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Abstract

In this thesis, the modeling and numerical simulation of drop size distributions in stirred
liquid-liquid systems is considered. Therefore, the turbulent flow field in the stirred tank
as well as the behavior of the drops is investigated.

The turbulent flow field is modeled by means of the Reynolds-averaged Navier-Stokes
equations in combination with a k-ε turbulence model. The population dynamical pro-
cesses, i. e., the behavior of the drops, are described by an averaged population balance
equation, where the coalescence and breakage phenomena are modeled via integral terms.

In order to investigate the dynamical behavior of the coupled system, the index of the
underlying differential algebraic equations, which are obtained after space-discretization,
is determined. This analysis shows that the index of the semi-discretized Navier-Stokes
equations is not increased by the coupling with the population balance equation, which
means that a solver that is suitable for the solution of the Navier-Stokes equations can
be extended so that it can also be used for the solution of the coupled system.

However, since the effort to build such a solver is immense, in this thesis, the coupling
is realized by means of a simulator coupling approach. In this approach, the CFD
code FeatFlow is used for the flow simulation, whereas the population balance solver
Parsival is applied for the calculation of the drop size distributions.

Since it is justified for the considered application to neglect the influence of the drops on
the flow field, only a one-way coupling is considered, regarding the modeling as well as
the numerical simulation. As far as the numerical simulation is concerned, this means
that only the results of the flow simulation are used for the calculation of the drop
size distributions and not vice versa. According to these results, the stirred tank is
then subdivided into compartments, and the data from the flow simulation are averaged
with respect to these compartments so that they can be used for the simulation with
Parsival.

Both, the results of the flow simulation as well as the drop size distributions derived
by the simulation with Parsival, are validated by comparison with experimental data,
which are taken from the literature or obtained by the experimental part of a joint
project, respectively.

Besides the realization of the coupling, in this thesis, we also investigate the occurring
difficulties in order to demonstrate the possibilities, but also the restrictions, of the
presented approach and to discuss alternatives, like the use of the (direct) quadrature
method of moments as another way to solve the population balance equation.
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Zusammenfassung

Die hier vorliegende Arbeit beschäftigt sich mit der Modellierung und numerischen Si-
mulation von Tropfengrößenverteilungen in gerührten Flüssig-/flüssig-Systemen. Hierfür
wird einerseits die turbulente Strömung im Rührbehälter und andererseits das Verhalten
der Tropfen betrachtet.

Zur Modellierung der turbulenten Strömung werden die Reynolds-gemittelten Navier-
Stokes-Gleichungen zusammen mit einem k-ε-Turbulenzmodell verwendet. Die popula-
tionsdynamischen Phänomene (d. h. das Verhalten der Tropfen) werden mit Hilfe einer
gemittelten Populationsbilanzgleichung modelliert, in der die Koaleszenz- und Bruch-
vorgänge über Integralterme beschrieben werden.

Um das dynamische Verhalten des gekoppelten Systems zu untersuchen, wird eine In-
dexanalyse der differentiell-algebraischen Gleichungen, die man nach der räumlichen
Diskretisierung erhält, durchgeführt. Diese Analyse zeigt, dass sich der Index der semi-
diskretisierten Navier-Stokes-Gleichungen durch die Kopplung mit der Populationsbi-
lanzgleichung nicht erhöht, d. h., dass ein zur Lösung der Navier-Stokes-Gleichungen
geeigneter Löser (zumindest theoretisch) so erweitert werden kann, dass er zur Lösung
des gesamten gekoppelten Systems verwendet werden kann.

Aufgrund des hohen Aufwands, der für die Implementierung eines solchen Lösers er-
forderlich ist, wird dieser Ansatz hier jedoch nicht weiter verfolgt. Stattdessen wird die
Lösung des gekoppelten Systems mit Hilfe einer Simulator-Kopplung realisiert, bei der
der CFD-Code FeatFlow zur Strömungssimulation und der Populationslöser Parsival
zur Berechnung der Tropfengrößenverteilung verwendet wird.

Da es für die in dieser Arbeit betrachtete Anwendung gerechtfertigt ist, den Einfluss
der Tropfen auf die Strömung zu vernachlässigen, wird sowohl bei der Modellierung als
auch bei der numerischen Simulation nur eine Kopplung in eine Richtung (”one-way
coupling“) betrachtet. Für die numerische Simulation bedeutet das, dass nur die Ergeb-
nisse der Strömungssimulation zur Berechnung der Tropfengrößenverteilung verwendet
werden und nicht umgekehrt. Entsprechend dieser Ergebnisse wird der Rührbehälter
dann in Kompartimente unterteilt, und die Strömungsdaten werden bezüglich dieser
Kompartimente gemittelt, so dass sie für die Berechnung der Tropfengrößenverteilung
in Parsival verwendet werden können.

Sowohl die Ergebnisse der Strömungssimulation als auch die in Parsival simulierten
Tropfengrößenverteilungen werden mit Hilfe von experimentellen Daten, teils aus der
Literatur, teils aus dem experimentellen Teil eines gemeinsamen Forschungsprojekts,
validiert.
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Neben der Umsetzung der Kopplung werden in dieser Arbeit auch die auftretenden
Schwierigkeiten genauer beleuchtet, um die Möglichkeiten, aber auch die Beschränkun-
gen des verwendeten Ansatzes aufzuzeigen und Alternativen, wie beispielsweise die Ver-
wendung der (direkten) Quadraturmomentenmethode als alternative Lösung der Popu-
lationsbilanzgleichung, darzustellen.
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1 Introduction

Stirred liquid-liquid systems are encountered in a large variety of technical processes,
with major importance for chemical, pharmaceutical, mining, petroleum, and food in-
dustries. In these systems, two immiscible liquids are stirred so that one liquid disperses
into the other one by building drops. The size distribution of these drops, resulting from
the opposed phenomena of turbulent drop breakage and coalescence, plays an important
role in the overall performance of many technical processes. Thus, the aim is to control
the mean drop size and drop size distribution. In the production of polystyrene foam,
for example, all drops in the system should have a certain, pre-defined drop size. For
liquid-liquid systems with chemical reactions taking place at the interface between the
two phases, the ratio between the surface area and the volume of the drops should be
maximal, which would be achieved by the smallest possible drop size. However, one
usually has the restriction that the drops still have to be so large that the phases can
be separated after the reaction.
In order to control the drop size distribution in a stirred tank reactor, first a good
modeling and numerical simulation of the processes is required so that the drop size
distributions can be predicted for the considered application.

Dispersed systems are usually modeled by means of population balance equations, which
describe the rate of change of drop size distributions due to inflow, outflow, convective
transport, and population dynamical phenomena, see [HK64], [Ger99]. In this approach,
the drops are described by a so-called number density function, which is, besides the
usual dependency on space and time, also dependent on so-called internal coordinates,
like the size or other significant characteristics of the drops. These additional coordinates
are needed in order to distinguish the drops from each other.
Since each additional coordinate increases the dimension of the problem by one, in
many applications the assumption of an ideally mixed tank is used, which means that
the dependency on space is neglected. For this case, a lot of modeling approaches can be
found in the literature, see, e. g., [CT77], [BS91], [TT94], [LS96], [AKK99], [MML99a],
[MML99b], [DO02a], [DO02b], [LEMM02], [Rit02], or [WWJ03].

Since the flow field, which highly influences the coalescence and breakage rates, is usually
very inhomogeneous throughout the tank, such a simplification is often too restrictive.
For example, near the impeller, where turbulence is several orders of magnitude higher
than in the bulk of the tank (see, e. g., [AKK99]), mainly drop breakage occurs, whereas
coalescence only takes place in the less turbulent regions. The reason for this is that
colliding drops are only able to coalesce if they stay in contact long enough, which is
not possible if the flow is too turbulent. Thus, for an appropriate description of the
processes in a stirred tank, these spatial inhomogeneities have to be taken into account.
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1 Introduction

However, the solution of the “full” coupled system, consisting of the Navier-Stokes equa-
tions, the population balance equation, and, if applicable, additional equations for mod-
eling turbulence, is too extensive for most applications. Thus, it is reasonable to find a
compromise between detailed modeling of the different phenomena and savings in the
computational time.
Therefore, a compartment model approach is used in this thesis. While the flow simu-
lation is done on a relatively fine grid, for the calculation of the drop size distributions,
several cells are combined to one compartment. Within each compartment, the drop
size distribution is assumed to be space-independent, and the compartments are chosen
in such a way that this is (at least approximately) satisfied. The inhomogeneity of the
flow field is taken into account by using different mean energy dissipation rates for the
calculation of the drop size distributions in the different compartments. Furthermore,
the exchange between the zones is modeled via volume flows, which are calculated from
averaged velocities derived from the flow simulation.
The use of such compartment model approaches in the context of multi-phase systems
can already be found in the literature for different applications, see, e. g., [AKK99],
[AKKM02], [LAA02], [PB], [VDV02], [WR05], or [KBM06]. The idea of these approaches
is to take into account how the turbulent flow field in the different regions of the tank
influences the population dynamical (or other) processes, but, at the same time, to avoid
the enormous computing times needed for solving the full coupled system.

In this thesis, the coupled system consisting of fluid flow and population balance equa-
tions is solved by applying a simulator coupling approach using the CFD (short for
computational fluid dynamics) code FeatFlow for the flow simulation and the popu-
lation balance solver Parsival for the calculation of the drop size distributions. The
coupling is realized as a one-way coupling, which means that the CFD results are used
for the calculation of the drop size distributions, but the influence of the drops on the
flow field is neglected.
However, in contrary to most approaches in the literature, a non-commercial code is
used for the flow simulation in this thesis. The reason for the choice of a non-commercial
CFD code is that the source code is freely available and can be adapted, which is, on
one hand, already advantageous for the coupling and, on the other hand, essential for
further applications, like control or optimization tasks, where additional equations need
to be implemented.
Furthermore, besides the realization of the one-way coupling approach, in this thesis,
the coupling is also investigated from a more theoretical point of view. The system of
equations, describing the turbulent flow field in the stirred tank and the behavior of the
drops, is derived and its dynamics are analyzed by means of determining an index of
the underlying differential-algebraic system. Such an analysis gives information about
how strong the coupling is and what problems may arise when the equations are solved
numerically.

Since this thesis was originated in the context of a joint project together with engi-
neers from the Institute for Process Engineering at the TU Berlin, a validation of the
simulation results was possible by comparing the simulated drop size distributions with
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experimental data. Such a combination of experimental investigations, modeling, and
numerical simulation, is essential for understanding the processes in a stirred tank re-
actor, and it forms the basis for an appropriate description and an enhancement of the
mathematical models.

The thesis is organized as follows. In the following chapter, the system of equations
modeling the processes in the stirred tank reactor is derived. The turbulent flow field
in the stirred tank is described by the Reynolds-averaged Navier-Stokes equations with
k-ε turbulence model, whereas the behavior of the drops is modeled by means of an
averaged population balance equation. The coalescence and breakage phenomena are
taken into account by means of integral terms on the right-hand side of the population
balance equation. For these terms, several models from the literature are presented, and
it is discussed how they can be adapted so that they fit to the considered framework.
Even though the modeling is mainly considered for the investigated application, also
extensions concerning two-way coupling on one hand and control on the other hand are
discussed.

In Chapter 3, the dynamical behavior of the coupled system is analyzed. The index of
the underlying differential-algebraic equation, which is derived after space discretization,
is determined in order to get information about numerical problems that may arise. Such
an analysis is particularly important in consideration of control and optimization tasks,
which are the long-term objective for the considered application. It is shown that the
index of the semi-discretized Navier-Stokes equations is not increased by the coupling,
and thus existing algorithms that are suitable for the solution of the Navier-Stokes
equations can, at least theoretically, be extended so that they are able to treat the
coupled system.
However, since the effort to build such a solver is immense, this approach is currently
not feasible. Thus, in this thesis, the already mentioned simulator coupling approach
between FeatFlow and Parsival is applied.

In Chapter 4, the simulation of the flow field in the stirred tank using the non-commercial
code FeatFlow is discussed. First, besides a brief introduction to the mathematical
background of FeatFlow, we give a detailed description of the preparations that need
to be done before a simulation of the flow field in a stirred tank can be started. After-
wards, numerical results are presented and compared with experimental data from the
literature. In addition, the implementation of a k-ε turbulence model in FeatFlow is
described. The chapter closes with a discussion of the pros and cons concerning the use
of a turbulence model for the considered application.

In Chapter 5, the coupling between FeatFlow and Parsival is investigated. After a
short description of the mathematical algorithm implemented in Parsival and a sum-
mary of some previous simulation results obtained with Parsival, the realization of the
coupling approach is described in detail. Afterwards, simulation results for a variety of
different test cases as well as for the compartment model representing the considered
stirred tank reactor are presented. For the latter one, the simulated drop size distri-
butions are validated by comparison with experimental data obtained within the joint
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1 Introduction

project. At the end of the chapter, after a discussion of the presented approach, an
introduction to the (direct) quadrature method of moments is given. This approach
represents a very promising alternative for solving the population balance equation, in
particular, if it is used within a coupling approach.

Finally, Chapter 6 summarizes the opportunities and drawbacks of the presented cou-
pling approach and gives an outlook to future investigations.

In the two appendices of this thesis, the derivation of the Navier-Stokes and Reynolds-
averaged Navier-Stokes equations, on one hand, and of a general population balance
equation, on the other hand, is described.
Furthermore, all used variables and abbreviations are explained in the nomenclature at
the end of this thesis.

4



2 Modeling

In this chapter, we will consider the modeling of stirred liquid-liquid systems, i. e., of
systems, where two immiscible fluids are stirred so that one of the phases disperses into
the other one by building droplets. All droplets together are called the dispersed phase,
whereas the surrounding fluid is called the continuous phase.

However, before we will start with the derivation of the model equations, we will briefly
describe an application, which will be considered as practical example throughout this
thesis.

Considered application. The following application originates from a joint project to-
gether with engineers from the Institute for Process Engineering at the TU Berlin. In
this project, a liquid-liquid system inside a cylindric tank with dished bottom (so-called
torispherical head) stirred by a six-bladed Rushton turbine was investigated. The tank
was equipped with four baffles, which were installed in a small distance to the wall, see
Fig. 2.1.
The vessel had an (inner) diameter of Dtank = 0.15m and a height of Htank = Dtank =
0.15m. The Rushton turbine with diameter Dstirrer = Dtank/3 = 0.05m was mounted at
1/3 of the tank height. The baffles had a width of Dbaffle = 0.013m. The exact mathe-
matical description (including the dimensions of all the other parts of the system) can
be found in Section 4.2.
The vessel was filled with water as continuous and toluene as dispersed phase, whereof
the latter one had a volume fraction of χ = 0.1. The two fuids were stirred with constant
rotational speeds, varying from 400 to 700 rounds per minute.
The whole system was kept at the constant temperature of 20◦C.

Generally, in two-phase systems the interaction between the continuous and the dis-
persed phase leads to different population phenomena, like, on one hand, formation,
dissolution, growth, and shrinkage (which are induced by the heat and mass transfer
between the two phases) and, on the other hand, coalescence and breakage (which are
caused by fluid dynamic processes and momentum transfer between the two phases).
Here, coalescence describes the process, where a larger drop is generated because of the
collision and confluence of two smaller drops. Breakage, on the other hand, is the pro-
cess, where a drop collides with an eddy and, hence, breaks up into some smaller drops.
For information about the other population phenomena, see Appendix B.
Note that in the liquid-liquid system considered here, only coalescence and breakage
occur, since there is no heat and mass transfer between the two phases.

For an appropriate description of the considered stirred liquid-liquid system, not only
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2 Modeling

Htank

Hl

Hu

Hstirrer

Dtank

Dstirrer

Dbaffle �Dshaft

Figure 2.1: Schematic representation of the considered stirred liquid-liquid system.

the population dynamical processes but also the flow field in the stirred tank has to be
modeled, since it has a strong influence on the coalescence and breakage phenomena. For
example, breakage mainly occurs in the turbulent region close to the impeller, whereas
coalescence only takes place in the less turbulent parts of the tank, where the drops are
able to stay in contact as long as coalescence needs to take place (see, e. g., [AKK99]).

In the following sections, we will derive a mathematical model describing the above
mentioned processes occurring in the considered stirred liquid-liquid system. First, in
Section 2.1, we will introduce so-called internal coordinates describing some important
characteristics of the drops. Then, in Section 2.2, the flow field in the stirred tank
will be modeled by the Navier-Stokes equations for incompressible fluids. Furthermore,
turbulence will be accounted for by Reynolds-averaging and then solving the arising
closure problem by using a k-ε turbulence model. Finally, in Section 2.3, the behavior of
the drops is modeled by a population balance equation, where coalescence and breakage
appear as source and sink terms on the right-hand side.

2.1 Internal and External Coordinates

For modeling the processes occurring in a stirred tank appropriately, we do not only
need space coordinates x = [x1, x2, x3]T ∈ Ω ⊂ �

3 and a time coordinate t ∈ [0, tend],
but also so-called internal coordinates e = [e1, . . . , ea]T ∈ �a, which describe a different
properties of the dispersed phase. We need these additional coordinates to distinguish
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2.2 Modeling the Flow

the individuals of the dispersed phase (i. e., the drops) from each other with respect to
their significant characteristics.

Note that, in this context, when internal coordinates are used, the space coordinates are
called external coordinates accordingly. Both internal and external coordinates together
form a space, the so-called particle phase space, see [HK64]. Any individual can be
represented by a point in this particle phase space. The coordinates of this point identify
the phase of the particle – i. e., location and characteristics – uniquely.

In general, the internal coordinates describe properties related to geometry (e. g., size,
volume), material properties (e. g., density, chemical composition, color), or character-
istics in the interaction with the continuous phase (e. g., surface charge). These coor-
dinates may depend on each other (e. g., mass and volume), some of them are discrete
(e. g., number of smaller particles / atoms the considered particle consists of), others are
continuous (e. g., mass).

In the discussed application, it is sufficient to distinguish the drops due to their size.
Therefore, in the following, we only use one internal coordinate, namely the volume
V . Note that, in the literature, often the diameter d of a drop is used as internal
coordinate. That is also why most of the formulas in Subsection 2.3.1 are also given in
terms of the diameter. But since in the considered application the drops are assumed to
be spherical, which means that the diameter d of a drop is directly related to its volume
V by the relation V = cV d

3 with cV = π
6 , the formulas from Subsection 2.3.1 can easily

be transformed such that they depend on the volume V .

Remark 2.1. In the simulation package Parsival [Wul], which is used for the solution
of the population balance equation within the joint project, the volume as well as the
diameter can be chosen as internal coordinate. However, some processes are harder
to implement if the volume is used. The coordinate transformations, which describe
how to switch between volume and diameter representation in the different terms of the
population balance equation, can be found in the Parsival tutorial [GB04].

2.2 Modeling the Flow

In this section, we will model the flow in the stirred tank. At this stage of modeling we
assume that the drops do not have any influence on the flow field. (They are just moving
with the fluid with the same velocity.) This implies, in particular, that the description
of the flow is independent of the internal coordinates. However, we will comment on this
later.

The flow field in the stirred tank is described by the Navier-Stokes equations for incom-
pressible fluids (cf. Eqs. (A.2) and (A.6) in Appendix A)

∂
∂tu+ ∇ · (u⊗ u) + 1

ρf
∇p = νΔu+ g

∇ · u = 0

}
in Ω × [0, tend], (2.1)
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2 Modeling

where u is the velocity of the fluid, p is the pressure, and g are the external forces. In
the discussed application, the only external force that has to be considered is gravity.
Furthermore, ρf is the density of the fluid, ν = μ

ρf
is the kinematic viscosity, and μ

is the dynamic viscosity. The first equation in (2.1) accounts for the conservation of
momentum and is therefore called momentum equation. Here, ∂

∂tu+∇·(u⊗u) describes
the acceleration of the particles of the fluid, ∇p is the pressure gradient, and νΔu
accounts for the friction between the particles of the fluid. The second equation in (2.1)
is called the continuity equation and models the conservation of mass.

Additionally, we prescribe the following boundary conditions on ∂Ω =: Γ = Γstirrer ∪
Γwall ∪ Γsurface:

u = ustirrer on Γstirrer, u = 0 on Γwall,
∂u1

∂n1
=
∂u2

∂n2
= 0, u3 = 0 on Γsurface,

where Γstirrer describes the stirrer, Γwall the fixed walls, and Γsurface the surface of the
liquid in the tank. Furthermore, u1, u2, and u3 are the velocities in x1-, x2-, and x3-
direction, and n1 and n2 are the outer normal vectors in x1- and x2-direction, respectively.
The prescribed velocity on the stirrer ustirrer is given by

ustirrer = [−r sin(ϕ)ω, r cos(ϕ)ω, 0]T ,

where the radius r and the angle ϕ are defined by

r =
√
x2

1 + x2
2, ϕ = arccos

(x1

r

)
,

and ω is the constant angular velocity. This angular velocity is determined by the
adjusted rotational speed N∗, i. e., the number of revolutions per time unit.
The initial condition is chosen such that it is consistent with the boundary conditions.

Remark 2.2. Note that the parameter N∗ can be used as a control input in order to
influence the drop size distribution. In this case, the assumption that ω is constant should
be dropped. Further information about how the control of the drop size distribution can
be realized will be given in Remark 2.9 at the end of this chapter.

Let us now consider how turbulence can be modeled. Theoretically, the flow field of every
incompressible, viscous fluid can be described by the Navier-Stokes equations, regardless
if it is laminar or turbulent. However, if this approach is used to compute a turbulent
flow field, the Navier-Stokes equations must be discretized and solved on such a fine
grid that even the smallest eddies are resolved. Since the size of the smallest eddies is
much smaller than the size of the computational domain, many grid points are needed.
In fact, in 3D the number of required grid points is proportional to Re9/4, see [GDN98],
where Re denotes the Reynolds number. Thus, this approach is only feasible for simple
geometries or problems with low (or medium) Reynolds numbers.
Since these assumptions are not satisfied for the considered application, we will in the
following apply the so-called “Reynolds-averaging” to the Navier-Stokes equations in
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2.2 Modeling the Flow

order to avoid the problems described above. In this approach, the Navier-Stokes equa-
tions are only solved on a relatively coarse grid (i. e., with a manageable number of grid
points), by which the main flow field can be calculated, whereas the effects of the eddies
that are not resolved by this grid are modeled separately. The idea behind this is that in
most practical investigations of turbulent flow, one is not interested in every microscopic
detail, but only in macroscopically observed mean values, see [GDN98]. In addition,
all the details of turbulence cannot be measured in experiments, too. In engineering
science, when turbulent flows are considered, one is mostly interested in the mean flow
rate or the flow resistance of an obstacle. Therefore, only averaged quantities need to
be considered, but not every small variation. As already mentioned before, these small
variations will be “summarized” in the turbulence model.

Thus, we split each quantity – velocity u, pressure p, and external forces g – into a mean
part ū, p̄, and ḡ, respectively, and into the so-called fluctuations u′, p′, and g′, which
model the smallest variations of each quantity:

u = ū+ u′, p = p̄+ p′, g = ḡ + g′.

The mean part is usually chosen as a component-wise temporal averaged value. However,
in general, also other averages can be used. This can be expressed by applying a filter
〈·〉, i. e.,

ū := 〈u〉, p̄ := 〈p〉, ḡ := 〈g〉.
After introducing these relations into the Navier-Stokes equations and averaging them
(i. e., applying the filter operator 〈·〉 to them), we get the Reynolds-averaged Navier-
Stokes equations

∂
∂t ū+ ∇ · (ū⊗ ū) + 1

ρf
∇p̄− νΔū+ ∇ · 〈u′ ⊗ u′〉 = ḡ

∇ · ū = 0

}
in Ω × [0, tend], (2.2)

where the tensor
R(u′) := −〈u′ ⊗ u′〉

is known as Reynolds stress tensor.

Remark 2.3. Note that the term “Reynolds-averaged Navier-Stokes equations” usually
denotes the temporal average of the Navier-Stokes equations, at least in engineering
science. However, another kind of averaging could be applied analogously and would lead
to the same form of equations.

Comparing the equations given in (2.2) with the Navier-Stokes equations (2.1) shows
that the averaging has led to almost the same equations, just with the additional term
−∇ ·R(u′). Since R depends on the fluctuations u′ of the velocities, the system consists
of one more unknown variable u′ so that the Reynolds-averaged Navier-Stokes equations
do not form a closed system any more, i. e., there are more unknowns than equations.
This difficulty is known as the closure problem in turbulence modeling, see [GDN98].
In order to solve this problem, one has to introduce new equations, which are usually
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based on hypotheses and approximations given by empirical information or experimental
data. These equations form the so-called turbulence model.

The probably most widely used turbulence model is the k-ε model introduced in [LS74].
It is a so-called two-equations model, which means that two additional partial differential
equations are introduced in order to get a closed system. In the k-ε model, the following
two additional variables are used to model the Reynolds stresses: the turbulent kinetic
energy k and its dissipation rate ε, given by

k :=
1
2
〈‖u′‖F 〉, ε :=

ν

2
〈‖∇u′ +

(
∇u′

)T ‖2
F 〉,

where ‖ · ‖F denotes the Frobenius norm. (The definition of the Frobenius norm can be
found in Appendix A.)
In the k-ε model the Reynolds tensor R(u′) is approximated by

R(u′) ≈ R(∇ū, k, ε) := −2
3
kI + cμ

k2

ε
(∇ū+ (∇ū)T ),

where I denotes the identity matrix and cμ is a constant. If we insert this into the
averaged momentum equation, i. e., into the first equation in (2.2), and set ν∗ := ν + νt

with

νt = cμ
k2

ε
, (2.3)

this leads to

∂

∂t
ū+ ∇ · (ū⊗ ū) +

1
ρf

∇p̄+
2
3
∇k −∇ · (ν∗(∇ū+ (∇ū)T )) = ḡ. (2.4)

Together with the two additional transport equations for k and ε, which close the system
of equations, the following system is derived:

∂
∂t ū+ ∇ · (ū⊗ ū) + 1

ρf
∇p̄+ 2

3∇k −∇ · (ν∗(∇ū+ (∇ū)T )) = ḡ

∇ · ū = 0
∂
∂tk + ū · ∇k − νt

2 ‖∇ū+ (∇ū)T ‖2
F −∇ · (νt∇k) + ε = 0

∂
∂tε+ ū · ∇ε− c1cμ

2 k‖∇ū+ (∇ū)T ‖2
F −∇ ·

(
1
cε
νt∇ε

)
+ c2

ε2

k = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ in Ω×[0, tend],

(2.5)
where the constants cμ, cε, c1, and c2 are chosen from experimental investigations. In
[LS74], for example, the following values are proposed:

cμ = 0.09, cε = 1.3, c1 = 1.44, c2 = 1.92.

For the averaged velocity ū we can use the same boundary conditions as prescribed for
the velocity u in the Navier-Stokes equations (2.1) before. Therefore, we set:

ū = ustirrer on Γstirrer, ū = 0 on Γwall,
∂ū1

∂n1
=
∂ū2

∂n2
= 0, ū3 = 0 on Γsurface (2.6)
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with the same notation as above.
For k and ε we additionally prescribe the following boundary conditions:

k = 0 on Γstirrer ∪ Γwall,
∂k

∂n
= 0 on Γsurface, (2.7)

and
∂ε

∂n
= 0 on Γ, (2.8)

where n denotes the outer normal vector.
Again, the initial conditions for ū, k, and ε are chosen such that they are consistent with
the boundary conditions.

2.3 Modeling the Population Dynamical Processes

The population dynamical processes can be modeled using the following general popu-
lation balance equation from [Ger99] (cf. Eq. (B.3) in Appendix B)

∂f(e, x, t)
∂t

= −∇x,e · φN (e, x, t) + s(e, x, t),

where f(e, x, t) is the so-called number density function depending on internal and ex-
ternal coordinates e and x as well as on time t. The quantity f describes how many
drops with internal coordinate e are located at a certain time t at a certain point x in
the sense that the total number of drops Ndrops at time t is given by

Ndrops(t) =
∫

Ωx

∫
Ωe

f(e, x, t) de dx,

where Ωx and Ωe denote the geometrical space and the space of internal coordinates,
respectively. Furthermore, ∇x,e· denotes the divergence operator with respect to internal
and external coordinates. The right-hand side consists of the transport density ∇x,e ·φN

and the sum of source and sink terms s. The transport density ∇x,e · φN (e, x, t) can be
split up into the transport density concerning the internal coordinates ∇e ·φN,e and the
one concerning the external coordinates ∇x · φN,x:

∇x,e · φN (e, x, t) = ∇x · φN,x(e, x, t) + ∇e · φN,e(e, x, t),

where the ∇-operators are defined by

∇x :=

⎡
⎢⎣

∂
∂x1
∂

∂x2
∂

∂x3

⎤
⎥⎦ and ∇e :=

⎡
⎢⎣

∂
∂e1
...
∂

∂ea

⎤
⎥⎦ .

Furthermore, the transport flows φN,x and φN,e can be divided into a convective and a
diffusive part:

φN,x = wx · f(e, x, t) + φD
N,x,

φN,e = we · f(e, x, t) + φD
N,e.
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Here, the convective part in x-direction wx · f(e, x, t) describes the deterministic move-
ment of the particles. The diffusive part φD

N,x can be used to account for the Brownian
motion of the particles. The convective part in direction of the internal coordinates
states the rate of change of the single particle properties. The diffusive part can be used
to describe the stochastic variation of the rate of change.

In the discussed application (see page 5), we consider a system without changes in
the internal coordinates per time, which means that there is no growth or shrinkage
of droplets due to mass transfer or reaction. Therefore, we get ∇e · φN,e(e, x, t) =
0. Furthermore, the Brownian motion is assumed to be very small compared to the
deterministic particle movement and, hence, can be neglected. Additionally, we can
approximate the velocity wx by the velocity u of the surrounding continuous phase.
(The drops are just moving with the surrounding fluid.)

Remark 2.4. As already mentioned in the beginning of Section 2.2, if one omits the
assumption that the drops are just moving with the continuous phase and that they do
not have any influence on the flow field, a more complex modeling approach is required.
If we skip the assumption that all the drops are moving with the same velocity as the
continuous phase, a multi-phase modeling approach has to be used, which includes addi-
tional equations for the “movement” of the drops. If one assumes that all the drops are
moving with the same velocity, a two-phase model suffices, otherwise additional equations
for each “group” of drops moving with the same velocity are required.
If we allow the drops to have an influence on the continuous phase (so-called “two-way
coupling”), an additional source term, which describes the influence of the number and
sizes of the drops on the flow field, is required in the (Reynolds-averaged) Navier-Stokes
equations.

However, for the considered application (see page 5), both assumptions (i. e., that the
drops are just moving with the continuous phase and that they have a negligible influence
on the flow field) are justified, since the densities of the continuous and the dispersed
phase are almost equal and the volume fraction of the dispersed phase is sufficiently
small.

With the simplifications described above and using just one internal coordinate, namely
the volume V , we get the following population balance equation:

∂f(V, x, t)
∂t

= −∇x · (u · f(V, x, t)) + s(V, x, t). (2.9)

Note that the divergence operator ∇x· used here is equal to the divergence operator ∇·
in the Navier-Stokes equations (2.1), since we do not have any derivatives with respect
to the internal coordinate V in both cases. Therefore, we will in the following use ∇·
instead of ∇x·.
For f , we prescribe the following initial condition:

f(V, x, t)|t=0 = f0(V, x), (2.10)
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where – for simplicity and for fixed x – f0 is usually chosen to be proportional to the
density of a Gaussian normal distribution. Additionally, we use as boundary conditions

f(V, x, t) = 0 for x ∈ Γ, (2.11)

f(Vmin, x, t) = f(Vmax, x, t) = 0, (2.12)

where Vmin and Vmax denote the minimal and maximal drop volumes.

Remark 2.5. Note that in the numerical simulation usually not the minimal and maxi-
mal possible drop volumes are used as boundary values in Eq. (2.12), but limits according
to the considered application are chosen. By this, fewer drop size classes are needed and
the efforts for the numerical solution are reduced. However, this may lead to problems
concerning the conservation of mass if these limits are not chosen appropriate and drops
of sizes outside the interval (Vmin, Vmax) are generated by coalescence or breakage. Note
that, in some applications, limits that have been chosen in the beginning do not need to
remain suitable after some time if the drop size distribution has changed drastically.

Furthermore, s is the sum of source and sink terms describing the population dynamical
processes. In the considered application, only coalescence and breakage can be observed.
Therefore, the term s can be divided into

s = s+coal + s−coal + s+break + s−break,

where s±coal and s±break are describing the rate of increase / decrease of the number den-
sity function f due to coalescence and breakage, respectively. The four different terms
occurring on the right-hand side are explained graphically in Fig. 2.2. Note that we only
consider binary coalescence (since the probability that three or more drops collide in a
time interval (t, t+ dt) at a certain point is negligibly small compared to the probability
that two drops meet), but allow breakage of a drop into two or more daughter drops. In
the following, we will discuss the mathematical representation of these terms.

Let us start with the coalescence process. The source term s+coal due to coalescence
accounts for all drops that are formed by coalescence of two smaller drops. So, the
source term can be written as (cf. Eq. (B.7) in Appendix B)

s+coal(V, x, t) =
∫ V

0
Rcoal(V ′, V ′′, y(x, t))f(V ′, x, t)f(V ′′, x, t) dV ′,

where V ′ and V ′′ are the volumes of the two coalescing drops. Since the drops with
volumes V ′ and V ′′ form a drop with volume V , the following relation must hold:

V ′′ = V − V ′.

The function Rcoal describes the probability that two individuals coalesce. The vector
y denotes the so-called continuous phase vector (see, e. g., [Ram00]), i. e., the properties
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Source term due to coalescence Sink term due to coalescence

Source term due to dispersion Sink term due to dispersion

Figure 2.2: Source and sink terms for a drop of volume V due to coalescence and break-
age.

of the continuous phase that influence the coalescence process. Thus, the vector y may
depend on pressure, temperature, or other values that we get from the calculation of the
flow field.
Note that the lower limit of the integral could also be substituted by the minimal possible
volume of a drop Vmin.

Remark 2.6. It is clear that theoretically there is no difference between the two formu-
lations, since the number density function has to fulfill the condition f(V, x, t) = 0 for
all V /∈ [Vmin, Vmax].
However, in practice, it is very difficult to determine Vmin and Vmax for a certain ap-
plication. Therefore, it can really make a difference which formulation is used. If the
integration limit is chosen too small, drops of “too small” size are formed that do not
occur in reality. On the other hand, if the limit is chosen too big, we may forget some
drops that are really existent.

The sink term due to coalescence accounts for the droplets that are lost, because they
form a larger one together with another droplet. Mathematically, the sink term due to
coalescence is given by integration over all droplets that are able to coalesce with a given
one (cf. Eq. (B.6)):

s−coal(V, x, t) = −f(V, x, t)
∫ Vmax−V

0
Rcoal(V, V ′, y(x, t))f(V ′, x, t)dV ′,
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where Vmax denotes the maximal possible volume of a drop in the liquid-liquid system.

Breakage can, like coalescence, mathematically be modeled by a source and a sink term.
The source term describes the generation of daughter droplets, whereas the sink term
stands for the loss of the mother drop.

The source term due to breakage is given by (cf. Eq. (B.5))

s+break(V, x, t) =
∫ Vmax

V
n(V ′, y(x, t))γ(V, V ′, y(x, t))Rbreak(V ′, y(x, t))f(V ′, x, t)dV ′,

where n(V ′, y(x, t)) is the number of daughter drops formed by breakage of a drop
with volume V ′, γ(V, V ′, y(x, t)) is the distribution of daughter drops that describes the
probability that a daughter drop with volume V is formed by the breakage of a mother
drop with volume V ′, and Rbreak(V ′, y(x, t)) is the breakage rate that accounts for the
number of dispersed drops per unit time. Since γ is a probability density function, it
has to fulfill the following normalization condition:∫ Vmax

0
γ(V, V ′, y(x, t))dV = 1. (2.13)

Conservation of mass leads to the additional condition:

n(V ′, y(x, t))
∫ V ′

0
m(V )γ(V, V ′, y(x, t)) dV = m(V ′), (2.14)

where m(V ) denotes the mass of a drop with volume V .

The sink term due to breakage accounts for the drops that are lost, because they break
up into smaller droplets. It is given by (cf. Eq. (B.4))

s−break(V, x, t) = −Rbreak(V, y(x, t)) f(V, x, t).

The coalescence rate Rcoal, the breakage rate Rbreak, the distribution of daughter drops
γ as well as the number of daughter drops n have to be specified for certain coalescence
and breakage processes depending on the considered application.

In Subsection 2.3.1, we will describe in detail some approaches how these functions can
be modeled in the considered application. We will investigate three different models,
which have been introduced in [CT77], [TT94], and [Rit02]. In all these models, it is
assumed that the dispersed phase is homogeneously distributed in the physical space,
i. e., that the tank is ideally mixed. In this case, a space-independent population balance
equation can be used to describe the processes in the stirred tank. In addition, in these
approaches, there does not occur any transport term in the population balance equation,
but only changes of the number density function due to coalescence and breakage. But
although we use a more general approach (namely a space-dependent number density
function f(V, x, t) and changes in f due to convective transport, see Eq. (2.9)), we
can nevertheless use the coalescence and breakage rates proposed there. In the model
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considered here, we account for the space-dependency in the coalescence and breakage
rates by substituting the constant value εl used in the three mentioned papers by the
energy dissipation rate ε (from the k-ε model) at a certain point (x, t).

Let us now consider how turbulence can be modeled for the population balance equation.
For this, we use the same approach as for the Navier-Stokes equations, i. e., we split all
occurring quantities, which here are the number density function f and the velocity u,
into mean values f̄ and ū, and fluctuations f ′ and u′. Again, we regard f̄ and ū as
averaged values, received by a filter operator 〈·〉:

f = f̄ + f ′, f̄ = 〈f〉,
u = ū+ u′, ū = 〈u〉.

Inserting this into Eq. (2.9), we get

∂(f̄ + f ′)
∂t

= −∇ · ((ū+ u′)(f̄ + f ′)) + s.

Applying the filter operator 〈·〉 to this equation, we then get the averaged population
balance equation

∂f̄

∂t
= −∇ · (ūf̄) −∇ · 〈u′f ′〉 + s̄,

where s̄ is the mean value of s, i. e., s̄ = 〈s〉. This term represents the averaged source
and sink terms.

According to [Pas04b], the term ∇ · 〈u′f ′〉 is modeled in analogy to the approach for the
Reynolds stress tensor:

∇ · 〈u′f ′〉 = −∇ · (ct ∇f̄),

where ct is the so-called turbulent diffusion coefficient, which is (like the turbulent vis-
cosity νt) not a fluid property, but a function of k and ε. Similar to the Reynolds stress
tensor, which is assumed to be proportional to the gradient of the velocity, it is assumed
here that the term 〈u′f ′〉 is proportional to the gradient of the averaged number density
function ∇f̄ . Furthermore, ct is specified by the turbulent Schmidt number Sct

Sct =
μt

ρfct
,

which is assumed to be approximately one. (In many applications the value 0.9 is used.)
For further details, see [Pas04b] and [Pas04a].
The turbulent eddy viscosity μt is given by the turbulent kinetic energy k and the energy
dissipation rate ε (cf. Eq. (2.3)):

μt = νtρf = cμρf
k2

ε
.

Together, the averaged population balance equation then reads as

∂f̄

∂t
= −∇ · (ūf̄) + ∇ · (ct∇f̄) + s̄. (2.15)

Again, we can apply the former initial and boundary conditions for f to the averaged
number density function f̄ .
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2.3.1 Some Models Describing Coalescence and Breakage Processes

In this subsection, we will describe some possibilities how coalescence and breakage can
be modeled. In the following, we will present the idea and the approach of the physically
based model by Coulaloglou and Tavlarides [CT77]. Furthermore, we will describe the
differences to the later introduced models by Tsouris and Tavlarides [TT94] and by
Ritter [Rit02].
It was decided to consider the models from [CT77] and [TT94], respectively, because both
models are among the most popular (and also most commonly used) models concerning
this topic. Furthermore, the model from [Rit02] will be considered, since this work is
more recent, but, nevertheless, it directly refers to the other two models.

Remark 2.7. In the literature, one can find, besides the three models introduced above,
many more different approaches for modeling the coalescence and breakage phenomena,
see, e. g., [PB90], [BS91], [Che91], [HN96], [LS96], [AKK99], [MML99a], [MML99b],
[Ram00], [AKKM02], [DO02a], [DO02b], [LEMM02], [VDV02], [WWJ03], or [WWJ05].
Concerning the breakage of drops in turbulent dispersions, a review of different model
approaches can be found in [LEMM02]. Furthermore, in [WWJ03], several models for
the distribution of daughter drops have been reviewed. Concerning coalescence, different
models for the sub-processes of collision, film drainage, and rupture have been reviewed
by [Che91]. In addition, in [WWJ05], several approaches for coalescence and breakage
models are compared.

In the three models that will be presented in the following (as in most of the models
in the literature), only one internal coordinate is used to describe the properties of a
particle, namely its volume V (or its diameter d, respectively).
Furthermore, as already mentioned before, it is assumed that the coalescence and break-
age rates are space-independent. Additionally, the influence of the continuous phase
vector is not taken into account.
However, as a first approach, these models can also be used to describe the processes
occurring in liquid-liquid systems that do not fulfill all the assumptions mentioned above.

Coalescence

Coalescence is the confluence of fluid particles with each other or of a fluid particle with
its mother phase. This means that smaller drops are formed together to larger ones.

The process of coalescence of two drops can be divided into three phases [Che91]:

• Collision of the drops,

• drainage of the film between the drops, and

• rupture of the film (after a critical thickness is reached) and confluence of the
drops.
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So, a necessary condition for the coalescence of two drops is that the two drops must
remain in contact for a sufficiently long time so that the processes of film drainage, film
rupture, and coalescence can occur [CT77].

Coalescence rate

In [CT77] the coalescence rate RCT
coal of two drops of volumes V and V ′ is modeled as the

product of the collision frequency ϑCT and the coalescence efficiency λCT
coal:

RCT
coal(V, V

′) = ϑCT (V, V ′)λCT
coal(V, V

′).

There, an expression for the collision frequency ϑCT is derived by assuming that the
mechanism of collision in a locally isotropic flow field is analogous to collisions between
molecules in the kinetic theory of gases. Thus, the following formula is used:

ϑCT (V, V ′) =
(

9π
2

)1/3

(V 2/3 + V ′2/3)(u2(V ) + u2(V ′))1/2, (2.16)

where u2(V ) is the mean square fluctuation velocity of a drop of volume V , given by

u2(V ) = c̄1 ε
2/3
l V 2/9, (2.17)

where εl is the local energy dissipation rate per unit mass and c̄1 is a dimensionless
constant. In [CT77] it is stated that under the assumption that εl is constant throughout
the tank the following relation can be used:

εl ∼ N∗3D2
stirrer, (2.18)

where N∗ is the stirrer speed (revolutions per time unit) and Dstirrer is the stirrer di-
ameter. Note that in [CT77] it is assumed that the stirrer speed is constant. However,
for certain applications, it makes sense to drop this assumption, especially if the stirrer
speed is used to control the drop size distribution.

Inserting Eq. (2.17) into Eq. (2.16) yields

ϑCT (V, V ′) = c̄2 ε
1/3
l (V 2/3 + V ′2/3)(V 2/9 + V ′2/9)1/2

with a constant c̄2.

According to [CT77], the coalescence efficiency λCT
coal can be related to the physical phe-

nomena that occur: The drops must be compressed for a sufficiently long time so that
the film between them can rupture and the drops are able to coalesce. This means that
the drops have to be in contact for a longer time than coalescence needs to take place.
In [CT77] the following approach is used:

λCT
coal(V, V

′) = e−t̄
CT
coal/t̄

CT
contact , (2.19)
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2.3 Modeling the Population Dynamical Processes

where t̄CT
coal and t̄CT

contact are the averages of coalescence and contact time, respectively.

In [CT77] the coalescence time is estimated as the time required for the drainage of the
film between the drops:

t̄CT
coal ∼

3
16
μc F
π σ2

(
1
h2

1

− 1
h2

0

)(
dd′

d+ d′

)2

, (2.20)

where μc is the dynamic viscosity of the continuous phase and σ is the interfacial tension.
Furthermore, F is the force compressing the drops, given by

F ∼ ρcu2

(
dd′

d+ d′

)2

, (2.21)

where ρc denotes the density of the continuous phase and u2 ∼ ε
2/3
l (d + d′)2/3 due to

Eq. (2.17). (The model assumes that the drops are located in a fluid eddy of size d+d′.)
The two parameters h0 and h1 are the film thicknesses at initial contact of the drops
and at the time, when spontaneous film rupture can occur. Inserting the formulas for
u2 and F into Eq. (2.20) leads to

t̄CT
coal ∼

μcρcε
2/3
l (d+ d′)2/3

σ2

(
1
h2

1

− 1
h2

0

)(
dd′

d+ d′

)4

.

In [CT77] the contact time t̄CT
contact is estimated as the time two drops of size d and d′

will stay together in a turbulent flow:

t̄CT
contact ∼

(d+ d′)2/3

ε
1/3
l

.

Assuming the film thicknesses h0 and h1 to be constant, the coalescence efficiency can
be written as

λCT
coal(V, V

′) = exp

⎛
⎝−c̄3

μcρcεl
σ2

(
V 1/3V ′1/3

V 1/3 + V ′1/3

)4
⎞
⎠ . (2.22)

In this way, the coalescence rate RCT
coal in [CT77] is given by

RCT
coal(V, V

′) = cCT
coal,1

(
V 2/3 + V ′2/3

)(
V 2/9 + V ′2/9

)1/2
ε
1/3
l

exp

⎛
⎝−cCT

coal,2

μcρcεl
σ2

(
V 1/3V ′1/3

V 1/3 + V ′1/3

)4
⎞
⎠ ,

where cCT
coal,1 and cCT

coal,2 are parameters that need to be identified from experimental data.

19



2 Modeling

After comparing numerical and experimental results, a damping of turbulence depending
on the volume fraction χ of the dispersed phase was found in [CT77]. Thus, to take this
into account, in [CT77] a different formula for the mean square fluctuation velocity u2

in a liquid-liquid system is used in the derivation of the coalescence rate, namely

u2
χ = (1 + χ)−2u2. (2.23)

Using this formula, in [CT77] the following coalescence rate is derived:

RCT,χ
coal (V, V ′) = cCT

coal,1

1
1 + χ

(
V 2/3 + V ′2/3

)(
V 2/9 + V ′2/9

)1/2
ε
1/3
l

exp

⎛
⎝−cCT

coal,2

μcρcεl
σ2(1 + χ)3

(
V 1/3V ′1/3

V 1/3 + V ′1/3

)4
⎞
⎠ . (2.24)

However, if we insert (2.23) into the Formulas (2.16) and (2.21), we derive a slightly
different final form for the coalescence rate. Instead of the term (1 +χ)3 in the denomi-
nator of the exponential function, we have the term (1 +χ)2, but besides this, there are
no further differences. Note that this difference does not have to be taken into account,
but can simply be put into the adaption parameter cCT

coal,2, since χ is constant in the
considered application.

Remark 2.8. The collision frequency from [CT77] given in Eq. (2.16) is often referred
as

ϑCT,cor(V, V ′) =
(

9π
2

)1/3

(V 1/3 + V ′1/3)2(u2(V ) + u2(V ′))1/2, (2.25)

even in [TT94]. Therefore, this “corrected” version will be used for the simulation, in
particular with regard to the fact that this expression is easier to substantiate physically.
Note that the corresponding term then also has to be substituted in the coalescence rate
(2.24).

In [TT94] basically the same approach as in [CT77] is used to model the coalescence
rate, i. e., the coalescence rate is also expressed by the product of collision frequency and
coalescence efficiency. Furthermore, the collision frequency is also modeled by assuming
that the drops in a turbulent flow behave like gas molecules. However, in [TT94], the
following (corrected) formula is used (cf. Eq. (2.25)):

ϑTT (d, d′) =
π

4
(
d+ d′

)2
(
u2(d) + u2(d′)

)1/2
with u2(d) = 1.07ε2/3

l d2/3, (2.26)

where the constant εl is given by Eq. (2.18) as proposed in [CT77]. As approach for the
coalescence efficiency, also Eq. (2.19) is used.

The main difference between the two models lies in the formulas for coalescence and
contact time. In [TT94], the averaged coalescence time t̄TT

coal between two drops with
diameters d and d′ is given by

t̄TT
coal = c̄4

6πμcc̄5

ρcε
2/3
l (d+ d′)2/3

,
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2.3 Modeling the Population Dynamical Processes

where μc and ρc are the viscosity and density of the continuous phase, respectively. In
[TT94] the value 3.44 is used for the constant c̄4. The parameter c̄5 is given by

c̄5 = 1.872 ln

[
h

1/2
0 + 1.378c̄6
h

1/2
1 + 1.378c̄6

]
+ 0.127 ln

[
h

1/2
0 + 0.312c̄6
h

1/2
1 + 0.312c̄6

]
,

where h0 and h1 are the film thicknesses at initial contact of the drops and at the time,
when spontaneous film rupture can occur, respectively. The parameter c̄6 is given by

c̄6 =
μc

μd

(
dd′

2(d+ d′)

)1/2

,

where μd is the viscosity of the dispersed phase. For the contact time t̄TT
contact of two

drops with diameters d and d′, the following formula is used:

t̄TT
contact =

(D2
tankHtank)1/3

31.25N∗Dstirrer
,

where N∗ is the stirrer speed, Dtank is the vessel diameter, Htank is the tank height, and
Dstirrer is the stirrer diameter (see Fig. 2.1).

Altogether, the coalescence rate in [TT94] is given by

RTT
coal(d, d

′) = cTT
coal,1ε

1/3
l

(
d+ d′

)2
(
d2/3 + d′2/3

)1/2

exp

(
−cTT

coal,2

μcc̄5

ρcε
2/3
l (d+ d′)2/3

N∗Dstirrer

(D2
tankHtank)1/3

)
,

where the parameters cTT
coal,1 and cTT

coal,2 can be used as adaption parameters. In [TT94]
they are given by

cTT
coal,1 =

π

4

√
1.07 ≈ 0.812422 and cTT

coal,2 = c4 · 6π · 31.25 ≈ 2026.33.

In [Rit02] a kind of mixture of the two models introduced above is used. For the collision
frequency Eq. (2.26) from [TT94] is used, whereas the coalescence efficiency is modeled
by Eq. (2.22) as given in [CT77]. Furthermore, a damping factor DF, depending on the
volume fraction χ, given by

DF(χ) =
[
1 + 2.5 χ

μd + 0.4μc

μd + μc

]2

, (2.27)

is included in both functions, the collision frequency as well as the coalescence efficiency.
Here, as before, μd and μc denote the dynamic viscosity of the dispersed and the contin-
uous phase, respectively. Note that this damping factor was already used in [TT94] in
order to take into account the turbulence damping of the dispersed phase when modeling
the breakage process (see below).
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Altogether, the coalescence rate in [Rit02] is given by

RR
coal(d, d

′) = cRcoal,1
ε
1/3
l

DF(χ)1/2

(
d+ d′

)2
(
d2/3 + d′2/3

)1/2

exp

(
−cRcoal,2

μcρcεl
σ2DF(χ)3/2

(
dd′

d+ d′

)4
)
,

where cRcoal,1 and cRcoal,2 can be used as adaption parameters.

Breakage

Breakage means the breakup of larger drops into smaller ones. This can be originated
by the collision of drops with each other or with the stirrer or by shear stresses caused
by the streaming.
Deformation and breakage of a drop in a turbulent flow depends on many parameters,
e. g., drop size, density, interfacial surface tension, viscosity of both phases, holdup
fraction, local flow, and local energy dissipation [CT77].

In the models that will be presented in the following, binary breakage is assumed (as in
most of the models in the literature). However, in [MGW+06] (see also [MPK06]), it was
shown that breakage into more than two daughter drops is usually much more probable.
There, experimental investigations were made in order to determine the number and
sizes of the daughter drops formed by the breakage of a single mother drop, and the
results were used to obtain an enhanced daughter drop distribution. More theoretical
modeling approaches for multiple particle breakage, however, can only rarely be found
in the literature, see, e. g., [HN96] and [DO02b].

Breakage rate

Again, we first consider the approach introduced in [CT77], which is based on the nature
of breakage. In this approach, it is assumed that the droplets are in a turbulent flow field
that is locally isotropic. (Experimental investigations show that the flow field can be
considered as locally isotropic for Re ≥ 10,000, where Re denotes the Reynolds number,
see [CT77].) The droplet size d is within the inertial subrange, i. e., it is much larger
than the Kolmogorov scale and much smaller than the macro scale, which is given by the
diameter of the stirrer in the considered application. Furthermore, it is assumed that
viscous effects are negligible. The drops are deformed due to local pressure fluctuations.
A drop breaks up if the energy of the turbulent eddy colliding with the drop exceeds the
surface energy of the drop.

In [CT77] the following approach is used for the breakage rate of a droplet of volume V :

RCT
break(V ) =

1
tb

Nbreak(V )
Ndrops(V )

,
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2.3 Modeling the Population Dynamical Processes

where tb is the breakage time and Nbreak(V )
Ndrops(V ) is the fraction of drops breaking. This fraction

is assumed to be proportional to the fraction of turbulent eddies colliding with the drop
and having a turbulent kinetic energy greater than the surface energy of the drop. This
is modeled by

Nbreak(d)
Ndrops(d)

= e−Eσ/Ēkin ,

where Eσ(d) is the surface energy of a drop with diameter d and Ēkin(d) is the mean
turbulent kinetic energy of an eddy of size d. For the surface energy Eσ the formula

Eσ(d) = c̃1 σd
2

is used, whereas the mean turbulent kinetic energy Ēkin is given by

Ēkin(d) = c̃2 ρdd
3u2(d), (2.28)

where σ is the interfacial tension and ρd is the density of the dispersed phase. The mean
square of the relative velocity u2(d) between two points separated by a distance d in the
inertial subrange is again given by

u2(d) = c̃3 ε
2/3
l d2/3,

where for εl, as before, Eq. (2.18) can be used.

The breakage time tb is estimated by assuming that the motion of the centers of mass of
the daughter drops is similar to the relative motion of two lumps of fluid in a turbulent
flow field:

tb ∼ d2/3ε
−1/3
l .

Altogether the breakage rate in [CT77] is given by

RCT
break(V ) = cCT

break,1V
−2/9ε

1/3
l exp

(
−

cCT
break,2σ

ρdε
2/3
l V 5/9

)

with two dimensionless constants cCT
break,1 and cCT

break,2 that can be used as adaption pa-
rameters.

Taking again the turbulence damping due to the volume fraction χ of the dispersed
phase into account, the breakage rate in [CT77] becomes

RCT,χ
break(V ) = cCT

break,1

ε
1/3
l

1 + χ
V −2/9 exp

(
−
cCT
break,2σ(1 + χ)2

ρdε
2/3
l V 5/9

)
. (2.29)

Again, we get a slightly different formula if we substitute u2 by u2
χ in Eq. (2.28), namely

the term 1 + χ in the denominator of RCT,χ
break does not occur. However, this difference

can again be put into the adaption parameter cCT
break,1.
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Let us now have a closer look at the model from [TT94]. There, the approach from
[PB90] is used to model the breakage rate, i. e., the breakage rate RTT

break of a drop with
diameter d is assumed to be given by the product of the eddy-drop-collision frequency
ϑTT and the breakage efficiency λTT

break:

RTT
break(d) = ϑTT (d)λTT

break(d).

This model is based on the assumption that the turbulent flow in a stirred tank is
isotropic and that the drop size is in the inertial subrange (cf. the model from [CT77]).
Furthermore, it is assumed that a drop only breaks up if it collides with an eddy that is
smaller than the drop. (Larger eddies only transport the drops.)

In this model, the eddy-drop-collision frequency is modeled (like the drop-drop collision
frequency in the model from [CT77]) by assuming that the eddies and drops move like
ideal gas molecules. Therefore, their collision process can be described with the help of
the kinetic theory of gases.
Accordingly, the following formula for the collision frequency between drops of size d
and eddies of a size range that can break these drops is used in [TT94]:

ϑTT (d) =
∫
π

4
(de + d)2(u2

e + u2
d)

1/2dne, (2.30)

where de is the size of an eddy that can break a drop with diameter d and dne is the
number of eddies of size between de and de + Δde. Eddy velocity ue and drop velocity
ud are given by

u2
e = 8.2

(
εl
κe

)2/3

and u2
d = 1.07ε2/3

l d2/3,

where εl is chosen as before and κe = 2
de

is the wave number of an eddy with diameter
de.

Inserting these two formulas into Eq. (2.30) (and using de = 2
κe

) gives

ϑTT (d) =
∫
π

4

(
2
κe

+ d

)2

ε
1/3
l

[
8.2κ−2/3

e + 1.07d2/3
]1/2

dne.

In [TT94] the integration variable ne is substituted by the eddy wave number κe by
using the following differential equation for the number of eddies per unit mass of the
fluid ne,m:

dne,m(κe)
dκe

= 0.1
κ2

e

ρf
,

where ρf is the density of the fluid. Hence, the collision frequency in [TT94] is given by

ϑTT (d) = c̃4ε
1/3
l

∫ 2/de,min

2/d

(
2
κe

+ d

)2 [
8.2κ−2/3

e + 1.07d2/3
]1/2

κ2
edκe.

Here, the integral term represents the total number of eddies that are able to break
drops with diameter d. The upper limit of the integration is the (large) wave number
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that corresponds to the eddy size de,min. This eddy size de,min can be taken arbitrarily
as half of the critical drop size, since eddies of size less than the critical drop diameter
are not able to break any drop in the system because they do not have enough kinetic
energy. In [TT94] the constant c̃4 includes the turbulence damping factor DF(χ) due
to the breakage as well as the fraction of the volume of the stirrer region Vstirrer to the
total volume of the tank Vtank:

c̃4 =
Vstirrer

Vtank

0.1π
4

DF(χ),

where the damping factor DF(χ) is given by Eq. (2.27).

In [TT94] the breakage efficiency is modeled by an exponential function (cf. [CT77] or
[PB90]), which accounts for the different forces acting on the drop. (A drop breaks if its
surface tension is exceeded by the energy of a colliding eddy.) Therefore, the breakage
efficiency can be described by

λTT
break = exp

(
− Ēσ

c̃5Ēeddy

)
,

where Ēσ is the average energy required for drop breakage, Ēeddy is the average energy of
an eddy, and c̃5 is a constant. The average energy required for drop breakage is assumed
to be the arithmetic mean of the minimal and maximal energy required for forming two
daughter drops. The minimal energy is given by the energy needed to form the smallest
and largest possible daughter drop, the maximal energy by the one needed to form two
equal-size drops. By this, one gets

Ēσ =
1
2

{
2πσ

(
d

21/3

)2

︸ ︷︷ ︸
maximal energy Eσ,max

+ πσd2
max

(
+
)
πσd2

min︸ ︷︷ ︸
minimal energy Eσ,min

}
−

(
πσd2,

)
︸ ︷︷ ︸

energy of breaking drop

where σ is the interfacial tension and dmax and dmin are the diameters of the largest
and smallest possible drops that can be formed by breakage of a drop with diameter d.
(Note that, due to conservation of mass, the formula d3 = d3

max + d3
min must hold.) The

average energy of an eddy is given by

Ēeddy = 0.43πρf ε
2/3
l d11/3

e

de= 2
κe= 5.47πρf ε

2/3
l κ−11/3

e .

Altogether the breakage rate in [TT94] is given by

RTT
break(d) = cTT

break,1DF(χ)ε1/3
l

∫ 2/de,min

2/d

(
2
κe

+ d

)2 [
8.2κ−2/3

e + 1.07d2/3
]1/2

exp

(
− Ēσ

cTT
break,2Ēeddy

)
κ2

edκe, (2.31)
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where DF(χ) is the (above mentioned) damping factor dependent on the volume fraction
χ of the dispersed phase. In [TT94] the following values are used for the constants cTT

break,1

and cTT
break,2:

cTT
break,1 = 0.0118 and cTT

break,2 = 1.3.

The breakage rate introduced in [Rit02] is quite similar to the one used in [TT94]. The
only differences are that in [Rit02] the damping factor DF(χ) does not occur in the
numerator, but the square root of it is put into the denominator, and that different
values for the adaption parameters are used. Thus, the breakage rate in [Rit02] is given
by

RR
break(d) =

cRbreak,1ε
1/3
l

(DF(χ))1/2

∫ 2/de,min

2/d

(
2
κe

+ d

)2 [
8.2κ−2/3

e + 1.07d2/3
]1/2

exp

(
− Ēσ

cRbreak,2Ēeddy

)
κ2

edκe,

and the constants cRbreak,1 and cRbreak,2 are set to

cRbreak,1 = 0.1
π

4
≈ 0.0785 and cRbreak,2 = 1.

Distribution of daughter drops

In order to be able to model the source term due to breakage, a distribution of daughter
drops is needed. The distribution of daughter drops is a probability density function,
which gives the probability that the breakage of a drop of diameter d′ (or volume V ′) leads
to a daughter drop of diameter d (or volume V ). The distribution of daughter drops
(or breakage distribution function) can be modeled in different ways. Many different
approaches can be found in the literature (see again, e. g., [CT77], [TT94] and [Rit02]
or the references given in Remark 2.7 on page 17).

In [CT77] it is assumed that the distribution of daughter drops takes the form of a
normal distribution:

γCT (V, V ′) =
2.4
V ′ exp

(
−4.5

(2V − V ′)2

V ′2

)
.

Here, the variance is chosen such that more than 99.6 percent of the droplets formed lie
within the volume range between 0 and V ′. Note that this function can be rewritten in
the following form:

γCT (V, V ′) =
1

V ′
6

√
2π

exp

(
(V − 1

2V
′)2

2
(

V ′
6

)2

)
. (2.32)
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In [Rit02], a normal distribution is used, given by the following formula:

γR(V, V ′) =
1

V ′
10

√
2π

exp

⎛
⎜⎝−

(
V − V ′

2

)2

2
(

V ′
10

)2

⎞
⎟⎠ . (2.33)

Comparison with Eq. (2.32) shows that the normal distribution used in [Rit02] has a
smaller variance than the one used in [CT77].

It can be shown that the energy requirement for a breakage into two equal-size drops is
greater than the energy requirement for a breakage into a small and a large drop [TT94].
The use of a normal distribution, which is unimodal and has a higher probability density
in the middle, does not take this into account. Therefore, it is better to use a bimodal
distribution with higher probability at the ends than in the middle.

In [TT94] the following function is used as distribution of daughter drops:

γTT (d, d′) =
Ebreak, min(d) + Ebreak, max(d) −Ebreak(d)∫ d′

0 [Ebreak, min(δ) + Ebreak, max(δ) − Ebreak(δ)] dδ
,

where Ebreak, min(d) and Ebreak, max(d) are the minimal and maximal energy needed for
the breakage of a drop with diameter d into two daughter drops, and Ebreak(d) is the
energy of a dispersing drop of diameter d.

In [TT94] concrete formulas for these energies are only given for the discrete case. How-
ever, alternatively one can also use the above introduced formulas to model these energy
terms:

Ebreak, min(d) := Eσ,min(d) = πσd2
max + πσd2

min with d3
max + d3

min = d3,

Ebreak, max(d) := Eσ,max(d) = 2πσ
(

d

21/3

)2

,

Ebreak(d) := πσd2.

In [Ger99] another bimodal distribution can be found:

γG
∗ (V, V ′) = V ′(V ′ − V ) exp

(
−ĉ41

((
V ′

V
− 1

2

)4

−
(

1 − 2ĉ2√
2

(
V ′

V
− 1

2

))2
))

with constants ĉ1 = 0.065 and ĉ2 = 3.5. This function has to be scaled such that it
fulfills the normalization condition (2.13). This leads to:

γG(V, V ′) =
γG
∗ (V, V ′)∫ Vmax

0 γG
∗ (V, V ′)dV ′

.

In general, for every distribution of daughter drops, the dependency on the internal
coordinate can be changed from volume V to diameter d (and vice versa) by the following
transformation:

γ(d, d′) = 3cV d2γ(V, V ′),

where cV is the shape factor between volume and diameter.
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2.4 Summary

At the end of this chapter, let us summarize all equations so that we get one coupled
system describing the processes in the stirred tank. This system consists of the Reynolds-
averaged Navier-Stokes equations with k-ε turbulence model given by Eq. (2.5) and the
averaged population balance equation given by (2.15). Note that the source and sink
terms s have to be modeled such that Eqs. (2.13) and (2.14) are satisfied. In addition,
we have the following initial and boundary conditions (cf. Eqs. (2.6), (2.7), and (2.8) as
well as (2.10) and (2.11), but for the averaged number density function f̄). Altogether,
the following system is derived:

∂
∂t ū+ ∇ · (ū⊗ ū) + 1

ρf
∇p̄+ 2

3∇k −∇ · (ν∗(∇ū+ (∇ū)T )) = ḡ

∇ · ū = 0
∂
∂tk + ū · ∇k − νt

2 ‖∇ū+ (∇ū)T ‖2
F −∇ · (νt∇k) + ε = 0

∂
∂tε+ ū · ∇ε− c1cμ

2 k‖∇ū+ (∇ū)T ‖2
F −∇ ·

(
1
cε
νt∇ε

)
+ c2

ε2

k = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ in Ω×[0, tend],

∂f̄

∂t
+ ∇ · (ūf̄) −∇ · (ct∇f̄) = s̄ in [Vmin, Vmax] × Ω × [0, tend],

u(x, t = 0) = u0(x) in Ω,
p(x, t = 0) = p0(x) in Ω,
k(x, t = 0) = k0(x) in Ω,
ε(x, t = 0) = ε0(x) in Ω,

f(V, x, t = 0) = f0(V, x) in [Vmin, Vmax] × Ω,

ū = ustirrer on Γstirrer × [0, tend],
ū = 0 on Γwall × [0, tend],

∂ū1
∂n1

= ∂ū2
∂n2

= 0, ū3 = 0 on Γsurface × [0, tend],

k = 0 on Γstirrer ∪ Γwall × [0, tend],
∂k
∂n = 0 on Γsurface × [0, tend],
∂ε
∂n = 0 on Γ × [0, tend],

f(V, x, t) = 0 on [Vmin, Vmax] × Γ × [0, tend],
f(Vmin, x, t) = f(Vmax, x, t) = 0 in Ω × [0, tend].

Remark 2.9. As already mentioned before, in the derivation of this system of equations
a one-way coupling was assumed.
However, for further applications, like for systems, where the dispersed phase has an
influence on the continuous phase that cannot be neglected, a more complex modeling
approach has to be considered (at least a two-way coupling, usually in combination with
a two- or multi-phase fluid flow model), see Remark 2.4.

Furthermore, as soon as one likes to control the drop size distribution, also a two-way
coupling has to be considered. In this case (and under the assumption that the drops
are just moving with the fluid and do not have any influence on the continuous phase),
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2.4 Summary

one can still use a single-phase fluid flow model. However, the influence of the input
parameters (which are set according to the observed drop size distribution, for example)
has to be additionally modeled, which leads to an additional source term in the Reynolds-
averaged Navier-Stokes equations.

In many technical applications, like in the production of polystyrene foam, for example,
mono-disperse systems with a certain drop size are desired. For such an application, the
system of equations above must be extended as described in the following.
The right-hand side of the system of equations describing the fluid flow as well as the
behavior of the drops in the turbulent dispersion must be extended by a control term
S(Uin), where Uin summarizes the control or input parameters. The input parameters
influencing the averaged population balance equation are, e. g., the pH-value, the volume
fraction of the dispersed phase, the stirrer speed, or physical characteristics of the liquids,
whereas the flow field is mainly influenced by one parameter, namely the stirrer speed.
Furthermore, an output equation of the following form must be added to the system:

Uout = Y(ū, p̄, k, ε, f̄ ).

Here, Uout consists of the output parameters, which can be mean values of the distribu-
tion (like the Sauter mean diameter or the moments of the distribution) or parameters
describing the width of the distribution (like the standard deviation), for example. The
output parameters are usually quantities that can be measured and / or calculated. They
are used to compare the calculated drop size distribution with the desired one in order to
determine the input for the next optimization step.
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3 Analysis of the Dynamical Behavior of
the Coupled System

In this chapter, we will apply a method of lines (MOL) approach to the system of equa-
tions describing the considered stirred liquid-liquid system in order to analyze the dy-
namics of the process. This spatial discretization leads to a differential-algebraic system,
for which an index will be determined, since this tells us something about how strong
the coupling between the equations is and, therefore, also something about numerical
problems that may arise.

Generally, one can say that from the numerical point of view, it is desirable for the
differential-algebraic system to have an index that is as small as possible [BCP96], since
higher-index systems usually are more difficult to solve. Therefore, it is quite important
to determine an index so that the problem can be treated appropriately. If an higher
index is detected, index reduction may be one way to treat the problem.

Remark 3.1. Note that if a stationary system is considered, the framework of differential-
algebraic equations is not appropriate, since the typical problems of differential-algebraic
equations do not occur in this case. On the other hand, this framework is particularly
suitable for analyzing the dynamical behavior of a time-dependent system (like the cou-
pled system in the considered application). Furthermore, the analysis of the underlying
differential-algebraic system is important if control or optimization of a process is inves-
tigated. Even if the desired state of the system is a stationary one (as for the considered
coupled system, where the goal is to derive a stationary drop size distribution with a
certain mean drop size and a small standard deviation), the “way to get there” can be
highly time-dependent and, thus, the dynamics of the underlying differential-algebraic
system plays an important role and has to be analyzed.
In this case, the method of lines (i. e., a semi-discretization in space), which leads to a
differential-algebraic system, is a very good approach for the treatment of the system of
partial differential equations. If the system was first discretized in time (using the so-
called Rothe-method), it would be transformed to a stationary system, and the analysis
described below could not be performed (see also Remark 4.4 in Chapter 4).

31



3 Analysis of the Dynamical Behavior of the Coupled System

3.1 Derivation of the Differential-Algebraic System

As we have seen in Chapter 2, the system of equations describing the processes in the
stirred tank is given by:

∂

∂t
ū+ ∇ · (ū⊗ ū) +

1
ρf

∇p̄+
2
3
∇k −∇ · (ν∗(∇ū+ (∇ū)T )) = ḡ,

∂

∂t
k + ū · ∇k − νt

2
‖∇ū+ (∇ū)T ‖2

F −∇ · (νt∇k) + ε = 0,

∂

∂t
ε+ ū · ∇ε− c1cμ

2
k‖∇ū+ (∇ū)T ‖2

F −∇ ·
(

1
cε
νt∇ε

)
+ c2

ε2

k
= 0, (3.1)

∂f̄

∂t
+ ∇ · (ūf̄) −∇ · (ct∇f̄) = s̄,

∇ · ū = 0,

where the constants cμ, cε, c1, and c2 are defined as in Section 2.2.

Note that the quantities ν∗ = ν + νt with νt = cμ
k2

ε and ct = νt
Sct

= cμ
k2

ε
Sct

are dependent
on k and ε. Furthermore, since the term s is modeled in such a way that it is dependent
on the energy dissipation rate ε (see Section 2.3), the averaged source term s̄ is also
dependent on ε.
Additionally, we have to take care that the condition for mass conservation, given by
Eq. (2.14), is fulfilled.

In the following, the system of equations given in (3.1) will be discretized in space in
order to analyze the resulting differential-algebraic system that describes the dynamics
of the process.
In analogy to the construction in [BCP96], it can be shown that the spatial discretization
of the Navier-Stokes equations (2.1) leads to a semi-discretized system of the following
form:

M
duh

dt
+ (Ndiff +Nconv(uh))uh +

1
ρf
Cph = gh,

C̃Tuh = 0,

where uh, ph, and gh are the semi-discretized velocity, pressure, and external forces,
respectively. Furthermore, M is the mass matrix and Ndiff and Nconv are the discretized
diffusive and convective parts, corresponding to −νΔu and ∇· (u⊗u), respectively. The
matrices C and C̃T are the discretized gradient and divergence operators. (Normally
the discretization is done in such a way that C̃ = C holds, but in general this equality
does not need to be satisfied.)

For the system in (3.1), consisting of the Reynolds-averaged Navier-Stokes equations
with k-ε model and the averaged population balance equation, this can be done in the
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3.1 Derivation of the Differential-Algebraic System

same way. Here, spatial discretization leads to

M1
duh

dt
+ (N1(uh) +N2(kh, εh))uh +

2
3
C1kh +

1
ρf
C2ph = G1,

M2
dkh

dt
+ (N3(uh) +N4(kh, εh))kh +N5(kh, εh)uh = G2(εh),

M3
dεh
dt

+ (N3(uh) + Ñ4(kh, εh))εh + Ñ5(kh, εh)uh = G3(kh, εh), (3.2)

M4
dfh

dt
+ (N6(uh) +N7(kh, εh))fh = G4(εh, fh),

CT
3 uh = 0,

where uh and ph are the semi-discretized averaged velocity and pressure, respectively.
Furthermore, kh, εh, and fh are the corresponding quantities derived by the semi-
discretization of the turbulent kinetic energy k, the energy dissipation ε, and the averaged
number density function f̄ . The terms G1, . . . , G4 on the right-hand side are the semi-
discretized source terms. The matrices M1, . . . , M4 are mass matrices, the matrices N1,
. . . , N7, Ñ4, and Ñ5 are discretizations of the nonlinear terms. Finally, C1 and C2 are
the discretized gradient operators and CT

3 is the discretized divergence operator.

Additionally, the discretization of the equation for mass conservation, given by Eq. (2.14),
leads to

G5(mh) = 0, (3.3)

where mh is the vector consisting of the discretized particle masses.

For the sake of clarity in notation, we summarize the quantities uh, kh, εh, and fh to
the variable qh := [uT

h , k
T
h , ε

T
h , f

T
h ]T . If we further define

M =

⎡
⎢⎣ M1

. . .
M4

⎤
⎥⎦ , P =

⎡
⎢⎢⎣

− 1
ρf
C2ph

0
0
0

⎤
⎥⎥⎦ ,

and

G =

⎡
⎢⎢⎣

−(N1(uh) +N2(kh, εh))uh − 2
3C1kh + G1

−(N3(uh) +N4(kh, εh))kh −N5(kh, εh)uh + G2(εh)
−(N3(uh) + Ñ4(kh, εh))εh − Ñ5(kh, εh)uh + G3(kh, εh)
−(N6(uh) +N7(kh, εh))fh + −G4(εh, fh)

⎤
⎥⎥⎦ ,

the system in (3.2) together with Eq. (3.3) can be written as⎡
⎣ M

0
0

⎤
⎦
⎡
⎣ q̇h
ṁh

ṗh

⎤
⎦ =

⎡
⎣ G + P

G5

CT
3 uh

⎤
⎦ , (3.4)

where q̇h, ṁh, and ṗh denote the time derivatives of the corresponding variables. Note
that G is not dependent on the semi-discretized pressure ph.
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3 Analysis of the Dynamical Behavior of the Coupled System

Before we will determine an index of the differential-algebraic system derived above in
the next section, we will say something about its special form. For this, we need the
following definition from [Mär01].

Definition 3.2. Consider the following nonlinear differential-algebraic equation

V(z(t), t) ˙(w(z(t), t)) + b(z(t), t) = 0, t ∈ � ⊂ �, z(t) ∈ �z ⊂ �n̂, (3.5)

where the functions V : �z × � → �
n̂×n̂, w : �z × � → �

n̂, and b : �z × � → �
n̂ are

continuous in their arguments and have the continuous partial derivatives Vz, wz, and
bz. Denote W(z, t) := wz(z, t).
The leading term in (3.5) is said to be properly stated (or properly formulated) if

ker (V(z, t)) ⊕ im (W(z, t)) = �
n̂, z ∈ �z, t ∈ �,

where im and ker denote the image and the kernel, respectively, and if there exists a
continuously differentiable projector function U : � → �

n̂×n̂ such that (U(t))2 = U(t),
ker(V(z, t)) = ker(U(t)), im(W(z, t)) = im(U(t)), and w(z, t) = U(t)w(z, t) holds for
z ∈ �z, t ∈ �.
Lemma 3.3. The system (3.4) is in properly stated leading term form.

Proof. Obvious, since Eq. (3.4) can be rewritten as⎡
⎣ Inq

0
0

⎤
⎦ ˙⎛
⎝
⎡
⎣ Inq

0
0

⎤
⎦
⎡
⎣ qh
mh

ph

⎤
⎦
⎞
⎠−

⎡
⎣ M−1(G + P)

G5

CT
3 uh

⎤
⎦ = 0,

and it holds:

ker

⎛
⎝
⎡
⎣ Inq

0
0

⎤
⎦
⎞
⎠⊕ im

⎛
⎝
⎡
⎣ Inq

0
0

⎤
⎦
⎞
⎠ = �

n̂,

where nq denotes the size of qh and n̂ the dimension of the whole system. Thus, the
projector U (see Definition 3.2) can be chosen as

U =

⎡
⎣ Inq

0
0

⎤
⎦ .

Remark 3.4. Note that if a differential-algebraic equation is in properly stated leading
term form, this has some advantages concerning its analysis and numerical treatment,
see, e. g., [Mär02]. First of all, from this special form, one can directly read off, which
derivatives of the unknown function are involved and in what way. Thus, stronger solv-
ability results and a better performance of numerical methods can be obtained. Further-
more, the use of the properly stated leading term form for differential-algebraic equations
yields advantages in optimal control problems because of the symmetry between the origi-
nal (linear) differential-algebraic equation and its adjoint equation (both having the same
form). Further details on this can be found in [Mär02] and references therein.
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3.2 Index Determination

3.2 Index Determination

In this section, we will determine an index of the differential-algebraic system in (3.4).

In the literature, various index concepts can be found. The most widely used are the
differentiation index (d-index) introduced in [Gea88], [Gea90], and [CG95] and the per-
turbation index (p-index) introduced in [HLR89] (see also [HW96]). But there are also
other concepts, like the geometric index, see [Rhe84], the tractability index, see [GM86],
or the structural index, see [Pan88].

Here, the so-called “strangeness-index” (s-index), introduced in [KM94] and [KM98] will
be used for the analysis, since this concept is the most general one of all these index
concepts. The strangeness-index can be seen as generalization of the differentiation index
(see [KM94], [KM96b], and [KM01]) as well as of the perturbation index (see [KM96a]).
Furthermore, also over- and under-determined systems can be treated with this concept
(see [KM01]).

Before we will determine the index of the system in (3.4), we will give a brief introduc-
tion to the concept of the strangeness-index of general (nonlinear) differential-algebraic
equations.

3.2.1 The Strangeness-Index of a General Differential-Algebraic Equation

In this subsection, we give a brief introduction how the strangeness-index of a nonlinear
differential-algebraic equation is defined and how it can be determined. This introduction
is a brief summary of parts of the theory presented in [KM06].

We consider a general differential-algebraic equation

F (t, z, ż) = 0 (3.6)

with F ∈ C(�×�z ×�ż,�
n̂), � ⊂ � (compact) interval, �z,�ż ⊂ �n̂ open.

The standard method for the solution of nonlinear problems is Newton’s method. There,
we first linearize around some given initial guess, then solve the so obtained linear
problem, and correct the initial guess afterwards.
This suggests to consider any linearization of (3.6) and apply the theory for linear systems
with variable coefficients to the resulting equations in order to determine the index of
the nonlinear system given in (3.6). But counter-examples show that one must expect
that away from the solution the constant rank assumptions, which are required for the
analysis in the linear case (see [KM98]), do not hold anymore. Thus, it does not make
sense to consider linearizations of the original equation alone. We must also include
derivatives of the equation. Moreover, the common constant rank assumptions must be
restricted to a subset of a neighborhood.

For these reasons, we define the so-called “inflated differential-algebraic equation”, which
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3 Analysis of the Dynamical Behavior of the Coupled System

consists of the original equation and its derivatives up to order l ∈ �0, by

Fl(t, z, ż, . . . , z(l+1)) =

⎡
⎢⎢⎢⎣

F (t, z, ż)
d
dtF (t, z, ż)

...
( d

dt )
lF (t, z, ż)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣ F (t, z, ż)
Ft(t, z, ż) + Fz(t, z, ż)ż + Fż(t, z, ż)z̈

...

⎤
⎥⎦ = 0

and denote its Jacobians by

Ml(t, z, ż, . . . , z(l+1)) = Fl;ż,...,z(l+1)(t, z, ż, . . . , z(l+1)),

Nl(t, z, ż, . . . , z(l+1)) = −
[
Fl;z(t, z, ż, . . . , z(l+1)), 0, . . . , 0

]
.

If we define
E := Fż(t, z, ż) and A := −Fz(t, z, ż),

the Jacobians Ml and Nl can be written as in the linear case, see [KM06]:

Ml =

⎡
⎢⎢⎢⎢⎢⎢⎣

E

Ė −A E

Ë − 2Ȧ 2Ė −A E
...

. . . . . .

E(l) − lA(l−1) . . . lĖ −A E

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

Nl =

⎡
⎢⎢⎢⎢⎢⎣

A 0 . . . 0
Ȧ 0 . . . 0
Ä 0 . . . 0
...

...
...

A(l) 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦ .

Before we can define the strangeness-index of the general nonlinear differential algebraic
equation, given in Eq. (3.6), we need the following hypothesis.

Hypothesis 3.5. There exist integers μ̂, â, and d̂ such that the set

Lμ̂ = {(t, z, ż, . . . , z(μ̂+1)) ∈ �×�n̂ ×�n̂ × · · · ×�n̂ | Fμ̂(t, z, ż, . . . , z(μ̂+1)) = 0}

associated with F is nonempty and such that for all values (t, z, ż, . . . , z(μ̂+1)) ∈ Lμ̂,
where Fμ̂(t, z, ż, . . . , z(μ̂+1)) = 0 is considered as an algebraic equation, there exists a
(sufficiently small) neighborhood, in which the following properties are satisfied.
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3.2 Index Determination

1. We have
rank(Mμ̂(t, z, ż, . . . , z(l+1))) = (μ̂+ 1)n̂ − â,

such that there exists a matrix function Z2 of size (μ̂+ 1)n̂× â and with pointwise
maximal rank, which is smooth on Lμ̂ and satisfies there ZT

2 Mμ̂ = 0.

2. We have

rank(A2(t, z, ż, . . . , z(l+1))) = â with A2 = ZT
2 Nμ̂[In̂ 0 . . . 0]T ,

such that there exists a matrix function T2 of size n̂ × d̂, d̂ = n̂ − â, and with
pointwise maximal rank, which is smooth on Lμ̂ and satisfies there A2T2 = 0.

3. We have
rank(Fż(t, z, ż)T2(t, z, ż, . . . , z(l+1))) = d̂,

such that there exists a matrix function Z1 of size n̂×d̂ and with pointwise maximal
rank, which is smooth on Lμ̂ and satisfies there rank(ZT

1 E) = d̂ (such that ZT
1 ET2

has full rank d̂ on Lμ̂).

By means of this hypothesis we can define the strangeness-index:

Definition 3.6. The strangeness-index of the nonlinear differential-algebraic equation
given in (3.6) is the smallest integer μ̂ for which Hypothesis 3.5 is satisfied.
If μ̂ = 0, then the differential-algebraic equation is called strangeness-free.

Note that in the points, where any of the ranks changes, i. e., where any of the quantities
μ̂, â, or d̂ jumps, the strangeness-index is not defined.

Let us now consider the implications of Hypothesis 3.5 for the solvability of (3.6).
By means of the implicit function theorem, one can show that starting from a point
(t0, z0, ż0, . . . , z

(μ̂+1)
0 ) ∈ Lμ̂ the equation Fμ̂ = 0 locally (i. e., in a neighborhood of

(t0, z0, ż0, . . . , z
(μ̂+1)
0 )) implies a reduced strangeness-free differential-algebraic equation

of the following form:

F̂ (t, z, ż) =
[
F̂1(t, z, ż)
F̂2(t, z)

]
= 0, (3.7)

where F̂1 and F̂2 are given by

F̂1(t, z, ż) = ZT
1 F (t, z, ż, . . . , z(μ̂+1)), F̂2(t, z) = ZT

2 Fμ̂(t, z, ż, . . . , z(μ̂+1)).

This result is summarized by the following theorem.

Theorem 3.7. Let F as in (3.6) be sufficiently smooth and satisfy Hypothesis 3.5 with
characteristic values μ̂, â, and d̂. Then every sufficiently smooth solution of (3.6) also
solves the reduced problem (3.7) consisting of d̂ differential and â algebraic equations.

Proof. See [KM06], page 163.
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3 Analysis of the Dynamical Behavior of the Coupled System

However, if we do not start with a solution of the original problem, but only with a point
(t0, z0, ż0, . . . , z

(μ̂+1)
0 ) ∈ Lμ̂, it can happen that the reduced differential-algebraic equa-

tion, which is derived in this case, is not solvable. Moreover, even if the reduced problem
possesses a solution, it is not clear if this solution also solves the original differential-
algebraic equation (3.6). To ensure that the reduced system reflects (at least locally) the
properties of the original system concerning solvability and structure of the solution set,
the converse direction of Theorem 3.7 is needed. The following theorem gives sufficient
conditions for this.

Theorem 3.8. Let F as in (3.6) be sufficiently smooth and satisfy Hypothesis 3.5 with
characteristic values μ̂, â, and d̂, as well as with characteristic values μ̂ + 1, â, and d̂.
Then, for every (t0, z0, ż0, . . . , z

(μ̂+2)
0 ) ∈ Lμ̂+1, the reduced problem (3.7) has a unique so-

lution satisfying the initial value given by (t0, z0, ż0, . . . , z
(μ̂+2)
0 ). Moreover, this solution

locally solves the original problem (3.6).

Proof. See [KM06], page 165.

Remark 3.9. Note that the results obtained above are only local results. However, they
can be globalized (as in the case of ordinary differential equations) by continuing the
process (under the assumption of sufficient smoothness) until the boundary of Lμ̂ or
Lμ̂+1, respectively, is reached.

3.2.2 The Strangeness-Index of the System in (3.4)

To determine the index of the nonlinear differential-algebraic system in (3.4), we proceed
as described in Subsection 3.2.1. Therefore, we first rewrite the system in the form

F (t, z, ż) = 0

with t ∈ �, z =
[
qT
h ,m

T
h , p

T
h

]T ∈ �z ⊂ �
n̂, ż =

[
q̇T
h , ṁ

T
h , ṗ

T
h

]T ∈ �ż ⊂ �
n̂, n̂ =

nq + nm + np, and F ∈ C(�×�z ×�ż,�
n̂) given by

F =

⎡
⎣ Inq

0
0

⎤
⎦
⎡
⎣ q̇h
ṁh

ṗh

⎤
⎦−

⎡
⎣ M−1(G + P)

G5

CT
3 uh

⎤
⎦ .

Then we determine the Jacobians E(t) := Fż(t, z, ż) and A(t) := −Fz(t, z, ż) as functions
of t. Here, these matrices are given by

E =

⎡
⎣ Inq

0
0

⎤
⎦ and A(t) =

⎡
⎣ G(t) 0 C

0 Q(t) 0
C̃ 0 0

⎤
⎦ ,

where G ∈ C(�,�nq×nq) and Q ∈ C(�,�nm×nm) denote the following Jacobians:

G = M−1 ∂G
∂qh

, Q =
∂G5

∂mh
.
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3.2 Index Determination

Moreover, C ∈ �nq×np and C̃ ∈ �np×nq are given by

C =

⎡
⎢⎢⎣

− 1
ρf
M−1

1 C2

0
0
0

⎤
⎥⎥⎦ and C̃ =

[
CT

3 0 0 0
]
.

Remark 3.10. Note that it does not make any difference whether the system is first
discretized and then linearized or vice versa.

Let us now apply the theory from Subsection 3.2.1 to the nonlinear system, its Jacobians,
and the corresponding inflated system. As shown in Subsection 3.2.1, the strangeness-
index of a differential-algebraic equation can be determined by finding the smallest value
μ̂ ∈ �0, for which Hypothesis 3.5 is fulfilled.
Therefore, we start with μ̂ = 0 and check if Hypothesis 3.5 is satisfied in this case.

1. First, we have to determine Z2 ∈ C(�,�n̂×â) with maximal rank such that ZT
2 M0 =

0 holds. Since M0 is given by

M0 =

⎡
⎣ Inq 0 0

0 0 0
0 0 0

⎤
⎦ ,

it is clear that rank(M0) = nq = n̂− â holds and we get the condition

â = nm + np. (3.8)

Therefore, Z2 is given by

Z2 =

⎡
⎣ 0 0
Inm 0
0 Inp

⎤
⎦ .

Note that Z2 is uniquely determined up to a transformation with a nonsingular
matrix (which does not have any influence on the rank).

2. Since the matrix A2 is given by

A2(t) = ZT
2 N0(t) =

[
0 Inm 0
0 0 Inp

]⎡⎣ G(t) 0 C
0 Q(t) 0
C̃ 0 0

⎤
⎦

=
[

0 Q(t) 0
C̃ 0 0

]
,

we get the condition â = rank(C̃) + rank(Q) and further with (3.8)

rank(C̃) = np, rank(Q) = nm,

39



3 Analysis of the Dynamical Behavior of the Coupled System

which means that C̃ and Q must both have full rank. Furthermore, nq ≥ np must
hold.
The matrix T2 ∈ C(�,�n̂×d̂) has to be chosen such that ZT

2 N0T2 = 0 holds. There-
fore, we get

T2 =

⎡
⎣ 0

0
Inp

⎤
⎦ .

3. It then follows that

d̂ = rank(ET2) = rank(

⎡
⎣ 0

0
0

⎤
⎦) = 0,

which leads to the contradiction n̂ = d̂+ â = nm +np < n̂, since nq is greater than
zero. (Otherwise all the equations for the mean velocity, the turbulent kinetic
energy, the energy dissipation rate, and the averaged number density function
would not occur in the system.)

Therefore, the strangeness-index of the system is greater than zero.

In the next step, we try out whether Hypothesis 3.5 holds for μ̂ = 1:

1. Again, we first determine a matrix Z2 ∈ C(�,�2n̂×â) which has maximal rank â
(where â is defined by the rank of the kernel of M1) and fulfills the condition
ZT

2 M1 = 0. Since M1 ∈ C(�,�2n̂×2n̂) is given by

M1(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Inq 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−G(t) 0 −C Inq 0 0
0 −Q(t) 0 0 0 0

−C̃ 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

we get the condition 2n̂ − â = rank(M1) = 2nq + rank(Q). Therefore, it follows
that

â = 2nm + 2np − rank(Q), (3.9)

and Z2 is given by

ZT
2 (t) =

⎡
⎢⎢⎣

0 Inm 0 0 0 0
0 0 Inp 0 0 0
0 0 0 0 Q+(t) 0
C̃ 0 0 0 0 Inp

⎤
⎥⎥⎦ ,

where Q+ ∈ C(�,�nm×(nm−rank(Q))) denotes the co-range of Q.
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2. Then, we can determine A2 ∈ C(�,�â×n̂) by

A2(t) = ZT
2 (t)N1(t)

[
In̂
0

]
=

⎡
⎢⎢⎣

0 Q(t) 0
C̃ 0 0
0 Q+Q̇(t) 0

C̃G(t) 0 C̃C

⎤
⎥⎥⎦ .

Since rank(A2) = â, it follows that

â = rank
([

C̃ 0
C̃G C̃C

])
+ rank

([
Q

Q+Q̇

])
.

With this, we get on one hand

d̂ = n̂− â = nq + nm + np − rank
([

C̃ 0
C̃G C̃C

])
− rank

([
Q

Q+Q̇

])
,

whereas, on the other hand, Eq. (3.9) gives

d̂ = n̂− â = nq − nm − np + rank(Q).

By equating these two expressions and using the fact that

rank
([

C̃ 0
C̃G C̃C

])
≤ np + min(np, nq),

rank(Q) ≤ nm,

rank
([

Q

Q+Q̇

])
≤ nm,

this leads to the following conditions:

nq ≥ np, rank(Q) = nm, rank(C̃) = np, rank(C̃C) = np. (3.10)

Therefore, it follows that the matrix Q is nonsingular, and the third row in the
matrix A2 does not occur. Furthermore, d̂ and â are given by d̂ = nq − np and
â = 2np + nm.
Since the condition A2T2 = 0 must hold, we get for T2 ∈ C(�,�n̂×(nq−np)):

T2(t) =

⎡
⎣ C̃−

0
−(C̃C)−1C̃G(t)C̃−

⎤
⎦ ,

where C̃− denotes the kernel of the matrix C̃.

3. Furthermore, since rank(C̃) = np due to (3.10), it follows that

rank(ET2) = rank(C̃−) = nq − np = d̂

such that we can choose Z1 ∈ C(�,�n̂×d̂) as

ZT
1 =

[
Inq 0 0

]
,

yielding that ZT
1 E(t)T2 =

[
C̃−

]
has constant rank d̂.
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3 Analysis of the Dynamical Behavior of the Coupled System

This shows that the strangeness-index of the differential-algebraic system in (3.4) cor-
responding to the partial differential equations, which describe the dynamical processes
in the stirred tank, is equal to one if we choose the spatial discretization in such a way
that the conditions in (3.10) are satisfied.

These conditions are easily fulfilled by using a sensible discretization. First of all, one can
say that every discretization scheme should satisfy the condition nq ≥ np, since otherwise
there would be more discretization points for the pressure than for the velocity, the
turbulent kinetic energy, the energy dissipation rate, and the number density function
together. Furthermore, in order to fulfill the condition that Q is nonsingular, we only
have to choose a suitable quadrature formula. In addition, the conditions rank(C̃) = np

and rank(C̃C) = np are satisfied if the additive constant for the pressure is fixed and
the continuity equation is discretized appropriately. This follows by the fact that in the
Navier-Stokes equations, the pressure is only determined up to an additive constant,
since only the gradient of the pressure occurs in the equations, see, e. g., [Wes01].

Since the rank conditions for C̃ and C̃C already occur in the Navier-Stokes equations,
the considered system in (3.4) has the same strangeness-index as the Navier-Stokes
equations. This means that the index of the Navier-Stokes equations was not increased by
the coupling with the population balance equation. This observation can be summarized
by the following corollary:

Corollary 3.11. All implicit time discretization schemes that are adapted to the solution
of the Navier-Stokes equations are also suitable for solving the discussed coupled system.

Since the differential-algebraic system derived by the spatial discretization of the Navier-
Stokes equations has strangeness-index one, it is hard to treat this system in its original
form. When solving such a system as it appears originally, one can get into difficulties
due to the mixing of differential and algebraic components. Therefore, it is useful to first
remove this “strangeness” before solving the differential-algebraic system. Theorem 3.7
ensures that every sufficiently smooth solution of the system in (3.4) is also a solution
of a corresponding strangeness-free system of the form (3.7). Theorem 3.8 states that
the assumption of a smooth solution can even be relaxed if Hypothesis 3.5 is not only
fulfilled for μ̂ = 1, but also for μ̂ + 1 = 2. However, in the considered application the
existence of a sufficiently smooth solution can be assumed.

Many Navier-Stokes solution techniques carry out such an index reduction as described
above, although this is often not mentioned explicitly, see [Wei96]. Among such typical
solution methods are the so-called “penalty method”, the pressure correction methods
(also known as operator splitting methods), or the so-called “stream function-vorticity-
pressure method”, see, e. g., [Wes01], [Wei97].
Within our project, the solver FeatFlow [TB98] is used for the simulation of the
Navier-Stokes equations. This method uses a finite element approach for the spatial
discretization and a discrete projection scheme for the decoupling of pressure and veloc-
ity. In [Wei96], it has been shown that this kind of approach leads to a strangeness-free
differential-algebraic system. Therefore, the approach used in FeatFlow is suitable for

42



3.2 Index Determination

the solution of the Navier-Stokes equations.
However, a order reduction in the time discretization may occur, see [Wei96].
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4 Simulation of the Flow Field in a Stirred
Tank Using FEATFLOW

In this chapter, we will consider the simulation of the flow field in a stirred tank using
the CFD code FeatFlow (version 1.2). We decided to use FeatFlow, since it is a
fast and robust non-commercial CFD code.

Remark 4.1. For the solution of the Navier-Stokes equations, several CFD codes are
available. On one hand, there are commercial codes, whereof CFX [CFX], StarCD
[Sta], and Fluent [Flu] are the most established ones. On the other hand, there
are non-commercial codes, of which several have been developed by (former) members
of the numerics group in Heidelberg (see also http://numerik.uni-hd.de/), namely
deal.II [dea] (which is more appropriate for stationary problems), FeatFlow [TB98],
Gascoigne3D [Gas], or HiFlow [HiF]. Other non-commercial CFD codes are, e. g.,
OpenFOAM [Ope] (developed by the company OpenCFD) and MooNMD [Moo] (de-
veloped at the Otto-von-Guericke University Magdeburg). In addition, there are two
implementations of an adaptive finite-element Navier-Stokes solver, one in FORTRAN
by Bänsch and Höhn (see [Bän98] and [BH00]) and one C-implementation in the code
Alberta [Alb] by Siebert. Furthermore, the AWFD library [AWF] can be used to im-
plement a Navier-Stokes solver, at least for problems on simple domains with periodic
boundary conditions. Another non-commercial code, which is also particularly suited for
the simulation of stirred tanks, is Fastest [Fas]. A list of further freely available CFD
codes can, e. g., be found at www.cfd-online.com (for the exact URL, see [CFD]).

We have decided to use a non-commercial code, where the source code is freely available
and can be adapted for our purposes. This is especially important for the coupling (see
Chapter 5) and for control and optimization tasks, which are the long-term objectives
of the considered application (although this is not the topic of this thesis).

Remark 4.2. Many commercial codes claim to “solve everything”, but the 1995 DFG
benchmark [TS96] showed that, in general, this is not true. For these benchmark con-
figurations, some of the commercial codes failed already for laminar flow calculations.
Furthermore, commercial codes normally do not have all the new and improved numer-
ical, algorithmic, and computational ideas included yet. In addition, commercial codes
have often implemented some kind of (strong) damping so that a variety of flow config-
urations can be solved. This can lead to wrong results in some cases, since also “real”
oscillations are damped by these methods and, thus, “unstable behavior” cannot be re-
produced by these codes.
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4 Simulation of the Flow Field with FeatFlow

In contrast, when non-commercial codes are used, the user knows exactly which schemes
are used for the different subproblems and, therefore, is aware of problems that might oc-
cur. However, non-commercial codes are often badly documented so that it is necessary
to work together with the developers. Without doing that, these codes usually cannot be
used effectively.

The possibility to work together with the developers was another reason for the choice
of FeatFlow.

Since in the considered practical application, the stirred tank is operated with a stirrer
speed of about 400 to 700 rounds per minute (which corresponds to Reynolds numbers of
about Re = 16,667 to Re = 29,167), the flow simulation has to be done under the same
conditions. This means that high Reynolds numbers, i. e., a turbulent flow, must be
simulated. Therefore, the simulation should include some kind of turbulence modeling.
If the simulation is done without any turbulence model, i. e., if direct numerical simula-
tion (DNS) is used, the grid must be so fine that even the smallest eddies are resolved.
It is clear then that, since the size of the smallest eddies is orders of magnitude smaller
than the size of the computational domain, many grid points are needed.
In fact, the number of grid points NDNS required for a direct numerical simulation in 3D
can be estimated by (see [Pas04b])

NDNS = 53 Re9/4,

i. e., it is proportional to Re9/4 (see also [GDN98]). Therefore, in the considered appli-
cation, about one trillion grid points should be used, which is not feasible with today’s
computing power.

Remark 4.3. Even the so-called “Earth Simulator” [ES], a highly parallel vector su-
percomputer system with a main memory of 10TB and a theoretical performance of
40 Tflops, which is one of the world’s largest computers, is “only” able to perform flow
simulations for less than 70 billion grid points, see [AFIK04].

However, since there was no k-ε turbulence model included in FeatFlow until during
this PhD project, the first simulations were done by direct numerical simulation on a
grid with about 360,000 to 2.8 million grid points.

This chapter is organized as follows. First, in Section 4.1, we will briefly describe the
structure as well as the mathematical background of the solver FeatFlow. Then, in
Section 4.2, we will discuss which preparations need to be done in order to be able to
simulate a stirred tank reactor with FeatFlow. In Section 4.3, some results of the direct
numerical simulation will be shown. These results as well as the corresponding time and
memory requirements for the simulation show that using a turbulence model is necessary
for the flow simulation. In Section 4.4, we will briefly describe the implementation of a
k-ε turbulence model in FeatFlow. The chapter closes with a discussion of the pros
and cons of the previously described approach.
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4.1 About FEATFLOW

In this section, we will describe briefly the structure as well as the mathematical back-
ground of FeatFlow. Detailed information can be found in [TB98], [Tur99] and refer-
ences therein.

FeatFlow is “Finite element software for the incompressible Navier-Stokes equations”.
It was developed at the University of Heidelberg within the working group of R. Ran-
nacher and S. Turek. (A list of involved persons can be found in Appendix B of the
FeatFlow manual [TB98].) In the meantime, S. Turek is at the University of Dort-
mund, where the code is still enhanced and extended.
FeatFlow is part of the Feast project, which has the aim to develop software that
realizes new mathematical and algorithmical ideas in combination with high perfor-
mance computational techniques. It is based on the finite element packages Feat2D
[BHM+95] and Feat3D [HST94], which are written in FORTRAN 77. Thus, also Feat-
Flow is mainly written in FORTRAN 77. However, some newer extensions have been
programmed in FORTRAN90 and FORTRAN 95. The source code is freely available
and can be downloaded from http://www.featflow.de.

The structure of FeatFlow can be divided into two parts: an outer control part, which
is responsible for the convergence and the accuracy of the overall problem, and an inner
solution part, which can be regarded as a “solver engine” for a fixed configuration.
The outer control part splits the complete flow problem into different subproblems, which
are controlled by an overall outer iteration. Therefore, it performs all discretization tasks
including the definition of initial conditions, boundary values, and all other input pa-
rameters that are necessary to solve the resulting discrete problem. Furthermore, it may
include error control mechanisms as well as more complex frameworks, e. g., turbulence
models. Only this outer part is responsible for the quality of the difference between
the discrete solution (if solved sufficiently accurate by the following inner part) and the
exact solution.
The inner solution part, on the other hand, provides approximate solutions of the dis-
cretized system for a given framework (i. e., for a given mesh, a given number of time
steps, etc.). This inner part can be seen as a “solution engine”, which tries to find the
best solution only for a fixed configuration. However, the differences between the re-
sulting approximation of the prescribed framework and the exact solution are neglected.
The control and minimization of these differences is the task of the outer part.

Let us now have a look at the discretization and solution techniques used in FeatFlow.
Since FeatFlow solves the Navier-Stokes equations in their dimensionless form, let us
start with these equations (cf. Eqs. (A.2) and (A.5) in Appendix A):

∂
∂tu− 1

ReΔu+ (u · ∇)u+ ∇p = g
∇ · u = 0

}
in Ω × [0, tend]. (4.1)

In FeatFlow the Rothe method is applied, which means that the Navier-Stokes equa-
tions (4.1) are first discretized in time.
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4 Simulation of the Flow Field with FeatFlow

Remark 4.4. The separation of the space and the time discretization is a very com-
mon approach for the solution of partial differential equations. It can be realized in two
different ways. On the one hand, the method of lines can be applied, which means that
the partial differential equation is first discretized in space. This leads to a system of or-
dinary differential equations or a system of differential-algebraic equations, respectively,
which then has to be treated by a time stepping method. On the other hand, the Rothe
method can be used, where the partial differential equation is first discretized in time.
This leads to a system of stationary partial differential equations, which has to be solved
using an appropriate space discretization technique.
The second approach has the advantage that all well-known schemes from the solution of
stationary partial-differential equations can be applied. This is also the reason why many
“CFD people” use this approach, since in this field of application stationary problems
have been investigated for years, leading to “optimized” solution schemes for this kind
of problem. However, this approach has the disadvantage that the error bound for the
time discretization is dependent on the Lipschitz constant, which is usually proportional
to eRe. The first approach, on the other hand, has the advantage that all the knowledge
from the solution of ordinary differential equations or differential-algebraic equations,
respectively, can be used. Here, also higher order time discretization schemes can be
applied easily. Furthermore, this approach is more appropriate for control and feedback.

If one discretizes the Navier-Stokes equations with one of the usual methods known
from the treatment of ordinary differential equations, such as the backward Euler, the
Crank-Nicolson or the fractional step θ-scheme, one obtains a sequence of generalized
stationary Navier-Stokes equations with prescribed boundary values for every time step.
In the case of the one-step θ-schemes this reads as:

Given un and the time step δt = tn+1 − tn, then solve for un+1 and pn+1

un+1−un

δt
+ θ

[
− 1

ReΔu
n+1 + (un+1 · ∇)un+1

]
+ ∇pn+1 = g̃n+1

∇ · un+1 = 0

}
in Ω

with right-hand side

g̃n+1 := θgn+1 + (1 − θ)gn − (1 − θ)
[
− 1

Re
Δun + (un · ∇)un

]
.

The parameter θ is chosen depending on the time-stepping scheme, e. g., θ = 1 for the
backward Euler or θ = 1

2 for the Crank-Nicolson scheme.

Since the underlying differential-algebraic equation is highly stiff and of strangeness-
index one (cf. Chapter 3), implicit time-stepping schemes must be chosen. The most
frequently used schemes are the backward Euler and the Crank-Nicolson scheme, already
mentioned above. However, both schemes have disadvantages. The backward Euler
scheme is of first order accuracy only, whereas the Crank-Nicolson scheme is not strongly
A-stable, leading to unexpected instabilities due to its weak damping property. For this
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reason, in FeatFlow additionally the fractional step θ-scheme has been implemented,
where every time step is subdivided into three smaller time steps and each substep is
solved with a different value for the parameter θ.

In order to compare the fractional step θ-scheme with the one-step θ-schemes introduced
above, we define for each (macro) time step tn → tn+1 = tn + δt a sequence of three
smaller time steps of (variable) size δti , i = 1, 2, 3, which have to fulfill the following
condition:

δt =
3∑

i=1

δti .

In the case of the backward Euler scheme or the Crank-Nicolson scheme, we perform
three substeps, each with time step δti = δt

3 , i = 1, 2, 3, and use the same θ (θ = 1 or
θ = 1

2 , respectively) in each substep.
For the fractional step θ-scheme we proceed as follows. We choose θ = 1−

√
2

2 , θ′ = 1−2θ,
α = 1−2θ

1−θ , β = 1 − α, and split the macro time step tn → tn+1 = tn + δt into three
consecutive substeps δt1 , δt2 , and δt3 that fulfill the conditions δt1 = δt3 = θδt and
δt2 = θ′δt. If we further define θ̃ := αθδt = βθ′δt, this leads to the following scheme:

[I + θ̃N(un+θ)]un+θ + θδt∇pn+θ = [I − βθδtN(un)]un + θδtg
n,

∇ · un+θ = 0,

[I + θ̃N(un+1−θ)]un+1−θ + θ′δt∇pn+1−θ = [I − αθ′δtN(un+θ)]un+θ + θ′δtg
n+1−θ,

∇ · un+1−θ = 0,

[I + θ̃N(un+1)]un+1 + θδt∇pn+1 = [I − βθδtN(un+1−θ)]un+1−θ + θδtg
n+1−θ,

∇ · un+1 = 0.

Here, we have used the abbreviation

N(u)u := − 1
Re

Δu+ (u · ∇)u. (4.2)

The fractional step θ-scheme is strongly A-stable and of second order accuracy. There-
fore, it combines the advantages of both methods, the backward Euler scheme and the
Crank-Nicolson scheme, but with about the same numerical effort (see [Tur96] for nu-
merical tests).

In each case, the time discretization leads to the task to solve nonlinear problems of the
following type in each time step:

Given un and parameters δt = δt(tn+1), θ = θ(tn+1), and θi = θi(tn+1), i = 1, 2, 3, then
solve for un+1 and pn+1

[I + θδtN(un+1)]un+1 + δt∇pn+1 = [I − θ1δtN(un)]un + θ2δtg
n+1 + θ3δtg

n

∇ · un+1 = 0

}
in Ω.

(4.3)

For the spatial discretization a finite element approach is used. Here, a non-conforming
quadrilateral Stokes element, which uses piecewise rotated multi-linear shape functions
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u1, u2

u1, u2

u1, u2

u1, u2

p

Figure 4.1: Nodal points of the non-conforming Q̃1/Q0 element pair in 2D.

for the velocities and piecewise constant pressure approximations, is chosen, see [RT92].
In 2D, the bilinear shape functions for the velocities are spanned by 〈x2

1 − x2
2, x1, x2, 1〉.

Accordingly, in 3D, trilinear shape functions, spanned by 〈x2
1 − x2

2, x
2
1 −x2

3, x1, x2, x3, 1〉,
are used. The nodal values are the mean values of the velocity vector over the element
edges or faces, respectively, or in the corresponding midpoints, and the mean values of
the pressure over the elements, see Fig. 4.1. Hence, it can be regarded as the natural
quadrilateral analogon of the well-known triangular Stokes element of Crouzeix-Raviart
(see [Bra97], for example).

Remark 4.5. The decision whether triangles or quadrilaterals should be used in the
finite element discretization depends on the considered application, see [Bra97]. The use
of triangular elements has the advantage that also complex geometries can be covered
easily. In the case of quadrilateral elements this is much more complicated, since so-
called “hanging nodes” have to be avoided. On the other hand, quadrilaterals are more
suitable for parallelization and provide a better error analysis. For further information,
see, e. g., [Bra97].

A convergence analysis for the chosen element pair, usually denoted by Q̃1/Q0, can be
found in [RT92]. Here, we will only summarize some important features of the element
pair, see [Tur99]. First of all, it fulfills the Ladyzhenskaya-Babuška-Brezzi condition
without any additional stabilization. In addition, the stability and, hence, the approxi-
mation property is also satisfied on meshes containing cells with very large aspect ratios.
Furthermore, robust upwind and streamline-diffusion mechanisms can be applied for
higher Reynolds number flow, which may lead to matrices with certain M-matrix prop-
erties. Compared with other first order elements, the accuracy seems to be just as
good, but the considered pair is the only one that is unconditionally stable. In addi-
tion, divergence-free nodal bases are easily constructed, which allows the elimination
of the pressure variables, leading to positive definite systems for the velocity variables
only. These systems can be efficiently solved by preconditioned conjugate gradient or
multigrid methods. Further information can also be found in [Tur94].

If we apply this spatial discretization to the semi-discretized Navier-Stokes system and
use the same symbols u and p also for the coefficient vectors in the nodal representation
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for the functions u and p, the discrete version of problem (4.3) can be written as nonlinear
algebraic system of the following form:

Given un, a right-hand side g̃n+1 and a time step δt, then solve for un+1 and pn+1

Sun+1 + δtCp
n+1 = g̃n+1, CTun+1 = 0 (4.4)

with matrix S and right-hand side g̃n+1 such that

Sun+1 =
[
M + θδtN(un+1)

]
un+1, g̃n+1 = [M − θ1δtN(un)] un + θ2δtg

n+1 + θ3δtg
n.

Here, M is the mass matrix and N is the advection term, consisting of diffusive and
convective parts, corresponding to the nonlinear form defined in Eq. (4.2). Furthermore,
C is the gradient matrix, whereas −CT denotes the discretization of the divergence
operator.

There are at least two possible approaches how to solve this type of problem [Tur99]:

1. In the first approach, the nonlinearity is first treated by an outer nonlinear itera-
tion of fixed-point or quasi-Newton type or by a linearization technique through
extrapolation in time. Then the resulting linear subproblems (Oseen equations)
are solved by a direct coupled or by a splitting approach separately for velocity
and pressure.

2. In the second approach, the coupled system is first split, which results in a non-
linear Burgers equation for the velocity and a quasi-Poisson problem for the pres-
sure. Then the nonlinearity is treated by an appropriate nonlinear iteration or a
linearization technique.

In FeatFlow the first approach is realized in the solvers cc2d (2D) and cc3d (3D),
respectively, in the case of solving the subproblems of Oseen type by a coupled approach.
The other case (i. e., the approach, where the subproblems are split) is / will be imple-
mented in the solvers cp2d (2D) and cp3d (3D), respectively. (The code cp3d has not
been finished until this thesis was written.) The second approach is implemented in
pp2d (2D) and pp3d (3D), respectively.

Given that the considered application is 3D, we can only choose between the codes cc3d
and pp3d. Since numerical tests [Tur96] have shown that the solvers pp2d / pp3d are
superior to cc2d / cc3d, especially for highly non-stationary flows, we have used the
solver pp3d for the flow simulations, see Section 4.3. Therefore, we will focus on this
part of FeatFlow and only explain the structure of this solver in more detail in the
following, at least for the parts, where the solvers cc3d and pp3d differ.

Let us start with the discrete nonlinear problem given in Eq. (4.4). One way to solve
this is to first eliminate the velocity un+1 from the first equation (the matrix S being
invertible)

un+1 = S−1(g̃n+1 − δtCp
n+1)
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and then solve the so-called “Schur complement” equation for the pressure

CTS−1Cpn+1 =
1
δt
CTS−1g̃n+1. (4.5)

In order to describe the solution method used for this problem, let us start with a
general (nonlinear) formulation of the discrete projection method. If we assume that P
is a regular preconditioning operator that is chosen “close to S”, then Eq. (4.5) can be
solved by the following scheme:

Given pn =: pn,0, then solve for l = 1, . . . , L

pn,l = pn,l−1 +
α̂

δt

[
CTP−1C

]−1
CTS−1

(
g̃n+1 − δtCp

n,l−1
)
,

where α̂ > 0 is a relaxation parameter (usually chosen as α̂ = 1 or α̂ = 2). Finally set
pn+1 := pn,L, ũn+1 = S−1

(
g̃n+1 − δtCp

n,L−1
)
, and determine un+1 via

un+1 = ũn+1 − δt
α̂
P−1C(pn,L − pn,L−1).

If we use the lumped mass matrix P = Ml as preconditioner and set L = 1, then
the nonlinear discrete projection algorithm can be rewritten in the following form, see
[Tur97]:

Given pn, δt = δt(tn+1), and S := M + θδtN(·).

1. Solve for ũ the nonlinear transport-diffusion equation

Sũ = g̃n+1 − δtCp
n. (4.6)

2. Solve for q the discrete Poisson equation

CTM−1
l Cq =

1
δt
CT ũ. (4.7)

3. Update pn+1 := pn + α̂q with α̂ > 0 and calculate

un+1 = ũ− δtM
−1
l Cq. (4.8)

This iteration scheme can be regarded as a special kind of nonlinear iteration scheme for
the solution of the generalized Navier-Stokes problem given in (4.4). First the velocity
and the pressure are decoupled in an outer iteration, whereas the nonlinear transport-
diffusion equation is solved in an inner iteration. However, we only perform one iteration.
Nevertheless, this scheme works well for small time steps. This well-known approach is
similar to the class of the so-called “classical” projection schemes, see [Tur99].

Since the matrix CTM−1
l C corresponds to a mixed discretization of the Laplacian oper-

ator, this method can also be regarded as a discrete analogon of the schemes proposed
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by Chorin [Cho68] or Van Kan [Van86]. The main difference is that we discretize the
equations before we perform the projection steps. This leads to a different treatment of
the boundary values for the pressure, which is one of the main problems of the continu-
ous schemes. With the approach considered here, boundary layers can be avoided, even
for higher Reynolds numbers, see [Tur96].

It remains the question how to solve the nonlinear system given in (4.6). For the solution
of this nonlinear transport-diffusion equation, we use the so-called “adaptive fixed point
defect correction method”. For Eq. (4.6) this leads to the following scheme:

Given un =: ũ0, then solve for l = 1, . . . , L

ũl = ũl−1 − ω̂l

[
S̃(ũl−1)

]−1 [
S(ũl−1)ũl−1 − g̃n+1 + δtCp

n
]
, (4.9)

where ω̂l is chosen adaptively. The operator S̃(ũl−1) represents an approximate Frechét
derivative, which can simply be chosen as S̃(ũl−1) = S(ũl−1), for example.
Finally, set ũ := ũL and continue with step 2 in the nonlinear discrete projection algo-
rithm on page 52.

This nonlinear iteration can be terminated if the residual S(ũl−1)ũl−1 − g̃n+1 + δtCp
n is

small enough or after a given number of steps L.
However, if the method is stopped after L = 1 iteration, this approach can be interpreted
as a linearization of the convective term by constant extrapolation in time, e. g., replace
(un+1 ·∇)un+1 by (un ·∇)un+1. Another possibility is to use linear extrapolation in time,
i. e., using ([2un−un−1] ·∇)un+1 as approximation for (un+1 ·∇)un+1, with which second
order accuracy is obtained. However, the resulting linear systems are nonsymmetric
and require special solution techniques. A much simpler approach is to replace (un+1 ·
∇)un+1 by (un · ∇)un (fully explicit treatment of the nonlinear terms) and consider this
advective term as part of the right-hand side. Then, the corresponding linear systems
are symmetric, see [Tur97].

The use of the exact Frechét derivative in (4.9) instead of an approximation (correspond-
ing to the classical Newton scheme) would lead to “convective” terms (un ·∇)un+1, which
can be stabilized by upwinding, but also to “reactive” terms of the form (un+1 · ∇)un,
which may cause instabilities for larger time steps. By choosing an approximate Frechét
derivative only (quasi-Newton), these “bad” reactive terms are deleted, see [Tur97]. Fur-
ther details on the adaptive fixed point defect correction method and especially on the
choice of the parameter ω̂l can be found in [Tur94] and [Tur99].

Before we summarize how one FeatFlow-step with the solver pp3d looks like, we will
briefly describe the adaptive step size control implemented in FeatFlow. It is highly
recommended to perform the simulations with step size control, especially when the
solvers pp2d and pp3d, respectively, are used, see [Tur96]. In this paper, the reader
can also find more details about the derivation of this control, which is based on the
estimation of the truncation error.

Given the actual step size δt, FeatFlow performs, on one hand, three (sub)steps with
this step size δt and, on the other hand, one step with the larger step size 3δt. Afterwards
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the relative changes RELδt , given by

RELδt :=
‖v3δt − vδt‖

‖vδt‖
,

are calculated. Here, v3δt and vδt denote the solution pairs {u, p} obtained by performing
one time step with the step size 3δt or three time steps with the step size δt, respectively.
These relative changes are then used to compute the necessary step size δ̃t such that the
local relative error is bounded by a given tolerance parameter TOL. This can be done
by the following formula:

δ̃t ≤ 8 TOL δ2t
1

RELδt

.

If the estimated value for δ̃t is larger than the used one or only slightly smaller, the
result is accepted, and the next macro time step is performed with the step sizes δ̃t and
3δ̃t. Otherwise, the last calculation is repeated with step size δ̃t.

At the end of this section, we summarize one FeatFlow-step with the solver pp3d.
First, all data are initialized, and all triangulations, linear matrices, pointer structures,
and right-hand sides are built on all grid levels. Furthermore, all needed vectors are
generated. Then, the parameters for the time stepping scheme and the adaptive time
step size are selected, and the time stepping loop is entered. Within this loop, the
generalized stationary Navier-Stokes equations corresponding to the actual time level,
see Eq. (4.4), are solved by decoupling velocity and pressure, i. e., by applying the
nonlinear discrete projection algorithm, see page 52. With given pressure as right-hand
side, a nonlinear transport-diffusion equation, see Eq. (4.6), is solved by the adaptive
fixed point defect correction method and a multigrid technique for the linear convection-
diffusion problems. Using the divergence of this intermediate velocity as right-hand side,
the corresponding update problem of quasi-Poisson type for the pressure, see Eq. (4.7), is
solved by a multigrid scheme. This auxiliary solution is then added to the old pressure to
obtain a new one. In addition, the corresponding velocity field is adjusted, see Eq. (4.8).
After this solution part, the time step control is entered. Here, the new time step
size is selected and it is decided whether the old time step has to be repeated or the
simulation can be continued with the new time step size. Then, the actual solution
vector is evaluated. Afterwards the output routines are entered. These routines monitor
all actions and give information about the needed workspace and computer time for the
performed application.

4.2 Preprocessing

In this section, we will describe which preparations have to be done in order to be able
to simulate a stirred tank reactor with FeatFlow. In this context, we will also discuss
some particularities of FeatFlow.
In the following subsections, we will consider the grid generation, the specification of
initial and boundary conditions, as well as the choice of the solver parameters. Further-
more, we will discuss consequences of the dimensionless calculation used in FeatFlow.
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Figure 4.2: Forbidden elements. Left: hanging node, right: non-convex element.

4.2.1 Grid Generation

Before a simulation can be started, an appropriate grid has to be generated. As al-
ready mentioned before, FeatFlow uses quadrilateral elements for the finite element
discretization. Therefore, in 3D, a grid consisting of hexahedrons must be constructed.
As already discussed in the previous section, it is much more complicated to cover a
domain with quadrilateral elements than with triangular ones. For the simulation with
FeatFlow (as for most CFD codes that use hexahedrons), one has to make sure that
the grid only consists of convex elements and that so-called “hanging nodes” are avoided,
see Fig. 4.2. In addition, elements with large aspect ratios, i. e., very long and thin ele-
ments, should, if possible, not be used. Furthermore, neighboring elements should be of
similar size.
Another important point is that the coarse grid should be as coarse as possible, because,
in the multigrid algorithm, the system of equations is solved directly on the lowest
(= coarsest) level.

Remark 4.6. In addition to the CFD solver FeatFlow, there are several preprocessing
tools available from the FeatFlow-homepage.

In 2D, the program DeViSoRGrid [BG02] can be used. With the FORTRAN-subroutine
tr2to3, which is part of the FeatFlow-package, one can, in addition, expand 2D
meshes to 3D by “popping” the 2D mesh layers in a sandwich-like technique. (An ex-
ample for this is the construction of a cylinder from a circle.) More information about
the creation of 2D and this special kind of 3D geometries can be found in [Str04].

The creation of a “real” 3D geometry is much more time-consuming. Here, the pre-
processing tool Grid3D [GRV], a 3D version of DeViSoRGrid, can be used. At
the time, when the grid for the considered application was created, there was only
a beta version of the program available. This beta version was already quite help-
ful, but it did not avoid the need for understanding the structure of the files de-
scribing the grid in order to be able to make final modifications by hand. However,
in the meantime, an “official version” has been released, see DeViSoR-homepage
http://www.featflow.de/feast hp/devisormain.html. More information about the
program Grid3D can be found in the manual [GR05].

Let us now describe how an appropriate grid for the considered application can be
created. Since in FeatFlow all boundary nodes have to lie exactly on the analytic
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Figure 4.3: Left: Definition of a torispherical head according to DIN 28011 [Sla]. Right:
Mathematical description of the torispherical head plotted with Matlab
[Mat] in 3D (top) and 2D, where the two root functions and their osculation
point can be seen (bottom).

boundary, we first need a mathematical description of the domain (i. e., of the stirred
tank), before we can start with the creation of the grid.

In principle, the tank can be modeled as a cylinder (see Fig. 2.1), except for its rounded
bottom part, which is called torispherical head. This torispherical head can mathemati-
cally be described by a composed root function, whose measures are defined by the norm
DIN 28011, see Fig. 4.3. Due to this definition, the torispherical head is given by two
touching spherical lines with radii r1 and r2, respectively (see Fig. 4.3). These two radii
as well as the height h2 are defined by the wall thickness Bw, given by Bw = 0.004m,
and the external diameter da = Dtank + 2Bw of the tank. In the considered application,
these measures are given by:

r1 := da = 0.158m, r2 := 0.1 da = 0.0158m, h2 := 0.1935 da−0.455 Bw = 0.028753m.

Note that the parameter h1 (and therefore also h3) does not need to be calculated, since
it only describes the cylindric edge height of the torispherical head. Thus, the part of
the tank that corresponds to h1 can be counted to the cylindric part.

By setting up the equations for the spheres, we get two root functions describing the inner
and the outer part of the torispherical head, see Fig. 4.3 at the right bottom. However,
these two functions do not intersect. Therefore, in order to get a useful mathematical
representation of the torispherical head, we had to slightly change one of the parameters.
It was decided to “adapt” the value of h2 from h2 = 0.028753m to h2 = 0.02870696m,
which leads to two touching functions.
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Remark 4.7. It is clear that a useful definition of the torispherical head requires that
the given values for the radii and heights lead to two touching functions. Since the given
values seem to be rounded, the “adaption” of h2 (which is maybe even formed by a term
of rounded values) is justified.

By doing this, we get the following mathematical description of the torispherical head:

K(r) =

{
r1 −

√
r21 − r2, |r| ≤ rs,

h2 −
√
r22 − (r − Dtank

2 + r2)2, rs < |r| ≤ Dtank
2 ,

(4.10)

where rs = 0.066m denotes the osculation point of the two functions. By determining
the inverse function of Eq. (4.10), we get

K−1(x3) =
{ √

r21 − (r1 − x3)2, 0 ≤ x3 ≤ x3,s
Dtank

2 − r2 +
√
r22 − (h2 − x3)2, x3,s < x3 ≤ Htank

(4.11)

with x3,s = 0.0144451m. This formula can be used to determine the radius r that
corresponds to a point on the torispherical head with height x3.

Once we have a mathematical description of the tank, we can calculate the coordinates
of the boundary nodes exactly. Thus, we are able to create a coarse grid that satisfies
the condition that all boundary nodes lie on the analytic boundary.

In the considered application, this was done in the following way. First, we used the
program Blender [Ble] to compose a first version of the tank consisting of a cylinder
and a torus (as approximation of the bottom part). The construction of the different
parts of the tank was done with the help of the online-tutorials that can be found on
the Blender-homepage http://www.blender.org and with the tutorial by Chronister
[Chr04]. The resulting tank was then exported as dxf-file, which was used as draft
for constructing a coarse mesh of the tank with the help of the program Grid3D.
As already mentioned before, there was only a beta version of Grid3D available at
the time the coarse grid for the considered application was created. Therefore, the
experiences reported in the following refer to this version. In Grid3D, we first created
the Cartesian boundary nodes and then the inner nodes. Afterwards, we combined every
two neighboring nodes to one edge, four edges to one face (so-called “QuadElement”),
and six faces to one hexahedron. By doing this, we achieved a coarse mesh of the tank
consisting of 144 nodes and 85 hexahedrons, see Fig. 4.4. One problem of the beta
version of Grid3D was that the program was only able to save nodes and elements.
Therefore, it was not possible to temporarily save any edges or faces.

Note that we did not model the stirrer or the baffles yet. This will be done by simply
marking the corresponding cells as boundary parts and by prescribing boundary values
there, see Subsection 4.2.2.

The finer grids are constructed by FeatFlow automatically by simply halfing every
edge so that, in 3D, every element is subdivided into eight smaller ones.
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Figure 4.4: Coarse grid consisting of 144 nodes and 85 cells (hexahedrons). Left: view
from above, right: view from below.

Figure 4.5: Left: coarse grid, middle: refined grid,
right: projection of the new boundary
node onto the analytic boundary.

r

x3

x3 = K(r)

Figure 4.6: Projection in the
torispherical head.

Remark 4.8. FeatFlow does not offer the possibility to refine the grid adaptively
during the simulation process. However, in 2D, the FORTRAN-subroutine trigen2d

can be used to create some kind of “locally refined” coarse grid. Such an “adapted”
coarse grid can be created in the preprocessing step by refining only certain elements.
For doing this, trigen2d offers different refinement strategies. Further details on this
can be found in the FeatFlow-manual [TB98]. During the simulation, FeatFlow
then refines this “adapted” coarse mesh in a regular way.

Since in FeatFlow all boundary nodes have to lie exactly on the analytic boundary,
in every refinement step, the newly created boundary nodes must be projected onto
the analytic boundary, see Fig. 4.5. This is why the user has to provide a projection
algorithm by adapting the files parq2d.f or parq3d.f, respectively.

In the considered case, this projection is realized as follows. In the cylindric part of the
tank, for every newly created boundary node, the x1- and x2-coordinates are scaled to
the radius of the cylinder rcyl = Dtank/2. One only has to take care that on top of the tank
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only the “outer” boundary nodes are projected. However, this can be realized by using
a threshold for the distance of the node from the outer part of the analytic boundary.
Note that this threshold has to be chosen dependent on the refinement level, since the
finer the grid is, the smaller is the difference between the radius of the newly created
boundary node and the radius of the tank. In the torispherical head part, the projection
can be done in the same way as in the cylindric part, except that one has to take into
account that the height x3 is dependent on the radius r. Therefore, we first have to
calculate the radius r that corresponds to the height x3 by r = K−1(x3), see Eq. (4.11),
and can then scale x1 and x2 with this radius. However, in the coarse mesh, there is a
small area at the middle bottom of the tank, where the rounded torispherical head is
approximated by a horizontal plate, see Fig. 4.4. If the above described projection is
applied to that part as well, it causes all newly created boundary nodes to be projected
onto the same circle leading to a “hole” in the bottom of the tank. Therefore, for these
points, we have to keep x1 and x2 unchanged and project the boundary nodes in vertical
direction onto the analytic boundary by scaling x3 with the height that corresponds to
the radius r =

√
x2

1 + x2
2, see Fig. 4.6. This height is given by K(r), see Eq. (4.10).

Fig. 4.7 illustrates the implemented algorithm. The projection in the cylindric part is
always in horizontal direction, whereas the projection in the torispherical head part is –
depending on the considered height – in horizontal or in vertical direction.

4.2.2 Specification of Initial and Boundary Values

In FeatFlow, initial and boundary values are specified in the FORTRAN-files indat2d.f
and indat3d.f, respectively. There, the user can prescribe different types of boundary
conditions, like Dirichlet boundary conditions for the velocity (inflow) or natural outflow
conditions, for example. In the default case, i. e., if no boundary values are prescribed
by the user, all boundary parts are treated as rigid walls.

Remark 4.9. One important point about the specification of boundary conditions in
FeatFlow is that the prescribed values are only valid on boundary nodes. This means
that, if we prescribe values for the velocity or for the pressure somewhere else, these
values are simply ignored.

Further information about what other types of boundary conditions can be prescribed
in FeatFlow can be found in [TB98] and [Tur99]. An explanation of the meaning of
the different variables in the files indat2d.f and indat3d.f can be found in [Str04].

For the stirred tank reactor, we use the default case of rigid walls for the whole outer
boundary of the tank. In addition, for the sake of simplicity, we substitute the “free
surface”-boundary conditions

∂u1

∂n1
= 0,

∂u2

∂n2
= 0, u3 = 0

at the top of the tank (see Section 2.2) by Dirichlet-zero boundary conditions for the
velocity, which corresponds to a lid on top of the tank. This can be done, since in
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Algorithm:

Given: x̃1, x̃2, x̃3: the coordinates of the newly created boundary node,
Htank: the height of the tank,
h2: the height of the torispherical head part,
x3,min: the height of the “bottom nodes” in the coarse grid,
rcyl = Dtank/2: the radius of the cylinder,
rtol: the threshold radius for “outer” boundary nodes depending

on the actual refinement level.

If (x̃3 == Htank and
√
x̃2

1 + x̃2
2 > rtol) or (Htank > x̃3 > h2)

(“outer” nodes in cylindric part)

• x3 = x̃3, i. e., keep x3 unchanged

• calculate
x1 = x̃1 · rcyl√

x̃2
1+x̃2

2

x2 = x̃2 · rcyl√
x̃2
1+x̃2

2

else if x̃3 > x3,min (torispherical head part, no “bottom nodes”)

• x3 = x̃3, i. e., keep x3 unchanged

• calculate
r = r(x3) = K−1(x3) by Eq. (4.11)
x1 = x̃1 · r√

x̃2
1+x̃2

2

x2 = x̃2 · r√
x̃2
1+x̃2

2

else (“bottom nodes”)

• x1 = x̃1, x2 = x̃2, i. e., keep x1, x2 unchanged

• calculate
x3 = x3(r) = K(r) with r =

√
x2

1 + x2
2 by Eq. (4.10)

end

Figure 4.7: Algorithm describing the projection of boundary nodes in a stirred tank with
torispherical head during the refinement process.
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[NW90] it has been shown that the lid has only an influence on the flow field in the
direct vicinity of the lid / free surface, and this part of the stirred tank reactor does not
play an important role in the considered application.

It remains to implement the (moving) stirrer as well as the (fixed) baffles. Although these
parts seem to be very different, in FeatFlow they are treated by the same principle,
namely by the so-called “fictitious boundary method”, a method that is suitable for
incorporating complicated small-scale and / or time-dependent geometrical details into
the flow computation [TDR02] (see also [WTR03]).

This approach belongs to the class of “fixed grid approaches”, which means that the
computational mesh is fixed, whereas the solid boundaries are allowed to move freely
through the given mesh. One big advantage of the “fixed grid approaches” over the
conventional “body-conformal approaches”, where the computational mesh is kept in
accordance to the geometrical details, is that the CPU costs are significantly lower, since
the computational mesh remains unchanged during the simulation, i. e., the expensive
regeneration or deformation of the computational grid can be avoided.

Since in FeatFlow the fictitious boundary method is used in the context of multigrid
solvers, the complex geometries and their associated boundary curves or surfaces have
to be approximated in a hierarchical way. Here, the design of an appropriate fine mesh,
which resolves all the geometrical details, is much easier than the construction of a se-
quence of coarser meshes, especially if one keeps in mind that sequences of more or less
nested meshes are necessary for multigrid [TDR02].
One possible approach is to start with a relatively fine coarse mesh that contains already
most of the geometrical fine-scale details. However, for 3D applications, this approach
is not feasible, since the resulting “coarsest” mesh usually consists of so many cells that
the typical multigrid efficiency is lost due to the amount of work needed for the solution
on the coarsest grid.
Another approach is to use non-nested grids, where the coarser meshes are completely
different to the finest grid. However, in this case, the resulting multigrid solver spends
most of its time with the interpolation from one mesh to another. Furthermore, the con-
vergence rates may deteriorate, since they strongly depend on the choice of the subgrids
and the corresponding transfer operators [TDR02].

Taking these problems into account, in FeatFlow the fictitious boundary method is ap-
plied in combination with the so-called “iterative filtering technique”. In this approach, a
(rough) boundary parameterization, which sufficiently describes all the large-scale struc-
tures with regard to the boundary conditions, is used on the coarse mesh, whereas all
the fine-scale features are treated as interior objects. This is done in such a way that
the corresponding components in all matrices and vectors are unknown degrees of free-
dom, which are implicitly incorporated into all iterative solution steps. By doing this,
standard tools can be used for the refinement of the grid in the interior regions and
very accurate approximations can be obtained. In addition, the corresponding vector
components are projected onto the subspace of “correct” boundary conditions by the
iterative filtering technique, before and directly after each iteration substep. This en-

61



4 Simulation of the Flow Field with FeatFlow

Figure 4.8: O(h)-approximation of a moving blade in FeatFlow. Green: analytic de-
scription of the blade, black: approximation in FeatFlow leading to a
“zig-zag” approximation of the boundary. Left: very coarse mesh, right:
finer mesh.

sures the typical performance of standard multigrid solvers without requiring additional
modifications in the software components [TDR02].

Another advantage of this approach, at least if appropriate mesh-dependent filters are
applied, is that the number and / or the complexity of the shape of “interior” objects
can be decreased when the mesh is coarsened. In some cases, it might even happen that
the coarsest configuration does not contain any object at all (in this case, the objects
are only present on the finer levels). For further details, see [TDR02].

On the other hand, the “fictitious boundary method” only leads to an O(h)-approxima-
tion of the boundaries (due to the piecewise constant approximation of the interfaces),
see Fig. 4.8. Therefore, this approach is particularly suitable for the simulation of the
qualitative flow behavior of complex configurations, but if one likes to get quantitative
results, then a good approximation of the “real” boundaries and therefore a very fine
mesh is needed. If a (too) coarse grid is used, we only get a very rough approximation
of the analytic boundary. However, also finer grids can lead, depending on the shape of
the analytic boundary, to “zig-zag” approximations.

More information about the idea, the implementation, and the advantages of the fic-
titious boundary method can be found in [TDR02]. Here, we just want to give a less
formal, but more demonstrative description of the approach.
In order to get a better imagination of how the fictitious boundary method works, one
can think of a fixed mesh, through which the solid boundaries are moving. These “fic-
titious” boundaries are then incorporated into the calculation by deciding in each time
step for every grid cell whether it belongs to the solid boundary or not. If a cell belongs
to the fictitious boundary, it is marked so that boundary values can be prescribed there.
Note that in FeatFlow boundary values can not only be prescribed for “real” bound-
ary nodes, but also for “artificial” ones.
This “marking of cells” is realized in the file bndry.f. Here, the user has to implement
a mathematical description of the (time-dependent) domain of the (moving) interior
objects.
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Remark 4.10. Besides the fictitious boundary method, there are several other ap-
proaches how complicated boundaries and / or rotating or moving obstacles can be treated
within a flow simulation.

In process engineering, one mainly uses the following three approaches for the simulation
of stirred tanks [SD03]. A review of these methods can be found in [BCGM98]. Here we
will only give a short description of these approaches.

• In the first approach, which is called “impeller boundary condition (IBC) method”
in [BCGM98], the geometry of the impeller is not resolved by the computational
mesh. (The impeller region is excluded from the computational domain.) The
effects of the impeller are rather modeled by imposing suitable, empirically derived
boundary conditions to the external flow. However, satisfactory results can only be
obtained if reliable empirical data are available for the flow near the impeller.

• In the second method, which is called “inner-outer (IO) iterative procedure” in
[BCGM98], the domain of the whole vessel is divided into two concentric, partially
overlapping zones. In both regions, geometrical details – like the stirrer, the baffles
and / or the geometry of the vessel – are resolved. In the inner domain, the flow
field is calculated in a reference frame that is rotating with the impeller, whereas,
in the outer region, the simulation is performed in the reference frame of the lab-
oratory. In both regions, the simulations are done under steady-state assumptions
with respect to their own reference frame. After azimuthally averaging and trans-
forming for the relative motion, information is iteratively exchanged between the
two regions. In the rotating domain, the transformation of the conservation laws
yields two additional terms, namely the centrifugal and the Coriolis force.
Note that this approach is often referred to as “multiple frame of reference (MFR)
method”, although there are slight differences between the inner-outer iterative pro-
cedure described above and the multiple frame of reference method introduced in
[LIG94]. In [SD03], one can also find the term “snapshot approach”. For further
details and more information concerning the differences between these approaches,
see [BCGM98].
A disadvantage of these approaches is that they only provide a stationary solution
of the flow field for a given position of the stirrer with respect to the baffles. The
rotating domain has to be selected in such a way that the flow at the boundary to
the stationary domain is almost steady. Thus, this approach is only suitable for
cases, where the impeller is small compared to the diameter of the vessel [SD03].

• In the third approach, which is called “sliding-grid (SG) method” in [BCGM98]
and “sliding or clicking mesh method” in [SD03], the tank is divided into two con-
centric non-overlapping blocks, where the inner one is rotating with the impeller
and the outer one is stationary. Note that, unlike in the inner-outer iterative pro-
cedure, the flow equations in the rotating domain are written with respect to the
fixed (“laboratory”) reference frame, while it is the grid that rotates. However, the
rotation of the grid results in acceleration terms that are equivalent to the forces
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4 Simulation of the Flow Field with FeatFlow

Name Short description Pros & cons
impeller boundary
condition method

exclusion of the impeller region from the
computational domain,
modeling of the effects of the impeller
by imposing suitable, empirically derived
boundary conditions

requires reliable empirical
data for the flow near the
impeller

inner-outer itera-
tive procedure /
multiple frame of
reference method

division of the whole vessel into two (par-
tially overlapping) zones:
one inner domain, which is rotating with
the impeller, and one outer domain, which
is fixed,
steady-state assumptions for the simulation
in both regions

provides only a station-
ary solution for a given
impeller-to-baffle position

sliding / clicking
mesh method

division of the whole vessel into two non-
overlapping zones:
one inner domain, in which the grid is ro-
tating with the impeller, and one outer do-
main, in which the grid is fixed

resolves unsteady nature
of the flow,
higher computational ef-
fort

Table 4.1: Comparison of the three most commonly used methods for the treatment of
rotating impellers in the flow simulation of stirred tanks.

that arise in the second approach [BCGM98].
The difference between the sliding and the clicking mesh method is that in the for-
mer one, the two regions can deform, whereas in the latter one the grid lines of
the inner and the outer domain must always match.
Obviously, the sliding as well as the clicking mesh technique both require a consid-
erably higher computational effort than the second approach, since several revolu-
tions of the impeller must be calculated in order to get a quasi-steady state solution
[SD03].
An application of the sliding mesh method for the simulation of a stirred tank
reactor can be found in [BLWC97] or [BLWC98], respectively.

For the simulation of stirred vessels, one mainly uses the three methods introduced above,
which are also summarized in Table 4.1. However, in general, there are many more ap-
proaches for modeling complicated and / or moving boundaries within a flow simulation.
Among these approaches are the following:

• “Fictitious domain methods” (see, e. g., [BTT97] or [GPP94]).
The idea of these methods is to embed the original (complicated) domain into a
much simpler one (the so-called “fictitious domain”) so that, after a reformulation,
the problem can be solved there.

• “Level set methods” (see [OF03] and [Set99]).
This method tracks the motion of the fluid-structure interface by defining a so-
called “level set function”, which describes possible evolutions of the interface. To
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derive the motion of the fluid-structure interface, an additional equation has to be
solved.

• “Chimera methods” (see [Ste91] or [SB87]).
In this approach, several separately generated, but overlapping unstructured grids
are used for the discretization of the domain. The idea of generating all grid
components independently of the each other simplifies the construction of a mesh
for complicated and / or moving objects considerably. The exchange of boundary
information is realized by interpolation.

• Standard arbitrary Lagrangian-Eulerian (ALE) formulations with frequent remesh-
ing (see [MH97]).

All the above mentioned methods belong to the class of mesh-based methods, since they
all need a mesh for the simulation.
However, also so-called mesh-free methods can be applied for the flow simulation with
complicated and / or moving boundaries. The idea of these methods is to approximate
the partial differential equations on a set of nodes, but without an additional mesh.
Therefore, these methods are able to solve problems, where good meshes are difficult to
maintain. An overview of mesh-free methods can be found in [FM04].
Another approach, which is introduced in [Fri05], is to couple mesh-free and mesh-based
methods.

As already mentioned before, FeatFlow uses the “fictitious boundary method” com-
bined with an “iterative filtering technique” for incorporating geometrically complicated
objects or time-dependent boundary components.
Therefore, in the considered application, the user has to provide a mathematical de-
scription of the stirrer and of the baffles by adding (a part of) a subroutine to the file
bndry.f. Then, in each time step, every cell that belongs to this domain is marked as
a “fictitious” boundary node. Once a cell is marked, boundary values can be prescribed
for it.
The following formulae give a mathematical description of the moving stirrer and of the
baffles for the considered application. This description forms the basis for the imple-
mentation of the domain in the file bndry.f:

Ωstirrer =
{
(x1, x2, x3)T ∈ �3 : x2

1 + x2
2 ≤ D2

shaft
4 , Hl ≤ x3 ≤ Htank

}
⋃ {

(x1, x2, x3)T ∈ �3 : x2
1 + x2

2 ≤ D2
disk
4 ,

∣∣∣x3 −
(
Hl + Hstirrer

2

)∣∣∣ ≤ Hdisk
2

}
⋃ {

(x1, x2, x3)T ∈ �3 : x2
1 + x2

2 ≤ D2
hub
4 , Hl ≤ x3 ≤ Hl +Hstirrer

}
⋃

j=1,...,6

{
(x1, x2, x3)T ∈ �3 :

Dstirrer
2 −Dblade ≤ cos(j π

3 + tω)x1 + sin(j π
3 + tω)x2 ≤ Dstirrer

2 ,

−Bblade
2 ≤ − sin(j π

3 + tω)x1 + cos(j π
3 + tω)x2 ≤ Bblade

2 ,

Hl ≤ x3 ≤ Hl +Hstirrer

}
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Ωbaffles =
⋃

j=1,...,4

{
(x1, x2, x3)T ∈ �3 :

Dtank
2 −Ds −Dbaffle ≤ cos(j π

2 )x1 + sin(j π
2 )x2 ≤ Dtank

2 −Ds,

−Bbaffle
2 ≤ − sin(j π

2 )x1 + cos(j π
2 )x2 ≤ Bbaffle

2 ,

Hl + Hstirrer
2 ≤ x3 ≤ Htank

}
,

where Ωstirrer and Ωbaffles denote the domain of the stirrer and of the baffles, respectively.
Furthermore, Dtank and Htank are the diameter and height of the tank, Hl is the height
of its bottom part, Dstirrer and Hstirrer are the diameter and the height of the stirrer,
Dblade and Bblade are the diameter (width) and length of each blade, Ddisk and Hdisk are
the diameter and the height of the disk, Dhub is the diameter of the hub in the middle,
Dshaft is the diameter of the shaft, Dbaffle and Bbaffle are the diameter (width) and the
length of each baffle, and Ds is the distance of the baffles to the wall. Some of these
quantities can be seen in Fig. 2.1 on page 6. The values of all quantities are given by

Dtank = 0.15m, Htank = 0.15m, Hl = 0.05m,
Dstirrer = 0.05m, Hstirrer = 0.01m, Dblade = 0.012m, Bblade = 0.001m,
Ddisk = 0.038m, Hdisk = 0.001m, Dhub = 0.013m, Dshaft = 0.009m,
Dbaffle = 0.013m, Bbaffle = 0.001m, Ds = 0.003m.

In addition, t denotes the time, and ω is the angular velocity, which is determined by
the rotational speed N∗, see Section 2.2.

4.2.3 Solver Parameters

In the files pp2d.dat and pp3d.dat, respectively, which are located in the #data-
subdirectory, several solver parameters can be specified. Here, one can select the par-
ticular schemes as well as the corresponding parameters for the different subproblems
that we have already considered in Section 4.1. Furthermore, different in- and output
options can be chosen in these files.
In the following, we will exemplarily explain the meaning of some of these parameters,
which have been picked from different “categories” in order to give an overview. These
selected parameters are also summarized in Table 4.2. A list and short description of all
parameters can be found in [TB98].

The type of time discretization used by FeatFlow is determined by the parameter
IFRSTP, for example, whereas THETA specifies the value of the parameter θ if a one-
step θ-scheme is used, see Section 4.1. Concerning the multigrid algorithm for the
velocity, ICYCU specifies the type of multigrid cycle, ILMINU and ILMAXU the minimal
and maximal number of linear multigrid steps, ISLU the type of multigrid solver, and
ISMU the type of multigrid smoother, to give just a few examples. For the pressure,
the corresponding parameters are ICYCP, ILMINP, ILMAXP, ISLP, and ISMP. In addition,
NLMIN and NLMAX state the minimal and maximal multigrid level. Here, level i means
that the coarse grid has been refined (i − 1) times. Obviously, if NLMIN equals NLMAX,
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CPARM name of parameterization file
CMESH name of coarse mesh file
CFILE name of protocol file
ISTART input of start vector

= 0: start with homogeneous vector (only boundary conditions)
�= 0: read start vector

CSTART name of start vector file
ISOL output of solution vector

= 0: no output
�= 0: output

CSOL name of solution vector file
NLMIN / NLMAX minimal / maximal multigrid level
IMASS parameter for mass matrix type (lumped or real mass matrix)
IMASSL parameter for element type of lumped mass matrix
IUPW parameter for convective terms (streamline diffusion or upwinding)
INLMIN / INLMAX minimal / maximal number of nonlinear iterations used for the solution

of the nonlinear transport-diffusion equation
INLMIN = INLMAX = 1: linear extrapolation in time
INLMIN = INLMAX = −1: constant extrapolation in time

ICYCU / ICYCP parameter for multigrid-cycle for velocity / pressure (F-, V-, or W-cycle)
ILMINU / ILMINP minimal number of multigrid-steps for velocity / pressure
ILMAXU / ILMAXP maximal number of multigrid-steps for velocity / pressure
ISMU / ISMP parameter for multigrid-smoother for velocity / pressure

(Jacobi, SOR, SSOR, or ILU)
ISLU / ISLP parameter for multigrid-solver for velocity / pressure

(SOR, BiCGSTAB / CG, ILU, or BiCGSTAB+ILU / CG+ILU)
RE parameter for viscosity (Reynolds number)
EPSUR stopping criterion for relative changes in velocity in nonlinear iteration
IPROJ parameter for type of projection scheme

= 0: first order (Chorin)
> 0: second order (Van Kan)
< 0: ‖IPROJ‖ steps of first order, then second order

NITNS maximum number of macro time steps
TIMENS absolute start time
THETA parameter for time stepping value (Implicit Euler or Crank-Nicolson, only

used if IFRSTP = 0)
TSTEP starting time step
IFRSTP parameter for time stepping scheme (one-step or fractional step scheme)
DTGMV time difference for gmv-output
IGMV level for gmv-output
IADTIM parameter for adaptive time step control

= 0: no control, fixed time step TSTEP is used
�= 0: time step control is used

TIMEMX maximum absolute time
DTMIN / DTMAX minimal / maximal time step during adaptive control
DTFACT factor for largest possible time step changes
IEPSAD parameter for type of error control

Table 4.2: Short description of some selected parameters that can be specified in the file
pp2d.dat or pp3d.dat, respectively.
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no multigrid algorithm is used. Other examples are the parameters INLMIN and INLMAX,
which specify the minimal and maximal number of nonlinear iterations used for the
solution of the nonlinear transport-diffusion equation. Thus, these parameters specify
the minimal and maximal number of times the adaptive fixed point defect correction
method, given by Eq. (4.9) on page 53, is repeated. There are many more parameters
in the files pp2d.dat and pp3d.dat, respectively, that specify what kind of schemes or
approximations are used in the different discretization steps, like the parameters IMASS
and IMASSL, which specify whether any and (if so) what kind of lumped mass matrix
is used, the parameter IUPW, which indicates if upwinding for the convective terms is
applied, or the parameter IPROJ, which specifies the type of projection scheme.

Furthermore, in the files pp2d.dat and pp3d.dat, respectively, one has to specify the
name of the file that contains the mesh. In 2D, a so-called parameterization file (prm-file)
as well as a coarse mesh file that also contains the triangulation (so-called tri-file) are
needed, whereas in 3D the latter one suffices. The name of these files are given by the
parameters CPARM and CMESH, respectively. The output of the simulation is written to
a file specified by the parameter CFILE. Furthermore, the parameter ISTART indicates if
there is a solution file the simulation can start with, and CSTART gives the name of this
file. Accordingly, the parameter ISOL states if the (new) solution is written to a file, and
CSOL specifies the name of the file.

Concerning the control of the duration of a simulation, the parameters described in
the following can be used. Indeed, there are several reasons for the termination of a
simulation in FeatFlow, namely if the maximum number of time steps NITNS or the
maximum absolute time TIMEMX is reached or if one of the stopping criteria is fulfilled,
e. g., if the relative changes in the velocity in the nonlinear iteration are below a certain
tolerance EPSUR. The parameter IADTIM indicates if an adaptive step size control is
used, whereas IEPSAD specifies its type. If the simulation is done with adaptive step size
control, the minimal and maximal step size as well as the maximal factor for the changes
of the step size are given by DTMIN, DTMAX, and DTFACT, respectively. The absolute start
time is given by TIMENS, whereas TSTEP specifies the start time step size.

The parameter RE denotes the Reynolds number of the considered application, which
states how turbulent the flow is. As we will see in the following subsection as well as in
Appendix A, this quantity describes the characteristics of the flow in a certain geometry
sufficiently.

Another set of parameters that can be specified in the files pp2d.dat and pp3d.dat,
respectively, are the options for the output. It is recommended to use the gmv-format for
the output, since the corresponding program GMV (short for General Mesh Viewer)
[Ort] is a quite powerful post-processing tool, at least in comparison to other freely
available visualization tools. However, one has to keep an eye on the size of the output
files. In the considered application, the gmv-files of level 5 (360,369 nodes) had already
a size of 63 MB, and on level 6 (2,833,761 nodes) the size was 493 MB. That is why
it is suggested to use a lower level (i. e., a coarser grid) for the gmv-output than for
the simulation, at least if the output is saved for several time points. The level of the
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gmv-output is specified by the parameter IGMV (same for avs- and film output). DTGMV
gives the time difference for the gmv-output. If this parameter is set to zero, FeatFlow
writes output after every time step. The gmv-output files are written to the subdirectory
#gmv. They are called u.int.gmv, where int denotes the number of the time step, in
which the output was written.

Further information about the files pp2d.dat and pp3d.dat (and also about the corre-
sponding files cc2d.dat and cc3d.dat that are used to specify the parameters for the
coupled solvers cc2d and cc3d) can be found in the FeatFlow-manual [TB98].

4.2.4 Dimensionless Calculation

As already mentioned in Subsection 4.1, FeatFlow solves the Navier-Stokes equations
in their dimensionless form, which means that it does not matter which size the compu-
tational domain has or which velocity is prescribed. The only quantity that characterizes
the flow is the Reynolds number, see Appendix A. Therefore, the velocity as well as the
geometrical parameters can simply be normalized to one. However, in order to compare
the simulation results with experimental data, one has to work with the “real” size of
the domain and the “real” velocity that corresponds to a certain Reynolds number.

Nevertheless, the simulations can also be done with scaled values. In this case, one only
has to determine the Reynolds number that characterizes the considered application
before the simulation. In the case of a stirred tank reactor, the Reynolds number can
be calculated by the following formula:

Re =
N∗Dstirrer

2

ν
,

where N∗ is the rotational speed, Dstirrer is the diameter of the stirrer and ν is the
kinematic viscosity of the stirred fluid. In order to get comparable simulation results,
we only have to prescribe the appropriate Reynolds number and transform back the
results after the simulation by scaling velocity and geometrical quantities. However, this
also leads to a different time scale.

In the considered application, the simulation was done on a grid with diameter Dsim
tank = 3

for the stirred tank. As maximal velocity we prescribed usim
tip = 0.5 at the tip of the blades

of the stirrer. However, in “reality” the tank has a diameter of Dtank = 0.15m and the
maximal velocity of the stirrer, which is reached at the outer edges, can be determined
by the rotational speed N∗ via

utip = πDstirrerN
∗,

which gives utip = 0.06283185m/s for Re = 1,000, utip = 0.6283185m/s for Re = 10,000,
and utip = 1.8849556m/s for Re = 30,000. The time scaling can be calculated via

usim
tip

utip
=
Dsim

tank

Dtank

t

tsim
→ t =

Dtank

Dsim
tank

usim
tip

utip
tsim.

69



4 Simulation of the Flow Field with FeatFlow

Figure 4.9: “Exact” description of the stirrer (grid of level 6). Left: longitudinal section,
middle: cross section through the blades, above / below the disk, right: cross
section through the disk.

This formula states that the simulation time has to be scaled by a factor of 0.3978876
for Re = 1,000, a factor of 0.03978876 for Re = 10,000, and a factor of 0.0132629 for
Re = 30,000 in order to get the “real” or “experimental” time t corresponding to utip

and Dtank.

4.3 Simulation Results

In this section, we will show the results of the flow simulation with FeatFlow. We
consider a stirred tank reactor equipped with a six-bladed Rushton turbine and four
baffles as already described in Section 4.2. The blades of the stirrer are 1mm thick,
12mm wide, and 10mm high, the baffles are 1mm thick, 13mm wide, and 100mm high
(see also the exact mathematical description in Subsection 4.2.2 on page 65). Fig. 4.9
shows a longitudinal section and two cross sections through the tank, which illustrate
the shape of the stirrer.

The simulations were done for three different Reynolds numbers: Re = 1,000, Re =
10,000, and Re = 30,000. As already mentioned in the beginning of this chapter, 3D
flow simulations for such high Reynolds numbers require an extremely fine grid or some
kind of turbulence modeling. However, the following results were produced without any
turbulence model, just by applying direct numerical simulation.

In the following two subsections, we will show results of the simulation for two different
refinement levels (level 5 and level 6). In Subsection 4.3.3, we will discuss why it is cur-
rently not possible to do simulations on refinement level 7 (corresponding to 22,475,457
nodes and 22,282,240 cells). At the end of this section, we will study simulation times.

4.3.1 Simulation Results for Level 5

In this subsection, we will present the results of the flow simulation using a grid of level 5.
As already explained before, level i denotes the (i−1)th regular refinement of the coarse
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Figure 4.10: Grid of level 5, flow field for Re = 1,000. Velocity magnitude at different
time points (t1 = 0.06 s, t2 = 0.15 s, t3 = 3.66 s, t4 = 16.79 s, t5 =
60.04 s, t6 = 99.31 s). Top: cross section at height x3 = 5cm (impeller
mid-plane), bottom: longitudinal section between two baffles.

grid, which is depicted in Fig 4.4 on page 58.
We will show simulation results for three different Reynolds numbers, starting with
Re = 1,000, followed by Re = 10,000, and finally Re = 30,000. For Re = 30,000, we will
also show simulation results that have been obtained by using an “adapted” grid, i. e.,
a grid that was refined in the impeller region, where the highest velocities and velocity
gradients occur.
The presentation of the simulation results for Re = 1,000 includes a more detailed
description of the flow field (so that the reader gets an idea how the typical flow field
induced by a Rushton turbine looks like), whereas for Re = 10,000 and Re = 30,000, we
will only present a few results and mainly focus on comparing them with the previously
presented results.

Simulation results for Re = 1,000

In the following, we will show simulation results for Re = 1,000 corresponding to a
rotational speed of about 24 rounds per minute (i. e., N∗ = 0.4 1/s). In view of this, as
boundary condition, we used a velocity of utip = 0.06283185m/s at the tip of the blades.
Furthermore, Dirichlet-zero boundary conditions were prescribed on the whole boundary
of the tank as well as on the four baffles.

Fig. 4.10 shows the velocity magnitude at different time points in a cross and a longi-
tudinal section, respectively. Here, one can see how the flow field evolves over time. In
the beginning, everywhere except directly at the impeller a zero-velocity is prescribed.
However, after some time, the movement of the stirrer leads to a movement of the fluid
in its vicinity. At the same time, the rotation of the fluid with the impeller leads to flow
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in radial direction, which can be seen in the longitudinal sections in Fig. 4.10. The fluid
is moved outwards in radial direction, then splits up, when the boundary of the tank
is reached, and flows back building two circles, one above and one below the impeller
mid-plane. The last two pictures in Fig. 4.10 show that, after some time, the shape of
the flow field does not change any more.

Remark 4.11. It is needless to say that the flow field still changes with time, since,
on one hand, the impeller in the middle is turning around all the time and, on the
other hand, the turbulence of the flow leads to permanently changing (random) velocity
fluctuations. However, after some time, the structure of the flow field does not change
any more. This means that if the fluctuations caused by the periodic passage of the im-
peller blades (so-called “pseudo-turbulence”, see [VBS76]) as well as the “real” turbulent
fluctuations of the velocity are subtracted from the velocity, the remaining quantity (the
mean velocity) does not change any more. Then, the flow field is “fully developed” or
“quasi-steady”, see [YUNK02]. In [YUNK02] it is stated that for a Reynolds number of
Re = 4,500 twelve revolutions are sufficient to get a quasi-steady flow field throughout
the whole tank.

An example how the typical (fully developed) flow field induced by a Rushton turbine
looks like is given by Fig. 4.11. This figure shows three vector-plots of the flow field
in the stirred tank after t = 99.31 s (corresponding to about 40 revolutions). In the
left picture, a longitudinal section through the tank in the middle between two baffles
is shown. Here, one can see the typical (so-called “kidney-shaped”) flow field induced
by a Rushton turbine. The liquid is drawn into the stirrer element axially, deflected
in radial direction, and discharged in form of a radial jet stream. At the walls of the
tank or at the baffles, respectively, the radial jet stream splits up and is diverted up-
and downwards. Two large-scale ring vortices are formed, one above and one below the
impeller mid-plane. Since the stirrer element is mounted on 1/3 of the liquid height, the
upper ring vortex only fills a part of the upper vessel area, whereas the lower ring vortex
spans the entire lower vessel volume.
The bottom picture on the right-hand side shows a cross section through a quarter of
the tank at height x3 = 5cm (i. e., in the impeller mid-plane). Here, one can see how
the velocity magnitude decreases from its highest values directly behind the blades of
the impeller to zero-values at the wall and at the baffles. Clearly, the highest velocities
throughout the tank can be found in the region around the stirrer element.
In the top picture, a cross section through the tank at height x3 = 10 cm = 2/3Htank is
shown. At this height, the structure of the flow is only influenced by the four baffles.
The number of blades the impeller consists of does not seem to affect the flow in this
region of the tank.
Note that, in all three pictures, the velocity magnitude has been scaled by a factor of
two so that the regions of smaller velocities can be seen better.

Remark 4.12. The structure of the flow field in a baffled stirred tank operated by a
Rushton turbine is well-known since decades. It has been investigated experimentally as
well as numerically by a multitude of authors.

72



4.3 Simulation Results

Figure 4.11: Grid of level 5, flow field for Re = 1,000. Vector-plot of the velocity mag-
nitude after t = 99.31 s (about 40 revolutions). Left: longitudinal section
between two baffles, top right: cross section at height x3 = 10 cm, top
bottom: cross section at height x3 = 5cm (impeller mid-plane).

Experimental investigations for a Rushton turbine with diameter Dstirrer = 1/3Dtank were
performed in, e. g., [VV78], [YPW87], [CC88], [WP89], [RJ90b], [DKJN93], [YW93],
[SC95], and [SHD97]. A detailed review of the earlier works can be found in [RJ90b],
whereas the newer literature has been summarized in [BCGM98].

Numerical simulations of the flow in a baffled stirred tank have been carried out basically
by three different approaches.
In the first one, the impeller is not resolved by the computational mesh, but experimental
data are used to specify boundary conditions for the impeller. This approach has been
used in, e. g., [MPL86], [RJ90a], and [GIL+92]. Alternatively, in [PP87] source terms
have been introduced in the momentum equation describing the drag of the impeller in
the entire region swept by the impeller.
The second approach includes the so-called “multiple frames of reference” method, which
was introduced in [LIG94], as well as the snapshot approach (see [RV94], [RD96]) and
the so-called “inner-outer” approach by [BCGM94]. For a description of the methods
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Figure 4.12: Grid of level 5, flow field for Re = 1,000. Velocity magnitude at time
t = 99.55 s (about 40 revolutions). Left: cross section at height x3 =
5cm (impeller mid-plane), middle: longitudinal section between two baffles,
right: longitudinal section between two baffles, scaled plot.

and the differences between them, see Remark 4.10 and references therein.
Numerical simulations with the third approach, which is known as “sliding grid” or
“sliding mesh” approach, were first done in [LGI+93], [PM93], and [MMC94]. More
recently, the clicking and sliding mesh approaches (implemented in the parallel multigrid
flow solver Fastest) have been applied to different stirrer configurations, see, e. g.,
[BWS98], [SS01], or [SS98].
Especially in the newer literature, one can also find other approaches for simulating the
flow field in a stirred tank reactor. In [DV99], for example, large eddy simulations (LES)
were used in combination with a force-field technique.
A detailed review of the different methods for modeling the impeller in a baffled stirred
tank is given in [BCGM98]. Further information about the different approaches can also
be found in Remark 4.10 and references cited there.

In the following, we will compare the just presented flow field for Re = 1,000 with those
for Re = 10,000 and Re = 30,000. As already mentioned before, we will focus on a
few simulation results, namely on the velocity magnitude in a cross section at height
x3 = 5cm (i. e., in the impeller mid-plane) and in a longitudinal section between two
baffles. For the latter one, we will also show a scaled plot in order to give an idea of
the flow field in the less turbulent regions of the tank. For Re = 1,000, these results are
shown in Fig. 4.12.

Simulation results for Re = 10,000

In the following, we will present simulation results for Re = 10,000, which corresponds
to a rotational speed of about 240 rounds per minute. In view of this, a velocity of
utip = 0.6283185m/s was prescribed at the tip of the blades.

Fig. 4.13 shows the velocity magnitude in a cross and a longitudinal section through the
tank after 10 seconds (corresponding to 40 revolutions). Again, as in the previously pre-
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Figure 4.13: Grid of level 5, flow field for Re = 10,000. Velocity magnitude at time
t = 10.00 s (about 40 revolutions). Left: cross section at height x3 =
5cm (impeller mid-plane), middle: longitudinal section between two baffles,
right: longitudinal section between two baffles, scaled plot.

sented results for Re = 1,000, one can see that the highest velocities occur in the region
around the blades and that the velocity magnitude decreases with increasing distance
from the impeller. In addition, one can again recognize the typical “kidney-shaped” flow
field with a radial jet stream at the height of the impeller and two recirculation zones
above and below.

However, if we compare the flow field for Re = 10,000 with the previously shown results
for Re = 1,000, three major differences can be detected at once. The first one can be seen
in the cross section through the impeller mid-plane. The value of the velocity magnitude,
which decreases in both cases with increasing distance from the impeller in the middle,
decreases slower for Re = 1,000 than for Re = 10,000. Second, for Re = 10,000,
there are relatively high values of the velocity magnitude in the region below the stirrer
(see middle and right picture in Fig. 4.13). In the corresponding pictures in Fig. 4.12,
this phenomenon cannot be detected. A third difference between the flow fields for
Re = 1,000 and Re = 10,000 can be seen in the right picture of Fig. 4.12 and Fig. 4.13,
respectively. For Re = 10,000, the upper recirculation loop is more pronounced than for
Re = 1,000. In addition, there seems to be more “movement” in the upper part of the
tank. Furthermore, for Re = 1,000 the direction of the jet stream is horizontal, whereas
it is downwards-sloping for Re = 10,000.

A comparison of the results presented above with corresponding results from the litera-
ture shows that in some regions of the tank the flow field is not calculated correctly. An
example of this is the region of high velocities below the stirrer and the direction of the
flow field in this area. However, a critical and detailed comparison with experimental
data from the literature will be presented after some more simulation results have been
shown.
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Figure 4.14: Grid of level 5, flow field for Re = 30,000. Velocity magnitude at time
t = 3.32 s (about 40 revolutions). Left: cross section at height x3 = 5cm
(impeller mid-plane), middle: longitudinal section between two baffles,
right: longitudinal section between two baffles, scaled plot.

Simulation results for Re = 30,000

In the following, we will present simulation results for Re = 30,000, which corresponds to
a rotational speed of about 720 rounds per minute. In view of this, utip = 1.8849556m/s
was used as boundary condition.

Fig. 4.14 shows the flow field in a cross and a longitudinal section through the tank
after 3.32 seconds, i. e., after about 40 revolutions. First, one can say that the results
look quite similar to those obtained for Re = 10,000. This finding is in accordance to
the literature, where it is stated that the flow field scaled by utip, which denotes the
(maximum) prescribed velocity at the tip of the blades, is the same for all Reynolds
numbers in the so-called “fully turbulent” flow regime. In [PAOK04], the transition
between laminar and turbulent regimes is said to occur in a range of Reynolds numbers
between Re = 50 and Re = 5,000. This is in accordance to the presented results, which
show the same structure of the flow field for Re = 10,000 and Re = 30,000 and a slightly
different one for Re = 1,000.

However, as already mentioned before, the results are not fully satisfactory. Therefore,
it was decided to refine the grid in the region around the impeller (the region where the
highest velocities occur) in order to improve the results. In order to do this without
increasing the computational costs, we refined the grid in this area, but, in return,
coarsened the grid in the bulk region of the tank, see Fig. 4.15. Note that the refinement
/ coarsening of the mesh was only done in vertical direction and in such a way that the
total number of nodes stayed (exactly) the same.

The resulting flow field for Re = 30,000 at time t = 4.33 s, which corresponds to about
52 revolutions, is shown in Fig. 4.16. As before, the left picture in Fig. 4.16 shows a
cross section of the velocity magnitude in the impeller mid-plane, whereas the middle
and the right picture show a longitudinal section between two baffles.
Compared to the simulation results shown before, one can immediately see that, for this
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Figure 4.15: “Adapted” grid of level 5.

Figure 4.16: “Adapted” grid of level 5, flow field for Re = 30,000. Velocity magnitude
at time t = 4.33 s (about 52 revolutions). Left: cross section at height
x3 = 5cm (impeller mid-plane), middle: longitudinal section between two
baffles, right: longitudinal section between two baffles, scaled plot.

simulation, the jet stream is much thinner. This unphysical behavior may be caused
by the local refinement of the grid and especially by the steep transition from very fine
grid cells to coarser ones. The flow field seems to be geared to the grid. These problems
are similar to those observed in [Str04], where the flow over a backward facing step was
simulated with FeatFlow. There, it was observed that the asymmetry of the grid
(caused by the local refinement of an orthogonal grid) can lead to an asymmetry in the
resulting flow field.

In order to ensure that the flow field is really fully developed and that its shape does
not change with time any more, a “long-term” simulation was started. The resulting
flow field after 32.61 seconds (i. e., about 391 revolutions) is not presented here, since
the results really show that the structure of the flow stays the same.

4.3.2 Simulation Results for Level 6

Since the simulations on level 5 did not show fully satisfactory results, it was decided to
refine the grid. Thus, we will in the following consider the results of simulations with
a grid of level 6. However, the graphical output was created for level 5 only, because
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Figure 4.17: Grid of level 6, flow field for Re = 10,000. Velocity magnitude at time
t = 12.99 s (about 52 revolutions). Left: cross section at height x3 =
5cm (impeller mid-plane), middle: longitudinal section between two baffles,
right: longitudinal section between two baffles, scaled plot.

otherwise we could not save more than a few output files due to the huge size of the
gmv-files (see Subsection 4.2.3).

Since in the considered practical application the stirred tank is operated with a rotational
speed of about 400 to 700 rounds per minute, which corresponds to Reynolds numbers of
at least Re ≈ 104, only results for Reynolds numbers of this order of magnitude will be
presented in the following. Another reason for the restriction to a few cases only is that
the simulation times are really immense for the grids of level 6, see Subsection 4.3.4.

Simulation results for Re = 10,000

The simulation results for Reynolds number Re = 10,000 at time t = 12.99 s (corre-
sponding to about 52 revolutions) are shown in Fig. 4.17.

If we compare these results to the results obtained by the corresponding simulation on
a grid of level 5 (see Fig. 4.13), we first recognize that the region of high velocities
below the stirrer is not so pronounced any more. The flow field in this area seems to be
more sensible for the grid of level 6. However, there are relatively high gradients of the
velocities in this area, which still are not really realistic.

Simulation results for Re = 30,000

In the following, we will present the results for Reynolds number Re = 30,000. Fig. 4.18
shows a cross and a longitudinal section of the velocity magnitude at time t = 4.33 s,
which corresponds to about 52 revolutions.

Again, as for the simulations on the grid of level 5, these results look almost identical
to those for Reynolds number Re = 10,000. Only in the scaled plot in the right picture,
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Figure 4.18: Grid of level 6, flow field for Re = 30,000. Velocity magnitude at time
t = 4.33 s (about 52 revolutions). Left: cross section at height x3 = 5cm
(impeller mid-plane), middle: longitudinal section between two baffles,
right: longitudinal section between two baffles, scaled plot.

Figure 4.19: “Adapted” grid of level 6, flow field for Re = 30,000. Velocity magnitude
at time t = 3.33 s (about 40 revolutions). Left: cross section at height
x3 = 5cm (impeller mid-plane), middle: longitudinal section between two
baffles, right: longitudinal section between two baffles, scaled plot.

some smaller differences can be detected, which can be explained by a slightly different
position of the longitudinal section within the tank.

As before, for the simulations with the grid of level 5, we also tried to improve the results
by using an “adapted” grid (the same grid as the one used on level 5, see Fig. 4.15 on
page 77, but refined once more).

Fig. 4.19 shows the resulting flow field after t = 3.33 s, i. e., after about 40 revolutions.
Here, one can immediately see the differences to the flow field we obtained by using the
“ad-hoc” grid. With some good will, one can say that the flow field looks turbulent
(at least in the cross section). Another difference to the results presented before is the
“wiggling” of the jet stream, which can be seen in the middle and the right picture of
Fig. 4.19. Again, as for the simulation with the “adapted” grid of level 5, the jet stream
is thinner than for the “ad-hoc” grid, which seems to be caused by the only very local
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refinement of the grid. Another difference to the simulation results obtained by the “ad-
hoc” grid is that the region of low velocities below the stirrer is smaller, which seems to
be more reasonable. On the other hand, there are still very high velocity gradients at
the “boundary” of this region. However, the maximum values of the velocity magnitude
in the region below the stirrer are lower, which also seems to be more reasonable.

Altogether, the results presented so far show that, in the whole, the “mainstream” of
the flow field is reproduced well by the simulation. However, if we have a more detailed
look at the results, we can find several regions, where the flow field is not calculated
correctly (as already described above).
First of all, there is the region below the impeller, where the velocity is almost zero.
This wedge and even more the high gradients of the velocity at its boundary are in
contradiction to the typical shape of the recirculation loops in this area. The flow is
expected to be sucked in vertically by the impeller.
Second, the velocities in the bottom part of the tank (in the lower recirculation loop)
are altogether much higher than those in the upper recirculation loop, which is also
not in accordance to experimental findings. However, it should be mentioned that the
experimental investigations were made for a “real” cylindric tank, i. e., for a tank with
a flat bottom.
The cross section in Fig. 4.19 shows an irregular distribution of the velocity in the
outer regions, which seems to be unphysical at first sight. However, if we compare this
cross section with a cross section at a time point a little bit later, when the blades of the
impeller have another position with respect to the baffles, the relatively high velocities at
two of the baffles in Fig. 4.19 have “moved” to another position. Thus, this phenomenon
seems to be really induced by the interaction of the blades of the impeller with the
baffles.

Altogether, the results obtained with the “adapted” grid of level 6 seem to be the best.
This is one reason why we will use these results for a deeper analysis and comparison with
experimental data from the literature. Another reason is that the results for Re = 30,000
fit best to the considered application. (Experimental investigations of the drop size
distribution in the stirred tank were done for Reynolds numbers within this range.)

Fig. 4.20 shows cross sections at four different heights. In the left picture of each row,
the velocity magnitude is plotted, whereas the middle and the right picture show the
square-root of the sum of the squared radial plus the squared tangential velocity and
the vertical velocity, respectively. Note that some of the plots are scaled, because of the
different orders of magnitude of the velocity components.
These pictures show that the “turbulent structure” of the flow field, which could be
observed in the cross section in Fig. 4.19, can also be seen at other heights in the
tank. Furthermore, the irregular structure appears in all the different components of the
velocity.

The first row in Fig. 4.20 shows a cross section through the impeller mid-plane. Here,
one can see that, at this height, the main streaming of the flow is in radial and tangential
direction. The axial component of the velocity is negligible compared to the other two
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Figure 4.20: “Adapted” grid of level 6, flow field for Re = 30,000. Cross sections at
four different heights (first row: x3 = 5cm (impeller mid-plane), second
row: x3 = 6cm, third row: x3 = 7.5 cm, fourth row: x3 = 10 cm) at time
t = 3.33 s (about 40 revolutions). Left: velocity magnitude, middle: square-
root of sum of squared radial plus squared tangential velocity, right: vertical
velocity. (All plots except the left and the middle one in the first row are
scaled.) 81
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Figure 4.21: “Adapted” grid of level 6, flow field for Re = 30,000. Vertical velocity
(normal and scaled value), longitudinal section between two baffles at time
t = 3.33 s (about 40 revolutions).

components.
In the second row, a cross section one centimeter above the impeller mid-plane is shown.
Here, one can see that the radial and tangential components of the velocity are relatively
random, whereas the vertical flow is directed upwards near the boundary of the tank
and downwards in the middle.
The upwards and downwards flow in vertical direction can also be seen in the cross
section at height x3 = 7.5 cm, i. e., 2.5 cm above the impeller mid-plane. However, at
this height, the upwards streaming is restricted to a region behind the baffles. Directly
in front of the baffles, there is no significant vertical flow. This suggests the assumption
that the upper recirculation loop is larger in the region behind the baffles than in the
region in front of them.
In the bottom pictures, a cross section at height x3 = 10 cm (i. e., in the middle between
the impeller mid-plane and the top of the tank) is shown. Here, the flow field mainly
consists of radial and tangential components. However, there is still a small vertical
streaming up- and downwards.

As next step, we will briefly describe the flow in vertical direction throughout the tank.
Fig. 4.21 shows the vertical velocity in a longitudinal section between two baffles at
time t = 3.33 s, which corresponds to about 40 revolutions. Here, one can see that the
highest values of the vertical velocity component can be found in two regions, namely
in the region near the wall (or the baffles, respectively) above and below the impeller-
mid-plane and in the region in the middle below and above the stirrer. Both regions
can easily be identified as parts of the two recirculation loops formed by the jet stream
hitting the wall.

After giving a qualitative description of the flow field, we will now also quantitatively
analyze the flow data by comparing axial and radial profiles of the three (mean) veloc-
ity components with corresponding data from the literature. For this comparison, we
use experimental results obtained in [WP89], [CC88], [RJ90b], [VV78], [DKJN93], and
[Hoc90]. Note that in [CC88] it is distinguished between profiles for a baffle plane and
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Figure 4.22: Axial profile of mean tangential velocity between two baffles at different
radii (top left: r = 2.6875 cm, top right: r = 3.225 cm, bottom left: r =
4.15 cm, bottom right: r = 5.65 cm).

profiles for a plane between two baffles, and results for both cases are given. However,
in the other papers it is not specified if the experimental data were obtained in a baffle
plane or between two baffles, and thus, these results are used for both cases.
The radii in the presented axial profiles as well as the heights in the radial ones have
been chosen so that they could be compared with as many experimental results from the
literature as possible. Therefore, it was not possible to present exactly uniform profiles
for all three velocity components. However, we have tried to choose the results in such
a way that the presentation is as clear and as uniform as possible.

Fig. 4.22 shows axial profiles of the mean tangential velocity in a plane in the middle
between two baffles for different radii. Note that these simulation results as well as all
the following ones have been obtained by using an “adapted” grid of level 6. “Mean
velocity” here means that the CFD results have been averaged over several time steps

umean(tk) =
1

2j + 1

k+j∑
i=k−j

u(ti), (4.12)
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where umean(ti) and u(ti) are the mean velocity and the velocity from the CFD simulation
at time t = ti, respectively. By this, the influence of the blades of the impeller (i. e.,
the exact position of the impeller) is “averaged out”. These profiles are compared with
experimental data from Wu & Patterson [WP89].
The top left picture in Fig. 4.22 shows the velocity profile at radius r = 2.6875 cm, i. e.,
close to the impeller tip. Here one can see that the mean tangential velocity is reproduced
well by the simulation. Only in the region below the impeller (the negative part of
the axis of abscissae), the profiles do not match the experimental data from [WP89].
However, this difference may be caused by the fact that in [WP89] a cylindric, flat-
bottomed tank was used, whereas the simulations were done for a tank with torispherical
head.
The top right picture in Fig. 4.22 shows the velocity profile at r = 3.225 cm, i. e., a
little bit further away from the impeller tip. The simulation results still match the
experimental data tolerably well. However, in the simulation, the region of high velocities
is shifted a little bit downwards. This may also be explained by the different bottoms
used for the simulation.
The two bottom pictures in Fig. 4.22 show the profiles at radii r = 4.15 cm and r =
5.65 cm. Here one can see that the peak of the profile is shifted further downwards
compared to the experimental data. Furthermore, the profiles in the simulation seem to
be too steep.

Fig. 4.23 shows the same profiles in a baffle plane. Here one can see that the profiles are
almost identical, especially in the first two pictures. This is not really surprising, since
the radial positions in these pictures are close to the impeller and, thus, far away from
the baffles. If we compare the two bottom pictures in Fig. 4.23 with the corresponding
ones in Fig. 4.22, we recognize that the peaks are higher and steeper in the baffle plane.
However, there are only small differences, since the radial positions in these pictures are
still in significant distance from the radial position of the baffles.

The four pictures in Fig. 4.24 show axial profiles of the mean radial velocity at the same
radial positions, i. e., for r = 2.6875 cm, r = 3.225 cm, r = 4.15 cm, and r = 5.65 cm.
Again, the simulation results are compared with experimental data from Wu & Patterson
[WP89]. This comparison shows that, in the simulation, the maximum value of the
mean radial velocity is underestimated in the region near the impeller, whereas it is
overestimated further away from it. While the peak values in the simulation are first
slowly increasing and then slowly decreasing, the experimental data show a continuous
decrease of the mean radial velocity with further distance from the impeller tip.
Since the corresponding results in a baffle plane are again similar, we will not show them.

Fig. 4.25 shows axial profiles of the mean axial velocity between two baffles at the
same radial positions as before. Comparing the results with those in Wu & Patterson
[WP89] shows that the simulation results are totally different from the experimental
data. Neither the zero-crossing (i. e., the position where the flow changes its direction)
nor the order of magnitude of the mean axial velocity are reproduced by the simulation.
It may be possible that the vertical velocity is strongly influenced by the shape of the
bottom. However, this does not explain these strong differences.
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Figure 4.23: Axial profile of mean tangential velocity in baffle plane at different radii
(top left: r = 2.6875 cm, top right: r = 3.225 cm, bottom left: r = 4.15 cm,
bottom right: r = 5.65 cm).

Again, the corresponding profiles through a baffle differ only slightly from the presented
results and are, therefore, not shown here.

Let us now have a look at the radial profiles. The top right picture in Fig. 4.26 shows
a radial profile of the mean tangential velocity between two baffles at height x3 =
4.5 cm, i. e., at the bottom line of the impeller. Comparing the simulation results with
experimental data obtained by Costes & Couderc [CC88] (note that the exact values have
been read off from the diagrams presented in [JR99]), one can see that the simulation
data match very well the experimental data.
The top right picture in Fig. 4.26 shows the same radial profile, but at height x3 = 5cm,
i. e., in the impeller mid-plane. In this case, the simulation results are not only compared
with experimental data from Costes & Couderc [CC88], but also with those from Wu &
Patterson [WP89]. The results match both sets of data well. (The differences between
the two sets of experimental data are even larger than those between the simulation and
the experimental results.)
The bottom two pictures in Fig. 4.26 show analogous profiles for x3 = 6.046 cm and
x3 = 6.5 cm, i. e., a little above the impeller. Comparing the results with experimental
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Figure 4.24: Axial profile of mean radial velocity between two baffles at different radii
(top left: r = 2.6875 cm, top right: r = 3.225 cm, bottom left: r = 4.15 cm,
bottom right: r = 5.65 cm).

data from Wu & Patterson [WP89] and from Ranade & Joshi [RJ90b], respectively, does
not show an as good agreement as before. The lower velocities in this region are not
reproduced satisfactorily by the simulation.

The corresponding profiles in a plane through a baffle are shown (for three of the four
heights) in Fig. 4.27. As before, the profile at height x3 = 5cm matches quite well the
experimental data, whereas the other two profiles are only in moderate accordance to
the data from the literature.

Fig. 4.28 shows radial profiles of the mean radial velocity in a plane between two baffles.
The top left picture in Fig. 4.28 shows results for x3 = 4.5 cm, which are compared with
experimental data from Costes & Couderc [CC88]. (Again the values have been taken
from [JR99].) There is only a moderate agreement between the simulation results and
the experimental data. However, the order of magnitude of the velocity component is
reproduced by the simulation.
The top right picture in Fig. 4.28 shows the corresponding profile for x3 = 5cm. Since
the flow field in the impeller mid-plane has been investigated by a multitude of authors,

86



4.3 Simulation Results

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

0.15

r=2.6875cm

z*/H
blade

u
ax

ia
l/u

ti
p

simulation results
exp. data [Wu & Patterson]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

0.15

r=3.225cm

z*/H
blade

u
ax

ia
l/u

ti
p

simulation results
exp. data [Wu & Patterson]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

0.15

r=4.15cm

z*/H
blade

u
ax

ia
l/u

ti
p

simulation results
exp. data [Wu & Patterson]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

0.15

r=5.65cm

z*/H
blade

u
ax

ia
l/u

ti
p

simulation results
exp. data [Wu & Patterson]

Figure 4.25: Axial profile of mean axial velocity between two baffles at different radii
(top left: r = 2.6875 cm, top right: r = 3.225 cm, bottom left: r = 4.15 cm,
bottom right: r = 5.65 cm).

we are able to compare the simulation results with experimental data from four different
papers, namely the papers by Costes & Couderc [CC88] (read off from [JR99]), Wu &
Patterson [WP89], Van der Molen & Van Maanen [VV78], and Dyster et al. [DKJN93].
The comparison shows that the simulation results agree quite well with the experimental
data, except for the region near the impeller. A reason for this may be a poor specifica-
tion of boundary values at the rotating impeller.
The bottom pictures in Fig. 4.28 show corresponding profiles for x3 = 6.046 cm and
x3 = 6.5 cm. While the simulation results for x3 = 6.046 cm do not match the experi-
mental data (neither those by Wu & Patterson [WP89] nor those by Hockey [Hoc90]),
the results for x3 = 6.5 cm are in perfect agreement with the experimental data from
Ranade & Joshi [RJ90b]. Note that the experimental data in [Hoc90] are depicted here
as they have been taken from [LSE00]. Furthermore, it should be mentioned that the
depicted values from [Hoc90] are not really for x3 = 6.046 cm, but for x3 = 6.1225 cm.
However, since the simulation results for x3 = 6.046 cm and x3 = 6.1225 cm are almost
identical, the data from [Hoc90] can also be used for x3 = 6.046 cm.
As before in the presentation of the axial profiles, we will, also for the radial profiles,
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Figure 4.26: Radial profile of mean tangential velocity between two baffles at different
heights (top left: x3 = 4.5 cm, top right: x3 = 5cm, bottom left: x3 =
6.046 cm, bottom right: x3 = 6.5 cm).

skip the pictures showing the mean radial velocity in a plane though a baffle, since they
do not give any new information.

Fig. 4.29 shows radial profiles of the mean axial velocity between two baffles at five differ-
ent heights. The picture in the top shows simulation results for x3 = 5cm in comparison
with corresponding experimental data from Wu & Patterson [WP89]. Here one can see
that the simulation results are totally different from the data from the literature. While
in [WP89] positive velocities in the region around the impeller have been measured, the
simulation gives very small negative values.
The two pictures in the middle of Fig. 4.29 show corresponding profiles for x3 = 6.046 cm
and x3 = 6.5 cm. Comparing these results with experimental data from Wu & Patterson
[WP89], Hockey [Hoc90] (again read off from [LSE00]), and Ranade & Joshi [RJ90b]
shows that the general tendency is reproduced by the simulation. However, the magni-
tude of the values differs from the experimental data. Note that (as before) the experi-
mental data in [Hoc90] is again not for x3 = 6.046 cm, but for x3 = 6.1225 cm.
The pictures in the bottom row of Fig. 4.29 show that the deviation from the experimen-
tal data gets larger with larger distance from the impeller mid-plane. Here, simulation
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Figure 4.27: Radial profile of mean tangential velocity in baffle plane at different heights
(top: x3 = 5cm, bottom left: x3 = 6.046 cm, bottom right: x3 = 6.5 cm).

results at heights x3 = 7cm and x3 = 8.75 cm have been compared with experimental
data from Costes & Couderc [CC88] and Ranade & Joshi [RJ90b].

The profiles of the mean axial velocity in a baffle plane clearly differ from those between
two baffles, since the highest axial velocities occur at the same radial positions, where
the baffles are, i. e., in the region, where a zero-value is prescribed in the axis of the
baffles. However, this is also the reason why profiles through a baffles plane are not
very interesting, since the axial velocity is zero (as prescribed) in the most interesting
regions. Thus, these profiles are not shown here.

At the end of this subsection, let us now summarize the results of the comparison be-
tween the simulated and the experimental velocity profiles.
First of all, one can say that for the tangential and radial velocity components a satis-
factory agreement could be obtained. For these components, the general tendency of the
velocity profiles from the literature was reproduced well by the numerical simulation.
For some positions, even a very good quantitative agreement could be observed, like for
the axial profile of the mean tangential velocity at r = 2.6875 cm (i. e., close to the tip
of the impeller) or for the radial profile of the tangential velocity at heights x3 = 4.5 cm
and x3 = 5cm (i. e., at the bottom line of the impeller and in the impeller mid-plane).
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Figure 4.28: Radial profile of mean radial velocity between two baffles at different heights
(top left: x3 = 4.5 cm, top right: x3 = 5cm, bottom left: x3 = 6.046 cm,
bottom right: x3 = 6.5 cm).

For the axial velocity component, however, the agreement between the experimental and
simulation results was not satisfactory. For most of the profiles (namely for all presented
axial profiles as well as for the radial profiles at heights x3 = 5cm and x3 = 8.75 cm),
the simulation results were totally different from the experimental data. This shows that
the flow simulation still has to be improved.

Remark 4.13. In the literature, a deep analysis of the flow field in a stirred tank can
be found. Besides mean velocity profiles, many authors also present profiles of phase-
resolved mean velocities, root-mean square values of the velocity, and other turbulence
data. Furthermore, vector-plots of the region around the impeller are shown, which il-
lustrate the trailing vortices behind the impeller blades. By this, a very good description
of all the time-dependent features induced by the rotating impeller is given, and the typ-
ical shape of the flow field, including the high speed discharge stream originating from
the impeller towards the wall, the large recirculation zones in the bulk tank, the trailing
vortices behind the rotating blades, and the vortices behind the baffles, is reproduced.
However, since the quantitative comparison of the mean velocity values with experimen-
tal data shows only moderate agreement, we refrain from doing any further (and more
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Figure 4.29: Radial profile of mean axial velocity between two baffles at different heights
(first row: x3 = 5cm, second row, left: x3 = 6.046 cm, second row, right:
x3 = 6.5 cm, third row, left: x3 = 7cm, third row, right: x3 = 8.75 cm).
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4 Simulation of the Flow Field with FeatFlow

detailed) comparisons. In addition, a further analysis of the velocity components would
go beyond the scope of this thesis, since for the coupling we will only need values of the
velocity averaged over relatively large compartments.
On the other hand, the turbulence parameter ε, which is also needed for the coupling,
requires a much finer resolution of the flow field or the use of some kind of turbulence
model. Thus, these issues will be discussed in the following subsections.

4.3.3 Simulation on Level 7

The simulation results on the “adapted” grid of level 6 show that even in the refined
region around the impeller the grid is still not fine enough to resolve all the scales of
turbulence. Thus, it was decided to refine the grid again. However, it was not possible
to start a simulation with FeatFlow on a grid of level 7 consisting of 22,475,457 nodes
and 22,282,240 elements.

The first problem was that the parameter NNWORK, by which the maximal memory re-
quirement of the program is defined, is declared as INTEGER*4 variable, i. e., as an integer
in the range −(231 − 1) = −2.15 · 109 ≤ NNWORK ≤ 2.15 · 109 = 231 − 1. However, the
amount of memory needed for a simulation on a grid of level 7 exceeded this range.
This problem was tried to overcome by substituting all 4-byte integers by 8-byte integers.
However, the internal memory management of FeatFlow required also a doubling of
the floating point variables. Thus, all REAL*8 variables needed to be substituted by
REAL*16 variables, which led to a doubling of the whole memory requirement without
changing the size of the problem.
Since for the simulation on a grid of level 6 with the “original” sizes for the variables
already more than 4.5 GB were needed, it had to be expected that for the simulation
of level 7 about 72 GB would be required, since, in this case, the grid is eight times
finer (which corresponds to about eight times more variables) and the variables need
twice as much memory. Nevertheless, we tried to start a simulation on a supercomputer
with 64 GB shared memory. As already expected from the theoretical considerations,
the simulation crashed due to lack of memory after less than four hours.

However, even if the simulation was successful (in the sense that it did not crash), it
would not really have been possible to get results in a reasonable time frame. Since
already the simulation of twelve revolutions (which are at least needed in order to get a
fully-developed flow field) on a grid of level 6 took about three weeks (see Table 4.3 as
well as the corresponding explanations in the following subsection), it must be expected
that the same simulation on a grid of level 7 takes at least 24 weeks (factor eight due
to the eight times more variables) even if the problem with NNWORK did not occur. In
addition, since the server architecture does not support the handling of 16-byte floating
point variables, the described solution would be even more time-consuming.
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4.3 Simulation Results

Grid type Re sim. time rev. comp. time
L5 1,000 10 s 4 30,384 s (approx. 8:26h)
L5 10,000 1 s 4 30,196 s (approx. 8:23h)
L5 30,000 0.3 s 4 29,923 s (approx. 8:19h)
L5, adapt. 30,000 0.3 s 4 34,213 s (approx. 9:30h)
L6 10,000 1 s 4 274,343 s (approx. 76:12h)
L6 30,000 0.3 s 4 265,356 s (approx. 73:43h)
L6, adapt. 30,000 0.3 s 4 292,255 s (approx. 81:11h)

Table 4.3: Simulation times for different grid types, refinement levels, and Reynolds num-
bers. Abbreviations used in the table: Re = Reynolds number, sim. time =
simulated time (corresponds to the “real” time), rev. = revolutions, comp.
time = computing time, L5 / L6 = grid of level 5 / level 6, adapt. = “adapted”
grid.

4.3.4 Simulation Times

As already mentioned before, the simulations were done on two different refinement
levels and for two different underlying coarse grids. Both types of grids had the same
number of nodes: The grids of level 5 consisted of 360,369 nodes and 348,160 elements,
whereas the grids of level 6 consisted of 2,833,761 nodes and 2,785,280 elements.

The simulations were done on an SGI Altix 3700, equipped with 32 Itanium II processors
and a memory of 64 GB. The operating system is an SGI advanced server for Linux,
Version 3.0 with SGI ProPack Version 3.0. The compiler is an Intel Fortran for ia64,
Version 8.0.

All simulations were done with adaptive step size control, see page 53. However, we
prescribed the same (scaled) maximum time step size for all cases. “Scaled” here means
that the step sizes for different Reynolds numbers are considered as equal if the same
number of time steps per revolution is used. Note that, for all simulations, this maximum
time step size was used by the step size control after a few starting time steps.
Furthermore, all simulations were started from a fully developed flow field and with the
same baffle-to-impeller position. In all cases, four revolutions were simulated, which
corresponds to 10 s, 1 s, and about 0.3 s for Re = 1,000, Re = 10,000, and Re = 30,000,
respectively.

The resulting computing times are shown in Table 4.3. Having a look at the last column
in Table 4.3, one can immediately recognize the high computational costs for the simu-
lations. The simulations on the grids of level 5 took between 29,923 and 34,213 seconds,
i. e., between about eight and nine and a half hours. This means that the calculation
of one revolution takes at least two hours. For level 6, the simulation times were in the
range between 265,356 and 292,255 seconds, i. e., between three and 3.38 days (about
three days and nine hours). Thus, the time requirement for one revolution is at least
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4 Simulation of the Flow Field with FeatFlow

about 20 hours.
The computing times appear even worse if we think about simulating one minute “real
time” for a Reynolds number of Re = 30,000 (i. e., 720 revolutions), which would take
about one year and eight month on a grid of level 6. For the simulation of the drop size
distributions, time intervals of the order of magnitude of one minute are very small and
thus, within the coupling approach, one would like to be able to calculate the flow field
for such a time interval in a reasonable time frame.
However, as long as the stirred tank is operated with a constant stirrer speed (leading to
a quasi-steady flow field after some revolutions, see Remark 4.11), it is sufficient to run
simulations for a much smaller time interval and use the results also for the remaining
time, which cannot be simulated due to the high computing times.

In the following, we will compare the computing times for the different simulations with
each other. Let us start with the analysis of the computing times for the “ad-hoc” grid
of level 5. If we compare the computing times for Re = 1,000 with those for Re = 10,000
and Re = 30,000, we can see that all simulations required about the same amount of
computing time.
If we compare the computing times for the “ad-hoc” grid of level 5 with those for
the corresponding “adapted” one (both for Re = 30,000), we can see that the time
requirement for the latter one is a little bit higher than for the first one. The reason for
this seems to be the “irregularity” of the “adapted” grid (where the differences in the
sizes of neighboring elements are much larger).

The same behavior as for level 5 can also be observed for the grid of level 6. First, the
simulation for Re = 30,000 (“ad-hoc” grid) took about the same time as the simulation
for Re = 10,000. Second, the computing time for the “adapted” grid was again a little
bit larger than the one for the “ad-hoc” grid.

Let us now compare the computing times for the grids of level 5 with those of level 6.
For Re = 10,000 and the “ad-hoc” grid, the simulation on level 6 took about nine times
longer than the one on level 5. Since the grid of level 6 consists of eight times more
nodes than the grid of level 5, such a factor has to be expected. (Since the number
of unknowns, which is given by the number of elements (corresponding to the pressure)
plus three times the number of faces (corresponding to the velocity components), changes
from 3,517,696 to 27,997,184, i. e., also by a factor of about eight, one would expect at
least a factor of eight.) For Re = 30,000 (“ad-hoc” grid) the computing times on the
different refinement levels differed by a factor of about 8.9. For the “adapted” grid, the
ratio between the computing time on level 6 and the one on level 5 was 8.5.
However, it should be mentioned that for all simulations (i. e., also for those with a grid
of level 6) the gmv-output was of level 5 only. Clearly, the ratios between the simulation
times for level 6 and those for level 5 would become significantly larger if the gmv-output
was saved for the same refinement level as the corresponding simulations.

At the end of this subsection, it should be mentioned that the simulation times needed
for the bulk of the simulations presented in the previous subsections were even higher
than those stated here. The reason for this is that the “reference simulations” presented
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4.4 Implementation of a k-ε Turbulence Model in FeatFlow

here were done after an update of the queuing system, whereas most of the previous
simulations were done before. Before the update, the supercomputer, which has been
used for the simulations, worked with a so-called “shared CPU set”. This means that
for a non-parallelized job only one processor with 2GB memory could be “booked” in
advance, even if the job needed remarkably more memory. The remaining amount of
memory needed for the simulation was then taken from other processors, which did not
work to full capacity, during the simulation. Clearly, in this case, the simulation times
are not representative, since they are highly dependent on the load of the remaining
processors. In contrast, the simulation times presented in this subsection were derived
after the update of the queuing system. Here, also for a non-parallelized job that needs
more than 2GB memory, more than one processor could be reserved (so-called “exclusive
CPU sets”). Therefore, enough memory was available for the job during the whole
simulation, and, thus, the computing times are reproducible, and a comparison was
possible.

4.4 Implementation of a k-ε Turbulence Model in FEATFLOW

The simulation results presented in the previous subsections show that, in fact, a finer
grid is required in order to resolve all the relevant scales of the turbulent flow field, at
least, if a direct numerical simulation is used. This observation is also confirmed by
theory, as already explained in the beginning of this chapter, see page 46.
However, the investigations in the previous Subsections 4.3.3 and 4.3.4 showed that the
memory and time requirement for the simulation of the considered application are so
high that it is not possible to run simulations on a finer mesh.
This shows that the implementation of a turbulence model is needed for the simulation
of the considered practical application and, in particular, for the coupling with Parsival
and for further applications like control or optimization.

In the following subsections, we will give a brief description of the newly implemented
k-ε turbulence model in FeatFlow and discuss the problems that arise when this model
is used in combination with moving boundaries.

Remark 4.14. From the literature it is well-known that the k-ε turbulence model under-
lies some assumptions, which are usually not fulfilled for the flow field in a stirred tank
reactor. One of these assumptions is the one of local isotropy, which is not satisfied in the
impeller stream, see, e. g., [LSE00], [YPW87]. Another assumption, which is not fulfilled
in stirred vessels, see [JR99], is the one of spectral equilibrium, which implies that, once
turbulent kinetic energy is generated at the low-wave-number end of the spectrum (large
eddies), it is immediately dissipated at the same location at the high-wave-number end
(small eddies). Furthermore, simplifications are used in the derivation of the transport
equations for k and ε, and the model constants in the k-ε model are determined from
simple flow configurations, which are not comparable to stirred tanks, see [BBD00].

Nevertheless, the k-ε model is one of the most frequently used turbulence models, at least
in industry [BBD00]. Reasons for this are the successful application of the k-ε turbulence
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4 Simulation of the Flow Field with FeatFlow

model to many complex flow problems and the fact that the weaknesses of the model are
relatively well-known and, thus, they can be accounted for.

Another reason for the use of the k-ε model in the considered application is that within the
coupling approach values of the energy dissipation rate ε are needed for the calculation of
the coalescence and breakage rates. Thus, the use of a turbulence model, which calculates
these values directly, is obvious and sensible.

It remains the question if it makes sense to use one of the modifications / extensions
of the standard k-ε model, like the Chen-Kim k-ε model or the renormalization group
(RNG) methods. A description of these methods and their pros and cons compared to the
standard k-ε model can be found in [JR99]. The numerical calculations presented there
show that none of these k-ε models performs satisfactorily without modification. This
observation was confirmed in [MLBY01], where it was concluded from test calculations
that the RNG k-ε model does not perform better than the standard k-ε model. However,
in [JR99] good agreement was obtained between measured and simulated data with an
“optimized” version of the Chen-Kim k-ε model.

4.4.1 The Solver pp3d-ke

In order to avoid the extremely high costs of direct numerical simulation for three-
dimensional flows at high Reynolds numbers, a k-ε turbulence model has recently been
added to FeatFlow. This model allows to calculate such flows on meshes of moderate
size. The corresponding CFD code pp3d-ke was developed by D. Kuzmin building on the
laminar FeatFlow version, see http://www.featflow.de. The mathematical basis of
this program is the system of Reynolds-averaged Navier-Stokes equations together with
two transport equations for the turbulent kinetic energy k and its dissipation rate ε, see
Eq. (2.5) on page 10. Additionally, appropriate boundary conditions for the averaged
velocity ū as well as for k and ε have to be prescribed. In this context, the modeling of
the fluid near solid walls is of particular importance, since in these regions the k-ε model
is not valid any more, see Subsection A.2.3 in Appendix A. In the solver pp3d-ke wall
functions are used to model the region next to the wall. The corresponding equations
and further details can be found in [KMS+06].
The discretization in space is performed by an unstructured grid finite element method,
see [Tur99]. A detailed description of the numerical algorithm for the k-ε model can be
found in [KT04], [KLT05].
An application of the k-ε model in FeatFlow can be found in [HKM+06]. Here, the
solver pp3d-ke is coupled with Matlab in order to facilitate the use of standard control
design techniques for fluid flow problems, like the control of the recirculation bubble
behind a backward facing step.

4.4.2 Combination of pp3d-ke with Moving Boundaries

Since in the considered application some parts of the boundary are moving (rotating
impeller), the moving boundary method described in Subsection 4.2.2 has to be adapted
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for the k-ε turbulence model. However, the combination of the solver pp3d-ke with
the moving boundary method meets some difficulties, which will be discussed in the
following.

A first observation is that the fictitious boundary method requires a very fine mesh in
the area, where the impeller is rotating. If the grid is too coarse, the thin blades of the
impeller are prescribed very inaccurately. This gives rise to large undesired errors in the
calculation of the velocity field.
The second difficulty arises from the fact that the available wall boundary laws for the
k-ε turbulence model require the boundary to be smooth and very plane, since they were
derived from physical experiments of channel flows.
From these considerations and under the assumption that the major changes in the
velocity field are due to the rotating impeller, one can conclude that it is preferable to
perform a coordinate transformation using a fixed impeller, around which the outside
wall of the tank is rotating. This transformation, however, leads to additional terms
in the Reynolds-averaged Navier-Stokes equations, namely the Coriolis and centrifugal
forces (see [KMS+06]). Since, in the latter one, the averaged velocity does not appear,
it can be added to the pressure term. By doing this, the equations are solved for the
transformed “pressure” consisting of the “real” pressure and the part derived from the
centrifugal forces term. On the other hand, the Coriolis force contains the averaged
velocity ū and, thus, leads to a “real” change in the equations and this additional term
must be implemented in the CFD code.

Finally, we have to consider the boundary conditions in this setting. The given wall
boundary conditions in the k-ε turbulence model, which are prescribed everywhere on
the solid wall, are not sufficient, since we are not able to deal with the tangential part
of the velocity vector field on the boundary. This problem can be overcome by realizing
generalized boundary conditions according to [KFT00] and [JD92]. Further details can
be found in [KMS+06] and references therein.

4.5 Discussion and Perspectives

The current simulation results show many challenges. Obviously, the results of the flow
simulation can still be improved. However, if direct numerical simulation is used, a much
finer grid is required, which clearly cannot be handled due to the high time and memory
requirements for the simulation, see Subsections 4.3.3 and 4.3.4.

A way out would be the use of a parallel CFD solver. A parallel version of the solver
pp3d is already available on the Internet, see http://www.featflow.de. However, for
the considered stirred tank application, the moving boundary method is needed, i. e.,
the solver pp3d-movbc has to be used, which is not parallelized yet.
On the other hand, even if a parallel CFD code is used, the time and memory require-
ments for a direct numerical simulation are still enormous. Thus, it is sensible to use
some kind of turbulence modeling, which is currently being completed, see Section 4.4.
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4 Simulation of the Flow Field with FeatFlow

Remark 4.15. In general, there are a lot of arguments for and against the use of a
k-ε turbulence model, see also Remark 4.14 on page 95. Despite the strong assumptions
of the k-ε model, which are not fulfilled for most flow configurations, the k-ε turbulence
model is one of the most widely used turbulence models.
According to [JR99], it is generally accepted that Reynolds-averaging of the Navier-Stokes
equations and modeling the Reynolds stresses with an appropriate turbulence model are
a promising way of modeling the flow behavior. However, in [YPL03] it was stated
that methods based on Reynolds-averaging predict the mean flow reasonably well, but
underpredict the turbulent kinetic energy by about 50 percent. Furthermore, in [BBD00] it
was claimed that for most key features the results of direct numerical simulation are closer
to experimental findings than the k-ε predictions. However, their numerical simulations
were only done for a Reynolds number of Re = 7,275.
On the other hand, the use of direct numerical simulation requires the resolution of
the motions down to the dissipative scales. Therefore, direct numerical simulation is
only applicable to relatively low Reynolds number flows and not to industrial related
applications [YPL03].

As already mentioned before, an important reason for the use of a k-ε model for the
considered application is that within the coupling approach the value of ε is needed for
the calculation of the coalescence and breakage rates. However, the use of a turbulence
model, which takes into account the small scales (by modeling them), can be problematic
in combination with a compartment model, which simply neglects all these scales. Note
that the influence of the drops on the flow field is neglected in the considered approach
and that every zone is assumed to be ideally mixed in the compartment model.

At the moment a sensible adaption of the k-ε turbulence model solver pp3d-ke to the
application of stirred liquid-liquid systems is investigated, see Subsection 4.4.2, including
the coordinate transformation described there. As already mentioned in this subsection,
the combination of the k-ε turbulence model with the moving boundary method leads
to additional problems, since the wall boundary laws for the k-ε model require a smooth
and plane boundary. However, in general, this condition is violated by the “zig-zag”
approximation used in the moving boundary method, see Fig. 4.8 on page 62.

An additional possibility to save computational costs is to use the symmetry of the
problem, i. e., to simulate only the flow field in a part of the tank representing the
whole. However, since the stirred tank is equipped with a six-bladed Rushton turbine,
but only with four baffles, at most a halfing of the costs is possible. Note that the baffles
cannot be neglected, since they prevent the liquid from performing a solid-body rotation
and, thus, enhance mixing, see, e. g., [Kra03] or [DV99]. In order to use the symmetry
of the problem, the CFD code must be able to handle symmetric boundary conditions,
which is not realized for the three-dimensional solver pp3d in FeatFlow.

Another difficulty is that the grid generation is very complicated (due to the quadrilateral
elements used in FeatFlow), see Subsection 4.2.1. Thus, it is really hard to get an
“optimal” grid for the simulation. However, the simulation results show that a refinement
of the mesh in the region of large velocity gradients is recommended. This finding is in
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accordance with the analysis in [JR99], where it is stated that local refinement of the
grid in several regions of the vessel is necessary in order to resolve sharp gradients of
mean flow and turbulence quantities. In [YPW87] it is even stated that the numerical
resolution of steep gradients present in the flow is more important to the solution of the
flow field than the representation of turbulence.
On the other hand, an only local refinement of the grid can reduce the number of grid
points needed for a direct numerical simulation. In the stirred tank application, for
example, it should suffice to use a very fine grid (which is able to resolve all scales of
turbulence) in the region around the impeller only and a coarser one in the remaining part
of the tank (since the local Reynolds numbers are much smaller there). An application,
where a direct numerical simulation in combination with a locally refined grid was used,
can be found in [BBD00], for example.
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5 Coupling the CFD Code FEATFLOW with
the Population Balance Solver PARSIVAL

In this chapter, we will discuss how the coupling between the flow simulation and the
solution of the population balance equation can be realized. We will use the solvers
FeatFlow and Parsival in a simulator coupling approach in order to solve the system
of equations describing the processes in a stirred tank reactor, see Eq. (3.1) on page 32.

Remark 5.1. In general, the coupling that is hidden in the description / modeling of
the different processes in a stirred tank reactor can be considered on different levels: on
the level of physics, on the level of equations, and on the level of simulation, see Fig. 5.1.
In [KS00] these levels are denoted by “physical model description”, “mathematical model
description”, and “behavioral model description”.

On the level of physics, the coupling describes how the flow field in the stirred tank
and the population dynamical processes of the drops interact with each other. On one
hand, the turbulent flow influences the behavior of the drops. For example, there are more
breakage and less coalescence phenomena in the turbulent region close to the impeller than
in the less turbulent regions of the tank. On the other hand, the drop size distribution
throughout the tank can also have an influence on the flow field. Bigger particles can
enhance turbulence, for example, whereas smaller particles can lead to a damping of
turbulence.

If we consider the coupling on the level of equations, we have, on one hand, the Reynolds-
averaged Navier-Stokes equations with k-ε turbulence model describing the turbulent flow
in the stirred tank and, on the other hand, the averaged population balance equation
accounting for the behavior of the drops. In principle, the best way to treat the arising
system is to solve all equations together as one coupled system (the so-called “monolithic
model”). In Chapter 3, the dynamics of this coupled system have been analyzed and it
has been shown that, at least from the numerical point of view, existing algorithms for
the solution of the Navier-Stokes equations could be extended such that they can be used
to treat the coupled system. However, the effort to build such a solver is immense, and,
thus, this approach is currently not feasible, at least not in the short-term construction
of a solver that can be used in practical applications.

In practice, today the only way to get a solution in a reasonable time frame is to couple
existing solvers, which represents the coupling on the level of simulation. In this ap-
proach, which is known as “co-simulation”, already developed and implemented methods
are used, which are typically combined via a relaxation method (see, e. g., [KS00] or
[MJWR99]). This means that, in each iteration step, one method uses the results of a

101



5 Coupling the CFD Code FeatFlow with the Population Balance Solver Parsival

Coupling ...

... on the level of physics:

Flow in the
stirred tank

Population dynamical
processes

... on the level of equations:

RANSE with
k-ε turbulence model

Averaged population
balance equation

... on the level of simulation:

FeatFlow Parsival

Figure 5.1: Different levels of coupling. Abbreviation used in the figure: RANSE =
Reynolds-averaged Navier-Stokes equations.

previous step of the other method and vice versa.
The advantage of this approach is the enormous saving of time needed for modeling,
development, and implementation. Furthermore, the subsystems can be modeled inde-
pendently and in parallel, the resulting modules can be exchanged easily, and different
software can be used for each module [KS00], which means that an “optimal” solver can
be chosen for each subproblem.
On the other hand, the use of different tools for the description and simulation of the
subproblems must be handled and the data exchange between these tools must be im-
plemented. Another disadvantage of this approach is that the results can only rarely
be verified by existing theory. Furthermore, simulator coupling can lead to convergence
problems, and high computation times must be expected.
For theoretical aspects of simulator coupling approaches, including stability and conver-
gence analyses, see, e. g., [KS00], [AG01], [Ebe04], and [RS05].

In the following, the simulator coupling approach will be used to solve the coupled
system. However, we will only consider a so-called “one-way coupling” here, which
means that we only consider the influence of the turbulent flow field on the drops, but
do not take into account that the flow field is also affected by the drop size distribution.
Note that this influence was already neglected in the modeling approach in Chapter 2.
In brief, the applied simulator coupling approach can be summarized as follows. In a
first step, the flow field is calculated with FeatFlow on a very fine grid. According
to the results of the CFD simulation, the whole tank is then subdivided into a much
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smaller number of compartments. Since the drop size distributions are assumed to be
space-independent inside these compartments, the division has to be done in such a way
that this is (at least approximately) satisfied. Afterwards, the drop size distributions
are calculated in Parsival, where the results of the CFD simulation are used in the
coalescence and breakage rates as well as for the calculation of the exchange flows between
the different compartments.

Remark 5.2. In the literature, one can already find such kind of multi-compartment
models in combination with CFD simulations for different applications, like stirred liquid-
liquid systems (see, e. g., [AKK99], [AKKM02], or [PB]), stirred gas-liquid systems (see,
e. g., [LAA02] or [VDV02]), or imperfect mixing in reactive systems (see, e. g., [WR05]).
In these papers, the compartment model approach has been combined with different solu-
tion strategies for the population balance equation, namely with the method of classes (see
[AKK99], [AKKM02], [LAA02], or [VDV02]) and the method of moments (see [WR05]).

The idea of the multi-compartment approaches is to use different grids for the CFD
simulation and for the calculation of the other equations describing population dynamical
processes or reaction kinetics, for example. While a very fine grid is used for the CFD
simulation, the remaining equations are solved on a much coarser grid. According to the
results of the CFD simulation, the reactor is subdivided into several compartments, which
are then assumed to be ideally mixed. The number of compartments varies dependent on
the considered application reaching from two to hundred (or even more) compartments.
(In [AKK99], [AKKM02], [LAA02], and [PB] between ten and fourteen compartments
are used, whereas the model in [WR05] consists of hundred compartments.)

By means of these compartment model approaches, a more detailed model (than using
just one ideally mixed reactor for the whole simulation) is derived, since dependencies
on locally varying quantities are included in the model. On the other hand, compartment
models save enormous computing time compared to models that use an as fine grid as
the one for the CFD simulation also for the calculation of the other equations.

This chapter is organized as follows. First, in Section 5.1, we will give a short intro-
duction to the mathematical background of Parsival. Furthermore, we will briefly
describe how to implement a model in Parsival. Then, in Section 5.2, we will summa-
rize some results of the simulation of the drop size distributions with Parsival. In this
context, we will also discuss the influence of the choice of different model parameters
and different coalescence and breakage rates on the resulting drop size distributions. In
Section 5.3, we will explain how the coupling between FeatFlow and Parsival can
be realized. After a presentation of the results of the coupling and a comparison with
experimental data in Section 5.4, we will discuss the pros and cons of the presented
approach in Section 5.5 and give some hints how the coupling can be improved in the
future. Finally, in Section 5.6, we will present the quadrature method of moments and
the direct quadrature method of moments, which both represent good alternatives for
solving the population balance equation, in particular, if they are used within a coupling
approach, since they can easily be integrated into a CFD code.
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5.1 About PARSIVAL

In this section, we will give a brief introduction to Parsival. Parsival, which is short
for Particle size evaluation, is a simulation package for (space-independent) population
balances, i. e., for equations of the following form:

∂f(e, t)
∂t

= s(f(e, t), e, t). (5.1)

Here, f(e, t) denotes the number density function, which depends on internal coordinates
e and on the time t. With a current version of Parsival (version 6.14.5) only one internal
coordinate can be handled, namely the diameter d of the drops. However, an extension
of Parsival for more than one internal coordinate is currently being developed, see
[Par]. Furthermore, the function s on the right-hand side of Eq. (5.1) denotes the sum
of source and sink terms, which may consist of terms due to coalescence and breakage
(as in the considered application), but also on terms accounting for other population
dynamical processes, like growth, shrinkage, formation, or dissolution.
Note that Eq. (5.1) is not as easy to handle as it looks like, since the right-hand side
may involve partial derivatives as well as integrals depending on which processes are
considered.

Further assumptions on the models that can be simulated with Parsival can be found
in the Parsival manual [Wul].

Although only space-independent population balance equations can be treated with Par-
sival, one can nevertheless realize some kind of space-dependency by substituting the to-
tal (space-dependent) system by several smaller (ideally mixed, i. e., space-independent)
subsystems, which are “connected” with each other by volume flows. Since this approach
is used for the realization of the coupling between FeatFlow and Parsival, further
details can be found in Section 5.3.

5.1.1 The Numerical Algorithm Implemented in PARSIVAL

The numerical algorithm implemented in Parsival is based on a generalized finite-
element scheme with self-adaptive grid and order construction and is connected to a
time discretization of Rothe’s type, see [WGN01] and [WGN99]. It is called Galerkin
h-p method (h: variable grid, p: variable order). In the following, we will describe this
numerical algorithm, which is shown graphically in Fig. 5.2, and give some basic features
of Parsival.

As just mentioned, Parsival uses a Rothe method, which means that the population
balance equation is first discretized in time. However, in contrast to the solution of space-
and time-dependent partial differential equations, where the application of the Rothe
method leads to a system of stationary space-dependent partial differential equations,
the time-discretization here leads to a system of stationary partial differential equations
that is dependent on the internal coordinate, i. e., on the diameter of the drops. The
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Population balance equation:

∂f(e, t)
∂t

= s(f(e, t), e, t)

Time discretization
(Rothe method)

Given: f(e, t) =: fn(e),
calculate approximation fn+1(e) of f(e, t+ δt) via:

(I − δt Jf (e)) δf (e) = δt s(fn(e), e),
fn+1(e) = fn(e) + δf (e),

where Jf (e) is the Jacobian Jf (e) = sf (fn(e), e)
and δt is the time step size

Finite-element-type
Galerkin method

On each level L,
subdivide e-axis into mL intervals IL

1 , . . . , I
L
mL ,

approximate f(e) on interval IL
j , j = 1, . . . ,mL, by

fL
e |IL

j
=

p̂L
j∑

i=0

αL
ij l

L
ij(e)

with

p̂L
j : order of the polynomial approximation

(which may differ from interval to interval),
αL

ij : coefficients, and
lLij : Legendre polynomials of degree i

(transformed to the interval IL
j ).

Figure 5.2: Schematic representation of the numerical algorithm implemented in Parsi-
val.
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5 Coupling the CFD Code FeatFlow with the Population Balance Solver Parsival

difficulty in the solution of these equations is that the discretization with respect to the
diameter of the drops is much more complicated than a “normal” spatial discretization.
The challenge here is that conservation laws, which ensure that the total volume of the
dispersed phase (i. e., the total volume of all drops) is maintained during the coalescence
and breakage processes, still have to be satisfied after the discretization with respect to
the internal coordinate (see also Remark 5.3).

In Parsival, the semi-implicit Euler scheme is applied as time discretization method.
Thus, the discretization of Eq. (5.1) leads to the following problem:

Given fn(e) := f(e, t) and time step size δt, then solve for fn+1(e)

(I − δt Jf (e)) δf (e) = δt s(fn(e), e), (5.2)
fn+1(e) = fn(e) + δf (e),

where δf is a correction term and Jf (e) denotes the Jacobian Jf (e) = sf (fn(e), e).

By this, we obtain a linear system (with respect to δf (e)), which is still a partial dif-
ferential equation, but now a stationary one. Thus, it has to be solved by some kind of
approximation technique.

Clearly, both, the time discretization as well as the approximation of the stationary
problem, introduce errors. In Parsival, an adaptive time control tries to keep the error
of the time discretization εt below a certain tolerance by controlling the time step size.
The idea of the approach is that the solution of Eq. (5.2) may be slightly perturbed by
the approximation of the stationary problem without affecting the time step size and
accuracy significantly. The stationary approximation error εs just has to be kept below
a certain accuracy. In fact, the stationary approximation error εs is matched to the time
error εt such that the complete time step is performed within the overall tolerance. It is
a special feature of the Rothe method that the requirement for εs is not too strict, when
an appropriate time discretization scheme is used, see [WGN01].
In Parsival, the multiplicative error correction (MEC) [Bor91] is used for the time step
control, since it avoids differences in the computation of the time error and uses the
same left-hand side as in Eq. (5.2) so that no additional decomposition has to be done.
For further details concerning the time integration and control, see [WGN01].

Within a time step, the equations that remain to be solved both have the following form:

(I − δt Jf (e)) f(e) = h(e), (5.3)

where the right-hand side h(e) and the solution f(e) contain all components of the
system or its numerical representation at time t or t+ δt, respectively. The task is now
to find an approximation f̂(e) of f(e) that satisfies ‖f̂ − f‖ < εs. Thus, we approximate
the solution of Eq. (5.3) by means of the following finite-element type Galerkin method.
In this approach, the drop size axis (e-axis) is subdivided into several intervals, and on
each interval f(e) is approximated by using a local expansion fe of f(e).

This approximation is realized by means of a multi-level algorithm as follows. On the
L-th level, the approximation fL

e on interval IL
j , j = 1, . . . ,mL, where mL denotes the
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total number of intervals on that level, is given by

fL
e |IL

j
=

p̂L
j∑

i=0

αL
ij l

L
ij(e).

Here, p̂L
j is the order of the polynomial approximation on interval IL

j , αL
ij are the ex-

pansion coefficients, and lLij are the Legendre polynomials of degree i (transformed to
the respective interval IL

j ). The crucial point here is that the number of expansion co-
efficients (i. e., the order of the approximating polynomials) may vary from interval to
interval such that the form of the drop size distribution can be resolved by the varying
order.
The construction is started with an initial grid (for the choice of this initial grid, see
[WGN01]) and proceeds from level to level by refining the intervals or by increasing the
order. (For details about the refinement strategies on each level, see also [WGN01].)
The node-order-pattern (i. e., the number and the size of the intervals and the respective
polynomial orders) on the final grid, i. e., (Ifinal

j , p̂final
j ), j = 1, . . . ,mfinal, are chosen in

such a way that the amount of work necessary to compute the whole approximation is
as small as possible.

Further details on the Galerkin h-p method and especially on the construction of the
subdivisions as well as on the finite representations of the drop size distribution can be
found in [WGN01].

Remark 5.3. In general, there are several approaches how the internal coordinate in a
population balance equation can be treated. Among the most commonly used methods,
there are the discrete formulation for the solution known as method of classes and the
method of moments approaches.

In the method of classes, the axis of the internal coordinate is subdivided into several in-
tervals, and the population balance equation is discretized with respect to these intervals.
However, for many applications, usually neither an arithmetic discretization (where an
equidistant subdivision of the size axis is used) nor a geometric discretization (where the
size of the next class is twice as large as the size of the previous class), see Fig. 5.3
(left), leads to satisfactory results, since, due to the high computational costs, only a few
classes can be used. Moreover, if the distribution changes with time, a fixed discretization
leads to a rough approximation only. Thus, an intelligent adaptive algorithm (as the one
used by Parsival) is needed, which controls the discretization of the internal coordinate
depending on the shape of the distribution.
An alternative approach, which uses H-matrix methods for the numerical treatment of
the Galerkin discretization of the integral operators in the population balance equation
in order to reduce the computational costs, has been introduced in [Koc05] (see also
[KHS06]).
Another difficulty of the method of classes is the conservation of mass during the pop-
ulation dynamical processes, see Fig. 5.3 (right). In the literature, several approaches
for this problem can be found, see [BHB81], [HRM88], [LSH95], [Van99], [KR96a], and
[KR96b]. A comparison of the different methods can be found in [Van00].
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V1 V2 V3 . . . V8

V1 V2 V3 . . . V4 Vi Vj Vk Vk+1

Figure 5.3: Left: Discretization of the drop volume, top: arithmetic discretization:
Vi+1 − Vi = const, bottom: geometric discretization: Vi+1/Vi = const. Right:
Problem of mass conservation: The coalescence of two drops with the (dis-
cretized) volumes Vi and Vj leads to a drop with volume Vi + Vj , which
usually lies between two discretization points Vk and Vk+1.

In the method of moments approaches, the internal coordinate is “integrated out”, and
the equations for a finite set of moments (that are independent of the internal coordinate)
are solved instead of the original population balance equation.
For Eq. (5.1), this reads as

∂mk(t)
∂t

=
∫ ∞

−∞
s(f(e, t), e, t) ek de =: s̄k(t), k = 1, . . . , Nmom,

where mk denotes the k-th moment, given by

mk(t) =
∫ ∞

−∞
f(e, t) ek de.

However, in general (e. g., for complicated coalescence kernels), it is not possible to write
the equations for the first Nmom moments in terms of other lower-order moments. A
way out of this is given by the quadrature method of moments and the direct quadrature
method of moments, which are described in Section 5.6.
The advantage of these approaches is that they are very efficient and that they can easily
be implemented in a CFD code. On the other hand, the reconstruction of the whole
distribution from a finite set of moments is, in general, not possible, unless assumptions
on its shape are made.

Other possibilities for the solution of population balance equations are, e. g., the method
of Laplace transforms or Monte Carlo simulation methods, whereof the latter ones are
very common. A brief description of these approaches and further references can be
found in [Ram00].

The numerical algorithm described above, see also Fig. 5.2, has been implemented in
the object-oriented software package Parsival, which is a dynamic flow sheet simulator
with a full graphical user interface. In Parsival, the population dynamical processes in
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a multi-phase system are represented by six types of components, which can be defined
by the user: Reactors, Fluids, Distributions, Streams, Coefficients, and Modules. All
processes can be combined in terms of implemented basic modules (such as growth,
coalescence, breakage, etc.) that consist of a pre-defined equation pattern, which can be
“filled” with an appropriate kernel depending on the desired model. (A short description
how a stirred tank model can be implemented in Parsival can be found in the following
subsection.)

Further information about the features and the use of Parsival can be found in [Wul],
[GB04], and [Par]. One of the additional features of Parsival is the estimation of
parameters from given experimental results. By this, free parameters often occurring in
the models from the literature can be fitted and thus optimized with respect to a certain
application (see also Section 5.2). An example of simulating a mixed suspension, mixed
product removal crystallizer with Parsival can be found in [WGN01] and [WGN99].

5.1.2 Implementation of a Stirred Tank Reactor in PARSIVAL

Before a simulation with Parsival can be started, the complete model including the pa-
rameters and the initial values of all components and reactor variables must be provided
by the user. This input data can be created and edited in the Parsival-Workshop, a
user-friendly tool that allows the creation of input files required for the simulation in a
dialogue-guided way. Although the resulting input file is a plain ASCII-file, which may
also be modified in an arbitrary text editor, this is not recommended (and also hardly
possible), since the required syntax is not documented.

As already mentioned in the previous subsection, there are six types of components that
can be used for modeling a stirred tank in Parsival.

• In the first component, called Reactors, one can specify the name, the temperature,
the operation mode (batch, semi-batch, or continuous) as well as the volume of
the different reactors, the whole model consists of. Furthermore, one can declare
a so-called control stream for each reactor. During the simulation, this control
stream is used to keep the volume of the reactor constant. Note that if an ideally
mixed tank is modeled, only one reactor is needed. However, in order to model
a non-ideal tank, a compartment model consisting of several reactors has to be
implemented (since each reactor is assumed to be ideally mixed). The exchange
between these compartments can be modeled by volume flows, see Section 5.3 as
well as the description of the components Streams and Modules below.

• In the component Fluids, one can specify the name, the initial value, the molar
mass, and the density of the different fluids, the continuous phase consists of.
Furthermore, one has to specify the name of the unit (i. e., the name of the reactor)
the fluid component belongs to. Note that more than one fluid can be used for
describing the continuous phase (e. g., if the continuous phase consists of a mixture
of different fluids). If a multi-compartment model is used, at least one fluid has to
be used for each compartment (i. e., for each reactor).
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• Analogously, the dispersed phases are modeled by the component Distributions.
Here, one can, besides the name, the start distribution, the density, and the unit
it refers to, also specify a so-called shape factor, which describes the relationship
between the drop sizes and their volumes.

• By means of the component Streams, the flow into, out of, and between the different
reactors can be described. Here, one has to specify the name of the stream, the
unit it belongs to, its kind (volume stream or mass stream), its direction (feed
stream or exit stream), and its temperature. In a multi-compartment model, the
exchange between different reactors can be modeled by exit streams in combination
with appropriate modules describing the flow of the continuous phase as well as of
the drop size distributions between the compartments.

• In the component Coefficients, all constants have to be specified. Only after the
coefficients have been defined here, they can be used in the other components (as
part of functions, for example).

• Modules are pre-defined patterns or templates that have to be filled with appro-
priate data, like with declared components (Fluids, Distributions, Streams, or Co-
efficients) or with kernels (describing coalescence or breakage rates, for example).
Every module leads to a specific system of differential equations for the participat-
ing reactants. By collecting all these terms, the user can construct the complete
system of differential equations solved by Parsival. Modules may describe popu-
lation dynamical processes, like coalescence (or agglomeration), breakage, attrition,
dissolution, or growth of particles. In addition, equations describing feed or exit
streams as well as diffusion or convection terms can be modeled with pre-defined
modules. Furthermore, boundary conditions can be specified via modules. A list
of available modules can be found in the Parsival-Manual [Wul].

A short description of the components we have implemented in the four-compartment
model, which we have used in the coupling approach, will be given in Section 5.3.

5.2 Results of the Simulation with PARSIVAL

In this section, we will summarize some results of the simulation of drop size distri-
butions with Parsival, which have been carried out in a joint project, mainly by the
project partners at the Institute for Process Engineering at the TU Berlin. The aim
of these simulations was to find out if existing models from the literature are capable
of reproducing the measured drop size distributions and, if not, how these models can
be improved and extended so that they can be used as predictive models. By means
of systematic simulations it can be investigated, which parameters have an influence on
the drop size distributions in a certain application. This knowledge can then also be
used for the control and optimization of drop size distributions, usually with the aim to
achieve a desired average drop size and a small standard deviation of the distribution.
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In general, drop size distributions in stirred liquid-liquid systems are dependent on many
parameters. Among them, there are:

• the power input,

• the dispersed phase fraction,

• geometrical parameters, like

– the ratio between the diameter of the tank and the diameter of the stirrer,

– the ratio between the tank height and the clearance, or

– the shape of the stirrer,

• physical properties of the species, such as

– interfacial tension,

– viscosity,

– ionic strength,

– pH-value, or

– surface tension.

Clearly, these influences should also be reflected by the mathematical models describing
coalescence and breakage processes. However, in most models from the literature, not
all parameters are taken into account. Instead of that, fitting parameters are introduced
in the models, which can be adapted for a certain application. The problem with this
approach is that the simulations with one set of parameters often cannot reproduce the
experimental drop size distributions if different values for a certain input parameter
(such as the rotational speed) are used. Thus, these models cannot be used as predictive
models.

This difficulty is the reason why systematic simulations are required in order to improve
the models from the literature by taking into account further dependencies on physi-
cal parameters, which can be detected by experimental investigations, but are not yet
present in the mathematical models.

Remark 5.4. A quantitative understanding of drop breakage and coalescence mech-
anisms is essential for the development of predictive models describing the drop size
distributions in stirred liquid-liquid systems. Currently, it is still not possible to suffi-
ciently describe a drop size distribution as a function of process and physical parameters
in an inhomogeneous flow field typical for a stirred tank reactor. The comparison of
experimental drop size distributions and simulation results with different models from
the literature show significant discrepancies, see, e. g., [Weg04]. Even the most popular
models, like the one by Coulaloglou and Tavlarides [CT77] or the one by Alopaeus et
al. [AKK99], partially lead to only poor simulation results if system parameters, like the
speed of the impeller or the volume fraction of the dispersed phase, are changed without

111



5 Coupling the CFD Code FeatFlow with the Population Balance Solver Parsival

adapting the model parameters. Therefore, a further analysis of the known models as
well as their improvement are required for a reliable simulation and control of stirred
liquid-liquid systems.
An advantage of simulations over experimental investigations is that the population dy-
namical processes (i. e., coalescence and breakage) can easily be analyzed separately. In
experiments, however, the separation of the different population dynamical processes is
much more complicated, see, e. g., [MGW+06].

The following investigations were performed for the “standard” stirred tank, equipped
with a six-bladed Rushton turbine and four baffles, described in Chapter 4. (The exact
dimensions can be found on page 66.)
First, we will present results for so-called “one-compartment models”, where the as-
sumption that the stirred tank is ideally mixed is used. Afterwards, we will describe the
results for “more-compartment models”, where the different energy dissipation rates in
different regions of the stirred tank are taken into account.

5.2.1 Results for “One-Compartment Models”

• In [Weg04], a stirred liquid-liquid system, consisting of water as continuous phase
and toluene as dispersed phase with a volume fraction of 10%, was investigated.
Three different rotational speeds (400, 550, and 700 rounds per minute) and seven
different pH-values (1, 3, . . . , 13) were used in the experiments. However, the sim-
ulations with Parsival were only performed for a pH-value of 13. This pH-value
leads to a coalescence-hindered system (see, e. g., [GWPK06a]) so that transient
drop size distributions can be observed. For pH-values smaller than 11, the final
steady-state distributions are reached so fast that the change of the drop size dis-
tributions with time can hardly be measured.
For the coalescence and breakage rates, three different models were implemented
in Parsival. Note that in all three models the same coalescence rate (namely the
one from [CT77]) and the same distribution of daughter drops (namely a Gaus-
sian normal distribution) were used, and that only the breakage rate was varied.
For the latter one, approaches from [CT77], [AKK99], and [MML99a] were imple-
mented. The fitting parameters in these models were optimized using Parsival’s
parameter estimation, which minimizes the differences between simulated and ex-
perimental data. By this, the optimal values with respect to the experimental
data for a rotational speed of 400 rounds per minute were obtained. This set of
parameters was then also used for the simulation of the other rotational speeds.
A comparison of the resulting drop size distributions with the experimental data
showed good agreement for all three models for the rotational speed of 400 rounds
per minute. However, the results for other rotational speeds showed major dis-
crepancies, see Fig. 5.4. The simulated drop size distributions were too broad and
consisted of too many small drops. This suggests the assumption that the model
parameters are not only dependent on physical parameters of the dispersion, but
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Figure 5.4: Experimental (dots) and simulated (lines) drop size distributions (cumula-
tive number distributions) for 400 (left), 550 (middle), and 700 (right) rounds
per minute (taken from [Weg04]). For the simulation, the model from [CT77]
was used. Note that the model parameters were fitted with respect to ex-
perimental data for a rotational speed of 400 rounds per minute.

also on the rotational speed. Another reason for the deviation could be that the
small drops could not be measured in the experiments. A surprisingly good agree-
ment between experimental data and simulation results was found for a step in the
rotational speed from 700 to 400 rounds per minute, see Fig. 5.5. The transient
behavior of the drop size distribution was reproduced very well in this case.

Altogether the conclusion can be drawn that, for all models, the simulation results
agreed very well with the experimental data if the rotational speed, which was used
for the fitting of the parameters, was not varied for the simulation. This is not
really surprising, since in this case the shape of the distribution can be “adapted”
by choosing the “right” parameters. However, if the same set of parameters is used
for much higher (or lower) rotational speeds, the simulated drop size distributions
may vary significantly from the experimental results.

• Similar results were obtained in [GWSK05] (see also [GWSK04]). Here, the same
liquid-liquid system (consisting of water as continuous and toluene as dispersed
phase with a volume fraction of 10%) was investigated. The drop size distribu-
tions were determined experimentally for the same pH-values (1, 3, . . . , 13) and for
the same range of rotational speeds. However, in [GWSK05], five different rota-
tional speeds were considered: 400, 475, 550, 625, and 700 rounds per minute. As
in [Weg04], also a step in the rotational speed from 700 to 400 rounds per minute
was investigated in order to observe the coalescence behavior of the drops.
Numerical simulations were performed with Parsival using the coalescence and
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Figure 5.5: Experimental (dots) and simulated (lines) drop size distributions (cumulative
number distributions) for a step in the rotational speed from 700 to 400
rounds per minute for 1, 5, 10, and 40 minutes after the step (taken from
[Weg04]). For the simulation, the model from [CT77] was used.

breakage rates from [CT77]. It was decided to use this model, since it showed
the best fit with experimental data. As in [Weg04], Parsival’s parameter esti-
mation was used to determine the optimal model parameters with respect to the
experimental data for a rotational speed of 400 rounds per minute. The same set
of parameters was then also used for the simulation with the higher rotational
speeds.
A comparison with the results from the experimental investigations showed, as
expected, very good agreement for the rotational speed of 400 rounds per minute,
but only moderate agreement for the higher rotational speeds. This indicates that
the coalescence and breakage rates are dependent on the rotational speed. Thus,
one can expect better results if the influence of the rotational speed is taken into
account in the modeling.

• In [GSP+05], the parameter sensitivity regarding the energy input was studied by
deriving the optimal model parameters for five different rotational speeds (400,
475, 550, 625, and 700 rounds per minute) and comparing them. This analysis
showed that the two parameters occurring in the breakage rate from [CT77] are
dependent on the stirrer speed (the higher the rotational speed, the greater the
parameters), see Fig. 5.6 (top). This confirms the indication that, in order to ob-
tain a better description of the drop size distributions, the effect of the rotational
speed has to be taken into account in the model for the breakage rate. On the
other hand, the parameters in the coalescence rate did not show a dependency on
the rotational speed, see Fig. 5.6 (bottom).
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cbreak,1

cbreak,2

ccoal,1
ccoal,2

Figure 5.6: Dependence of the parameters occurring in the coalescence and breakage
rate from [CT77] on the rotational speed N∗ (taken from [GSP+05]). Top:
parameters in breakage rate, bottom: parameters in coalescence rate.

Furthermore, the optimal parameters obtained for the five different rotational
speeds were averaged, and the resulting values were used for the simulation with
a rotational speed of 700 rounds per minute. For the resulting drop size distribu-
tions a much better agreement with experimental data could be achieved than for
the simulation with the parameters optimized “only” for a rotational speed of 400
rounds per minute. However, a physical derivation of the model equations seems
to be more reasonable.

• Also in [GWPK06a] (see also [GWPK06b] and [GWPK05]), the same dispersed
system was considered. However, the volume fraction of toluene in water was varied
from 5 to 50%. As in [Weg04], the experiments were carried out for pH from 1 to
13 and rotational speeds from 400 to 700, whereas the numerical simulations with
Parsival were performed for the same range of rotational speeds, but only for a
pH-value of 13.
Different models for coalescence and breakage rates were considered. Results were
presented for the two models, for which a reasonable parameter estimation was
possible, namely the models from [CT77] and [AKK99]. In [GWPK06a], the model
parameters were optimized with respect to the experimental drop size distributions
for a rotational speed of 550 rounds per minute. Furthermore, a “correction”
factor for the mean energy dissipation rate ε̄ was introduced in order to take into
account that the impeller zone has a stronger influence on the population dynamic
phenomena (especially on breakage) than the other parts of the tank. By this, for
both models, it was possible to obtain very good agreement between experimental
and simulation results, not only for a rotational speed of 550, but also for 700
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rounds per minute.
However, by changing the volume fraction from 10 to 30%, but keeping the same
set of parameters (which was fitted with respect to a volume fraction of 10%), the
simulation failed to give reasonable Sauter mean diameters.

The sizes of the drops were highly underestimated by the simulation. This shows
that the volume fraction is another parameter that should be taken into account
in the coalescence and breakage models.

• In [MGW+06] (see also [MPK06]), experimental investigations using a single drop
breakage cell were carried out in order to analyze the breakage process in stirred
liquid-liquid systems. The aim of the experimental investigations was to obtain
information about the size and the number of daughter droplets formed by the
breakage of a single mother drop. These data were then used to fit the two free
parameters in the distribution of daughter drops proposed in [DO02b] (a Beta
distribution, in which the two free parameters are defined as functions of a shape
parameter and of the mean number of daughter drops resulting per breakage event)
in order to get an enhanced distribution of daughter drops based on experimental
data. This extended model was then implemented in Parsival, as well as the
well-known model from [CT77].
A comparison of the simulation results with experimental drop size distributions
showed good agreement for both models, but an even better agreement for the
extended model. This shows that the numerical simulations with Parsival can be
used to improve models from the literature by optimizing the fitting parameters
with respect to experimental investigations. Further information can be found in
[MGW+06] and [MPK06].

5.2.2 Results for “More-Compartment Models”

It is well-known from experimental investigations as well as from numerical simulations
that the energy dissipation rate is orders of magnitudes greater in the region around the
impeller than in the bulk of the tank. Since coalescence and breakage are dependent on
the (locally varying) energy dissipation rate, it is sensible to take these differences into
account in the simulation of the drop size distributions.
This can be realized by dividing the tank into several zones and using different values
for the energy dissipation rate in the corresponding coalescence and breakage rates.
Such multi-compartment models have already been proposed in the literature, see, e. g.,
[AKK99], [AKKM02], [LAA02], [PB], [VDV02], or [WR05] (and also Remark 5.2). In
the following, we will describe the realization of this approach as it has been considered
within our project.

• In [Weg04], a two-compartment model was implemented. For this, the tank was
divided into two zones, an impeller zone and a bulk zone, which were both assumed
to be ideally mixed. In both zones, the same model was used for the description
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of the coalescence and breakage phenomena, namely the model by [CT77], but
different values for the mean energy dissipation rate. In the impeller region, the
mean energy dissipation rate was set to a much higher value than in the bulk of
the tank. The exchange between the two zones was modeled by two streams that
had the same magnitude (which was determined by CFD calculations), but were
flowing in opposite directions. Again, the parameters in the model were fitted for a
rotational speed of 400 rounds per minute with the help of Parsival’s parameter
estimation procedure. This set of parameters was then also used for the simulation
of higher rotational speeds.
The results were similar as for the one-zone model. For a rotational speed of 400
rounds per minute, the agreement between the simulation results and the measured
drop size distributions was very good, whereas for rotational speeds of 550 or 700
rounds per minute only moderate agreement could be achieved. Again, a step in
the rotational speed from 700 to 400 rounds per minute was simulated, and the
drop size distributions obtained in experiments were reproduced very well for this
case.

One can say that the results for the two-compartment model were better than those
derived for the one-compartment model. The experimental data were reproduced
better due to the more dynamic reaction of the system. This follows from the
fact that in the two-compartment model, the differences in the turbulent flow field
throughout the tank and their influence on the drop size distribution are taken
into account.

The next step is a division of the tank into more than two compartments. In this case,
the different energy dissipation rates for all zones as well as the volume flows between
the zones (describing the exchange flows between the compartments) are needed, see
Section 5.3.

• In [GSP+05], this approach of subdividing the stirred tank into several compart-
ments was considered. Here, a more general approach of coupling the calculation
of the drop size distributions with the simulation of the flow field in a stirred tank
was discussed.

More details about this approach as well as about the realization of the coupling between
the CFD code FeatFlow and the population balance solver Parsival can be found in
the following section.

5.3 Realization of the Coupling between FEATFLOW and
PARSIVAL

In this section, we will consider the coupling between the CFD code FeatFlow and
the population balance solver Parsival. This coupling is realized as a so-called “one-
way coupling”, which means that the results of the CFD simulation are used for the
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calculation of the drop size distributions, but the influence of the drops on the flow
field is neglected. This simplification is justified for the considered application, since the
densities of the dispersed and the continuous phase are almost equal and the drops are
very small.

If we assume that the CFD code has implemented some kind of turbulence modeling,
which means that it is capable of calculating not only (mean) velocity and pressure
variables, but also turbulence parameters (from which the energy dissipation ε rate can
be derived), the coupling with Parsival can be realized as follows.
In a first step, the flow field as well as the turbulence parameters are calculated by
the CFD code using a very fine grid consisting of several millions of cells. If the same
spatial discretization was also used for the calculation of the drop size distributions, a
simulation with hundred classes (i. e., “discretization points” for the internal coordinate)
would already lead to several hundred millions of cells, which is too costly. Thus, several
(spatial) cells are combined to one compartment so that for each compartment the drop
size distribution can be calculated with Parsival. Within these compartments, the drop
size distribution is considered to be space-independent, and hence the compartments
should be chosen in such a way that this is approximately satisfied.
As next step, a reactor consisting of NK compartments is implemented in Parsival. In
every time step, the mean energy dissipation rate ε̄i for each compartment Ki is read
from a file containing the CFD results such that the changes of the drop size distribution
due to coalescence and breakage can be calculated. The mean energy dissipation rate
ε̄i(t) in compartment Ki is computed from the value ε(x, t) that we get from the CFD
simulation via

ε̄i(t) =
1
Vi

∫
Vi

ε(x, t) dx, (5.4)

where Vi denotes the volume of compartment Ki. Furthermore, the average volume flow
V̇ij(t) between two neighboring compartments Ki and Kj is calculated via

V̇ij(t) = max
{

0,
∫

Aij

ū(x, t) · nij dx
}
, (5.5)

where ū(x, t) is the mean velocity calculated by the CFD code, Aij denotes the area
of the face lying between the two compartments Ki and Kj , and nij denotes the unit
normal vector on Aij in direction from compartment Ki to compartment Kj . With these
volume flows the convective flow of the drop size distributions is modeled. In time step
t = tk+1, we get the new distribution fi(tk+1) in compartment Ki from

fi(tk+1) = fi(tk) +
∑

j neighbor of i

V̇ji(tk)
Vi

fj(tk) −
∑

j neighbor of i

V̇ij(tk)
Vi

fi(tk).

The left picture in Fig. 5.7 illustrates this way of realizing the coupling with turbulence
model. The mean velocities ū and the energy dissipation rates ε obtained by the CFD
simulation are averaged so that mean volume flows V̇ij and mean energy dissipation rates
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Figure 5.7: Realization of the coupling. Left: with turbulence model (i. e., the values for
the energy dissipation rate ε are obtained from the CFD simulation), right:
without turbulence model (i. e., the energy dissipation rates ε are calculated
from the velocities u, which are obtained from the CFD simulation, or values
from the literature or experimental investigations are used).

ε̄i are derived, which are then used for the computation of the drop size distributions
with Parsival.

However, as already discussed in Subsection 4.4.2, the adaption of the k-ε turbulence
model to the moving boundary method in FeatFlow, which is needed for the simu-
lation of the considered application, was still under investigation when this thesis was
written. Thus, turbulence parameters, like the energy dissipation rate needed for the
coupling, were not available from the CFD simulation, and values from the literature or
experimental investigations had to be used.

Theoretically, if we do not face the difficulties discussed in the beginning of Chapter 4
(see page 46), the coupling between FeatFlow and Parsival could also be realized
by using the velocities, which one obtains from the direct numerical simulation, for the
calculation of the energy dissipation rates ε. In this case, the quantity ε can be calculated
by its definition

ε :=
ν

2
〈‖∇u′ +

(
∇u′

)T ‖2
F 〉,

where the values of the fluctuations u′ are given by

u′ = u− ū with ū =
1
T

∫ t+T
2

t−T
2

u(τ)dτ (5.6)

and the velocities u are the results of the direct numerical simulation.
However, in practice, this approach is usually very inaccurate, at least if post-processing
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is used for the calculation of the energy dissipation rates from the simulated velocity
field, which is then only given for a finite number of nodes. This typically leads to large
approximation errors, in particular, in the calculation of the derivatives.

Therefore, for the simulation of the drop size distributions with Parsival, the results
of the CFD simulation are only used for the calculation of the mean volume flows V̇ij

between the compartments, whereas for the mean energy dissipation rates ε̄i values from
the literature and experimental investigations were taken. Nevertheless, the coupling
approach is realized in such a way that, as soon as the mean energy dissipation rates ε̄i
are available from the CFD simulation, they can easily be included in the model.

The two approaches how the coupling can be realized without turbulence model are
shown schematically in the right picture in Fig. 5.7. In this case, the energy dissipation
rates ε are calculated by using the results of the direct numerical simulation, or values
from “outside”, i. e., from the literature or experimental investigations, are taken. Once,
the values for u and ε are available, we can proceed as in the case with turbulence model,
i. e., V̇ij and ε̄i can be calculated and used for the simulation with Parsival. Note that
the mean velocity ū can simply be calculated from the velocity u, which one obtains
from a direct numerical simulation, by averaging, see Eq. (5.6).

In the following subsections, we will give some more details how the coupling is realized
for the considered application.

5.3.1 Division of the Tank into Compartments

As already mentioned before, we cannot use the same fine grid for the calculation of
the drop size distributions as for the flow simulation. The reason for this is that the
population balance equation is not only dependent on space and time, but also on at
least one internal coordinate that characterizes the elements of the dispersed phase
(like the drop volume V or the drop diameter d in the considered application). Since
each additional coordinate increases the dimension of the problem by one, in many
applications one uses the assumption of an ideally mixed tank. This means that the drop
size distribution is assumed to be space-independent. However, due to the locally strong
varying energy consumption throughout the tank, it is sensible to subdivide the domain
at least into a few subdomains, the so-called compartments (which can be interpreted as
a very coarse space discretization). In the considered application, this division is done
according to the flow field that we get from the CFD simulation.

For the simulation with Parsival, the tank is divided into four compartments as shown
in Fig. 5.8, where only one half of the tank is displayed. Compartment K2, which lies
directly around the stirrer, has the highest energy consumption, followed by compart-
ment K3, which is located in the same height, but in the outer part of the tank. Below
and above these two compartments, respectively, there are the two other compartments
K1 and K4, where the energy consumption is much smaller. Note that the division was
done in such a way that the boundaries of the compartments coincide with the edges of
the coarse grid, whenever this was possible without generating too irregular boundaries.
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Figure 5.8: Left: division of the tank into four compartments K1, . . . ,K4 according to
the velocity field. Right: Four-zone model with mean volume flows V̇ij and
mean energy dissipation rates ε̄i drawn schematically.

In this way, the boundaries between all compartments coincide with edges of the coarse
grid, except for the boundary between the second and the third compartment.

For the implementation of a corresponding compartment model in Parsival, the vol-
umes of the compartments are needed. Thus, we give a mathematical description of the
compartments:

K1 : 0 ≤ x3 ≤ H1,

K2 : H1 < x3 ≤ H2 and
√
x2

1 + x2
2 ≤ R1,

K3 : H1 < x3 ≤ H2 and
√
x2

1 + x2
2 > R1,

K4 : H2 < x3 ≤ Htank

with H1 = 0.04m, H2 = 0.06m, and R1 = 0.04m. Since K2, K3, and K4 are simply
cylinders or hollow cylinders, respectively, their volumes are given by

V2 = πR2
1(H2 −H1) = 1.005 · 10−4 m3,

V3 = π(R2
2 −R2

1)(H2 −H1) = 2.529 · 10−4 m3, (5.7)
V4 = πR2

2(Htank −H2) = 1.590 · 10−3 m3,

where R2 is the radius of the whole tank, i. e., R2 = Dtank/2 = 0.075m. The volume of
compartment K1 is given by

V1 = VKlöpper + Vcyl,

where VKlöpper and Vcyl are the volumes of the torispherical head and the cylindric part,
respectively. The volume VKlöpper is calculated via integration over the function K−1(x3),
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see Eq. (4.11) on page 57, describing the torispherical head:

VKlöpper =
∫ h2

0
π

[
K−1(x3)

]2
dx3

=
∫ x3,s

0
π
[
r21 − (r1 − x3)2

]
dx3 +

∫ h2

x3,s

π

[
Dtank

2
− r2 +

√
r22 − (h2 − x3)2

]2

dx3,

where h2 denotes the height of the torispherical head part. Calculation of the integral
leads to

VKlöpper = π

[
r1x

2
3 −

1
3
x3

3

]x3,s

0

+ π

[{(
Dtank

2
− r2

)2

+ r22 − h2
2

}
x3 + h2x

2
3 −

1
3
x3

3

]h2

x3,s

+ π

(
Dtank

2
− r2

)[
(x3 − h2)

√
r22 − (h2 − x3)2 − r22 arcsin

(
h2 − x3

r2

)]h2

x3,s

,

where we have used the following formula from [Zei96], page 168f:∫ √
α1z2 + α2z + α3dz

=
(2α1z + α2)

√
α1z2 + α2z + α3

4α1
+

4α1α3 − α2
2

8α1

∫
dz√

α1z2 + α2z + α3

=
(2α1z + α2)

√
α1z2 + α2z + α3

4α1
− 4α1α3 − α2

2

8α1

1√−α1
arcsin

(
2α1z + α2√
−4α1α3 + α2

2

)
,

which holds for α1 < 0 and 4α1α3 − α2
2 < 0. Inserting the values for r1, r2, h2, Dtank,

and x3,s (see Subsection 4.2.1) gives VKlöpper = 3.359 · 10−4 m3. Since Vcyl is given by

Vcyl = π
D2

tank
4 (H1 − h2) = 1.996 · 10−4 m3, we get

V1 = 5.355 · 10−4 m3. (5.8)

Thus, the volume of the whole tank is given by

Vtank =
4∑

i=1

Vi = 2.479 · 10−3 m3. (5.9)

Since for the calculation of the mean volume flows V̇ij in the following subsection we will
also need the area of the faces Aij lying between the compartments Ki and Kj, these
values will be calculated in the following. The faces between the compartments K1 and
K2 and between K2 and K4, respectively, are circles, and hence their areas are given by

A12 = A24 = πR2
1 = 5.027 · 10−3 m2. (5.10)
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The faces between the compartments K1 and K3 as well as between K3 and K4 are
annuli, and thus their areas are given by

A13 = A34 = π

(
(Dtank)2

4
−R2

1

)
= 1.265 · 10−2 m2. (5.11)

The face between the compartments K2 and K3 is given by the nappe of a cylinder. Its
area is given by

A23 = 2πR1(H2 −H1) = 5.027 · 10−3 m2. (5.12)

5.3.2 Calculation of the Mean Volume Flows V̇ij

The next step is the calculation of the mean volume flows between neighboring compart-
ments from the velocities derived by the flow simulation. Theoretically, these volume
flows V̇ij can be calculated using Eq. (5.5), where ū is given according to Eq. (5.6).
However, in practice, we have to approximate the integral by a quadrature formula, i. e.,
by ∫

Aij

ū(x, t) nij dx ≈
Nij∑
α=1

ūα(t) nij A
α
ij ,

where Nij is the total number of nodes on face Aij. Here, ūα denotes the mean velocity
in node α and Aα

ij denotes the area of the part of the face Aij that belongs to node α.
If we assume the grid to be equidistant, then we can use the approximation

∫
Aij

ū(x, t) nij dx ≈
Nij∑
α=1

ūα(t) nij A
α
ij =

Aij

Nij

Nij∑
α=1

ūα(t) nij . (5.13)

The resulting volume flows calculated by Eq. (5.13), where we have plugged in the
values from (5.10)-(5.12), are shown in Fig. 5.9 (the diamonds). Note that the mean
velocities ūα were calculated from the CFD results by averaging (according to Eq. (4.12)
on page 83, which can be interpreted as the discrete version of Eq. (5.6)). The size of
the time interval, over which the velocities were averaged, was chosen as Δt ≈ 1/12 s,
which corresponds to about one revolution. The calculation of the mean volume flows
from the output of the CFD calculation and the generation of an appropriate data file,
which could be read by Parsival, was done with Perl [Per].
From Fig. 5.8 it can be seen that, due to the required mass conservation, the volume
flows have to fulfill the following conditions

V̇31 − V̇12 = 0,
V̇12 − V̇23 + V̇42 = 0,
V̇23 − V̇31 − V̇34 = 0,

V̇34 − V̇42 = 0.

However, for the computed values in Fig. 5.9, these conditions are not satisfied.
There are several reasons for this. First of all, the grid used for the CFD simulation is not
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Figure 5.9: Volume flows between the four compartments. Values from CFD calculation
(diamonds) and optimized values (solid lines).

equidistant and, therefore, the assumption used in Eq. (5.13) is not fulfilled. However,
this does not explain this significant deviation. Second, even if the grid was equidistant,
the volume flows would probably not be calculated correctly, since FeatFlow does not
control the conservation of mass for every cutplane, but only over the total domain.

To improve the calculation of the volume flows, one could use a more accurate inter-
polation formula, which takes the distance between two neighboring grid points into
account so that the assumption of an equidistant grid could be avoided. However, the
calculation of these distances is computationally too expensive for an unsorted list of
about 2.8 million nodes. Another approach would be to choose the compartments for the
calculation of the drop size distributions in such a way that they are composed of several
cells of the coarse grid used for the CFD simulation. In this case, one would have the
same number of nodes in each element of the coarse grid (due to the regular refinement
of the grid). Thus, one could easily calculate the distance between two neighboring grid
points (or at least an average of it) within each element of the coarse grid. However,
in the considered application, this approach cannot be used, since it is not possible to
combine the elements of the coarse CFD grid in such a way that this leads to sensible
compartments. An alternative would be to combine several cells of one of the finer grids
used in the CFD simulation to obtain appropriate compartments. However, this would
lead to very complicated boundaries between the different compartments, and, therefore,
the calculations of the normal compounds of the velocities would be very complex.
This analysis shows that the best way would have been to create the coarse grid for the
CFD simulation in such a way that an appropriate compartment model could easily be
created by the combination of several coarse grid elements. However, the creation of
such a “clever” grid consisting of quadrilateral elements is very sophisticated.
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5.3 Realization of the Coupling between FeatFlow and Parsival

Since all the existent alternatives are either very complex and time-consuming or should
have been applied in advance, it was decided to use the computed volume flows for the
coupling and to fit them by applying a least-squares method. To do this, for the given
volume flows V̇ k

ij between two compartments Ki and Kj at time tk, we determine the
optimal volume flows Zk

ij by solving the following minimization problem:

‖Zk − V̇ k‖2 = min! s.t. HZk = 0, (5.14)

where Zk = [Zk
12,Zk

23,Zk
31,Zk

34,Zk
42]

T , V̇ k = [V̇ k
12, V̇

k
23, V̇

k
31, V̇

k
34, V̇

k
42]

T for all time points
tk, and H is given by

H =

⎡
⎢⎢⎣

1 −1 0 0 1
0 1 −1 −1 0
−1 0 1 0 0
0 0 0 1 −1

⎤
⎥⎥⎦ .

Since the volume flows V̇ k
ij do not change much in time (due to the constant stirrer

speed), see Fig. 5.9, it is more reasonable to solve the following minimization problem
instead of (5.14),

‖Z − V̇ k‖2 = min! for all time points tk s.t. HZ = 0, (5.15)

where Z = [Z12,Z23,Z31,Z34,Z42]T denotes the vector of volume flows Zij, which are
optimal with respect to the simulation results for all time points tk. The latter formu-
lation has the advantage that there are more data available for the calculation of the
volume flows and that as much information as possible is used for the calculation of the
optimal values.

Fig. 5.9 shows the optimized volume flows (the solid lines), which were determined by
means of the Matlab-function fmincon, depending on the given volume flows V̇ k

ij (the
diamonds) obtained by a FeatFlow simulation. Note that the axis of abscissae gives
the number of time steps starting at some time point, when the flow field is already fully
developed. The length of one time step is given by Δt = 7.96 · 10−3 s. These optimized
volume flows are in the following used for the simulation with Parsival. Note that
these volumes flows correspond to a Reynolds number of Re = 30,000, whereas the
simulations with Parsival will be done for a rotational speed of 700 rounds per minute,
which corresponds to a Reynolds number of about Re = 29,167. Thus, the volume flows
should be scaled by a factor of 29,167/30,000 ≈ 0.972. However, due to the low accuracy
of the volume flows derived by the CFD simulation, this factor can also be neglected.

Remark 5.5. Clearly, if possible, one would prefer to use the “original” values derived
by the CFD simulation directly in Parsival and let the program do the optimization.
Unfortunately, this is not possible, since in Parsival one can only prescribe a part of
the volume flows (namely exactly as many as that there does not occur any contradiction
concerning the conservation of mass) and let the program adjust the remaining ones
during the simulation. (If more volume flows are prescribed, this will lead to a violation
of the mass conservation.) A “real” optimization, however, cannot be performed with
Parsival, but has to be done by hand and “outside” of Parsival.
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5 Coupling the CFD Code FeatFlow with the Population Balance Solver Parsival

parameter value

ρc 998.3 kg/m3

ρd 866.9 kg/m3

νc 1 · 10−6 m2/s
νd 0.63 · 10−6 m2/s
σ 32 · 10−3 N/m
χ 0.1
cV π/6

parameter value
V1 5.355 · 10−4 m3

V2 1.005 · 10−4 m3

V3 2.529 · 10−4 m3

V4 1.590 · 10−3 m3

V̇12 = V̇31 5.32 · 10−4 m3/s
V̇34 = V̇42 4.22 · 10−4 m3/s
V̇23 9.54 · 10−4 m3/s

Table 5.1: Different parameters used for the simulation with Parsival. Left: physical
parameters of the two phases, right: volumes of and volume flows between
the compartments.

5.3.3 Implementation of the Compartment Model in PARSIVAL

In the following, we will describe the implemented model of the stirred tank reactor that
has been used for the calculation of the drop size distributions with Parsival.

The stirred tank model used in Parsival consists of the following components:

• Four continuous reactors, which model the four compartments K1, . . . ,K4, see
Fig. 5.8. As volumes for the reactors the values given by Eqs. (5.7) and (5.8)
are prescribed. Furthermore, we have defined three control streams, namely V̇23,
V̇31, and V̇42, each belonging to the reactor, of which they flow out, see Fig. 5.8.
(These and other values used for the simulation with Parsival are summarized in
Table 5.1.) The temperature in the compartments was set to 20◦C. However, for
the specification of the temperature, not only a value, but an input file was used,
which prescribes the value of 20◦C at certain time points. These time points refer to
exactly the time points, at which the mean volume flows (and if applicable also the
mean energy dissipation rates) are read from a file, namely the so-called measured-
data file (or short mdf-file). This circumstantial definition of the temperature is
required in order to force Parsival to perform the calculation of the drop size
distributions at least in these time points so that all information from the mdf-file
is read during the simulation.

• Four fluids modeling the continuous phases in the four compartments (i. e., each
fluid refers to one reactor). Since in the considered application, water is used as
continuous phase, the physical characteristics of water are prescribed for the four
fluids. Thus, a density of ρc = 998.3kg/m3 is used.

• Four distributions modeling the drop size distributions, i. e., the dispersed phases
in the different compartments (again, each distribution refers to one of the four
reactors). In all compartments, the same start distribution is used, namely an
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experimental drop size distribution for a rotational speed of 400 rounds per minute
and a pH-value of 13, which has been measured at time t = 1 s. However, the
start distributions are scaled according to the total mass of the compartment they
belong to, so that the volume fraction of 10% toluene in water is prescribed in
all compartments. Since toluene is used as dispersed phase, a density of ρd =
866.9kg/m3 is prescribed. The shape factor is set to π/6, which means that the
drops are assumed to be spherical.

• Five streams, defined both as volume and as exit streams. The streams belong
to the reactor, of which they flow out, see Fig 5.8. For two of the five streams,
namely V̇12 and V̇34, values are prescribed, the other three, namely V̇23, V̇31, and
V̇42, are simply set to zero. Since they have been defined as control streams in the
reactors they refer to, their values are adapted during the simulation so that the
volumes of the reactors are kept constant.

• The following groups of coefficients:

– model parameters occurring in the coalescence and breakage rates,

– physical parameters of the two phases (density, surface tension, etc.),

– mean energy dissipation rates in the different compartments,

– geometry parameters,

– volume fraction of the dispersed phase,

– other parameters.

Note that, if the coupling is realized using a turbulence model for the simulation
of the flow field, the mean energy dissipation rates in the different compartments
have to be modeled by functions, which can be overwritten by the actual data read
from the mdf-file (see Subsection 5.4.3).

• The following modules used to describe all the processes in the stirred tank reactor:

– four coalescence modules (one corresponding to each distribution, i. e., to each
reactor),

– four modules modeling the source terms due to breakage (one corresponding
to each distribution / reactor),

– four modules modeling the sink terms due to breakage (one corresponding to
each distribution / reactor),

– five modules describing the exchange of the continuous phases between the
different compartments (one corresponding to each stream),

– five modules describing the exchange of the drop size distributions between
the different compartments (one corresponding to each stream).
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5 Coupling the CFD Code FeatFlow with the Population Balance Solver Parsival

In all coalescence and breakage modules, the model from [CT77] is used for the
coalescence and breakage rates, see Eq. (2.24) on page 20 and Eq. (2.29) on page 23,
respectively. However, note that for the collision frequency the corrected formula
(2.25) is used, which leads to a slightly different coalescence rate, see page 20. For
the distribution of daughter drops, we have implemented the model from [Rit02],
see Eq. (2.33) on page 27.
In principle, the same coalescence and breakage rates and the same distribution of
daughter drops are used in all four compartments. However, different values for
the mean energy dissipation rates ε̄i are chosen in the different compartments Ki,
i = 1, . . . , 4, see Fig. 5.8.

As already mentioned briefly before, during the simulation, the mean volume flows be-
tween the compartments (and if applicable also the mean energy dissipation rates in
the compartments) are read from a file, in which the values at different time points are
saved. The calculation of the drop size distributions is performed according to this in-
formation. That all the values in the mdf-file are used for the calculation of the drop size
distributions is made sure by the “dummy” file, in which the temperature is prescribed
at exactly these (relevant) time points. Without using such a “dummy” file, it could
happen that Parsival performs a time step with such a big step size that one (or even
more) of the values in the mdf-file is jumped over and thus the corresponding values in
the mdf-file are not taken into account.

Further information about the implemented model will be given in the presentation of
the results in the next section.

Remark 5.6. Besides the presented approach of implementing a compartment model
in Parsival, the coupling between FeatFlow and Parsival could also be realized
by simulating NK compartments “separately” (i. e., by modeling each compartment as
an ideally mixed reactor) in Parsival and implementing the exchange flows between
the compartments by hand outside of Parsival. Note that, if this approach is used, the
external control of the volume flows must also make sure that the sum of all volume flows
is zero, i. e., that mass is conserved during the simulation. Under the assumption that
NK versions of Parsival could be started simultaneously, this approach could be used,
having the advantage that each simulation with Parsival would be relatively “easy”
(and thus fast) and that all the Parsival-simulations could be performed in parallel.
However, additional time for the “outer loop” must be taken into account. Depending on
the implementation of the whole model, this can lead to a higher amount of computing
time than the one needed for the presented approach. In addition, M. Wulkow, the
developer of Parsival, recommended to use the presented approach.

A further automatization of the coupling approach presented before can be derived by
analyzing the structure of the ASCII-file containing all the data needed to start a simu-
lation with Parsival (see Section 5.1). By understanding the structure of this file, one
can implement a program that automatically creates such a file, for example by means
of Perl (in the same way as the mdf-files containing the results of the CFD simulation
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have been created).
However, for a simulation with the version of Parsival that was used for the investi-
gations presented here, such an automatization is needless, since it cannot be started
without pressing the “run”-button inside the program itself. Thus, we refrain from
giving any further details concerning this approach.

Remark 5.7. In [KBM06], a coupling of Parsival with the commercial CFD code Flu-
ent, namely via the so-called “software-level integration platform” Cheops (see [Che]
for further information), has been implemented and analyzed (see also [KBG+05]). In
this paper, the solution of the coupled problem of crystallization and fluid dynamics by
means of software integration has been considered.
In this approach, the population balance and crystallization kinetics are modeled in Par-
sival, whereas the CFD simulations are done in Fluent. As in the coupling approach
presented in this thesis, the population balance model is not solved in each grid cell of the
fluid dynamics calculation, but only for a much smaller number of compartments, which
are assumed to be ideally mixed. Thus, within these compartments averaged values are
used for the simulation.
The integration platform Cheops already mentioned above is then used to establish the
communication between the individual tools and to provide data exchange and overall
convergence of the coupled system. (More information about Cheops can be found in
[KBG+05], [SYvWM04] and references therein.) However, as in the coupling approach
presented here, also in [KBM06], only a one-way coupling is realized, i. e., only the in-
fluence of the fluid dynamics on the population balance is considered, whereas the effects
of the particle size distribution on the fluid dynamics are neglected.

5.4 Results of the Coupling and Comparison with
Experimental Data

In this section, we will present the results of the coupling approach. As long as we do not
explicitly state the contrary, the model described in the previous subsection has been
used for the simulation, see Table 5.1 for the volumes of and the volume flows between
the compartments as well as for the physical parameters of the two phases. Further
parameters used for the simulation can be found in Table 5.2.
As already mentioned before, the model from [CT77] is implemented for the coalescence
and breakage rates, whereas for the distribution of daughter drops the formula from
[Rit02] is taken. For the model parameters occurring in the coalescence and breakage
rates, the values from [GWPK06a] are used. These parameters are summarized in the
left Table 5.2. Note that these values are optimized for the same liquid-liquid system
(water-toluene), for the same volume fraction of the dispersed phase (10% toluene), and
the same pH-value (pH=13, i. e., a coalescence-hindered system) as in the considered
application, but for a different rotational speed (550 rounds per minute instead of 700)
and for a one-compartment model instead of a multi-compartment model (which can also
lead to different values for the parameters, see [Weg04]). Furthermore, in [GWPK06a],
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parameter value

cCT
coal,1 1.5 · 10−4

cCT
coal,2 2.56 · 1012

cCT
break,1 6.14 · 10−4

cCT
break,2 5.7 · 10−2

parameter value
dispersed phase fraction χ 10%
pH value 13
rotational speed N∗ 700 1/min

power number Ne 3.8
mean energy dissipation rate ε̄ 0.761 m2/s3

Table 5.2: Parameters used for the simulation with Parsival. Left: parameters in the
coalescence and breakage rates, taken from [GWPK06a], right: other param-
eters.

a “correction” factor for the mean energy dissipation rate ε̄ has been used, which clearly
also has an influence on the four parameters. Nevertheless, these values will be used
in the considered coupling approach, since the aim of the investigations is to get an
agreement between the experimental and the simulated drop size distributions without
using “perfect” parameters, but by improving the model so that there is no need to adapt
the model parameters as long as only minor modifications in the system are made. If
this is possible, the improved model can be used for predictive simulations.

In the following, we will present simulation results for the four-compartment model.
Besides different test cases, we will also consider a four-compartment model representing
the stirred tank that has been used in the experimental investigations carried out by our
project partners at the Institute for Process Engineering at the TU Berlin. For this
case, we will in Subsection 5.4.2 compare the simulation results with the corresponding
experimental data.

5.4.1 Simulation Results for the Four-Compartment Model with Constant
Volume Flows between the Compartments

In this subsection, we will present simulation results for the four-compartment model
with constant volume flows. First, we will show the resulting drop size distributions for
the case that there are no volume flows between the four compartments. By this test
simulation, the influence of different values for the energy dissipation rate on the drop
size distributions can be investigated. Second, we will use the optimized volume flows
from Subsection 5.3.2 for the simulation. We will see that for volume flows of this order
of magnitude there is hardly any difference between the resulting drop size distributions
in the different compartments. Thus, we will also present results for a simulation with
smaller volume flows at the end of this subsection.

As already discussed in Chapter 4, the simulation with FeatFlow does not provide
any values for the energy dissipation rate ε at the moment. Thus, for the first test cases
presented here, we have chosen the mean energy dissipation rates ε̄i in the different
compartments Ki, i = 1, . . . , 4, as follows:

ε̄1 = 0.329 ε̄, ε̄2 = 12 ε̄, ε̄3 = 2 ε̄, ε̄4 = 0.3 ε̄, (5.16)
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where ε̄ denotes the overall mean value of the energy dissipation rate ε throughout the
tank. By this choice, the turbulence distribution is as expected (and, at least roughly,
as in the literature, see [AKK99]). Furthermore, the condition

4∑
i=1

ε̄iVi = ε̄ Vtank

is fulfilled. To determine ε̄, we have used the formula (see [Kra03])

ε̄ =
Ne (N∗)3(Dstirrer)5

Vtank
,

where Ne denotes the power (or Newton) number, N∗ is the rotational speed, Dstirrer

is the diameter of the stirrer, and Vtank is the volume of the tank. For the considered
application this formula gives ε̄ = 0.761 m2/s3, where we have inserted N∗ = 70/61/s for
the rotational speed, Dstirrer = 0.05m for the impeller diameter, and Ne = 3.8 for the
power number (see, e. g., [Weg04]). Furthermore, the volume of the tank is given by
Eq. (5.9).

Simulation without volume flows

For this test case, we have set the volume flows between the different compartments to
zero. Fig. 5.10 shows the resulting drop size distributions in the four compartments after
t = 0, t = 60 s, t = 300 s, t = 600 s, t = 1,500 s, and t = 4,800 s. Here, the cumulative
number distributions Q0,i in the compartments Ki, i = 1, . . . , 4, are plotted versus the
diameter d of the drops. Note that the value Q0,i(d), i = 1, . . . , 4, gives the total number
of drops of sizes smaller than or equal to d per cubic meter.
The top left picture of Fig. 5.10 shows the start distributions (due to the normalization
the same for all four compartments), for which we have chosen a measured drop size
distribution for a rotational speed of 400 rounds per minute. This start distribution can
be used for the N∗ = 700 1/min-simulation, since one can assume that the transient drop
size distributions for a rotational speed of N∗ = 700 1/min “go through” this value at
some time point in the beginning.
The top right picture in Fig. 5.10 displays the simulated drop size distributions after
t = 60 s. It shows that the distributions in the first and in the fourth compartment are
moved towards larger drop sizes. There are less, and, therefore (due to conservation of
mass), larger drops in these compartments after t = 60 s. The reason for this is that
we have chosen relatively small values for the mean energy dissipation rates in these
compartments. By this choice, almost only coalescence takes place. On the other hand,
in the second compartment, where the mean energy dissipation rate has been chosen
much higher than the average value ε̄, only breakage occurs. (The reason for this is that
the drops are not able to stay in contact as long as coalescence needs to take place.) This
effect results in a significant change of the distribution to smaller drop sizes. Therefore,
in the second compartment, there are many more and, hence, smaller drops. Also in
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Figure 5.10: Drop size distributions in the four compartments at different time points
for a simulation without volume flows. Top left: t = 0, top right: t = 60 s,
middle left: t = 300 s, middle right: t = 600 s, bottom left: t = 1,500 s,
bottom right: t = 4,800 s.
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compartment K3, there are more and smaller drops after t = 60 s than in the beginning.
Here, breakage dominates, since the mean energy dissipation rate in this compartment
is twice as high as the overall mean value ε̄.
The pictures in the middle and at the bottom of Fig. 5.10 show the simulated drop size
distributions after 5, 10, 25, and 80 minutes. They demonstrate that, after some time,
a stationary drop size distribution is reached in all compartments. Note that, in the
second and third compartment, this stationary distribution is reached faster than in the
other two compartments. However, after t = 1,500 s, one cannot recognize any further
changes in any of the distributions. Note that, although the distributions do not change
any more after some time, this does not mean that there is no coalescence or breakage,
but only that the number of breaking drops balances the number of coalescing drops.

Fig. 5.11 shows the transient behavior of the drop size distributions in the different
compartments. Here we have again plotted the cumulative number distributions Q0,i

versus the diameter d. However, this time, we have, for each compartment Ki, i =
1, . . . , 4, put different time points together in one graph so that the changes in the drop
size distributions with time can be observed better. (Note the different scales in the
axis of ordinates.) Fig. 5.11 confirms the findings described above. One can observe
that the drop size distributions in the first and in the fourth compartment are moved
towards larger drop sizes (and thus less drops can be found in these compartments) due
to the relatively low values for ε̄1 and ε̄4. On the other hand, there are much more
and smaller drops in the other two compartments, where the values for the mean energy
dissipation rate have been chosen higher than the average value ε̄. Furthermore, one can
recognize that in these two compartments, the stationary distribution is reached much
faster than in the other two compartments. (In the second and third compartment only
three colors can be detected in the pictures, which means that after t = 300 s the drop
size distributions do not change any more, whereas between five and six colors can be
seen in the other two graphs, which corresponds to stationary drop size distributions
after about 900–1,500 s.)

Fig. 5.12 displays the Sauter mean diameter d32 versus the time t in the four compart-
ments. The Sauter mean diameter d32 is defined as the ratio of the third to second
moments (see Section 5.6) for the case that the diameter d is used as internal coordi-
nate. Here, it can be observed that in all four compartments the “final” Sauter mean
diameters are reached after less than 20 minutes. As already expected from the previ-
ously presented drop size distributions and according to the prescribed values for the
mean energy dissipation rates ε̄i, the Sauter mean diameters in the second and in the
third compartment decrease, whereas the Sauter mean diameters in the other two com-
partments increase, until a steady state is reached. Furthermore, the graph depicts the
anti-proportionality of the Sauter mean diameter and the mean energy dissipation rate:
the larger the value for ε̄i (i. e., the higher the turbulence), the smaller the Sauter mean
diameter in the corresponding compartment Ki (i. e., the smaller the average drop size).
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Figure 5.11: Drop size distributions in the different compartments at time points t = 0,
t = 60 s, t = 300 s, t = 600 s, t = 900 s, t = 1,500 s, and t = 4,800 s for
a simulation without volume flows. Top left: compartment 1, top right:
compartment 2, bottom left: compartment 3, bottom right: compartment
4.
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Figure 5.12: Sauter mean diameter versus time in the different compartments for a sim-
ulation without volume flows.
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Figure 5.13: Conservation of mass during the simulation with Parsival. Left: simula-
tion without volume flows, right: simulation with optimized volume flows.

The left picture in Fig. 5.13 demonstrates that mass is conserved during the simulation.
This shows that the discretization of the internal coordinate is realized in such a way
that the total volume of the drops is conserved during coalescence and breakage (see
Section 5.1).

Simulation with optimized volume flows Zij

In the following, we will present the simulation results, which have been obtained using
the optimized volume flows calculated in Subsection 5.3.2. In this case, the volume
flows between the compartments are read from a file containing the calculated values
Zij, see Eq. (5.15). However, in Parsival, only two of the five volume flows have
to be prescribed, the other three are calculated by the program in such a way that
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Figure 5.14: Volume flows between the different compartments. Left: prescribed volume
flows Z12 and Z34, right: resulting volume flows Z23, Z31, and Z42 calculated
by Parsival.

mass is conserved, see Fig. 5.14 as well as the description of the implemented stirred
tank reactor in Parsival in Subsection 5.3.3. The left picture in Fig. 5.14 shows the
prescribed volume flows Z12 and Z34 between the first and the second and the third
and the fourth compartment, respectively. As already mentioned before, the remaining
three volume flows are computed by Parsival during the simulation. The right picture
in Fig. 5.14 demonstrates that these volume flows take the “right” values after a few
iterations so that the constraint in Eq. (5.15) is fulfilled. (Note that only t = 60 s are
plotted in Fig. 5.14, because, otherwise, the oscillations in the beginning could not even
be observed.)

Fig. 5.15 shows the resulting drop size distributions after t = 0, t = 60 s, t = 300 s, t =
600 s, t = 1,500 s, and t = 4,800 s for the simulation with optimized volume flows. One
observes that, in all compartments, the distributions are almost the same. The reason
for this is that the volume flows are so high that they lead to a total exchange of the
drop size distributions between the different compartments. Clearly, spatial variations
in the drop size distributions can only occur if coalescence and breakage are at least as
fast as the circulation rates in the system.
However, if one compares the drop size distributions in the four compartments after
t = 60 s with the prescribed start distributions, one can see that there are more (and
thus smaller) drops for t = 60 s. This means that, in total, there are more breaking than
coalescing drops. Thus, although the volumes of the compartments K2 and K3, where
breakage dominates due to the relatively high energy dissipation rates there, are much
smaller than the volumes of the other two compartments, where coalescence dominates,
the breakage rates in the second and third compartment are so high that the smaller
volumes are compensated for. This increase in the number of drops is still observable
for larger values of t. However, after some time, a steady state is reached and, thus, for
t ≥ 1,500 s, no further changes in the drop size distributions can be detected.
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Figure 5.15: Drop size distributions in the different compartments at different time
points for a simulation with optimized volume flows. Top left: t = 0,
top right: t = 60 s, middle left: t = 300 s, middle right: t = 600 s, bottom
left: t = 1,500 s, bottom right: t = 4,800 s.
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Figure 5.16: Drop size distributions in the different compartments at time points t = 0,
t = 60 s, t = 300 s, t = 600 s, t = 900 s, t = 1,500 s, and t = 4,800 s for
a simulation with optimized volume flows. Top left: compartment 1, top
right: compartment 2, bottom left: compartment 3, bottom right: com-
partment 4.

The findings described above are supported by Fig. 5.16, which displays the transient
behavior of the drop size distributions in the different compartments. As before, we have
plotted the cumulative number distributions Q0,i, i = 1, . . . , 4, versus the diameter d,
but, as in Fig. 5.11, by putting different time points together in one graph so that the
changes in the drop size distribution with time can be recognized better.
As already stated before, almost no differences in the drop size distributions can be
detected between the different compartments. In addition, one can observe that in all
compartments the distributions reach a steady state after about 900 seconds, i. e., after
about 15 minutes.

Fig. 5.17 shows the Sauter mean diameter d32 versus the time t in the four compartments
for the simulation with optimized volume flows, for which only very small differences can
be observed. Since for this case already the drop size distributions have been almost
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Figure 5.17: Sauter mean diameter versus time in the different compartments for a sim-
ulation with optimized volume flows.

equal, this could be expected.

In the right picture of Fig. 5.13, the masses of the different compartments are plotted
versus the time. This shows that also for the simulation with volume flows mass is
conserved.

Simulation with scaled volume flows

For this test case, we have scaled the optimized volume flows by a factor of 1/100 so that
the exchange between the compartments is not as high as before, and, thus, the inter-
action of the volume flows and the coalescence and breakage processes, both influencing
the drop size distributions in the different compartments, can be seen better.
As for the simulation with optimized volume flows, only two of the five volume flows
were prescribed, and the remaining three were calculated by Parsival so that mass is
conserved. Since the volume flows are exactly equal to those shown in Fig. 5.14, except
for their scaling by the factor of 1/100, we refrain from showing them here.

Fig. 5.18 shows the simulated drop size distributions in the four compartments after
t = 0, t = 60 s, t = 300 s, t = 600 s, t = 1,500 s, and t = 4,800 s. The top left picture
in Fig. 5.18 displays the start distributions. In the top right picture, where the drop
size distributions after t = 60 s are depicted, one can observe that, for the simulation
with scaled volume flows, only in the fourth compartment less drops can be found,
whereas in all other compartments there are more drops than in the beginning. As for
the simulation without volume flows, there are the most (and also the smallest) drops
in the second compartment (due to the highest value for the mean energy dissipation
rate prescribed there). However, this time, an almost as large number of drops as in the
second compartment can be found in the third compartment. The reason for this is that
the drops of compartment K2 are directly transported to compartment K3. This also
explains why, in total, the number of drops in the second compartment is smaller than
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Figure 5.18: Drop size distributions in the four compartments at different time points for
a simulation with scaled volume flows. Top left: t = 0, top right: t = 60 s,
middle left: t = 300 s, middle right: t = 600 s, bottom left: t = 1,500 s,
bottom right: t = 4,800 s.
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for the simulation without volume flows. Furthermore, one observes a relatively large
number of drops in the first compartment, especially compared to the number of drops in
the fourth compartment, where almost the same value for the mean energy dissipation
rate has been prescribed. This significant difference in the drop size distributions in
the two compartments can be explained by the fact that compartment K4 is much
bigger than compartment K1 and, thus, the incoming volume flow, which transports the
relatively many and small drops from compartment K3, does not carry so much weight
there. In addition, the volume flow from compartment K3 to the compartment K4 is
smaller than the one to compartment K1.
The pictures in the middle and at the bottom of Fig. 5.18 show that after some time the
number of drops increases in all compartments until the drop size distributions reach a
steady state after about 600–900 seconds (see also Fig. 5.19).

Fig. 5.19 shows the same results, but this time, the drop size distributions are plotted
separately for each compartment and together for different time points. By this, one
can observe that the number of drops in the second and in the third compartment
first increases very fast, then the increase becomes slower, and finally a steady-state is
reached. In compartment K1 also a movement of the number density function towards
smaller drop sizes can be detected. However, the increase there is not as fast as in the
second and in the third compartment, especially not in the beginning. Furthermore, one
can observe that in the fourth compartment, the number of drops first decreases and
then increases.

Fig. 5.20 shows the Sauter mean diameter d32 versus the time t in the four compartments
for the simulation with scaled volume flows. The first thing that should be noticed is
that the Sauter mean diameters in the second and in the third compartment are almost
equal (which could, at least roughly, already be expected from the findings presented
before). Furthermore, as also already expected from the considerations of the drop size
distributions, the Sauter mean diameters in the second and in the third compartment
decrease much faster than the one in the first compartment. However, also in the first
compartment, the Sauter mean diameter decreases. Furthermore, Fig. 5.20 shows that
the Sauter mean diameter in the fourth compartment first increases strongly and then
decreases again, but to a value that is still larger than the Sauter mean diameter in the
beginning. This non-monotone behavior of the Sauter mean diameter can be explained
by the interaction of prescribing different values for the mean energy dissipation rates in
the different compartments with choosing the volume flows between the compartments
of such an order of magnitude that they do not lead to a total exchange of the drop size
distributions. The different magnitude of the energy dissipation rates leads, on one hand,
to coalescence-dominated and, on the other hand, to breakage-dominated compartments.
In interaction with the choice of the volume flows, this leads to a mixture of larger
and smaller drops (coming from the coalescence-dominated and breakage-dominated
compartments, respectively).

Also for the simulation with scaled volume flows, mass is conserved during the simulation.
However, since the masses in the four compartments are exactly the same as for the two
cases considered before (see Fig. 5.13), we will not show them here.
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Figure 5.19: Drop size distributions in the different compartments at time points t = 0,
t = 60 s, t = 300 s, t = 600 s, t = 900 s, t = 1,500 s, and t = 4,800 s
for a simulation with scaled volume flows. Top left: compartment K1,
top right: compartment K2, bottom left: compartment K3, bottom right:
compartment K4.
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Figure 5.20: Sauter mean diameter versus time in the different compartments for a sim-
ulation with scaled volume flows.

At the end of this subsection, we will show all steady-state drop size distributions in the
four compartments for the three different configurations presented above in one figure,
namely Fig. 5.21. Note that we have used the same scale in all pictures so that the
differences between the three cases can be seen better.
The top left picture in Fig. 5.21 shows the start distribution, which is the same for all
cases and in all compartments. The top right picture displays the final distributions
after t = 4,800 s in the different compartments for the case that the simulation is done
without volume flows between the compartments. Here, and especially in comparison
to the other cases, one can observe the large increase of the number of drops in the
second compartment due to the much higher energy dissipation rate prescribed there.
In the bottom left picture, the final distributions in the different compartments after
a simulation with the optimized volume flows from Eq. (5.15) are shown. One can
observe that the order of magnitude of these volume flows is so high that there is a total
exchange of the drop size distributions between the four compartments. Furthermore, a
slight increase in the total number of drops can be detected for that case. In the bottom
right picture the resulting drop size distributions for the simulation with the scaled
volume flows are depicted. These volume flows are not so large that they lead to a total
exchange of the distributions. However, they lead to a more “balanced” distribution of
the drops over the compartments.

5.4.2 Comparison with Experimental Data

In the following, we will compare the drop size distributions that have been obtained
by the simulation using the four-compartment model with optimized volume flows (see
previous subsection) with experimental drop size distributions. The corresponding mea-
surements were carried out at the Institute for Process Engineering at the TU Berlin.
The experimental data result from pictures that have been taken in the middle-plane
between two baffles and at height x3 = 5cm (i. e., in the impeller mid-plane). Since
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Figure 5.21: Drop size distributions in the different compartments. Top left: start dis-
tributions, top right: final distributions after t = 4,800 s for a simulation
without volume flows between the compartments, bottom left: final dis-
tributions after t = 4,800 s for a simulation with optimized volume flows
Zij , bottom right: final distributions after t = 4,800 s for a simulation with
scaled volume flows.
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the experimental investigations provide only normalized drop size distributions, we have
transformed the simulated drop size distributions (by dividing them by the total number
of drops) so that they can be compared with the experimental data.

Fig. 5.22 shows a comparison of the experimental drop size distributions with the sim-
ulation results for the four-compartment model as well as for a corresponding one-
compartment model. At first sight, one observes only moderate agreement between
the experimental and the simulated drop size distributions, both for the one- and for the
four-compartment model. Nevertheless, the simulation results for the four-compartment
model are closer to the experimental findings, in particular, for small drop sizes.

However, the simulation of 4,800 s using the one-compartment model took about eleven
hours, whereas more than 40 hours were needed for the same simulation using the four-
compartment model. Note that all simulations were performed on an Intel Pentium M
processor with 1.5 GHz and a 1GB memory. Parsival was run under Linux using the
Windows-emulation wine. Since the computing times for the four-compartment model
are much higher than those for the one-compartment model, it is questionable whether
the relatively low improvement in the resulting drop size distributions justifies these
higher computational costs.

Fig. 5.23 shows experimental and simulated Sauter mean diameters, both for the one- and
for the four-compartment model. Here, one can observe that both, the simulation results
for the one- and for the four-compartment model, cannot reproduce the experimental
Sauter mean diameters. That the Sauter mean diameters for the four-compartment
model are even worse compared to the one obtained by the one-compartment model,
although the drop size distributions for the four-compartment model were closer to the
experimental data, can be explained by the fact that only the small drop sizes are
reproduced better by the four-compartment model, which have only a very low influence
on the Sauter mean diameter. On the other hand, the only slightly better agreement of
the one-compartment model in the range of the largest occurring drop sizes has a much
higher influence on the Sauter mean diameter.

At the end of this subsection, it should again be mentioned that the simulation results
are highly dependent on the choice of the model parameters.
Theoretically, a set of parameters should be valid for different configurations as long as
only minor changes in the system are made (for example, if only the rotational speed or
the volume fraction of the dispersed phase are changed and as long as the modifications
are not too large). However, it is clear that modifications that lead to major changes in
the system (like such a small rotational speed that we do not have a fully turbulent flow
field any more or such a high volume fraction of the dispersed phase that the influence
of the drops on the flow field cannot be neglected any more) cannot be handled with the
same set of parameters. Nevertheless, as long as the underlying assumptions made for
the modeling of the system are fulfilled, the adaption parameters should not depend on
quantities that are already included in the model, like the energy dissipation rate or the
volume fraction of the dispersed phase. The “fitting” parameters should rather be used
to account for dependencies on quantities that have not been included in the model yet,
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Figure 5.22: Experimental and simulated drop size distributions for the one- and four-
compartment model. Top left: t = 60 s, top right: t = 300 s, middle left:
t = 600 s, middle right: t = 900 s, bottom left: t = 1,500 s, bottom right:
t = 4,800 s.

146



5.4 Results of the Coupling and Comparison with Experimental Data

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8
x 10

−4

time t [s]

S
au

te
r 

m
ea

n
 d

ia
m

et
er

 d
32

 [
m

]

 

 

exp. data
sim. data, 4−comp. model, d

32,1

sim. data, 4−comp. model, d
32,2

sim. data, 4−comp. model, d
32,3

sim. data, 4−comp. model, d
32,4

sim. data, 1−comp. model

Figure 5.23: Experimental and simulated Sauter mean diameters for the one- and four-
compartment model.

such as a dependency on the pH-value.
In practice, however, this is not the case. Here, the “right” choice of the adaption pa-
rameters is what mainly influences how good the agreement between experimental and
simulated drop size distributions is. Without an optimization of these parameters, the
mathematical models are mostly not able to reproduce the experimental drop size distri-
butions satisfactorily. A good agreement with experimental data is often only obtained
by parameter adaption, see, e. g., [Weg04], [GSP+05], [GWSK05], or [GWPK06a].
However, in view of being able to perform predictive simulations, the aim of the in-
vestigations is to be able to reproduce the experimental drop size distributions without
re-adapting the parameters for every single configuration, but by taking into account
further factors that have an influence on the drop size distribution. An example is the
considered approach, where the inhomogeneity of the flow field in the stirred tank is
taken into account by using different values for the energy dissipation rates in the differ-
ent zones of the tank. By this, the strong influence of the high energy dissipation rate
in the region around the impeller is included in the model.

Remark 5.8. In [GWPK06a], a “correction” factor for the mean energy dissipation
rate ε̄ was included in order to model the strong influence of the impeller region on the
drop size distribution. By this, an excellent agreement between the simulated and the
experimental drop size distributions could be achieved.
As we have seen from the results presented in this section, the division of the tank into
zones and the use of different values for the energy dissipation rate in these zones can
lead to different drop size distributions throughout the tank, even if the average value ε̄
is the same as in the one-compartment model simulation. The reason for this is that
the locally strong increase of the energy dissipation rate in the (relatively small) impeller
zone has a stronger influence on the resulting drop size distribution than the correspond-
ing decrease in the remaining part of the tank. Thus, the “correction” factor used in
[GWPK06a] can be seen as some kind of compartment model, where the higher energy
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consumption in the impeller zone is modeled, but the remaining part of the tank is simply
neglected.
However, the problem with this approach is that the size of the correction factor is not
known in advance and can only be determined by comparison with experimental data.
Thus, it represents an additional adaption parameter, which makes a predictive simula-
tion more difficult.

By contrast, in the presented approach, no information from the corresponding experi-
mental investigations has been used. The model was extended only by information that
could be obtained in advance (namely by the results of the CFD simulation).

Remark 5.9. Another possibility to get rid of the dependency on the adaption parame-
ters would be to determine one set of parameters that are optimal in a certain sense with
respect to many different configurations, e. g., for different rotational speeds, different
volume fractions of the dispersed phase, and different pH-values. By this, we clearly do
not get the best set of parameters for every single configuration, but we may get one set
of parameters, which is able to reproduce all these cases satisfactorily and can therefore
still be used after some modifications in one of the quantities listed above has been made.

However, the disadvantage of this approach is that it is very time-consuming. Using the
four-compartment model approach in Parsival, every fitting with respect to one single
configuration would need already several days so that the optimization with respect to all
configurations would be too extensive. Furthermore, we need, as in the approach used in
[GWPK06a], experimental drop size distributions for the fitting. In order to get a set
of reliable parameters, a sufficient number of experimental drop size distributions (for
sufficiently many different cases) is needed. In addition, besides these efforts that have
to be made, it is not clear if such a set of optimal parameters always leads to satisfactory
results. It may happen, for example, that a set of parameters that is optimal with respect
to the values that have been used for the fitting is not satisfactory if other values lying
in the same range are used.

In general, one can say that a physically based improvement of the coalescence and
breakage models should always be preferred to such a mathematical optimization.

5.4.3 Simulation Results for the Four-Compartment Model with
Time-Dependent Volume Flows

In the following, we will present results of the simulation with time-variant volume
flows. This case is of special interest, since, in general, the volume flows that we get
from the CFD simulation are time-variant. Especially if one likes to control the drop
size distributions in the stirred tank, one cannot restrict to the case that constant values
are prescribed for the stirrer speed. (One can imagine that most desired drop size
distributions cannot be derived by applying only a constant stirrer speed.) Thus, the
coupling with Parsival has been implemented in such a way that this can be realized.
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Figure 5.24: Drop size distributions in the four compartments at different time points for
a simulation with optimized volume flows. Solid lines: “old” implementa-
tion as described in Subsection 5.4.1, cruxes: “new” implementation. Left:
t = 60 s, right: t = 900 s.

However, due to the enormous computing times for the flow simulation, up to now only
very small time intervals could be calculated with FeatFlow. Since the volume flows
obtained by the simulation with FeatFlow had to be optimized before they could be
used in the coupling approach (see Subsection 5.3.2), only an averaged value for each
of the volume flows was derived (which is a sensible approximation for the case that a
constant stirrer speed is used).
Nevertheless, in order to test the possibilities of the presented approach, we will in the
following also prescribe time-variant mean volume flows and energy dissipation rates.

Test case: simulation with the constant (optimized) volume flows Z ij

In the first test case, we have implemented the stirred tank model in Parsival in such
a way that time-variant values for the mean energy dissipation rates ε̄i in the different
compartments Ki as well as for the mean volume flows V̇ij between the compartments
Ki and Kj could be prescribed. Nevertheless, in order to test the implementation, we
have used an mdf-file with the same (constant) values for ε̄i and V̇ij as the ones used for
the simulation with optimized volume flows in Subsection 5.4.1.

Fig. 5.24 displays the resulting drop size distributions for t = 60 s and t = 900 s for both,
the “old” implementation and the “new” one. This shows that the “new” model leads,
as expected, to exactly the same results.
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Figure 5.25: Volume flows between the different compartments. Left: prescribed volume
flows V̇12 and V̇34, right: resulting volume flows V̇23, V̇31, and V̇42 calculated
by Parsival.

Simulation using step functions for the volume flows

In the following, we will present the simulation results for the (test) case that we have
prescribed a step function for the rotational speed of the impeller, namely

N∗(t) =

{
20/3 1/s for 0 ≤ t ≤ 60 s,
70/6 1/s for 60 s < t ≤ 120 s,

which corresponds to a step in the rotational speed from 400 to 700 rounds per minute.
In Parsival this can be modeled by prescribing the following functions for the mean
volume flows V̇12 and V̇34:

V̇12(t) =

{
4/7 · Z12 = 3.04 · 10−4 m3/s for 0 ≤ t ≤ 60 s,

Z12 = 5.32 · 10−4 m3/s for 60 s < t ≤ 120 s

and

V̇34(t) =

{
4/7 · Z34 = 2.41 · 10−4 m3/s for 0 ≤ t ≤ 60 s,

Z34 = 4.22 · 10−4 m3/s for 60 s < t ≤ 120 s.

Note that the values for 60 s < t ≤ 120 s are the optimal flows from Eq. (5.15) and
the values for 0 ≤ t ≤ 60 s are derived by assuming that the volume flows are linearly
dependent on the rotational speed, which is justified due to the definition of the volume
flows. Fig. 5.25 shows these prescribed volume flows (left) as well as the resulting volume
flows between the remaining compartments (right).
Since the mean energy dissipation rates ε̄i are defined by

ε̄i = či
Ne (N∗)3 (Dstirrer)

5

Vtank
, i = 1, . . . , 4,
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Figure 5.26: Left: prescribed values for the mean energy dissipation rates ε̄i in the four
compartments, right: resulting Sauter mean diameters in the four compart-
ments.

where the constants či, i = 1, . . . , 4, are given according to Eq. (5.16), we have scaled
the values for ε̄i, i = 1, . . . , 4, for 0 ≤ t ≤ 60 s by a factor of (4/7)3. Note that we have
used the assumption that besides Dstirrer, Vtank, and či also the power number Ne is
constant, which is justified for a fully turbulent flow field. The left picture in Fig. 5.26
shows these mean energy dissipation rates.

The right picture in Fig. 5.26 depicts the resulting Sauter mean diameters in the different
compartments. Here one can observe that first, as long as the smaller values for the mean
energy dissipation rates are prescribed, the Sauter mean diameters in all compartments
increase and then, after the increase of the ε̄i, the Sauter mean diameters decrease again,
until they reach a steady state. Note that the steady state values here are, as expected,
the same as for the case that a rotational speed of 700 rounds per minute was used for
the whole simulation (see Subsection 5.4.1).

The left picture in Fig. 5.27 demonstrates that mass is conserved during the simulation.

Simulation using sinusoids for the volume flows

In the following, we will present the results for a simulation, where we have prescribed
sinusoidal functions for the mean volume flows and energy dissipation rates. This case
models a stirred tank operated with a sinusoidal rotational speed, namely

N∗(t) = 55/6 + 5/2 sin (π/30 t) .

The left picture in Fig. 5.28 shows the prescribed volume flows V̇12 and V̇34, defined as

V̇12(t) =
N∗(2.5k)

35/3
Z12 for t ∈ [2.5k, 2.5(k − 1)), k = 0, . . . , 47
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Figure 5.27: Conservation of mass during the simulation. Left: simulation with step-
functions prescribed as volume flows and mean energy dissipation rates,
right: simulation with sinusoidal volume flows and mean energy dissipation
rates.
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Figure 5.28: Volume flows between the different compartments. Left: prescribed volume
flows V̇12 and V̇34, right: resulting volume flows V̇23, V̇31, and V̇42 calculated
by Parsival.
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Figure 5.29: Left: prescribed values for the mean energy dissipation rates in the four
compartments, right: resulting Sauter mean diameters in the four compart-
ments.

and

V̇34(t) =
N∗(2.5k)

35/3
Z34 for t ∈ [2.5k, 2.5(k − 1)), k = 0, . . . , 47.

The other three volume flows, which are calculated by Parsival during the simulation,
are displayed in the right picture of Fig. 5.28.

Accordingly to the prescribed volume flows, for the mean energy dissipation rates ε̄i, the
following values are used:

ε̄i(t) =
[
N∗(2.5k)

35/3

]3

či ε̄ for t ∈ [2.5k, 2.5(k − 1)), k = 0, . . . , 47, i = 1, . . . , 4.

These data are depicted in the left picture of Fig. 5.29.

Note that for both, the mean volume flows and the mean energy dissipation rates, we
have only prescribed discrete values instead of “real” sinusoids. The reason for this is
that, in the coupling approach, the results of the CFD simulation are also discrete values
instead of (continuous) functions.

The right picture in Fig. 5.29 shows the Sauter mean diameters in the different compart-
ments. It displays how the Sauter mean diameters increase and decrease with decreasing
and increasing mean energy dissipation rates, respectively. However, besides the sinu-
soidal behavior (according to the sinusoidal mean energy dissipation rates), one can also
observe that altogether the Sauter mean diameters increase, which shows that coales-
cence dominates in the system. Note that we will not give a more detailed analysis of the
results, since the considered configuration is only a test case, which does not have any
relevance in practice. However, it demonstrates further applications and possibilities of
the presented approach in the context of control.
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At the end of this subsection, it should be stated that also for the case, where sinusoids
are used for the volume flows, mass is conserved during the simulation (see the right
picture in Fig. 5.27).

5.5 Discussion

As already mentioned in Section 5.1, Parsival is a powerful tool for the solution of
population balance equations. Since in Parsival an adaptive discretization is not only
used for the time, but also for the internal coordinate, a good approximation of the
drop size distribution can be obtained with relatively low computational costs, at least
compared to other method of classes approaches. Compared to the method of moments
approaches, Parsival has the advantage that the whole distribution is calculated in-
stead of only a few moments.
However, as soon as more complex models are considered, the relatively high compu-
tation times needed for the method of classes approaches carry more and more weight
(compare the high simulation times for the four-compartment model presented in the
previous section), and the method of moments approaches become superior. In gen-
eral, the high costs for the method of classes makes an implementation in a CFD code
hardly possible. While it suffices to extend the CFD code by about six transport equa-
tions for the case that the quadrature method of moments is used, at least 20 (for more
complex problems even between 100 and 200) additional equations are needed for an
implementation of the method of classes [MBBF02], see also Section 5.6.

Besides these enormous costs needed for the coupling of a method of classes approach
with a CFD code, Parsival can hardly be coupled “directly” with a CFD code. The
problem here is that Parsival is a commercial Windows program controlled by a graph-
ical user interface, which cannot simply be “included” into a CFD solver. The version
of Parsival that has been used for the investigations presented here can, in addition,
only be started by pressing a “run”-button inside the program.
Nevertheless, calling Parsival (as a so-called “Automation Server”) from “outside”
(namely from Microsoft Excel or from a C++ or FORTRAN program) is realized
via the so-called “COM-Interface” (where COM is short for Common Object Model),
see [Wul].

Altogether, one can say that the actual way of coupling the two solvers FeatFlow and
Parsival was a good first approach to investigate the problem, but for more practical
problems or for further investigations, concerning the control and optimization of drop
size distributions, for example, an alternative approach for the solution of the coupled
system is necessary. For these applications, the system must be coupled on another level.
A sensible possibility would be to “directly” include the solution of the population bal-
ance equation into the CFD simulation. If a non-commercial CFD code is used, where
the source code is freely available and can be adapted, the solution of the population
balance equation can directly be included by extending the system of equations by some
additional transport equations. Since the quadrature method of moments and the direct
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quadrature method of moments are really suitable for such a way of coupling the popu-
lation balance equation with CFD, these approaches will be considered in the following
section.

Another point that should be discussed is the choice of the “fitting” parameters occurring
in the coalescence and breakage models. The comparison of the simulation results with
experimental data in Subsection 5.4.2 showed that further difficulties arise in the context
of finding the “right” values for the adaption parameters in the coalescence and breakage
rates. The problem here is that predictive simulations are not possible as long as an
optimization of the model parameters based on experimental data is needed for every
slightly changed model. Thus, an improvement of the models is necessary in order
to weaken or even avoid the undesired dependency of the simulation results on these
parameters.
This can be achieved by extending the mathematical description of the coalescence and
breakage processes by dependencies on physical parameters, like the pH value or the ionic
strength, which can be observed in experiments (see, e. g., [KGS04] or [GWPK06a]), but
are mostly not yet included in the modeling.
Another factor that has a strong influence on the coalescence and breakage processes,
but is mostly not taken into account in the modeling, is the inhomogeneity of the flow
field in the stirred tank. One way to include this dependency in the modeling is given by
the compartment model approach presented in this chapter. Clearly, this approach can
further be improved by increasing the number of compartments. However, a simulation
in Parsival with a significantly larger number of compartments would lead to enormous
computational costs. Thus, also for this case, a method of moments approach seems to
be a good alternative.

5.6 The (Direct) Quadrature Method of Moments as
Alternative Approach to Solve Population Balance
Equations

In this section, we will consider the quadrature method of moments (QMOM) and the
direct quadrature method of moments (DQMOM) as two alternative approaches for
solving population balance equations. We consider these methods, since they have the
advantage that they can easily be coupled with a CFD simulation. For the coupling, the
CFD code must only be extended by a few scalar transport equations, from which the
moments of the distribution can be calculated. Such a coupling has already been imple-
mented for certain applications, see, e. g., [MVF03a], [MPF+03], [FMF04], [ZMBF04],
[ZMBF06], [MSS+06], or [MSSM06].

The quadrature method of moments is based on the method of moments, in which
the internal coordinate is “integrated out” and the population balance equation is de-
termined through its moments, see [MVF03b]. The method of moments was already
described by Hulburt and Katz [HK64] in 1964 but has not found wide applicability
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due to the difficulty of expressing the transport equations for the moments in terms of
the moments themselves [MVF03b]. This so-called “closure problem” can, for example,
be solved by using a quadrature approximation for the unclosed terms leading to the
quadrature method of moments proposed in [McG97]. Here, the weights and abscissae
of the quadrature approximation can be specified from the lower-order moments.
The direct quadrature method of moments, introduced in [MF] (see [FMF04]), is an
extension of the quadrature method of moments. It is based on the direct solution of the
transport equations for weights and abscissae of the quadrature approximation [FMF04].

In the following subsections, we will consider the application of the (direct) quadrature
method of moments to the population balance equation (2.9), here given in a more
general form, namely dependent on any internal coordinate e instead of the volume V ,

∂f(e, x, t)
∂t

= −∇ · (u f(e, x, t)) + s(e, x, t), (5.17)

or, respectively, to the averaged population balance equation (2.15), given by

∂f(e, x, t)
∂t

= −∇ · (uf(e, x, t)) + ∇ · (ct ∇f(e, x, t)) + s(e, x, t). (5.18)

Note that we have, for ease of notation, omitted the bars over the averaged values here.

First, we will describe the different approaches mentioned above. For simplicity, the
different methods are only applied to the population balance equation (5.17). However,
they can be used for the averaged population balance equation (5.18) analogously. In the
last subsection, this will be shown considering the direct quadrature method of moments
as example.

5.6.1 The Method of Moments

The method of moments is based on the idea of solving the governing equations for a
finite set of moments instead of solving the population balance equation itself. This
can be done, since there is a one-to-one correspondence between the distribution f and
the so-called moment space, i. e., the set of all moments {m0,m1,m2, . . . }, where the
moments are defined by

mk =
∫ ∞

−∞
f(e)ekde, k = 0, 1, 2, . . . .

Note that in the considered application, where the volume is used as internal coordinate,
it is sufficient to integrate from 0 to ∞, since there are no drops of negative volume.

The moments also have a physical meaning. The zeroth-order moment, for example,
describes the total particle number density independent of what we use as internal co-
ordinate. If we use length as internal coordinate, the first-order moment describes the
total particle length, the second-order moment the total particle surface area and the
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third-order moment the total particle volume, whereas, if we use volume as internal
coordinate, the first-order moment describes the total particle volume.

In order to solve the population balance equation (5.17) by the method of moments,
we apply the moment transform, which means that we “integrate out” the internal
coordinate e:∫ ∞

−∞

∂f(e, x, t)
∂t

ek de = −
∫ ∞

−∞
∇·(u f(e, x, t)) ek de +

∫ ∞

−∞
s(e, x, t) ek de, k = 0, 1, 2, . . . ,

leading to the following transport equations for the moments

∂mk(x, t)
∂t

= −∇ · (umk(x, t)) +
∫ ∞

−∞
s(e, x, t) ek de, k = 0, 1, 2, . . . , (5.19)

where the term
∫∞
−∞ s(e, x, t) ek de =: s̄k(x, t) is given by (cf. Section B.2)

s̄k(x, t) =
∫ ∞

−∞

∫ ∞

−∞
Rcoal(e′, e′′, y(x, t)) f(e′, x, t) f(e′′, x, t) de′ ek de

−
∫ ∞

−∞
f(e, x, t)

∫ ∞

−∞
Rcoal(e, e′, y(x, t)) f(e′, x, t) de′ ek de

+
∫ ∞

−∞

∫ ∞

−∞
n(e′, y(x, t)) γ(e, e′ , y(x, t))Rbreak(e′, y(x, t)) f(e′, x, t) de′ ek de

−
∫ ∞

−∞
Rbreak(e, y(x, t)) f(e, x, t) ek de, k = 0, 1, 2, . . . . (5.20)

This shows that, by applying the moment transform, it is possible to get rid of the
internal coordinate e, i. e., to reduce the dimension of the problem by one. But, in
exchange, we get infinitely many equations. Hence, we have to use an approximation. In
the method of moments, the set of transport equations is only solved for the first Nmom

moments.

5.6.2 The Closure Problem and the Quadrature Method of Moments

The problem of the method of moments is that for complex kernels (like for coalescence or
breakage kernels that are dependent on the internal coordinate), it is usually not possible
to write the equations for the first Nmom moments in terms of only these moments.
This is because the right-hand side of the equation for the k-th-order moment may
include higher-order moments mk+1,mk+2, . . . , which is, for example, the case if we
use a breakage rate that is linearly dependent on the internal coordinate e. (Set, e. g.,
Rbreak(e, x, t) = e in Eq. (5.20)).

There are several ways to overcome this so-called “closure problem”. (A description of
some possible approaches can be found in [DO02a], for example.) One possibility is to
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use a quadrature approximation for all terms involving the unknown distribution f , see
[McG97], given by ∫ ∞

−∞
π(e)f(e)de ≈

Nmom∑
α=1

wα π(eα), (5.21)

where wα are the weights and eα are the abscissae (or nodes) of the quadrature approx-
imation. This approximation is exact if the nodes eα are the zeros of a polynomial of
order Nmom that is orthogonal to the distribution f and if π is a polynomial of order
less than or equal to 2Nmom − 1 (see, e. g., [Sto99], page 176).

In the considered application, the terms that involve the unknown distribution f are the
source and sink terms due to coalescence and breakage given by Eq. (5.20). Applying the
quadrature methods of moments to Eq. (5.19) leads to an approximation s̄(Nmom)

k (x, t) of
these source and sink terms s̄k(x, t). How this approximation can be calculated, depends
on the special form of the kernels and on what we choose as internal coordinate. Details
concerning this can, for example, be found in [MPF+03].

The essence of the quadrature-based closure lies in the fact that the weights wα and
abscissae eα can be completely specified in terms of the lower-order moments of the
unknown distribution f , see [McG97].

Using this approximation (5.21), we get for the moments:

mk =
∫ ∞

−∞
f(e)ekde ≈

Nmom∑
α=1

wαe
k
α, k = 0, 1, 2, . . . . (5.22)

This shows that it suffices to know the first 2Nmom moments in order to determine the
weights and abscissae in a quadrature approximation of order Nmom. However, the direct
solution of Eq. (5.22) for these quantities would require a nonlinear search and is not
recommended [McG97]. That is why the product-difference (PD) algorithm proposed in
[Gor68] is used to determine the weights and abscissae from the lower-order moments.
This algorithm has many points in common with the quotient-difference (QD) algorithm
described in [Rut57]. However, the product-difference algorithm has the advantage that
it saves all divisions until the end.

This algorithm works as follows (see [Mar01], for example). In the first step, a matrix
B = [bij ] ∈ �(2Nmom+1)×(2Nmom+1) is constructed. The components of the first column
are given by

bi1 = δi1, i = 1, . . . , 2Nmom + 1,

where δij is the Kronecker delta. The second column consists of

bi2 = (−1)i−1mi−1, i = 1, . . . , 2Nmom,
b2Nmom+1,2 = 0,

where m0 is set to one. (This normalization can be done, since the final weights can be
corrected by multiplication with the true m0.) The remaining components are found by
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means of the product-difference algorithm:

bij = b1,j−1 bi+1,j−2− b1,j−2 bi+1,j−1, j = 3, . . . , 2Nmom +1, i = 1, . . . , 2Nmom +2− j.
The remaining entries in the lower right part of the matrix are set to zero. Next, we
define b̂1 := 0 and

b̂i =
b1,i+1

b1i b1,i−1
, i = 2, . . . , 2Nmom,

in order to build a symmetric tridiagonal matrix A = [aij ] ∈ �Nmom×Nmom from the sums
and products of b̂i. The diagonal of the matrix A is given by

aii = b̂2i + b̂2i−1, i = 1, . . . , Nmom,

while its co-diagonal elements are given by

ai,i+1 = ai+1,i = −
√
b̂2i+1b̂2i−1, i = 1, . . . , Nmom − 1.

The abscissae and weights are now determined by finding the eigenvalues and -vectors
of the matrix A. The abscissae are just the eigenvalues of A, whereas the weights can
be found by

wj = m0v
2
j1,

where vj1 is the first component of the jth eigenvector vj . Once abscissae and weights
have been computed, any integral involving the number density function f can be ap-
proximated using Eq. (5.21).

The quadrature approximation (5.21) is equivalent to using the following finite-mode
representation for the solution f , see [Mar04]:

f(e, x, t) =
Nmom∑
α=1

wαδ(e − eα),

where δ denotes the Dirac delta function, which can be loosely thought of as a function
on the real line which is zero everywhere except at the origin, where it is infinite, i. e.,

δ(x) =
{

0, x �= 0,
∞, x = 0

and which is also constrained to satisfy the identity∫ ∞

−∞
δ(x) dx = 1.

In this approach, each node eα of the quadrature approximation can be thought of a
single particle class, see Fig. 5.30.

One great advantage of the quadrature method of moments is that only a few (usually
about six) moments are needed in order to get a satisfactory approximation of the
whole distribution, which makes the implementation in a CFD code feasible. As already
mentioned in Section 5.5, in the method of classes, in contrast, about 20–30 classes for
simple problems and about 100–200 classes for more complex problems are needed in
order to get about the same accuracy, see [MBBF02].
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w1

w2

w3

e1 e2 e3 e

f(e, x, t)

Figure 5.30: Each node eα can be seen as a single particle class in the quadrature method
of moments approach.

5.6.3 The Direct Quadrature Method of Moments

The direct quadrature method of moments directly solves transport equations for the
weights wα and abscissae eα instead of solving the equations for the moments. Here,
space- and time-dependent weights wα(x, t) and nodes eα(x, t) are used in the finite-mode
representation of the solution

f(e, x, t) =
Nmom∑
α=1

wα(x, t) δ(e − eα(x, t)). (5.23)

When the direct quadrature method of moments is implemented in a multi-fluid CFD
code, each node of the quadrature approximations can be seen as a distinct dispersed
phase with its own phase velocity uα.

Inserting Eq. (5.23) into the population balance equation (5.17) leads to

Nmom∑
α=1

δ(e − eα)
[
∂wα

∂t
+ (∇ · uα)wα + uα · ∇wα

]

−
Nmom∑
α=1

δ′(e− eα)
[
∂eα
∂t

wα + (uα · ∇eα) wα

]
= s(e), (5.24)

where uα is the phase velocity for e = eα. Note that, for simplicity, we have omitted the
dependency on space and time here. If we introduce weighted abscissae

ζα = wαeα
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into Eq. (5.24) and use

∂eα
∂t

wα + (uα · ∇eα)wα

=
∂eα
∂t

wα + (uα · ∇wα)eα + (uα · ∇eα)wα − eα(uα · ∇wα)

=
∂wα

∂t
eα +

∂eα
∂t

wα + (∇ · uα)wαeα + uα · (∇ · (wαeα)) − eα
∂wα

∂t
− eα(∇ · uα)wα − eα(uα · ∇wα)

=
∂(wαeα)

∂t
+ ∇ · (uαwαeα) − eα

∂wα

∂t
− eα∇ · (uαwα)

=
∂ζα
∂t

+ ∇ · (uαζα) − eα

{
∂wα

∂t
+ ∇ · (uαwα)

}
,

we get

Nmom∑
α=1

δ(e − eα)
[
∂wα

∂t
+ ∇ · (uαwα)

]

−
Nmom∑
α=1

δ′(e− eα)
[
∂ζα
∂t

+ ∇ · (uαζα) − eα

{
∂wα

∂t
+ ∇ · (uαwα)

}]
= s(e).

This expression is the starting point for deriving transport equations for the weights and
weighted abscissae.

If we define ξ(1)α and ξ(2)α to be the source terms of the transport equations for the weights
wα and weighted abscissae ζα

∂wα

∂t
+ ∇ · (uαwα) = ξ(1)α ,

∂ζα
∂t

+ ∇ · (uαζα) = ξ(2)α ,

then the population balance equation becomes

Nmom∑
α=1

δ(e − eα)ξ(1)α −
Nmom∑
α=1

δ′(e− eα)(ξ(2)α − eαξ
(1)
α ) = s(e). (5.25)

This equation can now be used to determine ξ
(1)
α and ξ

(2)
α by applying the moment

transform. Using∫ ∞

−∞
ekδ(e− eα)de = ekα and

∫ ∞

−∞
ekδ′(e− eα)de = −kek−1

α , (5.26)

the moment transform of equation (5.25) yields

(1 − k)
Nmom∑
α=1

ekαξ
(1)
α + k

Nmom∑
α=1

ek−1
α ξ(2)α =

∫ ∞

−∞
s(e)ekde = s̄k(x, t). (5.27)
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This linear system can now be written in matrix-vector form:

Eξ = ς, (5.28)

where the matrix E = [E1, E2] ∈ �2Nmom×2Nmom is given by

E1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 · · · 1
0 · · · 0

−e21 · · · −e2Nmom
...

...

−(2Nmom − 2)e2Nmom−1
1 · · · −(2Nmom − 2)e2Nmom−1

Nmom

⎤
⎥⎥⎥⎥⎥⎥⎦ and

E2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
1 · · · 1

2e1 · · · 2eNmom

...
...

(2Nmom − 1)e2Nmom−2
1 · · · (2Nmom − 1)e2Nmom−2

Nmom

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The vectors ξ, ς ∈ �2Nmom are defined by

ξ =
[
ξ
(1)
1 , . . . , ξ

(1)
Nmom

, ξ
(2)
1 , . . . , ξ

(2)
Nmom

]T
and ς = [ s̄0, . . . , s̄2Nmom−1]

T .

If the abscissae eα are unique, then E has full rank for arbitrary Nmom. For this case,
the source terms for the transport equations for the weights and weighted abscissae can
be found by simply solving the linear system (5.28). In practice, however, for Nmom > 2,
the system has to be solved numerically.
If there is any point in the computational domain where two abscissae are equal, then the
matrix E becomes singular. In this case, one possible approach to overcome this problem
is to estimate the vector ξ from the average of the source vectors from neighboring cells,
see [FMF04]. Further details concerning this as well as alternative approaches can be
found in [FMF04].

When working with one internal coordinate, the direct quadrature method of moments
is numerically equivalent to the quadrature method of moments. Both methods result in
the same prediction, with the difference that the direct quadrature method of moments
does not use the product-difference algorithm but tracks the quadrature approximation
by solving a simple linear system, see [Mar04]. A great advantage of the direct quadrature
method of moments is that it can easily be extended to bivariate (and multivariate)
problems, see [FMF04] and [ZMBF04]. In [MZV+06], a detailed description of the direct
quadrature method of moments applied to bivariate population balance models as well
as an investigation of its numerical performance (compared to Monte Carlo simulation
methods) can be found.
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Applying the direct quadrature method of moments to the averaged population
balance equation (5.18)

In the following, we will apply the direct quadrature method of moments also to the
averaged population balance equation (5.18). This can be done in the same way as
before, we only have to account for the additional term ∇ · (ct ∇f) due to turbulent
diffusion. Inserting

f(e, x, t) =
Nmom∑
α=1

wα(x, t)δ(e − eα(x, t))

into the averaged population balance equation (5.18) leads to

Nmom∑
α=1

δ(e − eα)
[
∂wα

∂t
+ (∇ · uα)wα + uα · ∇wα −∇ct · ∇wα − ctΔwα

]

−
Nmom∑
α=1

δ′(e− eα)
[
∂eα
∂t

wα + (uα · ∇eα) wα − (∇ct · ∇eα) wα

− 2ct(∇wα · ∇eα) − ctΔeα wα

]

−
Nmom∑
α=1

δ′′(e− eα) [ct(∇eα · ∇eα) wα] = s(e),

where we have again omitted the dependency on space and time.

With the weighted abscissae ζα = wαeα, we get

Nmom∑
α=1

δ(e − eα)
[
∂wα

∂t
+ ∇ · (uαwα) −∇ · (ct ∇wα)

]

−
Nmom∑
α=1

δ′(e− eα)
[
∂ζα
∂t

+ ∇ · (uαζα) −∇ · (ct ∇ζα)

−eα
{
∂wα

∂t
+ ∇ · (uαwα) −∇ · (ct ∇wα)

}]
(5.29)

−
Nmom∑
α=1

δ′′(e− eα) [ct∇eα · ∇eα wα] = s(e).

Again, we define ξ(1)α and ξ
(2)
α to be the source terms of the transport equations for the

weights wα and weighted abscissae ζα, this time with the additional turbulent diffusion
term,

∂wα

∂t
+ ∇ · (uαwα) −∇ · (ct ∇wα) = ξ(1)α ,

∂ζα
∂t

+ ∇ · (uαζα) −∇ · (ct ∇ζα) = ξ(2)α .
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Further, we define
ξ(3)α := ct (∇eα · ∇eα) wα.

With this, Eq. (5.29) can be written as

Nmom∑
α=1

δ(e− eα)ξ(1)α −
Nmom∑
α=1

δ′(e− eα)(ξ(2)α − eαξ
(1)
α ) −

Nmom∑
α=1

δ′′(e− eα)ξ(3)α = s(e).

Again, we apply the moment transform to determine ξ(1)α , ξ(2)α , and ξ(3)α .

So, using (5.26) as well as∫ ∞

−∞
ekδ′′(e− eα)de = k(k − 1)ek−2

α ,

we end up with the following linear system

(1 − k)
Nmom∑
α=1

ekαξ
(1)
α + k

Nmom∑
α=1

ek−1
α ξ(2)α = k(k − 1)

Nmom∑
α=1

ek−2
α ξ(3)α +

∫ ∞

−∞
s(e)ekde,

which can be solved by the same means as Eq. (5.27).
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6.1 Summary

In this thesis, the modeling, analysis, and numerical simulation of a stirred liquid-liquid
system was considered.

A system of equations was derived describing, on one hand, the turbulent flow field in the
stirred tank and, on the other hand, the behavior of the drops. The turbulent flow field
in the stirred tank was modeled by the Reynolds-averaged Navier-Stokes equations in
combination with a k-ε turbulence model. For the description of the population dynam-
ical processes an averaged population balance equation was used, in which coalescence
and breakage were modeled via integral terms. For these terms, different models from
the literature were presented, and it was discussed how they can be adapted so that they
can be used for the considered application.

By an index analysis of the underlying differential-algebraic system, which was derived
by spatial discretization, it could be shown that the index of the Navier-Stokes equations
was not increased by the coupling with the population balance equation. Thus, it could
be concluded that all solvers that are suitable for the solution of the Navier-Stokes
equations can, at least theoretically, be extended so that they can also be applied for
the solution of the coupled system.

However, due to the high effort for building such a solver, the system of equations was
solved by means of a simulator coupling approach, in which the CFD code FeatFlow
was used for the flow simulation and the population balance solver Parsival was applied
for the calculation of the drop size distributions. The coupling was realized as a one-
way coupling, which means that the results of the flow simulation were used for the
calculation of the drop size distributions, but the influence of the drops on the flow field
was neglected. This simplification was justified for the considered application, since
the densities of the continuous and of the dispersed phase were similar and the volume
fraction of the drops was sufficiently small. Due to the difficulties in the implementation
of a k-ε turbulence model for the moving boundary method in FeatFlow, the coupling
was realized without turbulence model. Hence, in the compartment model used for the
calculation of the drop size distributions with Parsival, results from the CFD simulation
were only used for the calculation of the mean volume flows, whereas for the mean energy
dissipation rates values from the literature were taken.

A comparison of the simulated drop size distributions with experimental data, which
have been obtained by the experimental partner project showed that by using a four-
compartment model, which takes (at least roughly) the inhomogeneity of the turbulent
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flow field into account, a better agreement could be obtained than by using only a
one-compartment model. However, it also demonstrated that the “right” choice of the
adaption parameters in the coalescence and breakage models is a crucial point concerning
the quality of the agreement between experimental and simulated drop size distributions.

6.2 Outlook

The different investigations in this thesis showed that there are a lot of starting points
for improvements concerning the modeling and simulation of the coupled system.

First of all, the coupling between FeatFlow and Parsival should be realized with a
turbulence model so that for the mean energy dissipation rates, which are needed for
the calculation of the coalescence and breakage phenomena with Parsival, values from
the flow simulation can be used. Note that the simulator coupling has already been
realized in such a way that, as soon as turbulence parameters are available from the
CFD simulation, they can easily be included in the model (for details, see Chapter 5).
If the flow simulation is done without turbulence modeling, which means that direct
numerical simulation is applied, a much finer grid is required. In fact, the number of
grid points needed for a direct numerical simulation of the considered application is
so high that, at the moment, this approach is not feasible, see the discussion in the
beginning of Chapter 4 on page 46. However, it has to be investigated if one can avoid
the enormous number of grid points needed for a direct numerical simulation by a local
refinement of the grid. In [BBD00], a direct numerical simulation in combination with a
locally refined grid consisting of about 1.9 million grid points was used for the simulation
of the flow field in a stirred tank for a Reynolds number of Re = 7,275. A comparison
of the simulation results with those obtained by using a k-ε turbulence model showed
that direct numerical simulation was superior for this application, since the results were
closer to experimental findings for almost all key features of the flow.
Since including a k-ε turbulence model into the moving boundary code in FeatFlow is
very difficult (in particular because of the sensitivity of the k-ε model to the used “zig-
zag”-approximation of the boundary, see Subsection 4.4.2), it is sensible to think about
alternatives concerning both, the treatment of the moving boundaries as well as the
turbulence modeling. As for the latter one, one possibility is to use a k-ω model instead,
since this turbulence model is more robust with respect to the structure of the grid in
the boundary regions. The k-ω model is still valid in the boundary layer near the wall
(where the local Reynolds number is much smaller) and no further modeling in this area
is needed. Concerning the treatment of the moving boundaries, several approaches can
be found in the literature, whereof the impeller boundary condition method, the inner-
outer iterative procedure (which is also known as multiple frame of reference method)
and the sliding or clicking mesh method are the most popular ones, at least in chemical
engineering science, see Remark 4.10 on page 63. These approaches have already been
successfully applied in combination with a k-ε turbulence model, see, e. g., [JR99] for the
impeller boundary condition method, [BBD00] for the inner-outer iterative procedure,
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or [LSE00] and [MLBY01] for both, the inner-outer iterative procedure and the sliding
mesh method.

Concerning the modeling, the description of the coalescence and breakage phenomena
has to be improved in order to get rid of the undesired dependency on the adaption
parameters, see Section 5.4. This can be achieved by including further dependencies on
physical parameters (such as the pH value or the ionic strength), which can be detected
in experiments (see, e. g., [KGS04] and [GWPK06a]), but are not yet included in most
of the mathematical models. However, in order to determine the factors that have
an influence on the resulting drop size distributions, systematic parameter studies in
combination with appropriate experimental investigations are required. In addition, an
understanding of the underlying physics of the processes is necessary in order to be able
to derive an appropriate (physically based) extension of the model.

Another way to improve the simulation results is to increase the number of compartments
in order to refine the modeling of the inhomogeneous turbulent flow field in the stirred
tank. Furthermore, it would be desirable to do the division into compartments in such
a way that it goes hand in hand with the grid used for the flow simulation, since in this
case, the volume flows needed for the coupling can be calculated more precisely. An ideal
approach would be to use the division of the compartment model also as coarse grid in
the multigrid algorithm for the CFD simulation. However, in this approach, much more
compartments are needed, which is not manageable in Parsival, since the simulation
would take a too long time.

On the level of simulation, a starting point for further improvements is given by an
automatization of the coupling. Here, the exchange of data via writing into and reading
from files should be substituted by a direct “connection” between the two solvers. It
would be desirable to include the calculation of the drop size distributions into the
CFD simulation. However, since it seems to be hardly possible to “call” Parsival from
FeatFlow during the simulation, other approaches for the solution of the population
balance equation should be considered.

In this thesis, it was assumed that the influence of the drops on the flow field is negligible.
Although this simplification is justified for the considered application, in general, the
modeling of stirred liquid-liquid systems can be enhanced by taking this influence into
account. In this case, the Reynolds-averaged Navier-Stokes equations must be extended
by a term that models the influence of the drops on the flow field. Thus, not only the
results of the CFD simulation are used for the calculation of the drop size distributions,
but also the results of the population balance solver are used for the computation of the
flow field.
In [VDV02], a so-called “1.5-way coupling” was used for the population balance modeling
in an aerated stirred tank, which means that after the flow field had been calculated with
Fluent, the velocities as well as the turbulence parameters derived by a single-phase
flow simulation were corrected in order to take the influence of the gas bubbles into
account. However, for a more detailed modeling of the interactions between the two
phases, a “real” two-way coupling is required.
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In the literature, two-way coupling approaches are usually modeled via two-phase or
multi-phase flow simulations, since, in this case, also the assumption that the drops are
just moving with the same velocity as the continuous phase is not satisfied any more.
Thus, transport equations for both phases, the continuous and the dispersed one, have to
be solved. If one assumes that all drops are moving with the same velocity, a two-phase
model suffices, otherwise, additional equations for each “group” of drops moving with
the same velocity are required.
An introduction to the numerical modeling of multi-phase flows can be found in [Wör03].
Further information concerning two- or multi-phase fluid flow modeling can, e. g., be
found in [Ish75], [Dre83], [SD03], [Pas04b] and references therein.

For the solution of the population balance equation in the framework of multi-phase
flows, several approaches can be found.
In general, the particles of the dispersed phase can be divided into several groups (usu-
ally according to their size) and each group can be treated as a separate phase in a
multi-phase flow calculation. However, in this case, an additional set of coupled equa-
tions (continuity and momentum) has to be solved for each group of particles so that
only a few groups can be handled (typically 2–3 dispersed phases), which leads to a poor
representation of the distribution.
In the MUSIG (MUltiple SIze Group) model, introduced in [Lo96], it is therefore as-
sumed that all particle velocities are the same so that for all particles together only one
set of momentum equations has to be solved. Thus, essentially, the multi-phase model
is reduced to a two-fluid approach with one velocity field for the continuous and one
for the dispersed phase. However, we still have a continuity equation for each group
of particles to represent the size distribution. With this approach, a larger number of
groups (between 10 and 20) can be considered leading to a better representation of the
particle size distribution. Applications of the MUSIG model for gas-liquid reactors can,
e. g., be found in [Lo00a], [Lo00b], and [Fra05].
Another approach that can be used for the solution of the population balance equation
in this context is the (direct) quadrature method of moments, see Section 5.6. In this
approach, the internal coordinate is “integrated out” and the population balance equa-
tion is determined through its moments. A great advantage of this approach is that it
usually suffices to include a few scalar transport equations (by which the moments are
determined) into the CFD simulation in order to get a satisfactory approximation of the
whole drop size distribution. Such a coupling between CFD and the solution of popula-
tion balance equations has already been implemented for certain applications, see, e. g.,
[MVF03a], [MPF+03], [FMF04], [ZMBF04], [ZMBF06], [MSS+06], or [MSSM06].

The long-term objective of the project is the control of the drop size distribution in
the stirred tank, which requires at least a two-way coupling (see Remark 2.9 at the
end of Chapter 2) as well as the integration of a turbulence model (otherwise, the flow
simulation cannot be handled due to the enormous simulation times). Thus, it is clear
that the simulation of the coupled system should be realized in such a way that these
extensions can be included in the model, which is hardly possible with the presented
approach, as the investigations in this thesis have shown.
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In general, but especially concerning the control of the drop size distribution, the ideal
solution would be to solve all equations together as one coupled system, i. e., to use a
so-called monolithic model instead of a simulator coupling approach, see Remark 5.1 in
the beginning of Chapter 5. In this context, it would also be recommended to apply a
method of lines approach, i. e., to do the space before the time discretization, so that
the dynamics of the system can be treated better. Furthermore, it is clear that some
kind of model reduction has to be applied due to the huge size of the coupled system.
However, for a practical realization of such a control problem, it is recommended to
use an already existing CFD code due to the high effort to build a new CFD solver.
Thus, there are some restrictions concerning the integration of a solution method for
the population balance equation, since there are already structures in the code that
can hardly be changed. In this case, a feasible approach is to include the population
balance equation by means of the (direct) quadrature method of moments into the CFD
code, which can simply be realized by implementing a few additional scalar transport
equations.

Altogether, the conclusion can be drawn that the simulator coupling approach presented
in this thesis was a good first approach to investigate the problem. However, as soon
as some of the above mentioned extensions concerning modeling and simulation are
required (e. g., for a more detailed description of the processes or for including control),
this approach cannot be used any more.
In this thesis, we investigated the pros and cons of the presented approach and showed
alternative methods, by which the modeling and simulation of the considered problem
can be improved in the future.
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A The Mathematical Description of Flows:
Navier-Stokes and Reynolds-Averaged
Navier-Stokes Equations

In this appendix, we will consider how the flow of fluids can be described mathematically.

In the first section, we will derive the Navier-Stokes equations from conservation laws
for mass and momentum and give a dimensionless representation of them. In the second
section, we will consider the Reynolds-averaged Navier-Stokes equations as one way to
model turbulence.

This appendix is compiled from different sections of the book by Griebel et al. [GDN98].

A.1 The Navier-Stokes Equations

The Navier-Stokes equations are the basic equations of fluid dynamics modeling the flow
of viscous incompressible fluids. They describe how velocity and pressure depend on
space and time. The Navier-Stokes equations consist of two equations: the so-called
continuity equation and the momentum equation.

A.1.1 Derivation of the Navier-Stokes Equations

In this subsection, we consider the derivation of the Navier-Stokes equations from con-
servation laws for mass and momentum.

For this, we consider a fluid that occupies the arbitrary (open and bounded) subdomain
Ω0 ⊂ �

3 at time t = 0. The function Ψ : Ω0 × [0, tend] → Ωt ⊂ � describes the motion
of the particle positions ψ ∈ Ω0 with time, so that, at time t ≥ 0, the fluid occupies the
domain Ωt := {Ψ(ψ, t) : ψ ∈ Ω0}. Therefore, Ωt is a closed system, which means that no
fluid particle flows across its boundaries. The path of a particle ψ ∈ Ω0 is the graph of
the function t �→ Ψ(ψ, t). The velocity of the fluid at a fixed position x := Ψ(ψ, t) ∈ Ωt

is given by

u(x, t) =
∂

∂t
Ψ(ψ, t).

The transport theorem states how the time derivative of an integral over a time-dependent
domain can be computed.
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Theorem A.1 (Transport theorem). For a differentiable scalar function F : Ωt ×
[0, tend] → �, (x, t) �→ F (x, t), the following identity holds:

d

dt

∫
Ωt

F (x, t) dx =
∫

Ωt

{
∂

∂t
F + ∇ · (Fu)

}
(x, t) dx.

Proof. Transformation of the integral over Ωt to Ω0 before the differentiation and back-
transformation afterwards (see [GDN98]).

Conservation of mass

The mass of a fluid occupying a certain domain is determined by the integral over the
density ρ of the fluid. Since the same amount of fluid that occupies the domain Ω0 at
time t = 0 later, at time t > 0, occupies the domain Ωt, the following equation must
hold for all t > 0: ∫

Ω0

ρ(x, 0) dx =
∫

Ωt

ρ(x, t) dx.

This means the derivative of mass with respect to time must be zero. Using the transport
theorem we get for all Ωt, t ≥ 0:

0 =
d

dt

∫
Ωt

ρ(x, t) dx =
∫

Ωt

{
∂

∂t
ρ+ ∇ · (ρu)

}
(x, t) dx ∀ Ωt, t ≥ 0.

Since this equation holds for arbitrary regions Ωt, it follows that

∂

∂t
ρ+ ∇ · (ρu) = 0. (A.1)

This is the so-called continuity equation for compressible fluids. For incompressible
fluids (which means that the density of the fluid is independent of space and time, i. e.,
ρ(x, t) = ρf = const.), Eq. (A.1) simplifies to

∇ · u = 0. (A.2)

Conservation of momentum

The momentum of a solid body is given by the product of its mass and its velocity. In
the case of a fluid system the velocity of the fluid may depend on space so that the
momentum i(t) of the fluid in the domain Ωt must be calculated by the integral:

i(t) :=
∫

Ωt

ρ(x, t)u(x, t) dx.

Newton’s second law states that the rate of change of (linear) momentum equals the
sum of forces acting on the fluid:

d

dt
i(t) =

∑
acting forces.
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There are two types of forces:

• body forces (e. g., gravity, Coriolis force, magnetic force) given by∫
Ωt

ρ(x, t) g(x, t) dx

with a given force density g per unit volume, and

• surface forces (e. g., pressure or internal friction) given by∫
∂Ωt

τ(x, t) n ds

with a stress tensor τ =

⎡
⎣ τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

⎤
⎦ and normal vector n.

Newton’s second law thus reads

d

dt

∫
Ωt

ρ(x, t)u(x, t)dx =
∫

Ωt

ρ(x, t)g(x, t)dx +
∫

∂Ωt

τ(x, t)nds.

Applying first the transport theorem and then the product rule to the left-hand side of
this equation and the Gaussian integral theorem to the second summand of the right-
hand side, it follows that

∂

∂t
(ρu) + (u · ∇)(ρu) + (ρu)∇ · u− ρg −∇ · τ = 0. (A.3)

The character of this equation is mainly determined by the way the stress tensor τ is
modeled.
When inviscid fluids are modeled, internal friction can be neglected and the stress tensor
τ is only determined by pressure. This leads to the Euler equations, which are mainly
used in gas dynamics.
For viscous fluids the friction forces cannot be neglected. For a Newtonian fluid we get
in this case (using Stokes’ assumption) a viscous part τvisc in the stress tensor τ , which
is given by the following expression:

τ := −pI + τvisc := (−p+ μ̃∇ · u)I + 2μτstrain.

Here, μ and μ̃ are thermodynamic material constants and the strain tensor τstrain is given
by τstrain := 1

2

(
∇u+ (∇u)T

)
. With this, (A.3) leads to

∂

∂t
(ρu) + (u · ∇)(ρu) + (ρu)∇ · u+ ∇p = (μ+ μ̃)∇(∇ · u) + μΔu+ ρg,

where we have used the identities ∇·∇u = Δu, ∇·(∇u)T = ∇(∇·u), and ∇· [(∇ · u)I] =
∇(∇ · u).
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For incompressible fluids (ρ(x, t) = ρf = const.) and by using the continuity equation,
we get the momentum equation

∂

∂t
u+ (u · ∇)u+

1
ρf

∇p =
μ

ρf
Δu+ g. (A.4)

Here μ is the dynamic viscosity and ν := μ
ρf

is the kinematic viscosity.

The continuity equation (A.2) and momentum equation (A.4) together are called the
Navier-Stokes equations for incompressible fluids.

A.1.2 Dimensionless Representation

Descriptive parameters like the dynamic viscosity μ or characteristic values for the length
Lb, the velocity uf , and the density ρf give information about the flow field for a certain
application. To be able to say something about the correlation between some kind of flow
in a large scale and the same kind of flow in a small scale, these parameters have to be
put together appropriately in order to form dimensionless quantities. The dimensionless
quantities are formed from the corresponding dimensional quantities by

dimensionless quantity =
dimensional quantity

reference quantity with the same physical unit
.

The used reference quantities should be constant as well as characteristic for the problem,
and they have to be known in advance.

Let us now consider the incompressible Navier-Stokes equations and introduce the fol-
lowing dimensionless quantities:

x∗ :=
x

Lb
, t∗ :=

uf t

Lb
, u∗ :=

u

uf
, p∗ :=

p− pf

ρfu
2
f

,

which correspond to the given scalar quantities Lb, uf , pf , and ρf . In a wind tunnel, for
example, Lb can describe the length of the object in the stream and uf , pf , and ρf can
be given by the velocity, the pressure, and the density of the fluid in the inflow region.

After transformation to these variables we get

∂

∂t∗
u∗ + (u∗ · ∇∗)u∗ + ∇∗p∗ =

μ

ρfufLb
Δ∗u∗ +

Lb

u2
f

g,

where the operators ∇∗ and Δ∗ are given with respect to x∗ instead of x.

Since this equation only depends on the two parameter groupings on the right-hand side,
it is clear that two flows behave equivalently if both parameter groupings have the same
value.
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Corollary A.2. Flows in similar geometries Ω2 = L−1
b · Ω1, Lb > 0, are dynamically

similar if each of the parameters μ, uf , ρf , Lb and g of the two flows are such that the
dimensionless quantities

Re :=
ρfufLb

μ
and Fr :=

uf√
Lb‖g‖2

(Reynolds number) (Froude number)

of the flows are matching.

By introducing the dimensionless body force

g∗ :=
Lb

u2
f

g (=
1

Fr2
g

‖g‖2
)

and leaving out the asterisks, we get the dimensionless momentum equation

∂

∂t
u+ (u · ∇)u+ ∇p =

1
Re

Δu+ g. (A.5)

Continuity equation (A.2) together with the dimensionless momentum equation (A.5)
are called the dimensionless Navier-Stokes equations.

The two dimensionless quantities, the Reynolds number and the Froude number, both
describe properties of the flow.
The Reynolds number specifies the ratio between inertial and viscous forces. For Re ≈
0, for example, the inertial forces are so small compared to friction that they can be
neglected. In this case, we have a highly viscous fluid. On the other hand, for very large
Reynolds numbers (up to 1010 or larger), friction can be neglected (like for air).
The Froude number describes the ratio between inertial and gravitational forces.

A.2 Modeling Turbulence: the Reynolds-Averaged
Navier-Stokes Equations

In this section, we will consider the Reynolds-averaged Navier-Stokes equations as one
way how turbulent flows can be modeled.

One of the characteristics of turbulent flows is that they are instationary, three-dimen-
sional, irregular, chaotic, and unpredictable. Turbulent flows are characterized by the
occurrence of eddies of different sizes. The size of the largest eddies is determined by
the characteristic length of the domain, whereas the smallest eddies have sizes of about
one millimeter or even less. The main part of the energy can be found in the larger
eddies. From there, it is transported to smaller and smaller eddies until the smallest
eddies are reached and the energy is transformed to heat. This phenomenon is called
energy cascade.
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Theoretically, the flow field of every incompressible, viscous fluid can be described by
the Navier-Stokes equations, regardless if it is laminar or turbulent. Therefore, an ob-
vious way to compute a turbulent flow field is to discretize and solve the Navier-Stokes
equations on such a fine grid that even the smallest eddies are resolved. This approach
is known as direct numerical simulation (DNS).

However, since the size of the smallest eddies is much smaller than the size of the com-
putational domain, many grid points are needed to resolve the mixing on this level. The
ratio between the smallest and the largest eddies is dependent on the Reynolds number
Re, which is a measure for turbulence: the higher the Reynolds number, the more turbu-
lent is the flow. The number of required grid points is proportional to Re9/4. Therefore,
direct numerical simulation can only be used for simple geometries or problems with low
(or medium) Reynolds numbers, see [RXY+02].

A.2.1 Basics of Turbulence Modeling

The following idea goes back to Reynolds [Rey95] and is the foundation of almost every
turbulence model: All quantities occurring in the Navier-Stokes equations – i. e., the
velocity u, the pressure p, and the right-hand side g – are decomposed into a mean part
ū, p̄, and ḡ, respectively, and into the small and smallest variations u′, p′, and g′ (the
so-called fluctuations) so that the following holds:

u = ū+ u′, p = p̄+ p′, g = ḡ + g′.

Here, the mean part can be a statistical, temporal, or spatial average, for example. In
general, the mean part is formed by applying a filter 〈·〉. This means:

ū := 〈u〉, p̄ := 〈p〉, ḡ := 〈g〉,

and therefore,
u′ = u− 〈u〉, p′ = p− 〈p〉, g′ = g − 〈g〉.

Note that for the vectors u and g, the filter is applied componentwisely.

This filter usually has the following properties:

• 〈·〉 is a linear operator: 〈α1F1 + α2F2〉 = α1〈F1〉 + α2〈F2〉 for all quantities F1, F2

and all α1, α2 ∈ �.

• Time and spatial derivatives commute with the filtering operator, i. e., 〈∂F
∂t 〉 = ∂〈F 〉

∂t ,
〈 ∂F

∂xi
〉 = ∂〈F 〉

∂xi
for all quantities F and all t, xi ∈ �, t ≥ 0.

• 〈〈F 〉〉 = 〈F 〉 for all quantities F .

• 〈F1〈F2〉〉 = 〈F1〉〈F2〉 for all quantities F1, F2.
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To come back to one of the examples mentioned above, the mean value 〈F 〉 of a quantity
F (t) can be obtained by making a time average over a time interval T (cf., e. g., [BSL02]):

〈F 〉 =
1
T

∫ t+ 1
2
T

t− 1
2
T
F (τ)dτ.

Let us now apply the filter 〈·〉 to the Navier-Stokes equations. Doing this, we get for the
continuity equation:

0 = ∇ · 〈u〉 = ∇ · ū.
Before we apply the filter 〈·〉 to the momentum equation (A.4), we first transform it to
vector notation:

∂

∂t
u+ ∇ · (u⊗ u) +

1
ρf

∇p = νΔu+ g, (A.6)

where we have used the equality (u · ∇)u = ∇ · (u ⊗ u). Here, u ⊗ u denotes a tensor
with elements [u⊗ u]ij = uiuj, i, j = 1, 2, 3.

Applying the filtering operator to Eq. (A.6) then leads to

∂

∂t
〈u〉 + ∇ · 〈u⊗ u〉 +

1
ρf

∇〈p〉 = νΔ〈u〉 + 〈g〉.

Using 〈u⊗ u〉 = 〈(ū+ u′)⊗ (ū+ u′)〉 = ū⊗ ū+ 〈u′ ⊗ u′〉, we get the so-called Reynolds-
averaged Navier-Stokes equations for the mean velocity ū

∂

∂t
ū+ ∇ · (ū⊗ ū) +

1
ρf

∇p̄− νΔū+ ∇ · 〈u′ ⊗ u′〉 = ḡ, (A.7)

∇ · ū = 0. (A.8)

The so-called Reynolds stresses are defined by the tensor

R(u′) := −〈u′ ⊗ u′〉.

Therefore, the averaging has lead to almost the same equations, just with the additional
term −∇ · R(u′). Since R depends on the fluctuations u′ of the velocities, the system
consists of one additional unknown u′ so that the Reynolds-averaged Navier-Stokes equa-
tions do not form a closed system any more. (There are more unknowns than equations.)
This problem is known as the closure problem in turbulence modeling.

In order to solve this problem, one has to introduce new equations, which are usually
based on hypotheses and approximations given by empirical information or experimental
data. These equations form the so-called turbulence model. There are a lot of differ-
ent turbulence models, including the k-ε model, which will be considered in the next
subsection.

In general, there are basically two principles of turbulence modeling (see, e. g., [RXY+02]).
The first approach is to model every component of the Reynolds stress tensor by its own
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transport equation leading to the so-called Reynolds stress models, whereas in the second
approach the Reynolds stress tensor is modeled by means of the following relation

−〈u′ ⊗ u′〉 = −2
3
kI + νt(∇ū+ (∇ū)T ).

Here, the turbulent viscosity νt is defined in analogy to the molecular viscosity in the
laminar case. The latter models can further be distinguished into zero-, one-, and two-
equation models depending on how many transport equations are additionally intro-
duced. Theoretically, there are also models with more than two additional transport
equations (see [LS72], for example), but in practice they are hardly used.

The most simple approach is to model the turbulent viscosity νt by an algebraic equation.
These models are known as algebraic turbulence models or zero-equation models.
In the so-called one-equation models, an additional transport equation, either for the
turbulent viscosity νt or for the turbulent kinetic energy k, is solved. This allows to
model the transport of turbulence.
In the two-equations models, two transport equations for two different quantities are
solved. This allows to reproduce the two most important characteristics of turbulence,
intensity and structure. The most popular two-equations model is the k-ε model by
Launder and Spalding [LS74], but there are also other approaches like the k-ω model by
Wilcox [Wil88].

A.2.2 The k-ε Model

The k-ε model by Launder and Spalding [LS74] is a two-equations model, i. e., it intro-
duces two additional variables k and ε (and a transport equation for each of them) to
model the Reynolds stresses. The two variables are the turbulent kinetic energy k and
the energy dissipation rate ε, which are given by

k :=
1
2
〈‖u′‖F 〉, ε :=

ν

2
〈‖∇u′ + (∇u′)T ‖2

F 〉,

where ‖ · ‖F denotes the Frobenius norm, defined by

‖X‖2
F = tr(XXT ) =

n∑
i=1

m∑
j=1

x2
ij

for matrices X = [xij]i=1,...,n,j=1,...,m ∈ �n×m. Note that this definition also includes the
norm of a vector x ∈ �n, since it can be seen as an n× 1-matrix.

The k-ε model underlies the following assumptions:

• The Reynolds hypothesis holds, i. e., it is assumed that R(u′) = −〈u′⊗u′〉 depends
only on k, ε, and ∇ū:

R(u′) ≈ R(∇ū+ (∇ū)T , k, ε).
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• The fluctuations u′ (and hence turbulence) are isotropic, i. e., they are uniform in
all directions.

• Convective transport of the fluctuations corresponds to a diffusive transport of the
mean quantities.

• 〈u′ ⊗ u′〉 and ∇ū + (∇ū)T are proportional, and the proportionality factor is the
turbulent eddy viscosity

νt := cμ
k2

ε
.

Putting the approximate Reynolds tensor

R(u′) ≈ R(∇ū, k, ε) := −2
3
kI + cμ

k2

ε
(∇ū+ (∇ū)T )

into the momentum equation (A.7) and setting ν∗ := ν + νt = ν + cμ
k2

ε , leads to

∂

∂t
ū+ ∇ · (ū⊗ ū) +

1
ρf

∇p̄+
2
3
∇k −∇ · (ν∗(∇ū+ (∇ū)T )) = ḡ. (A.9)

To determine k and ε, the following transport equations are used:

∂

∂t
k + ū · ∇k − νt

2
‖∇ū+ (∇ū)T ‖2

F −∇ · (νt∇k) + ε = 0, (A.10)

∂

∂t
ε+ ū · ∇ε− c1cμ

2
k‖∇ū+ (∇ū)T ‖2

F −∇ · ( 1
cε
νt∇ε) + c2

ε2

k
= 0, (A.11)

where the constants cμ, cε, c1, and c2 are usually chosen empirically. In [LS74] the
following values are proposed:

cμ = 0.09, cε = 1.3, c1 = 1.44, c2 = 1.92,

whereas in [GDN98] some slightly different values are used. There, the product c1cμ is
set to 0.126 and cε is set to 0.09

0.07 ≈ 1.2857, because for these values three well-known
flow cases (grid turbulence, turbulent shear stress, and turbulent flow over a plate) are
modeled correctly.

A.2.3 Boundary Conditions for the k-ε Model

To solve the system of partial differential equations, consisting of the continuity equa-
tion (A.8), the momentum equation (A.9), and the equations for the turbulent kinetic
energy k (A.10) and its dissipation ε (A.11), appropriate boundary conditions have to
be specified.
The most simple and natural approach would be to prescribe values for k and ε or for
their normal derivatives along the boundary. But there is a problem: near the wall the

179



A Navier-Stokes and Reynolds-Averaged Navier-Stokes Equations

k-ε model is not valid any more. One reason for this is that, near the wall, small local
Reynolds numbers occur because of the low velocities there. The k-ε model, however, is
only valid for large Reynolds numbers. Another reason is that near solid walls turbulent
variations and fluctuations normal to the wall are damped such that another assumption
of the k-ε model, the isotropy of turbulence, is not fulfilled any more.

In turbulent flows, the thin boundary layer that is formed at fixed walls can be divided
into three parts:

• Directly at the wall, the velocity of the fluid is very small because of adhesion.
(The flow can be considered as laminar there.)

• Next to this region, there is a transition zone, in which the flow becomes locally
unstable. (Here, the velocity profile can be considered as logarithmic.)

• Further away from the wall, there is the turbulent region.

There are different approaches to model the flow field in these regions, namely:

• with wall functions,

• by low-Reynolds-number models, or

• by two-layer models.

A survey on these approaches can be found in [GDN98] and references therein.
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B The Mathematical Description of
Dispersed-Phase Systems: a General
Population Balance Equation

In this appendix, we will consider how dispersed-phase systems can be modeled. The
following investigations are according to Gerstlauer [Ger99].

Dispersed-phase systems are two- (or more-) phase systems that consist of (at least) a
continuous and a dispersed phase. The continuous phase surrounds the dispersed one,
which is given by the so-called population of individuals. Every individual interacts with
the continuous phase by exchanging heat, mass, and momentum.

When modeling dispersed systems, one does not only need time and space coordinates,
but also so-called internal (or property) coordinates describing the characteristics of the
dispersed phase. While the space coordinates, which are also called external coordinates
in this context, specify the position of the individual in the space, the internal coordinates
describe an arbitrary number of significant characteristics of the particle.
Both internal and external coordinates span a space, the so-called particle phase space,
see [HK64]. Any individual can be represented by a point in this particle phase space.
The coordinates of this point identify the phase of the particle – i. e., location and
characteristics – uniquely.

For the mathematical description of the dispersed phase, we need, in addition, a so-called
number density function, denoted by f in the following, that describes the expected
number of individuals that are located in a certain domain of the particle phase space
at a certain time t. Therefore, f is dependent on the internal coordinates e, the external
coordinates x and the time t, i. e., f = f(e, x, t). The total number of individuals Nind(t)
at time t is then given by integration over the whole geometrical space Ωx and the whole
space of internal coordinates Ωe:

Nind(t) =
∫

Ωx

∫
Ωe

f(e, x, t) de dx. (B.1)

B.1 Derivation of a General Population Balance Equation

In this section, the derivation of a general population balance is considered. Population
balances represent a modeling approach that is tailored to dispersed systems.
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�normal vector n
����

vector of transport
flows φN

control volume Ve × Vx
��

surface area of the con-
trol volume Ae ×Ax

Figure B.1: Control volume

In the following, the number density function is assumed to be a continuous function. At
first sight, this assumption seems to be problematic, since the number density function
describes the number of individuals, which is normally given by an integer. However,
it has been shown that the number density function can be considered as an average
number of individuals. That is why the restriction to integer values can be lifted and
the above made assumption is justified.
Therefore, a general population balance equation can be derived in an analogous way as
setting up equations for mass, energy, and momentum.

The starting point for our investigations is the general integral balance equation for the
total number of individuals Nind(t) in any fixed control volume Ve × Vx of the particle
phase space

dNind

dt
= ΦN + SN . (B.2)

This equation states that the rate of increase of the total number of individuals equals a
transport term ΦN plus a source term SN . The transport term accounts for the number
of individuals that are supplied from the surrounding to the control volume through
the surface area Ae × Ax per time interval. The source term describes the number of
individuals that are created or destroyed per time interval by processes taking place
inside the considered control volume (e. g., coalescence or breakage).

In the following, a local form of (B.2) will be derived. According to (B.1), the number
of individuals in the control volume can be expressed by:

Nind(t) =
∫

Vx

∫
Ve

f(e, x, t) de dx.

Differentiation leads to
dNind(t)

dt
=

d

dt

[∫
Vx

∫
Ve

f(e, x, t) de dx
]
.
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B.1 Derivation of a General Population Balance Equation

The source term SN on the right-hand side of Eq. (B.2) can be substituted by a volume
integral

SN =
∫

Vx

∫
Ve

s(e, x, t) de dx,

where s is the source density referring to a volume element de dx of the particle phase
space. The transport term ΦN can be replaced by

ΦN = −
∫

Ax

∫
Ae

(n · φN (e, x, t)) de dx.

Here, the term −(n · φN ) denotes normal component of the transport flow, which is
supplied to the control volume Ve×Vx from the surrounding. Inserting this into Eq. (B.2)
results in

d

dt

∫
Vx

∫
Ve

f(e, x, t) de dx = −
∫

Ax

∫
Ae

(n · φN (e, x, t)) de dx +
∫

Vx

∫
Ve

s(e, x, t) de dx.

The Gaussian integral theorem then leads to

d

dt

∫
Vx

∫
Ve

f(e, x, t) de dx = −
∫

Vx

∫
Ve

(∇x,e · φN (e, x, t)) de dx +
∫

Vx

∫
Ve

s(e, x, t) de dx,

where ∇x,e denotes the gradient with respect to external and internal coordinates.

Since ∇x,e · φN has the same unit as the source density s, it is called transport density.
The vector φN summarizes the different parts of the transport flow. They are counted
positive if they are added to the control volume, and negative otherwise.

Since the stationary control volume Ve × Vx is a volume element of fixed size, the time
derivative can be put into the integral as a partial derivative. This leads to∫

Vx

∫
Ve

∂f(e, x, t)
∂t

de dx = −
∫

Vx

∫
Ve

∇x,e · φN (e, x, t) de dx +
∫

Vx

∫
Ve

s(e, x, t) de dx

or equivalently∫
Vx

∫
Ve

(
∂f(e, x, t)

∂t
+ ∇x,e · φN (e, x, t) − s(e, x, t)

)
de dx = 0.

Since the control volume can be chosen arbitrarily (small), we get the local form for a
differential volume element

∂f(e, x, t)
∂t

= −∇x,e · φN (e, x, t) + s(e, x, t). (B.3)

If we divide the transport density ∇x,e · φN into a transport density with respect to the
internal coordinates ∇e ·φN,e and one with respect to the external coordinates ∇x ·φN,x,
we get

∂f(e, x, t)
∂t

= −∇x · φN,x(e, x, t) −∇e · φN,e(e, x, t) + s(e, x, t),
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where the ∇-operators are defined as

∇x :=

⎡
⎢⎣

∂
∂x1
∂

∂x2
∂

∂x3

⎤
⎥⎦ and ∇e :=

⎡
⎢⎣

∂
∂e1
...
∂

∂ea

⎤
⎥⎦ .

Furthermore, the transport flows can be divided into a convective and a diffusive part:

φN,x = wx · f(e, x, t) + φD
N,x,

φN,e = we · f(e, x, t) + φD
N,e.

The convective part wx · f(e, x, t) in x-direction describes the deterministic moving of
the particles, whereas the diffusive part φD

N,x can be used to account for their Brownian
motion.
The convective part we ·f(e, x, t) in direction of the internal coordinates e states the rate
of change of single particle properties. The diffusive part φD

N,e can be used to describe
the stochastic variation of a rate of change.

The source term s summarizes different physical phenomena. On the one hand, there
are formation and dissolution of individuals, which are due to mass exchange with the
continuous phase. On the other hand, there are breakage (or attrition, respectively) as
well as coalescence (or agglomeration or aggregation, respectively), which are affected by
fluid dynamic processes and momentum exchange between the two phases. Therefore, s
can be divided into the following source and sink terms

s = s+form + s−diss + s+break + s−break + s+coal + s−coal

accounting for formation and dissolution of individuals as well as for their breakage and
coalescence. These terms will be specified in the following section.

B.2 Approach for Source and Sink Terms

The source term s on the right-hand side of Eq. (B.3) accounts for the different popula-
tion dynamical phenomena. These phenomena can be divided into two groups:

• population dynamical phenomena due to heat and mass transfer between the con-
tinuous and the dispersed phase (e. g., formation, dissolution, growth, or shrinkage
of individuals),

• population dynamical phenomena due to fluid dynamic processes and momentum
transfer between the two phases (e. g., coalescence or breakage).
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B.2 Approach for Source and Sink Terms

B.2.1 Formation

Considering dispersed systems, one can see that new individuals are formed due to
mass transfer between the continuous and the dispersed phase. In the literature, these
processes are often called “birth processes”.

Mathematically, the formation of individuals is described by a formation or birth rate
Rform(e, y(x, t)), which is dependent on the state of the continuous phase y. The vector
y describes properties of the continuous phase that influence the population dynamical
processes, like pressure, temperature, or chemical composition, for example. The birth
rate accounts for the number of individuals that are formed per unit time and per volume
element of the geometric space. The new individuals can be formed with different values
in the internal coordinates. The distribution of the formed individuals can be described
by a density function fform(e, x), which has to fulfill the following normalization condition∫

Ve

fform(e, x) de = 1.

The source term due to formation is then given by

s+form(e, x, y) = Rform(e, y(x, t)) fform(e, x).

There is no sink term due to formation.

B.2.2 Dissolution

Dissolution is the inverse process to formation. In the literature, these processes are
often called “death processes”. The mathematical description of this process is done by
introducing a dissolution or death rate Rdiss(e, y(x, t)), which describes the number of
individuals that dissolve per unit time and volume element of the geometric space. The
dissolution rate is dependent on the internal coordinates of the individual that dissolves
and on the state of the continuous phase y. The sink term due to dissolution is given by

s−diss(e, x, y) = −Rdiss(e, y(x, t)) fdiss(e, x),

where the number density function fdiss(e, x) has to fulfill the following condition∫
Ve

fdiss(e, x) de = 1.

There is no source term due to dissolution.

B.2.3 Breakage

Breakage is a phenomenon where a larger individual breaks up into some smaller ones.
The larger particle, which breaks up, is often called mother particle, whereas the newly
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formed smaller particles are called daughter particles. Depending on the kind of consid-
ered system, the break-up process can be called dispersion, breakage, or attrition.

Mathematically, breakage can be modeled by a source and a sink term. The source term
describes the generation of daughter particles, whereas the sink term stands for the loss
of the mother particle.

If we assume that the breakage of one particle is independent of the breakage of another
one, we can define a breakage rate Rbreak(e, y(x, t)) dependent on the internal coordinates
e and the state of the neighborhood y(x, t). Then, the sink term for the breakage of
individuals is the product of the breakage rate with the number density function:

s−break(e, x, y, t) = −Rbreak(e, y(x, t)) f(e, x, t). (B.4)

This sink term describes the number of individuals in state (e, x) that break up per time
interval and per volume of the particle phase space.

To describe the source term of the breakage, we additionally have to consider the number
of produced individuals and the values of their internal coordinates. In the following,
we will assume that the breakage of a mother particle at place x leads to daughter
particles located at the same place. Then, the number of daughter particles n(e′, y(x, t))
is dependent on the internal coordinates of the mother particle e′ and on the state of the
surrounding y. The distribution of the developing daughter particles with respect to the
internal coordinates can be described by the probability density function γ(e, e′, y(x, t)).
The probability density function γ(e, e′, y(x, t)) describes the probability that a daughter
particle of state e is produced by the breakage of a particle of state e′. It has to fulfill
the following normalization condition:∫

Ve

γ(e, e′, y(x, t)) de = 1.

The source term describing all the daughter particles that are produced by breakage is
obtained by weighted integration over all possible sinks:

s+break(e, x, y, t) = −
∫

Ve∗
n(e′, y(x, t)) γ(e, e′, y(x, t)) s−break(e

′, x, y, t) de′

=
∫

Ve∗
n(e′, y(x, t)) γ(e, e′, y(x, t))Rbreak(e′, y(x, t)) f(e′, x, t) de′. (B.5)

Note that it is not integrated over the total domain of the internal coordinates e′, but
only over a partial domain, which is denoted by Ve∗ .
When a specific case is considered, these integration limits are determined due to physical
restrictions on the internal coordinates (like the maximal or minimal diameter of a drop,
for example).

Conservation of mass leads to the following condition:

n(e′, y(x, t))
∫

Ve

m(e) γ(e, e′, y(x, t)) de = m(e′),
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where m(e) is the mass of an individual with internal coordinates e.

The breaking rate Rbreak(e′, y(x, t)), the number of daughter particles n(e′, y(x, t)) and
the density function γ(e, e′, y(x, t)) have to be determined for a specific application.
The question whether there exist theoretically based approaches for these rates depends
highly on what kind of dispersed system is considered. However, even in these cases, these
functions must still additionally be fitted to experimental data for many applications.

B.2.4 Coalescence

Coalescence is a process, where some individuals collide and together form a new in-
dividual. Depending on the type of dispersed system this process can also be called
agglomeration or aggregation.

Mathematically, coalescence (like breakage) is described by a source and a sink term.
Since the probability that three or more individuals collide in a time interval (t, t+ dt)
is negligibly small compared to the probability that two particles collide, we will assume
binary coalescence in the following. Furthermore, we will assume that all individuals
have an infinitesimal small size such that we do not have to distinguish between the
positions of two coalescing individuals.

Under these assumptions the probability that an individual of state (e, x) coalesces with
an individual of state (e′, x) in a time interval (t, t+ dt) can be described by a function
Rcoal(e, e′, y(x, t)). It is clear that the coalescence rate Rcoal must be symmetric with
respect to the internal coordinates e and e′:

Rcoal(e, e′, y(x, t)) = Rcoal(e′, e, y(x, t)).

To be able to characterize the source and sink term for the coalescence of two individuals
we need a term that describes the number of pairs of individuals with state (e, x) and
(e′, x) per volume of the particle phase space per time t. This number density function
can be defined as follows

f2(e, e′, x, t) := f(e, x, t) f(e′, x, t).

This product approach is correct if the individuals fulfill the statistical independency
condition. (In this context, the statistical independency condition means qualitatively
that the fact that a certain drop with internal coordinates e can be found at time t at
place x does not have any influence on the probability that any other drop with internal
coordinates e′ is also there at the same time.) Otherwise it is a good approximation.

To get the mathematical model for the sink term due to coalescence, the loss of an
individual of state (e, x) because of coalescence is considered. The integration over all
individuals that are able to coalesce with a given one leads to

s−coal(e, x, y, t) = −
∫

Ve∗
Rcoal(e, e′, y(x, t)) f2(e, e′, x, t) de′

= −f(e, x, t)
∫

Ve∗
Rcoal(e, e′, y(x, t)) f(e′, x, t) de′. (B.6)
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The source term due to coalescence is given by:

s+coal(e, x, y, t) =
∫

Ve∗
Rcoal(e′, e′′, y(x, t)) f2(e′, e′′, x, t) de′

=
∫

Ve∗
Rcoal(e′, e′′, y(x, t)) f(e′, x, t) f(e′′, x, t) de′, (B.7)

where e′ and e′′ denote the internal coordinates of the two coalescing individuals. It
is clear that the characteristics of the produced individual can be determined by the
characteristics of the two coalescing individuals. Therefore, the state (e′′, x) of one of
the coalescing individuals can be defined by the state (e, x) of the produced individual
and the state (e′, x) of the other coalescing individual. This can be expressed by the
following condition

e′′ = e′′(e, e′, x),

which states that the state (e′′, x) must be explicitly computable by the state of the two
other concerned individuals.

Note that in Eq. (B.6) and Eq. (B.7) it is again only integrated over a partial volume
Ve∗ of the space of internal coordinates.

Furthermore, the coalescence rate Rcoal(e′, e′′, y(x, t)) must be determined more precisely
for every specific application.
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ūα . . . . . . . . . . . . . . . . . . . mean velocity in node α, page 123
ud . . . . . . . . . . . . . . . . . . . drop velocity, page 24
ue . . . . . . . . . . . . . . . . . . . eddy velocity, page 24
uf . . . . . . . . . . . . . . . . . . . characteristic velocity of the fluid, page 174
uh = [u1,h, u2,h, u3,h]T . . . . . . spatially discretized velocity, page 32
umean . . . . . . . . . . . . . . . . . mean velocity, page 84
ustirrer . . . . . . . . . . . . . . . . velocity prescribed on the stirrer, page 8
u2 . . . . . . . . . . . . . . . . . . . mean square fluctuation velocity, page 18
un . . . . . . . . . . . . . . . . . . . temporally discretized velocity, page 48
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[Bän98] E. Bänsch. Simulation of stationary, incompressible flows. Acta Mathe-
matica Universitatis Comenianae, LXVII:101–114, 1998.

[BBD00] C. Bartels, M. Breuer, and F. Durst. Comparison between Direct Numeri-
cal Simulation and k-ε prediction of the flow in a vessel stirred by a Rushton
turbine. In H. E. A. Van den Akker and J. J. Derksen, editors, 10th Eu-
ropean Conference on Mixing, pages 239–246, Kramers Laboratorium voor
Fysische Technologie, TU Delft, July 2–5, 2000. Elsevier.

[BCGM94] A. Brucato, M. Ciofalo, F. Grisafi, and G. Micale. Complete numerical
simulation of flow fields in baffled stirred vessels: the inner-outer approach.
Institution of Chemical Engineers (IChemE) Symposium Series, 136:155–
162, 1994.

201



Bibliography

[BCGM98] A. Brucato, M. Ciofalo, F. Grisafi, and G. Micale. Numerical prediction of
flow fields in baffled stirred vessels: A comparison of alternative modelling
approaches. Chemical Engineering Science, 53:3653–3684, 1998.

[BCP96] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations, volume 14
of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1996.

[BG02] C. Becker and D. Göddeke. DeViSoRGrid 2. User’s manual, 2002. See
http://www.featflow.de/feast hp/devisormain.html (10.02.2006).
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größenverteilungen in gerührten Flüssig/Flüssig-Dispersionen. Chemie In-
genieur Technik, 77:80–84, 2005.

[HiF] HiFlow. See http://www.hiflow.de/ (03.03.2006).

[HK64] H. M. Hulburt and S. Katz. Some problems in particle technology. A
statistical mechanical formulation. Chemical Engineering Science, 19:555–
574, 1964.

[HKM+06] L. Henning, D. Kuzmin, V. Mehrmann, M. Schmidt, A. Sokolov, and
S. Turek. Flow control on the basis of a Featflow-Matlab coupling. In Notes
on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM).
Springer, Berlin, Active Flow Control 2006, September 27–29, 2006. Ac-
cepted for publication.

[HLR89] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of
Differential-Algebraic Systems by Runge-Kutta Methods. Springer Verlag,
1989.

[HN96] P. J. Hill and K. M. Ng. Statistics of multiple particle breakage. The
American Institute of Chemical Engineers (AIChE) Journal, 42(6):1600–
1611, 1996.

[Hoc90] R. M. Hockey. Turbulent Newtonian and non-Newtonian flows in a stirred
reactor. PhD thesis, Department of Mechanical Engineering, Imperial Col-
lege of Science, Technology and Medicine, London, 1990.

206



Bibliography

[HRM88] M. J. Hounslow, R. L. Ryall, and V. R. Marshall. Discretized population
balance for nucleation, growth, and agglomeration. The American Institute
of Chemical Engineers (AIChE) Journal, 34:1821–1832, 1988.

[HST94] J. Harig, P. Schreiber, and S. Turek. FEAT3D. Finite Element Analysis
Tools in 3 Dimensions. Technical report, Universität Heidelberg, 1994.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems. Springer, Berlin, 1996.

[Ish75] M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow, volume 22 of
Collection de la direction des études et recherches d’électricité de France.
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