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Abstract: The strength of an adhesive contact between two bodies can strongly depend on the macroscopic and 

microscopic shape of the surfaces. In the past, the influence of roughness has been investigated thoroughly. 

However, even in the presence of perfectly smooth surfaces, geometry can come into play in form of the 

macroscopic shape of the contacting region. Here we present numerical and experimental results for contacts of 

rigid punches with flat but oddly shaped face contacting a soft, adhesive counterpart. When it is carefully 

pulled off, we find that in contrast to circular shapes, detachment occurs not instantaneously but detachment 

fronts start at pointed corners and travel inwards, until the final configuration is reached which for macroscopically 

isotropic shapes is almost circular. For elongated indenters, the final shape resembles the original one with 

rounded corners. We describe the influence of the shape of the stamp both experimentally and numerically.  

Numerical simulations are performed using a new formulation of the boundary element method for simulation 

of adhesive contacts suggested by Pohrt and Popov. It is based on a local, mesh dependent detachment criterion 

which is derived from the Griffith principle of balance of released elastic energy and the work of adhesion. The 

validation of the suggested method is made both by comparison with known analytical solutions and with 

experiments. The method is applied for simulating the detachment of flat-ended indenters with square, triangle 

or rectangular shape of cross-section as well as shapes with various kinds of faults and to “brushes”. The method 

is extended for describing power-law gradient media. 
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1  Introduction 

“Adhesion” is a term which is used for describing 

different phenomena depending on the branch of 

science and technology [1]. In the present paper we 

understand under “adhesion” the relatively weak, 

so-called van der Waals interaction which acts between 

any electrically neutral bodies [2, 3]. These forces 

cause “sticking together” of two solids when they are 

brought into a contact. In everyday life, adhesive 

forces can be easily seen in a contact of a very soft 

elastic material (an elastomer or a jelly) and a smooth 

solid body. It appears also in a contact of two solids 

divided by a soft layer as in various types of “stickers” 

and sticking plasters which are widely used in domestic, 

industrial and medical applications [4]. Adhesion   

is used by many groups of living organisms as a 

mechanism allowing them to attach to various kinds 

of surfaces [5]. The most famous example of an 

extremely effective adhesion device is gecko feet 

which inspired numerous studies of adhesion in the 

last decade [6]. Adhesion plays an important role in 

cell mechanics and proliferation [7]. Adhesion is of high 

technological interest as it is the basis for huge 

industries of adhesive bonding or reversible “sticking”. 

However, it can also be an annoying and disturbing 
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factor, e.g., preventing a rapid opening of elastomer 

valves.  

Even when the van der Waals forces are much 

weaker than covalent interactions, the adhesive stress 

is high enough (on the order of magnitude of 10 GPa 

[8]) to provide high strength adhesive bonding in all 

the cases when it is possible to create an intimate 

contact on the atomic scale. As stated by Kendall [9], 

“solids are expected to adhere; the question is to 

explain why they do not, rather than why they do!” 

The reason for the obvious weakness of macroscopic 

adhesion in everyday-life is in most cases either a 

stress concentration on the boundary of a contact, a 

crack or the roughness of surfaces that hinders the 

intimate contact of the two bodies. The influence of 

roughness was in focus of adhesion studies over many 

years. Now it is well understood under which con-

ditions the roughness can “kill” the adhesion [10, 11] 

and when it can even enhance it [12]. 

However, not only roughness defines the adhesive 

contact. Even in the presence of perfectly smooth 

surfaces, geometry can come into play in form of the 

macroscopic shape of the contacting region. Think  

for instance of medical plasters which have sharp 

rectangular shape. It is commonplace experience that 

they tend to detach at their corners first. With rounded 

edges instead, they hold a lot better, so their sticking 

capability depends on the contour. This influence of 

the macroscopic shape of the contact area remained 

till now out of focus of the research of adhesion. In 

the present paper we will report an experimental and 

numerical study on a related model problem. We will 

consider rigid cylindrical indenters with flat but oddly 

shaped face in contact with a soft, adhesive counterpart 

(as schematically shown in Fig. 1). Despite the apparent 

simplicity of the system, it shows non-trivial and very 

puzzling behavior!   

In mathematical sense, an adhesive contact is 

equivalent to a crack. In their paper from 1971 [13] 

—maybe the most famous paper on the theory of 

adhesive contacts—Johnson, Kendall and Roberts 

wrote: “the approach followed in this analysis, is 

similar to that used by Griffith in his criterion for the 

propagation of a brittle crack.” They realized that the 

adhesive contact is nothing but an “inverted crack”  

 

Fig. 1 We consider adhesive contacts of rigid indenters with flat 
but oddly shaped face with elastic half-space. 

and repeated the Griffith analysis for this particular 

geometrical configuration. In the early 1970s, models 

in fracture mechanics were already well developed. 

Because these could be transferred, the theory of 

adhesion advanced rapidly [14]. Almost at the same 

time, Cruse, Rizzo and Brebbia introduced the method 

they called boundary element method (BEM) [15]. 

However, early formulations of BEM [16, 17] suffered 

from the problem of inverting the fully populated 

matrices. Only after algorithms based on fast Fourier 

transformation were introduced, the BEM became 

an efficient method. The incorporation of the Griffith 

criterion in these modern implementations of BEM 

was first done in 2015 by Pohrt and Popov [18]. The 

same idea was independently proposed in 2016 by 

Hulikal et al. [19]. Recently, Rey et al. [20] suggested 

an alternative approach to the adhesive BEM, which 

is based on the minimization of the total energy. In 

the following sections we use the adhesive BEM as 

described in Ref. [18] for the simulation of adhesion in 

contacts with various macroscopic shapes and compare 

with experimental data. We start in Section 2 with 

general considerations of the adhesion of rigid flat- 

ended indenters and introduce notions and definitions 

used later in the paper. We then describe in Section 3 

how the Griffith’ approach is implemented in the 

modern boundary element programs for numerical 

simulation of adhesive contacts in the case of homo-

geneous media. In the same section, the validation of 

the method through comparison with known analytical 

solutions is presented. Sections 4 to 9 are devoted to 

numerical analysis of the detachment of flat-ended 
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stamps of various shape of cross-section. Section 10 

describes experiments with adhesive contacts of flat- 

ended indenters. In Section 11, the generalization of 

the adhesive BEM to graded materials is presented 

followed by conclusions in section 12. 

2 General theoretical considerations 

2.1 Flat-ended cylinder with circular cross-section 

In the present paper we consider adhesive contacts 

between variously shaped bodies, but the main attention 

is paid to “flat ended stamps”. Here we introduce 

some notations which will be needed for discussion 

in subsequent sections. We start our discussion with 

recapitulation of the classical problem of adhesion  

of a flat-ended cylinder with circular cross-section 

solved by Kendall in 1971 [21]. Let us consider an 

adhesive contact between a rigid body with plane 

surface and an elastic half-space in a state with a 

contact radius a and the indentation depth d. The 

differential stiffness of a contact with the radius a is 

equal to  

*2k E a                 (1) 

where * 2/ (1 )E E    is the reduced modulus of 

elasticity, E is the Young’s modulus and   the Poisson 

ratio [8]. The elastic energy stored in the medium  

is equal to 2 * 2

el
(1 / 2)U kd E ad   and the adhesion 

energy 2

ad 12
U a   , where 

12
  is the work of 

adhesion per unit area. Thus, the total energy of the 

system is equal to 

* 2 2

tot el ad 12
U U U E ad a              (2) 

At a given d, this function has a maximum at  

* 2

c

12
2

E d
a 


                  (3) 

This maximum is the only equilibrium state and it is 

non-stable. If the initial value of a exceeds the critical 

value defined by Eq. (3), the contact spreads to the 

infinity (or, if the plane is finite, to the maximum 

possible radius). For any initial a smaller 
c

a , it shrinks 

to zero, and the bodies lose the contact. For a cylindrical 

indenter with finite radius a, Eq. (3) gives the relation 

between the radius and the critical value of d in the 

moment of detachment: * 2

12
/ (2 )

c
a E d  , whence 

12

*

2
c

a
d

E


 


               (4) 

where we take the negative solution, as only in this 

case detachment is (geometrically) possible. The normal 

force in this critical state is 

* * 312
N c 12*

2
2 8

a
F kd E a E a

E


     


      (5) 

The corresponding “force of adhesion” 
A

F  is just the 

absolute value of this force: 

* 3

12
8

A
F E a                  (6) 

which reproduces the solution of Kendall [21]. 

It is interesting to note that in the moment of 

detachment the elastic energy 
el,c

U
 
is equal to 

2

el,c 12
2U a                   (7) 

while the energy which is needed in order to create 

the surface area 2a  should be only 

2

2

ad 1
U a                    (8) 

Thus, half of the external work used for detaching 

the punch is not for creating the surface, but will 

eventually dissipate in elastic waves emitted into the 

elastic body. 

2.2 Flat-ended cylinder with arbitrary cross-section 

The above analysis can be easily generalized for 

adhesion of flat-ended indenters whose cross-sections 

are not a circle but are compact and have no sharp 

corners (as, e.g., a square or a triangle with rounded 

corners or similar). In such cases, the contact stiffness 

is given approximately by 

*2
A

k E 


                (9) 

where A is the cross section area of the indenter and 

  is a numerical factor on the order of unity. As 

shown numerically in Ref. [22], for a square cross- 

section 1.021  . For any shape with rounded corners, 
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this coefficient is even smaller. Thus, with an accuracy 

of about 2% we can use the Eq. (9) with 1  . In this 

approximation, Eq. (2) takes the form  

* 2

tot 12

A
U E d A 


             (10) 

It has one single maximum at 

2
* 2

c

12

1

2

E d
A

 
  
  

               (11) 

At the given cross-section area A, this equation 

determines the critical approach 
c

d : 

2
* 2

c

12

1

2

E d
A

 
     

               (12) 

It is easy to see that Eqs. (4) and (5) remain valid if 

the “effective radius” /A  is used instead of a. Thus, 

the estimations of the adhesive force and critical 

indentation depth are given by the equations 

 3
*

A,upper 12
8F E A             (13) 

and  

12

c,upper *

2 A
d

E

 
 


            (14) 

We have used index “upper” as the above values give 

the upper bound of the adhesive stress and distance. 

All stamps with a “near-circle” cross-section will detach 

similar to a cylindrical punch: Detachment occurs 

(almost) at once, at latest when the cross-section area 

and the approach satisfy Eq. (11). This however, is 

not valid for more complicated shapes. We will see 

that for complicated shapes the detachment generally 

occurs not instantaneously.  

At this point let us introduce some notations which 

we will use in the further analysis. For characterizing 

a particular shape we will use the so-called “Holm- 

radius” 
H H

({ })a a A [23]. Note that 
H

({ })a A  is not a 

function of the contact area but a functional of the 

complete contour of the contact, which is stressed by 

using curly brackets { } . The Holm-radius represents 

the radius of an equivalent circle having the same 

contact stiffness as the original shape. For a circle 

H
a A   is just the radius of the indenter. In general 

case 

H
({ })a A A               (15) 

Using the notion of the Holm-radius, Eq. (2) can be 

rewritten as 

* 2

tot H 12
({ })U E a A d A           (16) 

while the normal force is defined as 

H

*2 ({ })F a A E d               (17) 

Formally, the stability conditions for a particular contact 

configuration can be found by solving the variational 

problem of minimizing the energy functional (16). The 

explicit analytical form of the functional 
H

({ })a A  is 

not known. Therefore, we will conduct further studies 

using numerical methods.  

However, it is possible to give analytically the upper 

and lower bounds of the interval in which the main 

part of the detachment process occurs. As we have seen, 

within an accuracy of a few percent, the detachment 

process must start at the distance 
c

d  satisfying the 

condition (12) at the latest. According to the simple 

estimation, the detachment should occur at once. 

Equation (13) gives the upper bound for the force of 

adhesion. However, due to the non-circle form, there 

exist a possibility that the detached region will spread 

in a non-circular fashion so that the first term in 

Eq. (16) dominates the second one. The possibility of 

this adjustment will be completely exhausted as soon 

as the contact configuration reaches the incircle of the 

cross-section, whose radius we denote as 
incircle

a . After 

achieving this configuration, no equilibrium is possible 

as this circle has definitely under-critical area. The 

corresponding normal force in this state represents 

the lower bound of the adhesion force possible for the 

given cross-section: 

  * 3
A,lower 12 incircle8F E a           (18) 

In this state, the approach is given by  


  12 incircle

c,lower *

2 a
d

E
           (19) 
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3 Numerical simulation of adhesion 

The Griffith’ approach to cracks [24] played a prominent 

role in materials science. His idea was to consider the 

balance of elastic energy which is released due to a 

small change in the position of the crack tip and the 

work of adhesion which is needed to create new free 

surfaces—instead of a much more complicated stress 

analysis. The energy-based approach is especially 

favorable in the case of cracks and adhesive contacts as 

it allows avoiding the handling of stress singularities 

at the crack tip. In the preceding section we already 

used the Griffith energy balance approach to derive 

Kendall’s result for a circular cylinder. Below we 

discuss briefly the main idea of the Griffith’ energy 

based approach implemented in the boundary element 

method (BEM) [18].  

Let us consider the simplest discretization of the 

contacting surfaces consisting of square elements 

with the side length   as shown in Fig. 2. The 

complete procedure of BEM for non-adhesive contact 

is described, e.g., in Refs. [25, 26]. In each calculation 

iteration of the BEM, the stress and displacement of 

each particular discretization element are determined 

and it is decided if the element should still remain in 

contact. For non-adhesive contacts this is the case as 

long as the pressure remains positive. In an adhesive 

contact, pressures may become negative and thus a 

more elaborated rule of detachment is needed. In Ref. 

[18], Pohrt and Popov suggested to make the decision 

about detachment of a single element based on the 

Griffith’ energy criterion: the element will detach if 

the energy released by its detaching exceeds the work  

 

Fig. 2 In each calculation step, stress in each particular discretiza-
tion element is determined. If the stress   in a given element at 
the boundary of the contact area exceeds the critical value (22), it is 
“detached” and the stress in this element is set zero.  

of adhesion. Following that, we can obtain a stress 

criterion. 

The drop of normal stress results in a decrease of 

the elastic energy [18] (see also Ref. [8], 2nd edition, 

Chapter 19): 

     
2

el
3

*
U

E
             (20) 

with  

2 3 2 1
0.473201 2 log

3 2
1

2 1

            
    (21) 

The element is in the state of indifferent equilibrium 

if the change of elastic energy is equal to the work of 

adhesion needed for creating the free surface with 

the area  2,   adh
2

12U , or with Eq. (20),   32 */E  

  2
12 , where 

12
  is the work of adhesion per unit area. 

For the critical detachment stress we obtain 








*

12
c

0.473201

E
             (22) 

This is a local, mesh-dependent detachment criterion. It 

is local in the sense that the critical stress does not 

depend on the stress in any other parts of the contact. 

Mesh dependent means that the detachment criterion 

explicitly depends on the mesh-size. If the tensile 

stress in one of the elements at the boundary of the 

contact area is   and this element will detach, then 

the stress decreases from   to zero (the element is 

shown red in Fig. 2(b)). 
The algorithm for a pull-off simulation of adhesive 

contact is the following. The indenter is initially pressed 

into the elastic half space to some depth without 

consideration of adhesion, which results in a surface 

displacement and some contact area. Now the indenter 

is pulled off in incremental steps. In each step, the 

contact area is first considered unchanged, and the 

stress corresponding to the change of surface defor-

mation is calculated in all points of the calculation 

grid in the contact area as well as displacements 

outside the contact area. For this sake, the procedure 

of non-adhesive BEM described in Ref. [25] is used. 

Then the stress criterion is checked: all elements whose 

tensile stress exceeds the criterion are separated from 

the contact, and a new contact area is obtained.  
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With this new contact area the stress distribution   

is recalculated. The procedure is repeated until the 

stresses in all elements are below the detachment con-

dition. Finally, the normal force can be calculated by 

integrating the pressure, and the simulation continues 

to the next pull-off step. 

The above adhesive BEM formulation was validated 

by comparison with known exact analytical solutions 

as, e.g., flat cylindrical punch [19], parabolic bodies 

[13] or cone [27], and also passed usual tests of 

independence of mesh size and orientation of the 

discretization network [28]. Results of test simulations 

are illustrated in Fig. 3.  

The presented set of simulation results confirms 

that: 

(a) The numerical method reproduces with high 

precision the known analytical solutions. 

(b) Neither the macroscopic force-approach depen-

dence nor the contact configuration does depend on 

the mesh size. 

(c) The simulation results do not depend on the 

grid orientation.  

(d) The square numerical grid has no influence on 

the axial symmetry of the simulated problem: The 

simulated contact areas remain exactly circular in spite 

of the different symmetry of the simulation grid.  

Other classes of exact or “asymptotically exact” 

solved problems are the two-dimensional or “quasi- 

two-dimensional” problems (as, e.g., a contact of a 

torus with an elastic half-space). These analytic solutions 

were also used for testing the above adhesive BEM 

(see details see in Ref. [29].) 

4 Arbitrary contact shapes: Numerical 

simulation  

In Section 4, we use the above adhesive BEM [18] for 

simulation of contacts of flat-ended stamps having 

 

Fig. 3 Comparison of a BEM simulation of the adhesive contact between a parabolic indenter and elastic half-space (JKR-problem) and 
the analytical solution with (a) force-vs-approach and (b) force-vs-contact-radius relations for three different mesh sizes. (c) Contact 
areas at four selected approaches illustrating the ideally circular form of contact. (d) Adhesive contact of a square punch in different
orientations with 512×512 grid points (dashed lines indicate the orientation of meshing grids), illustrating that neither the contact form 
not the force-approach-relations do depend on the grid orientation. 
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non-circle cross-section shape. We simulate the flat 

adhesive contact for a series of compact shapes. With 

controlled pull-off-distance d we found the contact 

area A and the corresponding elastic force as a function 

of d. Of course, the complete stress and displacement 

fields are the necessary “byproducts” of the simulation.   

4.1 Convex cross-sections 

Let us start with simply-connected shapes such as that 

of a square or triangle. In this case, a rough picture of 

the detachment process is given by the approximation 

described in Section 2.2: With increasing distance 

between the bodies, the force should first increase 

linearly up to the critical value (14) and then drop 

abruptly to zero. In reality we expect not an abrupt 

but a “rapid” decrease.  

Numerically calculated force-distance dependencies 

are presented in Fig. 4. The force and the distance are 

here normalized by the critical values of the “upper 

bound” (13) and (14). The quality of the approximation 

and the deviations can thus be immediately seen. 

Numerical results confirm the general picture predicted 

by the simple approximation: the force increases almost 

linearly and then drops to zero. While for circular  

 

Fig. 4 Force-distance dependencies for simply connected convex 
profiles: triangle, square, an “arbitrary” shape. The very rough 
picture in this case is similar to that of a circular cylinder: the 
normal force first increases linearly with the distance between 
bodies and then drops sharply. However, the transition from the 
linear increase to the complete detachment now takes some (small) 
interval of detachment distances. The state corresponding to the 
incircle of the corresponding shape is shown with dashed lines. 

cylinders it drops at once, other forms show some 

prior decrease in the force. The maximum force of 

adhesion comes very close to the predicted one (the 

maxima of all curves approach the value “1” in 

dimensionless units). 

4.2 Concave cross-sections with outstanding sharp 

parts 

From Fig. 4 one can already see that the deviations 

from abrupt detachment become larger with the 

increase of the deviation of the shape from a circle. 

They become even more pronounced in the case when 

the indenter shape has sharp outstanding parts like 

the star shown in Fig. 5. In this case, partial detachment 

starts early at sharp ends and propagates inwards. After 

achieving the maximum, the force starts decreasing 

with further increase of the distance between the 

bodies. The last stable configuration is very close to  

 

Fig. 5 Detachment process of a flat-ended indenter with the cross- 
section in form of a “star”. (a) A series of contact configurations: 
grey color shows the initial shape of the indenter and black color 
the remaining contact area. The detachment starts at the pointed 
ends of the star and spreads inwards up to a state which is close 
to the incircle of the shape. (b) Dependence of the absolute value 
of the normal force on the approach. The force is normalized to 
the low bound value (18) and the approach to the corresponding 
value (19). Subplot of (b): Three-dimensional “snap-shot” of the 
surface of the elastic half-space at a moment of partial detachment. 



Friction 5(3): 308–325 (2017) 315 

∣www.Springer.com/journal/40544 | Friction 
 

http://friction.tsinghuajournals.com

the incircle of the shape (see Fig. 5(a)). In the subplot 

Fig. 5(b), the dependence of the normal force on the 

distance is shown. Note that in this plot the force and 

the distance are normalized to the values corresponding 

to the incircle (normalization differs from that used in 

Fig. 4). The last stable state approaches the value “1” 

both for the force and distance which in normalized 

units corresponds to the incircle. 

4.3 General discussion of detachment of arbitrary 

macroscopically isotropic shapes 

Let us discuss the detachment of arbitrary complicated 

shapes, like those shown in Fig. 6. While at the present 

time a formal formulation of the stages of detachment 

process is not available, the general rules can be 

formulated at least qualitatively: 

1. The detachment process tends to start at the points 

having the largest distance from the center of the 

profile and at the sharp corners.  

2. While the outer parts may already be completely 

detached, the remaining part, which is still adhering, 

will provide some resistance until aproaches the incircle 

of the shape. 

3. Small heterogeneities such as holes and other 

small defects have no pronounced influence on the 

process of detachment. In particular, the detachment 

rarely starts from the inner discontinuities of the shape. 

This last point is interesting with respect to the 

problem of influence of defects and damages on the  

 

Fig. 6 Decreasing contact areas during the detachment process 
for a series of flat-ended indenters.  

general strength of an adhesive contact. In the next 

section, we study this question in more detail. 

5 Influence of internal discontinuities of 

the contact shape 

Small discontinuities at the face of the flat-ended 

indenter apparently have no essential influence on 

the adhesive strength. This is related to the fact that 

the strength of the contact is determined by the 

interplay of elastic energy (determined mostly by the 

stiffness of the contact) and the work of adhesion, 

which is proportional to the contact area. Small 

discontinuities do not influence the overall stiffness of 

the contact, and their influence on the contact area is 

proportional to the area of the discontinuity. This 

property can be seen in the curves depicted in Fig. 7. 

One can easily see that the V-shaped damage has 

practically no influence on the overall behavior. Even 

in the direct vicinity of the damage line there are almost 

no distinctions in the way that region is detached. 

One can suggest the following very rough estimation 

of the influence of damage on the adhesive strength. 

Assuming that the damage does not change the 

stiffness (which is governed by the outer bounds of A) 

and the damage changes the contact area in proportion 

realA A , where   is the filling factor of the damage,  

 

Fig. 7 Contact configurations and force-distance dependencies 
for a series of squares containing different kinds of faults. The 
plain square indenter is given as a reference. It is compared with 
the same square having discontinuities in form of a “V”, a series of 
vertically oriented line-discontinuities as well as line discontinuities 
filling only the half of the square. 
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we can rewrite Eq. (10) in the form 

* 2

tot 12

A
U E d A  


           (23) 

which differs from Eq. (10) only by replacing the work 

of adhesion 
12
  by the effective work of adhesion 

12
 . 

Equation (13) for the upper limit of the adhesive force 

will be changed to give 

 3
*

A,upper 12
8F E A            (24) 

Thus, the force of adhesion will be roughly proportional 

to the square root of the filling factor  . 

6 Adhesion of brushes 

An interesting and important case are brush-like 

structures: A series of cylindrical, flat-ended columns 

distributed in some limited area. The discussion of 

brushes is interesting in particular in the context of 

contact splitting which is often believed to enhance 

adhesion. We will show that in our model problem, 

the splitting alone never enhances adhesion.  

Here we present qualitative results for square bruhes. 

The results were obtained for regular, random and 

mixed brushes with columns of various shape and 

distribution (see Fig. 8(a)). While the details of the 

contact shapes and force-distance dependencies may 

slightly depend on the particular brush, their general 

properties are very robust: the sequence of the 

contact shapes detaching is always similar to that of  

a continuous square (Fig. 8(b)), and the force-distance 

dependencies almost collapse to a single linear 

dependence of the force of adhesion and on the square 

root of the filling parameter   as defined in the 

Section 5. This master curve shows that the concept 

of effective surface energy introduced in Section 5 is 

reasonably applicable. 

7 Profiles with nearly constant normal force 

The fact that for complicated shapes the normal force 

can both increase and decrease with detachment 

distance, puts the question if it is possible to design a 

shape providing a particular desired behavior, e.g., a 

constant normal force independent on distance.  

 

Fig. 8 (a) Shapes and distributions of spikes in a square brush 
studied here. (b) Consecutive stages of the contact configuration 
for increasing detachment distance and particular shape of the 
surface of the elastic counterpart at one of the displayed stages.  
(c) Simulation points for various brushes and sizes of spikes: All 
points collapse approximately to a single master curve which is 
approximately a linear function of the square root of the filling 
factor .  It is given approximately for all cases by Eq. (24). *a  is 
the radius of the spikes and L is the side length of square. The force 
is normalized to the value A,lowF , corresponding to the radius incirclea  
of the complete square. 

The existence of profiles with a constant normal 

force can also be deduced from the example of brushes. 

Let us consider an indenter which filling parameter 

  is a function of the radius r. Assuming that the 

discontinuities of the shape do not influence the 

stiffness, we can write the total energy as 

* 2

tot 12

0

2 ( )d
a

U E ad r r r             (25) 

The equilibrium state is determined from the require-

ment of the minimum of the total energy: 

* 2tot
12

2 ( ) 0
U

E d a a
a


   


           (26) 
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The relation between d and a is thus given by  

12

*

2 ( )a a
d

E




 
            (27) 

The normal force in this state is given by  

* * 3

N 12
2 8 ( )F E ad E a a            (28) 

It is independent of a if 3 ( ) consta a  or 

3( ) const/a a               (29) 

Any structure showing in some interval of a this 

dependence of the filling parameter on the radius 

should provide an approximately constant adhesive 

force. For example, one can realize such structure by 

designing a star with rays having in some interval 

the thickness which is inversely proportional to the 

second power of radius. In Fig. 9, we present a spiral 

which was designed to show this dependence in the 

outer arms.  

 
Fig. 9 Detachment process of a flat-ended indenter with the cross- 
section in form of a “star” having “rays” which satisfy Eq. (29). 
In this case, a constant pulling force is predicted in the whole 
range where this dependence is valid. 

8 The role of filling parameter 

Simulating the detachment of various indenter shapes 

has revealed a simple rough picture behind it, which 

we would like to discuss briefly at this point. If the 

dimensions of the shape are not clearly dominated by 

one of the in-plane-orientations (as the most shapes 

considered in this paper) then the detachment can be 

qualitatively understood in terms of the average 

filling parameter    During the detachment process 

the remaining contact area contracts inwards and can 

be assigned an effective radius radius a. The stiffness 

of this contact area is almost independent from the 

structure of faults in the shape and can be approximated 

by the contact stiffness of the complete circle with the 

same radius: for homogeneous media, *2k E a . On 

the other hand, the change in adhesive energy is 

determined by the product of the change of the con-

tact area and the filling factor    The approximate 

total energy is thus generally given by Eq. (25). The 

equilibrium radius a is given by requiring that the 

energy acquires a minimum: Eq. (26). However, this 

equilibrium condition can only be realized if the 

equilibrium is stable, thus, additionally the condition 
2 2

tot
0U a    must be satisfied. From Eq. (26), it 

follows 

d
( ( )) 0,    stability condition

d
a a

a
       (30) 

The radius of the last stable configuration is thus 

determined by the condition 

d
( ( )) 0,    last stable state

d
a a

a
         (31) 

Thus, if the average filling factor at the given radius a is 

decreasing with the increase of radius faster than 1/a, 

there is stable shrinking of the adhesive contact. The 

critical configuration is determined by the condition 

that the filling factor is decreasing approximately   

as 1/a. 

9 Detachment of elongated shapes 

The rule that the last stable configuration approaches 

the incircle of the cross-section is not always applicable 

especially when the incircle is not defined uniquely. 

This can be easily illustrated on the example of a flat- 

ended stamp in form of a stretched rectangle (Fig. 10). 

As in the case of square shape, detachment starts at 

the sharp corners. However, we found the last stable 

configuration to correspond to the state when the deta-

chments of two corners merge together forming a 

sort of “partial incircle” of the shape. Further increase of 

distance leads to an abrupt detachment (see Fig. 10(a)). 
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Fig. 10 Detachment of a stamp with a rectangular cross-section: 
(a) Consecutive shapes of the remaining contact area; the last 
one shown configuration corresponds to the last state of stable 
equilibrium. (b) The force-distance dependence. The complete 
detachment occurs in a configuration which strongly differs from 
the largest incircle of the rectangle. 

It is interesting to note that this behavior can still 

be understood qualitatively within the above described 

concept of “damage filling factor”. Let us consider 

the extreme case of a very long rectangular stamp as 

shown in Fig. 11. If the half width of the remaining 

adhering area is a, then the contact stiffness will scale 

approximately linearly with a (up to a logarithmic  

 

Fig. 11 Detachment of flat-ended stamps with rectangular cross- 
sections having various aspect ratios L/B. We show only the final 
stable states. Independently from the aspect ratio, the final state 
corresponds to almost complete rectangle with rounded-up corners. 
When the shape has an inclination, a continuous detachment 
becomes possible. 

factor). On the other hand, as the thickness of the 

rectangle is constant, the “filling factor” will be 

approximately inversely proportional to the radius a. 

Thus, for the rectangle, the stability condition (30) is 

never satisfied. As a matter of fact, the rectangular 

shape represents a degenerate case when all configura-

tions correspond to the critical state. Therefore, even 

a small slope of the shape leads to to the possibility 

of a stable propagation of the detachment front as 

illustrated in Fig. 11. 

10 Complicated contact shapes: Comparison 

of simulation and experiment  

In addition to our numerical studies, we conducted 

experiments with a series of compact flat indenter 

shapes. We did this to further validate our numerical 

method and to see whether the principal features of 

the detachment behavior could be reproduced. The 

experiments were conducted using a setup as depicted 

in Fig. 12. The rigid indenter consisted of a laser-cut 

acrylic glass with flat face. It was brought into contact 

with transparent gelatin with illumination from the 

sides. The acrylic glass was lifted with a precision 

linear stage attached to a strain gage sensor recording 

the adhesive force. The actual contact region was 

recorded from underneath using a digital camera. 

In the distance-force-dependencies we find expe-

rimentally that the general features match those of the 

simulations. First we observe that the adhesive force 

always starts to rise linearly with the lifting height. In 

a second phase, detachment becomes visible and we 

observe a weaker rise of F with d. When the lifting is 

stopped and reversed, we find that the contact con-

figuration reassumes the shape corresponding to the 

same height from the lifting phase. Thus, we deal with 

reversible adhesion. Finally the contact is lost com-

pletely and relatively fast. It then consists of a quickly 

shrinking circle. As in the simulations, the last stable 

configuration can be roughly approximated by the 

largest circle to fit inside the initial shape.  

Figure 13 presents a comparison of the detachment 

process from experiment and simulations. The con-

secutive shapes of the remaining adhesive contact 

zones are very similar to the simulation results for 

all experiments which we carried out. The differences  
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Fig. 12 Schematic display of the experimental setup. A flat but 
oddly shaped sample of acrylic glass is placed on a gelatin base and 
slowly pulled off. The contact between both can be observed by a 
camera through the gelatin. For increased visibility of the edges, 
the contact zone is illuminated in a circular fashion. 

in the force-displacement relations are stronger: The 

plateau region, where most of the detachment happens, 

is larger in experiments than it is in simulations (see for 

instance the positions of the point 1S , 2S  and 3S  and 

the corresponding experimental points 1E , 2E  and 

3E  in Fig. 13). This discrepancy may be related to the 

viscoelasticity of the highly deformable gelatin which 

we used in experiments. We noticed that changes   

of pull-off speed were directly altering the measured 

normal force when performed during the partial 

detachment phase. This hints to some time-depend 

response of the material and can explain the discrepancy 

with respect to d. Discrepancies between theory 

and experiment may also be due to the half-space 

approximation used in theoretical consideration. In 

the experiment, the finite size of the gelatin samples 

necessarily introduces deviations from the half-space 

assumption.  

 
Fig. 13 Dependency of the attracting force on the pull-off distance 
for a triangular shape. The blue curve represents experimental data, 
while the red curve is obtained by simulation. The simulation results 
were fitted to the experimental data by assuming * 6.02 kPaE   
and 1

12 0.062 N m .    Highlighted points (S1, S2, S3, E1, E2, E3) 
refer to Fig. 13 (below). The green circle in the shape representation 
depicts the equivalent Holm-radius of the triangular shape. In the 
lower part, the real contact area for selected pull-off-states is shown. 
All three pictures show numerical results on the left hand side, 
where the initial shape is gray, and remaining contact area is black. 
The right hand sides show photographic images of the contact. The 
edge of the contact zone can be seen as a bright line. 

In spite of the differences in the force-distance 

dependencies, we consider the practically exact coin-

cidence of the shapes of the consecutive contact forms 

as important experimental validation to the adhesive 

BEM formulation used in simulations. 

Note that the presented experiments indicate that 

for the used gelatin the “stress criterion” of detach-

ment as defined in Ref. [30] should be applied, not 

the “deformation criterion”. According to the stress 

criterion, the same configurations of the adhesive 

contact are achieved at the same forces, not at the 

same distances. 

The shapes shown in Figs. 13−15 are representative 

for the general behavior of the cases we investigated. 

First we observe F to rise strictly linearly with d. In 

this phase, the contact area remains intact without 

any detachment and the ratio is equal to the contact 

stiffness of the initial shape. This is to be expected  
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Fig. 14 Dependency of the attracting force on the pull-off distance 
for a star shape. The blue curve represents experimental data, while 
the red curve is obtained by simulation. The simulation results 
were fitted to the experimental data by assuming * 7.60 kPaE  
and 1

12 0.060 N m .    Highlighted points (S1, S2, E1, E2, E3) refer 
to the lower part where real contact area for selected pull-off-states 
are shown. For the third photograph of the experiment, no equivalent 
stable solution in the numerical simulation was reached. 

from the linear elasticity. We then observe a transition 

to a second phase, where detachment starts at sharp 

corners or outstanding parts of the shape or border 

segments with high curvature and then moves inwards. 

In the F – d -curve, this goes along with a decline of the 

slope. After the bodies have lost contact at the sharp 

corners and outstanding parts, the region evolves in 

such a way, that the minimum radius of curvature is 

increased with increasing height. For various shapes, 

the force decreases after having reached a local 

maximum.  

All simulations and experiments reached a point 

when the remaining contact collapses abruptly. The 

last stable contact region resembles the incircle of 

the initial contact zone. The run of the curve between 

phase 2 and the final detachment can have different 

characteristics. In the case of the triangular and star 

shape, we find a local maximum in the force. For a 

circle (not shown), the intermediate phase vanishes 

and the end of phase 1 coincides with the maximum 

force and the onset of final detachment. For more 

complicated shapes, the force can achieve several  

 

Fig. 15 Dependency of the attracting force on the pull-off distance 
for a shape composed of two circles. The blue curve represents 
experimental data, while the red curve is obtained by simulation. 
The simulation results were fitted to the experimental data by 
assuming * 9.28 kPaE  and 1

12 0.030 N m .    Highlighted 
points (S1, S2, S3, E1, E2, E3) refer to the lower part where the real 
contact area for selected pull-off-states is shown. The green circle 
in the shape representation depicts the equivalent Holm-radius of 
the shape. In the photographs of the experiment (E1, E2, E3), the 
actual edge of the contact has been retraced with a semi-transparent 
white line for better visibility. 

maxima and have several jumps corresponding to 

partial instabilities. 

The shape shown in Fig. 15 was designed to cause 

a discontinuity in the adhesive force when the smaller 

circle detaches and we obtain two local maxima in the 

F – d -curve. The reason for this is the constriction in 

the shape. According to the discussion in Section 8, a 

stable shrinking of the contact area is only possible  

if the filling factor   is increasing fast enough with 

decreasing the radius. In the case of shapes with 

constriction, we have the opposite case when the filling 

factor decreases with decreasing the radius. Thus, the 

propagation of the contact will be instable and there 

will be a jump to the next state when the condition of 

continuous shrinking, Eq. (30), is satisfied again.  

Note however, that there are some differences 

between experiment and theory: In the simulation, 

the detachment of the upper part from S1 to S2 is 

abrupt. While the experiment also shows the feature of 
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non-monotonous dependency of force as a function 

of distance, the dependency has no abrupt stages. The 

reason could be again the viscoelasticity of the gelatin. 

Also note that in the experimental state E3 shown 

in Fig. 15, the boundary line of the adhesive zone 

does not match exactly the contour of the stamp. This 

may indicate that the assumption of infinitely short 

action range of adhesive forces lying behind the JKR- 

type of adhesion is not completely applicable to gelatin. 

Small detachment at the boundary is an effect which 

can be expected in the case of finite action range of 

the adhesion forces [31]. 

11 Adhesion of graded media 

In the previous sections, we studied the adhesive 

contact of flat punches that were placed in contact with 

a linear elastic medium. We shall now consider the 

adhesive problem when the elastic body is characterized 

by a depth-dependent modulus of elasticity. This so- 

called functionally graded materials (FGM) became 

increasingly popular since 1990s. The gradually 

varying composition and structure of FGM result in the 

continuous changes in properties of materials, thus 

providing new mechanical properties which cannot be 

achieved with homogeneous materials [31, 32]. Living 

species have “discovered” FGM millions of years ago. 

Gradient media can be found in many biological 

structures as skin, bones or bamboo trees [33].  

In the present section we only consider materials 

whose elastic coefficient is a function of the normal 

coordinate ( )E E z . This dependence can be either 

stepwise (as, e.g., in layered or coated materials) or 

continuous (FGM). For simplicity, we confine ourselves 

to the model case of materials with a power-law 

dependency of the elastic modulus on depth: 

0

0

( )

k

z
E z E

c

 
   

 
, 1 1k            (32) 

where 
0

E  is a characteristic elastic modulus and 
0

c  

is a characteristic length. We additionally assume that 

the Poisson ratio of the graded medium is constant 

and equal to 

1

2 k



                  (33) 

which guarantees decoupling of the normal and 

tangential contact problems [34].  

For the graded medium defined by Eqs. (32) and 

(33), the contact stiffness for indentation with a rigid 

cylinder having the radius a is given by Refs. [34, 35] 

10

0

4(2 )cos( / 2)
( )

(3 )
k

k

Ek k
k a a

k c

 



       (34) 

For the total energy 2 2

12

1
( )

2
k a d a  , we thus have 

1 2 20
tot 12

0

2(2 )cos( / 2)

(3 )
k

k

Ek k
U a d a

k c

 
  


     (35) 

For 1k  , the total energy has only one maximum at 

the critical radius 
c

a  determined by the condition 


   

  
 


 



2tot 0
12

0

tot

2(2 )(1 )cos( / 2)
2

(3 )

( ) 0

k

k

c

U Ek k k
a d a

a k c

U
a a

a

 (36) 

As in the case of homogeneous media discussed in 

Section 2, the contact either shrinks to zero or expands 

to infinity depending on whether the initial radius was 

smaller or larger than c .a  For a finite indenter, Eq. (36) 

determines the relation between the critical detachment 

distance and the radius of the indenter: 

20
c 12

0

2(2 )(1 )cos( / 2)
2

(3 )
k

k

Ek k k
a d a

k c

  
 


     (37) 

For the critical distance we get  

1/2

12 0
c 1

0

2 3

2(2 )(1 )cos( / 2)

k

k

k c
d

k k k E a 

   
      


     (38) 

and for the adhesion force 
A c

( )F k a d , 

3

A 0 12

0

( )8
k

k

a
F k E

c



              (39) 

with 

2(2 )cos( / 2)
( )

(3 )(1 )

k k
k

k k

 


 
           (40) 

For damaged surfaces with the average filling factor 

( )a , the adhesion force is estimated similarly to the 
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procedure described by Eqs. (25)–(28) and is roughly 

equal to  

3

A 0 12

0

( )8 ( )
k

k

a
F k E a

c



            (41) 

A numerical procedure for the simulation of graded 

materials can be formulated using the same idea   

of balancing elastic energy and surface energy as 

described in Section 3. A detailed analysis carried out 

in Ref. [28] shows that now the detachment criterion 

(22) has to be replaced by  

  
   


0 1

0

2
c 1

,
k k

E

c
k            (42) 

where  ( , )k  is a factor depending on the power k 

and the Poisson ratio  , which was found numerically 

in Ref. [28]. An example of the detachment of a flat- 

ended indenter having the shape of a star calculated 

with BEM using the detachment criterion (42) is shown 

in Fig. 16. 

 

Fig. 16 Detachment of a flat-ended stamp with cross-section in 
form of a star from gradient media with various power k. (a) The 
last stable configuration for different   1 1k . (b) The force- 
displacement dependencies show that the media with positive 
power k develop a much more pronounced pre-detachment leading 
to a maximum of force, while the media with large negative powers 
tend to a “brittle” detachment almost without pre-detachment. 
In the limiting case  1k  the force-displacement dependence 
degenerates into a linear dependency up to the point where the 
contact suddenly is lost. 

For all media with 0 1k  , the detachment starts 

at the sharp ends on the outside and ends up at the 

incircle of the star. The larger the power of the medium 

(thus the softer it is at the immediate surface) the 

larger is the maximum force and the work of fracture 

after achieving the maximum force (fracture toughness) 

contact. Media with negative power 1 0k    show a 

different behavior. Now the last stable state is reached 

earlier than the incircle of the shape would suggest. 

For the limiting case 1k    the last configuration is 

almost the non-disturbed initial shape. Correspondingly, 

the deviation from the force-displacement linearity 

decreases with increasing absolute value of k and the 

fracture toughness decreases rapidly. Thus, the soft 

surface facilitates both the magnitude of the adhesion 

force and the work of adhesion between maximum 

force and complete collapse of the contact. 

12 Discussion and conclusion 

As expected from our theoretical considerations, the 

adhesive contact of flat bodies within the assumptions 

of JKR theory can clearly depend on the macroscopic 

shape of the contact zone. Our results show that 

adhesion is not only governed by small-scale roughness 

properties of the surfaces but depends strongly on 

the bulk shape of the initial adhesive zone. During 

pull-off, the detachment starts at the exposed outer 

parts of the shape such as tentacles or sharp corners, 

then the contact zone shrinks, approaching a final state 

after which the detachment occurs in an instable way. 

In the final state, the remaining contact has a shape 

with circularly rounded corners. In the course of 

detachment, one or multiple maxima can occur. These 

phenomena can be observed both in experiment and 

simulation. In direct comparison however, the experi-

ments develop more slowly near the instabilities. 

While the macroscopic shape of the stamp has 

essential influence on the adhesive strength, small 

inner discontinuities do not. Their influence can be 

characterized relatively well with a filling parameter 

quantifying the fraction of the continuous part of 

the cross-section relatively to the nominal area. In 

particular, the detachment of square brushes occurs 

almost in the same way as of the corresponding full 

square. For determining the adhesive force, only the 
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work of adhesion has to be multiplied with the filling 

factor of the shape.  

Special attention has to be paid, when the filling 

factor depends on the distance from the center of  

the contact zone. This dependence will then be the 

parameter determining both the character of detachment 

and the size and shape of the final state before sudden 

loss of contact. 

We anticipate our work to inspire a broader view 

on adhesion problems, differentiating small-scale 

roughness effects from the macro-shape. For instance, 

one could design adhesive bonds that show distinct 

partial detachment below their maximum strength, 

giving an early warning of critical failure.  
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