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Abstract

Artificial neural networks are at the heart of some of the greatest advances in mod-
ern technology. They enable huge breakthroughs in applications ranging from computer
vision via machine translation to speech recognition as well as autonomous driving and
many more. However, we are still far away from a more rigorous theoretical explanation
of these overwhelming success stories. Consequently, the development of a better math-
ematical understanding of neural networks is currently one of the hottest research topics
in computer science. In this thesis we provide several contributions in that direction
for the simple, but practically powerful and widely used model of feedforward neural
networks with rectified linear unit (ReLU) activations.

Our focus is on various notions of what we call the complexity of such neural net-
works: how much computing resources (time, hardware, network size, etc.) are required
to achieve a certain goal? Of course, such questions can be asked in various contexts.
We identify and study the following three facets of complexity for neural networks with
ReLU activations.

The first facet is neural networks’ expressivity: What functions can be represented by
certain neural network architectures? Even though this is such a fundamental question,
very little is known so far. We make progress concerning the question whether the
class of exactly representable functions strictly increases by adding more layers (with no
restrictions on size). We also provide upper bounds on the number of neurons required to
represent arbitrary piecewise linear functions with small-depth ReLU neural networks.

The second facet is neural networks’ computational power. Here, we view neu-
ral networks as a model of computation, just like Boolean, or even closer, arithmetic
circuits. We then investigate which network (or circuit) size is required to solve vari-
ous problems, with a focus on combinatorial optimization problems. Even though this
model is quite restrictive compared to other models of computation, we are able to show
that comparably small neural networks can provably solve problems like the efficiently
solvable Maximum Flow Problem or the NP-hard Knapsack Problem.

The third facet is neural networks’ training complexity: How difficult is it to fit the
weights of a neural network to training data? It is widely known that optimal solutions to
the training problem are hard to obtain, which is why local optimization techniques like
stochastic gradient descent are used in practice. We focus on the question whether the
situation improves for fixed input dimension, leading to the paradigm of parameterized
complexity analysis. We provide running time lower bounds in terms of W[1]-hardness
results, proving that known brute-force strategies are essentially optimal. On the positive
side, we extend a known polynomial-time algorithm for constant dimension and convex
loss functions to a more general class of loss functions.

The mathematical methods used in this thesis include polyhedral theory, discrete
and tropical geometry, mixed-integer and combinatorial optimization, as well as tools
from complexity theory.
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Zusammenfassung

Künstliche neuronale Netze sind der Schlüssel zu einigen der größten modernen Tech-
nologiefortschritten. Sie ermöglichen Durchbrüche in Anwendungen wie Computer Vi-
sion, maschinellem Übersetzen, Spracherkennung, bis hin zu autonomem Fahren und
vielem mehr. Allerdings sind wir nach wie vor weit entfernt von rigorosen theoreti-
schen Erklärungen dieser überwältigenden Erfolge. Daher ist die Entwicklung eines bes-
seren mathematischen Verständnisses neuronaler Netze aktuell eines der wichtigsten For-
schungsthemen der Informatik. In dieser Arbeit präsentieren wir einige Fortschritte in
diese Richtung für das einfache, aber aus praktischer Sicht mächtige und viel verwendete
Modell der Feedforward-Netze mit ReLU-Aktivierungsfunktionen.

Unser Fokus liegt auf verschiedenen Arten der Komplexität solcher neuronalen Net-
ze: Wie viele Ressourcen (Zeit, Hardware, Netzwerkgröße etc.) werden benötigt, um ein
bestimmtes Ziel zu erreichen? Selbstverständlich können solche Fragen in verschiede-
nen Kontexten gestellt werden. Wir identifizieren und untersuchen die folgenden drei
Facetten der Komplexität für neuronale Netze mit ReLU-Aktivierungsfunktionen.

Die erste Facette ist Expressivität: Welche Funktionen können von bestimmten Netz-
werkarchitekturen dargestellt werden? Obwohl es sich dabei um eine so fundamentale
Frage handelt, ist bisher wenig bekannt. Wir präsentieren Fortschritte bezüglich der Fra-
ge, ob die Menge der exakt darstellbaren Funktionen echt größer wird, wenn wir mehr
Schichten hinzufügen (ohne dabei die Größe zu beschränken). Wir beweisen außerdem
obere Schranken an die Anzahl benötigter Neuronen, um beliebige stückweise lineare
Funktionen mit neuronalen Netzen mit geringer Tiefe zu berechnen.

Die zweite Facette ist Berechnungskomplexität (Computational Power). Dafür be-
trachten wir neuronale Netze als ein Berechenbarkeitsmodell, ähnlich wie etwa Boole-
sche oder arithmetische Schaltkreise. Wir untersuchen, welche Netzwerkgröße nötig ist,
um verschiedene Probleme, insbesondere aus der kombinatorischen Optimierung, zu lö-
sen. Trotz der starken Eingeschränktheit dieses Modells zeigen wir, dass vergleichsweise
kleine Netze beweisbar Lösungen für Probleme wie das Maximalflussproblem oder das
NP-schwere Rucksackproblem finden können.

Die dritte Facette ist Trainingskomplexität: Wie schwer ist es, die Gewichte ei-
nes neuronalen Netzes an Trainingsdaten anzupassen? Bekanntermaßen ist das Finden
exakter Lösungen ein schweres Problem, weshalb in der Praxis lokale Optimierungsver-
fahren wie etwa stochastischer Gradientenabstieg verwendet werden. Wir beschäftigen
uns damit, ob sich die Lage für fixe Dimension verbessert, was uns zum Paradigma der
parametrisierten Komplexität führt. Wir beweisen untere Laufzeitschranken in Form
von W[1]-Härteresultaten, woraus folgt, dass bekannte Brute-Force-Strategien im We-
sentlichen optimal sind. Auf der positiven Seite erweitern wir einen bekannten Poly-
nomialzeitalgorithmus für konstante Dimension und konvexe Lossfunktionen auf eine
allgemeinere Klasse von Lossfunktionen.

Die in dieser Arbeit verwendeten mathematischen Methoden umfassen Polyeder-
theorie, diskrete und tropische Geometrie, gemischt-ganzzahlige und kombinatorische
Optimierung sowie Tools aus der Komplexitätstheorie.
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1 Introduction

“Any sufficiently advanced technology is indistinguishable from magic.”

Arthur C. Clarke’s Third Law [Cla73]

1.1. Background

The idea that computers could behave intelligently, just like human beings, is almost as
old as the idea of a computer itself. A famous early attempt to define how one could
measure intelligence is Alan Turing’s famous Turing test [Tur50], which he proposed
in 1950. However, only in the last one or two decades the research field of artificial intel-
ligence (AI) started to have a massive impact on our society. Today we can actually have
conversations with our smartphones, computers can create “paintings” (see [GEB15]),
and self-driving cars become reality.

While these innovations are undoubtedly based on many different factors, there is one
particular subfield of AI that is responsible for a vast majority of modern breakthroughs:
deep learning, that is, machine learning using deep neural networks [LBH15].

Also neural networks are not an invention of the 21st century, but are actually much
older. The foundations were already laid in the middle of the 20th century by McCulloch
and Pitts [MP43] and Rosenblatt [Ros58]. Around 1990, the famous LeNet [LeC+89]
for recognizing handwritten digits already contained two key ingredients that are at the
heart of many modern neural network architectures: a convolutional structure and train-
ing by the backpropagation algorithm. Although the basic principles have been present
since then, it was not before the 2010s that neural networks became the major technol-
ogy in many machine learning application domains. For example, the natural language
processing community has completely been revolutionized in the past few years by neu-
ral networks [OMK20]. In the computer vision community, the work by Krizhevsky,
Sutskever, and Hinton [KSH12] was the major game changer that established neural
networks as the dominating technology. Interestingly, their network architecture is con-
ceptually very similar to what has been used more than 20 years before by LeCun et al.
[LeC+89]. However, a variety of nuances seemed to make the difference. First, increasing
hardware power including massive parallelization on GPUs played a role. Second, clever
tricks like data augmentation as well as a new regularization technique called drop-out
have been important ingredients. Third, and most relevant to our work, the use of a
different activation function seemed to play a crucial role in enhancing the performance:
while previously the sigmoid function was used in most neural network models, rectified
linear units (ReLUs) from now on became the standard choice; see also [GBB11].

It is worth noting that the vast majority of research about neural networks is of an
empirical nature. Even though the basic building blocks of neural networks are very sim-
ple functions, it is hard to grasp what happens when these functions are combined into
complicated network architectures. All major advances of the past few years have been
driven by empirical evidence on practical tasks. As a result, theoretical explanations
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1. Introduction

for the tremendous success of neural networks lag far behind the practical observations.
Of course, there are attempts to close this gap in the literature. For example, there
are approaches to explain concrete decisions of neural networks [Lap+19]. Also, from
a more theoretical perspective, Vidal et al. [Vid+17] review mathematical justifications
for beneficial properties of neural networks. Interesting recent developments are results
around the so-called neural tangent kernel [JGH18], which could yield an explanation
why highly overparameterized neural networks achieve good generalization results. How-
ever, the amount of open theoretical questions in the context of neural networks remains
endless, which can be seen as the starting point for this thesis.

Mathematically, the change of paradigm concerning the activation functions men-
tioned above has interesting implications. The formerly used sigmoid function is per-
fectly smooth and, thus, the same holds for a whole neural network composed of sigmoid
neurons or any part of it. In contrast, ReLUs are very simple continuous and piecewise
linear (CPWL) functions. Consequently, ReLU neural networks naturally divide the in-
put space into finitely many (polyhedral) pieces on which the prediction is linear, while
being nondifferentiable at the breakpoints between those pieces. This enables us to ana-
lyze ReLU neural networks using discrete methods like polyhedral theory, combinatorics,
or even tropical geometry.

1.2. Results and Overview of this Thesis

The goal of this thesis is to shed light on different aspects concerning the complexity of
ReLU neural networks (NNs), using methods from discrete mathematics. In computer
science, the term complexity usually refers to the amount of resources (time, memory,
amount of data, etc.) required to achieve a certain goal (computing a function, solving a
problem, learning a distribution, etc.). Naturally, many concrete questions can be asked
in this broad context. In this thesis, we focus on three specific facets of complexity for
ReLU NNs: expressivity, computational power, and training complexity. While our focus
is on basic theoretical research about the model of ReLU NNs, a better understanding of
this model will definitely have impact on practical aspects. For example, it might help to
find appropriate network architectures for certain tasks, to explain decisions of NNs, or
to improve existing training algorithms. In addition, we believe that our results are also
interesting from a purely mathematical point of view. They yield new perspectives on
the structure of polyhedral objects and piecewise linear functions, provide new insights
about characteristics of combinatorial optimization problems, and build bridges between
machine learning, discrete geometry, and (parameterized) complexity analysis.

After this introductory chapter, we provide fundamental definitions and results that
are relevant for more than one of our facets in Chapter 2. The Chapters 3 to 5 contain
an in-depth treatment of the three facets. Each of these chapters comes with its own
introduction, literature review, and open problem section specific to it. It is possible
to read the three chapters corresponding to the three facets independently from each
other. We conclude with some final remarks in Chapter 6. In the following, we provide
an overview of our results for each of our three facets.

2



1.2. Results and Overview of this Thesis

First Facet: Expressivity

Which functions can be represented by certain architectures?

An important first step towards a better theoretical understanding of the practical
success of NNs is to study their expressivity. This means identifying the class of functions
that can be represented by NNs with a predefined size or architecture. While so-called
universal approximation theorems [Hor91; Cyb89] show that one hidden layer is already
sufficient to approximate any continuous function, surprisingly fundamental questions
remain open in the context of exact representation.

It is known that a function is representable by a ReLU NN (of any size) if and only
if it is continuous and piecewise linear (CPWL) [Aro+18]. However, in contrast to the
case of approximations, the minimum number of hidden layers needed to represent a
general CPWL function is unknown. The construction by Arora et al. [Aro+18] shows
that logarithmically many layers (in the input dimension) are sufficient, but there is no
function known that needs provably more than two hidden layers.

In Chapter 3, we conjecture that the logarithmic upper bound is indeed tight, that is,
for every input dimension n there exists a function that indeed needs ⌈log2(n+1)⌉ many
hidden layers to be represented. We significantly simplify this conjecture by showing
that it is equivalent to asking how many layers one needs to represent the function
computing the maximum of n numbers. As a first step towards proving the conjecture, we
use methods from polyhedral combinatorics and mixed-integer programming to provide
a computational proof that the maximum of five numbers cannot be computed with
two hidden layers. Unfortunately, our proof relies on an intuitive, but yet unproven
assumption.

Even though our conjecture boils down to the required depth for the maximum func-
tion, as a second result, we show that NNs of a certain depth can compute strictly
more functions than only those representable as linear combinations of certain maxi-
mum functions. The main tool for arriving at this result is the theory of polyhedral
complexes.

As a third result, we provide upper bounds on the width required to represent a
CPWL function with a given number of linear pieces by an NN with logarithmically
many layers. We achieve these bounds by using a recently established correspondence
between NNs and tropical geometry [ZNL18] that allows us to translate our question
into discrete geometry and tackle it with classical methods from this field.

Finally, we give an outlook on how these relations to tropical geometry might also be
beneficial for proving the conjecture itself via polytope theory.

All in all, we see the results of this chapter as an important first step towards shedding
light on the expressivity of ReLU NNs by means of discrete and polyhedral geometry.

Second Facet: Computational Power

Which network size is sufficient to solve (combinatorial optimization) problems?

As the second facet we study the ability of NNs to solve computational problems,
particularly from combinatorial optimization. To do so, we view NNs as a model of
computation, similar to Boolean, or even closer, arithmetic circuits, operating on real

3



1. Introduction

numbers. We then study the complexity of various problems in this model. In this way,
we obtain interesting insights regarding the interplay of NNs and classical algorithms
and contribute towards explaining recent empirical success stories of applying NNs to
combinatorial optimization problems in the literature.

NNs are a special type of arithmetic circuits that are only allowed to perform a very
limited set of operations, namely a fixed number of affine transformations and maximum
computations. In particular, due to the continuous nature of these operations, it is not
possible to realize conditional branchings based on the comparison of real numbers. For
this reason, it is a priori unclear whether polynomial-size NNs exist for a given problem,
even if it admits strongly polynomial-time algorithms. Despite these difficulties, we
constructively show that a variety of algorithmic questions can be precisely answered
with NNs of bounded size.

For some problems, like computing the length of a shortest path in a network from
individual arc lengths, this can be achieved by directly translating standard algorithms,
for example, special dynamic programs, to NNs. For other problems, like the Minimum
Spanning Tree Problem or the Maximum Flow Problem, all classical algorithms seem to
make use of conditional branchings, making it impossible to implement them on NNs.
New algorithmic ideas are required to obtain polynomial-size NNs for these problems.
Using a result from arithmetic circuit complexity, we prove that the value of a mini-
mum spanning tree in a graph with n nodes can be computed by an NN of size O(n3).
Moreover, we develop a completely new maximum flow algorithm without conditional
branchings to show that, given a directed graph with n nodes and m arcs, there exists
an NN with size O(m2n2) computing a maximum flow from any possible real-valued arc
capacities as input.

Finally, we treat the NP-hard Knapsack Problem. We use a nontrivial modification
of a well-known dynamic programming scheme to provide explicit pseudo-polynomial
upper bounds on the size of NNs to compute exact solutions to the Knapsack Problem.
Additionally, by incorporating a sophisticated rounding procedure directly in our NNs,
we show that approximate solutions of provable quality can be achieved with significantly
smaller NNs. In other words, a so-called fully polynoimal time approximation scheme
(FPTAS) can be realized on NNs. In this way, we establish a rigorous trade-off between
the size of NNs and their worst-case solution quality.

Summarizing, with this facet we demonstrate that, despite severe limitations with
regard to the set of possible operations, ReLU NNs appear to be a surprisingly powerful
model of real-valued computation.

Third Facet: Training Complexity

Does a small dimensionality help when fitting neural network weights to data?

A traditional use-case of NNs is supervised learning. This means learning to map input
data to labels on the basis of the training data, that is, a set of given, labeled examples.
In this context, the set of functions representable by a fixed NN architecture specifies
the so-called hypothesis class, that is, the set of functions from which the prediction
map should be chosen. For foundations of learning theory, we refer to the book by
Shalev-Shwartz and Ben-David [SSBD14].

4



1.2. Results and Overview of this Thesis

Once having specified a hypothesis class by fixing an NN architecture, the central
question is the following: how can one select the “best” function in the hypothesis class,
that is, the “best” NN weights, to predict the labels of unknown inputs?

One of the most popular learning paradigms, both from a theoretical and from a
practical perspective, is empirical risk minimization. This means choosing a function
from the hypothesis class that minimizes the error with respect to a so-called loss function
on the training data. Applied to a fixed NN architecture, this paradigm results in the
highly complex non-linear optimization problem of finding NN weights that minimize
the training loss. In our third facet of NN complexity, we study the computational
complexity of this training problem.

It is well-known that training an NN to minimize the empirical risk is NP-hard. There-
fore, in practice, local search algorithms without optimality guarantees, like stochastic
gradient descent, are usually applied. What we strive for in Chapter 5 is a more sophis-
ticated understanding of the training complexity of NNs that goes beyond NP-hardness.
More specifically, we investigate the question of whether the situation improves in case
of a small input dimension. To this end, we employ methods from parameterized com-
plexity.

In parameterized complexity, one usually distinguishes two types of algorithms to solve
a parameterized problem. An algorithm is said to be slice-wise polynomial (XP) if its
running time can be bounded by a polynomial for each fixed value of the parameter.
However, since the degree of this polynomial might quickly increase with the parameter,
one usually strives for the stronger notion of fixed-parameter tractable algorithms, where
the degree of the polynomial must not depend on the parameter, but the running time
itself can still exponentially increase with the parameter.

Our two main results of Chapter 5 can be summarized as follows. Even for the
simplest possible network architecture with only one hidden neuron, fixed-parameter
tractable algorithms with respect to parameter input dimension are impossible, unless
widely believed complexity-theoretic conjectures fail. On the other hand, XP-algorithms
exist for training arbitrary 2-layer NNs with a large variety of loss functions. Hence, we
may conclude that a small dimension might indeed be helpful to reduce the training
complexity, but only to a very limited extent.

5





2 Preliminaries

The goal of this chapter is to introduce the main object of study in this thesis: ReLU
neural networks. We also review some knowledge from literature relevant to our work.

There are two different common ways to define (ReLU) neural networks, which are
more or less equivalent: either as weighted directed acyclic graphs or as alternating
composition of affine transformations and activation functions. We will introduce both
ways in this chapter.

Since different chapters of this thesis build upon different existing literature that
sometimes differ in notation, we have decided to slightly change our notation between
chapters, in particular between Chapter 4 and Chapter 5. Whenever we deviate from
previously introduced notation, there will always be a subsection explaining the chapter-
specific notation in the introductory section of the respective chapter.

We write [n] := {1, 2, . . . , n} for the set of natural numbers up to n (without zero)
and [n]0 := [n] ∪ {0} for the same set including zero. For any n ∈ N, let σ : Rn → Rn be
the (component-wise) rectifier function

σ(x) = (max{0, x1},max{0, x2}, . . . ,max{0, xn}).

2.1. Neural Networks as Directed Acyclic Graphs

The definitions and notations in this section are similar to Shalev-Shwartz and Ben-
David [SSBD14, Chapter 20]. A feedforward neural network with rectified linear units,
abbreviated by ReLU NN, or simply NN, is a finite, directed, acyclic, and weighted
graph (V,E) with the following properties. The nodes V , which are also called neurons,
are grouped into layers V = V0 ·∪V1 ·∪ · · · ·∪Vk+1, k ≥ 0, such that the layer index strictly
increases along each arc. Sometimes, depending on the context, we additionally assume
that the graph is properly layered, that is, arcs only occur between successive layers.
The sets V0 and Vk+1, whose elements are called input neurons and output neurons, are
precisely the sets of neurons with in-degree and out-degree zero, respectively. Neurons
in V \ (V0 ∪ Vk+1) are called hidden neurons. The corresponding node sets Vℓ are called
input layer (ℓ = 0), hidden layers (1 ≤ ℓ ≤ k), and output layer (ℓ = k+1), respectively.
We say the NN has k + 1 layers (usually not counting the input layer), or depth k + 1,
that is, precisely the number of hidden layers plus one. Let nℓ = |Vℓ| be the number of
neurons in the ℓ-th layer, called the width of that layer. The width and size of the NN
are defined to be max{n1, . . . , nk} and ∑︁k

ℓ=1 nℓ, respectively.
The graph is equipped with arc weights wuv ∈ R for each (u, v) ∈ E and node bi-

ases bv ∈ R for each node v ∈ V \ V0. Often, it is assumed that the biases at the output
layer are zero. Every NN computes (we also say represents) a function Rn0 → Rnk+1

as follows. Given an input vector x ∈ Rn0 , we associate an activation a(v) ∈ R with
every neuron v ∈ V \ V0 and an output o(v) ∈ R with every neuron v ∈ V \ Vk+1. First,
the output values o(v), v ∈ V0, of the n0 input neurons equal the n0 components of the
input vector x. Second, the activation of a neuron v ∈ V \ V0 is the weighted sum of

7



2. Preliminaries

Figure 2.1.: Function computed by a ReLU neuron with two-dimensional input. The neu-
ron first computes an affine transformation, having a hyperplane as graph.
Afterwards, the rectifier function is applied, which sets all negative values
to zero.

x1

x2 y

1
-1 1

1

Figure 2.2.: An NN with two input neurons, labeled x1 and x2, one hidden neuron,
labeled with the shape of the rectifier function, and one output neuron, la-
beled y. The arcs are labeled with their weights and all biases are zero.
The network has depth 2, width 1, and size 1. It computes the func-
tion x ↦→ y = x2 + max{0, x1 − x2} = max{x1, x2}.

outputs of all predecessors plus its bias, that is, a(v) := bv +∑︁u : (u,v)∈E wuvo(u). Third,
for each hidden neuron v ∈ V \ (V0∪Vk+1), the output is determined by o(v) := σ(a(v)),
where σ is the so-called activation function. In our case, σ is always the rectifier func-
tion σ(z) = max{0, z}, as defined above. Consequently, neurons of these NNs are called
rectified linear units (ReLUs). Finally, the output vector y ∈ Rnk+1 consists of the nk+1
activation values a(v) of the nk+1 output neurons v ∈ Vk+1. Figure 2.1 illustrates the
function computed by a ReLU neuron with two-dimensional input. Figure 2.2 gives an
example showing a simple neural network computing the maximum of two numbers.

2.2. Neural Networks as Alternating Function Compositions

In this section, we consider properly layered NNs. Before we do so, let us explain why we
can assume this without loss of generality for many purposes. As an example, consider
the network depicted in Figure 2.2. The arc on the bottom points directly from an
input node (in V0) to an output node (in V2), so it does not fulfill the required property.

8
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x1

x2

y

1
1
-1

1
-1

1
-1

Figure 2.3.: Modified NN to compute the maximum of two numbers. Note that the two
hidden neurons on the bottom and the arcs incident with them replace the
direct connection from x2 to y in Figure 2.2: If x2 is positive, its value will
be propagated via the hidden neuron in the middle; if it is negative, its value
will be propagated via the hidden neuron at the bottom.

x y

x y

a

−1
1

1

1

1

1

−a

a

Figure 2.4.: Replacing an arc (with weight a) skipping three hidden layers (top) with
a layered subnetwork (bottom). The value of x is split into positive and
negative part and combined later on, weighted with weight a.

However, what we can do instead is to add two new neurons realizing an identity function
in the hidden layer. This results in the NN depicted in Figure 2.3.

In general, any arc skipping z many layers can be replaced with two paths of length z+1
and 2z intermediate vertices, where one of the paths propagates the positive part and
the other one the negative part of the input, see Figure 2.4. Doing this for every arc
that skips at least one layer increases the total network size only by polynomial factors1

and does not increase the depth of the NN. Hence, when interested in depth (precisely)
or in size (up to polynomial factors), we may assume without loss of generality that the
NN is properly layered.

For properly layered NNs, it makes sense to represent the weights and biases as affine
transformations between layers as follows.

For a given x ∈ Rn0 , let x(ℓ) ∈ Rnℓ be the vector of outputs o(v), v ∈ Vℓ, of the ℓ-th
layer and let y(ℓ) ∈ Rnℓ be the vector of activations a(v), v ∈ Vℓ, of the ℓ-th layer. In
particular, x(0) is the input to the NN and y(k+1) is the overall output of the NN.

With this notation, the weights and biases of all layers ℓ ∈ [k + 1] define affine trans-
formations T (ℓ) : Rnℓ−1 → Rnℓ , x ↦→ A(ℓ)x + b(ℓ), such that y(ℓ) = T (ℓ)(x(ℓ−1)) ∈ Rnℓ . In
particular, the entries of A(ℓ) are the weights wuv for arcs (u, v) between layers Vℓ−1
and Vℓ (being zero if the arc is non-existent), and the entries of b(ℓ) are the biases bv

for all v ∈ Vℓ. Then, the function computed (or represented) by the NN is the function
f : Rn0 → Rnk+1 given by f = T (k+1) ◦ σ ◦ T (k) ◦ σ ◦ · · · ◦ T (2) ◦ σ ◦ T (1).

1We may assume without loss of generality that our NN does not have parallel arcs, that is, more than
one arc with the same start and end vertex. Therefore, the total number of arcs is polynomially
bounded in the number of vertices.
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x1

x2

x3

x4

y

1
1
-1

1
1
-1

1
1
-1

1
-1
1
-1 1

-1
1
-11

-1
1
-1

Figure 2.5.: An NN to compute the maximum of four numbers that consists of three
copies of the NN in Figure 2.3. Note that no activiation function is
applied at the two unlabeled middle vertices (representing max{x1, x2}
and max{x3, x4}). Therefore, the linear transformations directly before and
after these vertices can be combined into a single one. Thus, the network
has total depth three (two hidden layers).

2.3. ReLU Neural Networks and Piecewise Linear Functions

We state some results from the literature that will be useful throughout this the-
sis. The basic building block for many of our investigations is the following theorem
by Arora, Basu, Mianjy, and Mukherjee [Aro+18]. By definition, a continuous func-
tion f : Rn → Rm is piecewise linear (CPWL) in case there is a finite set of polyhedra
whose union is Rn, and f is affine linear over each such polyhedron; see, e.g., Schrijver
[Sch86] for an introduction to the theory of polyhedra.

Theorem 2.1 (Arora et al. [Aro+18]). A function f : Rn → R can be represented by a
ReLU NN if and only if it is CPWL. In this case, depth ⌈log2(n+ 1)⌉+ 1 is sufficient.

One direction of this statement is obvious from the definition of NNs: Since every
operation involved in the computation of an NN is CPWL, the same must be true for
the function computed by the full NN. The nontrivial direction is the converse: why can
we represent any CPWL function defined on Rn with an NN of depth ⌈log2(n+ 1)⌉+ 1?

In the following, we would like to give an intuition for why this result holds true. For
this purpose, we start with a simple special case of a CPWL function: the maximum
of n numbers. Recall that one hidden layer suffices to compute the maximum of two
numbers, see Figures 2.2 and 2.3. Now one can easily stack this operation: in order to
compute the maximum of four numbers, we divide them into two pairs with two numbers
each, compute the maximum of each pair and then the maximum of the two results. This
idea results in the (properly layered) NN depicted in Figure 2.5, which has two hidden
layers.

Repeating this procedure, one can compute the maximum of eight numbers with
three hidden layers, and, in general, the maximum of 2k numbers with k hidden layers.
Additionally, by multiplying the weights in the first and last layer with −1, we can
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alternatively compute the minimum. Keeping track of size and width, we obtain the
following proposition.

Proposition 2.2 (compare Lemma D.3 by Arora et al. [Aro+18]). The maximum or
minimum of n numbers can be computed with a ReLU NN of depth ⌈log2(n)⌉ + 1,
width ⌈3n/2⌉, and size 3(n− 1).

It is an open question whether the depth of this construction is best possible or whether
the maximum of n numbers can be computed with less than ⌈log2(n)⌉ hidden layers.
We will study this question in detail in Chapter 3.

It is worth to note that the depth in Proposition 2.2 is almost equal to the general
depth bound in Theorem 2.1, except for the additional plus one within the logarithm in
the general bound. This is not a coincidence because the proof of Theorem 2.1 is based
on Proposition 2.2, as well as the following (nontrivial) result about CPWL functions.

Theorem 2.3 (Wang and Sun [WS05]). Every CPWL function f : Rn → R can be
written in the form

f(x) =
p∑︂

i=1
λi max{ℓi1(x), . . . , ℓi(n+1)(x)} (2.1)

where p ∈ N, λ1, . . . , λp ∈ R, and ℓij : Rn → R is an affine linear function for every i ∈ [p]
and j ∈ [n+ 1].

Note that maxima with less than n + 1 terms are also allowed, as some functions ℓij
may coincide. In other words, Theorem 2.3 states that every CPWL function defined
on Rn can be written as a linear combination of maxima of at most n+ 1 affine terms.
The proof given by Wang and Sun [WS05] is technically involved and we will not go
into details here. However, in Chapter 3 we will provide an alternative proof yielding a
slightly stronger result. This will also be useful to bound the width of NNs representing
arbitrary CPWL functions.

In fact, having Proposition 2.2 and Theorem 2.3 is already enough to prove Theo-
rem 2.1: Having a CPWL function in the form of (2.1), one can obtain an NN repre-
senting it as follows. All the maxima of n+ 1 affine terms can be computed in parallel
with ⌈log2(n + 1)⌉ many hidden layers. Apart from that, only affine transformations
need to be realized, which does not increase the number of hidden layers. Therefore,
Theorem 2.1 follows.

2.4. Recurrent Neural Networks
Since feedforward NNs have a fixed input size, a common way of handling sequential
inputs of arbitrary length is to use recurrent neural networks (RNNs). This type of NNs
has become very popular, e.g., for tasks in language or speech processing. Essentially, an
RNN is a feedforward NN that is used repeatedly for every piece of the input sequence
and maintains a hidden state by passing (part of) its output in each step as an additional
input to the next step. More precisely, let n,m, q ∈ N be the dimensions of the input,
output, and hidden state vector, respectively. Suppose we are given a sequence of p ∈ N
input vectors xi ∈ Rn, i ∈ [p], and a generically chosen (sometimes application-specific)
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h
i−

1

h
iRNN

cell
RNN
cell

xi xi+1

yi yi+1

Figure 2.6.: Basic structure of an (unfolded) RNN.

initial hidden state vector h0 ∈ Rq. In the i-th step, the input of the RNN consists of
the i-th input vector xi, as well as the previous hidden state vector hi−1 ∈ Rq. In the
same manner as a feedforward NN described above, it then computes the i-th output
vector yi ∈ Rm, as well as the new hidden state vector hi ∈ Rq. The crucial point is
that the NN (called RNN cell) applied in each of these iterations is the same, with the
same weights and biases (parameter sharing). That way, the p input vectors xi can be
mapped to p output vectors yi for arbitrary values of p using a fixed-size NN. The basic
structure of an RNN is illustrated in Figure 2.6. Sometimes it holds that yi = hi, that
is, the i-th output is actually equal to the i-th hidden state.
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3 Expressivity
Which functions can be represented by certain architectures?

The results in this chapter are based on a paper with Amitabh Basu, Marco Di Summa,
and Martin Skutella [Her+21] that appeared in the proceedings of the NeurIPS 2021
conference.

3.1. Introduction
A core problem in machine learning and statistics is the estimation of an unknown data
distribution with access to independent and identically distributed samples from the
distribution. It is well-known that there is a tension between how much prior information
one has about the data distribution and how many samples one needs to solve the
problem with high confidence (or equivalently, how much variance one has in one’s
estimate). This is referred to as the bias-variance trade-off or the bias-complexity trade-
off. Neural networks provide a way to turn this bias-complexity knob in a controlled
manner. This is done by modifying the architecture of a neural network class of functions,
in particular their size in terms of depth and width. As one increases these parameters,
the class of functions becomes more expressive. In terms of the bias-variance trade-off,
the “bias” decreases as the class of functions becomes more expressive, but the “variance”
or “complexity” increases.

So-called universal approximation theorems [Cyb89; Hor91; AB99] show that even
with a single hidden layer, that is, when the depth of the architecture is the smallest
possible value, one can essentially reduce the “bias” as much as one desires, by increas-
ing the width. Nevertheless, it can be advantageous both theoretically and empirically
to increase the depth because a substantial reduction in the size can be achieved by
this [Aro+18; ES16; LS17; SS17; Tel15; Tel16; Yar17]. To get a better quantitative
handle on these trade-offs, it is important to understand what classes of functions are
exactly representable by neural networks with a certain architecture. The precise mathe-
matical statements of universal approximation theorems show that single layer networks
can arbitrarily well approximate any continuous function (under some additional mild
hypotheses). While this suggests that single layer networks are good enough from a
learning perspective, from a mathematical perspective, one can ask the question if the
class of functions represented by a single layer is a strict subset of the class of func-
tions represented by two or more hidden layers. On the question of size, one can ask
for precise bounds on the width of the network of a given depth to represent a certain
class of functions. We believe that a better understanding of the function classes exactly
represented by different architectures will have implications not just for mathematical
foundations, but also algorithmic and statistical learning aspects of neural networks.
The task of searching for the “best” function in that class can only benefit from a better
understanding of the nature of functions in that class. A motivating question behind
the results in this chapter is to understand the hierarchy of function classes exactly
represented by neural networks of increasing depth.
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3.1.1. Classes of CPWL Functions
For the investigations in this chapter, we introduce the following classes of CPWL func-
tions for each k ∈ N:

ReLUn(k) := {f : Rn → R | f can be represented by a (k + 1)-layer NN},
CPWLn := {f : Rn → R | f is continuous and piecewise linear}.

In order to analyze ReLUn(k), we use another function class defined as follows.
For p ∈ N, we call a function g a p-term max function if it can be expressed as maximum
of p affine terms, that is, g(x) = max{ℓ1(x), . . . , ℓp(x)} where ℓi : Rn → R is affinely
linear for i ∈ [p]. Based on that, we define

MAXn(p) := {f : Rn → R | f is a linear combination of p-term max functions}.

If the input dimension n is not important for the context, we might drop the index
and use ReLU(k) := ⋃︁

n∈N ReLUn(k) and MAX(p) := ⋃︁
n∈N MAXn(p) instead.

In this chapter, we deal with polyhedra a lot. We use the standard notations convA
and coneA for the convex and conic hulls of a set A ⊆ Rn, respectively. We also
need the notion of the Minkowski sum of two polyhedra P and Q: it is given as the
set P +Q = {p+ q | p ∈ P, q ∈ Q}. For an in-depth treatment of polyhedra and (mixed-
integer) optimization, we refer to Schrijver [Sch86].

3.1.2. Our Main Conjecture
Recall that, by Theorem 2.1, every CPWL function defined on Rn can be represented
by a ReLU neural network with ⌈log2(n + 1)⌉ hidden layers. We wish to understand
whether one can do better. We believe it is not possible to do better and we pose the
following conjecture to better understand the importance of depth in neural networks.

Conjecture 3.1. For any n ∈ N, let k∗ := ⌈log2(n+ 1)⌉. Then it holds that

ReLUn(0) ⊊ ReLUn(1) ⊊ · · · ⊊ ReLUn(k∗ − 1) ⊊ ReLUn(k∗) = CPWLn . (3.1)

Conjecture 3.1 claims that any additional layer up to k∗ hidden layers strictly increases
the set of representable functions. This would imply that the construction of Theorem 2.1
is actually depth-minimal.

Observe that in order to prove Conjecture 3.1, it is sufficient to find a single func-
tion f ∈ CPWLn \ReLUn(k∗ − 1) with n = 2k∗−1 for all k∗ ∈ N. This also implies
that all remaining strict inclusions ReLUn(i − 1) ⊊ ReLUn(i) for i < k∗ are valid
since ReLUn(i− 1) = ReLUn(i) directly implies that ReLUn(i − 1) = ReLUn(i′) for
all i′ ≥ i− 1.

In fact, there is a canonical candidate for such a function, allowing us to reformulate
the conjecture as follows.

Conjecture 3.2. For any k ∈ N, n = 2k, the function fn(x) = max{0, x1, . . . , xn}
cannot be represented with k hidden layers, that is, fn /∈ ReLUn(k).

Proposition 3.3. Conjecture 3.1 and Conjecture 3.2 are equivalent.
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Figure 3.1.: Set of breakpoints of the function max{0, x1, x2} (left). This function cannot
be computed by a 2-layer NN (right), since the set of breakpoints of any
function computed by such an NN is a union of lines.

Proof. We argued above that Conjecture 3.2 implies Conjecture 3.1. For the other
direction, we prove the contraposition, that is, assuming that Conjecture 3.2 is vio-
lated, we show that Conjecture 3.1 is violated, as well. To this end, suppose there is
a k ∈ N, n = 2k, such that fn is representable with k hidden layers. We argue that,
under this hypothesis, any (n+ 1)-term max function can be represented with k hidden
layers. To see this, observe that

max{ℓ1(x), . . . , ℓn+1(x)} = max{0, ℓ1(x)− ℓn+1(x), . . . , ℓn(x)− ℓn+1(x)}+ ℓn+1(x).

Modifying the first-layer weights of the NN computing fn such that input xi is replaced
by the affine expression ℓi(x)− ℓn+1(x), one obtains a k-hidden-layer NN computing the
function max{0, ℓ1(x)− ℓn+1(x), . . . , ℓn(x)− ℓn+1(x)}. Moreover, since affine functions,
in particular also ℓn+1(x), can easily be represented by k-hidden-layer NNs, we obtain
that any (n + 1)-term maximum is in ReLUn(k). Using Theorem 2.3, it follows that
ReLUn(k) = CPWLn. In particular, since k∗ := ⌈log2(n + 1)⌉ = k + 1, we obtain that
Conjecture 3.1 must be violated as well.

It is known that Conjecture 3.2 holds for k = 1 [MB17], that is, the CPWL func-
tion max{0, x1, x2} cannot be computed by a 2-layer NN. The reason for this is that the
set of breakpoints of a CPWL function computed by a 2-layer NN is always a union of
lines, while the set of breakpoints of max{0, x1, x2} is a union of three half-lines; compare
Figure 3.1 and the detailed proof by Mukherjee and Basu [MB17].

However, the conjecture remains open for all k ≥ 2.

3.1.3. Overview and Main Results

In this chapter, we present the following results as partial progress towards resolving our
conjecture.

In Section 3.2, we resolve Conjecture 3.2 for k = 2, under a natural assumption on the
breakpoints of the function represented by any intermediate neuron. We achieve this
result by leveraging techniques from mixed-integer programming to analyze the set of
functions computable by certain NNs.

By Proposition 2.2 it follows that MAX(2k) ⊆ ReLU(k) for all k ∈ N, that is, any
2k-term max function (and linear combinations thereof) can be expressed with k hidden
layers. One might ask whether the converse is true as well, that is, whether the classes
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MAX(2k) and ReLU(k) are actually equal. This would not only provide a neat charac-
terization of ReLU(k), but also prove Conjecture 3.2 without any additional assumption
since one can show that max{0, x1, . . . , x2k} is not contained in MAX(2k).

In fact, this is true for k = 1, that is, a function is computable with one hidden layer if
and only if it is a linear combination of 2-term max functions. However, in Section 3.3,
we show that for k ≥ 2, the class ReLU(k) is a strict superset of MAX(2k). To achieve
this result, the key technical ingredient is the theory of polyhedral complexes associated
with CPWL functions. This way, we provide important insights concerning the richness
of the class ReLU(k).

So far, we have focused on understanding the smallest depth needed to express CPWL
functions using neural networks with ReLU activations. In Section 3.4, we complement
these results by upper bounds on the sizes of the networks needed for expressing arbitrary
CPWL functions. In particular, Theorem 3.30 shows that any CPWL function with p
affine pieces on Rn can be expressed by a network with depth at most O(log n) and width
at most pO(n2). We arrive at this result by introducing a novel application of recently
established interactions between neural networks and tropical geometry.

Finally, in Section 3.5, we provide an outlook how these interactions between tropical
geometry and NNs could possibly also be useful to provide a full, unconditional proof of
Conjecture 3.1 by means of polytope theory. In Section 3.6, we point out further open
research questions.

3.1.4. Related Work

Depth versus size. Soon after the original universal approximation theorems [Cyb89;
Hor91], concrete bounds were obtained on the number of neurons needed in the hidden
layer to achieve a certain level of accuracy. The literature on this is vast and we re-
fer to a small representative sample here [Bar93; Bar94; Pin99; Mha96; MM95]. More
recently, work has focused on how deeper networks can have exponentially or super ex-
ponentially smaller size compared to shallower networks [Tel16; ES16; Aro+18; Var+21].
See also Gribonval et al. [Gri+21] for another perspective on the relationship between
expressivity and architecture, and the references therein. We reiterate that the list of
references above is far from complete.

Mixed-integer optimization and machine learning. Over the past decade, a grow-
ing body of work has emerged that explores the interplay between mixed-integer op-
timization and machine learning. On the one hand, researchers have attempted to
improve mixed-integer optimization algorithms by exploiting novel techniques from ma-
chine learning [BLZ18; Gas+19; HDE14; Kha+16; Kha+17b; KLP17; LZ17; ALW17];
see also Bengio, Lodi, and Prouvost [BLP21] for a recent survey. On the flip side, mixed-
integer optimization techniques have been used to analyze function classes represented
by neural networks [STR18; And+20; FJ17; SR20; SKR20]. In Section 3.2 below, we
show another new use of mixed-integer optimization tools for understanding function
classes represented by neural networks.

Design of training algorithms. We believe that a better understanding of the function
classes represented exactly by a neural architecture also has benefits in terms of un-
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derstanding the complexity of the training problem. For instance, in a paper by Arora
et al. [Aro+18], an understanding of single layer ReLU networks enables the design of a
globally optimal algorithm for solving the empirical risk minimization (ERM) problem
that runs in polynomial time in the number of data points in fixed dimension. There
are many works going in a similar direction [Goe+17; GKM18; GK19; DWX20; BDL20;
Goe+21]; compare also Chapter 5 of this thesis.

Neural Networks and Tropical Geometry. A recent stream of research involves the in-
terplay between neural networks and tropical geometry. The piecewise linear functions
computed by neural networks can be seen as (tropical quotients of) tropical polynomials.
Linear regions of these functions correspond to vertices of so-called Newton polytopes as-
sociated with these tropical polynomials. Applications of this correspondence include
bounding the number of linear regions of a neural network [ZNL18; CM18; MRZ21]
and understanding decision boundaries [Alf+20]. In Section 3.4 we present a novel ap-
plication of tropical concepts to understand neural networks. We refer to Maragos,
Charisopoulos, and Theodosis [MCT21] for a recent survey of connections between ma-
chine learning and tropical geometry, as well as to the textbooks by Maclagan and
Sturmfels [MS15] and Joswig [Jos21] for in-depth introductions to tropical geometry
and tropical combinatorics.

3.2. Conditional Lower Bounds on Depth via Mixed-Integer
Programming

In this section, we provide a computer-aided proof that, under a natural, yet unproven
assumption, the function f(x) := max{0, x1, x2, x3, x4} cannot be represented by a 3-
layer NN. It is worth to note that, to the best of our knowledge, no CPWL function
is known for which the non-existence of a 3-layer NN can be proven without additional
assumption. For easier notation, we write x0 := 0.

We first prove that we may restrict ourselves to NNs without biases. This holds true
independent of our assumption, which we introduce afterwards.

Definition 3.4. A function g : Rn → Rm is called positively homogeneous if it satis-
fies g(λx) = λg(x) for all λ ≥ 0.

Definition 3.5. For an NN given by affine transformations T (ℓ)(x) = A(ℓ)x + b(ℓ), we
define the corresponding homogenized NN to be the NN given by T̃

(ℓ)(x) = A(ℓ)x with
all biases set to zero.

Proposition 3.6. If an NN computes a positively homogeneous function, then the cor-
responding homogenized NN computes the same function.

Proof. Let g : Rn0 → Rnk+1 be the function computed by the original NN and g̃ the one
computed by the homogenized NN. Further, for any 0 ≤ ℓ ≤ k, let

g(ℓ) = T (ℓ+1) ◦ σ ◦ T (ℓ) ◦ · · · ◦ T (2) ◦ σ ◦ T (1)

be the function computed by the sub-NN consisting of the first (ℓ+ 1)-layers and let g̃(ℓ)

be the function computed by the corresponding homogenized sub-NN. We first show by
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induction on ℓ that the norm of ∥g(ℓ)(x)− g̃(ℓ)(x)∥ is bounded by a global constant that
only depends on the parameters of the NN but not on x.

For ℓ = 0, we obviously have ∥g(0)(x)− g̃(0)(x)∥ = ∥b(1)∥ =: C0, settling the induction
base. For the induction step, let ℓ ≥ 1 and assume that ∥g(ℓ−1)(x)− g̃(ℓ−1)(x)∥ ≤ Cℓ−1,
where Cℓ−1 only depends on the parameters of the NN. Since component-wise ReLU ac-
tivation has Lipschitz constant 1, this implies ∥(σ ◦ g(ℓ−1))(x)− (σ ◦ g̃(ℓ−1))(x)∥ ≤ Cℓ−1.
Using any matrix norm that is compatible with the Euclidean vector norm, we obtain:

∥g(ℓ)(x)− g̃(ℓ)(x)∥ = ∥b(ℓ+1) +A(ℓ+1)((σ ◦ g(ℓ−1))(x)− (σ ◦ g̃(ℓ−1))(x))∥
≤ ∥b(ℓ+1)∥+ ∥A(ℓ+1)∥ · Cℓ−1 =: Cℓ

Since the right-hand side only depends on NN parameters, the induction is completed.
Finally, we show that g = g̃. For the sake of contradiction, suppose that there is

an x ∈ Rn0 with ∥g(x)− g̃(x)∥ = δ > 0. Let x′ := Ck+1
δ x; then, by positive homogeneity,

it follows that ∥g(x′)− g̃(x′)∥ = Ck + 1 > Ck, contradicting the property shown above.
Thus, we have g = g̃.

Since f = max{0, x1, x2, x3, x4} is positively homogeneous, Proposition 3.6 implies
that, if there is a 3-layer NN computing f , then there also is one that has no biases.
Therefore, in the remainder of this section, we only consider NNs without biases and
assume implicitly that all considered CPWL functions are positively homogeneous. In
particular, any piece of such a CPWL function is linear and not only affine linear.

Observe that, for the function f , the only points of non-differentiability (a.k.a. break-
points) are at places where at least two of the five numbers x0 = 0, x1, x2, x3, and x4
are equal. Hence, if some neuron of an NN computing f introduces breakpoints at other
places, these breakpoints must be canceled out by other neurons. Therefore, it is a
natural assumption that such breakpoints are not introduced at all in the first place.

To make this assumption formal, let Hij = {x ∈ R4 | xi = xj}, for 0 ≤ i < j ≤ 4,
be ten hyperplanes in R4 and H = ⋃︁

0≤i<j≤4Hij be the corresponding hyperplane ar-
rangement. The regions or cells of H are defined to be the closures of the connected
components of R4 \ H. It is easy to see that these regions are in one-to-one corre-
spondence to the 5! = 120 possible orderings of the five numbers x0 = 0, x1, x2, x3,
and x4. More precisely, for a permutation π of the five indices [4]0 = {0, 1, 2, 3, 4}, the
corresponding region is the polyhedron

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)}.

We say that a (positively homogeneous) CPWL function g is H-conforming, if it is linear
within any of these regions of H, that is, if it only has breakpoints where the relative
ordering of the five values x0 = 0, x1, x2, x3, x4 changes; see Figure 3.2 for an illustration
of the (simpler) two-dimensional case. Moreover, an NN is said to be H-conforming if
the output of each neuron contained in the NN is H-conforming. Equivalently, this is the
case if and only if all intermediate functions σ ◦ T (ℓ) ◦ σ ◦ T (ℓ−1) ◦ · · · ◦ σ ◦ T (1), ℓ ∈ [k],
are H-conforming. Now our assumption can be formally phrased as follows.

Assumption 3.7. If there exists a 3-layer NN computing f(x) = max{0, x1, x2, x3, x4},
then there also exists one that is H-conforming.
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x1 ≥
x2 ≥ 0

0 ≥ x2
≥ x1

x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1
≥ 0

0 ≥
x1 ≥ x2

Figure 3.2.: A function is H-conforming if the set of breakpoints is a subset of the hy-
perplane arrangement H. The arrangement H consists of all hyperplanes
where two of the coordinates (possibly including x0 = 0) are equal. Here, H
is illustrated for the (simpler) two-dimensional case, where it consists of
three hyperplanes that divide the space into six cells.

We use mixed-integer programming to prove the following theorem.

Theorem 3.8. Under Assumption 3.7, there does not exist a 3-layer NN that computes
the function f(x) = max{0, x1, x2, x3, x4}.

The remainder of this section is devoted to proving this theorem. The rough outline
of the proof is as follows. We first study some geometric properties of the hyperplane
arrangement H. This will show that each of the 120 cells of H is a simplicial polyhedral
cone spanned by 4 extreme rays. In total, there are 30 such rays (because rays are
used multiple times to span different cones). This implies that each H-conforming
function is uniquely determined by its values on the 30 rays and, therefore, the set of
H-conforming functions of type R4 → R is a 30-dimensional vector space. We then use
linear algebra to show that the space of functions generated by H-conforming two-layer
NNs is a 14-dimensional subspace. Moreover, with two hidden layers, at least 29 of the 30
dimensions can be generated and f is not contained in this 29-dimensional subspace. So
the remaining question is whether the 14 dimensions producible with the first hidden
layer can be combined in such a way that after applying a ReLU activation in the
second hidden layer, we do not end up within the 29-dimensional subspace. We model
this question as a mixed-integer program (MIP). Solving the MIP yields that we always
end up within the 29-dimensional subspace, implying that f cannot be represented by a
3-layer NN. This provides a computational proof of Theorem 3.8.

Let us start with investigating the structure of the hyperplane arrangement H. For
readers familiar with the interplay between hyperplane arrangements and polytopes,
it is worth noting that H is dual to a combinatorial equivalent of the 4-dimensional
permutahedron. Hence, what we are studying in the following are some combinatorial
properties of the permutahedron.

Recall that the regions of H are given by the 120 polyhedra

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)}
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for each permutation π of [4]0. With this representation, one can see that Cπ is a
pointed polyhedral cone (with the origin as its only vertex) spanned by the four half-
lines (a.k.a. rays)

R{π(0)} := {x ∈ R4 | xπ(0) ≤ xπ(1) = xπ(2) = xπ(3) = xπ(4)},
R{π(0),π(1)} := {x ∈ R4 | xπ(0) = xπ(1) ≤ xπ(2) = xπ(3) = xπ(4)},

R{π(0),π(1),π(2)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) ≤ xπ(3) = xπ(4)},
R{π(0),π(1),π(2),π(3)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) = xπ(3) ≤ xπ(4)}.

With that notation, we see that each of the 120 cells of H is a simplicial cone spanned
by four out of the 30 rays RS with ∅ ⊊ S ⊊ [4]0. For each such set S, denote its
complement by S̄ := [4]0 \ S. Let us use a generating vector rS ∈ R4 for each of
these rays such that RS = cone rS as follows: If 0 ∈ S, then rS := 1S̄ ∈ R4, oth-
erwise rS := −1S ∈ R4, where for each S ⊆ [4], the vector 1S ∈ R4 contains en-
tries 1 at precisely those index positions that are contained in S and entries 0 elsewhere.
For example, r{0,2,3} = (1, 0, 0, 1) ∈ R4 and r{1,4} = (−1, 0, 0,−1) ∈ R4. Then, the
set R containing conic generators of all the 30 rays of H consists of the 30 vectors
R = ({0, 1}4 ∪ {0,−1}4) \ {0}4.

Let S30 be the space of all H-conforming CPWL functions of type R4 → R. We show
that S30 is a 30-dimensional vector space.

Lemma 3.9. The map g ↦→ (g(r))r∈R that evaluates a function g ∈ S30 at the 30 rays
in R is an isomorphism between S30 and R30. In particular, S30 is a 30-dimensional
vector space.

Proof. First note that S30 is closed under addition and scalar multiplication. Therefore,
it is a subspace of the vector space of continuous functions of type R4 → R, and thus,
in particular, a vector space. We show that the map g ↦→ (g(r))r∈R is in fact a vector
space isomorphism. The map is obviously linear, so we only need to show that it is a
bijection. In order to do so, remember that R4 is the union of the 5! = 120 simplicial
cones Cπ. In particular, given the function values on the extreme rays of these cones,
there is a unique positively homogeneous, continuous continuation that is linear within
each of the 120 cones. This implies that the considered map is a bijection between S30

and R30.

The previous lemma also provides a canonical basis of the vector space S30: the one
consisting of all CPWL functions attaining value 1 at one ray r ∈ R and value 0 at all
other rays. However, it turns out that for our purposes it is more convenient to work with
a different basis. For this purpose, let gM (x) = maxi∈M xi for each {∅, {0}} ̸∋M ⊆ [4]0.
These 30 functions contain, among other functions, the four (linear) coordinate projec-
tions g{i}(x) = xi, i ∈ [4], and the function f(x) = g[4]0(x) = max{0, x1, x2, x3, x4}.

Lemma 3.10. The 30 functions gM (x) = maxi∈M xi with {∅, {0}} ̸∋ M ⊆ [4]0 form a
basis of S30.

Proof. Evaluating the 30 functions gM at all 30 rays r ∈ R yields 30 vectors in R30. It
can be easily verified (e.g., using a computer) that these vectors form a basis of R30.
Thus, due to the isomorphism of Lemma 3.9, the functions gM form a basis of S30.
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Next, we focus on particular subspaces of S30 generated by only some of the 30
functions gM . We prove that they correspond to the spaces of functions computable
by H-conforming 2- and 3-layer NNs, respectively.

To this end, let B14 be the set of the 14 basis functions gM with {∅, {0}} ̸∋M ⊆ [4]0
and |M | ≤ 2. Let S14 be the 14-dimensional subspace spanned by B14. Similarly, let B29

be the set of the 29 basis functions gM with {∅, {0}} ̸∋ M ⊊ [4]0 (all but [4]0). Let S29

be the 29-dimensional subspace spanned by B29.

Lemma 3.11. The space S14 consists of all functions computable by H-conforming
2-layer NNs.

Proof. Each function in B14 is a maximum of at most 2 numbers and can thus be
represented by a 2-layer NN by Proposition 2.2. By putting the corresponding networks
in parallel and adding appropriate weights to the connections to the output, also all linear
combinations of these 14 functions, and thus, the full space S14, can be represented by
a 2-layer NN.

Conversely, we show that any function representable by a 2-layer NN is indeed con-
tained in S14. It suffices to show that the output of every neuron in the first (and
only) hidden layer of an H-conforming ReLU NN is in S14 because the output of a
2-layer NN is a linear combination of such outputs. Let a ∈ R4 be the first-layer
weights of such a neuron, computing the function ga(x) := max{aTx, 0}, which has
the hyperplane {x ∈ R4 | aTx = 0} as breakpoints (or is constantly zero). Since
the NN must be H-conforming, this must be one of the ten hyperplanes xi = xj ,
0 ≤ i < j ≤ 4. Thus, ga(x) = max{λ(xi − xj), 0} for some λ ∈ R. If λ ≥ 0, it follows
that ga = λg{i,j} − λg{j} ∈ S14, and if λ ≤ 0, we obtain ga = −λg{i,j} + λg{i} ∈ S14.
This concludes the proof.

For 3-layer NNs, an analogous statement can be made. However, only one direction
can be easily seen.

Lemma 3.12. Any function in S29 can be represented by an H-conforming 3-layer NN.

Proof. Each function in B29 is a maximum of at most 4 numbers and can thus be
represented by a 3-layer NN by Proposition 2.2. As in the previous lemma, also linear
combinations of those can be represented.

Our goal is to prove the converse as well: any H-conforming function represented by a
3-layer NN is in S29. Since f(x) = max{0, x1, x2, x3, x4} is the 30th basis function, which
is linearly independent from B29 and thus not contained in S29, this implies Theorem 3.8.
To achieve this goal, we first provide another characterization of S29, which can be seen
as an orthogonal direction to S29 in S30. For a function g ∈ S30, let

ϕ(g) :=
∑︂

∅⊊S⊊[4]0

(−1)|S|g(rS)

be a linear map from S30 to R.

Lemma 3.13. A function g ∈ S30 is contained in S29 if and only if ϕ(g) = 0.
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Proof. Any g ∈ S30 can be represented as a unique linear combination of the 30 basis
functions gM and is contained in S29 if and only if the coefficient of f = g[4]0 is zero. One
can easily check (with a computer) that ϕ maps all functions in B29 to 0, but not the
30th basis function f . Thus, g is contained in S29 if and only if it satisfies ϕ(g) = 0.

In order to make use of our Assumption 3.7, we need the following insight about when
the property of being H-conforming is preserved after applying a ReLU activation.

Lemma 3.14. Let g ∈ S30. The function h = σ ◦ g is H-conforming (and thus in S30

as well) if and only if there is no pair of sets ∅ ⊊ S ⊊ S′ ⊊ [4]0 with g(rS) and g(rS′)
being nonzero and having different signs.

Proof. The key observation to prove this lemma is the following: for two rays rS and rS′ ,
there exists a cell C of the hyperplane arrangement H for which both rS and rS′ are
extreme rays if and only if S ⊊ S′ or S′ ⊊ S.

Hence, if there exists a pair of sets ∅ ⊊ S ⊊ S′ ⊊ [4]0 with g(rS) and g(rS′) be-
ing nonzero and having different signs, then the function g restricted to C is a linear
function with both strictly positive and strictly negative values. Therefore, after apply-
ing the ReLU activation, the resulting function h has breakpoints within C and is not
H-conforming.

Conversely, if for each pair of sets ∅ ⊊ S ⊊ S′ ⊊ [4]0, both g(rS) and g(rS′) are either
nonpositive or nonnegative, then g restricted to any cell C of H is either nonpositive or
nonnegative everywhere. In the first case, h restricted to that cell C is the zero function,
while in the second case, h coincides with g in C. In both cases, h is linear within all
cells and, thus, H-conforming.

Having collected all these lemmas, we are finally able to construct a MIP whose
solution proves that any function computed by an H-conforming 3-layer NN is in S29.
As in the proof of Lemma 3.11, it suffices to focus on the output of a single neuron in
the second hidden layer. Let h = σ ◦ g be the output of such a neuron with g being its
input. Observe that, by construction, g is a function computed by a 2-layer NN, and
thus, by Lemma 3.11, a linear combination of the 14 functions in B14. The MIP contains
three types of variables, which we denote in bold to distinguish them from constants:

• 14 continuous variables aM ∈ [−1, 1], being the coefficients of the linear combina-
tion of the basis of S14 forming g, that is, g = ∑︁

gM ∈B14 aMgM (since multiplying g
and h with a nonzero scalar does not alter the containment of h in S29, we may
assume unit interval bounds),

• 30 binary variables zS ∈ {0, 1} for ∅ ⊊ S ⊊ [4]0, determining whether the consid-
ered neuron is strictly active at ray rS , that is, whether g(rS) > 0,

• 30 continuous variables yS ∈ R for ∅ ⊊ S ⊊ [4]0, representing the output of the
considered neuron at all rays, that is, yS = h(rS).

To ensure that these variables interact as expected, we need two types of constraints:

• For each of the 30 rays rS , ∅ ⊊ S ⊊ [4]0, the following constraints ensure that zS

and output yS are correctly calculated from the variables aM , that is, zS = 1
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if and only if g(rS) = ∑︁
gM ∈B14 aMgM (rS) is positive, and yS = max{0, g(rS)}.

Also compare the references given in Section 3.1.4 concerning MIP models for
ReLU units. Note that the restriction of the coefficients aM to [−1, 1] ensures that
the absolute value of g(rS) is always bounded by 14, allowing us to use 15 as a
replacement for +∞:

yS ≥ 0
yS ≥

∑︂
gM ∈B14

aMgM (rS)

yS ≤ 15zS

yS ≤
∑︂

gM ∈B14

aMgM (rS) + 15(1− zS)

(3.2)

Observe that these constraints ensure that one of the following two cases occurs:
If zS = 0, then the first and third line imply yS = 0 and the second line implies that
the incoming activation is in fact nonpositive. The fourth line is always satisfied
in that case. Otherwise, if zS = 1, then the second and fourth line imply that yS

equals the incoming activation, and, in combination with the first line, this has to
be nonnegative. The third line is always satisfied in that case. Hence, the set of
constraints (3.2) correctly models the ReLU activation function.

• For each of the 150 pairs of sets ∅ ⊊ S ⊊ S′ ⊊ [4]0, the following constraints
ensure that the property in Lemma 3.14 is satisfied. More precisely, if one of
the variables zS or zS′ equals 1, then the ray of the other set has nonnegative
activation, that is, g(rS′) ≥ 0 or g(rS) ≥ 0, respectively:∑︂

gM ∈B14

aMgM (rS) ≥ 15(zS′ − 1)

∑︂
gM ∈B14

aMgM (rS′) ≥ 15(zS − 1)
(3.3)

Observe that these constraints successfully prevent that the two rays rS and rS′

have nonzero activations with different signs. Conversely, if this is not the case,
then we can always satisfy constraints (3.3) by setting only those variables zS

to value 1 where the activation of ray rS is strictly positive. (Note that, if the
incoming activation is precisely zero, constraints (3.2) make it possible to choose
both values 0 or 1 for zS .) Hence, these constraints are in fact appropriate to
model H-conformity.

In the light of Lemma 3.13, the objective function of our MIP is to maximize ϕ(h),
that is, the expression ∑︂

∅⊊S⊊[4]0

(−1)|S|yS .

The MIP has a total of 30 binary and 44 continuous variables, as well as 420 inequality
constraints. The next proposition formalizes how this MIP can be used to check whether
a 3-layer NN function can exist outside S29.
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Proposition 3.15. There exists an H-conforming 3-layer NN computing a function not
contained in S29 if and only if the objective value of the MIP defined above is strictly
positive.

Proof. For the first direction, assume that such an NN exists. Since its final output is a
linear combination of the outputs of the neurons in the second hidden layer, one of these
neurons must compute a function h̃ = σ◦ g̃ /∈ S29, with g̃ being the input to that neuron.
By Lemma 3.13, it follows that ϕ(h̃) ̸= 0. Moreover, we can even assume without loss
of generality that ϕ(h̃) > 0, as we argue now. If this is not the case, multiply all first-
layer weights of the NN by −1 to obtain a new NN computing function ĥ instead of h̃.
Observing that rS = −r[4]0\S for all rS ∈ R, we obtain ĥ(rS) = h̃(−rS) = h̃(r[4]0\S) for
all rS ∈ R. Plugging this into the definition of ϕ and using that the cardinalities of S
and [4]0 \ S have different parity, we further obtain ϕ(ĥ) = −ϕ(h̃). Therefore, we can
assume that ϕ(h̃) was already positive in the first place.

Using Lemma 3.11, g̃ can be represented as a linear combination g̃ = ∑︁
gM ∈B14 ãMgM

of the functions in B14. Let α := maxM |ãM | > 0. Let us define modified functions g
and h from g̃ and h̃ as follows. Let aM := ãM/α ∈ [−1, 1], g := ∑︁

gM ∈B14 aMgM , and
h := σ ◦ g. Moreover, for all rays rS ∈ R, let yS := h(rS), as well as zS := 1 if yS > 0,
and zS := 0 otherwise.

It is easy to verify that the variables aM , yS , and zS defined that way satisfy (3.2).
Moreover, since the NN is H-conforming, they also satisfy (3.3). Finally, they also yield
a strictly positive objective function value since ϕ(h) = ϕ(h̃)/α > 0.

For the reverse direction, assume that there exists a MIP solution consisting of aM , yS ,
and zS , satisfying (3.2) and (3.3), and having a strictly positive objective function value.
Define the functions g := ∑︁

gM ∈B14 aMgM and h := σ ◦ g. One concludes from (3.2) that
h(rS) = yS for all rays rS ∈ R. Lemma 3.11 implies that g can be represented by a
2-layer NN. Thus, h can be represented by a 3-layer NN. Moreover, constraints (3.3)
guarantee that this NN is H-conforming. Finally, since the MIP solution has strictly
positive objective function value, we obtain ϕ(h) > 0, implying that h /∈ S29.

In order to use the MIP as part of a mathematical proof, we employed a MIP solver
that uses exact rational arithmetics without numerical errors, namely the solver by
the Parma Polyhedral Library (PPL) [BHZ08]. We called the solver from a SageMath
(Version 9.0) [Sag20] script on a machine with an Intel Core i7-8700 6-Core 64-bit CPU
and 15.5 GB RAM, using the openSUSE Leap 15.2 Linux distribution. SageMath, which
natively includes the PPL solver, is published under the GPLv3 license. After a total
running time of almost 7 days (153 hours), we obtained optimal objective function value
zero. This makes it possible to prove Theorem 3.8.

Proof of Theorem 3.8. Since the MIP has optimal objective function value zero, Propo-
sition 3.15 implies that any function computed by an H-conforming 3-layer NN is con-
tained in S29. In particular, under Assumption 3.7, it is not possible to compute the
function f(x) = max{0, x1, x2, x3, x4} with a 3-layer NN.

We remark that state-of-the-art MIP solver Gurobi (version 9.1.1) [Gur21], which is
commercial but offers free academic licenses, is able to solve the same MIP within less
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than a second, providing the same result. However, Gurobi does not employ exact arith-
metics, making it impossible to exclude numerical errors and use it as a mathematical
proof.

The SageMath code can be found on GitHub at

https://github.com/ChristophHertrich/relu-mip-depth-bound.

Additionally, the MIP can be found there as .mps file, a standard format to represent
MIPs. This allows one to use any solver of choice to reproduce our result.

3.3. Going Beyond Linear Combinations of Max Functions
In this section we prove the following result, showing that NNs with k hidden layers can
compute more functions than only linear combinations of 2k-term max functions.

Theorem 3.16. For any k ≥ 2, the class ReLU(k) is a strict superset of MAX(2k).

To prove this theorem, we provide a specific function that is in ReLU(k) \MAX(2k)
for any number of hidden layers k ≥ 2. The challenging part is to show that the function
is in fact not contained in MAX(2k).

Proposition 3.17. For any n ≥ 3, the function

f : Rn → R, f(x) = max{0, x1, x2, . . . , xn−3, max{xn−2, xn−1}+ max{0, xn}} (3.4)

cannot be written as a linear combination of n-term max functions.

The above proposition means that it is not possible to write f(x) in the form

f(x) =
p∑︂

i=1
λi max{ℓi1(x), . . . , ℓin(x)}

where p ∈ N, λ1, . . . , λp ∈ R, and ℓij : Rn → R is an affine linear function for every i ∈ [p]
and j ∈ [n]. (Note that max functions with less than n terms are also allowed, as some
functions ℓij may coincide.)

Before we prove Proposition 3.17, we show that it implies Theorem 3.16.

Proof of Theorem 3.16. For k ≥ 2, let n := 2k. By Proposition 3.17, function f defined
in (3.4) is not contained in MAX(2k). It remains to show that it can be represented using
a ReLU NN with k hidden layers. To see this, first observe that any of the n/2 = 2k−1

terms max{0, x1}, max{x2i, x2i+1} for i ∈ [n/2− 2], and max{xn−2, xn−1}+ max{0, xn}
can be expressed by a one-hidden-layer NN since all these are (linear combinations of)
2-term max functions. Since f is the maximum of these 2k−1 terms, and since the
maximum of 2k−1 numbers can be computed with k− 1 hidden layers (Proposition 2.2),
this implies that f is in ReLU(k).

In order to prove Proposition 3.17, we need the concept of polyhedral complexes. A
polyhedral complex P is a finite set of polyhedra such that each face of a polyhedron
in P is also in P, and for two polyhedra P,Q ∈ P , their intersection P ∩Q is a common
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face of P and Q (possibly the empty face). Given a polyhedral complex P in Rn and an
integer m ∈ [n], we let Pm denote the collection of all m-dimensional polyhedra in P.

For a convex CPWL function f , we define its underlying polyhedral complex as fol-
lows: it is the unique polyhedral complex covering Rn (i.e., each point in Rn belongs to
some polyhedron in P) whose n-dimensional polyhedra coincide with the domains of the
(maximal) affine pieces of f . In particular, f is affinely linear within each P ∈ P , but
not within any strict superset of a polyhedron in Pn.

Exploiting properties of polyhedral complexes associated with CPWL functions, we
prove the following proposition below.

Proposition 3.18. Let f0 : Rn → R be a convex CPWL function and let P0 be the
underlying polyhedral complex. If there exists a hyperplane H ⊆ Rn such that the set

T :=
⋃︂{︂

F ∈ Pn−1
0

⃓⃓⃓
F ⊆ H

}︂
is nonempty and contains no line, then f0 cannot be expressed as a linear combination
of n-term maxima of affine linear functions.

Again, before we proceed to the proof of Proposition 3.18, we show that it implies
Proposition 3.17.

Proof of Proposition 3.17. Observe that f (defined in (3.4)) has the alternate represen-
tation

f(x) = max{0, x1, x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}

as a maximum of n + 2 terms. Let P be its underlying polyhedral complex. Let the
hyperplane H be defined by x1 = 0.

Observe that any facet in Pn−1 is a polyhedron defined by two of the n+2 terms that
are equal and at least as large as each of the remaining n terms. Hence, the only facet
that could possibly be contained in H is

F := {x ∈ Rn | x1 = 0 ≥ x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}.

Note that F is indeed an (n− 1)-dimensional facet in Pn−1, because, for example, the
full neighborhood of (0,−1, . . . ,−1) ∈ Rn intersected with H is contained in F .

Finally, we need to show that F is pointed, that is, it contains no line. A well-known
fact from polyhedral theory says if there is any line in F with direction d ∈ Rn \ {0},
then d must satisfy the defining inequalities with equality. However, only the zero vector
does this. Hence, F cannot contain a line.

Therefore, when applying Proposition 3.18 to f with underlying polyhedral complex P
and hyperplane H, we have T = F , which is nonempty and contains no line. Hence, f
cannot be written as linear combination of n-term maxima.

The remainder of this section is devoted to proving Proposition 3.18. The proof
presented here is based on private communication with Amitabh Basu and Marco Di
Summa. In order to exploit properties of the underlying polyhedral complex of the
considered CPWL functions, we will first introduce some terminology, notation, and
results related to polyhedral complexes in Rn for any n ≥ 1.

26



3.3. Going Beyond Linear Combinations of Max Functions

Definition 3.19. Given an abelian group (G,+), we define Fn(G) as the family of all
functions ϕ of type ϕ : Pn → G, where P is a polyhedral complex that covers Rn. We
say that P is the underlying polyhedral complex, or the polyhedral complex associated
with ϕ.

Just to give an intuition of the reason for this definition, let us mention that later we
will choose (G,+) to be the set of affine linear maps Rn → R with respect to the standard
operation of sum of functions. Moreover, given a convex CPWL function f : Rn → R with
underlying polyhedral complex P, we will consider the following function ϕ ∈ Fn(G):
for every P ∈ Pn, ϕ(P ) will be the affine linear map that coincides with f over P . It can
be helpful, though not necessary, to keep this in mind when reading the next definitions
and observations.

It is useful to observe that the functions in Fn(G) can also be described in a different
way. Before explaining this, we need to define an ordering between the two elements
of each pair of opposite halfspaces. More precisely, let H be a hyperplane in Rn and
let H ′, H ′′ be the two closed halfspaces delimited by H. We choose an arbitrary rule
to say that H ′ “precedes” H ′′, which we write as H ′ ≺ H ′′.1 We can then extend this
ordering rule to those pairs of n-dimensional polyhedra of a polyhedral complex in Rn

that share a facet. Specifically, given a polyhedral complex P in Rn, let P ′, P ′′ ∈ Pn be
such that F := P ′ ∩ P ′′ ∈ Pn−1. Further, let H be the unique hyperplane containing F .
We say that P ′ ≺ P ′′ if the halfspace delimited by H and containing P ′ precedes the
halfspace delimited by H and containing P ′′.

We can now explain the alternate description of the functions in Fn(G), which is
based on the following notion.

Definition 3.20. Let ϕ ∈ Fn(G), with associated polyhedral complex P. The facet-
function associated with ϕ is the function ψ : Pn−1 → G defined as follows: given
F ∈ Pn−1, let P ′, P ′′ be the two polyhedra in Pn such that F = P ′∩P ′′, where P ′ ≺ P ′′;
then we set ψ(F ) := ϕ(P ′)− ϕ(P ′′).

Although it will not be used, we observe that knowing ψ is sufficient to reconstruct ϕ up
to an additive constant. This means that a function ϕ′ ∈ Fn(G) associated with the same
polyhedral complex P has the same facet-function ψ if and only if there exists g ∈ G
such that ϕ(P ) − ϕ′(P ) = g for every P ∈ Pn. (However, it is not true that every
function ψ : Pn−1 → G is the facet-function of some function in Fn(G).)

We now introduce a sum operation over Fn(G).

Definition 3.21. Given p functions ϕ1, . . . , ϕp ∈ Fn(G), with associated polyhedral
complexes P1, . . . ,Pp, the sum ϕ := ϕ1 + · · · + ϕp is the function in Fn(G) defined as
follows:

• the polyhedral complex associated with ϕ is

P := {P1 ∩ · · · ∩ Pp | Pi ∈ Pi for every i};
1In case one wants to see such a rule explicitly, this is a possible way: Fix an arbitrary x̄ ∈ H. We can

say that H ′ ≺ H ′′ if and only if x̄ + ei ∈ H ′, where ei is the first vector in the standard basis of Rd

that does not lie on H (i.e., e1, . . . , ei−1 ∈ H and ei /∈ H). Note that this definition does not depend
on the choice of x̄.

27



3. Expressivity

• given P ∈ Pn, P can be uniquely obtained as P1 ∩ · · · ∩ Pp, where Pi ∈ Pn
i for

every i; we then define

ϕ(P ) =
p∑︂

i=1
ϕi(Pi).

The term “sum” is justified by the fact that when P1 = · · · = Pp (and thus ϕ1, . . . , ϕp

have the same domain) we obtain the standard notion of the sum of functions.
The next results shows how to compute the facet-function of a sum of functions

in Fn(G).

Observation 3.22. With the notation of Definition 3.21, let ψ1, . . . , ψp be the facet-
functions associated with ϕ1, . . . , ϕp, and let ψ be the facet-function associated with ϕ.
Given F ∈ Pn−1, let I be the set of indices i ∈ {1, . . . , p} such that Pn−1

i contains a
(unique) element Fi with F ⊆ Fi. Then

ψ(F ) =
∑︂
i∈I

ψi(Fi). (3.5)

Proof. Let P ′, P ′′ be the two polyhedra in Pn such that F = P ′ ∩ P ′′, with P ′ ≺ P ′′.
We have P ′ = P ′

1 ∩ · · · ∩ P ′
p and P ′′ = P ′′

1 ∩ · · · ∩ P ′′
p for a unique choice of P ′

i , P
′′
i ∈ Pn

i

for every i. Then

ψ(F ) = ϕ(P ′)− ϕ(P ′′) =
p∑︂

i=1
(ϕi(P ′

i )− ϕi(P ′′
i )). (3.6)

Now fix i ∈ [p]. Since F ⊆ P ′
i ∩P ′′

i , dim(P ′
i ∩P ′′

i ) ≥ n− 1. If dim(P ′
i ∩P ′′

i ) = n− 1, then
Fi := P ′

i ∩P ′′
i ∈ P

n−1
i and ϕi(P ′

i )−ϕi(P ′′
i ) = ψi(Fi). Furthermore, i ∈ I because F ⊆ Fi.

If, on the contrary, dim(P ′
i ∩ P ′′

i ) = n, the fact that Pi is a polyhedral complex implies
that P ′

i = P ′′
i , and thus ϕi(P ′

i )−ϕi(P ′′
i ) = 0. Moreover, in this case i /∈ I: this is because

P ′ ∪ P ′′ ⊆ P ′
i , which implies that the relative interior of F is contained in the relative

interior of P ′
i . With these observations, from (3.6) we obtain (3.5).

Definition 3.23. Fix ϕ ∈ Fn(G), with associated polyhedral complex P. Let H be a
hyperplane in Rn, and let H ′, H ′′ be the closed halfspaces delimited by H. Define the
polyhedral complex

ˆ︁P = {P ∩H | P ∈ P} ∪ {P ∩H ′ | P ∈ P} ∪ {P ∩H ′′ | P ∈ P}.

The refinement of ϕ with respect to H is the function ˆ︁ϕ ∈ Fn(G) with associated
polyhedral complex ˆ︁P defined as follows: given ˆ︁P ∈ ˆ︁Pn, ˆ︁ϕ( ˆ︁P ) := ϕ(P ), where P is the
unique polyhedron in P that contains ˆ︁P .

The next results shows how to compute the facet-function of a refinement.

Observation 3.24. With the notation of Definition 3.23, let ψ be the facet-function
associated with ϕ. Then, the facet-function ˆ︁ψ associated with ˆ︁ϕ is given by

ˆ︁ψ( ˆ︁F ) =
{︄
ψ(F ) if there exists a (unique) F ∈ Pn−1 containing ˆ︁F
0 otherwise,

for every ˆ︁F ∈ ˆ︁Pn−1.
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Proof. Let ˆ︁P ′, ˆ︁P ′′ be the polyhedra in ˆ︁Pn such that ˆ︁F = ˆ︁P ′∩ ˆ︁P ′′, with ˆ︁P ′ ≺ ˆ︁P ′′. Further,
let P ′, P ′′ be the unique polyhedra in Pn that contain ˆ︁P ′, ˆ︁P ′′ (respectively); note that
P ′ ≺ P ′′.

If there exists F ∈ Pn−1 containing ˆ︁F , then the fact that P is a polyhedral complex
implies that F = P ′ ∩ P ′′. Thus ˆ︁ψ( ˆ︁F ) = ˆ︁ϕ( ˆ︁P ′)− ˆ︁ϕ( ˆ︁P ′′) = ϕ(P ′)− ϕ(P ′′) = ψ(F ).

Assume now that no element of Pn−1 contains ˆ︁F . Then there exists P ∈ Pn such thatˆ︁F = P ∩H and H intersects the interior of P . Then ˆ︁P ′ = P ∩H ′ and ˆ︁P ′′ = P ∩H ′′ (or
vice versa). It follows that ˆ︁ψ( ˆ︁F ) = ˆ︁ϕ( ˆ︁P ′)− ˆ︁ϕ( ˆ︁P ′′) = ϕ(P )− ϕ(P ) = 0.

We now prove that the operations of sum and refinement commute: the refinement of
a sum is the sum of the refinements.

Observation 3.25. Let p functions ϕ1, . . . , ϕp ∈ Fn(G), with associated polyhedral com-
plexes P1, . . . ,Pp, be given. Define ϕ := ϕ1 + · · ·+ϕp. Let H be a hyperplane in Rn, and
let H ′, H ′′ be the closed halfspaces delimited by H. Then ˆ︁ϕ = ˆ︁ϕ1 + · · ·+ ˆ︁ϕp.

Proof. Define ˜︁ϕ := ˆ︁ϕ1 + · · · + ˆ︁ϕp. It can be verified that ˆ︁ϕ and ˜︁ϕ are defined on the
same poyhedral complex, which we denote by ˆ︁P . We now fix ˆ︁P ∈ ˆ︁Pn and show thatˆ︁ϕ( ˆ︁P ) = ˜︁ϕ( ˆ︁P ).

Since ˆ︁P ∈ ˆ︁Pn, we have ˆ︁P = P1 ∩ · · · ∩Pp ∩H ′, where Pi ∈ Pn
i for every i. (We ignore

the case ˆ︁P = P1 ∩ · · · ∩ Pp ∩H ′′, which is identical.) Then

ˆ︁ϕ( ˆ︁P ) = ϕ(P1 ∩ · · · ∩ Pp) =
p∑︂

i=1
ϕi(Pi) =

p∑︂
i=1

ˆ︁ϕi(Pi ∩H ′) = ˜︁ϕ(P1 ∩ · · · ∩ Pp ∩H ′) = ˜︁ϕ(P ),

where the first and third equations follow from the definition of refinement, while the
second and fourth equations follow from the definition of the sum.

The lineality space of a (nonempty) polyhedron P = {x ∈ Rn | Ax ≤ b} is the null
space of the constraint matrix A. In other words, it is the set of vectors y ∈ Rn such
that for every x ∈ P the whole line {x+ λy | λ ∈ R} is a subset of P . We say that the
lineality space of P is trivial, if it contains only the zero vector, and nontrivial otherwise.

Since, given a polyhedral complex P that covers Rn, all the nonempty polyhedra in P
share the same lineality space L, we will call L the lineality space of P.

Lemma 3.26. Given an abelian group (G,+), pick ϕ1, . . . , ϕp ∈ Fn(G), with associated
polyhedral complexes P1, . . . ,Pp. Assume that for every i ∈ [p] the lineality space of Pi

is nontrivial. Define ϕ := ϕ1 + · · ·+ ϕp, P as the underlying polyhedral complex, and ψ
as the facet-function of ϕ. Then for every hyperplane H ⊆ Rn, the set

S :=
⋃︂{︂

F ∈ Pn−1 | F ⊆ H, ψ(F ) ̸= 0
}︂

is either empty or contains a line.

Proof. The proof is by induction on n. For n = 1, the assumptions imply that all Pi

are equal to P, and each of these polyhedral complexes has R as its only nonempty face.
Since Pn−1 is empty, no hyperplane H such that S ̸= ∅ can exist.

Now fix n ≥ 2. Assume by contradiction that there exists a hyperplane H such that S
is nonempty and contains no line. Let ˆ︁ϕ be the refinement of ϕ with respect to H, ˆ︁P
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be the underlying polyhedral complex, and ˆ︁ψ be the associated facet-function. Further,
we define Q := {P ∩ H | P ∈ ˆ︁P}, which is a polyhedral complex that covers H. Note
that if H is identified with Rn−1 then we can think of Q as a polyhedral complex that
covers Rn−1, and the restriction of ˆ︁ψ to Qn−1, which we denote by ϕ′, can be seen as a
function in Fn−1(G). We will prove that ϕ′ does not satisfy the lemma, contradicting
the inductive hypothesis.

Since ϕ = ϕ1 + · · ·+ϕp, by Observation 3.25 we have ˆ︁ϕ = ˆ︁ϕ1 + · · ·+ ˆ︁ϕp. Note that for
every i ∈ [p] the hyperplane H is covered by the elements of ˆ︁Pn−1. This implies that
for every ˆ︁F ∈ ˆ︁Pn−1 and i ∈ [p] there exists ˆ︁Fi ∈ ˆ︁Pn−1

i such that ˆ︁F ⊆ ˆ︁Fi. Then, by
Observation 3.22, ˆ︁ψ( ˆ︁F ) = ˆ︁ψ1( ˆ︁F1) + · · ·+ ˆ︁ψp( ˆ︁Fp).

Now, additionally suppose that ˆ︁F is contained in H, that is, ˆ︁F ∈ Qn−1. Let i ∈ [p]
be such that the lineality space of Pi is not parallel to H. Then no element of Pn−1

i

contains ˆ︁Fi. By Observation 3.24, ˆ︁ψi( ˆ︁Fi) = 0. We then conclude that

ˆ︁ψ( ˆ︁F ) =
∑︂
i∈J

ˆ︁ψi( ˆ︁Fi) for every ˆ︁F ∈ Qn−1,

where J is the set of indices i such that the lineality space of Pi is parallel to H. This
means that

ϕ′ =
∑︂
i∈J

ϕ′
i,

where ϕ′
i is the restriction of ˆ︁ψi to Qn−1

i , with Qi := {P ∩H | P ∈ ˆ︂Pi}. Note that for
every i ∈ J the lineality space of Qi is clearly nontrivial, as it coincides with the lineality
space of Pi.

Now pick any ˆ︁F ∈ Qn−1. Note that if there exists F ∈ Pn−1 such that ˆ︁F ⊆ F ,
then ˆ︁F = F . It then follows from Observation 3.24 that⋃︂{︂ ˆ︁F ∈ Qn−1

⃓⃓⃓ ˆ︁ψ( ˆ︁F ) ̸= 0
}︂

= S.

In other words, ⋃︂{︂
F ∈ Qn−1

⃓⃓⃓
ϕ′(F ) ̸= 0

}︂
= S. (3.7)

Since S ̸= H (as S contains no line), there exists a polyhedron F ∈ Qn−1 such
that F ⊆ S and F has a facet F0 which does not belong to any other polyhedron in Qn−1

contained in S. Then the facet-function ψ′ associated with ϕ′ satisfies ψ′(F0) ̸= 0. Let H ′

be the (n− 2)-dimensional affine space containing F0. Then the set

S′ :=
⋃︂{︂

F ∈ Qn−2
⃓⃓⃓
F ⊆ H ′, ψ′(F ) ̸= 0

}︂
is nonempty, as F0 ⊆ S′. Furthermore, we claim that S′ contains no line. To see why
this is true, take any F ∈ Qn−2 such that F ⊆ H ′ and ψ′(F ) ̸= 0, and let F ′, F ′′ be the
two polyhedra in Qn−1 having F as facet. Then ϕ′(F ′) ̸= ϕ′(F ′′), and thus at least one
of these values (say ϕ′(F ′)) is nonzero. Then, by (3.7), F ′ ⊆ S, and thus also F ⊆ S.
This shows that S′ ⊆ S and therefore S′ contains no line.

We have shown that ϕ′ does not satisfy the lemma. This contradicts the inductive
assumption that the lemma holds in dimension n− 1.

Finally, we can use this lemma to prove Proposition 3.18.
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Proof of Proposition 3.18. Assume for the sake of a contradiction that

f0(x) =
p∑︂

i=1
λi max{ℓi1(x), . . . , ℓin(x)} for every x ∈ Rn,

where p ∈ N, λ1, . . . , λp ∈ R and ℓij : Rn → R is an affine linear function for every i ∈ [p]
and j ∈ [n]. Define fi(x) := λi max{ℓi1(x), . . . , ℓin(x)} for every i ∈ [p], which is a
CPWL function.

Fix any i ∈ [p] such that λi ≥ 0. Then fi is convex. Note that its epigraph

Ei := {(x, z) ∈ Rn × R | z ≥ ℓij(x) for j ∈ [n]}

is a polyhedron in Rn+1 defined by n inequalities, and thus has nontrivial lineality
space. Furthermore, the line orthogonal to the x-space is not contained in Ei. Since
the underlying polyhedral complex Pi of fi consists of the orthogonal projections of the
faces of Ei (excluding Ei itself) onto the x-space, this implies that Pi has also nontrivial
lineality space. (More precisely, the lineality space of Pi is the projection of the lineality
space of Ei.)

If λi < 0, then fi is concave. By arguing as above on the convex function −fi, one
obtains that the underlying polyhedral complex Pi has again nontrivial lineality space.
Thus this property holds for every i ∈ [p].

The set of affine linear functions Rn → R forms an abelian group (with respect to the
standard operation of sum of functions), which we denote by (G,+). For every i ∈ [p]0,
let ϕi be the function in Fn(G) with underlying polyhedral complex Pi defined as follows:
for every P ∈ Pn

i , ϕi(P ) is the affine linear function that coincides with fi over P . Define
ϕ := ϕ1 + · · ·+ ϕp and let P be the underlying polyhedral complex.

Note that for every P ∈ Pn, ϕ(P ) is precisely the affine linear function that coin-
cides with f0 within P . However, P may not coincide with P0, as there might ex-
ist P ′, P ′′ ∈ Pd sharing a facet such that ϕ(P ′) = ϕ(P ′′); when this happens, f0 is affine
linear over P ′ ∪ P ′′ and therefore P ′ and P ′′ are merged together in P0. Nonetheless, P
is a refinement of P0, i.e., for every P ∈ Pn

0 there exist P1, . . . , Pk ∈ Pn (for some k ≥ 1)
such that P = P1 ∪ · · · ∪ Pk. Moreover, ϕ0(P ) = ϕ(P1) = · · · = ϕ(Pk). Denoting by ψ
the facet-function associated with ϕ, this implies for a facet F ∈ Pn−1 that ψ(F ) = 0 if
and only if F is not subset of any facet F ′ ∈ Pn−1

0 .
Let H be a hyperplane as in the statement of the proposition. The above discussion

shows that

T =
⋃︂{︂

F ∈ Pn−1
0

⃓⃓⃓
F ⊆ H

}︂
=
⋃︂{︂

F ∈ Pn−1
⃓⃓⃓
F ⊆ H, ψ(F ) ̸= 0

}︂
.

Using S := T , we obtain a contradiction to Lemma 3.26.

3.4. A Width Bound for NNs with Small Depth
While the proof of Theorem 2.1 by Arora et al. [Aro+18] shows that

CPWLn = ReLUn(⌈log2(n+ 1)⌉),

it does not provide any bound on the width of the NN required to represent any particular
CPWL function. The purpose of this section is to prove that for fixed dimension n, the
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required width for exact, depth-minimal representation of a CPWL function can be
polynomially bounded in the number p of affine pieces; specifically by pO(n2). This is
closely related to works that bound the number of linear pieces of an NN as a function of
the size [Mon+14; PMB14; Rag+17; MRZ21]. It can also be seen as a counterpart, in the
context of exact representations, to quantitative universal approximation theorems that
bound the number of neurons required to achieve a certain approximation guarantee;
see, e.g., Barron [Bar93; Bar94], Pinkus [Pin99], Mhaskar [Mha96], and Mhaskar and
Micchelli [MM95].

3.4.1. The Convex Case
We first derive our result for the case of convex CPWL functions and then use this to also
prove the general nonconvex case. Our width bound is a consequence of the following
theorem about convex CPWL functions, for which we are going to provide a geometric
proof later.

Theorem 3.27. Let f(x) = max{aT
i x+ bi | i ∈ [p]} be a convex CPWL function defined

on Rn. Then f can be written as

f(x) =
∑︂

S⊆[p],
|S|≤n+1

cS max{aT
i x+ bi | i ∈ S}

with coefficients cS ∈ Z, for S ⊆ [p], |S| ≤ n+ 1.

For the convex case, this yields a stronger version of Theorem 2.3, stating that
any (not necessarily convex) CPWL function can be written as a linear combination
of (n+ 1)-term maxima. Theorem 3.27 is stronger in the sense that it guarantees that
all pieces of the (n + 1)-term maxima must be pieces of the original function, making
it possible to bound the total number of these (n+ 1)-term maxima and, therefore, the
size of an NN representing f .

Theorem 3.28. Let f : Rn → R be a convex CPWL function with p affine pieces. Then f
can be represented by a ReLU NN with depth ⌈log2(n+ 1)⌉+ 1 and width O(pn+1).

Proof. Since the number of possible subsets S ⊆ [p] with |S| ≤ n+1 is bounded by pn+1,
the theorem follows by Theorem 3.27 and the construction by Arora et al. [Aro+18] to
show Theorem 2.1.

Before we present the proof of Theorem 3.27, we show how we can generalize its
consequences to the nonconvex case.

3.4.2. The General (Nonconvex) Case
It is a well-known fact that every CPWL function can be expressed as a difference of
two convex CPWL functions, see, e.g., Wang [Wan04, Theorem 1]. This allows us to
derive the general case from the convex case. What we need, however, is to bound the
number of affine pieces of the two convex CPWL functions in terms of the number of
pieces of the original function. Therefore, we consider a specific decomposition for which
such bounds can easily be achieved.
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Proposition 3.29. Let f : Rn → R be a CPWL function with p affine pieces. Then,
one can write f as f = g − h where both g and h are convex CPWL functions with at
most p2n+1 pieces.

Proof. Suppose the p affine pieces of f are given by x ↦→ aT
i x + bi, i ∈ [p]. Define

the function h(x) := ∑︁
1≤i<j≤p max{aT

i x + bi, a
T
j x + bj} and let g := f + h. Then,

obviously, f = g−h. It remains to show that both g and h are convex CPWL functions
with at most p2n+1 pieces.

The convexity of h is clear by definition. Consider the
(︁p

2
)︁

= p(p−1)
2 < p2 hy-

perplanes given by aT
i x + bi = aT

j x + bj , 1 ≤ i < j ≤ p. They divide Rn into
at most

(︁p2

n

)︁
+
(︁ p2

n−1
)︁

+ · · ·+
(︁p2

0
)︁
≤ p2n regions (compare Edelsbrunner [Ede87, Theo-

rem 1.3]) in each of which h is affine. In particular, h has at most p2n ≤ p2n+1 pieces.
Next, we show that g = f + h is convex. Intuitively, this holds because each possible

breaking hyperplane of f is made convex by adding h. To make this formal, note that
by the definition of convexity, it suffices to show that g is convex along each affine line.
For this purpose, consider an arbitrary line x(t) = ta + b, t ∈ R, given by a ∈ Rn

and b ∈ R. Let f̃(t) := f(x(t)), g̃(t) := g(x(t)), and h̃(t) := h(x(t)). We need to
show that g̃ : R → R is a convex function. Observe that f̃ , g̃, and h̃ are clearly one-
dimensional CPWL functions with the property g̃ = f̃ + h̃. Hence, it suffices to show
that g̃ is locally convex around each of its breakpoints. Let t ∈ R be an arbitrary
breakpoint of g̃. If f̃ is already locally convex around t, then the same holds for g̃ as
well since h̃ inherits convexity from h. Now suppose that t is a nonconvex breakpoint
of f̃ . Then there exist two distinct pieces of f , indexed by i, j ∈ [p] with i ̸= j,
such that f̃(t′) = min{aT

i x(t′) + bi, a
T
j x(t′) + bj} for all t′ sufficiently close to t. By

construction, h̃(t′) contains the summand max{aT
i x(t′) + bi, a

T
j x(t′) + bj}. Thus, adding

this summand to f̃ linearizes the nonconvex breakpoint of f̃ , while adding all the other
summands preserves convexity. In total, g̃ is locally convex around t, which finishes the
proof that g is a convex function.

Finally, observe that pieces of g = f + h are always intersections of pieces of f and h,
for which we have only p · p2n = p2n+1 possibilities.

Having this, we may conclude the following.

Theorem 3.30. Let f : Rn → R be a CPWL function with p affine pieces. Then f can
be represented by a ReLU NN with depth ⌈log2(n+ 1)⌉+ 1 and width O(p2n2+3n+1).

Proof. Consider the decomposition f = g−h from Proposition 3.29. Using Theorem 3.28,
we obtain that both g and h can be represented with the required depth ⌈log2(n+1)⌉+1
and with width O((p2n+1)n+1) = O(p2n2+3n+1). Thus, the same holds true for f .

3.4.3. Extended Newton Polyhedra of Convex CPWL Functions

For our proof of Theorem 3.27, we use a correspondence of convex CPWL functions
with certain polyhedra, which are known as (extended) Newton polyhedra in tropical
geometry [MS15]. These relations between tropical geometry and neural networks have
previously been applied to investigate expressivity of NNs; compare our references in
Section 3.1.4.
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In order to formalize this correspondence, let CCPWLn ⊆ CPWLn be the set of convex
CPWL functions of type Rn → R. For f(x) = max{aT

i x+ bi | i ∈ [p]} in CCPWLn, we
define its so-called extended Newton polyhedron to be

N (f) := conv({(ai, bi) ∈ Rn × R | i ∈ [p]}) + cone({−en+1}) ⊆ Rn+1.

We denote the set of all possible extended Newton polyhedra in Rn+1 as Newtn. That
is, Newtn is the set of (unbounded) polyhedra in Rn+1 that emerge from a polytope by
adding the negative of the (n + 1)-st unit vector −en+1 as an extreme ray. Hence, a
set P ⊆ Rn+1 is an element of Newtn if and only if P can be written as

P = conv({(ai, bi) ∈ Rn × R | i ∈ [p]}) + cone({−en+1}).

Conversely, for a polyhedron P ∈ Newtn of this form, let F(P ) ∈ CCPWLn be the
function defined by F(P )(x) = max{aT

i x+ bi | i ∈ [p]}.
There is an intuitive way of thinking about the extended Newton polyhedron P of

a convex CPWL function f : it consists of all hyperplane coefficients (a, b) ∈ Rn × R
such that aTx + b ≤ f(x) for all x ∈ Rn. This also explains why we add the extreme
ray −en+1: decreasing b obviously maintains the property of aTx+b being a lower bound
on the function f .

In fact, there is a one-to-one correspondence between elements of CCPWLn and
Newtn, which is nicely compatible with some (functional and polyhedral) operations.
This correspondence has been studied before in tropical geometry [MS15; Jos21], con-
vex geometry2 [HUL93b], as well as neural network literature [ZNL18; CM18; Alf+20;
MRZ21]. We summarize the key findings about this correspondence relevant to our work
in the following proposition:

Proposition 3.31. Let n ∈ N and f1, f2 ∈ CCPWLn. Then it holds that

(i) the functions N : CCPWLn → Newtn and F : Newtn → CCPWLn are well-
defined, that is, their output is independent from the representation of the input by
pieces or vertices, respectively,

(ii) N and F are bijections and inverse to each other,

(iii) N (max{f1, f2}) = conv(N (f1),N (f2)) := conv(N (f1) ∪N (f2)),

(iv) N (f1 + f2) = N (f1) + N (f2), where the + on the right-hand side is Minkowski
addition.

An algebraic way of phrasing this proposition is as follows: N and F are isomorphisms
between the semirings (CCPWLn,max,+) and (Newtn, conv,+).

3.4.4. Proof of Theorem 3.27
The rough idea to prove Theorem 3.27 is as follows. Suppose we have a p-term max
function f with p ≥ n+2. By Proposition 3.31, f corresponds to a polyhedron P ∈ Newtn

with at least n + 2 vertices. Applying a classical result from discrete geometry known
2N (f) is the negative of the epigraph of the convex conjugate of f .
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3.4. A Width Bound for NNs with Small Depth

as Radon’s theorem allows us to carefully decompose P into a “signed”3 Minkowski sum
of polyhedra in Newtn whose vertices are subsets of at most p− 1 out of the p vertices
of P . Translating this back into the world of CPWL functions by Proposition 3.31 yields
that f can be written as linear combination of p′-term maxima with p′ < p, where each
of them involves a subset of the p affine terms of f . We can then obtain Theorem 3.27
by iterating until every occurring maximum expression involves at most n+ 1 terms.

We start with a proposition that will be useful for our proof of Theorem 3.27. Although
its statement is well-known in the discrete geometry community, we include a proof for
the sake of completeness. To show the proposition, we make use of Radon’s theorem
(compare Edelsbrunner [Ede87, Theorem 4.1]), stating that any set of at least n + 2
points in Rn can be partitioned into two nonempty subsets such that their convex hulls
intersect.

Proposition 3.32. Given p > n + 1 vectors (ai, bi) ∈ Rn × R, i ∈ [p], there exists
a nonempty subset U ⊊ [p] featuring the following property: there is no c ∈ Rn+1

with cn+1 ≥ 0 and γ ∈ R such that

cT (ai, bi) > γ for all i ∈ U , and
cT (ai, bi) ≤ γ for all i ∈ [p] \ U .

(3.8)

Proof. Radon’s theorem applied to the at least n+2 vectors ai, i ∈ [p], yields a nonempty
subset U ⊊ [p] and coefficients λi ∈ [0, 1] with ∑︁

i∈U λi = ∑︁
i∈[p]\U λi = 1 such that∑︁

i∈U λiai = ∑︁
i∈[p]\U λiai. Suppose that ∑︁i∈U λibi ≤

∑︁
i∈[p]\U λibi without loss of gen-

erality (otherwise exchange the roles of U and [p] \ U).
For any c and γ that satisfy (3.8) and cn+1 ≥ 0 it follows that

γ < cT
∑︂
i∈U

λi(ai, bi) ≤ cT
∑︂

i∈[p]\U

λi(ai, bi) ≤ γ,

proving that no such c and γ can exist.

The following proposition is a crucial step in order to show that any convex CPWL
function with p > n + 1 pieces can be expressed as an integer linear combination of
convex CPWL functions with at most p− 1 pieces.

Proposition 3.33. Let f(x) = max{aT
i x + bi | i ∈ [p]} be a convex CPWL function

defined on Rn with p > n+ 1. Then there exist a subset U ⊆ [p] such that∑︂
W ⊆U,

|W | even

max{aT
i x+ bi | i ∈ [p] \W} =

∑︂
W ⊆U,

|W | odd

max{aT
i x+ bi | i ∈ [p] \W} (3.9)

Proof. Consider the p > n + 1 vectors (ai, bi) ∈ Rn+1, i ∈ [p]. Choose U according to
Proposition 3.32. We show that this choice of U guarantees equation (3.9).

3Some polyhedra may occur with “negative” coefficents in that sum, meaning that they are actually
added to P instead of the other polyhedra. The corresponding CPWL functions will then have
negative coefficients in the linear combination representing f .
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For W ⊆ U , let fW (x) = max{aT
i x + bi | i ∈ [p] \ W} and consider its extended

Newton polyhedron PW = N (fW ) = conv({(ai, bi) | i ∈ [p] \W}) + cone({−en+1}). By
Proposition 3.31, equation (3.9) is equivalent to

Peven :=
∑︂

W ⊆U,
|W | even

PW =
∑︂

W ⊆U,
|W | odd

PW =: Podd,

where the sums are Minkowski sums.
We show this equation by showing that for all cost vectors c ∈ Rn+1 it holds that

max{cTx | x ∈ Peven} = max{cTx | x ∈ Podd}. (3.10)

Let c ∈ Rn+1 be an arbitrary cost vector. If cn+1 < 0, both sides of (3.10) are
infinite. Hence, from now on, assume that cn+1 ≥ 0. Then, both sides of (3.10) are
finite since −en+1 is the only extreme ray of all involved polyhedra.

Due to our choice of U according to Proposition 3.32, there exists an index u ∈ U
such that

cT (au, bu) ≤ max
i∈[p]\U

cT (ai, bi). (3.11)

We define a bijection φu between the even and the odd subsets of U as follows:

φu(W ) :=
{︄
W ∪ {u}, if u /∈W,
W \ {u}, if u ∈W.

That is, φu changes the parity of W by adding or removing u. Considering the corre-
sponding polyhedra PW and Pφu(W ), this means that φu adds or removes the extreme
point (au, bu) to or from PW . Due to (3.11) this does not change the optimal value of
maximizing in c-direction over the polyhedra, that is,

max{cTx | x ∈ PW } = max{cTx | x ∈ Pφu(W )}.

Hence, we may conclude

max{cTx | x ∈ Peven} =
∑︂

W ⊆U,
|W | even

max{cTx | x ∈ PW }

=
∑︂

W ⊆U,
|W | even

max{cTx | x ∈ Pφu(W )}

=
∑︂

W ⊆U,
|W | odd

max{cTx | x ∈ PW }

= max{cTx | x ∈ Podd},

which proves (3.10). Thus, the claim follows.

With the help of this result, we can now prove Theorem 3.27.
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Proof of Theorem 3.27. Let f(x) = max{aT
i x+ bi | i ∈ [p]} be a convex CPWL function

defined on Rn. Having a closer look at the statement of Proposition 3.33, observe that
only one term at the left-hand side of (3.9) contains all p affine combinations aT

i x+ bi.
Putting all other maximum terms on the other side, we may write f as an integer linear
combination of maxima of at most p− 1 summands. Repeating this procedure until we
have eliminated all maximum terms with more than n+ 1 summands yields the desired
representation.

3.4.5. Potential Approaches to Show Lower Bounds on the Width

In light of the upper width bounds shown in this section, a natural question to ask is
whether also meaningful lower bounds can be achieved. This would mean constructing a
family of CPWL functions with p pieces defined on Rn (with different values of p and n),
for which we can prove that a large width is required to represent these functions with
NNs of depth ⌈log2(n+ 1)⌉+ 1.

A trivial and not very satisfying answer follows, e.g., from Raghu et al. [Rag+17] or
Serra, Tjandraatmadja, and Ramalingam [STR18]: for fixed input dimension n, they
show that a function computed by an NN with k hidden layers and width w has at
most O(wkn) pieces. For our setting, this means that an NN with logarithmic depth
needs a width of at least O(p1/(n log n)) to represent a function with p pieces. This is, of
course, very far away from our upper bounds.

Similar upper bounds on the number of pieces have been proven by many other authors
and are often used to show depth-width trade-offs [Mon+14; MRZ21; PMB14; Tel16;
Aro+18]. However, there is a good reason why all these results only give rise to very
trivial lower bounds for our setting: the focus is always on functions with considerably
many pieces, which then, consequently, need many neurons to be represented (with small
depth). However, since the lower bounds we strive for depend on the number of pieces,
we would need to construct a family of functions with comparably few pieces that still
need a lot of neurons to be represented. In general, it seems to be a tough task to argue
why such functions should exist.

A different approach could leverage methods from complexity theory, in particular
from circuit complexity. Neural networks are basically arithmetic circuits with very
special operations allowed. In fact, they can be seen as a tropical variant of arithmetic
circuits. Showing circuit lower bounds is a notoriously difficult task in complexity theory,
but maybe some conditional result (based on common conjectures similar to P ̸= NP)
could be established.

We think that the question whether our bounds are tight, or whether at least some
non-trivial lower bounds on the width for NNs with logarithmic depth can be shown, is
an exciting question for further research.

3.5. Understanding Expressivity via Newton Polytopes

In Section 3.2, we have presented a mixed-integer programming approach towards prov-
ing that deep NNs can strictly represent more functions than shallow ones (Conjec-
ture 3.1). In this section, we present another potential approach that is based on Newton
polytopes of convex CPWL functions. Using a homogenized version of Proposition 3.31,
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we provide an equivalent formulation of Conjecture 3.1 that is completely phrased in the
language of discrete geometry.

Recall that, by Proposition 3.6, we may restrict ourselves to NNs without biases. In
particular, all CPWL functions represented by such NNs, or parts of it, are positively ho-
mogeneous. For the associated extended Newton polyhedra (compare Proposition 3.31),
this has the following consequence: all vertices (a, b) ∈ Rn×R lie in the hyperplane b = 0,
that is, their (n + 1)-st coordinate is 0. Therefore, the extended Newton polyhedron
of a positively homogeneous, convex CPWL function f(x) = max{aT

i x | i ∈ [p]} is
completely characterized by the so-called Newton polytope, that is, the bounded poly-
tope conv({ai | i ∈ [p]}).

To make this formal, let CCPWLn be the set of all positively homogeneous, convex
CPWL functions of type Rn → R and let Newtn be the set of all bounded, convex
polytopes in Rn. Moreover, for f(x) = max{aT

i x | i ∈ [p]} in CCPWLn, let

N (f) := conv({ai | i ∈ [p]}) ∈ Newtn

be the associated Newton polytope of f and for P = conv({ai | i ∈ [p]}) ∈ Newtn let

F(P )(x) = max{aT
i x | i ∈ [p]}

be the so-called associated support function [HUL93a] of P in CCPWLn. With this
notation, we obtain the following variant of Proposition 3.31.

Proposition 3.34. Let n ∈ N and f1, f2 ∈ CCPWLn. Then it holds that

(i) the functions N : CCPWLn → Newtn and F : Newtn → CCPWLn are well-defined,
that is, their output is independent from the representation of the input by pieces
or vertices, respectively,

(ii) N and F are bijections and inverse to each other,

(iii) N (max{f1, f2}) = conv(N (f1),N (f2)) := conv(N (f1) ∪N (f2)),

(iv) N (f1 + f2) = N (f1) + N (f2), where the + on the right-hand side is Minkowski
addition.

In other words, N and F are isomorphisms between the semirings (CCPWLn,max,+)
and (Newtn, conv,+).

Next, we study which polytopes can appear as Newton polytopes of convex CPWL
functions computed by NNs with a certain depth; compare Zhang, Naitzat, and Lim
[ZNL18], who were the first to rigorously establish this correspondence between NNs
and tropical geometry.

Before we apply the first ReLU activation, any function computed by an NN is linear.
Thus, the corresponding Newton polytope is a single point. Starting from that, let
us investigate a neuron in the first hidden layer. Here, the ReLU activation function
computes a maximum of a linear function and 0. Therefore, the Newton polytope of
the resulting function is the convex hull of two points, that is, a line segment. After
the first hidden layer, arbitrary many functions of this type can be added up. For the
corresponding Newton polytopes, this means that we take the Minkowski sum of line
segments, resulting in a so-called zonotope.

38



3.5. Understanding Expressivity via Newton Polytopes

x1

x2

y

Newt(0)
n

points

line segments

Newt(1)
n

zonotopes

conv(two zonotopes)

Newt(2)
n

Figure 3.3.: Set of polytopes that can arise as Newton polytopes of convex CPWL func-
tions computed by (parts of) a 2-hidden-layer NN.

Now, this construction can be repeated layerwise, making use of Proposition 3.34: in
each hidden layer, we can compute the maximum of two functions computed by the
previous layers, which translates to obtaining the new Newton polytope as a convex hull
of the union of the two original Newton polytopes. In addition, the linear combinations
between layers translate to scaling and taking Minkowski sums of Newton polytopes.

This intuition motivates the following definition. Let Newt(0)
n be the set of all polytopes

in Rn that consist only of a single point. Then, for each k ≥ 1, we recursively define

Newt(k)
n :=

{︄ p∑︂
i=1

conv(Pi, Qi)
⃓⃓⃓⃓
⃓ Pi, Qi ∈ Newt(k−1)

n , p ∈ N
}︄
,

where the sum is a Minkowski sum of polytopes. A first, but not precisely accurate
interpretation is as follows: the set Newt(k)

n contains the Newton polytopes of positively
homogeneous, convex CPWL functions representable with a k-hidden-layer NN. See
Figure 3.3 for an illustration of the case k = 2.

Unfortunately, this interpretation is not accurate for the following reason: our NNs are
allowed to have negative weights, which cannot be fully captured by Minkowski sums as
introduced above. Therefore, it might be possible that a k-hidden-layer NN can compute
a function that is not contained in Newt(k)

n . Luckily, one can remedy this shortcoming,
and even extend the interpretation to the non-convex case, by extending the intuition
as follows.

Theorem 3.35. Any positively homogeneous (not necessarily convex) CPWL function
can be computed by a k-hidden-layer NN if and only if it can be written as the difference of
two positively homogeneous, convex CPWL functions with Newton polytopes in Newt(k)

n .

Proof. We use induction on k. For k = 0, the statement is clear since it holds precisely
for linear functions. For the induction step, suppose that, for some k ≥ 1, the equivalence
is valid up to k − 1 hidden layers. We prove that it is also valid for k hidden layers.

We need to show two directions. First, assume that f is an arbitrary, positively homo-
geneous CPWL function that can be written as f = g − h with N (g),N (h) ∈ Newt(k)

n .
We need to show that a k-hidden-layer NN can compute f . We show that this is even
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true for g and h, and hence, also for f . By definition of Newt(k)
n , there exist a finite num-

ber p ∈ N and polytopes Pi, Qi ∈ Newt(k−1)
n , i ∈ [p], such thatN (g) = ∑︁p

i=1 conv(Pi, Qi).
By Proposition 3.34, we have g = ∑︁p

i=1 max{F(Pi),F(Qi)}. By induction, F(Pi)
and F(Qi) can be computed by NNs with k − 1 hidden layers. Using Proposition 2.2,
a k-th hidden layer is then also sufficient to compute g. An analogous argument applies
to h. Thus, f is computable with k hidden layers, completing the first direction.

For the other direction, suppose that f is an arbitrary, positively homogeneous CPWL
function that can be computed by a k-hidden-layer NN. Let us separately consider the nk

neurons in the k-th hidden layer of the NN. Let ai, i ∈ [nk], be the weight of the
connection from the i-th neuron in that layer to the output. Without loss of generality,
we have ai ∈ {±1}, because otherwise we can normalize it and multiply the weights of the
incoming connections to the i-th neuron with |ai| instead. Moreover, let us assume that,
by potential reordering, there is some m ≤ nk such that ai = 1 for i ≤ m and ai = −1
for i > m. With these assumptions, we can write

f =
m∑︂

i=1
max{0, fi} −

nk∑︂
i=m+1

max{0, fi}, (3.12)

where each fi is computable by a (k−1)-hidden-layer NN, namely the sub-NN computing
the input to the i-th neuron in the k-th hidden layer.

By induction, we obtain fi = gi − hi for some positively homogeneous, convex func-
tions gi, hi with N (gi),N (hi) ∈ Newt(k−1)

n . We then have

max{0, fi} = max{gi, hi} − hi (3.13)

We define
g :=

m∑︂
i=1

max{gi, hi}+
nk∑︂

i=m+1
hi

and
h :=

m∑︂
i=1

hi +
nk∑︂

i=m+1
max{gi, hi}.

Note that g and h are convex by construction as a sum of convex functions and that
(3.12) and (3.13) imply f = g − h. Moreover, by Proposition 3.34,

N (g) =
m∑︂

i=1
conv(N (gi),N (hi)) +

nk∑︂
i=m+1

conv(N (hi),N (hi)) ∈ Newt(k)
n

and
N (h) =

m∑︂
i=1

conv(N (hi),N (hi)) +
nk∑︂

i=m+1
conv(N (gi),N (hi)) ∈ Newt(k)

n .

Hence, f can be represented as desired, completing also the other direction.

The power of Theorem 3.35 lies in the fact that it provides a purely geometric char-
acterization of the class ReLU(k). The classes of polytopes Newt(k)

n are solely defined
by the two simple geometric operations Minkowski sum and convex hull of the union.

40



3.6. Future Research

Therefore, understanding the class ReLU(k) is equivalent to understanding what poly-
topes one can generate by iterative application of these geometric operations.

In particular, we can give yet another equivalent reformulation of our main conjecture.
To this end, let the simplex ∆n := conv{0, e1, . . . , en} ⊆ Rn denote the Newton polytope
of the function fn = max{0, x1, . . . , xn} for each n ∈ N.

Conjecture 3.36. For any k ∈ N, n = 2k, there do not exist polytopes P,Q ∈ Newt(k)
n

such that P is the Minkowski sum of ∆n and Q.
Theorem 3.37. Conjecture 3.36 is equivalent to Conjecture 3.1 and Conjecture 3.2.
Proof. By Proposition 3.3, it suffices to show equivalence between Conjecture 3.36 and
Conjecture 3.2. By Theorem 3.35, fn can be represented with k hidden layers if and only
if there are functions g and h with Newton polytopes in Newt(k)

n satisfying fn + h = g.
By Proposition 3.34, this happens if and only if there are polytopes P,Q ∈ Newt(k)

n

with ∆n +Q = P .

It is particularly interesting to look at special cases with small k. For k = 1, the
set Newt(1)

n is the set of all zonotopes. Hence, the (known) statement that max{0, x1, x2}
cannot be computed with one hidden layer [MB17] is equivalent to the fact that the
Minkowski sum of a zonotope and a triangle can never be a zonotope.

The first open case is the case k = 2. An unconditional proof that two hidden layers
do not suffice to compute the maximum of five numbers is highly desired. In the regime
of Newton polytopes, this means to understand the class Newt(2)

n . It consists of finite
Minkowski sums of polytopes that arise as the convex hull of the union of two zonotopes.
Hence, the major open question here is to classify this set of polytopes.

Finally, let us remark that there exists a generalization of the concept of polytopes,
known as virtual polytopes [PS15], that makes it possible to assign a Newton polytope
also to non-convex CPWL functions. This makes use of the fact that every (non-convex)
CPWL function is a difference of two convex ones. Consequently, a virtual polytope is a
formal Minkowski difference of two ordinary polytopes. Using this concept, Theorem 3.35
and Conjecture 3.36 can be phrased in a simpler way, replacing the pair of polytopes
with a single virtual polytope.

3.6. Future Research
The most obvious and, at the same time, most exciting open research question is to
prove or disprove Conjecture 3.1, or equivalently Conjecture 3.2 or Conjecture 3.36. The
first step could be to prove Assumption 3.7. The assumption is intuitive because every
breakpoint introduced at any place outside the hyperplanes Hij needs to be canceled
out later. Therefore, it is natural to assume that these breakpoints do not have to be
introduced in the first place. However, this intuition does not seem to be enough for a
formal proof because it could occur that additional breakpoints in intermediate steps,
which are canceled out later, also influence the behavior of the function at other places
where we allow breakpoints in the end.

Another step towards resolving our conjecture may be to find an alternative proof
of Theorem 3.8, not using Assumption 3.7. This might also be beneficial for general-
izing our techniques to more hidden layers, since, while theoretically possible, a direct
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generalization of the MIP approach is infeasible due to computational limitations. For
example, it might be particularly promising to use a tropical approach as described in
Section 3.5 and apply methods from discrete geometry to prove Conjecture 3.36.

In light of our results from Section 3.3, it would be desirable to provide a complete
characterization of the functions contained in ReLU(k). Another potential research goal
is improving our upper bounds on the width from Section 3.4 and/or proving matching
lower bounds as discussed in Section 3.4.5.

Some more interesting research directions are the following:

• establishing or strengthening our results for special classes of NNs like recurrent
neural networks (RNNs) or convolutional neural networks (CNNs),

• using exact representation results to show more drastic depth-width trade-offs
compared to existing results in the literature,

• understanding how the class ReLU(k) changes when a polynomial upper bound is
imposed on the width of the NN; see related work by Vardi et al. [Var+21].
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4 Computational Power

Which network size is sufficient to solve (combinatorial optimization) problems?

The results in this chapter are based on a preprint with Leon Sering [HS21a] and a
paper with Martin Skutella [HS21b] that appeared in the proceedings of the AAAI 2021
conference.

4.1. Introduction
Traditionally, neural networks (NNs) have been primarily used for “soft” tasks. For
example, in character recognition, there is no clear mathematical definition of when a
certain pixel array represents a certain digit. For tasks of that flavor, NNs seem to be
particularly well-suited due to their ability to model highly complex decision boundaries
that somehow resemble our intuitive understanding of such soft tasks.

Combinatorial optimization (CO) problems do not belong to this class of soft tasks.
They have a clear mathematical definition. Consequently, exact combinatorial methods
or mathematical programming have been the classical tools to tackle these problems.
For hard problems in practice, traditional heuristics without learning components have
been the method of choice.

However, in recent years, a lot of research has emerged that utilizes NNs for exact tasks
including CO problems. Depending on the use-case, it turns out that NN approaches are
in fact a promising way to practically solve CO problems or to enhance classical solution
methods. We refer to Bengio, Lodi, and Prouvost [BLP21] for a survey of this stream
of research.

Still, the vast majority of these approaches suffers from the same problem as other
NN algorithms do: it is hard to give mathematical guarantees concerning the solution
quality or the required computing resources. Also, it seems to be impossible to truly
understand how and why these algorithms work.

In order to enhance our understanding of (ReLU) NNs’ computational power, that
is, their theoretical ability to solve difficult problems, we propose to view them as a
model of computation operating on real numbers. This is similar to Boolean circuits,
or, even closer, arithmetic circuits, which are well-studied objects in complexity theory
and computer science in general. We then investigate the computational complexity of
various problems, including the Maximum Flow Problem and the Knapsack Problem,
within that model.

4.1.1. Neural Networks as a Model of Computation
From the definition of NNs, they are basically arithmetic circuits with gates that can
compute (weighted) sums and maxima. This has the following two natural implications.

Firstly, as in other arithmetic models of computation, all operations take “unit cost”,
that is, our complexity analysis is completely independent from the encoding size of the
input numbers involved.
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Secondly, note that a (feedforward) NN has a fixed number of input neurons. If we
would like to solve a CO problem (e.g., on a weighted graph) then the number of required
input neurons grows with the size of the instance (e.g., the number of vertices or edges
of the input graph). Therefore, as usual in the theory of circuit complexity [AB09], we
do not consider single NNs, but so-called families of NNs, parameterized by the number
of inputs of the considered optimization problem (e.g., number of vertices or edges of
the input graph). Then, the question of interest is how the size (depth, width) of the
NNs in that family grows with the number of inputs.

Even though NNs are naturally a model of real computation, it is worth to have a
look at their computational power with respect to Boolean inputs. It is easy to see that
ReLU NNs can directly simulate AND-, OR-, and NOT-gates, and thus also any Boolean
circuit; see [MB17]. Hence, in Boolean arithmetics, any problem in P can be solved with
polynomial-size NNs. However, to grasp the full nature of NNs, one needs to consider
real instead of Boolean arithmetics. In this context, things are much less clear.

Of course, if there are polynomial-size NNs to solve a certain problem, then there
exists a strongly polynomial time algorithm for that problem, simply by executing the
NN. However, the converse might not be true. This is due to the fact that ReLU NNs only
allow a very limited set of possible operations, namely affine combinations and maxima
computations. In particular, any function computed by such NNs is continuous, making
it impossible to realize instructions like a simple if -branching based on a comparison
of real numbers. In fact, for some models of computation, the use of branchings is
exponentially powerful [JS82].

An example of such a conditional branching is to decide whether an arc is part of
the residual network, which is a crucial step in classical maximum flow algorithms.
Therefore, these algorithms cannot be implemented with NNs and, without our results
in Section 4.5, it remains unclear whether polynomially sized NNs to solve the Maximum
Flow Problem exist at all.

4.1.2. Neural Networks and Arithmetic Circuits

In a broad sense, arithmetic circuits are directed acyclic graphs where each node com-
putes some expression from the outputs of all its predecessors. Then, the full graph
defines a function mapping the inputs, located at the sources of the graph, to the out-
puts, located at the sinks of the graph. In this sense, ReLU feedforward NNs are a special
type of arithmetic circuits. In a narrow sense, the inner nodes of an arithmetic circuit are
either sum or product nodes, which output the sum or product of all the outputs of their
predecessors. This is, of course, different from NNs, which cannot compute products, but
still closely related. There has been a lot of research about the complexity of arithmetic
circuits [SY10]. Particularly relevant to our work, there is a special kind of arithmetic
circuits called tropical circuits [Juk15]. In contrast to ordinary arithmetic circuits, they
only contain maximum (or minimum) gates instead of sum gates and sum gates instead
of product gates. Thus, they are arithmetic circuits in max-plus arithmetics.

Obviously, a tropical circuit can be simulated by an NN of roughly the same size since
NNs can compute maxima and sums. Thus, NNs are at least as powerful as tropical
circuits. However, NNs are strictly more powerful. In particular, lower bounds on the
size of tropical circuits do not apply to NNs. A particular example is the computation of
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the value of a minimum spanning tree. By Jukna and Seiwert [JS19], no polynomial-size
tropical circuit can do this. However, as we show in Section 4.4 as a consequence of a
result by Fomin et al. [FGK16], an NN of cubic size (in the number of nodes of the input
graph) is sufficient for this task.

The reason for this exponential gap is that, by using negative weights, NNs can realize
subtractions (that is, tropical division), which is not possible with tropical circuits;
compare the discussion by Jukna and Seiwert [JS19]. However, this is not the only
feature that makes NNs more powerful than tropical circuits. In addition, NNs can
realize scalar multiplication (tropical exponentiation) with arbitrary real numbers via
their weights, which is impossible with tropical circuits. It is unclear to what extent this
feature increases the computational power of NNs compared to tropical circuits.

For these and similar reasons, lower bounds from arithmetic circuit complexity do not
transfer to NNs. Therefore, we identify it as a major challenge to provide meaningful
lower bounds of any kind for the computational model of NNs.

4.1.3. Exact Neural Networks for CO Problems

Next, we discuss some preliminary observations concerning the ability of NNs to compute
exact solutions for combinatorial optimization problems.

By Theorem 2.1, the set of functions computable by ReLU NNs is precisely the set
of continuous, piecewise linear (CPWL) functions. Even though the proof shows that
logarithmic depth (in the input dimension) is always sufficient, these networks might
have huge width such that no bounds on the total network size can be obtained.

Many functions related to CO problems are CPWL and can thus be represented
by an NN (of any size). In fact, for a feasible set X ⊆ {0, 1}n consider the generic
CO problem minx∈X cTx. This formulation covers a broad range of CO problems,
among them efficiently solvable problems like Shortest Path and Matching Problems,
the Minimum Spanning Tree Problem, the Maximum Flow Problem (via duality to the
Minimum Cut Problem), and also NP-hard problems like the Knapsack or the Traveling
Salesperson Problem. When considering the cost vector c to be a variable, the func-
tion c ↦→ minx∈X cTx mapping c to the objective value is a minimum of finitely many
linear functions and thus CPWL. For NP-hard problems it is unlikely that polynomial-
size NNs can compute this function. However, even for problems in P, the existence of
polynomial-size NNs is unclear due to the limited set of operations available.

Note that, due to their continuous nature, ReLU NNs (without threshold gates or
similar) that output the discrete solution vector x ∈ {0, 1}n (and not only the objective
value) cannot exist. Therefore, if we say an NN family solves a certain CO problem,
we usually refer to computing the objective value instead of the discrete solution vector.
However, for the Maximum Flow Problem the situation is slightly different since it is
not the primal Maximum Flow Problem but the dual Minimum Cut Problem that is
represented in the generic form above. In fact, using an appropriate tie-breaking rule
between equally good flows, the vector denoting a maximum flow is a CPWL function
of the arc capacities. Hence, Theorem 2.1 guarantees that a ReLU NN computing this
maximum flow function of type Rm → Rm (m being the number of arcs in the network)
is possible.
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4.1.4. Neural Networks and Parallel Computation

Similar to Boolean circuits, NNs can be seen as a model of parallel computation since
the execution of all neurons of one layer can be done in parallel. Without going into
detail here, the depth of an NN is related to the running time of a parallel algorithm,
its width is related to the required number of processing units, and its size to the total
amount of work conducted by the algorithm. Against this background, a natural goal
is to design NNs as shallow as possible in order to make maximal use of parallelization.
However, several results in the area of NN expressivity state that decreasing the depth
is often only possible at the cost of an exponential increase in width; see [Aro+18; ES16;
LS17; SS17; Tel15; Tel16; Yar17].

Interestingly, a related observation can be made for the Maximum Flow Problem using
complexity theory. As argued above, Theorem 2.1 implies the existence of a ReLU NN to
solve the Maximum Flow Problem. In fact, Theorem 2.1 even ensures that a logarithmic
depth (in the input dimension) is sufficient for that task. It arises the question whether
such shallow NNs are also possible while maintaining polynomial total size.

The answer is most likely “no” because it has been shown that the Maximum Flow
Problem is P-complete [GSS82]. P-complete problems are those problems in P that are
inherently sequential, meaning that there cannot exist a parallel algorithm with polylog-
arithmic running time using a polynomial number of processors unless the complexity
classes P and NC coincide, which is conjectured to be not the case [GHR95]. NNs with
polylogarithmic depth and polynomial total size that solve the Maximum Flow Problem,
however, would translate to such an algorithm (under mild additional conditions, such
as, that the weights of the NN can be computed in polynomial time). Therefore, we
conclude that it is unlikely to obtain NNs for the Maximum Flow Problem that make
significant use of parallelization. In other words, NNs with polylogarithmic depth and
polynomial width solving the Maximum Flow Problem probably do not exist.

4.1.5. Further Related Work

NNs and circuit complexity. NNs have been studied from a circuit complexity point of
view before [BT96; PGM94; STAK92]. However, these works focus on Boolean circuit
complexity of NNs with sigmoid or threshold activation functions. We are not aware of
previous work investigating the computational power of ReLU NNs as arithmetic circuits
operating on the real numbers.

Early NN approaches for CO problems. The idea of using NNs to practically solve CO
problems became popular with so-called Hopfield networks [HT85] and related architec-
tures in the 1980s and has been extended to general nonlinear programming problems
later on [KC88]. Smith [Smi99] surveys these early approaches. Hopfield NNs are spe-
cial versions of recurrent neural networks (RNNs) that find solutions to optimization
problems by converging towards a minimum of an energy function. While most au-
thors mainly focus on the Traveling Salesperson Problem (TSP), Ohlsson, Peterson, and
Söderberg [OPS93] study a so-called mean field NN for (generalizations of) the Knap-
sack Problem and empirically assess the quality of its solutions. Also, specific NNs to
solve the Maximum Flow Problem have been developed before [AK91; ER08; NO12].
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However, the NNs used in these early works are conceptually very different from modern
feedforward NNs that are considered in this thesis.

Modern NN approaches for CO problems. While there has been less research at
the intersection of CO and NNs in the 2000s, modern advances in the area of deep
learning have boosted the interest in this direction again; see Bengio, Lodi, and Prouvost
[BLP21] for a general review and Cappart et al. [Cap+21] for a focused review on graph
neural networks. Common applications include speeding up solvers for mixed-integer
linear programs, for instance, by automatically learning on which variables to branch
in branch-and-bound algorithms; see Lodi and Zarpellon [LZ17] for a survey. Machine
learning has also been applied to modeling aspects of CO, as reviewed by Lombardi
and Milano [LM18], and to several specific CO problems, where the TSP is often one
of them [Bel+16; ER18; Kha+17a; KHW19; Now+17; VFJ15]. The different methods
used by these authors include feedforward and recurrent neural networks, reinforcement
learning, attention mechanisms, pointer networks, graph embeddings, and graph neural
networks.

Modern NN approaches for the Knapsack Problem. There have also been specific
applications of neural networks to the Knapsack Problem. For example, Bello et al.
[Bel+16] utilize an RNN trained by reinforcement learning and Gu and Hao [GH18]
use a pointer network for to find empirically good knapsack solutions. Li et al. [Li+21]
derived heuristics inspired by game theory to solve a non-linear knapsack version whose
objective function is given by a neural network.

NNs and dynamic programming. Particularly related to our work are interactions
between neural networks and dynamic programming algorithms. For example, Yang
et al. [Yan+18] and Xu et al. [Xu+20b] use NNs to speed up dynamic programming
algorithms for CO problems. The key difference to our work, however, is that NNs are
used as heuristics in these papers, making it virtually impossible to give any meaningful
worst-case performance guarantees. Another interesting research stream deals with the
learnability of algorithms. In this context, Xu et al. [Xu+20a] have developed the concept
of algorithmic alignment and show that dynamic programming algorithms align well
with graph neural networks. A more empirical study in this direction was performed
by Veličković et al. [Vel+20]. These results concentrate on learnability in contrast to
our focus on expressivity. Still, they agree with the message of our work that dynamic
programming is a good paradigm for bringing classical algorithms and neural networks
closer together.

Expressivity of NNs. Studying the computational power of NNs, that is, their ability
to precisely solve difficult problems, is somehow a special way of investigating their
expressivity; compare Chapter 3. Therefore, we recall some of the key results about
NN expressivity from the literature. So-called universal approximation theorems [AB99;
Cyb89; Hor91] state that only one hidden layer is already sufficient to approximate any
continuous function on a compact domain arbitrarily well. Unfortunately, no insights
concerning exact representability can be obtained from that. Various trade-offs between
depth and width of NNs [Aro+18; ES16; Han19; HS17; LS17; NMH18; Rag+17; SS17;
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Tel15; Tel16; Yar17] and approaches to count and bound the number of linear regions
of a ReLU NN [HR19; Mon+14; PMB14; Rag+17; STR18] have been found. Mukherjee
and Basu [MB17] proved size lower bounds to represent Boolean functions with NNs of
limited depth.

Textbooks on combinatorial optimization. For an introduction to classical combina-
torial optimization, we refer to the textbook by Korte and Vygen [KV08]. Theory of
polyhedra as well as linear and integer optimization can be found in the textbook by
Schrijver [Sch86]. For specific introductions to network flow problems we recommend
the textbooks by Ahuja, Magnanti, and Orlin [AMO93] and Williamson [Wil19].

4.1.6. Overview and Main Results

The overall contribution of this chapter is the idea to analyze the computational power
of ReLU NNs by viewing them as a model of real-valued computation that is related
to arithmetic/tropical circuits. Our specific results are of the following flavor: For a
bunch of CO problems we show that (comparably) small NNs solving these problems
exist. We achieve this by providing explicit manual constructions without too much loss
in efficiency compared to algorithms in other models of computation.

In order to make it possible to think about NNs in an algorithmic way, we introduce
the pseudo-code language Max-Affine Arithmetic Programs (MAAPs) in Section 4.2. We
show that MAAPs and NNs are basically equivalent (up to constant factors) concerning
three basic complexity measures corresponding to depth, width, and overall size of NNs.
Hence, MAAPs serve as a convenient tool for the manual construction of NNs with
bounded size and could be useful for further research concerning NNs’ computational
power far beyond the scope of this thesis.

Turning towards specific CO problems, we first showcase some problems for which
MAAPs, and hence NNs, can be constructed in a straight-forward way from well-known
algorithms, in particular, from dynamic programs in Section 4.3. This includes the
Longest Common Subsequence Problem, various variants of Shortest Path Problems, as
well as the Traveling Salesperson Problem.

Afterwards, in Section 4.4, we turn to the Minimum Spanning Tree Problem, where
we demonstrate how a result from arithmetic circuit complexity translates to an NN
of size O(n3) mapping edge weights of an n-vertex graph to the value of a minimum
spanning tree.

Then, in Section 4.5, we study the Maximum Flow Problem, for which all attempts to
model classical algorithms as NNs seem to fail. For that reason, we develop a completely
new maximum flow algorithm in the form of a MAAP, which can be transformed to an
NN of size O(m2n2) that, given a directed graph with n nodes and m arcs, computes
a maximum flow from any possible real-valued arc capacities as input. We would like
to mention that this result also has an interesting interpretation from the perspective of
parametric algorithms. There exists a variety of literature concerning the question how
one could represent solutions to the maximum flow problem if the input depends on one
or several unknown parameters; see, e.g., the works by Gallo, Grigoriadis, and Tarjan
[GGT89] and McCormick [McC99]. An NN mapping arc capacities to a maximum flow
can be seen as such a representation for the most general form of parametric maximum
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flow problems, namely the one where all arc capacities are independent free parameters.
We believe it is an interesting and useful observation that such a representation of
polynomial size exists.

Afterwards, in Section 4.6, we focus on the Knapsack Problem. We show that a re-
current neural network (RNN) of depth four and width depending quadratically on the
profit of an optimum Knapsack solution is sufficient to find optimum knapsack solutions.
Again, the idea behind this construction is to mimic a classical dynamic program for
the Knapsack Problem. However, in order to always filter out the correct entries of the
previous state space in each step, additional technical difficulties need to be overcome.
We also prove the following trade-off between the size of an RNN and the quality of the
computed knapsack solution: for knapsack instances consisting of n items, an RNN of
depth five and width w computes a solution of value at least 1−O(n2/

√
w) times the

optimum solution value. This result relies on a subtle variant of the rounding proce-
dure that turns the pseudo-polynomial dynamic program into a fully polynomial-time
approximation scheme for the Knapsack Problem. Additionally, we provide a carefully
conducted computational study to qualitatively support our theoretical size bounds.

Finally, we outline how the results about the Knapsack Problem can be generalized
to other CO problems, specifically the Constrained Shortest Path Problem.

At the end of the chapter, in Section 4.8, we provide an overview of related open
problems.

4.1.7. Chapter-Specific Notation: Bold Symbols

In this chapter, we deal with manual NN constructions and associated pseudo-code
programs (MAAPs). In such a construction, the parameters of the NNs, like architectural
details, weights, and biases, as well as constants in MAAPs, are fixed, while inputs and
outputs to NNs and MAAPs, intermediate activation values of NNs and variables of
MAAPs depend on the concrete input values. To understand the constructions in this
chapter, it is crucial to distinguish these two types of values (fixed and input-dependent)
from each other. In order to make the difference visible, we denote all input-dependent
values by bold symbols.

Note that this is in contrast to Chapter 5, where bold symbols are used to distinguish
vectors from scalars.

4.2. Max-Affine Arithmetic Programs

One way of specifying an NN is by explicitly writing down the network architecture,
weights, and biases, that is, the affine transformations of each layer. However, for NNs
that mimic the execution of an algorithm this is very unhandy and not well readable. For
the purpose of an easier notation we introduce a pseudo-code language, called Max-Affine
Arithmetic Programs (MAAPs), and prove that it is essentially equivalent to NNs.

MAAPs perform arithmetic operations on real-valued variables. They consist of dif-
ferent kinds of instructions and may also involve real-valued constants. In order to
distinguish constants from variables, the latter will be denoted by bold symbols. Each
MAAP consists of a fixed number of input and output variables, as well as a sequence
of (possibly nested) instructions.
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In order to describe an algorithm with an arbitrary number of input variables and
to be able to measure asymptotic complexity, we specify a family of MAAPs that is
parametrized by a natural number that determines the number of input variables and
is treated like a constant in each single MAAP of the family. A MAAP family then
corresponds to a family of NNs; see Section 4.1.1.

MAAPs consist of the following types of instructions:

1. Assignment: this instruction assigns an expression to an old or new variable. The
only two types of allowed expressions are affine combinations or maxima of affine
combinations of variables: b+∑︁

j cjvj and max
{︂
b(i) +∑︁

j c
(i)
j v(i)

j

⃓⃓⃓
i = 1, . . . , n

}︂
,

where n ∈ N, b, b(i), cj , c
(i)
j ∈ R are constants and vj ,v(i)

j ∈ R are variables.
Without loss of generality minima are also allowed.

2. Do-Parallel: this instruction contains a constant number of blocks of instruction
sequences, each separated by an and. These blocks must be executable in parallel,
meaning that each variable that is assigned in one block cannot appear in any
other block.1

3. For-Do loop: this is a standard for-loop with a constant number of iterations that
are executed sequentially.

4. For-Do-Parallel loop: this is a for-loop with a constant number of iterations in
which the iterations are executed in parallel. Therefore, variables assigned in one
iteration cannot be used in any other iteration.2

Algorithm 1 shows an example MAAP to illustrate the possible instructions.
Note that we do not allow any if -statements or other branching operations. In other

words, the number of executed instructions of an algorithm is always the same indepen-
dent of the input variables.

In order to connect MAAPs with NNs, we introduce three complexity measures d(A),
w(A), and s(A) for a MAAP A. We will then see that they yield a direct correspondence
to depth, width, and size of a corresponding NN.

For these complexity measures for MAAPs, assignments of affine transformations come
“for free” since in an NN this can be realized “between layers”. This is a major difference
to other (parallel) models of computation, e.g., the parallel random access machine
(PRAM) [GHR95]. Apart from that, the complexity measures are recursively defined as
follows.

• For an assignment A with a maximum or minimum expression of k ≥ 2 terms we
have d(A) := ⌈log2 k⌉, w(A) := 2k, and s(A) := 3k.3

• For a sequence A of instruction blocks B1, B2, . . . , Bk we have d(A) := ∑︁k
i=1 d(Bi),

w(A) := maxk
i=1w(Bi), and s(A) := ∑︁k

i=1 s(Bi).
1Local variables in different blocks may have the same name if their scope is limited to their block.
2Again, local variables within different iterations may have the same name if their scope is limited to

their iteration.
3These definitions are aligned with the depth, width, and size bounds of Proposition 2.2, ceiled for

more convenient writing.
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Algorithm 1: Example MAAP to illustrate the possible instructions.
Input: Input variables v1,v2, . . . ,vn.
// Assignments and Expressions:

1 x1 ← 4 +∑︁n
i=1(−1)i · vi

2 x2 ← max{3 · v1,−1.5 · vn,x1, 5}
// For-Do loop:

3 for k = 1, . . . , n− 1 do
4 vk+1 ← vk + vk+1

// Do-Parallel:
5 do parallel
6 y1 ← max{x1,x2}
7 and
8 y2 ← 7
9 and

10 y3 ←
∑︁n

i=1 vi

// For-Do-Parallel loop:
11 for each k = 4, . . . , n do parallel
12 yk ← vk−1 − vk

13 yk ← max{yk, 0}

14 return (y1,y2, . . . ,yn)

• For a Do-Parallel instruction A consisting of blocks B1, B2, . . . , Bk we have
d(A) := maxk

i=1 d(Bi), w(A) := ∑︁k
i=1w(Bi), and s(A) := ∑︁k

i=1 s(Bi).

• For a For-Do loop A with k iterations that executes block Bi in iteration i we
have d(A) := ∑︁k

i=1 d(Bi), w(A) := maxk
i=1w(Bi), and s(A) := ∑︁k

i=1 s(Bi).

• For a For-Do-Parallel loop with k iterations that executes block Bi in iteration i
we have d(A) := maxk

i=1 d(Bi), w(A) := ∑︁k
i=1w(Bi), and s(A) := ∑︁k

i=1 s(Bi).

The following proposition establishes the desired correspondence between the com-
plexities of MAAPs and NNs.

Proposition 4.1. For a function f : Rn → Rm the following is true.

(i) If f can be computed by a MAAP A, then it can also be computed by an NN with
depth d(A) + 1, width w(A), and size s(A).

(ii) If f can be computed by an NN with depth d+ 1, width w, and size s, then it can
also be computed by a MAAP A with d(A) = d, w(A) = 2w, and s(A) = 3s.

Proof.

(i) First note that we can assume without loss of generality that A does not contain
For-Do or For-Do-Parallel loops. Indeed, since only a constant number of it-
erations is allowed in both cases, we can write them as a sequence of blocks or a
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Algorithm 2: A generic MAAP to execute a given NN.
Input: Input variables o(v) for v ∈ V0.
// For each hidden layer:

1 for ℓ = 1, . . . , d do
// For each neuron in the layer:

2 for each v ∈ Vℓ do parallel
3 a(v)← bv +∑︁

u : (u,v)∈E wuvo(u)
4 o(v)← max{0,a(v)}

// For each output neuron:
5 for each v ∈ Vd+1 do parallel
6 a(v)← bv +∑︁

u : (u,v)∈E wuvo(u)

7 return (a(v))v∈Vd+1.

Do-Parallel instruction, respectively. Note that this also does not alter the com-
plexity measures d(A), w(A), and s(A) by their definition. Hence, suppose for the
remainder of the proof that A consists only of assignments and (possibly nested)
Do-Parallel instructions.

The statement is proven by an induction on the number of lines of A. For the
induction base suppose A consists of a single assignment. If this is an affine ex-
pression, then an NN without hidden units (and hence with depth 1, width 0, and
size 0) can compute f . If this is a maximum (or minimum) expression of k terms,
then, using Proposition 2.2, an NN with depth ⌈log2 k⌉+ 1, width 2k, and size 3k
can compute f , which settles the induction base.

For the induction step we consider two cases. If A can be written as a sequence of
two blocks B1 and B2, then, by induction, there are two NNs representing B1
and B2 with depth d(Bi) + 1, width w(Bi), and size s(Bi) for i = 1, 2, re-
spectively. An NN representing A can be obtained by concatenating these two
NNs in series, yielding an NN with depth d(B1) + d(B2) + 1 = d(A) + 1, width
max{w(B1), w(B2)} = w(A), and size s(B1)+s(B2) = s(A). Otherwise, A consists
of a unique outermost Do-Parallel instruction with blocks B1, B2, . . . , Bk. By in-
duction, there are k NNs representing Bi with depth d(Bi) + 1, width w(Bi),
and size s(Bi), i ∈ [k], respectively. An NN representing A can be obtained
by plugging all these NNs in parallel next to each other, resulting in an NN
of depth maxk

i=1 d(Bi) + 1 = d(A) + 1, width ∑︁k
i=1w(Bi) = w(A), and size∑︁k

i=1 s(Bi) = s(A). This completes the induction.

(ii) Suppose the NN is given by a directed graph G = (V,E) as defined in Section 2.1.
It is easy to verify that Algorithm 2 computes f with the claimed complexity
measures.
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Algorithm 3: MAAP to find the length of the longest common subsequence for
given lengths m and n of two integer sequences.
Input: Integer sequences x1, . . . ,xm and y1, . . . ,yn.
// Initialization:

1 for i = 0, . . . ,m do
2 f(i, 0)← 0
3 for j = 1, . . . , n do
4 f(0, j)← 0

// Recursion (can be done in parallel for all index pairs with same
sum i+ j):

5 for s = 2, . . . ,m+ n do
6 for each pair (i, j) with i+ j = s, i ∈ [m], j ∈ [n] do parallel
7 d← max{xi − yj ,yj − xi}
8 f(i, j)← max{f(i− 1, j − 1) + 1− d, f(i− 1, j), f(i, j − 1)}

9 return f(m,n).

4.3. Some Starting Examples

In this section we provide some computational problems for which standard algorithms
can be written in the form of a MAAP and, hence, implemented on an NN. In these
cases, the running time of the corresponding algorithm aligns with the size of the NN.

4.3.1. The Longest Common Subsequence Problem

We start with the problem of finding the length of the longest common subsequence of
two finite integer sequences x1, . . . , xm and y1, . . . , yn. A standard dynamic programming
procedure, see, e.g., Cormen et al. [Cor+01, Section 15.4], computes values f(i, j) equal
to the length of the longest common subsequence of the partial sequences x1, x2, . . . , xi

and y1, y2, . . . , yj by applying the recursion

f(i, j) =
{︄
f(i− 1, j − 1) + 1 if xi = yj ,
max

{︁
f(i− 1, j), f(i, j − 1)

}︁
if xi ̸= yj .

(4.1)

Note that this dynamic program contains some if-condition. Hence, we need a trick
to avoid the conditional branching in order to turn the dynamic program into a MAAP.
This is established in Algorithm 3.

Proposition 4.2. Algorithm 3 correctly returns the length of the longest common sub-
sequence for two integer sequences x1, . . . ,xm and y1, . . . ,yn.

Proof. We need to verify that the computation in lines 7 and 8 is equivalent to the
dynamic programming recursion (4.1). We use induction on s = i+j to verify that f(i, j)
is correctly computed. The induction start is settled by the initialization. For the
induction step we distinguish two cases.
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First, consider the case xi = yi. This implies d = 0. Since by induction f(i− 1, j − 1)
is at most by one smaller than f(i−1, j) or f(i, j−1), the maximum in line 8 is attained
by the first term and the recursion is correctly computed in this case.

Otherwise, we are in the case xi ̸= yi. By integrality, this implies d ≥ 1. Since by
induction f(i − 1, j − 1) is not larger than f(i − 1, j) or f(i, j − 1), this implies that
the maximum in line 8 is attained by one of the two latter terms and the recursion is
correctly computed in this case as well.

Having the correctness, we turn towards the complexity measures of the MAAP, which
yields the following result about an NN computing the length of the longest common
subsequence.

Proposition 4.3. For given numbers m and n, there exists an NN of depth and width
O(n + m) and size O(mn) mapping two integer sequences with lengths m and n to the
length of the longest common subsequence.

Proof. This follows by applying the definitions of the complexity measures d, w, and s
to Algorithm 3 and using Proposition 4.1.

We would like to remark that the NN corresponding to the MAAP in Algorithm 3
can be seen as a two-dimensional RNN in an m by n grid structure, an architecture
introduced by Graves, Fernández, and Schmidhuber [GFS07]. Each basic unit of the
RNN is of constant size and computes f(i, j) from f(i−1, j−1), f(i−1, j), f(i, j−1), xi,
and yj .

4.3.2. The Single-Source Shortest Path Problem

As a second example, we consider the Bellman-Ford algorithm for the Single-Source
Shortest Path Problem, see, for example, Kleinberg and Tardos [KT06, Section 6.8].
Let (cuv)u,v∈V be the length matrix of a graph with vertex set V and s ∈ V is the source
vertex. For simplicity, assume that cvv = 0 for all v ∈ V and that the graph does not
contain negative cycles. The Bellman-Ford algorithm recursively computes values f(i, v)
determining the shortest possible length of a path from s to v using at most i arcs by

f(i, v) = min
u∈V
{f(i− 1, u) + cuv}.

For a fixed number of vertices |V | = n, this can directly translated to a MAAP, see
Algorithm 4.

Proposition 4.4. For a graph with a given number of vertices n, there exists an NN of
depth O(n log n), width O(n2), and size O(n3) mapping arc lengths to the shortest path
distances from a single source to all other vertices.

Proof. The MAAP in Algorithm 4 is a direct implementation of the Bellman-Ford algo-
rithm and therefore correctly computes the shortest path distances. The claim follows
by applying the definitions of the complexity measures d, w, and s to Algorithm 4 and
using Proposition 4.1.
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Algorithm 4: MAAP to find the length of the shortest path from s ∈ V to any
other vertex in a graph with n vertices.
Input: Length matrix (cuv)u,v∈V of size n by n.
// Initialization:

1 for each v ∈ V do parallel
2 f(1, v)← csv

// Recursion:
3 for i = 2, . . . , n− 1 do
4 for each v ∈ V do parallel
5 f(i, v)← minu∈V {f(i− 1, u) + cuv}

6 return (f(n− 1, v))v∈V .

Algorithm 5: MAAP to find the length of the shortest path between any two
vertices in a graph with n vertices.
Input: Length matrix (cuv)u,v∈V of size n by n.
// Initialization:

1 for each u, v ∈ V do parallel
2 d(0)

uv ← cuv

// Repeated Squaring:
3 for i = 1, . . . , ⌈log2(n− 1)⌉ do
4 for each u, v ∈ V do parallel
5 d(i)

uv ← minw∈V {d(i−1)
uw + d(i−1)

wv }

6 return (d(⌈log2(n−1)⌉)
uv )u,v∈V .

Again, we would like to remark that the resulting NN can be implemented as an RNN,
where this time one cell corresponds to one iteration of the parallel for loop. This cell
has depth O(log n) and width and size O(n2). It is applied O(n) times to obtain the
final shortest path distances.

4.3.3. The All-Pairs Shortest Path Problem

Third, recall that the All-Pairs Shortest Path Problem can be solved by computing the
(n− 1)-th min-plus matrix power of the length matrix (cuv)u,v∈V , see, e.g., Leighton
[Lei91, Section 2.5.4]. By repeated squaring, this can be achieved with only O(log n)
min-plus matrix multiplications. Again, for simplicity, let us assume that cvv = 0 for
all vertices v ∈ V and that the graph does not contain negative cycles. The resulting
procedure is realized as a MAAP in Algorithm 5.

Analyzing the MAAP with respect to our complexity measures and applying Propo-
sition 4.1 yields the following result.
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Algorithm 6: MAAP to find the length of the shortest traveling salesperson tour
in a graph with n vertices.
Input: Length matrix (cuv)u,v∈V of size n by n.
// Initialization:

1 for each v ∈ V \ {s} do parallel
2 f({v}, v)← csv

// Recursion (can be done in parallel for sets of equal
cardinality):

3 for i = 2, . . . , n− 1 do
4 for each T ⊆ V \ {s} with |T | = i do parallel
5 for each v ∈ T do parallel
6 f(T, v) = minu∈T \{v} {f(T \ {v}, u) + cuv}

7 return minu∈V \{s} {f(V \ {s}, u) + cus}.

Proposition 4.5. For a graph with a given number of vertices n, there exists an NN of
depth O(log2 n), width O(n3), and size O(n3 log n) mapping arc lengths to the shortest
path distances between all vertices.

Again note that this NN can be viewed as an RNN where the RNN cell is repeatedly
applied O(log n) times and has depth O(log n), width O(n3), and size O(n3).

4.3.4. Traveling Salesperson Problem

As a final example, let us consider the Bellman-Held-Karp algorithm for solving the NP-
hard (asymmetric) Traveling Salesperson Problem (TSP); see Bellman [Bel62] and Held
and Karp [HK62]. Given a (complete, directed) graph with vertex set V and distances cuv

from vertex u ∈ V to vertex v ∈ V , the TSP asks for the shortest round-trip visiting
each vertex exactly once. Choosing an arbitrary starting vertex s ∈ V , the Bellman-
Held-Karp algorithm recursively computes values f(T, v) for each T ⊆ V \ {s}, v ∈ T ,
corresponding to the length of the shortest s-v-path visiting exactly the nodes in T ∪{s}
by the formula

f(T, v) = min
u∈T \{v}

{f(T \ {v}, u) + cuv} .

The length of the shortest TSP tour is then given by minu∈V \{s} {f(V \ {s}, u) + cus}.
We provide a MAAP for executing this dynamic program in Algorithm 6. Analyzing

the MAAP with respect to our complexity measures and applying Proposition 4.1 yields
the following result.

Proposition 4.6. For a graph with a given number of vertices n, there exists an NN
of depth O(n log n) and width and size O(n22n) mapping arc lengths to the length of the
shortest TSP tour.

In particular, a polynomially deep NN suffices to solve the NP-hard (asymmetric)
TSP, while the total size is still in the order of the Bellman-Held-Karp algorithm.
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4.4. The Minimum Spanning Tree Problem

After seeing a couple of examples where it was more or less straightforward to obtain
MAAPs, and hence NNs, from classical algorithms, let us now consider the first non-
trivial case: the Minimum Spanning Tree (MST) Problem.

A spanning tree in an undirected graph is a set of edges that is connected, spans all
vertices, and does not contain any cycle. For given edge weights, the MST Problem is
to find a spanning tree with the least possible total edge weight.

Most common algorithms, for example Kruskal’s or Prim’s algorithm, compare the
edge weights and use conditional branchings to determine the order in which edges are
included in the solution. Therefore, they cannot be written as a MAAP or implemented
as an NN. Nevertheless, by “tropicalizing” a result by Fomin, Grigoriev, and Koshevoy
[FGK16] from arithmetic circuit complexity, we obtain a recursive MAAP to compute
the weight of an MST from all edge weights.

To be more precise, Fomin, Grigoriev, and Koshevoy [FGK16] provide a construction
of a polynomial-size subtraction-free arithmetic circuit (with standard addition, multi-
plication, and division, but without subtractions) to compute the so-called spanning tree
polynomial of a graph (V,E), that is, the polynomial∑︂

T spanning tree

∏︂
e∈T

xe

defined over |E| many variables xe associated with the edges of the graph.
Tropicalizing this polynomial (to min-plus algebra) results precisely in the tropical

polynomial mapping edge weights to the value of an MST:

min
T spanning tree

∑︂
e∈T

xe.

In the same way, one can tropicalize the arithmetic circuit provided by Fomin, Grig-
oriev, and Koshevoy [FGK16]. In fact, every sum gate is just replaced with a small NN
computing the minimum of its inputs according to Proposition 2.2, every product with
a summation, and every division with a subtraction (realized using negative weights).
That way, we obtain a polynomial-size NN to compute the value of an MST from any
given edge weights. Note that it is crucial that the circuit is subtraction-free because
there is no inverse with respect to tropical addition.

While this argument is already sufficient to justify the existence of polynomial-size
NNs to compute the value of an MST, we now give a completely combinatorial proof of
this argument. The resulting NN, however, is basically equivalent to the NN obtained
by tropicalizing the circuit of Fomin, Grigoriev, and Koshevoy [FGK16].

The rough idea of our proof is to use a recursive MAAP, which then translates to
an NN of the required size. Let us mention that the use of a recursion within the
statement of the MAAP is just a matter of notation and unrolling the recursion results
in a MAAP family without recursions matching the way we defined MAAPs before.
In each step of the recursion, one node of the graph is deleted and all remaining edge
weights are updated in such a way that the objective value of the minimum spanning
tree problem in the original graph can be calculated from the objective value in the
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Algorithm 7: MSTn: Compute the value of a minimum spanning tree for the
complete graph on n ≥ 3 vertices.
Input: Edge weights (xij)1≤i<j≤n.

1 yn ← mini∈[n−1] xin

2 for each 1 ≤ i < j ≤ n− 1 do parallel
3 x′

ij ← min{xij , xin + xjn − yn}

4 return yn + MSTn−1
(︂
(x′

ij)1≤i<j≤n−1
)︂

smaller graph. The recursion used in the MAAP emerges from tropicalizing the so-
called star-mesh transformations used by Fomin, Grigoriev, and Koshevoy [FGK16] into
the combinatorial world.

Without loss of generality, we restrict ourselves to complete graphs. Edges missing in
the actual input graph can be represented with large weights such that they will never
be included in an MST.

For n = 2 vertices, the MAAP simply returns the weight of the only edge of the graph.
For n ≥ 3, our MAAP is given in Algorithm 7.

Proposition 4.7. Algorithm 7 correctly computes the value of a minimum spanning tree
in the complete graph on n vertices.

Proof. We use induction on n. The trivial case n = 2 settles the induction start. Now
suppose that the subroutine MSTn−1 correctly computes the value of an MST for n− 1
vertices. We need to show that the returned value yn + MSTn−1

(︂
(x′

ij)1≤i<j≤n−1
)︂

is
indeed the MST value for n vertices.

First, we show that the value computed by Algorithm 7 is not larger than the correct
objective value. For this purpose, let T be the set of edges corresponding to an MST
of G. By potential relabeling of the vertices, assume that yn = x1n. Note that we may
assume without loss of generality that v1vn ∈ T : if this is not the case, adding it to T
creates a cycle in T involving a second neighbor vi ̸= v1 of vn. Removing vivn from T
results again in a spanning tree with total weight at most the original weight.

We construct a spanning tree T ′ of the subgraph spanned by the first n − 1 vertices
as follows: T ′ contains all edges of T that are not incident with vn. Additionally, for
each vivn ∈ T , except for v1vn, we add the edge v1vi to T ′. It is immediate to verify
that this construction results in fact in a spanning tree. We then obtain

∑︂
vivj∈T

xij = x1n +
∑︂

vivn∈T, i>1
xin +

∑︂
vivj∈T, i,j<n

xij

= yn +
∑︂

vivn∈T, i>1
(xin + x1n − yn) +

∑︂
vivj∈T, i,j<n

xij

≥ yn +
∑︂

vivn∈T, i>1
x′

1i +
∑︂

vivj∈T, i,j<n

x′
ij
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= yn +
∑︂

vivj∈T ′

x′
ij

≥ yn + MSTn−1
(︂
(x′

ij)1≤i<j≤n−1
)︂
.

Here, the first inequality follows by the way how the values of x′ are defined in line 3
and the second inequality follows since T ′ is a spanning tree of the first n − 1 vertices
and, by induction, the MAAP is correct for up to n − 1 vertices. This completes the
proof that the MAAP does not overestimate the objective value.

In order to show that the MAAP does not underestimate the true objective value,
let T ′ be the set of edges of a minimum spanning tree of the first n − 1 vertices with
respect to the updated costs x′. Let E∗ ⊆ T ′ be the set of edges vivj , 1 ≤ i < j ≤ n− 1,
in T ′ that satisfy x′

ij = xin +xjn−yn. Note that, in particular, we have x′
ij = xij for all

vivj ∈ T ′\E∗, which will become important later. We show that we may assume without
loss of generality that E∗ only contains edges incident with v1. To do so, suppose there
is an edge vivj ∈ E∗ with 2 ≤ i < j ≤ n − 1. Removing that edge from T ′ disconnects
exactly one of the two vertices vi and vj from v1; say, it disconnects vj . We then can add
v1vj to T ′ and obtain another spanning tree in G′. Moreover, by the definition of the
weights x′ and the choice of v1, we obtain x′

1j ≤ x1n + xjn − yn ≤ xin + xjn − yn = x′
ij .

Hence, the new spanning tree is still minimal. This procedure can be repeated until
every edge in E∗ is incident with v1.

Now, we construct a spanning tree T in G from T ′ as follows: T contains all edges
of T ′ \E∗. Additionally, for every v1vi ∈ E∗, we add the edge vivn to T . Finally, we also
add v1vn to T . Again it is immediate to verify that this construction results in fact in a
spanning tree, and we obtain

∑︂
vivj∈T

xij = x1n +
∑︂

v1vi∈E∗
xin +

∑︂
vivj∈T ′\E∗

xij

= yn +
∑︂

v1vi∈E∗
(xin + x1n − yn) +

∑︂
vivj∈T ′\E∗

xij

= yn +
∑︂

v1vi∈E∗
x′

1i +
∑︂

vivj∈T ′\E∗

x′
ij

= yn +
∑︂

vivj∈T ′

x′
ij

= yn + MSTn−1
(︂
(x′

ij)1≤i<j≤n−1
)︂
.

This shows that the MAAP returns precisely the value of the spanning tree T . Hence,
its output is at least as large as the value of an MST, completing the second direction.

Finally, we prove complexity bounds for the MAAP, allowing us to bound the size of
the corresponding NN.

Theorem 4.8. For a fixed graph with n vertices, there exists an NN of depth O(n log n),
width O(n2), and size O(n3) that correctly maps a vector of edge weights to the value of
a minimum spanning tree.
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Proof. In Proposition 4.7, we have seen that Algorithm 7 performs the required computa-
tion. We show that d(MSTn) = O(n log n), w(MSTn) = O(n2), and s(MSTn) = O(n3).
Then, the claim follows by Proposition 4.1.

Concerning the complexity measure d, observe that in each recursion the bottleneck
is to compute the minimum in line 1. This is of logarithmic order. Since we have n
recursions, it follows that d(MSTn) = O(n log n).

Concerning the complexity measure w, observe that the bottleneck is to compute the
parallel for loop in line 3. This is of quadratic order, resulting in w(MSTn) = O(n2).

Finally, concerning the complexity measure s, the bottleneck is also the parallel for
loop in line 3. Again, this is of quadratic order and since we have n recursions, we arrive
at s(MSTn) = O(n3).

4.5. The Maximum Flow Problem

Similar to what we encountered for the MST Problem, in case of the Maximum Flow
Problem, all popular algorithms make use of conditional branchings. For example,
whether the flow along certain arcs is increased or not, usually depends on whether
certain arcs are contained in the residual network. Therefore, in order to construct a
polynomial-size NN solving the Maximum Flow Problem, we design a completely new
algorithm that works without conditional branchings. In contrast to our previous ex-
amples, this time, we even compute the solution itself, that is, the flow, and not only
the objective value. To be more precise, we show that, given a fixed directed graph
with n nodes and m edges, there exists a polynomial-size NN that computes a function
of type Rm → Rm that maps arc capacities to a corresponding maximum flow. Note
that the objective value can be computed from the solution by simply adding up all flow
values of arcs leaving the source node s. Therefore, this can be done by an NN with the
same asymptotic size bounds, too.

4.5.1. Preliminaries on the Maximum Flow Problem

Let G = (V,E) be a directed graph with a finite node set V = {v1, . . . , vn}, n ∈ N,
a source s = v1, a sink t = vn, and an arc set E ⊆ V 2 \ {vv | v ∈ V } in which each
arc e ∈ E is equipped with a capacity νe ≥ 0. We write m = |E| for the number of
arcs, δ+

v and δ−
v for the sets of outgoing and incoming arcs of node v, as well as N+

v

and N−
v for the sets of successor and predecessor nodes of v in G, respectively. The

distance distG(v, w) denotes the minimum number of arcs on any path from v to w in G.
In this setting, the Maximum Flow Problem consists of finding an s-t-flow (ye)e∈E

satisfying 0 ≤ ye ≤ νe and ∑︁e∈δ−
v
ye = ∑︁

e∈δ+
v
ye for all v ∈ V \ {s, t} such that the flow

value ∑︁e∈δ+
s
ye −

∑︁
e∈δ−

s
ye is maximal.

For the sake of an easier notation we assume for each arc e = uv ∈ E that its reverse
arc vu is also contained in E. This is without loss of generality because we can use capac-
ity νe = 0 for arcs that are not part of the original set E. In order to avoid redundancy
we represent flow only in one arc direction. More precisely, with E⃗ = {vivj ∈ E | i < j}
being the set of forward arcs, we denote a flow by (ye)e∈E⃗ . The capacity constraints
therefore state that −νvu ≤ yuv ≤ νuv. Hence, a negative flow value on a forward
arc uv ∈ E⃗ denotes a positive flow on the corresponding backward arc vu.
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A crucial construction for maximum flow algorithms is the residual network. For a
given s-t-flow (ye)e∈E⃗ , the residual capacities are defined as follows. For an arc uv ∈ E⃗
the residual forward capacity is given by cuv := νuv − yuv and the residual backward ca-
pacity by cvu := νvu +yuv. The residual network consists of all directed arcs with positive
residual capacity. Hence, it is given by G∗ = (V,E∗) with E∗ := {e ∈ E | ce > 0}.

The asymptotically fastest known maximum flow algorithm runs in O(nm) time for
networks with n nodes and m arcs [Orl13]. However, as outlined above, classical al-
gorithms are not applicable for direct implementation on an NN because they require
conditional branchings. Nevertheless, our approach uses ideas of the famous algorithms
by Edmonds and Karp [EK72] and Dinic [Din70].

4.5.2. A MAAP to solve the Maximum Flow Problem

The rough idea of our MAAP, given in Algorithm 8 and Algorithm 9, is as follows. We
start with the zero flow and consider the residual network G∗. In each iteration we
augment flow along arcs of the residual network that lie on a shortest path from the
source s to the sink t until they become disconnected in G∗. However, in contrast to the
classical algorithms, finding an appropriate augmenting flow is much more technically
involved, due to the limited set of operations allowed. This is accomplished by the
FindAugmentingFlowk subroutine, which we define and analyze next. Its key feature is
to return a flow that has positive flow values only on arcs that lie on a path of length k
from s to t in the current residual network. Moreover, if such a path still exists, at least
one arc of the residual network is saturated by that flow. Of course, all this needs to
happen without explicitly knowing the arcs contained in the current residual network
since this would involve conditional branchings.

4.5.3. FindAugmentingFlowk Subroutine

The key component of our MAAP to solve the Maximum Flow Problem is the subroutine,
given by Algorithm 9, that returns an augmenting flow using only paths of at most a
fixed length k and, in addition, saturates at least one arc of the residual network.

The first step of this subroutine is to determine for each node v and each i ∈ N0
the maximal flow value ai,v that can be sent from v to t on a single path of length
exactly i in the residual network. We call such a path a fattest path of length i from v
to t. The value ak,s of a fattest path from s to t of length k is of particular interest
as the algorithm greedily pushes this value from s to t within k iterations. This means
that, at each node v, flow is pushed into arcs vw ∈ δ+

v in the order given by the node
indices of the successors w. Here, the flow value that is pushed into a node w should
not exceed ai,w, where i is the current iteration. This way, all flow that is pushed into a
node could in principle reach t within i steps. However, it can happen that not all the
flow that is pushed into a node v can be pushed out of v since the next nodes might be
loaded with flow already. Therefore, the inflow at some nodes might be larger than the
outflow after the pushing procedure; see Figure 4.1 for an example where this happens.

In order to restore flow conservation, the algorithm performs a clean-up in which it
iterates over the nodes in reverse order and reduces the incoming flow by the remaining
excess flow at node v. Hence, we obtain a feasible augmenting s-t-flow in the end. In
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Algorithm 8: Computing a maximum flow for a fixed graph G = (V,E).
Input: Capacities (νe)e∈E .
// Initializing:

1 for each uv ∈ E⃗ do parallel
2 xuv ← 0 // flow; negative value correspond to flow on vu
3 cuv ← νuv // residual forward capacities
4 cvu ← νvu // residual backward capacities

// Main part:
5 for k = 1, . . . , n− 1 do
6 for i = 1, . . . ,m do
7 (ye)e∈E⃗ ← FindAugmentingFlowk((ce)e∈E)

/* Returns an augmenting flow (respecting the residual
capacities) that only uses paths of length exactly k and
saturates at least one arc. */

// Augmenting:
8 for each uv ∈ E⃗ do parallel
9 xuv ← xuv + yuv

10 cuv ← cuv − yuv

11 cvu ← cvu + yuv

12 return (xe)e∈E⃗

Algorithm 9, we give a formal description of this subroutine and an example is given in
Figure 4.1.

The following theorem states that the subroutine indeed computes an augmenting flow
fulfilling all required properties.

Theorem 4.9. Let (ce)e∈E be residual capacities such that the distance between s and t
in the residual network G∗ = (V,E∗) is at least k. Then the MAAP given in Algorithm 9
returns an s-t-flow y = (yuv)uv∈E⃗ with −cvu ≤ yuv ≤ cuv such that we have positive
flow only on arcs that lie on an s-t-path of length exactly k in G∗. If the distance of s
and t in the residual network is exactly k, then y has a strictly positive flow value and
there exists at least one saturated arc, i.e., one arc e ∈ E∗ with ye = ce.

The proof idea is as follows. For the flow conservation we first show that the Yu

variables do indeed track the excessive flow at node u. More precisely, we show that
after the pushing procedure we have ∑︁e∈δ−

u
ze −

∑︁
e∈δ+

u
ze = Yk−distG∗ (s,u)

u and Yi
u = 0

for all i ̸= k − distG∗(s, u). The clean-up reduces the excessive flow to zero, i.e., in the
end it holds that Yi

u = 0 for all i including i = k − distG∗(s, u).
In order to show that at least one residual arc is saturated we consider a node v∗ that

has positive excess flow after the pushing phase. Among these, v∗ is chosen as one of
the closest nodes to t in G∗. From all shortest v∗-t-paths in G∗ we pick the path P that
has lexicographically the smallest string of node indices. As the fattest path from v∗

to t has at least the residual capacity of P (given by the minimal residual capacity of
all arcs along P ), the pushing procedure has pushed at least this value along P . Hence,
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Algorithm 9: FindAugmentingFlowk subroutine for a fixed graph G = (V,E)
and a fixed length k.
Input: Residual capacities (ce)e∈E .
// Initializing:

1 for each vw ∈ E⃗ do parallel
2 zvw ← 0 // flow in residual network
3 zwv ← 0
4 for each (i, v) ∈ [k]× (V \ {t}) do parallel
5 Yi

v ← 0 // excessive flow at v in iteration i (from k to 1)
6 ai,v ← 0 // initialize fattest path values

// Determining the fattest path values:
7 for each v ∈ N−

t do parallel
8 a1,v ← cvt

9 for i = 2, 3, . . . , k do
10 for each v ∈ V \ {t} do parallel
11 ai,v ← maxw∈N+

v \{t} min{ai−1,w, cvw}

// Pushing flow of value ak,s from s to t:
12 Yk

s ← ak,s // excessive flow at s
13 for i = k, k − 1, . . . , 2 do
14 for v ∈ V \ {t} in index order do
15 for w ∈ N+

v \ {t} in index order do
// Push flow out of v and into w:

16 f ← min{Yi
v, cvw,ai−1,w −Yi−1

w } // value we can push over vw
such that this flow can still arrive at t

17 zvw ← zvw + f
18 Yi

v ← Yi
v − f

19 Yi−1
w ← Yi−1

w + f
20 for each v ∈ N−

t do parallel
// Push flow out of v and into t:

21 zvt ← Y1
v

22 Y1
v ← 0

// Clean-up by bounding:
23 for i = 2, 3, . . . , k − 1 do
24 for w ∈ V \ {t} in reverse index order do
25 for v ∈ N−

w \ {t} in reverse index order do
26 b← min{Yi

w, zvw} // value we can push backwards along vw
27 zvw ← zvw − b
28 Yi

w ← Yi
w − b

29 Yi+1
v ← Yi+1

v + b

30 for each uv ∈ E⃗ do parallel
31 yvw ← zvw − zwv

32 return (ye)e∈E⃗
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Figure 4.1.: Example of the FindAugmentingFlow Subroutine. The network on the top
depicts the residual capacity bounds [−cwv, cvw] for all arcs vw ∈ E⃗ and the node
labels ai,v for the fattest path from v to t within i steps. The four figures in the middle
show the states of the flow zvw and the excessive flow Yi

v at the end of a push iteration.
The bottom two figures depict the states after the clean-up iterations. All values that
are not displayed are zero. Observe that the result is an s-t-flow that is feasible with
respect to the residual capacities, uses only paths of length k = 4, and saturates the
arc v6t.
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the arc on P with minimal capacity has to be saturated. It is then easy to show that
the clean-up does not reduce the value along P .

Keeping this idea in mind, we now provide the full proof with all details.

Proof of Theorem 4.9. It is easy to check that lines 7 to 11 from the algorithm do indeed
compute the maximal flow value ai,v that can be send from v to t along a single path
(which we call the fattest path) of length exactly i.

In the following we show that in line 31 the arc vector z = (ze)e∈E forms an s-t-flow
in the residual network G∗ = (V,E∗) that satisfies 0 ≤ ze ≤ ce. For this, recall that
distG∗(s, u) denotes the distance from s to u in the residual network.

In order to prove flow conservation of z at all vertices except for s and t, we fix some
node u ∈ V \ {t} and show that

Y j
u =

{︄∑︁
e∈δ−

u
ze −

∑︁
e∈δ+

u
ze if j = k − distG∗(s, u),

0 otherwise,
(4.2)

holds throughout the execution of the subroutine.

Claim 4.10. Equation (4.2) holds after the pushing procedure (lines 12 to 22).

Proof of Claim 4.10. For j < k − distG∗(s, u), there does not exist any u-t-path of
length j (since j + distG∗(s, u) < k ≤ distG∗(s, t)). Hence, the fattest u-t-path of
length exactly j has capacity aj,u = 0. In any iteration that might increase Yj

u, that is,
for i = j + 1, v ∈ V \ {u, t}, and w = u, we have f = 0. This implies that Yj

u remains 0.
For j > k − distG∗(s, u), there is no s-u-path of length k − j in the residual graph as

k − j < distG∗(s, u). The statement Yj
u = 0 then follows by an induction on distG∗(s, u),

as we show in the following:
For the base case of distG∗(s, u) = 1 we have that Yj

u = Yk
u = 0 since for u ̸= s it

holds that Yk
u stays 0 during the whole algorithm.

The induction step follows because for iteration i = j + 1, v ∈ V \ {u, t} and w = u
it holds that either cvw = 0 (i.e., arc vw is not part of the residual network) or Yi

v = 0
(inductively as distG∗(s, v) ≥ distG∗(s, u) − 1 and i = j + 1 > k − distG∗(s, u) + 1 ≥
k − distG∗(s, v)). Either way we have f = 0 implying that Yj

u = Yi−1
w stays 0.

In conclusion, we obtain that Yj
u can only be non-zero for j = k − distG∗(s, u). In

each iteration with i = k − distG∗(s, u) + 1 and w = u we add f to the flow value zvu

and the same to Yk−distG∗ (s,u)
u and in each iteration with i = k − distG∗(s, u) and v = u

we add f to the flow value zuw and subtract f from Yk−distG∗ (s,u)
u . Hence, Yk−distG∗ (s,u)

u

denotes exactly the excessive flow after the pushing procedure as stated in (4.2). ■

This claim already shows that ze can only be positive if e lies on an s-t-path of
length exactly k, which is a shortest path in the residual network. To see this, let vw
be an arc that is not on such a path. In line 16, it either holds that Yi

v = 0 (if
i ̸= k − distG∗(s, u)) or ai−1,w = 0 because for i = k − distG∗(s, u) there is no w-t-path
of length i− 1 = k − distG∗(s, u)− 1 (since otherwise vw would lie on an s-t-path of
length k). Thus, zvw will never be increased. As the clean-up only reduces the flow
values, zvw will still be 0 at the end (line 31).

Claim 4.11. Equation (4.2) holds in each iteration of the clean-up (lines 23 to 29).
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Proof of Claim 4.11. First, we show that Yj
u stays 0 for j ̸= k−distG∗(s, u) by induction

over j = 2, 3, . . . , k. The base case follows immediately as we only subtract b ≥ 0
from Y2

u. For the induction step we have to show that b = 0 whenever we add b to Yj
u

in line 29. In all iterations with i = j − 1 and v = u we either have zuw = 0 or Yi
w = 0.

The reason for this is that zuw > 0 implies that uw lies on a shortest s-t-path, which
means that distG∗(s, w) = distG∗(s, u) + 1, and hence, i = j − 1 ̸= k− distG∗(s, u)− 1 =
k − distG∗(s, w). By induction this means that Yi

w = 0. Either way this implies b = 0.
Equation (4.2) holds for j = k − distG∗(s, u) since for e ∈ δ−

u the value b is only
possibly positive for i = k−distG∗(s, u) and then it is subtracted from ze as well as from
Yk−distG∗ (s,u)

u . For e ∈ δ+
u , the value b can only be positive for i = k − distG∗(s, u) + 1,

and hence, b is subtracted from ze exactly when it is added to Yk−distG∗ (s,u)
u . ■

Next, we show that at the end of the subroutine it holds that Yj
u = 0 for all j,

in particular also for j = k − distG∗(s, u). The only exception of this is Yk
s . To see

this, first observe that during the clean-up, Yk−distG∗ (s,u)
u is maximal after iteration

i = k − distG∗(s, u) − 1 and does not increase anymore for i ≥ k − distG∗(s, u). At the
start of iteration i = k − distG∗(s, u) it holds due to (4.2) that∑︂

e∈δ−
u

ze ≥ Yk−distG∗ (s,u)
u .

Hence, for i = k− distG∗(s, u) and w = u there is one iteration for all e ∈ δ−
u and within

this iteration Yk−distG∗ (s,u)
u is reduced by ze until Yk−distG∗ (s,u)

u = 0. This shows that
after all iterations with i = k − distG∗(s, u) it holds that Yk−distG∗ (s,u)

u = 0. Together
with (4.2), this immediately implies flow conservation of (ze)e∈E .

Finally, in order to show that 0 ≤ ze ≤ ce, note that ze is initialized with 0 and it is
only increased in line 17 of the unique iteration with vw = e and i = k− distG∗(s, v), as
we have argued in the proof of Claim 4.10. In this iteration we have that f ≤ ce, which
immediately shows that 0 ≤ ze ≤ ce.

It only remains to show that at least one residual arc is saturated. To this end, suppose
that the distance of s and t in G∗ is k, which means that there exists at least one s-t-path
of length exactly k with a strictly positive residual capacity on all arc along this path.

Let us consider the set {(v, i) | Yi
v > 0 after the pushing procedure}. These are all

nodes that need to be cleaned up in order to restore flow conservation, paired with their
distance to t. Let (v∗, i∗) be a tuple of this set such that i∗ is minimal. In other words, v∗

is a node that is closest to t among theses nodes. We manually set (v∗, i∗) to (s, k) in
the case that the set is empty.

Claim 4.12. Some arc on a shortest path from v∗ to t in G∗ is saturated by ye.

Proof of Claim 4.12. Among all these paths between v∗ and t of length i∗ we consider
the path P which has lexicographically the smallest string of node indices. Let cmin be
the minimal residual capacity along this path P .

For all nodes v along P (including v∗) we have ai,v ≥ cmin, where i is the distance
from v to t along P , since the fattest path from v to t has to have at least the residual
capacity of P .

After the pushing procedure it holds that ze ≥ cmin for all e ∈ P . This is true for the
first arc on P , since we have excess flow at node v∗ remaining (after pushing), hence,
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we certainly pushed at least cmin ≤ ai∗−1,w into the first arc v∗w of P . (This is also
true if v∗ = s.) For the remaining arcs of P it is true, because by the lexicographical
minimality of P , the algorithm always pushes a flow value that is greater or equal to cmin
first along the next arc on P .

During the clean-up, this property remains valid as we only reduce flow on arcs that
have a distance of more than i∗ from t.

Hence, an arc e ∈ P with ce = cmin is saturated at the very end of the subroutine. ■

In conclusion, y is a feasible s-t-flow in the residual network that has positive value
only on paths of length k and saturates at least one arc. This finalizes the proof of
Theorem 4.9.

4.5.4. Correctness of the Main Routine
The following theorem states that Algorithm 8 correctly computes a maximum flow.
Using the correctness of the technically involved subroutine FindAugmentingFlowk, the
remaining proof is actually similar to textbook proofs for the algorithms by Edmonds-
Karp and Dinic; see, e.g., Korte and Vygen [KV08].

Theorem 4.13. Let G = (V,E) be a fixed directed graph with s, t ∈ V . For capacities
(νe)e∈E as input, the MAAP given by Algorithm 8 returns a maximum s-t-flow (xe)e∈E⃗.

Proof. It is a well-known fact that a feasible s-t-flow is maximum if and only if the
corresponding residual network does not contain any s-t-path, see, e.g., Korte and Vygen
[KV08, Theorem 8.5]. Since any simple path has length at most n−1, it suffices to show
the following claim.

Claim 4.14. After iteration k of the for loop in line 5 of Algorithm 8, x is a feasible
s-t-flow with corresponding residual capacities c such that no s-t-path of length at most k
remains in the residual network.

Given a residual network (V,E∗), let E∗
k be the set of arcs that lie on an s-t-path of

length exactly k. If the distance from s to t is exactly k, then these arcs coincide with
the arcs of the so-called level graph used in Dinic’s algorithm, compare [Din70; KV08].

We will show Claim 4.14 about the outer for loop by induction on k using a similar
claim about the inner for loop.

Claim 4.15. Suppose, at the beginning of an iteration of the for loop in line 6, it holds
that

(i) x is a feasible s-t-flow with corresponding residual capacities c, and

(ii) the length of the shortest s-t-path in the residual network is at least k.

Then, after that iteration, properties (i) and (ii) do still hold. Moreover, if E∗
k is

nonempty, then its cardinality is strictly reduced by that iteration.

Proof of Claim 4.15. Since (i) and (ii) hold at the beginning of the iteration, Theo-
rem 4.9 implies that the flow y found in line 7 fulfills flow conservation and is bounded
by −cvu ≤ yuv ≤ cuv for each uv ∈ E⃗. Hence, we obtain that, after updating x and c
in lines 8 to 11, x is still a feasible flow that respects flow conservation and capacities,
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and c are the corresponding new residual capacities. Thus, property (i) is also true at
the end of the iteration.

Let G∗ = (V,E∗) and G̃
∗ = (V, Ẽ∗) be the residual graphs before and after the

iteration, respectively. Let E∗
k and Ẽ

∗
k be the set of arcs on s-t-paths of length k in G∗

and G̃
∗, respectively. Finally, let E′ be the union of E∗ with the reverse arcs of E∗

k and
let G′ = (V,E′).

Since, by Theorem 4.9, we only augment along arcs in E∗
k , it follows that Ẽ∗ ⊆ E′.

Let P be a shortest s-t-path in G′ and suppose for contradiction that P contains an
arc that is not in E∗. Let e = uv be the first of all such arcs of P and let Pu be the
subpath of P until node u. Then the reverse arc vu must be in E∗

k . In particular,
distG∗(s, v) < distG∗(s, u) ≤ |E(Pu)|, where the second inequality follows because Pu

uses only arcs in E∗. Hence, replacing the part of P from s to v by a shortest s-v-path
in G∗ reduces the length of P by at least two, contradicting that P is a shortest path
in G′.

Thus, all shortest paths in G′ only contain arcs from E∗. In particular, they have
length at least k. Hence, all paths in G′ that contain an arc that is not in E∗ have
length larger than k. Since Ẽ∗ ⊆ E′, this also holds for paths in G̃

∗, which implies (ii).
It also implies that Ẽ∗

k ⊆ E∗
k . Moreover, by Theorem 4.9, if E∗

k is nonempty, at least
one arc of E∗

k is saturated during the iteration, and thus removed from E∗
k . Thus, the

cardinality of E∗
k becomes strictly smaller. ■

Using Claim 4.15, we are now able to show Claim 4.14.

Proof of Claim 4.14. We use induction on k. For the induction start, note that be-
fore entering the for loop in line 5, that is, so to speak, after iteration 0, obviously no
s-t-path of length 0 can exist in the residual network. Also note that after the initial-
ization in lines 1 to 4, x is the zero flow, which is obviously feasible, and c contains the
corresponding residual capacities.

For the induction step, consider the k-th iteration. By the induction hypothesis, we
know that, at the beginning of the k-th iteration, x is a feasible s-t-flow with corre-
sponding residual capacities c and the distance from s to t in the residual network is
at least k. Observe that by Claim 4.15, these properties are maintained throughout the
entire k-th iteration. In addition, observe that at the beginning of the k-th iteration,
we have |E∗

k | ≤ m. Since, due to Claim 4.15, |E∗
k | strictly decreases with each inner

iteration until it is zero, it follows that after the m inner iterations, the residual network
does not contain an s-t-path of length k any more, which completes the induction. ■

Since any simple path has length at most n − 1, Claim 4.14 implies that, at the
end of iteration k = n − 1, the nodes s and t must be disconnected in the residual
network. Hence, Algorithm 8 returns a maximum flow, which concludes the proof of
Theorem 4.13.

4.5.5. Bounding the Complexity
By applying the definition of our complexity measures, we obtain the following bounds.

Theorem 4.16. The MAAP A defined by Algorithm 8 fulfills d(A), s(A) ∈ O(n2m2) as
well as w(A) ∈ O(n2).
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Proof. We first analyze the MAAP A′ given in Algorithm 9. Concerning the complexity
measures d and s, the bottleneck of Algorithm 9 is given by the two blocks consisting
of lines 13 to 19 as well as lines 23 to 29. Each of these blocks has O(km) sequential
iterations and the body of the innermost for loop has constant complexity. Thus, we
have d(A′), s(A′) ∈ O(km) ⊆ O(nm) for the overall subroutine.

Concerning measure w, the bottleneck is in fact the initialization in lines 1 to 6, such
that we have w(A′) ∈ O(m+ kn) ⊆ O(n2).

Now consider the main routine in Algorithm 8. For all three complexity measures, the
bottleneck is the call of the subroutine in line 7 within the two for loops. Since we have a
total of O(nm) sequential iterations, the claimed complexity measures follow. Note that
the parallel for loops in lines 1 and 8 do not increase the measure w(A) ∈ O(n2).

Let us give two remarks about the complexity of the MAAP in Algorithm 8.
First, observe that the total computational work that is carried out by the MAAP,

represented by s(A), differs only by a factor of n from the standard running time bound
O(nm2) of the Edmonds-Karp algorithm; see [KV08, Corollary 8.15]. While the number
of augmenting steps is in O(nm) for both algorithms, the difference lies in finding the
augmenting flow. While the Edmonds-Karp algorithm finds the shortest path in the
residual network in O(m) time, the subroutine in Algorithm 9 requires O(mn) compu-
tational work.

The second remark is that the reported complexity w(A) ∈ O(n2) in Theorem 4.16
is actually suboptimal and can be replaced by O(1) instead, if the parallel for loops in
the MAAP are replaced with sequential ones. The asymptotics of d(A) and s(A) remain
unchanged because the bottleneck parts of the MAAP are already of sequential nature.
Still, we used parallel for loops in Algorithm 8 and Algorithm 9 in order to point out at
which points the ability of NNs to parallelize can be used in a straightforward way.

Combining the previous observations with Proposition 4.1 we obtain the following
corollary.

Corollary 4.17. Let G = (V,E) be a fixed directed graph with s, t ∈ V , |V | = n, and
|E| = m. There exists an NN of depth and size O(m2n2) and width O(1) that correctly
maps arc capacities (νe)e∈E to a maximum s-t-flow (xe)e∈E⃗.

4.6. The Knapsack Problem

In the previous two sections we have seen two examples of efficiently solvable problems
for which it was non-trivial to obtain NNs of polynomial size. In this section, we go
one step further and consider the NP-hard Knapsack Problem. Of course, we cannot
expect polynomial-size NNs that provide exact solutions. Instead, we strive for pseudo-
polynomial size in the exact case and smaller NNs providing solutions with provable
approximation guarantees. We also provide a small computational study supporting our
theoretical size bounds.

On the methodological side, in this section, we go back to the classical paradigm of
dynamic programming, which has also been the key tool to obtain NNs in a straight-
forward way in Section 4.3. However, in case of the Knapsack Problem, it is a bit more
involved to turn dynamic programming recursions into NNs, as we will see.
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4.6.1. Preliminaries on the Knapsack Problem
The Knapsack Problem constitutes one of the oldest and most studied problems in
combinatorial optimization (CO). Given a set of items with certain profit and size values,
as well as a knapsack capacity, the Knapsack Problem asks for a subset of items with
maximum total profit such that the total size of the subset does not exceed the capacity.

The Knapsack Problem is one of Karp’s 21 original NP-complete problems [Kar72]
and has numerous applications in a wide variety of fields, ranging from production and
transportation, over finance and investment, to network security and cryptography. It
often appears as a subproblem at the core of more complex problems; see, e.g., Kellerer,
Pferschy, and Pisinger [KPP04] and Martello and Toth [MT90]. This fact substantiates
the Knapsack Problem’s prominent importance as one of the key problems in CO. In
particular, the Knapsack Problem is frequently being used as a testbed for measuring the
progress of various exact and heuristic solution approaches and computational methods
such as, e.g., integer programming, constraint programming, or evolutionary algorithms.
In integer programming, for example, the Knapsack Problem and so-called ‘Knapsack
Inequalities’ play a central role, both with respect to theory as well as in the development
of modern computational methods; see, e.g., Bertsimas and Weismantel [BW05] and
Fischetti and Lodi [FL10].

An instance of the Knapsack Problem consists of n items 1, 2, . . . , n, where each
item i ∈ [n] comes with a given profit pi ∈ N and size si ∈ ]0, 1], together with a
Knapsack that can hold any subset M ⊆ [n] of items of total size ∑︁i∈M si at most 1.
The task is to find such a subset M ⊆ [n] that maximizes the total profit ∑︁i∈M pi.

We outline a classical dynamic programming formulation for the Knapsack Problem.
Let p∗ ∈ N be an upper bound on the optimum solution value, e.g., p∗ = ∑︁n

i=1 pi.
For i ∈ [n] and p ∈ [p∗], let

f(p, i) := min
{︃∑︂

j∈M
sj

⃓⃓⃓⃓
M ⊆ [i],

∑︂
j∈M

pj ≥ p
}︃

be the minimum size of a subset of the first i items with total profit at least p. With
f(p, i) := 0 for p ≤ 0 and f(p, 0) := +∞ for p ∈ [p∗], the values of f can be computed
recursively by

f(p, i) = min
{︁
f(p, i− 1), f(p− pi, i− 1) + si

}︁
(4.3)

for i ∈ [n], p ∈ [p∗], where the first option corresponds to not using the i-th item,
while the second option corresponds to using it. The optimum solution value is then
given by max{p ∈ [p∗] | f(p, n) ≤ 1}, and the optimum subset can easily be found by
backtracking. The runtime of the dynamic program is O(np∗), thus pseudo-polynomial
in the input size.

Due to NP-hardness of the Knapsack Problem, one cannot expect to find an exact
algorithm with polynomial running time. However, by carefully downscaling and round-
ing the profit values in the dynamic program, one can obtain a fully polynomial-time
approximation scheme (FPTAS). That is, for each ε > 0, one can compute a feasible
solution with guaranteed profit of at least 1 − ε times the optimal profit, with running
time polynomial in the input size and 1/ε. For more details, we refer to the books by
Hochbaum [Hoc97], Vazirani [Vaz01], or Williamson and Shmoys [WS11].
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Figure 4.2.: Recurrent structure of the DP-NN to solve the Knapsack Problem.

Usually, the Knapsack Problem is defined with integer size values si ∈ N and some
Knapsack capacity S ∈ N, bounding the total size of chosen items. Dividing all item
sizes by S transforms such an instance into an instance of the type considered here. For
the case of integral item sizes, there is also a pseudo-polynomial dynamic programming
formulation parameterized by the size instead of the profit values; see, e.g., Kleinberg
and Tardos [KT06, Section 6.4]. Our construction in Section 4.6.2 can analogously be
applied to this formulation. This variant, however, does not easily extend to an FPTAS.
We therefore stick to the variant parametrized by the profit values as introduced above.

4.6.2. An Exact RNN for the Knapsack Problem

We now present the DP-NN, an NN of depth O(n) and width O((p∗)2) that executes
the dynamic program (4.3) to find the exact value of an optimum knapsack solution.
Here, n is the number of items in the Knapsack instance, and p∗ is an a priori known
upper bound on the value of an optimum solution. More precisely, the DP-NN is an
RNN of depth four and width O((p∗)2) that is iteratively applied to the n items of a
Knapsack instance. As p∗ can, e.g., be chosen as the total size of all items, the DP-NN’s
width is pseudo-polynomially bounded in the input size of the Knapsack instance. Due
to the Knapsack Problem’s NP-hardness, however, there is no polynomial-size NN that
always finds the optimum solution value, unless P = NP. We first explain the high-level
idea of the network structure, before formally defining the DP-NN as a MAAP and
proving its correctness.

High-level idea of the construction

The idea behind our construction is that the output neurons of the RNN can be seen
as elements of the dynamic programming state space while the hidden neurons and the
network itself implement the recursive dynamic programming formula (4.3). Here, the
main technical difficulty is to always filter out the correct entries of the previous state
space (input neurons) needed in the recursive formula.

In the i-th step, the DP-NN receives p∗ + 2 inputs, namely f(p, i − 1) for p ∈ [p∗],
as well as pi and si. It computes p∗ output values, namely f(p, i) for p ∈ [p∗]. Hence,
in total, it has p∗ + 2 input neurons and p∗ output neurons. Figure 4.2 illustrates the
recurrent structure of the NN, which computes the state space of the dynamic program.

In order to make the recurrent structure of our NN obvious, we do not use the index i
in the following description of the network. Instead, we denote the p∗ + 2 input values
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fout(p)fin(p)

fin(p− pin)
sin

min
+

Figure 4.3.: Desirable architecture for computing fout(p), p ∈ [p∗], from the inputs. How-
ever, the existence of an edge (nonzero weight) critically depends on the
input value pin, which is not allowed.

fout(p)fin(p)

sin

min
+

pin

fin(p− p′)
p′ ?= pin

Figure 4.4.: High-level idea how the DP-NN computes fout(p) for p ∈ [p∗] from the inputs.

by fin(p) for p ∈ [p∗], as well as pin and sin. The p∗ output values are denoted by fout(p)
for p ∈ [p∗]. The goal is to implement the recursion

fout(p) = min
{︁
fin(p), fin(p− pin) + sin

}︁
for p ∈ [p∗]

in an NN; cp. (4.3). It consists of an addition and taking a minimum, which are both
simple operations for an NN. Hence, ideally, we would like to have an architecture as
depicted in Figure 4.3 for computing fout(p) for every p ∈ [p∗]. The problem with this
is, however, that the decision which component of fin is accessed in order to compute
the sum with sin depends on the input value pin. Since we aim for an architecture that
is fixed and works for general input values pin, we have to extend our construction as
depicted in Figure 4.4. As we do not know the value of pin in advance, we connect every
input neuron fin(p−p′), p′ ∈ [p−1], to the unit that computes the sum fin(p−pin)+ sin.
Since we only want to take the value fin(p − pin) into account, we need to add an
additional unit that disables those connections with p′ ̸= pin.

Due to the integrality of the profit values, this additional unit can be realized with two
hidden layers and a constant number of neurons for every value of p ∈ [p∗] and p′ ∈ [p− 1],
as we show in a moment. Computing the minimum adds a third hidden layer. Hence,
the DP-NN has depth four while width and size are in O((p∗)2). Unfolding the RNN
and viewing it as a single feedforward NN executing the whole dynamic program re-
sults in depth O(n) and size O(n(p∗)2). In the next subsection, we provide a detailed
construction of the DP-NN as a MAAP and prove the following theorem.
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Algorithm 10: MAAP corresponding to the DP-NN.
Input: fin(p) for p ∈ [p∗], as well as pin and sin.
// Compute helper variables to select correct input entry:

1 for each k ∈ [p∗] do parallel
2 h(k)← max{2(pin − k), 2(k − pin)}

// Execute recursion (4.4) for each p ∈ [p∗] in parallel:
3 for each p ∈ [p∗] do parallel
4 for each k ∈ [p− 1] do parallel

// Select correct input entry (non-zero only for k = pin):
5 g(p, k)← max{0, fin(p− k)− h(k)}
6 fout(p)← min{fin(p), sin +∑︁p−1

k=1 g(p, k)}

7 return fout(p) for p ∈ [p∗].

Theorem 4.18. With the DP-NN, there exists an NN of depth four and width and
size O((p∗)2) that correctly computes the dynamic programming recursion (4.3) for knap-
sack instances with capacity S = 1, si ∈ ]0, 1], and pi ∈ N, for i ∈ [n], where p∗ is an
upper bound on the optimal solution value.

Observe that due to the NP-hardness of the Knapsack Problem, the dependence of
the network size on p∗ cannot be avoided unless P=NP, if exact results are desired.

Details of the construction and correctness

Note that for size values larger than the Knapsack capacity, which is equal to 1 by
our definition, we do not really care how large they actually are. Therefore, we define
f̃(p, i) = min{f(p, i), 2} to be the values of the dynamic program truncated at 2. In
other words, we replace all values in the interval [2,+∞] with the constant 2. Note that
the recursion

f̃(p, i) = min
{︁
f̃(p, i− 1), f̃(p− pi, i− 1) + si

}︁
(4.4)

is still valid with starting values f̃(p, i) = 0 for p ≤ 0 and f̃(p, 0) = 2 for p ∈ [p∗]. Instead
of computing the actual values of f , the DP-NN computes the values of f̃ . A MAAP to
accomplish this task is given in Algorithm 10. The DP-NN is then defined as the NN
emerging from applying Proposition 4.1 to Algorithm 10.

Our next goal is to prove Theorem 4.18, that is, correctness of the DP-NN.

Proof of Theorem 4.18. We prove the correctness of Algorithm 10. The correctness of
the DP-NN as well as the claimed size bounds follow by Proposition 4.1.

First observe that h(k) will be zero if and only if k = pin and at least two otherwise.
Therefore, due to fin(p − k) ≤ 2, we obtain g(p,pin) = fin(p − pin) and g(p, k) = 0 for
all k ̸= pin. This implies ∑︁p−1

k=1 g(p, k) = fin(p − pin). Hence, the assignment in line 6
correctly implements the desired recursion.

Note that, if p ≤ pin, then the sum ∑︁p−1
k=1 g(p, k) is zero. In this case, the result is as

desired, too, because taking only the current item into the knapsack solution provides
profit at least p with size sin.

73



4. Computational Power

4.6.3. Smaller RNNs with Provable Approximation Guarantees
In order to overcome the drawback due to the dependence of the network width on p∗,
we provide a construction, called FPTAS-NN, that uses less neurons, at the cost of losing
optimality, while still obtaining solution values of provable quality in the worst case.

The FPTAS-NN is an RNN of depth five and fixed width w which, when applied
iteratively to the n items of a Knapsack instance, always produces a solution value of at
least 1−O(n2/

√
w) times the optimum solution value. In particular, an ε-approximate

solution value can be guaranteed by choosing width w ∈ O(n4/ε2). The dependence of
the width on ε is unavoidable, unless P = NP. To the best of our knowledge, our results
establish the first rigorous trade-off between the size of neural networks for CO problems
and their worst-case solution quality.

As in the standard Knapsack FPTAS [Hoc97; Vaz01; WS11], the idea of this construc-
tion is to round the profit values if p∗ becomes too large for an exact computation.

As for the DP-NN, we first give the high-level idea of the network structure and
rounding procedure, before formally defining the FPTAS-NN as a MAAP and proving
its correctness.

High-level idea of the construction

Let P ∈ N be a fixed number. The FPTAS-NN computes values g(p, i) for every p ∈ [P ]
and i ∈ [n]. These values are similar to the values f(p, i) of the previous section, there
is, however, one major difference. Let p∗

i = ∑︁i
j=1 pj be the total profit of the first i

items. As soon as p∗
i exceeds P , we can no longer store the best possible size value for

every possible profit value but have to round profits instead. The granularity we want
to use for rounding is di := max{1, p∗

i /P}. We construct the FPTAS-NN to compute
values g(p, i), p ∈ [P ], i ∈ [n], such that we can guarantee the existence of a subset of [i]
that has size at most g(p, i) and profit at least p di. Moreover, this is done in such a way
that the optimal solution cannot have a considerably higher profit value. That is, we
prove a worst-case approximation guarantee for the solution found by the FPTAS-NN.

In addition to the values of g, the FPTAS-NN must also propagate the current to-
tal profit value p∗

i through the network in order to determine the rounding granular-
ity in each step. Hence, in the i-th step, it receives P + 3 inputs, namely g(p, i − 1)
for p ∈ [P ], p∗

i−1, pi, and si. It computes P + 1 outputs, namely g(p, i) for p ∈ [P ]
and p∗

i . Figure 4.5 illustrates the recurrent structure of this NN.
As previously, we again drop the index i in order to make the recurrent structure

obvious. We denote the n0 = P + 3 input parameters by gin(p), for p ∈ [P ], as well
as p∗

in, pin, and sin. The P+1 output values are denoted by gout(p), for p ∈ [P ], and p∗
out.

Similar to the DP-NN in Section 4.6.2, the basic idea is to implement a recursion of
the type

gout(p) = min
{︁
gin(p(1)),gin(p(2)) + sin

}︁
for p ∈ [P ],

where the first argument of the minimum represents the option of not using item i, while
the second one corresponds to using it. Notice, however, that p(1) and p(2) cannot simply
be calculated as p and p− pin, respectively, since we may have to round with different
granularities in two successive steps. Therefore, the rough structure of the FPTAS-NN
is as follows: first, p∗

in and pin are used in order to calculate the old and new rounding
granularities dold = max{1,p∗

in/P}, as well as dnew = max{1, (p∗
in + pin)/P}. Since this
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Figure 4.5.: Recurrent structure of the FPTAS-NN for the Knapsack Problem.
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Figure 4.6.: High-level idea how the FPTAS-NN computes gout(p), p ∈ [P ], and p∗
out

from the inputs.

computation consists of maxima and weighted sums only, it can easily be achieved by an
NN with one hidden layer. Second, the granularities are used in order to select gin(p(1))
and gin(p(2)) from the inputs. Below we give some more details on how this is being
done. The value of p(2) also depends on pin. Third, the final recursion is established as
in the DP-NN. In addition to gout(p), for p ∈ [P ], we also output p∗

out = p∗
in + pin in

order to keep track of the rounding granularities in successive steps. An overview of the
entire network structure is given in Figure 4.6.

Suppose we use the network for processing the i-th item. For each p ∈ [P ] we want to
determine a (preferably small) value gout(p) such that there is a subset of [i] of total profit
at least pdnew and total size at most gout(p). For each p′ ∈ [P ], we know that there is a
subset of [i− 1] of total profit at least p′dold and total size at most gin(p′). We have two
options: ignoring item i or using it. If we ignore it, then each p(1) with p(1)dold ≥ pdnew
allows us to choose gout(p) = gin(p(1)). If we do use the i-th item, however, then each p(2)

with the property p(2)dold + pin ≥ pdnew allows us to choose gout(p) = gin(p(2)) + sin.
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Hence, we want to choose p(1) and p(2) as small as possible such that these properties are
fulfilled. Therefore, the units labeled ‘Select gin(p(1))’ and ‘Select gin(p(2))’ in Figure 4.6
are constructed by setting all other connections to zero except for those belonging to
the smallest values of p(1) and p(2) satisfying the above properties. Similar to how we
computed fin(p− pin) in the previous section, this requires two hidden layers and O(P 2)
neurons in total.

In total, the FPTAS-NN has depth 5. The first hidden layer computes the rounding
granularities, two hidden layers are required to select gin(p(1)) and gin(p(2)) and a final
hidden layer computes the minimum in the actual recursion. The width and size of the
FPTAS-NN are in the order of O(P 2). Unfolding the RNN and viewing it as a single
feedforward NN executing the whole FPTAS results in depth O(n) and size O(nP 2).

In the next subsection, we provide a formal description of the FPTAS-NN as a MAAP
and prove the following theorem. Part one ensures that the FPTAS-NN produces only
feasible Knapsack solutions, while part two shows that the FPTAS-NN indeed provides
a fully polynomial-time approximation scheme to solve the Knapsack Problem.

Theorem 4.19. For each n ∈ N and each ε ∈ ]0, 1], there exists an RNN, namely the
FPTAS-NN, with depth five and width and size O(n4/ε2) such that, when iteratively
applied to n items of a Knapsack instance with capacity S = 1, si ∈ ]0, 1], and pi ∈ N,
for i ∈ [n], it computes values g(p, i) with the following two properties:

(i) For every i ∈ [n] and every p ∈ [P ] with g(p, i) ≤ 1, there exists a subset of [i] with
profit at least pdi and size at most g(p, i).

(ii) If pOPT is the profit of the optimal solution and pNN = max{pdn | g(p, n) ≤ 1} is
the best possible profit found by the FPTAS-NN, then pNN ≥ (1− ε)pOPT.

Theorem 4.19 implies a trade-off between the width of the NN and the precision of the
Knapsack solution in the following sense. For achieving an approximation ratio of 1− ε,
an NN of width O(n4/ε2) is required. In other words, the FPTAS-NN with fixed width w
achieves a worst-case approximation ratio of 1−O(n2/

√
w).

Observe that, assuming P ̸= NP, it is clear that the size of the NN must grow if ε
tends to zero. Hence, complexity theory implies that a width-quality trade-off cannot
be avoided. Still, it remains as an open question whether the growth rates implied by
our construction are best possible.

Details of the construction and correctness

We now formally describe the FPTAS-NN as a MAAP and prove that it provides strong
worst-case approximation guarantees.

As for the DP-NN, we truncate the values of g at 2, that is, instead of any value larger
than 2 including +∞, we just use the value 2. The FPTAS-NN is applied to a Knapsack
instance in the following way. Using the initialization g(p, 0) = 2 for p ∈ [P ] and p∗

0 = 0,
for each item i = 1, . . . , n, we feed the inputs gin(p) = g(p, i− 1) for p ∈ [P ], p∗

in = p∗
i−1,

pin = pi, and sin = si into the network and store the outputs as g(p, i) = gout(p)
for p ∈ [P ] and p∗

i = p∗
out. The FPTAS-NN itself is defined as the NN emerging from

applying Proposition 4.1 to the MAAP given in Algorithm 11.
Let us now show Theorem 4.19.
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Algorithm 11: MAAP corresponding to the FPTAS-NN
for a given, fixed parameter P ∈ N.
Input: gin(p) for p ∈ [P ], as well as pin, sin, and p∗

in.
// Compute p∗

out as well as old and new rounding granularities:
1 p∗

out ← p∗
in + pin

2 do parallel
3 dold ← max{p∗

in/P, 1}
4 and
5 dnew ← max{p∗

out/P, 1}
// The remaining MAAP is executed in parallel over all p ∈ [P ]:

6 for each p ∈ [P ] do parallel

7 do parallel
8 for each k ∈ [P ] with k ≥ p do parallel

// Idea: h(1)
+ (p, k) + h(1)

− (p, k) equals 0 iff k = p(1) and is ≥ 2
otherwise.

9 do parallel
10 h(1)

+ (p, k)← max{0, 2P (pdnew − kdold)}
11 and
12 h(1)

− (p, k)← max{0, 2P ((k − 1)dold − pdnew) + 2}
// Idea: h(1)

select(p, k) equals 2− gin(k) iff k = p(1) and 0
otherwise.

13 h(1)
select(p, k)← max{0, 2− gin(k)− h(1)

+ (p, k)− h(1)
− (p, k)}

14 and
15 for each k ∈ [P ] with k ≤ p do parallel

// Idea: h(2)
+ (p, k) + h(2)

− (p, k) equals 0 iff k = p(2) and is ≥ 2
otherwise.

16 do parallel
17 h(2)

+ (p, k)← max{0, 2P (pdnew − kdold − pin)}
18 and
19 h(2)

− (p, k)← max{0, 2P ((k − 1)dold + pin − pdnew) + 2}
// Idea: h(2)

select(p, k) equals gin(k) iff k = p(2) and 0
otherwise.

20 h(2)
select(p, k)← max{0,gin(k)− h(2)

+ (p, k)− h(2)
− (p, k)}

// Idea: h(1)(p) equals gin(p(1)).
21 h(1)(p)← 2−∑︁P

k=p h(1)
select(p, k)

// Idea: h(2)(p) equals gin(p(2)).
22 h(2)(p)←∑︁p

k=1 h(2)
select(p, k)

23 gout(p)← min{h(1)(p), sin + h(2)(p)}

24 return gout(p) for p ∈ [P ] and p∗
out.
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Proof of Theorem 4.19. For a given instance of the Knapsack Problem with n items and
a given ε ∈ ]0, 1], use the FPTAS-NN with parameter P := ⌈n2/ε⌉. For a fixed p ∈ [P ],
let p(1) and p(2) be the smallest possible integers that satisfy p(1)dold ≥ pdnew and
p(2)dold + pin ≥ pdnew, respectively. The proof consists of the following steps: first,
we verify that the resulting NN has the claimed depth, width, and size. Then, we
go through the MAAP line by line to show that h(1)(p) and h(2)(p) indeed basically
equal gin(p(1)) and gin(p(2)), respectively. Finally, we use this to prove properties (i)
and (ii) by induction on the iteration count i.

Concerning the depth, observe that lines 1, 21 and 22 do not contribute to complexity
measure d since they are only assignments of affine transformations. Due to paralleliza-
tion, lines 2 to 5 contribute 1, lines 7 to 20 contribute 2, and line 23 contributes 1.
Therefore, for the full MAAP A, we obtain d(A) = 4, that is, the FPTAS-NN has
depth 5 by Proposition 4.1. Concerning the width and size, the bottleneck is given by
the nested parallel for loops, resulting in w(A), s(A) ∈ O(P 2) = O(n4/ε2), completing
our analysis of depth, width, and size of the FPTAS-NN.

We now go through the MAAP line by line to show that it does what we want. Observe
that, in the i-th step, if we feed the inputs p∗

in = p∗
i−1 and pin = pi into the network, dold

and dnew equal the desired rounding granularities di−1 and di, respectively. We show
some claims asserting that the intermediate helper variables within the MAAP indeed
match the intuition stated in the comment lines of the MAAP.

Claim 4.20. For each p, k ∈ [P ] with k ≥ p, we have h(1)
+ (p, k) + h(1)

− (p, k) = 0 if and
only if k = p(1). Otherwise, we have h(1)

+ (p, k) + h(1)
− (p, k) ≥ 2.

Proof. Obviously, it holds that h(1)
+ (p, k) = 0 if and only if kdold ≥ pdnew. On the other

hand, using that dold and dnew are integer multiples of 1
P , we obtain

h(1)
− (p, k) = 0

⇔ (k − 1)dold ≤ pdnew −
1
P

⇔ (k − 1)dold < pdnew

⇔ no integer k′ < k satisfies k′dold ≥ pdnew.

This proves the first part of the claim. The second part follows because, again, dold
and dnew are integer multiples of 1

P and, hence, h(1)
+ (p, k)+h(1)

− (p, k) is an integer multiple
of 2. ■

Claim 4.21. For each p, k ∈ [P ] with k ≤ p, we have h(2)
+ (p, k) + h(2)

− (p, k) = 0 if and
only if k = p(2). Otherwise, we have h(2)

+ (p, k) + h(2)
− (p, k) ≥ 2.

Proof. Analogous to Claim 4.20 where an additional summand pin is inserted at the
right places. ■

Claim 4.22. For each p ∈ [P ], if p(1) ≤ P , we have h(1)(p) = gin(p(1)). If p(1) > P , we
have h(1)(p) = 2.
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Proof. Note that p(1) is never smaller than p. If p ≤ p(1) ≤ P , then it holds that
h(1)

select(p, p(1)) = 2 − gin(p(1)) and h(1)
select(p, k) = 0 for each k ̸= p(1) by Claim 4.20.

If p(1) > P , then h(1)
select(p, k) = 0 for each k. Thus, the claim follows by the definition

of h(1). ■

Claim 4.23. For each p ∈ [P ], if p(2) ≥ 1, we have h(2)(p) = gin(p(2)). If p(2) ≤ 0, we
have h(2)(p) = 0.

Proof. We first show that p(2) is never larger than p by proving that pdold +pin ≥ pdnew.
If dnew = 1, then also dold = 1 holds and this statement is true. Otherwise, we have
dnew = p∗

in+pin
P and dold ≥

p∗
in

P . Hence, we obtain p(dnew−dold) ≤ ppin
P ≤ pin. Therefore,

in any case, pdold + pin ≥ pdnew follows, and thus also p(2) ≤ p.
If 1 ≤ p(2) ≤ p, then it follows that h(2)

select(p, p(2)) = gin(p(2)) and h(2)
select(p, k) = 0 for

each k ̸= p(2) by Claim 4.21. If p(2) ≤ 0, then h(2)
select(p, k) = 0 holds for each k. Thus,

the claim follows by the definition of h(2). ■

Having collected these claims about the functionality of all helper variables in the
MAAP, we now turn towards proving the properties (i) and (ii).

(i) We show that the claim even holds for all values of p and i with g(p, i) < 2 and
not only for those with g(p, i) ≤ 1.
We use induction on i. For the induction start (i = 0), nothing is to show due to
the initialization g(p, 0) = 2 for all p ∈ [P ]. For the induction step, suppose the
claim is valid for all steps up to i− 1.
Fix some p ∈ [P ]. By line 23, the output g(p, i) = gout(p) in the i-th step equals
min{h(1)(p), sin + h(2)(p)}. In the following, we distinguish two cases. Recall
that p(1) and p(2) are the smallest possible integers with p(1)dold ≥ pdnew and
p(2)dold + pin ≥ pdnew, respectively.
Case 1: h(1)(p) ≤ sin + h(2)(p). This implies g(p, i) = h(1)(p). If h(1)(p) = 2, noth-
ing is to show. Otherwise, by Claim 4.22, we have p(1) ≤ P with p(1)dold ≥ pdnew
and g(p, i) = h(1)(p) = gin(p(1)) = g(p(1), i−1). By induction, we obtain that there
exists a subset of [i−1] with size at most g(p, i) and profit at least p(1)dold. Hence,
using the same items yields a subset of [i] with size at most g(p, i) and profit at
least pdnew. Thus, the claim is proven in this case.
Case 2: h(1)(p) > sin + h(2)(p). This implies g(p, i) = sin + h(2)(p). Note that this
can only happen if h(2)(p) < 2 because h(1)(p) has at most value 2. First, suppose
that p(2) ≤ 0. This implies pi = pin ≥ pdnew. Hence, by using just item i, we obtain
a subset of profit at least pdnew and size at most si = sin ≤ sin + h(2)(p) = g(p, i),
and we are done. Second, if p(2) ≥ 1, then Claim 4.23 implies that

g(p, i) = sin + h(2)(p) = sin + gin(p(2)) = si + g(p(2), i− 1).

By induction, we obtain that there exists a subset of [i − 1] with size at most
g(p, i) − si and profit at least p(2)dold. Hence, adding item i to this subset yields
a subset of [i] with size at most g(p, i) and profit at least p(2)dold + pin ≥ pdnew.
Thus, the claim is also proven in this case.
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(ii) LetMOPT be an optimal solution to the Knapsack instance and MOPT
i = MOPT∩[i]

be the subset of [i] chosen by the optimal solution. Let sOPT
i = ∑︁

j∈MOPT
i

sj be
the size of MOPT

i and pOPT
i = ∑︁

j∈MOPT
i

pj be the profit of MOPT
i . The idea of the

proof is that in each step, we lose at most a profit of di compared to the optimal
solution. Formally, we prove the following claim by induction on i.

Claim 4.24. For every i ∈ [n] and every p ≤
⌈︃

pOPT
i
di

⌉︃
− i, we have g(p, i) ≤ sOPT

i .

Proof. The induction start is settled by extending the claim to i = 0, for which it
is trivial. For the induction step, suppose the claim is valid for all steps up to i− 1.
Fix a value p ≤

⌈︃
pOPT

i
di

⌉︃
− i. Let again p(1) and p(2) be the smallest possible integers

with p(1)di−1 ≥ pdi and p(2)di−1 + pi ≥ pdi, respectively. We distinguish two cases.
Case 1: i /∈MOPT, i.e., the optimal solution does not use item i. Observe that

pdi ≤
(︄⌈︄

pOPT
i

di

⌉︄
− i
)︄
di

≤ pOPT
i − (i− 1)di

= pOPT
i−1 − (i− 1)di

≤ pOPT
i−1 − (i− 1)di−1

≤
(︄⌈︄

pOPT
i−1
di−1

⌉︄
− (i− 1)

)︄
di−1.

Hence, we obtain

p(1) ≤
⌈︄
pOPT

i−1
di−1

⌉︄
− (i− 1) (4.5)

by the definition of p(1). In particular, p(1) ≤ p∗
i−1

di−1
≤ P by the definition of di−1.

Therefore, Claim 4.22 and line 23 imply g(p, i) ≤ g(p(1), i − 1). Due to inequal-
ity (4.5), it further follows by induction that g(p, i) ≤ g(p(1), i−1) ≤ sOPT

i−1 = sOPT
i ,

which settles the induction step in this case.
Case 2: i ∈MOPT, i.e., the optimal solution uses item i. Observe that

pdi ≤
(︄⌈︄

pOPT
i

di

⌉︄
− i
)︄
di

≤ pOPT
i − (i− 1)di

= pOPT
i−1 + pi − (i− 1)di

≤ pOPT
i−1 + pi − (i− 1)di−1

≤
(︄⌈︄

pOPT
i−1
di−1

⌉︄
− (i− 1)

)︄
di−1 + pi.
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Hence, we obtain

p(2) ≤
⌈︄
pOPT

i−1
di−1

⌉︄
− (i− 1) (4.6)

by the definition of p(2).
If p(2) ≤ 0, Claim 4.23 and line 23 imply g(p, i) ≤ si ≤ sOPT

i . If p(2) ≥ 0, Claim 4.23
and line 23 imply g(p, i) ≤ g(p(2), i−1)+si. Due to inequality (4.6), we can further
conclude by induction that g(p, i) ≤ g(p(2), i− 1) + si ≤ sOPT

i−1 + si = sOPT
i , which

finalizes the induction step. ■

Now, making use of Claim 4.24, we obtain that g
(︂⌈︂

pOPT

dn

⌉︂
− n, n

)︂
≤ sOPT

n ≤ 1.
Therefore, it holds that

pNN ≥
(︄⌈︄

pOPT

dn

⌉︄
− n

)︄
dn ≥ pOPT − ndn. (4.7)

If dn = 1, that is, p∗ ≤ P , then we have that di = 1 for all i ∈ [n]. Hence, in
each step and for each p ∈ [P ], we have p(1) = p and p(2) = p − pi. Therefore, by
Claim 4.22, Claim 4.23, and line 23, the FPTAS-NN behaves like the DP-NN from
Section 4.6.2 that executes the exact dynamic program and the theorem follows.
Otherwise, if dn > 1, we have dn = p∗

P . Since there must exist one item with
profit at least p∗

n , we obtain pOPT ≥ p∗

n and, hence, ndn = np∗

P ≤ n2pOPT

P . Together
with (4.7), this implies pNN

pOPT ≥ 1− n2

P ≥ 1− ε.

4.6.4. Empirical Evidence for Quadratic Width

While the running time of the classical Knapsack dynamic program depends only linearly
on p∗, the width of the DP-NN is O((p∗)2). In our construction, the quadratic factor
arises from dynamically finding fin(p − pin) in a hard-coded network, as explained in
Section 4.6.2. For similar reasons, the width of the FPTAS-NN grows with 1/ε2 instead
of 1/ε.

The natural question to ask is whether this quadratic dependence can be avoided by a
different construction. While this question remains open from a purely theoretical point
of view, in this section, we provide empirical evidence that the quadratic factor might
indeed be necessary due to inherent properties of ReLU feedforward NNs.

For details about the experimental setup, including used soft- and hardware, random
data generation and systematic of seeds, training and testing setup, hyperparameters,
as well as the source code, please refer to the corresponding subsection below. At first,
we only describe the necessary information to understand the key findings.

Similar to the DP-NN of Section 4.6.2, we train an NN with three hidden layers
and variable width to execute one step of the Knapsack dynamic program, that is,
to map fin, pin, and sin to fout, for random Knapsack instances. For the 25 different
values {3, 6, 9, . . . , 75} of p∗, we increase the width in steps of 25 until a mean squared
error (MSE) loss of at most 0.005 is reached. The threshold 0.005 is carefully chosen
such that NNs with reasonable width are empirically able to achieve it. Below we also
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Figure 4.7.: Required width to achieve a mean squared error of at most 0.005 as a func-
tion of p∗.

show that other thresholds yield similar results. Figure 4.7 shows for each value of p∗

the required width to achieve an MSE of at most 0.005.
In order to statistically test whether a quadratic dependence is more likely than a

linear relation, we use linear regression. Assuming the required width is given by a
function

width = a0 + a1p
∗ + a2(p∗)2 + noise,

the resulting least squares regression curve can be seen in Figure 4.7. Testing the null
hypothesis a2 = 0 against the alternative a2 ̸= 0, we obtain a p-value of 1.1 %, which
we judge to be significant evidence that a quadratic relation is more likely than a linear
one.

In order to show that our experimental results do not depend on the particular choice
of the MSE threshold, we conducted the experiments with thresholds other than 0.005 as
well. In Figures 4.8 and 4.9 you can see the results for the thresholds 0.00375 and 0.0025,
respectively. One can clearly observe that a quadratic dependence seems to be reasonable
in these cases, too. Testing the null hypothesis that the dependence is actually linear
against the alternative of a quadratic relation yields p-values of 0.0046 % and 0.12 %,
respectively, which is, again, a significant indication of a quadratic dependence.

Of course, one should take these result with a grain of salt since the superlinear relation
might have multiple reasons. For instance, it is unclear, whether the difficulty to train
larger networks has a stronger effect than the expressivity of ReLU NNs. Still, we find
that this computational study supports our theoretical size bounds.

Detailed Experimental Setup

In this subsection we describe in detail how we conducted the experiments described
above.
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Figure 4.8.: Required width to achieve a mean squared error of at most 0.00375 as a
function of p∗.

Hard- and software. All our experiments were conducted on a machine with an Intel
Core i5-8500 6-Core 64-bit CPU and 15.5 GB RAM, using the openSUSE Leap 15.1
Linux distribution. We use Python 3.8.5 with Numpy 1.19.1, Tensorflow 2.2.0 in CPU-
only mode, and Statsmodels 0.11.1 for regression and statistical tests.

Generation of random Knapsack instances. For a given value of p∗ we sample a set of
items of total profit ∑︁ pi = p∗ in the following way: the profit of the i-th item is always
chosen uniformly at random among all integer values between 1 and p∗−

∑︁i−1
i′=1 pi′ . This

is repeated until all profits sum up to p∗. We chose this procedure in order to make it
likely to have both, very profitable and less profitable items within one instance. Finally,
we shuffle the order of the items. For each item, we then pick a size value uniformly in
the interval [0, 1] and normalize these values such that their sum ∑︁

si equals a random
value chosen uniformly in ]1, 2[. We certainly want ∑︁ si > 1, because otherwise all items
would fit into the Knapsack. On the other hand, ∑︁ si < 2 makes sense, because in our
DP-NN (compare Section 4.6.2), we use 2 as a placeholder for +∞.

Preparation of the training set. Since we can generate arbitrarily many random Knap-
sack instances, we use an infinite training set and never train on the same data point
twice. A Knapsack instance with n items yields n training points, namely one for each
step of the dynamic program. In order to avoid having the n training points belong-
ing to one instance in successive order, we generate training points belonging to several
instances and shuffle them.

Neural network architecture. For a given value p∗ and width w, the corresponding
neural network used consists of an input layer with p∗ + 2 neurons (corresponding to
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Figure 4.9.: Required width to achieve a mean squared error of at most 0.0025 as a
function of p∗.

the p∗ values of the previous dynamic programming state, as well as the scalar profit
and size values), three hidden layers with w neurons each and ReLU activations, as
well as an output layer with p∗ neurons (corresponding to the new state of the dynamic
program) without further activation function. That way, we choose the same depth as in
the DP-NN (Section 4.6.2), but do not employ the specific knowledge about the widths
of the three hidden layers. As in the DP-NN, each layer is not only connected to the
previous layer, but also receives direct connections from the input layer. In total, by our
results of Section 4.6.2, this architecture is theoretically able to exactly represent the
dynamic programming transition function if w ∈ O((p∗)2).

Training and testing a specific network. For a given value p∗ and width w, we train
the neural network architecture described above as follows. We train in epochs of 1000
batches with batch size 32 using mean squared error (MSE) loss and the Adam optimizer,
which is a robust standard choice. It makes sense to use MSE loss as it punishes errors
in both directions equally hard and large errors harder than small errors. All other
(hyper)parameters are left to the default settings of Tensorflow, which empirically works
quite well for our problem type and size. It takes between 8 and 30 seconds to train one
epoch with our machine setup. We train until there are two successive epochs without
improvement in training loss, which empirically happens after 10 to 80 epochs. Using
a test set that is randomly generated in the same way as the training set, we evaluate
the trained network on 1000 batches of size 32 each. The resulting mean squared error
is our final result for the given values of p∗ and w.
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Finding the required width. For a given value p∗ and a given MSE threshold, we
always train networks with increasing widths 25, 50, 75, . . . in steps of 25 as described
above until a network achieves an MSE less or equal to the threshold on the test set.

Seed generation. In order to ensure reproducibility of our experiments, each time
before we train and test an NN with given value p∗ and width w, we reset the random
seeds of both Numpy and Tensorflow to 257 · p∗ + w, where 257 is just an arbitrary
prime number. Note that these packages only guarantee the same result of random
experiments if the same package versions are used.

Regression and statistical tests. For each of the three threshold values 0.005, 0.0025,
and 0.00375, we find the required width for achieving the respective threshold for 25
different values of p∗. With the help of the ordinary least squares (OLS) regression
utility of the Statsmodels package, we find a quadratic regression line for the p∗-width
relation in each of the three cases. The output of the OLS automatically contains the
reported p-values for testing whether the coefficient of the quadratic term is zero.

Source code. The source code is publicly available at

https://github.com/ChristophHertrich/neural-knapsack.

There, the file README.md explains how the code can be used to reproduce the experi-
ments described here.

4.7. The Constrained Shortest Path Problem
We close the technical part of this chapter by demonstrating how our results on the
Knapsack Problem can be generalized to even more CO problems. More specifically,
we consider a common generalization of the Shortest Path Problem and the Knapsack
Problem, namely the NP-hard Constrained Shortest Path Problem. We only give an
intuition how this can be done based on our results of the previous section, without
going into detail.

As for the Shortest Path Problems in Section 4.3, let G = (V,E) be a fixed directed
graph and (cuv)u,v∈V be a (nonnegative) length matrix. In addition, the input graph
is also equipped with a (nonnegative) resource matrix (ruv)u,v∈V . The task is to find
a minimum length path P from a source vertex s to any other vertex, but this time
subject to a resource constraint∑︁uv∈P ruv ≤ R for a given resource limit R. An extensive
overview of solution approaches to this problem can be found, e.g., in the dissertation by
Ziegelmann [Zie01]. Similar to the Knapsack Problem, there exist two natural pseudo-
polynomial dynamic programs, one of them parametrized by length values and the other
one by resource values. Both can be implemented on an NN by combining the ideas from
Section 4.6.2 with the NN for the Bellmann-Ford algorithm above. We showcase this
for the variant parametrized by the length values. This dynamic program recursively
calculates values f(c, v) representing the minimum amount of resource needed for a path
from s to v with length at most c by

f(c, v) = min
{︁
f(c− 1, v),minu∈V \{v}{f(c− cuv, u) + ruv}

}︁
.
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For fixed c, u, and v, the term f(c − cuv, u) + ruv can be calculated by a similar
construction as we computed fin(p − pin) + sin in Section 4.6.2. Assuming an upper
bound c∗ on the optimal objective value, this can be achieved with constant depth
and O(c∗) width. Hence, it remains to compute a minimum of at most n numbers in
order to compute f(c, v). Thus, each single value f(c, v) can be computed with depth
O(log n) and size O(nc∗). We have to compute O(nc∗) of these values, but for fixed c,
all these values can be computed in parallel. Therefore, the whole dynamic program
can be executed on an NN with depth O(c∗ log n) and a total size of O(n2(c∗)2 log n).
This is pseudo-polynomial, which is the best we can hope for due to the NP-hardness
of the problem. Moreover, similar to the Knapsack Problem, this dynamic program
can be turned into an FPTAS by downscaling and rounding the length values. This
observation can be used to obtain a width-quality trade-off for the Constrained Shortest
Path Problem similar to what we have shown in Section 4.6.3.

4.8. Future Research
We conclude this chapter on the computational power of NNs in the context of CO
problems by identifying several open research questions in continuation of our findings.

The most exciting and, at the same time, probably most difficult question for further
research is to find theoretical lower bounds on the size of NNs for certain problems. We
believe the most promising approach towards achieving such bounds would be to use
methods from arithmetic circuit complexity, particularly about tropical circuits. Even
though NNs are strictly more powerful than these tropical circuits, as we pointed out
earlier, it might be worthwhile to deeply investigate relations between these two concepts
to find out whether some ideas from arithmetic circuit complexity can be used to prove
lower bounds for NNs.

In light of the lack of lower bounds, a natural second direction for further research is
to improve the constructions presented in this chapter to obtain smaller NNs. This is
particularly promising and interesting in those cases where the size of the resulting NN
is larger than the time complexity of the best known algorithms for these problems. For
example, in case of the Maximum Flow Problem, our NN has size O(n2m2), compared to
the best known running time O(nm) of a classical algorithm. It would be very interesting
to know whether our construction is best possible or whether smaller constructions are
conceivable. Similarly, the DP-NN to solve the Knapsack Problem has width O((p∗)2),
while the running time of the pseudo-polynomial dynamic program depends only linearly
on p∗. Despite the empirical evidence we provide that this quadratic dependence might
indeed be necessary, a firm theoretical analysis would be desirable.

Closely related is the question whether one can use the ability of NNs to perform com-
putations in parallel more effectively. As an example, our NN to solve the Maximum
Flow Problem has depth O(n2m2). Even though, as we argued, highly parallel architec-
tures (polylogarithmic depth) with polynomial width are unlikely, we wonder whether
it is possible to achieve a depth that is a polynomial of lower degree than n2m2, while
still maintaining polynomial total size.

Apart from the problems considered in this chapter, another natural way to continue
research concerning the computational power of NNs is to extend our results to more
(CO) problems. For example, it is an open question whether polynomial-size NNs ex-
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ist that compute the objective values of the Assignment Problem, various Weighted
Matching Problems, or Minimum Cost Flow Problems for real-valued arc/edge weights
as inputs.

Finally, the ultimate goal of a continued study about the computational power of
NNs could be a meta-result in the following sense: which properties of a (CO) problem
determine whether small NNs are possible to solve this problem? Are there, for example,
necessary or sufficient conditions on a dynamic program, which allow to turn it into an
NN? Similar in spirit, Woeginger [Woe00] classifies dynamic programs that guarantee
the existence of a fully polynomial-time approximation scheme.

We hope that this facet of NN complexity promotes further research on the interplay
between NNs and classical (CO) algorithms.
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5 Training Complexity

Does a small dimensionality help when fitting neural network weights to data?

The results in this chapter are based on a preprint with Vincent Froese and Rolf
Niedermeier [FHN21].

5.1. Introduction

Reducing the dimensionality of the input data while preserving most of the informa-
tion contained in it is a popular preprocessing step in many machine learning appli-
cations [BFN19; MPH09]. Besides many other benefits induced by a smaller input
dimension, a natural follow-up question is whether this step also simplifies the process
of training the actual machine learning model. In this chapter, we study this question
for the model of neural networks (NNs). More precisely, we investigate to what extent
a low input dimension can help in lowering the worst-case computational complexity of
NN training, that is, fitting NN weights to given training data. To achieve this goal, we
employ tools and concepts from parameterized complexity analysis.

In this chapter, we completely focus on 2-layer ReLU NNs. Even though this simplifies
the model significantly and many practical applications use more layers, understanding
these shallow NNs is a natural first step in gaining a fundamental understanding of gen-
eral ReLU NNs. Additionally, this case already gives rise to a variety of non-trivial ques-
tions and challenges; see, for example, recent works by Bakshi, Jayaram, and Woodruff
[BJW19] and Goel et al. [Goe+21].

5.1.1. Chapter-Specific Notation

In contrast to Chapter 4, where bold symbols distinguish variables that depend on
the NN input from constants and weights, in this chapter, bold symbols are used to
distinguish vectors from scalars.

We also slightly change our notation with respect to specific symbols. In order to
align with the literature about parameterized complexity of geometric problems, d always
represents the input dimension (and not the depth) of the considered NN. Additionally, k
represents the number of hidden neurons and n is used to denote the number of training
samples in the training set.

5.1.2. Empirical Risk Minimization for ReLU Neural Networks

Formally, the problem we investigate in this chapter is to minimize the so-called empirical
risk for a 2-layer ReLU NN with respect to a loss function ℓ : R × R → R≥0, mapping
the predicted and the true label to a loss value. The problem of training a two-layer
ReLU neural network with k hidden neurons and a single output neuron (see Figure 5.1)
is defined as follows:
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Figure 5.1.: The neural network architecture we study in this chapter: After the input
layer (left) with d input neurons, we have one hidden layer with k ReLU
neurons and a single output neuron without additional activation function.

k-ReLU(ℓ)
Input: Data points (x1, y1), . . . , (xn, yn) ∈ Rd × R.
Task: Find weight vectors w1, . . . ,wk ∈ Rd, biases b1, . . . , bk ∈ R, and coeffi-

cients a1, . . . , ak ∈ {−1, 1} that minimize

n∑︂
i=1

ℓ

(︄
k∑︂

j=1
aj max{0, ⟨wj ,xi⟩+ bj}, yi

)︄
.

The corresponding decision problem is to decide whether a target training error of
at most γ ∈ R can be achieved. As usual in the context of computational complexity
analysis, we consider the decision instead of the optimization version. One of our main
contributions is to prove strong computational hardness results that already hold for
only a single hidden ReLU neuron, that is, k = 1.

We focus on the case of ℓp-loss functions, that is, ℓ(ŷ, y) = |ŷ − y|p, for p ∈ ]0,∞[. Note
that this includes both convex and concave loss functions (with respect to the absolute
error |ŷ − y|). In addition, we also investigate the limit cases p = 0 and p =∞. The ℓ0-
loss (which is completely insensitive to outliers) simply counts the number of points that
are not perfectly fitted, while the ℓ∞-loss only cares about outliers, that is, it measures
only the largest error on any data point. Without loss of generality, we always assume
that n ≥ d + 1 because otherwise the problem can be solved in the lower-dimensional
affine hull of the input data points.1

5.1.3. Parameterized Complexity and the Exponential Time Hypothesis

Parameterized complexity analysis is a methodology to study the impact of certain
parameters on the time complexity of computational problems [DF13; Cyg+15]. For that
purpose, every classical problem instance I is associated with a parameter value k ∈ N.

1To see this, assume that all xi are contained in an affine subspace A with dimension strictly less than d.
Using a bijective affine transformation T : A → Rdim A, we now can solve the equivalent k-ReLU(ℓ)
problem with the lower-dimensional data points (T (xi), yi), i ∈ [n]. The solution weights for the
original problem can then be obtained by composing T with the affine transformation given by the
weights of the modified problem.

90



5.1. Introduction

For example, in this chapter, the considered parameter associated with an instance of
the ReLU training problem is the dimension d of the input space.

A parameterized problem is fixed-parameter tractable (contained in the class FPT) if
there exists an algorithm solving any instance (I, k) in f(k) · poly(|I|) time, where f
is a function solely depending on k. Note that fixed-parameter tractability implies
polynomial time for constant parameter values where, importantly, the degree of the
polynomial is independent from the parameter value.

One way to show parameterized intractability of a problem is to use a parameter-
ized reduction to prove that it is W[1]-hard. The class W[1] is a superset of FPT that
also contains parameterized problems which are conjectured not to be in FPT (for ex-
ample, Clique parameterized by the size of the requested clique). A parameterized
reduction from a problem P to another problem P ′ is an algorithm that maps an in-
stance (I, k) of P in f(k) · poly(|I|) time to an instance (I ′, k′) of P ′ such that k′ ≤ g(k)
for some function g and (I, k) is a yes-instance of P if and only if (I ′, k′) is a yes-instance
of P ′.

The class XP contains all parameterized problems which can be solved in polynomial
time if the parameter is a constant, that is, in time f(k) · |I|g(k). It is known that
FPT ⊆W[1] ⊆ XP and that FPT ⊊ XP.

The Exponential Time Hypothesis (ETH) [IP01] states that 3-SAT cannot be solved
in subexponential time in the number n of variables of the Boolean input formula. That
is, there exists a constant c > 0 such that 3-SAT cannot be solved in O(2cn) time. The
ETH implies that FPT ̸= W[1] (and P ̸= NP) [Cyg+15]. It also implies running time
lower bounds, for example, that Clique cannot be solved in ρ(k) · no(k) time for any
function ρ, where k is the size of the sought clique [Cyg+15].

5.1.4. Related Work

The NP-hardness of empirical risk minimization with ℓ2-loss for a single ReLU was shown
independently by Dey, Wang, and Xie [DWX20] and Goel et al. [Goe+21]. The work of
Goel et al. [Goe+21] is probably the one closest to the work in this chapter. They pro-
vided an in-depth study concerning tight hardness results for 2-layer ReLU networks such
as NP-hardness, conditional running time lower bounds, and hardness of approximation.
Arora et al. [Aro+18] provided a polynomial-time algorithm for k-ReLU(ℓ) for d ∈ O(1)
and convex loss ℓ; in terms of parameterized algorithmics, this is an XP-algorithm for
parameter d: the degree of the polynomial of the running time (only) depends on d. The
underlying idea of their algorithm is to basically iterate over all O(nd) hyperplane par-
titions of the n data points. Indeed, as pointed out by Goel et al. [Goe+21], since there
are at most 2n partitions, the same algorithm implies fixed-parameter tractability for the
parameter n. Moreover, Goel et al. [Goe+21] remarked that the well-known Exponential
Time Hypothesis (ETH) implies that no 2o(n)-time algorithm exists. Deciding whether
zero error (γ = 0) is possible (that is, realizable data) is polynomial-time solvable for a
single ReLU by linear programming [Goe+21] and NP-hard for two ReLUs [Goe+21].
Approximation has been subject to further works [DWX20; Dia+20; Goe+21]. Further-
more, Bakshi, Jayaram, and Woodruff [BJW19] and Chen, Klivans, and Meka [CKM20]
showed fixed-parameter tractability results for related but different learning concepts of
ReLU networks and Boob, Dey, and Lan [BDL20] studied the computational complexity
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Table 5.1.: (Parameterized) computational complexity of training a single ReLU neuron
with respect to parameter d (input dimension) for ℓp-loss functions.

Hardness Algorithm

p ∈ [0, 1[ W[1]-h. + no no(d)-time alg. (Theorem 5.1) nO(d) poly(n, d) (Theorem 5.4)
p ∈ [1,∞[ W[1]-h. + no no(d)-time alg. (Theorem 5.1) nd poly(n, d) [Aro+18]
p =∞ - poly(n, d) (Proposition 5.3)

of ReLU networks where the output neuron is also a ReLU. Abrahamsen, Kleist, and
Miltzow [AKM21] showed that neural network training (of more complex architectures)
is complete for the class ∃R (existential theory of the reals), implying that the problem
is presumably not contained in NP.

Finally, note that the number of dimensions appears naturally in parameterized com-
plexity studies for geometric problems [GKR09; KKW15]; moreover, it occurs also in
recent studies for principal component analysis (PCA) [FGS20; Sim+19] and in computer
vision [CCN20].

5.1.5. Overview and Main Results

In the course of this chapter we provide several contributions towards understanding the
computational complexity of ReLU NN training parameterized by the input dimension d
with respect to various loss functions.

First, in Section 5.2, we prove that training a two-layer ReLU NN is already computa-
tionally intractable even for a single hidden neuron and small d (Theorem 5.1), that is,
we show W[1]-hardness for parameter d and provide an ETH-based lower bound of nΩ(d)

matching the running time upper bound of nO(d) of the training algorithm due to Arora
et al. [Aro+18]. Hence, our result shows that the combinatorial search among all O(nd)
possible hyperplane partitions is essentially the best one can do. Notably, our hardness
results even hold for very sparse data points with binary labels.

Second, in Section 5.3, we contribute a polynomial-time algorithm (for arbitrary
dimension) for training a single-neuron ReLU network when using the ℓ∞-loss func-
tion (Proposition 5.3). This generalizes the polynomial-time result due to Goel et al.
[Goe+21] for the zero-error case.

Third, in Section 5.4, we complement the W[1]-hardness result with a matching upper
bound as follows. We extend the XP-result for convex loss functions by Arora et al.
[Aro+18] to concave loss functions (Theorem 5.4) for arbitrary 2-layer NNs (any k ≥ 1).
Note that for W[1]-hard problems, an XP-algorithm is the best one can hope for. Hence,
we completely settle the computational complexity parameterized by dimension d of
training a two-layer ReLU NN for any ℓp-loss with p ∈ [0,∞[.

Table 5.1 provides an overview of our results for the special case of a single hidden
neuron (k = 1).

Finally, we point out open research questions in Section 5.5.
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5.1.6. Discussion of other Parameters besides Dimensionality

The core theme of this chapter is to better understand how the dimension parameter d
influences the computational complexity of ReLU network training as defined above. To
this end, we conduct a parameterized complexity analysis [DF13]. Before moving on
to study the key parameter d, let us briefly discuss other parameters occurring in our
setting. The most natural other parameters are: the number k of ReLU neurons in the
hidden layer, the number n of input points, and the maximum target error γ.

It turns out that the parameterized complexity for these three parameters is already
settled due to simple observations. First, the case k = 1 (that is, 1-ReLU(ℓ)) is known to
be NP-hard for ℓ2-loss [DWX20; Goe+21] and we even extend the NP-hardness to ℓp-loss
for arbitrary p ∈ [0,∞[ (see Theorem 5.1); this renders the parameter k hopeless in terms
of getting efficient parameterized algorithms. For the parameter n, fixed-parameter
tractability was already observed by Goel et al. [Goe+21] (see also related work). Finally,
for γ = 0, the case k = 1 is polynomial-time solvable [Goe+21] and for k ≥ 2 NP-hardness
is known [BJW19; Goe+21]. Thus, the dimension d is clearly the most interesting
parameter also from a theoretical point of view.

5.2. Hardness of Training a Single ReLU in Small Dimension

In this section, we show that there is no hope to obtain an FPT algorithm with respect
to parameter d for training even the simplest possible architecture consisting of a single
neuron with respect to the ℓp-loss for any p ∈ [0,∞[. To this end, we show intractability
of the problem 1-ReLU(ℓp). For p = 0, the problem is to minimize the number of data
points that are not perfectly fitted.

Theorem 5.1. For every p ∈ [0,∞[, 1-ReLU(ℓp) is NP-hard, W[1]-hard with respect
to dimension d, and it cannot be solved in ρ(d) ·no(d) time for any computable function ρ
unless the Exponential Time Hypothesis fails.

Note that Goel et al. [Goe+21] proved NP-hardness and running time lower bounds for
additive approximation (with ℓ2-loss). Their results are based on gap reductions from
problems such as finding dense subgraphs and coloring hypergraphs. The reductions
are focused on providing a gap which guarantees the approximation hardness. They
achieve this by using a “large” number d of dimensions (typically equal to the number
of vertices of the input (hyper)graph). For our purpose, however, we need a more fine-
grained parameterized reduction where d is “small”. To this end, we reduce from a
colored variant of Clique such that d is bounded linearly in the size of the clique.

Proof of Theorem 5.1. We reduce from the following problem.

Multicolored Clique
Input: An undirected graph G = (V,E) where the vertices are colored

with k colors.
Question: Does G contain a k-clique (a complete subgraph with k vertices)

with exactly one vertex from each color?
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Multicolored Clique is NP-hard, W[1]-hard with respect to k, and not solvable in
time ρ(k) · |V |o(k) for any computable function ρ unless the Exponential Time Hypothesis
fails [Cyg+15]. We give a parameterized reduction (which is indeed also a polynomial-
time reduction) from Multicolored Clique to 1-ReLU(ℓp) where the dimension of
the data points is d = 2k. Hence, the theorem follows.

Let G = (V,E) be an undirected graph with N := |V | vertices and let c : V → [k] be
a vertex coloring. We denote by Vj = {vj,1, . . . , vj,Nj} the set of vertices with color j,
where Nj := |Vj |. In the following, we construct a set of data points from R2k with labels
in {0, 1}, as well as a target error γ ∈ R, such that these data points can be fitted by a
ReLU function with ℓp-error at most γ if and only if a multicolored k-clique exists in G.

We set the target error to γ := N − k. Next, we define a small value 0 < δ < 1 such
that making an absolute error of value 1−δ on N−k+1 different inputs already exceeds
the threshold γ. For p = 0, we simply choose δ := 0.5. For p > 0, let p̃ := max{p, 1} and
δ := 1/(2p̃(N − k + 1)). This yields

(1− δ)p(N − k + 1) ≥ (1− p̃δ)(N − k + 1)
> (1− 2p̃δ)(N − k + 1)
= N − k = γ, (5.1)

where, in the case p > 1, the first inequality follows from Bernoulli’s inequality, and in
the case p ≤ 1, it follows from xp ≥ x for all x ∈ [0, 1].

In addition, we define a large integer M such that making an absolute error of δ on M
different inputs also exceeds the threshold γ. For p = 0, we choose M := N − k + 1.
For p > 0, we set M := ⌈γ/δp⌉+ 1, which implies

Mδp > γ. (5.2)

Note that γ ∈ O(N) and 1/δ ∈ O(N). Thus, M is polynomially bounded in the size
of G.

Let Nmax := maxj∈[k]Nj be the maximum number of vertices of one color. For our
reduction we need Nmax distinct rational points on the unit circle centered at the origin.
For example, one can choose

x̃i :=
(︄

1− i2
1 + i2

,
2i

1 + i2

)︄
∈ Q2

for each i = 1, 2, . . . , Nmax [ST94]. For each vertex vj,i ∈ V , j ∈ [k], i ∈ [Nj ], let
xj,i = (02j−2, x̃i,02k−2j) ∈ R2k be the point x̃i lifted to 2k dimensions, where each color
corresponds to two dimensions. Here, we use the notation 0r for the r-dimensional zero-
vector. We add two types of data points to our instance (see Figure 5.2 for an example).
First, for each vertex vj,i ∈ V , add the point (xj,i, 1) ∈ R2k × R. Second, for each pair
of distinct vertices vj,i ̸= vj′,i′ ∈ V , if they cannot both be part of a multicolored clique
because they are non-adjacent or have the same color, then add M copies of the point(︁
(xj,i + xj′,i′)/2, 0

)︁
∈ R2k × R. This finishes the construction.

We now show that there exists a multicolored clique of size k in G if and only if
these data points can be fitted by a ReLU with ℓp-error at most γ. First, assume
that the vertices v1,i1 , . . . , vk,ik

form a multicolored clique of size k in G. We de-
fine ε := 1−maxi ̸=i′∈[Nmax]⟨x̃i, x̃i′⟩. Observe that it holds ε > 0 since the points x̃i,
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x̃1

x̃2

x̃3x̃4

x̃5

Figure 5.2.: Schematic illustration of the reduction from Multicolored Clique.
Shown are two dimensions corresponding to one of the k colors. The white
points x̃1, . . . , x̃5 correspond to vertices of that color and have label 1. Black points
indicate M copies of the corresponding middle point with label 0. The dashed line indi-
cates the hyperplane defined by the weight vector w of the ReLU neuron and the shaded
area indicates the predictions of the neuron (darker means larger values). The idea is
that exactly one white point can be predicted correctly (which selects the correspond-
ing vertex to be in the clique) without predicting a black point incorrectly and thereby
exceeding the error.

i ∈ [Nmax], are distinct points on the unit circle. Let w := 2/ε · (x̃i1 , x̃i2 , . . . , x̃ik
) ∈ R2k

and b := 1− 2/ε. We claim that the ReLU function f(x) = max{0, ⟨w,x⟩+ b} achieves
an ℓp-error of exactly γ = N − k. To see this, first note that for each j ∈ [k], we have

⟨w,xj,ij ⟩+ b = 2/ε · ⟨x̃ij , x̃ij ⟩+ 1− 2/ε = 1,

where we used that x̃ij lies on the unit circle. Hence, the k points x1,i1 , . . . ,xk,ik
are

perfectly fitted. Second, for each vertex vj,i ∈ V \ {v1,i1 , . . . , vk,ik
} outside the clique, we

have

⟨w,xj,i⟩+ b = 2/ε · ⟨x̃ij , x̃i⟩+ 1− 2/ε ≤ 2/ε · (1− ε) + 1− 2/ε = −1,

where the inequality follows from our choice of ε. Hence, for each of these N − k points,
we have f(xj,i) = 0, that is, we incur an error of 1. Finally, for each pair of distinct
vertices vj,i ̸= vj′,i′ ∈ V that are either non-adjacent or have the same color, note that
only one of the two vertices can belong to the clique. Thus, making use of our two
calculations above, we obtain

⟨w, (xj,i + xj′,i′)/2⟩+ b = ((⟨w,xj,i⟩+ b) + (⟨w,xj′,i′⟩+ b))/2 ≤ (1− 1)/2 = 0.

Hence, all points with label 0 are fitted exactly and the total ℓp-error is equal to γ = N−k.
For the reverse direction, suppose that there exist w ∈ R2k and b ∈ R such that the

ReLU function f(x) = max{0, ⟨w,x⟩+ b} achieves an ℓp-error of at most γ = N − k.
We show that the set

C := {vj,i ∈ V | f(xj,i) > δ}

forms a multicolored clique in G. First, observe that |C| ≥ k, because otherwise all
the points associated with vertices in V \ C would incur a total ℓp-error of at least
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(1 − δ)p(N − k + 1), which is larger than γ by (5.1). Hence, it remains to show for
each pair of vertices vj,i ̸= vj′,i′ ∈ C that they belong to different color classes and are
adjacent. Suppose the contrary. Then, by construction, the 1-ReLU(ℓp) instance also
contains M copies of the point

(︁
(xj,i +xj′,i′)/2, 0

)︁
∈ R2k×R. From ⟨w,xj,i⟩+ b > δ and

⟨w,xj′,i′⟩+ b > δ, it follows by linearity that

f((xj,i + xj′,i′)/2) ≥ ⟨w, (xj,i + xj′,i′)/2⟩+ b > δ.

Thus, we incur an ℓp-error of at least Mδp, which is larger than γ by (5.2). Hence, C is
indeed a multicolored k-clique.

A closer inspection of the above proof reveals that hardness even holds for a more
restricted problem.

Corollary 5.2. For p ∈ [0,∞[, 1-ReLU(ℓp) is NP-hard, W[1]-hard with respect to d,
and cannot be solved in ρ(d) · no(d) time for any computable function ρ (assuming the
Exponential Time Hypothesis), even if all input data points contain at most four non-zero
entries and have binary labels.

We further remark that the basic idea of the reduction in the proof of Theorem 5.1
also works for more general loss functions. Essentially, the only necessary condition is
that the value M can be chosen such that it is polynomially bounded in the size of the
graph G and satisfies an inequality analogous to (5.2) where δp is replaced by ℓ(δ, 0).

Our findings tell us that in order to achieve fixed-parameter tractability, one has to
consider other parameters to combine with the dimension d. A natural parameter is the
target loss γ. However, this is not a promising parameter since it can be made arbitrarily
small by scaling all values. If we consider the number σ of different coordinate values of
the xi, then we trivially obtain fixed-parameter tractability in combination with d since
the overall number of different data points is at most σd. Hence, the algorithm by Arora
et al. [Aro+18] runs in σd2 · poly(nd) time.

To sum up, identifying promising parameters (or parameter combinations) to obtain
tractable cases remains a challenge worthwhile further investigation.

5.3. Polynomial-time Algorithm for a Single ReLU with
Maximum Norm

As pointed out by Goel et al. [Goe+21], deciding whether given data points are realizable
by a single ReLU neuron (that is, whether γ = 0) can be done in polynomial time via
linear programming. In other words, it is possible to check whether the input points can
be perfectly fitted by a single ReLU neuron and, in case of a positive answer, to find the
corresponding weights in polynomial time. Recall that the same problem is NP-hard in
the case of two (or more) neurons by Goel et al. [Goe+21].

In this section, we extend this polynomial-time algorithm to minimizing the ℓ∞-loss,
that is, minimizing the maximum prediction error. In fact, we provide a polynomial-time
optimization algorithm (not only decision) for a problem variant that generalizes ℓ∞-loss
minimization. In this variant, the real labels yi for the data points xi are replaced
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with target intervals [αi, βi] with αi ≤ βi and we aim to minimize the maximum de-
viation of a prediction from its corresponding target interval. To this end, we define
distα,β(t) := max{α− t, 0, t− β} to be the distance of t ∈ R to the interval [α, β].

ReLU(ℓ∞-Interval)
Input: Data points x1, . . . ,xn ∈ Rd,

and interval boundaries α1 ≤ β1, . . . , αn ≤ βn ∈ R.
Task: Find w ∈ Rd and b ∈ R that minimize

max
i∈[n]

distαi,βi
(max{0, ⟨w,xi⟩+ b}).

Note that we obtain ℓ∞-loss minimization by setting αi = βi = yi for all i ∈ [n].

Proposition 5.3. ReLU(ℓ∞-Interval) can be solved in polynomial time.

Proof. We show that an optimal solution can be found via solving a series of linear
programs. For each i ∈ [n] with αi > 0, our algorithm finds out whether the op-
timal objective value γ∗ is larger or smaller than αi. In the first case, the predic-
tion ⟨w,xi⟩+ b is allowed to be arbitrarily small, while in the second case we need
to ensure the lower bound ⟨w,xi⟩ + b ≥ αi − γ∗. Therefore, we implement a binary
search to find an interval in which the optimal objective value γ∗ is contained as follows.
Let {α̃1, α̃2, . . . , α̃r} be the set of all distinct positive αi-values, i ∈ [n], sorted by index
such that 0 =: α̃0 < α̃1 < · · · < α̃r < α̃r+1 :=∞. Let s∗ ∈ [r + 1] denote the (unknown)
index with γ∗ ∈ [α̃s∗−1, α̃s∗ [. For each s ∈ [r + 1], we define a linear program denoted
by LP(s) which minimizes the maximum deviation under the assumption that only the
predictions for data points xi with αi ≥ α̃s are bounded from below, while all other
predictions can be arbitrarily small.

min
w,b,γ

γ

s.t. ⟨w,xi⟩+ b ∈ [αi − γ, βi + γ], i ∈ [n] with αi ≥ α̃s,

⟨w,xi⟩+ b ≤ βi + γ, i ∈ [n] with αi < α̃s,

γ ≥ −βi, i ∈ [n],
γ ≥ 0.

(LP(s))

Here, the constraint γ ≥ −βi is only relevant if βi < 0. In this case, it is needed to
ensure that the error is at least −βi because a ReLU unit can only output nonnegative
values.

Suppose we already knew the optimal index s∗. Observe that, by construction of
LP(s∗), a triplet (w, b, γ) is an optimal solution for LP(s∗) if and only if (w, b) is optimal
for the problem ReLU(ℓ∞-Interval) with objective value γ. Hence, it only remains to
show how s∗ can be found. To this end, let γ(s) be the objective value of LP(s) for each
s ∈ [r + 1]. Note that γ(s1) ≥ γ(s2) for s1 < s2 because the set of constraints of LP(s1)
is a superset of the constraints of LP(s2). Hence, for s > s∗, it follows that

γ(s) ≤ γ(s∗) = γ∗ < α̃s∗ ≤ α̃s−1.
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Similarly, for s < s∗, we obtain

γ(s) ≥ γ(s∗) = γ∗ ≥ α̃s∗−1 ≥ α̃s.

As a consequence, we can determine whether s < s∗, s = s∗, or s ≥ s∗ by solving LP(s)
and comparing γ(s) with α̃s and α̃s−1. Thus, using binary search and solving O(log n)
linear programs, we can determine s∗ and the optimal solution γ∗ together with the
corresponding weights w and b.

We remark that, analogously to the original problem with labels yi, the zero-error case
for the variant with intervals [αi, βi] can be solved with a single linear program instead
of a binary search: It suffices to run LP(1) once. This results in objective value 0 if and
only if all data points can be fitted precisely within their intervals.

5.4. Polynomial-time Algorithm for Concave Loss in Fixed
Dimension

In this section, we prove that, for any loss function of the form ℓ(ŷ, y) = ℓ̃(|ŷ − y|)
where ℓ̃ : R≥0 → R≥0 is concave, the problem k-ReLU(ℓ) is polynomial-time solvable
for constant d (that is, it is in XP with respect to d). In particular, this covers the case
of ℓp-loss for p ∈ [0, 1[. Notably, concave loss functions can yield increased robustness
by mitigating the influence of outliers. For convex loss functions, in particular for the
ℓp-loss with p ≥ 1, an analogous result has already been shown by Arora et al. [Aro+18,
Theorem 4.1]. More precisely, they showed that, if ℓ is convex, then k-ReLU(ℓ) can be
solved in O(2kndk poly(n, d, k)) time. The idea of their algorithm is essentially to try
out all O(nd) hyperplane partitions of the n input points for each of the k ReLU neurons
and solve a corresponding convex program.

For the concave case, we follow a similar approach. The only but decisive difference
is that the occurring subproblems are not convex programs. Instead, we show that
they can be written as optimization problems over polyhedra with an objective function
that is piecewise concave. It is well-known that global optima of concave problems
always occur at a vertex of the feasible polyhedron [Ben95] and that it is possible to
enumerate all vertices of the polyhedron in XP-time [KP03]. However, since in our case
the objective function is only piecewise concave, it is possible that no vertex is a global
optimum. Instead, we need to enumerate all vertices of all concave pieces of the feasible
region. We show that this can still be done in XP-time, completing the parameterized
complexity classification picture.

Theorem 5.4. For every loss of the form ℓ(ŷ, y) = ℓ̃(|ŷ − y|), with ℓ̃ : R≥0 → R≥0 being
concave, the problem k-ReLU(ℓ) is solvable in time 2k(nk)O(dk) poly(n, d, k).

Proof. Following the approach by Arora et al. [Aro+18, Algorithm 1], for each neu-
ron j ∈ [k], we consider each coefficient aj ∈ {−1, 1} and each hyperplane partition
P j

+ ∪ P
j
− = [n], P j

+ ∩ P
j
− = ∅, of the n (indices of the) data points (that is, there exists

a (d − 1)-dimensional hyperplane, defined by a vector wj and a bias bj , separating P j
+

and P j
−, compare Figure 5.3). Here, P j

+ is the active set, where ⟨wj ,xi⟩ + bj ≥ 0 shall
hold for each i ∈ P j

+ and ⟨wj ,xi⟩+ bj ≤ 0 for each i ∈ P j
−. As in the algorithm by Arora
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et al. [Aro+18], this results in a total of (at most) 2kndk subproblems. For fixed coeffi-
cients aj and fixed partitions (P j

+, P
j
−), j ∈ [k], the corresponding subproblem (compare

Line 8 in Algorithm 1 of Arora et al. [Aro+18]) is the following:

min
w1,...,wk, b1,...,bk

n∑︂
i=1

ℓ̃

⎛⎜⎝
⃓⃓⃓⃓
⃓⃓⃓yi −

∑︂
j : i∈P j

+

aj(⟨wj ,xi⟩+ bj)

⃓⃓⃓⃓
⃓⃓⃓
⎞⎟⎠

s.t. ⟨wj ,xi⟩+ bj ≤ 0, j ∈ [k], i ∈ P j
−,

⟨wj ,xi⟩+ bj ≥ 0, j ∈ [k], i ∈ P j
+.

(5.3)

We now show that this problem can be solved in XP-time with respect to d. As argued
in the introduction of this chapter, we may assume without loss of generality that the
affine hull of the data points xi, i ∈ [n], is the whole space Rd because, otherwise,
we could solve the problem within a lower-dimensional affine subspace. We first show
that this implies that the feasible region P ⊆ Rkd+k of (5.3) is pointed, that is, it has
at least one vertex. More precisely, we show that the zero vector 0kd+k is a vertex
of P . To do so, we need to show that it satisfies kd+ k linearly independent constraints
of (5.3) with equality. Since 0kd+k satisfies every constraint of (5.3) with equality,
we only need to show that there exist kd + k linearly independent rows. We write
rij := (0d(j−1),xi,0d(k−j), ej) ∈ Rkd+k, i ∈ [n], j ∈ [k], for the kn rows of the constraint
matrix, where ej ∈ {0, 1}k is the j-th unit vector. By our assumption that the affine hull
of the data points is the whole space Rd, there exists a subset S ⊆ [n] of d + 1 indices
such that the d + 1 vectors xi, i ∈ S, are affinely independent. This implies that, for
each fixed j, the d + 1 rows rij are linearly independent. Moreover, since, for j1 ̸= j2
and arbitrary i1, i2 ∈ [n], two rows ri1j1 and ri2j2 have non-zero entries only in distinct
columns, it follows that the kd + k rows rij , i ∈ S, j ∈ [k], are linearly independent.
Hence, P is pointed.

Next, we divide the feasible region P of (5.3) into several polyhedral pieces, depending
on the sign of the prediction error at each data point. Let s = (si)i∈[n] ∈ {−1, 1}n be a
sign vector and let

P (s) :=
{︄

(w1, . . . ,wk, b1, . . . , bk) ∈ P
⃓⃓⃓⃓
⃓ ∀i ∈ [n] :

si

(︄
yi −

∑︂
j : i∈P j

+

aj(⟨wj ,xi⟩+ bj)
)︄
≥ 0

}︄

be the subset of the feasible region P for which the sign of the prediction error for
each data point xi coincides with si. Since P is pointed, P (s) must be pointed as
well. Moreover, by definition, the prediction error of every data point has a fixed sign
within P (s), implying that the objective function of (5.3) (as a sum of concave functions)
is concave within P (s) (compare Figure 5.4). In addition, the objective value is trivially
bounded from below by 0. Since the minimum of a bounded (from below), concave
function over a pointed, nonempty polyhedral set is always attained by a vertex [Ben95],
it follows that P (s) is either empty or must have a vertex minimizing the loss within P (s).
Since P = ⋃︁

s∈{−1,1}n P (s), it follows that the optimal solution of (5.3) must be a vertex

99



5. Training Complexity

P j
−

P j
+

Figure 5.3.: Two-dimensional illustration
of a hyperplane partition of the data points
into P j

+ = {i ∈ [n] | ⟨wj ,xi⟩+ bj ≥ 0} and
P j

− = {i ∈ [n] | ⟨wj ,xi⟩+ bj < 0}.

prediction error

loss

0

Figure 5.4.: The contribution of a data
point xi to the objective function is not
globally concave. However, it is con-
cave if the sign of the prediction error
yi −

∑︁
j : i∈P j

+
aj(⟨wj ,xi⟩+ bj) is fixed.

Figure 5.5.: Schematic illustration of how an optimal solution to the subproblem (5.3)
can be found. The feasible region is a pointed polyhedral cone (left). The hyperplanes
where the prediction error at a certain data point equals zero subdivide P into the
regions P (s) (middle). Since the objective function is concave in each of these regions,
it suffices to check the vertices of all regions (right).

of one of the polyhedral sets P (s). Hence, it suffices to enumerate all these vertices.
Compare Figure 5.5 for a schematic illustration of this idea. Each vertex of one of
the polyhedra P (s) is given by kd + k linearly independent inequalities that hold with
equality. For selecting these kd + k equations, we have the choice between a total
of kn+ n equations: the kn constraints of (5.3) as well as the n equations corresponding
to the sign constraints defined by s. Note that these n equations are the same for each s
although the inequalities are different.

We conclude that it suffices to check all
(︁kn+n

kd+k

)︁
≤ (nk)O(dk) possible subsets of kd+ k

equations. If the chosen equations are linearly independent, then we can determine the
corresponding unique solution and check whether it is a feasible solution to (5.3). For
each chosen set of equations, these steps can be done in poly(n, d, k) time. Among all
feasible solutions found that way, we take the best one. Consequently, each of the (at
most) 2kndk subproblems can be solved in (nk)O(dk) poly(n, d, k) time, resulting in the
claimed overall running time.

In comparison to the algorithm for convex loss functions [Aro+18], our algorithm
for concave loss functions requires more time to solve the O(2kndk) many subproblems,
namely (nk)O(dk) poly(n, d, k) instead of poly(n, d, k) time each. This aligns with the
general theme in optimization that convex problems are easier to solve than non-convex
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problems. However, due to the combinatorial search, both cases result in an XP overall
running time.

5.5. Future Research
Summarizing the results of this chapter, we conclude that low data dimensionality is
seemingly only of limited use when striving for exact training algorithms. While XP-
algorithms are possible for all ℓp losses with p ∈ [0,∞], there is no hope to obtain FPT-
algorithms for p ∈ [0,∞[. Based on these findings, we identify the following directions
for future research.

First, confronting inapproximability results for polynomial-time algorithms (see, e.g.,
Goel et al. [Goe+21]) and our W[1]-hardness result for exact algorithms (Theorem 5.1),
a natural follow-up question is: Can acceptable worst-case approximation ratios be ob-
tained in FPT-time?

Moreover, since FPT results for the parameter dimension alone are out of reach, it
would be interesting to identify other suitable parameters for which FPT-algorithms are
possible. For example, parameterizing by some “distance from triviality” measure (e.g.
assuming specially structured input data) might be an interesting approach [Nie06].

In light of the polynomial-time algorithm for training a single neuron (k = 1) in the
zero-error case (compare Goel et al. [Goe+21] and Section 5.3), it would be desirable
to understand the parameterized complexity of k-ReLU(ℓ) with respect to d for k ≥ 2
in the zero-error case as well. NP-hardness has been shown by Bakshi, Jayaram, and
Woodruff [BJW19] and Goel et al. [Goe+21]. The next step would be to investigate
whether FPT-algorithms are possible.

Finally, while it is intuitive that deeper architectures are even more difficult to train, it
could be interesting to confirm this intuition from a theoretical perspective by providing
a solid study of the (parameterized) complexity of training deeper NNs (≥ 3 layers) with
different architectures. A first step in that direction was performed by Boob, Dey, and
Lan [BDL20], who investigate NNs with two hidden layers where the second hidden layer
consists of only one neuron.
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6 Concluding Remarks

“Modelle sind auch nur Meinungen, die sich als Mathematik verkleidet haben.”
“Models are just opinions disguised as mathematics.”

From “QualityLand” by Marc-Uwe Kling [Kli17]

Nowadays, artificial neural networks are mostly used as a black box and their stunning
success in a wide range of application areas often appears to be magic. At the same
time, they conquer more and more domains where transparency and regulation of the
used algorithms are absolutely necessary. This includes, for example, safety-critical
applications in the health sector or in autonomous driving, as well as avoiding biases
and discrimination against groups of people. Only a better mathematical understanding
of the used technologies can make it possible to exploit the high performances of these
methods, while, at the same time, maintaining explainability, safety, and fairness.

In times of massive computing power, state-of-the-art architectures reach an impres-
sive level of complexity. To tackle the challenge of looking behind the scenes of these
models, we provided three different perspectives, our facets of complexity for ReLU
neural networks. We made progress concerning the questions which functions one can
represent with certain architectures, how powerful neural networks are as a model of
computation, and how difficult it is to train them.

Still, this thesis can only be a modest attempt to uncover some of the magic around
the success of modern artificial neural networks. Many exciting open questions remain,
both immediately related to our results as discussed at the end of each chapter, as well
as further away on the long path towards a solid theoretical understanding of neural
networks. What would life be without magic?
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