Foundations of computing Volume 7

Youssef Arbach

On the Foundations of Dynamic Coalitions

Modeling Changes and Evolution of Workflows in Healthcare Scenarios

Technische ' E
S . Jechmische '
Universitatsverlag der TU Berlin niversita

Berlin

Youssef Arbach

On the Foundations of Dynamic Coalitions
Modeling Changes and Evolution of Workflows in Healthcare Scenrios

Die Schriftenreihe Foundations of Computing der Technischen Universitét
Berlin wird herausgegeben von:

Prof. Dr. Rolf Niedermeier,

Prof. Dr. Uwe Nestmann,

Prof. Dr. Stephan Kreutzer

Foundations of Computing | 07

Youssef Arbach

On the Foundations of Dynamic Coalitions

Modeling Changes and Evolution of Workflows in Healthcare
Scenarios

Universitatsverlag der TU Berlin

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet iiber http://dnb.dnb.de abrufbar.

Universititsverlag der TU Berlin, 2016
http://verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin

Tel.: +49 (0)30 314 76131/ Fax: -76133
E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2015

1. Gutachter: Prof. Dr. Uwe Nestmann

2. Gutachter: Prof. Thomas Hildebrandt, PhD

3. Gutachter: Prof. Dr. Mathias Weske

Die Arbeit wurde am 14. September 2015 an der Fakultéit IV unter Vorsitz
von Prof. Dr. Sabine Glesner erfolgreich verteidigt.

Das Manuskript ist urheberrechtlich geschiitzt.

Druck: docupoint GmbH
Satz/Layout: Youssef Arbach

Umschlagfoto:
Allie_Caulfield | https:/www.flickr.com/photos/wm_archiv/26315161296 | CC BY 2.0
https://creativecommons.org/licenses/by/2.0/

ISBN 978-3-7983-2856-3 (print)
ISBN 978-3-7983-2857-0 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Zugleich online veréffentlicht auf dem institutionellen Repositorium
der Technischen Universitit Berlin:

DOI 10.14279/depositonce-5406
http://dx.doi.org/10.14279/depositonce-5406

http://dnb.dnb.de
http://verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
https://www.flickr.com/photos/wm_archiv/26315161296
https://creativecommons.org/licenses/by/2.0/
http://dx.doi.org/10.14279/depositonce-5406

Zusammenfassung

Dynamische Koalitionen bezeichnen eine temporire Zusammenarbeit zwi-
schen verschiedenen Entitdten zum Erreichen eines gemeinsamen Ziels.
Ein Schliisselaspekt, der dynamische Koalitionen von statischen Koalitio-
nen unterscheidet ist die dynamische Mitgliedschaft, durch die Mitglieder
neu hinzukommen oder die Koalition verlassen kéonnen, nachdem sie ent-
standen ist. Diese Arbeit studiert Workflows in dynamischen Koalitionen
durch eine Analyse ihrer Eigenschaften, das Herausstellen ihrer einzigar-
tigen Charakteristika und Ahnlichkeiten zu anderen Workflows und durch
eine Untersuchung ihrer Beziehung zu dynamischer Mitgliedschaft. In die-
sem Sinne nutzen wir das formale Model der Ereignisstrukturen und er-
weitern es, um Fallstudien aus der Medizin angemessen zu modellieren.
Ereignisstrukturen erlauben sowohl eine generelle Workflow-Modellierung
als auch eine Darstellung von Eintritts- und Austrittsereignissen von Mit-
gliedern.

Zu diesem Zweck erweitern wir Ereignisstrukturen zuerst um Dynami-
sche Kausalitdt, um die dynamische Natur von dynamische Koalitionen ab-
zubilden. Dynamische Kausalitéat erlaubt bestimmten Ereignissen die kau-
salen Abhingigkeiten anderer Ereignisse in der selben Struktur zu ver-
dndern. Danach untersuchen wir die Ausdrucksstirke der resultierenden
Ereignisstrukturen und zeigen, dass sie nur eine spezifische Art der Ver-
dnderung abbilden, die sogenannten geplanten Verdnderungen. Als Zwei-
tes prasentieren wir evolutiondre Ereignisstrukturen um ad-hoc- und un-
vorhergesehene Veridnderungen zu unterstiitzen, die zur Modellierung der
Fallstudien benotigt werden. Evolotiondre Ereignisstrukturen verbinden
verschiedene Ereignisstrukturen durch einer Relation, welche eine Verin-
derung einer Ereignisstruktur wiahrend eines Ablaufs erlaubt. Wir ziehen
verschiedene Ansétze der Modellevolution in Betracht und untersuchen ih-
re Aquivalenzen. Des Weiteren zeigen wir, dass in unserer Betrachtung der
Evolution dynamischer Koalitionen die Geschichte eines Workflows erhal-
ten bleiben muss und wir erméglichen das Extrahieren von Verdanderungen
einer Evolution, um Prozesslernen zu unterstiitzen. Drittens: Um die Zie-

vii

le von dynamischen Koalitionen abzubilden, fiigen wir den evolutioniren
Ereignisstrukturen ein Ziel hinzu, représentiert durch eine Menge von er-
reichbaren Ereignissen. Diese Erweiterungen erlauben es, sowohl die An-
derungen und Evolutionen, die von Mitgliedern verursacht werden, als
auch die Beitrage der Mitglieder zur Zielerreichung durch deren Eintritts-
und Austrittsereignisse zu untersuchen. Schlussendlich stellen wir viele
Modellierungseigenschaften der dynamichen Koalitionen dar, welche von
den Fallstudien aus der Medizin benétigt werden und unabhéngig von der
Natur der dynamische Koalitionen sind, wie z.B. Zeitmessung. Wir unter-
suchen die Literatur zu Ereignisstrukturen beziiglich Unterstiutzung fiir
solche Eigenschaften und stellen fest, dass das Konzept Prioritdt in Er-
eignisstrukturen fehlt. Daher fiigen wir Prioritdt zu verschiedenen Ereig-
nisstrukturen aus der Literatur hinzu. Des Weiteren untersuchen wir die
Beziehungen von Prioritit zu konjunktiver Kausalitit, disjunktiver Kau-
salitiat, kausaler Uneindeutigkeit und verschiedenen Formen von Konflik-
ten.

Im Vergleich zu adaptiven Workflows, welche sich mit der Evolution von
Workflows beschéftigen, die als Reaktion auf Verdnderungen entsteht, wie
z.B. Anderungen in der Geschiftsumgebung oder Ausnahmen, zeigt diese
Arbeit, dass Workflows in dynamischen Koalitionen nicht nur adaptiv son-
dern auch zielorientiert sind. Au3erdem fiigt sie einen zusétzlichen Auslo-
ser fiir Evolution in Workflows hinzu, welcher ausschlie8lich dynamischen
Koalitionen zu eigen ist: das Hinzukommen neuer Mitglieder, welche zur
Zielerreichung der dynamischen Koalition beitragen.

Zuletzt tragt diese Arbeit bei, die Liicke in der Modellierung zwischen
Theorie und Doménenexperten zu schlieffen, in dem sie eine Schritt-fiir-
Schritt Modellierung ermdglicht, welche regelmaflig in der Medizin und
anderen Bereichen angewandt wird.

viii

Abstract

Dynamic Coalitions denote a temporary collaboration between different en-
tities to achieve a common goal. A key feature that distinguishes Dynamic
Coalitions from static coalitions is Dynamic Membership, where new mem-
bers can join and others can leave after a coalition is set. This thesis studies
workflows in Dynamic Coalitions, by analyzing their features, highlighting
their unique characteristics and similarities to other workflows, and inves-
tigating their relation with Dynamic Membership. For this purpose, we
use the formal model of Event Structures and extend it to faithfully model
scenarios taken as use cases from healthcare. Event Structures allow for
workflow modeling in general, and for modeling Dynamic Membership in
Dynamic Coalitions as well through capturing the join and leave events of
members.

To this end, we first extend Event Structures with Dynamic Causality
to address the dynamic nature of Dynamic Coalitions. Dynamic Causality
allows some events to change the causal dependencies of other events in
a structure. Then, we study the expressive power of the resulting Event
Structures and show that they contribute only to a specific kind of changes
in workflows, namely the pre-planned changes. Second, we present Evolv-
ing Event Structures in order to support ad-hoc and unforeseen changes in
workflows, as required by the use cases. Evolving Event Structures con-
nect different Event Structures with an evolution relation which allows for
changing an Event Structure during a system run. We consider different
approaches to model evolution and study their relation. Furthermore, we
show that the history of a workflow should be preserved in our case of evo-
lution in Dynamic Coalitions, and we allow for extracting changes from
an evolution to support Process Learning. Third, to capture the goals of
Dynamic Coalitions, we equip Evolving Event Structures with constraints
concerning the reachability of a set of events that represents a goal. The
former extensions allow for examining the changes and evolutions caused
by members, and examining members’ contributions to goal satisfaction,
through their join and leave events. Finally, we highlight many modeling

ix

features posed as requirements by the domain of our Dynamic-Coalition
use cases, namely the healthcare, which are independent from the nature
of Dynamic Coalitions, e.g. timing. We examine the literature of Event
Structures for supporting such features, and we identify that the notion
of Priority is missing in Event Structures. To this end, we add Priority to
various kinds of Event Structures from the literature. Furthermore, we
study the relation between priority on one side, and conjunctive causality,
disjunctive causality, causal ambiguity and various kinds of conflict on the
other side.

Comparing to Adaptive Workflows, which are concerned with evolutions
of workflows that occur as a response to changes, e.g. changes in the busi-
ness environment or exceptions, this thesis shows that Dynamic-Coalition
workflows are not only Adaptive but also Goal-Oriented. Besides, it adds
one extra trigger for evolution in workflows—that is unique to Dynamic
Coalitions—namely the join of new members who contribute to goal satis-
faction in a Dynamic Coalition.

Finally the thesis contributes to bridging the gap in modeling between
theory and domain experts by supporting step-by-step modeling applied
regularly in healthcare and other domains.

Dedication

To my father who worked hard for me to reach the doctoral study... that
was a lifetime.

To mom with all her love, and the great words

To Bouran, who has been more than a sister, and to the days we spent to-
gether

To Ivan my sister, the little angel, with her dreams that kept me alive
To Elias my brother, the little prince, with his nobility

To my wife Hala, the greatest friend, with her patience and support, and
to the little girl we are waiting for... I love you both

To all friends and relatives who have always wished me the best

To Syria, the home of all times, which was going through hard times while
I was proceeding with my doctoral study

X1

Acknowledgements

I would like to express my special appreciation and thanks to my advisor
Prof. Dr. Uwe Nestmann. He has been a tremendous mentor for me. I
would like to thank him for encouraging my research and for allowing me
to grow as a research scientist. He has always been positive. I am proud to
know you Uwe.

I would also like to thank my committee members, Prof. Mathias Weske,
Prof. Thomas Hildebrandt and Prof. Sabine Glesner for serving as my com-
mittee members, and for the brilliant comments and suggestions they gave.
Thanks to you.

A special thank to Prof. Wolfgang Reisig for his advices with all his experi-
ence. A great thank to Dr. Mehmet Govercin for his hospitality and support
in healthcare.

Thanks to all members of the Models and Theory of Distributed Systems,
among of whom I mention Dr. Kirstin Peters and David Karcher, who sup-
ported me intensively in the last years, especially in publications.

I would like to thank the SOAMED Research Training Group for offering
me the chance and support to do this research over three years. SOAMED
gave me the chance to dedicate all my time to research.

At last but not at least, I would like to thank my great friend, Nadim Sar-

rouh, for his support and the nice moments we had together, and to thank
all members of SOAMED for the friendly atmosphere we had.

xiii

Contents

1.

Introduction and Motivation

1.1.

1.2.
1.3.
1.4.
1.5.
1.6.
1.7.

1.8.

Introduction
1.1.1. Case Study: Clinical Dynamic Coalitions
1.1.2. The Adaptive and Goal-Oriented Nature of Dynamic-
Coalition Workflows
1.1.3. The Need for Formal Modeling
Problem Statement
Solution Approach
Contributions
SCOPE . v e e e
Tool Support
Related Work
1.7.1. Related Work in Dynamic Coalitions
1.7.2. Related Work in Evolution and Adaptive Workflows
1.7.3. Related Work in Goal Orientation
Publications

. Technical Preliminaries: Event Structures as a Formalism for

Dynamic-Coalition Workflows

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

Introduction
Prime Event Structures
Stable Event Structures.
Bundle Event Structures
Extended Bundle Event Structure
Dual Event Structure
Event Structures for Resolvable Conflict
Other Kinds of Event Structures
Quantitative and Qualitative Extensions

2.10.Application in Dynamic-Coalition Workflows

2.10.1. Modeling DC Membership
2.10.2. Applying Quantitative and Qualitative Extensions

19
19
21
24
25
28
30
32
35
36
37
38
38

XV

Contents

2.10.3. Modeling Repeated Actions in Event Structures . .
2.10.4. Modeling Business Process Schemas and Instances
2.10.5. Modeling Nested Coalitions with Action Refinement
2.10.6. Limitations and Missing Features

3. Pre-Planned Changes in Workflows: Dynamic Causality in
Event Structures

XVi

3.1.
3.2.
3.3.

3.4.

3.5.

3.6.

Introduction
Prime Event Structures with Causal Cycles.
Shrinking Causality
3.3.1. Shrinking Causality versus Disjunctive Causality .
3.3.2. Expressiveness of Shrinking-Causality Event Struc-
tures L
Growing Causality
3.4.1. Modeling Features of Growing Causality
3.4.2. Expressiveness of Growing-Causality Event Struc-
tures L e
3.4.3. Growing Causality as Conditional Causality
3.4.4. A Special Case of Concurrency
Fully Dynamic Causality
3.5.1. Embedding Growing and Shrinking Causality Event
Structures
3.5.2. Embedding Extended Bundle Structures
3.5.3. Expressiveness of Dynamic-Causality Event Struc-
tures L
Evaluation.

Unforeseen Changes in Workflows: Evolving Event Structures

4.1.
4.2.
4.3.

4.4.
4.5.

4.6.
4.7.

Introduction
Correctness of Evolution w.r.t. the History of a Workflow .
Various Modeling Approaches to Evolution, and their Re-
lation
Inferring Changes from Evolution — Process Learning
Formalizing Series of Evolution Steps
4.5.1. Refinement and Equivalences of Evolution Steps
4.5.2. Special Cases of Evolution
Evolution towards Goal Satisfaction
Evaluation

38
39
39
41

43
43
45
47
49

52
54
56

57
57
58
60

63
65

66
67

71
71
73

76
78
82

87
87
90

Contents

5.

Domain-Oriented Extensions: Priority in Event Structures
5.1. Introduction
5.2. Priority in Prime Event Structures
5.3. Priority in Bundle Event Structures
5.3.1. Priority versus Enabling and Conflict
5.3.2. Priority versus Precedence
5.4. Priority in Extended Bundle Event Structures
5.5. Priority in Dual Event Structures
5.6. Evaluation.

. Summary and Future Work

6.1. Summary and Conclusions

6.2. Contributionsin Detail
6.2.1. The Adaptive and Goal-Oriented Nature of Dynamic-

Coalition Workflows

6.2.2. Dynamic Causality in Event Structures

6.2.3. Evolution in Event Structures

6.2.4. Priority in Event Structures

6.3. Future Work.

List of Abbreviations

List of Figures

Bibliography

A.

Appendix: Proofs

A.1. Proofs of Sections 2.2, 3.2: Prime Event Structures
A.2. Proofs of Section 3.3: Shrinking Causality
A.3. Proofs of Section 3.4: Growing Causality
A.4. Proofs of Section 3.5: Fully Dynamic Causality
A.5. Proofs of Section 4.4: Inferring Changes from Evolution .

. Appendix: Alternative Partial Order Semantics for Dual Event

Structures and Shrinking-Causality Event Structures

. Appendix: Application of Evolving Event Structures in Sche-

ma Evolution and Instance Migration in Business Processes

93
93
95
97
98
100
102
105
106

111
111
113

113
113
114
114
115

119
123
134

135
135
137
143
147
156

163

167

XVvii

1. Introduction and Motivation

1.1. Introduction

Collaboration is a major concept in human life. The advance in technol-
ogy and networking allowed organizations and individuals to build quicker
collaborations to reach certain goals. Additionally, it allowed technical en-
tities e.g. robots and sensors to build collaboration networks and coalitions.
The term Dynamic Coalitions (DCs) denotes a temporary collaboration be-
tween different entities to achieve a common goal [68]. DCs can be seen
in daily life, e.g. in economy between different organizations to penetrate a
new market, in military such as the NATO, in healthcare between multiple
doctors to treat a patient, in catastrophes between different institutes after
an earthquake, etc.

The notion of a DC has evolved over decades, and varied between differ-
ent fields and studies under various names. Cooperative Game Theory, for
instance, searches the possibility of building coalitions among players in
order to strengthen players’ positions in a game [67]. Distributed Problem
Solving [34] focuses on the idea of how multiple problem solvers may work
optimally to solve a problem, which none of them can solve individually.
Virtual Organizations emerged for Grid Computing [26] to build large-scale
resource sharing environment to achieve any given goal. Recently, the term
DC appeared to emphasize on dynamicity.

What gives DCs their dynamic nature is dynamic membership, where
members can join and leave after the coalition is set [46, 21]. This is consid-
ered a key feature of DCs, which distinguishes DCs from static coalitions.
Dynamic membership shows the interaction of a DC with time. Therefore,
it describes how a DC has been formed or created.

Many perspectives and problems can be investigated in DCs, e.g. infor-
mation transformation [53], privacy and access rights [68], time, etc. Ac-
cording to Bryans [16], these different perspectives are called Dimensions
of Dynamic Coalitions.

1. Introduction and Motivation

1.1.1. Case Study: Clinical Dynamic Coalitions

We investigate workflows that are based on human collaboration in the
healthcare sector. Here we consider one example, taken from Deutsches
Herzzentrum Berlin (DHZB). This example will be a use case for the rest of
this thesis.

A cardiac patient had a heart surgery, and was transferred
afterwards to the Cardiac Intensive Care Unit (CICU), uncon-
scious. The goal was to warm her up and then to wake her up be-
fore she is discharged. While waking her up, the ventilation tube
should be disconnected, and severe medication, e.g. circulation
support medication, should be stopped before discharging her.
The wake-up process was not going well due to a heart failure.
As a result, the patient was in need of an external blood pump.
The therapy plan was adapted then such that a small surgery
was needed to implant the pump. Accordingly, the process of
waking up was interrupted, but resumed again. Next morning,
during the doctor’s visit, the doctor discovered that the patient
had a cold-leg problem, which disabled the warm-up process.
The doctor decided to call a specialist, namely a surgeon, and
to invite her to join. They examined together the patient’s situ-
ation, and discussed what to do. They decided finally to make
an angiography. The result of the angiography showed a closed
vessel in the leg, which made them collaborate with a new spe-
cialist. The decision of the negotiation was made to adapt the
therapy such as that a surgery was to be performed in order to
open the closed vessel. Afterwards, the surgery was performed,
the warm-up process was enabled again, and the patient was
successfully discharged.

It can be seen as a DC, that was held between different nurses and doc-
tors in CICU. The coalition was dynamic in the sense that a new member,
e.g. the surgeon, joined the coalition after it was set. The goal of this DC
was to discharge the patient successfully, by proceeding through all the
intermediate steps mentioned above, e.g. warm up. Such a DC was tempo-
rary and ended by satisfying its goal in sending the patient back.

1.1. Introduction

1.1.2. The Adaptive and Goal-Oriented Nature of
Dynamic-Coalition Workflows

The former example can be seen from the perspective of adaptive work-
flows, too. The initial workflow was to warm the patient up, then wake her
up, disconnect the tube and stop severe medication. It changed afterwards
to adapt to the heart-failure by adding an extra surgery to implant a blood
pump, as a predecessor for the wake-up process. Later on, the workflow
changed again to adapt to the cold-leg problem which was an exception for
the doctors in CICU. After adding a new surgery to open the closed vessel,
doctors proceeded to discharge the patient, and the goal was satisfied.

The adaptation of the workflow to include the surgery as a response to
the discovery of the cold-leg was made by the newly joining surgeon. This
is an example of how new members in a DC might contribute to changing
the workflow of the DC, even though it was caused by another event, that
is unforeseen, namely the discovery of the cold leg. Other examples of DCs,
like ad-hoc DCs that are formed as a response to an acute need [68], start
with initial workflows that would never satisfy their goals, where other
members are waited and invited to join and contribute to the work, until
the goal is satisfied.

Additionally, DCs are goal-driven [59]. The goal in our use case was to
successfully discharge the patient through all the intermediate steps, e.g.
warming up, waking up, ...etc. The initial workflow was designed such
that the goal is to be reached at the end. Besides, when the workflow
evolved due to exceptions which made the goal unreachable, the evolution
itself was made such that the goal became reachable again.

The two features of adaptivity and goal orientation form the main per-
spectives through which we address and formalize DC workflows.

1.1.3. The Need for Formal Modeling

Doctors in the healthcare sector emphasize the point that perfect plans,
which stay unchanged during the treatment of a patient, do not exist.
Rather, hospital processes evolve depending on each case. Besides, the join
of new doctors might lift a running process from one scheme to another.
The sector would like to organize such workflows so that no undesired sce-
narios can take place.

Formal methods help avoiding ambiguity, and provide a very precise

1. Introduction and Motivation

means of communication between modelers and designers, that does not
allow for different interpretations. Besides, one basic advantage of formal
modeling is verification which checks whether the modeled workflow might
have any undesired path during runtime. Based on Event Structures that
we apply here to formalize workflows of DCs, this can be done by checking
whether a given sequence or set of events represents a valid system run of
the given workflow. A system run must obey the defined causality or flow,
as well as conflict-freeness and other constraints. Verification mechanisms,
e.g. Model Checking [33], can be applied to check whether a given property
is maintained by all possible runs of a system.

Avoiding undesired system runs becomes even more complex when the
workflow itself changes, or evolves, while it is running. In other words, it
might be more complex when the rules used to judge system runs do change
themselves. Evolution of workflow might lead to a conflict between the
history that precedes the evolution, and the regulations embedded in the
new workflow, for example. Furthermore, when considering goals, system
runs need to proceed in a way they satisfy their desired goals at the end.

Next to basic verification mechanism, other studies could be applied
when using qualitative and quantitative extensions of workflow models.
Examples of such extensions are timed [43] and stochastic Event Struc-
tures [79]. Predictions could be made through means of a probabilistic
workflow model [43]. A sequence of events in a timed ES could be checked
to respect the timeouts given for events, or the real-time criteria of the
system.

1.2. Problem Statement

A workflow of a DC holds and reflects all its unique points and features,
such as dynamicity, evolution and goal orientation. Studies on DCs in gen-
eral address the problem of how members of coalitions are selected, based
on resources they offer to the coalition [57, 87, 59], as well as the problem
of building structures for coalitions based on the value each agent provides
[59, 52]. None of the studies so far addresses DCs from a process perspec-
tive, nor shows what the unique features of DC workflows are, nor how they
are affected by the membership. This point has been an open question in
the literature of DCs [16, 20, 68, 45].

On the other hand, changes in adaptive workflows are usually triggered

1.2. Problem Statement

by changes in the business environment, such as management decisions,
or by exceptions that are case-specific [80, 35, 61]. We claim that in case of
DC workflows—as our various examples of DCs show—changes can be ad-
ditionally triggered by membership, through the join and leave of new and
old members respectively. This is due to the Distributed-Problem-Solving
nature of DCs, where members or agents, do contribute to solve the prob-
lem or reach the goal [34]. This might yield in changes of a running process
once new members join the coalition. Such an effect of membership on the
dynamicity of DC Workflows was not addressed formally before. Here in
this work we show it by capturing the changes events lead to in the work-
flow, and by modeling membership through events of members’ join and
leave.

The claim that members or agents of coalitions affect their workflow has
already been supported by Buhler et al. in [20] who emphasize that agents
in collaborations play a role in the adaptive nature of the collaboration
process. Another reason for changes in the process of a DC is adaptation
while progressing towards the goal, as shown in the use case. This is due
to the fact that some DCs are created on-the-fly [46] and never start with
a perfect plan, such as those DCs formed as a response to disasters [68].

All the formalisms used to model DCs up to now, e.g. VDM [16] and
RAISE [57], were designed originally for classical processes that are al-
ready statically defined and allow for no changes during the runtime. A
workflow of a DC should be able to change and adapt to changes while
it is running until it reaches the desired goal of the DC. On the other
hand, the workflow model of a DC should be able to show clearly the ef-
fect of members on the dynamicity of a DC and how they contribute to it
[16]. To that end, we choose one formalism as an example of such mod-
els, namely Event Structures [81], where rules of workflows are statically
defined. Then we show what that formalism lacks to faithfully model DC
workflows and cover the missing points. This is done by means of providing
extensions, which are meant to be generic and applicable to many similar
formalisms, e.g. Petri Nets [77].

Finally, DCs are goal-driven [59]. Accordingly, when their workflows
evolve, the evolution itself should be guided by the reachability of their
goals. Much work has been done on evolution in processes [60, 61, 80], yet
adaptive workflows never address goal-orientation, which has been sepa-
rately addressed in Goal-Oriented Requirements Engineering [29, 78]. No
work has been done on combining both concepts formally and clearly such

1. Introduction and Motivation

Dynamic
Coalitions

Adaptive
Workflows

|[Examples of Clinical Collaboration Workflows|

Figure 1.1.: The three perspectives through which the examples taken from health-
care are studied in this thesis.

that not only the process of software development is guided by goals, but
also the course of evolution is goal-oriented, as we are going to see in our
case of DCs.

1.3. Solution Approach

We consider the workflow of a Dynamic Coalition, we give a formal model
of it, and highlight its uniqueness. To achieve that:

1) We choose a formalism from the literature, namely Event Structures
(ESs), to model workflows in general, and show what it is still missing such
that it can be applied in our case to model the evolution or other features
of a DC workflow. This will be covered in Chapter 2, which will provide
preliminaries, and the reasons behind choosing this formalism, as well as
the various kinds of ESs in the literature and their modeling capabilities.

2) Next, we make a study to understand the nature of changes in work-
flows during their runtime. For that, we choose one ingredient of the
formalism we have, namely the causality or flow, and see how it can be
adapted by the occurrence of certain events. The result will be a model

1.3. Solution Approach

where changes that might occur are foreseen, and triggered by internal
events. So it contributes to only a sub-set of changes that a workflow
might face, namely preplanned changes of workflows [80], where some
other changes in reality as in our use case might be unplanned, i.e. ad-
hoc, and unforeseen at design time [61]. Furthermore, this study is not
covering goal-orientation. All such limitations emphasize the need for the
next contribution. This study is completely included in Chapter 3.5 along
with examples, detailed related work, and an evaluation section with ap-
plication to the use case.

3) Then, we study the idea of evolution of workflows, which allows for
adding new events, dropping old ones as well as changing their flow, in an
unplanned way, as a generalization of the last study, that overcomes its
limitations. We exhibit the criteria that should be fulfilled through evolu-
tion. Furthermore we discuss the idea of goal-orientation, and the various
kinds of goals and how they are refined. To the end, we bind evolution
with goal-orientation, by showing how evolution should be guided to sat-
isfy the goals set at the beginning, in a way that fits our case of DCs. We
use the outcome of the last study of pre-planned changes to infer changes
and allow for process learning [66]. By that we provide a holistic approach
for modeling dynamicity and changes in processes, with all their different
variations. This study is included in Chapter 4 together with a detailed
related-work section, and an evaluation section with a full modeling of the
cardiac use case.

4) For the sake of completeness, the domain we are considering, namely
the clinical domain, emphasizes the need for quantitative and qualitative
features in the underlying formalism used to model medical and clinical
processes in general. Such features are independent from the concepts
of DCs, evolution or goal-orientation. As an example, we mention tim-
ing that is needed to model the case that a surgery should be held in two
hours maximally. So we add another perspective to our study, namely
the domain-specific one, next to the two perspectives of DCs and Adaptive
Workflows we have. We examine the major quantitative and qualitative
features needed in the healthcare sector, investigate which of them are al-
ready covered in the literature regarding ESs, and cover the missing one,
namely priority, by adding it to different kinds of ESs. This is done in

1. Introduction and Motivation

Chapter 5 along with examples for different qualitative and quantitative
extensions, taken from the healthcare sector.

By that, we provide three extensions for Event Structures: Dynamic
Causality, Evolutionary Sequences, and Priority respectively. The exten-
sions and the contributions are generic in the sense that they can be ap-
plied to other formalisms, e.g. Petri Nets [77].

5) Finally, DCs can be nested. For instance, assuming that a stroke unit
gets involved into the last example, a closer look at its involvement shows
another sub-coalition taking place there, e.g. nurses, doctors, therapists,
etc. Some of these members join based on an invitation by the doctor, while
others leave until the patient is stabilized and then discharged. The same
applies for the involvement of the emergency room in the big picture of the
stroke example, where other doctors and personnel involve in their turn.
The problem of nested DCs is essential when considering and designing
the flow of DCs. For instance, the role of a stroke unit might in a DC
set to rescue a patient, might be a DC itself run by a set of nurses and
doctors. To address this problem, we refer in Chapter 2 to the concept of
Action Refinement [63], and show how it can be applied to model nesting
in coalitions.

1.4. Contributions

The main contributions of the thesis can be summarized as follows. De-
tailed contributions are discussed in the evaluation section of each chapter
w.r.t. the chapter’s topic, and summarized in Chapter 6.

1) We prove that workflows of Dynamic Coalitions are both evolution-
ary and goal-oriented. We show that the join of a new member in a DC
is a possible trigger for the evolution of the DC workflow.

2) We add Dynamic Causality to Event Structures. We study expres-
siveness of the new causality and show how Dynamic Causality can model
other relations e.g. conflict and disabling.

1.5. Scope

3) We add the notion of Evolving to Event Structures. We combine
the dynamics of a system, represented by its system runs, with the dynam-
ics of the system model, represented by its evolution transitions, in one
model. Additionally we introduce different approaches to model evolution,
and study their equivalence.

4) We add priority to various kinds of Event Structures. We study
the relation between priority and other event relations e.g. causality and
conflict.

In addition, we develop a tool for Event Structures. The tool can be used to
check correctness in evolution, and verify system runs in other ESs defined
in this thesis.

1.5. Scope

DC Membership: This work does not contribute to membership of a Dy-
namic Coalition, since the latter is concerned with selecting members based
on what they share, and has been covered in previous works [16, 57]. Be-
sides, the selection process itself does not contribute to the essence of work-
flow evolution in Dynamic Coalitions. Rather, we abstract membership by
capturing events of join and leave, and show how these events might con-
tribute to evolution.

Evolution Guidance: Out of its scope, this work does not contribute to
the way of how to change a running workflow such that a goal is satisfied.
Instead, it addresses goal satisfaction in a declarative way based on con-
straints. Suggesting changes and adaptations is left up to the personnel in
the medical domain who have the know-how based on experience. Besides,
evolution guidance was not emphasized by the doctors we met through the
course of this thesis in the Charité Hospital in Berlin neither by the doctros
in Deutsches Herzzentrum Berlin (DHZB). Rather, the need for checking
the consistency between a new change on one hand and the history and
goal of a workflow on the other hand was emphasized.

1. Introduction and Motivation

1.6. Tool Support

In the group MTV at TU Berlin we have developed a tool that supports
Event Structures. The tool helps to define structures of various kinds and
derive system runs. It supports all kinds of ESs mentioned in this thesis,
namely ESs of Chapter 2 (except for Sections 2.8 and 2.9), in addition to all
variants of dynamic causality ESs defined in Chapter 3 and prioritized ESs
of Chapter 5. The tool has been developed in Scala using Object-Oriented
and Functional Programming.

Many notions of system runs have been implemented including traces,
configurations, posets, and families of both configurations and posets (cf.
Chapter 2 for definitions). The tool provides the ability to check whether
any set (or sequence or poset) of events represents a system run in a given
ES. Besides it provides the ability to linearize configuartions and posets to
obtain traces. To this end, and since disabled events do not belong to any
(reachable) system run, the algorithm of deriving and linearizing system
runs follows the causality relation of a given ES to avoid disabled events.
This enhances performance and avoids state explosion.

Furthermore, the tool provides visualization capabilities for all kinds of
ESs supported except for Event Structures for Resalvable Conflict which
have no graphical notation [77]. In addition, the tool provides visualiza-
tion for system runs of all notions and their families. Besides, the tool also
provides a console interface. The interface gives the user the ability to de-
fine ESs not only through code, but also in runtime i.e. without the need to
recompile the code each time a new ES is defined. Therefore, a minimal set
of commands have been defined to construct ESs, draw them, and generate
their system runs.

Usability in the thesis: The tool can be used to support all concepts and
contributions of this thesis. First, regarding dynamic causality of Chap-
ter 3, the tool supports the ability to verify system runs of Growing, Shrink-
ing and Dynamic Causality ESs. This includes traces, configurations and
transitions. Second, regarding Priority of Chapter 5, the tool supports the
ability to define prioritized ESs of different kinds, e.g. Prime, Bundle, etc.
Finally, regarding Evolution of Chapter 4, the tool supports the ability to
verify whether a given ES is considered an evolution of another. This in-
cludes checking correctness against the history that precedes the evolution
(i.e. history preservation) and the satisfaction of goals.

10

1.7. Related Work

1.7. Related Work

Many studies have been carried out on the topic of Dynamic Coalitions and
all its forms such as Virtual Organizations, Distributed Problem Solving.
On the other hand, the topic of workflow evolution has been investigated
in Business Process field. Furthermore, goal orientation has been covered
in Requirements Engineering. Here we examine the overlap between these
studies and our work, by illustrating what each of them covers and high-
lighting the unique points of our work. Furthermore, each chapter in this
thesis includes detailed related work w.r.t. its idea and contribution.

1.7.1. Related Work in Dynamic Coalitions

The following studies have been carried out on different dimensions of DCs;
none of them covers workflows of DCs, addresses them, or shows their
unique characteristics!.

Formation and Membership: Zuzek et al. in [87] worked on the forma-
tion of virtual organizations through contract negotiation, where state-
ments about resources along with the owning agent, and the actions per-
formed against them were negotiated. A negotiation table with pairs of
statements existed, and messages were sent to update the table. In this
way the authors showed how virtual organizations can evolve by negotiat-
ing what each member would share and which actions to be performed on
resources shared by others.

Nami et al. in [57] also described how members are selected in the best
way to make up a virtual organization. Others, like Rahwan et al. in [59],
worked on finding algorithms for generating structures for coalitions, out
of a set of agents, such that certain criteria, like Worst Case Guarantees,
are maintained. Michalak et al. [52] did the same, but with a distributed
algorithm to avoid bottlenecks.

Information Flow and Privacy: Mozolevsky and Fitzgerald [53] worked
on the dimension of “Information Transformation” and used digraphs to
build a model for the flow of information within a coalition. They defined

1Some of the related works in Dynamic Coalitions are discussed in Section 1.7.2 since they
contribute to evolution.

11

1. Introduction and Motivation

the concept of interface, which is a combination of an agent’s resource and
an access privilege, as a vertex in the digraph. Edges in the digraph were
tuples between interfaces, connecting two interfaces with different access
rights. They used access rights to capture the information flow, but they
did not cover the membership dimension or the phenomenon of coalition
formation. The authors provided a graphical modeling of coalition struc-
tures depending on digraphs. However, it was very specific to the issue of
information flow.

Sarrouh in his thesis [68], as well with Bab in [4], worked on building a
modeling framework for privacy-aware DCs, that contains various access
control mechanisms. He used Abstract State Machines (ASM) [37] to for-
malize coalitions with concurrency, and applied four access control mecha-
nisms: IBAC, RBAC, ABAC and TBAC based on the membership dynamic-
ity level. Although his work models the concurrent process of certain DCs,
it does not show how workflows of DCs might evolve or be affected by mem-
bership dynamicity. Rather it uses a formalism, namely ASM, where rules
are defined in a static manner.

User Tools: Bobba et al. in [12] worked on building a tool for Admin-
istrating Access Control in DCs. They tried to get closer to the user or
designer of coalitions, by allowing access negotiation, review, specification
and many other access-control operations.

1.7.2. Related Work in Evolution and Adaptive
Workflows

Workflow Management Systems were criticized to lack the flexibility to
deal with changes and cope to evolving business environments, as changes
are a daily routine which big organizations need to consider as a key for
success. Thus evolution was studied in Workflow Systems [65] as a mech-
anism to enable flexibility and respond to changes in the environment.
Many studies have been carried out [80, 61, 65, 71, 60, 35] on changes at
the process-type level, as well as the instance level w.r.t. dynamic changes
which take place while an instance or a workflow is running.

Correctness criteria [65] where established to ensure that a change leads
to no undesired scenarios. Some of the criteria were graph-based [71], such
that they ensure some inheritance relation between the original and the

12

1.7. Related Work

new workflow process. Other criteria were trace-based where certain sys-
tem runs of the old process should be preserved by the new one [80]. Such
criteria work on a pair basis, i.e. it is a relation defined between the old
and the new process. We argue that the previous works lack the notion of
a goal, which a DC is based on.

In our work we use the notion of goal satisfaction as our main correctness
criterion for evolution of DC workflows, which can be combined together
with the other criteria of the literature [65]. We achieve that through defin-
ing sequences of evolutionary steps, that must lead to goal satisfaction. In
that sense we also deviate from the previous works in the way that they
force their correctness criteria over each step of evolution, while we apply
our criteria over sequences of steps such that the criteria must hold for one
step in the sequence. This provides more flexibility and is more suitable
for our case. In this aspect, we also differ from the literature by combining
goal orientation with evolution within one model.

One final contribution to the literature of Adaptive Workflows is that
we show how the membership dimension of DCs, represented by multiple
members’ join and leave, could be a trigger for evolution or change in a
running workflow, since each member (agent in this context) might bring
its own contribution to the workflow, to solve the problem of or satisfy the
goal of the DC.

Replanning in Service-Based Business Processes: Service-Based Busi-
ness Processes are realized through different services that are provided by
different members [69]. As modern business processes work in dynamic
and changing environements, web services are assumed to provide the dy-
namicity and flexibility needed for adaptation by such processes [19, 17].
Adaptivity is then in the form of recomposing existing services and con-
suming new services [23]. Similar to our case of DCs, studies in that field
consider processes achieved by multiple members based on collaboration.
Besides, they focus on processes with goals such that an adaptation must
contribute to goal satisfaction [69]. On the other hand, our work focuses
on the influence of dynamic membership on the overall workflow. Besides,
studies in Service-Based Business Processes focus on the unforeseen part of
changes as Chapter 4 of our work, while we cover both kinds of changes,
i.e. the foreseen and unforeseen. Furthermore, we investigate the relation
between the two kinds of changes by the internalization operation defined

13

1. Introduction and Motivation

in Section 4.4, and allow to move from one to the other. Finally, as they are
closer to business domain modeling, other studies in that field, e.g. [23, 9]
focus on Quality of Service (Qus) as a criterin for adaptation, such that the
adaptation avoids deviating from expected QoS values. On the contrary we
consider the topic of DC workflows from a concurrent-system perspective in
an abstract way such that we consider processes made of actions, namely
events, and their relations, even w.r.t. goal modeling (cf. Section 4.6), and
we take into consideration equivalences between modeling approaches as
in Section 4.3

Evolution in DCs: Khan et al. addressed evolution in DCs [45], by mod-
eling the dynamics of coalition formation in a spectrum-sharing environ-
ment, where transmitter-receiver pairs reach stable coalition structures
through a time-evolving sequence of steps. They used Markov Chains as a
formalism. Although they used evolution as a mechanism to stabilize the
coalition, their model was specific for communication, and depending on
the environment of the DCs they studied. Similar work has been done by
Ye et al. in [86] to provide a formation mechanism for self-adapted dynamic
coalitions of sensors. The mechanism enables agents to adjust their degree
of involvement in different DCs. Contrary to their approach, we investi-
gate evolution w.r.t. the workflow of the DC, which we study as a special
case of concurrent systems.

Dynamic Condition Response Graphs (DCR Graphs): Mukkamala in
[564] introduced DCR Graphs as a constraint-based modeling language for
workflows. Similar to ESs, DCR Graphs are concerned with defining re-
lations between events. But unlike ESs, DCR Graphs provide the ability
to repeat events. Besides, next to causality—which is already available
in ESs—DCR Graphs offer other relations, e.g. the exclude relation which
means skipping a certain event or activity. Furthermore DCR Graphs pro-
vide the notion of restless events which denote events that must be exe-
cuted once they are enabled. Compared to ESs, such relations offer a means
for modeling that is more suitable for workflows. On the other hand, ESs
provide more basic relations which allow for studying dynamicity on a fine
level as shown in Section 3 and implementing the relations of DCR Graphs
as discussed later. However, the work of Mukkamala and the extension
made later to DCR Graphs [55] in order to support ad-hoc changes, make

14

1.7. Related Work

it similar to our work in the sense of modeling Adaptive Workflows and
covering both pre-planned as well as ad-hoc changes.

The overlap in covering pre-planned changes is represented by the fact
that many concepts and relations of DCR Graphs can be implemented
through the concept of Dynamic Causality we present (cf. Chapter 3), where
Dynamic Causality can be seen as more fundamental and works on a finer
semantical level. For instance, the exclude relation means skipping an ac-
tivity or event, and can be implemented by Dynamic Causality through
disabling that event and dropping it as a causal predecessor from its suc-
cessors, as illustrated in Section 3.6. The include relation of DCR Graphs
can be mapped directly to the notion of Growing Causality in our approach.
The concept of restless events is covered in ESs through the notion of ur-
gent events [44] as illustrated in Sections 2.10 and 5.1. The repetition of
events can be implemented through unfolding and event duplication, as
illustrated in Section 2.10.3. The only concept, from Dynamic Causality,
that is missing in DCR Graphs is Shrinking Causality which provides the
ability to drop causality pairs between events without the obligation to skip
any of them as in the exclude relation.

Regarding ad-hoc changes and adaptation, DCR Graphs were applied
in [55] by Mukkamala et al. as a formal modeling language for Adaptive
Case Management, where new Adaptation Operations were defined in or-
der to allow for ad-hoc changes in a workflow definition. Again the overlap
between our evolution concept and this related work is big in the sense
that both support ad-hoc changes that need not to be foreseen. One major
difference is that, similar to [80], [55] addresses adaptivity from the per-
spective of small changes that lead to workflow evolution, e.g. add /remove
an event, add /remove a constraint between two events, etc. In our work,
we address adaptivity from an evolution perspective by capturing transi-
tions between different ESs or workflow definitions, where such a transi-
tion might hold complex changes. Accordingly, our approach highlights the
need for a mechanism to extract changes, as provided in Section 4.4. Veri-
fication in [55] is done on the new graph after adaptation, by transforming
it to Biichi Automata and performing model checking for certain proper-
ties, e.g. dead-lock freeness and live-lock freeness. For our case, we provide
correctness criteria for evolution based on the history of a workflow and its
acceptance as a system run in the new workflow definition as illustrated
in Section 4.2, in addition to criteria on goal reachability. One common
aspect between the two verification approaches is that maintaining cor-

15

1. Introduction and Motivation

rectness criteria in both approaches can be tolerated in some intermediate
evolutions. This provides flexibility in modeling and reflects reality in the
healthcare domain that inspires both works.

1.7.3. Related Work in Goal Orientation

Goals capture the objectives a system should satisfy, and form the founda-
tions to detect conflicts in requirements; yet they are absent from many for-
mal models [30]. Goal-Oriented Requirements Engineering and Elabora-
tion [78] are concerned with defining goals, and their use in structuring and
modifying requirements. This includes refining goals into sub-goals, defin-
ing their relations to each other and the way to satisfy them. Goals have
been divided into types and categories, e.g. functional and non-functional
[78]. Functional goals were defined to be concerned with services the sys-
tem is expected to deliver, while non-functional? are concerned with how
the system delivers services. Others classified goals as soft and hard goals
[28], such that satisfaction of soft goals cannot be established in a clear-cut
way [78], while satisfaction of hard goals can be established in a clear-cut
sense and proved by verification techniques [29].

As in the research field of Artificial Intelligence, relations between sub-
goals were defined (e.g. AND, OR links) [28]. Criteria for measuring the
achievement of sub-goals—of soft goals—were defined depending on how
much they contribute to the main goal [78]. Furthermore, Darimont and
van Lamsweerde worked on formally refining goals as in [30] according to
patterns. The KAOS methodology [28] was developed by van Lamsweerde
for goal modeling in requirements engineering, and defining relations be-
tween different goals, agents, objects and actions. Goals are expressed
there in terms of formulas to be asserted, using Linear Temporal Logic
(LTL), and a real-time variant of it.

We do not contribute in this work to goal-orientation concepts. Rather,
we show how to apply goal-orientation in our case of collaboration-based
workflows that are goal-driven, i.e. Dynamic Coalitions, and w.r.t. Event
Structures. Since we use an event-based model, namely ESs, we model
goals through events and show how to satisfy a given goal over the course of
evolution of a workflow. We contribute to the literature of goal-orientation

2No common definition of non-functional requirements exists. Glinz [38] addresses this prob-
lem by showing the different definitions available and the problems accompanied with
each, and then contributes concepts for solving these problems.

16

1.8. Publications

such that we show how to use goals to guide the evolution of a given work-
flow, in a way that combines both: Adaptive Workflows and goal orienta-
tion. One final note is that refinement of goals is provided to us, in the
many examples we use, by the medical doctors themselves, based on their
medical knowledge.

1.8. Publications

Dynamic Causality in Event Structures: Except for Sections 3.4.3 and
3.4.4 and the notion of remainder, Chapter 3 was submitted (and accepted)
in [2] by the author of this thesis as a first author, together with D. Karcher,
K. Peters and U. Nestmann respectively. The general idea of dynamic
causality, the idea of separating Growing from Shrinking causality, and
the interpretation of each (growing causality corresponds to conditional
causality, and shrinking to disjunctive causality), then merging them to
study each separately, were the first author’s ideas. This included defining
the new structures in addition to their traces, configurations and transi-
tions regarding each kind of causality, and suggesting the best notion for
the semantics.

D. Karcher and K. Peters helped in comparing the resulting new kinds
of ESs with other kinds of ESs from the literature. This implied form-
ing the lemmas and the proofs. K. Peter was responsible mainly for the
comparison between Shrinking Causality in Section 3.3 and Dual ESs, in-
cluding the various kinds of posets in App. B, as well for finding counterex-
amples for the comparison with other ESs. D. Karcher was responsible
for Section 3.4 of Growing Causality including the comparison with ESs
for Resolvable Conflict [76], and contributed to the complex definition of
DCES’s transition relation in Section 3.5. On the contrary, the comparison
and embedding of Extended Bundle ESs [47] into DCESs were again the
first author’s responsibility, including the definitions needed, lemmas and
proofs.

U. Nestmann was responsible for motivating the work in the introduction
part, as well as for the section of contributions. Based on his experience, he
played a role in deciding how broad the comparison should be with other
ESs, and in placing the work among the related works. Finally, all authors
contributed to reviewing other authors’ work, including definitions, texts,
and specially proofs, to avoid mistakes.

17

1. Introduction and Motivation

The sections of Conditional Causality, Concurrency between Target and
Modifier in Growing Causality of this thesis were not part of the paper;
they were developed mainly by the first author, with the help of D. Karcher.
The notion of remainder was later defined for all kinds of dynamic causality
ESs by the first author. Motivating the idea of dynamic causality by Dy-
namic Coalitions and the relation to pre-planned deviations in Workflows
[80] were also done by the first author, together with adapting the paper
into the whole thesis which included applying it to the use cases, and the
connection to the evolution chapter.

Priority in Event Structures: Except for its application in DC workflows,
Chapter 5 was completely published in [3] by the author of this thesis as
a first author, together with K. Peters and U. Nestmann. The whole idea
of prioritized ESs was the first author’s idea, including defining the new
structures, studying priority redundancy and investigating the relation be-
tween priority from one side, and causality and conflict from the other side.

In general, the other authors helped in producing a paper out of those
ideas, since it was the first-author’s first paper to be published. K. Peters
helped in forming lemmas and proofs which were limited in this paper. The
idea of splitting Prioritized Extended Bundle ESs to Prioritized Bundle ESs
and Prioritized Extended Bundle ESs was Peters’ idea as well, in order to
isolate causality from disabling, and their relation with priority separately.
U. Nestmann helped in the orientation part, by writing the introduction,
the conclusion, as well as the related work and motivating the whole work
in general. The first author was later responsible for adapting the paper
into the thesis and applying the work on special use cases obtained from
healthcare.

18

2. Technical Preliminaries:
Event Structures as a
Formalism for
Dynamic-Coalition
Workflows

2.1. Introduction

Event Structures (ESs) usually address statically defined relationships,
typically represented as causality (for precedence) and conflict (for choice).
These relationships constrain the possible occurrences of events. An event
is a single occurrence of an action; it cannot be repeated. ESs were first
used to give semantics to Petri nets [81], then to process calculi [15, 47],
and recently to model quantum strategies and games [85]. The semantics
of an ES itself is usually provided either by the sets of traces compatible
with the constraints, or by means of configuration-based sets of events,
possibly in their partially-ordered variant (posets).

In interleaving models, only one event can take place at any given in-
stant of time. There, “concurrency” arises in terms of free choice or non-
determinism, i.e. concurrent events may appear in either order. In con-
trast, the model underlying ESs is non-interleaving. Here, concurrency is
expressed more explicitly via the dependency between events: events are
concurrent if they are neither in conflict nor causally related. This intuition
also manifests in system runs, represented by so-called configurations, or
in terms of partial orders where concurrent events are simply unordered.

All kinds of ESs defined up to now comprise a set of events, and a cau-
sality or enabling relation, which is a basic principle, between events, like
in [81, 83, 43]. Only when an event is enabled, it may happen, i.e. it can-

19

2. Technical Preliminaries: Event Structures

not happen without its causal predecessors. Additionally, ESs might be
equipped with a labelling function, associating each event with the action
it represents. But for simplicity we omit the labelling here since our results
are not dependent on it.

In philosophy, causes can be sufficient or necessary [36]. If x is a neces-
sary cause of y, then y cannot happen without x, but if x happens that does
not mean y will happen. This optionality is what is modelled by ESs, and
thus it is called "enabling" in some structures. While sufficient cause is de-
fined as: if x happens then this implies that y will happen. This might be
mapped to urgent events in [44]. Besides, the presence of y does not imply
the presence of x as y might be caused alternatively by z, and that can be
seen in some structures, as we will see, like disjunctive-causality ESs.

On the other hand, ESs define a conflict relation between events rep-
resenting choice. It is usually symmetric as in Prime ES [83], or can be
asymmetric like in Asymmetric ES [8]. In fact causality and conflict are
two sides of the same coin. Causality represents a positive dependency: for
event e to happen, it needs event e’ to have happened. On the other hand
conflict can be seen as a negative dependency: for e to happen, e’ should
not happen. Accordingly, events not under causality or conflict relation are
considered independent events, and hence they can occur concurrently.

In addition, all event structures define the concept of configurations rep-
resenting system runs. A configuration is a set of events which happened
or might happen. Since basic information units in temporal systems are
events [84] and more events that happened denote more information, a
configuration denotes the state of a system. Configurations could be or-
dered according to the causality relation—and possibly to other relations
(like asymmetric conflict [47])—in the structure to give information not
only about which events occur, but also in which order. The order could be
partial, such that incomparable events are independent and free to occur in
any order. A system run could also be shown as a sequence of events, i.e. a
total order, which is considered a special case of posets. Additionally, many
event structures [47] define the concept of the remainder. The remainder
of an ES represents what is left from the process to execute after a specific
system run, or a configuration, has taken place.

Semantics of ESs can be defined in terms of families of configurations as
in [83], or configuration structures as in [75] holding a labelling function
additionally. Alternatively, it can be defined in terms of families of posets
like in [47] which are more expressive than families of configurations.

20

2.2. Prime Event Structures

Event Structures have a graphical representation, which helps while
designing systems. Events are represented as dots. Causality is repre-
sented as directed arrows from causes to enabled events. Undirected lines
or dashed lines are used to represent conflict, or dashed arrows could be
used in case of asymmetric conflict.

2.2. Prime Event Structures

Prime Event Structures (PESs), invented by Winskel [81], are the simplest
and first version of ESs. Causality is expressed in terms of an enabling
relation, as a partial order between events. For an event to become en-
abled in PESs, all of its predecessors with respect to the enabling relation
must take place. There is also a conflict relation between events to provide
choices, given as a binary symmetric relation. Many versions of Prime ESs
appear in the literature [83, 81, 82, 58]; here we rely on the one from [83].

Definition 2.2.1. A Prime Event Structure (PES) is a triple n = (E,#,<
where:

* E, a set of events

e # CE xE, an irreflexive symmetric relation (the conflict relation)

e <c E xE, a partial order (the enabling relation)
that additionally satisfies the conflict heredity and finite causes constraints,
respectively as follows:

1. Ve,e,e" €E.e#te' Ne' <€ = e#e”
2. VeeE.{e'cE|e <e}isfinite

Figure 2.1 shows an example of a PES, where the transitive and reflexive
closure of the enabling relation are not shown for simplicity, a dashed line
means conflict, and an arrow means causality directed towards the caused
event.

In Prime ESs, a configuration is a conflict-free set of events C < E that is
left-closed under the enabling relation, i.e. no two events of C are in conflict
and for all predecessors e with respect to < of an event ¢’ € C it holds e € C.
Thus, given a Prime ES 7 = (E,#, <), a configuration C represents a system
run of n (or the state of m after this run), where events not related by <
occur concurrently. We denote the set of configurations of a PES 7 as C(x).

A trace is a sequential version of a system run. It can be defined as
a sequence of events that is conflict-free and all the predecessors of an

21

2. Technical Preliminaries: Event Structures

Figure 2.1: An example of a Prime ’,
Event Structure showing
conflict heredity. d

event in the trace, w.r.t. <, precede that event in the trace. As for the
formal definition, we choose a different yet equivalent definition of a trace,
adapted from [43], on which we will rely when defining priority later on.
Let o be a sequence of events ey,...,e, such that {ey,...,e,} S E in a PES
7 =(E,#,<). Werefer to {e1,...,e,} by &, and we call en, (o) the set of events
that are enabled by o, where:

eng(0) := {e€(E\G)|(Pe' €G.ette’) A
(Ve'EE.e’Se/\e’;ée = e'e&)} (2.1)

We use 0; to denote the prefix eq,...,e;, for some i < n. Then, the sequence
og=ei,...,ey is called a trace of m iff:

Vi<n.e;eeny(o;-1) (2.2)

Accordingly, a trace is a linearization of a configuration respecting <.
Usually multiple traces can be derived from one configuration. The differ-
ences between such traces of the same configuration result from concurrent
events that are independent, i.e. are related neither by enabling nor con-
flict. For example, in Figure 2.1, the events ¢ and a are independent and
thus concurrent in a configuration like {e,a, c}. From {e,a,c} the traces eac,
eca, and cea can be derived for the structure in Figure 2.1.

Expressiveness of some kinds of event structures,e.g. PESs, as well as
semantics can be shown in terms of families of configurations [62].

Definition 2.2.2. A family of configurations is a set C of configurations
satisfying:

e peC

* VF,GLHEC.FUG<SH = FuGeC

e VFeC.Va,beF.a#Zb = 3GeC.G<SFA(aeG < b¢ Q)

22

2.2. Prime Event Structures

The order relation in families of configurations is the subset contain-
ment relation < itself. The figure below shows the largest family of con-
figurations of Figure 2.1, where reflexive and transitive arrows are not
shown for simplicity. Families of configurations form themselves a model
for concurrency which show how the state of a system—represented by
configurations—can evolve.

{b}"{b; e}H{bye> a}*){b’ e,a, d}
¢4){e}4){e7 a}*){e7 a, C}

{c}—c,e}

As mentioned before, the notion of a remainder of an ES de-
notes the future of a system after a given system run, calleda ¢
history H € C(r). Events of H are dropped from the remainder.
As well, events that conflict with any event of H cannot occur
anymore, and thus are dropped from the remainder. Causal d
predecessors of an event will not be predecessors of that event
in the remainder in case they took place in H. Consequently,
events whose all predecessors took place in H will be initially enabled in
the remainder. For instance, the structure aside is the remainder of the
PES in Figure 2.1 after H = {e, b}.

Definition 2.2.3. Let n = (E,#,<) be a PES, and let H € C(rr) be a configu-
ration of n. The remainder of n after H is n[H]= (E',#,<'), where:

* E'=E\(HuUfe|3e' € H.ete'})

o #=#nE"

o <'=<nE”?

Since # is irreflexive and symmetric, its projection on E'2, i.e. #, is ir-
reflexive and symmetric too. Analogously, it can be seen that <’ is a partial
order, too. The properties of conflict heredity and finite causes hold also on
the subsets E' and <’. Thus n[H] is a PES.

Consistency between a structure and its remainder could be seen from
the issue that resuming the execution from H in the original structure
is the same as starting execution from scratch in the remainder. This is
illustrated by the following lemma, where the proofis left to Appendix A.1.

23

2. Technical Preliminaries: Event Structures

Lemma 2.2.4. Let w be a PES, let H € C(n). Then:

VC<E\H.(CeCnlH]) < HUCeCn)).

2.3. Stable Event Structures

To overcome the limitation of unique enabling of PESs, Winskel’s Stable
ES [83, 82] presents enabling as a relation between sets of events on one
side, and a single event to be enabled on the other side. The same event
can be in a relation with more than one set, where the occurrence of events
in just one set is sufficient to enable that event, but all the events in that
set must occur then. Such enabling has a Disjunctive Normal Form.

Stable event structures add an additional and essential constraint on
the enabling sets, saying that if an event is enabled by two sets, it must
be enabled by their intersection, given that the union of the two sets is
conflict-free. This is essential for causality determinism, so that in case
one event occurred, it is precisely known which events had caused it, and
thus those structures are called “stable”. The example in Figure 2.2 re-
spects this constraint, as eg conflicts with e5. The following gives a formal
definition of Stable ESs based on [83] with a slight modification.

Definition 2.3.1. A Stable Event Structure (Stable ES) is a triple x =
(E,#,F) where:

e E, a set of events

e #c E x E, an irreflexive symmetric relation (the conflict relation)

* < Psn(E) x E, the enabling relation
that additionally satisfies for all F,G < E and e€ E:

* Consistency: F'-e = F is conflict free, i.e. Ve',e" € F.(e'#e")
e Stability: (F+eNnGlFeANFUGU{e}is conflict free) = FNGFe

A configuration C in a Stable ES x = (E,#,I) is a set of events C € E that
is conflict-free, i.e. Ve',e” € C. —(e'#e"), and secured, i.e. Ve € C. Jeq,...,e, €
C.(ep=enVi.qIX c{eq,...,e;_1}. X Fe;).

For instance, {e1,e9,e3,e4} is a configuration in Figure 2.2, while {e1,eq,
ey}, {e1,e9,e6,e4} are not. The stability property together with the consis-
tency prohibit {e1,eq,e3,e4,e5,e6} from being a configuration since it is not
conflict-free. On the other hand, {es5,eq,e4} is a configuration where the

24

2.4. Bundle Event Structures

\ Figure 2.2: An example of a Stable Event Structure satis-
e 5 fying consistency and stability, where the bars
eq ; .
between causality arrows denote one enabling
€6 set.

fact that e4 can be enabled in different ways provides flexibility in causal-
ity; such flexibility was missing in PESs. Thus it is impossible to model
the structure in Figure 2.2 by a PES with the same configurations. To do
this, events like e4 need to be duplicated, such that one copy depends on
{e1,e2,e3} and the other depends on {e5,eg}, given that the two copies are in
conflict.

According to Boudol et al. [14], in terms of families of configurations,
Stable ESs are strictly more expressive than Prime ESs, i.e. each PES can
be modelled through a Stable ES with the same configurations, while the
other way around does not hold.

2.4. Bundle Event Structures

In [47], Langerak presented Bundle Event Structures, where the conflict
relation is as in Prime ESs an irreflexive and symmetric relation, but the
enabling relation offers some optionality, based on bundles. A bundle (X ,e),
also denoted by X — e, consists of a bundle set X and the event e it enables.
A bundle set is a set of events that are pairwise in conflict. There can be
several bundles (X1,e),...,(X,,e) for the same event e. So, instead of a set
of events as in Prime ESs, an event e in Bundle ESs is enabled by a set
{X1,...,X,} of bundle sets.

When one event of a set X; takes place, then the bundle X; — e is said
to be satisfied; and for e to be enabled all its bundles must be satisfied. In
Bundle ESs (and also Extended Bundle ESs) no more than one event out of
each set X; can take place; this leads to causal unambiguity [48]. But since
a bundle set can be satisfied by any of its members, this yields disjunctive
causality and gives flexibility in enabling.

Definition 2.4.1. A Bundle Event Structure (BES) is a triple f = (E,#,—)
where:
e E, a set of events

25

2. Technical Preliminaries: Event Structures

Figure 2.3: An example of a Bundle
Event Structure a b

o #C E x E, an irreflexive symmetric relation (the conflict relation)
s —~CP(E)xE, the enabling relation
that additionally satisfies the stability constraint:

VX cE.Vee E. X — e = (Vey,egeX.e1#eg = eyttes) (2.3)

Figure 2.3 shows an example of a BES. The solid arrows denote causality,
i.e. reflect the enabling relation, where the bar between the arrows shows
that they belong to the same bundle and the dashed line denotes again a
symmetric conflict. Thus there are two bundles in this example, namely
the singleton {a} — b and {b,c} — d. As required by (2.3) we have b#c and
c#b.

A configuration of a BES is a conflict-free set of events where all bundles
of each event in the configuration are satisfied. Therefore the stability
condition avoids causal ambiguity [48]. To exclude sets of events that result

from enabling cycles we use traces’.

Definition 2.4.2. Let 8 = (E,#,—) be a BES, and let 0 = e1,...,e, be a
sequence of events and & = {e1,...,e,} such that & S E. We use eng(o) to
refer to the set of events enabled by o:

eng(0) := {e€(E\d)|(fe'€5.ete’) A
(VXCE.X—e= Xno#0)} (2.4

Then the sequence o = ejq,...,e, is called a trace of B iff Vi < n.e; €
eng(o;-1)

A set of events C € E is a configuration of f if there is a trace ¢ such that
C =t. This trace based definition of a configuration will be the same for
Extended Bundle and Dual ESs. Let T(f) denote the set of traces and C(f)
the set of configurations of §. To obtain the posets of a BES, we endow each
of its configurations with a partial order.

1Here we adapt Katoen’s definition [43] which is equivalent to the original definition of
Langerak in [47].

26

2.4. Bundle Event Structures

Figure 2.4.: A family of posets of the structure in Figure 2.3. The arrows
between sets denote the prefix relation. The transitive and re-
flexive closures are neither shown in the posets nor in the family.

Definition 2.4.3. Let ff = (E,#,—) be a BES and C € C(), and e,e’ € C.
Thene<ce' ifAIX<CE.ec X AX—e'. Let <¢ be the reflexive and transitive
closure of <¢.

It is proved in [47] that < is a partial order over C. We denote the set of
posets of § by P(B). It is proved as well in [47] that given two Bundle ESs
B, B, it holds:

P() = P(§) <= C(§) = C(§) @5)

Posets can be connected through a prefix relation to form up a family of
posets. The prefix relation is defined [62] as:

(A,<)is aprefixof (A',<'y & AcA'A ==(='n(A"xA)) (2.6)

Definition 2.4.4. A family of posets & is then a non-empty set of posets
downward closed under the prefix relation.

According to Rensink [62], families of posets form a convenient underly-
ing model for models of concurrency, and are strictly more expressive than
families of configurations. Although expressiveness of BESs can still be
shown through families of configurations as in [14], families of posets were
used in [47] to compare BESs to their extended version, namely Extended
Bundle ESs.

Figure 2.4 shows the largest family of posets for the example in Fig-
ure 2.3. We use 1 to denote the empty poset (@,®). A non-empty poset
(A, <) is visualized by a box containing all the events of A and where two
events e; and eg are related by an arrow iff e; < eg. Reflexive and transi-
tive arrows are usually omitted.

27

2. Technical Preliminaries: Event Structures

The stability condition in Bundle ESs is stricter than the one in Stable
ESs, requiring that a conflict should exist between each two alternatives,
which is not the case in Stable ESs. For instance, it is impossible to have
a Bundle ES with the same configurations as Figure 2.2, since eg is not in
conflict with any event of the alternative enabling set of e4. Boudol et al.
in [14] proved that, in terms of families of configurations, Stable ESs are
strictly more expressive than Bundle ESs. The translation from Bundle
ESs to Stable ESs is done through converting causality from the Disjunc-
tive Normal Form to the Conjunctive Normal Form, with maintaining the
same conflict relation. On the other hand, and similar to the disjunction
offered in Stable ESs, Prime ESs cannot model the disjunctive causality
of Bundle ESs, while Bundle ESs can model Prime ESs using singleton-
based bundles. Thus Bundle ESs are strictly more expressive than Prime
ESs, as proved in [14]. Figure 2.9 shows the result of these expressiveness
comparisons.

2.5. Extended Bundle Event Structure

Langerak in [47] extended Bundle Event Structures with a new asymmet-
ric conflict relation ~~ between events, replacing the classical symmetric
conflict relation. e’ ~ e means that if e occurs, e’ can not occur afterwards,
thus we can call it an exclude relation. In other words, e’ can occur only
before e occurs. The classical symmetric conflict between two events can
be derived then from this asymmetric conflict relation, when both events
exclude each other.

Definition 2.5.1. An Extended Bundle Event Structure (EBES) is a triple
e =(E,~,—) where:
* E, a set of events
e «»C E xE, an irreflexive asymmetric relation (the disabling relation)
e —CP(E)x E, the enabling relation
that additionally satisfies the stability constraint:

VX cEVee EX —e — Vej,eg€X.(e1 #eg = e1 ~ e9) (2.7)
Figure 2.5 shows an example of an EBES, where the dashed arrow means

an asymmetric conflict, and the rest are like in BESs. It shows two bundles
for ey, both respecting the last constraint; one of them is a singleton {e4}.

28

2.5. Extended Bundle Event Structure

Figure 2.5: An example of an Extended Bun-
dle Event Structure

Event eg has a empty bundle, which will be according to the definition in
next section an impossible event.

Definition 2.5.2. Let ¢ = (E,~,—) be an EBES, and let 0 = e1,...,e, be
a sequence of events and 0 = {e1,...,e,} such that 6 € E. We use en.(0) to
refer to the set of events enabled by o:

eny(0) := {e€(E\G)|(fe'€d.e~e) A
(VXcCE. X—e = Xﬂ(_I?fQﬁ)} (2.8)

Then the sequence 0 = e1,...,e, is called a traceof e iff Vi<n.e; €eng(0;-1)

For example, in Figure 2.5, the sequence es, e is not a trace as the sin-
gleton bundle {e4} — e; was not satisfied. On the other hand, eg,eq,e; is
not a trace also as e3 excludes e4. Besides, the sequence es is not a trace be-
cause 09N X = @ where X is the empty bundle of eg, so eg is an impossible
event.

A set of events C < E is a configuration iff 30 an event trace: C = g.
Here we can notice that the relation between configurations and traces is
one-to-many. We also define C(¢) as the set of all configurations of ¢.

Definition 2.5.3. Let ¢ = (E,~~,—) be a BES and C € C(¢), and e,e' € C.
Then e<ce ifIX<E.(ec X AX—e')ve~se'. Let <¢ be the reflexive and
transitive closure of <c.

It is proved in [47] that <¢ is a partial order over C. It is also proved in
[47, 43] that given two EBESs ¢,¢’ it holds that:

P(e) =P(¢') < T(e)=T(¢') (2.9)

The asymmetric conflict of EBESs makes it insufficient to use families
of configurations for expressiveness. The order relation < in families of
configurations is not able to show that a system cannot proceed from {a} to
{a,c} when ¢ ~ a.

29

2. Technical Preliminaries: Event Structures

On the other hand, the asymmetric conflict relation makes Extended
Bundle ESs a generalization of Bundle ESs, and even strictly more expres-
sive than Bundle ESs [47]. Furthermore, Extended Bundle ESs cannot
include, i.e. model all, Stable ESs due to the same reason as why Bundle
ESs cannot include Stable ESs. Additionally, Stable ESs cannot model the
asymmetric conflict of Extended Bundle ES, then Extended Bundle ESs
are incomparable to Stable ESs [14], as shown in Figure 2.9.

2.6. Dual Event Structure

The stability constraint in BESs and EBESs prohibits two events from the
same bundle to take place in the same system run. Thus e.g. {a,b,c,d} is
not a configuration in Figure 2.3. It provides some kind of stability to the
causality in the structure. More precisely due to stability in every trace or
poset, for each event the necessary causes can be determined. Without the
conflict between b and c, the trace a,b,c,d would be possible, but then it
would be impossible to determine whether d was enabled by b or ¢. This is
the so-called causal ambiguity [48].

The definition of Dual ESs varies between [43] and [48], but both exhibit
causal ambiguity. In [43] Dual ESs are based on Extended Bundle ESs,
while in [48] they are based on Bundle ESs, and thus simpler. In this thesis
we are interested in the simplest version exhibiting causal ambiguity, thus
we consider the one of [48]. A Dual Event Structure (DES) is a triple § =
(E,#,~) similar to Definition 2.4.1 but without the stability condition.

Definition 2.6.1. A Dual Event Structure (DES) is a triple 6 = (E,#,~),
where E is a set of events, # < E? is an irreflexive symmetric relation (the
conflict relation), and — S P(E) x E is the enabling relation.

The definitions of eng(o), traces, and T(6) are similar to Section 2.4 for
BESs. Figure 2.6 shows a DES taken from [48], where the sequence a,b,c
is a trace, and would not be so in the presence of the stability constraint.

Causal ambiguity affects the way posets are built, since the causal order
is not clear. In [48] Langerak et al. tried to solve this problem. They illus-
trated that there are different causality interpretations possible for causal
ambiguity. They defined five different intentional posets: liberal, bundle-
satisfaction, minimal, early and late posets. Intentional means posets are

30

2.6. Dual Event Structure

Figure 2.6: An example of a Dual
d Event Structure.

defined depending on the causality relations in the structure, while obser-
vational on the other hand means posets are obtained out of event traces
when no structure of the system is available, but only behavior. We exam-
ine these different kinds and their relations informally here for brevity (cf.
Appendix B for formal definitions).
The authors illustrated that in order to detect the cause of an event like
d in the trace? abed of Figure 2.6, one should consider the prefix of d (i.e.
abc) and then can have the following interpretations:
¢ Liberal Causality: means that any cause out of the prefix is accepted
as long as all bundles are satisfied: abc, ab, b, ac, bc, etc.are all ac-
cepted as a cause for d. Then all events in a cause precede d in the
built poset, e.g. the posets for the last causes are

a a a a a
3 = 3 ~ 3

etc. respectively. We use

the same mechanism of building posets for the next types of causali-
ties.

* Bundle-Satisfaction Causality: bundles are satisfied by exactly one
event: b,ab,ac are accepted causes but not abc.

* Minimal Causality: bundles are satisfied so that no subset of a cause
is accepted. So b,ac are accepted but not ab or bec.

¢ Early Causality: the earliest bundle-satisfaction cause is accepted:
b is accepted, while ac is not since event c took place after event b.
This will be discussed formally in Section 3.3.1.

¢ Late Causality: (cf. [48], it will be skipped here).

The relation between the different kinds of causality is illustrated in Fig-
ure 2.7 as taken from [48, 49]. Given two DESs 61,92, an arrow from Lib.
to Early means that if 61,02 are equivalent w.r.t. liberal-causality posets
then they are equivalent w.r.t. early-causality posets, and so on. Further-
more, 81,02 are equivalent w.r.t. early-causality posets if and only if they

2We omit commas here within traces for simplicity. This coincides with the original definition
in [48].

31

2. Technical Preliminaries: Event Structures

Late

Lib. \ /

Early <= Obs. <= Traces

VN

B-Sat. Min.

Figure 2.7.: The relation between the different kinds of posets in
Dual Event Structure. An arrow means: if two struc-
tures are equivalent in terms of Late-causality posets
for instance then they are equivalent in terms of Early-
causality posets, and so on.

are equivalent w.r.t. observational posets, and if and only if they are equiv-
alent w.r.t. traces, since traces match early causality by definition.

The absence of the stability condition in Dual ESs makes them able to
model any Stable ES. Thus Dual ESs can be proved, similarly to [43], to
be strictly more expressive than Stable ESs. Additionally, Dual ESs that
are based on Extended Bundle ESs are proved in [43] to be strictly more
expressive than both Stable and Extended Bundle ESs.

2.7. Event Structures for Resolvable Conflict

Event Structures for Resolvable Conflicts (RCES) were introduced by van
Glabbeek and Plotkin [76] to generalize former types of ESs and to give
semantics to general Petri Nets. They allow to model the case where a
and b cannot occur together until ¢ takes place, i.e. initially @ and b are
in conflict until the occurrence of ¢ resolves this conflict. A RCES consists
of a set of events and an enabling relation between sets of events. Here
the enabling relation also models conflicts between events. The behavior is
defined by a transition relation between sets of events that is derived from
the enabling relation . 3

Definition 2.7.1. An Event Structure for Resolvable Conflict (RCES) is a
pair p = (E,F), where E is a set of events and F < P(E)? is the enabling
relation.

3Since ESs for resolvable conflicts are a generalization of Winskel's ESs mainly, the enabling
relation symbol is the same as in Stable ESs.

32

2.7. Event Structures for Resolvable Conflict

¢M \Ea,b,c}
N

{c}——{b,c}

Figure 2.8.: The transition graph of a RCES representing resolvable conflict.

In [76] several versions of configurations are defined. Here we consider
only reachable and finite configurations, that will be adequate to compare
to variants of Dynamic Causality ESs in Chapter 3.

Definition 2.7.2. Let p =(E,F)be an RCES and X,Y CE. Then X —/Y iff
(X<SYAVZCY.IW S X. W Z). The set of configurations of p is defined
asC(p)={X<E|p—}X

A X is finite}, where —, is the reflexive and transitive closure of — .

As an example consider the RCES p = (E,l), where E = {a,b,c}, {b} F
{a,c}, and ¢ - X iff X € E and X # {a,c}, adapted from [76]. It models the
above described initial conflict between a and ¢ that can be resolved by b.

In Figure 2.8 the respective transition graph is shown, i.e. the nodes
are all reachable configurations of p and the directed edges represent — .
Note, because of {a,c} c{a,b,c} and @ I/ {a, c}, there is no transition from @
to {a,b,c}. One drawback of RCESs—compared to other ESs—is the lack of
a graphical representation, since RCESs do not address individual events.

Semantics of RCESs is given through transition graphs. We consider two
RCESs as equivalent if they have the same transition graphs. Families of
configurations cannot be used for semantics of RCESs since they are not
able to model resolvable conflict, due to Condition 2.2.2 of Definition 2.2.2
concerning the least upper bound of two configurations. This condition
requires, for instance, that {a,c} should be an element of the family of con-
figurations of p, which cannot be the case. Note that, since we consider
only reachable configurations, the transition equivalence defined below is
denoted as reachable transition equivalence in [76].

Definition 2.7.3. Two RCESs p = (E,I) and p' = (E',}H') are transition
equivalent, denoted by p=(p', iff E = E' and —. n(C(p))* = —L. n(C(0"))%

We lift the definition of =; to denote transition equivalence between any
two event structures of two (possibely different) kinds of ESs that define

33

2. Technical Preliminaries: Event Structures

a transition relation each. To this end, we ignore event-set equivalence
between the two structures as unreachable events might be introduced to
one of the two ESs to model the other (cf. Chapter 3 for an example).

Definition 2.7.4. Let 61,09 be two ESs of two (possibely different) kinds of
ESs, with two transition relations (defined on configurations) —1,—g, re-
spectively. 61,09 are said to be configuration-transition equivalent, denoted

812489, iff —1 N(C(H))? = —2 N(C(52))%

Since RCESs are meant to be a generalization of Winskels ESs, RCESs
are more expressive than Stable and Prime ESs, as proved in [76]. Fur-
thermore RCESs are strictly more expressive than Prime and Stable ESs,
since none of the latter is able to model a resolvable conflict. It is hinted in
[76] how to model EBESs and other structures by RCESs, but not formally
proved. However we prove such expressiveness results in Chapter 3 while
comparing our new Dynamic Causality ESs to RCESs. To do so, we depend
on the following generic definition and lemma, saying that any transition-
based ES with certain properties could be naturally embedded into RCESs.

Definition 2.7.5. Let u be an ES with a transition relation — defined on
configurations such that for all configurations X, Y, X', Y' of u:

e XY implies XY

e XcX'cY'CY implies that X—Y — X'-Y’
Then rces(u) = (E{X+Z|IY <E.X->Y ANZCY}).

The following lemma shows that the resulting structure rces(u) is indeed
a RCES that it is transition equivalent to p.

Lemma 2.7.6. Let y1 be an ES that satisfies the conditions of Definition 2.7.5.
Then rces(u) is a RCES and rces(u) = pu.

Proof. By Definition 2.7.1, rces(u) is a RCES.

Assume X — Y. Then, by Definition 2.7.5, X €Y and X + Z for all Z <
Y .Then, by Definition 2.7.2, X —,.Y.

Assume X —,. Y. Then, by Definition 2.7.2, X <Y and there is some
X' € X such that X’ +Y. By Definition 2.7.5 for rces(-), then X' Y" for all
Y'cY. Sothereis aset Y suchthat Y €Y and X'+ Y’ foreach Y' Y.
Then, by Definition 2.7.5 for rces(-), it follows X' —=Y' and X' c X cY cY.
Finally, by the second property of Definition 2.7.5, X —»Y. O

34

2.8. Other Kinds of Event Structures

Extended Bundle

T

Prime—— Bundle Resolvable Conflict

\ /

Stable——Dual

Figure 2.9.: The expressiveness of variouse kinds of event structures from the litera-
ture, increasing from left to right.

To compare RCESs with other ESs, which do not use transition graphs
for their semantics, we use our Dynamic Causality ESs of Chapter 3 as a
bridge, by defining semantics of the latter structures in different means
(e.g. families of posets and transition graphs) and connecting these means
through equivalence relations. For example, we use posets to prove that
DESs can be embedded in a subset of Dynamic Causality ESs, that is
proved to be less expressive than RCESs using transitions on the other
hand. Then depending on the connection between the transition graph of
our Dynamic Causality ES and their posets, we conclude that DESs are
less expressive than RCES. This will be examined more formally in Chap-
ter 3. Figure 2.9 illustrates the landscape of the major ESs mentioned in
this chapter w.r.t. expressiveness.

2.8. Other Kinds of Event Structures

Baldan et al. defined a new event structure based on Prime ESs, called
Asymmetric ES [8]. They replaced the classical symmetric conflict by an
asymmetric one as in Extended Bundle ESs. It denotes a precedence be-
tween events, or weak causality as called by the authors. We skip this
kind of event structures here as we cover the asymetric conflict—through
Extended Bundle ESs—while investigating its influence on priority in Sec-
tion 5.4 and how to model it using Dynamic Causality in Section 3.5.2.
Later in [7] Baldan et al. introduced Inhibitor ES based on Prime ES.
The key idea was that an event can be disabled by a set of events and
re-enabled again by other events. This can model the enabling relation
of Prime ESs, the asymmetric conflict of Asymmetric ESs, and even the
bundle causality of Bundle ESs. We refer to this kind of ESs In Chapter 3 to

35

2. Technical Preliminaries: Event Structures

compare its different choices of re-enabling to the ones offered by Growing
Causality ESs in Section 3.4 and Fully Dynamic Causality in Section 3.5.

In [13] Flow event structures were defined where the enabling relation
is binary but not a partial order, allowing for cycles. Furthermore the con-
flict relation is not irreflexive anymore, such that self-conflicting events are
impossible. In a configuration, each enabler of an event in that configura-
tion is needed, unless it is in conflict with another enabler that exist in the
configuration. This offered more sophisticated causality model than Prime
ESs. We skip Flow ESs here since the choices they offer in enabling are
considered as a special case of the disjunctive causality offered by Stable
ESs which are more expressive [13] and covered in this work.

Dual ESs of [43] were extended in the same work [43] by adding a new re-
lation, namely the interleaving relation, under the name of Extended Dual
Event Structures. Two events are interleaved when one of them must occur
before the other, but not together. We do not consider Extended Dual Event
Structures in this work as a more recent publication appeared, namely [48]
by Langerak et al, in 1997 to give a more precise and even different def-
inition to posets in Dual ESs which influenced the semantics of Extended
Dual ESs accordingly. However we apply interleaving in our work in Chap-
ter 3 between causality modifiers in Dynamic Causality ESs.

2.9. Quantitative and Qualitative Extensions

In [43] as well as in [44] Katoen et al. added the concept of time delay to
Extended Bundle ESs. A bundle is associated with a time unit, and so is
an initially enabled event, representing the maximum delay of an event to
occur once it is enabled. So an event trace in timed ES is a sequence of pairs
(e,t): an event and its occurrence time. Intuitively, the earlier an event in a
trace takes place, the earlier its occurrence time is. Besides, the occurrence
time of an event is greater than or equal to the its enabling time. Casley
et al. in [24] added time delay to events. They defined operations for timed
events regarding concurrency, e.g. disjoint union and concatenation.

In addition, Katoen et al. introduced [44, 43] the concept of urgent events
based on their timed Extended Bundle ESs. Urgent events must happen
once they are enabled, exactly after a certain amount of time (delay). That
was used to model timeouts in the process algebra LOTOS. In an Urgent
Event Structure, a trace should be complete, i.e. including all the urgent

36

2.10. Application in Dynamic-Coalition Workflows

WakeUp

Discharge

DiscTube

Figure 2.10.: The default plan for the cardiac patient after she was
admitted to the Cardiac Intensive Care Unit.

events that have been enabled in this trace, and will occur for sure.

Furthermore, a more complex and complete modeling of timed ESs was
defined in [43], capturing not only a maximum occurrence time (with delay)
and urgency, but also a minimum one, by defining a range of occurrence
times or a set of discrete time points.

Finally, in [43, 79] probabilistic ESs were defined to give a stochastic
variant of ESs. In [43] an event can have a probability of occurrence given
that the set of events having the probability sum of 1 (a cluster) must be
enabled together and by the same enablers.

2.10. Application in Dynamic-Coalition
Workflows

Consider the use case of the cardiac patient of Section 1.1.1. The default
plan was to warm the patient up, and then to wake her up. In the mean-
while, severe medication should be stopped, and the tube should be discon-
nected. Then the patient can be discharged from the CICU. This can be
modelled by a PES as illustrated in Figure 2.10, since causality is conjunc-
tive. The fact that StopSevMed, WakeUp and DiscTube are neither related
w.r.t. causality nor to conflict means that they are concurrent events, and
thus need not to occur in a specific order, rather all of them have to occur
before Discharge occurs.

Let us consider another example, where other kinds of ESs can be used,
such as Extended Bundle ESs. This example is taken in the research train-
ing group SOAMED by observing the treatment process of stroke patients:
After a stroke patient is transferred to the stroke unit, the latter works on

37

2. Technical Preliminaries: Event Structures

stabilizing the patient’s situation. Then rehabilitation starts by therapists
to handle the consequences. During the rehabilitation, if the patient sud-
denly gets a stroke again, the ambulance needs to involve and interrupt the
work of therapists.
This can be modelled by an EBES as

illustrated aside. The disabling Th; ~~ Thy

Stroke and the disabling Thg ~» Stroke
model the case that once the patient gets
a stroke again, therapists cannot proceed SU R

anymore, i.e. the sequence Stroke,Th; is -
not a trace. Furthermore, event Am; could s
be modelled as an urgent event [44] that Thy

must take place once it is enabled, during
a given time-out.

2.10.1. Modeling DC Membership

Since we consider the workflow of a DC, we model membership through
its events, represented by the members’ join and leave events, which are
enough to show changes in DC membership, and thus dynamicity. For in-
stance Thy, The, ...in the last example represent the join events of various
members of the stroke-patient DC. The same applies to all DC examples in
this work.

2.10.2. Applying Quantitative and Qualitative
Extensions

The timing extension of ESs mentioned earlier could be applied in general
in the medical domain, where time is vital in many cases e.g. a stroke.
The same applies for probabilities and stochastic processes that could be
applied there for statistics and prediction. This will be examined in more
details in Chapter 5.

2.10.3. Modeling Repeated Actions in Event Structures

Events in ESs are single instances that cannot be repeated. Many actions
in life are often repeated. To model that, several events with the same
label—denoting the same action—are used. For instance, an action X that

38

2.10. Application in Dynamic-Coalition Workflows

is repeated in a loop, would be modeled by a series of events eq,eg,... that
are causally dependent (i.e. e; — eg — ...). Each event then would repre-
sent a single iteration, where iteration i cannot occur before iteration i — 1,
which is maintained by the causality. For more on this topic, please refer
to [41, 82, 77] for unfolding of Petri Nets and their representation in ESs.

2.10.4. Modeling Business Process Schemas and
Instances

In Business Processes, a distinction between the process type, known as a
schema, and instances of that type exists. A schema holds the definition
of flow and other elements in the process. An instance of a schema repre-
sents a running process that follows the definition of that schema. Thus an
instance has a state of execution.

A process schema can be represented by an event structure §, where def-
initions could be mapped to causality and other relations in the structure,
and activities could be mapped to different events as described in the sec-
tion before. An instance, or any running workflow, is then represented by a
pair (6,H) where § is an ES representing the schema of the instance, and
H represent the state of the instance.

Since the state of a system in ESs is represented through the set of
events that have taken place, then H € C(§). To hold more information, H
could be a trace or a poset, holding execution order, i.e. H € T(5) or H € P(5).
We will use this representation in Chapter 4 to define the evolution of run-
ning workflows.

2.10.5. Modeling Nested Coalitions with Action
Refinement

DCs could be nested as proved by visits to and observations in hospitals.
A coalition might include the main events and involvements of different
members, while each of the members can be itself a dynamic coalition.
For instance, imagine a DC that is set to rescue a stroke patient, where
it requires the join of the ambulance, the emergency room to do a test, and
finally the stroke unit. The test made by the emergency room can be seen
as a collaboration between nurses and doctors to do the test, i.e. a coalition.
The same applies for the stroke unit. If the involvement of the stroke unit
must follow the test of the emergency room, at the main-DC level, then the

39

2. Technical Preliminaries: Event Structures

@ Stroke Amb; SUj jpv Thy
Testgm
) Stroke Amb; SU; jnv Thy
t1
o
to

Figure 2.11.: A Prime Event Structure and its refinement,
modeling nested coalitions.

stroke unit cannot proceed before the collaboration in the emergency room
is done, at the sub-DC level.

Assume the involvements of the emergency room and the stroke unit at
the main-DC level are represented by two events Testgy,SU; respectively,
such that Testgm < SU; in a PES. Assume also that the collaboration in
the emergency room is represented by an ES with events I; = {t1,t2}. Then
SU; must not take place before events of I;. To do that, the causality
Testgm < SU; must be inherited at the sub-DC level, such that t; < SU;
and tg < SU;. This is provided through Action Refinement [63], where each
event of a given structure 71 can be refined to a complete minor ES, and
then such minor ESs are aggregated together into one ES m5 such that
causality and conflicts are inherited [74]. In this way, a configuration in 7y
can be refined to a set of configurations in 79, and each configuration in 79
would match a configuration in 77.

For instance, structure (b) in Figure 2.11 is a refinement of structure (a).
The set {Stroke, Amb;, t2, SU;} is not a configuration at structure (b). On
the other hand, {Stroke, Amb;,t1,t2,SU;} is a configuration. Furthermore,
it is a refinement of the configuration {Stroke, Amb;, Testgy, SU;}. A con-
figuration like {Stroke,Amb;,t1} shows that the test is not complete yet,
and is considered a refinement of {Stroke, Amb;,Testgy}. Each configura-
tion in (b) should be a refinement of a configuration in (a), as well as the
refinement of each configuration in (a) should be a configuration in (b) [74].

Action refinement allows for looking at systems in different levels of ab-
straction, by allowing actions which are atomic at one level, to be complex
processes at another level. This kind of abstraction helps focusing on the

40

2.10. Application in Dynamic-Coalition Workflows

overall picture on the higher abstraction level, and dealing with details
on a lower abstraction level. Moving up through the abstraction levels is
called Abstraction [27], and moving down is called Refinement [63]. Stud-
ies in different models were made in the literature w.r.t. refinement and
abstraction, e.g. event-based systems, action trees, process algebra and oth-
ers [32, 31, 73, 64]. Such a technique can be used while designing DCs to
model nested coalitions, and to look at coalitions through different abstrac-
tion levels, avoiding unnecessary details.

2.10.6. Limitations and Missing Features

Despite of their great applicability, Event Structures are an example of
a formalism where rules are defined to decide about the possible system
runs, and possibly try to derive all possible system runs. Thus they fit into
the category of static planning, and miss a formal mechanism that shows
how to evolve during runtime and transit successfully to a new ES. In that
sense, ESs do not reflect the dynamicity of DCs, nor show their unique
characteristics.

In Chapter 4 we provide a model that can be applied to ESs to provide
the flexibility needed in a robust way that guarantees error freeness and
makes it suitable to capture the nature of a DC workflow. Additionally, in
Chapter 5 we show some of the missing qualitative extensions that make
Event Structures applicable in the domain of our thesis, the healthcare
sector, not only for dynamic coalitions, but also for processes and workflows
in general.

41

3. Pre-Planned Changes in
Workflows: Dynamic
Causality in Event
Structures

3.1. Introduction

Modern process-aware systems emphasize the need for flexibility into their
design to adapt to changes [80]. One form of flexibility is the ability to
change the workflow during the runtime of the system deviating from the
default path, due to exceptions or changes in regulations. Such changes
could be ad-hoc or captured at build time of the system [61]. For instance—
as adapted from [80]—during the treatment process, and for a particular
patient, a planned computer tomography must not be performed in case she
has a cardiac pacemaker. Instead, an X-ray activity shall be performed.

In this example, the activity depending on the tomography will depend
instead on the X-ray instead. Such a change can be achieved through
more primitive ones: causality between tomography and the next activ-
ity should be dropped, and a new causality between X-ray and the next
activity shall be created. This can be modelled by disjunctive causality,
but then it will not be clear which path is the default one (the dropped
causality in our case), and which path is the exceptional one (the created
causality) [61]. Besides, other more complex examples cannot be modelled
easily with static causality as we will show by comparing expressive pow-
ers in Section 3.5. Furthermore, if an event triggers several changes in
a structure, it will be hard to notice all these changes in a non-dynamic
causality approach.

In this chapter, we allow the main ingredient of ESs, namely causality,
to change during a system run. In other words, the flow of events might

43

3. Pre-Planned Changes: Dynamic Causality in Event Structures

change based on the occurrence of certain events. Therefore, we call it
history-dependent causality, and we call the events changing the causality
of other events as modifiers. We will see also how dynamicity in causality
will be able to model adding and dropping of conflicts, and other relations
like disabling.

ESs that do neither allow for alternatives nor for changes in causality,
e.g. PESs [82], solve the problem by duplicating events and assign the same
label to the different copies that have different causal predecessor. We
argue that duplicating events increases complexity in the model, especially
if changes are composed, i.e. depend on each other. On the other hand,
allowing event causality to change, like in our model, avoids duplication
and thus reduces complexity in the model.

Since causality is changed by the occurrence of some events that are part
of the ES and since the changes are declared in the structure, this chapter
would contribute to the pre-planned changes that are foreseen. The other
kind of changes, namely the ad-hoc one, will be covered in the next chapter.

Overview We will separate the idea of dropping (i.e. shrinking) causality
from adding (i.e. growing) causality and study each one separately first,
and then combine them. In Section 3.3 we define Shrinking Causality
Event Structures (SESs), and compare their expressive power with other
types of ESs. In Section 3.4 we do the same for Growing Causality Event
Structures (GESs). In Section 3.5 we combine both concepts within the
Dynamic Causality Event Structures (DCESs). But first, let us examine
the related work, w.r.t. changes in causality and other relations in various
models as well as in ESs.

Related Work The concept of local independence [40, 72] was defined
by Hoogers et al. as a generalization of independence in traces, to give
trace semantics to Petri nets. Local independence meant that actions could
be independent from each other after a given history. Similarly Local
Event Structures were defined [41]. Comparing to our work we provide
a mechanism for independence of events, through the growing and shrink-
ing causality, while the former related works abstract from the way actions
or events become independent. In [76], van Glabbeek and Plotkin intro-
duced RCESs, where conflicts can be resolved or created by the occurrence
of other events. This dynamicity of conflicts is complementary to our own

44

3.2. Prime Event Structures with Causal Cycles

approach. We will see that DCESs and RCESs are incomparable but—
similarly to RCESs—DCESs are more expressive than many other types of
ESs.

3.2. Prime Event Structures with Causal
Cycles

If we allow one to add or drop causal dependencies, it will be hard to main-
tain the conflict heredity and the transitivity and reflexivity of enabling.
Therefore we do not consider the partial order property nor the axiom of
conflict heredity in our definition of PESs. The same applies for the finite
causes property which will be covered through finite configurations, like
Definition 3.3.3 later on. However the following version of PESs has the
same expressive power as PESs of Section 2.2, in terms of finite configura-
tions which we limit our concern to.

Definition 3.2.1. A Prime Event Structure (PES) is a triple n = (E,#,—),
where:

* E, a set of events

o #< E2 an irreflexive symmetric relation (the conflict relation)

e — c E?, the enabling relation

As a result, the definition of a configuration should take care of enabling
cycles, which makes events impossible, and thus unreachable in configura-
tions.

Definition 3.2.2. Let n = (E,#,—) be a PES. A set of events C C E is a
configuration of m iff:

* Ve,e' €C.(ete'), i.e. conflict-free

e YVe,e'lcE.e—e' Ne'eC = ecC, i.e. left-closed

e Vn=1.%eq,...,eneC.01— ...~ e, — ey, i.e. — N C2is acyclic

An event e is denoted as impossible in a PES if it does not occur in any of
its configurations. Events can be impossible because of enabling cycles, or
an overlapping between the enabling and the conflict relation, or because
of impossible predecessors as illustrated in Figure 3.1.

To be compatible and comparative to the the other ESs in this chapter
as well as to ESs for resolvable conflicts, a transition relation — can be
defined for PESs with cycles.

45

3. Pre-Planned Changes: Dynamic Causality in Event Structures

coSef geden Prej

ST i
(a) (b) (c)

Figure 3.1.: Impossible events in the variant of PESs with causal cycles.

Definition 3.2.3. Let 7 = (E,#,—) be a PES and X,Y € E. Then the tran-
sition relation — is defined as X —, Y iff:

e XY

* Ve,e' €Y. (ete)

e VeeY\X.{€E|e'—e}cX
We denote the reflexive and transitive closure of —, as —

o

For instance, the graphs in (a), (b), (c) below are the transition relations
for the structures in Figure 3.1 (a), (b) and (c) respectively, where reflexive
arrows are not shown for simplicity.

(@) {e} (b) {g} (©

e

? {e,f} ? @ {i}—{i, 7}
{r}

Sets of events like {e}, {f}, {e, f} are unreachable configurations, contain-
ing impossible events. It can be proved that the configurations of Defini-
tion 3.2.2 can be obtained by considering finite sets that are transitable
from @, successively. The proof will be clear when defining the transition
relation for different Dynamic-Causality ESs.

Since this version of PESs allows for modeling impossible events through
cycles, the definition of the remainder is slightly different from the one in
Definition 2.2.3. The difference is that after a given system run H, events
that were in conflict with one of the events of H would become impossible
in the remainder instead of being dropped. A formal definition would be as
follows:

Definition 3.2.4. Let n = (E,#,—) be a PES, and let H € C(r) be a configu-
ration of m. The remainder of 7 after H is n[H] = (E',#,—'), where:
e E'=E\H

46

3.3. Shrinking Causality

o # =#nE"”
o —/'=(=nE?)U{(e,e)eE"|3e' € H.e te}

For instance, the structure in (b) below shows the remainder of the PES
in (a), after the history H = {e, b}.

(a) (b)

It can be proved that n[H] is a PES. Furthermore, the consistency be-
tween a structure and its remainder can be seen from the next lemma re-
garding transitions (cf. Appendix A.1 for proofs of this chapter).

Lemma 3.2.5. Let n be a PES, H € C(xt). Then:

VXcE\H.X ecCxnl[H]) < H—»;HUX.

3.3. Shrinking Causality

Now we add a new relation that represents the removal of causal depen-
dencies as a ternary relation between events > < E3. For instance (a,b,c) €
>, denoted as [a — c]> b, models that a is dropped from the set of causes of
¢ by the occurrence of b.

The dropping is visualized in Figure 3.2 (a) by a dashed empty-head ar-
row, from the initial cause a — b towards its dropper c. We add this relation
to PESs and denote the result as shrinking causality event structures.

Definition 3.3.1. A Shrinking causality Event Structure (SES) is a pair
o = (m,>), where

s 1=(E,#,—)isa PES and

* > c E3 is the shrinking causality relation
such that [e—e"|>e' implies e—e" for all e,e’,e" € E.

Sometimes we expand (7,>) and write (E,#,—,>>). For [a —c]>b we call
b the modifier, ¢ the target, and a the contributed event. We denote the

47

3. Pre-Planned Changes: Dynamic Causality in Event Structures

“qv.
|
|

Q

(a) (b) ()

Figure 3.2.: A Shrinking-Causality ES with shared and multiple droppers in
(a), with trivial droppings in (b), and the remainder of (a) after
H={c,f}in (o).

set of all modifiers that drop a as cause from ¢ by [a — c]>. We refer to
the set of dropped causes of an event w.r.t. a specific history by the function
dc = P(E)xE xP(E) defined as: de(H,e) = {e'|3d € H. [¢—e]>d}. Besides,
we refer to the initial causes of an event by the function ic € E x P(E) such
that: ic(e) = {e’ | e’ —e}.

The semantics of a SES can be defined based on posets similar to BESs,
EBESs, or DESs or based on a transition relation similar to RCESs. We
consider first the transition relation, then the posets in Section 3.3.1.

Definition 3.3.2. Let 0 = (E,#,—,>>) be a SES. A trace of 0 is a sequence
of distinct events t =ey,...,e, with t CE such that:

* V1s<i,j<n.(e;#e;)

s Vi<i<n. (ic(ei)\dc(ti__l,ei)) Ctii1
Then C c E is a traced-based configuration of o if there is a trace t such
that C =t. Let C1.(0) denote the set of traced-based configurations and T(c)
the set of traces of 0.

The combination of initial and dropped causes ensures that a for each
e; €t all its initial causes are either predecessors of e; or are dropped by
other events preceding e;.

The transition relation of SESs has to be based on the conflict relation
as well as the enabling relation which are separate unlike RCESs.

Definition 3.3.3. Let 0 =(E,#,—,>)bea SES and X,Y CE. Then X —Y
if:

e XcY

* Ve,e' €Y. (ete)

* VeeY\X.(ic(e)\de(X,e)) =X

48

3.3. Shrinking Causality

We denote the reflexive and transitive closure of —¢ as —;.
Again we consider the reachable and finite configurations w.r.t. to —.

Definition 3.3.4. Let 0 = (E,#,—,>) be a SES. The set of all configurations
of 0is Clo)={X cE|@—:X AX is finite }.

Both definitions of configurations coincide.
Lemma 3.3.5. Let 0 be a SES. Then Cr.(0) = C(0).

Dropping causal predecessors can be seen more concretely in the concept
of the remainder. Assume a system run H took place, then pairs dropped by
an event of H disappear from the initial causality relation of the remainder.
For instance, Figure 3.2 (c) shows the remainder of Figure 3.2 (a) after
H ={c,f}. This can be formally defined as follows.

Definition 3.3.6. Let 0 = (E,#,—,>) be a SES, and let H € C(0) be a con-
figuration of 0. The remainder of o after H is o[H] = (E',#,—',1>'), where:
e E'=E\H
o #=#nE"?
o« ~'=((=nE?)\{(c,n e E?|cedeH,0}| U
{(e,e) eE? |3 cH. e'te}
o >'=(>nEB)\{(e,d,e)e E3|3e’' € H.e'#e}

It can be proved that o[H] is a SES. The enabling relation is defined as
in Definition 3.2.4. On the other hand, the definition of >’ can be explained
as follows. Assume that [¢— ¢]>m, then this triple would be excluded in
the remainder when ¢t € H, or m € H since it is not dynamic anymore but
affects —', or ¢ € H since (c,t) ¢—'. On the other hand, the consistency
between a structure and its remainder through the following lemma about
transitions. Finally, events conflicting with H should have no chance to be

dropped, thus we exclude them from >’ in case they already exist in [>.

Lemma 3.3.7. Let 0 be a SES, H € C(0). Then:
VX<E\H.XeC(olH]) &= H—-;HUX.

3.3.1. Shrinking Causality versus Disjunctive Causality

Consider the shrinking-causality [c—#]>d. It models the case that ini-
tially ¢ causally depends on ¢ but this dependency can be dropped by an

49

3. Pre-Planned Changes: Dynamic Causality in Event Structures

occurrence of d. Thus for ¢ to occur either ¢ must occur or d must. This is a
disjunctive causality as modeled by DESs. In fact [c — ¢t]>d corresponds to
the bundle {c,d}— t. We prove that we can map each SES into a DES with
the same behavior and vice versa.

To translate a SES into a DES we create a bundle for each initial causal
dependence and add all its droppers to the the bundle set.

Definition 3.3.8. Let 0 = (E,#,—,>>) be a SES.
Then des(o) = (E,#,—), where S—yiff: SCE, ye Eand 3xe E.x—yAS =
{x}ulx — yI>.

We can prove that the above translation from SES into DES shows that
for each SES there is a DES with exactly the same traces and configura-
tions. But the most discriminating behavioral semantics of DESs used in
literature are families of posets. Thus, in order to prove that SESs and
DESs have the same expressive power, we even show that our translation
preserves posets.

As shown in Figure 2.7, early-causality equivalence and trace equiva-
lence coincide for Dual ESs. Thus we concentrate on the early causality of
DESs [48]. Similarly, we concentrate on early causality of SESs.

Definition 3.3.9. Let 0 = (E,#,—,>>) be a SES, t = eq,...,e, one of its
traces, and 1 <i<n. A set U is a cause of e; in t iff:

* VeeU.Jl=j<i.e=¢j,

* (ic(e;)\de(U,e;)) U, and

* U is the earliest set satisfying the previous two conditions.
Let Pg(t) be the set of posets obtained this way for t.

As adopted from [48], given a trace t =eq,...,e, and two sets C,C' <, C
is said to be earlier than C’ iff the maximal index in ¢ of the events in C\ C’
is smaller than the maximal index in ¢ of the events in C’'\ C, where the
maximal index of @ is considered 0. In [49] a procedure is defined to detect
how early a cause is, based on binary numbers.

To show that =, and = coincide on SESs we make use of the result that
=, and trace equivalence coincide on DESs (cf. [48]) and that SESs are as
expressive as DESs, as shown later.

Theorem 3.3.10. For each SES o there is a DES 6 = des(o), such that
0=0.

50

3.3. Shrinking Causality

(b) ()

Figure 3.3.: A Dual ES with bundles more bundles than events in (a), its
canonical-translation poset-equivalent SES (b), and another
poset-equivalent SES with minimal fresh events in (c).

An extra modeling feature of SES comparing to Disjunctive Causal-
ity: One can note that both [c—¢]>d and [d —#]> ¢ correspond to the
same bundle {c¢,d}—t. In SES one would be able to distinguish between
the initial causality and its alternative, namely the dropper. While a DES
would not allow that due to symmetry. This will be used in Section 3.6 to
distinguish between Regular execution paths, and exceptional ones [61] in
workflows.

In the opposite direction we map each DES into a set of similar SESs
such that each SES in this set has the same behavior as the DES. Intu-
itively we have to choose an initial dependency for each bundle (out of the
bundle set) and to translate the rest of the bundle set into droppers for that
dependency. Unfortunately the bundles that point to the same event are
not necessarily disjoint. Consider for example {a,b}— e and {b,c}—e. If
we choose b — e as initial dependency for both bundles to be dropped as
[6—el>a and [b—e]>c, then {a,e} is a configuration of the resulting SES
but not of the original DES. So we have to ensure that we choose distinct
events as initial causes for all bundles pointing to the same event.

The easiest way to ensure, that for all bundles distinct events are chosen,
is to use fresh impossible events. More precisely, for each bundle X; — e we
choose a fresh event x; as initial cause x; — e, make it impossible by a self-

51

3. Pre-Planned Changes: Dynamic Causality in Event Structures

loop x; — x;, and add all events d of the bundle X; as droppers [x; —e]l>d.

Definition 3.3.11. Let § = (E,#,—) be a DES, {X;};c; an enumeration of its
bundles, and {x;};c1 a set of fresh events, i.e. {x;};c; "NE = @. Then ses(6) =
(E',#,—,1>), where:

e E'=EuU {xi}ier

e »>={x;—el|X;—elUlx;—x; |1 €]}

e D> ={[x;—el>d|deX;AX;—e}

Of course it can be criticized that the translation adds events. But as

Figure 3.3 and the next lemma show, it is not always possible to translate
a DES into a SES without additional impossible events.

Lemma 3.3.12. There are DESs 6 = (E,#,—), e.g.
6={a,b,c,d,e},0,{{x,y}—elx,y€la,b,c,d} Ax # y})
that cannot be translated into a SES o = (E,#,—,1>) such that T(§) = T(0).

Of course the above lemma implies that no translation of the above DES,
maintaining the same set of events, can result into a SES with the same
posets or even configurations.

However, because the x; are fresh, there are no droppers for the self-loops
x; —x; in ses(6). So the translation ensures that all events in {x;};.; remain
impossible forever in the resulting SES. In fact we show again that the
DES and its translation have the exactly same traces and configurations.
Moreover the DES and its translation have exactly the same posets.

Theorem 3.3.13. For each DES 6 there is a SES o = ses(6), such that
6=po.

3.3.2. Expressiveness of Shrinking-Causality Event
Structures

From the two way translation from SESs to DESs and vise versa, it can be
concluded that both kinds of ESs are equally expressive.

Theorem 3.3.14. SESs are as expressive as DESs.

In Appendix B we show that each SES o and its translation des(o) as
well as each DES § and its translation ses(d) have the same posets con-
sidering liberal, minimal, or late causality instead of early causality. Thus

52

3.3. Shrinking Causality

Growing

Dynamic Causality
Prime——Bundle— Extended Bundle
Resolvable Conflict
Dual<—— Shrinking

Figure 3.4.: Expressiveness of Event Structures including the structures of this chap-
ter; where transitive arrows are omitted and unconnected types of ESs
are incomparable regarding expressiveness.

the concepts of SESs and DESs are not only behaviorally equivalent but—
except for the additional impossible events—also structurally closely re-
lated.

Since SESs are as expressive as DESs w.r.t. families of early-causality
posets, then early-causality poset equivalence in SESs and trace equiva-
lence coincides in a similar way to DESs.

Corollary 3.3.15. Let 01,02 be two SES. Then 01=,02 < T(01) =T(02).
Then =, =, and trace-equivalence coincide on SESs.

Theorem 3.3.16. Let 0,0’ be two SESs. Then:
o=p0' < o=0 <= T(0)=T(0).

As shown before, SESs allow to model disjunctive causality, without any
stability condition, which is not provided by EBESs. On the other hand
the asymmetric conflict of an EBES cannot be modeled with a SES. Hence
EBESs and SESs are incomparable. Appendix A.2 proofs that by concrete
counterexamples.

Theorem 3.3.17. SESs and EBESs are incomparable.

By Lemma 2.7.6, the translation of each SES as in Definition 2.7.5 re-
sults into a transition-equivalent RCES.

Lemma 3.3.18. For each SES o there is a RCES p, such that o =p.

To prove that SESs are strictly less expressive, we show that there are
some RCESs that cannot be translated into a transition-equivalent SES.

53

3. Pre-Planned Changes: Dynamic Causality in Event Structures

Cc
¢ []
<__‘ b { .'.. ..‘.
Mg e [v
o ad-Vrep &7 TN

Figure 3.5.: GESs modeling a conflict in (a), a disabling in (b), a temporary dis-
abling in (c), and a resolvable conflict in (d).

Lemma 3.3.19. There is no transition-equivalent SES to the RCES

po=(le.f) {2 (el o {FL e, 11},

Hence SESs are strictly less expressive than RCESs.

Theorem 3.3.20. SESs are strictly less expressive than RCESs.

3.4. Growing Causality

As in SESs we base our extension for growing causality on the PESs of
Section 3.2. We add the new relation » < E3, where (a,c,b) € », denoted as
c»[a — b], models that ¢ adds a as a cause for b. Thus c is a condition for
the causal dependency a — b.

The adding is visualized in Figure 3.5(d) by a dashed line with a filled
head from the modifier ¢ to the added dependency a — b, which is dotted de-
noting that this dependency does not exist initially (In this example there
is an additional causality ¢ —a).

Definition 3.4.1. A Growing causality Event Structure (GES) is a pair
Y = (T, »), where:

e 1=(E,#,—)isa PES and

o » c E3 is the growing causality relation
such that Ve,e',e’ e E.e'»[e — el = —(e—e").

We refer to the causes added to an event w.r.t. a specific history by the
function ac = P(E) x E x P(E), defined as ac(H,e)={e'|Ja € H.aw[e' — el},
and to the initial causality by the function ic as defined in Section 3.3.

54

3.4. Growing Causality

Definition 3.4.2. Let y = (E,#,—,») be a GES. A trace of y is a sequence
of distinct events t =e1,...,e, with t CE such that:

* V1<i,j<n."(eite;)

* V1=<i,j<n.(icle;)Vac(ti_1,e;)) Sti1
Then C C E is a trace-based configuration of y if there is a trace t such that
C =t. The set of traces of v is denoted by T(y) and the set of its trace-based
configurations is denoted by Cry(y).

Semantics of GESs could be captured through posets, but this would
complicate the situation. A single configuration then will have multiple
posets. For instance, m »[c — ¢] with the configuration {c,m,¢} could have
two orders: either {c < #} where m is independent from all other event, or
{t <= m} where c is independent from the other events. The situation would
be evem more complex when considering Dynamic-Causality ESs in the
next section with posets, since not only the order of adders and targets
would matter, but also adders and droppers. Therefore, and to be able to
compare to the RCESs, configuration transitions were used.

Definition 3.4.3. Let y =(E,#,—,»)bea GES, and X,Y CE. Then X —;Y
if:

e XcY

* Ve,e' €Y. (ete)

e VeeY\X.(c(e)uac(X,e)cX

* Vt,meC'\C.VceE. mp[c—t] = (ceCvme{c,t})
We denote the reflexive and transitive closure of —g as —>§.

The last condition prevents the concurrent occurrence of a target and its
modifier since they are not independent. One exception is when the con-
tribution has already occurred; in that case, the modifier does not change
the target’s predecessors. It also captures the trivial case of self adding, i.e.
when a target adds a contribution to itself or a contribution adds itself to a
target.

Again we consider the reachable and finite configurations, and we con-
sider two GESs as equally expressive if they are transition-equivalent.

Definition 3.4.4. Let y = (E,#,—,») be a GES. The set of all configurations
of yis Cy) = {X S E|@—3 X AX is finite}
As in SESs, both notions of configurations of GESs, the traced-based and

the transition-based, coincide; and depending on the situation, the most
suitable one can be used.

55

3. Pre-Planned Changes: Dynamic Causality in Event Structures

Lemma 3.4.5. Let y be a GES. Then Cry.(y) = C(y).

The remainder is generally defined in a similar way to Definition 3.2.4.
Furthermore, causality pairs are added to the remainder if there is an
adder for them in H, unless one of them took place in H. For instance,
the remainder of Figure 3.5 (b) after H = {a} is ({b}, @,{(b, b)}, D).

Definition 3.4.6. Let y = (E,#,—,») be a GES, and let H € C(y) be a con-
figuration of y. The remainder of y after H is Y[H]1 = (E',#,—',»'), where:
e EE=E\H
e #=#nE"?
o —~'=(=nE?)U{(c,t)eE?|ceacH,t)} U{(e,e)eE?|3e' € H.e'#e}
* »'=(» nE’3) \{(e,a,e)|Te’ € H.e'#e}

It can be proved that the remainder of a GES is itself a GES. Further-
more, consistency between the original structure and its remainder can be
seen through the following lemma regarding transitions.

Lemma 3.4.7. Let y be a GES, and H € C(y). Then:
VX,Y CE\H.X e C(y[H]) < H—} HUX.

3.4.1. Modeling Features of Growing Causality

Disabling as defined in EBESs or the Asymmetric ES of [8] can be modeled
by ». For example b ~~ a can be modeled by b » [a — a] as depicted in
Figure 3.5 (b). Analogously conflicts can be modeled by » through mutual
disabling, as depicted in Figure 3.5 (a), and thus the conflict relation can
be omitted in this ES model.

In Inhibitor ESs [7] there is a kind of disabling, where an event e can
be disabled by another event d until an event out of a set X occurs. This
kind of temporary disabling provides disjunction in the re-enabling that
cannot be modeled in GESs but in DCESs (cf. the next section). However
temporary disabling without a disjunctive re-enabling can be modeled by a
GES as in Figure 3.5 (c).

Also resolvable conflicts can be modeled by a GES. For example the GES
in Figure 3.5 (d) with a»[c — b] and b»[c — a] models a conflict between
a and b that can be resolved by c. Note that this example depends on the
idea that a modifier and its target cannot occur concurrently (cf. Defini-
tion 3.4.3). Note also that resolvable conflicts are a reason why families of
configurations cannot be used to define the semantics of GESs or RCESs.

56

3.4. Growing Causality

p—>{b} {a,c}—{a,b,c}

~

{c}——1{b,c}

Figure 3.6.: Conjunctive disabling through a RCES

3.4.2. Expressiveness of Growing-Causality ESs

As shown in Figure 3.5 (b) GESs can model disabling. Nevertheless EBESs
and GESs are incomparable, because GESs cannot model the disjunction
in the enabling relation that EBESs inherit from BESs. On the other hand
EBESs cannot model conditional causal dependencies.

Thus GESs are incomparable to BESs as well as EBESs.

Theorem 3.4.8. GESs are incomparable to BESs and EBESs.

GESs are also incomparable to SESs, because the adding of causes can-
not be modeled by SESs. Then since BESs are incomparable to GESs, BESs
are less expressive than DESs, and DESs are as expressive as SESs, we
conclude that GESs and SESs are incomparable.

Theorem 3.4.9. GESs and SESs are incomparable.

As illustrated in Figure 3.5 (d) GESs can model resolvable conflicts. Nev-
ertheless they are strictly less expressive than RCESs, because each GES
can be translated into a transition equivalent RCES and on the other hand
there exists no transition equivalent GES for the RCES p, = ({a,b,c},F)
illustrated in Figure 3.6. It models the case, where after a and b the event
¢ becomes impossible, i.e. it models disabling by a set instead of a single
event.

Theorem 3.4.10. GESs are strictly less expressive than RCES:s.

3.4.3. Growing Causality as Conditional Causality

From Definition 3.4.3, a»[c —] can be interpreted as c is needed for ¢ only
if @ occurs. This is in fact a conditional causality, which is new anyway for
event structures. In other words, » could be seen in a static perspective,
without the sense of dynamic changes during the system run.

57

3. Pre-Planned Changes: Dynamic Causality in Event Structures

Based on that, we have two enabling relations: — and », instead of
having one enabling relation — and the other one » holding the changes.
Thus similar to [7], they can be merged into one relation —< P(E); x E2
where the first parameter can be a set containing one event, or the empty

set. For ({m},¢,c) e—» we write ¢ {129 t which means that if the modifier m
occurs, then c is needed for the target ¢. If the first argument is the empty
set, we drop it from the notation and write ¢ —» ¢, which means that the
cause c is needed anyway for the target t. We use the notation P(E);, (with
k €N) for all subsets of E with cardinality less or equal to .

Definition 3.4.11. A Conditional-Causality Event Structure (CES) is a
tripple y = (E,#,—) where:

e E, a set of events

o #<E?, an irreflexive symmetric relation (the conflict relation)

o »CP(E) x E2 the enabling relation
that satisfies the following constraint:

{e}
Ve,e',e' cE.e! — e = ' —p ¢ (3.1)

We can define the transition relation of a CES according to the inter-
pretation above, then for each CES y = (E,#,—) we can derive a GES
v =(E,#,—,») where:

o —={(e,e)eE%|e —e}
H)
o »={(c,e" e)eE? Ie’{L»e
The other way around could be done from GESs to CESs. It can be proved
that GESs and their translations into CESs are transition-equivalent, and
vise versa. This is similar to the situation between SESs and DESs, i.e.

GESs can be equivalent to ESs with a totally static perspective, yet still a
new contribution to ESs.

3.4.4. A Special Case of Concurrency: Target-Modifier
Concurrency

The last condition in Definition 3.4.3 prohibits the concurrent occurrence
between a modifier and its target, in case the added cause has not occurred
yet. This keeps the theory simple. But let us consider the consequences
of dropping such a constraint. Let us denote the GES transition relation

58

3.4. Growing Causality

{a} {a}

/
5) \{b}/
(a) (b)

{a,b}

Figure 3.7.: The transition graph of Figure 3.5 (b) w.rt. —g in (a),
and w.rt. —g, in (b).

after dropping the mentioned condition by —¢,, and let us consider a new
ES that has the same structural definition of Definition 3.4.1, and —g, as
a transition relation.

The new structure would allow the occurrence of two events simultane-
ously as well as in one order, but not in the other order, e.g. Figure 3.7. This
distinction here in the execution order is similar to the left merge and com-
munication of Baeten et al. [5]. The authors suggested that the first step
in the parallel composition of two processes could be taken either by one of
the processes (a left merge), or by both simultaneously (a communication).

Consequently many results in the original GESs, for which proofs were
based on the modeling capability of disabling, cannot be proved in the same
way considering —,,, if at all. Up to the time of writing this thesis, such a
case is new to ESs, since the simultaneous occurrence of two events implies
their interleaving, as in RCESs which generalize many other ESs in the
literature so far. This will make the resulting structure incomparable to
other kinds of ESs including classical GESs, except for PESs.

Semantics of GESs with —, cannot be shown by posets, since partial or-
ders never capture the case of concurrent events that are not independent.
Consequently, traces are not able to give the semantics of GESc either,
since they are a special case of orders. Extensions to posets were intro-
duced in the literature in order to capture such cases, e.g. stratified order
structures [42].

Stratified order structures (so-structures) capture the relation of earlier
than which fits to our initial causality, as well as not later than which fits
to the growing causality. An so-structure is a triple (X,<,C): a set, the
earlier-than relation <, and the not-later-than relation , such that < is a
partial order, C is a strict pre-order, and a <b = a C b.

59

3. Pre-Planned Changes: Dynamic Causality in Event Structures

In contrast to posets which can give semantics to the non-concurrent
GES, so-structures can be used to give semantics to the concurrent GES.
For instance, the configuration C = {c,m, ¢t} where m »[c — ¢] could be mod-
eled with two so-structures: (C,{c <t},{c C t}) and (C, @, {t C_ m}) where the
reflexive closure of < is omitted for simplicity.

The case where b»[a — c] and a »[b — c] with the configuration {a,b},
that can be reached only by the transition {a,b}, can be modeled through
acycle of C,i.e. a C b and b C a. A better semantical model for such a
case is the quotient so-structures defined by Le in [50] which focuses on
synchronization steps. Anyway choosing configuration transitions makes
GESc comparable to non-concurrent version of GES as well as other dy-
namic causality structures.

3.5. Fully Dynamic Causality

Up to now we have investigated shrinking, and growing causality sepa-
rately. In this section we combine them and examine the resulting expres-
siveness.

Definition 3.5.1. A Dynamic Causality Event Structure (DCES) is a triple
A = (n,r>,»),expanded as (E,#,—,>,»), where n = (E,#,—) is a PES, > C
E3 is the shrinking causality relation, and » < E® is the growing causality
relation such that for all e,e’ e € E:

1 [e—e|>e'AfmeE. mple—e"] = e—e

2. e'wle—e"INImeE. [e—e"|>m = (e —e)

3. e'ple—e"l = ([e—e"|>e))

Conditions 1 and 2 are just a generalization of the conditions in Defi-
nitions 3.3.1 and 3.4.1 respectively. If there are droppers and adders for
the same causal dependency as in the examples below, we do not specify
whether this dependency is contained in —, because the semantics depends
on the order in which the droppers and adders occur. Condition 3 prevents
that a modifier adds and drops the same cause for the same target.

60

3.5. Fully Dynamic Causality

The order of occurrence of droppers and adders determines the causes of
an event. For example after the trace ad in both examples above, ¢ does
not depend on ¢, whereas after da, t depends on c. Thus configurations like
{a,d} are not expressive enough to represent the state of such a system.

Therefore in a DCES a state is a pair of a configuration C and a causal
state function cs, which computes the causal predecessors of an event, that
are still needed. This deviates from the original concept of events suggested
by Winskel [83], where causal predecessors of an occurrence of an action,
i.e. an event, are fixed, and once the they change, the event is duplicated.

Definition 3.5.2. Let A = (E,#,—,>,») be a DCES. The function mc :
P(E)x E — P(E) denotes the maximal causality that an event can have after
some history C C E, and is defined as:

me(C,e)={e'€ E\C|e' —evIaeC.am[e' —el}

A state of A is a pair (C,cs) where cs: E\C — P(E\ C) such that C < E and
cs(e) € me(C,e). We denote cs as the causality state function, which shows
for each event e that did not occur, which events are still missing to enable
e. An initial state of A is So = (@, c¢s;), where csi(e) ={e' € E | e’ — e}.

Note that Sy is the only state with an empty set of events; for other
sets of events there can be multiple states. Accordingly, the behavior of
a DCES is defined by the transition relation on its reachable states with
finite configurations.

Definition 3.5.3. Let A = (E,#,—,>,») be a DCES and C,C' E. Let
D =C'\C. Then (C,cs)—4q(C',cs) iff:

ccc

Ve,e' € C'. ~(e#e’)

VeeD.cs(e)=9

Ve,e' € E\C'.e' ecs(e) = (e’ ¢ cs'(e) < [e' —el>nND # @)

Ve,e! e ENC'.e ¢cs(e) = (e ecs'(e) < w[e/ —elnD # @)

Ve,e' € E\C.([e' —el>nD=9g)Vv(»le'—elnD =9)
Vi,meD.VceE.mw[c—t] = (cEC v me{c, t})

We denote the reflexive and transitive closure of —q as —.

N OURA N~

Condition 1 insures the accumulation of events. Condition 2 insures con-
flict freeness. Condition 3 insures that only events which are enabled after
C can take place in C'. Condition 4 insures that, a cause disappears iff

61

3. Pre-Planned Changes: Dynamic Causality in Event Structures

there is a dropper of it. The same is ensured by Condition 5 for appear-
ing causes and adders. To keep the theory simple, Condition 6 avoids race
conditions; it forbids the occurrence of an adder and a dropper of the same
causal dependency within one transition. Condition 7 ensures that DCESs
coincide with GESs.

Definition 3.5.4. Let A be a DCES. The set of (reachable) states of A is
defined as S(A) = {(X,cesx) | So —>2i (X,csx)AX is finite}. Two DCESs A =
(E,#,—,>,»)and A' = (E',#,—',i>',»') are state transition equivalent, de-
noted by A=A, iff E = E' and —4n(S(8))* =~/ n(s(a"))*.

The (reachable) configurations are then the configurations of (reachable)
states.

Definition 3.5.5. Let A = (E,#,—,>,») be a DCES. The set of its (reach-
able) configurations is C(A) = n1(S(A)); the projection on the first compo-
nent of the states. The configuration-transition relation —.< [P(E)2 is de-
fined as C —.C' iff there are two states S,S’ of A such that C = n1(S),
C' =71(8") and S —38S’. We denote the reflexive and transitive closure of

—cas —;.

Let us consider the following DCES:
A= ({a,b,c,d} , 8, @, {[c—d]>b},{aw[c — dl}). If we consider only the
configurations of A saying there is a transition C —.C’ whenever (C,cs)—3
(C’,cs"), then the transition {a,b}—.{a,b,d} always exists regardless of the
order of a,b. Whereas by considering —4, a transition from {a, b} to {a,b,d}
in A will exist only if a precedes b. Therefore we consider the more discrim-
inating equivalence ~;—instead of ~i—to compare DCESs and to compare
with DCESs.

Traces of a DCES can be defined then based on transitions between
reachable configurations C,C’ such that C’\ C contains only one event.

Definition 3.5.6. Let A = (E,#,—,>,») be a DCES with a configuration-
transition relation —.. A sequence of events e1,eq,...,e, € E is a trace of A
iff the transitions @ —.{e1} —c{e1,ea} —¢... —c{e1,e9,...,e,} exist.

62

3.5. Fully Dynamic Causality

ct rest ct
1 L ’ A e
i - ;y /,’ rest
= e
cardiac x-ray cardiac x-ray
pacemaker pacemaker

Figure 3.8.: A DCES modeling in (a) of a change in a medical workflow
to perform an X-Ray for a cardiac-pacemaker patient instead
of a tomography (cf. Section 3.1), and a trace-equivalent DES
modeling in (b) that does not distinguish between the default
and the exceptional paths.

3.5.1. Embedding Growing and Shrinking Causality
Event Structures

To compare DCESs to other ESs we define the Single State Dynamic Cau-
sality ESs (SSDCs) as a subclass of DCESs.

Definition 3.5.7. Let SSDC be a subclass of DCESs such that p is a SSDC
iff Ve,e' €E.Ba,d € E.aw[e — el>d.

Since there are no adders and droppers for the same causal dependency,
the order of modifiers does not matter and thus there are no two different
states sharing the same configuration, i.e. each configuration represents a
state. Thus it is enough for SSDC to consider transition equivalence with
respect to configurations, i.e. =¢.

Lemma 3.5.8. Let p be a SSDC. Then for the causal-state function cs of
any state (C,cs) € S(p) it holds cs(e) = (ic(e) Uac(C,e)) \ (de(C,e)UC).

Additionally, in a SSDC we can see that Conditions 4 and 5 hold auto-
matically whenever C < C’, as shown by the following lemma.

Lemma 3.5.9. Let p be a SSDC and let (C,cs) and (C',cs’) be two states of
o with C < C’, then Conditions 4 and 5 of —q hold for those two states.

Let us look at another property SSDC holds regarding sub-transitions.

Lemma 3.5.10. Let p be a SSDC and (X,csx)—q(Y,csy) a transition in p.
Then for all X',Y' with X c X' cY'CY, there is a transition (X',csy) —q
(Y',csy,) in p, where:

63

3. Pre-Planned Changes: Dynamic Causality in Event Structures

* csxi(e)= ((ic(e) Uac(X',e))\ (de(X,e) UX’))
* csy(e) = ((icte)Uac(Y',e))\ (de(Y',e) UY'))

Based on that, the remainder of a SSDC A could be taken simply after
a reachable configuration H, and is denoted as A[H], where the causality
state function of H is derived according to Lemma 3.5.8.

Definition 3.5.11. Let A = (E,#,—,>,») be a SSDC, and let H € C(A) be
a reachable configuration of A. Let S € S(A) such that n1(S) = H, and let
csp = 712(S). The remainder of A after H is A[H]= (E',#,—',>',»'), where:

e EE=E\H

o # =#nE"?

o —'={(e/,e)eE"?|e' ecsp(e)U{(e,e)eE"? |Te’' € H. e #e}

o /= (I> ﬂE/?’) \{(e,d,e)| e’ € H.e'#e}

*»'=(» nE’?’) \{(e,a,e)|Te’ € H. e #e}

The definition of >’ and »' is similar to Definition 3.3.6 and 3.4.6 resp.
It can be proved that the A[H]is a DCES. Furthermore, It can be seen that
it is a SSDC since no new causality adding or dropping was added.

Lemma 3.5.12. Let 0 be a SSDC, H € C(0). Then:
VX<cE\H.XeC(olH]) < H-;HUX.
To embed a SES (or GES) into a DCES it suffices to choose » = @ (or
> =g@).

Definition 3.5.13. Let 0 = (E,#,—,>) be a SES. Then its embedding is
(o) =(E,#,—,>,9). Similarly let y = (E,#,—,») be a GES. Then its embed-
ding is i()/) =(E,#,—,0,»).

Both embeddings are SSDCs. Furthermore for each embedding the cau-
sal state coincides with a condition on the initial, added, and dropped
causes, that are enforced in the transition relations of SESs and GESs.

Lemma 3.5.14. Let 0 be a SES and i(0) its embedding. Then we have for
each state (C,cs) of i(0), es(e) =ic(e) \ (de(C,e) U C).

Lemma 3.5.15. Let y be a GES and i(y) its embedding. Then we have for
each state (C,cs) of i(y), es(e) = (ic(e) Uac(C,e)) \ C.

SESs (resp. GESs) and their embeddings are transition equivalent.

Lemma 3.5.16. Let u be a GES or SES, then we have i(p) = p.

64

3.5. Fully Dynamic Causality

3.5.2. Embedding Extended Bundle Structures

To compare with EBESs, we use the disabling of GESs, and the disjunctive
causality of SESs. To achieve that, we define a sub-class of DCESs, where
posets could be defined and used for semantics.

Definition 3.5.17. Let EBDC denotes a subclass of SSDC with the addi-
tional requirements:
1. Ve,myte E.mplc—t] = c=t
2. Ve,m1,...,mpy,teE. [c—tl>my,...,m, =
Vei,eg€f{c,mi,...,mp}. (e1 #eo = eittes)

The first condition translates disabling into » and ensures that disabled
events cannot be enabled again. The second condition reflects causal un-
ambiguity by > such that either the initial cause or one of its droppers can
happen.

Definition 3.5.18. Let 9 be a EBDC and C € C(9), then we define the prece-
dence relation <c<CxCase<ce'iffe—e've'ple—elviceE. [c—e'|>
e. Let <¢ be the reflexive and transitive closure of <c.

The relation <¢ indeed represents a precedence relation as the following
lemma states.

Lemma 3.5.19. Let O be a EBDC, C € C(9), and let e,e’ € C.e <c e'. Let
also (Cp,cs9)—q...—q(Cp,csy) with Co = @ and C,, = C be the transition
sequence of C, then 3C; € {Cy,...,C,}.e€C;ne' ¢ C;.

Then the reflexive and transitive closure of <¢ is a partial order.
Lemma 3.5.20. < is a partial order over C.

Let P(9) = {(C,<¢) | C € C(9)} denotes the set of posets of the EBDC 9.
We show that the transitions of a EBDC 9 can be extracted from its posets.

Theorem 3.5.21. Let 9 be an EBDC and (C,cs),(C’,cs’) € S(9) with C < C'.
Then (Ve,e'€C'.e#e' ne' <cre = e’ €C) < (C,cs)—4(C'cs).

The following defines a translation from an EBESs into an EBDC. Fig-
ure 3.9 provides an example, where conflicts with impossible events are
dropped for simplicity.

65

3. Pre-Planned Changes: Dynamic Causality in Event Structures

Figure 3.9.: An EBES and its poset-equivalent DCES.

Definition 3.5.22. Let ¢ = (E,~~,—,l) be an EBES. Then:
dces(¢) = (E',#',—, >, ») such that:

1. E',—,> are defined as in 3.3.11

2. # ={e,e) e~ e ne ~e}Uf(x;,x) | x€X;}

3. »={e,e,e)eE3|e~e A(e ~ e

The translation shows that disabling uses self-loops of target events,
while droppers use auxiliary impossible events, not to intervene with the
disabling.

Lemma 3.5.23. Let ¢ be an EBES. Then dces(¢) is an EBDC.
Furthermore, the translation preserves posets.

Lemma 3.5.24. For each EBES ¢ there is a DCES dces(¢) such that:

P(¢) = P(dces(¢)).

3.5.3. Expressiveness of Dynamic-Causality Event
Structures

Since EBESs cannot model the disjunctive causality—without a conflict—
of DCESs that is inherited from SESs, the following result holds.

Theorem 3.5.25. DCESs are strictly more expressive than EBESs.

To compare with RCESs, we use the counterexample p, of Figure 3.6
to show a RCES with no transition-equivalent DCES. Moreover RCESs
cannot distinguish between different causality states of one configuration.
Consequently DCESs and RCESs are incomparable.

Theorem 3.5.26. DCESs and RCESs are incomparable.

66

3.6. Evaluation

By construction, DCESs are at least as expressive as GESs and SESs.
Furthermore DCESs are incomparable to RCESs which are in turn strictly
more expressive than GESs and SESs. Thus DCESs are strictly more ex-
pressive then GESs and SESs.

Theorem 3.5.27. DCESs are strictly more expressive than GESs and SESs.

3.6. Evaluation

We study the idea that causality may change during system runs in event
structures. For this, we enhance a simple type of ESs, namely the PES, by
means of additional relations capturing the changes in events’ dependen-
cies, triggered by the occurrence of other events.

First, in Section 3.3, we limit our concern to the case where dependencies
can only be dropped. We call the resulting event structure Shrinking Cau-
sality ES (SES). In that section, we show that the exhibited dynamic cau-
sality can be expressed through a completely static perspective, by proving
equivalence between SESs and DESs.

Later on, in Section 3.4, we study the complementary style where depen-
dencies can be added to events, resulting in Growing Causality ES (GES).
We show that the growing causality can model both permanent and tempo-
rary disabling. Besides, it can be used to resolve conflicts and, furthermore,
to force conflicts. Unlike the SESs, the GESs are not directly comparable
to other types of ESs from the literature, except for PESs; one reason is
that they provide a conjunctive style of causality, another is their ability to
express conditioning in causality.

Finally, in Section 3.5, we combine both approaches of dynamicity with a
new type of event structures, which we call Dynamic Causality ES (DCES).
Therein a dependency can be both added and dropped. For this new type of
ESs the following two (possibly surprising) facts can be observed: (1) There
are types of ESs that are incomparable to both SESs and GESs, but that
are comparable to (here: strictly less expressive than) DCESs, i.e. the com-
bination of SESs and GESs; one such type is EBESs. (2) Though SESs
and GESs are strictly less expressive than RCESs, their combination—the
newly defined DCESs—is incomparable to RCESs, or any other static-cau-
sality type of ESs considered in this thesis.

67

3. Pre-Planned Changes: Dynamic Causality in Event Structures

Application in the Use Case: If changes to workflows are to be repeated
ofen or learned from, DCESs can be used to formally show the changes
caused by some event. For instance, in the cardiac-patient use case, the
changes caused by the heart-failure, namely implanting a blood pump, can
be detected formally so that this case is generalized for similar future cases
[66]. The resulting model would look like in Figure 3.10. In Section 4.6 we
will provide a mechanized way of learning from adaptation and inferring
changes to be used again. The same applies for cold-leg in Figure 3.11.

Exceptional v.s. Regular Paths: With respect to Exceptional and De-
fault paths of [61], dynamic causality can represent the exceptional path
of execution, while initial causality would refer to the default one. For in-
stance, the dependency between BloodPump and WakeUp represents the
exceptional path, while the other initial dependencies, like WarmUp —
WakeUp, would represent the default one.

Membership Events as Modifiers: The other example, taken from the
cardiac-patient use case, shows that After she joined the coalition, the sur-
geon changed the plan and decided to perform an angiography, to detect the
reason of the cold leg. In case we generalize this case, the result could be
be modelled by a DCES as in Figure 3.12. One main difference is that the
modifier that causes the changes is the join of a new member.

Composing Complex Changes: Patterns for changing a workflow were
suggested in [80] to avoid errors. For instance, given a flow between two
tasks b — ¢, the SERIAL INSERT pattern denotes the insertion of a new

BloodPumpe<+——eHeartFailure

K
WarmUp " WakeUp

po Discharge

>
StopSevMed
DiscTube

Figure 3.10.: A GES modeling capturing the case that a heart fail-
ure would require implanting a blood pump.

68

3.6. Evaluation

InvSurgeon BloodPump

4‘ --“@HeartFailure
4 Y

ColdLegé------ ».. o————>oWakeU
& / WarmUp \ P

PatR »>@ Discharge

athec StopSevMed 8

DiscTube

Figure 3.11.: A GES modeling of the use case, capturing the conclu-
sions that a heart failure demands the implantation
of a blood pump, and the cold-leg problem disables
the warm-up process.

task a between b and ¢ such that a — b — ¢. Such changes can be composed
out by primitive changes of DCESs. The SERIAL INSERT pattern can be
implemented by first enabling a through dropping its causality cycle, and
dropping b — ¢, and then adding b — a and a — ¢. The SKIP pattern
corresponds to disabling an event, and isolating it by dropping causali-
ty links with its successors, and then connecting its successors with its
predecessors by growing causality.

Limitations: Since changes are foreseen in DCESs, there is no real adding
or dropping of events. Rather, the events to be added to a workflow already
exist in the structure, but are initially disabled. Adding these events would
mean enabling and pushing them in the right order. The same applies
for dropping events. For instance, HeartFailure does not add the event
of BloodPump implanting in Figure 3.10. Rather it enables this event
through a causal dependency. Another alternative for enabling is through
dropping a causality cycle as in Figure 3.12, which has the advantage that
it still shows the enabling as an Exceptional path. By such an enabling,
no undesired runs can be derived from such a model since new events can-
not take place without their adders. Dropping events can be simulated
through disabling such events, which cannot appear in reachable config-
urations anymore. Adding fresh events that are unforeseen, as well as
unforeseen dropping of events is covered in the next chapter of evolution.

69

3. Pre-Planned Changes: Dynamic Causality in Event Structures

Surgdoin
S BloodPum
InvSurgeon > C.Angio : P
¢ -—SeHeartFailure
N Y
ColdLeg®------------ ». o———poWakeU
g / WarmUp \ P
PatR. >@ Discharge
arhec StopSevMed g

DiscTube

Figure 3.12.: A DCES modeling for the join of the surgeon as a new member
who extends the plan by an angiography to be performed.

Besides, the connection between two structures: the structures before
adding fresh events (or dropping existing events) and the structure after
adding (or dropping) these events—i.e. how to move from one structure to
the other—and which changes are allowed on the first structure are still
missing. Furthermore, triggers of changes, i.e. modifiers in our approach,
are always included as part of the process itself. This might not always be
the case, since changes could be triggered by external events such as ones
from the environment [80]. These limitations are overcome by the notion of
evolution in the next chapter, where there is the option to include triggers
or exclude them. Additionally, criteria on when a change is accepted and
when not are presented in the next chapter.

70

4. Unforeseen Changes in
Workflows: Evolving Event
Structures

4.1. Introduction

The dynamicity shown in the different variants of Dynamic-Causality ESs
in Chapter 3 corresponds to pre-planned deviations that are captured at
build time. On the other hand, other changes can be unforeseen and need
to be handled dynamically during runtime [61]. This might be due to the
Distributed Problem Solving [34] nature of DCs, where agents contribute
to solving the problem, and thus change the plan. Additionally, this can be
seen in ad-hoc dynamic coalitions, that might emerge as a response to an
acute need [68], where no clear plan exists; rather, the plan evolves.

Observations made in the healthcare sector emphasize that a perfect
plan that takes into consideration all execution paths and possibilities
never exists. Rather the plan evolves until it reaches a final state where ob-
jectives are satisfied. For instance, in the Cardiac Patient use case, before
the heart failure was found, the plan was as captured by §; in Figure 4.1
and as was shown beforehand in Section 2.10. After the patient was trans-
ferred to the Care Unit, i.e. after the system run {PatRec} € C(d1), the heart
failure was found, and thus the plan evolved to the one illustrated by Fig-
ure 4.2. Up to now, DCESs do not support such dynamicity, which can be
seen in terms of changes in the model.

In process-oriented systems, where running workflows belong to a sche-
ma, changes can be seen in two levels [80]. The first is schema (or process
type) level. Changes of this kind usually happen due to changes in the
business environment such as changes in regulations. Such changes affect
current and future instances. The other kind is running-instance level.
Changes here are usually ad-hoc ones that occur as a response to excep-

71

4. Unforeseen Changes in Workflows: Evolving Event Structures

WakeUp

DiscTube

Figure 4.1.: The default plan for the cardiac patient after she was
admitted to the Cardiac Intensive Care Unit.

tions, e.g. the cold-leg problem, and are instance-specific. Here we abstract
from the type of a process or a workflow, and address dynamic changes
in general, that occur during the runtime of a workflow. Furthermore,
both levels of changes mentioned beforehand finally affect workflows of
running instances. However, in Appendix C we address evolution in sche-
ma-instance approach, and provide a framework that supports instance
migration based on the concepts and formalisms presented in this chapter.

We use the term trigger of an evolution, to denote the event that caused
the evolution, and to abstract from its nature, i.e. whether it is a change in
regulations at the schema level, or an exception [1] that is instance-specific.
Besides, we call such an evolution known in the literature, which is a pair
or a transition from one process to another, an evolution step. We reserve
the term evolution to be used with goal satisfaction in Section 4.6, to denote
that it occurs generally after several evolution steps.

DiscTube

Figure 4.2.: Evolution of the Cardiac-Patient workflow after the
discovery of the heart failure problem.

72

4.2. Correctness of Evolution w.r.t. the History of a Workflow

Overview In this chapter, we investigate how to model such evolution
steps formally, taking into consideration the history of a workflow, as well
as the evolution trigger. We present different approaches, in which the
trigger of an evolution step can be either external to the evolving structure
and thus untraceable, or internalized into the structures and traceable. Be-
sides, we show the relation between the presented approaches. Later on,
we define goal-orientation on evolving structures, such that an evolution is
guided by the goals of coalitions. By the end of this chapter, we will be able
to faithfully model the use case of the cardiac patient. Furthermore, we
establish a link between evolution and dynamic causality ESs of the last
chapter, to enable extracting changes and learning from an evolution step.
Accordingly, we connect all kinds of dynamicity offered in this work regard-
ing foreseen and unforeseen changes. The evolution formalisms presented
here in addition to dynamic causality ESs, with the link in between, form
a framework for modeling different types of changes in DCs workflows.

4.2. Correctness of Evolution w.r.t. the
History of a Workflow

Since the configuration {PatRec} preceded the evolution step, we call it the
history, represent it by H, and we represent different histories in succes-
sive evolution steps by Hi, Hg, ...etc. History representation could be
more expressive, and hold more information, e.g. being a trace or a poset,
showing the order in which events took place. For the time being, we focus
on configurations, while we discuss the use of other forms in Figure 4.9.

Since events of a given history will have happened when an evolution
step occurs, the new workflow or structure has to include such events as
part of the model. In other words, Figure 4.2 cannot exclude the event
PatRec. Furthermore, the history which is a system run of the old workflow
must be a system run of the new structure. Otherwise, the new workflow
will not be able to reflect what happened beforehand. To clarify this, con-
sider the example illustrated in Figure 4.3 where the cold-leg problem was
found after the blood pump was implanted, and right after the Dr’s visit,
i.e. after the history Ho = H; U {BloodPump,DrVis} where H; = {PatRec}.
The cold-leg disabled the warming-up process, and led to changes in the
plan such that a surgeon was needed in the DC.

73

4. Unforeseen Changes in Workflows: Evolving Event Structures

WakeUp
BloodPump

Discharge

StopSEvMed
DiscTube

Figure 4.3.: Evolution of the Cardiac Patient workflow after the dis-
covery of the cold-leg problem.

Figure 4.3, for example, cannot include the case that PatRec is in con-
flict with DrVis. This would contradict then with what happened before-
hand, since Hy would not be a configuration of the structure in Figure 4.3.
Moreover, in the case that histories are considered to be traces, Figure 4.3
cannot include the case that DrVis — PatRec, since the sequence PatRec,
BloodPump, DrVis would not be a trace in Figure 4.3.

On the other hand, evolution might lead to dropping events that were
part of the old structure, as long as such events do not belong to the history.
Changes in regulations, for instance, might force re-ordering the events.
For example, Doctors might decide that the blood pump implanting must be
done before the first visit by morning, i.e. BloodPump — DrVis. This does
not contradict with the history captured by the trace PatRec, BloodPump,
DrVis since it would still a trace w.r.t. the new order. Such kind of re-
ordering is known as Down-Sizing [35].

History Preservation in Dynamic Coalitions and Event Structures: The
concept that H should be a system run in the second workflow is called Ais-
tory preserving. Certain DCs, such as ad-hoc DCs [68], might have no sche-
ma defined in advance for their workflows. Since we are interested in such
kind of DCs, history preserving helps building a model in an incremental
way, i.e. step-by-step. This in turn yields a model that is able to faithfully
represent the whole system run of the DC, from the first event that took
place in the DC until the very end. Besides, in models where actions can
be repeated, e.g. DCR Graphs [55], actions can be changed in an evolution

74

4.2. Correctness of Evolution w.r.t. the History of a Workflow

step although they might have occurred [71] since such changes still af-
fect future occurrences. This is not the case in ESs, where events cannot
be repeated. Accordingly, changing future occurrences in ESs would mean
changing different events, which calls for preserving the history when the
model is to be built incrementally.

History preservation is one main criterion that should hold when a work-
flow changes dynamically [61, 65, 71]. It leads to Instance Migration in
business processes [80], which denotes the fact a running instance of a
given schema fits into the new schema after evolution. Assume the new
schema is represented by an ES §g, then the result of migration is that
the instance fits into the new schema 69 with the state H. Appendix C
addresses instance migration with schema evolution based on history pre-
serving. The future of the instance or the running workflow is then given
by the remainder §3[H] of 9 after H. Constraints on the future of the
running workflow w.r.t. to the new definition will be in the form of goal
satisfaction.

Correctness criteria of dynamic changes in the literature can be classi-
fied into two types [65]. The first is based on system runs, while the second
is based on graph equivalence. The second depends on comparing the old
to the new structure or model of the running instance in order to detect
whether the running instance can migrate or not. On the other hand, the
first depends on the system run or history of the instance. Here, we apply
constraints of the first type since we consider different kinds of ESs where
two ESs, e.g. a Bundle ES and a Stable ES, can be different structure-wise
but equivalent w.r.t. configurations. The second type would be more appro-
priate when considering one specific kind of ESs e.g. PESs.

Changes in the literature are meant to be the elementary modifications
that could be done against workflows [80]. Examples of such elementary
modifications are adding a new task, dropping an existing task, reordering
tasks, etc. This implies that the correctness criteria would be applied at the
level of such changes. For example, our concept of history preservation will
imply the following criteria on the elementary-modification level: no new
events can be added as a predecessor of an event e € H [60, 80], no events
can be dropped out of H [60], and so on. Such small changes are error-prone
[65] and might not happen alone, but along with other small changes. For
instance, reordering two tasks implies dropping the old flow and adding
a new one in the opposite direction. This drove others like [80] to define
change patterns to avoid errors. Therefore, we do not consider changes,

75

4. Unforeseen Changes in Workflows: Evolving Event Structures

rather the evolution of a workflow caused by the changes and represented
by the transition from the old one to the new one, and then our criteria are
checked against the new structure. The same is applied by others like [35]
using Flow Nets, where criteria are defined for the new net resulted from
applying a given change to the old one.

We represent an evolution step of §1, that takes place just after (at) the
history H € C(61) took place and that is triggered by v as §; %» 62. It

HeartFailure
- 5

{PatRec}
denotes the evolution step, triggered by the discovery of the heart-failure,

from &1 in Figure 4.1 to 62 in Figure 4.2. Note that this representation
does not capture any information about the modeling approach to evolu-
tion, which is illustrated next.

implies history preserving, i.e. H € C(62). For instance, §;

4.3. Various Modeling Approaches to
Evolution, and their Relation

Indeed, there are different approaches to model the evolution step that
took place after the cold-leg problem. The first approach is illustrated in
Figure 4.3 which does not include the trigger as part of the new struc-
ture. In other words, it does not track the event that triggered the change,
nor clearly capture the changes caused by the trigger. Rather it captures
the effects of the trigger, i.e. the warming-up is disabled. The other way
is to include the trigger, namely ColdLeg, in the new structure such that
the changes it brings to the structure are clearly modeled. For instance,
ColdLeg disables WarmUp. This is illustrated in Figure 4.4. The same
options apply for heart failure and Figure 4.2.

In the case of trigger inclusion, the workflow will continue running af-
ter the history H), = Hy U{ColdLeg}. From the remainder point of view, or
the future of the workflow after such a change took place, this is equiv-
alent to the old approach in terms of configuration transitions. In other
words, let (‘53,5§3 denote to the strcutures in Figure 4.3 and Figure 4.4 re-
spectively, then 63[Ha]=;55[H,]. The main difference between both is that
while the first approach focuses on the consequences of the evolution, the
second focuses on modeling the changes themselves. Besides, the trigger is
traceable in the second approach while it is not in the first. The second ap-

76

4.3. Various Modeling Approaches to Evolution, and their Relation

BloodPump

>0
StopSevMed
DiscTube

Figure 4.4.: Evolution of the Cardiac Patient workflow after the discovery of
the cold-leg problem as an EBES, capturing the changes caused
by the trigger.

proach could be seen as a transition not only to a new workflow definition,
but also to a new system run, i.e. (62,H2),(83,H;). While the first could
be seen as a transition to a new workflow definition with the same system
run, i.e. (89,Hs),(03,Hs). In Section 4.5 we will define a formalization of
evolution steps general enough to capture both cases.

Including the trigger into the model is not trivial. Rather it should be
modeled in such a way the trigger causes all the changes, assumed to take
place, to the original model itself. For instance the ColdLeg event should
disable the WarmUp event if to be included; that is what is captured by Fig-
ure 4.4. Whereas by assuming the opposite, the remainder of the structure
will not be equivalent then, in anyway, to the structure in Figure 4.3.

Indeed it is possible that a model includes the trigger, without completely
capturing the changes brought by this trigger. For example, assume §1 =
({a,b,c},»,) to be a PES, that evolved to 2 = ({a}, @, @) after H = {a} by the
trigger v. In other words, b,c are dropped after the evolution. The EBES
6'2 = ({a, b,v},{b ~> v},{a — v}) captures the evolution, including the trigger
v, but does not capture the changes brought to §;. Rather, it shows the
changes brought to b by disabling it, but not to c¢. Yet, d5[{a,v}]=¢d2lal.
This proves that reflecting changes is finer than including the trigger.

Definition 4.3.1. Let 61 %» b2 be an evolution step. We call d3:

1. Consequence-Reflective iff: v ¢ E9 where Es is the event set of 3.

77

4. Unforeseen Changes in Workflows: Evolving Event Structures

2. Trigger-Inclusive iff: {v} € C(62[H]).
3. Change-Reflective iff:

* b9 is Trigger-Inclusive, and
* C(61)=C(62)NnP(E2\{v})

Definition 4.3.2. Let §1,82,6), be three ESs, such that 61 ; 59, 61 E’ &,

where 8y is Consequence-Reflective, and &, is Trigger-Inclusive. Then &
and &, are said to coincide iff o[H1=¢545[H U {v}].

4.4. Inferring Changes from Evolution —
Process Learning

Consider an evolution step s = (6 1 %» 62) where 09 is effect-based, like the

one with the cold-leg problem in Figure 4.3. Changes to the workflow in
such an evolution step can be inferred systematically. In the case where
there is a process type, i.e. a schema, and instances of that type, change
inference might help generalizing instance-specific changes that might be
often repeated, to schema level, leading to process learning [66].

In our case, change inference is done by constructing a structure (let us
denote it as A) that runs like §; originally, until the trigger—which is an
internal event—takes place then A will run according to 62. In other words,
A would be Change-Reflective.

To show the concept, let us focus on PESs of Definition 3.2.1 as evolving
structures. Then the changes will be shown in terms of a Dynamic Causal-
ity ES that is presented in the last chapter. Since DCESs cannot model

Change ‘ ‘Consequence
Reflective ‘ ‘ Reflective

Trigger Inclusive
Figure 4.5.: The two approaches of Change-Reflective and Consequence-Refle-

ctive modeling, and the grey range of Trigger-Inclusive modeling
approach in-between.

78

4.4. Inferring Changes from Evolution — Process Learning

growing conflict, let us assume that given two PESs 61 = (E1,#1,—1) and
02 = (E9,#9,—2), the following constraint holds:

#onE2ct (4.1)

Informally speaking, E, the set of events of A, will contain events of both
E; and Eq, in addition to v. If A would behave initially like 61, — should
include —; but not —g which will be added through growing causality.
Additionally, the events of E9 should not be enabled before the change v
takes place unless they are old events, thus — should capture that v is a
predecessor of events of E9 \ E1. On the other hand # should include con-
flicts that remain after the change, while resolved ones are to be modelled
through growing causality ».

If A is to simulate the transition (§1,82), v must not only enable all new
events (E2 \ E1) through —, but also disable all dropped events (E1 \ E9)
through ». Besides, v should add all new causality (—g \ —1), and drop
all dropped causality through > including causality with dropped events.
Furthermore, v should resolve all conflicts in #9 \#; as well as conflicts with
dropped events. A is obtained through the internalization function inter as
follows.

Definition 4.4.1. Let s = (61 %» 62) be an evolution step such that 61 =

(E1,#1,—1), 09 = (Eg,#9,—2) are two PESs satisfying (4.1), and v ¢ E1 U
Ey. The internalization of v into 62 w.r.t. s is defined as inter(v,61,H,02) =
(E,#,—,>,»), such that:
e E=E{UEsuw{v}
#=C1UCouUC3 where:
- C1:=#1nE1\E)?
- Cq = #1Nn#g
- C3:= #;\E?
e —»=—1UliuUly where:
I, :={(e,v)|ec H}
- I3 :={(v,e)le€ (Ex\E1)}
* >={(e,v,e)|(e,e) e(—1\—2)Ae' € Eg}
» =D UN UR where:
- D :={(e,v,e)|ec(E1\Eg) A (e—1e)} to disable dropped events
- N :={(e,v,e")| (e,e') € (=2 \ —1)} to add new causality
- R := {(v,e,e') | (e,e') € (#1 \ #2)} to resolve conflicts

79

4. Unforeseen Changes in Workflows: Evolving Event Structures

WakeUp

N\

BloodPump

>e Discharge
StopSevMed

DiscTube

Figure 4.6.: The internalization of the cold-leg trigger into the Cardiac-Pa-
tient workflow, with change reflection.

Conflicts in the resulting structure can be explained as follows. C; rep-
resents conflicts ej#eg where both e1, eg are dropped afterwards. Cq rep-
resents conflicts in both #; and #9 (that never evolve), and Cs represents
conflicts between fresh events eq,es € Eo \ E1, as well as conflicts e{#eg
between fresh events on one side e; € Eg \ E1, and old events on the other
side eg € E1NE9. The rest of the conflicts are to be dropped by the growing
causality.

For instance, Figure 4.6 shows the internalization of ColdLeg into the
structure of Figure 4.3 where changes, i.e. disabling WarmUp and adding
Surglnv, are inferred to be made upon the execution of ColdLeg. It can be
seen that the structure in Figure 4.6 is configuration-transition equivalent
to the structure of Figure 4.4, although the former is a DCES while the
latter is an EBES.

The internalization structure is not only a DCES, but also a SSDC (cf.
Definition 3.5.7), as the following lemma shows.

Lemma 4.4.2. The internalization inter(v,51,H,89) is a SSDC.

Since we consider here PESs of Definition 3.2.1, and a DCES, where
the expressiveness is shown through transition relations which are more
discriminating than configurations, we show here that transitions of the
internalization structure before v takes place are exactly the ones of 1,
w.r.t. to reachable configurations.

80

4.4. Inferring Changes from Evolution — Process Learning

Trigger
Inclusive P

— Remainder

Change Consequence
Reflective Reflective
Internalization

Figure 4.7.: Transformations between Different Modeling Approaches of Evolution
Steps.

Lemma 4.4.3. Let A =inter(v,01,H,d2) = (E,#,—,>,») be an internaliza-
tion, and let —. be its configuration-transition relation. Let — be the
transition relation of 61. Then:

—p; NICEDIE = = N[PE\ whH? n [CA)I

As a result, C(61) = C(A), and since H € C(61) then H € C(A), i.e. 01 %» A.

To take the remainder of A after H U {v}, we need to prove that H U {v} is
a configuration, i.e. v is enabled after H and thus can take place. That is
what the following lemma proves.

Lemma 4.4.4. Let inter(v,01,H,d2) be an internalization with a configu-
ration-transition relation —.. Then H—.H U {v}.

Consequently, according to Lemma 3.5.12 we conclude the following.

Corollary 4.4.5. Let A =inter(v,01,H,d2), then 61 %» A holds, such that A
is Change-Reflective.

Accordingly, the remainder after H U {v} can be taken. Let H' = H U {v}.
Let A’ = A[H'] represents the remainder of A after H', and let &;, = §2[H].
A’ and &}, should be transition-equivalent. But since A contains the events
dropped in d9, which are part of the configurations that are unreachable,
we should focus on transition equivalence w.r.t. reachable configurations,
i.e. = of Definition 2.7.4.

81

4. Unforeseen Changes in Workflows: Evolving Event Structures

Lemma 4.4.6. Let A =inter(v,81,H,02) be an internalization. Then:
ALH U {v}]=462[H].
Corollary 4.4.7. Let A =inter(v,01,H,d2), then A and 62 coincide.

The limitations mentioned earlier regarding the use of PESs and non-
growing conflicts, highlight the need for a more expressive dynamic causal-
ity structure. This could be achieved through defining higher-order dy-
namic causality, where growing causality can be added, shrinking causal-
ity can be dropped, and so on. Based on that, ESs of any kind—except for
RCESs—could be used for 1,02 instead of PESs, later on they can be con-
verted to DCESs based on the expressiveness results of Section 3.5, where
the result of internalization would be then a higher-order dynamic causal-
ity structure. Besides set-based dynamic causality can be used to provide
growing conflict which will eliminate the need for Constraint (4.1). For
instance, a conflict a#b that is added by ¢ can be modeled by set-based
mutual disabling as {c,a} disables b and {c, b} disables a.

4.5. Formalizing Series of Evolution Steps

Based on the correctness criteria we have, namely history preservation,
we can define sequences of evolutionary steps. These sequences will form
the model on which constraints regarding goal satisfaction are defined. In
contrast to many related works, e.g. [35, 601, by such sequences we capture
not only a single step of evolution or a pair of structures, but successive
ones. This is necessary to model scenarios like the cardiac-patient use case.
Next to the dynamicity level proided by models like ESs regarding the
occurrence of events (represented though system runs), evolutionary steps
provide another level of dynamicity in system modeling namely the changes
that occur on the level of a structure. This is illustrated in Figure 4.8.

Definition 4.5.1. A running workflow is a pair (6,H) where § is an event
structure and H € C(9) is one configuration of d.

Since our correctness criteria are based on system runs, we denote a
change or an evolution in the workflow definition by having different sys-
tem runs, i.e. having no configuration-equivalence between the old and the
new workflow definition. We do not use inequality between structures to

82

4.5. Formalizing Series of Evolution Steps

b T

Yy
X1—X3 -
Ly ¢< Yoin
X
2 Ys

Figure 4.8.: The two-level dynamicity offered by Evolutionary Sequences

avoid the case that a PES, for example, is re-written in terms of a Stable
ES with the same configurations, which does not denote any evolution in
our case.

Definition 4.5.2. Let A = (§1,H1),(62,H3),... be a sequence of running
workflows. Then A is called a sequence of evolutionary running workflows,
or shortly an evolutionary sequence, iff for all i:

* H;eC(bi+1)

* HicH;

* §;i#t0i+1 —=>H;.1nNE; =H; where E; is the set of events of §;

* Vj.6;#6j<—H; #H,.

The first condition emphasizes history preservation. The second implies
incremental system runs. The third condition states that whenever an
evolution step takes place, the only events that might take place at this
step are the triggers, not to mix between system run events and triggers.
The last condition ensures distinct running workflows w.r.t. configuration-
equivalence. Figure 4.9 illustrates how to increment system runs in case
of traces, posets and configuration transitions.

Evolutionary sequences are able to capture trigger-inclusion and change-
reflection as well as trigger-exclusion with H;,1 = H;, and allow mixing all
of them. Theoretically, they can also handle the case that not only one trig-
ger or one exception takes place in a step, but a set of them, which can be
concluded by H;.1 \ H;, where the execution resumes after all of them, i.e.
all of them join the history. On the other hand, when the workflow defi-
nition never changes in terms of system runs, e.g. (§,H1),...,(5,H,) where

83

4. Unforeseen Changes in Workflows: Evolving Event Structures

Semantics of ESs Incrementing System Runs through:
. Set Containment Rel.: let ,A’ be two sets of events,

Configurations

then: hch

Trace Prefix Rel.: let A =eq,...,en
Traces ,

then: h' =eq,...,em,....,en

Poset Prefix Rel. [62]: Let A = (A,<) and h' = (A/,<')
Posets be two partially ordered sets,

then: ACA'A ==(<'n(A’'xA)) (cf Section 2.4)
Configuration Configuration Transition Rel. — : let h,h’ be two
Transitions configurations, then: A—ch’ (cf. Chapter 3)

Figure 4.9.: Incrementing system runs w.r.t. different system run representations, in-
cluding: configurations, traces, posets and transitions.

H; cH;,1 for 1 <i<n, then the sequence simply models step transitions
by showing growing configurations.

On the other hand, an evolutionary sequence can still show the case
where an ES is re-written in terms of another kind of ESs, but in this case
the configuration must be strictly growing. However, for the ease of discus-
sion, we assume in the rest of this section that whenever we use different
ESs that are unequal, then they are not configuration-equivalent. Further
examples like the evolutionary sequence (61,H1), (62,H1), ..., (6,,H1),
(0n,H2) where H1 ¢ Hy shows how the workflow evolves in several steps
before the system run proceeds. On the other hand, cyclic sequences like
(61,H),(02,H),(61,H) are not evolutionary due to the last condition. Simi-
larly, the sequence (6,H),(8,H),... is not evolutionary.

So far, by introducing Evolutionary Sequences, we are able to fully model
the evolution scenario of the Cardiac-patient use case. Figure 4.10 shows
that.

4.5.1. Refinement and Equivalences of Evolution Steps

Let A = (61,H1),(62,H2),(03,H3) be an evolutionary sequence. Then the
sequence A" = (§1,H1),(52,H,),(82,H2),(53,Hs), such that H), c Hy, is evo-
lutionary. A’ holds the same evolution steps, but shows more details about
the progress of the system run than A. This leads us to the concept of
evolution step refinement.

84

4.5. Formalizing Series of Evolution Steps

WarmUp WakeUp (a)

DrVis
8 v1 = HeartFailure
PatR 5 H; = {PatRec}
tRec > <=
& StopSevMed z
(=]
DiscTube
(b)
WakeUp
DrVis
&
Surglnv © PatR 5
t > <
¢ atiec StopSevMed E
a
ColdLeg DiscTubé
DrVi WakeUp
VIS BloodPump o Vg =
C g ColdLeg
PatRec Stop'SevMed é Hp = {PatRec,
A BloodPump, DrVis}
DiscTube
Surgdoin .
Surglnv Angio (d)
-Y WarmUp
vs = SurgJoin ColdLegg-----9:_
Hj3 = {PatRec, ‘ WakeUp
BloodPump, DrVis, DrVis

BloodPump

ColdLeg, SurgInv}

PatR >0
athec StopSevMed

Discharge

1 1
(e) CloseqVesse DiscTubé
Surglnv vy =
ClossedVessel
ColdLeg@z - ------- > H,4 = {PatRec,

BloodPump, DrVis,
ColdLeg, SurgInv,
Angio}

WakeUp
BloodPump

StoI;SevMed

Discharge

DiscTube
Figure 4.10.: The evolution sequence of the cardiac-patient use case with a Conse-

quence-Reflective PES in (b), a Change-Reflective EBES in (c), and a
Trigger-Inclusive DCES through Internalization in (e).

85

4. Unforeseen Changes in Workflows: Evolving Event Structures

Definition 4.5.3. Let A =(61,H1),(62,H3),... be an evolutionary sequence.
Let A denotes the set {(51,H1),(62,H>),...}. Let f be a function defined over
A such that f(6,H)={(6,H') | H < H A(6,H’) is a running workflow}. f is
called a refinement function of A iff for all i:

* (6;,H))ef(6;,H;)

* V(6;,H1),(0;,H2)€ f(6;,H;).HicHyVvHscH;

e Y(6; HNef(6;,H;).6;1=6; = H >H;_ 1.

* 6;#t0i-1= f(6;,H;)=1{(6;,H;)}
Let Raf = Uf(6i,Hi). R, is called a refinement of Aw.rt. f.

1

The first condition denotes that a pair should be included in its refine-
ment as an upper bound w.r.t. H. The second ensures a total order within
the refinement of a pair, w.r.t. €. The third ensures a lower bound w.r.t.
H. The last condition ensures that evolution steps are not refined. For
consistency, (59, Hy) is considered the empty structure with the empty con-
figuration.

Definition 4.5.4. Let A be an evolutionary sequence with an order <, and
let f be a refinement function of A. Let A' = (61,H1),(62,H5),... be a lin-
earization of Ray. Let f':Rx — A be function such that f'(6,H") = (§,H)
where f(6,H)>(5,H'). A is called a refinement of A iff for all i:

(6: #6i1 N6, H) < f'(6i+1,His1)) V(6; =641 AH; cHiyq).

For example: (51,H),(51,H1),(52,Hz) and (§1,HY),(61,H1),(52,Hs) are
two refinements of the evolutionary sequence (61,H1),(82,H2).

It can be proved that a refinement of an evolutionary sequence is itself
an evolutionary sequence. As a result, the progress of the run in the same
process can be abstracted while looking from an evolution perspective. This
leads us to define an equivalence relation over evolutionary sequences.

Definition 4.5.5. Let A1,Ag be two evolutionary sequences. Let t be a
function defined over evolutionary sequences, such that t(A) = {(5,H,5") |
3i.6=6; 0" =6,4,1 N6 #06'). Then we define the relation = as A1 = Ag iff
t(A1) = t(Ag).

It is clear that = is an equivalence relation. Let [A] denotes the class of
evolutionary sequences equivalent to A w.r.t. =. [A] is called an evolution-
ary trace. Traces abstract from the internal progress of system runs. For

86

4.6. Evolution towards Goal Satisfaction

instance, a sequence and its refinement belong to the same evolutionary
trace. Besides, the two sequences of the last example belong to the same
trace.

4.5.2. Special Cases of Evolution

Let us examine the evolutionary sequence (61,Hy),(6",H1),(62,Hs) where
H; € C(61). It shows that the detailed changes never affected the system
run which could have progressed through the old process. That is what we
call ineffective changes w.r.t. the execution path. It can be summarized to
the sequence (61,H1)(02,H2) which shows that all changes occurred at once
leading to an evolution step that took place at Hj.

Indeed the last case is a generalization of the case (61,Hy), (6’1,H0),
(6" ,Hy), (62,H1) which can be summarized to (81,Hy), (62, H1). This leads
us to the following definitions.

Definition 4.5.6. Let A = (61,H1),... be an evolutionary sequence. A is
Static-Evolution-Free, abbreviated as SEF, if and only if hi H,=H;.1.

To obtain a SEF sequence out of an evolutionary sequence A, assume we
have a sub-sequence of A, made up of all the instances sharing the same
configuration, then we take only the first instance out of it and drop the
rest, and so on.

Definition 4.5.7. Let A = (§1,H1),... be an evolutionary sequence. A is
Effective-Changes, abbreviated as EC, if and only if Bi.H;. 1 € C(5;).

Clearly, EC sequences are SEF.

4.6. Evolution towards Goal Satisfaction

The correctness criteria of evolution are discussed only w.r.t. the history of
a workflow so far. For the future of a workflow after an evolution step takes
place, we consider goals. Goals capture the objectives a system should sat-
isfy, and form the root to detect conflicts in requirements; yet they are
absent from many formal models [30]. Goal-Oriented Requirements Engi-
neering and Elaboration [78] are concerned with defining goals, and their
use in structuring and modifying requirements. This includes refining
goals into sub-goals, defining their relations in-between, and the way to

87

4. Unforeseen Changes in Workflows: Evolving Event Structures

satisfy them. Since DCs are directed by their goals [59], the constraints
over the future in evolutionary sequences should focus on satisfying a given
goal.

In Goal-Oriented Requirements Engineering [29, 78], goals can be clas-
sified into different types. Some classify them as functional and non-func-
tional goals [78]. Functional are concerned with services the system is
expected to deliver at the end, while non-functional! are concerned with
how the system delivers services rather than what it delivers. Others clas-
sify goals as soft and hard goals [28]. Satisfaction of soft goals cannot be
established in a clear-cut way [78], while the satisfaction of hard goals can
be established in a clear-cut sense and verified by verification techniques
[29].

Furthermore, goals are refined to subgoals. Subgoals can be connected
through links (e.g. AND, OR links) [28]. Subgoals of soft goals can be mea-
sured depending on how much they contribute to the main goal [78]. AND
links denote a conjunctive nature of satisfaction, while OR links denote a
disjunctive nature. For instance, in the Cardiac-patient use case, the goal
of Discharge is of a hard type, and refined into three subgoals: WakeUp,
DiscTube, and StopSevMed, connected by AND links. Goals can be for-
mally refined as in [30] according to patterns. However in our case goals
are of a medical nature and are refined usually by medical personnel, ac-
cording to a pre-defined medical guideline.

Goals are usually expressed in terms of properties to be maintained in
the system [29, 78]. For example, KAOS uses Temporal Logic with real
time capabilities to assert properties [28, 29]. Since we are using ESs as
a formalism, goals would be expressed in our case in terms of events to be
reached. We then represent a goal by a set of events, which all must take
place for a goal to be reached, i.e. a conjunctive nature. For sub-goals with
OR links, i.e. of disjunctive nature, disjunctive causality of ESs like Dual
and Stable ESs could be used to model that.

Additionally goals, of which satisfaction is done through temporal behav-
ior verification, can be Achieve and Maintain goals [28]. Achievement goals
should eventually take place, while Maintain goals should be permanently
available, unless some other property holds. For instance, the Discharge

1No common definition of non-functional requirements exists. Glinz [38] addresses this prob-
lem by showing the different definitions available and the problems accompanied with
each, and then contributes concepts for solving these problems.

88

4.6. Evolution towards Goal Satisfaction

goal of the Cardiac-Patient use case should be eventually reached, i.e. an
Achieve goal. This matches the concept of a DC that starts with an un-
reached goal, and progress until the goal is reached finally.

To model DC workflows with goals, we follow the same approach as DCR
Graphs [54] and equip our evolutionary sequences with a set of events—
representing a goal—to be reached. In order to achieve a given goal, and
because we are addressing evolving structures, the goal must be reachable.
In other words a structure should evolve and adapt such that the set of goal
events becomes reachable. To this end we introduce the concept of evolution
w.r.t. goals. For instance, the set G = {StopSevMed, DiscTube, WarmUp,
WakeUp, Discharge} becomes reachable in the structure of Figure 4.10 (b)
after adding the blood pump.

Definition 4.6.1. Let MC(6) denote the set of maximal configurations of an
ES 6 w.rt. <, and let G denotes the set of goal events. An evolution step
(61,H1),(62,H3) is said to be a Goal-Evolution iff 3C € MC(62[H2]) .G = C.

We focus on the remainder of §9 since goal events might be reachable
before the history Hy takes place, but not afterwards. For example, the
event Discharge is reachable in Figure 4.10 (c), but not after the event
ColdLeg takes place. Besides, we consider a set of events reachable in a
structure if there exists a maximal system run that contains that set. This
allows for extending the workflow with new system runs such that the goal
events are reachable again. For instance, the event Discharge was not
reachable anymore in Figure 4.10 (c) after H = {PatRec, DrVis, ColdLeg},
but by extending the structure in (d) and (e), it became reachable again.
This is different from other studies, e.g. [27], that address non-evolving
structures and consider a set of events reachable iff all maximal system
runs contain this set.

Since a goal would never be reached before it becomes reachable, the
concept of Evolution cen be used to warn the modeller or the designer of
a workflow whenever an exception takes place. For example, the cold-leg
disabled the goal such that a further adaptation was required to make the
goal reachable again. Such a check can be done for example with our tool
via linearization and reachability checking as illustrated in Section 1.6.

In Indulgent Algorithms [39] which tolerate failure detectors in Dis-
tributed Algorithms, Liveness [70] is eventually ensured after regaining
stability in the system. Similarly, we assume that adapting the workflow
such that goals become reachable again after an exception, which might be

89

4. Unforeseen Changes in Workflows: Evolving Event Structures

seen as stabilizing the system in Indulgent Algorithms, would lead eventu-
ally to goal satisfaction. This is due to the reason that progress in system
runs is usually made towards a maximal system rum which contains goal
events. Measures about how far the progress is from reaching the goal can
be defined; this is discussed in Section 4.7. The goal is reached then in a
DC workflow, represented by an evolutionary sequence, iff 3i. G < H;.

In some other DCs, goals are of the type Maintain. For instance, as taken
from [68], the goal in a given DC is to perform read-write operations per-
sistently. Note that in event structures such goals would be represented
as different events since events cannot be repeated. Accordingly the defi-
nition of evolution could be adapted accordingly. However since the goal in
our use case is of the type Achieve, we base our definition on type Achieve.

4.7. Evaluation

In this chapter, we provided a general understanding of how evolution in
workflows can be modeled formally. Since we focus on case management, a
main criteria to consider was preserving the history of the case workflow,
that preceded the evolution. We compared our approach to related works
and showed the big overlap concerning history preserving as a major crite-
ria that leads to migrations of instances when considering schemas.

To model an evolution step, we provided different possible approaches.
One major approache was concerned with modeling the effects and conse-
quences of the evolution, without an explicit modeling of changes nor how
they are caused by the trigger. We called this approach Consequence-Refle-
ctive. Another proposed approach was concerned, on the other hand, with
modeling changes brought by the trigger; we called this approach Change-
Reflective. Change modeling would require and imply capturing the evo-
lution trigger as part of the model, while consequence capturing would not
allow for tracing the trigger as part of the running-workflow history.

Given an evolution step modeled in a Consequence-Reflective approach,
the need might emerge in some cases to extract the changes that were ap-
plied to the first (old) workflow definition, and that led to the second (new)
definition. Reasons behind could be the ability to trace the evolution trigger
in the history or run of the workflow; or the wish to learn from the workflow
evolution, in order to apply the same changes to other similar workflows or
to the schema type as a generalization. To that end, we provided a mech-

90

4.7. Evaluation

anism for inferring such changes, that would give the result in the form of
a DCES of Section 3.5 since changes would become a past by the moment
of learning. This mechanism would then connect the two main models of-
fered in this thesis, namely evolution for unforeseen changes and Dynamic
Causality structures for pre-planned changes, and integrate them both in
one framework.

Finally, to limit arbitrary changes, and to guide evolution, certain and
constraints were defined in a way suitable and unique for our use case
of Dynamic Coalitions. These criteria were defined in form of goals to be
satisfied. Goals were defined in form of events to be reached since the
formalism we use is event-based. When such events become unreachable
due to exceptions or changes, the structure then should be adapted such
that events of the goal become reachable again. This was formally modelled
through the concept of Evolution. Beforehand, evolutionary steps were
formally defined and their modeling features were well analyzed through
the notion of evolutionary sequences. Evolutionary sequences allowed for
capturing both evolution steps as well as progress in the system run. As
well, relations and equivalences between different sequences were defined,
next to methods allowing to focus on evolution steps and abstract them
from other details like a system run progress.

Application and Practical Considerations: One main application of the
formalisms of this chapter would be based on the constraints defined over
evolution. This includes history preserving constraints as well as goal-
orientation ones. Whenever history preserving is violated by a new evolu-
tion step, a warning can be given to the modeller informing her that she
is deviating from the case being modelled. On the other hand, since a pre-
defined goal is to be reached finally, a warning can be given to the modeller
whenever the defined goal becomes unreachable in any evolution step.

Measuring Progress towards Goal Satisfaction: Measures of how far
a running workflow is from reaching a goal can be defined depending on
the case. Soft Goals [28] for instance, which measures how sub-goals con-
tribute positively or negatively to reach a goal, can be used. As well, a
maximum number of evolution steps, that can take place before the goal
is satisfied, can be defined as a measure. On the other hand, when con-
sidering a real time situation as in hospitals and surgery departments,

91

4. Unforeseen Changes in Workflows: Evolving Event Structures

a maximum timeout can be defined for a goal to be satisfied, where the
workflow can evolve to make the goal reachable during the timeout. That
is indeed the situation in the Cardiac Intensive Care Unit (CICU) were we
obtained the case study from. In this work, we give the basic definition and
notion of goal satisfaction, such that changes are not left arbitrary, while
other variants of constraints and applications can be based on the basic
definition and understanding offered here.

92

5. Domain-Oriented
Extensions: Priority in
Event Structures

5.1. Introduction

From the several visits to, and observations made in, Charité Hospital in
Berlin, the need for quantitative and qualitative extensions, e.g. timing,
of the underlying model in medical scenarios in general were found. For
example a doctor should join in an hour. Such extensions are not part
of the core modeling of dynamic coalitions nor adaptive processes, rather
orthogonal and can be used in general processes. The most important ones
are:

¢ Timing; defining maximum timing for events occurrences, minimum
timing and delays. Example: not less than one hour after the second
doctor’ s join, the first Dr. on duty can leave.

* Urgency; where some events must occur at some point of time. Ex-
ample: when a patient gets a stroke, the ambulance must involve to
transfer her to the emergency.

* Priority; where some events should have higher priorities than oth-
ers to happen. Example: when a stroke patient has another stroke
during the rehabilitation, the ambulance has a higher priority to in-
volve and interrupt other running members.

As shown in 2.9, Timing and Urgency have been added to event struc-
tures through several publications [43, 44, 79, 24]. What is still missing
and have not been added to ESs is the notion of priority.

93

5. Domain-Oriented Extensions: Priority in Event Structures

Overview In this chapter, we add priority to certain kinds of ESs as a
state of art, including disjunctive causality, disabling and causal ambigu-
ity. The rest of event structure types e.g. Stable ESs can be extended with
priority analogously. Since this chapter was developed before the concept
of dynamic causality, priority was not considered for variants of Dynamic
Causality ESs. In Section 5.2, we start with the simplest form of ESs, the
Prime ESs, add priority to it, discuss the overlapping between priority and
the other relations of Prime ESs, and show how to reduce this overlap-
ping. In Section 5.3, we add priority to Bundle ESs and investigate the
relation between priority and other event relations of BESs like enabling
and precedence. In Section 5.4 and Section 5.5 we then study the two ex-
tensions Extended Bundle ESs and Dual ESs of Bundle ESs and how their
different causality models modify the relationship of priority and the other
event relations of the ESs. In Section 5.6, we summarize the work and
conclude by comparing the results, and examine the applicability by an ex-
ample from healthcare. As stated in Section 1.8, this work was published
before in [3].

Related Work. Priorities are used as a mechanism to provide interrupts
in systems concerned with processes. For example, in Process Algebra,
Baeten et al. were the first to add priority in [6]. They defined it as a par-
tial order relation <. Moreover, Camilleri, and Winskel integrated priority
within the Summation operator in CCS [22]. Also, Liittgen in [51] and
Cleaveland et al. in [25] considered the semantics of Process Algebra with
priority.

In Petri Nets, which are a non-interleaving model like Event Structures,
Bause in [10, 11] added priority to Petri Nets in two different ways: static
and dynamic. Dynamic means the priority relation evolves during the sys-
tem run, while the static one means it is fixed since the beginning and will
never change till the end. In that sense, static priority is what we define
here. Priority could be seen in Programming Languages. In Ada 95 for
example, priority can be assigned to tasks (processes) which were added
natively to the language [56] supporting real-time systems.

94

5.2. Priority in Prime Event Structures

(a) (c)

Figure 5.1.: A Prime ES without priority in (a), with priority in (b),
and after dropping redundant priority pairs in (c).

5.2. Priority in Prime Event Structures

If we add priority to PESs, it should be a binary relation between events
such that, whenever two concurrent events ordered in priority are enabled
together, the one with the higher priority must pre-empt the other.! Thus
we add a new acyclic relation < € E x E, the priority relation, to Prime ESs
and denote the pair (6, <) as prioritized Prime ES (PPES). Later on, we add
priority in a similar way to other kinds of Event Structures. Sometimes,
we expand a prioritized ES (6, <), where 6 =(E,r1,rg), to (E,r1,re,<).

Figure 5.1 (b) illustrates a prioritized variant of Figure 5.1 (a), where the
priority relation is represented by a double-lined arrow from the higher-
priority event to the lower-priority one, showing the direction of precedence
(pre-emption). Sometimes representing both an Event Structure and its
associated priority relation in the same diagram becomes too confusing. In
that case we visualize the priority relation in a separate diagram next to
the structure.

Let us define the interpretation of < in a formal way: let 0 =eq,...,e,
be a sequence of events in a PPES §’ = (§,<). We call ¢ a trace of ¢’ iff it is
1.) a trace of §, and 2.) satisfies the following constraint:

Vi<n.Vejen€d.(ej#en Aejepcens(o;) A ep<e;) = j<h (5.1)

For example, the sequence ebad is a trace of Figure 5.1 (a) but not of
Figure 5.1 (b) due to priority. Let us denote the set of traces of a structure

1In fact we could define priority as a partial order. However after dropping redundant pri-
ority pairs as explained later the priority relation is usually no longer transitive, i.e. no
longer a partial order.

95

5. Domain-Oriented Extensions: Priority in Event Structures

as T(5). By definition, the traces of a PPES §’ = (§,<) are a subset of the
traces of the Prime ES §.

Proposition 5.2.1. T(5, <) € T(5).

If we analyze Figure 5.1 (a) and (b) we observe that, because of the con-
flict relation, no trace can contain both ¢ and d. And even without the
priority relation the enabling relation ensures that e always has to precede
d. Since neither ¢ and d nor e and d can be enabled together, i.e. do never
compete, applying the priority relation between them is useless or trivial.
Indeed we can always reduce the priority relation by dropping all pairs
between events that are under < or # without affecting the set of traces.

Theorem 5.2.2. Let (E,#,<,<) be an PPES, and let
<= <\{(e,e') | e'eve' seve=<e'}.
Then T(E,#,<,<) =T(E,#,<,<').
Proof. Straightforward from the definitions of traces, (5.1), and (2.1). O

Figure 5.1 (c) shows the result of dropping the priority pairs that are redun-
dant in Figure 5.1 (b). Note that after dropping all redundant pairs, there
is no overlapping, neither between the priority and the enabling relation,
nor between the priority and the conflict relation. The following theorem
insures minimality of reduction.

Theorem 5.2.3. Let (E,#,<,<) be an PPES, and let
<= <\{(e,e") | e'teve'seve=e'} and let <" c <.
Then T(E,#,<,<) #T(E,#,<,<").
Proof. Straightforward from the definitions of traces, (5.1), and (2.1). O

Such a result is good for a modeler, since it implies unambiguity about
whether a priority relation affects the behavior or not. In other words, af-
ter dropping all the redundant priority pairs, the remaining priority pairs
always lead to pre-emption, limit concurrency and narrow down the possi-
ble traces. This is not the case for the following ESs, since they offer other
causality models.

96

5.3. Priority in Bundle Event Structures

(b) ()

Figure 5.2.: A Bundle ES without priority in (a), with priority in
(b), and after dropping redundant priority pairs in (c).

5.3. Priority in Bundle Event Structures

Again we add priority < € E x E to EBESs as a binary acyclic relation
between events such that, whenever two events are enabled together, the
one with the higher priority pre-empts the other. We denote ' = (8,<) =
(E,#,—,<) as prioritized Bundle ES (PBES). Figure 5.2 (b) illustrates a
prioritized version of the BES in Figure 5.2 (a).

Also the semantics of < is defined similarly to Prime ESs. A sequence of
events o = e1,...,e, is a trace of (f,<) iff 1.) o € T(f) and 2.) o satisfies
the following constraint:

Vi<n.Vejencd.(ej#en Aejepcengo;) Nep<ej) = j<h (5.2)

Again the traces of a PBES (f, <) are a subset of the traces of the corre-
sponding BES .

Proposition 5.3.1. T(f, <) < T(f).

For example the sequence cad is a trace of the BES in Figure 5.2 (a), but
it is not a trace of the PBES in Figure 5.2 (b). Of course a larger priority
relation filters more traces out than a smaller one.

Lemma 5.3.2. Let (B, <) and (B,<') be two PBES with <' < <. Then:
T(B,<) =T(B,<').

Proof. Straightforward from the definition of traces, (5.2), and <’ c <. O

97

5. Domain-Oriented Extensions: Priority in Event Structures

We adapt the notion of a configuration to prioritized BESs such that
o € C(B,<) for a PBES (f,<) iff 30 € T(B,<).C = 7. In Section 2.4 the
semantics of BESs is defined by families of posets. Unfortunately doing the

same for PBESs is not that simple. Consider the poset of the
BES g in Figure 5.2 (a). According to Figure 5.2 (b), d has a higher priority

than a, i.e. ¢ <d. Hence |2 ¢ — d does not describe the semantics of the

PBES (B, <) with respect to the configuration {a,c,d}, because cad € T(f)
but cad ¢ T(B,<). In fact we cannot describe the semantics of PBESs by
families of posets in a simple way. Instead, to describe the semantics of

(B, <) with respect to {a, c,d} we need the two different posets (¢ — ¢ — d

and ¢ —d—a]

The enabling relation defines precedence between events as used for <¢
in (2.4.3), whereas priority rather defines some kind of conditional prece-
dence. Priority affects the semantics only if the related events are enabled
together. Thus the same problem with the definition of posets appears for
all kinds of Event Structures that are extended by priority. We leave the
problem on how to fix the definition of posets as future work.

5.3.1. Priority versus Enabling and Conflict

Again, as in Section 5.2, we can reduce the priority relation by remov-
ing redundant pairs, i.e. pairs that due to the enabling or conflict relation
do not affect the semantics of the PBES. First we canlas already done in
PPES | remove a priority pair e<e’ or e’ <<e between an event e and its cause
e’, because an event and its cause are never enabled together. Therefore
e.g. the pair d < ¢ in Figure 5.2 (b) is redundant because of {b,c} — d. Also
a priority pair e < e’ between two events that are in conflict is redundant,
because these conflicting events never occur in the same trace. Consider
for example the events b and c in Figure 5.2 (b). Because of b#c the pair
¢ < b is redundant.

Lemma 5.3.3. Let f=(E,#,—) be an BES, and let e, e’ € E such that:
IXcE.ecXAX—e'.
Then: Yo =ej,...,e, € T(B) . Pi<n.e,e’ €eng(oy).

Proof. Leto =eq,...,e, € T(B) and X < E such that e € X AX — ¢’. Assume
e € eng(o;) for some i < n. Then:

98

5.3. Priority in Bundle Event Structures

2.3
eEenﬁ(oi)/\eEX/\Xwe' (:')

2.4
ecengo)Aee X AX —e A(Ve" € (X \fe}). ette”) 2

2.4
X—e'n(ve'eX. " ¢q;) @4 e’ ¢ eng(o;)

Hence fi<n.e,e' e eng(0;). O

The last lemma proves that an event cannot be enabled together with its
cause in BESs, i.e. whenever an event e is in a bundle set X pointing to e’,
i.e. such that X — ¢/, then e and e’ cannot be enabled together. This lemma
helps proving the next theorem regarding priority reduction.

Theorem 5.3.4. Let (f,<) = (E,~,—,<) be a PBES, and let <' = <\
{(e,e'),(€se) | ette’ V(IXCE.e€ X AX —e')}. Then T(B,<) =T(B,<').

Proof. T(B,<)<T(B,<’) follows from Lemma 5.3.2.

To show T(B,<') < T(B, <), assume a trace o = ej,...,e, € T(B,<'). We
have to show that o € T(g, <), i.e. that o € T(f) and that o satisfies Condi-
tion (5.2). o € T(p) follows from o € T(B,<') by the definition of traces. o
satisfies Condition (5.2) when Vi <n.Vej,e, €G.ej#epNej,ep €eng(o;)A
ep<ej = j<h. Letusfixi<n and ej,e, € 5. Assume e; # ey, ej,ep, €
eng(o;), and ey < e;. It remains to prove that j <h. Because of the defini-
tion of </, there are three cases for), <e;:

(5.2)
Case e, <'e;: Thenep<'ejnejepcdnoeT(f,<') = j<h.
Case e #tep, Vv eptte;: This case is not possible, because it is in contradiction
to (2.4.2),(2.4), and e;,ep €0.

Case 3XcE. (e, € XAX —ej)V(eje X AX — ep): This case is not possi-
ble, because it is in contradiction to e, ej € eng(o;) and Lemma 5.3.34

Note that priority is redundant for all pairs of events that are directly re-
lated by the bundle enabling relation or the conflict relation regardless of
the direction of the priority pair. We say that this reduction is done at the
structure level, since it is done w.r.t. the relations which are part of the
Event Structure.

In PPESs enabling is a transitive relation and we can drop all priority
pairs between events that are related by enabling. In the case of PBESs
neither conflict nor enabling are transitive relations. For example in the

99

5. Domain-Oriented Extensions: Priority in Event Structures

e1 e9 es
event structure @-----@-----@ (which can be both; a PES as well as a

BES) we have ej#eg and eg#tes but not ej#e3. Accordingly we cannot drop
a priority pair e; < e3 because else the sequence eje3 becomes a trace.

However in PPESs enabling is transitive, so whenever e; <eg and eg <
es there is e; < e3 and we can also drop priority pairs relating e; and es
(compare e.g. with e, a, and d in Figure 5.1). In PBES the situation is
different. For the PBES in Figure 5.2 we have {a} — b and {b,c} — d but d
does not necessarily depend on @ and thus we cannot drop the pair a <d
since cad ¢ T(B,<). Unfortunately this means that we do not necessarily
drop the whole redundancy in priority if we reduce the priority relation as
described in Theorem 5.3.4. For example e <eg is redundant in ({e1,eg,es},
@, {{e1} — eg,{ea} — es}, {e1 < eg}), because in this special case e; is indeed a
necessary cause for e3. Thus for PBESs <’ is not necessarily minimal, i.e.
we cannot prove V<" c <. T(E,~,—, <)) # T((E,~,—,<")) as we have
done in Theorem 5.2.3 for PPESs.

For the PBES in Figure 5.2 the reduction described in Theorem 5.3.4
indeed suffices to remove all redundant priority pairs. The result is pre-
sented in Figure 5.2 (c).

5.3.2. Priority versus Precedence

In order to identify some more redundant priority pairs we consider config-
urations and posets. If we analyze for example the configurations {a,b,c}
and {a,c,d} of the PBES in Figure 5.2, we observe that, because of {a} — b
and {b,c} — d, the priority pair a <d is redundant in the first configuration
while it is not in the second one. Thus, in some cases, i.e. with respect to
some configurations (or posets), we can also ignore priority pairs of events
that are indirectly related by enabling. Since such a redundancy is rela-
tive to specific configurations and their traces, and since dropping priority
pairs affects the whole set of traces obtained from a ES, we use the term
“ignorance” rather than “dropping” for distinction, and we say that this ig-
norance is done at the configuration level. Priority ignorance is necessary
while linearizing configurations and trying to obtain traces.

The cases in which priority pairs are redundant with respect to some
configuration C are already well described by the precedence relation =¢,
i.e. we can identify redundant priority pairs easily from the posets for C.
Note that in BESs (and also EBESs) each configuration leads to exactly

100

5.3. Priority in Bundle Event Structures

one poset. The priority pair a < d is obviously redundant in the case of

but not in the case of .

To formalize this let T(8,<) [¢ := {0 |0 €T(B,<)Ad=C} be the set of
traces over the configuration C < E for some BES f = (E,~>,—). Therefore
T(B,<) I¢ consists of all the traces of T(f, <) that are permutations of the
events in C. Then for all configurations C all priority pairs e < e’ such that
e’ =c e ore=c e’ can be ignored.

Theorem 5.3.5. Let (f,<) be a PBES, (C,<¢) € P(f), and let
<= <\{(e,e')1e'zceve=ce'}.
Then T(,B, <) fc = T(ﬁ, <’) Fc.

Proof. Note that by induction on < and Lemma 5.3.3, e; <¢ e as well as
e <c e, imply that e; and e;, cannot be enabled together in a trace of
T(B) c. With this argument the proof is straightforward from the defini-
tions of traces, <, traces over a configuration, Lemma 5.3.2, and (5.2). O

Consider once more the PBES (f,<) of Figure 5.2 with respect to the
configuration {a,b,d}. We have {a} — b, {b,c} — d, and a <d. As ex-
plained before we cannot drop the priority pair a < d, because of the se-
quence cad ¢ T(e,<). However with Theorem 5.3.5 we can ignore a < d
for the semantics of (ﬁ,<) if we limit our attention to {a,b,d}, because
T(8, <) lta,p.0y= {abd} =T(B) l(a,p,)-

For PBESs ignorance ensures that <’ is minimal with respect a configu-
ration C.

Theorem 5.3.6. Let (f,<) be a PBES and (C,=¢) € P(p) for some configu-
ration C € C(B,<). Let also:

<= <\{(e,e')1e'=ceve=ce},<"c<.
Then T(ﬁ,<) [c # T(ﬁ,<”) [c .

Proof. Because of <" c </, there are some e,e’ € E such that e <e’ but
e#'e! e £c e, and e Z¢ e’. Note that each linearization of a given poset
that respects the precedence relation is a trace [47]. Thus e’ Z¢ e and
e Z¢ ¢’ imply that T(8,<") |¢ contains a trace such that e and e’ are en-
abled together and e precedes e’. Because of e < e’ such a trace cannot be
contained in T(B, <) [¢. So T(B,<) [¢ # T(B,<") Ic. O

In the following two sections we consider two extensions of Bundle ESs.

101

5. Domain-Oriented Extensions: Priority in Event Structures

(a) (b)

Figure 5.3.: A PEBES (¢,<) with ¢ in (a) and < in (b) as a Hasse diagram
with transitivity exposed, where thin links represent redundant
priority pairs.

5.4. Priority in Extended Bundle Event
Structures

As in PBESs, we equip EBESs with the same priority relation, and we call
(e,<)=(E,~,—,<) a prioritized Extended Bundle ES (PEBES), where ¢ =
(E,~,—)is an EBES and < < (E x E) is the acyclic priority relation. Fig-
ure 5.3 illustrates an example of a PEBES with the EBES in Figure 5.3 (a)
and the priority relation in Figure 5.3 (b). Furthermore, a sequence of
events 0 =eq,...,e, is a trace of (¢,<) iff 1.) 0 € T(¢) and 2.) o satisfies the
following constraint:

Vi<n.Vejep€d.ej#epNejepceno)Nep<e; = j<h (5.3)
C e C(e,<) iff 3o € T(e,<) .6 = C. Again T(g,<) € T(¢) and <’ € < implies
T(e,<) = T(e,<').

Lemma 5.4.1. Let (¢,<) and (¢,<') be two PEBES with <' < <. Then:
T(e,<) = T(e,<').
Proof. Straightforward from the definition of traces, (5.3), and <’ c <. O

Similar to PBESs, we can remove a priority pair e<e’ or e’ <e between an
event e and its cause e, because an event and its cause are never enabled
together. Therefore e.g. the pair e < b in Figure 5.3 is redundant because

102

5.4. Priority in Extended Bundle Event Structures

of {b} — e. Also a priority pair e < e’ between an event e’ and its disabler e,
i.e. for e’ ~~ e, does not affect the semantics, since e must follow ¢’ anyway.
Consider for example the events a¢ and d in Figure 5.3. Because of a ~~ d,
a always pre-empts d and thus d < a is redundant.

Theorem 5.4.2. Let (¢,<) be a PEBES and <' := <\{(e,e/) | e’ ~ eV
(3X<E.(ecXAX—e)v(e'eXAX —e))}. Then T(e,<)=T(e,<').

Proof. Similar to the proof of Theorem 5.3.4, where the second case is re-
placed by:

Case e~ ep,: Because of the definition of traces,
o =e1,...,en € T(e) and ej,ep € ¢ imply that e; € en.(0j_1). Then
ejweh/\ejeeng(aj_l)/\eheﬁ = j<h. 0O

Note that priority for events that are directly related by the bundle en-
abling relation is always redundant, regardless whether the cause has the
higher priority or the effect does. On the other hand we can reduce pairs
of events that are related by disabling only if an event has a higher prior-
ity than its disabler. Consider for example the PEBES ({e,e’}, {e~¢'}, @,
{e<e'}). The only traces of this PEBES are e and ¢, but if we remove the
priority pair e < e’ we have the additional trace ee’. Similarly we cannot
remove the e ~~ e’ here, because this yields to the additional trace e’e.

Redundant priority pairs, according to Theorem 5.4.2, in Figure 5.3 are
distinguished by thin double links. Note that after dropping such redun-
dant pairs, the priority relation is not a partial order anymore.

Again limiting our attention to a specific configuration allows us to ig-
nore some more priority pairs. In contrast to PBESs we can sometimes
also ignore priority pairs that overlap with disabling. Consider for exam-
ple b ~» a and a ~» d of the PEBES in Figure 5.3. The priority pair d <b is
redundant with respect to the configuration {a,b,d} but not with respect to
the configuration {b,d}. Note that again the direction of the priority pair is
important in the case of indirect disabling but not in the case of indirect en-
abling. If we for instance replace d < b in Figure 5.3 by b <d, then {a,b,d}
is not a configuration anymore and b < d is not redundant in all remaining
configurations containing b and d.

The cases in which priority pairs are redundant with respect to some
configuration C are again well described by the precedence relation <c,
i.e. we can identify redundant priority pairs easily from the poset of C.

103

5. Domain-Oriented Extensions: Priority in Event Structures

The priority pair & < b is obviously redundant in the case of
but not in the case of and d < b is obviously redundant in the

case of but not in the case of . Let T(e, <) [¢ denote the

set of traces over C, i.e. T(¢,<) [¢ := {0 |0 €T(e,<)AG =C}. Then for all
configurations C we can ignore all priority pairs e < e’ such that ¢’ <¢ e.

Theorem 5.4.3. Let (¢,<<) be a PEBES, (C,=¢) € P(¢), and let:
<= <\{(e,e')eCxCle =ce}.
Then: T(e,<)[¢c = T(E, <') [c.

Proof. Note that T(e, <) [¢ € T(e, <) and
T(e,<') ¢ = T(e,<).

By Lemma 5.4.1, T(e, <) = T(¢, <') and thus also T(e, <) [¢ = T(e, <) .

To show T(e, <') [¢ € T(e, <) |¢, assume a trace o =ey,...,e, € T(e,<') [¢.
We have to show that o € T(e, <) [¢, i.e. that Vee . e € C, o € T(¢), and
that o satisfies Condition (5.3). Yee€ d.e € C and o € T(¢) follows from o €
T(e,<') I by the definition of traces of PEBESs. o satisfies Condition (5.3)
ifVi<n.Veje,€d.ej#epNejep€eng(o;)hep<ej = j<h. Letusfix
i<nandej,e, €0. Assumee; # ey, ej,e; € eng(0;), and ej, <e;j. It remains
to prove that j <h.

Because of the definition of <’, assumption ej, < e; implies that ej, <'e;
or ej =c ey. In the first case j < h follows, because of the definition of traces
and (5.3), from e;, <'ej, ej,e; € 7, and 0 € T(¢,<') [¢. The other case, i.e.
that ej <c e; and e # e, implies j < h, was already proved in [47]. O

Consider once more the PEBES (¢,<) of Figure 5.3 with respect to the
configuration {b,e,h}. We have {b} — e, {e,f} — h, and h <b. As ex-
plained before we cannot drop the priority pair i < b, because of the trace
fhb ¢ T(e,<). However with Theorem 5.4.3 we can ignore 2 < b |and also
h<e and e<b | for the semantics of (&, <) if we limit our attention to {b,e, A},
because T(e, <) [(p,e,ny= T(e,(<\{h <b,h <e,e <b})) [(p,e,h)-

Similarly we can ignore ¢ < a if we limit our attention to the configura-
tion C ={a,c,d},
since T(e, <) [c= T(e,(<\{c <a})) [¢. Note that here the precedence pair
a =¢ c that allows us to ignore ¢ < a results from the correlation between

104

5.5. Priority in Dual Event Structures

(a) (b)

Figure 5.4.: A Dual ES without priority in (a) and with priority in (b).

a disabling pair a ~~ d and an enabling pair {d} — c¢. Thus with Theo-
rem 5.4.3 we can ignore even priority pairs that are redundant in specific
situations because of combining enabling and disabling.

This combination prohibits us on the other hand from ignoring prior-
ity of the opposite direction, the direction which is compatible with the
precedence direction. That is possible only with precedence resulted from
enabling purely as it is the case in Theorem 5.3.5 for PBESs. For instance,
suppose that b < h for the structure in Figure 5.3 then we can ignore this
priority pair in a configuration {b,e,h}. That is not formulated in the The-
orem 5.4.3 above, since <¢ abstracts from the relation between events.
While in contrast to EBESs, the conflict relation is symmetric in Bun-
dle ESs, and precedence results only from enabling. Thus, in contrast to
PBESs, we do not have minimality of priority ignorance in PEBESs.

5.5. Priority in Dual Event Structures

We add priority to DESs in the same way as before. A prioritized Dual ES
(PDES) is the tuple (A, <), where A is a DES and < is the acyclic priority
relation. Also the definitions of traces, T(A, <), configurations, and C(A, <)
are adapted similar as in the section before.

Since the conflict relation provided here is the same as in Bundle ESs, we
can remove redundant priority pairs that overlap with the conflict relation
as described in Theorem 5.3.4, i.e. whenever there is e#e’ or e’#e then e<e’
is redundant and can be removed. The situation for enabling is different
because of the missing stability condition. The priority pair ¢ <d in the
PDES in Figure 5.4 is not redundant, because it removes some traces. The
reason is that ¢ is not anymore a necessary cause for d, since d can be
enabled by b even if ¢ occurs in the same trace. So at the structure level of

105

5. Domain-Oriented Extensions: Priority in Event Structures

PDESs we cannot in general remove priority pairs because of overlapping
with the enabling relation.

In the case of PBESs and PEBESSs partial orders help to identify redun-
dant priority pairs at the configuration level. Unfortunately, we cannot do
the same here. Let us consider the configuration {a,b,c,d}, and consider

z:;d<—c

liberal causality. Indeed applying (5.3.5) on the poset and
the priority ¢ < d yields the sequence abcd which is not a trace. On the

b
a . =3d

other hand, considering bundle-satisfaction causality, the poset __°
with the same priority yields the same sequence abcd again. The same

. . : L |¢=3d b
will be for minimal causality and a poset like

In fact none of the mentioned kinds of posets can be used alone without
the priority, and thus ignorance is not possible with causal ambiguity w.r.t.
a single poset for a configuration. Even when ¢ <d seems to yield pre-

emption in the poset , one can have the linearization acbd

which is a trace, and priority turns out to be redundant in this very trace
(but not in the whole poset). The reason is that partial orders in DESs do
not necessarily represent necessary causes.

5.6. Evaluation

We have added priority to different Event Structures: Prime ESs as a sim-
ple model with conjunctive causality, Bundle ESs with disjunctive causal-
ity, Extended Bundle ESs with asymmetric conflict, and Dual ESs with
causal ambiguity. In all cases, priority led to trace filtering and limited
concurrency and non-determinism. We then analyzed the relationship be-
tween the new priority relation and the other relations of the ESs. Since
priority has an effect only if the related events are enabled together, over-
lappings between the priority relation and the other relations of the ESs
sometimes lead to redundant priority pairs.

In PPESs, PBESs, and PEBESs priority is redundant between events
that are related directly by causality. Moreover in all considered ESs pri-
ority is redundant between events that are related directly by the conflict
relation. But in the case of PEBESs the conflict relation implements asym-
metric conflicts. Hence in contrast to the other ESs we have to take the

106

5.6. Evaluation

direction of the disabling relation into account.

The main difference between redundancy of priority in PPESs and the
other three models is due to events that are indirectly related by causality.
In PPESs causality is a transitive relation, i.e. all pairs which are indirectly
related by causality are directly related by causality as well. The enabling
relation of the other models is not transitive. Thus priority pairs between
events that are only indirectly related by enabling are not necessarily re-
dundant. Unfortunately and unlike PPESs, this means that we cannot
ensure after removing the redundant priority pairs that the remaining pri-
ority pairs necessarily lead to pre-emption. So the other models hold more
ambiguity to a modeler.

Instead we show that if we limit our attention to a specific configuration
C, a priority pair e < e’ is redundant if e/ <¢ e Ve =<¢ e’ for PBESs, or if
e’ <¢ e for PEBESs. This allows us to ignore—for the semantics with re-
spect to specific configurations— additional priority pairs between events
indirectly related by enabling for PBESs; and by enabling, disabling, or
even by combinations of enabling and disabling for PEBESs. In the case of
PBESs we obtain a minimality result this way.

Unfortunately in PDESs even priority pairs between events that are di-
rectly related by causality are not necessarily redundant. So from a mod-
eler’s perspective, priority in DESs hold the biggest ambiguity among all
the studied ESs. In other words, one cannot figure out the role priority
plays at design time or structure level, and whether this priority yields
pre-emption or not. Even at the configuration level, that is not possible in
general due to causal ambiguity.

Thus the main contributions of this chapter are: 1) We add priority as
a binary acyclic relation on events to ESs. 2) We show that the relation
between priority and other event relations of an ES can lead to redun-
dant priority pairs, i.e. to priority pairs that do never (or at least for some
configurations not) affect the behavior of the ES. 3) Then we show how to
completely remove such pairs in PPESs and that this is in general not pos-
sible in ESs with a more complex causality model like PBESs, PEBESs,
or PDESs. 4) Instead we show how to identify all priority pairs that are
redundant with respect to configurations in PBESs and that the situation
in PEBESs and DESs is different. 5) We show how to identify (some of
the) redundant priority pairs at the level of configurations in PEBESs and
6) that again this is in general not possible in the same way for PDESs.

After dropping or ignoring redundant priority pairs as described above,

107

5. Domain-Oriented Extensions: Priority in Event Structures

the minimum potential for overlapping between priority and causality can
be found in PPESs, while the maximum is in PDESs. In PPESs all re-
maining priority pairs indeed affect the semantics, i.e. exclude traces. In
PBESs the same holds with respect to specific configurations. In PEBESs
after dropping the redundant priority pairs the disabling relation has no
overlapping with only priority directed in the opposite direction.

In Section 5.3 we showed that adding priority complicates the definition
of families of posets to capture the semantics of prioritized ESs. We observe
that because of priority, a single configuration may require several posets
to describe its semantics. The same already applies for DESs because of
the causal ambiguity. However note that priority does not lead to causal
ambiguity. Thus, we can define the semantics of prioritized ESs by families
of posets if we do not insist on the requirement that there is exactly one
poset for each configuration. We leave the definition of such families of
posets for future work. Such families of posets for prioritized ESs may also
help to identify and ignore redundant priority pairs in the case of PEBESs
and PDESs. Another interesting topic for further research is to analyze
how priority influences the expressive power of ESs.

Application in Healthcare: Consider the following special example of pri-
ority taken from Charité Berlin and DHZB. A 65 sear old patient is admit-
ted to the oncology department of Charité with symptoms of a cancer. Within
the staging process there it is diagnosed that the patient has a malignant
cancer of her kidneys. Furthermore the patient has a cardiac valve insuf-
ficiency. The treatment of both problems could not happen concurrently.
Thus the oncologist had to invite a cardiac specialist to decide which prob-
lem has a higher priority. The team decided that the cardiac problem was
more severe, so that the oncological process was interrupted and the patient
was transferred to the DHZB. There the patient had a heart valve surgery
and admitted to the intensive care unit, where the warming up and wake
up process were begun. At the end the discharge was done to the oncology
again to proceed with the oncological pathway of treating the cancer. The
cancer was treated with an adjuvant chemotherapy and afterwards with a
surgical resection regarding the cancer.

This is an example not only of priority, but also of Dynamic Coalitions
and their prioritized activities with evolution and adaptation. Priority in
this example can be modeled straightforward using our Prioritized ESs as

108

5.6. Evaluation

TreatCancerAdm X1 Xpn

TreatInsufAdm C1 Cn

Figure 5.5.: A PPES modeling priority between cancer treatment and cardiac-insuf-
ficiency treatment for a 65-year patient admitted to Charité.

shown in Figure 5.5. Note that the whole treatment path that is causally
dependant on the cardiac problem has a higher priority than any event of
the cancer treatment path or than the admission event TreatCancerAdm
of cancer treatment. In other words it not enough to have a single pair of
priority in the structure. This is some kind of heredity in priority similar
to conflict heredity of Prime ESs (cf. Section 2.2).
Evolution can be applied here to model the
transition from the first WF that preceded the
cooperation with the cardiac specialist. This
WF can be modeled such that no priority yet
exists; rather with an interleaving between
the two treatments that prohibits them from
running concurrently. For that purpose, a TreatInsuf
DCES (cf. Section 3.5), with a dropper and an
adder for the same causal dependency of an impossible target, can be used
as illustrated aside. This proves the idea of Evolving Structures to combine
different kinds of ESs with an evolution relation, even prioritized ESs and
non-prioritized ESs, as long as they define the notion of configurations, or
more specifically traces in this case.

TreatCancer.

Further Enhancements: The notion of heredity of priority mentioned be-
fore highlights the need for defining action refinement with priority. In
this case each treatment can be modeled as a single event with a priority
pair from the cardiac treatment to the cancer one. The two events can be
refined in a different level of abstraction to sub-workflows, where priority
needs to be inherited between the events of the first treatment and the
events of the second one such that consistency between the two levels w.r.t.

109

5. Domain-Oriented Extensions: Priority in Event Structures

system runs holds, as illustrated in Section 2.10.5. It is worthy to note that
in this case semantics of PESs should be defined in terms of posets instead
of traces. The reason [73] is that interleaving semantics does not reflect
real independence between events, which is needed when refining the two
events to determine independence between their refinement events. For
instance, assume a and b are two independent events, and are refined to
ai, az and b1, by respectively. Then if the system runs at the refinement
level must match ones at the abstract level, a1,a9,b1,b2 and b1,b9,a1,a9
would match a,b and b,a respectively, while a1,b1,a9,b2 which is a system
run at the refinement level due to independence between {a1,a2,b1,b2} in-
herited from the abstract level would match no system run at the abstract
level.

110

6. Summary and Future Work

6.1. Summary and Conclusions

Dynamic Coalitions (DCs) denote a temporary collaboration between differ-
ent entities to achieve a common goal. What gives DCs their dynamic na-
ture is dynamic membership, where members can join and leave after the
coalition is set [46, 21]. This is considered a key feature of DCs, which dis-
tinguishes DCs from classical coalitions. This thesis studies workflows in
Dynamic Coalitions, analyzes their features, highlights their unique char-
acteristics and similarities to other workflows, and investigates their rela-
tion with Dynamic Membership. To this end, we use the formal model of
Event Structures (ESs) and extend it to faithfully model scenarios taken as
use cases from healthcare. ESs allow for workflow modeling in general, and
for modeling Dynamic Membership in DCs through capturing the join and
leave events of members. Besides ESs are suitable for our case of human-
based collaboration as we do not address problems such as recursion where
other formalisms might be more suitable [43]. Furthermore, when we ap-
ply Dynamic Causality and Evolution, the basic relations of ESs, namely
causality and conflict, help in understanding such extensions.

We first extend ESs with Dynamic Causality to address the dynamic na-
ture of DCs. Dynamic Causality allows some events to change the causal
dependencies of other events in a structure. This helps us to understand
changes in a formal way, and isolate them from other concerns e.g. goal
orientation. We study the expressive power of the resulting ESs and show
that they contribute only to a specific kind of changes in workflows, namely
pre-planned changes. Second, we present Evolving Structures in order to
support ad-hoc and unforeseen changes in workflows, as required by the
use cases taken from healthcare. Evolving Structures connect different
ESs with an evolution relation which allows for changing an ES during
a system run, including adding and dropping events as well as changing
flow and conflict of the events. We consider different approaches to model

111

6. Summary and Future Work

evolution and study their relation. Furthermore, we show why the his-
tory of a workflow should be preserved in our case of evolution in DCs, and
allow for extracting changes from an evolution to support Process Learn-
ing. Third, to capture the goals of DCs, we equip Evolving Structures with
constraints concerning the reachability of a set of events that represents a
goal. This helps us in guiding an evolution by limiting arbitrary changes.
The former extensions of Dynamic Causality and Evolving Structures to-
gether with Goal-Orientation allow the examination of changes and evolu-
tions caused by members, and the examination of members’ contributions
to goal satisfaction, through their join and leave events. Finally, we high-
light many modeling features posed as requirements by our DC use case
domain, namely the healthcare, which are independent from the nature of
DCs, e.g. timing. We examine the literature of ESs for supporting such fea-
tures, and show that the notion of Priority is missing in ESs. To this end,
we add Priority to various kinds of ESs from the literature. Furthermore,
we study the relation between priority on one side, and conjunctive causal-
ity, disjunctive causality, causal ambiguity and various kinds of conflict on
the other side.

Comparing to Adaptive Workflows, which are concerned with workflows
that evolve as a response to changes in their business environment or to
exceptions, the thesis shows that DC workflows are not only goal-oriented
but also adaptive. Besides, the thesis adds one extra reason for evolution
and changes in DC workflows to the ones in Adaptive Workflows, namely
the join of new members, which is missing in static coalitions. Finally the
thesis contributes to bridging the gap in modelling between theory and
domain experts by supporting step-by-step modelling applied regularly in
healthcare and other domains.

To summarize, we cover the topic of DC workflows from different per-
spectives needed to faithfully model such workflows w.r.t. our use cases,
and provide a mature study about the nature and characteristics of DC
workflows. We use ESs as a formalism, which proves to provide a fine un-
derstanding of Dynamic Causality and changes in a workflow. ESs has
allowed us to give precise definitions of how to dynamize a structure and of
what to preserve vs. what to evolve in a structure.

Conclusions: The workflow of a DC (based on human collaboration) is
a special case of both Adaptive Workflows and Goal-Oriented Workflows.

112

6.2. Contributions in Detail

Adaptations in DC workflow might happen due to changes in the DC en-
vironment, to exceptions, or due to contributions new members bring in
upon their join. A study concerning DCs should address dynamic mem-
bership, and examine its influence on the problem under study. Besides,
formalisms like Event Structures—and similar ones—need to support flex-
ibility so that they are able to model DC workflows. This might include the
ability to change particular ingredients of the formalism during runtime,
or even the whole structure.

6.2. Contributions in Detail

Here we summarize the contributions of this thesis from different perspec-
tives. The first section covers contributions in Dynamic Coalitions, while
the rest cover contributions in Event Structures.

6.2.1. The Adaptive and Goal-Oriented Nature of
Dynamic-Coalition Workflows

We prove that workflows of Dynamic Coalitions are a special kind of Adap-
tive Workflows, where the join of a new member in a DC might be a trigger
for evolution of the DC workflow. By that we show the unique features of
DC workflows, and how they are affected by membership; this was an open
question in the literature of DCs [16, 20, 68, 45]. Accordingly, we show that
a formalism used to model DC workflows needs to support evolution and
changes during system runs, and to show the influence of members on the
workflow, which was not the case with the formalisms used to model DC
workflows in the literature, e.g. VDM [16] and RAISE [57]. To that end, we
apply Adaptive-Workflows state of the art to model DC workflows, and ap-
ply goal orientation to model goals of DCs. We cover both pre-planned and
unforeseen changes in workflows of DCs. Additionally, since DCs are goal
orienegtd, we show that DC evolution needs to respect goal satisfaction at
the end.

6.2.2. Dynamic Causality in Event Structures

We add Dynamic Causality to Event Structures and provide the ability
to change causality upon occurrence of some events. Furthermore, we

113

6. Summary and Future Work

study the expressive power of the new model. We show that in its sim-
ple forms, i.e. Growing and Shrinking causality, dynamic causality can be
modelled by Conditional and Disjunctive Causality respectively, while in
its most complex form, we show that it is not possible always to model dy-
namic causality with static relations. Additionally, we discuss concurrency
and independence of different modifiers. We show how dynamic causality
can partially model dynamicity of other relations e.g. conflict through the
ability to model resolvable (i.e. shrinking) conflict, and show how dynamic
causality is able to model disabling as well as mutual conflict. Finally, we
equipped our extension with a graphical notation.

6.2.3. Evolution in Event Structures

We introduce Evolving Event Structures and connect different ESs through
an evolution relation which captures the conditions of replacing a structure
by another after a system run. To this end, we address transitions between
structures rather than changes that might occur to one structure, and pro-
vide a way to infer the changes. Furthermore, we defin a mechanism based
on DCES to infer changes between the structures; this connects the two
contributions of Evolving ESs and Dynamic Causality ESs. Additionally,
we constrain the course of evolution by the reachability of a fixed set of
events representing a high-level goal. We define chains of evolution steps
through the introduction of evolutionary sequences. Besides, we discuss dif-
ferent approaches to model an evolution step from one structure to another,
and the relation in-between the different approaches.

6.2.4. Priority in Event Structures

We add priority to different kinds of ESs in the literature. We study the re-
lation between priority on one hand and the disjunctive causality of Bundle
ESs, asymmetric conflict of Extended Bundle ESs, and causal-ambiguity of
Dual ESs on the other hand. To this end, we show that priority would
be redundant against causality of PESs, while it is ambiguous to decide
whether it is redundant in other kinds of ESs. Additionally, we study the
relation between priority and the precedence relation at the configuration
level through posets. Finally, we equipped our extension with a graphical
notation.

114

6.3. Future Work

6.3. Future Work

This thesis highlights a number of topics as future work. Some of these
topics, e.g. the first two, have not been achieved due to time limitations,
while others are enhancements that would enrich the framework and allow
for more modeling features and capabilities.

Time Constraints on Evolution: One further research is to define time
constraints not only on event occurrences, but also on evolution steps. For
instance, a heart failure occurred that called for adapting the plan within
a maximum time or timeout. Formalizing such constraints on evolution re-
lation would allow for more properties to be checked against the evolution
of a WF, e.g. time-illness [43].

Evolution Guiding towards Goal Satisfaction: Another possible research
is about guiding evolution of a given WF in a specific domain. Our work im-
plements goal satisfaction in a declarative way by forcing some constraints
through the notion of Evolution (cf. Section 4.6). A possible alternative
would be to develop methods, as in [23], suggesting which evolution steps
to make such that the goal is reachable again in case case of exceptions.
Such a study would be dependent on the domain itself and would require
domain knowledge.

Evolution and Property-Based Modeling of Goals: In Event Struc-
tures, the state of a system is decided based on the history of events that
took place. For instance, the property that the patient is no more given
any severe medication can be determined from the occurrence of the event
StopSevMed. An alternative is to use properties, especially for goal mod-
eling. For example the final goal of discharging the patient can be modeled
as a property stating that the patient is discharged. Besides, as illustrated
in Section 4.6, such a goal would be refined to sub-goals modeled as proper-
ties: the ventilation tube is disconnected, the patient is awake and no more
severe medication is given to her (with AND links in-between). Then an ex-
ception blocking one of these properties to hold, e.g. heart failure regarding
patient-is-awake property, calls for adapting the workflow. Property-based
modeling of goals, along with goal refinement to sub-goals, are already de-
fined in [29, 28, 78] as illustrated in Section 4.6. Nevertheless since our

115

6. Summary and Future Work

work combines workflow adaptation with goal orientation, the concepts of
goal orientation presented in Section 4.6 should be adapted w.r.t. property-
based modeling as a future work.

Internalization with Chains of Triggers: In Section 4.4, an internaliza-
tion shows the history of a model with the transition from an old ES to
a new one represented after the occurrence of the trigger event v. Up to
know the internalization extracts changes from a single evolution step, i.e.
from a pair of ESs, and shows the transition between them. This can be ex-
tended such that changes can be extracted from an evolutionary sequence.
Accordingly, a series of trigger events v, vg, ...can be generated and the
relation between these events can be defined. This helps in understanding
the relation between evolution steps that take place on a running work-
flow, by knowing their dependencies and conflicts, which in turn allow for
analyzing properties of the evolution and learning from possible evolution
patterns [18].

Higher-Order and Set-Based Dynamics in Causality: On the other hand,
dynamicity highlights new topics to work on, and motivates to investigate
further complexity of it, by considering higher-order dynamics. This helps
in supporting process learning of Section 4.4 to infer changes, as well as
to find a common upper bound, w.r.t. expressiveness, for the ESs that are
incomparable to DCESs as shown in Figure 2.9. Besides, set-based dy-
namic causality can be used to simulate dynamicity of other relations, e.g.
growing conflict. As an example, consider a conflict a#b added by c that it
can be modeled by set-based mutual disabling as {c,a} disables b and {c, b}
disables a.

Action Refinement with Dynamic Causality: It would be interesting to
investigate action refinement in Dynamic Causality ESs. A target event in
a modification might be refined to a complete structure where the causality
added or dropped from that target is to be added or dropped respectively
from the events of its refinement in the lower abstraction level. In other
words, the modification is to be inherited in similarly to the way causal pre-
decessors are inherited in [74]. The challenge would be then to refine the
modifier itself. For instance, if a modifier, that adds a causal predecessor
to a target, is refined into a set of events at the lower level, the question is

116

6.3. Future Work

then which of these events would be the adder at the lower level. Indeed
this would lead the work back to Set-Based Dynamic Causality, and the
resulting structure of refinement would be a Set-Based DCES. It is inter-
esting to investigate the relation between the structures of the two levels
and to check the concurrency consistence between both w.r.t. the transition
relation.

Integrating Researches in SOAMED regarding DCs: As mentioned in
the related work, N. Sarrouh, a former member of the SOAMED Research
Training Group, worked in his PhD thesis [68] on building a modeling
framework for privacy-aware DCs. His work was based on the Abstract
State Machine (ASM) formalism which allowed for a structural description
of dynamic coalitions by means of ASM programs, thereby enabling sim-
ulation, and verification possibilities. To this end he used the Core ASM
implementation of ASM which allowed for defining states and their up-
dates. Besides, Core ASM allowed for the execution of ASM Programs,
being a number of sequential or concurrent updates, thereby allowing for
tests and simulation. A possible future work is to integrate our work with
Sarrouh’s work, to build a larger framework that benefits from both formal-
ism’s capabilities. Such an integration can serve as a bridge between the
two approaches. For example, starting from a structural ASM definition of
a dynamic coalition a corresponding ES maybe created, which defines how
and in what order events may occur. In a next step, these ES relations may
be enhanced, for instance, adding priorities to some events (cf. Chapter 5).
With the resulting ES, all possible scenarios of the dynamic coalition at
hand may be derived as system runs by means of ES techniques and by
tool support. The resulting system runs could be translated into concrete
ASM programs, in order to execute, simulate or test properties like termi-
nation or privacy properties. Besides, the sequentiality and parallelism in
the ASM program might be obtained from the generated system runs in
their partially ordered form.

117

List of Abbreviations

BES Bundle Event Structure

CES Conditional-Causality Event Structure
CICU Cardiac Intensive Care Unit

DC Dynamic Coalition

DCES Dynamic-Causality Event Structure
DES Dual Event Structure

DHZB Deutsches Herzzentrum Berlin

EBDC Extended Bundle subclass of DCES
EBES Extended Bundle Event Structure

ES Event Structure

GES Growing-Causality Event Structure
PBES Prioritized Bundle Event Structure
PDES Prioritized Dual Event Structure
PEBES Prioritized Extended Bundle Event Structure
PES Prime Event Structure

PPES Prioritized Prime Event Structure
RCES Event Structure for Resolvable Conflict
SES Shrinking-Causality Event Structure
SSDC Single State subclass of DCES

WF Workflow

119

List of Figures

1.1.

2.1.

2.2.

2.3.
2.4.

2.5.
2.6.
2.7.

2.8.

2.9.

The three perspectives through which the examples taken
from healthcare are studied in this thesis.

An example of a Prime Event Structure showing conflict

heredity.
An example of a Stable Event Structure satisfying con-

sistency and stability, where the bars between causality

arrows denote one enablingset.
An example of a Bundle Event Structure
A family of posets of the structure in Figure 2.3. The ar-

rows between sets denote the prefix relation. The transi-

tive and reflexive closures are neither shown in the posets

norinthefamily.
An example of an Extended Bundle Event Structure

An example of a Dual Event Structure.
The relation between the different kinds of posets in Dual

Event Structure. An arrow means: if two structures are

equivalent in terms of Late-causality posets for instance

then they are equivalent in terms of Early-causality posets,
and SOOM. i e
The transition graph of a RCES representing resolvable

conflict.
The expressiveness of variouse kinds of event structures

from the literature, increasing from left to right.

2.10.The default plan for the cardiac patient after she was ad-

mitted to the Cardiac Intensive Care Unit.

2.11.A Prime Event Structure and its refinement, modeling

3.1.

nested coalitions.

Impossible events in the variant of PESs with causal cycles.

22

25
26

27
29
31

32

33

35

37

40

121

List of Figures

3.2. A Shrinking-Causality ES with shared and multiple drop-
pers in (a), with trivial droppings in (b), and the remain-
der of (a) after H ={c,f}in(c).

3.3. A Dual ES with bundles more bundles than events in (a),
its canonical-translation poset-equivalent SES (b), and an-
other poset-equivalent SES with minimal fresh events in

3.4. Expressiveness of Event Structures including the struc-
tures of this chapter, where transitive arrows are omitted
and unconnected types of ESs are incomparable regarding
EXPreSSIVENESS. . . v v v v v v e e e e

3.5. GESs modeling a conflict in (a), a disabling in (b), a tem-
porary disabling in (c), and a resolvable conflict in (d).

3.6. Conjunctive disabling througha RCES.

3.7. The transition graph of Figure 3.5 (b) w.r.t. —; in (a), and
wrt.—gin().

3.8. A DCES modeling in (a) of a change in a medical work-
flow to perform an X-Ray for a cardiac-pacemaker patient
instead of a tomography (cf. Section 3.1), and a trace-e-
quivalent DES modeling in (b) that does not distinguish
between the default and the exceptional paths.

3.9. An EBES and its poset-equivalent DCES.

3.10.A GES modeling capturing the case that a heart failure
would require implanting a blood pump.

3.11.A GES modeling of the use case, capturing the conclusions
that a heart failure demands the implantation of a blood
pump, and the cold-leg problem disables the warm-up pro-

3.12.A DCES modeling for the join of the surgeon as a new
member who extends the plan by an angiography to be
performed.

4.1. The default plan for the cardiac patient after she was ad-
mitted to the Cardiac Intensive Care Unit.
4.2. Evolution of the Cardiac-Patient workflow after the dis-
covery of the heart failure problem.
4.3. Evolution of the Cardiac Patient workflow after the dis-
covery of the cold-leg problem.

122

48

51

53

54
57

59

63
66

68

69

70

72

72

74

List of Figures

4.4.

4.5.

4.6.

4.7.

4.8.
4.9.

Evolution of the Cardiac Patient workflow after the dis-
covery of the cold-leg problem as an EBES, capturing the

The two approaches of Change-Reflective and Consequence-
Reflective modeling, and the grey range of Trigger-Inclu-
sive modeling approach in-between.
The internalization of the cold-leg trigger into the Cardi-
ac-Patient workflow, with change reflection.
Transformations between Different Modeling Approaches
of Evolution Steps.
The two-level dynamicity offered by Evolutionary Sequences
Incrementing system runs w.r.t. different system run rep-
resentations, including: configurations, traces, posets and
transitions.

4.10.The evolution sequence of the cardiac-patient use case

5.1.

5.2.

5.3.

5.4.
5.5.

Al

with a Consequence-Reflective PES in (b), a Change-Re-
flective EBES in (c), and a Trigger-Inclusive DCES through
Internalizationin(e).

A Prime ES without priority in (a), with priority in (b),
and after dropping redundant priority pairsin (c).
A Bundle ES without priority in (a), with priority in (b),
and after dropping redundant priority pairsin (c).
A PEBES (g,<) with € in (a) and < in (b) as a Hasse di-
agram with transitivity exposed, where thin links repre-
sent redundant priority pairs.
A Dual ES without priority in (a) and with priority in (b).
A PPES modeling priority between cancer treatment and
cardiac-insufficiency treatment for a 65-year patient ad-
mitted to Charité.

Counterexamples for Equivalences between variations of
Dynamic Causality Event Structures and Structures from
the literature.

77

78
80
81
83

84

85

95

97

102
105

109

136

123

Bibliography

[1]

[2

[}

[3

[

[4]

[5]

Michael Adams, Arthur HM ter Hofstede, Wil MP van der Aalst, and
David Edmond. Dynamic, Extensible and Context-Aware Exception
Handling for Workflows. In On the Move to Meaningful Internet Sys-
tems 2007: CoopIS, DOA, ODBASE, GADA, and IS, volume 4803 of
Lecture Notes in Computer Science, pages 95-112. Springer Berlin
Heidelberg, 2007.

Youssef Arbach, David Karcher, Kirstin Peters, and Uwe Nestmann.
Dynamic Causality in Event Structures. In Proceedings of Formal
Techniques for Distributed Objects, Components, and Systems: 35th
IFIP WG 6.1 International Conference, FORTE 2015, Held as Part
of the 10th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015,
pages 83-97. Springer International Publishing, 2015.

Youssef Arbach, Kirstin Peters, and Uwe Nestmann. Adding Prior-
ity to Event Structures. In Proceedings of Combined 20th Interna-
tional Workshop on Expressiveness in Concurrency and 10th Workshop
on Structural Operational Semantics, EXPRESS/SOS 2013, Buenos
Aires, Argentina, 26th August, 2013, volume 120 of Electronic Proceed-
ings in Theoretical Computer Science, pages 17-31, 2013.

Sebastian Bab and Nadim Sarrouh. Towards a Formal Model of
Privacy-Sensitive Dynamic Coalitions. In Proceedings of Third Work-
shop on Formal Aspects of Virtual Organisations, Sao Paolo, Brazil,
18th October 2011, volume 83 of Electronic Proceedings in Theoretical
Computer Science, pages 10-21. Open Publishing Association, 2012.

Jos CM Baeten, Twan Basten, and MA Reniers. Process Algebra:
Equational Theories of Communicating Processes. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2010.

125

Bibliography

[6] Jos CM Baeten, Jan A Bergstra, and Jan Willem Klop. Syntax and
Defining Equations for an Interrupt Mechanism in Process Algebra.
Fundamenta Informaticae, 9:127-167, 1986.

[7] Paolo Baldan, Nadia Busi, Andrea Corradini, and G Michele Pinna.
Domain and Event Structure Semantics for Petri Nets with Read and
Inhibitor Arcs. Theoretical Computer Science, 323(1):129-189, 2004.

[8] Paolo Baldan, Andrea Corradini, and Ugo Montanari. Contextual
Petri Nets, Asymmetric Event Structures, and Processes. Informa-
tion and Computation, 171(1):1-49, 2001.

[9] Lina Barakat, Simon Miles, and Michael Luck. Efficient adaptive
QoS-based service selection. Service Oriented Computing and Appli-
cations, 8(4):261-276, 2014.

[10] Falko Bause. On the analysis of Petri nets with static priorities. Acta
Informatica, 33:669—685, 1996.

[11] Falko Bause. Analysis of Petri nets with a dynamic priority method.
In Proceedings of Application and Theory of Petri Nets, Lecture Notes
in Computer Science, pages 215—-234. Springer, 1997.

[12] Rakesh Bobba, Serban Gavrila, Virgil Gligor, Himanshu Khurana,
and Radostina Koleva. Administering Access Control in Dynamic
Coalitions. In Proceedings of the 19th conference on Large Installa-
tion System Administration Conference - Volume 19, LISA ’05, pages
23-23, Berkeley, CA, USA, 2005. USENIX Association.

[13] Gérard Boudol and Ilaria Castellani. Permutation of transitions:
An event structure semantics for CCS and SCCS. In Linear Time,
Branching Time and Partial Order in Logics and Models for Concur-
rency, volume 354 of Lecture Notes in Computer Science, pages 411—
427. Springer Berlin Heidelberg, 1989.

[14] Gérard Boudol and Ilaria Castellani. Flow Models of Distributed Com-
putations: Event Structures and Nets. Technical report, INRIA, 1991.

[15] Gérard Boudol and Ilaria Castellani. Flow Models of Distributed Com-
putations: Three Equivalent Semantics for CCS. Information and
Computation, 114(2):247-314, 1994.

126

Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

JW Bryans, JS Fitzgerald, CB Jones, and I Mozolevsky. Dimensions of
Dynamic Coalitions. Technical report, School of Computing Science,
University of Newcastle upon Tyne, 2006.

Antonio Bucchiarone, Raman Kazhamiakin, Annapaola Marconi, and
Marco Pistore. Adaptivity in Dynamic Service-based Systems. In Pro-
ceedings of the First International Workshop on European Software
Services and Systems Research: Results and Challenges, S-Cube 12,
pages 36-37, Piscataway, NJ, USA, 2012. IEEE Press.

Antonio Bucchiarone, Annapaola Marconi, Marco Pistore, and Adina
Sirbu. A Context-Aware Framework for Business Processes Evolu-
tion. In Enterprise Distributed Object Computing Conference Work-
shops (EDOCW), 2011 15th IEEE International, pages 146-154, Au-
gust 2011.

Antonio Bucchiarone, Marco Pistore, Heorhi Raik, and Raman
Kazhamiakin. Adaptation of Service-based Business Processes by
Context-Aware Replanning. In 2011 IEEE International Conference
on Service-Oriented Computing and Applications, SOCA 2011, Irvine,
CA, USA, December 12-14, 2011, pages 1-8, 2011.

Paul A Buhler, José M Vidal, and Harko Verhagen. Adaptive Work-
flow = Web Services + Agents. In Proceedings of the International
Conference on Web Services, volume 3, pages 131-137. CSREA Press,
2003.

Luis M Camarinha-Matos, Ivan Silveri, Hamideh Afsarmanesh, and
Ana Ines Oliveira. Towards a Framework for Creation of Dynamic
Virtual Organizations. In Collaborative Networks and Their Breeding
Environments, volume 186 of IFIP — The International Federation for
Information Processing, pages 69—80. Springer US, 2005.

Juanito Camilleri and Glynn Winskel. CCS with Priority Choice. In-
formation and Computation, 116(1):26-37, 1995.

Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and
Maria Luisa Villani. QoS-Aware Replanning of Composite Web Ser-
vices. In Proceedings of the IEEE International Conference on Web Ser-
vices, ICWS ’05, pages 121-129, Washington, DC, USA, 2005. IEEE
Computer Society.

127

Bibliography

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

128

Ross Casley, Roger F Crew, José Meseguer, and Vaughan Pratt. Tem-
poral Structures. Mathematical Structures in Computer Science,
1(02):179-213, 1991.

Rance Cleaveland, Gerald Liittgen, and V Natarajan. Priority in Pro-
cess Algebras. ICASE report, NASA, 1999.

Massimo Coppola, Yvon Jégou, Brian Matthews, Christine Morin,
Luis Pablo Prieto, Oscar David Sanchez, Erica Y Yang, and Haiyan
Yu. Virtual Organization Support within a Grid-Wide Operating Sys-
tem. Internet Computing, IEEE, 12(2):20-28, March 2008.

Ruggero Costantini and Arend Rensink. Abstraction and Refinement
in Configuration Structures. Hildesheimer Informatik-Bericht 18/92,
Institut fiir Informatik, University of Hildesheim, Germany, 1992.

Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Science of Computer Program-
ming, 20(1-2):3-50, 1993.

Robert Darimont and Axel van Lamsweerde. Formal Refinement Pat-
terns for Goal-driven Requirements Elaboration. SIGSOFT Software
Engineering Notes, 21(6):179-190, October 1996.

Robert Darimont and Axel van Lamsweerde. Formal Refinement Pat-
terns for Goal-driven Requirements Elaboration. In Proceedings of
the 4th ACM SIGSOFT Symposium on Foundations of Software En-
gineering, SIGSOFT ’96, pages 179-190, New York, NY, USA, 1996.
ACM.

Philippe Darondeau and Pierpaolo Degano. Event Structures, Causal
Trees, and Refinements. In Mathematical Foundations of Computer
Science 1990, volume 452 of Lecture Notes in Computer Science, pages
239-245. Springer Berlin Heidelberg, 1990.

Philippe Darondeau and Pierpaolo Degano. Refinement of actions
in event structures and causal trees. Theoretical Computer Science,

118(1):21-48, 1993.

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Pallab Dasgupta, Jatindra Kumar Deka, and Partha Pratim
Chakrabarti. Model checking on timed-event structures. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
19(5):601-611, May 2000.

Edmund H Durfee, Victor R Lesser, and Daniel D Corkill. Trends
in Cooperative Distributed Problem Solving. IEEE Transactions on
Knowledge and Data Engineering, 1(1):63—-83, March 1989.

Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg. Dynamic
Change Within Workflow Systems. In Proceedings of Conference on
Organizational Computing Systems, COCS 95, pages 10-21, New
York, NY, USA, 1995. ACM.

Susanna S Epp. Discrete Mathematics With Applications, Third Edi-
tion. Mathematics Series. Brooks/Cole-Thomson Learning, 2004.

Andreas Glausch and Wolfgang Reisig. Distributed Abstract
State Machines and Their Expressive Power. Technical Re-
port 196, Humboldt-Universitat zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultit I, Institut fiir Informatik, 2006.

Martin Glinz. On non-functional requirements. In Requirements En-
gineering Conference, 2007. RE °07. 15th IEEE International, pages
21-26, October 2007.

Rachid Guerraoui. Indulgent algorithms (preliminary version). In
Proceedings of the Nineteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’00, pages 289—-297, New York, NY,
USA, 2000. ACM.

PW Hoogers, HCM Kleijn, and PS Thiagarajan. A Trace Semantics
for Petri Nets. Information and Computation, 117(1):98-114, 1995.

PW Hoogers, HCM Kleijn, and PS Thiagarajan. An event structure se-
mantics for general Petri nets. Theoretical Computer Science, 153(1—
2):129-170, 1996.

Ryszard Janicki and Maciej Koutny. Semantics of Inhibitor Nets. In-
formation and Computation, 123(1):1-16, 1995.

129

Bibliography

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

130

Joost-Pieter Katoen. Quantitative and Qualitative Extensions of Event
Structures. PhD thesis, University of Twente, 1996.

Joost-Pieter Katoen, Rom Langerak, Ed Brinksma, Diego Latella, and
Tommaso Bolognesi. A Consistent Causality-Based View on a Timed
Process Algebra Including Urgent Interactions. Formal Methods in
System Design, 12(2):189-216, March 1998.

Zaheer Khan, Savo Glisic, Luiz A DaSilva, and Janne J Lehtoméki.
Modeling the Dynamics of Coalition Formation Games for Cooperative
Spectrum Sharing in an Interference Channel. IEEE Transactions on
Computational Intelligence and Al in Games, 3(1):17-30, 2011.

Hristo Koshutanski and Antonio Mana. Interoperable Semantic Ac-
cess Control for Highly Dynamic Coalitions. Security and Communi-
cation Networks, 3(6):565-594, 2010.

Rom Langerak. Transformations and Semantics for LOTOS. PhD
thesis, Universiteit Twente, 1992.

Rom Langerak, Ed Brinksma, and Joost-Pieter Katoen. Causal ambi-
guity and partial orders in event structures. In Proceedings of CON-
CUR, Lecture Notes in Computer Science, pages 317-331. Springer,
1997.

Rom Langerak, Ed Brinksma, and Joost-Pieter Katoen. Causal am-
biguity and partial orders in event structures. Technical report, Uni-
versity of Twente, Centre for Telematics and Information Technology,
1997.

Dai Tri Man Le. On Three Alternative Characterizations of Combined
Traces. Fundamenta Informaticae, 113(3):265—-293, 2011.

Gerald Littgen. Pre-emptive Modeling of Concurrent and Distributed
Systems. PhD thesis, University of Passau, 1998.

Tomasz Michalak, Jacek Sroka, Talal Rahwan, Michael Wooldridge,
Peter McBurney, and Nicholas R. Jennings. A Distributed Algorithm
for Anytime Coalition Structure Generation. In Proceedings of the
9th International Conference on Autonomous Agents and Multiagent

Systems: Volume 1, AAMAS ’10, pages 1007-1014, Richland, SC,

Bibliography

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

2010. International Foundation for Autonomous Agents and Multi-
agent Systems.

Igor Mozolevsky and John S Fitzgerald. Common Representation of
Information Flows for Dynamic Coalitions. In Proceedings of Sec-
ond Workshop on Formal Aspects of Virtual Organisations, FAVO
2009, Eindhoven, The Netherlands, 3rd November 2009, volume 16 of
Electronic Proceedings in Theoretical Computer Science, pages 15—-25.
Open Publishing Association, 2010.

Raghava Rao Mukkamala. A formal model for declarative workflows:
dynamic condition response graphs. PhD thesis, IT University of
Copenhagen, June 2012.

Raghava Rao Mukkamala, Thomas Hildebrandt, and Tijs Slaats. To-
wards Trustworthy Adaptive Case Management with Dynamic Con-
dition Response Graphs. In Enterprise Distributed Object Computing
Conference (EDOC), 2013 17th IEEE International, pages 127-136,
September 2013.

Manfred Nagl. Softwaretechnik Mit Ada 95: Entwicklung Grofler Sys-
teme. Vieweg+Teubner Verlag, May 2003.

Mohammad Reza Nami, Mohsen Sharifi, and Abbas Malekpour. A
Preliminary Formal Specification of Virtual Organization Creation
with RAISE Specification Language. In Proceedings of the 5th ACIS
International Conference on Software Engineering Research, Manage-
ment & Applications, SERA 07, pages 227-232, Washington, DC,
USA, 2007. IEEE Computer Society.

Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri Nets,
Event Structures and Domains, Part 1. Theoretical Computer Science,
13(1):85-108, 1981.

Talal Rahwan, Sarvapali D Ramchurn, Nicholas R Jennings, and
Andrea Giovannucci. An Anytime Algorithm for Optimal Coalition
Structure Generation. Journal of Artificial Intelligence Research,
34(2):521, 2009.

Manfred Reichert and Peter Dadam. ADEPTflex—Supporting Dy-
namic Changes of Workflows Without Losing Control. Journal of In-
telligent Information Systems, 10(2):93-129, 1998.

131

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

132

Manfred Reichert, Peter Dadam, and Thomas Bauer. Dealing with
forward and backward jumps in workflow management systems. Soft-
ware and Systems Modeling, 2(1):37-58, 2003.

Arend Rensink. Posets for Configurations! In Proceedings of CON-
CUR, volume 630 of Lecture Notes in Computer Science, pages 269—
285. Springer Berlin Heidelberg, 1992.

Arend Rensink. Models and Methods for Action Refinement. PhD
thesis, University of Twente, 1993.

Arend Rensink. An Event-Based SOS for a Language with Refine-
ment. In Structures in Concurrency Theory, Workshops in Computing,
pages 294-309, Berlin Germany, 1995. Springer Verlag.

Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness
criteria for dynamic changes in workflow systems — a survey. Data
& Knowledge Engineering, 50(1):9-34, 2004. Advances in business
process management.

Stefanie Rinderle, Barbara Weber, Manfred Reichert, and Werner
Wild. Integrating Process Learning and Process Evolution — A Se-
mantics Based Approach. In Business Process Management, volume
3649 of Lecture Notes in Computer Science, pages 252—267. Springer
Berlin Heidelberg, 2005.

Walid Saad, Zhu Han, Mérouane Debbah, Are Hjorungnes, and Tamer
Basar. Coalitional game theory for communication networks. Signal
Processing Magazine, IEEE, 26(5):77-97, September 2009.

Nadim Sarrouh. Privacy-Aware Dynamic Coalitions : A Formal
Framework. PhD thesis, Technische Universitéit Berlin, 2014.

Zongmin Shang. Research on Adaptation of Service-based Business
Processes. TELKOMNIKA Indonesian Journal of Electrical Engineer-
ing, 12(1):442-449, January 2014.

A Prasad Sistla. Safety, liveness and fairness in temporal logic. For-
mal Aspects of Computing, 6(5):495-511, 1994.

Bibliography

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Ping Sun and Changjun Jiang. Analysis of workflow dynamic changes
based on Petri net. Information and Software Technology, 51(2):284—
292, 2009.

Hoang Chi Thanh. Semi-traces and Their Application in Concurrency
Control Problem. In Computational Collective Intelligence. Semantic
Web, Social Networks and Multiagent Systems, volume 5796 of Lec-
ture Notes in Computer Science, pages 174—182. Springer Berlin Hei-
delberg, 2009.

Rob van Glabbeek and Ursula Goltz. Refinement of Actions in Causal-
ity Based Models. In Stepwise Refinement of Distributed Systems Mod-
els, Formalisms, Correctness, volume 430 of Lecture Notes in Computer
Science, pages 267-300. Springer Berlin Heidelberg, 1990.

Rob van Glabbeek and Ursula Goltz. Refinement of actions and equiv-
alence notions for concurrent systems. Acta Informatica, 37:229-327,
2001.

Rob van Glabbeek and Gordon Plotkin. Configuration Structures. In
Proceedings of the 10th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 95, pages 199-209, Washington, DC, USA, 1995.
IEEE Computer Society.

Rob van Glabbeek and Gordon Plotkin. Event Structures for Re-
solvable Conflict. In Mathematical Foundations of Computer Science
2004, volume 3153 of Lecture Notes in Computer Science, pages 550—
561. Springer Berlin Heidelberg, 2004.

Rob van Glabbeek and Gordon Plotkin. Configuration structures,
event structures and Petri nets. Theoretical Computer Science,
410(41):4111-4159, 2009.

Axel van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In Proceedings of the 5th IEEE International Sympo-
sium on Requirements Engineering, pages 249-262. IEEE Computer
Society, 2001.

Daniele Varacca, Hagen Volzer, and Glynn Winskel. Probabilistic
Event Structures and Domains. In CONCUR 2004 - Concurrency The-
ory, volume 3170 of Lecture Notes in Computer Science, pages 481—
496. Springer Berlin Heidelberg, 2004.

133

Bibliography

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

134

Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change
patterns and change support features — Enhancing flexibility in
process-aware information systems. Data & Knowledge Engineering,
66(3):438—-466, 2008.

Glynn Winskel. Events in Computation. PhD thesis, University of
Edinburgh, 1980.

Glynn Winskel. Event structures. In Petri Nets: Applications and
Relationships to Other Models of Concurrency, volume 255 of Lecture
Notes in Computer Science, pages 325-392. Springer Berlin Heidel-
berg, 1987.

Glynn Winskel. An Introduction to Event Structures. In Linear Time,
Branching Time and Partial Order in Logics and Models for Con-
currency, School | Workshop, pages 364-397, London, UK, UK, 1989.
Springer-Verlag.

Glynn Winskel. Events, Causality and Symmetry. The Computer Jour-
nal, 54(1):42-57, 2011.

Glynn Winskel. Distributed Probabilistic and Quantum Strategies.
Electronic Notes in Theoretical Computer Science, 298(0):403—425,
2013. Proceedings of the Twenty-ninth Conference on the Mathemat-
ical Foundations of Programming Semantics, MFPS XXIX.

Dayong Ye, Minjie Zhang, and Danny Sutanto. Self-Adaptation-Based
Dynamic Coalition Formation in a Distributed Agent Network: A
Mechanism and a Brief Survey. IEEE Transactions on Parallel and
Distributed Systems, 24(5):1042-1051, 2013.

Mikolaj Zuzek, Marek Talik, Tomasz Swierczyﬁski, Cezary
Wisniewski, Bartosz Kryza, Lukasz Dutka, and Jacek Kitowski.
Formal Model for Contract Negotiation in Knowledge-Based Virtual
Organizations. In Computational Science—ICCS 2008, volume 5103 of
Lecture Notes in Computer Science, pages 409—418. Springer Berlin
Heidelberg, 2008.

A. Appendix: Proofs

A.1l. Proofs of Sections 2.2, 3.2: Prime Event
Structures

Lemma 2.2.4 states:
Let 7 be a PES, let H € C(ir). Then:

VC<E\H.(CeC@[H]) < HUCeC(n)).

Proof. Similar to the next proof of Lemma 3.2.5. O
Lemma 3.2.5 states:

Let n be a PES, H € C(rr), and —>; be the reflexive and transitive
closure of —,. Then: VX cE\H.X € C(n[H]) == H —»; HuX.

Proof. Let = (E,#,—) and let n[H] = (E',#,—') with the transition re-
lation —,. First: let us prove VX,Y < E'. (X—>p,Y ANX € C(n[H])) =

HuX—,HUY. Regarding set containment, we have:

X—pY = XcY
— HuXcHUY

Next:

X—pY = Ve,e' €Y. (e#'e)

= Ve,e' €Y. (e#e)

but we know that Ve,e' € H. ~(e#e') since H € C(). Then to prove that
HUY is conflict-free we need to prove that Ve € H,e' € Y . =(e#e’). Assume

135

A. Appendix: Proofs

aq----pb (@) ae—>eb () 1) o
(By) \V/ / e [v
2 C.V [>0 .’

a

Figure A.1.: Counterexamples for Equivalences between variations of Dynamic
Causality Event Structures and Structures from the literature.

the opposite, i.e. Je € H,e' €Y . e#e’, then ¢’ —' ¢/, which makes e’ unreach-
able (impossible). But X € C(n[H]), i.e. is reachable, then Y is reachable,
and e’ € Y, which is a contradiction. Then Ve,e’ € HUY . 1(e#e’).

Let us prove Ve e (HUY)\(HuX).{e'€E |e' — e} c(HUY). We know
that (HUY)\(HUX)=Y \X. Letee Y \X, and e’ € E such that ¢’ — ¢/,
then we have two cases:

Case: ¢'€H Thene' e HUX.
Case: ¢'¢ H Thene' —'e, thene'€X since X —, Y, thene' e HUX.

Then by taking X = ¢ and applying transitivity we conclude:
VX cE'. X e C(n[H]) = H—- XUH (A1)

Second: VXY cE' HuX -, HUY = X — Y can be similarly
proved. Then by taking X = @ and applying transitivity, we conclude that

VXEE'.H—»SXUHEXEC(n[H]) (A.2)

From A.1 and A.2 we conclude: VX cE'.X e C(n[H]) < H —»; XuH. O

136

A.2. Proofs of Section 3.3: Shrinking Causality

A.2. Proofs of Section 3.3: Shrinking
Causality

Lemma 3.3.5 states:
Let o be a SES. Then Cr.(0) = C(0).

Proof. Let o = (E,#,—,>). By Definition 3.3.2, C € Cr.(0) implies that
there is some ¢ = eq,...,e, such that f C E, V1 <i,j <n.-(e;#e;), V1<
i <n. (icte;)\de(¢i—1,e;)) < ti—1, and C = t. Hence, by Definition 3.3.3,
t;i—gstir1 for all 1<i<n and @ —{e1}. Thus, by Definition 3.3.4, C € C(0).
By Definition 3.3.4, C € C(o¢) implies that there are X1, ..., X, € E such
that ¢ -3 X1 —5...—sX, and X,, = C. Then, by Definition 3.3.3, we have:

pcXicXsc...cX,CE (C1)
Ve,e' € X,.1(ete’) (C2)
Vee X;. (ic(e) \de(@,e)) S @ (C3)
Vi<i<n.VeeX;;1\X;. (ice)\de(X;,e)) = X; (C4)

Let X1 = {81,1,...,617,,11} and X;\X;_1 = {ei,l,...,ei,mi} forall 1<i <n.
Then, by Definition 3.3.2:

t=e11,.-,€1Lmi>--»€n,1-++,€nm, = €7,-..,€), i8 a trace such that £ € E (be-
cause of (C1)), = (e’i#e’j) for all 1 <i,j <k (because of (C1) and (C2)), for all

1<i<kandalll<j<m; we have (ic(e; ;) \dc(¢i—1,e;;)) S ti_1 (because
of (C3) and (C4)), and ¢ = C (because X,, = C). Thus C € C1,(0). O

Moreover the following technical Lemma relates transitions and the ex-
tension of traces by causally independent events.

Lemma A.2.1. Let 0 = (E,#,—,>) be a SES and X,Y € C(0). Then X —3Y
iff there are:

b1 =€l n,t9 =€1,. . €n,€n+ls---s€nim € T(0) such that X =11, Y =19,
and Ve,e' e Y\ X . (ic(e) \ de(X,e)) € X.

Proof. By Definition 3.3.2 and Lemma 3.3.5, X € C(0) implies that there is
atrace t; =eq,...,e, € T(o) such that X =1;.

If X —3Y then, by Definition 3.3.3: X €Y, Ve,e' €Y. 1(e#e’), and Ve €
Y \X. (ic(e)\ de(X,e)) < X. Then, by Definition 3.3.2, ta =e1,...,en, €n+1

137

A. Appendix: Proofs

s .o enem €T(0) and Y =15 for an arbitrary linearization e, 41,...,en+m Of
the events in Y \ X, i.e. with {e,11,...,ep4m} =Y \X such that e, 1; Zep;
whenever 1<i,j,<m and i #j.

If there is a trace t3 = e1,...,€n,€n+1,.--,en+m € T(0) such that Y =1,
and Ve,e' e Y \ X. (ic(e) \ dc(X,e)) = X then X €Y. Moreover, by Defini-
tion 3.3.2, t € T(0) implies Ve,e' € Y. 1 (efte’). Thus, by Definition 3.3.3,
X-Y. O

Note that the condition Ve,e’ € Y \X. (ic(e)\de(X,e)) < X states that the
events in Y \ X are causally independent from each other.
Lemma 3.3.7 states:

Let 0 be a SES, H € C(¢). Then:
VXcE\H.XeC(o[H]) = H—;HUX.

Proof. Let o[H]=(E',#,—',>). Let us prove:
VX,YCE'. (X —-,YAXeC(o[H])) = HUuX - HUY

Regrading set containment, X —.Y means X €Y, then HUX cHUY.
Conflict-freeness is proved similarly to Lemma 3.2.5, with taking into con-
sideration that loops can be dropped in SES, but not for events conflicting
with H according to the definition of >.

Let us prove Ve e (HUY)\(HuUX). ic(e)\de(HuX,e) c HuUX for e €
(HUY)\(HuX)=Y\X. Let € €icle)\de(HUX,e), then e’ € ic(e) and
e’ ¢ de(HUX,e). But e’ €ic(e) means e’ — e. We have two possibilities, the
first is ¢’ € H then e’ € HUX. The second is e’ ¢ H, then e’ € E', i.e. (¢',e) €
— NE". But since ¢’ ¢ de(HUX,e), then e’ ¢ de(H,e). Then e’ —' e, i.e.
e’ €ic/(e). Furthermore, e’ ¢ dc(H UX,e) means e’ ¢ de(X,e), which means
e ¢ dc'(X,e) since >’ = > NE’. But we know that ic'(e) \ d¢/(X,e) < X for
ecY\X since X »/Y,thene’'eXie e e HUX.

By taking X = ¢ and applying transitivity we conclude:

VXcE' .XeC(olH)) = H—;XUH (A.3)

Similarly we can prove VX, Y cE'. HuX - HuY = X —.Y, which
yields:

VXEE’.XEC(U[H])<=H—>:XUH (A.4)
From A.3 and A.4 we conclude: VX cE'. X € C(o[H]) < H -} HU
X. O

138

A.2. Proofs of Section 3.3: Shrinking Causality

Lemma A.2.2. For each SES o there is a DES 8, namely § = des(o), such
that T(o) =T(6) and C(g) = C(H).

Proof of Lemma A.2.2. Let 0 = (E,#,—,>) be a SES. By Definitions 3.3.1
and 3.2.1, # < E? is irreflexive and symmetric. Hence, by Definitions 2.6.1
and 3.3.8, § = des(o) is a DES.

Let ¢t = e1,...,e,. By Definition 3.3.2, ¢t € T(0) iff t < E, —(e;#e;), and
(c(e;) \de(t;—1,ei)) S ti—1 for all 1 <i,j <n. Since de(H,e) =fe’ | 3d €
H.[e'—e]>d}andic(e) = {e' | e’ —e}, we have (ic(e;) \ dc(¢i—1,e;)) S ¢i—q iff
Ve'€eE.e!—e; = e'€t;_yvidet;_1. [¢’—e;]>d forall 1 <i <n. By Def-
inition 3.3.8, then t € T(0) iff t CE, —(ej#e;), and X —e; = ;- 1NX # @
for all 1<i,j <n and all X < E. Hence, by the definition of traces in Sec-
tion 2.6, t € T(o) iff t € T(0), i.e. T(o) = T(5).

By Lemma 3.3.5, Section 2.6, and Definition 3.3.2, then also:

C(6) = Cry(0) = C(0)
O

The most discriminating behavioral semantics of DESs used in liter-
ature are families of posets. Thus the translation should also preserve
posets. Authors in [48] show that the early causality and trace equiva-
lence coincide for Dual ESs. Thus we concentrate on there early causality.
The remaining intentional partial order semantics are discussed in the Ap-
pendix B. To capture causal ambiguity we have to consider all traces of a
configuration to obtain its posets.

Definition A.2.3. Let 6 = (E,#,—) be a DES, t =e1,...,e, one of its traces,
l1<i<n,and X1—ej,...,X, — e; all bundles pointing to e;. A set U is a
causeof e;intifVeeU.Jl<sj<i.e=e;, V1<sk=m.X;NU # @, and U is
the earliest set satisfying the previous two conditions. Let Py(t) be the set of
posets obtained this way for t.

Theorem 3.3.10 states:
For each SES o there is a DES 6 = des(o), such that 0=,6.

Proof. Let o =(E,#,—,r>) be a SES.
By Lemma A.2.2, § = des(0) = (E,#,—) is a DES such that T(o) = T(§) and
C(o) = C(5).

139

A. Appendix: Proofs

Let t=eq,...,e, € T(0), 1 <i <n, and the bundles X1—e;,...,X,,—e; all
bundles pointing to e;. For U to be a cause for e; Definition 3.3.9 requires
(ic(e;)\de(U,e;)) cU. Since de(H,e) ={e’ |3d e H. [¢'—~e|>d} and ic(e) =
{e’| e’ —e}, this condition holds iff the condition e’ —e; = e’ e Uvid €
U. [¢'—e;]>d holds for all ¢’ € E. By Definition 3.3.8, then (V1 <k <
n.XpnU # @) < ((ic(e;) \dc(U,e;)) < U). So, by Definitions A.2.3 and
3.3.9, 0=p6. O

The opposite direction of the translation from DESs to SESs:
Lemma 3.3.12 states:

There are DESs § = (E,#,—), e.g. 6 =({a,b,c,d, e}, ®,—) with —
={{x,y}—el|x,y€{a,b,c,d} Ax #y}, that cannot be translated
into a SES o = (E,#,—,>) such that T(§) = T(0).

Proof of Lemma 3.3.12. Assume a SES ¢ = (E,#,—,>>) such that E = {a,
b, c, d, e} and T(o) = T(5). According to Section 2.6, T(d) contains all
sequences of distinct events of E such that e is not the first, second, or
third event, i.e. for e to occur in a trace it has to be preceded by at least
three of the other events. Since by Definition 3.3.2 conflicts cannot be
dropped, T(co) = T(6) implies # = @. Moreover, since e has to be preceded
by at least three other events that can occur in any order, — has to con-
tain at least three initial causes for e. W.l.o.g. let a —e, b—e, and c—e.
Because of the traces abd,acd € T(5), we need the droppers [6—e]r>d and
[c—elr>d. Then ad € T(o) but ad ¢ T(6). In fact if we fix E = {a,b,c,d,e}
there only finitely many different SESs ¢ = (£, #,—,>) and for none of them
T(6) = T(o) holds. O

Lemma A.2.4. For each DES § there is a SES o, namely o = ses(0), such
that
T(6)=T(o) and C(6)=C(o).

Proof of Lemma A.2.4. Let § = (E,#,—)be a DES. By the definition of DESs
in 2.6, # < E? is irreflexive and symmetric. Hence, by Definitions 3.3.1,
3.2.1, and 3.3.11, 0 = ses(8) = (E', #,—,1>) is a SES.

Let t = e1,...,e,. Then, by Definition 3.3.2, t € T(0) iff € E, —(e;#e;),
and (ic(e;)\de(¢i—1,e;)) S ¢i—1 for all 1 <i,j < n. Note that we have t cE
instead of £ € E’, because all events in ¢ have to be distinct and for all
events in E'\ E there is an initial self-loop but no dropper. Since dc(H,e) =
{e'|3d € H. [¢'—~e|>d} andic(e) = {e' | ¢’ — e}, we have (ic(e;) \ de(¢i-1,e;))

140

A.2. Proofs of Section 3.3: Shrinking Causality

CtiqiffVe'€eE.e'—e; = e'€ti_1videt,_1. [e'—e|>dforalll<i<
n. By Definition 3.3.11, then ¢ € T(0) iff t E, —(ej#e;), and X —e; =
tiinX#@foralll1<i,j<n and all X € E. Hence, by the definition of
traces in Section 2.6, t € T(0) iff ¢ € T(6), i.e. T(o) = T(5).

By Lemma 3.3.5, the definition of configurations in Section 2.6, and Def-
inition 3.3.2, then also C(6) = Ct.(0) = C(0). O

Moreover the DES and its translation have exactly the same posets.
Theorem 3.3.13 states:

For each DES 6 there is a SES o = ses(9), such that § =, 0.

Proof of Theorem 3.3.13. Let § = (E,#,—) be a DES. By Lemma A.2.4, ¢ =
ses(0) = (E,#,—,1>) is a SES such that T(6) = T(o) and C(5) = C(0).

Let t = eq,...,e, € T(H), 1 =i < n, and the bundles X —e;,...,X,;, — e;
all bundles pointing to e;. For U to be a cause for e; Definition 3.3.9 re-
quires (ic(e;)\de(U,e;)) < U. Since de(H,e)={e’'|3d € H. [¢'—~e|>d} and
ic(e) = {e'| ¢’ —e}, this condition holds iff the condition ¢’ —e; = e €
Uv3deU. [e'—e;|]>d holds for all ¢’ € E. By Definition 3.3.11, then
(Vi<k<n.X,nU # @)iff ((ic(ei)\dc(U,ei)) c U). So, by Definitions A.2.3
and 3.3.9, 6=, 0. O

Thus SESs and DESs have the same expressive power.
Proof of Theorem 3.3.14. By Theorems 3.3.10 and 3.3.13. O
Theorem 3.3.16 states:

Let 0,0’ be two SESs. Then 0 =,0" <= o=0' < T(0)=
T(o").

Proof of Theorem 3.3.16. By Corollary 3.3.15, o =, 0" iff T(0) = T(0”).

If C(0) # C(0’) then, by Lemma 3.3.5 and Definitions 3.3.9 and 3.3.3, 0 #p
o' and o #;0’. Hence assume C(0) = C(0’). Note that, by Definition 3.3.2
and Lemma 3.3.5, for all C € C(o) there is a trace ¢ € T(o) such that ¢ = C.
Moreover for every trace ¢ € T(o) except the empty trace there is a sub-trace
t' € T(o) and a sequence of events e1,...,e,, such that t = t'eq,...,e,, and
Ve € fer,...,en} . (ice) \ dc(?,e]) c¢. Thus, by Lemma A 2.1, T(o) = T(0”)
iffo=y0. O

141

A. Appendix: Proofs

Theorem 3.3.17 states:
SESs and EBESs are incomparable.

Proof of Theorem 3.3.17.

Let o¢ =({a,b,c},8,{a—b},{[a— b]>c}) be the SES that is depicted in Fig-
ure A.1. Assume there is some EBES ¢ = (E,~»,—) such that T(o¢) = T(¢).
By Definition 3.3.2, T[U,g) = {e,a,c,ab,ac,ca,cb,abc,acb,cab,cba}, i.e. b
cannot occur first. By Definition 2.5.2, a disabling x ~> y implies that y
can never precedes x. Thus we have ~ N{a,b,c}> = @, because within
T(U{) each pair of events of {a,b, c} occur in any order. Similarly we have
— N{X—elee{a,b,c}AXn{a,b,c} = @} =@, because x— y implies that x
always has to precede y. Moreover, by Definition 2.5.2, adding impossible
events as causes or using them within the disabling relation does not in-
fluence the set of traces. Thus there is no EBES ¢ with the same traces as
0¢. By Definition 2.5.2 and the definition of posets in EBESs, then there is
no EBES ¢ with the same configurations or posets as o¢.

Let &y =({e, f},{e~~f},®) be the EBES that is depicted in Figure A.1. As-
sume there is some SES ¢ = (E, #,—,>) such that T({;) = T(o). According to
Section 2.5, T(¢,) = {€,e,f,ef}. By Definition 3.3.2 and because of the traces
e and f, there are no initial causes for e and f,i.e. = n{x—y|ye{e,fH} =@.
Moreover, #n{e, f}? = @, because of the trace ef and because conflicts can-
not be dropped. Thus fe € T(o) but fe ¢ T({,), i.e. there is no SES o with
the same traces as ;. Then by Definitions 3.3.2 and 3.3.9, there is no SES
o with the same configurations or families of posets as &, . O

Lemma 3.3.18 states:
For each SES o there is a RCES p, such that o =p.

Proof. By Definitions 3.3.3 and 3.3.4, X —;Y implies X €Y for all X,Y €
C(o).

Assume X € X' cY' Y. Then, by Definition 3.3.3, X —¢Y implies
Ve,e' €Y.~ (effe’) and Ve e Y\X . (ic(e)\de(X,e)) < X. Then X < X' implies
(ic(e)\dc(X',e)) < (ic(e) \ de(X,e)). Then Ve,e’ €Y'. 7 (effe’) and Ve €Y'\
X'. (ic(e) \ de(X',e)) = X', because of Y' €Y. By Definition 3.3.3, then
X' —Y'.

Thus o satisfies the conditions of Definition 2.7.5. Then by Lemma 2.7.6,
p =rces(o) is a RCES such that o= p. O

142

A.3. Proofs of Section 3.4: Growing Causality

Lemma 3.3.19 states:

There is no transition-equivalent SES to the RCES
po = (le.f1{B el 0 Hf)Uf} e, 1),

Proof. Assume a SES o = (E,#,—,1>) such that o=¢p,. Then C(c) = C(p,).
By Definition 3.3.2 and Lemma 3.3.5 and because of the configuration {e, f} €
C(ps), the events e and f cannot be in conflict with each other, i.e. #n
{e,f}? = . Moreover, because of the configurations {e},{f} € C(p,), there
are no initial causes for e and f, i.e. - N{x—y|ye{e,f}} = @. Note that
the relation > cannot disable events. Thus we have Va,b € {e,f}. 7 (a#b)
and (ic(e) \ dc({f},e)) = @ < {f}. But then, by Definition 3.3.3, {f} —s{e,f}.
Since {f}—yc{e,f} does not hold, this violates our assumption, i.e. there is
no SES which is transition equivalent to ps. O

Theorem 3.3.20 states:

SESs are strictly less expressive than RCESs.
Proof of Theorem 3.3.20. By Lemmas 3.3.19 and 3.3.18. O

A.3. Proofs of Section 3.4: Growing Causality

Lemma 3.4.5 states:
Let y be a GES. Then Cry(y) = C(y).

Proof. Lety=(E,#,—,»).

By Definition 3.4.2, C € Cry(y) implies that there is some ¢ = ej,...,e,
such that t € E, V1<i,j<n.-(ej#e;), V1<i=<n. (icte;)Uac(ti-1,e;))
ti_1, and C = ¢. Hence, by Definition 3.4.3, t; —g#;41 for all 1 <i <n and
@ —g{e1}. Thus, by Definition 3.4.4, C € C(y).

By Definition 3.4.4, C € C(y) implies that there are X1, ..., X, € E such
that @ —; X1 —;...—X, and X,, = C. Then, by Definition 3.4.3, we have:

pcXicXsc...cX,,CE (D1)
Ve,e' € X, .1 (ete) (D2)
Vee X;. (ic(e)vac(®,e)) = @ (D3)
Vi<i<n.VeeX;:1\X;.(icle)vac(X;,e)) = X; (D4)
Vi<i<n.VimeX;1\X;.VceE. mp[c—t] = ceX; (D5)

143

A. Appendix: Proofs

Let X1 = {e11,...,e1,m,} and X;\X;_1 = {ei1,...,eim,} for all 1 <i <n.
Then, by Definition 3.4.2:

t=e11,.-,1mys-r€n,1--»€n,m, = €7,-..,€), is a trace such that t < E (be-
cause of (D1)), = (e'i#e’j) for all 1 <i,j <k (because of (D1) and (D2)), for all
l<i<kandall 1<;<m; wehave (ic(e; j)Uac(¢i_1,e;;)) S ti—1 (because
of (D3), (D4), and, by (D5), ac(t;—1 UX;,e; ;) = ac(t;_1,ei), and = C (be-
cause X, = C). Thus C € Cry(y). O

Lemma 3.4.7 states:
Let y be a GES, and H € C(y). Then:

VX,Y cE\H.X eC(ylH]) = H -} HUX.

Proof. Similar to the proof of Lemma 3.3.7, w.r.t. to ac and Condition 3.4.3
of Definition 3.4.3. O

For the incomparability result between GESs and EBESs we consider
two counterexamples, and show that there is no equivalent EBES or GES
respectively.

Lemma A.3.1. There is no configuration-equivalent GES to f,
(cf. Figure A.1).

Proof. Assume a GES y = (E,#,—,») such that C(y) = C(8,). According
to Section 2.4, C(By) = {9, {a}, {b}, {a,c}, {b,c}}. Because {c} ¢ C(B,), {a,c} €
C(By), and by Definition 3.4.2 and Lemma 3.4.5, ¢ has to be an initial
cause of ¢ in 7, i.e. a —c¢. But then, by Definition 3.4.2 and Lemma 3.4.5,
{b,c} ¢ C(y) although {b,c} € C(By). This violates our assumption, i.e. no
GES can be configuration-equivalent to §,. O

Lemma A.3.2. There is no trace-equivalent EBES to y¢ (cf. Figure A.1).

Proof. Assume a EBES ¢ = (E,#,—) such that T(¢) = T(y¢). By Defini-
tion 3.4.2, a,c,ca,bac € T(y:) and ac ¢ T(y;). Because of a,c € T(y¢) and
by Definition 2.5.2, @ and ¢ have to be initially enabled in ¢, i.e.

— N{X—yl|yefa,c}} = ®». Moreover, because of ca,bac € T(Y{), a cannot
disable c, i.e. 7 (a~>c). But then ac € T(¢). This violates our assumption,
i.e. there is no trace-equivalent EBES to y.. O

144

A.3. Proofs of Section 3.4: Growing Causality

Theorem 3.4.8 states:
GESs are incomparable to BESs and EBESs.

Proof of Theorem 3.4.8. By Lemma A.3.1, there is no GES that is configu-
ration equivalent to the BES §,. Thus no GES can have the same families
of posets as the BES f,, because two BES with different configurations
cannot have the same families of posets (cf. Section 2.4). Moreover, by Def-
initions 2.4.1 and 2.5.1, each BES is also an EBES. Thus no GES can have
the same families of posets as the EBES g,.

By Lemma A.3.2, there is no EBES and thus also no BES that is trace-
equivalent to the GES y:. By Definition 3.4.3, two GES with different
traces cannot have the same transition graphs. Thus no EBES or BES
can be transition-equivalent to y,. O

For the incomparability between GESs and SESs, we study a GES coun-
terexample, such that no SES is trace-equivalent.

Lemma A.3.3. There is no trace-equivalent SES to vy (cf. Figure A.1).

Proof. Assume a SES o = (E,#,—,>) such that T(0) = T(y,). By Defini-
tion 3.4.2, T(y,) = {€,a,b,ab}. Because of the trace ab € T(y,) and by Def-
inition 3.3.2, a and b cannot be in conflict, i.e. —(a#b) and —(b#a). More-
over, because of the traces a,b € T()/a), there are no initial cases for a or
b, ie. > Nn{x—y|y€eia,b}} = @. Thus, by Definition 3.3.2, ba € T(c) but
ba ¢ T(ys). This violates our assumption, i.e. no SES can be trace equiva-
lent to .. O

Theorem 3.4.9 states:
GESs and SESs are incomparable.

Theorem 3.4.9. By Lemma A.3.3, no SES is trace-equivalent to the GES
Yo. By Definition 3.4.3, two GES with different traces cannot have the
same transition graphs. Thus no SES is transition-equivalent to the GES
Yo-

By [47], BESs are less expressive than EBESs and by [48], BESs are less
expressive than DESs. By Theorem 3.4.8, BESs and GESs are incompara-
ble an by Theorem 3.3.14 DESs are as expressive as SESs. Thus GESs and
SESs are incomparable. O

145

A. Appendix: Proofs

To show that GESs are strictly less expressive than RCESs, we give a
translation for one direction and a counterexample for the other.

Lemma A.3.4. For each GES vy there is an RCES p, such that y=¢p.

Proof. Lety=(E,#,—,»). By Definition 3.4.3, X —,Y implies X €Y.

Assume X €X' cY'cY and X —,Y. By Definition 3.4.3, we have first
Ve,e' € Y'. 7 (e#te’), second Ve € (Y'\X'). (ic(e)Uac(X,e)) < X, and third
VimeY\X.Vee E.mw[c—t] = ceX. Moreover, because Vt,m €
Y\X.VceE.mplc—t]l = ceX,ac(X,e)=ac(X',e) forallecY'\ X'
Hence Ve € (Y'\X'). (ic(e)uac(X',e)) X' and Vt,meY'\X'.Vce E. m»
[c — {1 = c e X'. Thus, by Definition 3.4.3, X' —,Y".

By Lemma 2.7.6, p =rces(y) is a RCES and y=;p. O

Lemma A.3.5. There is no transition-equivalent GES to py = ({a,b,c},F).

Proof. Assume a GES y = (E,#,—,») such that y=;py. Then C(y) = C(p,).
By Definition 3.4.3 and because of the configuration {a,b,c} € C(p,), the
events a, b, and ¢ cannot be in conflict with each other, i.e. #n{a,b,c}? = @.
Moreover, because of the configurations {a},{b},{c} € C(py), there are no
initial causes for a, b, or ¢, i.e. — N{x—y|ye{a,b,c}} = ¢. Finally, be-
cause of the configurations {a,c},{b,c} € C(py), neither a¢ nor b can add
a cause (except of themselves) to ¢, i.e. ap[e = c] = e =a and b »
[e—c] = e=>b for all e € E. Thus we have Ve,e' € {a,b,c}. 1 (ette’)
and (ic(c)Uac({a,b},c)) = @ < {a,b}. But then, by Definition 3.4.3, {a,b} —
{a,b,c}. Since 7 ({a,b}—yc{a,b,c}), this violates our assumption, i.e. there
is no GES that is transition equivalent to p,. O

Theorem 3.4.10 states:
GESs are strictly less expressive than RCESs.
Proof of Theorem 3.4.10. By Lemmas A.3.4 and A.3.5. O

146

A.4. Proofs of Section 3.5: Fully Dynamic Causality

A.4. Proofs of Section 3.5: Fully Dynamic
Causality

Lemma 3.5.8 states:

Let p be a SSDC. Then for the causal-state function cs of any
state (C, cs) € S(p) it holds cs(e) = (ic(e)uac(C,e))\(de(C,e)uC).

Proof. If C = @ the equation follows directly from the definitions of cs, ic,
ac, and dc.

Assume (C,cs)—¢(C’,cs'). By induction, we have cs(e) = (ic(e)uac(C,e))\
(de(C,e)uC). We prove for each e € E\ C’ by a doubled case distinction
cs'(e) = (ic(e) Uac(C',e)) \ (de(C',e) uC). Let us first assume e’ ¢ cs(e)
but e’ € cs'(e), then by Condition 5 (the if condition) we have Ja € C'\
C.aw[e — e] and since ac(C’,e) ={e' |Fa € C'.am[e' — elna ¢ {e,e'}}
we have e’ € ac(C',e), because p is a SSDC it follows e’ ¢ dc(C’,e) and be-
cause e € E\C' it follows e ¢ C. Then in this case e’ € (ic(e) Uac(C',e)) \
(de(C',e) UC) holds. Let now still e’ ¢ cs(e) but e’ ¢ cs'(e), then by contra-
position of Condition 5 we have fa € C'\C.aw[e/ —], and so e’ ¢ (icte)u
ac(C’,e))\ (de(C’,e) UC). Let us now consider the case e’ € cs(e) and here
first e’ € cs’(e). Then by Condition 4 (the only if condition) it follows Ad €
C'\C. [¢/—e]r>d. Then e’ ¢ dc(C’,e) and because e € E\C' it follows
e ¢ C and so e’ ¢ (ic(e)Uac(C’,e))\ (de(C’,e)UC). In the last case we con-
sider e’ € cs(e) and e’ ¢ cs'(e). By Condition 4 (the if condition) we have
3d € C'\C. [¢'—e|>d and so e’ € d¢(C',e). Thus e’ ¢ (ic(e)uac(C’,e))\
(de(C’,e)uC). So in each case cs'(e) = (ic(e) Uac(C',e)) \ (de(C’,e) U C)
holds. O

Lemma 3.5.9 states:

Let p be a SSDC and let (C,cs) and (C',cs’) be two states of p
with C < C’, then Conditions 4 and 5 of —4 hold for those two
states.

Proof. Let us prove Condition 4. Let ¢’ € E\ C’ with e’ € cs(e) \ cs'(e).
Since ac(C,e) = {e'|Fa € C.am[e' = elna ¢ {e,e'}} and de(C,e) ={e' | 3d €
C. [¢'—e|>d} and C < C’, we have: ac(C,e) < ac(C',e) and de(C,e) <
dc(C’,e) and by the previous Lemma 3.5.8 we have:

¢’ € ((icte)uac(C,e)) \ (de(C,e)u C)) \((icte) uac(C',e)) \ (de(C'e) uC))

147

A. Appendix: Proofs

In other words:

e’ € (icte)uac(C,e)) ne' ¢ (de(C,e)uC)
A e ¢ (ice)uac(C’e))\ (de(C'e) uC))

Butife’ € ic(e)uac(C,e) then e’ €ic(e)uac(C’,e), thus e’ € (dc(C’,e)uC’) and
so e’ €dc(C’,e), but ¢’ ¢ de(C,e), which yields [e — e]l> N (C'\ C) # @, so the
if condition of 4 holds. Let now e,e’ € E\C’ with [¢' — e]> N (C'\C) # @,
then e’ € d¢(C’,e) so e’ ¢ cs'(e) follows, which is exactly the only if condition
of 4.

Condition 5 is proved similarly. O

Lemma 3.5.10 states:

Let p be a SSDC and (X,csx) —q (Y,csy) a transition in p.
Then for all X')Y' with X < X' Y'Y, there is a transition

(X',cs) —a (Y',csy) in p, where csxi(e) = ((ic(e)uac(X’,e)) \
(dc(X’,e)UX’)) and csy(e) = ((ic(e)uac(Y’,e))\(dc(Y’,e)UY’)).
Proof. By assumption Conditions 1 and 2 of Definition 3.5.3 of the tran-
sition relation holds for the two states (X’,csx’) and (Y’,csys). Condi-
tions 4, and 5 follow from Lemma 3.5.9. Condition 6 holds because of Defi-
nition 3.5.7 and p is a SSDC. Condition 7 holds because it is a special case of
the same conditions for (X,csx) and (Y,csy). Let now e € Y\ X', such that
cs(e)x’ # @, then thereisa € X'\X and a c € E with a»[c — e], but thisis a

contradiction with Condition 7 of (X,csx)—q(Y,csy), so Condition 3 holds.
Thus (X',csy) —q(Y",cs,) holds. O

Lemma 3.5.12 states:
Let 0 be a SSDC, H € C(0). Then:
VX<E\H.XeC(o[H]) <= H—-; HuX.
Proof. Let A[H]= (E'"#,—',>',»/).

First: X e C(o[H]) = H—-;HuX for X<E\H.
To prove that, let (X1,cs1), (X2,cs2) be two states in A[H] for X{,Xs c E'.

148

A.4. Proofs of Section 3.5: Fully Dynamic Causality

Let cs) : E'\ X1 — E'\ X1 be a causality state function such that cs/(e) =
csi(e)\fe} for e € {e| 3¢’ € H. ette’ A1(e — e)}, and cs|(e) = cs1(e) otherwise.
Let cs;, be defined similarly according to csz. Let us prove the following
auxiliary implication:

(X1,c81) =5 (X2,c89) A(X1,c81) € S(A) =
(HuXi,cs}) —a (HUXg,cs5) (A5)

Let us prove first that (HUX7,cs}) is a state in A.
Since E'\ X1 =E \ (H U X1) then Cs’l :EN(HuX,)—PE\NHUXY)).
Let us prove also that cs)(e) S mc'(H UX1,e) where
me(HUXq,e)={e'c E\(HUX1)|e' > evIac HUX;. (¢/,a,e) € B} is the
maximal causality function in A. Let e’ € cs)(e), then e’ € csi(e) by defini-
tion of cs’l. But csi(e) Smc'(X1,e) since (X1,cs1) is a state in A[S], where:

mc'(Xi,e)={e'e E'\X1|e' - eviaecX;. (e’,a,e) ep'}

Then e’ € mc/(X1,e). Then e/ —' e or Ja € X;. (¢;a,e) e»’. Bute' —'e
either means e’ € csy(e) which means e’ € me(H, e), then e’ € me(H U X1, e)
since mc(H,e) € me(H UX1,e) by the definition of the maximal causality
function; or it means e’ = e and 3e”’ € H. e'#e which means e’ —’ e according
to the definition of cs’l, which in turn means e’ € me(H U X1, e). On the other
hand 3a € X. (¢,a,e) € »' means 3a € HUX;. (¢,a,e) € »', which also
means Ja € HUX;. (¢/,a,e) € » since »' > NE™; ie. e’ € me(HUXy,e).
Hence cs/l(e) cmce(HuXq,e). So (HuXiq,csq) is a state in A. The same
applies for (H UX3,cs)).

Next, to prove the transition, conflict-freeness of Condition 2 is proved
similar to Lemma 3.3.7 with the absense of droppers for cycles of events
conflicting with H, since (X1,cs1) is reachable. Conditions 3 to 5 are proved
straightforward and similarly, as well as Condition 7. Condition 6 holds for
all SSDCs anyway.Then (@,cs;’) = (X,csy) = (H,cs') = (HUX,cs) for
X cE'=E\H. Then, by the definition of configurations and —. in DCES,
we have:

VX<E\H.XeC(olH]) = H—-;HuX (A.6)

Second: similarly we prove the other condition:
(HuXj,cs1) —q (HUXg,c89) = (X1,c8]) = (X2,cs5) for:
e Xi1,XocE\H

149

A. Appendix: Proofs

e cs1:E\N(HuUX)—"PE\NHUXY))
* cso:EN(HUXs)— P(E\(HUXb5))

Furthermore, cs| has the same domain and co-domain of cs; such that
csi(e) = csi(e)Ufe} for e € {e | Fe’ € H. e'#e, and cs(e) = cs1(e) otherwise.
csy, is defined similarly. Then we conclude:

VX cE\H.(H,csg)—](HUX,cs,) = (,c87) =5 (X, csy)

But we can notice that in this case cs| = cs;’, which is the causality state
function for the initial state in A[H]. Then:

VX<cE\H.H-;HuX = X eC(A[H)) (A7)

Hence, from A.6 and A.7 we conclude: X € C(¢[H]) < H —; HuX holds
for XcE\H. O

Lemma 3.5.14 states:

Let o be a SES and i(0) its embedding. Then we have for each
state (C,cs) of i(0), cs(e) =ic(e) \ (de(C,e) UC).

Proof. By Lemma 3.5.8 and because ac(C,e) = @ in i(o) for all configura-
tions C and events e. O

Lemma 3.5.15 states:

Let y be a GES and i(y) its embedding. Then we have for each
state (C,cs) of i(y), es(e) = (ic(e) Uac(C,e)) \ C.

Proof. By Lemma 3.5.8 and because dc(C,e) = @ in i(y) for all configura-
tions C and events e. O

Lemma 3.5.16 states:
Let u be a GES or SES, then we have i(u) =~ p.

Proof. Let p be a SES and C —4C’' a transition in u, from Lemma 3.5.14
we have that for a configuration C the causality state function is defined
as c¢s: E\X — P(E \ X) where cs(e) = ic(e) \ (de(X,E)UX). Based on Def-
inition 3.3.3 C' is conflict free and C < C’ since C —4C’, so Conditions 1
and 2 of Definition 3.5.3 are satisfied. Moreover in the configuration C we

150

A.4. Proofs of Section 3.5: Fully Dynamic Causality

have cs(e) =ic(e)\(de(C,E)uC) but ic(e)\de(C,E) < C, so Condition 3 holds.
Conditions 4 and 5 hold since i(u) is a SSDC. Conditions 6, and 7 are triv-
ially satisfied since » = @, so (C,cs) —4(C’,cs'). Let now (C,cs)—4(C',cs')
in i(u), then by Definitions 8.5.3, 3.3.3 in combination with Lemma 3.5.14
there is a transition C —C' in p.

The proof is similar for a GES. O

Embedding EBESs into DCESs
Lemma 3.5.19 states:

Let 9 be a EBDC, C € C(9), and let e,e’ € C.e <¢c e’. Let also
(Co,cs0)—q..-—a(Chp,csy) with Co = @ and C,, = C be the tran-
sition sequence of C, then 3C; € {C),...,C,}.e€ C; ne' ¢ C;.

Proof. Let (Cr,csy) be the first occurrence of e in the sequence (Co,cso)—q

..—a(Cp,csp), so according to Condition 1 of Definition 3.5.3 it is enough
to prove that e’ ¢ C. First, assume that e — ¢/, then e € csq(e’) according to
the definition of cs;. Then according to Definition 3.5.3 the only situation
where e ¢ csy_i(e) is that there is a dropper e” € C¢_; for it according to
Condition 4, but that is impossible since e and e’ will be in conflict accord-
ing to Condition 2 of Definition 3.5.17. So e € csy_1(e’) and thus e’ ¢ Cy
according to Condition 3 of Definition 3.5.3.

Second assume that e’ »[e — e]. If e/ € Cy_; then according to Con-
dition 5 of Definition 3.5.3 e € csy_1(e) which means e ¢ C¢ according to
Condition 3 of Definition 3.5.3, which is a contradiction to the definition of
Cy. Then according to Condition 7 of Definition 3.5.3, if ' € Cy, it follows
e € Cy_1, which again contradicts the definition of C¢. So because e eC,
there is an 4 > f, such that e’ € Cp, but ¢’ ¢ Cp,_;.

Third, assume 3c € E. [c—e’| >e. Then since EBDC are a subclass of
SSDC we have 3a € E. a» [¢c — '] according to Definition 3.5.7. Then ¢ — e’
according to Condition 1 of Definition 3.5.1, which means c € csg(e’) accord-
ing to definition of cs; in Definition 3.5.3. Let us assume that e’ € Cy then
either ¢ or another dropper d. [c—e'] >d occurred before e’, which is im-
possible because of the mutual conflict in Condition 2 of Definition 3.5.17.
Soe'¢Cy. O

Lemma 3.5.20 states:

<(c is a partial order over C.

151

A. Appendix: Proofs

Proof. Lete,e'€C.e<ce’ andlet (@ =Cq,csq)...(C, =C,csy) be the tran-
sition sequence of C. Let also Cj,C; be the configurations where e, e’ first
occur, respectively, then according to Lemma 3.5.19, A < j. Since <¢ is the
reflexive and transitive closure of <¢, then e <¢c ¢/ =— h < j. For anti-
symmetry, assume that e’ <¢ e also then according to Lemma 3.5.19: j<h,
but A < j, then h = j. The only possibility for 2 = j is that e = ¢’ because
otherwise & < j and j < h, which is a contradiction. O

Lemma 3.5.21 states:

Let 9 be a EBDC and (C,cs),(C’,cs’) € S(9) with C < C'. Then:
(Ve,e'€C’.e£e' Ne' <scre = e’ €C) < (C,cs)—4(C'cs).

Proof. First let us assume Ve,e' € C'.e #e' Ae' < e = €' € C and show
that all the conditions of Definition 3.5.3 hold for (C,cs) and (C’,cs’). Condi-
tion 1, C = C’, holds by assumption. Because C’' is a configuration it is con-
flict free, i.e. Condition 2 holds. Conditions 4 and 5 follow immediately from
Lemma 3.5.9. Condition 6 follows from Definition 3.5.7 of SSDC, since 9 is
an EBDC which is a subclass of SSDC. To prove Condition 3, let f € (C'\C),
then we have from Lemma 3.5.8 ¢s(f) = (ic(f)uac(C, f))\(de(C, f)uC). As-
sume cs(f) Z @, i.e. Af' € es(f). So either f' €ic(f) or f € Uac(C, f). We can
ignore the case that f’ € ac(C, f), because in EBDC the added causality for
f can only be f, which would make f impossible, but this cannot be the
case since f € C'. So let us consider the remaining option: £’ €ic(f). Then
f’ <c' f by the definition of <. Then by assumption, ' € C and there-
fore ' ¢ cs(f), which is a contradiction. Then Vf € (C'\ C). cs(f) = @. For
Condition 7 we show Vt,m e C'\C.Vce E.mw[c —t] = c€C. The
only growing causality is of the form m »[c — c] and according to Defini-
tion 3.5.18, m»[c — ¢] means ¢ <¢' m, then c € C.

Let us now assume (C,cs)—q(C’,cs), and e,e’ € C' with e #¢' and e’ <
e, so by Lemma 3.5.19 it follows e’ € C. O

Lemma 3.5.23 states:
Let ¢ be an EBES. Then dces(¢) is an EBDC.

Proof. First dces(¢) is a DCES. The definition of — in Definition 3.3.11 en-
sures Conditions 3.5.1(1) and 3.5.1(2). According to the definition of > in
Definition 3.3.11, the only dropped causes are the fresh events, which can-
not be added by » according to Definition 3.5.22(3). So Condition 3.5.1(3)
also holds.

152

A.4. Proofs of Section 3.5: Fully Dynamic Causality

Second, dces(¢) is a SSDC, since the only dropped events are the fresh
ones which are never added by », so Definition 3.5.7 holds.

Third, dces(¢) is a EBDC. Definition 3.5.17(1) holds by definition. Bundle
members in ¢ mutually disable each other, then according to the definition
of # Condition 3.5.17(2) holds. Therefore dces(¢) is a EBDC. O

Before comparing an EBES with its translation according to posets, we
make use of the following lemma.

Lemma A4.1. Let { =(E,~,—) be an EBES. Then C(¢) = C(dces(¢)).

Proof. First, Ve < E.ce€ C() = c € C(dces({)). According to Section 2.5,
¢ € C(¢) means there is a trace t = eq,...,e, in ¢ such that ¢ = £. Let us
prove that ¢ corresponds to a transition sequence in dces(¢) leading to c. i.e.
let us prove that there exists a transition sequence (@ = cg,cSg) —d...-—d
(cn =c,csy,) such that ¢; = ¢;_1 U{e;} for 1 <i <n, and cs; is defined ac-
cording to Lemma 3.5.8. This means we have to prove that (c;-1,¢s;-1)—4q
(c;j,cs;)for1<i<n.

c; is conflict-free since it is a configuration in ¢ which means that it does
not contain any mutual disabling according to Definition 2.5.2. Second, it is
clear that ¢;_1 € ¢; by definition. Next, let us prove V(e€c; \c;j_1).csj-1 =
@, i.e. (ice)Uac(ci—1,e)) \de(ci—1,e) < c;—1 according to Lemma 3.5.8. ic(e)
contains only fresh events according to the definition of dces(¢), and the
members of bundles X; — e are droppers of these fresh events. But since
each of these bundles is satisfied, then each of these fresh events in ic(e)
is dropped. Furthermore, there cannot be added causality in dces(¢) for
e except for e itself which makes it an impossible event, but it is not
an impossible event since it occurs in a configuration. Therefore (ic(e) U
ac(ci—1,e)) \ (de(ci—1,e)Uci—1) =@ for all e € c; and all 1 <i <n. On the
other hand, conditions 4) and 5) of 3.5.3 hold according to Lemma 3.5.9.
Condition 6 of Definition 3.5.3 holds by Definition 3.5.7. Since in the transi-
tion (c;—1,¢s;-1)—q(c;,cs;), only one event—namely e;—occurs, then Defi-
nition 3.5.3(7) also holds.

In that way we proved that C(¢) € C(dces(¢)). In a similar way, and with
the help of Lemma 3.5.10, we can prove that C(dces(¢)) € C(¢) which means
that C(¢) = C(dces(¢)). O

153

A. Appendix: Proofs

Lemma 3.5.24 states:

For each EBES ¢ there is a DCES dces(¢) such that
P(¢) = P(dces(¢)).

Proof. First, Vp € P({).p € P(dces(¢)). Let p = (C,<¢), then C € C({) by
the definition of posets of EBESs. Then according to Theorem A.4.1: C €
C(dces(¢)). On the other hand, let 56 be the partial order defined for C
in dces(¢) as in Definition 3.5.18. This means that we should prove that
<c=<(. Butsince <¢, <, are the reflexive and transitive closures of <¢,<c
respectively, then it is enough to prove that <¢=<¢. In other words we have
to prove Ve,e' € C.e<ce' < e/ <ce.

Let us start with e <c e/ = e <¢ e’. According to Definition 2.5.3 e <¢
e’ means AX cE.ee X —e've~we. IfIXcE.ee€X — ¢ then Ace
E'. [c—eé']| > e by the definition of dces(¢) Definition 3.5.22. This means
e <¢ according to the definition of <¢ Definition 3.5.18. If e ~~ e’ then e’ ~~
e since otherwise e,e’ are in conflict. This means e’ »[e — e] according to
Definition 3.5.22, which means e <¢ e’ according to Definition 3.5.18.

Let us consider the other direction: e <c e/ = e <¢ e’. e <¢ ¢/ means
dceE'. [c—e'|>eVve »[e — e] according to the definition of <¢ in Def-
inition 3.5.18. The third option where e — e’ is rejected since the only
initial causes that exist in dces(¢) are the fresh impossible events. If 3¢ €
E'. [c—eé'|>e then 3X CE.e€ X ~~ e’ according to the definition of > in
dces(¢). This means e <¢ e’ according to Definition 2.5.3. If on the other
hand e’ » [e — e] then e ~» e’ according to the definition of dces(¢), which
means e <¢ according to Definition 2.5.3.

In that way we have proved that <¢=<¢, which means that sczs’c.
In a similar way we can prove that Vp € P(dces(¢)).p € P(¢), which means
P(¢) = P(dces(¢)). O

Expressiveness Of DCESs

Lemma A.4.2. There is a DCES such that no EBES with the same config-
urations exits.

Proof. We consider the embedding i(o¢) (cf. Figure A.1) of the SES oy,
which models disjunctive causality. According to Definitions 3.3.3 and
3.3.4, because ~(a#c) and ic(a) = ic(c) = @, it holds @ —{a,c} and so {a,c} €

154

A.4. Proofs of Section 3.5: Fully Dynamic Causality

C(o¢). Further there is no transition @ —{b}, because ic(b) = {a}, but there
are transitions {a} —¢{a,b} and {c} —{c, b}, because ic(b) \ de({a},b) < {a}
(ic(b) \ dc({c},b) < {c} resp.). The transitions are translated to the embed-
ding according to Lemma 3.5.16 and Definition 3.5.6 the same holds for the
configurations.

If we now assume there is a EBES ¢ with the configurations @,{a},{c},
{a,c},{a,b},{b,c} and {a, b, c} then according to Definition 2.5.1 because there
is no configuration {b} there must be a non-empty bundle X — b and caused
by the the configurations {a, b},{b, ¢} this bundle X must contain a and c.
Now the stability condition of Definition 2.5.1 implies @ ~~ ¢ and ¢~ a, so
a and c¢ are in mutual conflict contradicting to the assumption {a,c} € C({).
Thus there is no EBES with the same configurations as i(o¢). O

Theorem 3.5.25 states:
DCESs are strictly more expressive than EBESs.

Proof of Theorem 3.5.25. Follows directly from Lemmas A.4.2 and 3.5.24.
O

For the incomparability result between DCESs and RCESs, we give an
RCES counterexample, which cannot be modeled by a DCES.

Lemma A.4.3. There is no transition-equivalent DCES to py (cf. Figure 3.6).

Proof of Lemma A.4.3. Assume A = (E,#,—,>,») such that A=¢py,. Then
C(A) = C(py). By Definition 3.5.3 and because of the configuration {a,b,c} €
C(py), the events a, b, and ¢ cannot be in conflict with each other, i.e.
#n{a,b,c}® = @. Moreover, because of the configurations {a}, {b},{c} € C(py),
there are no initial causes for a, b, or ¢, i.e. — ﬁ{x—»y |y € {a,b,c}} = Q.
Note that the relation > cannot disable events. Finally, because of the
configurations {a,c},{b,c} € C(py), neither a nor b can add a cause (ex-
cept of themselves) to ¢, i.e. ab[e = c] = e=a and b»[e — c] =
e=0> for all e € E. Thus we have Ve,e' € {a,b,c}. 7(e#te’) and in the
state ({a,b},cs) it follows cs(c) = @ < {a,b}. But then, by Definition 3.5.3,
({a,b},cs)—4({a,b,c},cs’) for some causal state functions cs and cs’. Since
ﬂ({a,b} —re {a,b,c}), this violates our assumption, i.e. there is no DCES
that is transition equivalent to p,. O

155

A. Appendix: Proofs

Theorem 3.5.26 states:
DCESs and RCESs are incomparable.

Proof of Theorem 3.5.26. The Theorem follows from Lemma A.4.3 and the
order insensitivity of the RCESs: There is no RCES with the same be-
havior as the DCES ({a,t,c,d}, 8, @, {[c—¢t1>d}, {a»[c — ¢t]}), since the
transition behavior of RCESs is configuration based (Definition 2.7.2) and
therefore it cannot behave differently w.r.t. the events in the configuration
{a,d}. O

Theorem 3.5.27 states:
DCESs are strictly more expressive than GESs and SESs.

Proof of Theorem 3.5.27. By Theorems 3.5.26, 3.4.10, and 3.3.20 and Lem-
mas 3.5.16 and 3.5.16. O

A.5. Proofs of Section 4.4: Inferring Changes
from Evolution

Lemma 4.4.2 states:
The internalization inter(v,d1,H,d9) is a SSDC.

Proof. First, inter(v,61,H,d2) is a DCES.
Let us prove that (E,#,—) is a PES according to Definition 3.2.1. Since
C1<#1 and #; gE% and E1 € E then C; € E2. The same applies for Cs and
Cs. Hence, # < E2. To prove that # is irreflexive, assume the opposite, i.e.
ette for e € E, which means (e,e) € #. This means that either (e,e) € Cq, or
(e,e)e Cqor(e,e) e C3. But (e,e) e Cq or (e,e) € Cy means (e,e) € #1 from the
definition of C1 and Cy. Besides, (e,e) € C3 means (e,e) € #9. This means
that either e#;e or e#9e. But that is a contradiction since both #; and #o
are irreflexive. Hence —1(e#e), i.e. # is irreflexive.

To prove that # is symmetric, assume e#e’ and let us prove e’'#e. But e#e’
means either (e,e’) € C1, or (e,e’) € C3 or (e,e’) € Cs.
(e,e’) € C1 means e#1e' Ale,e’) € (E1\E2)?. Then e'#1e A(e',e) € (E1 \ E)?
since #; is symmetric. Then (e’,e) € C1 according to the definition of C7.
Then (e',e) € #.

156

A.5. Proofs of Section 4.4: Inferring Changes from Evolution

(e,e’) € Co means e#1e’ Ae#oe'. Then e'#1e A e'#ge since #1, #9 are symmet-
ric. Then (e’,e) € Cg, which means (e’,e) € #.

(e,e’) € C3 means e#ge’ A(e,e’) ¢ E% Then e'#5e A (e',e) ¢ (e',e) ¢ E% Then
(e/,e) € C3, i.e. e'#e. Hence # is symmetric.

Since -1 E2, veE, H<E and E1,E9 < E then —< E2. Hence, (E,#,—) is
a PES. Additionally, it can be easily seen that >,» < E3.

Now let us prove that Property 1 of Definition 3.5.1 holds. Assume that
[c—¢t]>d for c,d,t € E. Then d = v and (e,e’) € (—1 \ —2) according to
the definition of [>. Then e —1 e, which means that e — e’ according the
definition of —. By that we have proved the following:

Ve,d,teE.[c—tl>bd = c—t (A.8)

This means Property 1 holds.

To prove that Property 2 of Definition 3.5.1 holds, assume that a»[c — ¢]
for a,c,t € E. Then either (c,a,t)€ D or (¢c,a,t)e N, or (c,a,t) ER.
(c,a,t) e D means c=t¢ and c € (E1\E9)A-(c—1t). Then —(c —1¢t) and
tZvandc#vsincev¢ E1 and c=t€ Eq. Then (¢,t)¢—1 and (c,?) ¢ I1 and
(c,t)¢ Io. Then = (c — t).
Assume that (c,a,t) € N, then (c,t) € (—2 \ —1). In other words —(c —1¢t)
and c,t € E9. Then (¢ —1t) and ¢t Zv and ¢ #Zv. Then = (c — ¢).
Assume that (c,a,t) € R, then ¢ = v and (a,?) € #1 \ #2, which means that
c=v and a,t € E1. Then clearly = (c —1 t) since —>1§E% and v ¢ E1. On the
other hand, (c,#) ¢ I since ¢ =v and v ¢ H. Similarly we find that (c,t) ¢ Io,
which means —(c — ¢). Hence, we conclude the following:

Ve,d,teE.aw[c—t] = —(c—t) (A9)

This means Property 2 holds.

To prove Property 3 of Definition 3.5.1, assume m»[c — ¢] for c,m,t € E.
Then = (¢ — t) according to A.9. Then —1([c —¢t]t>d) for all d € E, according
to A.8. In other words:

Ve,a,t€E.amlc—t] = BdeE.[c—tl>d (A.10)

Then —([c—t]>m). Then Property 3 holds.

On the other hand, if we assume [¢ — t]>m for ¢,m,t € E, then we would
have ¢ — t according to A.8. Then —(a»[c — ¢t]) for all a € E, according to
A.9. In other words:

Ve,d,t€E.[c—tl>d = FacE.awlc—t] (A.11)

157

A. Appendix: Proofs

From (A.10) and (A.11), and according to Definition 3.5.7 of SSDC, we
conclude that inter(v,61,H,d2) is a SSDC. O

Lemma 4.4.3 states:

Let A =inter(v,61,H,d2) = (E,#,—,>,») be an internalization,
and let — be its configuration-transition relation. Let —, be
the transition relation of 61. Then:

—p, NICEDI = = N[PE\ wh? n [CA)I

Proof. First: —, n[C(61)]2 =— N[PE \ (vh12 n[C(A)2.
To prove that, let us define the causality state function cs: E\X — P(E \ X)
such that cs(e) = (ic(e) Uac(X,e)) \ (de(X,e) U X), and prove the following:

C—p,C' = (C,e8)—q(C',cs').

C —p, C' means that C < C’ and Ve,e' € C'. - (e#1e’) according to Def-
inition 3.2.3. Then (e,e’) ¢ C1 and (e,e’) ¢ Ca (cf. C1, Cg, C3 of Defini-
tion 4.4.1). Since e,e’ € C' < Eq, then (e,e’) ¢ C3. Hence, (e,e’) ¢ #. So
Conditions 1 and 2 of Definition 3.5.3 hold.

Let us prove that Ve e C'\ C. cs(e) = @.

By definition, ic(e) = {e’ | ¢/ — e}. From the defininition of — and since
e € E1, then ic(e) = {e' | ¢/ —1 e}. But from Definition 3.2.3 we know that
e’ —1 e means e’ € C for all ¢’ € E1. This means ic(e) < C for allee C'\ C.
By definition, ac(C,e) ={e' |Ja € C.aw[e' — el}. Assume Ja € C.aw[e' —
e], then by looking at the definition of » in Definition 4.4.1, we conclude
that a ¢ DUN since a € C S E; and v ¢ E1. Then (¢/,a,e) € R, but C' is
conflict free, i.e. Ve,e’ € C'. =1 (e#1e’), which means Ve € C'. fle’ € C. '#1e.
Then ac(C,e) = @. Then Ve e C'\C. (ic(e)Uac(C,e)) = C. Then Ve e C'\
C. cs(e) = @. Then Condition 3 of Definition 3.5.3 holds. So far, we proved
that there are no adders in C.

Similarly we prove that there are no adders in C’. Thus Conditions 6
and 7 of Definition 3.5.3 aslo hold. Similar to the proof of Lemma 3.5.9,
other conditions of Definition 3.5.3 hold. Thus we conclude that —, S—,
and since E1 CE \ {v} then —p < —.n[PE \ {v})]*.

Accordingly, configurations that are reachable from @ by —, are reach-
able from Sy under —4, since ic(e) = cs(e) for all e € E. Hence:

—p, N[CODP € —cNIPE \ h n[CA)]? (A.12)

158

A.5. Proofs of Section 4.4: Inferring Changes from Evolution

Second: —.N[PE\{LHEN[CA)? < —p, N [C(61)I.
Assume:
(C,C" e —.N[PE\ wh n[CA)? (A.13)

Let us start with proving C,C’' < E1, second we prove that C —, C’ and
finally we address reachability of C1,Cs.

(A.13) means 3cs,cs’ such that (C,cs)—4(C’,cs’), where (C,cs),(C’,cs’) €
S(A) and v ¢ CuUC’. According to Lemma 3.5.8 and Condition 3 of Def-
inition 3.5.3 we have (ic(e) Uac(C,e))\ (de(C,e)uC) = @. Assume Je €
Es\Eq.ec(C'. Then since v ¢ C we have dc(C,e) = @ according to the def-
inition of > in Definition 4.4.1. Then ic(e) uac(C,e) < C, i.e. ic(e) = C. But
according to the definition of ic(e) and I3 we have v € ic(e), i.e. v € C, which
is a contradiction. So C,C’ CE1, i.e. — N[PE \ {v)2 n[C(A)12 c[PE1)?.

Let us prove that C —, C’. Since (C,cs)—q(C’,cs’) then C < C'. Addi-
tionally, we have Ve,e’ € C'. - (e#te’), then (e,e’) ¢ C1 and (e,e’) ¢ C2 and
(e,e’) ¢ C3. Assume e#1e’, then either e#se’ or (e,e’) ¢ #5. If e#9e’ then
(e,e’) € Cy and e#e’ which is a contradiction. If (e,e’) ¢ #5 then (v,e,e’) ,
(v,e’,e) € R. This means v € ac(C, e), and since cs(e) = @ then v € de(C,e)uC.
And since dc(C,e) = @, then v € C, which is a contradiction. Then —(e#1e’).
Regarding causality, let us prove Ve e C'\C.{e' | e’ —1 e} = C. We proved
that de(C,e) = @ for all e € E\ C and ic(e) € C. From the definition of ic and
since —1S— we conclude Ye € C'\C.{e' |’ =1 e} = C. Hence C— C’

Finally, configurations reachable from Sy under —4 are reachable from
@ by —y,, since ic(e) = cs(e) for all e € E. Hence:

—e NIPE\)P NICA)? < —p, N[CE)P (A.14)
From (A.12) and (A.14) we conclude:

—p, N[CEDI =—c N[PE \ wh]* n [CA)?

Lemma 4.4.4 states:

Let inter(v,81,H,d2) be an internalization with a configuration-
transition relation —.. Then H —.H U {v}.

Proof. Given that H is reachable from the last lemma, let (H,cs) be the
state with H. Since A is a SSDC, then according to Lemma 3.5.8 we have

159

A. Appendix: Proofs

cs(e) = (ic(e)Uac(H,e)) \ (de(H,e) UH). Let H' = HU{v}, and let us define
the function cs’ such that cs'(e) = (ic(e) Uac(H',e)) \ (de(H',e) UH') and
prove (H,cs)—q (H',cs'). Clearly H < H'. Besides, from definition of # in
Definition 4.4.1 we find that H' is conflict-free, given that H is conflict-
free. ic(v) = H according to —. Since H is conflict-free w.r.t. #1, then iﬂe,e’ €
H.(v,e,e’) € R. Then ac(H,v) = @. Then cs(v) = @ and Condition 3 from
Definition 3.5.3 holds. Since |H "\NH | =1, then Conditions 6 and 7 hold. The
rest of conditions are proved to hold with such definition of cs,cs’ as in the
proof of Lemma 3.5.9. Then (H,cs)—q(H',cs'), and thus H—.Hu{v}. O

Lemma 4.4.6 states:

Let A =inter(v,81,H,62) be an internalization. Then:

AlH U {v} =4 62[H].

Proof. Let —p, be the transition relation of 5’2 = 09[H] and let — be the
configuration-transition relation of A’ = A[H'], where H' = H u {v}. We
need to prove —p, N[C(85)1% =—¢ N[C(A")I2. Let A = (E,#,—,>,»), and
A =(E",#,-',>',»'). According to Definition 3.5.11, E' = E\ H'. Let also
89 = (E3,#2,—2), and 6}, = (E},#},—}), such that E}, = E5 \ H according to
Definition 3.2.4.

First: —.N[C(A")]? < —p, N[C(65)1%.

Let us prove initially that V(C,C') e—, n[C(A)]2. C,C’ € P(E}). By de-
duction, let us assume C € P(E}) and prove C' € P(E}), then check the
base case. To prove C’' € P(E),) assume the opposite i.e. 3e € C'. e ¢ E},. This
means Je € C'\ C. e ¢ E}, according to the assumption, i.e. 3e € C'\C.e ¢
E3\ H, which implies e ¢ Egve € H. But C'c (E\H') =(E1UE)\H
by Definition 3.5.11, and we have e € C'. So e ¢ Es Ve € H means e €
E{\Ejy, ie. a dropped event. It can be proven easily that the remain-
der of a SSDC is a SSDC itself, i.e. A’ is a SSDC. Then since e € C'\ C, we
have (ic'(e)uac’(C,e)) \ (dc'(C,e)uC) = @ according to Condition 3 of Def-
inition 3.5.3, i.e. (ic'(e)uac/(C,e)) \ dc'(C,e) < C. Since >’ <> NE’3 by the
definition of the remainder of a DCES, and since v ¢ E’, then >’ = @¢. So
dc/(C,e) = @, and hence we conclude the following:

V(C,C") e—cnIC(A)2.VeeC'\C. ic(e)cC (A.15)

160

A.5. Proofs of Section 4.4: Inferring Changes from Evolution

But ic'(e) = {¢/ € E' | ¢/ —' e}, and from the definition of —’ in Defini-
tion 3.5.11 we know that cs(e) < ic'(e), where cs(e) = (ic(e)Uac(H',e)) \
(de(H',e)UH'). Then from A.15 we conclude the following:

V(C,C) e (—cnIC(A)1?).YeeC'\C.
(icte) U ac(H',e))\ (de(H',e) UH')=C (A.16)

From the definition of D and — in Definition 4.4.1 w.r.t. A we can find
that e e ic(e)Uac(H',e), i.e. a self-loop. But de(H',e) = @ since e € E1 \ E3,
and we have e ¢ H', then e € cs(e), i.e. e €ic/(e). Then according to A.15 we
have e € C, which is a contradiction. Then C’' ¢ P(E’2) and we know that
@ € P(E}) as a base case.

Now let us prove C—.C'AC,C' € C(A') = C—,C'AC,C’" € C(6}) for
all C,C’' c E'. First, C —.C’' means C < C’ by the definition of —.. Next, let
us prove that Ve e C'\C,e' € E,.e' =, e = e'€C. If e’ =) e thene' —ze,
then e’ ¢ de(H',e) and e’ eic(e)uac(H',e) by the definition of —), >, —, and
» resp. But ¢’ ¢ H', then according to A.16 we find e’ € C, for all e’ —, e and
e € C'\ C. Finally, let us prove conflict-freeness w.r.t. #,. We have already
Ve,e' € C'. 1 (e#'e’) since C—.C'. But # =#nE' then - (e#e’) since e,e’ €
E'. But —1(e#te’) means (e,e’) ¢ C3, which means (e,e) ¢ #2V (e,e’) € E2.
Assume (e,e’) € #2, then (e,e’) € E? should hold, then by Limitation 4.1
assumption we have e#1e’ since e,e’ ¢ H and e,e’ € E; NE5. But then we
will have ef#1e’ A etfge’ which means (e,e’) € Cg, i.e. effe’ by the definition
of #, and that is a contradiction. Then (e,e’) ¢ #2, hence (e,e’) ¢ #), for all
e,e’ € C'. Then according to Definition 3.2.3 we have C —, C'. Hence, if
C € C(6}) then C’" € C(8}) for all C,C’ < E’ such that C—.C'AC,C" € C(A').
Additionally, we know that @ € C(A’) and @ € C(6}), then by deduction
C,C'€C(8}), ie. C—cC'AC,C" € C(AT) => C—p, C'AC,C" € C(8)) for all
C,C'cE'.

Second: —, N[C(85)1% < —¢NIC(A")1?

can be proved similarly to Lemma 4.4.3 with taking into consideration the
remainders. Hence, and according to the definition of =, we conclude that
A, = 0 /2 . O

161

B. Appendix: Alternative
Partial Order Semantics for
Dual Event Structures and
Shrinking-Causality Event
Structures

To show that DESs and SESs are not only behavioral equivalent ES models
but are also closely related at the structural level, we consider the remain-
ing four intentional partial order semantics for DESs of [48].

Liberal causality is the least restrictive notion of causality in [48]. Here
each set of events from bundles pointing to an event e that satisfies all
bundles pointing to e is a cause.

Definition B.1 (Liberal Causality). Let § = (E,#,—) be a DES, e1,...,e,
one of its traces, 1 <i <n, and X1—e;, ..., X,y —e; all bundles pointing to
e;. Aset Uisacauseofejineq,...,e,iff

* VeeU.Jl=sj<i.e=e¢;

e Uc(X1U...uX,)and

e Vi<k=m.XpnU# .
Let Pyip(t) be the set of posets obtained this way for a trace t.

Bundle satisfaction causality is based on the idea that for an event e in a
trace each bundle pointing to e is satisfied by exactly one event in a cause
of e.

Definition B.2 (Bundle Satisfaction Causality). Let 6 = (E,#,—) be a DES,
e1,...,e, one of its traces, 1 <i <n, and X1~ ej,...,X, —e; all bundles
pointing to e;. A set U is a cause of e; in e1,...,e, iff

* VeeU.Jl=j<i.e=ejand

163

B. Appendix: Alternative Partial Order Semantics for DESs and SESs

® there is a surjective mapping f :{Xp} — U such that f(X}) € X}, for all
l<k=m.
Let Pygat(t) be the set of posets obtained this way for a trace t.

Minimal causality requires that there is no subset that is a cause itself.

Definition B.3 (Minimal Causality). Let 6 = (E,#,—) be a DES and let
e1,...,e, be one of its traces, 1 <i <n, and X1—e;,...,X—e; all bundles
pointing to e;. A set U is a cause of e; in e1,...,e, iff

* VeeU.Jl<j<i.e=g¢;

e Visk=m.Xp,nU#@and

® there is no proper subset of U satisfying the previous two conditions.
Let Ppin(t) be the set of posets obtained this way for a trace t.

Late causality contains the latest causes of an event that form a minimal
set.

Definition B.4 (Late Causality). Let 6 = (E,#,—) be a DES, e1,...,e, one
of its traces, 1 <i<n, and X1—ej,...,X,—e; all bundles pointing to e;. A
set U is a cause of e; in e1,...,e, if

* VeeU.Jl=sj<i.e=¢;

e Visk=m. X, NnU#o®

® there is no proper subset of U satisfying the previous two conditions,

and

e U is the latest set satisfying the previous three conditions.

Let Piaie(2) be the set of posets obtained this way for a trace t.

As derived in [48], it holds that
Plate(?),Pa(2) S Prin(2) S Phsat(£) < Prip(2)

for all traces t. Moreover a behavioral partial order semantics is defined
and it is shown that two DESs have the same posets w.r.t. to the behavioral
partial order semantics iff they have the same posets w.r.t. to the early
partial order semantics iff they have the same traces.

Bundle satisfaction causality is (as the name suggests) closely related
to the existence of bundles. In SESs there are no bundles. Of course, as
shown by the translation des(-) in Definition 3.3.8, we can transform the
initial and dropped causes of an event into a bundle. Besides if we do
so, a SES o and its translation des(o) have exactly the same families of

164

posets obviously. On the other hand, because bundles are no native concept
of SESs, we cannot directly map the definition of posets w.r.t. to bundle
satisfaction to SESs.

To adapt the definitions of posets in the other three cases we have to
replace the condition U < (X7 U...UX,,) by

Uc({ele—eivIe' cE. [e'—e;|>e})

and replace the condition V1 <k <m. X, NnU # @ by (ic(e;) \dc(U,e;)) U
(as in Definition 3.3.9). The remaining conditions remain the same with
respect to traces as defined in Definition 3.3.2. Let Pyp(2), Pmin(2), and
Plate(t) denote the sets of posets obtained this way for a trace ¢ € T(g) of
a SES o w.r.t. liberal, minimal, and late causality. Moreover, let P,(5) =
Utes) Px(¢) and Py(0) = Usemo) Px(2) for all x € {lib,bsat, min, late}.

Since the definitions of posets in DESs and SESs are very similar again,
the translations des(-) and ses(-) preserve families of posets. The proof is
very similar to the proofs of Theorems 3.3.10 and 3.3.13.

Theorem B.5. For each SES o there is a DES 8, namely § = des(o), and
for each DES § there is a SES o, namely o = ses(), such that P,(c) =P()
for all x € {lib,min, late}.

Proof. The definitions of posets in DESs and SESs w.r.t. to minimal and
late causality differ in exactly the same condition and its replacement as
the definitions of posets in DESs and SESs w.r.t. early causality. Thus the
proof in these two cases is similar to the proofs of Theorems 3.3.10 and
3.3.13.

If 0 = (E,#,—,>>) is a SES then, by Lemma A.2.2, § = des(o) = (E,#,—)
is a DES such that T(o) = T(d) and C(o) = C(5). If 6 = (E,#,—) is a DES
then, by Lemma A.2.4, o = ses(6) = (E,#,—,>) is a DES such that T(5) =
T(o) and C(6) = C(o). In both cases let t =eq,...,e, € T(0), 1 <i <n, and
Xi—ej,...,Xm—e; be all bundles pointing to e;.

In the case of liberal causality, for U to be a cause for e; the definition of
posets in SESs requires U < ({e|e—e;vIe'€E. [e'—e;|>e}) and (ic(e;)\
de(U,e;)) < U. The second condition holds iff Vl<k <m.X,NnU # @ as
shown in the proofs of Theorems 3.3.10 and 3.3.13. By Definitions 3.3.8
and 3.3.11, the first conditions holds iff U < (X;U...uX,). So, by the
definitions of posets in DESs and SESs w.r.t. to liberal causality, Pj;,(0) =
Piip(6). O

165

C. Appendix: Application of
Evolving Event Structures
in Schema Evolution and
Instance Migration in
Business Processes

A schema might evolve while multiple instances of the old definition are
running. Different ways to handle running instances of an evolving sche-
ma are available in the literature [80]. Mainly, such instances are either
restarted with the new definition, or they are aborted, or migrated—when
possible—to the new definition with a valid state based on their history.
However, the migration is not always possible since an instance—with its
state—might not fit to the new schema definition. Studies in the literature
[65] provide different definitions of what is a valid state for the instance
in the new definition. In this work, as in Chapter 4, we depend on his-
tory preservation as a criterion to migrate an instance to a new schema
definition.

To that end, we define schema-internalization to model the trigger event
v as an internal event in the schema, such that v is responsible for trans-
forming the schema from its old state to its new one. The result is an ES
A that is transition-equivalent to ES; before v occurs and to ESgy after v
occurs. Accordingly, ES; can be safely replaced by A for running instances
as well as future ones. The difference to the internalization of Section 4.4
is that the event v in schema-internalization is independent from any his-
tory or system run of any instance. Additionally, v here can take place for a
running instance if and only if it results in that instance migrating to ESs.

Furthermore, in case v occurs initially in a schema-internalization, i.e.
after the system run @ in A, then it represents a schema evolution that

167

C. Appendix: Evolving Event Structures in Schema Evolution

affects future system runs (i.e. future instances) where the remainder is
transition-equivalent to d2. On the other hand, in case v takes place af-
ter a system run H # ¢ then it represents the migration of the instance
(0,H) to (62,H), which is the evolution step of the running workflow (51, H)
addressed in Chapter 4. Therefore, by schema-internalization we gener-
alize the two concepts of evolution, namely schema evolution and running
workflow one.

We overload the notion of evolution steps to denote a schema evolution
(step), such that §; 2 62 denotes an evolution from §; to 62 by v. Besides,

we lift the internalization function inter to accept two independent ESs 81,
d2 and an external event v representing the evolution trigger. We represent
a schema evolution by the pair (§1,52). Correctness of schema evolution is
insured in the literature by maintaining certain properties e.g. deadlock
freeness.

As in 4.4 we focus on PESs of Definition 3.2.1 to represent evolving struc-
tures. Besides, we add one contraint next to Constraint 4.1. Given two
PESs 61 = (E1,#1,—1), 02 = (E9,#2,—2) and —>’1 is the transitive closure of
—1, it must hold:

—9NE? c— (C.1)

The last constraint states that no new causality between old events is
added, unless it belongs to the transitive closure which does not change
the set of configurations or even the transitions in a conjunctive-causality
ES like a PES. Note that these limitations do not affect the idea of how to
propagate changes to running instances in a unified way, each depending
on its state.

Since events of a history H of an instance can have neither new conflicts
in-between each other due to (4.1), nor new causality due to (C.1), it can be
seen and proved that the only chances not to preserve H by J2 is:

1. Adding a new event as a causal predecessor to one of the events of H,
or

2. Dropping one event of H

which are exactly the two cases where v should be disabled. Formally
speaking, the internalization is defined as follows:

168

Definition C.1. Let s = (61 Z 62) be a schema evolution step such that 61 =
(E1,#1,—1), 62 = (E9,#9,—9) are two PESs satisfying (4.1) and (C.1), and
v ¢ E1UE9. The schema-internalization of v into 62 w.r.t. s is defined as
sinter(v,01,09) = (E,#,—,>,»), such that:
e E=E{UEsuw{v}
e #=C1uUCouUC3 where:
-Ci =#1nEq \E2)2
- Co = #1Nnio
Cs := #; \E?
¢ —-=—1U{(v,e)lecEa\E}
>={(e,v,e')[(e,e') e =1\ —ane' €Es}
e »=DUNURUF UO where:
- D :={(e,v,e) | e € (E1\E2)A~(e—1e)} to disable dropped events
- N = {(e,v,¢') | (e,e') € =2\ —1} to add new causality
- R := {(v,e,e’) | (e,e’) € #1 \ #3} to resolve conflicts
- F := {(v,e,v) | e € E1 A3’ € E9\E1. e —e} to prevent adding
fresh events to others that already happened
- O := {(v,e,v) | e € E1\ E3} to prevent dropping events that al-
ready happened

Comparing to the internalization of Section 4.4 we have: E, #, > as well
as D, N, R are defined similarly. On the other hand — matches I only.
However, the resulting structure of schema-internalization can be proved
to be a SSDC (cf. Definition 3.5.7).

Lemma C.2. The schema-internalization sinter(v,51,83) is a SSDC.

Proof. Similar to Lemma 4.4.2, taking into consideration that —(v — v)
when proving (A.9). O

Next, we prove that the transitions of a schema-internalization resulting
structure before v takes place are exactly the ones of 61, w.r.t. to reachable
configurations.

Lemma C.3. Let A =sinter(v,01,02) = (E,#,—,>,») be a schema-internal-
ization, and let — be its configuration-transition relation. Let — be the
transition relation of 61. Then:

—p, NICEDP = —¢ N[PE\ whH? n [CA)P

169

C. Appendix: Evolving Event Structures in Schema Evolution

Proof. Similar to Lemma 4.4.3, taking into consideration that v being ini-
tially enabled in — does not affect the proof since we do not consider v in
the configurations here. The same applies for F, O. O

Furthermore, v can take place after a given system run H € C(A), if and
only if H can be preserved by 2.

Lemma C.4. Let A = sinter(v,01,02) be a schema-internalization with a
configuration-transition relation —., and let H € C(A) such that v ¢ H.
Then:

H—- . Hu{v} < HeC(59).

Proof. Proof of Lemma 4.4.4 covers < of this lemma. To prove the op-
posite direction — , assume that H ¢ C(d2) then let us prove that H —
H U {v} does not hold. Let 69 = (E9,#9,—9), and let (H,cs) be the state with
H € C(A) as A is a SSDC according to Lemma C.2. In fact H ¢ C(62) means
that either H ¢ Es, or H < E5 but H ¢ C(62).

First, if H € E9 and H ¢ C(d3), then according to Definition 3.2.2 H is
conflict-free w.r.t. #2 since H € C(A) and there are no growing conflicts ac-
cording to (4.1). Additionally, H is cycle-free due to (C.1) since H € E;
according to Lemma C.3. Hence, H is not left closed w.r.t. —9. In other
words, e’ e H.Je € Eg. e —9 e’ Ae ¢ H. But e € E1 cannot hold due to
(C.1), then ¢’ € E5 \ E1. Then according to the definition of F' it holds that
e’ »[v — v]. Accordingly, v € cs(v) since there is no dropper for v — v in >
of Definition C.1. Hence —(H —.H U {v}) according to Property 3 of Defini-
tion 3.5.3.

Second, if H g Ey,then 3ee H.e€ E1\ E9 since H € C(d1) according to
Lemma C.3. Then according to the definition of O, it holds that e»[v — v],
which means again that v € es(v) and ~(H —.H U {v}). O

Additionally, if v can take place after a configuration H € C(A), then the
remainder of A after H U {v} is transition-equivalent to the remainder of dq
after H.

Lemma C.5. Let A = sinter(v,01,02) be a schema-internalization with a
configuration-transition relation —.. Let H € C(A) such that v ¢ H and
H— .Hu{v}). Then:

A[H U{v}]=¢62[H].

Proof. Similar to Lemma 4.4.6. O

170

The next theorem shows that given a new schema definition §9, all in-
stances of §1 can be migrated safely to schema A (the result of schema-in-
ternalization) which allows them to migrate to d9 if that does not contradict
with their states. Otherwise, the instances will continue running as if they
were in the old schema definition ;. Besides, A guarantees that new in-
stances will run according to 69.

Theorem C.6. Let 61 2 09 be a schema evolution step, A = sinter(v,51,02)

be the internalization with the configuration-transition relation —.. Let
—p, be the transition relation of 81, and let (61,H) be an instance. Then:

1. (A,H) is an instance.

2. Al{vH=¢6s.

3. 61 %52 = A[H U{v}]=;62[H].

4 (51 L 52) — —p, = (—cNIPE\ WHIP)

Proof. 1 and 4 are straightforward from Lemma C.3, while 2 and 3 are
straightforward from Lemma C.5. O

Summary schema-internalization treats a schema evolution as an ordi-
nary event for the instances of that schema. In this way, constraints over
such an event can be placed regarding when it is enabled or disabled and
how. This is then used to take a decision of when to migrate instances in
a way that leads to no errors. Furthermore, this work helps building a
complete transition graph for evolution of the Schema, and analyzes the
dependency and conflict between different evolutions.

171

Schriftenreihe Foundations of computing
Hrsg.: Prof. Dr. Rolf Niedermeier, Prof. Dr. Uwe Nestmann, Prof. Dr. Stephan Kreutzer

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter
Linear-Time Algorithms for NP-hard Graph
and Hypergraph Problems Arising in
Industrial Applications. - 2014. - 225 S.

ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André: Degree-Constrained
Editing of Small-Degree Graphs. - 2015. - xiv, 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00

ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert: Multivariate Com-
plexity Analysis of Team Management
Problems. - 2015. - xix, 228 S.

ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod: Algorithmic Aspects of
Manipulation and Anonymization in Social
Choice and Social Networks. - 2016. - xiv, 275 S.
ISBN 978-3-7983-2804-4 (print) EUR 13,00

ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian: Nowhere Dense Classes
Manipulation of Graphs. Characterisations and
Algorithmic Meta-Theorems. - 2016. - xxii, 149 S.
ISBN 978-3-7983-2818-1 (print) EUR 11,00

ISBN 978-3-7983-2819-8 (online)

06: Chen, Jiehau: Exploiting Structure in
Manipulation Computationally Hard Voting
Problems. - 2016. - xxi, 255 S.

ISBN 978-3-7983-2825-9 (print) EUR 13,00
ISBN 978-3-7983-2826-6 (online)

Universitatsverlag der TU Berlin

On the Foundations of Dynamic Coalitions

Dynamic Coalitions denote a temporary collaboration between different entities to achieve a
common goal. This thesis studies workflows in Dynamic Coalitions, by analyzing their features,
highlighting their unique characteristics and similarities to other workflows. For this purpose,
we use the formal model of Event Structures and extend it in three different ways to faithfully
model scenarios taken as use cases from healthcare. First, to cover the pre-planned changes
in Dynamic-Coalition workflows, we present Dynamic Causality Event Structures which allows
some events to change the causal dependencies of other events in a structure. Second, we pre-
sent Evolving Event Structures that support ad-hoc and unforeseen changes in workflows and
constrain such changes by the reachability of goals captured as events. Third, we add Priority to
various kinds of Event Structures as a modeling feature for workflows in general that is posed
as a requirement by the healthcare domain. Comparing to Adaptive Workflows, which are con-
cerned with evolutions of workflows, this thesis shows that workflows in Dynamic Coalitions
are not only Adaptive but also Goal-Oriented and that they might evolve due to the join of new
members who contribute to goal satisfaction in a Dynamic Coalition.

ISBN 978-3-7983-2856-3 (print)
ISBN 978-3-7983-2857-0 (online)

TR 5

ISBN 978-3-7983-2856-3

o
o

http://verlag.tu-berlin.de

	Cover
	Title page
	Imprint
	Zusammenfassung
	Abstract
	Dedication
	Acknowledgements
	Contents
	1. Introduction and Motivation
	1.1. Introduction
	1.1.1. Case Study: Clinical Dynamic Coalitions
	1.1.2. The Adaptive and Goal-Oriented Nature of Dynamic-Coalition Workflows
	1.1.3. The Need for Formal Modeling

	1.2. Problem Statement
	1.3. Solution Approach
	1.4. Contributions
	1.5. Scope
	1.6. Tool Support
	1.7. Related Work
	1.7.1. Related Work in Dynamic Coalitions
	1.7.2. Related Work in Evolution and AdaptiveWorkflows
	1.7.3. Related Work in Goal Orientation

	1.8. Publications

	2. Technical Preliminaries: Event Structures as a Formalism for Dynamic-Coalition Workflows
	2.1. Introduction
	2.2. Prime Event Structures
	2.3. Stable Event Structures
	2.4. Bundle Event Structures
	2.5. Extended Bundle Event Structure
	2.6. Dual Event Structure
	2.7. Event Structures for Resolvable Conflict
	2.8. Other Kinds of Event Structures
	2.9. Quantitative and Qualitative Extensions
	2.10. Application in Dynamic-CoalitionWorkflows
	2.10.1. Modeling DC Membership
	2.10.2. Applying Quantitative and Qualitative Extensions
	2.10.3. Modeling Repeated Actions in Event Structures
	2.10.4. Modeling Business Process Schemas andInstances
	2.10.5. Modeling Nested Coalitions with ActionRefinement
	2.10.6. Limitations and Missing Features

	3. Pre-Planned Changes in Workflows: Dynamic Causality in Event Structures
	3.1. Introduction
	3.2. Prime Event Structures with CausalCycles
	3.3. Shrinking Causality
	3.3.1. Shrinking Causality versus Disjunctive Causality
	3.3.2. Expressiveness of Shrinking-Causality Event Structures

	3.4. Growing Causality
	3.4.1. Modeling Features of Growing Causality
	3.4.2. Expressiveness of Growing-Causality ESs
	3.4.3. Growing Causality as Conditional Causality
	3.4.4. A Special Case of Concurrency: Target-ModifierConcurrency

	3.5. Fully Dynamic Causality
	3.5.1. Embedding Growing and Shrinking Causality Event Structures
	3.5.2. Embedding Extended Bundle Structures
	3.5.3. Expressiveness of Dynamic-Causality EventStructures

	3.6. Evaluation

	4. Unforeseen Changes in Workflows: Evolving Event Structures
	4.1. Introduction
	4.2. Correctness of Evolution w.r.t. the History of a Workflow
	4.3. Various Modeling Approaches to Evolution, and their Relation
	4.4. Inferring Changes from Evolution –Process Learning
	4.5. Formalizing Series of Evolution Steps
	4.5.1. Refinement and Equivalences of Evolution Steps
	4.5.2. Special Cases of Evolution

	4.6. Evolution towards Goal Satisfaction
	4.7. Evaluation

	5. Domain-Oriented Extensions: Priority in Event Structures
	5.1. Introduction
	5.2. Priority in Prime Event Structures
	5.3. Priority in Bundle Event Structures
	5.3.1. Priority versus Enabling and Conflict
	5.3.2. Priority versus Precedence

	5.4. Priority in Extended Bundle Event Structures
	5.5. Priority in Dual Event Structures
	5.6. Evaluation

	6. Summary and Future Work
	6.1. Summary and Conclusions
	6.2. Contributions in Detail
	6.2.1. The Adaptive and Goal-Oriented Nature of Dynamic-Coalition Workflows
	6.2.2. Dynamic Causality in Event Structures
	6.2.3. Evolution in Event Structures
	6.2.4. Priority in Event Structures

	6.3. Future Work

	List of Abbreviations
	List of Figures
	Bibliography
	A. Appendix: Proofs
	A.1. Proofs of Sections 2.2, 3.2: Prime Event Structures
	A.2. Proofs of Section 3.3: Shrinking Causality
	A.3. Proofs of Section 3.4: Growing Causality
	A.4. Proofs of Section 3.5: Fully Dynamic Causality
	Embedding EBESs into DCESs
	Expressiveness Of DCESs

	A.5. Proofs of Section 4.4: Inferring Changesfrom Evolution

	B. Appendix: Alternative Partial Order Semantics for Dual Event Structures and Shrinking-Causality Event Structures
	C. Appendix: Application of Evolving Event Structures in Schema Evolution and Instance Migration in Business Processes
	Backcover

