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Abstract

Model reduction is of fundamental importance in many control applications. We consider
model reduction methods for linear continuous-time descriptor systems. The methods
are based on balanced truncation techniques and closely related to the controllability and
observability Gramians and Hankel singular values of descriptor systems. The Gramians
can be computed by solving the generalized Lyapunov equations with special right-hand
sides. The numerical solution of generalized Lyapunov equations is also discussed. A nu-
merical example is given.
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1 Introduction

Consider a linear continuous-time system

E ẋ(t) = Ax(t) +B u(t), x(0) = x0,

y(t) = C x(t),
(1)

where E, A ∈ R
n,n, B ∈ R

n,m, C ∈ R
p,n, x(t) ∈ R

n is the state vector, u(t) ∈ R
m is the

control input, y(t) ∈ R
p is the output and x0 ∈ R

n is the initial value. The number of state
variables n is called the order of system (1). If I = E, then (1) is a standard state space
system. Otherwise, (1) is a descriptor system or generalized state space system. Such systems
arise naturally in many applications such as multibody dynamics [6, 14], electrical circuits
[8, 21], semidiscretization of partial differential equations [43] and they may have very large
order n.

We will assume throughout the paper that the pencil λE−A is regular, i.e., det(λE−A) 6= 0
for some λ ∈ C. The pencil λE −A is called c-stable, if it is regular and all finite eigenvalues
of λE −A lie in the open left half-plane.

The model reduction problem consists in an approximation of the descriptor system (1)
by a reduced order system

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t), x̃(0) = x̃0,

ỹ(t) = C̃ x̃(t),
(2)

where Ẽ, Ã ∈ R
ℓ,ℓ, B̃ ∈ R

ℓ,m, C̃ ∈ R
p,ℓ and ℓ ≪ n. Note that systems (1) and (2) have

the same input u(t). We require for the approximate system (2) to preserve properties of
the original system (1) like regularity and stability. The descriptor system (1) consists of
differential equations that describe the dynamic behavior of the system as well as algebraic
equations characterizing a constraint manifold for the solution. Therefore, it is natural to
require for the reduced order system to have the same algebraic constraints as the original one.
Clearly, it is also desirable that the approximation error is small. Moreover, the computation
of the reduced order system should be numerically stable and efficient.

There exist various model reduction approaches for standard state space systems such as
balanced truncation [29, 31, 34, 35, 40, 41], moment matching approximation [16, 20], singular
perturbation approximation [27, 30] or optimal Hankel norm approximation [17]. Surveys on
system approximation and model reduction can be found in [2, 15]. One of most effective and
well studied model reduction techniques is balanced truncation which is closely related to the
two Lyapunov equations

AP + PAT = −BBT , ATQ+QA = −CTC.

The solutions P and Q of these equations are called the controllability and observability
Gramians, respectively. The balanced truncation approach consists in transforming the state
space system to a balanced form whose the controllability and observability Gramians become
diagonal and equal together with a truncation of states that are both difficult to reach and
to observe, see [31] for details.

In this paper we generalize controllability and observability Gramians as well as Hankel
singular values for descriptor systems (Section 2). In Section 3 we present an extension of
balanced truncation algorithms [29, 40, 41] to descriptor systems. These algorithms are based
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on splitting system (1) into its dynamic and algebraic parts and then reducing the order only
for the dynamic part via a standard model reduction method. Section 4 contains a numerical
example.

2 Descriptor systems

Consider the descriptor system (1). If the pencil λE−A is regular, then it can be reduced to
the Weierstrass canonical form [37], that is, there exist nonsingular matrices W and T such
that

E = W

(
Inf

0

0 N

)
T, A = W

(
J 0
0 In∞

)
T, (3)

where Ik is the identity matrix of order k and N is nilpotent with index of nilpotency ν. The
number ν is the index of the pencil λE −A. Representation (3) defines the decomposition of
R
n into complementary deflating subspaces of dimensions nf and n∞ corresponding to the

finite and infinite eigenvalues of the pencil λE −A, respectively. The matrices

Pr = T−1

(
Inf

0

0 0

)
T and Pl = W

(
Inf

0

0 0

)
W−1 (4)

are the spectral projections onto the right and left deflating subspaces of the pencil λE − A

corresponding to the finite eigenvalues.

It is well known that if the pencil λE−A is regular, u(t) is ν times continuously differen-
tiable and x0 is consistent, i.e., it belongs to the set of consistent initial conditions

X0 =

{
x0 ∈ R

n : (I − Pr)x
0 =

ν−1∑

k=0

F−k−1Bu(k)(0)

}
,

then the descriptor system (1) has a unique continuously differentiable solution x(t), see
[8, 11], that is given by

x(t) = F(t)Ex0 +

∫ t

0
F(t− τ)Bu(τ) dτ +

ν−1∑

k=0

F−k−1Bu(k)(t).

Here

F(t) = T−1

(
etJ 0
0 0

)
W−1 (5)

is a fundamental solution matrix of the descriptor system (1), and the matrices Fk have the
form

Fk = T−1

(
0 0
0 −N−k−1

)
W−1, k = −1,−2, . . . .

Clearly, Fk = 0 for k < −ν.

If the initial condition x0 is inconsistent or the input u(t) is not sufficiently smooth (for
example, in most control problems u(t) is only piecewise continuous), then the solution of the
descriptor system (1) may have impulsive modes [10, 11].

The rational matrix-valued function G(s) := C(sE−A)−1B is called the transfer function
of the descriptor system (1). The transfer function G(s) is called proper if lim

s→∞

G(s) < ∞. A
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quadruple of matrices [E, A, B, C ] is called a realization of G(s). We will also often denote
a realization of G(s) by [

sE −A B

C 0

]
.

Two realizations [ E, A, B, C ] and [ Ě, Ǎ, B̌, Č ] are restricted system equivalent if there
exist nonsingular matrices W̌ and Ť such that

[
sĚ − Ǎ B̌

Č 0

]
=

[
sW̌EŤ − W̌AŤ W̌B

CŤ 0

]
.

A pair (W̌ , Ť ) is called system equivalence transformation. A characteristic quantity of system
(1) is system invariant if it is preserved under a system equivalence transformation. The
transfer function G(s) is system invariant, since

G(s) = C(sE −A)−1B = ČŤ−1Ť (sĚ − Ǎ)−1W̌ W̌−1B̌ = Č(sĚ − Ǎ)−1B̌.

Other important results from the theory of rational functions and realization theory may be
found in [11, 23].

2.1 Controllability and observability

For descriptor systems there are various concepts of controllability and observability, e.g.,
[7, 11, 44].

Definition 2.1 System (1) and the triplet (E,A,B) are called controllable on the reachable
set (R-controllable) if

rank [λE −A, B] = n for all finite λ ∈ C. (6)

System (1) and the triplet (E,A,B) are called controllable at infinity (I-controllable) if

rank [E, AKE , B] = n, where the columns of KE span kerE. (7)

System (1) and the triplet (E,A,B) are called strongly controllable (S-controllable) if (6) and
(7) hold.
System (1) and the triplet (E,A,B) are called completely controllable (C-controllable) if (6)
holds and

rank [E, B] = n. (8)

Observability is a dual property of controllability.

Definition 2.2 System (1) and the triplet (E,A,C) are called observable on the reachable
set (R-observable) if

rank

[
λE −A

C

]
= n for all finite λ ∈ C. (9)

System (1) and the triplet (E,A,C) are called observable at infinity (I-observable) if

rank




E

KT
ETA

C


 = n, where the columns of KET span kerET . (10)
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System (1) and the triplet (E,A,C) are called strongly observable (S-observable) if (9) and
(10) hold.
System (1) and the triplet (E,A,C) are called completely observable (C-observable) if (9)
holds and

rank

[
E

C

]
= n. (11)

Clearly, conditions (7) and (10) are weaker than (8) and (11), respectively. Equiva-
lent algebraic characterizations of various concepts of controllability and observability for
descriptor systems are presented in [11, 44].

2.2 Controllability and observability Gramians

If we assume that the pencil λE −A is c-stable, then the integrals

Gpc =

∫
∞

0
F(t)BBTFT (t) dt (12)

and

Gpo =

∫
∞

0
FT (t)CTCF(t) dt (13)

exist, where F(t) is as in (5). The matrix Gpc is called the proper controllability Gramian and
the matrix Gpo is called the proper observability Gramian of the continuous-time descriptor
system (1), see [4, 39]. The improper controllability Gramian of system (1) is defined by

Gic = −
−1∑

k=−ν

FkBBTF T
k ,

and the improper observability Gramian of system (1) is defined by

Gio = −
−1∑

k=−ν

F T
k CTCFk.

In summary, the controllability Gramian of the descriptor system (1) is given by

Gc = Gpc + Gic

and the observability Gramian of the descriptor system (1) is given by

Go = Gpo + Gio.

If E = I, then Gpc = Gc and Gpo = Go are the usual controllability and observability Gramians
for the standard state space system [45].

The proper controllability and observability Gramians are the unique symmetric, positive
semidefinite solutions of the projected generalized continuous-time Lyapunov equations

EGpcA
T +AGpcE

T = −PlBBTP T
l ,

Gpc = PrGpc
(14)
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and
ETGpoA+ATGpoE = −P T

r CTCPr,

Gpo = GpoPl,
(15)

respectively, where Pl and Pr are given by (4), see [39]. If λE −A is in Weierstrass canonical
form (3) and if the matrices

W−1B =

[
B1

B2

]
and CT−1 = [C1, C2]

are partitioned in blocks conformally E and A, then we can show that

Gpc = T−1

(
G1c 0
0 0

)
T−T , Gpo = W−T

(
G1o 0
0 0

)
W−1, (16)

where G1c and G1o satisfy the standard continuous-time Lyapunov equations

JG1c +G1cJ
T = −B1B

T
1 ,

JTG1o +G1oJ = −CT
1 C1.

The improper controllability and observability Gramians are the unique symmetric, ne-
gative semidefinite solutions of the projected generalized discrete-time Lyapunov equations

AGicA
T −EGicE

T = −(I − Pl)BBT (I − Pl)
T ,

PrGic = 0

and
ATGioA− ETGioE = −(I − Pr)

TCTC(I − Pr),
GioPl = 0,

respectively [39]. They can be represented as

Gic = T−1

(
0 0
0 G2c

)
T−T , Gio = W−T

(
0 0
0 G2o

)
W−1, (17)

where G2c and G2o satisfy the standard discrete-time Lyapunov equations

G2c −NG2cN
T = −B2B

T
2 ,

G2o −NTG2oN = −CT
2 C2.

Unfortunately, we do not know how to express the controllability and observability Gramians
Gc and Go for the descriptor system (1) via the solutions of single Lyapunov equations.

The controllability and observability Gramians can be used to characterize controllability
and observability properties of system (1).

Theorem 2.3 [4, 39] Consider the descriptor system (1). Assume that λE −A is c-stable.

1. System (1) is R-controllable if and only if the proper controllability Gramian Gpc is
positive definite on the subspace imP T

r .

2. System (1) is I-controllable if the improper controllability Gramian Gic is negative defi-
nite on the subspace kerP T

r .
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3. System (1) is C-controllable if and only if the controllability Gramian Gc is positive
definite on imP T

r and negative definite on kerP T
r .

4. System (1) is R-observable if and only if the proper observability Gramian Gpo is positive
definite on the subspace imPl.

5. System (1) is I-observable if the improper observability Gramian Gio is negative definite
on the subspace kerPl.

6. System (1) is C-observable if and only if the observability Gramian Go is positive definite
on imPl and negative definite on kerPl.

Note that the I-controllability (I-observability) of (1) does not imply that the improper
controllability (observability) Gramian is negative definite on kerP T

r (on kerPl).

Example 2.4 The descriptor system (1) with

E =

(
1 0
0 0

)
, A =

(
2 0
0 1

)
, B =

(
1
0

)
, C = (1, 0 )

is I-controllable and I-observable. We have Gic = Gio = 0 and P T
r = Pl, i.e., neither Gic nor

Gio are negative definite on kerP T
r = kerPl.

Corollary 2.5 Consider the descriptor system (1). Assume that λE −A is c-stable.

1. System (1) is R-controllable and R-observable if and only if

rank(Gpc) = rank(Gpo) = rank(GpcE
TGpoE) = nf .

2. System (1) is I-controllable and I-observable if

rank(Gic) = rank(Gio) = rank(GicA
TGioA) = n∞.

3. System (1) is C-controllable and C-observable if and only if

rank(Gc) = rank(Go) = rank(GpcE
TGpoE + GicA

TGioA) = n.

Proof. The result follows from Theorem 2.3 and representations (3), (16) and (17). ✷

2.3 Hankel singular values

The proper controllability and observability Gramians Gpc and Gpo as well as the improper
controllability and observability Gramians Gic and Gio are not system invariant. Indeed, under
a system equivalence transformation (W̌ , Ť ) the proper and improper controllability Grami-
ans Gpc and Gic are transformed to Ǧpc = Ť−1GpcŤ

−T and Ǧic = Ť−1GicŤ
−T , respectively,

whereas the proper and improper observability Gramians Gpo and Gio are transformed to
Ǧpo = W̌−TGpoW̌

−1 and Ǧio = W̌−TGioW̌
−1, respectively. Then

ǦpcĚ
T ǦpoĚ = Ť−1GpcE

TGpoEŤ ,

ǦicǍ
T ǦioǍ = Ť−1GicA

TGioAŤ .
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We see from these formulas that the spectra of the matrices GpcE
TGpoE and GicA

TGioA are
system invariant. These matrices play the same role for descriptor systems as the product
of the controllability and observability Gramians for standard state space systems [45]. We
have the following result.

Theorem 2.6 Let λE − A be c-stable. Then the matrices GpcE
TGpoE and GicA

TGioA have
real and non-negative eigenvalues.

Proof. It follows from (12) and (13) that Gpc and ETGpoE are symmetric and positive
semidefinite. In this case there exists a nonsingular matrix Ť such that

Ť−1GpcŤ
−T =




Σ1 0
Σ2

0
0 0


 , Ť TETGpoEŤ =




Σ1 0
0

Σ3

0 0


 ,

where Σ1, Σ2 and Σ3 are diagonal matrices with positive diagonal elements [45, p.76]. Then
we get

Ť−1GpcE
TGpoEŤ =

(
Σ2
1 0
0 0

)
.

Hence, GpcE
TGpoE is diagonalizable and it has real and non-negative eigenvalues.

Similarly, we can show that eigenvalues of GicA
TGioA are real and non-negative. ✷

Definition 2.7 Let nf and n∞ be the dimensions of the deflating subspaces of the pencil
λE −A corresponding to the finite and infinite eigenvalues, respectively. The square roots of
the largest nf eigenvalues of the matrix GpcE

TGpoE denoted by ςj are called the proper Hankel
singular values of the c-stable continuous-time descriptor system (1). The square roots of the
largest n∞ eigenvalues of the matrix GicA

TGioA denoted by ϑj are called the improper Hankel
singular values of system (1).

We will assume that the proper and improper Hankel singular values are ordered decreas-
ingly, i.e.,

ς1 ≥ ς2 ≥ . . . ≥ ςnf
≥ 0, ϑ1 ≥ ϑ2 ≥ . . . ≥ ϑn∞ ≥ 0.

The proper and improper Hankel singular values put together the set of the Hankel singular
values of the continuous-time descriptor system (1). For E = I, the proper Hankel singular
values are the classical Hankel singular values of the standard state space system [17].

Since the proper (improper) controllability and observability Gramians are symmetric and
positive (negative) semidefinite, there exist Cholesky factorizations

Gpc = RRT , Gpo = LTL (18)

and

Gic = −R′(R′)T , Gio = −(L′)TL′, (19)

where the matrices R, L, R′, L′ ∈ R
n,n are the upper triangular Cholesky factors [28]. The

following lemma gives a connection between the proper and improper Hankel singular values
of system (1) and the standard singular values of the matrices LER and L′AR′.
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Lemma 2.8 Assume that the descriptor system (1) is c-stable. Consider the Cholesky fac-
torizations (18) and (19) of the proper and improper Gramians of (1). Then the proper
Hankel singular values of system (1) are the nf largest singular values of the matrix LER,
and the improper Hankel singular values of system (1) are the n∞ largest singular values of
the matrix L′AR′.

Proof. We have

ς2j = λj(GpcE
TGpoE) = λj(RRTETLTLE) = λj(R

TETLTLER) = σ2
j (LER),

ϑ2
j = λj(GicA

TGioA) = λj(R
′(R′)TAT (L′)TL′A) = λj((R

′)TAT (L′)TL′AR′) = σ2
j (L

′AR′),

where λj(·) and σj(·) denote, respectively, the eigenvalues and the singular values ordered
decreasingly. ✷

3 Model reduction

In this section we consider the problem of reducing the order of the descriptor system (1).

3.1 Balanced reduction

For a given transfer function G(s), there are many different realizations [11]. Here we are
interesting only in particular realizations that are useful in applications.

Definition 3.1 A realization [E,A,B,C ] of the transfer function G(s) is called R-minimal
if the triplet (E,A,B) is R-controllable and the triplet (E,A,C) is R-observable.

Definition 3.2 A realization [E,A,B,C ] of the c-stable transfer function G(s) is called
proper balanced if the proper controllability and observability Gramians Gpc and Gpo are equal
and diagonal.

We will show that for a R-minimal realization [E,A,B,C ] of the c-stable transfer function
G(s), there exists a system equivalence transformation (W T

b , Tb) such that the realization

[W T
b ETb, W

T
b ATb, W

T
b B, CTb ] (20)

is proper balanced.
If (E,A,B) is R-controllable and (E,A,C) is R-observable, then by Corollary 2.5 we have

rank(Gpc) = rank(Gpo) = rank(GpcE
TGpoE) = nf . Consider the Cholesky factorizations (18)

of the proper controllability and observability Gramians. We may assume without loss of
generality that the Cholesky factors R, LT ∈ R

n,nf have full column rank. It follows from
Lemma 2.8 and Corollary 2.5 that ςj = σj(LER) > 0 for j = 1, . . . , nf and, hence, the matrix
LER ∈ R

nf ,nf is nonsingular.
Let

LER = UΣV T (21)

be a singular value decomposition of LER, where U and V are orthogonal matrices and
Σ = diag(ς1, . . . , ςnf

) is nonsingular. Consider the matrices

Wb =
[
LTUΣ−1/2, W∞

]
, W ′

b =
[
ERV Σ−1/2, W ′

∞

]
(22)
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and
Tb =

[
RV Σ−1/2, T∞

]
, T ′

b =
[
ETLTUΣ−1/2, T ′

∞

]
. (23)

Here the columns of matrices W∞ and T∞ span, respectively, the left and right deflating
subspaces of the pencil λE − A corresponding to the infinite eigenvalues, and matrices W ′

∞

and T ′

∞
satisfy W T

∞
W ′

∞
= (T ′

∞
)TT∞ = In∞ . Clearly, for Pr and Pl as in (4), we have

I − Pr = T∞(T ′

∞
)T and I − Pl = W ′

∞
W T

∞
. Since

(I − Pr)RRT (I − Pr)
T = (I − Pr)Gpc(I − Pr)

T = 0,

(I − Pl)
TLTL(I − Pl) = (I − Pl)

TGpo(I − Pl) = 0,

we obtain that
RTT ′

∞
= 0 and LW ′

∞
= 0. (24)

Then

(T ′

b)
TTb =

(
Σ−1/2UTLERV Σ−1/2 Σ−1/2UTLET∞

(T ′

∞
)TRV Σ−1/2 (T ′

∞
)TT∞

)
= In,

i.e., the matrices Tb and T ′

b are nonsingular and (T ′

b)
T = T−1

b . Similarly, we can show that
the matrices Wb and W ′

b are also nonsingular and (W ′

b)
T = W−1

b .
Using (18) and (21)-(24), we obtain that the proper controllability and observability

Gramians of the transformed system (20) have the form

T−1
b GpcT

−T
b =

(
Σ 0
0 0

)
= W−1

b GpoW
−T
b ,

where Σ = diag(ς1, . . . , ςnf
) with the proper Hankel singular values ςj. Thus, (W T

b , Tb) with
Wb and Tb as in (22) and (23), respectively, is the balancing transformation and realization
(20) is proper balanced.

Just as for standard state space systems [17, 31], the balancing transformation for de-
scriptor systems is not unique.

Remark 3.3 Note that the pencil λEb−Ab = W T
b (λE−A)Tb is in Weierstrass-like canonical

form. Indeed, from (21)-(23) we have

Eb =

(
Σ−1/2UTLERV Σ−1/2 Σ−1/2UTLET∞

W T
∞
ERV Σ−1/2 W T

∞
ET∞

)
=

(
Inf

0

0 E∞

)
,

Ab =

(
Σ−1/2UTLARV Σ−1/2 Σ−1/2UTLAT∞

W T
∞
ARV Σ−1/2 W T

∞
AT∞

)
=

(
A1 0
0 A∞

)
,

where A1 = Σ−1/2UTLARV Σ−1/2, E∞ = W T
∞
ET∞ is nilpotent and A∞ = W T

∞
AT∞ is

nonsingular. Clearly, the pencil λEb − Ab is regular, c-stable and has the same index as
λE −A.

3.2 Balanced truncation

In the previous subsection we have considered a reduction of an R-minimal realization to
proper balanced form. However, computing the proper balanced realization may be ill-
conditioned as soon as Σ in (21) has small singular values. In addition, if the realization
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is not R-minimal, then the matrix Σ is singular. In the similar situation for standard state
space systems one performs a model reduction by truncating the state components corre-
sponding to the zero and small Hankel singular values without significant changes of the
system properties, see, e.g., [31, 40]. This procedure is known as projection of dynamics or
balanced truncation. It can be also applied to the descriptor system (1).

The proper controllability and observability Gramians can be used to describe the future
output energy

Ey :=

∫
∞

0
yT (t)y(t) dt

and the minimal past proper input energy

Eu := min
u∈Lm

2 (R−)

∫ 0

−∞

uT (t)u(t) dt (25)

that is needed to reach from x(−∞) = 0 the state x(0) = x0 ∈ imPr. Here R
− = (−∞, 0)

and L
m
2 (R−) is the Hilbert space of all square integrable functions f : R −→ R

m such that
f(t) = 0 for t ≥ 0.

Theorem 3.4 Consider a descriptor system (1) that is c-stable and R-minimal. Let Gpc and
Gpo be the proper controllability and observability Gramians of (1). If x0 ∈ imPr and u(t) = 0
for t ≥ 0, then

Ey = (x0)TETGpoEx0.

Moreover, for uopt(t) = BTF(−t)G−

pcx
0, we have

Euopt = (x0)TG−

pcx
0,

where G−

pc is the unique solution of

GpcG
−

pcGpc = Gpc,

P T
r G−

pcPr = G−

pc.
(26)

Proof. System (1) with x0 ∈ imPr and u(t) = 0 for t ≥ 0 has a unique solution given by
x(t) = F(t)Ex0. Then y(t) = CF(t)Ex0 for t ≥ 0 and, hence,

Ey =

∫
∞

0
yT (t)y(t) dt =

∫
∞

0
(x0)TETFT (t)CTCF(t)Ex0 dt = (x0)TETGpoEx0.

Consider now the minimization problem (25) subject to the constraint for the initial
conditions

x0 =

∫ 0

−∞

F(−t)Bu(t) dt. (27)

Let µ ∈ R
n be a Lagrange multiplier vector and let

L(u(t), µ) =

∫ 0

−∞

uT (t)u(t) dt + µT

(
x0 −

∫ 0

−∞

F(−t)Bu(t) dt

)

be the Lagrange function. For any variations ∆u(t) and ∆µ we have that

∆L(u(t), µ) = 2

∫ 0

−∞

uT (t)∆u(t) dt− µT

∫ 0

−∞

F(−t)B∆u(t) dt

+ ∆µT

(
x0 −

∫ 0

−∞

F(−t)Bu(t) dt

)
= 0
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if and only if (27) holds and

uT (t) =
1

2
µTF(−t)B =

1

2
µTPrF(−t)B. (28)

Substitution of (28) in (27) gives

x0 =
1

2

∫ 0

−∞

F(−t)BBTFT (−t)µdt =
1

2

∫
∞

0
F(t)BBTFT (t)µdt =

1

2
Gpcµ. (29)

Using the representation for Gpc as in (16), where G1c is symmetric and positive definite
(since (E,A,B) is R-controllable), we obtain that (26) has a unique solution G−

pc given by

G−

pc = T T

(
G−1

1c 0
0 0

)
T. (30)

It follows from (29) that 2G−

pcx
0 = G−

pcGpcµ = P T
r µ. Hence, for the optimal input

uopt(t) = BTFT (−t)G−

pcx
0,

we have that

Euopt =

∫ 0

−∞

uTopt(t)uopt(t) dt =

∫ 0

−∞

(x0)T (G−

pc)
TF(−t)BBTFT (−t)G−

pcx
0 dt

= (x0)T (G−

pc)
T

(∫
∞

0
F(t)BBTFT (t) dt

)
G−

pcx
0 = (x0)TG−

pcx
0. ✷

Remark 3.5 Using (16) and (30) we obtain the relationships

GpcG
−

pc = Pr, G−

pcGpc = P T
r , G−

pcGpcG
−

pc = G−

pc

which, together with the first equation in (26), imply that G−

pc is, in general, a (1, 2)-pseudo-

inverse of Gpc, see [9]. However, if P T
r = Pr, then G−

pc is the Moore-Penrose inverse [9] of Gpc.

Theorem 3.4 shows that a large input energy Eu is required to reach from x(−∞) = 0 the
state x(0) = Prx

0 which lies in an invariant subspace of the proper controllability Gramian Gpc

corresponding to its small non-zero eigenvalues. Moreover, if x0 is contained in an invariant
subspace of the matrix ETGpoE corresponding to its small non-zero eigenvalues, then the
initial value x(0) = Prx

0 has a small effect on the output energy Ey. For the proper balanced
system, Gpc and ETGpoE are equal and, hence, they have the same invariant subspaces. In
this case the truncation of the states related to the small Hankel singular values does not
change system properties significantly.

Let [E,A,B,C ] be a realization (not necessarily R-minimal) of the c-stable transfer func-
tion G(s). Consider the full rank Cholesky factorizations (18), where the matrices R ∈ R

n,rc,
LT ∈ R

n,ro have full column rank and rc = rank(Gpc) ≤ nf , ro = rank(Gpo) ≤ nf . Let

LER = [U1, U0 ]

(
Σ1 0
0 Σ0

)
[V1, V0 ]

T (31)
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be an ”economy size” singular value decomposition of LER ∈ R
ro,rc , where [U1, U0 ] ∈ R

ro,r

and [V1, V0 ] ∈ R
rc,r have orthogonal columns,

Σ1 = diag(ς1, . . . , ςℓf ) and Σ0 = diag(ςℓf+1, . . . , ςr)

with ς1 ≥ ς2 ≥ . . . ≥ ςℓf > ςℓf+1 ≥ . . . ≥ ςr > 0 and r = rank(GpcE
TGpoE) ≤ min(rc, ro).

Then the reduced order realization can be computed as

[
sẼ − Ã B̃

C̃ 0

]
=

[
W T

ℓ (sE −A)Tℓ W T
ℓ B

CTℓ 0

]
, (32)

where

Wℓ =
[
LTU1Σ

−1/2
1 , W∞

]
∈ R

n,ℓ, Tℓ =
[
RV1Σ

−1/2
1 , T∞

]
∈ R

n,ℓ (33)

and ℓ = ℓf + n∞. Here W∞ and T∞ form the bases of the left and right deflating subspaces,
respectively, corresponding to the infinite eigenvalues of λE −A.

Note that computing the reduced order descriptor system can be interpreted as performing
a system equivalence transformation (W̌ , Ť ) such that

[
W̌ (sE −A)Ť W̌B

CŤ 0

]
=




sEf −Af Bf

sE∞ −A∞ B∞

Cf C∞ 0


 ,

where the pencil λEf − Af has the finite eigenvalues only, all eigenvalues of λE∞ − A∞ are
infinite, and then reducing the order of the subsystem [Ef , Af , Bf , Cf ] with nonsingular Ef .
Clearly, the reduced order system (32) is c-stable and R-minimal.

The described decoupling of system matrices is equivalent to the additive decomposition of
the transfer function as G(s) = Gp(s)+P(s), whereGp(s) = Cf (sEf−Af )

−1Bf is the proper
part and P(s) = C∞(sE∞−A∞)−1B∞ is the polynomial part of G(s). The transfer function
of the reduced system has the form G̃(s) = G̃p(s)+P(s), where G̃p(s) = C̃f (sẼf − Ãf )

−1B̃f

is the reduced subsystem. In this case the difference G(s) − G̃(s) = Gp(s) − G̃p(s) is a
proper rational function, and we have the following upper bound for the H∞-norm of the
error system

‖G(s) − G̃(s)‖H∞ := sup
ω∈R

‖G(iω) − G̃(iω)‖ ≤ 2(ςℓf+1 + . . . + ςnf
) (34)

that has been derived in [17]. Here ‖ · ‖ denotes the spectral matrix norm.

3.3 Numerical aspects

To reduce the order of the descriptor system (1) we have to compute the full rank Cholesky
factors R and L of the proper controllability and observability Gramians that satisfy the
projected generalized Lyapunov equations (14) and (15). We need also the matrices W∞ and
T∞ whose columns span the left and right deflating subspaces, respectively, corresponding to
the infinite eigenvalues of λE −A.

The classical numerical methods for (generalized) Lyapunov equations are (generalized)
Bartels-Stewart and Hammarling methods [3, 22, 32] based on the preliminary reduction of
the matrix (matrix pencil) to the (generalized) Schur form [18], calculation of the solution of

12



a reduced system and back transformation. To solve numerically the projected generalized
Lyapunov equations (14) and (15) for the full rank Cholesky factors, we can use the genera-
lized Schur-Hammarling method proposed in [38]. Simultaneously, this method produces the
matrices W∞ and T∞.

Algorithm 3.1 Solution of the projected generalized Lyapunov equations (14) and (15)
Input: System [E, A, B, C ] such that λE −A is c-stable.
Output: Full rank Cholesky factors R and L of the proper controllability and observability
Gramians Gpc = RRT and Gpo = LTL and the matrices W∞ and T∞ that form the bases of
the left and right deflating subspaces corresponding to the infinite eigenvalues of λE −A.
Step 1. Use the GUPTRI algorithm [12, 13] to compute orthogonal transformation matrices
U and V such that

V TEU =

(
Ef Eu

0 E∞

)
and V TAU =

(
Af Au

0 A∞

)
, (35)

where Ef is upper triangular, nonsingular and E∞ is upper triangular with zeros on the
diagonal, Af is upper quasi-triangular and A∞ is upper triangular, nonsingular.
Step 2. Use the generalized Schur method [25, 26] or the recursive blocked algorithm [24] to
compute the solution of the generalized Sylvester equation

EfY − ZE∞ = −Eu,

AfY − ZA∞ = −Au.

Step 3. Compute the matrices

V TB =

[
B1

B∞

]
, CU = [Cf , C2 ] .

Step 4. Use the generalized Hammarling method [22, 32] to compute the Cholesky factors Rf

and Lf of the solutions Xc = RfR
T
f and Xo = LT

f Lf of the generalized Lyapunov equations

EfXcA
T
f +AfXcE

T
f = −(B1 − ZB∞)(B1 − ZB∞)T ,

ET
f XoAf +AT

f XoEf = −CT
f Cf .

Step 5. If rank(Rf ) < nf , then compute the full column rank matrix R1 from the QR
decomposition

RT
f = QR

[
RT

1

0

]
.

Otherwise, R1 := Rf .
Step 6. If rank(Lf ) < nf , then compute the full row rank matrix L1 from the QR decompo-
sition

Lf = QL

[
L1

0

]
.

Otherwise, L1 := Lf .
Step 7. Compute the full rank Cholesky factors

R = U

[
R1

0

]
, L = [L1, −L1Z ]V T . (36)
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Step 8. Compute the matrices

W∞ = V

[
0

In∞

]
and T∞ = U

[
Y

In∞

]
. (37)

The generalized Schur-Hammarling method costs O(n3) flops and can be used, unfortu-
nately, only for problems of small and medium size. Moreover, it does not take into account
the sparsity or any structure of the system and is not attractive for parallelization. Recently,
iterative methods related to the ADI method and the Smith method have been proposed to
compute the low rank approximation of the solutions of standard large-scale sparse Lyapunov
equations [1, 33]. It is important to extend these methods for projected generalized Lyapunov
equations. This topic is currently under investigations.

The following algorithm is a generalization of the square root balanced truncation method
[29, 40] for the descriptor system (1).

Algorithm 3.2 Generalized Square Root (GSR) method.
Input: A realization [E, A, B, C ] such that λE −A is c-stable.
Output: A reduced order system [ Ẽ, Ã, B̃, C̃ ].
Step 1. Use Algorithm 3.1 to compute the full rank factors R and L of the proper controlla-
bility and observability Gramians Gpc = RTR and Gpo = LLT as well as the bases W∞ and T∞

of the left and right deflating subspaces of λE −A corresponding to the infinite eigenvalues.
Step 2. Compute the ”economy size” singular value decomposition (31).

Step 3. Compute the matrices Wℓ = [LTU1Σ
−1/2
1 , W∞ ] and Tℓ = [RV1Σ

−1/2
1 , T∞ ].

Step 4. Compute the reduced order system [ Ẽ, Ã, B̃, C̃ ] = [W T
ℓ ETℓ, W

T
ℓ ATℓ, W

T
ℓ B, CTℓ ].

If the original system (1) is highly unbalanced, then the matrices Wℓ and Tℓ are ill-
conditioned. To avoid accuracy loss in the reduced system, a square root balancing free
method has been proposed for standard state space systems in [41]. This approach can be
generalized for descriptor systems as follows.

Algorithm 3.3 Generalized Square Root Balancing Free (GSRBF) method.
Input: A realization [E, A, B, C ] such that λE −A is c-stable.
Output: A reduced order system [ Ẽ, Ã, B̃, C̃ ].
Step 1. Use Algorithm 3.1 to compute the full rank factors R and L of the proper controlla-
bility and observability Gramians Gpc = RTR and Gpo = LLT as well as the bases W∞ and T∞

of the left and right deflating subspaces of λE −A corresponding to the infinite eigenvalues.
Step 2. Compute the ”economy size” singular value decomposition (31).
Step 3. Compute the ”economy size” QR decompositions

RV1 = QcR0, LTU1 = QoL0,

where Qc, Qo ∈ R
n,ℓf have orthogonal columns and R0, L0 ∈ R

ℓf ,ℓf are upper triangular,
nonsingular.
Step 4. Compute the reduced order system [ Ẽ, Ã, B̃, C̃ ] = [W T

ℓ ETℓ, W
T
ℓ ATℓ, W

T
ℓ B, CTℓ ],

where Wℓ = [Qo, W∞ ] and Tℓ = [Qc, T∞ ].

The GSR and GSRBF methods are mathematically equivalent in the sense that they de-
liver a reduced system with the same transfer function. But the matrices Wℓ and Tℓ computed
by the GSRBF method are often significantly better conditioned than those computed via
the GSR method.
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Remark 3.6 In fact, we do not need to compute the full rank Cholesky factors R and L in
Step 7 and the matrices W∞ and T∞ in Step 8 of Algorithm 3.1. From (35) and (37) we have
W T

∞
ET∞ = E∞, W T

∞
AT∞ = A∞, W T

∞
B = B∞ and CT∞ = CfY + C2 = C∞. Moreover, it

follows from (35) and (36) that LER = L1EfR1. Thus, computation of the proper Hankel
singular values in Step 2 of Algorithms 3.2 and 3.3 can be performed working only with the
matrices L1, Ef and R1. This reduces the computational cost and the memory requirement.
Note that the singular value decomposition of L1EfR1 may be computed without forming
this product explicitly, see [19] for details.

4 Numerical example

Consider the holonomically constrained planar model of a truck [36]. The linearized equation
of motion has the form

ṗ(t) = v(t),
M v̇(t) = Kp(t) +Dv(t)−GT

λ(t) +B2u(t),
0 = Gp(t),

(38)

where p(t) ∈ R
11 is the position vector, v(t) ∈ R

11 is the velocity vector, λ(t) ∈ R is the
Lagrange multiplier, M is the positive definite mass matrix, K is the stiffness matrix, D is
the damping matrix, G is the constraint matrix and B2 is the input matrix. System (38)
together with the output equation y(t) = p(t) forms a descriptor system of order n = 23 with
m = 1 input and p = 11 outputs. The dimension of the deflating subspace corresponding to
the finite eigenvalues is nf = 20. This toy-example is presented to illustrate the reliability of
the proposed model reduction methods for descriptor systems.

All of the following results were obtained on an IBM RS 6000 44P Model 270 with relative
machine precision ǫ = 2.22× 10−16 using the MATLAB mex-functions based on the GUPTRI

routine [12, 13] and the SLICOT library routines [5, 42].

Figure 1(a) shows the proper Hankel singular values ςj , j = 1, . . . , 20. We approximate
system (38) by a model of order ℓ = 5. Note that the Bode plots of the original and reduced
systems are not presented, since they were impossible to distinguish. Figure 1(b) illustrate
how accurate the reduced order model approximate the original one. We display the amplitude
Bode plot of the error system G(iω)− G̃(iω) for a frequency range ω ∈ [1, 103]. Comparison
of this error with the upper bound 2(ς3+ . . .+ς20) = 1.69×10−5 shows that the error estimate
(34) is tight.

5 Conclusion

We have generalized the controllability and observability Gramians as well as Hankel singular
values for descriptor systems and studied their important features. Model reduction methods
for descriptor systems have been presented. These methods are based on the balanced trun-
cation technique and deliver reduced order systems that preserve the regularity and stability
properties of the original system. Moreover, for these methods the approximation error bound
is available.
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Figure 1: Proper Hankel singular values of the linearized truck model (a) and Bode plot of
the error system (b)
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