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Abstract
The problem of parametric drift estimation for semilinear stochastic partial
differential equations (SPDE) is considered based on a maximum–likelihood
approach. The diffusivity of such models is estimated in finite time based
on a single trajectory with high resolution in space. This is implemented
by observing either a large number of Fourier modes (spectral approach), a
large number of spatial point evaluations of the process (discretized spec-
tral approach) or a convolution with a kernel of small diameter (local ap-
proach). Asymptotic properties of different estimators within these ob-
servation schemes are discussed, based on a spatial regularity analysis of
the solution to the underlying SPDE. Examples of the general theory in-
clude reaction-diffusion equations, Burgers equation and equations of Cahn–
Hilliard type. Special emphasis is put on the issue of model misspecification,
with respect to either the drift or the driving noise.

The theoretical results are supported by a numerical simulation.
As an extension, the case of simultaneous diffusivity and reaction parame-

ter estimation from spectral observations is treated in the context of stochas-
tic activator-inhibitor models. This is applied to experimental observations
of the actin marker concentration within Dictyostelium discoideum giant
cells, whose spatiotemporal dynamics is described as a stochastic FitzHugh–
Nagumo system. The performance of different estimators is compared on
synthetic data from numerical simulation as well as real data.
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Zusammenfassung
Diese Arbeit befasst sich mit parametrischer Driftschätzung für semilineare
stochastische partielle Differentialgleichungen (SPDE) auf der Grundlage ei-
nes Maximum-Likelihood-Ansatzes. Die Diffusivität solcher Modelle wird in
endlicher Zeit unter Beobachtung eines einzelnen Pfades mit hoher räumlicher
Auflösung geschätzt. Diese hohe räumliche Auflösung wird formalisiert durch
eine große Anzahl an Eigenfrequenzen (Spektralansatz), eine große Anzahl
beobachteter Punktauswertungen (diskretisierter Spektralansatz) oder eine
Faltung mit einem Kern mit kleinem Durchmesser (lokaler Ansatz). Für ver-
schiedene Schätzer werden die asymptotischen Eigenschaften innerhalb dieser
Beobachtungsmodelle analysiert. Grundlage hierfür ist eine genaue Bestim-
mung der räumlichen Regularität der Lösung der zugrundeliegenden SPDE.
Beispiele für die allgemeine Theorie sind Reaktions-Diffusions-Gleichungen,
die Burgers-Gleichung sowie Gleichungen vom Cahn–Hilliard-Typ. Weiterhin
werden Fehlspezifikationen des zugrundeliegenden Modells behandelt, bezo-
gen sowohl auf den Driftterm als auch auf den stochastischen Term.

Die Theorie wird durch numerische Simulationen unterstützt.
Als eine Erweiterung der bisherigen Theorie wird die simultane Diffusions-

und Reaktionsparameterschätzung im Spektralansatz im Kontext stochas-
tischer Aktivator-Inhibitor-Modelle betrachtet. Dies wird angewendet auf
experimentelle Beobachtungsdaten der Aktinmarkerkonzentration in Dictyo-
stelium discoideum-Zellen, wobei hier eine Beschreibung als stochastisches
FitzHugh–Nagumo-System angenommen wird. Die Ergebnisse verschiedener
Schätzer werden für Simulationen und experimentelle Daten verglichen.
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Chapter 1

Introduction

Statistical inference for stochastic partial differential equations (SPDEs) is an
emerging field within the topic of statistics for stochastic processes. Formally,
an SPDE can be described as an evolution equation

dXt = A(Xt)dt+B(Xt)dWt (1.1)

on an infinite-dimensional state space, with suitable initial condition. Here,
A determines the drift, B acts as an dispersion operator and W is a cylin-
drical Wiener process. Further details are given below and in Section 2.1.

It is natural to use an SPDE in order to describe the spatiotemporal
dynamics of phenomena such as pattern formation or traveling waves, see
[SS16] and references therein for the propagation of action potentials in neu-
roscience, or [FFAB20] for actin dynamics within D. discoideum giant cells.
Such models may arise in different ways, for example by deriving them from
first principles, or as a phenomenological description, by adding noise to
a deterministic partial differential equation. A widely used class of mod-
els is given by stochastic reaction–diffusion systems, whose drift component
combines localized reaction dynamics with diffusive coupling in space, i.e.
A = ∇ · (θ∇) + F , where θ describes the (possibly inhomogeneous and
anisotropic) diffusivity. The reaction term F can reflect detailed knowledge
of the underlying (e.g. biophysical) processes, or it may be a minimal model
capable of reproducing certain features found in the observations. Different
approaches may be used to describe observed patterns, and it is desirable to
apply statistical methods in order to understand the advantages and limits
of different models.
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Despite their great variety, a common feature of many SPDE models is
the presence of diffusive forcing. Consequently, a precise understanding of
the diffusivity θ is crucial. As a natural first approximation, the diffusivity
can be assumed to be homogeneous and isotropic, i.e. θ > 0 is just a positive
number. In this case, ∇ · (θ∇) = θ∆, where ∆ is the Laplacian. Depending
on the amount and quality of the data at hand, this may be refined. For
example, in [AR21], an estimation theory for a stochastic heat equation with
inhomogeneous diffusivity is developed.

Context and Literature

In order to improve the understanding of a random field with spatial and
temporal extension based on observed data, different techniques from statis-
tical inference can be applied to different classes of models. We mention two
related approaches, which complement the modeling ansatz outlined above:
Apart from starting directly with an SPDE model, a Gaussian field with spec-
ified covariance function may be imposed, see e.g. [Yin93, Moh97]. Here, the
focus lies on features of the covariance rather than the dynamics of the tem-
poral evolution. Another related concept is a partial differential equation
with boundary noise, as studied in [BST80, AB88, MP07].

Literature surveys concerning statistical inference for SPDEs are given
in [Lot09, Cia18].1 A classical problem concerns the estimation of unknown
parameters of the underlying model based on observed data [IH81]. Most
of the literature on statistics for SPDEs is related to parameter estima-
tion, which we are primarily interested in. Further central tasks that have
been studied include hypothesis testing [CX14, CX15], nonparametric esti-
mation [HL00a, HL00b, PR02, HT21a] and Bayesian inference [Bis99, PR00,
Bis02, CCG20]. Another different but related topic is stochastic filtering
(see [LS77, LS01, BC09] for the general theory and e.g. [Ouv78, RR20] for
infinite-dimensional processes). In [Lot04], the solution to a parabolic equa-
tion is interpreted as the observation process of a hidden parameter, which is
assumed to satisfy itself a stochastic differential equation. Estimation of un-
known quantities of the signal SPDE with maximum–likelihood methods in
the context of stochastic filtering is treated in [BB84, AS88, Aih92, Aih98b].

1A continuously updated list of references can be found at the webpage:
https://sites.google.com/prod/view/stats4spdes/
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Inference on stochastic (ordinary) differential equations, SDEs for short,
is well-established, with a huge body of literature. We refer to [Kut04] for
a detailed analysis of various statistical questions for ergodic diffusion pro-
cesses, which can be analyzed through their large time behavior. It is natural
to consider the large time regime also for the case of SPDEs, with infinite
dimensional state space, exploiting ergodicity properties of the process. This
has been done by [Log84, KL85, KL86, Moh94] for parabolic equations (see
also [Aih98a]), and [Jan20, Jan21] for damped wave equations. The case of
fractional noise is treated in [MP07, MT13, KM19].

However, it has been noted in [HKR93, HR95] that it is possible to re-
cover certain drift parameters (for example, the diffusivity of a stochastic heat
equation) even in finite time. In fact, the presence of unbounded operators
implies that the measures on path space generated by the process in finite
time for different drift parameters can be singular. This is in strong contrast
to the case of SDEs with finite dimensional state space, where Girsanov’s
theorem assures that the measures on path space are absolutely continu-
ous. While this fragmentation of the path space into the domains of singular
measures can lead to analytical difficulties (e.g. due to the lack of a dom-
inating measure), it is helpful from a statistical point of view as it implies
the identifiability of the parameters: Given an observation X, one only has
to determine the measure whose support contains X. Of course, in practice
this is achieved by substituting the state space by some finite-dimensional ap-
proximation and studying the asymptotics of classical estimation techniques
based on that discretization.

The methods and works on parameter estimation for SPDEs can be cat-
egorized according to the observation scheme they are based on. Different
discretization schemes can be applied in space and time.

We focus on the idealized assumption that the process is observed con-
tinuously in time up to a fixed T > 0. However, there are various works on
the temporally discrete setting, see e.g. [Mar03, PR96, PR97, CDVK20] for
maximum likelihood-type drift estimation, or [BT19, BT20, Cho20, Cho19,
CD20, KU21b, KU21a, TTV14] for different approaches based on temporal
power variations.

Under full spatial observations, it is possible to study the limit of small
noise intensity, as done by [Hue99, IK99, IK00, IK01]. On the other hand,
partial knowledge on the process in space can be modeled in different ways:
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The spectral approach is based on observing an increasing number of eigen-
frequencies of the process, which are associated to the highest order linear
differential operator appearing in the drift. For the (finite) set of observed
modes, maximum–likelihood techniques can be applied. This approach has
been introduced by [HKR93, HR95, Hue93] and extended by a large num-
ber of subsequent works. If the remaining drift and dispersion terms are
linear and commute with the highest order drift term, the SPDE decou-
ples to a system of independent one-dimensional processes. Even in the
non-diagonalizable case, similar techniques can be applied, see [Lot96, LR99,
LR00, Lot03]. Further, in [HLR97], estimators derived from Galerkin approx-
imations instead of spectral projections are discussed. In [LL10b, LL10a],
hyperbolic equations are considered. Trajectory fitting estimators have been
analyzed in [CGH18]. Different noise models are treated in [CL09, CCG20]
(multiplicative noise), [CLP09, Cia10, Hui14, Kří20] (additive and multi-
plicative fractional noise) and [CKL20] (space-only noise).

For spatially discrete observations, modeled as a set of spatial point eval-
uations of the solution process, a natural approach is to consider power vari-
ations in space and analyze the asymptotic behavior as the mesh size of the
underlying spatial grid tends to zero. This has been done in [PT07, CH20]
(for a stochastic heat equation), [MKT19a, MKT19b] (for a stochastic frac-
tional heat equation), [CKL20, CK22] (in the context of space-only noise)
as well as [SST20] (for a wave equation driven by fractional noise). A joint
spatiotemporal variation is considered in [HT21b, HT21a].

The new local approach, pioneered in [AR21], considers spatially discrete
observations as local averages rather than point evaluations of the process.
The process is weighted by some localized kernel, which is determined by
the measurement device and its resolution. The high frequency regime from
the spectral approach is substituted by a “shrinking kernel” regime that cor-
responds to high precision measurements. Interestingly, the diffusivity of a
stochastic heat equation is identifiable from one single localized observation
in finite time.

Most literature on SPDE parameter estimation is concerned with linear
equations. An early treatment of nonlinear systems appears in [Hue93, Chap-
ter 4], where estimators derived from Galerkin approximations are studied in
the scope of general maximum likelihood theory [IH81], based on a similar
analysis for ergodic diffusion processes [Kut04]. However, in this setting, the
observations are not a functional of the full process X, but rather a finite-
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dimensional Markovian approximation to X. In [GM02], consistency of the
maximum likelihood estimator for a class of controlled stochastic reaction–
diffusion equations is shown in the large time regime (see also [DMPD00],
where the case that the nonlinear term depends linearly on its parameters
is treated separately). For finite observation horizon T , the first study of
parameter estimation from spectral observations of a nonlinear process has
been given in [CGH11] for the stochastic Navier–Stokes equations. The first
result on nonparametric estimation of a reaction term based on discrete ob-
servations is given in the recent work [HT21a], where the authors consider
one-dimensional stochastic reaction–diffusion equations.

So far, there are few works on application of SPDE parameter estima-
tion techniques to experimental data. We point out [Unn89, KUP91], where
parameter estimation for SPDE models arising in groundwater hydrology is
studied with a formal maximum likelihood method, and diffusion and advec-
tion coefficients are calibrated from data.2 Very recently, [ABJR21] considers
stochastic cell repolarization models in the context of the local approach.

Main Results and Outline

In this work, we consider drift parameter estimation for semilinear SPDEs.
We adapt the spectral and local approach to the general semilinear setting.
Based on a maximum-likelihood ansatz, we construct consistent estimators
for the unknown diffusivity and study their asymptotic properties in finite
time in detail. Depending on the specific setting, we are able to obtain op-
timal convergence rates as well as asymptotic normality, which allows for
the construction of confidence intervals. General results are given in Theo-
rem 2.11 and 2.12 for the spectral approach, and Theorem 5.8 for the local
approach. Examples are studied in Section 2.4. Our theory depends on a
precise understanding of the spatial regularity of the solution X and related
processes. Special emphasis is put on robustness of the estimators to model
misspecification, either in the reaction term (Theorem 2.27) or in the speci-
fication of the dispersion operator (Theorem 3.22).

The general theory is supported by numerical evidence for the case of a
stochastic Allen–Cahn equation (Section 2.5).

2Within a different setting, [Moh00] considers a random advection-diffusion equation
in order to describe soil plutonium data.
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We study how the results can be transferred to SPDEs with different
noise models that are relevant for applications. For Ornstein–Uhlenbeck
driven models, a detailed characterization is given in Theorem 3.7. As a new
feature, even the rate of temporal correlation decay of such models can be
identified in finite time (Theorem 3.10). On the other hand, the estimators
are very sensitive to deviations from the semimartingale setting, as shown
for the case of processes driven by integrated Wiener noise (Theorem 3.15).

In addition, we study to what extent the asymptotic results of the spec-
tral approach can be recovered if spatially discrete observations rather than
Fourier modes are available. Under mild conditions on the domain and
scheme of point observations, we obtain bounds on the convergence rate of a
discretized spectral estimator as the mesh size tends to zero (Theorem 4.3).
Under additional assumptions on the underlying geometry, these bounds are
optimal (Theorem 4.7), in the sense that they are consistent with results
from related literature.

Finally, we extend the spectral estimation theory to the case of joint
diffusivity and reaction parameter estimation (Theorem 6.1 and 6.4), with
special emphasis on stochastic activator–inhibitor models. The results are
applied to experimental D. discoideum giant cell observations in Section 6.2,
where we discuss the effective diffusivity of intracellular actin concentration.

This work is based on the papers [PS20], [ACP20], [PFA+21] and addi-
tional new material. It is structured as follows:

• Chapter 2 is based on [PS20] and develops the spectral approach for
general semilinear models. In fact, the results from [PS20] are extended
by means of a different approach to higher regularity (as in [ACP20]).

• Chapters 3 and 4 are new and not based on previous publications. In
Chapter 3, different noise models for the spectral approach are worked
out, based on SPDE models arising in biophysics literature. Special
emphasis is put on the case of Ornstein–Uhlenbeck noise. Chapter 4
concerns the adaptation of the asymptotic results from the spectral
approach to the case that the solution process X is observed not via
its Fourier modes, but discretized in space.

• Chapter 5 is based on [ACP20]. Diffusivity estimation for semilinear
SPDE models is treated from the perspective of the recently introduced
local approach. A crucial tool is higher Lp-regularity of the solution
process.

13



• Chapter 6 is based on [PFA+21]. Diffusivity and reaction parameters
are jointly estimated in the scope of the spectral approach, and the
results are applied to simulated and experimental cell data.

A First Example

We outline the general proceeding with a simple example. For a Gelfand
triple V ⊂ H ⊂ V ∗, consider the equation

dXt = θA(Xt)dt+B(Xt)dWt, X0 ∈ H, (1.2)

with unknown θ > 0, where A : V → V ∗ is a possibly nonlinear operator,
W is a cylindrical Wiener process, and B maps V into the space of Hilbert–
Schmidt operators on H. This corresponds to A = θA in (1.1). In this
example, θ should be seen as the overall drift intensity rather than diffusivity.
Assume that (1.2) is well-posed, e.g. under monotonicity and coercivity
assumptions on A and B [LR15]. Now, given a sequence of linear projection
operators (PN)N∈N with finite-dimensional range on H, the dynamics for
XN := PNX is given by

dXN = θAN(Xt)dt+BN(Xt)dWt, (1.3)

where AN(X) := PNA(X) and BN(X) := PNB(X). Note that in gen-
eral XN ceases to be Markovian. Assume that XN , AN(X) and BN(X)
are observed. Let BN(Xt)BN(Xt)

T be invertible for 0 ≤ t ≤ T (inter-
preted as an operator acting on the range of PN), and set BN(Xt)

+ :=
BN(Xt)

T (BN(Xt)BN(Xt)
T )−1. This is the Moore–Penrose pseudoinverse3

of the operator BN(Xt). Then a natural estimator for θ is given by

θ̂N =

∫ T

0

〈
(BN(Xt)BN(Xt)

T )−1AN(Xt), dX
N
t

〉∫ T

0
∥BN(Xt)+AN(Xt)∥2 dt

. (1.4)

This estimator can be either derived from a maximum likelihood approach
or directly justified by the decomposition

θ̂N − θ =

∫ T

0
⟨BN(Xt)

+AN(Xt), dWt⟩∫ T

0
∥BN(Xt)+AN(Xt)∥2 dt

. (1.5)

3For operators between Hilbert spaces, the Moore–Penrose pseudoinverse is defined
analogously to the finite-dimensional case, cf. [WD01]. See e.g. [LS01, Chapter 13] for
properties of the pseudoinverse in the finite-dimensional case.
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Set IN :=
∫ T

0
∥BN(Xt)

+AN(Xt)∥2 dt. According to Theorem A.1, θ̂N is
a consistent estimator as N → ∞ which is asymptotically normal with rate
(EIN)−1/2, i.e.

(EIN)1/2
(
θ̂N − θ

)
→ N (0, 1), (1.6)

whenever I−1
N

P−→ 0 and IN/EIN
P−→ 1 as N → ∞. An explicit expression in N

of the convergence rate (EIN)−1/2 will depend on the particular projection
operators PN .

This discussion outlines the argument for maximum-likelihood based es-
timation theory for SPDEs with parametric drift terms. There are some
comments to this approach:

(i) Closability of the observation scheme: In practice, it is unlikely that all
three quantities XN , AN(X) and BN(X) are observed. Usually there
is just access to XN . This problem can be addressed in different ways:
Certain model assumptions can be imposed, e.g. that B(X) ≡ B is
constant and known. Also, the generating model and the observation
scheme can be aligned in the sense that e.g. A(XN) = AN(X), at least
up to negligible terms. This is the basic idea behind the spectral ap-
proach, where A and PN commute. When considering spatially discrete
observations in Chapter 4, such commutativity relation does not hold,
and we have to deal with an additional bias.

(ii) Model refinement: In this scenario, θ represents the overall drift in-
tensity of the dynamics. However, it is desirable to refine this model,
either by investigating a parameter linked to a specific part of the drift
(e.g. spatial diffusion, as outlined above), or by considering multipara-
metric drift terms based on specific model knowledge. We address both
questions in the sequel, with the main focus on diffusivity estimation.

(iii) Robustness: In the case that (1.2) is misspecified but close to the true
generating dynamics, it is desirable that the asymptotic results transfer.
We will look at robustness of the estimation procedure to misspecifica-
tion in the drift and noise terms.

15



Chapter 2

The Spectral Approach

This chapter is an adaptation of the statements and results from [PS20].
The aim of this chapter is to develop an estimation theory for the dif-

fusivity of a semilinear SPDE driven by additive noise within the spectral
approach to statistical inference for SPDEs.

In the spectral approach, a finite number N of Fourier modes of the so-
lution X to an SPDE is observed, usually continuously in time, and the
asymptotic properties of estimators derived from these observations is deter-
mined as N tends to infinity. This ansatz has been pioneered by [HKR93,
Hue93, HR95], where it has been noted that the coefficient of an unbounded
drift operator of an SPDE can be identified in finite time, in strong con-
trast to the finite-dimensional case of an stochastic (ordinary) differential
equation. In [CGH11], statistical inference for the stochastic Navier–Stokes
equations with additive noise in two dimensions has been considered, which
is the first treatment of parameter estimation in finite time for a nonlinear
system within the spectral approach. The results and methods therein have
been extended to general semilinear equations in [PS20], on which the present
chapter is based.

In Section 2.1, we discuss the semilinear SPDE model which will be used
throughout this chapter, together with some auxiliary results. Section 2.2
is concerned with optimal spatial regularity of the solution process X. In
Section 2.3, we discuss the maximum-likelihood approach to diffusivity esti-
mation and prove asymptotic results for the estimators derived from that ap-
proach. Examples including reaction-diffusion equations, the Burgers equa-
tion and equations of Cahn-Hilliard type are treated in Section 2.4. The
impact of a misspecified drift term is analyzed in the same section. A nu-
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merical validation of the theory is given in Section 2.5 for the stochastic
Allen-Cahn equation. Systems consisting of an observed component and an
unobserved component are handled in Section 2.6.

2.1 The Setting
Let H be a separable Hilbert space with scalar product ⟨·, ·⟩ and A : D(A) →
H a densely defined, closed operator that is self-adjoint and negative definite
with compact resolvent. For s ≥ 0, let Hs := D((−A)s/2) ⊆ H be the domain
of the fractional Laplacian, equipped with the norm ∥·∥s =

∥∥(−A)s/2·
∥∥
H

. For
s < 0, let Hs be the completion of H w.r.t. the norm ∥·∥s given by the same
term. For each s ≥ 0, Hs ⊆ H ⊆ H−s forms a Gelfand triple. The dual
pairing between Hs and H−s is again denoted by ⟨·, ·⟩. Set V := H1, then
V ∗ can be identified with H−1. For θ > 0, denote by t 7→ etθA, t > 0, the
C0-semigroup generated by θA. Let (Φk)k∈N be an orthonormal basis of H
consisting of eigenfunctions of −A, such that the corresponding sequence
of (positive) eigenvalues (λk)k∈N is ordered increasingly, taking into account
multiplicities. Let PN : H → H be the orthogonal projection onto the span
of the first N eigenfunctions Φ1, . . . ,ΦN . Let (Ω,F ,P) be a probability space
and (Ft)t≥0 a right-continuous complete filtration, then (Ω,F , (Ft)t≥0,P) is
called a stochastic basis.

In this chapter, we consider a semilinear SPDE of the form

dXt = θAXtdt+ F (X)(t)dt+BdWt (2.1)

together with initial condition X0 ∈ H, where W is a cylindrical Wiener
process on H, B = σ(−A)−γ for some σ, γ > 0 is assumed to be of Hilbert–
Schmidt type, F : C(0, T ;H) ⊇ D(F ) → L1(0, T ;H) is a nonlinear operator
and θ > 0 is an unknown parameter.

A pair of adapted processes (X,W ), defined on some stochastic basis
(Ω,F , (Ft)t≥0,P), with X ∈ D(F ) ⊆ C(0, T ;H) a.s. and W a cylindrical
Wiener process, is a solution to (2.1) in the analytically and probabilistically
weak sense if for all v ∈ D(A) = H2 a.s.

⟨v,Xt⟩ = ⟨v,X0⟩+ θ

∫ t

0

⟨Av,Xr⟩ dr +
∫ t

0

⟨v, F (X)(r)⟩ dr + ⟨v,BWt⟩ .

We always assume the following:
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(W ) There is a solution in the analytically and probabilistically weak sense
to (2.1) in C(0, T ;H), which is unique in the sense of probability law.

By means of the Yamada-Watanabe theorem (see e.g. [LR15, Theorem
E.0.8]), pathwise uniqueness implies uniqueness in the sense of probability
law. In most examples, F will be of the form F (X)(t) = F (Xt), i.e. (by
abuse of notation) F : H ⊇ D(F ) → H, such that F extends to an operator
V → V ∗. In this case, well-posedness of (2.1) can be handled in the context
of the variational approach [LR15], cf. Section 2.4.1

Condition (W ) alone imposes very little spatial regularity and should be
considered as a minimal requirement that serves as a baseline for stronger
regularity properties of X. In fact, a detailed analysis of higher regularity
for X will be crucial for our statistical analysis, cf. Section 2.2. There, we
need the representation of X as a mild solution:

Xt = etθAX0 +

∫ t

0

e(t−r)θAF (X)(r)dr +

∫ t

0

e(t−r)θABdWr,

where the first integral is understood in the Bochner sense, and the second
integral is a stochastic convolution.

Remark 2.1. In general, analytically weak and mild solutions are not equiv-
alent. However, if a.s. X,F (X) ∈ L1(0, T ;H), it can be shown that analyt-
ically weak solutions are also mild solutions, see Proposition G.0.5 (i) and
Remark G.0.6 in [LR15]. These conditions are satisfied in our setting.

For two sequences of positive numbers (aN)N∈N and (bN)N∈N, we write
aN ≍ bN if aN/bN → 1 and aN ∼ bN if aN/bN → C for some C > 0. Further
we write aN ≲ bN if aN ≤ CbN for some C > 0, aN ≪ bN if aN/bN → 0 and
aN ≪p bN if there is ϵ > 0 such that N ϵaN/bN → 0. If the sequences are
random, then these limits are meant in the almost sure sense, unless stated
otherwise.

We always assume that there are Λ, β > 0 such that the sequence of
eigenvalues of −A has polynomial growth:

λk ≍ Λkβ (2.2)

1There is a vast literature on well-posedness and regularity for SPDEs, see [DPZ14,
LR15] and references therein. In [Pes95], existence and uniqueness of semilinear equations
on Banach spaces is considered. Stochastic reaction–diffusion equations are studied in
detail in [Cer01]. See [Kry96, vNVW12] for a treatment of maximal Lp-regularity.
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for k → ∞. Note that with this notation, the condition that B is of Hilbert–
Schmidt type is equivalent to

γ >
1

2β
. (2.3)

We close this section by stating some auxiliary results.

Lemma 2.2. For s1 ≤ s2 and X ∈ H:

(i) ∥PNX∥2s2 ≤ λs2−s1
N ∥PNX∥2s1.

(ii) ∥(I − PN)X∥2s1 ≤ λs1−s2
N+1 ∥(I − PN)X∥2s2.

(iii) If X ∈ Hs1, then
∥∥erθAX∥∥2

s2
≤ Cs2−s1r

−(s2−s1) ∥X∥2s1 for some Cs2−s1 >
0 and all r > 0.

Proof. All properties are clear from the spectral decomposition ∥Z∥2s =∑∞
k=0 λ

s
k ⟨Z,Φk⟩2, s ∈ R, Z ∈ H. In (iii), we can choose the constant

Cs2−s1 = supy>0 e
−2yys2−s1/θs2−s1 .

The statements (i) and (ii) are bounds of Bernstein and Jackson type,
respectively (cf. [Sha71, BL76]). Statement (iii) is a smoothing property of
the semigroup, see [Paz83, Lun95].

2.2 Spatial Regularity
In this section, we describe the precise regularity of X, and in particular, the
excess regularity of its nonlinear part. In order to do so, we apply a classical
splitting argument and write X = X̄ + X̃, where X̄ solves

dX̄t = θAX̄tdt+BdWt (2.4)

with initial condition X0 = 0, and X̃ solves the random PDE

dX̃t = (θAXt + F (X̄ + X̃)(t))dt, X̃0 = X0, (2.5)

which reads as

X̃t = etθAX0 +

∫ t

0

e(t−r)θAF (X̄ + X̃)(r)dr (2.6)
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in the mild formulation.
We infer higher regularity for X̃ by means of the conditions (Fs,η) and

(F v
s,η) below, which rely on the representation of X̃ as a mild or weak solution,

respectively. The weak solution approach has been used in [CGH11, PS20] for
the spectral observation scheme, whereas the mild representation has been
applied in [ACP20] in the context of the local observation scheme, cf. Chapter
5. As the mild approach yields larger excess regularity in our context, we
focus mainly on (Fs,η). However, the weak approach using (F v

s,η) will be
crucial in the examples in order to reach the level of regularity where the
mild approach can be applied.

Here and in the sequel, we write XN := PNX as well as X̄N := PNX̄ and
X̃ := PNX̃. These projected processes satisfy

dX̄N
t = θAX̄N

t dt+BdWN
t , X̄0 = 0,

dX̃N
t = θAX̃N

t dt+ PNF (X)(t)dt, X̃0 = X0,

where WN := PNW . In this section, we do not need the precise form (2.4)
for the dynamics of X̄, but only its spatial regularity. In this sense, the
conclusions remain valid for Chapters 3 – 6, where the assumptions on the
noise term are changed.

In order to quantify the regularity of X, we need the following spaces:

R(s) := L∞(0, T ;Hs), (2.7)

RE(s) :=
⋂
p≥1

Lp(Ω, L∞(0, T ;Hs)), (2.8)

i.e. R(s) is a normed space with norm ∥X∥R(s) = sup0≤t≤T ∥X∥s, and RE(s)

is a locally convex space with X ∈ RE(s) if and only if for all p ≥ 1:

E
[
sup

0≤t≤T
∥Xt∥ps

]
< ∞. (2.9)

While X ∈ R(s) a.s. suffices for the purpose of diffusivity estimation, in
many examples, the stronger statement X ∈ RE(s) can be shown.

In order to conduct our regularity analysis, we need that for some η > 0
and s ∈ R, the regularity of F (X) differs from that of X by 2−η derivatives,
in the following sense:
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(Fs,η) There is ϵ > 0 and a monotonous, locally bounded function g : [0,∞) →
[0,∞) such that for all X ∈ R(s):

∥F (X)∥R(s+η+ϵ−2) ≤ g(∥X∥R(s)). (2.10)

In general, the function g has polynomial growth, cf. Section 2.4. If
F (X)(t) = F (Xt), i.e. F acts on every point in time separately, then it is
sufficient for (2.10) that for each 0 ≤ t ≤ T and X ∈ Hs:

∥F (Xt)∥s+η+ϵ−2 ≤ g(∥Xt∥s). (2.11)

The proof of the next proposition is inspired by similar estimates in
[DPDT94].

Proposition 2.3. Let s ∈ R, η > 0. Assume that (Fs,η) is true.

(i) If X̄, X̃ ∈ R(s) and X0 ∈ Hs+η, then X̃ ∈ R(s+ η) a.s.

(ii) If X̄, X̃ ∈ RE(s) and X0 ∈ Lp(Ω, Hs+η) for any p ≥ 1 and if the
function g from (Fs,η) is of the form g(x) = C(1+x)b for some C, b ≥ 0,
then X̃ ∈ RE(s+ η).

Proof.

(i) We have by Lemma 2.2 (iii):∥∥∥X̃N
t

∥∥∥
s+η

≤
∥∥etθAXN

0

∥∥
s+η

+

∫ t

0

∥∥∥e(t−r)θAPNF (X̄ + X̃)(r)
∥∥∥
s+η

dr

≲
∥∥XN

0

∥∥
s+η

+

∫ t

0

(t− r)−1+ϵ/2
∥∥∥PNF (X̄ + X̃)(r)

∥∥∥
s+η+ϵ−2

dr

≲ ∥X0∥s+η +
∥∥∥F (X̄ + X̃)

∥∥∥
R(s+η+ϵ−2)

∫ t

0

(t− r)−1+ϵ/2dr

≲ ∥X0∥s+η + g

(∥∥∥X̄ + X̃
∥∥∥
R(s)

)
2

ϵ
tϵ/2,

thus, uniformly in N ∈ N,

sup
0≤t≤T

∥∥∥X̃N
t

∥∥∥
s+η

≲ ∥X0∥s+η +
2

ϵ
T ϵ/2g

(∥∥X̄t

∥∥
R(s)

+
∥∥∥X̃∥∥∥

R(s)

)
, (2.12)

and the right-hand side is finite by assumption.
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(ii) By (2.12), for any p ≥ 1,

E
[
sup

0≤t≤T

∥∥∥X̃N
t

∥∥∥p
s+η

]
≲ E ∥X0∥ps+η + E

[(
1 +

∥∥X̄∥∥
R(s)

+
∥∥∥X̃∥∥∥

R(s)

)pb
]

and further,

E

[(
1 +

∥∥X̄∥∥
R(s)

+
∥∥∥X̃∥∥∥

R(s)

)pb
]
≲ 1 + E

[∥∥X̄∥∥pb
R(s)

+
∥∥∥X̃∥∥∥pb

R(s)

]
,

which is finite by assumption. This proves the claim.

We say that s∗ ∈ R is the optimal regularity for X̄ if a.s. X̄ ∈ R(s) for
all s < s∗ and X̄ /∈ R(s) for all s > s∗.

Proposition 2.4. Let η > 0, let s∗ be the optimal regularity of X̄, let s0 < s∗

such that (Fs,η) is true for each s0 ≤ s < s∗.

(i) If a.s. X ∈ R(s0) and X0 ∈ Hs∗+η, then a.s. X ∈ R(s) for s < s∗ as
well as X /∈ R(s) for s > s∗, and further a.s. X̃ ∈ R(s+ η) for s < s∗.

(ii) If X ∈ RE(s0), X0 ∈ Lp(Ω, Hs∗+η) for p ≥ 1 and X̄ ∈ RE(s) for s < s∗,
and if the function g from (Fs,η) is of the form g(x) = C(1 + x)b for
some C, b > 0, then X ∈ RE(s) for s < s∗, X /∈ RE(s) for s > s∗, and
X̃ ∈ RE(s+ η) for s < s∗.

Proof. For (i), note that the statements X ∈ R(s), X̃ ∈ R(s + η) for s < s∗

follow inductively from Proposition 2.3. Further, if X ∈ R(s) for some s > s∗

with positive probability, then X̄ = X − X̃ ∈ R(s∧ (s∗ + η/2)) with positive
probability, in contradiction to the optimality of s∗. The reasoning for (ii) is
similar.

If it is possible to set s0 = 0 in Proposition 2.4, standard existence re-
sults for SPDEs can be used as a starting point for inferring higher regu-
larity. In contrast, if (Fs,η) does not hold for s = 0, we have to prove first
that X ∈ R(s0) for some s0 > 0. This can be achieved by modifying the
regularity induction. Typically, the variational approach for SPDEs yields
well-posedness of the paths of X in spaces of the form

Rv(s) := L∞(0, T ;Hs−1) ∩ L2(0, T ;Hs). (2.13)
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It is still possible to find a condition on F which allows for an analogue of
Proposition 2.3. Here, we restrict to the case F (X)(t) = F (Xt).

(F v
s,η) There is a locally bounded g : [0,∞) → [0,∞) such that for X ∈ Hs:

∥F (X)∥2s+η−2 ≤ (1 + ∥X∥2s)g(∥X∥s−1). (2.14)

The next result extends a similar argument for the stochastic Navier–
Stokes equations from [CGH11].

Proposition 2.5. Let s ∈ R, η > 0 such that (F v
s,η) holds true and a.s.

X0 ∈ Hs+η−1. If a.s. X̄, X̃ ∈ Rv(s), then X̃ ∈ Rv(s+ η) a.s.

Proof. With PNH ≃ RN , X̃N = PNX̃ is a process in C1(0, T ;RN). The
chain rule gives for 0 ≤ t ≤ T :∥∥∥X̃N

t

∥∥∥2
s+η−1

= ∥PNX0∥2s+η−1 + 2

∫ t

0

〈
X̃N

r , θAX̃N
r + PNF (Xr)

〉
s+η−1

dr,

and consequently,

sup
0≤t≤T

∥∥∥X̃N
t

∥∥∥2
s+η−1

+ 2θ

∫ T

0

∥∥∥X̃N
t

∥∥∥2
s+η

dt

≤ ∥X0∥2s+η−1 + 2

∫ T

0

〈
X̃N

t , PNF (Xt)
〉
s+η−1

dt.

The last term can be estimated as

2

∫ T

0

〈
X̃N

t , PNF (Xt)
〉
s+η−1

dt ≤ 2

∫ T

0

∥∥∥X̃N
t

∥∥∥
s+η

∥PNF (Xt)∥s+η−2 dt

≤ θ

∫ T

0

∥∥∥X̃N
t

∥∥∥2
s+η

dt+
1

2θ

∫ T

0

∥F (Xt)∥2s+η−2 dt.

Finally, using (F v
s,η) and X = X̄ + X̃ ∈ Rv(s),

sup
0≤t≤T

∥∥∥X̃N
t

∥∥∥2
s+η−1

+ θ

∫ T

0

∥∥∥X̃N
t

∥∥∥2
s+η

dt

≤ ∥X0∥2s+η−1 +
1

2θ

∫ T

0

∥F (Xt)∥2s+η−2 dt

≤ ∥X0∥2s+η−1 +
1

2θ
sup

0≤t≤T
g
(
∥Xt∥s−1

) ∫ T

0

(1 + ∥Xt∥2s)dt < ∞.

Thus (X̃N)N∈N is uniformly bounded in Rv(s+η), and the claim follows.
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Analogously to Proposition 2.4, given η > 0 and s0 < s∗ such that s∗

denotes the optimal regularity of X̄ and a.s. X ∈ Rv(s0) and X0 ∈ Hs∗+η−1,
if (F v

s,η) holds for all s0 ≤ s < s∗, then X ∈ Rv(s) and X̃ ∈ Rv(s+ η) for all
s < s∗. In particular, X ∈ R(s− 1) for all s < s∗. The latter statement can
be used as a starting point for Proposition 2.4.

Finally, we will need a pathwise regularity statement for stochastic inte-
grals. If a.s. U ∈ R(s), then t 7→

〈
(−A)s/2Ut, ·

〉
has values in the space of

Hilbert–Schmidt operators from H to R, and
∫ T

0

〈
(−A)s/2Ut, dWt

〉
is well-

defined [DPZ14]. Provided that U ∈ L2(Ω×[0, T ];Hs), Itô’s isometry implies
that this integral is approximated in L2(Ω;R) by

∫ T

0

〈
(−A)s/2UN

t , dWt

〉
as

N → ∞, where UN = PNU . By a classical stopping argument, we have even
almost sure convergence, together with a quantification of the divergence rate
of the rescaled approximants (cf. Lemma 2.2 (i)), in the following sense:

Lemma 2.6. Let s, s′ ∈ R with s < s′. For every process U with a.s.
U ∈ R(s′), it holds that a.s.

lim
N→∞

∫ T

0

〈
(−A)s/2UN

t , dWt

〉
=

∫ T

0

〈
(−A)s/2Ut, dWt

〉
, (2.15)

and for every a > 0, a.s.

lim
N→∞

λ
−a/2
N

∫ T

0

〈
(−A)(s+a)/2UN

t , dWt

〉
= 0. (2.16)

Proof. For K ∈ N, let τK := inf{0 ≤ t ≤ T ; sup0≤r≤t ∥Ur∥2s′ ≥ K} ∧ T . We
abbreviate ZN

s (t) :=
∫ t

0

〈
(−A)s/2UN

r , dWr

〉
and Zs(t) :=

∫ t

0

〈
(−A)s/2Ur, dWr

〉
.

Let ϵ > 0 and p ≥ 4/(β(s′−s)). The Burkholder–Davis–Gundy inequality
and Lemma 2.2 (ii) give

P
(∣∣Zs(τK)− ZN

s (τK)
∣∣ > ϵ

)
≤ ϵ−pE

[(∫ τK

0

∥(I − PN)Ut∥2s dt
)p/2

]

≤ ϵ−pλ
p(s−s′)/2
N+1 E

[(∫ τK

0

∥Ut∥2s′ dt
)p/2

]
≤ ϵ−p(KT )p/2λ

p(s−s′)/2
N+1 ≪ N−2.
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The Borel–Cantelli lemma implies that ZN
s (τK) → Zs(τK) a.s. Similarly,

using Lemma 2.2 (i),

P
(∣∣∣λ−a/2

N ZN
s+a(τK)

∣∣∣ > ϵ
)
≤ ϵ−pλ

−ap/2
N E

[(∫ τK

0

∥∥UN
t

∥∥2
s+a

dt

)p/2
]

≤ ϵ−pλ
p(s−s′)/2
N E

[(∫ τK

0

∥∥UN
t

∥∥2
s′
dt

)p/2
]

≤ ϵ−p(KT )p/2λ
p(s−s′)/2
N ≪ N−2,

where we w.l.o.g. assume that s + a > s′ (otherwise take s′ to be smaller).
Again by the Borel–Cantelli lemma, λ−a/2

N ZN
s+a(τK) → 0 a.s.

Consequently, (2.15), (2.16) are true on the set AK := {τK = T}. The
claim follows as

⋃
K∈N AK has probability one.

2.3 Diffusivity Estimation
For k ∈ N, we set x̄(k) :=

〈
X̄,Φk

〉
. Then (x̄(k))k∈N are independent one-

dimensional Ornstein–Uhlenbeck processes that solve

dx̄
(k)
t = −θλkx̄

(k)
t dt+ σλ−γ

k dW
(k)
t , (2.17)

x̄
(k)
0 = 0, where (W (k))k∈N are independent Brownian motions. x̄(k) has the

explicit representation

x̄
(k)
t = σλ−γ

k

∫ t

0

e−θλk(t−r)dW (k)
r , (2.18)

and consequently,

E[(x̄(k)
t )2] =

σ2

2θ
(1− e−2θλkt)λ−2γ−1

k . (2.19)

Lemma 2.7. For any s < s∗ := 1 + 2γ + 1/β, it holds a.s. X̄ ∈ R(s).
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Proof. For 0 < α < 1/2 ∧ (s∗ − s)/2,∫ T

0

t−2α
∥∥(−A)s/2etθAB

∥∥2
HS

dt = σ

∞∑
k=1

λs−2γ
k

∫ T

0

t−2αe−2θλktdt

≲ σ
∞∑
k=1

λs−2γ
k

∫ ∞

0

(
r

2θλk

)−2α
e−r

2θλk

dr

≲ Γ(1− 2α)
∞∑
k=1

λs−2γ−1+2α
k ≲

∞∑
k=1

kβ(s−2γ−1+2α),

where Γ denotes the Gamma function. The last sum is finite since β(s −
2γ − 1 + 2α) < −1 for α < (s∗ − s)/2. Now, by [DPZ14, Theorem 5.11],
(−A)s/2X̄ ∈ R(0), i.e. X̄ ∈ R(s) a.s.

In fact, the proof of [DPZ14, Theorem 5.11] shows that even (−A)s/2X̄ ∈
RE(0) in the situation of the proof of Lemma 2.7, thus X̄ ∈ RE(s) for s < s∗.

Proposition 2.8. With s∗ = 1+2γ−1/β, let η > 0, s0 < s∗ such that (Fs,η)
holds for any s0 ≤ s < s∗. Assume that a.s. X ∈ R(s0), X0 ∈ Hs∗+η. Then
a.s. for any s > s∗:∫ T

0

∥∥(−A)s/2XN
t

∥∥2 dt ≍ CsN
1+β(s−2γ−1) (2.20)

with

Cs =
σ2TΛs−2γ−1

2θ(1 + β(s− 2γ − 1))
(2.21)

Proof. Integrating (2.19), we see that

E
∫ T

0

(x̄
(k)
t )2dt ≍ σ2T

2θ
λ−2γ−1
k , (2.22)

thus, using λk ≍ Λkβ,

E
∫ T

0

∥∥(−A)s/2X̄N
t

∥∥2 dt = N∑
k=1

λs
kE
∫ T

0

(x̄
(k)
t )2dt ≍ σ2T

2θ

N∑
k=1

λs−2γ−1
k

≍ σ2TΛs−2γ−1

2θ(1 + β(s− 2γ − 1))
N1+β(s−2γ−1).
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Lemma A.2 (ii), with X∗
k(t) = λ

s/2
k x̄

(k)
t in the notation therein, immediately

gives that (2.20) is true for XN replaced by X̄N . Now, for any 0 < ϵ < η, by
Proposition 2.4:∫ T

0

∥∥∥(−A)s/2X̃N
t

∥∥∥2 dt ≲ λs−s∗−η+ϵ
N

∫ T

0

∥∥∥X̃N
t

∥∥∥2
s∗+η−ϵ

dt ≲ N1+β(s−2γ−1−η+ϵ).

This is negligible compared to the right-hand side of (2.20), and the claim
follows from expanding the square on the left-hand side of (2.20) together
with the Cauchy–Schwarz inequality for the mixed term.

Remark 2.9. In the setting of the previous proposition, it is immediate that
for the limit case s = s∗, we have a.s.∫ T

0

∥∥(−A)s
∗/2XN

t

∥∥2 dt ≍ σ2T

2θΛ1/β
ln(N), (2.23)

with obvious changes in the proof. In particular, as the right-hand side di-
verges, X /∈ R(s∗), and the regularity from Lemma 2.7 is optimal.

Next, we derive three maximum–likelihood type estimators for θ (cf.
[CGH11]). The projected process XN = PNX induces a measure PN,T

θ on
the path space C(0, T ;PNH) ≃ C(0, T ;RN) for each value of the diffusivity
θ > 0. If we fix an arbitrary reference parameter θ0 > 0 and assume that
each of the measures (PN,T

θ )θ>0 is absolutely continuous with respect to PN,T
θ0

,
we obtain a likelihood that we can use for statistical inference. According to
[LS77, Section 7.6.4], the log–likelihood is formally given by

ln
dPN,T

θ

dPN,T
θ0

(XN) =
1

σ2

∫ T

0

〈
(θ − θ0)AX

N
t , (−A)2γdXN

t

〉
− 1

2σ2

∫ T

0

〈
(θ − θ0)AX

N
t , (−A)2γ

(
(θ + θ0)AX

N
t + 2PNF (X)(t)

)〉
dt.

This is rigorous if PNF = FPN , otherwise it should be considered as a natural
(but heuristic) approach. Maximizing for θ yields the following maximum
likelihood–type estimator:

θ̂fullN := −
∫ T

0

〈
(−A)1+2αXN

t , dXN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
+

∫ T

0

〈
(−A)1+2αXN

t , PNF (X)(t)
〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
,

(2.24)
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where we substituted γ by an additional parameter α. This estimator de-
pends on PNF (X) and is therefore not closed in XN . It can be modified as
follows:

θ̂partN := −
∫ T

0

〈
(−A)1+2αXN

t , dXN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
+

∫ T

0

〈
(−A)1+2αXN

t , PNF (XN)(t)
〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
.

(2.25)

Finally, the nonlinear term can be left out completely:

θ̂linN := −
∫ T

0

〈
(−A)1+2αXN

t , dXN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
. (2.26)

Note that the stochastic integral appearing in the numerator of each of
the estimators has a robust representation∫ T

0

〈
(−A)1+2αXN

t , dXN
t

〉
=

N∑
k=1

λ1+2α
k

∫ T

0

x
(k)
t dx

(k)
t

=
1

2

N∑
k=1

λ1+2α
k

(
(x

(k)
T )2 − (x

(k)
0 )2 − σ2λ−2γ

k T
)
,

so it is a function of a single trajectory of XN alone.

The aim of this section is to study the asymptotic properties of these
estimators as N → ∞. Note that one cannot directly apply the general
theory for maximum likelihood estimation, as exposed e.g. in [IH81], because
for PNF ̸= FPN , none of these estimators is the true MLE.

Lemma 2.10. Let s ∈ R, ϵ > 0. For any process U ∈ R(s), we have a.s.:∫ T

0

〈
(−A)1+2αXN

t , PNUt

〉
dt ≲ N

1
2
+β(2α−γ+ 1

2
− s

2
+ ϵ

2). (2.27)

In particular, if s = s∗ − 2 + η − ϵ for some η > 0, then∫ T

0

〈
(−A)1+2αXN

t , PNUt

〉
dt ≲ N1+β(2α−2γ+1− η

2
+ϵ). (2.28)
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Proof. This follows from∫ T

0

〈
(−A)1+2αXN

t , PNUt

〉
dt ≤

(∫ T

0

∥∥XN
t

∥∥2
2+4α−s

dt

∫ T

0

∥PNUt∥2s dt
)1/2

≲

(
λ2+4α−s−s∗+ϵ
N

∫ T

0

∥∥XN
t

∥∥2
s∗−ϵ

dt

)1/2

≲ λ
2α−γ− s

2
+ 1

2
+β−1

2
+ ϵ

2
N ≲ N

1
2
+β(2α−γ+ 1

2
− s

2
+ ϵ

2).

An estimator θ̂N for θ is called strongly consistent if a.s. θ̂N → θ.

Theorem 2.11. Let η > 0, s0 ∈ R such that (Fs,η) is true for s0 ≤ s < s∗.
Assume that X0 ∈ Hs∗+η and X ∈ R(s0). Let α > γ − (1 + 1/β)/4.

(i) θ̂fullN , θ̂partN and θ̂linN are strongly consistent estimators of θ.

(ii) θ̂fullN is asymptotically normal:

N
1+β
2 (θ̂fullN − θ)

d−→ N (0,Σ), (2.29)

where

Σ =
2θ(1 + β(2α− 2γ + 1))2

TΛ(1 + β(4α− 4γ + 1))
. (2.30)

(iii) If η > 1 + β−1, then θ̂partN and θ̂linN are asymptotically normal as in
(2.29). Otherwise, for any a < βη/2,

θ̂partN = θ + o(N−a) (2.31)

almost surely, and the same is true for θ̂linN .

Proof.

(i) This is a consequence of (ii) and (iii).
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(ii) Plugging in the dynamics of XN into θ̂fullN , we obtain

θ̂fullN − θ = −σ

∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt

= −σ
C

1/2
2+4α−2γN

1/2+β(2α−2γ+1/2)∫ T

0
∥(−A)1+αXN

t ∥2 dt
MN

T ,

where MN
t = C

−1/2
2+4α−2γN

−1/2−β(4α−4γ+1/2)
∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉
is

a local martingale. By Proposition 2.8 with s = 2 + 4α − 2γ it holds
⟨MN⟩T → 1 in probability, thus MN

T /
√

⟨MN⟩T → N (0, 1) in distribu-
tion as N → ∞ by Theorem A.1. An application of Slutsky’s lemma
together with Proposition 2.8 with s = 2 + 2α gives

N
1+β
2 (θ̂fullN − θ)

d−→ N (0, σ2C2+4α−2γ/C
2
2+2α). (2.32)

(iii) We write

θ̂partN − θ = −σ

∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
− biasN(X) + biasN(X

N),

θ̂linN − θ = −σ

∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
− biasN(X),

where, with Y = X or Y = XN ,

biasN(Y ) =

∫ T

0

〈
(−A)1+2αXN

t , PNF (Y )(t)
〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
. (2.33)

Let ϵ > 0 and s = s∗+η−2− ϵ = 2γ−1−β−1+η− ϵ. Using condition
(Fs∗−2ϵ,η), we have that F (X) ∈ R(s). By Lemma 2.10,∫ T

0

〈
(−A)1+2αXN

t , PNF (Y )(t)
〉
dt ≲ N1+β(2α−2γ+1− η

2
+ϵ),

and using Proposition 2.8, a.s.

biasN(Y ) ≍ C−1
2+2αN

−1−β(2α−2γ+1)

∫ T

0

〈
(−A)1+2αXN

t , PNF (Y )(t)
〉
dt

≲ N−β
2
(η−2ϵ).
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Consequently, NabiasN(Y ) → 0 a.s. for any a < βη/2.

Now, if η > 1 + 1/β, let in addition ϵ < (η − 1 − 1/β)/2, then we
see that a.s. N (1+β)/2biasN(Y ) → 0, and asymptotic normality follows
from an application of the Slutsky lemma.

Otherwise, in case η ≤ 1 + 1/β, we have by Lemma 2.6 (setting a =
2 + 4α− 2γ − s∗ + ϵ′ for any ϵ′ > 0 in the notation therein) that

N b

∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
→ 0 (2.34)

almost surely for any b < (1 + β)/2, and (2.31) is immediate.

Any asymptotically normal estimator in Theorem 2.11 allows to construct
asymptotic confidence intervals for θ by using quantiles of the approximating
normal distribution N (θ,N−(1+β)Σ) for fixed N ∈ N. However, the asymp-
totic variance Σ depends linearly on the unknown parameter θ. Thus, in
order to construct asymptotic confidence intervals for the diffusivity that do
not depend on unknown quantities, the variance itself has to be estimated
consistently using any of the three estimators. This is justified by Slutsky’s
lemma. Alternatively, a variance-stabilizing transform can be used [vdV98,
Section 3.2].

Consistency of any of the three estimators implies that the measures on
C(0, T ;H) generated by X for different values of θ > 0 are mutually singular.

In the setting of this section, it is possible to determine the precise rate
of almost sure convergence of the estimators by a law of iterated logarithm:

Theorem 2.12. Let η > 0, s0 ∈ R such that (Fs,η) is true for s0 ≤ s < s∗.
Assume X0 ∈ Hs∗+η and X ∈ R(s0). Let α > γ − (1 + 1/β)/4. Then a.s.

lim sup
N→∞

N
1+β
2√

ln(ln(N))

(
θ̂fullN − θ

)
=

√
2Σ (2.35)

with Σ as in (2.30). If η > 1 + 1/β, then (2.35) is true for θ̂partN and θ̂linN as
well.
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Proof. We write

M̄N
t :=

∫ t

0

〈
(−A)1+2α−γX̄N

r , dWN
r

〉
,

M̃N
t :=

∫ t

0

〈
(−A)1+2α−γX̃N

r , dWN
r

〉
.

Then

M̄N
T =

N∑
k=1

λ1+2α−γ
k

∫ T

0

x̄
(k)
t dW

(k)
t =:

N∑
k=1

Zk.

We show that we can apply the law of iterated logarithm for independent, not
necessarily identically distributed random variables from [Wit85]2 to (Zk)k∈N.
To this end, we write

sN :=

(
E

[
N∑
k=1

Z2
k

]) 1
2

=

(
E
∫ T

0

∥∥(−A)1+2α−γX̄N
t

∥∥2 dt) 1
2

.

Then clearly sN → ∞ and sN ≍ sN+1. Using the Burkholder–Davis–Gundy
inequality, Jensen’s inequality, Gaussianity of x̄(k) and (2.19), we have

E

[∣∣∣∣∫ T

0

x̄
(k)
t dW

(k)
t

∣∣∣∣3
]
≲ E

[(∫ T

0

(x̄
(k)
t )2dt

) 3
2

]
≲ E

∫ T

0

∣∣∣x̄(k)
t

∣∣∣3 dt
≲
∫ T

0

(
E[(x̄(k)

t )2]
) 3

2
dt ≲

(
λ−2γ−1
k

) 3
2 .

Consequently,

N∑
k=1

E[|Zk|3]
s3k

≲
N∑
k=1

(
λ
2α−2γ+1/2
k

sk

)3

≲
N∑
k=1

k3β(2α−2γ+1/2)−3/2−3β(2α−2γ+1/2) =
N∑
k=1

1

k3/2
,

2Although it is sufficient for our purposes, this law of iterated logarithm can be further
weakened, see e.g. [Wit87] and [Che93] for a discussion.
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which converges for N → ∞. Therefore all the conditions from [Wit85] are
satisfied, and using ln ln s2N ≍ ln lnN , we conclude that a.s.

lim sup
N→∞

1√
2 ln lnN

M̄N
T√

⟨M̄⟩T
= lim sup

N→∞

M̄N
T√

2s2N ln ln s2N
= 1.

In particular, lim supN→∞ N (1+β)/2(ln lnN)−1/2M̄N
T /
∫ T

0

∥∥(−A)1+αXN
t

∥∥2 dt =
(2Σ)1/2/σ. Further, by Lemma 2.6 (with a = 2 + 4α − 2γ − s∗ in the nota-
tion therein), N (1+β)/2M̃N

T /
∫ T

0

∥∥(−A)1+αXN
t

∥∥2 dt → 0 almost surely, where
we have used that X̃ ∈ R(s∗ + η − ϵ) for every ϵ > 0. With θ̂fullN − θ =

−σ(M̄N
T +M̃N

T )/
∫ T

0

∥∥(−A)1+αXN
t

∥∥2 dt, (2.35) is proven. The statement con-
cerning θ̂partN and θ̂linN follows from the proof of Theorem 2.11 (iii).

Remark 2.13.

(i) A direct calculation shows that the asymptotic variance is minimal for
α = γ. In this case, Σ = 2θ(1 + β)/TΛ. However, the estimators are
robust to the case α ̸= γ, when the spatial regularity of X is wrongly
specified.

(ii) In fact, continuous observation on [0, T ] of any of the modes x(k) allows
to reconstruct γ precisely via the quadratic variation ⟨x(k)⟩T = σ2λ−2γ

k T ,
if σ and λk are known.

(iii) Σ depends linearly on T−1, i.e. observation on a large time interval
improves the estimate. This corresponds to the large time asymptotics
with rate T−1/2, which is well-known from statistics for stochastic dif-
ferential equations under ergodicity assumptions, see e.g. [Kut04].

(iv) Following the formalism of the (heuristic) maximum–likelihood approach,
the term σ−2

∫ T

0

∥∥(−A)1+αXN
t

∥∥2 dt (for α = γ) can be considered the
observed Fisher information.

(v) The convergence rate of θ̂fullN is upper bounded by N−1/2 independently
of the dimension d.

(vi) The convergence rate (2.31) cannot be improved for θ̂linN , see Section
2.4.1.
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(vii) In [PS20], a condition of the type (F v
s,η) has been used to infer higher

regularity of X̃. Compared to (Fs,η), this condition is more restrictive
and yields lower excess regularity η in examples (cf. Lemma 2.22 be-
low). Consequently, the lower bounds on the convergence rate of θ̂linN
were too pessimistic. An additional Lipschitz condition on F has been
used in order to reduce the asymptotic behavior of θ̂partN directly to that
of θ̂fullN , leading to better convergence rates of θ̂partN compared to θ̂linN ,
namely, the same rates as stated in Theorem 2.11. In the present for-
malism used in this chapter, this additional Lipschitz condition is no
longer necessary for statistical purposes, as both θ̂partN and θ̂linN obtain
the mentioned rates using (Fs,η) alone.

(viii) If F satisfies (Fs,η) and PNF−PNFPN satisfies (Fs,η′) for some η′ > η,
then the convergence rate of θ̂partN can be further improved. This is
trivially the case if [PN , F ] := PNF − FPN = 0, in this case θ̂partN

coincides with θ̂fullN .

(ix) Consider the situation that A and F are (pseudo-) differential oper-
ators on a domain D ⊂ Rd. Theorem 2.11 implies that in order to
identify θ in finite time, it is sufficient that F is of lower order com-
pared to the leading order drift term θA (this is discussed in detail in
Section 2.4). However, parameters describing the intensity of lower or-
der terms may be identified in finite time as well. Consequently, it is
possible that θ remains identifiable if F is of higher order than θA. In
[HR95], a characterization for linear F that commute with A is given:
θ is consistently (and asymptotically normal) estimated by an estima-
tor of the type θ̂fullN if and only if order(A) ≥ (order(θA + F ) − d)/2,
i.e. order(F ) ≤ 2 order(A) + d. This has been extended by subsequent
works on the spectral approach, cf. [LR99, LR00] for the case of non-
commuting operators.

(x) As only pathwise properties of the nonlinear process X̃ are needed, F
may, in fact, depend on the realization ω ∈ Ω.

2.4 Discussion of Examples
Next, we discuss the validity of condition (Fs,η) and the resulting statements
concerning diffusivity estimation for models with different nonlinear term F .
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These examples are by no means exhaustive. Note that more complicated
nonlinearities can be decomposed into their elementary building blocks in
the following sense:

Lemma 2.14. Let s ∈ R, η > 0.

(i) If F1, F2 satisfy (Fs,η), then the same is true for F1 + F2.

(ii) Let η′ > 0 and s′ := s + η − 2. If F satisfies (Fs,η) and G satisfies
(Fs′,η′), then G ◦ F satisfies (Fs,η+η′−2).

Proof. All statements are clear from (2.10).

Consequently, a broad class of models where the present theory is appli-
cable can be constructed from elementary components, e.g. polynomial non-
linearities (or related reaction terms), differential operators acting in spatial
direction (advection or fractional diffusion), integration in time (delay terms
as in [DPZ14, Example 5.6]). In the next sections, we consider different
models in detail.

2.4.1 Linear Perturbations

For r < 2 and c ∈ R, consider

dXt = θAXtdt+ c(−A)r/2Xtdt+BdWt

with initial condition X0 ∈ Hs∗+2. Here, F (X) = c(−A)r/2X. If c ̸= 0, then
F : Hs+r → Hs is an isomorphism for any s ∈ R. In particular, (Fs,η) is true
for all s ∈ R and η < 2 − r. In this setting, θ̂fullN coincides with θ̂partN . We
have:

Theorem 2.15. Let α > γ−(1+1/β)/4. Then θ̂fullN is asymptotically normal
as in (2.29). Furthermore:

(i) If r < 1− 1/β, then θ̂linN is asymptotically normal as in (2.29).

(ii) If r = 1− 1/β, then

N
1+β
2

(
θ̂linN − θ

)
d−→ N (κ,Σ), (2.36)
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where

κ = −cΛr/2−1 1 + β(2α− 2γ + 1)

1 + β(2α− 2γ + r/2)
(2.37)

and Σ is given by (2.30).

(iii) If r > 1− 1/β, then a.s.

Nβ(1−r/2)
(
θ̂linN − θ

)
→ κ. (2.38)

Proof. (i) is a direct consequence of Theorem 2.11. For (ii), (iii), it suffices to
understand the exact asymptotics of the bias term involving F in the setting
of Theorem 2.11. Due to α > γ − (1 + 1/β)/4 together with r ≥ 1 − 1/β,
it holds 1 + β(2α − 2γ + r/2) > 0. Using Proposition 2.8 and the notation
therein, it holds a.s.∫ T

0

〈
(−A)1+2αXN

t , PNF (X)(t)
〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
= c

∫ T

0

∥∥(−A)1/2+r/4+αXN
t

∥∥2 dt∫ T

0
∥(−A)1+αXN

t ∥2 dt

≍ c
C1+r/2+2αN

1+β(2α−2γ+r/2)

C2+2αN1+β(2α−2γ+1)

= cΛr/2−1 1 + β(2α− 2γ + 1)

1 + β(2α− 2γ + r/2)
N−β(1−r/2).

Now (ii) is immediate, and (2.38) holds w.r.t. convergence in probability.
Finally, Lemma 2.6 yields almost sure convergence in (2.38) by the same
argument used in the proof of Theorem 2.11 (iii).

Remark 2.16. In particular, the convergence rate (2.31) for θ̂linN as stated
in Theorem 2.11 cannot be improved.

In case β = 2/d for d ∈ N, the critical condition r < 1− 1/β is equivalent
to r < 1−d/2, i.e. the critical order of F decreases with the dimension. Note
that r is allowed to be negative here. We highlight two cases, which will be
refined in the next sections:

• Perturbation of order zero (r = 0): In d = 1, θ̂fullN and θ̂linN are asymp-
totically normal. In d = 2, θ̂linN still converges to θ with optimal rate.
In d ≥ 3, the convergence rate of θ̂linN declines.

• Perturbation of order one (r = 1): In any dimension d ≥ 1 the conver-
gence rate of θ̂linN declines compared to that of θ̂fullN , but all estimators
stay consistent.
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2.4.2 Reaction-Diffusion Equations

Let d ≥ 1, and let D ⊂ Rd be a bounded domain with smooth boundary. Let
f : R → R be a real-valued function. Consider

dXt = θ∆Xtdt+ f(Xt)dt+BdWt, (2.39)

together with initial condition X0 such that E
[
∥X0∥ps∗+2

]
< ∞ is true for

any p ≥ 1. W.l.o.g. we assume Dirichlet boundary conditions, i.e. Xt = 0 on
the boundary ∂D for 0 ≤ t ≤ T . Set H = L2(D). The leading order linear
operator A is given by ∆ : D(∆) → H, where D(∆) = W 2,2(D) ∩W 1,2

0 (D).
The regularity scale is given by Hs = D((−∆)s/2), such that Hs consists of
functions of L2-Sobolev regularity s. It is always true that W s,2

0 (D) ⊆ Hs ⊆
W s,2(D), s ≥ 0. For s ∈ N, a precise characterization of Hs in terms of
boundary trace operators can be given [Tho06, Lemma 3.1]. Further, it is
well-known that λk ≍ Λkβ with β = 2/d, see [Wey11] or [Shu01, Section
13.4].

We consider either of the following two structural assumptions:

(i) f is a polynomial of odd degree and negative leading coefficient, i.e.
for m ∈ 2N− 1, there are a0, . . . , am ∈ R with am < 0 such that

f(x) = amx
m + · · ·+ a1x+ a0. (2.40)

(ii) f is a bounded smooth functions with bounded derivatives of any order:

f ∈ C∞
b (R). (2.41)

Reaction–Diffusion models exhibit a broad variety of different dynamical
features. Nonetheless, in terms of diffusivity estimation, they can be treated
in a unified way, as explained in Theorem 2.20 below.

Proposition 2.17. Let d ≤ 3 and γ > d/4 + 1/2. Consider either of the
following two situations:

• Let f be a polynomial as in (2.40). If d = 3, assume additionally that
f is at most of third order (i.e. m ≤ 3).

• Let f be a smooth function with bounded derivatives as in (2.41).

Then there is a unique solution X to (2.39) with X ∈ RE(s) for some s > d/2.
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The proof relies on [LR15] and is given in Appendix B.1. The condition
γ > d/4 + 1/2 means that B is a Hilbert–Schmidt operator from H into
V . This is needed because in the proof of Proposition 2.17, coercivity is
verified directly in V instead of H. However, there are situations where this
requirement can be relaxed to γ > d/4, i.e. B is of Hilbert–Schmidt type
from H into H:

Proposition 2.18. Let d = 1, γ > 1/4 and f(x) = x− x3.

(i) There is a unique solution X ∈ Rv(1) to (2.39).

(ii) (F v
s,η) holds for s = 1 and η = 1. In particular, even X ∈ R(1).

Note that condition (F v
s,η) instead of (Fs,η) is used in order to prove the

basic regularity result X ∈ R(1). From there, (Fs,η) can be used to infer
higher regularity.

Proof.

(i) This is a special case of [LR15, Example 5.1.8].

(ii) (F v
s,η) is true due to

∥f(X)∥2s+η−2 = ∥f(X)∥2L2(D) ≲ ∥X∥2L2(D) + ∥X∥6L6(D) ≲ ∥X∥21 + ∥X∥61/3
≲ ∥X∥21 + ∥X∥21 ∥X∥40 = ∥X∥21

(
1 + ∥X∥40

)
,

where we used ∥X3∥2L2(D) = ∥X∥6L6(D) together with the Sobolev em-
bedding H1/3 ⊂ L6(D) in d = 1 [AF03]. Proposition 2.5 implies
X̃ ∈ Rv(2) ⊂ R(1). Together with X̄ ∈ R(1) due to γ > 1/4, this
implies the claim.

Since d = 1 in the previous proposition, we can rephrase the existence
result: In particular, we have X ∈ R(s) for some s > d/2, exactly as in
Proposition 2.17. This condition s > d/2 means that X has values in a
Sobolev space that is embedded into the space of continuous functions on D.
This is a natural starting point for inductively applying (Fs,η), cf. Proposition
2.4, as the next result illustrates:
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Proposition 2.19.

(i) Let f be a polynomial as in (2.40). Then (Fs,η) holds for any s > d/2
and 0 < η < 2.

(ii) Let f ∈ C∞
b (R). Then (Fs,η) holds for any s ∈ [0, 1] ∪ [d/2,∞) and

0 < η < 2.

Proof.

(i) For s > d/2 the Sobolev spaces W s,2(D) are closed under multiplication
(see e.g. [AF03, Theorem 4.39], [Tri10a, p. 146]). Therefore,

∥f(X)∥s ≲
m∑
k=1

|ak| ∥X∥ks ≲ (1 + ∥X∥s)
m

for X ∈ Hs.

(ii) The case s = 0 is trivial since ∥f(X)∥2L2(D) ≤ |D| supy∈R |f(y)|
2 < ∞,

so let s > 0. Set f̃ := f − f(0). By Theorem A from [AF92] and
the discussion thereafter, there is C > 0 such that ∥f̃(X)∥s ≤ C(1 +
∥X∥s)1∨s for s ∈ (0, 1] ∪ [d/2,∞), and the claim is immediate.

In particular, for each of the examples considered in this section, it is true
that a.s. X ∈ R(s) and X̃ ∈ R(s+2) for any s < s∗. Therefore, by Theorem
2.11, we obtain the following result concerning diffusivity estimation:

Theorem 2.20. Let α > γ − (d+ 2)/8. Then θ̂fullN satisfies

N
1
2
+ 1

d

(
θ̂fullN − θ

)
d−→ N

(
0,

2θ(d+ 4α− 4γ + 2)2

TΛd(d+ 8α− 8γ + 2)

)
(2.42)

If d = 1, the same is true for θ̂partN , θ̂linN . In d = 2, θ̂partN is consistent with
optimal rate, i.e. θ̂partN = θ + o(N−a) for any a < 1, and the same is true for
θ̂linN .

It is clear that the coefficients (ak)0≤k≤m in (2.40) may depend on x ∈ D,
in such a way that ak ∈ Hs∗ for 0 ≤ k ≤ m. This does not change the proof
of (Fs,η) for s < s∗ in Proposition 2.19, thus Theorem 2.20 remains valid in
that case.
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Remark 2.21. It is straightforward to include an advection term of the form
Fad(X) = ∇ · (Xv) = div(Xv) to the reaction–diffusion equation, where
v : D → Rd is a vector field with components v(i) ∈ Hs for some s >
d/2. More precisely, assume that the nonlinearity of the equation F = Fre +
Fad splits into a reaction term Fre(X) = f(X) as before, and an advection
term Fad as described above. It is clear that div maps (Hs)

d into Hs−1 for
any s ∈ R.3 Furthermore, if X ∈ Hs and v ∈ (Hs)

d for s > d/2, then∥∥Xv(i)
∥∥
s
≲ ∥X∥s

∥∥v(i)∥∥
s

for 1 ≤ i ≤ d, and consequently, ∥Fad(X)∥s−1 ≲

∥X∥s
∑d

i=1

∥∥v(i)∥∥
s
, i.e. Fad (and consequently F = Fre + Fad) satisfies (Fs,η)

with any η < 1. In terms of diffusivity estimation, this means that θ̂partN = θ+

o(N−a) for any a < 1/d, and similarly for θ̂linN , whereas θ̂fullN is asymptotically
normal with rate N−1/2−1/d. It cannot be expected that this loss in convergence
rate (compared to θ̂fullN ) can be improved for θ̂linN , cf. Section 2.4.1.

2.4.3 Burgers Equation

Let d = 1 and D = [0, L] ⊂ R for some L > 0. Consider

dXt = θ∆Xtdt−Xt∂xXtdt+BdWt (2.43)

with initial condition X0 ∈ Lp(Ω, Hs∗+1) for any p ≥ 1, and Dirichlet bound-
ary conditions. The nonlinearity is given by

F (X) = −X∂xX = ∂x

(
−1

2
X2

)
.

The spaces H = L2(D) and (Hs)s∈R are as in Section 2.4.2. As a special
case of [LR15, Example 5.1.8], (2.43) has a unique solution in Rv(1). Higher
regularity can be inferred in a stepwise manner as follows:

Lemma 2.22.

(i) F satisfies (F v
s,η) with η = 3/8 for s = 1.

(ii) F satisfies (F v
s,η) with η = 1/2 for any s > 1.

(iii) F satisfies (Fs,η) for all η < 1 and s > 1/2.

3For s ∈ Z this is obvious, for general s use the exact interpolation Theorem [AF03,
Theorem 7.23].
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In particular, X ∈ Rv(s) and X̃ ∈ Rv(s+1/2) for all s < s∗. If additionally
s∗ > 3/2 (i.e. γ > 1/2), then X ∈ R(s) and X̃ ∈ R(s+ 1) for any s < s∗.

Proof. In the following calculations we use repeatedly the interpolation in-
equality ∥X∥rs1+(1−r)s2

≲ ∥X∥rs1 ∥X∥1−r
s2

for s1, s2 ∈ R and 0 < r < 1, further
the algebra property ∥XY ∥s ≲ ∥X∥s ∥Y ∥s for s > 1/2 and the Sobolev em-
bedding H1/4 ⊂ L4(D) in d = 1. These estimates are standard and can be
found, e.g., in [AF03].

(i) We have

∥F (X)∥2s+η−2 =
1

4

∥∥X2
∥∥2
3/8

≲
∥∥X2

∥∥
3/4

∥∥X2
∥∥
L2(D)

≲ ∥X∥23/4 ∥X∥2L4(D)

≲ ∥X∥23/4 ∥X∥21/4 ≲ ∥X∥3/21 ∥X∥1/20 ∥X∥1/21 ∥X∥3/20

= ∥X∥21 ∥X∥20 ,

so (F v
s,η) is satisfied as stated.

(ii) For s > 1 and η = 1/2,

∥F (X)∥2s+η−2 =
1

4

∥∥X2
∥∥2
s−1/2

≲ ∥X∥4s−1/2 ≲ ∥X∥2s ∥X∥2s−1 ,

so condition (F v
s,η) holds.

(iii) For s > 1/2 and η < 1, with ϵ = 1− η,

∥F (X)∥s+η−2+ϵ =
1

2

∥∥X2
∥∥
s
≲ ∥X∥2s ,

so (Fs,η) holds.

Concerning the regularity of X, we know already that X ∈ Rv(1). By (i)
and Proposition 2.5, X̃ ∈ Rv(1 + 3/8). As X̄ ∈ R(s) for all s < s∗, we get
X ∈ Rv(s) for s < s∗ ∧ (1 + 3/8), and in particular, there is s > 1 with
X ∈ Rv(s). Now (ii) and repeated use of Proposition 2.5 yields X ∈ Rv(s)

and X̃ ∈ Rv(s + 1/2) for any s < s∗. Further, X ∈ R(s − 1) for all s < s∗

because Rv(s) ⊂ R(s − 1). In case s∗ > 3/2, we have X ∈ R(s) for some
s > 1/2, and Proposition 2.4 gives X ∈ R(s), X̃ ∈ R(s+1) for all s < s∗.

This Lemma, together with Theorem 2.11, yields the asymptotic proper-
ties of θ̂fullN , θ̂partN and θ̂linN for the Burgers equation:
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Theorem 2.23. Let γ > 1/2 and α > γ − 3/8. Then θ̂fullN satisfies

N
3
2

(
θ̂fullN − θ

)
d−→ N

(
0,

2θ(3 + 4α− 4γ)2

TΛ(3 + 8α− 8γ)

)
. (2.44)

Further, θ̂partN = θ + o(N−a) for a < 1, and the same is true for θ̂linN .

Remark 2.24. It is possible to apply Theorem 2.11 to the stochastic Navier–
Stokes equations driven by additive noise in dimension d = 2 with unknown
viscosity. In this case, we reobtain the results from [CGH11]. It has been
conjectured in [Cia18] that these results apply also to the stochastic Burgers
equation.

2.4.4 Equations of Cahn-Hilliard Type

For d ≥ 1, fix a bounded domain D ⊂ Rd with smooth boundary. Let
f : R → R be a real-valued function. Consider

dXt = −θ∆2Xtdt−∆f(Xt)dt+BdWt (2.45)

with initial condition X0 and boundary conditions ∇X ·ν = 0, ∇(∆X)·ν = 0,
where ν : ∂D → Rd is the unit vector pointing outwards the domain D. We
formalize this setting as in [LR15, p. 172 ff.]: Set H = L2(D), and let V be
the closure in W 2,2(D) of {u ∈ C4(D) | ∇u · ν = 0, ∇(∆u) · ν = 0 on D}.
Considering the Gelfand triple V ⊂ H ≃ H∗ ⊂ V ∗, we have that A = −∆2

is a bounded operator V → V ∗. As before, we set Hs := D((−A)s/2). Our
standing assumption is X0 ∈ Hs∗+1.

Note that the regularity counting in this section differs from the conven-
tion from the previous examples, because the leading drift term in (2.45) is
of order four: This means that Hs is a closed subspace of W 2s,2(D). Further-
more, in this case we have β = 4/d, i.e. λk ≍ Λk4/d, see [Shu01, Section 13.4].
We additionally introduce the “classical” regularity spaces H∆

s := D((−∆)s/2)
that have been used in the previous sections. It is necessary to specify which
regularity scale we are using when we speak about condition (Fs,η).

Proposition 2.25. Let s ∈ R, η > 0, and set s′ := 2s, η′ := 2η. If f
satisfies (Fs′,η′) with respect to the scale of Hilbert spaces (H∆

r )r∈R, then F ,
given by F (X) = −∆f(X), satisfies (Fs,η) with respect to the scale of Hilbert
spaces (Hr)r∈R.
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Proof. Choose ϵ > 0 and g : [0,∞) → [0,∞) as in (Fs′,η′). Then

∥−∆f(X)∥Hs+η+ϵ/2−2
= ∥f(X)∥H∆

s′+η′+ϵ−2
≤ g

(
∥X∥H∆

s′

)
= g

(
∥X∥Hs

)
.

For example, let d ≤ 2 and assume that f is of the form

f(x) = cx+ ϕ(x) (2.46)

for c ∈ R and ϕ ∈ C∞
b (R). In particular, f is globally Lipschitz continuous.

By [LR15, Example 5.2.27], there is a unique solution X to (2.45) with a.s.
X ∈ Rv(1) ⊂ R(0). As a consequence of Proposition 2.25 and Proposition
2.19 (ii), F = −∆f satisfies (Fs,η) for any s ≥ 0 with η < 1 in the regularity
scale (Hr)r∈R. By Proposition 2.4 we conclude X ∈ R(s) and X̃ ∈ R(s + 1)
for any s < s∗. Therefore, we have:

Theorem 2.26. Let γ > d/8 and α > γ − (d+ 4)/16. Then θ̂fullN satisfies

N
1
2
+ 2

d

(
θ̂fullN − θ

)
d−→ N

(
0,

2θ(d+ 8α− 8γ + 4)2

TΛd(d+ 16α− 16γ + 4)

)
. (2.47)

Further, θ̂partN = θ+o(N−a) for all a < 2/d, and the same is true for θ̂linN .

2.4.5 Robustness under Model Misspecification

Assume that the true dynamics of a process X is given by

dXt = θAXtdt+ F (X)(t)dt+G(X)(t)dt+BdWt (2.48)

with smooth initial condition X0 and F,G : C(0, T ;H) ⊇ D(F ) ∩ D(G) →
L1(0, T ;H), where D(F ) ∩ D(G) is the common domain for F and G. We
assume that (2.48) is well-posed in R(s0) for some 0 ≤ s0 < s∗, and that
F satisfies (Fs,ηF ) for some ηF > 0 and all s0 ≤ s < s∗. Assume further
that X0 ∈ Hs∗+ηF . We are interested in the robustness of θ̂fullN , θ̂partN and θ̂linN
with respect to the misspecification G. In this section, all three estimators
are given by the same terms as in Section 2.3. In particular, θ̂fullN and θ̂partN

include knowledge on F but not on G.
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Theorem 2.27. Let α > γ − (1 + 1/β)/4.

(i) If G satisfies (Fs,ηG) for some ηG > 0 and s0 ≤ s < s∗, then θ̂fullN , θ̂partN

and θ̂linN are consistent.

(ii) If G satisfies (Fs,ηG) for some ηG > 1 + 1/β and s0 ≤ s < s∗, then
all statements on the asymptotic properties of θ̂fullN , θ̂partN and θ̂linN from
Theorem 2.11 transfer to the present case.

(iii) If F +G satisfies (Fs,ηF+G
) for some ηF+G > 1 + 1/β and s0 ≤ s < s∗,

then θ̂linN is asymptotically normal as in (2.29).

Proof. Note that in any of these cases, F + G satisfies (Fs,η) for s0 ≤ s <
s∗ and η = ηF ∧ ηG, so (2.20) remains true. Thus, all claims follow from
a straightforward modification of the proof of Theorem 2.11, taking into
account the additional bias of the form (2.33), with F replaced by G therein,
coming from the nonlinear term G(X).

The excess regularity ηF+G of F +G clearly satisfies ηF+G ≥ ηF ∧ ηG, but
due to cancellation effects, ηF+G may be larger than ηF ∧ ηG.

Remark 2.28.

(i) The preceding examples show that a large class of nonlinearities G sat-
isfies (Fs,ηG) for some ηG > 0.

(ii) As G is assumed to be unknown (or intractable), it does not make
sense to construct a modified estimator that takes into account the shift
coming from G in order to improve the convergence rate. Rather, G and
its impact on diffusivity estimation should be understood qualitatively.

(iii) The typical situation can be described as follows: Let F true be the true
nonlinearity of the underlying process, which is either unknown or too
complex to be handled directly. Instead, an approximate nonlinear term
F approx is used to model the dynamics of X. In this case F = F approx,
and G = F true − F approx is the remainder that describes the devia-
tion from the true model. The excess regularity ηG associated with G
measures the quality of the approximate model F approx for diffusivity
estimation.
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(iv) For example, F approx may be the linearization of a nonlinear model
F true. In this case, ηG is related to the linearization procedure.

(v) If X is the solution to a reaction–diffusion equation (with possible ad-
vection term) as in Section 2.4.2, the excess regularity of G encodes
the order of the model misspecification as a differential operator. For
example, if only reaction terms (of order zero) are misspecified, but the
advection mechanism (of order one) is known very precisely, then we
have ηG < 2. If the description of the advection term is wrong, then
ηG < 1.

(vi) In particular, for diffusivity estimation, precise knowledge on the trans-
port term is more important than precise knowledge on the reaction
term.

2.5 Numerical Illustration
We simulate the Allen-Cahn equation [CA77]

dXt = θ∆Xtdt+ (Xt −X3
t )dt+ (−∆)−γdWt (2.49)

on D = [0, 1] with Dirichlet boundary and initial condition x 7→ sin(πx).
We discretize the equation in Fourier space and simulate N0 = 100 Fourier
modes by a linear-implicit Euler scheme until T = 1. The temporal and
spatial step size is set to ∆t = 2.5 × 10−5 and ∆x = 5 × 10−4, respectively.
The diffusivity is given by θ = 0.02. We generate M = 1000 Monte Carlo
simulations for each of the choices γ = 0.4 and γ = 0.8. In either case, we
set α = γ. A detailed discussion on numerical simulation for SPDEs can be
found in [LPS14].

By Theorem 2.20, all three estimators θ̂fullN , θ̂partN and θ̂linN are asymptot-
ically normal. In Figure 2.1, the simulation results concerning consistency,
convergence rate and asymptotic distribution are shown. Whereas θ̂fullN and
θ̂partN perform as predicted, θ̂linN seems to exhibit non-asymptotic effects. Ap-
parently, this depends on the impact of the noise on the dynamics, which
is controlled by γ. In fact, the value of γ has two effects: It determines
the spatial regularity of the noise (and consequently of X), but it also has
an impact on the overall noise intensity via the magnitude of λ−γ

1 , i.e. the
largest eigenvalue of (−∆)−γ . Our interpretation is that irregular noise from
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low values of γ tends to cover the effect of the nonlinearity. Said another
way, nonlinear effects have a larger impact under smooth noise with smaller
amplitude.

We further mention that for even larger values of γ (take γ = 1.3), the
estimated value from θ̂linN is mostly negative and therefore not related to the
true diffusivity. On the other hand, θ̂fullN and θ̂partN remain consistent. It is
possible that this effect depends on the number of Fourier modes N0 used in
the simulation.

2.6 The Case of Systems
Consider a partially observed system of the form

dXO
t = θAXO

t dt + FO(X
O
t , X

U
t )dt + BOdW

O
t ,

dXU
t = FU(X

O
t , X

U
t )dt + BUdW

U
t ,

(2.50)

together with initial conditions XO
0 , X

U
0 . Here, XO denotes the observed

component and XU the unobserved component of the dynamics. We want
to estimate the unknown diffusivity θ of the observed component.

More precisely, let HO, HU be two Hilbert spaces, and let A : D(A) → HO

be a densely defined, closed, negative definite and self-adjoint operator on HO

with compact resolvent, whose eigenvalue sequence (λk)k∈N satisfies (2.2). FO

and FU are nonlinear operators defined on a subset D(F ) of HO ⊕HU , with
values in HO and HU , respectively. WO and WU are independent cylindrical
Wiener processes on HO and HU , and BO, BU are Hilbert–Schmidt operators
on HO and HU . We assume BO = σO(−A)−γ for some γ > 1/(2β), where
σO > 0 is the noise intensity in the observed component.

PN : HO → HO denotes the projection onto the span of the first N
eigenvalues Φ1, . . . ,ΦN of A. We write X = (XO, XU) and H = HO ⊕HU .
Let A : D(A) ⊕ HU → H be the operator given by A (x, y) = (Ax, 0),
define F : D(F ) → H by means of F (u, v) = (FO(u, v), FU(u, v)) and
B : H → H via B(u, v) = (BOu,BUv). Finally, W = (WO,WU) is a
cylindrical Wiener process on H . Then X satisfies

dXt = θA Xtdt+ F (Xt)dt+ BdWt. (2.51)

In order to capture the regularity of X , we extend the notation from Section
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2.2 and set for s ∈ R:

Hs := D((−A)s/2), (2.52)

Hs := D((−A )s/2) = D((−A)s/2)⊕HU , (2.53)
R(s) := L∞(0, T ;Hs), (2.54)
R(s) := L∞(0, T ;Hs). (2.55)

In analogy to condition (Fs,η), we need a condition on the observed part
FO of F :

(F sys
s,η ) There is ϵ > 0 and a continuous increasing function g : [0,∞) → [0,∞)

such that for all X ∈ R(s):

∥FO(X )∥R(s+η+ϵ−2) ≤ g
(
∥X ∥R(s)

)
. (2.56)

The splitting argument concerns only the observed part: We write XO =
X̄O + X̃O, where X̄O, X̃O satisfy

dX̄O
t = θAX̄O

t dt+BOdW
O
t , (2.57)

dX̃O
t = θAX̃O

t dt+ FO(X )dt, (2.58)

with X̄O
0 = 0, X̃O

0 = XO
0 .

In analogy to Proposition 2.3 and Proposition 2.4, we have

Proposition 2.29. Let η > 0. If (F sys
s,η ) holds for s ∈ R such that a.s.

X ∈ R(s) and XO
0 ∈ Hs+η, then X̃O ∈ R(s + η). In particular, if s0 < s∗

such that (F sys
s,η ) holds for s0 ≤ s < s∗, X̄O ∈ R(s) for s < s∗, X ∈ R(s0)

and XO
0 ∈ Hs∗+η almost surely, then X ∈ R(s) and X̃O ∈ R(s + η) for

s < s∗.

Adapting the estimators from Section 2.3 to the present situation, we
define

θ̂fullN :=−
∫ T

0

〈
(−A)1+2αPNX

O
t , dPNX

O
t

〉
HO∫ T

0
∥(−A)1+αPNXO

t ∥
2
HO dt

+

∫ T

0

〈
(−A)1+2αPNX

O
t , PNFO(X )

〉
HO dt∫ T

0
∥(−A)1+αPNXO

t ∥
2
HO dt

.
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In fact, θ̂fullN is not a function of the observed process PNX
O alone, as it

depends on XU via X . Consequently, we define

θ̂partN :=−
∫ T

0

〈
(−A)1+2αPNX

O
t , dPNX

O
t

〉
HO∫ T

0
∥(−A)1+αPNXO

t ∥
2
HO dt

+

∫ T

0

〈
(−A)1+2αPNX

O
t , PNFO(PNX

O
t , 0)

〉
HO dt∫ T

0
∥(−A)1+αPNXO

t ∥
2
HO dt

,

θ̂linN :=−
∫ T

0

〈
(−A)1+2αPNX

O
t , dPNX

O
t

〉
HO∫ T

0
∥(−A)1+αPNXO

t ∥
2
HO dt

.

Analogously to Theorem 2.11, the following result is proven:

Theorem 2.30. Let γ > 1/(2β) and η > 0, s0 < s∗ such that (F sys
s,η ) holds

for s0 ≤ s < s∗. Assume a.s. X ∈ R(s0) and XO
0 ∈ Hs∗+η. Let α >

γ− (1+ 1/β)/4. Then θ̂fullN , θ̂partN and θ̂linN are strongly consistent as N → ∞,
and θ̂fullN is asymptotically normal as in (2.29). If η > 1 + 1/β, the same is
true for θ̂partN , θ̂linN , otherwise θ̂partN = θ + o(N−a) for each a < βη/2, and the
same is true for θ̂linN .

Example 2.31. The theory from this section is applicable to a stochastic
FitzHugh–Nagumo system [Fit61, NAY62], whose activator component is ob-
served:

dUt = θ∆Utdt+ k1Ut(1− Ut)(Ut − a)− k2Vtdt+BOdW
O
t ,

dVt = ϵ (bUt − Vt) dt+BUdW
U
t ,

with initial condition U0, V0, on D = [0, L], L > 0, with Neumann boundary
conditions. The reaction parameters are k1, k2, ϵ, b > 0 and a ∈ (0, 1). The
state space for both components is HO = HU = L2(D). Assume4 that 1/2 <
s∗ < 2 and X = (U, V ) ∈ R(s) for s < s∗. We verify condition (F sys

s,η ) for FO.
Here, FO(U, V ) = k1U(1− U)(U − a)− k2V . The first term is a polynomial
that can be treated exactly as in Section 2.4.2, with obvious changes in the
notation of the norm, resulting in η < 2. Concerning the second term −k2V ,

4In fact, X ∈ R(0) together with U ∈ Rv(1) can be shown as in [SS15], and a direct
modification of Proposition 2.18 gives X ∈ R(1) in this case. Note that under the Hilbert–
Schmidt assumption γ > d/4, we necessarily have s∗ > 1. Higher regularity in R(s) for
all s < s∗ follows from (F sys

s,η ).
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we can find ϵ > 0 such that ∥V ∥s+η+ϵ−2 = ∥V ∥L2(D) if and only if η < 2− s,
and this equality leads to (2.56) as well. In total, (F sys

s,η ) holds for FO with
η < 2− s∗ for 1/2 < s < s∗. This proves that θ̂fullN is asymptotically normal,
and θ̂partN and θ̂linN are consistent with convergence rate bounded by N−a for
a < 2− s∗. This result can be refined if the optimal regularity of the inhibitor
is taken into account. In fact, under regularity assumptions on the inhibitor
noise, all three estimators will be asymptotically normal. We refer to Chapter
6, where a similar FitzHugh–Nagumo system is studied in greater detail.

Finally, we note that if σO = 0, i.e. if only the unobserved component is
driven by noise, other methods need to be employed. We come back to that
case in Remark 3.16 below.
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Figure 2.1: Left column contains results for γ = 0.4, right column for γ = 0.8.
(top row) Red line: Median from M = 1000 realizations of θ̂fullN . The blue
region is bounded above by the 97.5-percentile and below by the 2.5-percentile.
Black solid line is plotted at true value θ = 0.02, dashed line plotted at zero.
(middle row) The mean squared error (MSE), given by M−1

∑M
k=1(θ̂N(k)−

θ)2, is plotted, where θ̂N(k) is the k-th realization of either of the estimators
θ̂fullN , θ̂partN or θ̂linN . Black line corresponds to the squared true theoretical rate
N 7→ (Σ1/2N−3/2)2, with Σ from (2.30). (bottom row) Histogram for the
standardized values Σ−1/2N3/2(θ̂N − θ) at N = 20, where θ̂N is either of the
three estimators. The width of each bin is 0.4. Outliers outside the interval
[−5, 5] are put into the leftmost and rightmost bin, respectively.
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Chapter 3

Extended Noise Models for the
Spectral Approach

In the last chapter, we studied semilinear SPDE models driven by spa-
tially correlated but temporally white noise. Nonetheless, in many situ-
ations it is desirable to include temporal correlation to an SPDE. There
are different ways to achieve this: A standard approach is using fractional
noise, as studied e.g. in [MP08, MT13, KM19] in the large time regime,
[TTV14, MKT19a, MKT19b, SST20] in a spatial and/or temporal infill
regime, or [CLP09, Kří20] in the spectral approach. Fractional noise im-
pacts the temporal regularity of the solution process and can be used to
model long-range dependence, see e.g. [Tud13] for a discussion of SPDEs
driven by such noise.

However, in applications, there are further common approaches to include
temporal correlation, which have gained little attention in literature concern-
ing statistical inference for SPDEs. As an important example, in models
appearing in biophysics literature [ASB18, FFAB20, MFF+20], integrated
Ornstein–Uhlenbeck noise is used.1 While the presence of certain dynamical
properties such as separation of phases or traveling waves may not be affected
by substituting Brownian noise by integrated Ornstein–Uhlenbeck noise (or
vice versa), the precise specification becomes important when it comes to the
quantitative analysis of data. Motivated by these works, we study the cases
of Ornstein–Uhlenbeck noise and integrated noise separately.

1As a motivation, note that the one-dimensional integrated Ornstein–Uhlenbeck process
serves as an alternative model (besides the Wiener process) for describing the movement
of a Brownian particle, see e.g. [HL84, Chapter 2] for a discussion.
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Ornstein–Uhlenbeck noise is treated in Section 3.1. From the mathemat-
ical point of view, the statistical properties of Ornstein–Uhlenbeck driven
models have not yet been investigated. We study this model both from the
perspective of parameter estimation under Ornstein–Uhlenbeck assumption
as well as from the point of view of model misspecification, where white
noise is used in the description but the true dynamics is Ornstein–Uhlenbeck
driven.

Integrated noise is studied in Section 3.2. Its statistical analysis can
be reduced to the case of semimartingale-type noise. In addition, integrated
noise provides a simple example of a model that cannot be handled by simply
using the estimators from Chapter 2 without further modification.

Finally, in Section 3.3, we consider more general dispersion operators,
which allows us to handle a certain type of multiplicative noise.

3.1 The Case of Ornstein–Uhlenbeck Noise
In this section we consider a semilinear SPDE driven by Ornstein–Uhlenbeck
noise. We develop a hierarchical estimation theory for diffusivity θ and tem-
poral correlation decay µ and compare the results to the white noise case, in
particular, we consider the case of model misspecification in the noise. Our
setting in this section is as follows:

dXt = θAXtdt+ F (X)(t)dt+ dVt, (3.1)
dVt = −µVtdt+BdWt, (3.2)

with initial condition X0 and V0. Without loss of generality, we assume
V0 = 0. As before, W is a cylindrical Wiener process, B = σ(−A)−γ for
some γ > 1/(2β) and σ > 0, and θ > 0 is the diffusivity. Further, µ ∈ R
is an additional parameter related to the temporal correlation length of the
driving noise V . In this section we assume always µ ̸= 0, otherwise the
equations reduce to the white noise model from Section 2.3. Additionally,
we assume that w.l.o.g. for all k ∈ N, µ ̸= ±θλk. (Otherwise replace A
with A + ϵI for some ϵ > 0, where I : H → H is the identity operator, and
substitute F by F − ϵI. The additional perturbation is of order zero.) This
will be used in Lemma 3.2 below.
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Remark 3.1. Our model is compatible with a different natural approach to
Ornstein–Uhlenbeck driven SPDEs, namely:

dXt = θAXtdt+ F (X)(t)dt+BdW
(µ)
t (3.3)

with initial condition X0, where W (µ) is a cylindrical Ornstein-Uhlenbeck
process in the sense that w(µ,k) :=

〈
W (µ),Φk

〉
are independent Ornstein-

Uhlenbeck processes of the form

dw
(µ,k)
t = −µw

(µ,k)
t dt+ dW

(k)
t (3.4)

for independent Wiener processes (W (k))k∈N. If B = σ(−A)−γ, this model
can be reduced to (3.1), (3.2) by setting V = BW (µ).

The linearized model is given by

dX̄t = θAX̄tdt+ dVt, (3.5)
dVt = −µVtdt+BdWt (3.6)

with X̄0 = V0 = 0. As in the previous chapter, we set X̃ := X − X̄, then
X̃ satisfies the random PDE (2.5).

3.1.1 Covariance Structure and Asymptotic Behavior

As before, we set x̄(k) =
〈
X̄,Φk

〉
H

and v(k) = ⟨V,Φk⟩H . The processes
(x̄(k), v(k)), k ∈ N, are independent centered Gaussian processes with

dx̄
(k)
t = (−θλkx̄

(k)
t − µv

(k)
t )dt+ σλ−γ

k dW
(k)
t , (3.7)

dv
(k)
t = −µv

(k)
t dt+ σλ−γ

k dW
(k)
t , (3.8)

and x̄
(k)
0 = v

(k)
0 = 0, where (W (k))k∈N are independent Brownian motions.

Lemma 3.2. With µ ̸= 0 and µ ̸= ±θλk, we have the explicit representation

x̄
(k)
t =

σλ−γ
k

θλk − µ

∫ t

0

(
θλke

−θλk(t−r) − µe−µ(t−r)
)
dW (k)

r , (3.9)

v
(k)
t = σλ−γ

k

∫ t

0

e−µ(t−r)dW (k)
r . (3.10)
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Furthermore, for 0 ≤ r ≤ t,

E[x̄(k)
r x̄

(k)
t ] =

σ2λ−2γ
k

(θλk − µ)2

(
θλk

2
(e−θλk(t−r) − e−θλk(t+r))

+
µ

2
(e−µ(t−r) − e−µ(t+r))

+
µθλk

θλk + µ
(e−µt−θλkr + e−θλkt−µr − e−µ(t−r) − e−θλk(t−r))

)
,

E[v(k)r v
(k)
t ] =

σ2λ−2γ
k

2µ
(e−µ(t−r) − e−µ(t+r)),

E[v(k)r x̄
(k)
t ] =

σ2λ−2γ
k

θλk − µ

(
θλk

θλk + µ
(e−θλk(t−r) − e−θλkt−µr)

−1

2
(e−µ(t−r) − e−µ(t+r))

)
,

E[x̄(k)
r v

(k)
t ] =

σ2λ−2γ
k

θλk − µ

(
θλk

θλk + µ
(e−µ(t−r) − e−µt−θλkr)

−1

2
(e−µ(t−r) − e−µ(t+r))

)
.

Proof. Fix k ∈ N. With Z = (x̄(k), v(k))T we have dZt = AZZtdt+BZdW
(k)
t ,

where AZ : R2 → R2, BZ : R → R2 are linear mappings given by

AZ =

(
−θλk −µ
0 −µ

)
, BZ = σλ−γ

k

(
1
1

)
.

It is straightforward to verify that AZ = SDZS
−1 with

DZ =

(
−θλk 0
0 −µ

)
, S =

(
1 µ
0 −θλk + µ

)
.

It follows that for t ∈ R,

etAZBZ = SetDZS−1BZ =
σλ−γ

k

θλk − µ

(
θλke

−θλkt − µe−µt

(θλk − µ)e−µt

)
.

Now, (3.9), (3.10) are clear from Zt =
∫ t

0
e(t−r)AZBZdW

(k)
r , and the covariance

terms follow from Itô’s isometry.
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In particular, we have

E[(x̄(k)
t )2] =

σ2λ−2γ
k

(θλk − µ)2

(
θλk

2
(1− e−2θλkt) +

µ

2
(1− e−2µt)

− 2µθλk

θλk + µ
(1− e−(θλk+µ)t)

)
, (3.11)

E[(v(k)t )2] =
σ2λ−2γ

k

2µ
(1− e−2µt), (3.12)

E[v(k)t x̄
(k)
t ] =

σ2λ−2γ
k

θλk − µ

(
θλk

θλk + µ
(1− e−(θλk+µ)t)− 1

2
(1− e−2µt)

)
. (3.13)

From the above calculations (or the elementary observation that each v(k)

is a classical one-dimensional Ornstein–Uhlenbeck process) it follows that
limt→∞ E[v(k)t v

(k)
t+d]/(E[(v

(k)
t )2]E[(v(k)t+d)

2])1/2 = e−µd for d ≥ 0, so µ describes
the rate of exponential decay of the autocorrelation function of each noise
mode in the stationary regime. Hence the name “temporal correlation decay”
for µ.

Lemma 3.3. It holds a.s. X̄ ∈ R(s) for any s < s∗ := 1 + 2γ − 1/β.

Proof. The reasoning is similar as in Lemma 2.7. Define C1, C2 : H → H via
C1Φk := [σθλ−γ+1

k /(θλk − µ)]Φk and C2Φk = −[µσλ−γ
k /(θλk − µ)]Φk. Note

that both operators are of Hilbert–Schmidt type due to γ > 1/(2β). Using
(3.9), we write X̄t =

∫ t

0
e(t−r)θAC1dWr +

∫ t

0
e−µ(t−r)C2dWr =: X̄

(1)
t + X̄

(2)
t ,

where, as before, t 7→ etθA is the C0-semigroup generated by θA. We prove
the claim for both stochastic integrals separately: For s < s∗ = 1+2γ− 1/β
and 0 < α < min{1/2, (s∗ − s)/2},∫ T

0

t−2α
∥∥(−A)s/2etθAC1

∥∥2
HS

dt = σ2θ2
∞∑
k=1

λs−2γ+2
k

(θλk − µ)2

∫ T

0

t−2αe−2θλktdt

≲
∞∑
k=1

λs−2γ
k

∫ ∞

0

λ2α−1
k r−2αe−rdr ≲

∞∑
k=1

kβ(s+2α−2γ−1) < ∞.

By [DPZ14, Theorem 5.11], (−A)s/2X̄(1) ∈ C(0, T ;H), i.e. X̄(1) ∈ R(s)
almost surely. With regard to X̄(2), we have for any s < s∗+1 = 2+2γ−1/β
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and 0 < α < 1/2,∫ T

0

t−2α
∥∥(−A)s/2e−µtC2

∥∥2
HS

dt = µ2σ2

∫ T

0

t−2αe−2µtdt
∞∑
k=1

λs−2γ
k

(θλk − µ)2

≲
∞∑
k=1

λs−2γ−2
k ≲

∞∑
k=1

kβ(s−2γ−2) < ∞,

and consequently, again by [DPZ14, Theorem 5.11], it follows that a.s. X̄(2) ∈
R(s). This proves the claim.

The next Proposition implies that a.s. X̄ /∈ L2(0, T ;Hs) for any s > s∗.
In particular, the optimal regularity s∗ is the same as in the white noise case
from Section 2.3.

Proposition 3.4. Set C(±)
T,µ := T ± (1− e−2µT )/(2µ).

(i) As k → ∞, we have the following asymptotic expansions:

E
∫ T

0

(x̄
(k)
t )2dt ≍ σ2T

2θ
λ−2γ−1
k , (3.14)

E
∫ T

0

(v
(k)
t )2dt ≍

σ2C
(−)
T,µ

2µ
λ−2γ
k , (3.15)

E
∫ T

0

v
(k)
t x̄

(k)
t dt ≍

σ2C
(+)
T,µ

2θ
λ−2γ−1
k , (3.16)

E
∫ T

0

(∫ t

0

x̄(k)
r dr

)2

dt ≍
σ2C

(−)
T,µ

2µθ2
λ−2γ−2
k , (3.17)

E
∫ T

0

x̄
(k)
t

(∫ t

0

x̄(k)
r dr

)
dt ≍ σ2(1− e−2µT )

4µθ2
λ−2γ−2
k . (3.18)

(ii) As N → ∞, we have a.s.∫ T

0

∥∥(−A)s/2X̄N
t

∥∥2 dt ≍ σ2TΛs−2γ−1

2θ(1 + β(s− 2γ − 1))
N1+β(s−2γ−1), (3.19)∫ T

0

∥∥(−A)s/2V N
t

∥∥2 dt ≍ σ2C
(−)
T,µΛ

s−2γ

2µ(1 + β(s− 2γ))
N1+β(s−2γ), (3.20)
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∫ T

0

〈
(−A)sV N

t , X̄N
t

〉
dt ≍

σ2C
(+)
T,µΛ

s−2γ−1

2θ(1 + β(s− 2γ − 1))
N1+β(s−2γ−1),

(3.21)∫ T

0

∥∥∥∥∫ t

0

(−A)s/2X̄N
r dr

∥∥∥∥2 dt ≍ σ2C
(−)
T,µΛ

s−2γ−2

2µθ2(1 + β(s− 2γ − 2))
N1+β(s−2γ−2),

(3.22)∫ T

0

〈
(−A)sX̄N

t ,

∫ t

0

X̄N
r dr

〉
dt ≍ σ2(1− e−2µT )Λs−2γ−2

4µθ2(1 + β(s− 2γ − 2))
N1+β(s−2γ−2),

(3.23)

whenever s is such that the right-hand side diverges. All statements
remain true if the left-hand side is replaced by its expected value.

(iii) Let η > 0 and s0 < s∗ = 1 + 2γ − 1/β. Assume X0 ∈ Hs∗+η. If F
satisfies (Fs,η) for all s0 ≤ s < s∗ and X ∈ R(s0) a.s., then (3.19) and
(3.21) remain true if X̄N is replaced by XN .

Remark 3.5. Comparing (3.19) and (3.22), we see that
∫ ·
0
X̄rdr exhibits

more spatial regularity than X̄, namely one derivative in the scale of Sobolev
spaces (Hs)s∈R. From the point of view of a deterministic heat equation, one
may expect that one temporal derivative corresponds to two spatial deriva-
tives. This does not apply here due to nontrivial interactions with the noise.

Proof.

(i) First, (3.14), (3.15) and (3.16) follow from integrating the expressions
(3.11), (3.12) and (3.13). Further, (3.17) and (3.18) are a direct conse-
quence of

∫ t

0
x̄
(k)
r dr = (v

(k)
t − x̄

(k)
t )/(θλk) and (3.14), (3.15) and (3.16).

(ii) First, if the left-hand side is replaced by its expected value, we use (i)
together with λk ≍ Λkβ and the series expansion of every term, for
example,

E
∫ T

0

〈
(−A)sV N

t , X̄N
t

〉
dt =

N∑
k=1

λs
k

(
E
∫ T

0

v
(k)
t x̄

(k)
t dt

)
, (3.24)

and similar expansions for the other terms. The claim is immediate
in that case. It remains to prove that the claim is still true for every
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realization of the left-hand side outside a set of measure zero. Now,
(3.19) and (3.20) follow directly from Lemma A.2 (ii), setting X∗

k(t) =

λ
s/2
k x̄

(k)
t and X∗

k(t) = λ
s/2
k v

(k)
t , respectively, in the notation therein. For

(3.21), the argument is similar: From Lemma 3.2, we see that

Ak := sup
0≤r,t≤T

∣∣∣E[v(k)r v
(k)
t ]
∣∣∣ ≲ λ−2γ

k ,

Bk := sup
0≤r,t≤T

∣∣∣E[v(k)r x̄
(k)
t ]
∣∣∣ ≲ λ−2γ−1

k ,

Ck := sup
0≤t≤T

∫ t

0

∣∣∣E[x̄(k)
r x̄

(k)
t ]
∣∣∣ dr ≲ λ−2γ−2

k .

Set Yk = λs
k

∫ T

0
v
(k)
t x̄

(k)
t dt. Then by means of the Wick theorem [Jan97,

Theorem 1.28], applied to the mixed moment E[v(k)t v
(k)
r x̄

(k)
t x̄

(k)
r ],

Var(Yk) = λ2s
k

∫ T

0

∫ T

0

E[v(k)t v(k)r x̄
(k)
t x̄(k)

r ]− E[v(k)t x̄
(k)
t ]E[v(k)r x̄(k)

r ]drdt

= 2λ2s
k

∫ T

0

∫ t

0

E[v(k)t v(k)r ]E[x̄(k)
t x̄(k)

r ] + E[v(k)t x̄(k)
r ]E[v(k)r x̄

(k)
t ]drdt

≤ 2λ2s
k

(
TAkCk + T 2B2

k/2
)
≲ λ2s−4γ−2

k .

Now, we see that

∞∑
N=1

VarYN(∑N
k=1 EYk

)2 ≲
∞∑

N=1

1

N2
< ∞,

and (3.21) follows from the strong law of large numbers [Shi96, Theorem
IV.3.2]. Now, (3.22) and (3.23) follow from (3.19), (3.20), (3.21) via

θ

∫ t

0

AX̄N
r dr = X̄N

t − V N
t . (3.25)

(iii) By Lemma 3.3, condition (Fs,η) for F and Proposition 2.4, X̃ ∈ R(s+η)
for each s < s∗. The analogue of (3.19) follows as in the white noise
case in Proposition 2.8. For the analogue of (3.21), let s > s∗ and ϵ > 0
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with η − 2(s− s∗) < ϵ < η. Then∣∣∣∣∫ T

0

〈
(−A)sV N

t , X̃N
t

〉
dt

∣∣∣∣
≤

√∫ T

0

∥V N
t ∥22s−s∗−η+ϵ dt

√∫ T

0

∥∥∥X̃N
t

∥∥∥2
s∗+η−ϵ

dt

≲ N (1+β(2s−s∗−η+ϵ−2γ))/2 = N1+β(s−2γ−1−η/2+ϵ/2)

by (3.20). Note that the latter exponent is positive due to ϵ > η−2(s−
s∗). Furthermore, 1 + β(s− 2γ − 1− η/2 + ϵ/2) < 1 + β(s− 2γ − 1),
such that∫ T

0

〈
V N
t , XN

t

〉
s
dt =

∫ T

0

〈
V N
t , X̄N

t

〉
s
dt+

∫ T

0

〈
V N
t , X̃N

t

〉
s
dt

≍
σ2C

(+)
T,µΛ

s−2γ−1

2θ(1 + β(s− 2γ − 1))
N1+β(s−2γ−1).

This concludes the proof.

Let J denote the Bochner integral operator, i.e. JZ(t) =
∫ t

0
Zrdr for

Z ∈ L1(0, T ;Hs), s ∈ R. It is desirable to transfer also (3.22) to the nonlinear
case, i.e. to substitute X̄ by X therein. In order to do so, we have to
strengthen the condition on F . In addition to (Fs,η) for F , we need:

(FJ
s,η) One of the following two conditions holds:

(i) F satisfies (Fs,1+η).

(ii) There is an operator G that satisfies (Fs,η) such that JF = GJ .

Lemma 3.6. Let η > 0 and s0 < s∗ such that F satisfies (Fs,η) and (FJ
s,η)

for all s0 ≤ s < s∗. Assume a.s. X ∈ R(s0) and X0 ∈ Hs∗+η. Then
(3.22) remains true if X̄N is replaced by XN . Furthermore, in this case,
(J ◦ F )(X) ∈ R(s− 1 + η) for s < s∗.

Proof. Lemma 3.3 and Proposition 2.4 yield X̃ ∈ R(s+η) and therefore also
JX̃ ∈ R(s + η) for s < s∗. We distinguish the two cases from (FJ

s,η) and
prove that JX̃ ∈ R(s+ 1 + η), s < s∗, in either case:
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(i) If, in fact, F satisfies even (Fs,1+η), another application of Proposition
2.4 proves X̃, JX̃ ∈ R(s+ 1 + η) for s < s∗.

(ii) If JF = GJ , where G satisfies (Fs,η), we proceed as in the proof of
Proposition 2.3: We know that JX̄ ∈ R(s) for any s < s∗ + 1 due to
Proposition 3.4. Let s < s∗ + 1 such that JX̃ ∈ R(s), this is the case
e.g. for s = s∗. Then also JX ∈ R(s), and∥∥∥JX̃N

t

∥∥∥
s+η

≤
∫ t

0

∥∥e(t−r)θA
(
PN(J ◦ F )(X)(r) +XN

0

)∥∥
s+η

dr

≲
∫ t

0

(t− r)−1+ϵ/2 ∥(J ◦ F )(X)(r) +X0∥s−2+η+ϵ dr

≲

(
sup

0≤r≤T
∥(G ◦ J)(X)(r)∥s−2+η+ϵ + ∥X0∥s+η

)∫ t

0

(t− r)−1+ϵ/2dr

≲

(
sup

0≤r≤T
∥JXr∥s + ∥X0∥s+η

)
2

ϵ
T ϵ/2 < ∞,

so JX̃ ∈ R(s + η). Iterating this argument proves JX̃ ∈ R(s + 1 + η)
for all s < s∗.

In particular, for s > 2 + 2γ − 1/β and any ϵ > 0:∫ T

0

∥∥∥∥∫ t

0

(−A)s/2X̃N
r dr

∥∥∥∥2dt ≤ λs−s∗−1−η+ϵ
N

∫ T

0

∥∥∥∥∫ t

0

(−A)(s
∗+1+η−ϵ)/2X̃N

r dr

∥∥∥∥2dt
≲ λ

s−2−2γ+1/β−η+ϵ
N ≲ N1+β(s−2γ−2−η+ϵ),

where we assume w.l.o.g. that the exponent is positive. As a consequence,∫ T

0

∥∥∥∥∫ t

0

(−A)s/2Xrdr

∥∥∥∥2 dt ≍ ∫ T

0

∥∥∥∥∫ t

0

(−A)s/2X̄rdr

∥∥∥∥2 dt,
and (3.22) holds with X̄ replaced by X. Finally, AJX̃ ∈ R(s− 1 + η), thus
JF (X) = X̃ − θAJX̃ −X0 ∈ R(s− 1 + η) for s < s∗.

3.1.2 The Maximum–Likelihood Approach

Heuristically, the log–likelihood is given by [LS77, Section 7.6.4]:
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ln
dPN,T

(θ,µ)

dPN,T
(θ0,µ0)

(XN) =
1

σ2

∫ T

0

〈
a(θ, µ)− a(θ0, µ0), (−A)2γdXN

t

〉
(3.26)

− 1

2σ2

∫ T

0

〈
a(θ, µ)− a(θ0, µ0), (−A)2γ(a(θ, µ) + a(θ0, µ0))

〉
dt

− 1

σ2

∫ T

0

〈
a(θ, µ)− a(θ0, µ0), (−A)2γPNF (X)(t)

〉
dt,

where we abbreviate

a(θ, µ) = θAXN
t − µXN

t + µXN
0 + µθ

∫ t

0

AXN
r dr + µ

∫ t

0

PNF (X)(r)dr.

As before, this is rigorous if PNF = FPN . Maximizing for the unknown
parameter θ for known µ yields the maximum likelihood–type estimator:

θ̂refN = −

∫ T

0

〈
(−A)1+2αXN

t + µ
∫ t

0
(−A)1+2αXN

r dr, dXN
t

〉
∫ T

0

∥∥∥(−A)1+αXN
t + µ

∫ t

0
(−A)1+αXN

r dr
∥∥∥2 dt

− µ

∫ T

0

〈
(−A)1+2α

(
XN

t + µ
∫ t

0
XN

r dr
)
, XN

t −XN
0 −

∫ t

0
PNF (X)(r)dr

〉
dt∫ T

0

∥∥∥(−A)1+αXN
t + µ

∫ t

0
(−A)1+αXN

r dr
∥∥∥2 dt

+

∫ T

0

〈
(−A)1+2αXN

t + µ
∫ t

0
(−A)1+2αXN

r dr, PNF (X)(t)
〉
dt∫ T

0

∥∥∥(−A)1+αXN
t + µ

∫ t

0
(−A)1+αXN

r dr
∥∥∥2 dt , (3.27)

whereas maximizing for unknown µ and known θ yields

µ̂ref
N = −

∫ T

0

〈
(−A)2αV N

t , dXN
t

〉∫ T

0
∥(−A)αV N

t ∥2 dt
− θ

∫ T

0

〈
(−A)1+2αV N

t , XN
t

〉
dt∫ T

0
∥(−A)αV N

t ∥2 dt

+

∫ T

0

〈
(−A)2αV N

t , PNF (X)(t)
〉
dt∫ T

0
∥(−A)αV N

t ∥2 dt
, (3.28)
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where

V N
t = XN

t −XN
0 − θ

∫ t

0

AXN
r dr −

∫ t

0

PNF (X)(r)dr

is a functional of XN and PNF (X).

In both estimators, we substituted γ by a contrast parameter α ∈ R, as
before. Clearly, setting θ = θ̂refN and µ = µ̂ref

N in the above expressions leads
to a (nonlinear) system of equations for the maximum likelihood estimators
in the case that both parameters are unknown. However, we are interested in
a hierarchical approach of first estimating θ independently of µ and secondly
estimating µ based on the previous estimator of θ, exploiting the asymptotic
properties of the terms appearing in θ̂refN and µ̂ref

N . This will be explained in
detail in the following sections. The hierarchical approach is insightful for
two reasons:

(i) From the point of view of model misspecification, the diffusivity estima-
tors from Section 2.3 still work if the driving noise V exhibits temporal
correlation which is not accounted for in the model, as long as the
temporal regularity of X is not affected (as in the case of fractional or
integrated noise, cf. Section 3.2).

(ii) The hierarchical approach is (at least asymptotically) as good as the
direct approach in the following sense: Let A = ∆ be the Laplacian.
In dimension d = 1, Theorem 3.7 below shows that the hierarchical
approach leads to an estimator for θ which is agnostic to µ, and which
has the same asymptotic properties as the reference estimator θ̂refN with
known µ. In d = 2, still the optimal convergence rate is preserved.
Further, by Theorem 3.10 below, a hierarchical estimator for µ behaves
asymptotically as µ̂ref

N with known θ whenever d ≤ 3.

3.1.3 Diffusivity Estimation

As explained above, it is reasonable to consider a simplified estimator for θ
which is obtained by formally setting µ = 0 in θ̂refN :

θ̂simN = −
∫ T

0

〈
(−A)1+2αXN

t , dXN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
+

∫ T

0

〈
(−A)1+2αXN

t , PNF (X)(t)
〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
.

(3.29)
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Formally, this is the same estimator as θ̂fullN in the white noise setting. In
particular, θ̂simN does not depend on µ. Of course, the other estimators θ̂partN

and θ̂linN from Section 2.3 can be used, too, with conditions on the excess
regularity η of F as in Theorem 2.11.

Theorem 3.7. Let γ > 1/(2β). Assume that there is η > 0 and s0 < s∗

such that (Fs,η) is true for s0 ≤ s < s∗, and that X ∈ R(s0) and X0 ∈ Hs∗+η

a.s. Let α > γ − (1 + 1/β)/4.

(i) If µ is known, θ̂refN is asymptotically normal as in the white noise case:

N
1+β
2 (θ̂refN − θ)

d−→ N (0,Σ), (3.30)

where Σ is given by (2.30).

(ii) If β > 1, then θ̂simN is asymptotically normal as in (3.30). If β = 1,
then

N(θ̂simN − θ)
d−→ N (m,Σ), (3.31)

where

m =

(
µ+

1

2T
(1− e−2µT )

)
1 + β(2α− 2γ + 1)

Λ(1 + β(2α− 2γ))
. (3.32)

If β < 1, then

Nβ(θ̂simN − θ)
a.s.−−→ m. (3.33)

If η > 1 + 1/β, then (3.30), (3.31), (3.33) for β > 1, β = 1, β < 1,
respectively, hold for θ̂partN and θ̂linN as well. If η ≤ 1 + 1/β, then a.s.
θ̂partN = θ + o(N−a) for a < β(η/2 ∧ 1), and the same is true for θ̂linN .

Proof.

(i) Plugging in the dynamics of XN into (3.27), we obtain

θ̂refN − θ = −σ

∫ T

0

〈
(−A)1+2α−γXN

t + µ
∫ t

0
(−A)1+2α−γXN

r dr, dWN
t

〉
∫ T

0

∥∥∥(−A)1+αXN
t + µ

∫ t

0
(−A)1+αXN

r dr
∥∥∥2 dt .
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Set Cs = σ2TΛs−2γ−1/(2θ(1+β(s−2γ−1))), whenever s > 1+2γ−1/β.
By Proposition 2.4, X̃ ∈ R(s+ η) for s < s∗. As J maps R(s+ η) into
itself, the same is true for JX̃. From Proposition 3.4 (ii), comparing
the rates of (3.19) and (3.22), we get immediately

INs :=

∫ T

0

∥∥∥∥(−A)s/2XN
t + µ

∫ t

0

(−A)s/2XN
r dr

∥∥∥∥2 dt (3.34)

≍
∫ T

0

∥∥∥∥(−A)s/2X̄N
t + µ

∫ t

0

(−A)s/2X̄N
r dr

∥∥∥∥2 dt ≍ CsN
1+β(s−2γ−1).

We write

θ̂refN − θ =: −σ
C

1/2
2+4α−2γN

1/2+β(2α−2γ+1/2)

IN2+2α

MN
T ,

such that (MN)N∈N is a sequence of local martingales with ⟨MN⟩T
P−→ 1.

According to Theorem A.1, it follows that MN
T

d−→ N (0, 1), and making
use of Slutsky’s lemma, we see that

N
1+β
2 (θ̂refN − θ)

d−→ N
(
0,

σ2C2+4α−2γ

C2
2+2α

)
. (3.35)

(ii) We decompose θ̂simN as follows:

θ̂simN − θ = µ

∫ T

0

〈
(−A)1+2αXN

t , V N
t

〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
− σ

∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2 dt
.

As before, the second term converges in distribution to N (0,Σ) with
rate N−(1+β)/2. Using Proposition 3.4 (iii), we have

µ

∫ T

0

〈
(−A)1+2αXN

t , V N
t

〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
Nβ a.s.−−→ µ

C
(+)
T,µ (1 + β(2α− 2γ + 1))

TΛ(1 + β(2α− 2γ))
,

and the right-hand side equals m. This yields the claim in the case
β > 1 and β = 1, and for β < 1 note that by Lemma 2.6, we have
almost surely

∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉
≲ N1/2+β(1/2+2α−2γ), and the

claim follows in this case as well. The statements regarding θ̂partN and θ̂linN
are straightforward, taking into account an additional bias term of order
N−b for b < βη/2 as in Theorem 2.11, coming from the nonlinearity.
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Remark 3.8. θ̂simN is identical to θ̂fullN from Section 2.3. Thus, Theorem 3.7
is revelatory for the case that the true noise model is of Ornstein–Uhlenbeck
type, but the diffusivity estimator is derived under a white noise assump-
tion. In the reference case β = 2/d, this translates as follows: In d = 1,
θ̂simN is asymptotically normal with optimal convergence rate. In particular,
θ̂fullN from Section 2.3 is asymptotically robust to noise misspecification of
Ornstein–Uhlenbeck type. In d = 2, θ̂simN converges to a non-centered normal
distribution, still with optimal rate. In d ≥ 3, θ̂simN is still consistent for θ,
but its convergence rate is no longer optimal.

3.1.4 Correlation Decay Estimation

In contrast to the case of diffusivity estimation, we cannot just set the nui-
sance parameter θ in µ̂ref

N to zero: According to Proposition 3.4, the term
θ
∫ t

0
(−A)1+2αXN

r dr dominates the denominator of (3.28). As a consequence,
estimation of µ depends on knowledge (or precise estimation) of θ. In the
sequel, we set

V full
t (ϑ) := Xt −X0 + ϑ

∫ t

0

(−A)Xrdr −
∫ t

0

F (X)(r)dr, (3.36)

V lin
t (ϑ) := Xt −X0 + ϑ

∫ t

0

(−A)Xrdr, (3.37)

then V full,N(ϑ) = PNV
full(ϑ) and V lin,N(ϑ) = PNV

lin(ϑ) are given by the
same terms, with X and F (X) replaced by XN and PNF (X). Further, we
set for ϑ > 0:

µ̂full
N (ϑ) := −

∫ T

0

〈
(−A)2αV full,N

t (ϑ), dXN
t

〉
∫ T

0

∥∥∥(−A)αV full,N
t (ϑ)

∥∥∥2 dt
− ϑ

∫ T

0

〈
(−A)1+2αV full,N

t (ϑ), XN
t

〉
dt∫ T

0

∥∥∥(−A)αV full,N
t (ϑ)

∥∥∥2 dt (3.38)

+

∫ T

0

〈
(−A)2αV full,N

t (ϑ), PNF (X)(t)
〉
dt∫ T

0

∥∥∥(−A)αV full,N
t (ϑ)

∥∥∥2 dt
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and

µ̂lin
N (ϑ) := −

∫ T

0

〈
(−A)2αV lin,N

t (ϑ), dXN
t

〉
∫ T

0

∥∥∥(−A)αV lin,N
t (θ)

∥∥∥2 dt
− θ

∫ T

0

〈
(−A)1+2αV lin,N

t (ϑ), XN
t

〉
dt∫ T

0

∥∥∥(−A)αV lin,N
t (ϑ)

∥∥∥2 dt . (3.39)

Note that if ϑ = θ is the true diffusivity, then µ̂full
N (θ) = µ̂ref

N as given in
(3.28). If ϑ is close to θ, then V full(ϑ) and V lin(ϑ) should be seen as an
approximation of V . This is formalized as follows:

Lemma 3.9. Let η > 0, s0 ∈ R such that F satisfies (Fs,η) and (FJ
s,η) for

s0 ≤ s < s∗. Assume X ∈ R(s0) and X0 ∈ Hs∗+η. Let (θN)N∈N a sequence
of estimators for θ which is a.s. consistent. Then, for s > 2γ − 1/β,∫ T

0

∥∥∥(−A)
s
2

(
V full,N
t (θN)− Vt

)∥∥∥2 dt = o(N1+β(s−2γ)). (3.40)

In particular,∫ T

0

∥∥∥(−A)
s
2V full,N

t (θN)
∥∥∥2 dt ≍ ∫ T

0

∥∥(−A)
s
2Vt

∥∥2 dt ≍ COU
s N1+β(s−2γ), (3.41)

where COU
s = σ2C

(−)
T,µΛ

s−2γ/(2µ(1 + β(s − 2γ))). The same statements are
true for V lin,N(θN).

Proof. Let ϵ > 0. If s > s∗ − 1 + η − ϵ, using JF (X) ∈ R(s∗ − 1 + η − ϵ) by
Lemma 3.6, we have∫ T

0

∥∥∥∥(−A)
s
2

∫ t

0

PNF (X)(r)dr

∥∥∥∥2 dt
≤ λs−s∗+1−η+ϵ

N

∫ T

0

∥∥∥∥(−A)
s∗−1+η−ϵ

2

∫ t

0

PNF (X)(r)dr

∥∥∥∥2 dt
≲ Nβ(s−s∗+1−η+ϵ) = N1+β(s−2γ−η+ϵ),

thus for ϵ sufficiently small, this grows slower than N1+β(s−2γ). If s < s∗ −
1 + η − ϵ, the left-hand side is even bounded uniformly in N . The case
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s = s∗ − 1 + η − ϵ can be avoided by substituting ϵ 7→ ϵ/2. Using that
X = X0 + θJAX + JF (X) + V , we see that

V full,N
t (θ) = Vt, V lin,N

t (θ)− Vt =

∫ t

0

F (X)(r)dr,

and consequently,∫ T

0

∥∥∥(−A)
s
2

(
V lin,N
t (θ)− V N

t

)∥∥∥2 dt ≲ ∫ T

0

∥∥∥∥(−A)
s
2

∫ t

0

PNF (X)(r)dr

∥∥∥∥2 dt
≪p N

1+β(s−2γ),

and the same estimate is trivially satisfied for V full,N instead of V lin,N . Next,
again by Lemma 3.6, we have∫ T

0

∥∥∥(−A)
s
2

(
V full,N
t (θN)− V full,N

t (θ)
)∥∥∥2 dt

= (θN − θ)2
∫ T

0

∥∥∥∥(−A)
s+2
2

∫ t

0

XN
r dr

∥∥∥∥2 dt
≍ (θN − θ)2θ−2COU

s N1+β(s−2γ),

and the same is true for V lin,N instead of V full,N . As θN is a consistent
estimator for θ, the right-hand side is negligible compared to N1+β(s−2γ). Now
(3.40) follows by simple norm estimates, and (3.41) is a direct consequence
of (3.40).

Theorem 3.10. Let η > 0, s0 ∈ R such that F satisfies (Fs,η) and (FJ
s,η)

for s0 ≤ s < s∗. Let X ∈ R(s0) and X0 ∈ Hs∗+η almost surely. Let
α > γ − 1/(4β).

(i) If β > 1/2, then

N
1
2

(
µ̂full
N

(
θ̂simN

)
− µ

)
d−→ N (0,Σµ) (3.42)

with

Σµ =
4µ2(1 + β(2α− 2γ))2

(e−2µT − 1 + 2µT )(1 + β(4α− 4γ))
. (3.43)
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(ii) If β = 1/2, then

N
1
2

(
µ̂full
N

(
θ̂simN

)
− µ

)
d−→ N (−mµ/θ,Σµ), (3.44)

where m is given by (3.32).

(iii) If β < 1/2, then

Nβ
(
µ̂full
N

(
θ̂simN

)
− µ

)
a.s.−−→ −mµ

θ
. (3.45)

If F satisfies (Fs,η̄) for some η̄ > 1 and all s0 ≤ s < s∗, µ̂lin
N

(
θ̂linN

)
is

a consistent estimator for µ. If η̄ > 1 + 1/β, (i), (ii), (iii) remain true for
µ̂lin
N

(
θ̂linN

)
. Otherwise, µ̂lin

N

(
θ̂linN

)
= µ+o(N−b) for every b < (β(η̄−1)/2)∧β.

Proof. We write θN = θ̂simN for short. Expanding µ̂full
N

(
θN
)

by plugging in the
dynamics of XN , we see that

µ̂full
N

(
θN
)
= µ

∫ T

0

〈
(−A)2αV full,N

t (θN), V N
t

〉
dt∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
− σ

∫ T

0

〈
(−A)2α−γV full,N

t (θN), dWN
t

〉
∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
=: [I]N − [II]N . (3.46)

For the second term, one would like to apply Theorem A.1 as in the previous
cases. Note, however, that θN depends on the whole trajectory of (Xt)0≤t≤T ,
so the integrand in the stochastic integral is not adapted. Nonetheless, as
V full,N
t (θN) is an affine function of θN , this issue is easy to avoid by decom-

posing the integrand as V full,N
t (θN) = V full,N

t (θ) + (θN − θ)
∫ t

0
(−A)XN

r dr:

σ

∫ T

0

〈
(−A)2α−γV full,N

t (θN), dWN
t

〉
∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt = σ

∫ T

0

〈
(−A)2α−γV full,N

t (θ), dWN
t

〉
∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
+ (θN − θ)σ

∫ T

0

〈
(−A)1+2α−γ

∫ t

0
XN

r dr, dWN
t

〉
∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
=: [IIa]N + (θN − θ)[IIb]N .
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Now we rescale both terms separately with the square root of the quadratic
variation processes of their stochastic integrals and apply Theorem A.1, using
α > γ−1/(4β) together with Lemma 3.9 and Proposition 3.4 (iii). This yields

N1/2[IIa]N
d−→ N (0, σ2COU

4α−2γ/(C
OU
2α )2), (3.47)

N1/2[IIb]N
d−→ N (0, σ2COU

4α−2γ/(θC
OU
2α )2), (3.48)

As θN → θ almost surely, (3.47) holds for [II]N instead of [IIa]N as well.
The term [I]N can be treated as follows:

[I]N − µ = µ

∫ T

0

〈
(−A)2αV full,N

t (θN), V N
t − V full,N

t (θN)
〉
dt∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
= −(θN − θ)µθN

∫ T

0

∥∥∥(−A)1+α
∫ t

0
XN

r dr
∥∥∥2 dt∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
− (θN − θ)µ

∫ T

0

〈
(−A)1+2αXN

t ,
∫ t

0
XN

r dr
〉
dt∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
+ (θN − θ)µ

∫ T

0

〈
(−A)1+2α

(
XN

0 +
∫ t

0
PNF (X)(r)dr

)
,
∫ t

0
XN

r dr
〉
dt∫ T

0
∥(−A)αV full,N(θN)∥2 dt

=: [Ia]N + [Ib]N + [Ic]N .

For the first term,

[Ia]N ≍ −(θN − θ)µθ

∫ T

0

∥∥∥∫ t

0
XN

r dr
∥∥∥2
2+2α

dt∫ T

0

∥∥∥V full,N
t (θN)

∥∥∥2
2α

dt
≍ −µ

θ
(θN − θ).
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For [Ib]N , the Cauchy-Schwarz inequality is used: If α > γ + 1/4− 1/(2β),∣∣∣∣∫ T

0

〈
XN

t ,

∫ t

0

XN
r dr

〉
1+2α

dt

∣∣∣∣
≤

√√√√∫ T

0

∥XN
t ∥21/2+2α dt

∫ T

0

∥∥∥∥∫ t

0

XN
r dr

∥∥∥∥2
3/2+2α

dt

≲ N1+β(2α−2γ−1/2)

≪p N
1+β(2α−2γ) ≲

∫ T

0

∥∥∥∥∫ t

0

XN
r dr

∥∥∥∥2
2+2α

dt.

If α < γ + 1/4 − 1/(2β), the left-hand side is bounded uniformly in N ,
and for α = γ + 1/4 − 1/(2β) replace α by α + 1/8 under the square root
term in an additional norm estimate, and continue as before. In any case,
|[Ib]N | ≪p [Ia]N . Finally, consider [Ic]N . Let 0 < ϵ < η. We can neglect
X0 ∈ Hs∗+η, which has larger spatial regularity than JF (X) ∈ R(s∗ − 1 +
η − ϵ). Then, if α > γ − 1/(2β) + η/4− ϵ/4, we have with the abbreviation
r̄ := 2 + 4α− s∗ + 1− η + ϵ:

|[Ic]N | ≲
∣∣θN − θ

∣∣
√∫ T

0

∥∥∥∫ t

0
PNF (X)(r)dr

∥∥∥2
s∗−1+η−ϵ

dt
∫ T

0

∥∥∥∫ t

0
XN

r dr
∥∥∥2
r̄
dt∫ T

0

∥∥∥(−A)αV full,N
t (θN)

∥∥∥2 dt
≲
∣∣θN − θ

∣∣N−β
2
(η−ϵ),

and |[Ic]N | ≪p [Ia]N . The case α ≤ γ−1/(2β)+η/4−ϵ/4 is treated as before.
Putting things together, we have shown [I]N − µ ≍ −(θN − θ)µ/θ. Now (i),
(ii), (iii) for µ̂full

N

(
θN
)

follow from the asymptotic behavior of θN = θ̂simN from
Theorem 3.7.

Now, tracing the proof for µ̂lin
N

(
θN
)

(with V lin instead of V full and θN =

θ̂linN instead of θN = θ̂simN ), there are two additional bias terms that have to
be controlled. First, (3.46) is replaced by

µ̂lin
N

(
θN
)
= [I]N − [II]N −

∫ T

0

〈
(−A)2αV lin,N

t (θN), PNF (X)(t)
〉
dt∫ T

0

∥∥∥(−A)αV lin,N
t (θN)

∥∥∥2 dt
=: [I]N − [II]N − [III]N
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with V lin instead of V full in the definition of [I]N and [II]N . [II]N is treated
exactly as before. Due to (Fs,η̄) we have F (X) ∈ R(s− 2 + η̄) for all s < s∗.
Let w.l.o.g. 2α − s∗ + 2 − η̄ > 0, this can be achieved by choosing η̄ > 1
smaller if necessary. Then, for any ϵ > 0,

|[III ]N | ≤

∫ T

0
∥(−A)αPNF (X)(t)∥2 dt∫ T

0

∥∥∥(−A)αV lin,N
t (θN)

∥∥∥2 dt


1
2

≤ λ
2α−s∗+2−η̄+ϵ

2
N


∫ T

0

∥∥∥(−A)
s∗−2+η̄−ϵ

2 PNF (X)(t)
∥∥∥2 dt∫ T

0

∥∥∥(−A)αV lin,N
t (θN)

∥∥∥2 dt


1
2

≲ N− 1
2
−β

2
(2α−2γ)+ 1

2
+β

2
(2α−2γ+1−η̄+ϵ) = N−β

2
(η̄−1−ϵ),

and for η̄ > 1 and sufficiently small ϵ > 0, this term converges to zero. If
η̄ > 1 + 1/β, then even N1/2 |[III ]N | ≲ N−β(η̄−1−1/β−ϵ)/2 → 0 for N → ∞.
Furthermore, the decomposition of [I]N changes: If we set w.l.o.g. X0 = 0,
then we obtain

[I]N − µ = [Ia]N + [Ib]N − µ

∫ T

0

〈
(−A)2αV lin,N

t (θN),
∫ t

0
PNF (X)(t)dr

〉
dt∫ T

0

∥∥∥(−A)αV lin,N
t (θN)

∥∥∥2 dt
=: [Ia]N + [Ib]N + [Id]N ,

where again V full has been substituted by V lin in every term. The term [Id]N
is treated exactly as [III]N (note that, in fact, JF (X) exhibits even larger
spatial regularity than F (X)). The claims for the case η̄ > 1 + 1/β are
now immediate. For the remaining case η̄ ≤ 1 + 1/β, note that by Theorem
3.7, θ̂linN = θ + o(N−a) for a < βη̄/2 ∧ β, whereas |[III ]N | = o(N−b) for
b < β(η̄ − 1)/2. This concludes the proof.

Remark 3.11.

(i) Σµ is minimal for α = γ. In this case, Σµ = 4µ2/(e−2µT − 1 + 2µT ).
In particular, Σµ ≍ 2µ/T for µ → ∞, i.e. for large µ, the asymptotic
variance grows linearly in µ. Further, limµ→0 Σµ = 2/T 2, i.e. for small
µ, the asymptotic variance does not depend on µ, but a large observation
time T is even more beneficial.
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(ii) Similar to the case of diffusivity θ, for finite–dimensional systems, the
temporal correlation decay µ is not identifiable in finite time. For exam-
ple, if F = 0, (3.26) describes the true likelihood for the N-dimensional
system, and the measures on path space are absolutely continuous for
different µ.

(iii) If XN and PNF (X) are observed, both µ̂full
N

(
θ̂simN

)
and µ̂lin

N

(
θ̂linN

)
are

valid estimators. If PNF (X) is not observed, only µ̂lin
N

(
θ̂linN

)
is feasible.

(iv) From the proof of Theorem 3.10, it is clear that µ̂ref
N = µ̂full

N (θ) with the
true diffusivity θ is asymptotically normal as in (3.42).

(v) In particular, the hierarchical approach using µ̂full
N

(
θ̂simN

)
is asymptoti-

cally as good as the direct maximum–likelihood approach with known θ
whenever β > 1/2. If β = 2/d, this means d ≤ 3.

Example 3.12. We close this section with a short discussion on the validity
of the additional condition (FJ

s,η).

(i) If F satisfies (Fs,η) with excess regularity η > 1, then (FJ
s,η′) holds with

η′ = η − 1. In particular, the theory is applicable to reaction–diffusion
equations as in Section 2.4.2

(ii) If F satisfies (Fs,η) and JF = FJ , then (FJ
s,η) holds. For example, if

F (Z) = (−A)rZ for some r < 2.

(iii) Let D be a bounded domain with smooth boundary and A = ∆ the
Laplacian. Let s > d/2. We extend Remark 2.21 as follows: Given a
(possibly time-dependent) vector field v : D × [0, T ] → Rd with compo-
nents v(i) = Jw(i) for some w(i) ∈ R(s), consider the advection term
F (Z)(t) = ∇·(Ztvt). This term belongs to neither of the previous exam-
ples (i), (ii). We show that it satisfies (FJ

s,η) for any η < 1. To this end,
we use the integration by parts formula J(Jf ·g) = Jf ·Jg−J(f ·Jg) for
f, g ∈ R(s), where multiplication is understood pointwisely for x ∈ D.2
Define Ḡ(i)(Z) := v(i) · Z − J(w(i) · Z) and G(Z) := ∇ · Ḡ(Z) =∑d

i=1 ∂xi
Ḡ(i)(Z). Then clearly JF = GJ . Further, Ḡ(i) satisfies (Fs,η)

for η < 2, thus G satisfies (Fs,η) with η < 1.
2Note that for f, g ∈ R(s) all terms appearing are well-defined, and for any x ∈ D,

the (multiplicative, bounded) point evaluation operator δx reduces the formula to the
one-dimensional integration by parts.
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3.2 The Case of Integrated Noise
In this section we consider the case that the solution process is driven by an
integrated semimartingale. Such a process has pathwise Hölder regularity
3/2 − ϵ in time for every ϵ > 0. Apart from providing a non-standard noise
model for semilinar SPDEs that is used in applications, this type of noise can
arise from partially observed systems driven by Brownian noise, as explained
in Remark 3.16.

A better understanding of the impact of different noise types on statistical
questions may help to decide for (or against) them. This noise model provides
a simple example of a model misspecification in which the natural estimator
θ̂linN , derived under the assumption of martingale noise, is no longer consistent.
This is proven in Theorem 3.15.

For a model driven by an integrated noise term
∫ t

0
Wrdr rather than Wt,

with dispersion operator B = σ(−A)−γ , the resulting equation reads as

dXt = θAXtdt+ F (X)(t)dt+BWtdt (3.49)

together with initial condition X0. W.l.o.g. we assume that the Wiener pro-
cess starts in zero; different (e.g. random) initial conditions can be absorbed
into F . Note that X is the solution to a random PDE of the form

∂tXt = θAXt + F (X)(t) + BWt. (3.50)

In particular, Yt := ∂tX satisfies

dYt = θAYtdt+ SF (Y )(t)dt+BdWt (3.51)

with initial condition Y0 = AX0 + F (X)(0), where

SF := ∂t ◦ F ◦ (J +X0), (3.52)

and J is the Bochner integral operator (JX)(t) =
∫ t

0
Xrdr. We make this

precise as follows: Let s ∈ R. For f ∈ C(0, T ;Hs) such that ⟨f,Φk⟩ ∈
C1(0, T ;R) for k ≥ 1, let ∂tf be given by ⟨∂tf,Φk⟩ = ∂t ⟨f,Φk⟩ whenever
it exists. Define C1

Φ(0, T ;Hs) ⊂ C(0, T ;Hs) to be the subspace of func-
tions f such that ∂tf exists in the previously explained sense and belongs
to L∞(0, T ;Hs). It is clear that J maps L∞(0, T ;Hs) into C1

Φ(0, T ;Hs),
while ∂t maps C1

Φ(0, T ;Hs) into L∞(0, T ;Hs). For operators of the form
F : C1

Φ(0, T ;H0) ⊃ D(F ) → C1
Φ(0, T ;H0), (3.52) is meaningful.
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It is clear that the solution X to (3.49) and Y to (3.51) contain the same
amount of statistical information, as both processes can be transferred into
each other by means of the operators J and ∂t.

If the nonlinear operator SF satisfies (Fs,η), we can connect to the the-
ory from Section 2.3. Note that if X0 is random, SF will depend on the
realization ω ∈ Ω, but this does not alter any of the (pathwise) arguments.
Condition (Fs,η) for SF can be deduced naturally from similar conditions on
F itself, for example, in the case of reaction terms:

Lemma 3.13. Let D ⊂ Rd be a bounded domain with smooth boundary,
A = ∆ the Laplacian operator and F (X) = f(X) for a differentiable function
f : R → R. W.l.o.g. let X satisfy Dirichlet boundary conditions. If X0 ∈ Hs

and f ′ satisfies (Fs,η) for some s > d/2 and any 0 < η < 2, then the same is
true for SF .

Proof. In that case, SF (Z) = ∂tf(JZ + X0) = f ′(JZ + X0)Z for any Z ∈
R(s). Choose ϵ > 0 and a monotonous function g as in condition (Fs,η) for
f ′. W.l.o.g. let s+η−2 > d/2 (otherwise substitute η < 2 by a larger value)
and ϵ ≤ 2− η. Then:

∥SF (Z)∥R(s+η+ϵ−2) ≲ sup
0≤t≤T

∥f ′(JZt +X0)∥s+η+ϵ−2 sup
0≤t≤T

∥Z∥s

≤ sup
0≤t≤T

g(∥JZt∥s + ∥X0∥s) ∥Z∥R(s)

≤ g(T ∥Z∥R(s) + ∥X0∥s) ∥Z∥R(s) ,

which proves the claim.

Furthermore, if ∂t commutes with F , e.g. if F itself is a linear differential
operator acting in spatial direction, then (Fs,η) for SF immediately reduces
to (Fs,η) for F .

In total, the whole theory as developed for noise of semimartingale type
transfers if Y = ∂tX is considered instead of X. For example, a maximum
likelihood–type estimator for the case of integrated white noise is given by

θ̂rescaledN = −
∫ T

0

〈
(−A)1+2α∂tX

N
t , d(∂tX

N)t
〉∫ T

0
∥(−A)1+α∂tXN

t ∥2 dt

+

∫ T

0

〈
(−A)1+2α∂tX

N
t , PN(SF )(∂tX)(t)

〉
dt∫ T

0
∥(−A)1+α∂tXN

t ∥2 dt
. (3.53)

74



It is obvious that the same reduction technique applies if X is driven by
integrated Ornstein–Uhlenbeck noise instead of integrated white noise.

Remark 3.14. Taking the time derivative of X amounts to a rescaling of
the Hölder regularity of X to be 1/2 − ϵ in time (for all ϵ > 0), such that
semimartingale theory can be applied. A similar approach is possible for
fractional noise with Hurst index 0 < H < 1. In this case, the temporal
regularity rescaling can be done by applying a kernel instead of taking the
derivative. Based on that observation, a Girsanov transform for SODEs
driven by fractional Brownian motion BH can be derived by considering a
surrogate semimartingale [NVV99, KLBR00, TV07, Mis08]. This allows for
likelihood-based inference. In [CLP09, Cia10] this approach is used for pa-
rameter estimation for SPDEs driven by additive and multiplicative fractional
noise.

In the case of integrated noise, it is interesting to see how model misspec-
ification changes the behavior of the estimator. Namely, assume that θ̂fullN is
given as in Section 2.3, but the dynamics of X is generated by integrated
noise. Then even in the simplest possible case, i.e. if X satisfies a linear
equation with X0 = 0, θ̂fullN is not consistent:

Theorem 3.15. Let X0 = 0, F = 0. It holds that θ̂fullN → 0 almost surely.

Proof. First note that

θ̂fullN − θ = −σ

∫ T

0

〈
(−A)1+2α−γXN

t ,WN
t

〉
dt∫ T

0
∥(−A)1+αXN

t ∥2 dt
. (3.54)

With x(k) = ⟨X,Φk⟩, it holds that

dx
(k)
t = −θλkx

(k)
t dt+ σλ−γ

k W
(k)
t dt

with independent Wiener processes W (k), and consequently,

x
(k)
t = σλ−γ

k

∫ t

0

e−θλk(t−r)W (k)
r dr.

A straightforward calculation yields

E[(x(k)
t )2] = 2σ2λ−2γ

k

∫ t

0

∫ r

0

e−θλk(t−r)e−θλk(t−r′)r′dr′dr

=
2σ2

θ2λ2γ+2
k

(
t

2
− 3

4θλk

− e−2θλkt

4θλk

+
e−θλkt

θλk

)
,
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thus

E
∫ T

0

(x
(k)
t )2dt ≍ T 2σ2

2θ2
λ−2γ−2
k .

Summing over the first N modes and using Lemma A.2 (ii), we get a.s.∫ T

0

∥∥(−A)1+αXN
t

∥∥2 dt ≍ T 2σ2Λ2α−2γ

2θ2(1 + β(2α− 2γ))
N1+β(2α−2γ). (3.55)

Furthermore,

E[x(k)
t W

(k)
t ] = σλ−γ

k

∫ t

0

e−θλk(t−r)rdr

=
σ

θλγ+1
k

(
t− 1

θλk

(1− e−θλkt)

)
,

and consequently,

E
∫ T

0

x
(k)
t W

(k)
t dt ≍ T 2σ

2θ
λ−γ−1
k .

By summing up, we obtain

E
∫ T

0

〈
(−A)1+2α−γXN

t ,WN
t

〉
dt ≍ T 2σΛ2α−2γ

2θ(1 + β(2α− 2γ))
N1+β(2α−2γ). (3.56)

Finally, using the Wick theorem as in [Jan97, Theorem 1.28],

Var

[∫ T

0

x
(k)
t W

(k)
t dt

]
=

∫ T

0

∫ T

0

E[x(k)
t x(k)

r W
(k)
t W (k)

r ]drdt−
(∫ T

0

E[x(k)
t W

(k)
t ]dt

)2

=

∫ T

0

∫ T

0

E[x(k)
t x(k)

r ]E[W (k)
t W (k)

r ] + E[x(k)
t W (k)

r ]E[x(k)
r W

(k)
t ]drdt

≤ 2

∫ T

0

∫ T

0

√
rtE[(x(k)

r )2]E[(x(k)
t )2]drdt

≤ 2T 2E
∫ T

0

(x
(k)
t )2dt ≲ λ−2γ−2

k ,
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and in particular,

∞∑
N=1

Var
[
λ1+2α−γ
k

∫ T

0
x
(N)
t W

(N)
t dt

]
(
E
∫ T

0
⟨(−A)1+2α−γXN

t ,WN
t ⟩ dt

)2 ≲
∞∑

N=1

Nβ(4α−4γ)

N2+β(4α−4γ)
< ∞,

such that by the strong law of large numbers [Shi96, Theorem IV.3.2], (3.56)
holds a.s. for

∫ T

0

〈
(−A)1+2α−γXN

t ,WN
t

〉
dt. Now, from (3.54), we see that

θ̂fullN − θ
a.s.−−→ −θ,

which implies the claim.

Remark 3.16. Integrated noise appears naturally if one considers systems
such that the first component is observed, but only the second component is
driven by noise. More precisely, the linear system

dXO
t = θA11X

O
t dt+ A12X

U
t dt, (3.57)

dXU
t = A21X

O
t dt+ A22X

U
t dt+B2dWt, (3.58)

with XO
0 = 0, XU

0 = 0 and unknown θ, can be formally rewritten as

dXO
t = θAXO

t dt+ F (XO)(t)dt+BWtdt, (3.59)

where A = A11, B = A12B2 and F (X) = A12A22A
−1
12 X + A12A21JX −

θA12A22A
−1
12 A11JX. Depending on the form of A11, A12, A21, A22 and B2, this

reasoning can be made rigorous. In order to neglect F , the regularity of all
terms appearing in the (linear) system (3.57), (3.58) can be evaluated directly,
or it can be shown that SF = F satisfies (Fs,η). If either of these approaches
is feasible, the reduction to the theory from Section 2.3 as described above is
applicable.

The extension of this setting to semilinear systems is possible by a reg-
ularity argument as in the previous sections, decomposing both components
into their linearization and nonlinear remainder.

3.3 Structure of the Dispersion Operator
Set B̄ = σ(−A)−γ . We call B̄ the reference dispersion operator. In all models
we have considered so far, we used B̄ as dispersion operator. Now we study
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to which extent this assumption can be relaxed. W.l.o.g. we study only the
white noise case. More precisely, consider

dXt = θAXtdt+ F (Xt)dt+B(Xt)dWt (3.60)

with initial condition X0. Let L2(H) denote the space of Hilbert–Schmidt
operators on H, with norm ∥·∥HS. We demand that B maps its domain
D(B) ⊆ H into L2(H). In direct analogy to (W ), our standing assumption
is well-posedness of (3.60) in the sense of a unique probabilistically and an-
alytically weak solution in C(0, T ;H). Within the variational approach, as
exposed in [LR15], this can be shown under Lipschitz and growth conditions
on B (and additional mild conditions on F ). Here and in the sequel, we write
B̃(Z) = B(Z) − B̄ for the deviation from the reference dispersion operator,
i.e. we consider lower order (possibly multiplicative) noise of the form

B(Z) = σ(−A)−γ + B̃(Z). (3.61)

In order to transfer the results from the reference case, B must be asymp-
totically similar to B̄ in the following sense:

(Nγ
η ) There is a locally bounded b : [0,∞) → [0,∞) such that for Z ∈ H

and k ∈ N: ∥∥∥B̃(Z)TΦk

∥∥∥2
H
≪p b(∥Z∥H)λ

−1−2γ−η
k . (3.62)

This is a natural condition, as shown in the next lemma:

Lemma 3.17. Let η > 0. If for Z ∈ H, B̃(Z) is a linear bounded operator
mapping H into Hr for some r > 1 + 2γ + η such that the operator norm
satisfies ∥∥∥B̃(Z)

∥∥∥2
H→Hr

≤ b(∥Z∥H), (3.63)

then condition (Nγ
η ) is satisfied.

Proof. In that case,∥∥∥B̃(Z)TΦk

∥∥∥2
H
≲
∥∥∥B̃(Z)T (−A)r/2

∥∥∥2
H→H

∥∥(−A)−r/2Φk

∥∥2
H

≲
∥∥∥(−A)r/2B̃(Z)

∥∥∥2
H→H

λ−r
k .
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Now (−A)r/2 : Hr → H is an isometry, and therefore∥∥∥B̃(Z)TΦk

∥∥∥2
H
≲
∥∥∥B̃(Z)

∥∥∥2
H→Hr

λ−r
k ≲ b(∥Z∥H)λ

−r
k ,

which implies the claim.

Example 3.18. Diagonal noise of the form B(X)Φk = bk(X)Φk for func-
tions bk : H → R, k ∈ N. Such diagonal dispersion terms have been con-
sidered e.g. in [CCG20], or in [CKL20] in the context of space-only noise.
Here, condition (Nγ

η ) simplifies to∣∣bk(Z)/λ−γ
k − σ

∣∣2 ≪p b(∥Z∥H)λ
−1−η
k , (3.64)

which amounts to fast asymptotic equivalence of the modes bk and λ−γ
k .

As before, let X̄ be the solution to

dX̄t = θAX̄tdt+ B̄dWt (3.65)

with X̄0 = 0, and X̃ := X − X̄. In order to control the regularity of X̃, we
extend the splitting argument as follows: Define X̄F to be the solution of

dX̄F
t = θAX̄F

t dt+B(Xt)dWt (3.66)

with X̄F
0 = 0, such that X̃F := X − X̄F satisfies

dX̃F
t = θAX̃F

t dt+ F (Xt)dt (3.67)

with X̃F
0 = 0. It follows from Proposition 3.19 below that X̄F is well-posed.

Next, with X̄B := X̄, the process X̃B := X̄F − X̄B satisfies

dX̃B
t = θAX̃B

t dt+ B̃(Xt)dWt, (3.68)

X̃B
0 = 0. This means that the nonlinear process X̃ = X̃F + X̃B consists of

two components, which contain the nonlinear behavior in the drift and the
dispersion, respectively.

As before, we write s∗ = 1 + 2γ − 1/β.

Proposition 3.19. Let γ > 1/(2β) and η > 0. Under condition (Nγ
η ), we

have X̃B ∈ R(s+ η) for any s < s∗.
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Proof. First, note that for any Z ∈ H, the operator (−A)(s+η)/2B̃(Z) is a
Hilbert–Schmidt operator on H:∥∥∥(−A)(s+η)/2B̃(Z)

∥∥∥2
HS

=
∞∑
k=1

∥∥∥B̃(Z)T (−A)(s+η)/2Φk

∥∥∥2
H

=
∞∑
k=1

λs+η
k

∥∥∥B̃(Z)TΦk

∥∥∥2
H

≲ b(∥Z∥H)
∞∑
k=1

λs+η−1−2γ−η−ϵ
k ≲

∞∑
k=1

λ
−1/β−ϵ
k < ∞

for some ϵ > 0 due to condition (Nγ
η ). In particular, using X ∈ C(0, T ;H)

a.s., we see that B̃∗
t := (−A)(s+η)/2B̃(Xt) is uniformly bounded in ∥·∥HS for

t ∈ [0, T ]. Now, Theorem 4.2.4 of [LR15] implies that

dYt = θAYtdt+ B̃∗
t dWt, (3.69)

Y0 = 0, has a unique solution in C(0, T ;H). As a consequence, Y =

(−A)(s+η)/2X̃B, and the claim follows.

Together with Proposition 2.3 (with X̄ replaced by X̄F = X̄ + X̃B

therein), we immediately obtain:

Theorem 3.20. Let γ > 1/(2β), s ∈ R and η > 0. Assume X0 ∈ Hs+η.
If (Fs,η) and (Nγ

η ) are true and X ∈ R(s), then X̃ = X̃F + X̃B ∈ R(s + η)
almost surely.

Remark 3.21. If in the proof of Proposition 3.19 it can be shown that Y =
(−A)(s+η)/2X̃B has continuous trajectories not only in H but also in V , then
we can conclude even X̃B ∈ R(s+η+1). In view of Lemma 3.17, this seems
natural: There, B̃(Z) must map H into Hr for r > 1 + 2γ + η, whereas B̄
maps H into H2γ. In this sense, 1+η should be expected to be the “true” excess
regularity instead of η. However, in the general setting it is not clear if Y
has continuous trajectories in V , although there are sufficient criteria known
in literature. For example, in the case of additive noise B(Z) ≡ B, according
to Theorem 5.11 from [DPZ14] we have that Y ∈ C(0, T ;V ) if the integral∫ T

0
t−2α

∥∥etθA(−A)(s+η+1)/2(B − B̄)
∥∥2
HS

dt is finite for some 0 < α < 1/2.
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In particular, if θ̂fullN , θ̂partN and θ̂linN are given by (2.24), (2.25) and (2.26),
the results on diffusivity estimation from Theorem 2.11 transfer directly to
the model studied in this section:

Theorem 3.22. Let γ > 1/(2β), η > 0 ∨ (1/β − 1) and s0 ≥ 0, assume
X0 ∈ Hs∗+η and X ∈ R(s0). Let (Nγ

η ) and (Fs,η) be true for s0 ≤ s < s∗. Let
α > γ − 1/4. Then the following asymptotic statements are true:

(i) θ̂fullN is asymptotically normal as in (2.29), and if η > 1+1/β, the same
is true for θ̂partN , θ̂linN .

(ii) In the case η ≤ 1+ 1/β, θ̂partN and θ̂linN are consistent in probability with
convergence rate N−a, a < βη/2, i.e.

Na
(
θ̂partN − θ

)
P−→ 0, Na

(
θ̂linN − θ

)
P−→ 0. (3.70)

Proof. By Theorem 3.20,
∫ T

0

∥∥(−A)s/2XN
t

∥∥2
H
dt satisfies the asymptotics from

(2.20) whenever s > s∗. Now, by means of (Nγ
η ) and X ∈ C(0, T ;H),

∫ T

0

∥∥∥B̃(Xt)
T (−A)1+2αXN

t

∥∥∥2
H
dt ≤

∫ T

0

(
N∑
k=1

λ1+2α
k

∣∣∣x(k)
t

∣∣∣ ∥∥∥B̃(Xt)
TΦk

∥∥∥
H

)2

dt

≪p sup
0≤t≤T

b (∥Xt∥H)
∫ T

0

(
N∑
k=1

λ
1/2+2α−γ−η/2
k

∣∣∣x(k)
t

∣∣∣)2

dt

≲ N
N∑
k=1

λ1+4α−2γ−η
k

∫ T

0

(x
(k)
t )2dt

= N

∫ T

0

∥∥∥(−A)
1
2
+2α−γ− η

2XN
t

∥∥∥2
H
dt. (3.71)

In case α > γ+(η−1/β)/4 we have 1+4α−2γ−η > s∗, and the latter term
is dominated by N2+β(4α−4γ−η). On the other hand, if α < γ + (η − 1/β)/4,
the last integral converges, and the latter term is dominated by N . The case
α = γ+(η− 1/β)/4 can be ignored by substituting η 7→ η− ϵ for some small
ϵ > 0. In any of these cases, the right-hand side is negligible compared to
N1+β(1+4α−4γ), where we take into account η > 1/β − 1 and α > γ − 1/4.
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In particular, using B(Xt) = σ(−A)−γ + B̃(Xt) and expanding the squared
norm, we have a.s.∫ T

0

∥∥B(Xt)
T (−A)1+2αXN

t

∥∥2
H
dt ≍ σ2

∫ T

0

∥∥(−A)1+2α−γXN
t

∥∥2
H
dt

≍ σ2C2+4α−2γN
1+β(1+4α−4γ)

because the condition η > 1/β − 1 ensures that 2 + β(4α − 4γ − η) <
1+β(1+4α−4γ), i.e. the remaining terms are of lower order. Consequently,
the local martingale

MN
T := C

−1/2
2+4α−2γσ

−1N−1/2−β(1+4α−4γ)/2

∫ T

0

〈
B(Xt)

T (−A)1+2αXN
t , dWt

〉
is such that ⟨MN⟩T → 1 a.s., and according to Theorem A.1 and the Slutsky
lemma,

N
1+β
2 (θ̂fullN − θ) = −N

1+β
2

∫ T

0

〈
B(Xt)

T (−A)1+2αXN
t , dWN

t

〉∫ T

0
∥(−A)1+αXN

t ∥2H dt

= −σ
C

1/2
2+4α−2γN

1+β(1+2α−2γ)∫ T

0
∥(−A)1+αXN

t ∥2H dt
MN

T

converges to a normal distribution with mean zero and variance as given by
(2.30) The remaining claims for θ̂partN and θ̂linN follow verbatim as in Theorem
2.11 (note that the condition on α in this theorem are even more restrictive
than in Theorem 2.11).

Remark 3.23.

(i) In comparison with Theorem 2.11, there are two additional restrictions:
The excess regularity η must exceed 1/β − 1, and further α > γ − 1/4,
which is always stronger than the condition on α from Theorem 2.11.
Both inequalities are related to the control of the non–diagonal elements
in the noise term. In the setting of Example 3.18, both restrictions can
be avoided: Namely, in that case, (3.71) in the proof of Theorem 3.22

82



is substituted by∫ T

0

∥∥∥B̃(Xt)
T (−A)1+2αXN

t

∥∥∥2
H
dt

=
N∑
k=1

λ2+4α
k

∫ T

0

(
bk(Xt)− λ−γ

k

)2
(x

(k)
t )2dt

≪p

∫ T

0

∥∥(−A)1/2+2α−γ−η/2XN
t

∥∥2
H
dt,

which is always dominated by N1+β(1+4α−4γ) if η > 0 and α > γ − (1 +
1/β)/4, and the rest of the proof is identical. Note that if A = ∆ is
the Laplacian on a bounded domain, then β = 2/d, and the additional
condition η > 1/β − 1 is void in dimension d ≤ 2.

(ii) If B̃(X)T maps Hs into Hs+2γ for all s ∈ R with ∥B̃(X)T∥Hs→Hs+2γ ≤
bs(∥X∥H) for some locally bounded bs, then it is straightforward to see
that for s ∈ R, (−A)1+2α−γX ∈ R(s) implies B(X)T (−A)1+2αX ∈
R(s). In this case, (3.70) can be strengthened to almost sure conver-
gence using Lemma 2.6, as in the proof of Theorem 2.11.
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Chapter 4

Discretization of the Spectral
Approach

In this section we adapt the spectral approach to the case that the observa-
tions consist of a set of point evaluations of the process X in space instead of
Fourier modes. It is determined how much spatial information is needed in
order to reconstruct the spectral asymptotics from Theorem 2.11, depending
on the regularity of the process.

By now, there is plenty of literature on statistical inference for SPDEs
based on spatially and/or temporally discretized observations. Various works
are based on the asymptotic analysis of power variations, either in time
[BT19, BT20, Cho20, Cho19, CD20, KU21a, KU21b], in space [CKL20,
CK22, SST20, CKP21], in time and space [PT07, CH20, MKT19a], or extend-
ing the approach to a combined spatiotemporal variation [HT21b, HT21a].
Within the spectral approach, however, there seems to be almost no rigorous
attempt to quantify the amount of spatial information needed to recover its
asymptotics for diffusivity estimation. We are aware only of [Hue93, p. 44ff.],
where this topic is sketched shortly (but without rigorous proof) in d = 1,
using first-order integral approximations. On the other hand, [CDVK20] con-
siders the discretization in time of the maximum likelihood estimator from
the spectral approach.

As in the previous sections, we consider a semilinear SPDE of the form

dXt = θAXtdt+ F (X)(t)dt+BdWt (4.1)

with initial condition X0, where A is a closed, densely defined, negative
definite and self-adjoint operator with compact resolvent, B = σ(−A)−γ is of

84



Hilbert–Schmidt type, and F satisfies (Fs,η) for some η > 0 and s0 ≤ s < s∗.
W.l.o.g. we set σ = 1. We always assume that (4.1) is well-posed with X ∈
R(s) for s < s∗. As we are interested in spatially discrete point evaluations,
we have to make the abstract setting from Chapter 2 more specific: Let
D ⊂ Rd be a bounded domain with smooth boundary, such that the state
space for X is given by H = L2(D). For simplicity, we assume that X satisfies
Dirichlet boundary conditions. The eigenvalues (λk)k∈N of A are assumed to
satisfy

λk ≍ Λk
D
d (4.2)

for some D > 0, called the order of the operator A. It is well-known that
(4.2) is true if A is a (pseudo-) differential operator of order D [Shu01]. For
example, for A = ∆ we have D = 2 and for −∆2 we have D = 4, cf. Section
2.4. Note that B is a Hilbert–Schmidt operator if and only if γ > d/(2D).

For any h > 0, let Mh ∈ N and (x
(h)
i )i=1,...,Mh

⊂ D. Define the evaluation
operator Eh : C(D) → RMh via (Ehf)i := f(x

(h)
i ). Then each component of

Eh is a bounded multiplicative linear form on C(D). We write ⟨·, ·⟩(h) for the
Euclidean scalar product on RMh .

In order to apply Eh to (4.1), we need AX to have values in C(D).
Therefore, we make the standing assumption

s∗ > 2, AX ∈ L∞(0, T ;C(D)). (4.3)

For example, if A = ∆, the latter condition holds if s∗ > d/2 + 2, i.e.
γ > 1/2 + d/2, by means of the Sobolev embedding theorem. However, in
many situations it is not necessary to use the Sobolev embedding theorem
in order to prove continuity in space. For example, if the eigenfunctions
Φk are uniformly bounded in x ∈ D, k ∈ N, then s∗ > 2 already implies
AX ∈ L∞(0, T ;C(D)), see Lemma 5.5 and Proposition 5.6 below. We note
that for general A, s∗ > 2 if and only if γ > d/(2D) + 1/2.

Similarly, we always assume that the terms EhF (X) and EhBW are well-
defined. If A = ∆, the former is true e.g. if F is of the form F (X) = f(X) for
a function f : R → R by (4.3), and the latter can be enforced e.g. by imposing
the additional bound γ > d/2, such that BW ∈ L2(0, T ;W d/2,2(D)), and
spatial point evaluations are well-defined again by means of the Sobolev
embedding theorem. In this situation, EhX satisfies

dEhXt = θEhAXtdt+ EhF (X)(t)dt+ EhBdWt. (4.4)
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Let r∗ > r∗ ≥ 0 such that r∗ ≥ s∗D/2 and r∗ < (s∗ − 1)D/2. Fix a
Banach space Br ⊂ H for each r∗ < r ≤ r∗, such that Br2 ⊂ Br1 for r1 < r2.
Further, let h∗ > 0. We need the following conditions:

(D0) For r∗ < r ≤ r∗, Br is a Banach algebra, and Br ⊆ C(D).

(D1) For any r∗ < r ≤ r∗:

∥Φk∥Br
≲ kr/d. (4.5)

(D2) For any 0 < h < h∗, there are real numbers w(h)
1 , . . . , w

(h)
Mh

such that for
any r∗ < r ≤ r∗ and Z ∈ Br,∣∣∣∣∣

∫
D
Zdx−

Mh∑
i=1

w
(h)
i (EhZ)i

∣∣∣∣∣ ≲ hr ∥Z∥Br
. (4.6)

Condition (D2) relies on higher order quadrature formulas, reflecting the reg-
ularity of X. In the examples, the scale (Br)r∗<r≤r∗ will consist of Hölder
spaces or L2-based Sobolev spaces. Since these spaces are supposed to mea-
sure the regularity of X, we need

X ∈ L∞(0, T ;Br) for r < s∗D/2. (4.7)

This is immediate if Br coincides with H2r/D, otherwise it has to be proven
separately. In all our examples, this will be valid.

Remark 4.1. We emphasize that the index of the regularity space Hs from
Chapter 2 does not count spatial derivatives, but fractional powers of (−A).
If D ̸= 2, this is not the same. This is why the factor D/2 arises e.g. in
(D0) and related relations below.

Denote by Wh ∈ RMh×Mh the diagonal matrix with entries (w
(h)
i )1≤i≤Mh

and set

Eh = WhEh. (4.8)

Note that for Z1, Z2 ∈ C(D), it holds Eh(Z1Z2) = EhZ1EhZ2 in the sense
of componentwise multiplication, and therefore:

⟨WhEhZ1, EhZ2⟩(h) =
Mh∑
i=1

w
(h)
i Eh(Z1Z2). (4.9)
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With that notation, a direct consequence of (D0), (D1) and (D2) is∣∣∣⟨Φk, Z⟩ − ⟨WhEhΦk, EhZ⟩(h)
∣∣∣ ≲ hrkr/d ∥Z∥Br

. (4.10)

We use the following discretized version of −A:

A
(s/2)
h,N :=

N∑
k=1

λ
s/2
k (EhΦk)(EhΦk)

T . (4.11)

Based on these considerations, we want to adapt the maximum-likelihood
based estimator θ̂linN to the case of spatially discrete observations. Its natural
discrete analogue θ̂discrh,N is given in the present setting as follows:

θ̂discrh,N = −

∫ T

0

〈
A

(1+2α)
h,N (EhXt), d(EhXt)

〉
(h)∫ T

0

〈
A

(2+2α)
h,N EhXt, EhXt

〉
(h)

dt
. (4.12)

The error decomposition of θ̂discrh,N reads as:

θ̂discrh,N = −
θ
∫ T

0

〈
A

(1+2α)
h,N EhXt, EhAXt

〉
(h)

dt∫ T

0

〈
A

(2+2α)
h,N EhXt, EhXt

〉
(h)

dt

−

∫ T

0

〈
A

(1+2α)
h,N EhXt, EhF (X)(t)

〉
(h)

dt∫ T

0

〈
A

(2+2α)
h,N EhXt, EhXt

〉
(h)

dt
−

∫ T

0

〈
A

(1+2α)
h,N EhXt, EhBdWt

〉
∫ T

0

〈
A

(2+2α)
h,N EhXt, EhXt

〉
(h)

dt

= θ + θ

(
I
(2)
h,N(2 + 2α)− IN(2 + 2α)

)
+
(
IN(2 + 2α)− I

(1)
h,N(2 + 2α)

)
I
(1)
h,N(2 + 2α)

−

(
F

(1+2α)
h,N − F

(1+2α)
N

)
+ F

(1+2α)
N

I
(1)
h,N(2 + 2α)

−
√

⟨M (h,N)⟩T
I
(1)
h,N(2 + 2α)

M
(h,N)
T√

⟨M (h,N)⟩T
,

(4.13)
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where we abbreviate

IN(s) =

∫ T

0

∥∥(−A)s/2XN
t

∥∥2 dt, (4.14)

I
(1)
h,N(s) =

∫ T

0

〈
A

(s)
h,NEhXt, EhXt

〉
(h)

dt, (4.15)

I
(2)
h,N(s) =

∫ T

0

〈
A

(s−1)
h,N EhXt, Eh(−A)Xt

〉
(h)

dt, (4.16)

F
(1+2α)
N =

∫ T

0

〈
(−A)1+2αXN

t , PNF (X)(t)
〉
dt, (4.17)

F
(1+2α)
h,N =

∫ T

0

〈
A

(1+2α)
h,N EhXt, EhF (X)(t)

〉
(h)

dt, (4.18)

M
(h,N)
T =

∫ T

0

〈
A

(1+2α)
h,N EhXt, Eh(−A)−γdWt

〉
, (4.19)

and (M
(h,N)
t )t≥0 is a local martingale with quadratic variation

⟨M (h,N)⟩T =

∫ T

0

∥∥∥(−A)−γ(Eh)∗A(1+2α)
h,N EhXt

∥∥∥2
H
dt. (4.20)

Proposition 4.2. Assume that (D0), (D1), (D2) hold. Let R ≥ 0 and s > s∗.

(i) If we have

h ≪p N
− 2

d
K

(1)
d,D,R(γ), K

(1)
d,D,R(γ) :=

4Dγ + 2D − d+ 2dR

4Dγ + 2D − 2d
, (4.21)

then a.s. ∣∣∣I(1)h,N(s)− IN(s)
∣∣∣≪ N−RIN(s), (4.22)

and in particular, I(1)h,N(s) ≍ IN(s).

(ii) If we have

h ≪p N
− 2

d
K

(2)
d,D,R(γ), K

(2)
d,D,R(γ) :=

4Dγ − 2D − d+ 2dR

4Dγ − 2D − 2d
, (4.23)

then a.s. ∣∣∣I(2)h,N(s)− IN(s)
∣∣∣≪ N−RIN(s), (4.24)

and in particular, I(2)h,N(s) ≍ IN(s).
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(iii) Let α > (γ − (1 + d/D)/4) ∨ (γ − 1/2). If

h ≪p N
− 2

d
K

(M)
d,D (γ), K

(M)
d,D (γ) :=

2Dγ

2Dγ − d
, (4.25)

then a.s. ⟨M (h,N)⟩T ≍ IN(2 + 4α− 2γ) as N → ∞.

(iv) Let α > (γ− (1−d/D)/4)∨ (η/4−1)∨ (−η/4), where η is as in (Fs,η).
If h ≪p N

−2K
(2)
d,D,R(γ)/d, then a.s.∣∣∣F (1+2α)

h,N − F
(1+2α)
N

∣∣∣≪ N−RIN(s). (4.26)

It holds K
(1)
d,D,R(γ) < K

(2)
d,D,R(γ). If R = 0, then K

(1)
d,D,R(γ) < K

(M)
d,D (γ), and if

R > 1/2, then K
(M)
d,D (γ) < K

(2)
d,D,R(γ).

Note that the denominators in (4.21), (4.23), (4.25) are positive if and
only if s∗ > 0, s∗ > 2, s∗ > 1, resp., which is satisfied by (4.3).

Proof. We write for r′, s′, h > 0, N ∈ N and Z ∈ L2(0, T ;H):

L
(h,N)
s′,r′ (Z) := hr′

N∑
k=1

λ
s′+r′/D
k

∫ T

0

|⟨Φk, Zt⟩| dt. (4.27)

Now let Z(1) ∈ L∞(0, T ;Br1) and Z(2) ∈ L∞(0, T ;Br2). Then∫ T

0

〈
A

(s′)
h,NEhZ

(1)
t , EhZ(2)

t

〉
(h)

dt

=
N∑
k=1

λs′

k

∫ T

0

〈
WhEhΦk, EhZ

(1)
t

〉
(h)

〈
WhEhΦk, EhZ

(2)
t

〉
(h)

dt

as well as∫ T

0

〈
(−A)s

′
PNZ

(1)
t , PNZ

(2)
t

〉
dt =

N∑
k=1

λs′

k

∫ T

0

〈
Φk, Z

(1)
t

〉〈
Φk, Z

(2)
t

〉
dt.
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Consequently, using |ab− AB| ≤ |a− A| |b|+ |a| |b− B|+ |a− A| |b− B| for
a, b, A,B ∈ R, together with (4.10), we obtain∣∣∣∣∫ T

0

〈
(−A)s

′
PNZ

(1)
t , PNZ

(2)
t

〉
dt−

∫ T

0

〈
A

(s′)
h,NEhZ

(1)
t , EhZ(2)

t

〉
(h)

dt

∣∣∣∣
≲

N∑
k=1

λs′

k

∫ T

0

(
hr1kr1/d

∥∥∥Z(1)
t

∥∥∥
Br1

∣∣∣〈Φk, Z
(2)
t

〉∣∣∣
+hr2kr2/d

∥∥∥Z(2)
t

∥∥∥
Br2

(∣∣∣〈Φk, Z
(1)
t

〉∣∣∣+ hr1kr1/d
∥∥∥Z(1)

t

∥∥∥
Br1

))
dt

≲ sup
0≤t≤T

∥∥∥Z(1)
t

∥∥∥
Br1

L
(h,N)
s′,r1

(Z(2)) + sup
0≤t≤T

∥∥∥Z(2)
t

∥∥∥
Br2

L
(h,N)
s′,r2

(Z(1))

+ T sup
0≤t≤T

∥∥∥Z(1)
t

∥∥∥
Br1

sup
0≤t≤T

∥∥∥Z(2)
t

∥∥∥
Br2

hr1+r2

N∑
k=1

λs′

k k
(r1+r2)/d

≲ L
(h,N)
s′,r1

(Z(2)) + L
(h,N)
s′,r2

(Z(1)) + hr1+r2

N∑
k=1

k(s′D+r1+r2)/d

≲ L
(h,N)
s′,r1

(Z(2)) + L
(h,N)
s′,r2

(Z(1)) + hr1+r2N1+(s′D+r1+r2)/d.

Thus, in order to bound the approximation error stemming from spatial
discretization, we have to control the terms L

(h,N)
s′,r1

(Z(2)), L(h,N)
s′,r2

(Z(1)) and

Lrest
s′,r1,r2 := hr1+r2N1+(s′D+r1+r2)/d. (4.28)

Based on this consideration, we prove the different cases separately. We will
repeatedly use Jensen’s inequality in the form

∑N
k=1 a

1/2
k ≤ (N

∑N
k=1 ak)

1/2

(in fact, if ak ≍ kr for some r > −1, then both sides grow as N1+r/2). Further,
note that for 0 < a ≤ A, the function (A + x + y)/(a + x) is decreasing in
x > −a and increasing in y ∈ R. This implies the relation between K

(1)
d,D,R(γ),

K
(2)
d,D,R(γ) and K

(M)
d,D (γ) from the statement, as well as similar relations used

in the estimates below.

(i) In order to control I(1)h,N(s), we set Z(1) = Z(2) = X. For ϵ > 0, let
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r = r1 = r2 := s∗D/2− ϵ. W.l.o.g. assume that ϵ < Ds∗. Then

L(h,N)
s,r (X) ≲

√
Thr

N∑
k=1

(
λ
2s+2r/D
k

∫ T

0

(x
(k)
t )2dt

) 1
2

≲ hr

(
N

N∑
k=1

λ
2s+2r/D
k

∫ T

0

(x
(k)
t )2dt

) 1
2

≲ hr

(
N

∫ T

0

∥∥(−A)s+r/DXN
t

∥∥2 dt) 1
2

≲ hr
(
N2+D

d (2s+
2r
D
−2γ−1)

) 1
2
= hrN1+D

d (s+
r
D
−γ− 1

2),

where we made use of Proposition 2.8. This is possible due to 0 < ϵ <
Ds∗, i.e. s + r/D > s∗/2. Now by assumption (4.21), we can choose
ϵ > 0 small enough such that

h ≪ N− 2
d

4Dγ+2D−d+2Rd−2ϵ
4Dγ+2D−2d−4ϵ . (4.29)

In particular, with IN(s) =
∫ T

0

∥∥(−A)s/2XN
t

∥∥2 dt ∼ N1+D(s−2γ−1)/d,
and r = s∗D/2−ϵ = D(1+2γ)/2−d/2−ϵ, it follows that L(h,N)

s,r (X) ≪
N−RIN(s). It remains to bound Lrest

s,r,r: We have Lrest
s,r,r ≪ N−RIN(s)

whenever

h ≪ N− 2
d

4Dγ+2D−d+Rd−2ϵ
4Dγ+2D−2d−4ϵ ,

and this follows from (4.29) for any R ≥ 0. In total, we have shown that∣∣∣I(1)h,N(s)− IN(s)
∣∣∣ ≲ N−RIN(s), and in particular, I

(1)
h,N(s) = IN(s) +

(I
(1)
h,N(s)− IN(s)) ≍ IN(s).

(ii) Here, Z(1) = X, Z(2) = (−A)X, r1 = s∗D/2−ϵ and r2 = (s∗−2)D/2−ϵ
for some ϵ > 0, where w.l.o.g. ϵ < D(s∗ − 2). The terms can be
controlled as follows:

L
(h,N)
s−1,r1

((−A)X) ≲
√
Thr1

N∑
k=1

(
λ
2s−2+2r1/D
k

∫ T

0

(λkx
(k)
t )2dt

) 1
2

≲ hr1

(
N

N∑
k=1

λ
2s+2r1/D
k

∫ T

0

(x
(k)
t )2dt

) 1
2

,
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which is the same term appearing in (i). As K
(1)
d,D,R(γ) < K

(2)
d,D,R(γ),

(4.23) implies that L
(h,N)
s−1,r1

((−A)X) ≪ N−RIN(s). Further,

L
(h,N)
s−1,r2

(X) ≲
√
Thr2

N∑
k=1

(
λ
2s−2+2r2/D
k

∫ T

0

(x
(k)
t )2dt

) 1
2

≲ hr2

(
N

N∑
k=1

λ
2s−2+2r2/D
k

∫ T

0

(x
(k)
t )2dt

) 1
2

≲ hr2

(
N

∫ T

0

∥∥(−A)s−1+r2/DXN
t

∥∥2 dt) 1
2

≲ hr2
(
N2+D

d (2s−2+
2r2
D

−2γ−1)
) 1

2
= hr2N1+D

d (s−γ− 3
2
+

r2
D ).

In the last line we have used s > s∗ and ϵ < D(s∗−2), i.e. s−1+r2/D >
s∗/2, such that Proposition 2.8 is applicable. As before, we can choose
ϵ > 0 small enough such that

h ≪ N− 2
d

4Dγ−2D−d+2dR−2ϵ
4Dγ−2D−2d−4ϵ . (4.30)

Using r2 = (s∗ − 2)D/2 − ϵ = (−1 + 2γ)D/2 − d/2 − ϵ and again the
asymptotics of IN(s), we conclude L

(h,N)
s−1,r2

(X) ≪ N−RIN(s). Finally,
with (4.28), it is clear that Lrest

s−1,r1,r2
≪ N−RIN(s) whenever

h ≪ N− 2
d

4Dγ−d+dR−2ϵ
4Dγ−2d−4ϵ , (4.31)

which is a consequence of (4.30) for R ≥ 0. Now the claim follows as
in (i).

(iii) First note that for i, j ∈ N and Rij := δij − ⟨WhEhΦi, EhΦj⟩(h), we
have by (4.10) and (D1):

|Rij| ≲ (hi1/dj1/d)q (4.32)

for each r∗ < q ≤ r∗. We expand the quadratic variation of M (h,N):
For j ∈ N, we have by definition of A(1+2α)

h,N :〈
Φj, (−A)−γ(Eh)∗A(1+2α)

h,N EhXt

〉
= λ−γ

j

N∑
k=1

λ1+2α
k ⟨EhΦj, EhΦk⟩(h) ⟨EhΦk, EhXt⟩(h) ,
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and consequently,

⟨M (h,N)⟩T =

∫ T

0

∥∥∥(−A)−γ(Eh)∗A(1+2α)
h,N EhXt

∥∥∥2 dt
=

∞∑
j=1

λ−2γ
j

×
∫ T

0

(
N∑
k=1

λ1+2α
k ⟨WhEhΦj, EhΦk⟩(h) ⟨WhEhΦk, EhXt⟩(h)

)2

dt

=
∞∑
j=1

λ−2γ
j

N∑
k,l=1

λ1+2α
k λ1+2α

l

×
∫ T

0

⟨WhEhΦk, EhXt⟩(h) ⟨WhEhΦl, EhXt⟩(h) dt

× ⟨WhEhΦj, EhΦk⟩(h) ⟨WhEhΦj, EhΦl⟩(h)

=
N∑
k=1

λ2+4α−2γ
k

∫ T

0

⟨WhEhΦk, EhXt⟩2(h) dt

− 2
N∑

k,l=1

λ1+2α−2γ
k λ1+2α

l Rkl

×
∫ T

0

⟨WhEhΦk, EhXt⟩(h) ⟨WhEhΦl, EhXt⟩(h) dt

+
N∑

k,l=1

λ1+2α
k λ1+2α

l

∫ T

0

⟨WhEhΦk, EhXt⟩(h) ⟨WhEhΦl, EhXt⟩(h) dt

×
∞∑
j=1

λ−2γ
j RjkRjl

=: A1 − 2A2 + A3.

We have 2 + 4α − 2γ > s∗ due to α > γ − (1 + d/D)/4, and further,
K

(1)
d,D,R(γ) < K

(M)
d,D (γ) (with R = 0 in the first term), so part (i) yields

A1 = I
(1)
h,N(2 + 4α− 2γ) ≍ IN(2 + 4α− 2γ).

It remains to find bounds for A2 and A3. We start with the latter term.
For r∗ < q < Dγ− d/2 = (s∗− 1)D/2, (4.32) and the Cauchy–Schwarz
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inequality give

|A3| ≲ h2q

(
N∑
k=1

(
λ2+4α
k k2q/d

∫ T

0

⟨WhEhΦk, EhXt⟩2(h) dt
) 1

2

)2

×
∞∑
j=1

λ−2γ
j j2q/d,

where the last sum is finite. Again using (i), it follows that

|A3| ≲ h2qN
N∑
k=1

λ
2+4α+2q/D
k

∫ T

0

⟨WhEhΦk, EhXt⟩2(h) dt

≲ h2qNI
(1)
h,N(2 + 4α + 2q/D)

≲ h2qNIN(2 + 4α + 2q/D)

≲ h2qN2+D
d (2+4α+ 2q

D
−2γ−1),

where we have used 2 + 4α + 2q/D > 2 + 4α − 2γ > s∗. Now choose
q = (s∗ − 1)D/2− ϵ = Dγ− d/2− ϵ for some ϵ > 0, and in addition let
ϵ be small enough such that by (4.25),

h ≪ N− 2
d

2Dγ−ϵ
2Dγ−d−2ϵ . (4.33)

Then we immediately obtain |A3| ≪ IN(2 + 4α− 2γ). The bound on
A2 is similar. With (4.32) and r∗ < q ≤ r∗,

|A2| ≲ hq

N∑
k=1

(
λ2+4α−4γ
k k2q/d

∫ T

0

⟨WhEhΦk, EhXt⟩2(h) dt
) 1

2

×
N∑
l=1

(
λ2+4α
l l2q/d

∫ T

0

⟨WhEhΦl, EhXt⟩2(h) dt
) 1

2

=: hqB1B2.
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The sums B1 and B2 are treated as before, using part (i). For B1,

B1 ≲

(
N

N∑
k=1

λ
2+4α−4γ+ 2q

D
k

∫ T

0

⟨WhEhΦk, EhXt⟩2(h) dt

) 1
2

≲
(
NI

(1)
h,N(2 + 4α− 4γ + 2q/D)

) 1
2

≲
(
N2+D

d (1+4α−6γ+ 2q
D )
) 1

2
= N1+D

d (
1
2
+2α−3γ+ q

D ),

if 2 + 4α − 4γ + 2q/D > s∗, which is the case for q = s∗D/2 ≤ r∗ due
to α > γ − 1/2. Similarly B2 ≲ N1+D(1/2+2α−γ+q/D)/d. Therefore,

|A2| ≲ hqN2+D
d (1+4α−4γ+ 2q

D ).

Now (4.33) implies

h ≪ N− 2
d

2Dγ+D
2Dγ−d+D . (4.34)

With q = s∗D/2 ≤ r∗, we get |A2| ≪ IN(2 + 4α− 2γ). Putting things
together,

⟨M (h,N)⟩T = A1 − 2A2 + A3

≍ IN(2 + 4α− 2γ)− 2A2 + A3

≍ IN(2 + 4α− 2γ).

(iv) Set Z(1) = X, Z(2) = F (X), r1 = s∗D/2−ϵ and r2 = (s∗−2+η)D/2−ϵ.
Let ϵ be small enough such that

h ≪ N− 2
d

4Dγ+2D−d+2dR−Dη
4Dγ+2D−2d−4ϵ , (4.35)

h ≪ N− 2
d

4Dγ−2D−d+Dη+2dR−2ϵ
4Dγ−2D−2d+2Dη−4ϵ , (4.36)

h ≪ N− 2
d

8Dγ−2d+Dη+2dR−4ϵ
8Dγ−4d+2Dη−8ϵ , (4.37)

which is possible due to h ≪p N−2K
(2)
d,D,R(γ)/d. Since α > η/4 − 1, it
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holds that 1+ 2α+ (r1 − r2)/D = 2+ 2α− η/2 > 0, and consequently,

L
(h,N)
1+2α,r1

(F (X)) ≲ hr1

(
N

N∑
k=1

λ
2+4α+

2r1
D

k

∫ T

0

⟨Φk, F (X)(t)⟩2 dt

)1/2

= hr1

(
N

∫ T

0

∥∥∥(−A)1+2α+
r1
D F (X)(t)

∥∥∥2
H
dt

)1/2

≤ hr1

(
Nλ

2+4α+
2r1−2r2

D
N

∫ T

0

∥∥∥(−A)
r2
D F (X)(t)

∥∥∥2
H
dt

)1/2

≲ hr1N
1
2
+D

d (1+2α+
r1−r2

D ) = hr1N
1
2
+D

d (1+2α+ 2−η
2 ),

and a direct calculation using (4.35) and r1 = (1 + 2γ)D/2 − d/2 − ϵ

yields L(h,N)
1+2α,r1

(F (X)) ≪ N−RIN(2 + 2α). Further, we have α > −η/4,
and if ϵ < (4α + η)D/2, it follows that 2 + 4α + 2r2/D > s∗, thus

L
(h,N)
1+2α,r2

(X) ≲ hr2

(
N

N∑
k=1

λ
2+4α+

2r2
D

k

∫ T

0

x
(k)
t dt

)1/2

= hr2

(
N

∫ T

0

∥∥∥(−A)1+2α+
r2
D XN

t

∥∥∥2
H
dt

)1/2

≲ hr2N1+D
d (

1
2
+2α−γ+

r2
D ),

and (4.36) together with r2 = (−1 + 2γ + η)D/2 − d/2 − ϵ gives
L
(h,N)
1+2α,r2

(X) ≪ N−RIN(2 + 2α). Finally, (4.37) can be reformulated
as Lrest

1+2α,r1,r2
≪ N−RIN(2 + 2α). This finishes the proof.

Motivated by the previous proposition, we define

Kd,D(γ) := K
(2)

d,D, 1
2
+ D

2d

(γ) =
4Dγ −D

4Dγ − 2D − 2d
.

Theorem 4.3. In the setting of this section, assume (D0), (D1) and (D2),
and further

h ≪p N
− 2

d
Kd,D(γ). (4.38)

With η from (Fs,η), let α > (γ−(1+d/D)/4)∨(γ−1/2)∨(η/4−1)∨(−η/4).
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(i) If η > 1 + d/D, then

N
1
2
+ D

2d

(
θ̂discrh,N − θ

)
d−→ N (0,Σ) (4.39)

as N → ∞, h → 0, where Σ is given by (2.30).

(ii) If η ≤ 1 + d/D, then

Na
(
θ̂discrh,N − θ

)
P−→ 0 (4.40)

for any a < Dη/(2d) as N → ∞, h → 0.

Proof. This follows directly from the decomposition of θ̂discrh,N as in (4.13): By
Theorem A.1 and Proposition 4.2 (iii), M

(h,N)
T /(⟨M (h,N)⟩T )1/2 → N (0, 1).

Further, N1/2+D/(2d)(⟨M (h,N)⟩T )1/2/I(1)h,N(2 + 2α) → Σ1/2. Next, the term
F

(1+2α)
N /I

(2)
h,N(2 + 2α) ≍ F

(1+2α)
N /IN(2 + 2α) is treated exactly as in Theorem

2.11, which leads to the case distinction η > 1+d/D compared to η ≤ 1+d/D.
Finally, all other terms from (4.13) converge to zero with rate N−1/2−D/(2d)

by Proposition 4.2, and the claim follows from the Slutsky lemma.

Remark 4.4.

(i) For fixed d ≥ 1 and D > 0, we have Kd,D(γ) → 1 for γ → ∞ (or
equivalently s∗ → ∞). This means that for large spatial regularity of
X, a spatial precision of order h ≪p N−2/d is sufficient in order to
transfer the asymptotic results from the classical spectral approach.

(ii) On a bounded domain in dimension d, one typically has M ∼ h−d

point observations. (For example, let D be a hypercube in Rd, where
the point evaluation grid consists of points which are aligned along the
coordinate lines in an equidistant way.) In the large regularity setting
from the previous comment, this number of point observations leads to
the relation

N2 ≪p M. (4.41)

This relation does not depend on the dimension d. In this sense, a
given resolution level N can be recovered from a dimension-independent
number of point observations (if the spatial regularity of X is large)
within the spectral approach.
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(iii) On the level of the estimator for diffusivity, this means the following:
In the setting of the previous comment, let additionally F = 0 for
simplicity, such that θ̂linN converges to θ with optimal rate N−1/2−D/(2d).
In terms of the number M of point observations, this corresponds to the
convergence rate M−1/4−D/(4d) for θ̂discrh,N (neglecting terms of arbitrary
small polynomial order in N in the relation N2 ≪p M). This rate is
upper bounded by M−1/4. While this bound decays rather slowly in M ,
it holds uniformly in d.1 Therefore, sparse observations in an high-
dimensional setting can still yield reasonable results.

(iv) Below, we explain how to further improve this bound on the convergence
rate of θ̂discrh,N in M by tightening (4.10).

(v) We point out that I(1)h,N(s) need not be a good approximation for IN(s).

In fact, according to Proposition 4.2, the absolute error
∣∣∣I(1)h,N(s)− IN(s)

∣∣∣
may even diverge, but slowly compared to the energy IN(s) itself. The
same is true for the other approximation terms.

(vi) We highlight that there is no assumption on the shape of D or the
distribution of the point evaluations within D other than the integral
approximation property from (D2). To the best of our knowledge, The-
orem 4.3 is the first rigorous asymptotic result for diffusivity estimation
based on such general discrete point evaluation schemes.

Next, we consider different cases in which higher order approximation
estimates allow to connect to the assumptions from Theorem 4.3.

Example 4.5 (Quadrature formulas in d = 1). Let L > 0 and D = [0, L].
Further, let A = −(−∆)D/2. With Dirichlet boundary conditions, we have
Φk(x) =

√
2 sin(πkx/L) and λk = (πk/L)D. For k ∈ N0, equip the space of k

times differentiable functions Ck(D) with the norm ∥f∥Ck =
∑k

i=1 ∥∂i
xf∥∞.

Further, for r > 0 let Cr(D) be the Hölder–Zygmund space with the norm
∥·∥Cr = ∥·∥∞ + |·|Cr . Here, |f |Cr = supx∈D,0<h<1 with x+Kh∈D h−r

∣∣∆K
h f(x)

∣∣ for
any K > r, where ∆hf = f(· + h) − f is the difference operator. Different
choices of K > r lead to equivalent norms. For integer r ∈ N, the spaces

1Note, however, that for fixed γ, the deviation from the large spatial regularity setting
still depends on d in the term Kd,D(γ), i.e. the regularity of X needed to approach the
large regularity regime grows with d.
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Cr(D) and Cr(D) do not coincide, but the former is a subspace of the lat-
ter. See e.g. [Tri10a, Tri10b] or [GN15, Chapter 4] for further details on
these spaces. We will use that the Hölder–Zygmund spaces can be identified
as interpolation spaces between C(D) and Ck(D) for any k ∈ N, see e.g.
[Lun95, Chapter 1] for details. The scale of Banach spaces (Br)r>r∗ is given
by (Cr(D))r>0 with r∗ = 0. The upper bound r∗ is arbitrary. By Lemma 5.5
below, (4.7) is true. It is clear that the Cr(D) are Banach algebras [Tri10a,
Section 2.8.3], so (D0) is trivially satisfied. Further, for r > 0,

∥Φk∥Cr ≲ 1 + |Φk|Cr ≲ 1 + sup
x∈R,h>0

h−r
∣∣(∆K

h Φk)(x)
∣∣

= 1 + sup
x′∈R,h′>0

krh−r
∣∣(∆K

h′Φ1)(x
′)
∣∣ ≲ kr,

where we substituted x′ = kx and h′ = kh. Thus, (D1) is satisfied.
Fix h∗ > 0. For 0 < h < h∗, let Mh ∈ N such that Mh ∼ h−1 for h → 0.

Let π(h) = {x(h)
0 , x

(h)
1 , . . . , x

(h)
Mh−1} be a partition of Mh points in [0, L]. Let Eh

be the point evaluation operator associated to π(h). We consider quadrature
formulas of the form Q(h)(f) =

∑Mh

i=1 w
(h)
i f(x

(h)
i ) for some weights w

(h)
i ∈ R.

Let k∗ ∈ N, k∗ > r∗. Typically, Q(h) satisfies an error estimate of the form∣∣∣∣∫
D
fdx−Q(h)(f)

∣∣∣∣ ≲ M−k∗

h ∥f∥Ck∗ (4.42)

for f ∈ Ck∗(D). Examples include the composite Newton-Cotes formulas of
order k∗ on equidistant partitions, or Gaussian quadrature formulas, where
∥·∥Ck∗ can be even replaced by an L2-based Sobolev norm. This is well-known,
see for example [QSS00]. The right-hand side of (4.42) can be bounded by
hk∗ ∥f∥Ck∗ (up to a constant), and the exact interpolation theorem [AF03,
Theorem 7.23], applied to the operator

∫
D · dx − Q(h), extends the resulting

estimate to all 0 ≤ r ≤ r∗, where the norm on the right-hand side of (4.42)
is replaced by ∥·∥Cr . Thus (D2) holds with the weight matrix Wh determined
by the quadrature weights w

(h)
i . Consequently, Theorem 4.3 is applicable in

this setting.

Example 4.6 (Finite element method in d ≥ 2). Let A = −(−∆)D/2, set
Br = H2r/D = W r,2(D), let r∗ = d/2 and r∗ ∈ N arbitrary. Condition (D0)

is immediate, and for (D1), note that ∥Φk∥Br
= ∥Φk∥2r/D = λ

r/D
k ≲ kr/d. In

order to describe the discretization operator Eh and the approximation prop-
erty (D2), we make use of results from the theory of finite elements. The
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finite element method is a standard approach from numerical analysis with
a huge body of literature, we follow the exposition from [Cia02]. As we are
interested in point evaluations, we only consider Lagrange finite elements.
Let K0 be a compact reference domain (typically a simplex or cube in d di-
mensions) with non-empty interior. Fix r∗ points y

(1)
0 , . . . , y

(r∗)
0 ∈ K0, and

let P0 be a r∗-dimensional space of polynomial functions defined on K0, such
that for p0 ∈ P0, p0(y

(i)
0 ) = 0 for 1 ≤ i ≤ r∗ implies p0 = 0. Then there are r∗

polynomials p(1)0 , . . . , p
(r∗)
0 ∈ P0 such that p(i)0 (y

(j)
0 ) = δij, and the interpolation

operator Π0 : C(K0) → P0, given by (P0f)(x) =
∑r∗

i=1 f(y
(i)
0 )p

(i)
0 (x), is well-

defined and acts as the identity on P0. Now we partition the domain D into
a family (Kj)j=1,...,L of compact domains with open interior (which overlap
only on their boundaries), such that there is a diffeomorphism Fj : K0 → Kj

for 1 ≤ j ≤ L. Let Pj consist of the pullback of functions p0 ∈ P0 via F−1
j ,

i.e. Pj = {p0 ◦ F−1
j | p0 ∈ P0}, and set y

(i)
j := Fj(y

(i)
0 ). The interpolation

operator on Kj is given by Πjf = (Π0(f ◦ Fj)) ◦ F−1
j . Typically, the Fj

are affine functions, which leads to a partition of polygonal domains D, but
also curved elements Kj are possible (see e.g. [Zlá73], [Cia02, Chapter 4.3]),
which allow to handle a smooth boundary of D. We assume mild compati-
bility criteria on the partition of D: The images of the faces of K0 under
the Fj have disjoint (d − 1)-dimensional interior or coincide. Further, for
f ∈ C(D), the interpolation polynomials Πjf |Kj

coincide on the boundaries
of the Kj, such that there is a well-defined interpolation operator Π acting
on C(D). For each 1 ≤ j ≤ L, let hj denote the diameter of Kj and ρj
the diameter of the largest ball contained in Kj. We assume that there is a
constant C > 0 such that hj/ρj ≤ C for all j. Finally, let h := max1≤j≤L hj

be the mesh size of the partition of D.
Let {x(h)

i }1≤i≤Mh
be the set of all Mh points y

(k)
j in the interior of D,

where 1 ≤ j ≤ L, 1 ≤ k ≤ r∗, and the labeling is arbitrary. Using Dirichlet
boundary conditions, we can neglect evaluations at the boundary of the do-
main by assuming f = 0 on ∂D. Now, Eh is the operator mapping f ∈ C(D)

to the vector of point evaluations f(x
(h)
i ) for 1 ≤ i ≤ Mh. The weights

w
(h)
i are given by w

(h)
i :=

∫
D Πfidx for any function fi ∈ C(D) that satisfies

fi(x
(h)
j ) = δij, 1 ≤ i, j ≤ Mh, and vanishes on ∂D.
We denote by |f |2k,2 =

∑
|α|=k |∂αf |

2
L2(D) the L2-Sobolev seminorm of order

k, where α is a multi-index. It is well-known that for 0 ≤ k ≤ r∗,

∥f − Πf∥L2(D) ≲ hk |f |k,2 (4.43)
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see e.g. [Cia02, Theorem 3.2.1] for the affine case. Together with the obvious
estimate |f |k,2 ≤ ∥f∥Bk

and∣∣∣∣∣
∫
D
fdx−

Mh∑
i=1

w
(h)
i f(x

(h)
i )

∣∣∣∣∣ ≤ ∥f − Πf∥L1(D) ≲ ∥f − Πf∥L2(D) , (4.44)

we obtain that (4.6) is true for integer r, and the exact interpolation theorem
[AF03, Theorem 7.23], applied to the operator I − Π, extends this estimate
to general 0 ≤ r ≤ r∗. In particular, (D2) is true.

In total, Theorem 4.3 is applicable in this setting. Note that the finite
element method provides a very flexible approach to discretizing D, which
allows to handle point evaluations schemes way beyond a rectangular grid.

Finally, we outline a possibility to further improve the results from The-
orem 4.3 and Remark 4.4. An explicit understanding of the discretization
error of the Fourier modes, which is not based on the universal approxima-
tion error from (D2), can improve the bounds on the number of spatial points
needed in order to recover the spectral approach from discrete observations.
Our standing assumption for the rest of this section is that for each h > 0,
the vectors EhΦ1, . . . , EhΦMh

∈ RMh are linearly independent. Consider the
operator

ThZ :=

Mh∑
k=1

⟨EhZ,EhΦk⟩(h) Φk (4.45)

for Z ∈ C(D). It clearly satisfies

⟨ThZ,Φk⟩ = ⟨EhZ,EhΦk⟩(h) (4.46)

for 1 ≤ k ≤ Mh. In particular, if ⟨EhΦk, EhΦℓ⟩(h) = ⟨Φk,Φℓ⟩ for 1 ≤ k, ℓ ≤
Mh, then the left-hand side of (4.46) can be replaced with ⟨EhThZ,EhΦk⟩(h),
the linear independence of (EhΦk)1≤k≤Mh

implies that ThZ coincides with Z
at the observation points. In this case, Th is the interpolation operator at
the given observation points associated to the basis functions (Φk)1≤k≤Mh

.
Instead of (D2), we assume the following:

(D∗
2) For any 0 < h < h∗, r∗ < r ≤ r∗ and Z ∈ Br,

∥Z − ThZ∥L2(D) ≲ hr ∥Z∥Br
. (4.47)
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This immediately implies∣∣∣⟨Z,Φk⟩ − ⟨EhZ,EhΦk⟩(h)
∣∣∣ = |⟨Z − ThZ,Φk⟩|

≤ ∥Z − ThZ∥L2(D) ≲ hr ∥Z∥Br
(4.48)

for 1 ≤ k ≤ Mh. If h ≪p N
−1/d for N → ∞ and h → 0, then (4.48) is true for

all 1 ≤ k ≤ N at least asymptotically. Note that (4.48) is an improvement
over (4.10) by a factor kr/d.

This leads to an additional gain in rate in the proof of Proposition 4.2.
As a consequence, in Theorem 4.3, condition (4.38) can be relaxed:

Theorem 4.7. In the present setting, let (D0), (D1) and (D∗
2) hold. Then

there is a function K∗
d,D, with K∗

d,D(γ) → 1 for γ → ∞, such that (4.38) can
be substituted by

h ≪p N
−(1/d)K∗

d,D(γ) (4.49)

without changing the conclusions of Theorem 4.3.

It follows that (4.41) can be improved to

N ≪p M, (4.50)

i.e. N point evaluations suffice in order to recover the spectral resolution
level N for diffusivity estimation in the large regularity regime (neglecting
terms of arbitrarily small polynomial order). Consequently, the convergence
rate of θ̂discrh,N is described by M−1/2−D/(2d) in Remark 4.4.

We shortly compare our result to related literature. Note that the con-
struction of θ̂discrh,N is independent of the dispersion intensity σ, which may be
treated as unknown. In fact, in [HT21b] it is shown that under spatially
and temporally discrete observations of a stochastic heat equation driven by
space-time white noise in d = 1, the parameters θ and σ can be jointly esti-
mated at rate M−3/2 = M−1/2−D/(2d) if the observation scheme is balanced,
or if the resolution in time exceeds that of a balanced observation scheme. Of
course, as we work with time-continuous observations, we may always assume
arbitrarily high resolution in time. In this sense, Theorem 4.7 is compatible
with [HT21b]. On the other hand, if σ is treated as known, the observation of
the process continuously in time at a single point in space suffices to recover
θ, see e.g. [PT07, CH20].
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In contrast to the integral approximation estimate from (D2), bounds
on the approximation error of Th as in (D∗

2) seem to be harder to obtain.
An important example is given by a uniform observation grid on a periodic
domain:

Example 4.8. Let d = 1, let w.l.o.g. D be an interval of length 2π, and
consider periodic (instead of Dirichlet) boundary conditions. Then we can
identify D ≃ R/(2πZ). Let Br = W r,2(D). The observation grid is as-
sumed to be spatially uniform. In this case, ⟨EhΦk, EhΦℓ⟩(h) = ⟨Φk,Φℓ⟩ for
1 ≤ k, ℓ ≤ Mh, so Th is a trigonometric interpolation operator, and (D∗

2)
holds [KO79]. This can be extended to rectangular domains with a uniform
point evaluation grid in larger dimension d ≥ 2 [Pas80]. See also [CHQZ88,
Chapter 9], [QSS00, Chapter 10.9], [SV02, Chapter 8] for discussions of
trigonometric interpolation.

Nonetheless, even for non-uniform observation point grids in d = 1, the
situation is less clear. Recent works [Aus16, AT17] indicate that the trigono-
metric interpolation operator on a non-uniform grid has diminished approx-
imation power, at least in ∥·∥∞, with a convergence rate depending on the
deviation from the uniform point grid. While in this case we cannot expect
that Th and the trigonometric interpolation operator coincide, this gives a
hint that the validity of (D∗

2) can be more involved than (D2).

It is an interesting question for further research if (4.50) and the resulting
(optimal) convergence rate in M for diffusivity estimators can be achieved in
non-rectangular domains in dimension d ≥ 2 that do not arise as the tensor
product of one-dimensional intervals, or if it is possible to find a domain D
and an observation point distribution within D such that (4.41) cannot be
improved.
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Chapter 5

The Local Approach

This chapter is an adaptation of material from [ACP20].
The local approach to parameter estimation for SPDEs is a recent de-

velopment different from (and in some sense complementary to) the spectral
approach. It has been introduced in [AR21] for the stochastic heat equation.
[ACP20] generalizes the theory to semilinear models and [ABJR21] applies
the local approach to the stochastic Meinhardt model. The novelty from
the local approach is its observation scheme. It is assumed that a spatially
localized average of the solution process X is observed on [0, T ], which is for-
mally realized as the convolution with a compactly supported kernel. This
is a physically realistic assumption in many cases. As the support of the
kernel shrinks (corresponding to observing X with high resolution at a point
in space) the true diffusivity can be recovered.

Let D ⊂ Rd be a bounded open domain with smooth boundary. For
s ∈ N, p ≥ 1 denote by W s,p(D), W s,p

0 (D) the Sobolev spaces as in [AF03],
and for non–integer s ≥ 0, their complex interpolation spaces. Let ∆ be
the Laplacian, with domain W 2,p(D) ∩ W 1,p

0 (D) in Lp(D) (see e.g. [GT01,
Chapter 9.6]). For s ≥ 0, p ≥ 1, let Hs,p(D) := Dp((−∆)s/2) ⊂ Lp(D) be the
maximal domain of definition of the fractional Laplacian (−∆)s/2 acting as a
closed, densely defined operator on Lp(D), cf. [Yag10, Chapter 16]. Hs,p(D)
is equipped with the norm ∥·∥s,p :=

∥∥(−∆)s/2 ·
∥∥
Lp(D)

and is a closed subspace
of W s,p(D) for any s ≥ 0 and p ≥ 1. For s < 1, Hs,p(D) is the completion of
Lp(D) w.r.t. the norm ∥·∥s,p. It is clear that for s, s′ ∈ R and p ≥ 1, (−∆)s/2

maps Hs′+s,p(D) into Hs′,p(D). We write Rp(s) := L∞(0, T ;Hs,p(D)). These
spaces are equipped with their natural norm ∥Z∥Rp(s)

= sup0≤t≤T ∥Zt∥s,p.

104



Finally, let ∆0 be the Laplacian as a closed, densely defined operator on
L2(Rd). See e.g. [Tri10a, Tri10b] for more details on function spaces.

In this chapter, we consider a semilinear SPDE

dXt = θ∆Xtdt+ F (X)(t)dt+BdWt (5.1)

together with Dirichlet boundary conditions Xt = 0 on ∂D for all 0 ≤ t ≤ T ,
and initial condition X0. As in the previous chapters, F : C(0, T ;L2(D)) ⊇
D(F ) → L1(0, T ;L2(D)) is a nonlinear operator. W is a cylindrical Wiener
process, and B is a dispersion operator of Hilbert–Schmidt type, such that
B : L2(D) → H2γ,2(D) is a linear isomorphism for some γ > d/4.1 Further
assumptions on B will be given below in condition (LB).

In order to formalize the local asymptotics, we define for δ > 0, x0 ∈ D
and Z ∈ L2(Rd):

Dδ,x0 := δ−1(D − x0) = {δ−1(x− x0) | x ∈ D}, (5.2)

Zδ,x0(x) := δ−d/2Z(δ−1(x− x0)). (5.3)

Then Zδ,x0 ∈ L2(Rd), and (·)δ,x0 maps L2(Dδ,x0) onto L2(D) with

∥Zδ,x0∥L2(D) = ∥Z∥L2(Dδ,x0
) (5.4)

for all δ > 0, x0 ∈ D. More generally, for any 1 < q < ∞ and Z ∈ Lq(Dδ,x0),
(5.3) implies

∥Zδ,x0∥Lq(D) =

(∫
D
|Zδ,x0(x)|

q dx

) 1
q

=

(∫
D

(
δ−

dq
4
+ d

2

(
|Z|q/2

)
δ,x0

(x)
)2

dx

) 1
q

= δ−
d
2
+ d

q

∥∥∥(|Z|q/2)
δ,x0

∥∥∥ 2
q

L2(D)
= δ−

d
2
+ d

q

∥∥|Z|q/2∥∥ 2
q

L2(Dδ,x0
)

= δ−
d
2
+ d

q ∥Z∥Lq(Dδ,x0
) (5.5)

for δ > 0, x0 ∈ D. Note that the spaces Dδ,x0 can be seen as non-asymptotic
tangential spaces of D at x0: Formally, for δ → 0, the tangential space
Tx0D ≃ Rd is recovered. The behavior of the fractional Laplacian under
localization is given by the following result:

1In fact, it suffices to have (5.18) for all s > 1 + 2γ − d/2.
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Lemma 5.1 ([AR21], [ACP20]). For s ∈ R, p ≥ 2, δ > 0, x0 ∈ D and
Z ∈ Hs,p(Dδ,x0), we have

(−∆)s/2Zδ,x0 = δ−s((−∆)s/2Z)δ,x0 . (5.6)

For s ∈ 2N, this is a consequence of the chain rule.
Here and in the sequel, we fix a kernel K ∈ W 2,2(Rd) with compact

support. We identify Kδ,x0 , defined via (5.3), with its restriction to D. Then
Kδ,x0 ∈ W 2,2(D) [LM72, Remark 8.1]. For small enough δ, the support
of Kδ,x0 is compactly contained in D. In particular, the boundary trace
operators of Kδ,x0 of any differential order are zero on D. Then, clearly,
Kδ,x0 ∈ H2,2(D). W.l.o.g. we restrict to that case in the sequel.

Now, by assumption, we observe a local average of X, namely X tested
against Kδ,x0 . In addition, we also need X tested against ∆Kδ,x0 :

XK
δ,x0

:= ⟨X,Kδ,x0⟩L2(D) =

∫
D
XKδ,x0dx, (5.7)

X∆K
δ,x0

:= ⟨X,∆Kδ,x0⟩L2(D) =

∫
D
X∆Kδ,x0dx. (5.8)

It is immediate from (5.1) that the dynamics of XK
δ,x0

is determined by the
one-dimensional stochastic differential equation

dXK
δ,x0

(t) = θX∆K
δ,x0

(t)dt+ ⟨F (X)(t), Kδ,x0⟩ dt+ ∥B∗Kδ,x0∥L2(D) dW
δ,x0(t)

(5.9)

with initial condition XK
δ,x0

(0) = ⟨X0, Kδ,x0⟩L2(D), where the process W δ,x0 :=

⟨B∗Kδ,x0 ,W ⟩ / ∥B∗Kδ,x0∥L2(D) is a one-dimensional Brownian motion.
If X∆K

δ,x0
and XK

δ,x0
are observed on [0, T ], the natural MLE-type estimator,

called augmented MLE [AR21], is given by

θ̂δ,x0 =

∫ T

0
X∆K

δ,x0
(t)dXK

δ,x0
(t)∫ T

0
X∆K

δ,x0
(t)2dt

. (5.10)

By means of (5.9), θ̂δ,x0 can be decomposed as follows:

θ̂δ,x0 − θ =

∫ T

0
X∆K

δ,x0
(t) ⟨F (X)(t), Kδ,x0⟩L2(D) dt∫ T

0
X∆K

δ,x0
(t)2dt

(5.11)

+
∥B∗Kδ,x0∥L2(D)

∫ T

0
X∆K

δ,x0
(t)dW δ,x0(t)∫ T

0
X∆K

δ,x0
(t)2dt

.
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Note that

Iδ,x0 := ∥B∗Kδ,x0∥
−2
L2(D)

∫ T

0

X∆K
δ,x0

(t)2dt

can be interpreted as the observed Fisher information. We need the following
conditions on the dispersion B and the kernel K:2

(LB) There is a family of bounded linear operators (Bδ,x0)δ≥0 mapping L2(Rd)
into itself, such that

B∗(−∆)γZδ,x0 = (B∗
δ,x0

Z)δ,x0 (5.12)

for Z ∈ C∞(Rd) with support in Dδ,x0 and δ > 0, as well as∥∥B∗
δ,x0

Z − B∗
0,x0

Z
∥∥
L2(Rd)

→ 0 (5.13)

for Z ∈ L2(Rd) as δ → 0.

(LK) There is K̃ ∈ W 2⌈γ⌉+2,2(Rd) with compact support such that K =

(−∆)⌈γ⌉K̃.

(LΨ) We have ∥∥∥B∗
0,x0

(−∆0)
⌈γ⌉−γK̃

∥∥∥
L2(Rd)

> 0, (5.14)

Ψ∆

(
(−∆0)

⌈γ⌉−γK̃
)
> 0, (5.15)

where Ψ∆(Z) =
∫∞
0

∥∥B∗
0,x0

er∆0∆0Z
∥∥2
L2(Rd)

dr.

It is straightforward to see that Ψ∆(Z) < ∞ for Z ∈ W 2,2(Rd) ∩ L1(Rd):
As B∗

0,x0
is bounded, we can w.l.o.g. assume that B∗

0,x0
= I. Let Gt for

t > 0 be the heat kernel given by et∆0Z = Gt ∗ Z. It is elementary to
verify that ∥Gt∥L2(Rd) ≲ t−d/4, given that Gt is normed in L1 as a func-
tion. Using standard semigroup properties as stated e.g. in [EN00], we see
that

∫ t

0

∥∥er∆0∆0Z
∥∥2
L2(Rd)

dr = 1
2

〈
e2t∆0Z,∆0Z

〉
L2(Rd)

+ 1
2
∥∇Z∥2L2(Rd). Fur-

ther, using Young’s inequality for convolution products, we can estimate〈
e2t∆0Z,∆0Z

〉
L2(Rd)

≤ ∥Gt∥L2(Rd) ∥Z∥L1(Rd) ∥∆0Z∥L2(Rd) ≲ t−d/4, which con-
verges to zero for t → ∞.

In (5.15), our standing assumption is (−∆0)
⌈γ⌉−γK̃ ∈ W 2,2(Rd)∩L1(Rd).

This is certainly the case if γ ∈ N.
2These are the assumptions B, K and ND from [ACP20].
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Example 5.2. It is clear that B = σ(−∆)−γ for σ > 0 satisfies (LB). In
this case, we trivially have Bδ,x0Z = σZ for all δ ≥ 0 and Z ∈ L2(Rd).
In addition, the above calculation shows Ψ∆(Z) =

σ2

2
∥∇Z∥2L2(Rd). This can

be generalized, for example, to smooth space-dependent σ : D → [0,∞), see
[ACP20, Example 1].

As before, we reduce the asymptotic analysis of θ̂δ,x0 to the linear case
F = 0 by means of the splitting argument X = X̄+X̃, where X̄ satisfies (5.1)
with F = 0 and X0 = 0, and X̃ solves the random PDE (2.5) with initial
condition X̃0 = X0. The terms X̄∆K

δ,x0
and X̃∆K

δ,x0
are defined analogously to

(5.8).

Lemma 5.3. Under (LB), (LK) and (LΨ), we have the following asymptotics
as δ → 0:

(i)
∫ T

0
X̄∆K

δ,x0
(t)2dt ≍ Clocδ

−2+4γ, where Cloc = Tθ−1Ψ∆

(
(−∆0)

⌈γ⌉−γK̃
)
.

(ii) ∥B∗Kδ,x0∥L2(D) ≍ CB
locδ

2γ, where CB
loc =

∥∥∥B∗
0,x0

(−∆0)
⌈γ⌉−γK̃

∥∥∥
L2(Rd)

.

In particular, if F = 0 and X0 = 0, Iδ,x0 ≍ (CB
loc)

−2Clocδ
−2 as δ → 0.

Proof. (i) is a direct consequence of [ACP20, Proposition 22], and (ii) is
shown in the proof of [ACP20, Proposition 2].

This lemma is sufficient to obtain the asymptotic properties of θ̂δ,x0 in
case F = 0 and X0 = 0. In order handle the full semilinear model, we need
higher regularity of X̃. However, in contrast to the spectral approach, we
can make use of higher Lp–type regularity in the spaces Hs,p(D) instead of
mere L2–type regularity. This is further explained in Remark 5.10 below. In
order to exploit Lp regularity, we have to modify Condition (Fs,η) as follows:

(F p
s,η) There is ϵ > 0 and a monotonous, locally bounded function g : [0,∞) →

[0,∞), such that for all Z ∈ Rp(s):

∥F (Z)∥Rp(s+η+ϵ−2) ≤ g
(
∥Z∥Rp(s)

)
. (5.16)

In the Markovian case F (X)(t) = F (Xt), (5.16) holds if

∥F (Z)∥s+η+ϵ−2,p ≲ g(∥Z∥s,p) (5.17)

for all Z ∈ Hs,p(D).3

3Condition (F p
s,η) in the form (5.17) is Assumption A from [ACP20].
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Proposition 5.4. Let s ∈ R, p ≥ 2 and η > 0. Assume that X0 ∈ Hs+η,p(D)

and X̄, X̃ ∈ Rp(s). If (F p
s,η) is true, then X̃ ∈ Rp(s+ η).

Proof. Verbatim as in Proposition 2.3, using the norm ∥·∥s,p instead of ∥·∥s.

It remains to understand the regularity of the linear process X̄. For p ≥ 2,
set s∗p := sup{s ∈ R | X̄ ∈ Rp(s) a.s.}, and further s∗∞ := infp≥2 s

∗
p, as well as

s∗ := s∗2. As in the previous chapters, we have s∗ = 1 + 2γ − d/2. This can
be seen as follows: As B∗(−∆)γ : L2(D) → L2(D) is a linear isomorphism
by assumption, we have that∫ T

0

∥∥(−∆)s/2etθ∆B
∥∥2
HS

dt = ∞ (5.18)

is true if and only if it is true for B replaced by (−∆)−γ , and this holds for
s ≥ 1+2γ− d/2. This proves s∗ ≤ 1+2γ− d/2, and the opposite inequality
is shown as in Lemma 2.7. It is clear that s∗p ≤ s∗ for all p ≥ 2 due to
Hs,p(D) ⊂ Hs,2(D) for s ∈ R, and therefore s∗∞ ≤ s∗. On the other hand,
we have the Sobolev embedding Hs,2(D) ⊂ Hs−d/2,p(D) for all s ∈ R, p ≥ 2,
and thus s∗∞ ≥ s∗ − d/2. So 0 ≤ s∗ − s∗∞ ≤ d/2 is the possible regularity gap
for the linear process X̄.

Lemma 5.5. If supk∈N ∥Φk∥L∞(D) < ∞, then s∗∞ = s∗.

The proof is given in Appendix B.2. The condition supk∈N ∥Φk∥L∞(D) <
∞ is true e.g. in d = 1, but in general, only a bound of the form ∥Φk∥L∞(D) ≲

λ
(d−1)/4
k can be given, and this bound cannot be improved without further

restrictions on D, see [Gri02]. Proposition 5.4 together with Lemma 5.5
yields the precise Lp–excess regularity of X̃:

Proposition 5.6. Let η > 0, s0 < s∗∞ such that (F p
s,η) is true for any

s0 ≤ s < s∗ and p ≥ 2. Let X ∈ R2(s0) and X0 ∈ Hs∗+η,p(D) for any p ≥ 2.
Then we have X ∈ Rp(s) and X̃ ∈ Rp(s + η) for all s < s∗∞ and p ≥ 2. In
particular, with

η∞ := η − (s∗ − s∗∞), (5.19)

we have X̃ ∈ Rp(s+ η∞) for all s < s∗, p ≥ 2.
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Proof. We distinguish the cases (s∗∞− s0) ≥ d/2 and (s∗∞− s0) < d/2. In the
former case, by using Proposition 5.4 iteratively, we have X ∈ R2(s) for all
s < s∗, and by the Sobolev embedding theorem, X ∈ Rp(s0) for any p ≥ 2.
Applying Proposition 5.4 a second time repeatedly yields X ∈ Rp(s) and
X̃ ∈ Rp(s+ η) for all s < s∗∞ and p ≥ 2, which implies the claim. In the case
(s∗∞ − s0) < d/2, we use a similar inductive argument: If for some p ≥ 2 it
holds that X ∈ Rp(s0), then a repeated application of Proposition 5.4 gives
X ∈ Rp(s) for any s < s∗∞ ≤ s∗p, and by the Sobolev embedding theorem, it
follows that X ∈ Rp′(s0) for any p < p′ < dp/(d− 2(s∗∞ − s0)). In particular,
there is a constant c > 1 such that for all p ≥ 2 we can choose p′ = p′(p) in
such a way that p′/p ≥ c. Repeating this step we obtain X ∈ Rp(s) for all
s < s∗∞ and p ≥ 2. A final application of Proposition 5.4 yields X̃ ∈ Rp(s+η)
for all s < s∗∞ and p ≥ 2, which implies the claim in this case, too.

The excess regularity of X̃ can be used to show that the terms related to
F and X̃ appearing in (5.11) are of lower order:

Lemma 5.7. Under the conditions from Proposition 5.6 and (LK), if η∞ > 0,
the following is true with η′ := η∞ ∧ (1 + d/4) and any ϵ > 0:

(i) It holds ∫ T

0

X̃∆K
δ,x0

(t)2dt ≲ δ−2+4γ+2(η′−ϵ),

and in particular∫ T

0

X∆K
δ,x0

(t)2dt ≍
∫ T

0

X̄∆K
δ,x0

(t)2dt ≍ Clocδ
−2+4γ . (5.20)

(ii) It holds∫ T

0

X∆K
δ,x0

(t) ⟨F (X)(t), Kδ,x0⟩L2(D) dt ≲ δ−2+4γ+(η′−ϵ). (5.21)

Proof. With K̃ as in (LK), i.e. K = (−∆)⌈γ⌉K̃, we first show that for any
q > 1 and r ≥ 0,

sup
0<δ≤1

∥∥∥(−∆)r/2K̃
∥∥∥
Lq(Dδ,x0

)
< ∞. (5.22)
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This is obvious for r ∈ 2N0, as (−∆)r/2K̃ has compact support in this case,
and in particular, sup0<δ≤1

∥∥∥(−∆)r/2K̃
∥∥∥
Lq(Dδ,x0

)
=
∥∥∥(−∆)r/2K̃

∥∥∥
Lq(Rd)

< ∞.

For general r ≥ 0, we use the Gagliardo–Nirenberg inequality [BM18] on the
reference domain D: For 0 < δ ≤ 1, with R := 2⌊r/2⌋ ∈ 2N0,∥∥∥(−∆)r/2K̃

∥∥∥
Lq(Dδ,x0

)
= δ

d
2
− d

q
+r
∥∥∥(−∆)r/2K̃δ,x0

∥∥∥
Lq(D)

≲ δ
d
2
− d

q
+r
∥∥∥(−∆)R/2K̃δ,x0

∥∥∥ 2−r+R
2

Lq(D)

∥∥∥(−∆)R/2+1K̃δ,x0

∥∥∥ r−R
2

Lq(D)

≲
∥∥∥(−∆)R/2K̃

∥∥∥ 2−r+R
2

Lq(Dδ,x0
)

∥∥∥(−∆)R/2+1K̃
∥∥∥ r−R

2

Lq(Dδ,x0
)

where we used (5.5) and Lemma 5.1 repeatedly. Consequently, using that
(5.22) is true for the exponents R and R + 2, we obtain that (5.22) is true
for all r ≥ 0.

Next, by choice of η′, we have η′ < 1 + d/2, thus 2γ + 2 − s∗ − η′ > 0,
and therefore ⌈γ⌉+ 1− (s+ η′)/2 > 0 for all s < s∗. Using (5.5) and (5.22),∥∥∥∥((−∆)1−(s+η′)/2K

)
δ,x0

∥∥∥∥
Lq(D)

= δ−
d
2
+ d

q

∥∥∥(−∆)⌈γ⌉+1−(s+η′)/2K̃
∥∥∥
Lq(Dδ,x0

)

≲ δ−
d
2
+ d

q . (5.23)

After these preparations, we can prove the statements of the lemma.

(i) Now let s < s∗ and p ≥ 2, with q = p/(p− 1) ≤ 2. By Proposition 5.6,
Lemma 5.1 and (5.23), we have for all s < s∗∫ T

0

X̃∆K
δ,x0

(t)2dt =

∫ T

0

〈
X̃t,∆Kδ,x0

〉2
L2(D)

dt

=

∫ T

0

〈
(−∆)(s+η′)/2X̃, (−∆)1−(s+η′)/2Kδ,x0

〉2
L2(D)

dt

≤ T sup
0≤t≤T

∥∥∥X̃∥∥∥2
s+η′,p

∥∥∥(−∆)1−(s+η′)/2Kδ,x0

∥∥∥2
Lq(D)

≲ δ−4+2(s+η′)

∥∥∥∥((−∆)1−(s+η′)/2K
)
δ,x0

∥∥∥∥2
Lq(D)

≲ δ−4+2(s+η′)−d+2d/q.
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Now, for any ϵ′ > 0, with s := s∗− ϵ′ = 1+2γ−d/2− ϵ′ and p := 2d/ϵ′,
such that 1− 1/q = 1/p = ϵ′/(2d), we have∫ T

0

X̃∆K
δ,x0

(t)2dt ≲ δ−2+4γ+2η′−2d(1−1/q)−2ϵ′ = δ−2+4γ+2η′−3ϵ′ ,

which implies the claim with ϵ = 3ϵ′/2, using Lemma 5.3.

(ii) Condition (F p
s,η) together with Proposition 5.6 gives F (X) ∈ Rp(s+η−

2) for all s < s∗∞ and p ≥ 2, which is the same as F (X) ∈ Rp(s+η∞−2)
for all s < s∗ and p ≥ 2. Let ϵ′ > 0, s = s∗ − ϵ′, p = 2d/ϵ′ and
q = p/(p− 1). Similar as in (i), we estimate∫ T

0

⟨F (X)(t), Kδ,x0⟩
2
L2(D) dt

=

∫ T

0

〈
(−∆)

s+η′−2
2 F (X)(t), (−∆)−

s+η′−2
2 Kδ,x0

〉2
L2(D)

dt

≲ T ∥F (X)∥2Rp(s+η′−2)

∥∥∥(−∆)1−
s+η′

2 Kδ,x0

∥∥∥2
Lq(D)

≲ δ−2+4γ+2η′−3ϵ′ .

Finally, an application of the Hölder inequality in time gives (5.21).

We can now state and prove the main result of this chapter:

Theorem 5.8. Let x0 ∈ D. Assume that (LB), (LK) and (LΨ) hold. Let
η > 0, s0 < s∗ such that (F p

s,η) is satisfied for all s0 ≤ s < s∗ and p ≥ 2. Let
a.s. X ∈ R2(s0) and X0 ∈ Hs∗+η,p(D) for all p ≥ 2. If η∞ = η−(s∗−s∗∞) > 0,
then the following is true:

(i) θ̂δ,x0 is a consistent estimator for θ, i.e. θ̂δ,x0

P−→ θ as δ → 0.

(ii) If η∞ > 1, then

δ−1
(
θ̂δ,x0 − θ

)
d−→ N (0,Σloc) , (5.24)
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where

Σloc =
θ
∥∥∥B∗

0,x0
(−∆0)

⌈γ⌉−γK̃
∥∥∥2
L2(Rd)

TΨ∆

(
(−∆0)⌈γ⌉−γK̃

) . (5.25)

In the case η∞ ≤ 1, it holds

δ−a
(
θ̂δ,x0 − θ

)
P−→ 0 (5.26)

for all a < η∞.

Proof. We use the representation of θ̂δ,x0 − θ as given in (5.11). First, we set
M

(δ)
T := C

−1/2
loc δ1−2γ

∫ T

0
X∆K

δ,x0
(t)dW δ,x0(t). Then ⟨M (δ)⟩T → 1 in probability

as δ → 0, and Theorem A.1 implies that M (δ)
T → N (0, 1) in distribution. An

application of Slutsky’s lemma together with Lemma 5.3 (ii) and Lemma 5.7
(i) gives

∥B∗Kδ,x0∥L2(D)

∫ T

0
X∆K

δ,x0
(t)dW δ,x0(t)∫ T

0
X∆K

δ,x0
(t)2dt

d−→ N (0,Σloc) .

Next, again by Lemma 5.7, for any ϵ > 0,∫ T

0
X∆K

δ,x0
(t) ⟨F (X)(t), Kδ,x0⟩L2(D) dt∫ T

0
X∆K

δ,x0
(t)2dt

≲ δη∞∧(1+d/4)−ϵ.

Using (5.11), this implies (ii). Finally, (i) is a consequence of (ii).

As an important example, if B = σ(−∆)−γ for some σ > 0 and γ ∈ N,
then we immediately obtain due to B0,x0Z = σZ for Z ∈ L2(Rd):

Σloc =
2θ
∥∥∥K̃∥∥∥2

L2(Rd)

T
∥∥∥∇K̃

∥∥∥2
L2(Rd)

. (5.27)

Example 5.9. The results from Theorem 5.8 can be applied to the models
from Section 2.4. For simplicity, we assume that s∗∞ = s∗ (which is true, for
example, in d = 1). In this case, the effective excess regularity η∞ coincides
with the optimal excess regularity η.
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(i) Linear Perturbations. If F (X) = c(−∆)r/2 for some c ∈ R, r < 2,
then (F p

s,η) is true for all s ∈ R, p ≥ 2 and η < 2 − r. Thus, if r < 1,
then θ̂δ,x0 is asymptotically normal as in (5.24). Otherwise, θ̂δ,x0 is
consistent as in (5.26). In particular, perturbations up to order 1 are
negligible, with first order perturbations being the critical case.

(ii) Reaction–Diffusion Equations. If F (X) = f(x), where f is either
a polynomial as in (2.40) or a bounded smooth function with bounded
derivatives of any order as in (2.41), then (F p

s,η) holds for any p ≥ 2,
s > d/p and η < 2. This can be seen verbatim as in Proposition
2.19, using the fact that Hs,p(D) is closed under multiplication if sp >
d (cf. [AF03, Theorem 4.39]) for the case of polynomial f , as well
as bounds on composition operators [AF92] for the case f ∈ C∞

b (R).
Consequently, θ̂δ,x0 is asymptotically normal as in (5.24).

(iii) Burgers Equations. In d = 1, if F (X) = −X∂xX = −∂x(X
2/2),

then exactly as in Lemma 2.22 (iii) it can be shown that (F p
s,η) is true

for p ≥ 2, s > 1/p and η < 1. In particular, θ̂δ,x0 is consistent as in
(5.26), i.e. δ−a(θ̂δ,x0 − θ) → 0 in probability for all a < 1. In fact, for
this particular model, it is possible to prove that the first term in (5.11),
representing the bias from neglecting the effect of F , converges to zero
in probability even with rate δ instead of δa for a < 1, which means
that asymptotic normality as in (5.24) transfers to θ̂δ,x0 for the one–
dimensional Burgers equation (see [ACP20, Theorem 11] for details).

Remark 5.10 (Lp–regularity in the spectral approach). Lp–regularity has
been a crucial tool in determining the excess regularity η of X̃ in the local
approach. It is a natural question to ask if Lp–regularity can improve the spec-
tral approach as well. In order to make the two approaches comparable, we
assume that a single Fourier mode of X (instead of the first N Fourier modes)
is observed in the spectral approach. For simplicity, let F (X) = (−∆)r, r < 2
and B = σ(−∆)−γ. The natural MLE–type estimator, neglecting information
on F , is given by

θ̂mode
N = −

∫ T

0
λ1+2γ
N x

(N)
t dx

(N)
t∫ T

0
λ2+2γ
N (x

(N)
t )2dt

= −
∫ T

0
x
(N)
t dx

(N)
t

λN

∫ T

0
(x

(N)
t )2dt

(5.28)

with x(N) = ⟨X,ΦN⟩L2(D) as before. This is the canonical analogon to θ̂linN
(with α = γ) for single mode observations, and it corresponds to θ̂δ,x0 if
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Kδ,x0 is replaced by ΦN . By (2.22) with respect to the linear operator A =
θ∆ + (−∆)r, together with Lemma A.2 (i) (setting X∗

k = λ1+γ
k x(k) therein

and taking into account Var
∫ T

0
(x

(k)
t )2dt ≲ λ−4γ−3

k , see e.g. [Lot09, Theorem
2.1] or [PS20, Lemma 4.1]), we have λ2+2γ

N

∫ T

0
(x

(N)
t )2dt ≍ (σ2TΛ/2θ)N2/d in

probability. In particular, if there is η′ > 0 such that

λ2γ
N

∫ T

0

⟨F (X)(t),ΦN⟩2L2(D) dt ≲ N
2
d
−2η′ , (5.29)

a decomposition as in (5.11) yields

If η′ > 1/d : N
1
d

(
θ̂mode
N − θ

)
d−→ N

(
0,

2θ

TΛ

)
, (5.30)

if η′ ≤ 1/d : Na
(
θ̂mode
N − θ

)
P−→ 0 for a < η′. (5.31)

We have that (F p
s,η) is true for any s ∈ R, p ≥ 2 and η < 2 − r, thus

F (X) ∈ Rp(s − r) for all s < s∗ and p ≥ 2 (if s∗∞ = s∗). Now, analogously
to the proof of Lemma 5.7, the Hölder inequality gives

λ2γ
N

∫ T

0

⟨F (X)(t),ΦN⟩2L2(D) dt ≲ N
2
d
+1− 2η

d
+ϵ ∥ΦN∥2Lq(D)

for all q > 1 and ϵ > 0, so with q = 2 we can choose η′ = η/d− 1/2− ϵ/2 in
(5.29). In particular, if η > 1 + 1/β = 1 + d/2, then η′ > 1/d, and θ̂mode

N is
asymptotically normal, in accordance with Theorem 2.11.

Now, in order to exploit higher Lp–regularity of X in the spectral ap-
proach, the term ∥ΦN∥Lq(D) has to converge to zero if N → ∞, with conver-
gence rate possibly depending on 1 ≤ q ≤ 2. By interpolation, it suffices to
understand the border case q = 1 in order to obtain a bound on the rate. But
in general, such convergence to zero does not hold: For example, if d = 1 and
D = [0, 1], we have ΦN(x) =

√
2 sin(Nπx), and ∥ΦN∥L1(D) = 2

√
2/π is inde-

pendent of N . For general domains, results from literature on L1–bounds for
the eigenvalues of the Laplacian [vdBHV15, Vog15] do not improve the triv-
ial estimate supN∈N ∥ΦN∥L1(D) < ∞ in terms of the convergence rate in N .
Even more, [Sog15, BS17] indicate that improved L1–bounds (along eigen-
value subsequences) on compact manifolds without boundary are related to
concentration of mass of the eigenfunctions along geodesics. 4

4Note the apparent asymmetry between the (optimal) bound ∥ΦN∥L∞(D) ≲ λ
(d−1)/4
N
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In contrast, ∥Kδ,x0∥Lq(D) ≲ δ−
d
2
+ d

q by (5.5) if K has compact support,
which improves the convergence rate in δ as q → 1.

Remark 5.11.

(i) If the linear process X̄ has optimal Lp–regularity, i.e. if s∗∞ = s∗, then
η∞ = η, and the convergence rate of θ̂δ,x0 in Theorem 5.8 is determined
directly by the excess regularity η coming from (F p

s,η).

(ii) In view of condition (LK), it is natural to consider also the case γ = 0.
Indeed, it is possible to include that case without further modification
as long as (5.1) is well-posed. This has been done in [ABJR21] in the
context of the stochastic Meinhardt model. For instance, the results
from [DPZ14, Chapter 7] show that in d = 1, reaction-diffusion equa-
tions driven by space-time white noise can be given a meaning in the
mild sense. If γ = 0, then condition (LK) is void, whereas for positive
γ, (LK) suggests that K approximates higher order derivatives of X
instead of point evaluations.

(iii) The convergence rate δ of θ̂δ,x0 can be recovered from the spectral ap-
proach: We can easily see how the asymptotic variance Σ from The-
orem 2.11 for the estimator θ̂fullN behaves if the domain D is replaced
by a shrunk domain D1/δ,x0. Σ depends linearly on Λ−1, and this con-
stant is characterized by λk ≍ Λk2/d. An explicit term for Λ can be
found e.g. in [Shu01, Section 13.4], and using the notation therein, it
holds Λ = V

−2/d
1 , where V1 depends linearly on |D|. It is clear that∣∣D1/δ,x0

∣∣ ∼ δd |D|. Consequently, Λ ∼ δ−2, and finally, Σ ∼ δ2. This is
in accordance with Theorem 5.8.

[Gri02] and the trivial bound ∥ΦN∥L1(D) ≲ 1. If the latter cannot be improved, this means
that it is not possible to recover ∥ΦN∥L2(D) ≡ 1 from interpolating the L1 and L∞ cases.
Indeed, as pointed out in [Gri92, SS07] (see also references therein), for p ≥ 2, optimal Lp–
bounds for (linear combinations of) ΦN do not simply follow from interpolation between
the L2 and L∞ cases.
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Chapter 6

Diffusivity Estimation for
Activator-Inhibitor Models

This chapter is an adaptation of material from [PFA+21].
We apply the theory of parameter estimation for semilinear SPDEs to

a particular test case from cell biology, concerning the dynamical behavior
of actin concentration in D. discoideum giant cells. The actin cytoskeleton
plays a crucial role in different processes such as motility of amoeboid cells
[BBPSP14]. In spite of its complex filamental structure, at the length scale
of the cell itself it may be reasonably approximated by a scalar field, repre-
senting concentration. Intracellular actin is capable of generating traveling
waves. In [FFAB20], this has been described by an SPDE of FitzHugh–
Nagumo type, which is coupled to a phase field representing the boundary of
the cell. In order to increase the spatial resolution of experimental data, it
is possible to artificially merge various cells to form a so-called giant cell, see
[GEW+14]. In particular, this allows to observe the spatiotemporal actin dy-
namics within a cell away from the cell boundary. In this case, the describing
model can be simplified by neglecting the phase field.

The reaction model employed in [FFAB20] in order to describe the actin
dynamics is a minimal model capable of generating traveling waves rather
than a detailed representation of the biochemical reaction pathway. Conse-
quently, it is natural to ask to what extent the true dynamics is described by
that model. In order to provide a first step towards answering that question,
we extend the theory of diffusivity estimation for semilinear SPDEs from
Chapter 2, including simultaneous estimation of reaction parameters. To
this end, we assume that the nonlinearity is given as a parametrized term.
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This can be interpreted as qualitative a priori knowledge on the behavior of
the reaction terms, without knowing the magnitude of the involved parame-
ters quantitatively. Based on these considerations, we compare the effective
diffusivity, given as the value of either of different related estimators, on
simulated and experimental data, in order to understand the effects of the
reaction model.

In Section 6.1, we discuss joint diffusivity and reaction parameter esti-
mation for semilinear SPDEs, extending the results from Chapter 2. We put
special emphasis on the statistically linear case, i.e. when the nonlinearity
depends linearly on its parameters. Finally, we state and discuss the regu-
larity properties of an activator-inhibitor model, which is closely related to
[FFAB20]. In Section 6.2, we apply the estimation theory from Section 6.1
to simulated and real data described by that activator-inhibitor model.

6.1 Joint Diffusivity and Reaction Parameter
Estimation

6.1.1 The General Case

We extend the model from Chapter 2 by allowing the nonlinear term F to
depend on additional parameters θ1, . . . , θK , K > 0, which we call reaction
parameters in the sequel:

dXt = θ0AXtdt+ Fθ1:K (X)(t)dt+B(Xt)dWt (6.1)

with initial condition X0, where we write θ1:K = (θ1, . . . , θK) for short. Fur-
ther, we write θ = (θ0, . . . , θK) for the complete parameter vector. We fix the
parameter space Θ ⊂ RK+1, which encodes our usual standing assumption
θ0 > 0, as well as possible restrictions on the reaction parameters coming
from the bifurcation structure of (6.1) together with a priori knowledge on
the dynamical regime. It is possible that an estimator for θ takes values
outside Θ, in that case it should be considered void. The dispersion operator
B is assumed to satisfy (Nγ

η ) for some γ > d/4 and η > 0. In order to take
the reaction parameters into account when controlling the nonlinearity in the
drift term, we have to extend condition (Fs,η):
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(F par
s,η ) There are continuous functions g : [0,∞) → [0,∞) and c : RK → [0,∞)

and there is ϵ > 0 such that for Z ∈ R(s):

∥Fθ1:K (Z)∥R(s+η+ϵ−2) ≤ c(θ1, . . . , θK)g
(
∥Z∥R(s)

)
. (6.2)

W.l.o.g. we always assume that g is increasing. The non-Markovian
nature of F is crucial in our main example, as explained in Section 6.1.3.

Setting formally B = σ(−A)−γ , by [LS77, Section 7.6.4], the log-likelihood
for XN is heuristically given by

ln
dPN,T

θ

dPN,T

θ̄

=
1

σ2

∫ T

0

〈
(θ0 − θ̄0)AX

N
t , (−A)2γdXN

t

〉
+

1

σ2

∫ T

0

〈
PNFθ1:K (X)(t)− PNFθ̄1:K (X)(t), (−A)2γdXN

t

〉
− 1

2σ2

∫ T

0

〈
(θ0 − θ̄0)AX

N
t + PNFθ1:K (X)(t)− PNFθ̄1:K (X)(t),

(−A)2γ
(
(θ0 + θ̄0)AX

N
t + PNFθ1:K (X)(t) + PNFθ̄1:K (X)(t)

)〉
dt,

where θ̄ = (θ̄0, . . . , θ̄K) ∈ Θ is an arbitrary reference parameter.
Maximizing this term for θ0, . . . , θK simultaneously leads to the corre-

sponding likelihood equations

−
∫ T

0

〈
(−A)1+2αXN

t , dXN
t

〉
=

∫ T

0

〈
(−A)1+2αXN

t , θ0(−A)XN
t − PNFθ1:K (X)(t)

〉
dt,∫ T

0

〈
∂θiPNFθ1:K (X)(t), (−A)2αdXN

t

〉
= −

∫ T

0

〈
(−A)2α∂θiPNFθ1:K (X)(t), θ0(−A)XN

t − PNFθ1:K (X)(t)
〉
dt

for i = 1, . . . , K, where as before we substituted γ by a free parameter
α. Without further mentioning it, we assume that there is a solution to
these equations. We fix any solution and call it a maximum likelihood–type
estimator θ̂N for our problem, with components θ̂N0 , . . . , θ̂

N
K . In general, the

likelihood equations cannot be solved explicitly.
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Now, depending on the specific form of F as well as the eigenvalue asymp-
totics of A, it may happen that not all reaction parameters (if any) are identi-
fiable in finite time. This means that θ̂Ni does not necessarily converge to θi if
N → ∞ if i ≥ 1. Therefore, we put our main focus on diffusivity estimation,
i.e. identifying θ0, and analyze the impact of the reaction parameters on that
problem. In order to control θ̂N1:K when studying the asymptotics of θ̂N0 , it
suffices that the reaction parameter estimators are bounded in probability (or
tight), i.e. supN∈N P(|θ̂Ni | > M) → 0 for M → ∞ and all 1 ≤ i ≤ K. From
the likelihood equations it is clear that θ̂N0 can be written as

θ̂N0 = −
∫ T

0

〈
(−A)1+2αXN

t , dXN
t

〉∫ T

0
∥(−A)1+αXN

t ∥2H dt
+

∫ T

0

〈
(−A)1+2αXN

t , PNFθ̂N1:K
(X)(t)

〉
dt∫ T

0
∥(−A)1+αXN

t ∥2H dt
,

(6.3)

even if this is not explicit due to the presence of θ̂N1:K .

Theorem 6.1. Let γ > 1/(2β) and further s0 ≥ 0, η > 0 ∨ (1/β − 1) such
that (Nγ

η ) and (F par
s,η ) for s0 ≤ s < s∗ are true. Assume X0 ∈ Hs∗+η and

X ∈ R(s0). Let α > γ − 1/4, and assume that (θ̂Ni )N∈N are bounded in
probability for 1 ≤ i ≤ K. Then:

(i) If η > 1 + 1/β, then θ̂N0 is asymptotically normal as in (2.29).

(ii) If η ≤ 1 + 1/β, then θ̂N0 is consistent in probability with rate N−a,
a < βη/2, as in (3.70).

Proof. By Theorem 3.22, the claim is true with θ̂N0 replaced by θ̂linN given by
(2.26). Thus, by (6.3) it suffices to control the bias term involving Fθ̂N1:K

(X).
As in the proof of Theorem 2.11, we see that by means of (F par

s,η ),∫ T

0

〈
(−A)1+2αXN

t , PNFθ̂N1:K
(X)(t)

〉
dt ≪p c(θ̂

N
1:K)N

1+β(2α−2γ+1−η/2),

and consequently, for (i),

N
1+β
2

∫ T

0

〈
(−A)1+2αXN

t , PNFθ̂N1:K
(X)(t)

〉
dt∫ T

0
∥(−A)1+αXN

t ∥2H dt
≪p c(θ̂

N
1:K)N

β(1+1/β−η)/2

almost surely. The right-hand side converges to zero in probability because
η > 1 + 1/β and θ̂N1:K are bounded in probability. This implies (i). The case
(ii) is similar.
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6.1.2 The Statistically Linear Case

In this section, let F depend linearly on its parameters:1

Fθ1:K (X) = F ∗(X) +
K∑
i=1

θiFi(X) (6.4)

for functions F1, . . . , FK , F
∗ : C(0, T ;H) ⊃ D(F ) → L1(0, T ;H). We set

Dα(F ) := {Z ∈ D(F ) | F1(Z), . . . , FK(Z) ∈ L2(0, T ;H2α)}. Identifiability of
θ1, . . . , θK is ensured by a non-degeneracy condition:

(Iα) The terms F1(Z), . . . , FK(Z) are linearly independent in L2(0, T ;H2α)
for every Z ∈ Dα(F ) which is not constant in t ∈ [0, T ].

As a consequence of (Iα),∫ T

0

∥(−A)αFi(X)(t)∥2H dt > 0 (6.5)

for i = 1, . . . , K. In order to unify notation in the sequel, we define

F0(X) := AX. (6.6)

The maximum likelihood equations simplify to

A
(α)
N (X)θ̂N = b

(α)
N (X), (6.7)

where

A
(α)
N (X)i,j =

∫ T

0

⟨(−A)αPNFi(X)(t), (−A)αPNFj(X)(t)⟩ dt,

b
(α)
N (X)i = −

∫ T

0

〈
(−A)2αPNFi(X)(t), PNF

∗(X)(t)
〉
dt

+

∫ T

0

〈
(−A)2αPNFi(X)(t), dXN

t

〉
.

1A comparable setup has been considered in [Hue93, Chapter 3] for linear SPDEs in
the spectral approach with similar arguments as given below, and in [DMPD00, Section
3] for semilinear SPDEs in the large time regime.
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In particular,

A
(α)
N (X)0,0 =

∫ T

0

∥∥(−A)1+αXN
t

∥∥2
H
dt. (6.8)

Further, it is immediate that for i, j = 0, . . . , K:∣∣∣A(α)
N (X)i,j

∣∣∣ ≤√A
(α)
N (X)i,iA

(α)
N (X)j,j. (6.9)

In order to connect to Theorem 6.1 and prove that the reaction pa-
rameter estimators θ̂1:K are bounded in probability, we have to control the
rate of the determinant of A(α)

N (X), whose square root is the volume of the
(K + 1)-dimensional parallelepiped spanned by PNF0(X), . . . PNFK(X) in
L2(0, T ;H2α). In order to do so, we choose α in such a way that PNF0(X) =
AXN diverges in L2(0, T ;H2α), while PNF1(X), . . . , PNFK(X) converge. This
way, AXN gets asymptotically orthogonal to the latter terms and determines
the rate of volume growth. This is formalized in the next lemma.

Lemma 6.2. Let s0 ≥ 0, η > 0 such that X ∈ R(s0), X0 ∈ Hs∗+η a.s.
and (Nγ

η ) as well as (Fs,η) for s0 ≤ s < s∗ are true. Let α ∈ R such that
γ − (1 + 1/β)/2 < α < γ + (η − 1− 1/β)/2. Under condition (Iα), there are
N0 ∈ N and c, C > 0 such that

c

∫ T

0

∥∥(−A)1+αXN
t

∥∥2
H
dt ≤

∣∣∣det(A(α)
N (X)

)∣∣∣ ≤ C

∫ T

0

∥∥(−A)1+αXN
t

∥∥2
H
dt

uniformly in N ≥ N0, almost surely. In particular,∣∣∣det(A(α)
N (X)

)∣∣∣ ∼ N1+β(2α−2γ+1). (6.10)

Proof. First, α < γ + (η− 1− 1/β)/2 implies 2α < s∗ + η− 2, thus Fi(X) ∈
R(2α) for i = 1, . . . , K. Thus, for these i, we have limN→∞ A

(α)
N (X)i,i =∫ T

0
∥(−A)αFi(X)(t)∥2H dt < ∞. In particular, A

(α)
N (X)i,i are positive and

finite for i = 1, . . . , K and large enough N . Using (6.9), we have∣∣∣det(A(α)
N (X)

)∣∣∣ ≤ (K + 1)!
K∏
i=0

A
(α)
N (X)i,i

≲ A
(α)
N (X)0,0 =

∫ T

0

∥∥(−A)1+αXN
t

∥∥2
H
dt.

122



For brevity, we use the notation ⟨·, ·⟩α for the scalar product on L2(0, T ;H2α)
and ∥·∥α for the corresponding norm. We will prove that

lim inf
N→∞

∣∣∣∣∣det
((〈

PNFi(X)

∥PNFi(X)∥α
,

PNFj(X)

∥PNFj(X)∥α

〉
α

)
i,j=0,...,K

)∣∣∣∣∣ > 0. (6.11)

First note that by condition (Iα), this is true if the matrix in (6.11) is sub-
stituted by its (0, 0)-minor, i.e. such that 1 ≤ i, j ≤ K.

Let ϵ > 0, let M ∈ N such that ∥(I − PM)Fi(X)∥α < ϵ ∥Fi(X)∥ for
i = 1, . . . , K. This is possible because PNFi(X) → Fi(X) in L2(0, T ;H2α).
Then for i = 1, . . . , K and N > M :〈

PNF0(X)

∥PNF0(X)∥α
,

PNFi(X)

∥PNFi(X)∥α

〉
α

=

〈
PMF0(X)

∥PNF0(X)∥α
,

PMFi(X)

∥PNFi(X)∥α

〉
α

+

〈
(PN − PM)F0(X)

∥PNF0(X)∥α
,
(PN − PM)Fi(X)

∥PNFi(X)∥α

〉
α

.

Taking into account ∥PNFi(X)∥α → ∥Fi(X)∥α and ∥PNF0(X)∥α → ∞ in
the first term as well as the Cauchy-Schwarz inequality for the second term,

lim sup
N→∞

∣∣∣∣〈 PNF0(X)

∥PNF0(X)∥α
,

PNFi(X)

∥PNFi(X)∥α

〉
α

∣∣∣∣ ≤ lim sup
N→∞

∥(PN − PM)Fi(X)∥α
∥PNFi(X)∥α

≤ ∥(I − PM)Fi(X)∥α
∥Fi(X)∥α

< ϵ.

As ϵ > 0 is arbitrary, we see that the (0, i)-entry of the matrix in (6.11)
converges to zero for i ≥ 1. Expanding the determinant in (6.11) in the first
column and using the non-degeneracy of the (0, 0)-minor, we conclude that
(6.11) is true.

If DN is the diagonal matrix with i-th diagonal entry A
(α)
N (X)i,i, (6.11) is

equivalent to lim infN→∞

∣∣∣det(D−1/2
N A

(α)
N (X)D

−1/2
N )

∣∣∣ > 0. In particular,∫ T

0

∥∥(−A)1+αXN
t

∥∥2
H
dt ≲ |det (DN)| ≲

∣∣∣det(A(α)
N (X)

)∣∣∣ . (6.12)

Finally, (2.20) implies (6.10), and all statement in the lemma are proven.

Proposition 6.3. Let s0 ≥ 0, η > 0 such that X ∈ R(s0), X0 ∈ Hs∗+η

a.s. and (Nγ
η ) as well as (Fs,η) for every s0 ≤ s < s∗ hold. Let α ∈ R
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with γ − (1 + 1/β)/4 < α < γ + (η − 1 − 1/β)/4 ∨ (η − 1 − 1/β)/2 and
γ−1/4 < α ≤ γ. Under condition (Iα), the sequences (θ̂Ni )N∈N, i = 1, . . . , K
are bounded in probability.

Proof. First note that every admissible α ∈ R is also admissible in Lemma
6.2. W.l.o.g. we can restrict to the case B(X) ≡ σ(−A)−γ due to α > γ−1/4,
as explained in Theorem 3.22. Define

b̄
(α)
N (X)i := σ

∫ T

0

〈
(−A)2α−γPNFi(X)(t), dWN

t

〉
.

By Lemma 6.2, A(α)
N (X) is invertible for all N ≥ N0. Plugging in the dynam-

ics of X into the stochastic integral appearing in each component of b(α)N (X),
it is immediate that

θ̂N − θ = A
(α)
N (X)−1b̄

(α)
N (X). (6.13)

For simplicity of notation, denote the entries of A(α)
N (X) by ai,j, the entries of

A
(α)
N (X)−1 by ai,j and the entries of b̄(α)N (X) by b̄i, i, j = 0, . . . , K. All terms

implicitly depend on N . W.l.o.g. assume that ai,i > 0 for i = 0, . . . , K,
which is guaranteed by (Iα) for large enough N . Then the i-th component
of θ̂N − θ reads as

θ̂Ni − θi =
K∑
j=0

ai,j b̄j =
1

det
(
A

(α)
N (X)

) K∑
j=0

b̄j(−1)i+j det (Aj,i) ,

where Aj,i is the matrix obtained from erasing the j-th row and the i-th
column in A

(α)
N (X). By means of ai,j ≤

√
ai,iaj,j,

∣∣∣θ̂Ni − θi

∣∣∣ ≤ 1∣∣∣det(A(α)
N (X)

)∣∣∣
K∑
j=0

∣∣b̄j∣∣ K!
√
ai,iaj,j

K∏
ℓ=0

|aℓ,ℓ|

≲
K∑
j=0

∣∣b̄j∣∣
√
ai,iaj,j

,

where we have used Lemma 6.2. Next, α < γ + (η − 1 − 1/β)/4 implies
Fj(X) ∈ R(4α − 2γ + ϵ) for some ϵ > 0. By Lemma 2.6, limN→∞

∣∣b̄j∣∣ < ∞
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a.s. for j = 1, . . . , K. Thus, for these j, b̄j/
√
aj,j is bounded almost surely

and thus in probability. Finally, taking into account α > γ − (1 + 1/β)/4,

Nβ(γ−α) b̄0√
a0,0

= σNβ(γ−α)

√√√√∫ T

0
∥(−A)1+2α−γXN

t ∥2H dt∫ T

0
∥(−A)1+αXN

t ∥2H dt

×
∫ T

0

〈
(−A)1+2α−γXN

t , dWN
t

〉√∫ T

0
∥(−A)1+2α−γXN

t ∥2H dt
,

which converges to a normal distribution by (2.20) together with the choice
of α > γ− (1+1/β)/4, Theorem A.1, and the Slutsky lemma. Consequently,
as α ≤ γ, we see that b̄0/

√
a0,0 is bounded in probability, too. In total, for

i = 1, . . . , K, |θ̂Ni − θi| is bounded a.s. by the sum of random variables that
are bounded in probability, so (θ̂Ni )N∈N itself is bounded in probability.

In particular, consider the case A = ∆ in dimension d ≤ 2, where F is
a reaction term that satisfies (F par

s,η ) for all η < 2. Combining Theorem 6.1
with Proposition 6.3, we obtain:

Theorem 6.4. Let d ≤ 2, γ > d/4, s0 ≥ 0 such that (Nγ
η ) and (F par

s,η ) hold
for s0 ≤ s < s∗ and 0 < η < 2. Let a.s. X0 ∈ Hs∗+2 and X ∈ R(s0).

(i) In d = 1, let γ − 1/4 < α ≤ γ such that (Iα) holds. Then θ̂N0 is
asymptotically normal as in (2.29).

(ii) In d = 2, let γ − 1/4 < α < γ such that (Iα) holds. Then θ̂N0 converges
in probability to θ0 with rate N−a for every a < 1.

Remark 6.5. The condition on α can be relaxed. For example, if B =
σ(−A)−γ, only α > γ − (1 + d/2)/4 is needed, and a similar result for di-
mension d = 3 can be stated, cf. Remark 3.23.

Theorem 6.4 is applicable to the activator-inhibitor model explained in
the next section.
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6.1.3 A Model of FitzHugh–Nagumo Type

For L1, . . . , Ld > 0, let D = [0, L1] × · · · × [0, Ld] ⊂ Rd a bounded domain.
Motivated by [FFAB20], we consider an activator–inhibitor model of the form

dUt =
(
DU∆Ut + k1Ut(u0 − Ut)(Ut − u0a(∥Ut∥L2(D)))− k2Vt

)
dt+BdWt,

(6.14)
dVt = (DV∆Vt + ϵ(bUt − Vt)) dt, (6.15)

together with initial conditions U0, V0 and periodic boundary conditions.
Consequently, in this setting, the state space is given by H := L2(D), and
H1 = W̄ 1,2(D) = {u ∈ W 1,2(D) |

∫
D udx = 0}. Here and in the sequel we

consider only the case B = σ(−∆)−γ for σ > 0. The parameters DU , DV > 0
are the diffusivity constants for the activator U and inhibitor V , resp. The
parameters k1, k2, u0, ϵ, b are supposed to be positive. Finally, a : R → R
is a bounded continuously differentiable function with bounded derivative.
The boundedness of a is not essential and can be modeled in practice with
a cutoff. For constant a, this is the spatially extended FitzHugh–Nagumo
model. We mention that a careful choice of the function a can have a sta-
bilizing effect on the dynamics. We also introduce an additional parameter
ā ∈ (0, 1), which will describe the effective long–time average of a(∥U∥). The
initial conditions are assumed to be sufficiently regular, i.e. E[∥U0∥ps∗ ] < ∞,
E[∥V0∥ps∗+2] < ∞ for all p ≥ 2 and s∗ = 1+2γ−d/2. This model is well-posed
in dimension d ≤ 3:

Proposition 6.6. Let d ≤ 3 and γ > d/4 + 1/2. Then there exists a unique
solution (U, V ) to (6.14), (6.15) with U ∈ RE(s) and V ∈ RE(s+ 2) for any
s < s∗.

The proof is given in Appendix B.3.
This model is used to describe cell data in Section 6.2, where we assume

that the observation X is given by the activator concentration X = U . The
activator dynamics in this model can be reduced to (6.1) as follows: First,
with the variation of constants formula, V is determined by U via

Vt = et(DV ∆−ϵI)V0 + ϵb

∫ t

0

e(t−r)(DV ∆−ϵI)Urdr, (6.16)

where I is the identity operator acting on L2(D) and t 7→ et(DV ∆−ϵI) is the
semigroup generated by DV∆ − ϵI. For simplicity, we assume V0 = 0 here
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and in the sequel. Now, the nonlinearity F is given by

Fθ1,θ2,θ3(X)(t) = θ1F1(Xt) + θ2F2(Xt) + θ3F3(X)(t), (6.17)

where

θ1 = k1u0ā, θ2 = k1, θ3 = k2ϵb, (6.18)

and

F1(Xt) = −
a(∥Xt∥L2(D))

ā
Xt(u0 −Xt), (6.19)

F2(Xt) = X2
t (u0 −Xt), (6.20)

F3(X)(t) = −
∫ t

0

e(t−r)(DV ∆−ϵI)Xrdr. (6.21)

This matches the statistically linear case (6.4) with F ∗ = 0. Note that F3

acts on the trajectory of X, such that the dynamics of X is not Markovian,
even if the joint dynamics of (U, V ) is Markovian. Finally, θ0 = DU is the
diffusivity of the activator.

6.2 Application to Cell Data
Next, we apply the theory of joint diffusivity and reaction parameter estima-
tion to simulated and real giant cell data. Our main assumption is that the
data is generated by the FitzHugh–Nagumo model from Section 6.1.3. Why
this is certainly the case for the numerical simulation (up to a discretization
error), it is less clear for data coming from microscopy observation.

As a first approximation, when estimating parameters of the process, we
always assume that the function a is constant, a ≡ ā, where the latter value
is known or unknown. In this case, F1 is replaced by

F̃1(Xt) = −Xt(u0 −Xt). (6.22)

For simulated data, this models a misspecification of the true generating dy-
namics. However, this is not severe, as a(∥Xt∥L2(D)) tends to oscillate around
its effective value. In this sense, if the real data is modeled accurately by
the FitzHugh–Nagumo model from Section 6.1.3, this additional assumption
will have little impact.

127



In order to compare the effect of different model assumptions on diffu-
sivity estimation, we construct a hierarchy of estimators, starting from the
purely linear case and taking into account an increasing number of features
from the FitzHugh–Nagumo model. The assumptions displayed here refer to
the description of the data used to perform parameter estimation, not the
generating process itself.

• θ̂lin,N0 is the estimator for θ0 coming from the assumption of a purely
linear model, i.e. a stochastic heat equation. In this case, F = 0, and
there are no other drift parameters to be estimated.

• θ̂pol,N0 is the diffusivity estimator based on a stochastic Schlögl (or
Nagumo) model [Sch72], i.e.

F (X) = k1X(u0 −X)(X − āu0)

= θ1F̃1(X) + θ2F2(X),

where both reaction parameters θ1 and θ2 are assumed to be known.
This model is capable of generating spatially extending phase transi-
tions for the concentration of X, and it arises formally from taking
ϵ → 0 in the stochastic FitzHugh–Nagumo model.

• θ̂full,N0 is the diffusivity estimator under the assumption of a full FitzHugh–
Nagumo model, i.e.

F (X) = k1X(u0 −X)(X − āu0)− k2ϵb

∫ ·

0

e( · −r)(DV ∆−ϵI)Xrdr

= θ1F̃1(X) + θ2F2(X) + θ3F3(X),

This model can generate traveling waves as observed in the cell data.
Again, all reaction parameters are assumed to be known.

While θ̂full,N0 incorporates the full model, the assumption of known re-
action parameters will be too strong. We further relax this assumption by
estimating an increasing number of reaction parameters simultaneously:

• θ̂2,N0 is the diffusivity estimator based on the full FitzHugh–Nagumo
model as θ̂full,N0 , but with unknown θ1.

• θ̂3,N0 additionally treats θ2 as unknown.

128



• θ̂4,N0 treats all reaction parameters θ1, θ2, θ3 as unknown.

The superscript denotes the number of unknown parameters, including the
diffusivity θ0. Thus, θ̂4,N0 is an estimator for θ0 which uses qualitative, but
little quantitative knowledge on the generating process. While all estimators
are consistent with optimal rate as N → ∞ by Theorem 6.4, their perfor-
mance in the non-asymptotic setting may vary strongly.

For all estimators we have described here, we set α = 0. This is reason-
able if the driving noise of the activator component is close to being white
noise.

The linear estimator θ̂lin,N0 is the same as θ̂linN from Chapter 2, and it is
given by (2.26). In contrast to the other estimators considered here, it is scale
invariant in the sense that for any c > 0, the substitution X 7→ cX leaves
the resulting estimator θ̂lin,N0 invariant. It is clear that this invariance does
not hold if nonlinearities are taken into account. While the remaining esti-
mators use detailed information on the nonlinear model, their performance
depends on a careful calibration of the intensity of the input data in order
to match the fixed points of the third order polynomial in the reaction term.
In fact, this is a source of additional uncertainty. While the advantages of a
good reaction model clearly outweighs the benefit from scale invariance for
simulated data, as we will see in Section 6.2.1, this is less clear for real data,
where the reaction model may not fully capture the underlying dynamics,
see Section 6.2.2.

In this section, we work on two-dimensional rectangular domains of the
form D = [0, L1] × [0, L2] with L1, L2 > 0. In particular, the eigenfunctions
in H of −∆ with periodic boundary conditions are given by Φk,ℓ(x1, x2) =
φk(x1/L1)φℓ(x2/L2) for (k, ℓ) ∈ Z2, where φk(x) = cos(2πkx) for k ≤ 0
and φk(x) = sin(2πkx) for k > 0. The eigenvalues are given by λk,ℓ =
4π2(k2/L2

1 + ℓ2/L2
2). As before, we choose a reordering r : N → Z2\{0} such

that λN = λr(N) is increasing, with corresponding eigenfunction ΦN = Φr(N),
where we exclude the case λ0,0 = 0.

6.2.1 Evaluation of Simulated Data

We simulate the system (6.14), (6.15) on a two-dimensional square with
side length L = 75 and periodic boundary conditions, starting from zero
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Figure 6.1: Performance of different diffusivity estimators on a numerical
simulation as N gets large. Solid black line is plotted at the true value of
θ0 = 1× 10−13 m, dashed black line is plotted at zero. We restrict to N ≥ 25
in order to avoid artifacts.

initial conditions and with θ0 = DU = 0.1. We use an explicit finite
difference scheme with spatial and temporal increment ∆x = 0.375 and
∆t = 0.01, respectively. In order to mitigate the impact of the initial condi-
tions, we observe every 100th frame of the simulation in the shifted interval
[T0, T1), where T0 = 500 and T1 = 700. The remaining drift parameters are
DV = 0.02, k1 = k2 = 1, u0 = 1, ϵ = 0.02, b = 0.2. In the noise, we set γ = 0
and σ = 0.1. The unstable zero of the reaction potential is determined by
a(z) = 0.5− b+0.5(z/(0.33u0L

2)−1). In order to compare the simulation to
real data, the unit length and unit time in these specifications are interpreted
as 1µm and 1 s, respectively.

In Figure 6.1 (top left), the performance of θ̂lin,N0 , θ̂pol,N0 and θ̂full,N0 with
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ā = 0.1 is compared. The linear estimator severely underestimates the true
diffusivity. This can be explained as follows: The data exhibits steep con-
centration gradients at the wave fronts, which are interpreted by θ̂lin,N0 as
coming from low diffusive forcing. In contrast, the estimator θ̂pol,N0 , which
takes into account the bistable polynomial from the reaction term, heavily
overestimates the true value of θ0. As an explanation, while this estimator
is able to account for the phase transition at the wave front, the concentra-
tion decay due to the inhibitor in the data is interpreted as fast diffusion.
Finally, θ̂full,N0 performs best of these three estimators, incorporating knowl-
edge on the full reaction model. Note, however, that in the simulation, a is
not constant, such that even θ̂full,N0 does not have perfect information on the
dynamics of X. Rather, a(∥Xt∥L2(D)) oscillates around a value slightly larger
than 0.15 in the simulation. Figure 6.1 (top right) shows the sensitivity of
θ̂full,N0 to ā. Different a priori assumptions on ā have a large impact on the
value of the estimator, even for large N . In contrast, Figure 6.1 (bottom left)
shows the performance of the estimators θ̂2,N0 , θ̂3,N0 and θ̂4,N0 , which treat the
reaction parameters as unknown. All of them determine the true value of θ0
rapidly, even if a is misspecified in their description of the dynamics.

Apart from the form of the nonlinearity F , the behavior of X at the
boundary impacts the performance of the estimators. In Figure 6.1 (bottom
right), we evaluate θ̂2,N0 on the original domain D of 200 × 200 pixels, on
the restriction of X to a subdomain of 75× 75 pixels and its periodification,
as described below, on a square of 150 × 150 pixels. When evaluated on a
subdomain instead of D, the estimate deteriorates. A possible explanation
is given as follows: The assumption of periodic boundary conditions on the
subdomain leads to discontinuities of X at its boundary. As before, these
discontinuities can be interpreted as steep gradients, which the diffusivity
estimators translates into low diffusivity present in the data.

As a remedy, we use a hands-on approach and periodify the data in the
sense that we take four copies of the data, mirror them on both coordinate
axes and glue them together in such a way that the resulting field is contin-
uous and fills a square with double side length compared to D, with periodic
boundary conditions. This way, we avoid the discontinuities, but the result-
ing field still does not satisfy the dynamics of X at the boundaries of the
original domain D. Further, due to the introduced redundancies and change
in spatial extension, the estimators based on the original and periodified data
should be compared for different values of N .
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While periodification seems to be a natural ad-hoc approach to deal with
the difficulties arising at the boundary, its performance will depend on the
specific situation, and it should be used with care. In order to understand
its performance better, a systematic study is needed.
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Figure 6.2: Comparison of (left) θ̂lin,N0 and (right) θ̂2,N0 for different noise
intensity levels. We restrict to N ≥ 25 in both panels. As before, the solid
black line is plotted at the true value θ0 = 1× 10−13 m, and the dashed black
line is plotted at zero.

In Figure 6.2, the effect of changing the noise intensity σ on diffusivity
estimation is shown. We simulate additional trajectories with σ = 0.05
and σ = 0.2, on which θ̂lin,N0 and θ̂2,N0 are evaluated. The former estimator is
agnostic to the reaction model, whereas the latter includes the full FitzHugh–
Nagumo model. While θ̂2,N0 performs well regardless of the noise intensity,
the behavior of θ̂lin,N0 is heavily influenced by the noise level, with large noise
intensity leading to better results. In this sense, a large noise intensity hides
the effect of the nonlinear term. This is in accordance with the Monte–Carlo
simulation for the stochastic Allen–Cahn equation in Section 2.5. We note
that for σ = 0.2, the simulation is no longer capable of generating traveling
waves due to large fluctuations in the driving noise.
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Figure 6.3: (top row) Performance of θ̂lin,N0 on spatially smoothed obser-
vations. (bottom row) Performance of different diffusivity estimators on
the data, without spatial smoothing. The data is considered (left column)
without and (right column) with periodification. Dashed line is plotted at
zero. As before, we restrict to N ≥ 25 in all panels.

6.2.2 Evaluation of Real Data

We first describe the data we are working with. See [PFA+21, Appendix B]
for a description of the experimental setup.2 Each observation consists of a
sequence of rectangular frames of varying length, resolution and aspect ratio,
describing the observed intensity of an actin marker within a D. discoideum
giant cell. The regions considered lie completely inside the cell, i.e. no cell
boundaries appear in the data. The concentration of the actin marker is
given by grey values ranging from 0 to 255 at each pixel. When evaluating
the data, this intensity is standardized to the interval [0, 1], such that absence

2The giant cell data used in this chapter has been provided by Sven Flemming.

133



of the activator and the maximal activator intensity match the stable fixed
points 0 and u0 = 1, respectively.3 As the data exhibits traveling waves, it
is assumed that the actin concentration (or actin marker concentration) can
be described by (6.14), (6.15).

In this section, we estimate the diffusivity on a single giant cell observa-
tion. The analysis of a population of cells is postponed to Section 6.2.3.

As a first consistency check, we consider the behavior of the data set un-
der convolution. For k ∈ L1(D), let Tk : L2(D) → L2(D) be the convolution
operator given by (Tkf)(y) =

∫
D k(y − x)f(x)dx, where k and f are identi-

fied with their periodic continuation. It is well-known that ∆ ◦ Tk = Tk ◦∆.
In particular, if X is generated by a (stochastic, perturbed) heat equation
with (homogeneous and isotropic) diffusivity θ0, the same is true for TkX,
although the structure of the nonlinear term and the noise changes. Thus, if
the describing model is reasonable, it is to expect that the estimated diffu-
sivity of TkX is close to that of X. We use a family of kernels k = k(σf ) for
σf > 0, which are constructed as a Gaussian density with standard deviation
σf , truncated to the rectangle [−L1/2, L1/2]× [−L2/2, L2/2] and normed in
L1(D). We use the standard deviation σf = 1× 10−7m and σf = 2× 10−7m.
The performance of θ̂lin,N0 on data smoothed with k(σf ) is shown in Figure
6.3 (top left) without periodification, and in Figure 6.3 (top right) for the
periodified data. While not in perfect alignment, the estimator graphs are
very close. For the data without periodification, the decrease of θ̂lin,N0 in
N is slightly more highlighted. For the periodified data, which cannot be
expected to satisfy (6.14), (6.15) on the boundaries of the four sub-patches
of its enlarged domain, the graphs of the estimators are nonetheless almost
indistinguishable. In this sense, periodification seems to retain convolution
invariance. In total, these results support the hypothesis that the data is
generated by a stochastic partial differential equation with diffusive forcing
stemming from a second order differential operator.

Now we proceed to the nonlinear reaction model. Based on the perfor-
mance of the estimators from Section 6.2.1, we compare θ̂lin,N0 with θ̂2,N0 , θ̂3,N0

and θ̂4,N0 , which incorporate knowledge on the full FitzHugh–Nagumo model.
The performance on cell data is shown in Figure 6.3 (bottom left), and the
performance on periodified data is shown in Figure 6.3 (bottom right). In-

3Such calibration is necessary for all estimators except θ̂lin,N0 .
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terestingly, the model-free estimator θ̂lin,N0 behaves similar to θ̂3,N0 and θ̂4,N0 ,
which are the most flexible estimators we consider and which do not fix the
reaction rate corresponding to the bistable potential in the drift. This pattern
does also appear in different sample cells. In terms of diffusivity estimation,
the detailed reaction model doesn’t seem to yield additional benefit, in con-
trast to the case of simulated data from Section 6.2.1. This can be seen as
a hint that the FitzHugh–Nagumo model, while being capable of generating
traveling waves, misses additional features of the true intracellular dynamics.
For example, it may be helpful to consider models which mimic the biophys-
ical reaction pathway more closely. On the other hand, θ̂2,N0 , which fixes the
parameters describing the reaction intensities in advance, deviates from the
other estimators, but finally approaches them. Further evaluations suggest
that changing u0 does not alter the general picture.

The performance of the estimators on the periodified sample is similar to
the the case of the original sample. In accordance with the discussion from
the previous section, the estimated diffusivity increases in that case.

6.2.3 Evaluation of a Cell Population

We consider a population of 36 giant cell observations, as described in the
previous section. The spatial extension of each data set is clipped in such
a way that only the interior dynamics is captured, i.e. no cell boundaries
appear in the data. As a consequence, the spatial resolution varies within
the cell population. It is natural to assume that the range of possible N that
yields meaningful results grows with the resolution of the sample. In general,
while the estimate will be more precise for large N , discretization effects
depending on the spatial resolution will render arbitrarily large N useless. In
order to find a reasonable tradeoff, we apply the following heuristics: If each
frame within a data set consists of rx × ry pixels, we set Nstop = ⌊4rxry/R2⌋,
where R is a parameter representing the number of pixels needed in order to
extract meaningful information on [0, 2π] by testing with a sine function. For
example, if rx = ry = R, then Nstop = 4, and only the first four eigenfunctions
Φ±1,±1 are taken into account, whose period is R pixels in both dimensions.
We choose R = 12 for the cell population and R = 24 for the periodified
population. Further, we set Nconst = 899 and evaluate the estimator θ̂3,N0

at N = Nconst and N = Nstop. Results are shown in Figure 6.4. Note that
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Figure 6.4: The estimator θ̂3,N0 evaluated at N = Nconst (left column) and
N = Nstop (right column) is plotted against Nstop for a sample of 36 ob-
servations (top row) and their periodification (bottom row). The least
square regression lines are plotted in red. The p-value in each display comes
from a two-sided t-test with null hypothesis that the slope is zero.

Nstop encodes the resolution of the frames within a sample.4 We see that
choosing N based on the spatial resolution decorrelates the estimate for θ0
from the resolution of the frames. Further, the estimated diffusivities for all
samples considered have a similar magnitude. This indicates that the concept
of effective diffusivity can be useful for statistical analysis on cell samples of
the same or possibly different populations.

In addition to the inhomogeneous spatial resolution, the number of frames
4In fact, Nstop grows like the number of pixels in each frame. If each pixel is interpreted

as a point evaluation of the underlying process (rather than a local average), this is in
accordance with Example 4.8 and (4.50).
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(i.e. the temporal resolution) varies within the population. However, the
estimate tends to stabilize in time, such that this does not pose a problem.

We further note that the population is not homogeneous with respect to
the side length ∆x of a pixel and the temporal distance ∆t between two
frames. Further tests indicate that the estimated diffusivity correlates with
the characteristic diffusivity ∆x2/∆t. However, a detailed analysis of the
resulting effects, including the impact of discretization and possible scale
dependence of the diffusivity, is beyond the scope of the present work.

6.2.4 The Effective Unstable Zero
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Figure 6.5: Estimated unstable fixed point for simulated data (left) and real
data (right). Frames up to time T (in seconds) are used to calculate θ̂2,N0 ,
starting from the first frame in the sample. As before, we restrict to N ≥ 25.

When using θ̂2,N0 in order to estimate the diffusivity θ0, we simultaneously
obtain an estimate θ̂2,N1 for θ1 by solving (6.7). As θ1 = k1u0ā and k1 = u0 = 1
by assumption, we can identify θ1 with the effective unstable zero ā from the
reaction term. In Figure 6.5, the performance of this estimate is displayed
for simulated data and an experimentally observed sample.

The term a(∥Xt∥L2(D)) oscillates around an effective value slightly larger
than 0.15 in the numerically simulated trajectory. Even if this value is ap-
proximated, we see that the quality of the estimate does not improve with
increasing N . Indeed, this cannot be expected, as the reaction term is of
order zero: It is known [HR95] that the maximum likelihood estimate of the
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coefficient of a linear order zero perturbation to a stochastic heat equation
converges only with logarithmic rate in dimension d = 2. On the other hand,
also the long-time behavior can be considered, including an increasing num-
ber of frames into the evaluation. The left-hand panel in Figure 6.5 shows
that the effective value is approached with larger T .5

In the case of real data, the results fall into the interval (0, 1) and are
rather stable. This indicates that the “effective unstable fixed point under
the reaction model F ”, defined as the value at which θ̂2,N1 stabilizes, can be
used in a meaningful way for statistically evaluating spatiotemporal cell data
exhibiting traveling waves.

6.2.5 The Effective Diffusivity Outside the Cell
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Figure 6.6: (left) Performance of θ̂lin,N0 on a data set consisting of pure noise
outside the cell. (right) Comparison of the energy of a measurement inside
and outside the cell, with the same spatiotemporal extension. In both panels,
the dashed line is plotted at zero. As before, we restrict to N ≥ 25.

When formally applying the estimation procedure to a data set consisting
of pure noise, i.e. a region of a microscopy data set where no part of the cell
is present, we obtain a result that can be named “effective diffusivity outside
the cell” or “effective diffusivity of the noise”. Here, we restrict ourselves to

5Typically, under ergodicity assumptions, consistency with convergence rate T−1/2 can
be expected for estimators of maximum likelihood type if T increases, see e.g. the mono-
graph [Kut04] for SDEs, [Log84, KL85] for linear SPDEs. In [DMPD00, GM02], large
time consistency is proven in the context of semilinear SPDEs.
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the use of θ̂lin,N0 , i.e. F = 0. The result is shown in the left panel of Figure
6.6. Comparing with Figure 6.3, the effective diffusivity of a pure noise ob-
servation can even exceed the value obtained from a region inside a cell.6 It
is important to understand the order of magnitude of this effective value, as
well as its impact on diffusivity estimation within the cell.

We derive the magnitude of the effective diffusivity outside the cell heuris-
tically: A pixel can be described by a weighted indicator function of a square
within D, where the weight describes the intensity. In the case of pure noise,
the instantaneous disappearance of such a pixel in the next frame can be
interpreted as fast diffusion within the time between two frames. In order to
understand the magnitude of θ0 needed for that effect, we approximate the in-
dicator function of the pixel by a Gaussian density. For t > 0, let ϕt : R2 → R
be the centered Gaussian density in two dimensions with covariance matrix
tI. This density attains its maximum at x = 0, with ϕt(0) = 1/(2πt). Let ∆t
be the time between two frames, let ∆x be the side length of a pixel within
each frame. We set σ0 = ∆x/2. In this case, the distance between the inflec-
tion points of the one-dimensional marginals of ϕσ0

2 matches the side length
of a pixel, and we take ϕσ0

2 as an approximation for the pixel. After time ∆t,
the heat semigroup on R2 with diffusivity θ0 maps ϕσ0

2 to ϕσ0
2+2θ0∆t. Now

let the decay of the maximal value of the density, ϕσ0
2(0)/ϕσ0

2+2θ0∆t(0), be
at least as large as some threshold b > 0, i.e. (σ0

2 + 2θ0∆t)/σ0
2 ≥ b. This is

equivalent to

θ0 ≥
b− 1

8

∆x2

∆t
. (6.23)

In the data sample from Figure 6.6 (left), we have ∆x = 2.08 × 10−7 m
and ∆t = 0.97 s. The decay factor b depends on the particular noise pixel
and its intensity within the data set. Reasonable values are given for b ≤ 30.
For example, if b = 30, then θ0 ≥ 1.6 × 10−13 m2/s, if b = 20, then θ0 ≥
1× 10−13 m2/s, and if b = 15, then θ0 ≥ 7.8× 10−14 m2/s. This matches the
order of the observed diffusivity from Figure 6.6 (left): For example, if we ap-
ply the stopping rule from Section 6.2.3 to this case, i.e. Nstop = ⌊4rxry/R2⌋
with R = 12, then we obtain Nstop = 165 and θ̂lin,N0 = 1.36× 10−13 m2/s for
N = Nstop, in accordance with the heuristic derivation in this section.

6This observation also applies to the cell sample used in the right panel of Figure 6.6.
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We have seen that the observed diffusivity of the noise can be larger than
the estimated diffusivity of the signal within the cell. Nonetheless, the noise
described here does not interfere with the diffusivity estimate of the signal.
This can be explained as follows: Assume that the signal process Xsig is
perturbed by measurement noise Wmeas. This means that inside the cell, we
observe X = Xsig+Wmeas instead of X = Xsig as supposed previously, while
outside the cell, only X = Wmeas is observed. It is revelatory to consider
the energy AN(X)0,0 for both cases separately. This is done in the right
panel of Figure 6.6. The value of AN(W

meas)0,0 outside the cell is orders
of magnitude below the energy within the cell, at least at the resolution
level we consider. Consequently, AN(X

sig + Wmeas)0,0 is indistinguishable
from AN(X

sig)0,0. Thus, it doesn’t make a difference if θ̂lin,N0 is evaluated
on Xsig +Wmeas or on Xsig itself, and the measurement noise has very little
impact on the estimated diffusivity of the signal.

However, from a mathematical perspective, adding noise to Xsig has an
impact on its regularity, such that the theoretical properties of θ̂lin,N0 for
N → ∞ will change, depending on the precise model assumptions.
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Chapter 7

Further Research

As exposed in the introduction, statistical inference for SPDEs is a source
for diverse mathematical research. The field is continuously expanding, and
it keeps incorporating new models and methods. In this work, we consid-
ered parameter estimation for semilinear equations in different asymptotic
regimes, together with possible model misspecification. To conclude, we give
a list of further interesting mathematical questions related to the topic of
this work. This list is by no means exhaustive, and it should be considered
a suggestion for possible further research.

• Beyond semilinear models, one can consider quasilinear equations, e.g.
with state-dependent diffusivity.

• Further types of model misspecification can be studied: For example,
this includes the effect of an inhomogeneous or anisotropic diffusivity
on the estimators from Chapter 2.

• The impact of measurement noise can be analyzed systematically.

• Apart from the spatially discretized Laplacian used in Chapter 4, which
is based on a Fourier decomposition, it is interesting to consider the
classical discretization on a three-point stencil or five-point stencil (in
dimension one or two), and to study the asymptotics as h → 0.

• In the context of Chapter 4, it remains open if the rates from Theorem
4.7 can be achieved for domains with arbitrary geometry.
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Appendix A

Limit Theorems

The following martingale central limit theorem is a special case of [LS89,
Theorem 5.5.4 (I)], [JS03, Theorem VIII.2.4].

Theorem A.1. Let (MN)N∈N be a sequence of real-valued continuous local
martingales with MN

0 = 0, let T > 0 such that ⟨MN⟩T
P−→ 1 for N → ∞.

Then MN
T

d−→ N (0, 1) as N → ∞.

We will repeatedly use the following version of the law of large numbers,
which exploits Gaussianity:

Lemma A.2. Let (X∗
k)k∈N be independent centered Gaussian processes on

[0, T ], set Y ∗
k :=

∫ T

0
X∗

k(t)
2dt and Z∗

N =
∑N

k=1 Y
∗
k .

(i) If Var(Y ∗
k ) ≪ (EY ∗

k )
2 as k → ∞, then Y ∗

k /EY ∗
k

P−→ 1.

(ii) If EY ∗
k ≍ Ckα as k → ∞ for some constants C > 0, α ∈ R, then

Z∗
N/EZ∗

N
a.s.−−→ 1 as N → ∞.

Proof. The first statement is a direct consequence of the Markov inequality:

P
(∣∣∣∣ Y ∗

k

EY ∗
k

− 1

∣∣∣∣ > ϵ

)
≤ Var(Y ∗

k )

ϵ2(EY ∗
k )

2
→ 0

for every ϵ > 0. Now we prove (ii). As the (X∗
k) are Gaussian with mean
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zero, the Wick theorem [Jan97, Theorem 1.28] gives

Var(Y ∗
k ) =

∫ T

0

∫ T

0

E[X∗
k(t)X

∗
k(t)X

∗
k(s)X

∗
k(s)] (A.1)

− E[X∗
k(t)X

∗
k(t)]E[X∗

k(s)X
∗
k(s)]dsdt

= 2

∫ T

0

∫ T

0

E[X∗
k(t)X

∗
k(s)]

2dsdt ≤ 2

(
E
∫ T

0

X∗
k(t)

2dt

)2

= 2(EY ∗
k )

2.

W.l.o.g. assume EY ∗
1 > 0, such that the denominator in the following esti-

mates is positive. (Otherwise, if EY ∗
1 = 0, then (A.1) implies Y ∗

1 = 0 almost
surely, and Y ∗

1 does not contribute to ZN .) We have for α > −1:

Var(Y ∗
k )

(EZ∗
k)

2
≤ 2(EY ∗

k )
2(∑k

i=1 EY ∗
k

)2 ≍ 2C2k2α

(C(α + 1)−1kα+1)2
≲

1

k2
.

Similarly, for α = −1,

Var(Y ∗
k )

(EZ∗
k)

2
≲

1

k2 ln(k)2
.

Finally, if α < −1, the denominator (EZ∗
k)

2 converges for k → ∞, and

Var(Y ∗
k )

(EZ∗
k)

2
≲ (EY ∗

k )
2 ≲ k2α ≪ 1

k2
.

In any case, we have
∑∞

k=1 Var(Y
∗
k )/(EZ∗

k)
2 < ∞, and the strong law of large

numbers [Shi96, Theorem IV.3.2] implies the claim.
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Appendix B

Additional Proofs

B.1 Proof of Proposition 2.17
We prove the statement in two parts.

Lemma B.1. In the situation of Proposition 2.17, there is a unique solution
X to (2.39) that satisfies X ∈ RE(s) for s = 1.

Proof. This is an application of the arguments in [LR15, Theorem 5.1.3].
More precisely, we show that the assumptions (H1) (continuity) and (H2′)
(monotonicity) therein are satisfied in the Gelfand triple W 1,2

0 (D) ⊂ L2(D) ≃
L2(D)∗ ⊂ W 1,2

0 (D)∗ (i.e. H1 ⊂ H0 ⊂ H−1), whereas (H3) (coercivity) and
(H4′) (boundedness) are satisfied in the shifted triple W 2,2(D) ∩W 1,2

0 (D) ⊂
W 1,2

0 (D) ⊂ L2(D) (i.e. H2 ⊂ H1 ⊂ H0). First note that in all cases consid-
ered, ∂xf : R → R is bounded from above, and thus there is c > 0 such that
for any X ∈ L2(D) and Y : D → R:

⟨∂xf(Y )X,X⟩L2(D) ≤ c ∥X∥2L2(D) . (B.1)

Since γ > d/4+ 1/2, (−∆)1/2B is a Hilbert–Schmidt operator on H, i.e. the
dispersion operator B is a Hilbert–Schmidt operator from H to H1. As B is
constant, it suffices to test (H1), (H2′), (H3), (H4′) only for the drift of the
SPDE (2.39).

(H1) If f is a polynomial, this is a trivial consequence of the binomial the-
orem. On the other hand, if f ∈ C∞

b (R) and u, v, w ∈ H1, then
t 7→ H−1 ⟨θ∆(u+ tv) + f(u+ tv), w⟩H1

is continuous as a consequence
of the linearity of ∆ and the dominated convergence theorem.
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(H2′) This is a consequence of (B.1): For u, v ∈ H1,

H−1 ⟨θ∆u+ f(u)− θ∆v − f(v), u− v⟩H1
≤ ⟨f(u)− f(v), u− v⟩H0

= ⟨∂xf(w)(u− v), u− v⟩H0

≤ c ∥u− v∥2H0

for some w : D → R.

(H3) For u ∈ H2,

L2(D) ⟨θ∆u+ f(u), u⟩H2
= −θ ∥u∥2H2

+ ⟨f(u), u⟩H1

= −θ ∥u∥2H2
+ ⟨∂xf(u)∇u,∇u⟩L2(D)

≤ −θ ∥u∥2H2
+ c ∥u∥2H1

,

where we used (B.1) componentwise in the last inequality.

(H4′) First consider the case that f is a polynomial. W.l.o.g., assume f(x) =
xk for k ∈ N. Then for u ∈ H2:

∥f(u)∥2L2(D) = ∥u∥2kL2k(D) ,

and for d ≤ 2 this term is bounded by ∥u∥2kW 1,2(D) = ∥u∥2kH1
up to a

constant. In d = 3 this is still true if k ≤ 3. This proves (H4′). Finally,
if f ∈ C∞

b (R), then ∥f(u)∥2L2(D) ≤ |D| supx∈R f(x)
2 < ∞, and (H4′) is

trivially satisfied.

Now as in [LR15, Lemma 5.1.4 and 5.1.5], (H3) and (H4′) imply that there
is a sequence of finite dimensional approximations X(n) to the solution X
which is bounded uniformly in L2(Ω× [0, T ];Hs+1) and Lp(Ω;L∞(0, T ;Hs))
for s = 1, and such that θ∆X(n) + f(X(n)) is bounded uniformly in L2(Ω×
[0, T ];Hs−1) for s = 1. In particular, these statements remain true for the
(weaker) case s = 0. Based on these bounds for s = 0, the proof of [LR15,
Theorem 5.1.3] transfers verbatim and yields a unique solution X to (2.39)
with X ∈ RE(0). The stronger a priori bounds (s = 1) imply that in fact
X ∈ RE(1), which concludes the proof.

Lemma B.2. In the situation of Proposition 2.17, there is s > d/2 such that
X ∈ RE(s).
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Proof. In d = 1, this has been proven in Lemma B.1, so let d ∈ {2, 3}. We
apply the usual splitting argument and write X = X̄ + X̃, where X̄ is the
solution to (2.39) with f = 0. Then X̄ ∈ RE(s) for any s < s∗ = 1+2γ−d/2,
see [DPZ14, Section 5.3]. As γ > d/4+1/2, we have in particular X̄ ∈ RE(2).
As a consequence, the claim is proven once we know that for all 0 < η < 2,

X̃ ∈ RE(η). (B.2)

(i) For polynomial f , we assume w.l.o.g. f(x) = xk, where k is arbitrary
in d = 2 and k ≤ 3 in d = 3. In this case, ∥f(X)∥L2(D) = ∥X∥kL2k(D) ≲

∥X∥kH1
. Consequently, f(X) ∈ RE(0) because X ∈ RE(1). Similar to

the proof of Proposition 2.3, we estimate for 0 ≤ t ≤ T :∥∥∥X̃t

∥∥∥
η
≤
∥∥erθ∆X0

∥∥
η
+

∫ t

0

∥∥e(t−r)θ∆f(Xr)
∥∥
η
dr

≲ ∥X0∥η +
2

2− η
T 1−η/2 sup

0≤r≤t
∥f(Xr)∥L2(D) .

As f(X) ∈ RE(0) and E
[
∥X0∥ps∗+2

]
< ∞ for any p ≥ 1, we conclude

that (B.2) holds true.

(ii) Let f ∈ C∞
b (R). By Proposition 2.19 (ii), condition (Fs,η) holds for

s = 1 and 0 < η < 2. Thus, Proposition 2.3 (ii) implies (B.2).

This finishes the proof of Proposition 2.17.

B.2 Proof of Lemma 5.5
This section is an adaptation of the proof of [ACP20, Proposition 30], which,
in turn, is a modification of [DPZ14, Theorem 5.25].

For s < s∗ and α > 0, let Y
(s,α)
t :=

∫ t

0
(t − r)−α(−∆)s/2e(t−r)θ∆BdWr.

First, we prove:

Lemma B.3. For all s < s∗, 0 < α < (s∗ − s)/2 and p ≥ 2, we have a.s.
Y (s,α) ∈ Lp(0, T ;Lp(D)).
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Proof. For x ∈ D, let δx be the point evaluation operator. We have for
x ∈ D, 0 ≤ t ≤ T , using that B∗(−∆)γ is a bounded operator on L2(D):

E
[
Y

(s,α)
t (x)2

]
=

∫ t

0

r−2α
∥∥δx(−∆)s/2erθ∆B

∥∥2
HS

dr

=

∫ t

0

r−2α
∥∥B∗(−∆)γerθ∆(−∆)s/2−γδ∗x

∥∥2
L2(D)

dr (B.3)

≲
∫ t

0

r−2α
∥∥δx(−∆)s/2erθ∆(−∆)−γ

∥∥2
HS

dr,

so w.l.o.g. we restrict to the case B = (−∆)−γ . In that case, together with
supk∈N ∥Φk∥L∞(D) < ∞, a calculation as in Lemma 2.7 gives

E
[
Y

(s,α)
t (x)2

]
=

∞∑
k=1

λs−2γ
k

(∫ t

0

r−2αe−2θλkrdr

)
Φk(x)

2 ≲
∞∑
k=1

k
2
d
(s−2γ−1+2α),

which is finite1 for α < (s∗ − s)/2. As Y (s,α) is Gaussian,

sup
0≤t≤T,x∈D

E
[∣∣∣Y (s,α)

t (x)
∣∣∣p] ≲ ( sup

0≤t≤T,x∈D
E
[
Y

(s,α)
t (x)2

])p/2

< ∞.

This leads to

E
∫ T

0

∫
D

∣∣∣Y (s,α)
t (x)

∣∣∣p dxdt ≤ T |D| sup
0≤t≤T,x∈D

E
[∣∣∣Y (s,α)

t (x)
∣∣∣p] < ∞,

proving the claim.

Proof of Lemma 5.5. Using the factorization formula [DPZ14, Theorem 5.10],
we obtain from Lemma B.3 together with [DPZ14, Proposition 5.9] that
(−∆)s/2X̄ ∈ C(0, T ;Lp(D)) for all s < s∗ and p ≥ 2 such that 1/p <
(s∗ − s)/2. This means that X̄ ∈ Rp(s) for all p ≥ 2 and s < s∗ − 2/p. As
p ≥ 2 is arbitrary, this finishes the proof.

B.3 Proof of Proposition 6.6
The arguments are similar as in Appendix B.1, the main difference being the
new inhibitor component and the concentration dependent unstable zero in
the reaction polynomial. For d ≤ 2, the proof can be found in [PFA+21].

1In particular, the terms involving the point evaluation δx in (B.3) are finite.

147



We write Hs := Hs ⊕Hs for the regularity spaces describing both com-
ponents2. Similarly to Lemma B.1, we work in the Hilbert space triples
H1 ⊂ H0 ⊂ H−1 and H2 ⊂ H1 ⊂ H0. Further, with f(u, z) = k1u(u0 −
u)(u − u0a(z)), we write A1(U, V ) = DU∆U + f(U, ∥U∥L2(D)) − k2V and
A2(U, V ) = DV∆V + ϵ(bU − V ) as well as A (U, V ) = (A1(U, V ), A2(U, V )).
Similarly to (B.1), we have for U ∈ L2(D), Y : D → R and z ∈ R:

⟨∂uf(Y, z)U,U⟩L2(D) ≤ c ∥U∥2L2(D) , (B.4)

because a is a bounded function. As B = σ(−∆)−γ and A2 is linear, it suffices
to consider A1 in order to show (H1), (H2′), (H3), (H4′) from [LR15]. For
(H2′), we have to take into account the dependence of f on the overall
concentration: Using (B.4),

H−1 ⟨A1(U1, V1)− A1(U2, V2), U1 − U2⟩H1

≲
〈
f(U1, ∥U1∥L2(D))− f(U2, ∥U2∥L2(D)), U1 − U2

〉
L2(D)

+ k2 ∥V1 − V2∥L2(D) ∥U1 − U2∥L2(D)

≲
〈
∂uf(Y, ∥U1∥L2(D))(U1 − U2), U1 − U2

〉
L2(D)

+
〈
∂zf(U2, z̃)

(
∥U1∥L2(D) − ∥U2∥L2(D)

)
, U1 − U2

〉
L2(D)

+ k2 ∥V1 − V2∥L2(D) ∥U1 − U2∥L2(D)

≲ ∥U1 − U2∥2L2(D) + ∥V1 − V2∥2L2(D)

+ ∥∂zf(U2, z̃)∥L2(D)

∣∣∣∥U1∥L2(D) − ∥U2∥L2(D)

∣∣∣ ∥U1 − U2∥L2(D)

≲
(
1 + ∥∂zf(U2, z̃)∥L2(D)

)
∥(U1, V1)− (U2, V2)∥2L2(D)⊕L2(D)

for some Y : D → R and z̃ ∈ R. Further, using that ∂za is a bounded
function as well as the Sobolev embedding W 1,2(D) ⊂ L4(D),

∥∂zf(U2, z̃)∥L2(D) ≲ ∥U2(u0 − U2)∥L2(D) ≲ ∥U2∥L2(D) + ∥U2∥2L4(D)

≲
(
1 + ∥U2∥H1

)2
.

Therefore we can take ρ(U, V ) = c(1+∥U∥H1
)2 for some c > 0 in the notation

of [LR15], and (H2′) is satisfied.
2Note that this is different from that notation in Section 2.6 as the regularity of the

inhibitor component is taken into account.
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Now, (H1), (H3) and (H4′) work exactly as in Lemma B.1, with obvious
modifications in notation due to the presence of the inhibitor component,
taking into account that a is continuous and bounded. As a consequence, we
have the following analogon to Lemma B.1:

Lemma B.4. In the situation of Proposition 6.6, there is a unique solution
U, V to (6.14), (6.15) with U, V ∈ RE(1).

We can represent the inhibitor as Vt = et(DV ∆−ϵI)V0 − ϵbF3(U)(t) =
et(DV ∆−ϵI)V0 + ϵb

∫ t

0
e(t−r)(DV ∆−ϵI)Urdr. Note that F3 satisfies (Fs,η) for every

s ∈ R and η < 4: With ε = 2− η/2,

sup
0≤t≤T

∥F3(U)(t)∥s+η+ε−2 ≲ sup
0≤t≤T

∫ t

0

∥∥e(t−r)(DV ∆−ϵI)Ur

∥∥
s+2−ε

dr

≲ sup
0≤t≤T

∫ t

0

(t− r)−1+ε/2 ∥Ur∥s dr ≲
2

ε
T ε/2 ∥U∥R(s) .

Further, E[∥V0∥ps∗+2] < ∞ for all p ≥ 2. Consequently, for all s < s∗ and
ε > 0, we have V ∈ RE(s + 2− ε) whenever U ∈ RE(s). In particular, from
Lemma B.4 it follows that V ∈ RE(3− ε).

Now, exactly as in Lemma B.2 we see that there is some s > d/2 such
that U ∈ RE(s), taking into account that a is bounded and V ∈ RE(3 − ε)
for ε > 0. Finally, it is clear that U 7→ f(U, ∥U∥L2(D)) satisfies (Fs,η) for
d/2 < s < s∗ and η < 2, so the same is true for F (U) = f(U, ∥U∥L2(D)) −
k2(e

( · )(DV ∆−ϵI)V0−ϵbF3(U)). Thus, an application of Proposition 2.4 finishes
the proof of Proposition 6.6.
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Notation

Assumptions
(W ) well-posedness of the SPDE (p. 18)

(Fs,η) regularity bound on the nonlinearity F (p. 21)
(F v

s,η) bound on F in variational spaces Rv(s) (p. 23)
(F p

s,η) Lp-regularity bound on the nonlinearity F (p. 108)
(F par

s,η ) regularity bound on parametrized nonlinearity F (p. 119)
(F sys

s,η ) analogon of (Fs,η) for partially observed systems (p. 47)
(FJ

s,η) bound for the integrated nonlinearity JF (p. 59)

(Nγ
η ) dispersion B is asymptotically close to B̄ = (−A)−γ (p. 78)

(D0) Br is an algebra of continuous functions (p. 86)
(D1) growth bound on the norm of the eigenfunctions (p. 86)
(D2) error bound for the integral discretization error (p. 86)
(D∗

2) trigonometric interpolation error (p. 101)

(LB) local control on the dispersion (p. 107)
(LK) shape of the kernel (p. 107)
(LΨ) non-degeneracy within the local approach (p. 107)

(Iα) linear independence of the nonlinear components (p. 121)
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Asymptotics
aN ∼ bN There is C > 0 such that aN/bN → C for N → ∞.
aN ≍ bN aN/bN → 1 for N → ∞.
aN ≲ bN There is C > 0 such that aN ≤ CbN .
aN ≪ bN aN = o(bN), i.e. aN/bN → 0 for N → ∞.

aN ≪p bN
There is ϵ > 0 such that aN ≪ bNN

−ϵ.
(polynomial negligibility)

Similar notation is used for different asymptotic parameters (i.e. h, δ).

Vector Spaces, Norms, Scalar Products
A (fixed) norm on a Banach space B is denoted by ∥·∥B.
If B is even a Hilbert space, the corresponding scalar product is ⟨·, ·⟩B.
Frequently used norms are abbreviated:

H Hilbert space, typically L2(D) (state space)
∥·∥ , ⟨·, ·⟩ norm and scalar product on H
Hs D((−A)s/2) (scale of regularity spaces)
∥·∥s , ⟨·, ·⟩s norm and scalar product on Hs

V H1 = D((−A)1/2) (energy space)
R(s) L∞(0, T ;Hs)

RE(s)

⋂
p≥1 L

p(Ω, R(s)) =
⋂

p≥1 L
p(Ω, L∞(0, T ;Hs))

(locally convex space)
Rv(s) L∞(0, T ;Hs−1) ∩ L2(0, T ;Hs)
∥·∥HS Hilbert–Schmidt norm of an operator acting on H
Hs,p(D) domain of (−∆)s/2 in Lp(D)
∥·∥s,p canonical norm on Hs,p(D)

Rp(s) L∞(0, T ;Hs,p(D))
∥·∥(h) , ⟨·, ·⟩(h) Euclidean norm and scalar product on RMh
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Estimators
Temporally white noise (Chapter 2): θ̂fullN , θ̂partN , θ̂linN (p. 27 f.)
Ornstein–Uhlenbeck noise (Section 3.1): θ̂refN , µ̂ref

N (p. 61)
θ̂simN (p. 62)
µ̂full
N (ϑ), µ̂lin

N (ϑ) (p. 65 f.)
Integrated noise (Section 3.2): θ̂rescaledN (p. 74)
Discrete observations (Chapter 4): θ̂discrh,N (p. 87)
Local observations (Chapter 5): θ̂δ,x0 (p. 106)

θ̂mode
N (p. 114)

Joint parameter estimation (Section 6.1): θ̂N = (θ̂N0 , · · · , θ̂NK) (p. 119)
Activator–inhibitor model (Section 6.2): θ̂lin,N0 , θ̂pol,N0 , θ̂full,N0 (p. 128)

θ̂2,N0 , θ̂3,N0 , θ̂4,N0 (p. 128 f.)
θ̂2,N1 (p. 137)

Constants and Further Notation
Fourier decomposition of A:

λN eigenvalue of −A
ΦN eigenfunction of −A
PN projection onto the span of Φ1, . . . ,ΦN , defined on any Hs

Frequently used constants:

β determined by λN ∼ Nβ, usually β = 2/d
Λ proportionality constant given by λN ≍ ΛNβ, depends on D
γ degree of spatial correlation in the noise

s∗
optimal regularity of the solution process, i.e. X ∈ R(s) if and only
if s < s∗ (usually s∗ = 1 + 2γ − 1/β)

Further notation:

J Bochner integral operator f 7→ Jf =
∫ ·
0
f(r)dr
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