Mößbauer-Untersuchung ferrimagnetischer Spinelle des Systems Cd_xNi_{1-x}Fe₂O₄

Mößbauer Investigation of Ferrimagnetic Spinels in the System Cd_xNi_{1-x}Fe₂O₄

E. Riedel*, D. Prick

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin

E. Wolska

Institut für Magnetochemie, Adam-Mickiewicz-Universität, Grunwaldska 6, PL-60780 Poznań

Herrn Prof. Dr. Heinz Dieter Lutz zum 60. Geburtstag gewidmet

Z. Naturforsch. 49b, 1067-1070 (1994); eingegangen am 18. März 1994

Cadmium-Nickel-Iron Spinels, Mößbauer Spectra, Magnetic Properties

Room temperature Mößbauer spectra of ferrimagnetic spinels in the system $Cd_x^{2+}Fe_{1-x}^{1-}[Ni_x^{2+}Fe_{1+x}^{1-}]O_4$ have been interpreted using the polyhedron model which is based on six different environments at the A-site for the B-site Fe³⁺-ions. To each environment belongs one sextet with a characteristic magnetic splitting. An additional sextet is due to Fe³⁺-ions at the A-site.

1. Einleitung

Im Spinellsystem $Cd_x Ni_{1-x}Fe_2O_4$ besetzen die Cd^{2+} -Ionen die tetraedrisch koordinierten A-Plätze und die Ni²⁺-Ionen die oktaedrisch koordinierten B-Plätze. Die Ionenverteilung ist also $Cd_x^{2+}Fe_{1-x}^{3+}[Ni_{1-x}^{2+}Fe_{1+x}^{3+}]O_4$. Die Gitterkonstanten nehmen mit zunehmendem *x* linear zu [1]. Bei Raumtemperatur sind die Spinelle im Bereich $0 \le x \le 0.6_5$ ferrimagnetisch [2].

In den Mößbauer-Untersuchungen anderer Autoren [3-6] wurden den Fe³⁺-Ionen des A-Platzes und des B-Platzes je ein Sextett zugeordnet. Bei den von uns gemessenen Mößbauer-Spektren mußten den Fe³⁺-Ionen des B-Platzes mehrere Sextetts zugeordnet werden [1]. In dieser Arbeit wird aus der Kationenverteilung ermittelt, welche Eisenspezies existieren, die die Sextetts mit unterschiedlichen magnetischen Flußdichten verursachen.

2. Experimentelles

Die polykristallinen Proben wurden naßchemisch durch gemeinsame Fällung der Hydroxide aus Lösungen mit vorgegebenen Konzentrationen an Cd²⁺-, Ni²⁺- und Fe³⁺-Ionen und anschließende thermische Nachbehandlung der Niederschläge hergestellt. Die genauen Darstellungsbedingungen sind bereits von Wolska *et al.* [7] beschrieben.

Die Aufnahme der Mößbauer-Spektren erfolgte mit einem Spektrometer der Fa. Wissel. Als Strahlungsquelle diente ⁵⁷Co in einer Rh-Matrix. Die zylindrischen Plexiglasprobenträger wurden so mit Probenmaterial befüllt, daß sie 7 mg natürliches Eisen pro cm² enthielten. Die Quelle wurde mit konstanter Beschleunigung hin- und rückbewegt, aufgezeichnet von einem Laser-Interferometer (symmetrische Dreiecksform der Geschwindigkeit/Zeit-Kurve). Die emittierten γ -Quanten wurden in Transmission von einem Nal(Tl)-Szintillationszähler registriert. Gespeichert wurden diese Mößbauer-Daten und die Geschwindigkeitsdaten simultan in je 1024 Kanälen des Vielkanalanalysators. Die Kalibrierung der Momentangeschwindigkeit für jeden Kanal des Mößbauer-Spektrums erfolgte bei der rechnerischen Auswertung. Beim Fitten wurde auch der geringe Eisengehalt des Be-Detektorfensters berücksichtigt. Die Spektren wurden durch ein least-squares-fit-Programm mittels Lorentz-Funktionen und unter Annahme gleicher Halbwertsbreiten der Sextettkomponenten ausgewertet. Die Güte der Fits wurde nach dem χ^2 -Wert beurteilt:

$$\chi^{2} = \sum_{1}^{N} \frac{(Y_{exp} - Y_{ber})^{2}}{Y_{ber}}$$

Die angegebenen Isomerieverschiebungen beziehen sich auf metallisches Eisen.

^{*} Sonderdruckanforderungen an Prof. Dr. E. Riedel.

^{0932-0776/94/0800-1067 \$06.00 © 1994} Verlag der Zeitschrift für Naturforschung. All rights reserved.

3. Ergebnisse und Diskussion

Nur das Spektrum von NiFe₂O₄ läßt sich befriedigend mit zwei Sextetts fitten. Das Sextett mit der Isomerieverschiebung $\delta = 0,246$ mm/s, der magnetischen Flußdichte B_{int} = 49,3 T und der relativen Häufigkeit A_{rel} = 51% stammt von Fe³⁺-Ionen des A-Platzes. Die Werte für die Fe³⁺-Ionen des B-Platzes sind: $\delta = 0,354$ mm/s, B_{int} = 52,7 T und A_{rel} = 49%. Bei den Mischkristallen waren für den Fit der Spektren fünf Sextetts mit unterschiedlichen magnetischen Aufspaltungen erforderlich [1]. Zur Deutung der in den Spektren erkennbaren unterschiedlichen Eisenspezies wurde für den Fitprozeß das folgende Modell benutzt.

Jedes Fe^{3+} -Ion des B-Platzes ist von 6 Nachbarn des A-Platzes umgeben. Nur bei NiFe₂O₄ sind alle Tetraedernachbarn Fe³⁺-Ionen. In den Mischkri-

Abb. 1. Mößbauer-Spektren des Systems $Cd_xNi_{1-x}Fe_2O_4$ ($0 \le x \le 0,4$) bei Raumtemperatur.

stallen existieren neben dieser Umgebung (6/0) Umgebungen mit 5Fe und 1Cd (5/1), 4Fe und 2Cd (4/2), 3Fe und 3Cd (3/3) usw. Bei statistischer Verteilung der Ionen können die Häufigkeiten dieser Polyeder in Abhängigkeit von der Zusammensetzung x berechnet werden. Nach dem Néel-Modell existiert eine starke antiferromagnetische Kopplung zwischen dem A- und dem B-Untergitter. Für die Fe³⁺-Oktaederionen sind daher abhängig vom Polyedertyp charakteristische Magnetisierungen zu erwarten, mit zunehmender Anzahl diamagnetischer Cd²⁺-Ionen im Polyeder eine abnehmende Magnetisierung.

Für den Fit wurden die relativen Polyederhäufigkeiten aus der Binominalverteilung vorgegeben. Die Spektren bestehen aus 4 bis 6 Sextetts, die zu Fe³⁺-Ionen des B-Platzes gehören und einem Sextett für die Fe³⁺-Ionen des A-Platzes (Abb. 1, Tab. I). Die Daten der Sextetts ergeben gut interpretierbare Zusammenhänge für die Spinellreihe.

Tab. I. Mößbauer-Parameter des Systems $Cd_rNi_{1-r}Fe_2O_4$ für $0 \le x \le 0.4$ bei 295 K.

x	δ [mm/s]	Г/2 [mm/s]	B _{int} [T]	$egin{array}{c} A_{ m rel} \ [\%] \end{array}$	χ^2
0,0	0,246(1)	0,210(2)	49,34(1)	51,0	2571
	0,354(1)	0,210 K 0,212(2)	52,66(1)	49,0	2007
0,1	0,250(1)	0,213(2)	48,01(1)	49,7	3007
	0,347(2)	0,213 K	32,30(2)	20,8	
	0,347 K	0,213 K	49,79(5)	17,8	
	0,347 K 0.347 k	0,213 K 0,213 k	43,34(8)	5,0	
0.2	0,347 K 0.261(2)	0,215 K 0.217(2)	44,5(5) 47,56(1)	12 7	2507
0,2	0,201(2) 0.313(2)	0,217(2) 0,217 k	47,30(1) 51,40(3)	42,7	2391
	0,313(2) 0.313 k	0,217 k 0.217 k	31,49(3)	13,0	
	0,313 K 0.313 k	0.217 k 0.217 k	40,05(3)	14.1	
	0,313 K 0.313 k	0,217 k 0.217 k	44,70(3)	14,1	
	0.313 k	0,217 k 0.217 k	41,7(1) 383(5)	4,7	
03	0.315 K $0.256(2)$	0,217 K 0,223(3)	36,3(3)	36.0	2486
0,5	0,230(2)	0,223(3)	40,09(2) 40,45(8)	7.4	2400
	0,320(3)	0,223 K	49,43(8)	10.1	
	0,320 k	0,223 K	47,80(4)	20.5	
	0.320 k	0,223 k	44,40(4)	20,5	
	0.320 k	0,223 k	368(2)	3.8	
	0.320 k	0,223 k	33.8(2)	0,6	
0.4	0.320 K $0.253(5)$	0,223 K $0.217(6)$	35,8(9)	30.3	1670
0,4	0.205(5)	0.217(0)	43,49(4)	33	1070
	0.305(3)	0.217 k	46,781 46,72(9)	13.1	
	0.305 k	0.217 k	40,72(9) 43,59(8)	21.7	
	0.305 k	0.217 k	40 75(6)	193	
	0.305 k	0.217 k	35,86(9)	97	
	0.305 k	0.217 k	32.2(4)	26	
	0,505 K	0,217 K	52,2 (4)	2,0	

δ, Isomerieverschiebung; Γ, Halbwertsbreite; B_{int}, magnetische Flußdichte; A_{rel}, Flächenanteil; χ^2 , Gütekriterium; k, korreliert; (), Standardabweichung.

Abb. 2. Magnetische Flußdichten für die Fe³⁺-Oktaederionen des Systems $Cd_xNi_{1-x}Fe_2O_4$. (6/0), (5/1), (4/2) usw. bedeuten die umgebenden (Fe/Cd)-Polyeder.

Abb. 3. Mittlere magnetische Flußdichten für das A- (\triangle) und das B-Untergitter (\Box) des Systems $Cd_xNi_{1-x}Fe_2O_4$.

Für jedes Mischkristallglied nimmt mit zunehmendem Cd-Gehalt des Polyeders die magnetische Flußdichte ab (Abb. 2). Die Abnahmen betragen pro Cd-Atom für x = 0,1 2,7 T, für x = 0,2 3,3 T, für x = 0,3 3,1 T und für x = 0,4 3,3 T. Mit zunehmendem x-Wert nehmen die magnetischen Flußdichten für die einzelnen Polyeder im Bereich x = 0 bis x = 0,4 um 4 bis 5 T ab. Die magnetische Induktion in Tesla (Abb. 3) beträgt für den A-Platz

$$B_{int}(A) = (49.5 \pm 0.1) - (9.6 \pm 0.4) x$$

und für den B-Platz (gewichteter Mittelwert)

$$\overline{\mathbf{B}}_{int}(\mathbf{B}) = (53,0 \pm 0,2) - (26,7 \pm 0,9) x.$$

Abb. 4. Mittlere Isomerieverschiebungen für die Fe³⁺-Ionen des A- (\triangle) und des B-Untergitters (\Box) des Systems Cd_xNi_{1-x}Fe₂O₄.

Bei NiFe₂O₄ ist die magnetische Flußdichte auf dem B-Platz größer als auf dem A-Platz. Sie nimmt aber mit zunehmendem x schnell ab, und bei x = 0,2 sind beide Flußdichten gleich. Die starke Abnahme der B-Magnetisierung ist wie bei den Einzellinien eine Folge der Zunahme diamagnetischer Cd²⁺-Ionen im A-Untergitter.

Die Isomerieverschiebung für die Fe³⁺-Ionen des A-Platzes beträgt $\delta = 0.25$ mm/s. Die Werte für die Fe³⁺-Ionen des B-Platzes nehmen von $\delta =$ 0.354 mm/s (x = 0) auf $\delta = 0.305$ mm/s ab und sind typisch für oktaedrisch koordiniertes Fe(III) (Abb. 4).

Die gemessenen Flächenanteile der Tetraedersextetts stimmen – mit Ausnahme des Mischkristalls bei x = 0,1 - gut mit den aus der Zusammensetzung berechneten Flächenanteilen überein (Tab. I). Auch die Daten des freien Fits [1] zeigen bereits den Zusammenhang zwischen Flächenanteil und magnetischer Flußdichte, wie er durch den Fit mit diesem Modell erhalten wird.

Für den A-Platz gibt es 12 B-Nachbarn. Die Berücksichtigung der Ni/Fe-Häufigkeitsverteilungen hat nur einen geringen Einfluß auf die B_{int} -Werte der Tetraedersextetts, so daß es gerechtfertigt ist, das Tetraedereisen durch ein Sextett zu beschreiben [8].

Im Bereich $0.5 \le x \le 0.7$ wurde Spinrelaxation in den Raumtemperaturspektren festgestellt.

- E. Wolska, E. Riedel, W. Wolski, Phys. Stat. Sol. 132a, K51 (1992).
- [2] A. Globus, H. Pascard, V. Cagan, J. Phys. (Paris) Colloq. C1-38, 163 (1977).
- [3] N. A. Eissa, A. A. Bahgat, M. K. Fayek, Hyperfine Interact. 5, 137 (1978).
- [4] J. Fontcuberta, J. Rodriguez, M. Pi, R. Rodriguez, J. Tejada, Mater. Res. Bull. 15, 969 (1980).
- [5] P. Muthukumarasamy, T. Nagarajan, A. Narayanasamy, Phys. Status Solidi **64a**, 747 (1981).
- [6] W. Karner, R. Wäppling, T. Nagarajan, Phys. Scr. 36, 544 (1987).
- [7] E. Wolska, W. Wolski, J. Kaczmarek, E. Riedel, D. Prick, Solid State Ionics 51, 231 (1992).
- [8] D. Prick, Dissertation, Techn. Universität Berlin (1993).