h ν

V (6)

where β is the TPA coefficient, Iexc the excitation intensity, V the corresponding volume of

interest and h ν represents the energy per photon of frequency ν. The excitation intensity

is linked to the average input power P̄ and the area of the excitation spot, and thus to the

spot radius w. As before, the experimental initial excitation intensity is to be corrected by

reflection upon meeting the sample’s surface.

Iexc ∝ (1 − Rin)
P̄

w2 (7)

Combining eqns. 4 to 6, assuming that V for any measurement is larger than the sampling

volume of the 0.2 NA microscope objective, yields

ηs = ηr
βr

βs

∫ ∞

0
Fs(λ)dλ∫ ∞

0
Fr(λ)dλ

(
P̄r w2

s
P̄s w2

r

)2
(1 − Rin,r)

4 (1 − Rout,r)

(1 − Rin,s)
4 (1 − Rout,s)

(8)

with the average Power P̄ and effective excitation spot radius w for both sample s and

reference r. Performing the calculation a fluorescence quantum yield for the CdS bulk of

0.062 ± 0.026 (∼40 % deviation) is obtained. Here we referred to Xu and Webb (Ref. 4)

reporting an action cross section η · σ(2) of 19 ± 5.5 GM. For the quantum yield of C307 in

chloroform we use a value of η = 0.724.5 To calculate an effective two photon absorption

coefficient β in solution, we applied the following formula

β =
σ(2) Cpart

h ν
, (9)

where the particle concentration Cpart (m−3) in the sample cuvette is determined by a
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linear absorption experiment at 400 nm excitation.

Cpart = Cmol · NA =
A
ε L

· NA (10)

Here Cmol, NA, A, ε and L denote the molar concentration, Avogadro’s number, the ab-

sorbance (0.85), the molar decadic extinction coefficient after Ref. 6 (1.85 · 104 mol L−1 cm−1)

and the sample’s thickness (1 mm).
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