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Abstract 

This paper presents an energy efficient power coupling steering system for dual motors drive high speed tracked 
vehicle. The system consists of a new type of center steering motor, two electromagnetic EM  clutches, two 
planetary gear couplers, and two propulsion motors. The motor torque and power required by dynamic steering with 
different steering radiuses for dual motors drive high speed tracked vehicle were investigated. A motor-speed-based 
control strategy of dynamic steering is designed to achieve vehicle lateral stability enhancement. The model of the 
proposed control strategy in RecuDyn and Matlab/Simulink is given. The simulation results of dynamic steering with 
0.5B and 2B radius show that understeer in small radius steering can be significantly improved. 
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1. Introduction 

Energy saving in vehicles is becoming more important [1,2]. Electric tracked vehicle is one of the main 
trends of the future tracked vehicle and developed to solve problems of energy crisis and air pollution [3].  
Nomenclature 

2METV  dual motor drive electric tracked vehicle 

2MIETV dual motor independent drive electric tracked vehicle  

ECDS electronic controlled differential steering 
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It is necessary to have higher manoeuvrability and off-road capability for high-speed tracked vehicles 
[4].The power of outer side motor required for the high-speed steering for 2MIETV is more than 2.5 times 
that of engine in internal combustion engine vehicle, which results in large size and power of motor and 
inverter. Especially, more power of outer side motor is required for dynamic steering. So an energy 
efficient power coupling steering system is proposed for the 2METV dynamic steering in the paper. 

2. Mathematical Model for Dynamic Steering 

The electric drive system configuration of 2MIETV is shown in Figure 1, which is widely used in the 
2METV. The torque and power required by dual motors with different steering operation are calculated 
according to the vehicle parameters as shown in table 1. The tractive  force F1 , F2 , the output torque T1 , 
T2 and the desired rotation speed *

1n  , *
2n  can be expressed as follows: 

 Table 1. Vehicle parameters 

Energy
distribution

unit

Engine-
generator

Battery
pack

Energy
absorbing

unit

Motor
controller1

motor
1

motor
2

reducer1

Motor
controller2 reducer2

 

 

Fig.1. Electric drive system configuration of 2MIETV 
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2.2.Small radius steering 
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Parameters Value 

Vehicle tread, B(m) 1.3 

Wheel, 2n 10 

Ground contact length, L(m) 1.7 

Rolling resistance coefficient, f 0.04 

Transmission efficiency, η 0.9 

Drive ratio, ig 7 

Mass of vehicle, m(kg) 2000 

Mass gain coefficient, δ 1.5 

Moment of inertia, J(kg/m2) 3000 
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2.3.0.5B Steering 
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2.4.Brake steering 
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The steering angular speed of tracked vehicle is generally π/4/s~5π/12/s. If the acceleration time from 0 
to 5π/12/s is assumed to be 1s, Table 2 shows steering power and torque required by dual motors during 
dynamic steering with 0, 0.2B, 0.5B and stationary steering with 0, 0.2B, 0.5B, 2B, 5B, 10B. 

Table 2. Dynamic & Stationary steering torque and power required by two motors 

 R Tin (Nm) Tout (Nm) P1 (kW) P2 (kW) n1 

(r/min) 
n2 

(r/min) 
 0 246 246 9.8 9.8 379 379 
 Dynamic 0.2B 228 252.6 5.4 14 227.5 530.8 

 0.5B 163.6 233.3 0 18.5 0 758.3 
 0 174 174 6.9 6.9 379 379 
 0.2B 169 169 4 9.4 227.5 530.8 
 0.5B 152.6 161.9 0 12.9 0 758.3 
 Stationary 2B -116 134 -13.8 26 1137.5 1895.8 

 5B -82 100 -29 43 3412.5 4170.8 
 10B -53 72 -40 60 7204.1 7962.5 

 
The parameters of the motor was determined by straight running dynamic characteristics: Pe=20kW,  

Pe is the rated power; Pmax=40kW, Pmax is peak power; Te=75 N·m , Te is the rated power; Tmax=150 N·m, 
Tmax is the peak torque; ne=3000rpm, ne is the rated speed; and nm=9000rpm, nm is the peak speed. 
However table 2 shows that the required maximum torque for each propulsion motor during dynamic 
steering and the required maximum power for each propulsion motor during stationary steering exceed 
the maximum torque and maximum power of the motor designed for straight running.  

3. Power Coupling Steering Drive System Design 

3.1. Power Coupling Steering Drive System 
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A power coupling steering drive system composed of a new type of center steering motor, two 
electromagnetic clutches, two planetary gear couplers, and two propulsion motors is designed and shown 
in Figure 2. There are two steering modes used in 2MIETV. The ECDS mode is adopted when the 
steering torque and power required for the outer motor is smaller than the maximum torque and power of 
single propulsion motor, otherwise, the dual motors coupling drive steering (2MCDS) is activated. 
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Fig.2. Power coupling steering drive system configuration 

3.2 .Planetary Gear Coupling Structure Design 

The dual motor power coupling steering system is designed as Fig.3. When the 2MCDS is activated, 
the gear&EM-clutch is controlled to be combined, and the torque generated by both the steering motor 
and the propulsion motor is coupled through the outer planetary gear coupler to drive the outer sprocket. 
When the power required exceeds the maximum power of the motor, the reducer&EM-clutch is 
controlled to be combined, and the power generated by both the steering motor and the propulsion motor 
is coupled. The power and rotation speed relationship in the planetary gear can be expressed as 

(1 )

: : 1: 1:
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Where P, T, n is the power, torque and rotation speed of the sun gear with subscript s, and that of ring 
gear with subscript r, planet carrier with subscript c. ip is the transmission ratio of planetray gear. The 
simulation platform is modeled in software ProE and imported into software Recurdyn®. The simulation 
and experimental platform of 2 METV are shown as Figure.4. 

4. Control Strategy of Dynamic Steering 
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A motor-speed-based close-loop control strategy of dynamic steering is presented in Figure 5. The 
desired wheel speeds of inner and outer side motors are calculated according to the target vehicle speed 
and steering radius by the mathematics model of the vehicle. Two slip ratio fuzzy controllers are used to 
produce the adjusting torques acting on two-side motors to work under the best slip ratio condition and 
achieve better speed following and steering radius following in real time. 
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Fig.3. Dual motor power coupling steering schematic                 Fig.4. 2METV platform in Recurdyn 
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Fig.5. A motor-speed-based close-loop control strategy of dynamic steering 

5. Modeling and simulation results 

The 2MIETV model and ground model are developed in Recurdyn®. Driver model, motor speed 
calculator, steering motor speed calculator and motor control system model are developed in Simulink. 
The simulation results of 2MIETV with power coupling steering system in 0.5B and 2B dynamic steering 
manoeuvres on the hard pavement are shown in Fig.6. From Fig.6, it can be seen that the tractive torque 
and power of each sprocket with coupling device are much larger than that without coupling one.  

6 Conclusions  

An energy efficient power coupling steering system for 2METV is designed to increase the torque and 
power required for above two steering issues. The total power of two propulsion motors in 2MIETV using 
this system can decrease by 25%. A motor-speed-based close-loop control strategy of dynamic steering 
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for 2METV is designed to achieve better trajectory following and vehicle speed following to improve the 
understeer in small radius steering due to smaller torque and power of each sprocket.  
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Fig.6. Simulation results (a) 0.5B, (b) 2B 
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