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Abstract

Over the past ten years, Aspect Orientation has emerged as a new para-
digm in software engineering. The key feature promoted in this paradigm is
the ability to modularize concerns – aspects – that by nature or implemen-
tation are orthogonal to the modular structure of the base application. To
allow such a modularization, these aspect modules themselves are able to cut
across the structure of the underlying application. This cutting across the
structure goes beyond the mere referencing of remote data, allowing changes
of the base application’s control flow. Thus, Aspects offer the functionality
of calling themselves instead of the intended target of an invocation. This
altered invocation of the aspect is able to alter, extend or even replace parts
of the original program.

Being able to drastically alter the base application’s structure comes at
the price of a decrease in safety: aspects themselves do not fulfill the expec-
tations held for classical modules and can even harm the modularization of
the existing application. Basic concepts such as the locality of errors, type
soundness and re-usability can thus be harmed by aspects.

This thesis applies the method of rigorous language development on
Aspect Orientation in order to show what classes of aspects maintain the
safety of an application. Our rigorous approach entails the design of a fa-
mily of aspect-oriented core calculi, entirely mechanized in the interactive
theorem prover Isabelle/HOL. The emphasis of the work is placed on two
different fields. Fundamental questions of modularity, type soundness and
subtyping form the first such field. Technical considerations such as binders,
variable representation and code generation are the content of the other. In
the field of language metatheory, the thesis contributes a comparative me-
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chanization of the ςAsc calculus, comparing the locally nameless and the de
Bruijn variable representations.

Features of the ςAsc calculi developed in this thesis are a modular con-
cept for aspects in an object oriented setting and several type systems buil-
ding upon that foundation. These type systems enforce static type safety on
aspects, while maintaining modularity and thus re-usability. This approach is
also used to handle the variance issues encountered when combining aspects
with depth subtyping. Furthermore, several classes of aspects are identified,
including a class of compositional aspects.
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Zusammenfassung

In den vergangenen zehn Jahren hat sich Aspektorientierung als ein neues
Paradigma in der Softwaretechnik etabliert. Dieses Paradigma erlaubt die
Modularisierung von Funktionalitäten, die orthogonal zur eigentlichen Mo-
dulstruktur eines Programms liegen. Um dies zu ermöglichen, sind solche
Aspektmodule selbst nicht an die Modulstruktur gebunden, sondern in der
Lage diese zu durchbrechen. Dieses Durchbrechen geht über Referenzieren
bestehender Strukturen hinaus, vielmehr verändern Aspekte den Kontroll-
fluss der ursprünglichen Anwendung und verursachen so ihre eigene Ausfüh-
rung. Dieser invertierte Kontrollflusses bietet somit die Möglichkeit, Teile des
ursprünglichen Programms zu ergänzen, zu entfernen oder zu ersetzen.

Diese Fähigkeit geht mit einem Sicherheitsverlust einher: Aspekte erfüllen
oft nicht die Erwartungen an Module und können die Modularisierung der
eigentlichen Basisanwendung sogar stören. Grundsätzliche Anforderungen an
Module wie Fehlerlokalität, Typsicherheit oder Wiederverwendbarkeit sind
somit für Aspekte beziehungsweise mit ihnen nicht unbedingt erfüllt.

Die vorliegende Arbeit behandelt die Thematik rigoros, indem eine Fami-
lie von aspektorientierten Kalkülen vollständig in dem interaktiven Theorem-
beweiser Isabelle/HOL entwickelt wird. Dazu werden zunächst die Grund-
lagen mechanisierter Sprachtheorie eingeführt und bestehende Ansätze zur
formalen Behandlung von Aspekten verglichen. Der darauf aufbauende wis-
senschaftliche Beitrag gliedert sich in zwei Bereiche: Den der formalen Be-
handlung der Aspektorientierung und den der mechanisierten Sprachtheorie.
Im ersten Feld besteht der Beitrag dieser Arbeit zunächst in der Entwicklung
eines aspektorientierten Kernkalküls auf Grundlage des ς Kalküls. Wichtige
Kerneigenschaften des Kalküls werden bewiesen und es wird ein Komposi-
tionalitätsbegriff für Aspekte entwickelt.
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Auf dem Gebiet der mechanisierten Sprachentwicklung stellt diese Arbeit
ein objekt- und aspektorientiertes Kalkül vor, das vollständig in dem inter-
aktiven Theorembeweiser Isabelle/HOL realisiert wurde. Auf Basis dieses
Kalküls wurden zudem zwei verschiedene Variablenrepräsentationen erprobt
und gegenübergestellt. Dieser direkte Vergleich bietet einen weiteren Beitrag
für die Mechanisierung von Sprachen.

Hauptgegenstand der Arbeit ist die statische Analyse von Aspekten mit-
tels Typsystemen, zunächst mittels eines einfachen modularen Typsystems,
dann in iterativen Schritten um Subtyping und Varianz erweitert. Jedes vor-
gestellte Typsystem zur Typisierung von Aspekten umfasst einen kompletten
Beweis der Typsicherheit. Ergebnisse des Kalküls werden im Wege einer Co-
degenerierung und einer Szenarienanalyse auf die Ebene der Anwendbarkeit
übertragen. Darauf aufbauend, erfolgt die Entwicklung einer Kategorisierung
von Aspekten aufgrund ihrer Sicherheitseigenschaften.
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CHAPTER 1

Introduction

This thesis presents a mechanized formalization of an aspect-oriented cal-
culus that formally establishes the safety properties of the new paradigm
Aspect Orientation. New programming languages and concepts have been
among the most frequently used tools to master the software crisis since
its initial discovery [Naur and Randell, 1968]. The development of original
language concepts usually begins with a phase of added flexibility, when a
novel idea offers a method to solve issues such as developing large programs,
maintaining old software or accelerating development. Often, such concepts
are developed without establishing a formal basis at their beginnings. The
resulting implementations lack the safety properties expected from mature
languages and require a long development process until nuances are well un-
derstood and formally established. Common examples of such nuances are
typing issues, modularity and concurrent behavior.

When establishing properties of systems, especially formal systems such
as programming languages, the mathematical proof is the single most ac-
cepted tool. However, proofs themselves do not guarantee completeness,
or even correctness. Furthermore, presenting a proof in a notation under-
standable for readers requires the omission of numerous steps. Conversely,
the inclusion of said steps introduces a requirement to validate the proofs
that is to check every single step, making proofs hard to read and follow.
Theorem Provers, or to be more specific, “proof assistants” or “interactive
theorem provers” [Wiedijk, 2006], Isabelle, Coq, HOL or PVS being popular
examples, were designed for this very purpose [Kammüller, 2006]. By me-
chanically checking each step in a proof, they establish a formal method of
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Figure 1.1: Separation of concerns: Aspects modularize cross-cutting con-
cerns.

executing and presenting complete proofs. The rigorous development and
verification of programming language concepts is one of the foremost appli-
cations of interactive theorem provers. The strictness and versatility of such
a mechanized formalization guarantees that new concepts introduced into
programming languages are valid and have no unanticipated effects. The
more expressive power a change to a language has, the more it calls for a
rigorous approach for validation.

Aspect Orientation (AOP) [Kiczales et al., 1997] has recently emerged
as a particularly powerful concept that is especially popular as an extension
in object-oriented programming. Its promise to cross-cut the established
structure of programs also implies the ability to cross-cut the properties of
the host language. This puts fundamental concepts like type safety and basic
security at risk. Figure 1.1 gives a high-level schematic of the idea behind
AOP.

In this dissertation, we present an aspect-oriented calculus based on the
Abadi and Cardelli Object calculus [Abadi and Cardelli, 1998]. Our calculus
was entirely formalized in the Interactive Theorem Prover Isabelle/HOL and
establishes a type safe approach to aspects. Through this approach, we were
able to establish a theory of compositional aspects.

Our reason for performing research on the foundations of Aspect Orien-
tation lies in the seemingly paradox nature of its paradigm. The paradox
can be demonstrated as follows: Aspect Orientation heavily emphasizes flex-
ibility. The control required to constrain flexibility, however, does not derive
directly from the concept. This situation introduces problems into the prac-
tice of Aspect Oriented Programming that prevent the widespread use of the
technique as they contradict established expectations of software engineer-
ing.

Aspects have the ability to drastically change program semantics and
thus have an effect on the modular structure of programs. Thus far, ques-
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tions regarding the safety and soundness of aspect-oriented programs have
not been sufficiently answered by the existing formal approaches for object-
oriented programs. Our goal is to determine precisely how flexible AOP can
(safely) be and what constraints are required to maintain safety.

The need for such work is visibly demonstrated by the sample code in
Figure 1.2. That code is not type safe. Yet, this fact is not caught by
AspectJ’s [Kiczales et al., 2001; AspectJ, 2009] typechecker.

public class Test
{

public Test test()
{

return this;
}

}
public aspect asp

{
Object around() : call(* *.test(..))
{

return "oops";
}

}

Figure 1.2: A not type safe program in AspectJ.

In the example, we use a feature introduced by Aspect Orientation: the
ability to overwrite methods based on certain criteria. In this case, the
aspect will introduce a method body that returns a string instance instead
of the expected Test – a clear type error. The program will terminate with
a ClassCastException in Test.test. This breaches modular reasoning, as
the base class Test is sound on its own.

A problematic characteristic of aspects is that the quintessential quan-
tification over oblivious programs is not well-suited for modular reasoning.
AOP encourages the concept of having aspects only loosely linked to the
points of their application and joinpoints not linked to their aspects at all.
Such a pattern, however, deviates from the established patterns of structured
programs.

In our opinion, AOP requires a concept to enable modular reasoning on
a strict formal basis to improve re-usability and modularity [Sudhof, 2006].
This will necessarily entail a careful and rigorous re-examination of its defi-
nitions. Object Orientation grew popular because of well-typed approaches
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on both, the practical and theoretical level. AOP is still one step short of
reaching the level of Object Orientation.

We argue that AOP’s boundaries must be established if it is to become
a solid concept for manageable flexibility. These boundaries, furthermore,
must be grounded in a rigorously proven formal basis. Such a formal ba-
sis would be valuable when devising new and advanced formal approaches,
for instance in the field of static security analysis. AOP is often criticized
[Steimann, 2006; Constantinides et al., 2004] for its lack of stability. The
work described in this thesis strives to a) precisely show the cause of some
problems of AOP, and b) to show that a safe subset of AOP exists.

We see the solution to establishing such a formal basis in designing, for-
malizing, mechanizing and verifying a core calculus realizing aspect-oriented
features. The idea behind a core calculus is to use a bare-bones mathematical
model, the λ calculus being a well-established example, to establish prop-
erties of much larger, real-world languages [Barendregt, 1984]. This means
that the core calculus must share certain fundamental properties with the
languages of the domain in order to allow the analysis of the domain essential
features in a strict setting, that is a relation must be established to provide a
translation between the concepts. This translation can stem from obviously
shared concepts, case studies, example translations or even full compilations
(i.e. morphisms) from one concept to the other.

1.1 Intent of this Thesis

The main intent behind this thesis is to establish a sound concept of Aspect
Orientation that has been proven in a rigorous environment. This core goal
unifies two major lines of research. The first line is to research the safety and
soundness of Aspect Orientation, its reality, its fundamental limitations and
the viable properties. Our goal here is to maintain modularity, especially
static type safety, while also allowing a loose coupling of aspects and base
programs. The second line of research in this thesis is the rigorous realization
of the above concept in an interactive theorem prover. Interactive theorem
provers are an important tool for the development of languages and their
application in this domain is of key interest for the field of language meta-
theory [Aydemir et al., 2007]. To the best of our knowledge, there is no
mechanized aspect-oriented core calculus in existence1.

1We present a short survey of existing non-mechanized AOP calculi in Section 3.
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1.2 Structure and Reading Hints

This thesis is structurally divided into two parts that can be read indepen-
dently of each other. The first part constitutes an introduction into the
foundations for the second part and is intended to establish a common base
for all readers, regardless of their various backgrounds. The second part
presents the results of our research, the aspect-oriented core calculus ςAsc in
its various incarnations.

For reference, Figure 1.3 offers a visual representation of the dependencies
between the chapters.

2
Preliminaries

4
Formal Fundamentals

5
Untyped Calculus

6
Typed Calculus

1
Introduction

3
Related Work

7
Subtyping and Variance

8
Locally Nameless

9
Results and Reality

10
Conclusion

Part I

Part II

Figure 1.3: Structure of this thesis.

Part I begins with a short introduction into the domain of this thesis
in Chapter 2. The chapter briefly summarizes basic vocabulary of Aspect
Orientation in Section 2.1. It continues with a short survey of core cal-
culi suitable for reasoning about object-oriented languages, namely the λ
[Church, 1940; Barendregt, 1984] and ς [Abadi and Cardelli, 1998] calculi
and Featherweight Java [Igarashi et al., 1999] in Section 2.2. As a con-
clusion to this background chapter, interactive theorem provers, especially
Isabelle and Coq, are presented in Section 2.3.

In Chapter 3 we present a survey of core calculi for Aspect Orientation.
After presenting the approaches, we offer an extended discussion about the
differences, strengths and weaknesses of the various calculi in Section 3.4.
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The final chapter of Part I, Chapter 4 gives a quick overview of the
various steps required to formalize and mechanize a language or calculus.
This overview begins with straightforward tasks such as formalizing syntax
and semantics in Section 4.1, before briefly handling the topic of types and
type soundness in Section 4.3. The chapter then continues with a discussion
of the disciplines of the POPLmark Challenge [Aydemir et al., 2007]. The
first part of this challenge, the highly specialized problem of representing
binders and variables, is covered in Section 4.4, with an emphasis on the
locally nameless and de Bruijn index approaches. Two small sections, Section
4.5 and Section 4.6, about induction and code generation respectively, then
conclude the chapter.

Part II begins with the presentation of our untyped calculus ςAsc in Chap-
ter 5. The chapter opens in Section 5.1 with the basic formalization of our
calculus and the technicalities of its mechanization. The addition of these
aspects to the calculus is covered in Section 5.2 with the definition of as-
pects and weaving. Proven results of this basic formalization are collected in
Section 5.3, especially the compositionality of aspect weaving and the con-
fluence of the calculus. The chapter closes with an extended discussion of
the approach in Section 5.4. As this chapter introduces the details of the
mechanization shared by the following extensions of this basic approach, it
is of considerable importance.

Types are added to ςAsc in Chapter 6. Following the brief Section 6.1,
we continue with the realization of a type system in Section 6.2. We then
extend the type system by providing a modular, polymorphic typing notion
for aspects in Section 6.3. As we did in the preceding chapter, we offer
a collection of proven theorems and properties in Section 6.4. After the
introduction of simple types, the chapter finishes with an extension of the
type system to accommodate subtyping, forming ςAsc<:, in Section 6.5.

Variance issues are the main topic of Chapter 7, with a focus on the co-
variance issues present in established aspect-oriented languages. The chapter
begins with a short introduction into variance, and which cases can be safely
allowed, in Section 7.1. Section 7.2 then covers the construction of an ex-
tension to the calculus to allow such variance issues to be analyzed: ςAsc<:+.
Using the extended calculus, we demonstrate a type system able to cope with
variance in a safe and sound manner in Section 7.3, explaining why a naïve
implementation of subtypes would fail. We close this chapter by formally
re-establishing the properties of the calculus in Section 7.4.

Chapter 8 marks a pronounced detour from the narrative of the thesis.
Instead of presenting a new extension of the ςAsc<:+ calculus, it introduces a
re-mechanization of ςAsc<:+. The difference is that the version presented in
this chapter uses the locally nameless approach to represent variables, instead
of the de Bruijn indices used in the mainline chapters. This is a contribution
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to the field of language meta-theory, showcasing a modern approach. The
chapter presents the adaption of the syntax and semantics in Section 8.1,
followed by the type system in Section 8.2.

The critical connection between our formal calculus and reality is estab-
lished in Chapter 9. This chapter combines several concepts for relating the
calculus developed here to real-world situations. The first concept estab-
lished is code generation: In Section 9.1, we present the results of using the
code generation function of Isabelle/HOL. Small case studies are the second
approach for connecting to real languages: We show a number of situations
in real languages and equivalent formulations in ςAsc in Section 9.2. The
results of these case studies are then used to present a classification of as-
pects in Section 9.3. Finally, we relate our approach of using labels and
label interfaces to practically oriented approaches in Section 9.4, showing
commonalities and possible ways of connecting them to our research.

The final chapter offers a conclusion to this thesis by collecting the results.
Insights into the lessons learned during the research for this thesis and venues
for future research are presented, along with much deserved thanks.
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CHAPTER 2

Background

This part introduces the background of the research presented in this thesis.
Starting with Aspect Orientation and Core Calculi in this chapter, it will
continue to present related work in Chapter 3. After that, the theory and
practice of formalizing languages using interactive theorem provers will be
introduced in the third and final chapter of this part.

This first chapter of Part I provides a condensed background of the basic
concepts used in this thesis. The first concept is Aspect Orientation, which
is covered in Section 2.1. Then, core calculi as the chosen level of abstraction
are presented in Section 2.2. Finally, interactive theorem provers as the tools
to be used are introduced in Section 2.3.

2.1 Aspect Orientation

Aspect Orientation (AOP) [Kiczales et al., 1997] is a relatively new paradigm
in programming. It is seen as an solution to the growing problems encoun-
tered when maintaining and developing new systems, as it allows both the
adaption of existing code as well as the use of new modularity concepts.
With this combination, it is widely viewed as a possible answer to the mod-
ern incarnation of the software crisis, which formed the very foundation of
Software Engineering as a discipline [Naur and Randell, 1968]. Aspect Ori-
entation facilitates flexibility and modularization in programs by adding the
ability to modularize concerns cross-cutting the established structure of a
program. This has also been adapted as the core of a direction in software
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engineering – Aspect Oriented Software Development – advocating the use
of new modularity concepts to improve the building blocks of software design
[Filman et al., 2005; Sokenou et al., 2006].

The most frequently used definition of AOP [Filman and Friedman, 2005]
mentions two essential properties: Being able to quantify over places in a
program and to adapt these places with code (advice in the AOP vocabulary)
while keeping the main program oblivious to this process. Together, the
two properties quantification and obliviousness are seen as the definition of
AOP. This definition is not uncontested, but nonetheless widely accepted as
a litmus test. Its implications can be better understood by taking this line
about the mechanics of adapting into account:

In program P, whenever condition C arises, perform action A.
[Filman and Friedman, 2005]

Terms used throughout this thesis are taken from the dominant language
implementing the paradigm: AspectJ [AspectJ, 2009]. AOP, as implemented
in AspectJ, involves dividing the program into the “plain” Java base and
implementing crosscutting-concerns as aspects. The quantification part of
the definition takes place in pointcuts, which are predicates capturing certain
conditions in a program. Action A is the Aspect’s code, usually called advice,
which alters the oblivious base program P.

Aspects are usually realized as constructs containing pairs of pointcuts
and advice. Pointcuts are expressions describing sets of joinpoints, where
joinpoints denote exposed sections in the base code. Practically all aspect-
oriented languages use methods as the level of granularity for exposed join-
points. The most established style for denoting pointcuts is to use lexico-
graphic patterns – strings with wildcards – that match the names of the
methods used as joinpoints and which can be combined using logical opera-
tors.

call(void Point.move*(..))
call(void Point.move*(..)) && cflow(call(void Rectangle.move*(..)))

Figure 2.1: An AspectJ pointcut selecting all methods named move. The ’*’
is a wildcard character, matching any classname.

These primitive lexicographic patterns can be used with a number of
advanced operators. The example in Figure 2.1 describes a pointcut that
selects all invocations of methods that have names starting with move on
instances of the class Point. The second line adds a condition that only
those invocations happening in the context of an invocation to a method
starting with move of a class named Rectangle should be selected.
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A common distinction for pointcuts is static versus dynamic. Static
pointcuts refer to a constant set of joinpoints where the question of whether
or not to adapt can be answered statically. Dynamic pointcuts, on the other
hand, rely on dynamic conditions, such as the content of the stack. Point-
cuts by themselves do not alter anything; this is where the advice comes in,
the code that details what should happen when a pointcut matches. Like
pointcuts, advice comes in several flavors. Specifically, the order of the ad-
vice execution can be chosen relative to the base joinpoint. This means that
advice can be set to act before the joinpoint’s instructions via the before
modifier. Conversely, after performs the advice after the advised joinpoint.
The notable case is around, which replaces the original joinpoint. In the
latter case, the keyword proceed is used to return to the original control
flow.

Another differentiation between pointcuts are semantics. Predominantly
the two kinds, call and execution are used. The former captures the call
of a joinpoint – a method – on the caller’s side, while the latter captures the
callee’s side.

The example below presents a simple aspect with a pointcut and advice:

around (call(Object Point.move*(..))) {
return proceed();

}

The example advice above replaces all calls to methods captured by its
pointcut, i.e. all calls to methods of the class Point with move at the be-
ginning of their name. The proceed statement forwards to the original call,
realizing an identity function.

It can be easily seen that around advice is capable of simulating before
and after advice: Before advice can be placed above the proceed, after advice
beneath it. From a safety standpoint, the around advice is the interesting
case, as it can drastically alter the programming language’s properties. For
instance: By returning a value of a type not conforming to the original’s
declaration, type safety can be breached, as shown in Figure 2.1 earlier in
this chapter.

The process of combining base and aspect code is universally referred to
as weaving. Combining the code during compile time is called compile-time
weaving. Conversely, the more fine-grained and more modular approach of
adapting the code during run-time is called runtime-weaving, with load-time
weaving being a possible step in between. The equivalence – or lack thereof
– of different weaving scenarios is one of the issues investigated in this thesis.

For reference, we include this small glossary of AOP terms:
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advice The executable code in an aspect.

aspect A module consisting of a pointcut and advice.

base The original program.

joinpoint A point in the base program where aspects can be woven.

obliviousness The notion that the base application does not know its as-
pects.

pointcut The part of an aspect that specifies where the advice should be
introduced.

quantification The ability of an aspect to express where its advice should
act.

weaving The process of introducing the advice of an aspect into a base
application, according to the aspect’s pointcut.

2.2 Core Calculi

The concept behind core calculi is rooted in the idea that a very small and
simple calculus can be used to perform formal proofs about a much larger
and complex system. The key qualification is to capture a sufficient subset
of the big system in the calculus, so that a plausible relation to the orig-
inal, complete concept is maintained. For Object Orientation and derived
concepts, three families of calculi are frequently used today, each having the
maturity to be used in a rigorous setting.

λ Calculus

The λ calculus [Church, 1936, 1940; Rosser, 1982; Barendregt, 1984] is ar-
guably the most established formal calculus in computer science. It forms the
foundation of many modern concepts, including type systems, programming
languages, interactive theorem provers and much more.

There are three different reduction conversions defined for the classical λ
calculus, which also exist in similar ways for other functional calculi. These
are α, β and η conversion. Each conversion expresses a notion of equality
between the terms. The α conversion denotes the renaming of variables and
will be introduced in Section 4.4. The η conversion encodes extensionality,
i.e. the equivalence of λ.fx and f , provided that x is not a free variable in f .
In the context of semantics, the β conversion – also β reduction – is the most
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interesting, as it encodes equality regarding evaluation and thus encodes the
reduction relation for terms.

The λ calculus features unparalleled simplicity to encode complete ex-
pressive power, as it is solely comprised of functions and their application.
This massive expressivity of the pure calculus led to the development of sev-
eral typed variants. Their purpose was to limit the calculus to manageable
subsets, usually with strong properties like normalization. One such variant,
System F [Reynolds, 1974; Girard, 1972] – the λ calculus with polymorphic
types – , forms the subject of the POPLmark challenge [Aydemir et al.,
2007].

While the expressive power of the λ calculus is sufficient to express al-
most any concept, the complexity of such encodings is non-trivial. To be
specific, the λ calculus uses functions as its only construct, which makes the
representation of objects awkward. For this reason we do not consider the λ
calculus viable for this thesis.

Featherweight Java

Featherweight Java [Igarashi et al., 1999; Pierce, 2002] is a object-oriented
core calculus. It is remarkable because it is a functional subset of the pro-
gramming language Java. This means that every term in Featherweight Java
is also a valid Java program, causing the authors of Featherweight Java to
coin the line “Inside every large language is a small language struggling to
get out.” to describe its construction.

Like Java, Featherweight Java uses a nominal type system. Nominal
type systems discriminate types by name, not by their properties. Thus,
two types can be identical in every detail but for their name and would still
be different. By contrast, structural type systems equate types with identical
feature sets. However, the subset used to form the calculus can be confusing
for users of the “big” Java language, as the functional style required to express
programs is very unlike the practice for Java programs. For instance, objects
in this formalism do not have a mutable state, but can only have the values
that were assigned to them in their constructor. Due to this design decision,
there are no reference semantics, but solely value semantics. Summarizing,
we consider Featherweight Java to suffer from a pronounced proximity to the
language Java.

ς Calculus

The ς family of calculi [Abadi and Cardelli, 1998] is a formal model for the
analysis of Object Orientation. A very simple model of objects with the



16 Background

ability to bind a variable to “self”, the surrounding object, forms the family’s
core concept. The initial plain calculus is iteratively expanded in a series of
calculi to introduce concepts including typing and imperative programming
[Abadi and Cardelli, 1995] among others.

The basic ς calculus was built on the idea that objects can be described
as sets of labeled methods, i.e. named methods. Thus a method has a name
and a body, where the body can consist of any ς term. The special object-
oriented nature of the calculus is rooted in the way methods use variables:
A method has only one “self” variable, which is then replaced by the value
of the surrounding object upon invocation. Beyond method invocation, the
calculus has only one additional operation: Update.

In the plain ς calculus, there is no discrimination between methods and
fields and there are no variables other than self – parameters are passed to
methods by updating other methods/fields of the surrounding object before
invoking the method. Then, the method itself can access these updated
values via the – replaced – self variable. Figure 2.2 gives a short summary of
the ς calculus’ syntax along with a semi-formal description of its semantics.

Let o ≡ [li = ς(xi)b
i∈1..n
i ] (li distinct)

o is an object with method names li and methods ς(xi)bi
o.lj → bj{xj ← o}(j ∈ 1..n) selection / invocation
o.lj ⇐ ς(y)b→ [lj = ς(y)b, li = ς(xi)b

i∈(1..n)−j
i ](j ∈ 1..n) update / override

Figure 2.2: The primitive Semantics of the ς calculus as introduced in [Abadi
and Cardelli, 1994].

The ς calculus is highly extensible and was shown to be able to accommo-
date concepts like reference semantics, class based languages and advanced
typing concepts [Abadi and Cardelli, 1998]. While the class-based Feath-
erweight Java might be considered a more natural fit to the typing issues
found in AspectJ-related languages, it should be noted that the ς calculi’s
structural types are able to reflect typing issues in a form analogous to the
ones found in real-world applications with a smaller overhead.

The combination of being object-oriented, small and extensible makes the
ς calculus the ideal choice for the formalization of Aspect Orientation. Its
simplicity makes a mechanized model viable, while the extensibility means
that new concepts - aspects - can be introduced in a natural fashion. As
the scope of this work is static compositionality and type safety, concepts
such as exceptions, concurrency and reference semantics are not required,
making the ς calculus a near-perfect fit. Other concepts that share some of
these properties, most notably Featherweight Java, are designed to follow
particular programming languages too closely, which can render results less
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general. On the other hand, the ς- calculus is better suited than the λ
calculus, which would require cumbersome embeddings of objects.

2.3 Interactive Theorem Provers

The term “interactive theorem prover” or “proof assistant” describes a fam-
ily of automated proof tools. Unlike SAT1 solvers or other fully automated
provers, the main intention of interactive provers is not the automatic veri-
fication of theorems, but rather the verification of manual proofs. In order
to do this, interactive provers employ a process, in which a proof is devel-
oped by using commands altering the proof state through the application of
tactics, much like using inference rules in a manual proof – hence the desig-
nation “interactive”. Important examples for interactive theorem provers are
Isabelle, Coq, PVS and the HOL family (Hol4, HOL light). Most proof assis-
tants strive towards a style that approaches that of classical proofs on paper,
while also exploiting the benefits of having a mechanized version of the for-
malization – namely re-use and code generation. Historically, proof assistants
evolved from LCF [Gordon, 2000; Paulson, 1990], the logic of computable
functions. This approach implemented a theorem proving environment based
on an unpublished logic by Dana Scott2. In fact, the following description
provided by Milner [Milner, 1972] still holds mostly true for modern systems:

The proof-checking program is designed to allow the user in-
teractively to generate formal proofs about computable functions
and functionals over a variety of domains, including those of in-
terest to the computer scientist – for example, integers, lists and
computer programs and their semantics. The user’s task is al-
leviated by two features: A subgoaling facility and a powerful
simplifier.

Although the usability of modern systems is far superior to the modest be-
ginnings of Stanford LCF, the fundamental concept of interactive theorem
proving has not changed by a substantial degree.

Today, the most important interactive theorem provers follow in the LCF
tradition, but use different logics as their foundation. The most popular ex-
amples are either based on Russell and Whitehead’s simply typed set theory
[Whitehead and Russell, 1910] (Isabelle/HOL, HOL) or the Curry-Howard
correspondence (Coq).

1Solvers for the boolean satisfiability problem, a np complete problem.
2The logic was eventually published in 1993 [Scott, 1993].
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Another important design fundamental of theorem provers, realized in
Isabelle and Coq, is the kernel approach. Provers such as Isabelle or Coq,
use their respective basic logics to realize a subset of their logic in a manually
verified kernel, usually in a few thousand lines of code. The actual prover
implementing the complete logic is then implemented around that kernel,
which is used to verify the correctness of its own extensions. In fact, all
proofs are rooted in the logic defined by underlying kernels, while users can
remain completely oblivious to their basics and limitations.

The most important benefit of using an interactive theorem prover is the
strong guarantee of correctness it provides. To be able to do this, provers
check and thus guarantee the correctness of all proofs performed on the
initial model. In some cases, this added verification of a proof can be the
only means to guarantee the correctness of complicated proof. A prominent
example for such a proof exceeding the human ability to follow reasoning
is the flyspeck project [Mackenzie, 2005; Flyspeck, 2009], aimed at verifying
the proof of Kepler’s conjecture.

This section introduces Isabelle/HOL in detail while also providing a
short introduction to Coq. HOL is omitted, as the logic and features are
very similar to Isabelle/HOL, but specialized towards hardware verification.
PVS is not considered here, as it does not use the trusted kernel approach
and is thus not directly comparable to Isabelle or Coq. For a more complete
survey of interactive theorem provers, we refer to Freek Wiedijk’s book The
17 Provers of the World [Wiedijk, 2006].

Isabelle/HOL

Isabelle is more of a framework for interactive theorem provers than just one
isolated theorem prover. In fact, it was originally introduced as being “the
next 700 theorem provers” [Paulson, 1988]. It is jointly developed by the Uni-
versity of Cambridge and the Technische Universität München, with its roots
located at the University of Cambridge and – via LCF – Stanford. Isabelle
itself is based on a small subset of intuitionistic Higher Order Logic [Paulson,
1989] – just the meta-conjunction and meta-implication – , but supports a
wide array of “object logics”, that allow users to perform proofs in different
logics. The most popular examples are the Russell/Whitehead Higher Order
Logic [Whitehead and Russell, 1910, 1912, 1913] in Isabelle/HOL and – albeit
to a lesser degree – the Zermelo-Fraenkel set logic in Isabelle/ZF and the com-
bination of HOL and the logic of computable functions in Isabelle/HOLCF.
Isabelle in its current form is fairly user-friendly, aiding mechanizations both
by enabling the use of notations very similar to the style one would use on
paper and through a powerful interface – the Proof General [Kleymann and
Aspinall, 2009].
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For this work the Higher Order Logic (HOL) instantiation of Isabelle
(Isabelle/HOL) was used. Higher Order Logic is often described as the com-
bination of functional programming and logic [Nipkow et al., 2002]. Advan-
tages of using Isabelle/HOL in particular include the ability to extract code
from the formalization to yield executable results from the very model that
was verified by the theorem prover. The formalization itself is aided by the
extensive library of theorems provided by the Isabelle distribution.

Developing a formalization in an interactive theorem prover like Isabelle/-
HOL introduces an overhead when compared to performing the equivalent
formalization on paper. This is due to the rigorous approach required to
establish a proof in a checked formal model. To reduce this overhead, Isabelle
provides strong automatic proof methods and support for using SAT solvers
and model checkers. Nonetheless, these methods cannot and should not
remove the additional overhead – mechanizing takes several times longer
than a plain pen and paper formalization.

Even when setting aside the already mentioned advantages of correctness
and code extraction, it should be noted that a certain modularity can be
achieved in mechanized proofs, allowing the re-use of portions of models in
different settings. This eases development when migrating a formalization
of a language to a more powerful type system.

As noted before, Isabelle’s kernel is purely based on a small fragment
of intuitionistic logic. Isabelle/HOL realizes Higher-Order Logic on that
foundation and adds many features on all levels. Examples for such fea-
tures are essential parts of the formalization presented in this thesis, such as
datatypes, inductive definitions and primitive recursive functions [Berghofer
and Wenzel, 1999].

Datatypes are a very straightforward construct and establish simple set-
theoretic recursive product types. Datatype definitions consist of construc-
tors which themselves consist of admissible parts. A part is admissible if
it follows a number of rules [Berghofer and Wenzel, 1999], which limit the
recursive occurrences. It is admissible to use the datatype itself recursively
and mutually recursively with another datatype, provided that the elements
stay injective. Moreover, a datatype can be defined as polymorphic using
type variables. The example below shows a simple datatype representing the
natural numbers.

datatype NaturalNumber =
Zero

|Suc NaturalNumber

Isabelle/HOL automatically creates lemmas for structural induction and
case distinction for datatypes. These tie in with a concept built directly on
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top of datatypes: Primitive recursive functions, short primrec. The concept
of primitive recursion realized in Isabelle allows a subset of the primitive re-
cursive functions and is implemented on top of the datatype theory. The use
of primitive recursive functions can best be shown by the following example,
which realizes the addition on the natural numbers defined above:

primrec
add::NaturalNumber × NaturalNumber =⇒ NaturalNumber

where
"add Zero x = x"

|"add (Suc x) y = add x (Suc y)"

The function definition has one equation for each constructor of the variable
used in the pattern – in this case the first variable. Only that variable is split
into its possible constructors; moreover, it is clear that the variable becomes
smaller with each iteration, guaranteeing termination. Primitive recursive
functions, like all functions in HOL, have to be total.

The concept of inductive sets or predicates is a more basic concept and
thus allows more freedom. Inductive sets are defined by a set of inductive
rules. To be precise, the inductive set specified by an inductive definition is
the least closed set3 that satisfies the definition’s rules. Note that member-
ship in a set is logically equivalent to satisfying a predicate, so that inductive
definitions can be read both as definitions of sets and as logical predicates.
See the example below for an inductive definition of the set of even numbers.

inductive even::NaturalNumber =⇒ Bool
where

Even_zero "even Zero"
|even_step "Jeven xK =⇒ even Suc (Suc x)"

This definition uses the Isabelle meta-logic operators J and K for the
premise. These semantic brackets act as pseudo conjunction for assumptions
and are based on the meta implication =⇒. JA;BK =⇒ P stands for A =⇒
(B =⇒ C) and can be read as A ∧B −→ C.

Using the more common notation for inference rules, the rules can also
be written like this:

EvenZero
Even Zero

EvenStep
Even x

Even Suc (Suc x)

3A set is closed if the set contains all its limits.



2.3 Interactive Theorem Provers 21

This notation will be used for rule-based systems, i.e. type systems, re-
duction relations and other inductive definitions throughout the thesis. For
other formal statements, a mathematical notation is used in most instances.
In some parts, it is required for the understanding to present the underly-
ing Isabelle code; in these instances the code and constructs used will be
explained as required.

Isabelle/HOL automatically generates basic induction and case distinc-
tion rules for inductive definitions on which advanced proofs can be built.
To perform proofs on the structures defined by the constructs above, Is-
abelle/HOL offers a number of tactics. These tactics include the application
rules of classical reasoning on one hand and powerful automatic proof tools
on the other. Features not explained in this section will be introduced upon
their use. As an example, consider this proof that the successor of an uneven
number is even, made using Isabelle’s Isar system:

lemma SucEven:"¬even x =⇒ even (Suc x)"
proof (induct x)

case 0
from prems have False by (simp add: EvenZero)
thus ?case by simp

next
case (Suc x)
thus ?case
proof (cases "¬not even x")

case True
from prems have "even (Suc x)" by simp
hence "False" using prems by simp
thus "even (Suc (Suc x))" by simp

next
case False
hence "even x" by simp
thus ?thesis by (rule EvenStep)

qed
qed

The proof uses induction over the variable “x” as its core principle; the
initial case – zero not being even – can be resolved by contradiction. The
“Suc” case requires another case distinction: If the original value is even,
then the assumption leads to a contradiction, otherwise the EvenStep rule
is satisfied. An older style of Isabelle syntax would use the command apply,
as shown below.

apply (induct x)
apply (simp)
...
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The two proof styles can be mixed and are generally equivalent, with read-
ability and re-usability favoring the newer Isar style.

For modular reasoning [Kammüller, 1999], Isabelle/HOL supports locales
– proof contexts for theories, that allow the instantiation in various scenarios.
Locales, along the polymorphic type system allow the convenient re-use of
formalizations and proofs.

Coq

Coq [Bertot and Casteran, 2004] is a frequently used theorem prover espe-
cially popular in the language meta-theory community. The logic used in
Coq differs significantly from the one used in Isabelle/HOL. Instead of using
a classical logic like Isabelle/HOL, which is rooted in the Russell-Whitehead
logic, Coq is based on the Calculus of Inductive Constructions. The Calculus
of Inductive Constructions is an application of the Curry-Howard correspon-
dence and is based on the work of the philosophers Per Martin-Löf, Thierry
Coquand and Gérard Huet [Martin-Löf, 1984; Coquand and Huet, 1988].
The Curry-Howard correspondence is founded on the observation that proofs
can be seen as functional programs, where the return type of the function
is the property to be proven. This means that proofs are executable and
correspond to λ terms [Howard, 1969; Curry and Feys, 1958].

This approach yields a constructive style of reasoning, where the user
has to prove the correctness of a statement by showing its type-correctness.
The idea of this constructive, intuitionistic logic is to unify programming
and verification [Martin-Löf, 1984]. The constructive logic results in some
major divergences from the established logic that can be confusing for novice
users. For instance, a number of formulae that are clearly true in classical
logics, cannot be shown in Coq [Bertot and Casteran, 2004]. As an example,
the simple formula ((P → Q) → P ) → P cannot be shown in Coq’s logic,
despite its truth in classical logic. See Figure 2.3 for a truth table showing
the formula’s truth in classical logic.

P Q P → Q (P → Q)→ P ((P → Q)→ P )→ P

f f t f t
f t t f t
t f f t t
t t t t t

Figure 2.3: Truth table for ((P → Q)→ P )→ P – this is known as Peirce’s
formula. Following Tarski, a proposition is true iff it is true for all values of
P and Q.
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This is not a flaw in Coq or its logic, it is merely a side effect of using
constructive logic. The infinite universe of this logic does not allow proofs by
contradiction, as it is rooted in a philosophy allowing more than just either
true or false. In fact, the Tertium non datur : – P ∨ ¬P is not provable
directly in intuitionistic logics, like Coq’s.

Using appropriate wrappers, the intuitionistic nature can be ignored or
worked around in most day-to-day situations. For instance, tertium non
datur can be proven as ¬(¬P ∧ ¬¬P ), without allowing deduction of the
original notation from that4.

The main advantage of Coq’s style of declarative, constructive proofs, is
that executable code can be extracted far more easily than in Isabelle/HOL5

for example. Proofs in Coq are formulated in the language Gallina, an imper-
ative programming language, which is also executable . Another frequently
mentioned advantage is the power of Coq’s type system. As a necessary
result of using the Curry-Howard isomorphism, Coq’s type system supports
dependent types – required to express quantification – making it more ex-
pressive than the simple type system used in HOL-style provers in this regard
[Kammüller, 2006]. Despite including dependent types, the type system of
Coq is still decidable. The dependent types also serve as a natural module
concept for Coq, presenting a very elegant approach for modular proofs.

Ignoring these obvious differences, the Coq system’s abilities are close to
those found in Isabelle/HOL. For instance, the inductive definition of even
numbers could be written like this in Coq6:

Inductive even:NaturalNumber −→ Bool
where

even_zero: even Zero
even_step ∀ x:NaturalNumber . even x =⇒ even Suc (Suc x)"

This is very similar to the notation one would use in Isabelle/HOL. The
general support of advanced tactics and proof methods used to lag behind
Isabelle/HOL, but has caught up in recent years. All of this makes Coq a re-
markable system that provides a basis for language meta theory comparable
to Isabelle/HOL.

Summarizing this chapter, we presented Aspect Orientation with its con-
cepts of aspects as pointcuts and advice, joinpoints and the notion of obliv-

4The inability to show P ∨ ¬P from ¬(¬P ∧ ¬¬P ) is because intuitionistic logic does
not accept ¬¬P −→ P . P ∨ ¬P is not provable for the same reason: Without a witness
indicating whether P or ¬P was true, the proposition is not valid. Note that tertium non
datur is an axiom in classical logic.

5It should be noted that Isabelle/HOL’s ability to generate code has been extended
recently.

6In fact, the introduction of Inductive definitions marked the move from the Calculus
of Constructions to its specialization, the Calculus of inductive Constructions.
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iousness. We then described three core calculi for Object Orientation before
finally giving an introduction into interactive theorem provers with an em-
phasis on Isabelle and Coq. In this Chapter, we gave a concise introduction
into the key concepts used in this thesis: Aspect Orientation, Core Calculi
and interactive theorem provers. We created this background in the style
of a mini-survey to motivate our choice of tools – especially on the topics
of the right formalism to use as a foundation and which theorem prover to
select. We limited the theorem prover presentation to Isabelle/HOL and
Coq, recognizing these two as the major tools for verifying language theory
at the moment.



CHAPTER 3

Calculi for Aspect Orientation

A number of formal approaches to Aspect Orientation has been published by
other researchers. At the time of this writing, none of the other approaches
was realized in an interactive theorem prover. This section will introduce
the other approaches and weigh their individual properties.

In recent years, several groups have been developing core calculi to study
AOP. Their approaches extend over a broad swath of different styles, ba-
sic languages and goals. Within the field, there are approaches to analyze
basic problems of language theory, including semantics, real-time behavior
and types. A particularly important distinction is the notion of joinpoints,
meaning the points in the base calculus at which advice can be applied. The
surveyed approaches can be classified into two groups: Those using explicit
labels marking these points and those using an existing construct – usually
methods or functions.

This section provides a brief survey of the state of current research and
the particular problems addressed by the various calculi. The approaches are
listed with their aim, base calculus, the nature of their aspect-aware features
and their notion of types. Section 3.1 lists the approaches based on the λ
calculus, Section 3.2 the approaches based on the ς calculus. Finally, Section
3.3 lists the calculi using Featherweight Java. A condensed version of the
survey can be found in Table 3.1. The chapter closes with a discussion of
the approaches in Section 3.4.
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Name Basic
Cal-
culus

Type
System

Joinpoints Focus

MinAML λ calcu-
lus

simple
types

Labels Type-
preserving

Harmless Advice MiniAML simple
types

Labels non–
interference

ςASP simple ς untyped Method
names

–

MINIMAO imperative
FJ

nominal
types

Method
names

Ownership

AspectGFJ FJ nominal
types

Method
names

Generics

Tiny Aspects λ / ML simple
Types

Method
names

Modular
Reasoning

StrongAspectJ Feather-
weight
Java

simple
Types

Method
names

Types

Table 3.1: Comparison of related approaches

3.1 Lambda Calculus Based Approaches

MiniAML Core Calculus

Ligatti et al. introduced a small aspect-oriented core language [Ligatti et al.,
2006] for their aspect-oriented version of the functional programming lan-
guage ML. To prove the type safety of this language, a small calculus with
a type-preserving translation from the language MinAML was introduced.
The model is able to make a case for the type soundness in a real AOP
language. Furthermore, the easily understandable calculus, based on the λ
calculus, makes it well suited for type-theoretic analysis. A interesting detail
is the absence of obliviousness in the core calculus1, which greatly enhances
reasoning about the type system.

Aim The MiniAML system is an aspect-oriented approach explicitly in-
tended for the type-theoretic analysis of Aspect Orientation. It con-
sists of an high-level functional aspect-oriented language and a basic
calculus. The aim of this approach is the ability to reason about types
in aspect -oriented programs.

1The language “on-top” – minAML – is oblivious.
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Basic Calculus The basic calculus is based on a typed λ calculus. It re-
alizes aspects using explicit labels for the joinpoints, arguably remov-
ing obliviousness. Aspects are represented as pairs of pointcuts and
(advice-) terms. Static pointcuts are simply denoted as sets of as-
pect labels. Advanced pointcuts are supported via a stack construc-
tion in the evaluation environment. Aspects are denoted within the
same term, meaning that there is no aspect construct setting aspects
and base program apart. However, aspects and labels can be added
dynamically. The evaluation of aspects is part of the operational se-
mantics, using a recursive helper function. The return from an aspect
can jump inside the term, which models the behavior of proceed.

Type System The MiniAML core type system is based on the simply typed
λ calculus with string, boolean, vectors and integer as basic types.
Moreover the system types aspects and labels. The typing function
for labels enforces that the labeled subterm has the same type as the
label, where the label’s type is recorded in the typing environment. As
mentioned before, aspects in miniAML are tuples from pointcuts and
advice. The pointcut is a set of labels, required to be from the same
type; the advice is a function. The typing rule for aspects requires the
advice’s result to be of the same type as the labels in the pointcut,
under the condition that the advice’s argument is of the same type.
The MiniAML core supports no subtyping.

Weaving Weaving is part of the core calculus’ operational semantics and
uses a helper function. To weave, the helper function utilizes repeated
substitution, traversing the list of aspects from the execution environ-
ment. Advice from aspects with matching pointcuts will be combined
with the result from the prior aspect (or the base term). In absence of
(further) aspects, it returns the identity.

Example label.x→ x+ 5 >> label〈3〉
Sample term for the MinAML core calculus. An aspect increasing every
expression labeled with “label” by five is woven to a base term.

Harmless Advice

Harmless Advice [Dantas and Walker, 2006] is one of the first approaches
for security-typed aspects. It uses a simple core calculus to show that non-
interference for aspects can be enforced by a static type system. While the
information–flow related features in the calculus are not very expressive, they
sufficiently demonstrate the approach’s novel offering of not only a sound,
but a secure approach to aspects.
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Aim Harmless Advice show that a certain class of security aspects can be
formulated in conformance with non-interference. Furthermore, it
shows that a simple type system is sufficient to enforce such a policy.

Basic Calculus The approach uses a pseudo-imperative variant of the Mini-
AML Core Calculus. The aspect semantics were simplified and several
language constructs – such as advice ordering – removed. A new oper-
ator to combine expressions was introduced, giving it the appearance
of an imperative language, although a purely functional structure was
maintained.

Type System The type system used by harmless advice is foundationally
similar to the one used in the miniAML core calculus. It is enriched
through the introduction of protection domains, an universal unit type
and a reference type. The major addition is that the type system
presented for Harmless Advice encodes non-interference statically for
aspects. It thus guarantees the integrity of the security domains.

Weaving Aspects are woven in a fashion similar to that used by the mini-
AML core calculus. A function is used in a reduction rule to apply
advice.

Tiny Aspects

Tiny Aspects are a concept for modular reasoning with aspects. Proposed
by Aldritch [Aldrich, 2005], they offer a high–level language for modules
with aspects building upon a strict definition of modular advice. Modular
in this context describes the ability to compose aspects independently and
to perform an analysis of isolated aspects without a given base application.
The concept is composed of the core calculus named Tiny Aspects, which
was surveyed, and the larger concept OpenModules.

Aim Open Modules and Tiny Aspect are designed to allow modular reason-
ing about advice.

Basic Calculus Tiny Aspects are modeled after ML and thus ultimately
the λ calculus. Tiny Aspects are considerably larger than other core
calculi and supports the proceed statement directly. They also support
named functions, resulting in structured terms. Only call pointcuts are
supported, but other semantics are listed as future work.

Type System The type system is largely identical to System F<: and does
not handle objects explicitly.

Weaving Aspects are directly applied on base functions, necessitating a
large number of rules in the reduction relation.
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3.2 Sigma Calculus Based Approach

Parametrized Object Calculus with Aspects

ςasp(M) is an early example of an aspect-oriented core calculus. Written by
Clifton, Leavens and Wand [Clifton et al., 2003], it is a parametric calculus
allowing the study of various aspect-oriented approaches. The authors offer
a number of examples of their application of ςasp(M) to existing languages.
This same group continued their research with MiniMAO.

Aim ςasp(M) is a flexible core calculus. The instantiation of the parameter
M is intended for mappings of various pointcut semantics; examples
include DemeterJ; AspectJ and HyperJ. ςasp(M) is especially designed
to offer a detailed representation of proceed semantics, i.e. the traversal
from aspect to base code. “Naked” ς methods are the realization of
advice, “naked” meaning terms with an unbound self-parameter and
no surrounding object.

Basic Calculus ςasp(M) is an extension of the simple, untyped functional
ς calculus. It includes call and execution semantics as well as a new
proceed keyword in the operational semantics.

Type System ςasp(M) has no new type system and is even untyped in the
normal use. For the simulation of type-based pointcuts, the language
uses a simple structural type system using the signature of objects as
their type.

Weaving An extended operational semantics handles weaving directly, in-
cluding several pointcut semantics. This adds many reduction rules to
the language.

3.3 Featherweight Java Based Approaches

MiniMAO

MiniMAO can be best described as Featherweight AspectJ, as it extends FJ to
a calculus expressively designed for the study of aspect-oriented semantics
in AspectJ-like languages. As the product of ongoing and comprehensive
research, it allows formalization in a notation closely resembling the accepted
aspect notation of AspectJ.

Aim MiniMAO is designed to aid the understanding of aspect semantics
in the accepted form of AspectJ. Moreover it serves as a formal basis
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for extensions to AspectJ and AspectJ-like languages. It focuses on
aspect heap effects and the semantics of proceed. More specifically,
the calculus serves as formal basis for the AspectJ extension MAO
(Modular Aspects with Ownership).

Basic Calculus MiniMAO0 serves as the basic calculus for the later in-
carnations of MiniMAO: MiniMAO1, a calculus for AspectJ and
MiniMAO3

2, which adds ownership types and control flow effects. It
was written as an extension to Featherweight Java, introducing impera-
tive execution and assignments, allowing the study of heap effects. The
calculus also adds explicit Aspect instantiation and ownership domain
declarations; most other new constructs are introduced via annota-
tions.

Type System MiniMAO extends the type system of Featherweight Java,
which in turn resembles a subset of Java. The extended type system
was shown to be sound in paper-proofs. MiniMAO3 introduces an
ownership-aware type system for aspects, which can guarantee some
security constraints. The soundness proof was extended to encompass
that variant. Ownership types limit the access to data to the “owner”
of that data, enforcing a structure on the referencing of objects.

Weaving As with ςasp(M), weaving is entirely handled on the level of the
operational semantics. The resulting semantics are – compared to
Featherweight Java – fairly large.

Aspect FGJ

Jagadeesan et al. created an aspect-oriented version of the generic extension
for Featherweight Java [Jagadeesan et al., 2006]. It uses a simple Aspect
Orientated feature set, limited to execution pointcuts without negation.
However, it supports generics.

Aim The authors developed their calculus with the challenges and bene-
fits encountered when combining generic polymorphism with Aspect
Orientation in mind. They show shortcomings in AspectJ regarding
types and code reuse. For instance, they observe that normal AspectJ
requires code duplication to deal with generics, in opposition to mod-
ularizing crosscutting concerns in particular or reusable modules in
general. Another example is the impossibility of aspect type safety in
case of redefined return types due to covariance.

2We are not aware of a MiniMAO2.
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Basic Calculus The calculus used is based on the pure – functional –
Featherweight Java with generics. The generics were extended to
support non erasure-based handling of generics as well as the tradi-
tional erasure. On the other hand, casts were removed from the lan-
guage. Aspect-oriented features are AspectJ-like, but limited to execu-
tion pointcuts without negation and dynamics. Pointcuts use method
names with a small negation-free logic language.

Type System The type system is a modified version of the Featherweight
Java type system. The main extension is the ability to redefine meth-
ods in subclasses, the main reduction the removal of casts. Aspects are
typed, using constrained base types.

Weaving Aspect FGJ programs are statically transformed into FJ pro-
grams. Advice application is reduced to method invocation.

StrongAspectJ

The motivation for strong AspectJ [De Fraine et al., 2008] is directly related
to this work: Observing obvious issues with the way aspects are handled,
the group presented a calculus to prove a solution to pressing problems. The
calculus differs from the one presented in this work as it is not mechanized
and does not attempt to present a general theory of objects, but rather
focuses on problematic situations in AspectJ.

Aim The concept is intended to formulate a type safe subset of AspectJ,
solving contravariance issues and providing a future development for
AspectJ.

Basic Calculus The basic calculus is an extended variant of Featherweight
Java.

Type System The type system is simple, with limited subtypes using in-
variance.

Weaving Aspects are directly applied to base functions, leading to rather
many rules in the reduction relation.

3.4 Discussion

AspectFGJ’s basic approach is remarkable. Using simple, functional cal-
culus, the authors successfully uncovered fundamental issues with aspect-
oriented type systems, introduced valid generics for aspects and indicated
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solutions for the aforementioned issues. Considering the significance of the
problems exposed with AspectFGJ, it seems that small core calculi can ex-
tend the state of the art even without venturing into the analysis of reference
semantics.

The formalization of joinpoints has a very notable effect on the whole cal-
culus. As stated before, the survey analyzed approaches using explicit labels
and approaches using existing names to identify points at which aspects can
be applied. The approaches using labels tended to use leaner formalizations
for aspects and weaving, as they quantify over labeled terms without indi-
rection over names. However, it is often argued that such an approach is not
oblivious, breaching the Friedman-Filman definition of Aspect Orientation.
MiniMAO3 constitutes the most elaborate existing approach and – with the
possible exception of Harmless Advice – the approach most closely related
to the goals of the course of research proposed in this text. However, we
believe that the use of pattern-pointcuts hinders modular reasoning. Also,
we have observed that a modular approach like MiniMAO cannot statically
enforce the absence of control-flow influences when it also supports aspects
with control flow effects. A small thought-experiment shall serve to add
weight to that point: Advice can in itself expose joinpoints. Other aspects
can include pointcuts capturing those joinpoints, resulting in the invocation
of their advice. This holds true for aspects with ownership; aspects not
following ownerships can be triggered on the execution of ownership-aware
aspects. This removes any security guarantees made. Clifton et al also write:

Advice marked with @surround has no control effects. [...] (Note
that this allows extra joinpoints to be introduced, both within
advice and the advised code)

and

Of course, other advice that is not control-limited can cause con-
trol effects that occur at join-points within control-limited advice.

We argue that the introduction of new joinpoints in a formalism allowing
control-flow affecting advice constitutes a change to the control flow. This is
because control-flow affecting advice can be woven in at those – introduced
– joinpoints, invalidating the static and modular results. The authors of
MiniMAO3 are aware of this limitation, but do not consider it substantial,
an assessment we would contradict. Thus, we believe that the approach
of using explicit labels is a fundamental part of any meaningful formaliza-
tion. At the very least, control-flow limitations cannot be optional. In our
analysis, miniMAO was found to be a well executed, but ultimately limited
approach. Results gained from reasoning about a module cannot be used to
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make guarantees about the behavior of the system. Even for a given system,
the security constraints cannot be determined using miniMAO’s approach
for reasoning alone. Thus, the question has to be asked whether the price
for the notion of obliviousness used in this approach might be too high.

At the other end of the spectrum is the Aspect Calculus proposed by
Ligatti et al. Its scope and maturity reach that of MiniMAO and it also of-
fers more controllable means to reason about joinpoints by featuring explicit
labels. This approach had arguably the biggest influence on our formaliza-
tions, as it also focuses more visibly on type theory and boasts a very lean
and – with the possible exception of the advanced stack construction – in-
tuitive formalism. Especially the presence of a type-conserving translation
to a fully-fledged language sets this calculus apart. The offspring theory of
Harmless Advice shows how such formalisms can be applied to security type
systems without losing the clarity of the original concept.

Aldrich’s TinyAspects are similar, but more clearly designed to allow
modular reasoning. They also use the concept of basing the new language
proposal on a small calculus. Tiny Aspects maintains obliviousness, unlike
the calculus by Ligatti et al. However, it does not support dynamic pointcuts.

Jagadeesan et al’s Aspect FGJ is a subtly different case, as it lays out
the challenges and benefits of having generics in AOP and is not an in-depth
study of AOP itself. It also encompasses many problems specific to Java, as
it has a focus on generics in Featherweight Java and thus Java.

StrongAspectJ can be seen as an in-between between Aspect FGJ and
MiniMAO. It closely follows AspectJ and Java, with the stated aim to pro-
vide a strong type system for AspectJ. Unlike Aspect FGJ, the approach
does not offer a solution for contra-variance issues, but merely removes them
from the language. This is to closely reflect AspectJ and the idea of pro-
viding a strong type system for that language, not a new language. Also,
the work is solely intended for AspectJ, not a general notion of aspects and
as such not directly comparable to this work. Moreover, strongAspectJ was
never mechanized in a theorem prover. Its type safety has only been proved
for a subset of the language.

In conclusion, the approaches can be grouped into calculi that abstract
from actual languages by using a formal calculus as basis and those us-
ing subsets of real-world languages. The calculi following the syntax of ac-
tual languages – for instance MiniMAO – show a notable overhead used for
naming and accommodating concepts which we do not consider particularly
interesting, for instance lexicographic pointcuts. The formal and abstract
approaches, especially the MinAML core calculus, are sufficient to express
scenarios like typed pointcuts elegantly and without an excessive overhead.
Harmless Advice shows that such an approach can be extended without in-
validating the base. Thus, we consider the abstract approaches better suited
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for the study of AOP. They are able to express complicated features with a
far smaller formalization, which facilitates mechanization.



CHAPTER 4

Formalizing and Mechanizing Languages

With the fundamental concepts established in previous chapters, this chapter
now focuses on the inner details and requirements of a language formaliza-
tion. To do so, it will first introduce the basic concepts for the syntax and
semantics of programming languages before then switching to the more tech-
nical problems collected in the POPLmark challenge [Aydemir et al., 2007].

The formalization of a language, quite predictably, means constructing
the language as a formal system [Curry and Feys, 1958]. This entails the
definition of basic objects, the construction of a formal frame of operations
and finally the development and proving of supporting theorems.

Before continuing to introduce the various incarnations of the ςAsc fam-
ily of aspects, it seems prudent to present the main issues encountered when
formalizing a language in general and mechanizing it in a theorem prover
in particular. Some of these concepts are very well known, like operational
semantics and their small and big steps incarnations versus denotational se-
mantics. Others, like α conversion and the associated problem of formalizing
binders are almost unknown outside the language meta-theory community.
In the meta-theory community, the search for an ideal solution has led to
the issuing of the POPLmark challenge [Aydemir et al., 2007], a challenge
to provide innovative solutions for the mechanization of the calculus F<:.

The same challenge also re-iterates the benefits of developing a calculus
inside a theorem prover. Complexities and nuances of proofs about languages
are so subtle that it is near to impossible to achieve a fault-less result on
paper, and even more so to convince others that the formalization is without
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flaw. Using a theorem prover leads to the desired guarantee of 100% cor-
rectness and re-usability at a steep prize of introducing additional steps and
slow progress, resulting in several times more work.

There are two different styles of mechanizing a concept: Deep and shallow
embedding. A shallow embedding uses the logic of the theorem prover itself.
That is, functions in the embedding are directly mapped to functions and
other constructs in the prover itself. By contrast, a deep embedding entails
formalizing every single detail on its own, using a level beyond the theorem
prover’s own.

This section shall provide a small introduction into these concepts. It
serves a dual purpose, foremost to explain the choices that were made in
the past years, and secondly to equip the reader with the knowledge neces-
sary to understand the formalization presented in Part II of this thesis in
detail. This chapter is largely independent of a particular theorem prover,
but concentrates on the realization in Isabelle/HOL.

4.1 Syntax

The most basic part of formalizing a language is defining its syntax, i.e. the
constructs that form terms and thus encode their grammar. Taking the λ
calculus as example, the primitive syntax can be described like this, using
three different primitives:

Lam =def λ x. Lam (Abstraction)
| x (Variable)
|(LamLam) (Application)

Such definitions correlate to context free grammars, normally expressed
using the Bachus-Naur form [Knuth, 1964]. In the context of this thesis, the
different formalisms for expressing the syntax of programming languages can
be ignored, as the features and syntax of the theorem prover used dictates the
type of expression used. In the case of Coq and Isabelle, datatype definitions
are the tool of choice for the primitive syntax of a language. Thus, we omit
the various forms and styles of grammars and their implications and merely
note that datatypes, i.e. simple polymorphic and recursive sum types, are a
suitable form for expressing the syntax of a calculus [Paulson, 1990].

4.2 Semantics

Beyond the raw syntax, it remains to define the meaning of the syntactic
building blocks. This meaning is given to the syntax by defining the se-
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mantics. Today, two styles of semantics are frequently used: Operational
semantics and denotational semantics [h. L. Ong, 1995].

Operational semantics are a simple concept of expressing the semantics
of programming languages [Plotkin, 1981, 2004; Winskel, 1993]. Formally,
operational semantics correspond to inductive definitions, i.e. they are the
least set closed under a set of inductive rules. This is in effect a description
of how the program would be executed on a virtual machine. There are
two flavors of operational semantics: Big step and small step. In small step
semantics, one reduction step in the premise is related to one reduction step
in the conclusion of each reduction rule. By contrast, complete reductions
up to final configurations can be used in big step semantics. Generally, big
step semantics relate better to to compilers, but are inadequate for proofs
concerning termination [Leroy and Grall, 2009]. The main advantage of op-
erational semantics is that their inductive nature is beneficial for performing
proofs, especially proofs for type soundness [Wright and Felleisen, 1992].

The other frequent style are denotational semantics, rooted in domain
theory, heavily relying on fixed points and least partial orders. The concept
is that the language is described by a mathematical object, mapping terms
to (simpler) terms. Denotational semantics [Reynolds, 1998; Winskel, 1993]
were originally introduced by Strachey and Scott to replace operational se-
mantics and form a higher level of abstraction than operational semantics.
Thanks to their mathematical elegance that allowed compositionality and
a natural handling of recursion, the style of denotational semantics quickly
gained dominance. In recent times, denotational semantics became less fre-
quently used than operational semantics, as their style is less suited for
mechanization and type systems [Wright and Felleisen, 1992].

In the field of mechanized calculi, denotational semantics are an uncom-
mon style due to their abstract nature. An operational semantic can be
used as a basis for an interpreter, as the structure is directly linked to the
evaluation on a simple machine. Such tools can even be automatically ex-
tracted from formalizations in modern theorem provers. These tools also
close the gap between the styles, as they automatically generate mathemat-
ical objects for operational semantics. In a work like this one, the support
for type soundness proofs is more important than compositionality, making
operational semantics the natural choice.

4.3 Type Systems

Type theory, especially the theory of simple types, going back to Russell
[Russell, 1908] and Church [Church, 1940], is a formal method to limit a
calculus to a subset of well behaving terms. Well behaving usually means
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that a term “does not go wrong”, a concept well–suited for programming
languages. The application of Russell’s type theory to the λ calculus marks
the beginning of the use of types for calculi and programming languages,
offering a system to eliminate situations that, if allowed, could render a
system unsound [Barendregt, 1992; Church, 1940]. The original invention of
the type theory by Russell was triggered by the observation called “Russell’s
paradox”. This describes situations were negated self-referring can be used to
construct a paradox situation. The classical example is the set containing all
sets that are not members of themselves [van Heijenoort, 1967, Russell (1902):
Letter to Frege, page 126]. Type theory resolves the issue by restricting self-
reflection [Russell, 1908].

Types systems, usually written as sets of logical rules, can encode prop-
erties. For a given term, the abidance to a type system can be enough to
decide whether a given property holds – if the term is well typed, the type
system sound and the property part of the system’s guarantees. The most
basic such property is the guarantee that “well-typed programs do not get
stuck”, which can be strengthened to “Well-typed terms cannot go wrong”.
That can encompass varying definitions of wrong, for instance no informa-
tion flow happens from high to low in programs well-typed with regards to
a type system enforcing non-interference[Sabelfeld and Myers, 2003]. The
formal expression to indicate a term’s typing is as shown below.

E ` t : T

This expression reads1 “In the environment E, the term t has the type T ”.

A term being well typed does not provide any guarantees unless the type
system is sound. In a sound type system, it is impossible for a term to
contradict the type system’s guarantees.

The established approach to prove type soundness is based on Wright
and Felleisen [Wright and Felleisen, 1992]. The idea is to establish two key
properties: Preservation2 and Progress. The former – Preservation – states
that if a term t of type T reduces to a term t′, then t′ also is well-typed. In
the strict interpretation, it states that reduction does not change a term’s
type. Formally, Preservation reads

t→β t
′∧ ` t : T ⇒ ` t′ : T

The other property – Progress – states that typed terms reduce or are values.
For example:

` t : T ⇒ ∃t′.t→β t
′ ∨ value(t)

1The `symbol is taken from Frege’s Begriffsschrift [Frege, 1879]. It signifies a judgment
a ` b, and reads b is provable from a.

2Also known as Subject Reduction.
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The two parts act together in an inductive fashion, guaranteeing that nothing
can go wrong. This proof approach is especially well-suited for small-step op-
erational semantics and has played a major role in their renaissance [Plotkin,
2004].

4.4 The Binder Problem and its Solutions

The binder problem is so fundamental that it is regularly overlooked when
reasoning about a language. The binding of variables is the most basic
property of languages like the λ calculus, extending to almost any calculus
in use today. Binders are the concept that gives a variable its role in a term.
Examples for binder is λx. x – the variable x is bound by the binder λ.

Formalizing binders in a way beneficial for reasoning is one of the fun-
damental problems in language theory. It is the cornerstone of the well
established POPLmark challenge. The problem3 revolves around the con-
cept of α conversion. Logically, meaning structurally and semantically, the
two terms λx. x and λy. y – in this example the identity function – are
completely equivalent. However, the variables bound by the binder in each
term have different names, meaning that classical equality can not catch the
actual equality of the terms. However, α conversion, one of the three basic
conversion relations, states that any bound variable can be renamed.

To actually reason about a calculus, it is desirable to have a represen-
tation able to decide where terms differ in the variable names only, i.e. are
equivalent up to α conversion. In order to maintain the ability to reason,
a formalization has to keep the problem space small. Thus, α conversion
and issues arising from the handling of binders are mostly ignored in pencil
and paper proofs, despite being a fairly common source of errors [Kleene,
1962]. Regardless of the question regarding its correctness, this laissez-faire
attitude is not an option in interactive theorem provers.

There are several commonly used concepts [Aydemir et al., 2007] to han-
dle binders and α equivalence, we will present those that were considered:
De Bruijn Indices, Nominal Logic and Locally Nameless Variables.

One concept that we cannot present in detail here is the use of Higher Or-
der Abstract Syntax (HOAS) [Pfenning and Elliott, 1988; Ciaffaglione et al.,
2003] 4. HOAS uses a higher order representation of the studied language
– called object language – to abstract over the binder problem altogether.
That is, the binders of the logical framework are used for the object language
in the form of a shallow embedding. This provides a high level of abstraction

3Another commonly mentioned problem is the possible ambiguity of variable names.
This can be overcome by clear precedence of binding.

4Strictly speaking, de Bruijn indices are an implementation of HOAS.
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that removes much of the complexity associated with binders. This approach
seems very promising. While we feel that the concept’s existence is worth
mentioning, we do not consider it suitable for this thesis.

We do not mention the theoretically possible explicit handling of names
– manually proving α equivalence and the Barendregt condition, as the over-
head imposed on proofs is prohibitive and in most cases beyond the techni-
cally feasible. This is thus by no means a complete list, but a selection of
the approaches considered feasible in the state of the art research.

De Bruijn Indices

De Bruijn Indices [Bruijn, 1972] are probably the oldest established solution
for representing variables, as well as the most commonly used. They go
back to the automath project [Bruijn, 1991], one of the earliest forays into
computerized proofs. The basic idea is very straightforward: Instead of
using names to identify variables, the distance to their binder is used. In
essence, the name of the variable is replaced with its place in the structure
of the term, completely eliminating explicit names and thus α conversion.
To illustrate the concept, consider the following term:

λx. λy. xy

As one can see, it applies the second abstraction’s parameter to that of the
first. An equivalent term would be as follows:

λy. λx. yx

The beauty of de Bruijn indices is that the two notations both yield the same
representation:

λ. λ. $1$0

In the de Bruin representation, the variable bound by the outer λ abstraction
(x in the first, y in the second term) is replaced by the distance to its binder,
which is 1 – there is one more binder (λ) between the variable and its binder.
The second variable is bound in turn by the abstraction directly in front,
with no further abstractions. Hence, it yields the index 0. Also note that
the binder, the abstraction, no longer mentions the name of the variable
bound; the indices encode that information in the variable identifier itself.

This solution to α conversion by removing names is the simplest initial
approach for handling the binder issue. There are two major downsides of
using this solution. The first is that the removal of variable names makes
it harder to read the resulting terms. While named variables can be traced
easily, it can also be very difficult to keep track of a variable replaced by its
index. The following – tiny – example will show this issue:

λx.(λy.xy)x
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which translates to:
λ.(λ.$1$0)$0

The example is simple: The outer abstraction’s variable is used as the argu-
ment of the inner abstraction’s, which in turn applies the outer abstraction’s
variable on its argument. λx. xx would be an equivalent notation. In the de
Bruijn representation, it is hard to see that the two instances of $0 do not
refer to the same variable, but that, in fact, the inner $1 and the outer $0
do.

The other problem with this approach is that the simple basics enforce
a rather complex handling of terms. As the structure of a term changes
in the process of its evaluation, the indices have to be updated. This is
largely marginal in the case of the λ calculus, but quickly leads to problems
in larger examples. Namely, an operation “ lifting” is used to increase the
indices of free variables when required. The readability of this process is
further harmed by the very concept of de Bruijn indices: There is no visible
difference between bound and free variables; just a – seemingly – arbitrary
threshold with bound variables under and free variables above it. Handling
lifting is, as problems go, not difficult in nature, but sometimes counter-
intuitive and it introduces a major overhead in the formalization of many
advanced theories.

The use of de Bruijn indices has another notable side-effect: It is possi-
ble to express terms that are not expressible in the normal λ calculus, for
instance λ. $4. There is only one abstraction, so any variable index greater
than $0 is meaningless, including the index $4. On the flipside, it is also
impossible to express a direct counterpart to the term λx. y using de Bruijn
indices. Thankfully, these cases do not correspond to meaningful λ terms
and can be ignored assuming a simple notion of well formedness.

Nominal Logic

Nominal logic is a relatively new approach for reasoning with named vari-
ables, spearheaded by Pitts [2003]. This approach has been implemented
in an extension [Urban, 2008] for the Isabelle/HOL theorem prover. The
advantage of using nominal techniques is the ability to express the basic
lemmas about variables in a notation almost identical to the one used for
the λ calculus on paper. Variables can be treated almost naturally, without
introducing an unexpected abstraction. The nominal package provides the
required infrastructure for reasoning in the form of nominal datatypes. Nom-
inal datatypes realize α equivalence classes, so that the rules for equations
like λx. x = λy. y are available.

The downside to the approach is in part the very novelty of the concept:
The extension of Isabelle/HOL for nominal logic has not yet reached the
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maturity of Isabelle/HOL itself and is – despite undeniably fast progress
– not yet established to the point where it supports the full feature set
of Isabelle [Berghofer and Urban, 2007]. Notable items missing from the
nominal package are the ability to use functions as parts of datatypes and –
even more importantly – the code generation facilities.

The latter limitation essentially removes the nominal approach – Is-
abelle’s being the only advanced implementation – from the consideration,
especially as it is generally possible to find a bijection between terms in
nominal and de Bruijn representation.

Locally Nameless

The increasingly popular Locally Nameless [Aydemir et al., 2008] [Char-
guéraud, 2009] approach builds upon the idea of using indices for bound
variables and names for free variables. Locally nameless, incidentally already
mentioned by de Bruijn [Bruijn, 1972] personally, encodes that idea into a
dynamic binder concept. As mentioned before, free variables in a term are
represented as names, much like variable names in classical formalizations.
On the other hand, binders are used just as they are with de Bruijn indices:
They do not indicate the name of the variable they bind. The seemingly
paradox situation of having named variables but binders oblivious of the
names of “their” variables can be resolved by having a look at the mechanics
of the locally nameless representation.

To understand the intent of using the locally nameless approach, it is
important to first understand that names are not used to allow the reason-
ing about human-readable terms. It is more the case that the approach is
intended to provide human-readable proofs, i.e. it does not lead to prettier
terms, as a term in a formalization using a locally nameless variable rep-
resentation is virtually indiscernible from one in a de Bruijn indices based
formalization. The actual motivation in using the locally nameless approach
is to simplify the internal bookkeeping in the case of substitution, i.e. to
avoid the constantly changing variable identifiers throughout the reduction
of a term using de Bruijn indices. In fact, the solution does not require “in-
dex juggling”, but provides variable identifiers that remain constant under
substitution. As a result, locally nameless offers a solution for α conversion,
variable shadowing and the complexity of de Bruijn indices, but not one for
“pretty” variable names.

Towards that end, the locally nameless approach is footed on a few as-
sumptions. The first assumption is that there are always “fresh” variable
names, i.e. names that are not used by any other free variable in the same
term. With this in mind it is possible to introduce the two operations unique
to the locally nameless approach: The opening and closing of terms.
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Opening opens a term for analysis; it introduces free variables for a given
binder’s bound variables. Formally it takes a variable index i, a name x and
a term t. The operation, {0 7→ x}t – also written tx, as the initial value of
i is 0 – is defined as replacing a bound variable i with a free variable of the
name x. An important restriction to this is that x may not occur in t, as
that would cause an incorrect capture. For every binder that is traversed, i is
incremented by one. In the following example, $i indicates a bound variable
with the index i, while free variables are marked only by their names:

(λ.λ. $0 $1)x

={0 7→ x}(λ. λ. $0 $1)

=(λ. {1 7→ x}λ. $0 $1)

=λ. λ. $0 x

Opening replaces the variable bound by the outer abstraction with the free
variable x. Note that the operation does not introduce a name for the vari-
able bound to the outer abstraction, i.e. it remains as λ. instead of the
λx. that might have been expected. The resulting term is no longer closed.
Closing is, under the assumption that opening used a fresh variable, the re-
ciprocal action of opening, replacing free, named variables again with bound
variables identified by structural indices.

The question arises, stated intent aside, where the benefits of locally
nameless materialize and furthermore how the system’s variables are sup-
posed to work at all. The concept of indices is well established and hardly
new for most people who had some exposure to the internals of language the-
ory. The names in the locally nameless representation are a different kind
of concept and deceivingly similar to classical variable names. This question
has to be answered by research, whether there is a real benefit in using the
locally nameless representation.

4.5 Induction

Induction as the main method for performing proofs about structural for-
malizations is the second big challenge particular to mechanizing languages.
Its role is to provide an infrastructure for performing proofs on the formal-
ization. It might seem surprising to find such a well established principle in
this compilation, but induction is an essential part of formalizing languages
and the POPLmark challenge [Aydemir et al., 2007].

As languages are usually defined as sets of inductive definitions and
datatypes, induction is the tool of choice to use in proofs. For induction
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to work properly, an induction schema has to be provided, ideally without
explicit user input by the proof assistant. However, this is not as trivial as
it may seem, as language formalizations tend to employ novel approaches,
not necessarily covered by the automatic mechanisms for the generation of
induction schemas. Common examples where induction can pose an issue
are the aforementioned binders; providing and maintaining the generation
of induction schemes is one of the challenges requiring a formalization of
binders not directly recognizable to people used to paper proofs. However,
even in relatively conservative extensions, it can become very challenging to
derive meaningful induction schemes from the basics provided by the proof
system. For example, we use more than ten different induction schemes in
our formalization, which requires finding the right induction for each proof
– a step that is both error-prone and time consuming.

4.6 Code Generation

The final step in a language mechanization is the ability to extract code
from the formalization. This code promises complete correctness regarding
the properties proven on the formalization. Being obviously specific to the
domain of interactive theorem proving – or at least computer aided reasoning
– this marks the step where classical formalizations and mechanizations di-
verge completely. It is also a step that is frequently seen as the biggest reason
for using interactive theorem provers in language development in particular
and formal systems in general.

Not just because of that importance, but certainly accelerated by it, the
field of code extraction is important to the communities around provers.
Some theorem provers are natively aided by their logic in this extraction
process, notably Coq, due to its underlying calculus of inductive construc-
tions. Others, notably Isabelle/HOL, employ a transformation algorithm
that generates executable code from the constructive elements of definitions
and proofs in proven transformation steps [Berghofer et al., 2009]. Nonethe-
less, it can be argued that the code generation abilities of Coq are superior
to those found in Isabelle/HOL, solely based on the merits of using a con-
structive logic.

Regardless of the proof assistant used, the challenge to yield a usable pro-
gram from a mechanization is non-trivial. This is due to technicalities on the
one hand: It is generally only possible to yield executable code from a subset
of the syntactic abilities provided by a theorem prover. A non-constructive
proof in Coq is not suitable for code-generation, as is the unbounded use of
quantifiers or nominal logic in Isabelle/HOL. In both languages, significant
steps are being taken to provide the code generation for more constructs
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[Berghofer et al., 2009] while also improving the performance [Lochbihler,
2009] and usability of the generated code.

Even with all of the advances, code generation usually leaves a bridge to
gap. The formalization – and mechanization – calls for certain deviations
from the pure paper-based calculus and logical simplifications. Examples are
the removal of variable and method names in favor of numeric names or even
de Bruijn indices. Other examples for deviations from paper proofs encom-
pass changes in syntax and encoding to ease the manipulation in the proof
environment. Regardless of the various pressing reasons of these changes,
the code generated will include them as well, which is usually not intended.
While numbers can serve as names for an educated reader willing to invest
the work, this cannot be expected of “normal” users. Even more, sometimes
the generated objects are not printable or take a shape not even remotely
similar to the original formalization on paper. To overcome these cosmetic
issues, further work is required to make the results of code generation usable
– either in the proof assistant itself to add the required bridges for input and
output, or as manual shell around the generated code.

The practical use of code generation in language design is the extraction
of prototypes for interpreters and type checkers. In the broader field of
theorem proving, code generation is starting to evolve into a discipline of
software development, where the programs are entirely developed in a formal
environment. The recent presentation of a compiler for a subset of C realized
entirely in Coq [Leroy, 2009] is a popular showcase item for that trend.

Summarizing this chapter, we gave a list of six parts required for formal-
izing a language in a theorem prover. The first half of these were classical
and certainly known to the vast majority of users: The essential syntax and
semantics are a core concept across a large number of fields. The second half
presented topics of a nature more specific to mechanized language theory.
The handling of binders rarely is of importance outside of language theory,
but is a fundamental consideration when designing a calculus, especially a
mechanized calculus. The topic of induction is natural for a calculus, but
rarely important for a practical handling of languages, the final topic of code
generation is solely important for mechanized approaches.

This part presented the context for the remainder of the thesis: The tools
to be used, the problems to solve, the related work and the vocabulary of
the domains. More specifically, we gave an introduction to Aspect Orienta-
tion and the preliminaries of language (meta–)theory in interactive theorem
provers. These preliminaries are the building blocks from which we assemble
our aspect-oriented core calculi in the following part.
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Part II

ςAsc – Its Syntax, Semantics
and Mechanization





CHAPTER 5

An Untyped Calculus with Aspects

This chapter introduces the first version of the mechanized aspect calculus.
The following chapters will extend the calculus to address the fundamental
issues of modularity, typing and subtyping in the design of aspect-oriented
languages.

To present the design the AOP calculus, a number of basic design fun-
damentals must be first established. The foremost step for the calculus
concerns the formal foundation to use. There are three principal calculi that
are commonly used for the formal study of advanced language concepts. The
oldest and most widely known is the λ calculus [Barendregt, 1984]. While
the λ calculus is certainly a viable foundation for almost any scenario, it is
very cumbersome to embed Object Orientation into the calculus. Consider-
ing that the aim of this thesis is the study of aspects in an object-oriented
context, it is desirable to use a native object-oriented calculus instead.

There are two established calculi for reasoning about object-oriented sce-
narios: The ς calculus [Abadi and Cardelli, 1998] and Featherweight Java
[Igarashi et al., 1999]. Either of these calculi is object-oriented and thus
well-suited for the scenario at hand. The ς calculus is very small, a trait
beneficial for reasoning, especially when extending a calculus. Its structural
type system allows for a very direct reasoning about types. By contrast,
Featherweight Java is a functional subset of Java, i.e. every term in Feath-
erweight Java is also a Java program. This introduces a rather cumbersome
nominal type system into the calculus. Even more importantly, by using a
subset of Java, possible results lose generality, as they are linked to Java.
This thesis is intended to cover a broader base than just Java based lan-
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guages. As a result, the much more versatile ς calculus was used.. The
different calculi are presented in greater detail in Section 2.2.

The next important consideration is the style of the aspect extension.
The survey in Section 3 already showed that two basic approaches exist:
The use of introducing explicit labels to abstract over joinpoints on the one
hand, and the approach of using method names on the other. The latter ap-
proach is aimed at achieving a close relation with AspectJ, but adds a layer
of complexity and ambiguity, which is prohibitive for strict reasoning. This
is due to names being not necessarily unique. The former approach abstracts
from the actual pointcuts by assuming labels to be present, greatly simpli-
fying the reasoning at the cost of strict obliviousness. For this work that
aims at establishing a strictly proven base for aspects, the former approach
was taken, as it can simulate the latter without excessively increasing the
complexity of the model.

This first step of adding aspects to the ς calculus, presented in this chap-
ter, is based on the simple, untyped ς calculus. The aspect extension ςASC
is straightforwardly implemented on the very lean ς calculus.

5.1 Formalization of the Basic Calculus

The formalization of the new calculus follows a very natural design. Our
basic concept is to use the established ς calculus as a basis and adding
just as much as is required. This has the benefit of allowing us to rely on
the known properties of the calculus and thus focus on the added features.
We execute the mechanization as a conservative extension, i.e. it does not
introduce any axioms and does not alter the internal logics of Isabelle/HOL.
Moreover is designed in the style of a deep embedding [Boulton et al., 1992],
i.e. the calculus is entirely formalized in Isabelle/HOL, but does not rely on
the logic of Isabelle/HOL itself. For instance, the substitution is defined as
a function on terms and does not use Isabelle’s substitution.

The new calculus shares the basic syntax of the ς calculus, but is enriched
by a new constructor for the representation of labels. These labels mark
joinpoints in the calculus, i.e. places where aspects can act. The next section
will introduce this concept in detail. Bear in mind that the ς calculus is
entirely functional in its nature. The basic syntax for the new, basic calculus
can be expressed as shown below.

a, b ::= x (Variable)
[mi = ς(x)bi] (Object, li distinct, i ∈ 1..n)
a.m (Method Invocation)
a.m⇐ ς(x)b (Method Update)
l〈a〉 (Aspect Label)
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The mechanization of the basic object construct is particularly challeng-
ing and requires some preliminary theories. Objects in the ς calculus are lists
of labeled methods written as [li = ς(x)bi]

i∈1..n. The mathematical construc-
tion most closely resembling this idea is a map, a simple function mapping
names to values – or in this particular case, names to methods. However,
objects have a finite number of methods and thus only values – methods – for
some names. Isabelle/HOL’s logic – HOL – is a logic of complete functions,
i.e. it is not possible to express functions in general and methods in particu-
lar that are only defined for some names from the domain of possible names.
To overcome this, a technical workaround is used: Instead of mapping names
to methods directly, names are mapped to an option type. This option type
has two constructors: None and Some x. The former constructor signifies
that that the map has no entry for the name, i.e. that there is no value
defined for the key supplied. Conversely, the latter constructor signifies that
there is a value defined for the name in the map and it wraps that value.
To access the wrapped value, the function the is used: the (Some x) = x.
This technical encoding satisfies the totality requirement, as the map itself
is defined for any name given as input – the option type abstracts over the
partiality. Another important function in this regard is the domain function
dom, which yields the set of names for which a value is defined in the map.

Initially, maps might look like a perfect fit for the representation of ob-
jects. Their built-in option workaround allows a good representation of the
concept of ς objects in Isabelle/HOL. For the mechanization however, the
solution is not yet satisfactory. The domain of names is infinite and not
generally inductive. Nonetheless, as described in Section 4.5, it is desirable
to use induction as proof principle for language theory. Thus, imposing an
inductive structure over the map type is a requirement for using maps in
the mechanization. We use a novel concept to resolve this impasse: Finite
Maps. Our finite maps are based on the map construction, but differ in an
important detail: They are defined on a finite domain of names. This use
of a finite carrier domain allows us to derive an induction scheme for the
finite maps, based on the induction over finite sets. The general principle is
very straightforward: If a condition holds true for the empty map and after
adding an entry to a finite map, then the proposition is proven.

Using these finite maps, the syntax is expressed as a datatype In Is-
abelle/HOL:

Definition Syntax of ςAsc

datatype sterm =
Var nat

| Obj "Label -~> sterm" type
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| Call sterm Label
| Upd sterm Label sterm
| Asp_Label nat sterm ("_〈 _〉")

This mechanization corresponds to the classic syntax, but has a few sub-
tle alterations. Foremost is the addition of the Asp_Label constructor to
accommodate our concept of aspects. In addition, the technical aspects of
mechanizing the calculus require a number of further changes to the calculus,
such as the inclusion of finite maps.

The very first constructor, Var for variables uses a natural number in-
stead of a name or similar approach. This is due to the use of de Bruijn
indices for the representation of variables. Using de Bruijn indices, as intro-
duced in Section 4.4, means that variables are identified by the distance to
their binder. This completely abstracts from names, removing α conversion
completely. At the same time, it leads to a somewhat complicated definition
of substitution, that will be introduced later in this section. The next sig-
nificant difference is the shape of the constructor for objects. The notable
change – the addition of a type annotation needed later – does not change
the primitive semantics and will be explained when we introduce typing in
the next chapter. The non-presence of a ς notation in the syntax is a design
decision of the calculus; method bodies are not discernible from other terms,
removing one constructor.

The object constructor uses the finite maps introduced above. It uses
a finite map for lining method implementations to their names, allowing us
to maintain induction. Note that all objects share the same finite carrier
domain of possible method names. The remaining constructors are direct
representations of their ς equivalents.

Isabelle/HOL generates induction, case distinction theorems and estab-
lishes fixpoints for datatypes automatically, which in most cases are sufficient
for most tasks. However, in our case, the use of finite maps in the datatype
required the manual definition of an induction scheme, as the scheme pro-
vided by Isabelle/HOL was not practical. This step alone would have been
less viable with normal maps, as the usable induction scheme is built on
the one for finite maps, which in turn relies on the well-foundedness of fi-
nite maps. Automatically generated schemes would create the cases solely
for the Some y and None cases of the map, not taking the finiteness of the
datatype into account. By using the advantages of the finite maps, we were
able to derive a schema that uses the much more intuitive cases f(∅) and
J(Pf) ∧ l /∈ dom fK ⇒ P (f(l 7→ t)), similar to the well-known induction on
lists which uses cases for empty list and the appending of one more element.

The use of de Bruijn indices is a decision that was neither easy nor uncon-
tested and has been revisited countless times throughout the development.
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Advantages of de Bruijn indices are the maturity of the concept and the
sheer simplicity of dispensing with names completely. Moreover, a trans-
lation from terms using named variables to one using de Bruijn indices is
entirely feasible [Bruijn, 1972]. Since the early stages of the project, we have
been investing considerable effort in examining the various solutions to the
binder problem (see Section 4.4). One of the most promising concepts was
the Isabelle/HOL extension for nominal logic [Urban, 2009], then not part of
the Isabelle distribution and highly experimental. After correspondence with
the author of the nominal package, it was concluded that the use of func-
tions – finite maps – in the datatype was beyond the abilities of the nominal
logic package. As a result, de Bruijn indices were adopted as the principal
representation for binders and used for the remainder of the project.

Our realization of the de Bruijn indices is very straightforward. Two
situations act as binders, the first being the Obj constructor, the second
being the argument of the update – i.e. the new method body. In either
case, the current self object is represented by the index ’0’. The substitution
on ςAsc terms is defined as a primitive recursive function as shown below:

primrec
subst :: "[sterm, sterm, nat] ⇒ sterm" ("_[_’/_]")

and
subst_option :: "[nat, sterm, sterm option] ⇒ sterm option"

where
"(Var i)[s/k] = (if k < i then Var (i - 1)

else if i = k then s else Var i)"
|"(Call a l)[s/k] = (Call (a[s/k]) l)"
|"(Upd a l b)[s/k] = (Upd (a[s/k]) l (b[(lift s 0)/(k+1)]))"
|"(Obj f T)[s/k] = let

(t = λ l.(subst_option (k+1) (lift s 0) (f l)))
in (Obj t T)"

|"(asp_label〈 t〉)[s/k] = asp_la〈(t[s/k])〉"

|"subst_option n s None = None"
|"subst_option n s (Some t) = Some (t[s/n])"

Informally described, t[s/k] replaces all occurrences of the variable with the
index k with s in t. The formal definition is, as shown above, slightly more
complicated for two reasons. The first is the nature of the datatype we used
to model the objects. Objects use a finite map, which is a partial function,
while HOL is a logic of total functions. To overcome this, the partiality of the
map is encoded by assuming that the map is a total function, pointing to an
option datatype. This means that for parameters in the domain of the map,
the result is Some value, where value is of the type sterm. For parameters
outside the domain, the result is None. To handle this, the substitution
function uses a λ expression to roll the function application over all methods
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of an object. In turn, this λ application needs a mutually recursive function
with the substitution proper to handle these option values. The option cases
are handled by the subst_Some and subst_None bodies. None is skipped, as
nothing cannot contain variables. In the case of Some, the function is applied
to the payload.

The second reason for the substitution being somewhat more complicated
than one would expect are the de Bruijn indices. Upon substitution, the
indices in the terms have to be adjusted to meet the structure of the term.
This restructuring involves the reduction of all variables greater than one
to be substituted by one, indicating that the binder was removed as we use
substitution as invocation. Another factor is that the index to be substituted
gets increased at each binder passed, reflecting the nature of the de Bruijn
indices. Adjusting variables in the terms to be substituted, is the second,
more complicated part of index handling1. It is realized in a function called
lift, which is defined as shown below:

primrec
lift ::"[sterm, nat] ⇒ sterm"

and
lift_option ::"[nat, sterm option] ⇒ sterm option"

where
"lift (Var i) k = (if i < k then Var i else Var (i + 1))"

|"lift (Call a l) k = Call (lift a k) l"
|"lift (Upd a l b) k = Upd (lift a k) l (lift b (k + 1))"
|"lift (Obj f T) k = Obj (λ l. (lift_option (k + 1) (f l))) T"
|"(lift (i 〈t〉) k) = (i 〈(lift t k)〉)"
|"lift_option k None = None"
|"lift_option k (Some t) = Some (lift t k)"

Lifting is applied to binders upon substitution, or more directly, whenever the
substitution operator moves within the scope of another binder. This is to
keep the indices in the term to be substituted consistent, as one variable can
– and will – have different indices depending on the position of its usage in
the term. Informally, lifting adapts all variables in the term to be substituted
to the structure, i.e. by increasing variables by one for each traversed binder.
That is, a variable that has the index 0 at the initial root level has the index 1
behind a binder, 2 behind another binder and so on. Consider this example:

Obj ( foo 7→ ς Var 1)[bar/0]

The variable 0 is to be replaced by the term bar. The substitution operator
passes the binder Obj, resulting in

1Juggling comes to mind.
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Obj ( foo 7→ ς Var 1[bar/1])

Which yields the expected:

Obj ( foo 7→ ς bar)

The variable 0 at the initial level is identical with the variable 1 inside the
binder Obj and has to be adjusted accordingly. Now, consider this slightly
different example:

Obj ( foo 7→ ς Var 1)[Var 0/0]

The substitution substitutes the variable 0 with the variable 0, i.e. the
correct expectation is for the substitution to have no effect. Now the role of
lifting becomes obvious.

Obj ( foo 7→ ς Var 1[Var 1/1])

When passing the binder, the term to be substituted was lifted, incrementing
the variable count, which again yields the expected result:

Obj ( foo 7→ ς Var 1)

This only affects the variables that are bound at the level of the initial binder;
variables belonging to binders within the term are unaffected. As we use de
Bruijn indices, the barrier between bound and unbound variables is solely
marked by a numeric threshold and not obvious from looking at the variables
themselves. An important fact to remember is that the self variable has the
index 0 inside a method’s body, as the substitution happens on the body
instead of the object.

With substitution defined it is possible to continue to the next step and
introduce the operational semantics for the basic calculus. Following Plotkin
and Felleisen [Plotkin, 1981; Wright and Felleisen, 1992], we use small step
operational semantics, as these ease later type-related proofs and also lend
themselves naturally for mechanization. In Isabelle/HOL the rules are writ-
ten in a slightly different, but similar notation. The fundamental Beta rule
shall serve as an example:

J l ∈ dom fK =⇒ Call (Obj f T) l →Asc the(f l)[(Obj f T)/0]

From here on, notation throughout this thesis follows the standard notation
for inference rules. Axioms, i.e. rules without premise, are shown without a
bar. The form is:
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Example
premise

conclusion

Axiom
axiom

The rules defining the reduction relation in Figure 5.1 use this notation. See
the Appendix A for the original Isabelle/HOL version. To introduce the

Beta
l ∈ dom f

Call (Obj f T ) l→Asc the(f l)[(Obj f T )/0]

Upd
l ∈ dom f

Upd (Obj f T ) l a→Asc Obj (f (l 7→a)) T

SelL
s →Asc t

Call s l →Asc Call t l
UpdL

s →Asc t

Upd s l u →Asc Upd t l u

UpdR
s →Asc t

Upd u l s →Asc Upd u l t
Obj

s →Asc t l ∈ dom f

Obj (f(l 7→s)) T →Asc Obj (f(l 7→t)) T

Asp
s →Asc t

l〈s〉 →Asc l〈t〉

Figure 5.1: The inductive definition of the reduction relation.

general principle of these rules, it is important to remember the finite maps
mentioned above and in particular the encoding of partial functions by using
the option type. The operator the selects an element in the option datatype
when it is defined, i.e. unequal to None. Similarly, the function dom yields
the domain of a (finite) map, i.e. all arguments which are not mapped to
None.

As the next step, the relation itself is realized as an inductive predicate,
which encodes the least closed set that satisfies the rules. These rules can be
read as: If the precondition is met, then the two terms in the conclusion is
valid. In our case, all conclusions have the form s→β t, meaning (s, t) ∈ β,
which means s reduces to t in one step. The complete definition is depicted
in Figure 5.1.

Most importantly, the first rule – beta – encodes the very core of the cal-
culus, as it expresses method invocation. In this rule, the substitution [(Obj
f T)/0] replaces the self parameter for the outermost variable – which al-
ways has the index 0 – in the object’s field labeled with l – f l. This is the
general mechanism for method invocation in our calculus. In other words,
the invocation of a method is performed by replacing the self parameter of
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the called method – which always has the index 0 – with the enclosing ob-
ject. This principle to represent function application by substitution is, in
the following section, used again for weaving aspects. Remember: Due to
the functional nature of the calculus, there is no difference between a copy
of the term and the actual object. Thus, the rule for update simply replaces
the old term with the new one and yields the resulting object. Context re-
duction is realized in the next four rules: selL, updL, updR and obj. These
cases add the reduction of subterms inside objects and statements. Finally,
the rule Asp adds the groundwork for our conservative extension to the core
calculus. It allows the reduction inside labeled terms.

Throughout this thesis, we use the notation s→Asc t to indicate that the
term s reduces to the term t in one step. A derivative relation of the single-
step reduction is the transitive, reflexive closure of the normal reduction
relation, s →∗Asc t. This notation indicates that s and t are either identical
or that s reduces to t in an unknown number of steps. →∗Asc also establishes
equivalence in respect to β conversion, i.e. s→∗Asc t implicates that s and t
are terms representing an equal value.

A formal benefit of mechanizing operational semantics in Isabelle/HOL
is that the system automatically proves fixpoints and other important prop-
erties, yielding a mathematical object describing the semantics.

5.2 Adding Aspects

We extended the basic ς calculus to include aspect-oriented features, as
shown in the preceding section. The main objective was to preserve the
complete problem without including unnecessary detail in the formal model.
As a result, we decided to use a minimalistic definition of aspects as entities
consisting of one pointcut and advice.

The most important design decision regarding the aspects concerns the
base program rather than the aspects themselves. Specifically, the way join-
points are realized in a functional calculus in a fashion allowing modular
reasoning is of key importance. We decided to use the approach pioneered
Ligatti et al [Ligatti et al., 2006] of introducing explicit labels into the base
language that identify the possible joinpoints. Whether this harms the obliv-
iousness ideal of Aspect Orientation is a question of philosophical nature.
From a pragmatic perspective, we argue that the labels can be inserted into
the base program by a mechanism maintaining obliviousness. More precisely,
it is not unrealistic to assume that a high-level compiler inserts the labels.
Even more, labeling can be exhaustive, i.e. every possible subterm can be la-
beled, leading to a much finer granularity than in “real” oblivious languages.
Following this train of thought, we state that labeling does not harm oblivi-
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ousness in any substantial way. However, on the flip-side, labeling does allow
explicit reasoning about subexpressions in a term. This ability to identify
all instances where an aspect might act, even if the set of these instances is
entirely abstract in nature, allows a much stricter linking of base and aspects
for reasoning. Text-based patterns offer no stable base for reasoning, as they
are volatile in nature and can break by simple renaming. This is why we
argue that removing names from their extra semantics – just as we did it for
variables – is not just valid, but even desirable2.

Building upon the labels in the term, the realization of aspects follows
naturally. We see aspects as pairs of pointcut and advice, as shown in Figure
5.2. Pointcuts are simply realized as lists of labels; if a given label is in the
list, the advice applies to the expression so marked. This simple concept
is decidable, allows the application of a given aspect several times and ab-
stracts completely from the original base program. The concept for advice
is similarly simple: A function written in the calculus itself is the core of
the concept. Normal methods in ςAsc use Var 0 to refer to their direct self-
variable, encoded as de Bruijn index. Aspects, or more precisely advice, use
the V ar 0 as their base variable. Weaving then invokes the aspect – if the
aspect is applicable – just as method invocation would. The base variable
is replaced with the term marked by the label; the result replaces the orig-
inal marked term. There are three dimensions to the consideration of

Aspect︷ ︸︸ ︷
{[lab1, lab2, ...]︸ ︷︷ ︸

Pointcut

; λx.fx︸ ︷︷ ︸
Advice

}

Figure 5.2: A ςAsc aspect

this concept. The most obvious question concerns the removal of labels. As
labels have no semantics in the primitive reduction relation, they will stop
the evaluation of a program. Thus, labels must be removed after weaving is
complete. This leads to the second question: When is weaving completed?
Removing labels during weaving is not an option, as more than one aspect
might be woven to a label or a single aspect more than once. Hence, removal
must occur in a dedicated step after the completion of all weaving. This is
performed by a delabel operation, which is part of the extended semantics
of the calculus. The final question evolves around the traversal of terms.
An aspect might be applicable within itself or deeper inside the joinpoint
already under consideration. Hence, the weaving operation has to traverse

2As stated before, we do not think that this reduces the expressive power of the calculus.
We could have used the method labels as names for pointcuts, but that would have limited
the calculus. Using labels introduces a finer granularity of possible joinpoints and a less
volatile way of reasoning. Labeling all methods according to their name would be trivial.
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the complete term. This means that it may not stop when reaching a label,
but continue the weaving inside the labeled subterm. As traversed labels
remain in place, they have to be removed during the reduction.

Our simple formalization of weaving, as shown below, has a number of
advantages. It is easy to understand and formalize, yet powerful enough to
simulate different approaches to aspect orientation. This simplicity is made
possible by the approach of using explicit joinpoint labels, i.e. the approach
of assuming that pointcuts were already resolved by another tool.

primrec
weave :: "[ sterm, aspect ] ⇒ sterm"

and
weave_option :: "[ sterm option, aspect ] ⇒ sterm option"

where
"weave (Var n) a = Var n"
|"weave (Call s l) a = Call (weave s a) l"
|"weave (Upd s l t) a = Upd (weave s a) l t"
|"weave (Obj f B) a = Obj (λ l. (weave_option (f l) a)) B"
|"weave (l 〈 t 〉 ) a = (if (l mem (pc a)) then

(l 〈 (adv a)[(weave t a)/0] 〉 )
else

(l 〈 (weave t a) 〉 ))
|"weave_option None a = None"
|"weave_option (Some t) a = Some (weave t a)"

5.3 Properties of the Untyped Calculus

Confluence

Even the untyped core calculus has a number of remarkable properties that
simplify the analysis. An important example is the confluence of the base cal-
culus’ reduction relation, i.e. the determinism of the evaluation. A graphical
representation of the Church-Rosser property is given in Figure 5.3.

Theorem 5.3.1 (Confluence of the Reduction)
s→∗Asc t1 ∧ s→∗Asc t2 =⇒ ∃t′.t1 →∗Asc t′ ∧ t2 →∗Asc t′

The proof of the Church-Rosser property re-uses parts of a proof frame-
work for proving the Church-Rosser theorem for the λ calculus by Tobias
Nipkow [Nipkow, 1996]. This framework shows confluence not by embedding
the calculus in the – confluent – λ calculus, but uses instead the classical
approach as per Barendregt [Barendregt, 1984].
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Figure 5.3: The diamond predicate.

Following the outline of Nipkow’s proof framework for the λ calculus,
we were able to re-use some of his theorems, most notably the diamond
predicate and the final predicate shown below.

Theorem 5.3.2 (Confluence Directly)
confluent rpar ∧ r ⊆ rpar ⊆ r∗ −→ confluent r

Using this sketch, we define a parallel semantic relation s ⇒Asc t, i.e.
an operational semantic half-way between big-step and small-step for the
calculus. Then we show that the new relation is greater than →Asc, i.e:

(s→Asc t)→ (s⇒Asc t)

This means that any pair (s, t) which is part of →Asc is also in ⇒Asc. The
next step then establishes that→∗Asc is in turn greater than the newly intro-
duced parallel reduction: ⇒Asc, i.e.

(s⇒Asc t)→ (s→∗Asc t)

In effect we thus show that the transitive closure of ⇒Asc is identical to
the transitive, reflexive closure of →Asc, i.e. →∗Asc. The complete parallel
reduction relation can be seen in Figure 5.4.

The idea for using this in-between relation is the concept that it is suffi-
cient – and much easier – to show the confluence of an arbitrary relation, if
that relation is between the confluent single-step reduction relation and its
transitive, reflexive closure.

Thus, we show the confluence of our parallel reduction relation, which
we have shown to be larger than the single step reduction and smaller than
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l〈s〉 ⇒Asc l〈s′〉

Figure 5.4: The inductive definition of the parallel reduction relation.

the transitive, reflexive closure. From this result, it is possible to show the
confluence of the original reduction relation βAsc by using the framework.

As a result, we were able to prove the confluence of the base calculus, i.e.
the label-enriched ς calculus.

Aspect Compositionality

For the aspects, we were able to derive a closely related property: A concept
of aspect compositionality [Kammüller and Sudhof, 2008b]. Aspect composi-
tionality is the answer to an important question regarding weaving. Weaving,
the process of combining aspect and base code, can be implemented at differ-
ent times throughout a program’s lifecycle. The classical idea is compile time
weaving, i.e. aspects are woven into the program by the compiler. However,
newer developments are leading towards load-time or run-time weaving in
order to allow the treatment of aspects and base programs as independent
modules.

Our notion of compositionality answers that question: There is no differ-
ence between compile time and run-time weaving for compositional aspects.
Figure 5.5 shows the concept: For a compositional aspect A, the final re-
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Figure 5.5: Aspect Compositionality

sult is not influenced if a term t is first reduced to t′ before an aspect is
introduced, or if the aspect is woven first and the reduction applied later.

The theorem showing this also hints at one minor difference. While t
reduces to t′ in one step, it might take more than one step for t ⇓ A to
reduce to t′ ⇓ A. This is because the aspect might introduce additional
operations that make the one-step reduction not applicable, as they require
several additional steps to reduce to the same term.

Theorem 5.3.3 (Compositionality of Aspects)
justoneFV A ∧ t→Asc t

′ =⇒ t ⇓ A→∗Asc t′ ⇓ A

The predicate justoneFV states that the aspect has just a single free vari-
able. Conceptually, this free variable is the base variable used to access
the advised subterm upon weaving. This is noteworthy, as the condition
justoneFV is not directly related to typing. However, we are able to show
that any well typed aspect satisfies the condition in Chapter 6.

5.4 Expressivity of the Plain Calculus

We argue that this simple first step can simulate a large number of aspects
in a modular fashion. Modular, in this case means that the aspects are not
linked to the base program and are not written in the same term, but in a
distinct entity. Our calculus achieves this, as weaving is realized using labels,
with the aspects and the base program being separate prior to weaving.
There are three questions to be taken into account when considering the
possible aspects. The first and most obvious observation is that the calculus
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is entirely functional and has no mutable state. One aspect can be woven
at several places in a program, but it cannot share a global state for all
these instances. Thus, the calculus is for instance unable to realize a stateful
observer. We do not consider this to be a significant limitation, as the safety
of an aspect does not depend on its state, but rather on the possible actions
an aspect can perform on the base term. I.e. the expressive power of an
aspect is the main interest of the calculus.

The second question to be asked regards the role of the labels. While
the labels themselves do not influence the semantics of the base calculus,
it can be seen that they carry potential semantics, these being the possible
actions of an aspect. Therefore, it could be argued, that the addition of labels
jeopardizes the Obliviousness property of Aspect Orientation. We reject that
argument with two simple thought experiments. The idea that labels harm
Obliviousness is based on the perception that labels are added at precisely
the points intended for aspects. This is a limited view on the matter; for on
one hand, we have to treat any place where an aspect might act regardless of
the actual presence of an aspect, as we are striving to reason about Aspect
Orientation – so this does not pose a distinction between a labeled and
a label–less3 approach. On the other hand, it is important to remember
that there is an infinite number of label identifiers, so that it is easy to
envision a function that labels every single possible joinpoint (method bodies,
method invocations, ...) in the base program. Such a process would not
impede on Obliviousness, as the base program is not altered in any semantic
fashion. Then, another function could translate lexicographic pointcuts into
label sets; there is related work using this approach in real-world scenarios
[Avgustinov et al., 2007]. This shows, that the label approach is able to
embed the label-less approach and thus more powerful. As a result of this
thought experiment, we see no limit posed to our calculus by labels, especially
considering that they provide a much cleaner theory.

The role of dynamic poincuts has to be considered as the third and
final point. Dynamic pointcuts are pointcuts employing dynamic conditions,
including the control flow in the program, boolean conditions and similar
factors. It can be argued that our approach to reasoning, performed under
the assumption that pointcuts were already resolved, does not offer a feature
directly comparable to dynamic pointcuts. Avgustinov et al. have presented
an approach for the static handling of aspects [Avgustinov et al., 2007] by
inserting labels according to the static evaluation of AspectJ pointcuts. We
believe that the considerations expressed there also apply to our calculus:
It is possible to resolve a significant subset of so-called dynamic pointcuts
statically. This is especially true for boolean conditions – which can be
handled in the advice – and for many cases control flow conditions. Finally,

3Such approaches use existing method labels, so that they are rather label-reusing,
than label-less.
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and most importantly, we intend our calculus for reasoning about safety and
security considerations. We thus do not lose expressivity by assuming that
any dynamic pointcut is evaluated to be true, as we have to assume that
it did already for modular safety reasoning. However, we concede that this
approach to dynamic pointcuts does contradict some of the goals initially
formulated for the calculus. Nonetheless, we feel that the simple calculus’
ability to handle dynamic pointcuts not dependent on mutable state is a step
towards safe aspects.

This first state of the calculus has no means to restrict the power of
aspects, thus it is entirely possible to formulate aspects that render the term
in an "stuck" state. Clearly, the main interest is in aspects that are benign,
i.e. not harmful to the evaluation of the base program. Hence it is clear
that extensions of the calculus have to address two questions, namely which
aspects can be rejected and what effects this has on the set of expressible
aspects in the calculus. The following chapter will expand on this question
by introducing means to discern aspects beyond their compositionality.

In summary, we have introduced the basic formalization and mechaniza-
tion of an extended untyped ς calculus in this chapter. We also introduced
a minimalistic notion of aspects and established how such aspects interact
with base programs in a form of weaving. As a contribution to the research
in mechanized meta-theory, we have performed a case study to show how the
language semantics of the ς calculus can be expressed with different variable
representations. We also formally proved the Church Rosser property for
the base calculus, establishing the determinism of our semantics. Finally, we
discussed the implications of the calculi’s design and thus laid the ground-
work for the extensions of the ςAsc calculus to be presented in the following
chapters.



CHAPTER 6

Modular Types for Aspects

Building upon the calculus developed in the previous chapter, we now unveil
our concept of typing for the base calculus and aspects. The type system
presented in this chapter allows the modular typing of aspects and also guar-
antees strong type safety for the calculus as a whole.

While we can express aspects with the untyped approach, we have one
glaring problem: There is no way to statically determine whether an aspect is
safe for a given program or not. That is, a-priori, the validity of the addition
of an aspect to a term is entirely unknown. This is an unsatisfactory state,
calling for means to statically decide whether a given aspect can b added.
A type system is a viable way of encoding a notion of correct behaviour
into a language statically, i.e. all terms that are typable do not lead to
certain error situations. Modularity is another key design fundamental for
our type system: We believe that aspects and base programs should to be
typable independently of each other. This belief is rooted in the claim that
aspects are modules. It is a core requirement for modules to be independently
checkable with clear error locality.

The need for a sound type system for Aspect Orientation can be eas-
ily motivated. As an example, we revisit the initial example for soundness
concerns in Aspect Orientation. Figure 6 shows the example from the In-
troduction. The aspect asp overwrites the method test of type Test with
a method of type String. This results – in AspectJ – in a run-time error,
falsely stating the first call to test as the error location. By the standards
applied to mainstream programming languages, this is an obvious type error
that would be caught during compilation. In this case, the error is made
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worse by the breached error locality – it is in an aspect, but acts in the base
program – and the untyped nature of the pointcut – another method test of
another class might work without any issue. A sound type system for aspects
would prevent such situations from occurring by catching such oversights at
compile time.

public class Test
{

public Test test()
{

return this;
}

}
public aspect asp

{
Object around() : call(* *.test(..))
{

return "oops";
}

}

Figure 6.1: Example for typing issues in AspectJ.

The major problem when designing type systems is caused by the sur-
prising complexity of the problem. Any new construct in a language can
introduce unforeseen dependencies and many languages saw their type sys-
tem proven inconsistent. For this first evolutionary step in the typing of the
calculus, we introduce a type system in the tradition of the simply typed
λ calculus, i.e. a simple first-order type system. This type system is then
extended by adding the so-called “width subtyping” [Pierce, 2002].

6.1 Simple Types

The concept of a type system is the ability to check a program for execution
errors statically. There are three variables in the concept, the most obvi-
ous being the concept of an execution error. What conditions constitute
an error is open to interpretation, but has to be defined when creating a
type system. The second such variable is the strictness of the type system.
While a type system can be unsound, i.e. allow certain error conditions to
manifest regardless of typing or not consistently detecting such conditions,
it is clear that a rigorous approach calls for a strict and sound system. Last,
but certainly not least, the power of the type system is to be considered.
While a type system can guarantee the absence of execution errors, it is a
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common side effect that it will reject some programs that would not have
caused an error. This set of falsely rejected terms can be reduced through
type systems with more flexibility, for instance by introducing concepts like
subtyping. However, there is the limitation that higher order type systems
are not generally decidable, i.e. using too powerful constructs can reduce
the applicability. We cannot allow unsoundness in a type system intended
for a formal calculus, and cannot risk undecidability if we want to maintain
a connection to the practice of Aspect Orientation. Thus, a classic first or-
der – simple – type system in the tradition of Church’s λ calculus [Church,
1940] based on Russel’s theory of types [Russell, 1908] is the most promising
answer[Hindley, 1997].

For the ς calculus, the standard simple type system is the original type
system by Abadi and Cardelli [Abadi and Cardelli, 1998]. Compared to the
λ calculus, the type system is on the one hand very similar, but on the other
hand much more complex. The complexity stems from the self-referencing
structure of objects.

6.2 Formalization of Basic Types

The system we adapted operates without primitive types; its only type is
that of object. This is a result from the ς calculi’s idea that everything is
an object, comparable of the notion that everything is a function in the λ
calculus. As a result the type datatype uses a finite map to relate labels to
types – just like the object constructor in the term datatype wraps a finite
map to map labels to terms. The following recursive Isabelle/HOL datatype
defines the possible types.

datatype type = Object (label 7→ type)

The actual type of a given term is thus a nested structure that looks very
much like an object. We consider this type system to be structural, as
equivalence of types is solely based on equivalent structure [Pierce, 2002].
There is no condition stating that different names for types break equality1.
This also means that there is not just a superficial similarity between objects
and types. In fact, a type is structured exactly like the objects belonging to
it.

At this point, we introduce a few terms for use with our types. As a
type is very similar to the objects belonging to it, it is important to keep the
terms used separate. Specifically, a type is conceptually a specification of
the instances it describes. Types are composed of labels mapped to features,

1Note that different method names do break equality.
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where the labels are the same method names used in the objects, but instead
of mapping to the method body, they are mapped to the type of the method
– its specification. We call a named type inside a type feature. All instances
– i.e. all objects typable with the type – of a given type are its members or
member instances. It is important to remember the two different directions of
decomposition possible here, the set-theoretical and the structural one. We
use members for objects belonging to a type and features for specification
details of the type – for instance methods. The typing judgments as shown

Var
x < |E| Ex = B

E,L ` Var x : B

Call
E,L ` a : B l ∈ dom B

E,L`Call a l : Bl
Obj
dom b = dom B ∀i ∈ dom B. E〈0 : B〉, L ` bi : Bi

E,L ` Obj b B : B
Upd
E,L ` a : B l ∈ dom B E〈0 : B〉, L ` n : Bl

E,L ` Upd a l n : B
Lab
E,L ` a : B i < |L| Li = B

E,L ` i〈a〉 : B

Figure 6.2: The typing judgments for the labeled ς terms. Note how L is
used in the Lab rule.

in Figure 6.2 are written as an inductive definition, similar to the operational
semantics given by→Asc in Chapter 5. Following the usual syntax of typing
judgments, the ternary typing operator E,L ` t : A can be read as “in the
environment E,L the term t has the type A”.2 Moreover, the environment
can be extended by adding variable-type mappings to E with the operator
〈〉. For instance, E〈0 : A〉, l ` t : B reads: In the environment E with the
variable 0 having type A, the term t has the type B. Environments are
realized as a stack, automatically increasing the index of all entries after the
insertion by one, in accordance with the behavior of variable indices due to

2 This notation is based on Frege’s Begriffsschrift[Frege, 1879], but is now the generally
accepted notation for typing judgements.
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de Bruijn indices and scopes. The unary dom function returns the domain
of a finite map, which is in turn a finite set.

To represent the lookup in a map, we use indices, for example Bl. I.e., for
a given finite map B and a label i, Bi yields the entry in B associated with
i, if there is one. The operators dom and lookup are overloaded to allow
their application on ς types as well as on the maps wrapped by ς objects.

Based on these notations, we can continue to introduce the typing judg-
ments. The rules are very straightforwardly interpreted as follows.

• The var rule for typing variables has to be read as “if the variable
is bound then the expression’s type is the one referenced in the vari-
able environment for that variable” – all bound variables have types
associated with them in the environment.

• The Call rule for typing method invocations asserts that the callee
is well-typed and that the method is declared in the callee’s type.
If so, the resulting type is the one found in the callee’s type for the
particular method. In this rule the similarity of objects and their types
is particularly obvious.

• The Obj rule for objects is notable, as we enforce conformity with
the type annotation in the rule, linking syntax and typing. This move
differs from the classic ς formalization and enables us to formalize
objects in a stricter way. The actual rule states that the domains,
being the notation for the existing fields/methods, of the object and
its annotation have to match and that all methods of the object have
to be well-typed under the assumption that the variable 0 – the self
variable – is of the object’s type.

• Similarly, the object update Upd rule asserts that the object to be
updated is well typed and that the method/field to be updated is
defined in its type. Moreover, the new value for the method/field has
to be well typed assuming self – 0 – to be of the updated object’s type.

• Unlike the reduction relation, the labels are first-class citizens in this
type system. To type labels, we introduced a new environment L,
which maps labels to types. Lab, the corresponding typing judgment,
enforces that a given label may only be used to mark terms identically
typed. Label environments are of particular importance when it comes
to the well-formedness of aspects.
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6.3 Typing for Aspects

We added aspects to the base calculus in Section 5.2 as a minimalistic con-
struct to capture the problem space. These aspects are not part of the base
term and are in fact modules in their own right. It is a key contribution of
this thesis to present a type safety notion for aspects that maintains their
modularity while still being strong enough to prove type safety for the base
term. Towards this end, we already introduced the realization of aspects as
a non-invasive extension to the base calculus.

We see the major feature of this approach in its simplicity and the nearly
complete decoupling of aspects from the base in the definition of weaving and
in the type system. This in turn allows us to treat aspects as independent
modules, while still being able to guarantee static type safety. Modularity
is also evident in the proofs: The proofs of type safety reduce to a theorem
that shows that weaving preserves types [Kammüller and Sudhof, 2007a].

The typing of aspects is realized by a condition wf_asp:

Definition Aspect Well Formedness

wf_asp LT 〈pc, adv〉 ≡df
∀ l∈pc. []〈0: LT!l〉, LT ` adv: LT!l

It states that an aspect has to be well-typed respective to an interface L.
More precisely, it expresses that for each label in the aspect’s pointcut, the
advice is of the type listed in the environment for that label, if the aspect’s
self parameter was of that type. The function application is indicated by
assuming 0 to be of the type given by the label environment at some point
l and thus fixing 0 in adv accordingly. This guarantees that an aspect’s
replacement of the original labeled expression conforms to the same type.

In other words, the result of weaving an advice has to conserve the type
under the label. A notable benefit of this approach is that the condition is not
based on a particular base-term, but is entirely based on L, which can be seen
as generic interface. Another added benefit is the indirect instantiation of the
label type using all labels in the pointcut via L. This allows polymorphism
of aspects, as the typing is checked against a set of types.

Thus, the – for instance – application of aspects without base effects is
possible on any marked term, as such advice would be typable for any base
type. Moreover, as the condition wf_asp is part of the typing constraints, we
also prove the decidability (using a primitive recursive predicate) to guaran-
tee static aspect typability.

So far, we have described how aspects are typed using wf_asp, but have
not introduced the system that combines the base typing and the aspect
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typing. The interface L is in fact the same construct that is used for typing
terms in the preceding section, as in E,L ` t : A. More precisely, the rule
for typing labels relies on L being present in the type environment, as shown
in the Lab rule of Figure 6.2.

This use of the environment establishes that a label is only used with
subterms of a given type in the base calculus, just as it is used to limit the
types an aspect is allowed to return. The two type statements are combined
in a final well-formedness predicate, as shown in the definition below. The
predicate states that the base program has to be typable with the empty
variable environment using the same label environment LT as the aspect.

Definition Compatibility of Base and Aspect Types

wf LT 〈pc, adv〉 t ≡df wf_asp LT 〈pc, adv〉 ∧ ∃ T. [],LT ` t : T

Using this strong definition of aspect typing, we are able to prove that
weaving of well-typed aspects always yields well-typed programs. This means
that both type safety theorems remain valid, when well-typed aspects are
woven.

We thus are able to statically describe a strong and modular typing
definition for aspects without requiring a concrete base program. More im-
portantly, we are able to prove static type safety for our typing of aspects.

6.4 Properties of the Typed Calculus

We were able to show a number of properties for this simple type system.
The first property is the uniqueness of types, which means that each term
has at most one type. This is a property very helpful for reasoning, as type
identity can be derived directly if a term has two types.

Theorem 6.4.1 (Uniqueness of the Type System)
E,L ` t : T ∧ E,L ` t : T ′ =⇒ T = T ′

The more important property is type soundness. Following the Felleisen
approach of defining type soundness as subject reduction and preservation,
the proof splits into two theorems. The first theorem, Progress, states that
any well-typed term reduces; i.e. if a term is typable, then it is either a
value or it can β reduce in one step to another term. In the ςAsc calculus,
we consider objects to be values. An necessary addition to the theorem was
added in the form of the delabel operation. Delabel is used in the theorem
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to remove all aspect labels from a term, acting as the final step of weaving.
Just like the labels themselves, the operation is transparent w.r.t. typing
[Henrio et al., 2007]. Our approach to the proof of type soundness deviates
from the original proof for the ς calculus [Abadi and Cardelli, 1998], as it
does not rely on an outcome function.

Theorem 6.4.2 (Progress)
E,L ` t : T =⇒ ∃t′. (delabel t)→Asc t

′ ∨ t = (Obj f T )

Progress is complemented by another theorem, Subject reduction. Sub-
ject reduction states that if a term reduces to another term, then that re-
sulting term has the same type as the original.

Theorem 6.4.3 (Subject Reduction)
E,L ` t : T ∧ t→Asc t

′ =⇒ E,L ` t′ : T

The two parts of type soundness are inter-meshing, forming an induction
over the system. If a term is well-typed, then there is another term that
it reduces to (Progress). As the original term reduces to another term, the
reduction result has the same type as the original term, thus it is well-
typed – subject reduction stays applicable, thus does progress. It is easy
to see how this combination encompasses the whole system. Thus, we have
formally proved the type soundness for the basic type system. While the type
system is sound, it does not enforce normalization, unlike the simply-typed
λ calculus. This means, that even a well-typed term can diverge.

One question remaining is the soundness of the aspect typing, which we
could prove by two slight variations of the theorems shown above. The big
advantage of using a construct L to separate the typing of aspects from the
typing of the base application is the modularity that this approach yields. A
base program can be typed just as an aspect would without any link between
the two – a notion of aspects that is very much sought after in the real world.
Even more importantly, we were able to extend the formally established type
soundness to aspects. The important factor is the label environment L that
connects aspect and base types [Kammüller and Sudhof, 2008a, 2007b].

Theorem 6.4.4 (Aspect Progress)
wf_adv L A ∧ E,L ` t : T
=⇒ ∃t′. t ⇓ A→Asc t

′ ∨ delabel(t ⇓ A) = delabel(Obj f T )

Theorem 6.4.5 (Aspect Subject Reduction)
wf_adv L A ∧ E,L ` t : T ∧ delabel(t ⇓ A)→Asc t

′

=⇒ E,L ` t′ ⇓ A : T ∧ E,L ` delabel(t′ ⇓ A) : T
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Both of these theorems are results of the stronger proposition that weav-
ing well-formed aspects produces well-typed results. Together they firmly
establish that weaving and our notion of aspect typing are sound.

Even more importantly, we were able to prove that well–formed aspects
are compositional by showing that the type system enforces all premises for
compositionality as defined in Section 5.3. Thus we are able to prove that
all well-typed aspects are well behaved w.r.t. weaving. The theorem below
merely pronounces the fact, as the compositionality of typed aspects can be
derived from the soundness of the type system.

Theorem 6.4.6 (Well-typed Aspects are Compositional)
wf_asp L A ∧ t→Asc t

′ =⇒ t ⇓ A→∗Asc t′ ⇓ A

Thus we were able to introduce a type system for Aspect Orientation
that while treating aspects as individual modules, still guarantees strong
type safety.

6.5 Extending the System for Simple Subtyping

As we have shown in the preceding section, types in ςAsc are unique. I.e.,
every term has at most one type. While this is actually a useful property
to have for a type system, it also is quite obvious that the expressivity of
the type system does not allow any kind of polymorphism and is thus very
limited.

A step to relax the strictness of the type system is the addition of subtyp-
ing, which adds the well-known “is-a” polymorphism to the calculus. Intu-
itively, subtyping establishes a hierarchy on types, where types lower in the
hierarchy – more special – express that their members offer properties com-
patible with all the types higher up in the hierarchy. This hierarchy is called
the subtyping relation, <:. In nominal systems, like Java, this subytping re-
lation between two types is established by creating an explicit link between
two types. By contrast, structural type systems like the one presented here,
this relationship is established merely by the structure of types.

To include subtyping in the calculus, we extend ςAsc to ςAsc<: by adding
basic subtyping.

Width Subtyping

The most important property when considering a subtyping system is the
guarantee that any feature present in a given supertype is also present in
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any subtype. To properly allow subtypes, the type system must allow sub-
sumption, i.e. any term typable with a given type must be typable with all
supertypes of that type. There are two orthogonal ideas of subtyping: Width
and depth subtyping. The former uses the idea that larger types are more
special, the latter that types with more special members are more special.

A B<:

Figure 6.3: Width Subtyping: A and B are identical in all shared features,
but the more special A is larger.

For straightforward subtyping, width subtyping is a viable step to achieve
an easy-to-use formalization of subtypes that adds itself to the type system
naturally. Figure 6.3 explains the concept of width subtyping: For two
types to be in a subtype relation, they have to be identical in all their shared
members, but the more special type can have more members. The subtyping
relation for this style of subtyping is predictably simple, an important factor
as it simplifies proofs and thus makes this approach a viable test bed for
concepts with subtypes. Its sole rule, as shown in Figure 6.4, is that all
type members of the more general type also have to be present in the more
special type. The relation is a partial order, i.e. is transitive, reflexive and
anti-symmetric. Moreover, it is easy to see that the empty type – Object ∅ –
is the most general type. It is thus the top element of the subtyping relation
and the shared supertype of all types – including itself.

Sub
∀l ∈ dom(B) Al = Bl

A <: B

Figure 6.4: The subtyping relation for width subtyping.
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This subtyping relation is compatible with the type system shown in
Figure 6.2 in Section 6.2, so that only very few changes were required for
the typing relation. Notably, the rules needed extension to allow for a more
special type than required for fulfilling the premise to be present. Example
6.5 uses the Call rule; all other rules were changed accordingly. The premise
was amended by A <: Bl and the conclusion now states that the term has
the type A instead of the original Bl.

Call Orig
E,L ` a : B l ∈ dom B

E,L`Call a l : Bl

Call Width Sub
E,L ` a : B l ∈ dom B Bi <: A

E,L`Call a l : A

Figure 6.5: The original Call rule (left) and the one adapted for subtyping
(right).

With this altered definition, we can prove that the system establishes
subsumption.

Lemma 6.5.1 (Subsumption)
A <: B ∧ e, L ` t : A =⇒ e, L ` t : B

The presence of the subsumption property extends the flexibility of the
base calculus and the aspect typing enormously. Where the original type
system required a label to match the type in the label environment exactly,
it now suffices that the labeled term is typable as a subtype of the original
entry. On the aspect side, an aspect can now replace the original type with a
more special type, i.e. can alter the base term more drastically and can store
information in extra fields. Here a major strength of the formalization comes
to bear: As the aspect typing and the term typing are completely modular,
the aspect type system gained the added expressivity almost without changes
to itself. Merely being based on a more powerful base type system extends
the capabilities.

Properties of the Calculus with Width Subtyping

Compared to the plain type system, we lose the type uniqueness property
for an obvious reason: Subsumption establishes that all terms typable as T
are also typable as any supertype of T . All other properties, most impor-
tantly the soundness of the type system, the aspect typing and the aspect
compositionality stay valid, although requiring new proofs for all properties.

A notable effect of the relaxed type system is that it adds considerable
power to well-typed aspects. Aspects can now be applied not just to la-
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bels of a given type, but also to any labels having a subtype thereof. This
is especially important considering the typing judgment for aspects, which
states that the type under the label has to be preserved. By accepting sub-
sumption, this automatically means that the type under the label can be
specialized, i.e. the aspect can replace the original term with one of a more
special type. This adds an axis of variance to the calculus, the importance
of which will become obvious in the following chapter.

Summarizing this chapter, we have introduced a simple type system for
the extended base calculus and mechanized said system. We then presented
a modular concept for typing aspects that is able to type aspects without
restricting them to a particular base program, while also guaranteeing strong
safety properties. On that basis, we formally proved the soundness of the
type system and of the aspect-oriented extension and weaving. We then
showed that the type system establishes aspects to be in that class. In a
final step, we extended the system to include a simple notion of subtyping
while maintaining all important properties of the former incarnation, most
importantly type soundness and the compositionality of aspects.



CHAPTER 7

Subtyping and Variance Issues

The ςAsc<: type system removed some of the strictness of the original type
system presented in Chapter 6, while maintaining type soundness and other
important properties of the calculus. However, the system is not yet able to
capture many of the typing issues found in real-world aspect-oriented lan-
guages. The reason for this is that the simple subtyping created by adding
width subtypes is not as powerful as the subtyping found in object-oriented
languages like Java: It lacks variance. This chapter introduces an extended
version of the calculus, which adds the expressivity required to model situa-
tions such as the example shown below.

public class Point {
public Point test() {

return this;
}

}
public class ColoredPoint extends Point {

public ColoredPoint test() {
return this;

}
}

public aspect asp {
Object around() : call(Point Point.test(..)) {

return new Point();
}

}
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Here, the pointcut of the aspect includes the method test of all instances
of the class Point and its subclasses. However, the subclass ColoredPoint
redefines the return type of that method, which leads to a situation where
advice that would be type safe for Point instances is no longer type safe
for instances of ColoredPoint. This violates the golden rule of subtyping
and subclassing [Pierce, 2002, Chapter 15], namely that an instance of a
type is a member of all the supertypes of that given type as well. A non-
uniform handling of instances of supertypes and subtypes is the result, which
contradicts the modularity expected in modern languages.

To express such situations, the calculus needs a more powerful notion of
subtyping, one able to capture issues like variant return types or parame-
ter types instead of the pure width subtyping introduced in the preceding
chapter. This is because – as shown in the example – type errors manifest
when a subtype has a method of a different signature than the supertype,
something not possible in width subtyping. In order to accommodate such
re-definitions involving variance situations, we extend the system to allow
depth subtyping, i.e. a concept of subtyping where related types do not vary
in their size only, but also in the types of their features. The result is an
extension of the calculus. This time, the extension is twofold. First, the
calculus itself is extended to allow method parameters, then the type system
is extended to include depth subtyping.

7.1 Variance Problems in Subtyping

The situation shown in the opening of this chapter is a classical variance
issue [Pierce, 2002]. Specifically, the redefinition of a method’s signature in
conjunction with an aspect leads to an inconsistency in the type system,
making it unsound. This is not an unprecedented development, since the
early days of Object Orientation, new features were known to add variance
issues.

The arguably most famous variance issue stems from the early days of
class based subtyping. In the language Eiffel, it is allowed1 to re-define
method parameter types in a co-variant fashion, in line with the expectation
many developers have regarding subtyping [Cook, 1989].

To explain the underlying issue, we use the established approach to show
the four possible variances when re-defining a method. For theoretical pur-
poses, we can assume a method to be a function. Based on that, the type of
the method parameter2 is the function’s domain, and the method’s return

1The typing issues were not limited to parameter types and the language still allows
this. The dispute surrounding the Eiffel type system is ongoing.

2Multiple parameters can be seen as a vector and do not change the scenario.
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type the function’s range. Figure 7.1 shows the basic four variance scenar-
ios, ignoring invariance where neither domain nor range change. The set on
the left hand side contains two nested subsets; the middle subset represents
the domain of the original function. A nested subset is a set more special
than the original, an outer set is more general. Conversely, the range/return
type of the function is expressed by the set to the right, with the outmost
set being more general than the original return type and the innermost set
being more special.

Compared to the original method, shown in the center, the return value
can be either from a more general type (a) or from a more special type(b).
The same applies to the parameter types (c)(d).

a) Contravariant Return

b) Covariant Return

Original Method

c) Covariant Parameter

d) Contravariant Parameter

Domain/Parameter Range/Return

Figure 7.1: The possible variance scenarios when re-defining a method.

However, not all of the options a) to d) lead to consistent results. Re-
membering the rule of subtyping that any member of a subtype has to be
conforming to all supertypes of that subtype, it is easy to identify the allow-
able cases. For a redefined method, any scenario where the original method
was used has to still be valid. This means that returning a more general type
(a) cannot be valid, as the more general result would not be compatible with
scenarios where features of the more special original type are expected. The
same applies to Eiffel’s feature of allowing more special parameter types (c).
As the redefined method has to accept all parameter values that are accepted
by the original method, requiring a more special type does not guarantee vi-
able results either. The other two variance situations (b)(d) lead to working
programs, however, and are generally referred to as “conform”. A return
value can be more special, as a return value of a more special type could
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still be used in any static scenario; more general parameters still allow for
all the parameters that the original method accepts. Figure 7.2 summarizes
the concept of a conforming re-definitions. From now on, we will refer to
methods with more special return types and more general parameter types
as being “more special”. Conversely, a method with a more general return
value and a more special parameter value is “more general”. Note that the
terms are selected to match the terms used for types so that a more special
type is composed of more special features. Logically, it could be argued that
the terms should be reversed.

 

Figure 7.2: Conforming subtyping for methods.

The variance issue in Eiffel, as introduced above, is a very clear-cut ex-
ample for a typing issue caused by the inclusion of variance into a type
system. There, the only variance involved was the redefinition of a method,
for which the conforming redefinition introduced above constitutes a clear
solution. However, as shown in the motivating example, there are cases3

where more than one concept of variance applies, leading to an unexpected
variance situation.

Generally speaking, it is an accepted observation that additional degrees
of freedom in a programming language’s type system are not guaranteed
to be compatible, regardless of their individual soundness. If two or more
mechanisms allow for a variance to happen at the same point, the result can
be assumed to be inconsistent, unless proven otherwise. This conservative
notion stems from a pronounced lack of compositionality in typing concepts.

Specifically, aspects on their own can soundly4 replace methods with
more special methods. On the other hand, the soundness of the conforming
redefinition of methods in subtyping is a well-known fact. However, the
combination of these two orthogonal means of redefinition does not yield a
sound result, as we have seen from the motivating example at the beginning
of this Chapter, where both features were used in combination.

3The invariance for references of references in C++ is the result of another example.
4AspectJ not being type sound in that regard is not due to the impossibility of soundly

solving the issue – see Section 6.5 – , but rather a design flaw in the AspectJ type system.
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7.2 Extending the Calculus for Depth Subtyping

The ability to establish a subtype relation with signature changes is known
as “depth subtyping”. To add depth subtyping to the calculus, another lim-
itation has to be overcome. As shown in the preceding section, the plain
ς calculus is not well suited for subtyping involving the variance of method
types. The reason for this is not a fault, but its very simplicity: The plain
calculus, as used up to now, does not support method parameters. Thus,
some extended re-engineering is required to introduce method parameters,
so that these parameters can be affected by variance.

The ς calculus, and thus ςAsc<:, does not discriminate between methods
and fields of an object. Both can be equally written to and the passing
of parameters is entirely handled by the means of storing the parameter
values in a field first. Considering that the type problems in aspect-oriented
languages often are founded in incorrect handling of method parameter types,
it is desirable to formalize such parameters in the calculus. Furthermore, the
type system as presented in Chapter 6, restricts the access on fields of the
same object, meaning that it is still very hard to pass parameters to functions
– width subtyping relaxed the system to a degree, but not enough to express
method passing naturally. To be able to reason about variance issues in the
calculus, we introduce a method parameter into the basic calculus. This
is an established step for enriching ς calculi, which allows reasoning about
method parameters.

In Isabelle/HOL, the extension of the variables to accommodate param-
eters was formalized by introducing a new kind of variable, splitting the
variable constructor into a self case for the classic ς self variable, and a
param case for the parameter. While it might seem that allowing only one
parameter is a limitation, that is actually not the case. The parameter can
be a vector accumulating several values, so that the one variable denotes an
arbitrary number of parameters; passing the empty object corresponds to
passing no parameter.

The additional parameter is realized by introducing a new datatype for
variables and changing the variable case of the sterm datatype accordingly.
Moreover, the Call constructor for the method invocation was amended to
include a parameter. Compare the datatype shown below to the datatype for
ςASC in the definition below. All omitted constructors were kept unchanged.

Definition Syntax of ςAsc<:+

datatype Variable = Self nat | Param nat

datatype sterm =
Var Variable
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...
| Call sterm Label sterm

...

An advantage of introducing the parameter as a new kind of variable is that
variables of either kind can be handled in a single step. For instance, we
defined the substitution in Section 5.1 for a single self variable, so that t[s/0]
replaces the variable with the index 0 in the outmost binding level5 in t
with the term s. As the identifier 0 is no longer unique, but refers to two
variables – one self variable and one parameter variable – one might expect
the introduction of a new substitution function for parameters. However,
this is not necessary. As the variables are always substituted in the same
step – method invocation – and have indices following the same rules, it is
much easier to extend the substitution to handle both variables at the same
time. This is realized by an extended substitution function, t[u, v/0], that is
structured exactly like the original substitution, but employs a new function
for variables. The definition of the variable case is shown below, along with a
stub of the substitution function. For the remaining cases, see the analogous
definition in Section 5.1.

primrec
subst_Var :: "[Variable, sterm, sterm, nat] ⇒ dB"

where
"subst_Var (Self i) a b k =

(if k < i then Var (Self (i - 1))
else if i = k then a else Var (Self i))"

|"subst_Var (Param i) a b k =
(if k < i then Var (Param (i - 1))
else if i = k then b else Var (Param i))"

primrec
subst :: "[sterm, sterm, sterm, nat] ⇒ sterm" ("_[_,_/_]")

and
subst_option :: "[nat, sterm, sterm, sterm option] ⇒ sterm option"

where
"(Var i)[s,t/k] = subst_Var i s t k"
|"(Call a l b)[s,t/k] = (Call (a[s,t/k]) l (b[s,t/k]))"

...

The value for the parameter variable is included in the same substitution
step. We adapt lift, the operation used for adjusting de Bruijn indices, in
a similar fashion; we leave the details of the adaption as an exercise to the
reader6. Figure 7.3 shows the complete reduction relation for this extended

5Using de Bruijn indices, the index of a given variable increases with each traversed
binder.

6See the Appendix for the solution.
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calculus. Note how the Beta case of the new reduction relation uses the
two-variable substitution.

Beta
l ∈ dom f

Call (Obj f T ) l a→Asc the(f l)[(Obj f T ), a/0]

Upd
l ∈ dom f

Upd (Obj f T ) l a→Asc Obj (f (l 7→a)) T

SelL
s →Asc t

Call s l a →Asc Call t l a
SelR

a →Asc b

Call t l a →Asc Call t l b

UpdL
s →Asc t

Upd s l u →Asc Upd t l u
UpdR

s →Asc t

Upd u l s →Asc Upd u l t

Obj
s →Asc t l ∈ dom f

Obj (f(l 7→s)) T →Asc Obj (f(l 7→t)) T
Asp
s →Asc t

l〈s〉 →Asc l〈t〉

Figure 7.3: The inductive definition of the reduction relation for the ςASC<:+

calculus with parameters.

7.3 Formalizing Depth Subtyping

With the basic calculus now featuring parameters, it might be expected that
the conforming subtyping concept as introduced in Section 7.1 should provide
a sound result. However, aspects and the ς update feature mean that this
expected solution is not applicable without modification.

Example: Naïve Subtypes

To illustrate the problem encountered with subtyping and method updates,
we present this motivating example. The problem encountered is that an
update operation that should be invalid cannot be discovered by the type
system, as subtypes and subsumption can allow the inference of a supertype.
Even with the added method parameters, the calculus is not type safe when
introducing pure contra-variance.

The reason is that the naïve implementation of subtypes, i.e. allowing
return types to be more special and parameter types to be more general,
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as shown in Figure 7.4, would lead to a type error due to the nature of
the ς calculus, which allows the updating of methods. We omit the rules
for the reflexive and transitive closure, they would be identical to the rules
Sub-Trans and Sub-Refl in Figure 7.6. Keep in mind that because of
subsumption an object that is a member of a type is also a member of all of
that type’s supertypes. That means that any operation valid on a member
of the supertype has to be valid on all members of subtypes. This naturally
includes updates and – in our case – aspects.

Sub-Obj
∀l ∈ dom(B)

return(Al) <: return(Bl) Param(Bl) <: Param(Al)

A <: B

Figure 7.4: A naïve subtyping relation.

The following example uses the notation of the ς calculus, which can be
hard to understand for readers unfamiliar with the notation. Methods are
denoted as ς(x, y), where x is the self variable and y the added parameter.
Fields omit the ς(x, y) notation, i.e. are denoted just with their values.
In the example, problems caused by a naïve implementation of subtypes are
showcased by using a well-typed term that nonetheless results in a stuck term
– contradicting the progress property of a sound type system. The key issue
is that any typed term can also be typed with any supertype of its original
type. However, the method update operation is in conflict with that notion,
as a method might be variant and thus have a different signature in a subtype,
for instance accepting more parameters than the original signature. Thus,
updating a method with a new body that is well-typed w.r.t. a supertype
but not the particular subtype, can lead to a stuck program, despite being
within the bounds of the type system.

To illustrate the problem in detail, assume the type ColoredPoint to be
as shown underneath:

ColoredPoint ≡df [color: Color, Void;
get_color : Color, Void;
get_defaultcolor : Color, Void;]

Then assume the object red_point, which is of the type ColoredPoint to
be defined as shown here:

red_point ≡df [color = red;
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get_color = ς(x,y) x.color;
get_defaultcolor = ς(x,y) x.get_color;
] : ColoredPoint

And finally consider this update operation, which updates the method
get_color with a new version that is type-wise and semantically incompat-
ible with the object:

red_point.get_color ⇐ ς(x,y) y;

The original implementation of red_point.get_color does not expect a
parameter other than self7; it just returns the object’s color field. This
does not hold true for the new version, which expects a parameter for use
as return value. Quite clearly, the new method body does not match the
signature for get_color in the type ColoredPoint, as that is Color, Void
– it returns an object of type Color and expects no parameter. Thus, the
resulting object of the update would look like this.

result ≡df [color = red;
get_color = ς(x,y) y;
get_defaultcolor = ς(x,y) x.get_color;
] : Point

With this result, any call to result.get_defaultcolor would become stuck,
as it calls the updated result.get_color without the required parameter.
Based on this, one would expect that the type system rejects the update
operation; it certainly has to do it to be sound.

However, we can construct a supertype of ColoredPoint, called Point
in this example, so that we can type the faulty update operation. Here is a
possible realization of such a type Point:

Point ≡df [get_color : Color, Color;
get_defaultcolor : Color, Void;]

Following the naïve subtype relation, it can be seen that ColoredPoint is
indeed a subtype of Point. The method get_color is replaced with a more

7Strictly speaking, it does require a parameter, but it can be of any arbitrary type,
including the empty object. We thus omit the parameter in cases where the empty object
can be assumed to be the parameter.
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general parameter type – Void, the empty and thus most general type. Ac-
cording to the co-variant relation realized in the naïve subtype relation, this
is allowed. The other method, get_defaultcolor, has an identical signa-
ture in both types and can be ignored in this regard. Now, we can observe
the issue: The new method body from the update operation matches the
signature of get_color in the type Point – it returns a Color and expects a
Color. Hence, the update is legal on an object of the type Point; our object
red_point is of the type ColoredPoint, a subtype of Point. According to
the principle of subsumption, this means that red_point can be treated as
an object of the type Point. Moreover, it is possible to infer the type Point
for the faulty update operation, i.e.

`(red_point.get_color ⇐ ς(x,y) y) : Point

In short, we have constructed an operation that, while perfectly valid for a
true instance of Point, causes an error on our example term, which is of a
subtype of Point, as shown in Figure 7.5.

A‘‘

A

B
A‘

B‘

f : A‘  B

f‘ : A  B‘

<
: <

:

Where we
„believed“ to be.

Where we
„wanted“ to go.

Where we really
were.

B‘‘f‘‘ : A  B‘

Figure 7.5: Variance issue encountered when using a naïve subtype relation.

Summarizing, we have shown how adding contra-variant – and thus gen-
erally assumed to be valid – subtyping harms type safety in our type system.
It was possible to create a typed term that overwrites a method of an ob-
ject with a method that expects a more special parameter type. Clearly, we
have to introduce the means to correctly reject such instances from the type
system.
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Depth Subtyping with Variance Annotations

Considering the example, it becomes clear that the type of the new method
has to be more special and more general at the same time, i.e. A <: B and
B <: A. By anti-symmetry of <:, this would mean that A = B.

One way around the problem presented in the example above would have
been to remove the ability to update methods. After all, method updating
is a feature not commonly found in mainstream object-oriented languages.
However, it is a major feature of Aspect Orientation, thus we decided not to
remove the update operation from the calculus.

Another way would have been to require invariance on methods, effec-
tively removing variance and thus variance issues from the calculus. While
there is precedence for such a step, it is deeply unsatisfactory by any prac-
tical standards – reducing the host calculi’s flexibility is not expected of a
concept striving to add flexibility.

Instead we used the approach of introducing a variance annotation for
achieving type safety and maintain the expressivity needed. The use of a
variance annotation is a tried concept for allowing method updating and
variant subtyping at the same time [Pierce, 2002; Abadi and Cardelli, 1998].
It allows us to implement a clean subtype relation, which requires only min-
imal changes in the structure of the term typing rules. As such, we consider
it a very natural and lightweight solution for achieving static type safety
with non-trivial subtypes and method updating. A more direct approach,
like establishing the most special type for each term in a typing judgment
would have been possible as well. However, such typing rules would risk to
be undecidable and are thus beyond a static type system. They would also
have required major changes to the handling of types, which led us to the
decision of using a variance annotation.

A number of changes to the type system were required to type method
parameters, instead of the original limitation to return values. To support
this, we changed the definition of the type datatype to the definition shown
below:

datatype type = Object "Label 7→ (type × type × bool)"

Instead of the original type datatype, which mapped method labels to types,
the new construct maps method labels to type tuples. The idea behind the
tuples is that the first entry performs the role of the original type, while the
second entry acts as the type for the parameter. Finally, the third entry is
a boolean flag, acting as variance annotation.

Figure 7.6 shows the new subtyping relation. Notice the changes to the
precursors shown in Figure 7.4 and in Figure Figure 6.4.
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Sub-Obj
∀l ∈ dom(B) return(Al) <: return(Bl)

¬variance(Al)→ (return(Al) = return(Bl) ∧ Param(Al) = Param(Bl))
Param(Bl) <: Param(Al) variance(Al)→ variance(Bl)

A <: B

Sub-Trans
A <: B B <: C

A <: C

Sub-Refl

A <: A

Figure 7.6: The co-inductive definition of the subtype relation for depth
subtyping with a variance flag.

Our variance annotation differs from the annotations proposed by Abadi
and Cardelli [Abadi and Cardelli, 1998], as the original ς calculus does not
use explicit parameters. Hence it does not need annotations for parameters,
but instead has to use a three state annotation to encode the different roles
an object member can play (method, parameter, field, ...). We only use a
boolean annotation variance for each member of a type, which either – if true
– allows the conforming redefinition of a method’s type, or – if false – does
not. By this simple mechanism, the annotation enforces that there can be
no inferred type for which a error-causing update operation would be valid.
For updates to be safe, the flag has to guarantee that the new method is
conforming to the original method without knowing the “real”, most special
type of the object to be updated. For fields, i.e. methods with the empty
type as argument type, the flag poses no limitation whatsoever; the empty
type is most general, so any update of fields is not hindered by the flag. The
flag thus defines the exact signature against which to check methods in case
of an update operation, adding the ability to safely change method signatures
in subtypes without removing the unique update feature. It should be noted
that the variance annotation itself is not invariant; a subtype can mark a
method as invariant – and thus updatable – even when a supertype marked
it as variant. However, the reverse is not true. The relation was formally
shown to have all properties of a partial order: Reflexivity and transitivity
by definition, anti-symmetry was proven. Just as with the original relation
for width subtyping, we showed that the empty type is most general, being
the supertype of all types.

A notable change is the environment construct, which now has to accom-
modate both parameter types as well as the original return value types. To
achieve this, we change the definition to match that of the type datatype.
The result is a construct that acts much like the one introduced for the basic
type system, i.e. a stack that holds the type information for each index,
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VarSelf
x < |E| self(E, x) = B B <: A

E,L ` Var (Self x) : A

VarParam
x < |E| param(E, x) = B B <: A

E,L ` Var (Param x) : A

Obj
dom b = dom B

∀i ∈ dom B E〈0 : B, Param(Bi)〉, L ` bi : return(Bi) B <: A

E,L ` Obj b B : A
Upd

E,L ` a : B l ∈ dom B
E〈0 : B, Param(Bl)〉, L ` n : return(Bl) B <: A ¬variance(Bl)

E,L ` Upd a l n : A
Call
E,L ` a : B l ∈ dom B return(Bl) <: A E,L ` b : Param(Bl)

E,L` Call a l b : A
Lab
E,L ` a : B i < |L| Li = B B <: A

E,L ` i〈a〉 : A

Figure 7.7: The inductive definition of the typing relation for depth subtyp-
ing.

following the de Bruijn indices of the variable. Any binder traversed in a
typing judgment introduces an environment altering operation, e〈0 : A,B〉,
where 0 means that the new entry is for the index 0 and that the self variable
has the type A and the parameter variable the type B. The functions Param
and return are used to access the parameter and – respectively – return
type information from a type tuple.

Introducing the variance annotation and the altered constructs into the
type system yields the typing relation shown in Figure 7.7. Note how the
Upd uses the variance flag to reject update operations on variant methods,
removing the variance issue from the base calculus. The relation is naturally
closely related to the relation for width subtyping presented in Section 6.5.
The Call rule was extended to require the parameter to be well typed. Note
that methods not using the parameter can be typed by assuming the empty
type for the parameter. The new relation establishes subsumption, i.e. the
“is a” relation expected of subtypes.

Lemma 7.3.1 (Subsumption in ςAsc<:+)
A <: B ∧ e, L ` t : A =⇒ e, L ` t : B



90 Subtyping and Variance Issues

7.4 Properties of the Calculus with Depth Subtyp-
ing

While the introduction of parameters and depth subtyping extended the
expressivity of the calculus significantly, it was a also a step introducing many
changes to the inner workings. The extended calculus is still confluent, which
was shown in a proof sharing the same basic outline with the one presented
in Section 5.3. The handling of parameters required some alterations of the
proof, but the property could be shown.

Aspect Compositionality, the other core theorem for the calculus with-
out considering types, was also unaffected by the extension of the calculus,
although the proofs needed some adjustment as well.

The soundness of the type system was of far greater interest, especially
considering that a faulty subtyping relation would not yield a sound system.
For instance, the naïve subtypes presented in Section 7.3 lead to an unsound
system. Nonetheless, we were able to show the type soundness of ςAsc<+,
which involved a number of new proofs regarding the handling of parameters
and subtyping of variables. Most of the theorems ended up being significantly
stronger than earlier incarnations, due to the inclusion of subtypes.

Considering the possible variance issues of Aspect Orientation, the most
important result for ςAsc<:+ is that even the soundness of weaving, i.e. the
type soundness for the assembled calculus remained valid. This means that
the aspects benefit from the added variance, but the system is strong enough
to prevent any ill-typed replacement of methods by aspects. We will explore
this discovery in Chapter 9 [Kammüller and Sudhof, 2009b].

Also, even with parameters and depth subtypes, the type system is
still strong enough to guarantee compositionality [Kammüller and Sudhof,
2009b], as it establishes the required justoneFV property.

Thus, we were able to prove all properties of the simply typed calculus
for the calculus with depth subtyping. Exceptions like the uniqueness of the
typing relation come as no surprise, as the nature of subtypes removes such
notions from the calculus. Note that terms still have a most special type
established by the typing annotations at objects. We can thus state that the
variance annotation, together with the modular typing judgment for aspects,
solve the variance issue for Aspect Orientation in a clean fashion.

Summarizing this chapter, we introduced the concept of depth subtyp-
ing and variance in type systems. We showed problems with variance issues
in real-world languages, including the leading aspect-oriented language, As-
pectJ. We further motivated the need for a non-trivial handling of variance
by showing how a naïve realization of depth subtyping results in an unsound
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type system. Building upon these observations, we introduced a sound notion
of depth subtyping, employing variance annotations to remove the unsound
cases from our calculus. Moreover, we introduced explicit parameters and
parameter types to allow the realistic handling of variance. The resulting
type system combined variance and type soundness, allowing us to expand
the capabilities of the calculus significantly, while also proving that a sound
solution for combining aspects and variance exists. Finally, we were able
to re-establish all important properties that were shown for the significantly
more limited calculi in previous chapters.
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CHAPTER 8

Alternative Formalization: Locally Nameless Variables

This chapter marks a detour from the development of the ςASC calculus and
introduces an alternative mechanization. We recommend to skip this chapter
and to continue reading with Chapter 9: Connection to Reality.

As a contribution to the field of language meta-theory, this chapter
presents a direct comparison of the locally nameless [Charguéraud, 2009] and
de Bruijn [Bruijn, 1972] variable encoding approaches. Towards that end,
we formalized the same calculus using the locally nameless representation
(once more, in Isabelle/HOL). We only highlight the differences between the
semantics and their effects on proofs in this section and do not re-introduce
the calculus itself. The first part, showing how the operational semantics
were formalized using the locally nameless representation, is presented in
Section 8.1. The second part of this case study shows the adaption of the
type system in Section 8.2.

The locally nameless representation poses a compromise between the
de Bruijn representation and using names.The concept of locally nameless
variables was previously introduced in Section 4.4. In the de Bruijn repre-
sentation, all variables are represented by numeric indices, signifying their
position in the structure of the term. By contrast, the locally nameless ap-
proach introduces named free variables for all instances that would call for
index manipulation in the plain de Bruijn formalization [Henrio et al.]. Thus,
it is possible to avoid the arithmetic proofs required for dealing with variable
indices in systems using the pure de Bruijn representation.
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To navigate from one variable type to another, there are two main variable-
related operations on terms: Opening replaces bound variables with terms,
combining the actions for the introduction of free variables and substitution.
Closing on the other hand replaces a given free variable with a bound vari-
able, using zero as the outmost binder; with each traversed counter the index
is increased by one.

Based on these definitions, there are two predicates on terms, expressing
basic well-formedness conditions required for working with terms. A term
is locally closed if it has no bound variables pointing to a binder outside it,
i.e. that there are no bound variables without a binder. There is a weaker
condition required for methods in the ς calculus: body, which signifies that
a term is a valid method body, i.e. expects to be surrounded by an object.
The following section will introduce these operations and their applications.

8.1 Syntax And Semantics

The datatype representing the syntax is almost identical to the one for-
mulated for the original version using de Bruijn indices in Definition 7.2,
employing the same constructors for objects, terms, update and call opera-
tions as well as aspect labels. However, the cases for variables are notably
changed to accommodate locally nameless variables. This development is
joint work with our undergraduate student Bianca Lutz [Lutz, 2010]. Just
like the de Bruijn version of the syntax, the constructor for bound variables
– Bvar – can either represent a self or a parameter variable. By contrast,
only one constructor is used for the named free variables. This is because
the free variables are identified by their names, not their position in the
term’s structure. Discriminating between the self and parameter variables
is required to avoid cases where two variables have the exact same position
in the term’s structure. Only numeric indices are affected by that, as names
are required to be unique – fresh –, removing the possibility of such clashes.

datatype bVariable = Self nat | Param nat

types fVariable = string

datatype sterm =
Fvar string

| Bvar bVariable
...

Based on this datatype, we can introduce the operations mentioned above.
The shorthand t[s] is used for {0 −→ [s]}t. Opening combines two key ac-
tions on terms, the first being to replace bound variables with free variables,
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expressed t[Fvar s], and the normal substitution of variables. The realization
in Isabelle/HOL takes the form of a primitive recursive function:

primrec
sopen :: "[nat, sterm, sterm, sterm] ⇒ sterm"

("{_ −→ [_,_]} _")
and

sopen_option :: "[nat, sterm, sterm, sterm option] ⇒ sterm option"
where

"{k −→ [s,p]}(Bvar b) = (case b of
(Self i) −→ (if (k = i) then s else (Bvar b))
|(Param i) −→ (if (k = i) then p else (Bvar b)))"

|"{k −→ [s,p]}(Fvar x) = Fvar x"
|"{k −→ [s,p]}(Call t l a) = Call ({k −→ [s,p]}t) l

({k −→ [s,p]}a)"
|"{k −→ [s,p]}(Upd t l u) = Upd ({k −→ [s,p]}t) l

({(k + 1) −→ [s,p]}u)"
|"{k −→ [s,p]}(Obj f T) =

(Obj (λ l. sopen_option (k + 1) s p (f l)) T)"
|"{k −→ [s,p]}(l〈 t〉) = (l〈{k −→ [s,p]}t〉)"
|"sopen_option k s p None = None"
|"sopen_option k s p (Some t) = Some ({k −→ [s,p]} t)"

The reverse operation for introducing free variables, closing, takes a sim-
ilar shape.

primrec
sclose :: "[nat, fVariable, fVariable, sterm] ⇒

sterm" ("{_ ←− [_,_]} _")
and

sclose_option :: "[nat, fVariable, fVariable, sterm option] ⇒
sterm option"

where
"{k ←− [s,p]}(Bvar b) = Bvar b"

|"{k ←− [s,p]}(Fvar x) =
(if x = s then (Bvar (Self k))

else (if x = p then (Bvar (Param k))
else (Fvar x)))"

|"{k ←− [s,p]}(Call t l a) =
Call ({k ←− [s,p]}t) l ({k ←− [s,p]}a)"

|"{k ←− [s,p]}(Upd t l u) =
Upd ({k ←− [s,p]}t) l ({(k + 1) ←− [s,p]}u)"

|"{k ←− [s,p]}(Obj f T) =
let (f’ = (λ l. sclose_option (k + 1) s p (f l)))
in (Obj f’ T)"

|"{k ←− [s,p]}(l〈 t〉) = l〈({k ←− [s,p]}t)〉"
|"sclose_option k s p None = None"
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|"sclose_option k s p (Some t) = Some ({k ←− [s,p]}t)"

For convenience, we use the shorthand σ[x]t for {0←− [x]}t. Closing intro-
duces bound variables, i.e. variables identified by their position in the term
structure, instead of the free variables matched by the name used on invo-
cation. A pronounced advantage is the ability to express terms in a manner
closely approximating their named equivalent on paper. Consider the trivial
term/method ς(x).x, which yields an object’s self. The de Bruijn equivalent
would be var 0, which is very different. Using the closing operation, we can
write σ[x]. Fvar x, which can be read as σ[x]. x – much closer to the original
paper version. In fact, it would be feasible to use the exact ς(x) notation.

Our introduction of parameters complicates matters to a small degree.
Much like the substitution on de Bruijn terms, we had to extend the opening
and closing operations to handle parameters. Because of that, we use σ[x, p]t
for {0 ←− [x, p]}t, which closes the variable named x with the bound self
variable of index 0 and the variable named p with the corresponding bound
parameter variable. For opening, we use t[x,p] for {0 −→ [s, p]}t, which
replaces the bound variables of index 0 with the terms s and p respectively.

Equipped with these two operations, we are almost ready to formulate the
reduction relation in Locally Nameless style. However, there are a few issues
left preventing us from formulating a meaningful relation. One problem that
arises is that names, unlike structural indices, can conflict. For instance,
opening is only a valid operation if it does not introduce free variables with
a name already used in the term.

Cofinite Quantification

Otherwise, a variable conflict might occur: By instantiating a bound vari-
able with an existing free variable of a surrounding context, the two become
falsely identified. Such an identification introduces two issues. Primarily,
the result will be faulty, as two variables that were not identical are iden-
tified. While this already provides ample reason for using fresh variable
names, there is also another issue, namely that the reduction relation is no
longer deterministic. With two variables using the same name, both are also
captured by the respective other binder. Depending on which binder gets
resolved first – completely arbitrary in a functional calculus such as ours –
the result differs. Hence, whenever we have a rule that introduces a new
variable, we need to ascertain that this name is fresh. In theory, the pos-
sibility to always assume fresh variable names is known as the Barendregt
Variable Convention Barendregt [1984]. Defining a function FV to collect
all names used in a term may seem like a possible solution to the problem.
Technically, such a function is easily realized by traversing an entire term.
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This way of formalizing can be described as the “exists-fresh” approach
Aydemir et al. [2008]. For example, to express the previously sketched
method reduction ς(x, y)t → ς(x, y)t′ we need to presuppose that the vari-
ables x and y are fresh for t and t′ otherwise we might end up with conflicting
names.

The “exists-fresh” concept is straightforward and might seem like an ideal
solution. However, it is not practicable in proofs, when rules are involved that
reason about a part of a term behind a binder where the change of context
caused by the use of open and close raises proof obligations for differing sets
of free variables. In recent work by Aydemir et al. [2007], a very sophisticated
technique called cofinite quantification was re-discovered that makes proofs
involving such rules much clearer. The basic idea is to abstract from concrete
sets of free variables FV (t) and instead to consider some arbitrary finite set
L, i.e. assuming a “cofinite set” of variable names. Since L is arbitrary,
it can be chosen to be any kind of free variable set. To motivate the use
of this technique in more detail, we consider a semantics rule whose formal
introduction will occur later in this section. In the semantics of our object
theory the abstraction binder is represented by the encapsulation in objects.
The only other case where a binder occurs is in the second argument of an
update. The abstraction encoded by close is used in the following informal
update rule.

t→ς t
′ ⇒ o.l := ς(x, y)t→ς o.l := ς(x, y)t′

This rule is an example for the evaluation of a method body under a binder.
In a locally nameless representation it is denoted as follows.

update-LN
t[x, y] →ς t

′′ t′ = ς[x, y]t′′′ x 6=y /∈ FV t lc o

o.l := t→ς o.l := t′

We omit for simplicity the labeling Fvar in front of x and y. Note, that the
bound variables are now opened in the hypothesis of the rule – the unintuitive
structure using t′′ as intermediary term is necessary because we do not know
whether the reduction removes variables. The rule above is informal and does
not make the origin of the two variables x and y precise. Informally, we can
read the rules as for at least one variable x (or y, respectively) or as for any
variable x (or y, respectively). Consequently, there are two interpretations
of the above rule concerning the quantification of the x and y: existential or
universal as follows.
∃-update-LN
t[x, y] →ς t

′′ t′ = ς[x, y]t′′

x 6=y /∈ FV t lc o

o.l := t→ς o.l := t′

∀-update-LN
∀xy. x 6=y ∧x, y /∈ FV ∧ t−→t′ = ς[x, y]t′′∧
t[x, y] →ς t

′′ lc o

o.l := t→ς o.l := t′

Unfortunately, neither of these rules is sufficient for reasoning. Since this
rule, in either form, is intended to be part of the inductive definition of the
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semantics, it can be read in two directions following induction or inversion,
leading to corresponding introduction or elimination statements. However,
in either, one direction of the resulting rules is too weak to be generally
useful for reasoning.

A solution to this problem is the choice of stating the rule in a cofinite
way as follows.

Cofinite-update-LN
finite L

∀x, y 6= y ∧ x, y /∈ L −→ (∃t′′.0→ς [Fvar x, Fvar y]t = t′′ ∧ t′ = 0← [x, y]t′′)

lc o body t t[x, y] →ς t
′′

o.l := t→ς o.l := t′

Here, as already intuitively described above, the concrete set FV t is ab-
stracted into an (existential) finite set L. Reasoning about the freshness of
names through the complement of a finite set of “used” names has already
been recognized as an important concept by others, e.g. [Pitts, 2003], but
the idea to directly integrate it into inductive definitions and thereby having
a cofinite “induction” is new [Aydemir et al., 2007].

After having started out in a naïve way using locally nameless representa-
tion without using cofinite induction, we encountered several dead-ends when
performing advanced proofs. The conclusion here is that the exists-fresh ap-
proach does not yield sufficiently strong rules for productive reasoning.

Thus, we overcome this limitation by employing a cofinite quantification
to strengthen the rules. What initially may seem like an under-specification
is actually sufficient for meta-theoretical reasoning: It expresses the same
concept on a significantly more abstract level. Even more importantly,
by under-specifying the set in the premises, we can use any finite set to
instantiate the rules in proofs. The quantification is used when applying
the rule by instantiating the variables and F with useful sets, for instance
F = FV t ∪ {a}, thus linking them to the properties required and derivable.
On the technical side, in proofs, this instantiation is either done by instan-
tiating an induction rule with well-chosen sets or by using the lemma shown
below.

Lemma 8.1.1 (There are Fresh Names)
finite L =⇒ ∃ s p.s /∈ L ∧ p /∈ L ∧ s 6= p

This lemma states that there are always names that are not in any given
finite set. This lemma is used in a forward fashion to show the existence of
fresh names under a strong assumption. Note that the variable L is usually
not identified with the set raised by the induction, but by a derived set. For
instance L = F ∪ {a, b}, i.e. to yield two fresh names that are neither in the
original finite F set and moreover different from a and b.
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In beta reduction rules in Figure 8.1, the application of cofinite quantifi-
cation can be identified by the premises finite F and x /∈ F .

Another obstacle to consider is the fact that locally nameless variables
can express terms without a direct equivalent in the classical calculus. A
bound variable pointing to a non-existing binder, for instance, is not the
same as a free variable without a binder. Such binder-less variables are
referred to as “dangling”. As the indices of bound variables are constant
throughout reduction in the locally nameless representation, it is possible
that an initially “dangling” variable will be captured during the reduction,
leading to faulty results. For this reason, it is necessary to restrict the
reduction relation to terms with equivalents in the classical ς calculus. The
predicate lc – locally closed – expresses this notion. Its use can be observed
in the rules Beta, Upd, Beta, SelL, SelR and UpdR. It is defined as
follows: The inductive predicate lc formalizes local closure:

lc_Fvar
lc(Fvar x)

lc_Call
lc t lc a

lc (Call t l a)

lc_Lab
lc t

lc n〈t〉

lc_Upd

lc t finite L ∀s p.s /∈ L ∧ p /∈ L ∧ s 6= p −→ lc(u[Fvars,Fvarp])

lc (Upd t l u)

lc_Obj
finite L

∀l ∈ dom f.∀s p.s /∈ L ∧ p /∈ L ∧ s 6= p −→ lc ((fl)
[Fvars,Fvarp])

lc(Obj f T )

Closely related to this notion of closed terms is the predicate body – it
expresses that the term is a method body, having at most a single unbound
variable of each flavour - self or parameter. Restricting the term to one
variable means that, if body t is true, then t[Fvarx,Fvary] is guaranteed to
be locally closed. For instance, a locally closed object has only methods for
which the body predicate is true.

body
body ≡df ∃L.finite L ∧ (∀s p.s /∈ L ∧ p /∈ L ∧ s 6= p −→ lc(t[Fvar s,Fvar p]))

Note that no such limitation was required for plain de Bruijn terms, despite
the similar mismatch between terms expressible and terms valid on paper. In
either case, regardless of the variable representation, it is possible to express
all practically relevant terms.

The complete reduction relation is shown in Figure 8.1. Especially con-
sider the cases where a binder has to be traversed, i.e. the case for the
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Beta
l ∈ dom f lc(Obj f T ) lca

Call (Obj f T ) l a→Asc the(f l)
[(Obj f T ),a]

Upd
l ∈ dom f lc(Obj f T ) body a

Upd (Obj f T ) l a→Asc Obj (f (l 7→a)) T

SelL
s →Asc t lcu

Call s l u →Asc Call t l u
SelR

s →Asc t lcu

Call u l s →Asc Call u l t

UpdL
s →Asc t bodyu

Upd s l u →Asc Upd t l u
UpdR

FiniteF x/∈F
y/∈F x 6= y ∃t′′.t[Fvarx,Fvary] →Asc t

′′ ∧ t′ = σ[x, y]t′′ lcu

Upd u l t →Asc Upd u l t′

Obj
l ∈ dom f FiniteF x/∈F y/∈F

x 6= y ∃t′′.t[Fvarx,Fvary] →Asc t
′′ ∧ t′ = σ[x, y]t′′ lc(Obj f T )

Obj (f(l 7→t)) T →Asc Obj (f(l 7→t′)) T
Asp
s →Asc t

l〈s〉 →Asc l〈t〉

Figure 8.1: The inductive definition of the reduction relation using locally
nameless variables.

reduction in the parameter of the update operation , UpdR, and the one for
reduction inside an object Obj. In these cases, terms have to be opened with
fresh variables to keep them locally closed. The rules never explicitly link
the set F to the free variables of a term, that connection is only established
when using the rules in a proof. The only statement about F is that it is
finite and thus that there is an infinite number of fresh variable names. This
cofinite quantification keeps the rules flexible and useful for proofs.

In the rules using cofinite quantification, the introduction of two variables
at once, self and parameter, leads to an explosion in the number of premises
in these cases. The statement ∃t′′.t[Fvarx,Fvary] →Asc t

′′ ∧ t′ = σ[x, y]t′′

found in the premises of those rules – UpdR and Obj – is required, as
reduction only applies to locally closed terms. These two rules describe the
reduction within methods, thus the methods have to be closed before any
reduction is possible.

Comparing the Beta rule to its sibling in Figure 7.3, it is clear how
opening is used to fill the role of the substitution operation.
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While it can be argued that this set F can be confusing for readers not
familiar with proof tactical considerations, it is also fairly easy to see that
the statement expresses a notion of variable freshness. On the other hand,
writing σ[x].x for a method is much more straightforward than $0.

A result of using lc in the premises is that only terms which are locally
closed can reduce, a required limitation, i.e.

Lemma 8.1.2 (Only closed terms reduce)
s →Asc t −→ lc s ∧ lc t

This is also know as the regularity of the reduction relation [Charguéraud,
2009].

With the formalization established, it was possible to prove the conflu-
ence of the reduction in a proof similar to 5.3. In fact, the proof benefited
significantly from the use of locally nameless variables and ended up being
shorter than the original by about 600 lines of proof script or about a quarter
of its total size.

8.2 Types

For further investigation, we adapted the type system for ςAsc<:+ to locally
nameless variables as well. Our major hope in this step was to come up
with a type system that handles variables in a more intuitive way, while also
being able to simplify and generalize the many index permutation lemmas
required for the original type soundness proofs.

Not surprisingly, the typing relation for locally nameless variables re-
quires a very different approach to environments than the one that was used
in the typing relation for de Bruijn index based terms. The first fundamental
change is that we base the typing of locally nameless variables entirely on
opened terms, i.e. there is no way for bound variables to be in the type
system. This implies that the environments have to map names to types,
instead of the old stack based environments, which related the type infor-
mation solely by the composition of the stack. Now, the environments for
locally nameless variables have to relate names to types.

This is further complicated by the requirements of being able to formulate
strong rules with cofinite quantification, so that it cannot be allowed to
overwrite an entry in an environment. Such restrictions are hard to impose
with a normal map, so that instead the environments are realized as a new
datatype. This type is not just based on simple dictionaries, but is stateful
insofar as that it has an error state. The datatype is defined as follows:
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datatype α environment =
Env fVariable 7→ α

| Malformed

Based on this datatype, we define the function to add new elements to the
environment, the equivalent for the shift operation in the de Bruijn version
of the type system. As we track free variables, which are not split into
parameter and self variables, we do not require tuples of types to be added
at once, but only single types1. The add function is realized as a primitive
recursive function:

primrec
add :: α environment ⇒ fVariable ⇒ α ⇒ α environment (_L_:_M)

where
(Env e)Lx:AM = (if (x /∈ dom e) then (Env e(x 7→ A))

else Malformed
MalformedLx:AM = Malformed

The idea here is that inserting a duplicate element leads to the error con-
dition from which the environment cannot be recovered. I.e. (Env e)Lx : AM
is valid, iff x is not in the domain of e; (Env e)Lx : AMLx : BM leads to the
error state.

The statement that an environment is not in an error state is expressed by
the predicate ok e, which states that e is finite and not malformed. Note that
adding an element does not impede finiteness, i.e. as long as the environment
started out as finite – empty – the add operation cannot cause it to become
infinite.

Well-formedness of Environments
ok e −→ finite e ∧ e 6=Malformed

An important property of the add operation is that it is commutative:

Lemma 8.2.1 (Add is Commutative)
eLx : AMLy : BM = eLy : BMLx : AM

A notable benefit of this environment style is that it would be possible to
handle type variables for polymorphic terms without changes to the typing
environments.

Using this environment construct, we can define the typing relation, re-
using the subtyping relation from Figure 7.6.

1Being polymorphic, the environment construct is able to handle tuples.



8.2 Types 103

Var
okE x ∈ dom E Ex = B B <: A

E,L ` Var (Fvar x) : A

Obj
finiteF

ok E dom b = dom B ∀i ∈ dom B s/∈F p/∈F s 6= p

ELs : BM, LParam(Bi)M, L ` bi[Fvar s,Fvar p] : return(Bi) B <: A

E,L ` Obj b B : A
Upd

finite F E,L ` a : B l ∈ dom B s/∈F p/∈F
s 6= p ELs : BM, LParam(Bi)M, L ` n[Fvar s,Fvar p] : return(Bl)

B <: A ¬variance(Bl)
E,L ` Upd a l n : A

Call
E,L ` a : B l ∈ dom B return(Bl) <: A E,L ` b : Param(Bl)

E,L` Call a l b : A
Lab
E,L ` a : B i < |L| Li = B B <: A

E,L ` i〈a〉 : A

Figure 8.2: The inductive definition of the typing relation for depth subtyp-
ing, using locally nameless variables.

Properties

The first important property of the locally nameless typing relation is its
regularity, using the regularity term as per Charguéraud [2009]:

Lemma 8.2.2 (Typing is regular)
E,L ` t : A =⇒ ok e ∧ lc t

This property has no equivalent in the de Bruijn based relation, but is abso-
lutely essential for the locally nameless version. Another such infrastructural
theorem is the renaming lemma, which asserts that choosing different – fresh
– names does not alter typing. It is the locally nameless equivalent of the
lemma required in a named approach to deal with α conversion, but thank-
fully easier to prove, using cofinite quantification.

The ς base of the calculus added an interesting requirement to the en-
vironment premises in the typing judgments. The published examples for
locally nameless variables use System F as example, where no self referenc-
ing is involved. In System F, it is sufficient to add the ok E premise to the
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variable case(s). With our calculus, however, it is necessary to add ok E to
the premises of the Object case, as the regularity of the system would not
be derivable otherwise.

Lemma 8.2.3 (Renaming Lemma)
ELs : AMLp : BM, L ` {bv → [Fvar s, Fvar p]}t : T

∧ s, p /∈ FV t ∧ x, y /∈ FV t ∧ p 6= s ∧ x 6= y
=⇒ ELx : AMLy : BM, L ` {bv → [Fvar x, Fvar y]}t : T

The lemma above states that, if a term is typed after opening it with two
names s, p, it is also well typed using any other fresh names. Note that s 6= p
follows from the term being well-typed in an Environment ELs : AMLp : BM.
For proving type safety, the lemma had to be strengthened to allow arbitrary
well typed terms instead of just new free variables.

Lemma 8.2.4 (Opening Lemma)
ELs : AMLp : BM, L ` {bv → [Fvar s, Fvar p]}t : T

∧ s, p /∈ FV t ∪ FV x ∪ FV y
∧ E,L ` x : A ∧ E,L ` y : B
=⇒ E,L ` {bv → [x, y]}t : T

Using these lemmas as infrastructure, it is possible to establish type sound-
ness by following the general schema introduced in earlier chapters.

Aspects are constructed in a manner similar to the one used with de
Bruijn indices. As mentioned before, the self variable 0 was used as entry
point for the base term and is substituted in weaving. Using locally nameless
variables, it would be possible to use a bound variable, maintaining the de
Bruijn system. However, typing does not recognize bound variables, so that
any typing notion would require opening the terms first. Thus we consider
it to be much cleaner to introduce a name for the base call, base2, so that
the typing predicate for aspects now reads:

Well-Formed Aspects
wf_asp T 〈pc, adv〉≡df∀l ∈ dom T.∅Lbase : TlM, L ` advA : Tl

Using a “magic” variable name does not require that variable base to be
fresh in the base term. This becomes clearer when considering the weaving
function: Weaving can now be expressed using the substitution function,
following the same algorithm as in Chapter 5, so that if a pointcut matches,
the advice adv is woven into a term t by:

[base −→ t]adv
2Terms like continue or proceed would have been viable alternatives, but misleading

about the nature of the calculus.
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The substitution replaces the variable base in the advice. Since possible
other occurrences of the same name in the term t are irrelevant for typing
and semantics, this means there are no restrictions on variable names in base
terms required other than the requirements already imposed. The advantage
of the names being independent is that there is no requirement to share en-
vironment data other than the label between the aspect and the base typing
– just as with the de Bruijn indices. The proofs for the compositionality of
weaving were not completely performed for the locally nameless version. We
expect the proofs to be comparable to the de Bruijn formalization.

8.3 Discussion of the Locally Nameless Formaliza-
tion

Overall, the result of using the locally nameless representations are mixed.
The removal of the lifting operation leads to much more readable proofs,
while the cofinite quantification eased some, but not all proofs about terms
and relations. For instance, the proof of the Church-Rosser property is
shorter by about a third, while the basic proofs and definitions are longer
by a similar margin. The reduction relation’s definition is less readable in
some regards, and easier to read in others, but maintains a close link to the
de Bruijn notation in all cases. In fact, it would be feasible to reduce a
de Bruijn term with the locally nameless representation, using solely bound
variables for the original numeric variables. Generally, the locally nameless
semantics are more abstract than the semantics based on de Bruijn indices.
The cofinite quantification only requires an arbitrary finite set to be avail-
able – it is up to an implementation to identify the abstract finite set with
the free variables in the terms. Such an identification could even use renam-
ing, implementing variable scopes and shadowing without contradicting the
semantics.

A glaring difference between the formalizations is the requirement to
add well-formedness conditions to both, the reduction and typing relations.
While the de Bruijn formalization as developed in the preceding chapters
of this path does not require additional predicates in the premises of the
rules, we had to add the requirement to be locally closed, lc to the reduc-
tion relation and the requirement for the environment to be valid – ok –
to typing. Both of these predicates have their origin in the variable han-
dling. The requirement to be locally closed states that no bound variables
without a binder exist in a term, i.e. no “dangling” variables [Charguéraud,
2009]. While dangling variables are possible in the de Bruijn representation,
as remarked in Section 4.4, these do not generally pose a problem for the
reduction, as the lifting operation maintains their dangling nature. In the
locally nameless representation however, such a dangling variable might be



106 Alternative Formalization: Locally Nameless Variables

captured by a binder during the reduction, leading to a faulty result. By
contrast, the well-formedness requirement for typing environments is rooted
in the notion of freshness for the names of free variables. The ok predicate
guarantees that no two entries for the same name exist in the typing environ-
ment. This guarantees in turn that no name for a variable was used twice
during opening. Thus, the type system enforces variable freshness due to
the well-formedness condition. The de Bruijn representation dispensed with
names completely, which also removed any concerns about the freshness of
names – hence, the premise is not required for de Bruijn variables.

We consider the locally nameless representation a valuable tool that
makes several proofs far more readable. The juggling with indices is one
of the prime cause of errors in de Bruijn based formalizations, a problem
effectively solved by the locally nameless representation. Additional factors,
such as code extraction, can be seen as points in favor of de Bruijn indices
at the moment.

Concluding this small deviation from the main topic of the thesis, we have
shown that the locally nameless representation is a viable one for both, the
ς calculus and derived approaches and for language theory in Isabelle/HOL.



CHAPTER 9

Connection to Reality

After the very technical presentation of the various ςAsc calculi in the pre-
ceding chapters, we wish to show the practical connection to the reality of
programming in this chapter. A formal calculus such as the one introduced
in this thesis is naturally on a far higher level of abstraction than a language
intended solely for practical programming. However, it has the rigorous ap-
proach most practical languages are missing and thus can be used as a model
to show where scenarios occur that impede the safety of a concept. Towards
the end of connecting our formal system to the real domain of programming,
we use a two-tiered approach: Code generation from the formal method is
used to make the ςAsc calculus itself usable as a language, bridging the gap
from the formal system to reality. The gap in the other direction, represent-
ing real problems in relation to the calculus, is handled by re-creating critical
situations in – for example – AspectJ in the calculus. This shows that the
calculus is able to express the situation and that the solution presented in
this thesis prevents the scenario from causing errors. Figure 9 visualizes this
concept of connecting the calculus to the domain of mainstream program-
ming languages.

Using these results, the final section of the chapter constructs a cate-
gorization of aspects. This categorization expresses what aspects can be
represented in the calculi presented earlier, which are safe and compositional
and why certain aspects fall outside the scope of this thesis.
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Asc


Interpreter 
in Haskell

AspectJ
Scenarios

Figure 9.1: Connecting ςAsc to Reality.

9.1 Code Generation – Type Checker and Inter-
preter

A well-established way of creating a bridge between a formalization and
programming is to provide an interpreter for the designed calculus [Dantas
and Walker, 2006]. There are two established approaches1 for showing the
correlation between an interpreter and a calculus.

The first such method is to program the interpreter by hand and then
formally show the equivalence between the calculus and the implementation.
This approach can be applied to languages not mechanized in an interactive
theorem prover, by manually performing the necessary proofs. Nonetheless,
even the manual translation into a programming language can benefit from
using such an interactive theorem prover. A recently introduced tool, the
Haskabelle importer [Haftmann, 2009], allows the import of programs written
in the functional language Haskell into Isabelle/HOL. Using this tool, it is
possible to formally prove the refinement relation between a program and a
formalization.

The second such approach is to use a mechanization in an interactive
theorem prover to extract executable code from it. This has the benefit that
the code created is in fact identical to the formalization in the proof assis-
tant, establishing a very strong link between code and formalization that has
the added benefit of easier maintainability – changes in the formalization are

1We ignore the “it’s an interpreter because we say that it is” approach, which arguably
also is established.
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automatically echoed in the extracted code. Both, Coq and Isabelle/HOL,
support the feature of extracting code from formalizations. Coq formaliza-
tions, as long as they limit themselves to the set of constructive features, are
even programs right way and directly executable [Letouzey, 2008] – a benefit
of using a constructive logic as base formalism. Isabelle/HOL was recently
extended to extract code in a proven toolchain, not just from recursive func-
tions, but also from inductive definitions [Berghofer et al., 2009].

Linking code to a formalization is becoming more and more important
in software engineering [Kammüller, 2006], regardless of the chosen style of
such a connection. Today, it is even feasible to program entire systems inside
a theorem prover, delivering a formal system as the actual product. The
advantage is that entire programs can be proven to be correct w.r.t a set of
correctness properties. Either style of adding formal proofs of correctness is
often seen as one of the next big steps towards zero defect software. Examples
of programs completely verified include a L4 Kernel [Klein et al., 2009],
termination proof checkers [Thiemann and Sternagel, 2009] and compilers
[Leroy, 2009]. Using monad based input and output, even user interfaces can
be constructed in the formalization, although the more established approach
is to wrap the proven code with a user interface.

For ςAsc, we choose the approach of extracting code from the formal-
ization [Hakobyan, 2010], using the state of the art code generation from
inductive functions [Berghofer et al., 2009] 2. The new Isabelle/HOL code
generator does not merely generate code, but builds upon a formal equa-
tional system to guarantee that the code refines the formalization. Possible
target languages include SML and Haskell, but even imperative languages
are targeted for future versions.

Prior to generating code from an inductive definition in Isabelle/HOL,
it is necessary to provide a version of said definition that is suitable for the
generator. “Suitable” in this context means that the generator is able to an-
alyze the rules of the definition and to find an interpretation of the inductive
definition that is consistent, i.e. one that can deduce which variables are
input and which are output.

For instance, an interpreter would be a 1:1 relation – one entry term is
evaluated to one reduction result. Some logical operators make this analysis
complicated, for instance premises about domains of maps, quantifiers (∀, ∃)
or premises that are not sufficiently constructive. To bridge the gap between
“suitable” and the actual formalization, it is sometimes required to offer
alternate definitions of the inductive definitions, which can – for instance –
use specialties like an enumerable type to solve quantification and domain

2We thank Lukas Bulwahn of the Isabelle group at Technische Universität München
for providing us with a developer version of an advanced code generator, as well as for his
valuable help with using the tool.
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questions or to use functions that solve premises constructively. Consider
this rule as an example for such a rewritten judgment, which replaces the
normal Beta rule from the reduction relation:

lemma beta_new: "JPredicate.eq (Some v) (f l)K
=⇒ "Call (Obj f T) l p →Asc v[(Obj f T),p/0]"

The tool will present the user with proof obligations to show that the
definitions are, in fact, in a refinement relation. Due to the early state of
these tools, the learning curve for establishing which additional information
is required, or which premise needs rewriting is very steep. Nonetheless, the
function of extracting code is worth the effort and yields remarkable insights,
not to mention a very tangible connection to reality.

For our calculus, we were able to extract code from the beta reduction,
using redefinitions from the non-trivial reduction rules. The underlying ap-
proach taken was that we assumed the method labels to be from a finite,
enumerable set. Using this premise, it is possible to resolve some quantors
and reasoning about elements being keys in a finite map – used to model
objects.

To yield an usable program, the actual interpreter is combined with a
pretty-printer. This step was taken as the code resulting from the generation
only implements the one step reduction relation. However, a usable inter-
preter requires a multi-step interpretation. In a more user-oriented approach,
it would be entirely feasible to construct a user interface inside Isabelle with
monads used for input and output.

For the type system, similar steps were required. However, the final as-
sembly ended up being more complicated due to the use of all-quantification
in the Obj rule. The required workaround relies on the same foundation as
the reduction: An enumerable domain makes it possible to iterate not just
over all methods, but over all possible methods. In the context of the type
checker, an older change to the calculus was re-used: The Object annotations
– originally intended to introduce type uniqueness – are technically sufficient
to construct the type. This step allows us to not just extract a type checker
– a four parameter function with a boolean result – from the code, but even
a type inference tool – a tool that infers the type of a given term, i.e. a 3
parameter function with a type as result.

Summarizing, we can report that the extraction of code from the formal
model was both possible and successful in connecting the calculus to the
reality of programming. The work and experience required was non-trivial,
which leads us to state that the extraction of code from inductive definitions
is not yet advanced enough for use in software development, but will be in the
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near future. Especially the code generation from functions and equational
lemmas was easy to use and yielded reproducible results. On the other hand,
the generation from inductive definitions required non-trivial adjustments.

9.2 Case Examples

The extraction of interpreter and typechecker presented in the preceding
section is an important part of our claim that our calculus has real-world
applications. While a complete translation from one language into our cal-
culus is not feasible, we are able to translate scenarios that are known to
be of interest into our calculus. That ability to express these scenarios is a
strong case for the applicability of the approach. We argue that the prob-
lems are indeed captured by the calculus, as the problems arise on the type
level. Even in our functional calculus, which is naturally unable to capture
reference problems, the typing problems are identical. By solving the type
issues in the corresponding situations, we are able to extend the solutions
to real-world languages. The notation used throughout this section is based
on the original ς calculus [Abadi and Cardelli, 1998]. In this notation, fields
are shown without the ς binder, as they do not use any variables. Further-
more, for methods, we write varsigma(x, y).m for a method with the self
parameter x and the argument y; m is an arbitrary method body. V oid is
used to denote the empty, most general type, which is used to indicate that
a given parameter is not used; the empty object is assumed as parameter in
these instances.

Observers

As a first example, we show how an aspect counting the invocations of meth-
ods can be realized. As a first example, we present a simple aspect that
counts the invocations of a method. The following AspectJ aspect realizes
such a functionality:

public aspect Counter {
static int counter = 0;

Object around() : call(* someMethod(..)) {
counter++;
return proceed();

}
}

Represented in ςAsc, the aspect takes the form shown below: We abstract
from de Bruijn indices in all of the examples, using the normal ς notation
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instead. For advice, we use the notation Adv(x)., where the x represents the
base variable.

asp ≡df {[...]; Adv (base).[counter = zero;
counter_inc = ς(x,y) x.counter ⇐ x.counter.succ;
count = ς(x,y) x.counter_inc.proceed;
proceed = ς(x,y) base;

].count }

This aspect asp works by replacing a labeled method with a new object
wrapping a counter and a call to a method of that new object. The aspect’s
method count then invokes the originally intercepted base term, continuing
the original control flow. The aspect also indicates one of the properties of
our calculus: It is entirely functional and has no mutable state. As a result,
such an aspect would natively neither be able to maintain a global count, nor
able to “catch” invocations on copies of the original object3 as those would
have their own counts. However, that can be easily overcome by using an
artificial count during the reduction of the term, i.e. the evaluation is able
to maintain a global count, albeit external to the calculus. This corresponds
to logging into a file or onto the console, which is also realized by adding
“print” pseudo-methods.

Dynamic Pointcuts – cflow

Another example for a limitation on the ςAsc calculus is the concept of dy-
namic pointcuts. Such dynamic pointcuts can be used to link the weaving
of an aspect to conditions like the method from which another method call
originated or to boolean guards.

In ςAsc, it is conceivable that “if” pointcuts – pointcuts including a guard
predicate – can be realized by boolean conditions in the advice itself, for in
a formal calculus, there is no logical difference between a guard evaluated
during weaving and one in the advice itself.

As a more complex example, we have to consider cflow and related point-
cuts – pointcuts that are dependent on the call history of a given joinpoint.
Consider the pointcut used in the aspect below, which states that the aspect
should only act if the method setColor was called from the method move.

public aspect Cflow {
Object around() :

3To work with a method resembling function, the aspect would also have to be re-
written to increment the counter on the return value, i.e. a post-increment, instead of the
pre-increment realized above.
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call(* setColor(..)) && withincode(call (* move(..))) {
...

}
}

A static analysis can easily resolve the pointcut if the method setColor
is either always or never called from the context of the method move. In
the former case, the aspect is always woven, in the latter never. This con-
cept of resolving dynamic pointcuts statically was developed even further by
Avgustinov et al. [Avgustinov et al., 2007]. This approach of statically re-
solving dynamic pointcuts can easily be applied to ςAsc: A primitive recursive
function could resolve the dynamic pointcuts and places labels accordingly.

Another viable way of expressing some control-flow related pointcuts in
ςAsc is the use of exhaustive labeling. Consider the following ςAsc example.
It contains three labels: Label 1 marks the method move, label 2 marks
the method setColor. Neither of these labels corresponds to a situation
comparable to the withinCode pointcut above. However, the label 3 marks
the invocation of setColor from within move, perfectly matching the desired
pointcut.

ColoredPoint ≡df [move = ς(x,y) 1〈...2〈x.setColor(red)〉...〉
setColor = ς(x,y) 3〈x.move;〉
...

] : Point

Naturally we cannot claim that all dynamic pointcuts are expressible
in our calculus. However, we can express and resolve a large number of
dynamic pointcuts. Note that we only considered the possible encodings of
dynamic pointcuts in our calculus, but not static details, especially typing.
That is because dynamic pointcuts can be ignored for questions for type
safety. Typing is a static concept and thus has to handle dynamic pointcuts
statically. This also means that as far as typing is concerned, the dynamic
part of any pointcut has to be considered to be true. This also means, that
any safety or security property guaranteed by the type system holds true for
dynamic pointcuts as well.

Summarizing, we can express a number of dynamic pointcuts, either by
using guard expressions or static analysis, so that many – albeit not all –
scenarios can be examined.
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Types Prevent Mistakes

Types were introduced in Chapter 6 as a tool to prevent errors. We revisit
the example from the introduction to show that the type system indeed
catches errors that would cause runtime problems otherwise.

public class ColoredPoint
{
color = Color.green;

public Color getColor()
{

return this.color;
}

...
}

public aspect asp
{

Object around() : call(* *.getColor(..))
{

return "oops";
}

}

Figure 9.2: A not type safe program in AspectJ.

The example in Figure 9.2 shows a non-typesafe aspect in AspectJ. A
method returning an instance of the type “Color” is replaced by a method
returning a string instead. Color and string are in no subtype relation
with each other, any assignment of a Color to a String variable or vice-versa
constitutes an error, resulting in a ClassCastException. The program will
thus terminate with an Exception in Test.test. This breaches modular
reasoning, as the base class Test is sound on its own.

For the translation into the calculus, we employ a few simplifications
to maintain readability. The first such adaption is that we assume a type
“Color” to exist; green is assumed to be a member of this type. We further-
more assume that strings have the type String expressing the same concept
as in Java and other programming languages. Finally, we abstract from de
Bruijn indices by using named variables.

Translated into ςAsc, the same situation looks like this:
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point ≡df [color = green;
get_color = ς(x,y) 1〈x.color;〉
...

] : ColoredPoint

We labeled the method get_color with the label 1 without adding any
further explicit labels. In the general case, labeling would be complete. The
type ColoredPoint is structured accordingly:

ColoredPoint ≡df [color = Color, void;
get_color = Color, void;
...

]

And the aspect:

asp ≡df {[1]; "oops"}

We can see that weaving indeed leads to the same result as it does in
AspectJ:

point⇓asp = [color = green;
get_color = ς(x,y) 1〈"oops"〉
...

] : ColoredPoint

Furthermore, this term is clearly no longer well-typed – the string is not
typable as Color,void. Consequentially, the question arises, whether typing
would catch this error. The answer is the label environment L, which enforces
aspect and base compatibility. For the method get_color to have the type
Color – required to type the whole object as ColoredPoint –, the label
Environment has to contain Color or a subtype thereof as entry for the
label 1. This is expressed by the Lab rule in the type system:

Lab
E,L ` a : Li i < |L| Li <: B

E,L ` i〈a〉 : B

Conversely, the aspect is well typed, if it is type preserving w.r.t. the
same label interface. The typing rule for aspects states that an aspect has to
be typed according to the label types for all labels captured by its pointcut:

wf_asp LT 〈pc, adv〉 ≡df
∀ l∈dom LT. []〈0:LT !l〉, LT ` adv: LT!l
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In the given example, this evaluates to

[]〈0:Color,void〉 LT ` "oops" : Color

According to our premise that strings are not a subtype of Color, the aspect
is shown to be incompatible with the label environment and thus ill-typed.
Hence, the type system catches the error that would have caused the runtime
environment to crash.

Solving Contravariance

The motivation for introducing variance into the calculus was already exten-
sively discussed in Chapter 7, however, at the time the effect of the variance
annotation was solely shown by proving type soundness. Now we revisit the
example and show why an aspect can complicate matters in the presence of
the redefinition of method types in subtypes.

For the fleshed out example, we use the following scenario: A class Point
defines a field origin, storing the origin of the current coordinate system.
This field is accessed via the public getOrigin method. In a subclass of
Point, ColoredPoint, the method is re-defined to return a different kind of
value: An instance of the very same subclass. The addition of an aspect
overwriting the method getOrigin in Point now yields a problem: Is the
aspect legal, despite potentially cutting across several methods with different
types? To make the aspect as directed as possible, the example also uses a
target pointcut to explicitly state the expected type and omits the pointcut
subtyping operator +. The example code omits some method definitions, like
the two-argument constructor for the class Point. To enhance readability,
we limit the example to the methods causing the error.

public class Point {
int x;
int y;
Point origin;

public Point getOrigin() {
return origin;

}
...

}
public class ColoredPoint extends Point {

ColoredPoint coloredOrigin;

public ColoredPoint getOrigin() {
return coloredOrigin;
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}
...

}

public aspect asp {
Object around() : call(Point Point.getOrigin(..)) && target(Point) {

return new Point(0,0);
}

}

The question raised by this example can also be expressed visually, as
shown in Figure 9.3.

Point

+getOrigin()::Point

ColoredPoint

+getOrigin()::ColoredPoint

<Aspect>

SubtypeAspect

„Point+.getOrigin()“::Point

Figure 9.3: Should the aspect apply to subtypes? Can it?

The answer in AspectJ is clear: When the method ColoredPoint.get-
Origin() is called, the aspect returns the incorrect type. The result is a
ClassCastException, which does only mention the call to ColoredPoint.get-
Origin(). This is deeply unsatisfactory, as the trace omits any indications
of the real error: The presence of an unsound aspect.

For the translation of this scenario, we assume that a type “int” exists;
it can be assumed to express the same concept as int in Java and is not
of central importance for the example. Moreover, we assume cart_origin
and cart_green_origin to be constants of the type Point and respectively
ColoredPoint. Otherwise, the same preconditions as in the preceding ex-
ample apply.

point ≡df [origin = cart_origin;
x = 0;
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y = 0;
getOrigin = ς(x,y) 1〈x.origin;〉
...

] : Point

Types in ςAsc<:+ consist of a triple: A return type, a parameter type
and a variance annotation. We use “-” for an invariant type and “+” for a
variant one. I.e. a method returning an int, expecting a string that could
be re-defined in a subtype would have the signature x,y,+. The type Point
is thus structured as shown below, the fields are updateable and thus have
the variance “-” – the method getOrigin is variant, as it is to be redefined.

Point ≡df [origin = Point, void,-;
x = int,void,-;
y = int,void,-;
getOrigin = Point, void,+;
...

]

And the ColoredPoint translates like this:

colored_point ≡df [origin = cart_origin;
coloredOrigin = cart_green_origin;
x = 0;
y = 0;
color = green;
getOrigin = ς(x,y) 2〈x.coloredOrigin;〉
...

] : ColoredPoint

And the type:

ColoredPoint ≡df [origin = Point, void,-;
coloredOrigin = Point, void,-;
x = int,void,-;
y = int,void,-;
color = Color;
getOrigin = ColoredPoint,void,+;
...

]

It is easy to see that ColoredPoint <: Point holds true: The types are
identical for the features x, y, origin, satisfying the reflexivity of subtyping.
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The features color and coloredOrigin only exist in ColoredPoint – as
subtypes are always allowed to be larger – width subtyping. Finally, the
method getOrigin was co-variantly re-defined, now using the more special
ColoredPoint as return type. As the variance flag for the method is true, this
redefinition is arguably well-typed. This statically easy situation becomes
interesting when adding the aspect:

asp ≡df {[1,2]; [origin = cart_origin;
x = 0;
y = 0;
getOrigin = ς(x,y) 1〈x.origin;〉
...

] : Point
}

We can infer that the label environment has to hold the type Point for
the label 1 and ColoredPoint for the label 2. The entirely static advice
in this aspect is typed as Point or any supertype thereof, regardless of the
base term. The label 2 marks a term of the type ColoredPoint, so that the
application of the aspect with the given label environment is not well typed
as Point is not conforming to ColoredPoint – the type system catches this
potential covariance situation without even “breaking a sweat”. Note that it
would be well-typed to use an aspect having the type ColoredPoint in the
given label environment.

Updating with Aspects

The preceding examples showed how the calculus copes with static values
overwriting methods and how the type system catches such instances. It
should be noted that the preceding examples did not in fact use the variance
annotation and thus did not make clear how variance annotations interact
with aspects. As entry point, we use a slight variant of the preceding exam-
ple: Instead of statically returning a new object, we now use an aspect that
interacts with the base application.

We use the objects and types from the preceding example with only a
slight change. The new aspect replaces the Point.getOrigin method with
an implementation accessing the called object’s state:

public class Point {
Point origin;

public Point getOrigin() {
return new Point();

}
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...
}

public class ColoredPoint extends Point {
ColoredPoint coloredOrigin;

public ColoredPoint getOrigin() {
return coloredOrigin;

}
...

}

public aspect asp {
Object around() : call(Point Point.getOrigin(..)) {

Point point = (Point)thisJoinPoint.getTarget();
return point.origin;

}
}

Note that the AspectJ aspect does not use typed, direct access to the
called object; a reflection method with a cast is required4.

In ςAsc there are two subtly different ways of altering a given object, both
of which behave very differently when it comes to typing. The first method,
as used in the preceding two examples, is an aspect replacing a method
with a static value. Such a replacement can even happen on fields that are
not variant according to their type, i.e. any member of an object can be
overwritten by such an aspect. This is safe for two reasons: The first and
most important reason is that an aspect applied on the method level cannot
access the object itself, nor method parameters passed upon invocation of
the replaced method. At the same time, its type is strictly enforced by the
label type, i.e. an application of such an aspect to a whole subtype hierarchy
would not be well-typed. The aspect type has to be at least as special as the
original method.

The second method is more powerful: An aspect can invoke a method
update on the entire object, replacing object members with completely new
implementations and without added restrictions. This type of aspect can be
applied to members of a type, including subtype instances. Such flexibility
is possible, because the aspect has to abide by the rules of the basic type
system and hence to respect the variance annotations introduced for this
very reason.

To flesh this situation out, we analyze the example above by considering
several viable translations into ςAsc. We assume the label 1 to label the whole

4Using target pointcuts, the type can be established, which does not solve potential
variance issues.
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object point, while the label 2 labels the method getOrigin. The labels 3
and 4 are used for coloredPoint accordingly. Ignoring the additional labels,
the objects are unchanged from the previous example and thus omitted here.
The first aspect realization, using the straightforward method replacement:

asp_replace ≡df {[1,3]; ς(x,y) x.origin; }

Laying out the aspect like this captures the functionality nicely, but is
not well typed: The aspect well-formedness condition requires an aspect
to be well typed in an empty environment, i.e. aspects are not allowed
to access any information from outside their label’s scope. This is not a
simple limitation, but an essential trait that enables the calculus to simulate
different weaving semantics. Our solution to this apparent impasse is quite
simple: The scope has to be declared properly. Indeed, using the labels 2
and 4, we are able to express the functionality in a well-typed manner.

asp_update ≡df {[2,4]; Adv (x) x.getOrigin ⇐ ς(a,b) a.origin; }

This version is well-typed, as it accesses information in its scope: Namely
the feature origin of the labeled object. This version respects the variance
annotation introduced earlier, with the exact intent of allowing the type safe
handling of aspects like the above example. Moreover, this style of expression
corresponds to introductions, the ability of aspects to add new methods to
objects, as found in AspectJ.

9.3 A Classification of Aspects

The various limitations and problems of aspects and the ways to express
them in our calculus open another question: Does the calculus establish
a classification of aspects insofar as that different kinds of aspects can be
expressed in the various incarnations? Our tentative answer is yes, as we
can link more “safe” behavior with smaller subsets of aspects. As such, each
more "special" set of aspects is a subset of all more "general" sets.

Our classification begins with the most general aspects, i.e. the full power
of AspectJ and other real-world languages. As this domain includes aspects
that rely on reference semantics, mutable state and similar concepts, it is
not possible to capture them entirely in a functional calculus like ςAsc.

In this group of aspects, it can be observed that some aspects cannot
be expressed in a functional fashion directly. Instead, they can be brought
in line with the functional model by assuming that some functions have
side-effects. This assumption and even realization of side-effects can mean
that proofs about the calculus are not entirely applicable if the side-effects
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influence the evaluation. Generally, assumed functionality such as output
can be simulated without a significant loss of rigorousness.

The first group entirely expressible in ςAsc is the group of functional
aspects, i.e. the aspects that can be translated into a functional representa-
tion, without state or side effects. They can further be specialized into the
group of compositional aspects, the class of aspects which provably exhibit
the same behavior regardless of the applied pointcut and weaving semantics.

The well-typed aspects form the next smaller group, known to be com-
positional but also known not to cause any crashes or inconsistent program
configurations. Safe aspects are even more restrictive – these aspects do not
even alter the result of the program, but merely implement functions like
the logging or tracing in programs. The semantics of the advised program
are not affected by this and safe aspects are proven. The final, most restric-
tive set of aspects are harmless, where harmless is taken from the concept of
harmless advice [Dantas and Walker, 2006]. Harmless advice maintains non-
interference [Sabelfeld and Myers, 2003], a strong information flow security
property.

As a summary, the different classes of aspects are shown in Figure 9.4,
ranging from most general at the bottom to most restrictive at the top.

Harmless

Aspects

Safe Aspects

Well-Typed
Aspects

Compositional Aspects

Functional Aspects

Quasi-Functional Aspects

Aspects

Figure 9.4: Aspects, from most general to most special.
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9.4 Comparison to Application-Oriented Concepts

The work presented in this thesis is oriented towards establishing a formal
calculus for the study of Aspect Orientation and to show how such a small
calculus can be employed to analyze issues, predominantly typing issues,
in established languages. It is further intended as a testbed for innovative
concepts, offering a base known to be sound. This is the reason why other
core calculi designed with comparable intentions were considered as examples
for related work in Chapter 3. In the spirit of this more practically oriented
chapter, we add a short collection of related work that uses similar concepts
or has related goals from an application-oriented perspective.

Shmuel Katz et al. model aspects and base programs as state machines
[Katz, 2006; Katz and Katz, 2009], enabling them to verify temporal logic
formulae automatically with a model checker. This approach is then used
to construct a statically decidable categorization of aspects that recognizes
spectative aspects, regulative aspects and invasive aspects. Invasive aspects
are further divided into weakly and strongly invasive aspects, depending on
their impact on the base semantics. In either case, the categorization is
correlated with a loss of modularity. Nonetheless, modular verification of
even strongly invasive aspects is explicitly supported in recent work [Katz
and Katz, 2009]. We consider the categorization of aspects to be related
to our classification, as the general properties of the different classes move
along the same lines. Moreover, the use of mechanized formal methods
and the weaving semantics are comparable to our approach. Particularly
interesting is the use of a model checker, which constitutes – along with
interactive theorem provers – a very important approach for the computer
based verification of models.

Steimann et al introduce joinpoint types [Steimann et al., 2009] as a new
first-class citizen in an implicit invocation based language (IIIA). Their ap-
proach is inspired by the Java approach for exceptions, as it requires explicit
declaration of joinpoints in the base program. This approach has the bene-
fit of maintaining a stronger form of modularity than is generally expected
in Aspect Orientation. We believe that this approach is closely related to
the one presented in this thesis, as the typed explicit labels employed in
ςAsc are a comparable concept. Both concepts, IIA and ςAsc support a finer
granularity of joinpoints than just methods by allowing the explicit expo-
sure of joinpoints in the control flow and polymorphic behavior in advice.
Moreover, the inheritance/subtyping semantics are similar insofar as that
joinpoints are not necessarily inherited. While the approach of Steimann et
al is much more oriented towards practical programming, we believe that
ςAsc is a viable formalism for future research into IIIA.
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Avgustinov et al. developed a static tool to resolve AspectJ pointcuts
[Avgustinov et al., 2007]. Their approach is based on a translation of As-
pectJ pointcuts into queries for the prolog-derived database language data-
log, which yield the places to be advised in a base program. We see a close
correlation between this concept and ours, as the idea of introducing labels
hinges on the assumed existence of an algorithm to automatically insert the
labels at the required locations of the base application. We propose a concept
inspired by this one in Section 9.2.

ObjectTeams [Herrmann, 2007] is a collaboration-based programming
language with a strong focus on type soundness. Based on Java, it adds the
new construct team to the language, which can be seen as a combination of
package and class. Roles, members of the team, can be linked to types in the
base application, which also allows them to alter the program semantics in
an aspect-oriented fashion. Unlike AspectJ, ObjectTeams does not employ a
pointcut language, but instead links roles to base types – and role instances
to base instances – using fully qualified types and method names. This
is similar to the label approach proposed in this work, as it requires the
unequivocal identification of the joinpoints to use. ObjectTeams handles
the variance situation shown in Section 9.2 by using an unmentionable type.
We see some similarity between the polymorphic typing judgment used for
aspects in ςAsc and the unmentionable type in ObjectTeams, which is, in
fact, a direct influence of the research behind this work into the ObjectTeams
project.

Gudmundson and Kiczales propose the use of explicit [Gudmundson and
Kiczales, 2001] joinpoint interfaces – interfaces detailing all joinpoints ex-
posed in a given module – to restore modularity and allow the clean selection
of appropriate joinpoints. We argue that this is semantically equivalent to
explicit labels and our joinpoint typing interface.

Mezini and Kiczales offer a slightly altered concept [Kiczales and Mezini,
2005], by suggesting that such an interface could be composed after the
program is completed, i.e. aspects upsetting the original structure were
added. These aspect-aware interfaces would allow reasoning about typing
issues and bears some resemblance to Avgustinov et al [Avgustinov et al.,
2007]. From our perspective, either approach is compatible with ςAsc and its
notion of label interfaces. The major difference in the representation of the
various approaches is in the assumptions about labels: Are they a) explicitly
inserted or b) automatically generated or c) complete.

By establishing that code generation is able to extract usable code from
the formal specification, we have established that the formal calculus rep-
resents an executable language. By further expressing key examples for
problematic situations in the industry leading language AspectJ in our cal-
culus, we have shown that its expressivity is sufficient to reason about such
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situations. Finally, we have related our calculus to the reality of Aspect Ori-
entation by offering possible ways to connect it to state-of-the-art approaches
and identifying different classes of aspects.
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CHAPTER 10

Conclusion

This chapter completes the thesis by summarizing and evaluating the results
presented earlier. We begin with a short summary of the preceding chapters.
We then formulate the contribution of this thesis, detailing the results. The
remainder of this chapter is used for a more personal perspective, expressing
lessons learned and giving thanks where due.

10.1 Summary

This work bridges two different domains of computer science, applying the
domain of rigorous language development in interactive theorem provers to
the practically oriented domain of Aspect Orientation. The bridge con-
structed in this work is a simple, aspect-oriented calculus that due to its
simplicity is well-suited for the mechanization in a theorem prover. At the
same time, the calculus allows the concise and natural representation of
aspect-oriented languages.

The foundation of the work was built throughout Part I, where we mo-
tivated our research into the safety of Aspect Orientation and presented
pre-existing aspect-oriented calculi. We compared these calculi regarding
their expressivity, intent and features in a survey. By analyzing the sur-
vey, we came to the conclusion that no aspect-oriented calculus was ever
mechanized in a theorem prover, a key requirement for our approach to rig-
orous language analysis. Moreover, we found that most calculi are either not
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object-oriented or very closely linked to Java and AspectJ. Even of object-
oriented aspect calculi, only one explicitly considered subtyping and variance
issues.

We thus formulated our goal to present a mechanized calculus that is
simple to use and natively handles objects as first class citizens. An addi-
tional requirement was not to be limited to representing a single language,
but to remain as general as possible. Considering different alternatives, we
picked the ς calculus as basis for our calculus. The ς calculus combines the
requirements of being mature, object-oriented, extensible and not limited to
a specific language, which made it an excellent fit.

Based on these decisions, we presented the construction of our calculus in
Part II. The first incarnation of the calculus, shown in Chapter 5, is untyped.
Key features of the untyped calculus are the natural and simple represen-
tation of aspects and weaving, using an approach of explicit joinpoints in
the form of labeled subterms. Expanding on these constructs, we were able
to show core properties, especially the compositionality of weaving and the
confluence of the core calculus.

We then continued to establish safety and soundness for the calculus,
especially as static properties. Types were the tool of our choice to establish
these static properties. We presented a modular type system for aspects
in Chapter 6 that unifies static typing for base terms with a polymorphic
typing approach for aspects. Building on that notion of typing, we were able
to prove the soundness of our type system – including aspects. In a further
extension, we extended the type system to allow subtyping, maintaining
strong type soundness while relaxing the restrictions imposed by types.

By considering the situations where real aspect-oriented programs behave
contrary to the expectations of static typing, we concluded that variance
issues are a major problem with aspects. To accommodate variance issues, we
extended the calculus even further in Chapter 7. This extension allowed us
to formalize depth subtyping, which is a known issue in real-world languages
such as AspectJ. Using our modular notion of aspect typing, we were able
to re-establish static type soundness by introducing variance annotations.

A connection to reality was established in Chapter 9, where we detailed
the ability to extract executable code from our formal model using the code
generation feature of Isabelle/HOL. To further strengthen the connection, we
constructed equivalent formulations of real-world snippets in our calculus,
explaining why our type system is able to detect various error situations.
Based on these experiences, we presented a classification of aspects with
regards to our notion of safety.
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Beyond the development of the aspect-oriented calculus, we also mecha-
nized a version of the calculus using the modern approach of locally nameless
variables, presented in Chapter 8.

10.2 Contribution

In this thesis we have presented several achievements: A simple concept for
modular aspects, a mechanized core calculus for the study of Aspect Orienta-
tion and a formal proof of type soundness for aspects in an environment with
depth subtyping. These achievements are complemented by achievements in
the field of language meta-theory, notably the comparative formalization us-
ing different binder concepts and code generation. Finally, we presented a
classification of aspects based on our formalism.

We can thus present a number of primary findings, which are key results
of the formalism without considering the technical contribution in the field
of language theory.

• We developed the ςAsc family of calculi, which constitute a simple, yet
expressive set of core calculi for Aspect Orientation.

• Among the core features of these calculi is a simple concept for aspect
typing, which realizes aspect and base typing on the basis of a shared
label or joinpoint interface.

• We defined and proved a concept of Aspect Compositionality

• We focused out attention on subtyping, formalizing both width and
depth subtyping.

• We proved the soundness of the aspect typing and showed that a type
system using variance flags is suitable for solving the variance issues
present in real-world languages, such as AspectJ.

• Based on our findings, we realized a classification of aspects.

We further contributed to the field of language theory. The mechaniza-
tions are to be submitted to the archive of formal proofs.

• Completely mechanized the calculi in Isabelle/HOL in the tradition of
a conservative extension.

• Compared different variable representations, using the locally nameless
and de Bruijn representations for variables.

• Our formalization served as testbed calculus for proven code generation
in Isabelle/HOL.
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10.3 Lessons Learned

The research behind this thesis began a little over three years ago, when a
study in aspect re-usability [Sudhof, 2006] found severe problems with aspect
modularity and aspect re-usability. The project ASCOT presented itself as
the ideal venue to study and solve the issues encountered. Then, we sought
to build a formal model to prove the safety of collaboration based languages,
notably ObjectTeams [Herrmann, 2007]. After the initial surveying of the
situation and the tools at hand, the first lesson learned was an old one:
“Keep it simple.” Simplicity is the most important tool in formal research
and in a variation of Occam’s razor it can be said: “The simplest formalism
able to represent a given domain is also the best formalism to represent that
domain.”

Simplicity keeps models small and understandable, allowing extensions
and thus flexibility. It also is something that does not come without a price:
A “simple” model is not simpler to create, it is easier to use.

The second major lesson revolves around the use of interactive theorem
provers for users with a pre-dominantly practical background. These tools
are invaluable for rigorous research and ease the connection of formal models
to real domains. However, their use is, unlike other automatic proof tools,
notably Model Checkers, not well suited for trial and error. There is not
always the possibility of automatically generating a counter example, nor
can the inability to complete a proof be seen as equivalent to the invalidity
of the lemma to be proven.

The use of theorem provers requires a steep learning curve, both in order
to master the logics employed in those tools and to master the technology.
Beyond that, time must be invested to learn the proof libraries shipped
with the prover distributions. Even after all these steps, the instability of
the provers can introduce problems: In general, provers are not backward
compatible. Every new version of a prover requires significant changes to
existing proofs. This made it especially difficult – even more difficult than
for formal topics in general – to find students willing to work with theorem
provers or to write their thesis about topics related to theorem proving.

Generally, we feel that simplicity in a formalization is a requirement for
clean theories. This is even more important in a rigorous environment, like
a theorem prover, as such tools add a considerable overhead on their own.
We feel that even considering these drawbacks, the use of a theorem is a
worthwhile addition to the process of formalizing a language. This is in part
due to the added guarantees and in part due to the eased connection to
executable programs.
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Finally, one observation became more and more obvious while writing
this thesis: Some area is always left untouched. While it would be possible
to compile a long list of future work, it would also be dishonest to the spirit
of this work to do so. This thesis tried to find a equilibrium, with a calculus
being both small and expressive. However, there is at least one notable angle
that warrants future research: The combination of the ASPfun calculus for
distributed objects [Henrio et al., 2007] and ςAsc, leading to a theory of
distributed aspect components. We hope to be able to revisit this project in
future work.
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10.5 Closing Remarks

In this final paragraph, we wish to bring attention to the original goal of
this thesis: The rigorous proof that aspects can be modular and sound. We
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presented a formal calculus that realizes a safe concept of Aspect Orientation
with special attention to modularity and type soundness. However, we do
not claim that this automatically guarantees the safety of all aspects. This
thesis, and others, have proven the opposite. What we claim is that we can
express a safe class of aspects in our calculus, forming a subset of aspects
in general. We believe that a large number of practically relevant aspects is
included in that category and that Aspect Orientation as a whole benefits
from the rigorous approach to language development.
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Complete Formalization Using de Bruijn Indices

This appendix presents the actual Isabelle/HOL theories that form the basis
for this work, omitting the proof bodies. For the formalization using locally
nameless variables and the complete proofs, we refer to our homepage [Kam-
müller and Sudhof, 2009a]. This appendix was automatically generated by
Isabelle and presents the mechanization as it was validated by Isabelle/HOL,
without any editing. The syntax can be confusing for users not familiar with
the notations used in Isabelle/HOL, particularly the interaction of kernel
and object logic. For a complete introduction into the syntax, we refer to
the Isabelle tutorial by Nipkow et al [Nipkow et al., 2002]. As a simplified
tour we repeat the short introduction from 2.3: The semantic brackets en-
close premises for lemmas, using the meta implication as pseudo-conjunction.
JA;BK =⇒ P stands for A =⇒ (B =⇒ C) and can be read as A ∧B −→ C.

The appendix is structured as follows: Omitting essential properties of
lists and other trivial preliminaries, we begin by presenting the finite map
type used throughout the calculus. Having established that core building
block, we continue with the ς calculus, especially syntax, semantics and
basic properties. As a final finding for the core calculus, we then present
the confluence proof. Types and Type Soundness are the topic of the next
section, starting with type environments, subtyping, the type system and fi-
nally the theorems for subject reduction and progress. Aspects then are first
introduced, defining their syntax as well as weaving; we close with the com-
positionality property and the various soundness proofs. Additional proofs
and formalizations are available on our homepage [Kammüller and Sudhof,
2009a].
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A.1 Finite Maps with Axclasses
theory FiniteMaps imports Preliminaries begin

Initial setup of the type as axiomatic type class.

axclass fintype < type

finite_set: "finite (UNIV)"

types (’a, ’b)fmap = "(’a :: fintype) ~=> ’b" ( infixl "-~>" 50)

Induction on finite sets: Has to be valid for the empty set and the finite
set to which one arbitrary addition was made.

theorem fset_induct:
"P {} ==> (!!x (F :: (’a :: fintype)set). x /∈ F ==> P F ==> P (insert

x F)) ==> P F"
〈proof 〉

Uniqueness of finite maps.

theorem fmap_unique: "x = y =⇒ (f :: (’a, ’b)fmap) x = f y"
〈proof 〉

A finite map is either empty or there is another finite map that is identical
if one entry is added to it.

theorem fmap_case:
"(F :: (’a -~> ’b)) = empty ∨ (∃ x y (F’ :: (’a -~> ’b)). F = F’(x

7→ y))"
〈proof 〉

Define the witness as a constant function so it may be used in the proof
of the induction scheme below. Splits a fmap into domain and range.

constdefs
set_fmap :: "’a -~> ’b ⇒ (’a * ’b)set"
"set_fmap F == { (x, y). x : dom F & F x = Some y}"

Predicates can be lifted to sets.

constdefs
pred_set_fmap :: "((’a -~> ’b) ⇒ bool) ⇒ ((’a * ’b)set) ⇒ bool"
"pred_set_fmap P == % S. P (% x. if x : fst ‘ S then (THE y. (? z. y

= Some z & (x, z): S)) else None)"

Removing an entry.

constdefs
fmap_minus_direct :: "[(’a -~> ’b), (’a * ’b)] ⇒ (’a -~> ’b)" ( infixl

"--" 50)
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"F -- x == (% z. if (fst x = z & ((F (fst x)) = Some (snd x))) then
None else (F z))"

An entry that got added is in the map.

lemma insert_lem : "insert x A = B =⇒ x : B"
〈proof 〉

Translation lemma for members of set_fmap.

lemma set_fmap_pair: "x: set_fmap F =⇒ (fst x : dom F & snd x = the
(F (fst x)))"
〈proof 〉

Removing and adding the same entry is neutral.

lemma set_fmap_inv1: " [[ fst x: dom F; snd x = the (F (fst x)) ]] =⇒
(F -- x)(fst x 7→ snd x) = F"
〈proof 〉

Order of adding an entry and set_fmap can be reversed.

lemma set_fmap_inv2: "fst x ~: dom F =⇒ insert x (set_fmap F) = set_fmap
(F (fst x 7→ snd x))"
〈proof 〉

A predicate lifted to a set is logically identical.

lemma rep_fmap_base: "P (F :: ’a -~> ’b) = (pred_set_fmap P)(set_fmap
F)"
〈proof 〉

Usable version of the above.

lemma rep_fmap: "(? (Fp :: (’a * ’b)set) (P’ :: (’a * ’b)set ⇒ bool).
P (F:: ’a -~> ’b) = P’ Fp)"
〈proof 〉

A finite set is finite.

theorem finite_fsets: "finite (F :: ((’a :: fintype) set))"
〈proof 〉

The domain of a finite map is finite.

lemma finite_dom_fmap: "finite ((dom (F :: ’a -~> ’b)) :: ((’a :: fintype)
set))"
〈proof 〉

Range of a finite map is finite.

lemma finite_fmap_ran: "finite (ran (F :: (’a :: fintype) -~> ’b))"
〈proof 〉
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The set representation of a finite map is finite.

lemma finite_fset_map: "finite (set_fmap (F :: (’a :: fintype) -~> ’b))"
〈proof 〉

lemma rep_fmap_imp: "(! F x z . x /∈ dom (F :: (’a -~> ’b)) −→ P F −→
P (F (x 7→ z)))
=⇒ (! F x z . x /∈ fst ‘ (set_fmap F) −→ (pred_set_fmap P)(set_fmap

F)
−→ (pred_set_fmap P) (insert (x, z)(set_fmap F)))"

〈proof 〉

Induction scheme for finite maps.

theorem fmap_induct[rule_format]:
"P (% x. None) −→ (! (F :: ((’a :: fintype) -~> ’b)) x z . x /∈ dom

F −→ P F −→ P (F (x 7→ z)))
−→ P (F’ :: (’a -~> ’b))"

〈proof 〉

end

A.2 Basic Definition of the Sigma Calculus
theory Sigma imports FiniteMaps begin

The basic Sigma calculus, extended to include labeled terms for aspect-
orientation. This formalisation uses de Bruijn indices for variables and was
further extended to allow methods to have parameters.

Infrastructure for the finite maps

We use integers as method names, as they are the easiest to handle. To
do so an arbitrary integer denotes the maximal number of different method
names. Using strings with a fixed length would be also feasible.

consts max_label :: nat

axioms LabelAvail: "max_label > 100"

typedef Label = "{n :: nat. n <= max_label }"
〈proof 〉

Finiteness of available labels.

lemma finite_Label_set: "finite {n :: nat. n <= max_label }"
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〈proof 〉

Translation between types.

lemma Univ_abs_label: "(UNIV :: (Label set)) = Abs_Label ‘ {n :: nat.
n <= max_label }"
〈proof 〉

Finiteness of the label universe.

lemma finite_Label: "finite (UNIV :: (Label set))"
〈proof 〉

Labels are thus a finite type.

instance Label :: "fintype"
〈proof 〉

Comparison of labels.

constdefs
Llt :: "[Label, Label] ⇒ bool" ( infixl "<" 50)
"Llt a b == Rep_Label a < Rep_Label b"
Lle :: "[Label, Label] ⇒ bool" ( infixl "≤" 50)
"Lle a b == Rep_Label a ≤ Rep_Label b"

Basic Datatype

The datatype realizing the syntax of the extended calculus. Types are in-
troduced here to allow type annotations in ς terms. The variable type has
cases for self variables and parameters.

datatype type = Object "Label -~> (type × type × bool)"

datatype Variable = Self nat | Param nat

datatype dB =
Var Variable

| Obj "Label -~> dB" type
| Call dB Label dB
| Upd dB Label dB
| Asp_Label nat dB ("_〈_〉")

Lifting and Substitution

De Bruijn indices add a few complications to the handling of variable sub-
stitution. These functions realize the required index adaption.

Lifting adjusts indices. The option cases are required for objects, which
wrap a finite map.
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primrec
lift_Var :: "[Variable,nat] ⇒ Variable"
where

lift_Self: "lift_Var (Self i) k = Self (if i < k then i else (i +
1))"
| lift_Param: "lift_Var (Param i) k = Param (if i < k then i else (i

+ 1))"

primrec
lift::"[dB, nat] ⇒ dB"

and
lift_option::"[nat, dB option] ⇒ dB option"

where
liftVar: "lift (Var v) k = Var (lift_Var v k)"

| liftCall: "lift (Call a l b) k = Call (lift a k) l (lift b k)"
| liftUpd: "lift (Upd a l b) k = Upd (lift a k) l (lift b (k + 1))"

| liftObj: "lift (Obj f T) k = Obj (% l. (lift_option (Suc k) (f l)))
T"
| liftLabel: "(lift (i 〈t〉) k) = (i 〈(lift t k)〉)"
| lift_None: "lift_option k None = None"
| lift_Some: "lift_option k (Some t) = Some (lift t k)"

primrec
subst_Var :: "[Variable, dB, dB, nat] ⇒ dB"

where
subst_Self: "subst_Var (Self i) a b k = (if k < i then Var (Self (i

- 1)) else if i = k then a else Var (Self i))"
| subst_Param: "subst_Var (Param i) a b k = (if k < i then Var (Param

(i - 1)) else if i = k then b else Var (Param i))"

Substitution of variables.

primrec
subst :: "[dB, dB, dB, nat] ⇒ dB" ("_[_,_’/_]" [300, 0, 0,

0] 300)
and

subst_option :: "[nat, dB, dB, dB option] ⇒ dB option"
where

subst_Var: "(Var i)[s,t/k] = subst_Var i s t k"
| subst_Call: "(Call a l b)[s,t/k] = (Call (a[s,t/k]) l (b[s,t/k]))"
| subst_Upd: "Upd a l b [s,t/k] = (Upd (a [s,t/k]) l (b [lift s 0,

lift t 0 / k+1]))"
| subst_Obj: "Obj f T [s,t/k] = Obj (% l. (subst_option (Suc k)(lift

s 0)(lift t 0) (f l))) T"
| subst_Label: "(asp_la〈x〉) [s,t/k] = asp_la〈(x[s,t/k])〉"
| subst_None: "subst_option n s t None = None"
| subst_Some: "subst_option n s t (Some x) = Some (x [s,t/n])"

declare subst_Var [simp del]
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Beta-reduction

The reduction relation for the calculus. This inductive definition realizes the
semantics as small step operational semantics.

inductive beta::"[dB, dB] => bool" ( infixl "→β" 50)
where

beta [simp, intro!] : "l : dom f =⇒ Call (Obj f T) l b →β (the(f
l))[(Obj f T),b/0]"
| upd [simp, intro!]: "l : dom f =⇒ Upd (Obj f T) l a →β Obj (f(l
7→ a) ) T"
| sel [simp, intro!]: "s →β t =⇒ Call s l u →β Call t l u"
| selR [simp, intro!]: "u →β v =⇒ Call s l u →β Call s l v"
| updL [simp, intro!]: "s →β t =⇒ Upd s l u →β Upd t l u"
| updR [simp, intro!]: "s →β t =⇒ Upd u l s →β Upd u l t"
| obj [simp, intro!]: " [[ s →β t; l: dom f ]] =⇒ Obj (f (l 7→ s))

T →β Obj (f (l 7→ t) ) T"
| laba [simp, intro!]: " [[s →β t ]] =⇒ i〈s〉 →β i〈t〉"

inductive_cases beta_cases [elim!]:
"Var i →β t"
"Call s l t →β t"
"Upd s l t →β u"
"Obj s T →β Obj t T"
"i〈s〉 →β i〈t〉"

β∗ is the transitive, reflexive closure of the reduction relation.

abbreviation
beta_reds :: "[dB, dB] => bool" ( infixl "->>" 50) where
"s ->> t == beta^** s t"

abbreviation
beta_ascii :: "[dB, dB] => bool" ( infixl "->" 50) where
"s -> t == beta s t"

notation (latex)
beta_reds ( infixl "→β

∗" 50)

declare if_not_P [simp] not_less_eq [simp]
— don’t add r_into_rtrancl[intro!]

Congruence rules

A set of lemmas to allow the convenient use of β∗ as a big step semantics.

lemma rtrancl_beta_Obj [intro!]:
"s →β

∗ s’ ==> ((Call s l t) →β
∗ (Call s’ l t))"

〈proof 〉
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lemma rtrancl_beta_ObjR [intro!]:
"s →β

∗ s’ ==> ((Call t l s) →β
∗ (Call t l s’))" 〈proof 〉

lemma rtrancl_beta_updL:
"s →β

∗ s’ =⇒ Upd s l u →β
∗ Upd s’ l u" 〈proof 〉

lemma rtrancl_beta_updR:
"s →β

∗ s’ =⇒ Upd u l s →β
∗ Upd u l s’" 〈proof 〉

lemma rtrancl_beta_upd:
" [[ u →β

∗ u’; s →β
∗ s’ ]] =⇒ Upd u l s →β

∗ Upd u’ l s’"
〈proof 〉

lemma rtrancl_beta_obj:
" [[ s →β

∗ s’; l : dom f ]] =⇒ Obj (f (l 7→ s)) T →β
∗ Obj (f (l 7→ s’))

T" 〈proof 〉

lemma rtrancl_beta_obj_no_dom:
" [[ s →β

∗ s’ ]] =⇒ Obj (f (l 7→ s)) T →β
∗ Obj (f (l 7→ s’)) T"

〈proof 〉

lemma rtrancl_beta_lab:
" [[ s →β

∗ s’ ]] =⇒ i〈(s)〉 →β
∗ i〈(s’)〉 " 〈proof 〉

lemma obj_lem: " [[ n: dom f; the (f n) ->> x ]] =⇒ Obj (f) T ->> Obj (f(n
7→ x)) T"
〈proof 〉

A helper function encoding the equality of submaps.

constdefs
Ltake_eq ::" [Label set, (Label ~=> ’a), (Label ~=> ’a)] ⇒ bool "
"Ltake_eq L f g == ∀ l ∈ L . f l = g l"

Only the empty map has ∅ as domain.

lemma empty_dom : " [[{} = dom g ]] =⇒ g = empty"
〈proof 〉

If the submap’s domain is the same as the domains of the compared
maps, the maps are identical.

lemma Ltake_eq_all : " [[dom f = dom g; Ltake_eq (dom f) f g ]] =⇒ f = g"
〈proof 〉

lemma Ltake_eq_dom : " [[ L ⊆ dom (f::(Label -~> ’a)) ; card L = card
(dom f) ]] =⇒ L = (dom f)"
〈proof 〉

lemma Ltake_eq_empty [simp]: "Ltake_eq {} f g"
〈proof 〉
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A major lemma for the transition from one Object to another. This
very technical proof shows that one map(object) can reduce to another, one
element(method) at a time.

lemma rtrancl_beta_obj_lem0000:
" [[ dom f = dom g; ∀ l ∈ dom f. the (f l) ->> the (g l) ]] =⇒

∀ k ≤ (card (dom f)) .
(∃ ob . length ob = (k + 1) ∧

(∀ obi. obi mem ob −→ dom (fst(obi)) = dom f ∧
((snd obi) ⊆ dom f)) ∧
(fst (ob ! 0) = f) ∧
(card (snd (ob ! k)) = k) ∧

(∀ i < k . snd (ob ! i ) ⊂ snd (ob ! k )) ∧
(Obj (fst (ob ! 0)) T ->> Obj (fst (ob ! k)) T) ∧
( card (snd (ob !k )) = k −→ (Ltake_eq (snd (ob!k)) (fst (ob

! k)) g) ∧
(Ltake_eq (( dom f) - (snd (ob!k)))

(fst (ob ! k)) f)

))"

〈proof 〉
thm rtrancl_trans
〈proof 〉

lemma rtrancl_beta_obj_n: " [[ dom f = dom g; ∀ l ∈ dom f. the (f l)
->> the (g l) ]]

=⇒ Obj f T ->> Obj g T"
〈proof 〉
thm Ltake_eq_all
〈proof 〉

Substitution-lemmas

Essential properties of the substitution function.

lemma subst_eq_s [simp]: "(Var (Self k))[u,t/k] = u"
〈proof 〉

lemma subst_eq_p [simp]: "(Var (Param k))[u,t/k] = t"
〈proof 〉

lemma subst_gt_p [simp]: "i < j =⇒ Var (Param j)[u,t/i] = Var (Param
(j - 1))"
〈proof 〉
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lemma subst_gt_s [simp]: "i < j =⇒ Var (Self j)[u,t/i] = Var (Self
(j - 1))"
〈proof 〉

lemma subst_lt_p [simp]: "j < i ==> Var (Param j)[u,t/i] = Var (Param
j)"
〈proof 〉

lemma subst_lt_s [simp]: "j < i ==> Var (Self j)[u,t/i] = Var (Self j)"
〈proof 〉

Induction rules for fmaps and objects.
lemma dB_induct: " [[ !! n. P1 (Var n);

!! l T. P1 (Obj l T);
!! d1 n d2.

[[P1 d1; P1 d2 ]] =⇒ P1 (Call d1 n d2);
!! d1 n d2.

[[P1 d1; P1 d2 ]]
=⇒ P1 (Upd d1 n d2);

!! d1 i. [[P1 d1 ]] =⇒ P1 (i〈d1〉)
]] =⇒ P1 dB"

〈proof 〉

Idea: "P2 f" is actually just "! x. P1 (f x)" – instead of a searching for
a general isomorphism between predicates on the ranfe of f, i.e. f x, and f
itself – which doesn’t exist, we instantiate the induction for the case that we
need, i.e. P2 = P1 "but lifted to fmaps"
consts foo:: " (dB ⇒ bool) ⇒ dB option ⇒ bool"
primrec
f1: "foo P None = True"
f2: "foo P (Some x) = P x"

lemma db_induct1:" [[
∧
n. P1 (Var n);∧

f. (! x: dom f. P1 (the (f x))) =⇒ P3 f;∧
f T. P3 f =⇒ P1 (Obj f T);∧
d1 l d2. [[P1 d1; P1 d2 ]] =⇒ P1 (Call d1 l d2);∧
d1 l d2. [[P1 d1; P1 d2 ]] =⇒ P1 (Upd d1 l d2);

!! d1 i. [[P1 d1 ]] =⇒ P1 (i〈d1〉) ]]
=⇒ P1 db ∧ (P3 (f::Label -~>dB ))"

〈proof 〉

lemma db_induct2:" [[
∧
n. P1 (Var n);∧

f T. P3 f =⇒ P1 (Obj f T);∧
d1 l d2. [[P1 d1; P1 d2 ]] =⇒ P1 (Call d1 l d2);∧
d1 l d2. [[P1 d1; P1 d2 ]] =⇒ P1 (Upd d1 l d2);

!! x. P3 (empty);∧
d1 f l . [[ l /∈ dom f; P1 d1; P3 f ]]
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=⇒ ( P3 (f(l 7→ d1)));
!! d1 i. [[P1 d1 ]] =⇒ P1 (i〈d1〉) ]]

=⇒ P1 db ∧ (P3 (f::Label -~>dB ))"

〈proof 〉

lemma dB_induct2:
"[| !!n. P (Var n); !!f T. Q f ==> P (Obj f T);

!!d1 l d2. [| P d1; P d2 |] ==> P (Call d1 l d2);
!!d1 l d2. [| P d1; P d2 |] ==> P (Upd d1 l d2);
!!x. Q empty;
!!d1 f l. [| l ~: dom f; P d1; Q f |] ==> Q (f(l |-> d1));
!!d1 i. P d1 ==> P (dB.Asp_Label i d1) |]

==> P db & Q f"

〈proof 〉

More lifting

Essential properties of the lifting function, especially commutative properties
and in the combination with substitution.

lemma lift_lift_prep [rule_format]:
" (∀ i k . i < k + 1 --> lift (lift t i) (Suc k) = lift (lift

t k) i)
& ( ∀ i k . i < k + 1 --> (lift (lift (Obj fun T) i) (Suc k)

= lift (lift (Obj fun T) k) i))
"
〈proof 〉

lemma lift_lift [rule_format]:
"(∀ i k. i < k + 1 --> lift (lift t i) (Suc k) = lift (lift t k) i)"

〈proof 〉

lemma lift_subst_prep :
"(∀ i j s t. j < i + 1 --> lift (a[s,t/j]) i = (lift a (i + 1)) [lift

s i,lift t i / j])
&(∀ i j s t. j < i + 1 --> lift (Obj f T [s,t/j]) i = (lift (Obj f

T) (i + 1)) [lift s i,lift t i / j])"
〈proof 〉

lemma lift_subst [simp]:
" j < i + 1 --> lift (t[s,u/j]) i = (lift t (i + 1)) [lift s i,lift

u i / j]"
〈proof 〉

lemma lift_subst_lt_prep:
"(∀ i j s u. i < j + 1 --> lift (t[s,u/j]) i = (lift t i) [lift s

i,lift u i / j + 1])
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&(∀ i j s u. i < j + 1 --> lift ((Obj f T)[s,u/j]) i = (lift (Obj
f T) i) [lift s i,lift u i / j + 1])"
〈proof 〉

lemma lift_subst_lt:
" i < Suc j =⇒ lift (t[s,u/j]) i = (lift t i) [lift s i,lift u i

/ j + 1]"
〈proof 〉

lemma subst_lift_prep :
"(∀ k s u. (lift t k)[s,u/k] = t) & (∀ k s u. (lift (Obj f T) k)[s,u/k]

= Obj f T)"
〈proof 〉

lemma subst_lift [simp]:
"∀ k s u. (lift t k)[s,u/k] = t"

〈proof 〉

lemma subst_subst_prep [rule_format]:
"(∀ i j u v s s’. i < j + 1 −→

((t[(lift v i),(lift s i) / Suc j])[u[v,s/j],s’[v,s/j]/i]
= (t[u,s’/i])[v,s/j]))

&(∀ i j u v s s’. (i < j + 1 −→
(Obj f T [(lift v i),(lift s i) / Suc j])[u[v,s/j],s’[v,s/j]/i]

= (Obj f T[u,s’/i])[v,s/j]))"
〈proof 〉

lemma subst_subst [rule_format]:
" i < j + 1 =⇒ t[lift v i,lift s’ i / Suc j][u[v,s’/j],s[v,s’/j]/i]

= t[u,s/i][v,s’/j]"
〈proof 〉

lemma rmp: " [[ A; A −→ B ]] =⇒ B"
〈proof 〉

lemma insert_select [simp] : "!!f l t. the ((f(l 7→ t)) l) = t"
〈proof 〉

lemma dom_insert [simp] : "!!f l t. [[ l ∈ dom f ]] =⇒ dom (f(l 7→ t))
= dom f"
〈proof 〉

lemma insert_select2 [simp] : "!!f l1 l2 t. [[l1 6= l2 ]] =⇒ ((f(l1 7→
t)) l2) = (f l2)"
〈proof 〉

lemma the_insert_select [simp] : "!!f l1 l2 t. [[l2 ∈ dom f; l1 6= l2 ]]
=⇒ the ((f(l1 7→ t)) l2) = the (f l2)"
〈proof 〉
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end

A.3 Confluence of the Reduction
theory Confluence imports Sigma Commutation begin

Parallel Reduction

This confluence proof is based on the framework by Tobias Nipkow. The es-
sential idea is to design a parallel reduction relation for which confluence can
be shown. By establishing that the relation is between the normal reduction
and its transitive, reflexive closure, the result can be applied to the original
reduction.

inductive par_beta::"[dB, dB] => bool" ( infixl "=>" 50)
where

var [simp, intro!]: "Var n => Var n"
|obj [simp, intro!]: " [[dom s = dom s’; ∀ l ∈ dom s . the (s l) =>

the (s’ l) ]] =⇒ Obj s B => Obj s’ B"
|upd [simp, intro!]: " [[s => s’; t => t’ ]] =⇒ Upd s l t => Upd s’

l t’"
|upd’ [simp, intro!]:" [[Obj s B => Obj s’ B; t => t’; l ∈ dom s ]]

=⇒(Upd (Obj s B) l t) => (Obj (s’(l 7→ t’))
B)"

|sel [simp, intro!]: " [[s => t; u => v ]] =⇒ Call s l u => Call t l
v"

|beta [simp, intro!]: " [[Obj f B => Obj f’ B; l ∈ dom f’; b => b’ ]]
=⇒ Call (Obj f B) l b => (the (f’ l))[(Obj f’ B),b’/0]"

|lab’ [simp, intro!]: " [[ t => t’ ]] =⇒ i〈t〉 => i〈t’〉"

inductive_cases par_beta_cases [elim!]:
"Var n => t"
"Obj s B => t"
"Call s l b => t"
"Upd s l t => u"
"i〈t〉 => i〈t〉"

Inclusions

beta ⊆ par_beta ⊆ beta^*

Variables do not reduce

lemma par_beta_varL [simp]:
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"(Var n => t) = (t = Var n)"
〈proof 〉

Parallel reduction in objects.

lemma par_beta_obj_subst’: " [[ l ∈ dom f; s => t; Obj f B => Obj f’
B ]]

=⇒ Obj (f (l 7→ s)) B=> Obj (f’(l 7→ t)) B"

〈proof 〉

Parallel reduction in objects, stronger version.

lemma par_beta_obj_subst: " [[ s => t; Obj f B => Obj f’ B ]]
=⇒ Obj (f (l 7→ s)) B => Obj (f’(l 7→ t)) B"

〈proof 〉

lemma par_beta_refl_prep: " t => t & Obj l T => Obj l T"
〈proof 〉

Parallel reduction is reflexive.

lemma par_beta_refl [simp]: "t => t"

〈proof 〉

Parallel reduction is bigger (or equal) than the original reduction.

lemma beta_subset_par_beta: "beta <= par_beta"
〈proof 〉

Parallel reduction is smaller than the transitive, reflexive closure of the
original reduction.

lemma par_beta_subset_beta: "par_beta <= beta^**"
〈proof 〉

Inversion of par_beta.

lemma Obj_par_red: " [[ Obj s T=> z ]] =⇒ ? lz. dom s = dom lz & z = Obj
lz T"
〈proof 〉

lemma Upd_par_red: " [[ Upd s l t => z ]] =⇒
(? s’ t’. s => s’ & t => t’ & z = Upd s’ l t’) |
(? f f’ t’ T. s = Obj f T & Obj f T => Obj f’ T & t => t’ & z

= Obj (f’ (l 7→ t’)) T)"

〈proof 〉
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lemma Call_par_red: " [[ Call s l t => z ]] =⇒
(? s’ t’. s => s’ & t => t’ & z = Call s’ l t’)

| (? f f’ T t’ . Obj f T => Obj f’ T & l ∈ dom f’ & s = Obj f T
& t => t’ & z = (the (f’ l))[(Obj f’ T),t’/0])"

〈proof 〉

Misc properties of par_beta and domains

A number of helper lemmata for the later proofs.
lemma lift_obj_lem0: "Obj (f) T => t =⇒ ∃ f’. dom f = dom f’ & t =
Obj (f’) T"
〈proof 〉

lemma lift_obj_lem00: "Obj (f) T=> Obj (f’) T =⇒ dom f = dom f’"
〈proof 〉

lemma dom_liftoption_lem: " !!f . dom f = dom (λ l. lift_option n (f
l) )"
〈proof 〉

lemma insert_dom_eq : " [[dom f = dom f’ ]] =⇒ dom (f(l |-> x)) = dom (f’(l
7→ x’))"
〈proof 〉

lemma insert_dom_less_eq : "!! y y’ x . [[x /∈ dom f; x /∈ dom f’; dom
(f(x 7→ y)) = dom (f’(x 7→ y’)) ]] =⇒ dom f = dom f’"
〈proof 〉

If one object reduces to another, then any shared element can be removed
from both objects without harming the reduction.
lemma par_beta_less : "!! d1 t1 . [[ Obj (f(l 7→d1)) T => Obj(t(l |-> t1))
T ; l /∈ dom f; l /∈ dom t ]] =⇒ Obj f T => Obj t T"
〈proof 〉

lemma par_beta_less’ : "!! d1 t1 . [[ ∀ x ∈ dom f. the ((f(l 7→d1)) x)
=> the ((t(l |-> t1)) x) ; l /∈ dom f; l /∈ dom t ]] =⇒ ∀ x ∈ dom f .
the (f x) => the (t x)"
〈proof 〉

If two objects are in a reduction relation, then all their elements are as
well.
lemma par_beta_one : "!! d1 t1 . [[ Obj (f(l 7→d1)) T => Obj(t(l |-> t1))
T ; l /∈ dom f; l /∈ dom t ]] =⇒ d1 => t1"
〈proof 〉

lemma obj_par_beta : " [[Obj f T => Obj f’ T ]] =⇒ ∀ l∈ dom f . the (f
l) => the (f’ l)"
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〈proof 〉

Lifting maintains the parallel reduction
lemma lift_obj_lem: " [[ lift (Obj f T) n => lift (Obj f’ T) n; lift x
(Suc n) => lift x’ (Suc n) ]]

=⇒ lift (Obj (f(l 7→ x)) T) n => lift (Obj (f’(l
|-> x’)) T) n"

〈proof 〉

lemma dom_substoption_lem: "dom (λ l . subst_option n s t (f l) ) =
dom f"
〈proof 〉

lemma olift_lift: "! n’. n’ ∈ dom f −→ (the ((λ l . lift_option n (f
l)) n’)) = (lift (the (f n’)) n)"
〈proof 〉

lemma olift_upd: "! n’. ((λ l . lift_option (Suc n) ((s(n’|-> t)) l
)) = ((λ l . lift_option (Suc n)(s l))( n’ 7→ (lift t (Suc n)))))"
〈proof 〉

Helper; beta is a subset of par_beta.
lemma par_beta_beta : "!!a b. [[ a -> b ]] =⇒ a => b"

〈proof 〉

There is always an object with one element removed that is identical for
all other elements.
lemma insert_one : " [[l∈ dom t ]] =⇒ ∃ t’ . l /∈ dom t’ ∧ t = (t’(l 7→
(the (t l))))"
〈proof 〉

lemma obj_par_beta’ : " [[ ∀ l∈ dom f . the (f l) => the (f’ l); dom f
= dom f’ ]] =⇒ Obj f T => Obj f’ T"
〈proof 〉

lemma lab_par_beta : " [[dB.Asp_Label i d1 => t’ ]]
=⇒ (∃ t’’. t’ = dB.Asp_Label i t’’ ∧ d1 => t’’)"

〈proof 〉

Parallel reduction does not change type annotations.
lemma par_red_type_obj [simp] : "Obj f T => Obj f’ T’ =⇒ T = T’"
〈proof 〉

Major lemma: lifting maintains parallel reduction.
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lemma par_beta_lift_prep [rule_format, simp]:
"(∀ t’ n. t => t’ --> lift t n => lift t’ n)
&(∀ t’ n T. Obj f T => Obj t’ T --> lift (Obj f T) n => lift (Obj

t’ T) n)"
〈proof 〉

Major lemma: substitution maintains parallel reduction.

lemma par_beta_subst_prep [rule_format]:
"(∀ s s’ t’ b b’ n. s => s’ ∧ b => b’ --> t => t’ --> t[s,b/n] =>

t’[s’,b’/n])
&(∀ s s’ t’ b b’ n T. s => s’ ∧ b => b’ --> (Obj f T) => t’ --> Obj

f T[s,b/n] => t’[s’,b’/n])"
〈proof 〉
thm par_beta_less
〈proof 〉

lemma par_beta_subst [rule_format]:
"∀ s s’ t’ n. s => s’ ∧ b => b’ --> t => t’ --> t[s,b/n] => t’[s’,b’/n]"

〈proof 〉

There is always a smaller object.

lemma one_more_dom :"!! f . [[f 6= empty ]] =⇒ ∀ l ∈ dom f . ∃ f’ . f
= f’(l 7→ the(f l) ) ∧ l /∈ dom f’ "
〈proof 〉

lemma fmap_inducta: " [[P empty;
!! x (F::Label -~>’a) y . [[ P F; x /∈ dom F ]]
=⇒ P (F(x 7→ y)) ]] =⇒ P F"

〈proof 〉

lemma fmap_induct3: "!! (F2::Label -~> ’b) (F3::Label -~> ’c) . [[
dom (F1::Label -~> ’a) = dom F2; dom F3 = dom F1; P empty empty empty;

!! x a b c (F1::Label -~> ’a) (F2::Label -~> ’b) (F3::Label
-~> ’c) . [[ P F1 F2 F3; dom F1 = dom F2; dom F3 = dom F1; x /∈ dom F1
]]

=⇒ P (F1(x 7→ a)) (F2(x 7→ b)) (F3(x 7→ c)) ]] =⇒ P
F1 F2 F3"

〈proof 〉

lemma fmap_induct2: "!! (F2::Label -~> ’b) . [[ dom (F1::Label -~>
’a) = dom F2; P empty empty;

!! x a b (F1::Label -~> ’a) (F2::Label -~> ’b) . [[ P
F1 F2 ; dom F1 = dom F2; x /∈ dom F1 ]]
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=⇒ P (F1(x 7→ a)) (F2(x 7→ b)) ]] =⇒ P F1 F2"

〈proof 〉

Very technical transformation of a !? into a ?! for lists and par_red.

lemma ex_list_ex0: " [[ dom (s::Label -~>dB) = dom (s’::Label -~>dB)
; dom (lz::Label -~>dB) = dom s ]] =⇒

( ∀ l ∈ dom s . the (s l) => the (lz l))
& (∀ l ∈ dom s. (! z. the (s l) => z −→ (? u. the (s’ l)

=> u ∧ z => u)))
−→ (∃ lu. (dom lu = dom s) & (∀ l ∈ dom s. the (s’ l)

=> the (lu l) ∧ the (lz l) => the (lu l)))"
〈proof 〉

lemma ex_list_ex: " [[ dom (s::Label -~>dB) = dom (s’::Label -~>dB); dom
s = dom (lz::Label -~>dB); ∀ l ∈ dom s. the (s l) => the (lz l);

(∀ l ∈ dom s. (∀ z. the (s l) => z −→ (∃ u. the (s’ l) =>
u ∧ z => u))) ]]

=⇒ (∃ lu. dom lu = dom s ∧ (∀ l ∈ dom s. the (s’ l) =>
the (lu l) ∧ the (lz l) => the (lu l)))"
〈proof 〉

Confluence (directly)

Main result: Confluence of beta relation for Sigma calculus by diamond
property of parallel reduction and β ⊆ par_beta ⊆ β∗

lemma diamond_par_beta: "diamond par_beta"
〈proof 〉

Confluence (classical not via complete developments)

Main theorem: Confluence of β

theorem beta_confluent: "confluent beta"
〈proof 〉

end

A.4 First Order Types for Sigma Terms with As-
pect Labels

theory Environments imports "../coreCalculus/Preliminaries" begin
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Type Environments

Some basic properties of our list/stack variable environments. The position
in the list denotes the distance to the binder.

datatype (’a) environment = Env "(’a × ’a) list"

Adding variables.

primrec
shift :: "(’a environment) ⇒ nat ⇒ ’a ⇒ ’a

⇒ ’a environment" ("_<_:_,_>" [90, 50, 0, 0] 91)
where

shift_def [simp]: "(Env e)<i:a,b> = Env (list_insert e i (a,b))"

Retrieving variables.

primrec
env_at :: "(’a environment) ⇒ nat ⇒ (’a × ’a) " ("_!_")

where
env_at_def [simp]: "(Env e)!i = e!i"

Size of the environment (also establishes smallest free variable).

primrec
env_length :: "(’a environment) ⇒ nat"

where
env_length_def [simp]: "env_length (Env e) = length e"

syntax (latex output)
env_length :: "(’a environment) ⇒ nat" ("|_|" 91)

notation (latex) env_length ( "|_|" 60)

constdefs
prefix :: "(’a list) ⇒ (’a list) ⇒ bool"
"prefix l m == l = take (length l) m"

syntax (xsymbols)
shift :: "(’a environment) ⇒ nat ⇒ ’a ⇒ ’a ⇒ ’a list" ("_〈_:_,_〉"

[90, 0, 0] 91)
syntax (HTML output)

shift :: "(’a environment) ⇒ nat ⇒ ’a ⇒ ’a ⇒ ’a list" ("_〈_:_,_〉"
[90, 0, 0] 91)

lemma shift_eq [simp]: "i = j ∧ j ≤ env_length e =⇒ (e〈i:T,U〉)!(j)
= (T,U)"
〈proof 〉
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lemma shift_gt [simp]: " [[j < i; i ≤ env_length e ]] =⇒ (e〈i:T,U〉)! j
= e!j"
〈proof 〉

lemma shift_lt [simp]: " [[i ≤ j ]] =⇒ (e〈i:T,U〉)! (Suc j) = e!(j)"
〈proof 〉

lemma shift_lt2 [simp]: " [[i < j; i ≤ env_length e ]] =⇒ (e〈i:T,U〉)!(j)
= e!(j - 1)"
〈proof 〉

lemma shift_lt3: " [[i < j ]] =⇒ (e〈i:T,U〉)!Suc(j - 1) = e!(j - 1)"
〈proof 〉

lemma shift_lt4 [simp]: " [[i < j ]] =⇒ (e〈i:T,U〉)!(j) = e!(j - 1)"
〈proof 〉

lemma shift__eq_same [simp]: " [[i 6= j; i <= env_length e; j <= env_length
e ]] =⇒ (e〈i:A,T〉)!(j) = (e〈i:B,U〉)!(j) "
〈proof 〉
thm shift_gt
〈proof 〉

lemma shift_commute [simp]: " [[i ≤ env_length e ]] =⇒ e〈i:U,V〉〈0:T,W〉
= e〈0:T,W〉〈Suc i:U,V〉" 〈proof 〉

lemma shift_length [simp] :
"∀ x. env_length (e〈x:t,u〉) = Suc (env_length e)"

〈proof 〉

Retrieving the self variable with a given index.

primrec
env_self_at :: "(’a environment) ⇒ nat ⇒ (’a) " ("_#_")

where
env_self_at_def [simp]: "(Env e)#i = fst(e!i)"

Retrieving the parameter variable with a given index.

primrec
env_param_at :: "(’a environment) ⇒ nat ⇒ (’a) " ("_§_")

where
env_param_at_def [simp]: "(Env e)§i = snd(e!i)"

Re-establishing properties for self/parameter.

lemma shift_eq_self [simp]: "i = j ∧ j ≤ env_length e =⇒ (e〈i:T,U〉)#(j)
= (T)"
〈proof 〉
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lemma shift_eq_param [simp]: "i = j ∧ j ≤ env_length e =⇒ (e〈i:T,U〉)§(j)
= (U)"
〈proof 〉

lemma shift_gt_self [simp]: " [[j < i; i ≤ env_length e ]] =⇒ (e〈i:T,U〉)#j
= e#j"
〈proof 〉

lemma shift_gt_param [simp]: " [[j < i; i ≤ env_length e ]] =⇒ (e〈i:T,U〉)§j
= e§j"
〈proof 〉

lemma shift_lt_self [simp]: " [[i ≤ j ]] =⇒ (e〈i:T,U〉)#(Suc j) = e#(j)"
〈proof 〉

lemma shift_lt_param [simp]: " [[i ≤ j ]] =⇒ (e〈i:T,U〉)§(Suc j) = e§(j)"
〈proof 〉

lemma shift_lt2_self [simp]: " [[i < j; i ≤ env_length e ]] =⇒ (e〈i:T,U〉)#(j)
= e#(j - 1)"
〈proof 〉

lemma shift_lt2_param [simp]: " [[i < j; i ≤ env_length e ]] =⇒ (e〈i:T,U〉)§(j)
= e§(j - 1)"
〈proof 〉

lemma shift_lt3_self: " [[i < j ]] =⇒ (e〈i:T,U〉)#Suc(j - 1) = e#(j - 1)"
〈proof 〉

lemma shift_lt3_param: " [[i < j ]] =⇒ (e〈i:T,U〉)§Suc(j - 1) = e§(j - 1)"
〈proof 〉

lemma shift_lt4_self [simp]: " [[i < j ]] =⇒ (e〈i:T,U〉)#(j) = e#(j - 1)"
〈proof 〉

lemma shift_lt4_param [simp]: " [[i < j ]] =⇒ (e〈i:T,U〉)§(j) = e§(j - 1)"
〈proof 〉

lemma shift__eq_same_self [simp]: " [[i 6= j; i <= env_length e; j <= env_length
e ]] =⇒ (e〈i:A,T〉)#(j) = (e〈i:B,U〉)#(j) "
〈proof 〉

lemma shift__eq_same_param [simp]: " [[i 6= j; i <= env_length e; j <=
env_length e ]] =⇒ (e〈i:A,T〉)§(j) = (e〈i:B,U〉)§(j) "
〈proof 〉
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Additional properties of Types and Environments

Proof-technical additions needed for later reasoning about variable environ-
ments
primrec

strp :: "(’a environment) ⇒ ((’a × ’a) list)"
where

strp_def: "(strp (Env a)) = a"

primrec
env_app :: "(’a environment) ⇒ (’a environment) ⇒ (’a environment)"

("_+_")
where

env_app_def: "env_app (Env a) b = Env (a@(strp b))"

lemma shift_append’ : "(e+(Env [x]))<0:X,Y> = (e<0:X,Y>)+Env [x]"
〈proof 〉

lemma shift_append : "(env+x)<0:X,Y> =(env<0:X,Y>)+x"
〈proof 〉

lemma prefix_implies : " [[prefix l m ]] =⇒ ∀ x < length l . l!x = m!x"

〈proof 〉

lemma take_nth’ :" [[ a < length xs ]] =⇒ (xs ! a) = ((xs@[x]) ! a)"
〈proof 〉

lemma empty_prefix : "prefix [] l" 〈proof 〉

lemma shift_prepend : "(e<0:a,b>) = ((Env [(a,b)]) + (e))"
〈proof 〉

lemma shift_prepend’ : "(env<0:a,b>+x) = (env+x)<0:a,b>"
〈proof 〉

lemma env_length_add [simp]:
"env_length (a + b) = env_length a + env_length b "

〈proof 〉

lemma env_length_leq [simp]:" env_length (a) ≤ (env_length ( a + b))"

〈proof 〉

lemma nth_prefix : " [[prefix l m; x < length l ]] =⇒ l!x = m!x"
〈proof 〉

lemma prefix_length_trans: " [[x < length l; prefix l l’ ]] =⇒ x < length
l’"
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〈proof 〉

lemma nth_append_self: "(xs + ys) # n = (if n < env_length xs then xs
# n else ys # (n - env_length xs))"
〈proof 〉

lemma nth_append_param: "(xs + ys) § n = (if n < env_length xs then xs
§ n else ys § (n - env_length xs))"
〈proof 〉

end

theory SubTypes imports "../coreCalculus/Sigma" begin

Subtypes

Definition of the subtype relation for depth subtyping

Function to lift dom to types.

primrec
do :: "type ⇒ (Label set)"

where
"do (Object l) = (dom l)"

Retrieving a method type.

primrec
type_get :: "type ⇒ Label ⇒ (type × type × bool) option " ("_^_"

1000)
where
" (Object l)^n = (l n) "

Helpers to avoid definedness issues.

primrec
fst_opt :: "(type*type × bool) option ⇒ type option"

where
" fst_opt (Some Y) = Some (fst Y)"
|" fst_opt None = None"

primrec
snd_opt :: "(type × type × bool) option ⇒ type option"

where
" snd_opt (Some Y) = Some (fst (snd Y))"
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|" snd_opt None = None"

primrec
variance :: "(type × type × bool) option ⇒ (bool option)"

where
" variance (Some Y) = (Some (snd (snd Y)))"
|" variance None = None"

Helper to accommodate width subtyping.

fun
var_imp :: "(bool) option ⇒ (bool) option ⇒ (bool)"

where
" var_imp (Some Y) (Some X) = (Y −→ X)"
|" var_imp None x = False"
|" var_imp x None = False"

lemma var_imp_Some1 : " [[(var_imp (f) (g)) ]] =⇒ ∃ a. f = Some a"
〈proof 〉

lemma var_imp_Some2 : " [[(var_imp (f) (g)) ]] =⇒ ∃ a. g = Some a"
〈proof 〉

lemma var_imp_dom1 : " [[(var_imp (f x) (g x)) ]] =⇒ x ∈ dom f"
〈proof 〉

lemma var_imp_dom2 : " [[(var_imp (f x) (g x)) ]] =⇒ x ∈ dom g"
〈proof 〉

lemma var_imp_imp :" [[var_imp (f x) (g x) ]] =⇒ the (f x) −→ the (g
x)"
〈proof 〉

lemma var_imp_imp’ :" [[var_imp (f) (g) ]] =⇒ the (f) −→ the (g)"
〈proof 〉

Inductive definition of the subtype relation

inductive sig_subtype:: "type ⇒ type ⇒ bool" (" _ <: _" 280)
where

sub_obj [ intro!]: " [[∀ l ∈ (do B). (
(

((the (variance (B^l))) ∧ (((the (fst_opt
(A^l)))) <: ((the (fst_opt (B^l))))) ∧ ((the (snd_opt (B^l))) <: (the
(snd_opt (A^l)))) )

∨
((((fst_opt (B^l))) = ((fst_opt (A^l))))

∧ ((snd_opt (B^l)) = ((snd_opt (A^l)))))
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)
∧ (var_imp (variance (A^l)) (variance

(B^l)))
) ]] =⇒ A <: B"

|subtype_refl [simp, intro!]: " A <: A"
|subtype_trans: " [[A <: B; B <: C ]] =⇒ A <: C"

The empty object is the shared supertype of all types.

theorem subtype_top: "A <: Object empty"
〈proof 〉

Definedness rules.

lemma fst_in_dom: " [[fst_opt (f a) = Some y ]] =⇒ a ∈ dom f"
〈proof 〉

lemma snd_in_dom: " [[snd_opt (f a) = Some y ]] =⇒ a ∈ dom f"
〈proof 〉

lemma fst_opt_some: " [[ a ∈ dom f ]] =⇒ ∃ y. fst_opt (f a) = Some y"
〈proof 〉

lemma snd_opt_some: " [[ a ∈ dom f ]] =⇒ ∃ y. snd_opt (f a) = Some y"
〈proof 〉

lemma var_imp_var_dom1 : " [[var_imp (variance (f x)) (variance (funa x))
]] =⇒ x ∈ dom f"
〈proof 〉

lemma var_imp_var_dom2 : " [[var_imp (variance (f x)) (variance (funa x))
]] =⇒ x ∈ dom funa"
〈proof 〉

A subtype shares all methods of a supertype.

lemma dom_subset: " [[A <: B ]] =⇒ do B ⊆ do A"
〈proof 〉

Equality rules.

lemma opt_snd_eq :" [[the (snd_opt A^l) = the (snd_opt B^l); l ∈ do A;
l ∈ do B ]] =⇒ snd_opt A^l = snd_opt B^l"
〈proof 〉

lemma opt_snd_eq’ :" [[l ∈ do A ]] =⇒ the (snd_opt A^l) = (fst (snd (the
A^l)))"
〈proof 〉

lemma opt_fst_eq :" [[the (fst_opt A^l) = the (fst_opt B^l); l ∈ do A;
l ∈ do B ]] =⇒ fst_opt A^l = fst_opt B^l"
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〈proof 〉

lemma opt_fst_eq’ :" [[l ∈ do A ]] =⇒ the (fst_opt A^l) = (fst (the A^l))"
〈proof 〉

lemma opt_fst_eq’’ :" [[a ∈ dom f ]] =⇒ the (fst_opt (f a)) = (fst (the
(f a)))"
〈proof 〉

lemma var_the :" [[(the (variance ((A::type)^l))); l ∈ do A ]] =⇒ (variance
(A^l)) = (Some True)"
〈proof 〉

lemma var_the_not :" [[¬(the (variance ((A::type)^l))); l ∈ do A ]] =⇒
(variance (A^l)) = (Some False)"
〈proof 〉

Inversion lemma for return types.

lemma sub_eq: " [[A <: B ]] =⇒ ∀ l ∈ do B . fst (the A^l) <: fst (the
B^l) "
〈proof 〉

Inversion lemma for parameter types.

lemma sub_sub: " [[A <: B ]] =⇒ ∀ l ∈ do B . the (snd_opt (B^l)) <: the
(snd_opt (A^l))"
〈proof 〉

Stronger inversion lemma.

lemma sub_inv : " [[A <: B ]] =⇒ ∀ l ∈ (do B). ((((the (fst_opt (A^l))))
<: ((the (fst_opt (B^l))))) ∧ ((the (snd_opt (B^l))) <: (the (snd_opt
(A^l)))) ∧ (the (variance (A^l)) −→ (the (variance (B^l)))))"
〈proof 〉

Strongest inversion lemma.

lemma sub_inv2 : " [[A <: B ]] =⇒
∀ l ∈ (do B).

(((the (variance (B^l))) ∧ ((((the (fst_opt (A^l))) <:
(the (fst_opt (B^l))))

∧ (the (snd_opt (B^l))) <: (the (snd_opt (A^l))))
)

∨
(((the (fst_opt (A^l))) = (the (fst_opt (B^l)))) ∧

((the (snd_opt (B^l))) = (the (snd_opt (A^l)))))))
∧ (var_imp (variance (A^l)) (variance (B^l)))"

〈proof 〉
thm var_imp_imp
〈proof 〉
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Equality of types.

lemma type_eq :" [[∀ l ∈ do A. A^l = B^l; do A = do B ]] =⇒ A = B"
〈proof 〉

Anti-symmetry of the domains of related types.

lemma dom_antisym : " [[A <: B; B <: A ]] =⇒ do A = do B"
〈proof 〉

lemma type_eq’: " [[fst_opt (A^l) = fst_opt (B^l); snd_opt (A^l) = snd_opt
(B^l); (variance (A^l)) = ( ( variance (B^l))) ]] =⇒ A^l = B^l"
〈proof 〉
thm fst_in_dom
〈proof 〉

lemma sub_antisym’ : " [[ A <: B ]] =⇒ (B <: A −→ A = B)"

〈proof 〉
thm empty_dom
〈proof 〉

Anti-symmetry of the relation.

lemma sub_antisym : " [[ A <: B; B <: A ]] =⇒ A = B" 〈proof 〉
end

theory TypedSigma imports Environments SubTypes begin

Types and Typing Rules

The inductive definition of the typing relation.

constdefs
param :: "(type × type × bool) ⇒ type " "param a == fst (snd a)"

inductive typing::"(type environment) ⇒ (Sigma.type list) ⇒ dB ⇒ type
⇒ bool" ("_,_` _ : _" [80, 0, 80] 230)
where

T_Var [ intro!]: " [[(x::nat) < (env_length env); (env#x) = T;
T <: A ]] =⇒ env,L ` Var (Self x) : A"
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| T_Param [ intro!]: " [[(x::nat) < (env_length env); (env§x) = T;
T <: A ]] =⇒ env,L ` Var (Param x) : A"

| T_Obj [ intro!]: " [[ dom b = do B; ∀ l ∈ (do B) . (env<0:B,(param(the
(B^l)))>,L ` (the (b l)) : fst((the (B^l)))); B <: A ]] =⇒ env,L ` (Obj
b B) : A"

| T_Upd [ intro!]: " [[ env,L ` a : A; ¬(the (variance (A^l)));
l ∈ do A ; env<0:A,param(the (A^l))>,L ` n : fst(the (A^l)); A <: B ]]
=⇒ env,L ` (Upd a l n) : B"

| T_Call [ intro!]: " [[ env,L ` a : A ; env,L ` b : param(the (A^l))
; l ∈ do A; fst(the (A^l)) <: B ]] =⇒ env,L ` (Call a l b) : B"

| T_lab [ intro!]: " [[ env,L ` a : A; i < length L; L!i = A; A
<: B ]] =⇒ env,L ` i〈a〉 : B"

inductive_cases typing_elims [elim!]:
"e,L ` Obj b T : T"
"e,L ` Var (Self i) : T"
"e,L ` Var (Param i) : T"
"e,L ` Call a l b : T"
"e,L ` Upd a l n : T"
"e,L ` i〈t〉 : T"

Basic lemmas

Basic traits of the type system.

A term having a subtype also has any supertype.

lemma subsumption [intro!]: " [[e,L ` t : T; T <: A ]] =⇒ e,L ` t : A"
〈proof 〉

Inversion rules for objects.

lemma obj_inv’ : "e,L ` Obj f U : A =⇒ (A = U) ∨ (∃ B .( B <: A))"
〈proof 〉

lemma obj_inv’’ : "e,L ` Obj f U : A =⇒ (A = U) ∨ (∃ B . B 6= A ∧
( B <: A) ∧ e,L ` Obj f U : B)"
〈proof 〉

lemma obj_inv_end’ : " [[e,L ` Obj f U : U ]] =⇒ ¬ (∃ B . B 6= U ∧ (
B <: U) ∧ e,L ` Obj f U : B)"
〈proof 〉

lemma obj_inv_end’’ : " [[e,L ` Obj f U : A ]] =⇒ (A 6= U) −→ (∃ B .
B 6= A ∧ ( B <: A) ∧ e,L ` Obj f U : B)"
〈proof 〉

lemma obj_inv_end’’’ : " [[e,L ` Obj f U : A ]] =⇒ (A 6= U) −→ ( (
U <: A) ∧ e,L ` Obj f U : U)"
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〈proof 〉

lemma obj_inv_end_simp : " [[e,L ` Obj f U : A ]] =⇒ ( ( U <: A) ∧ e,L
` Obj f U : U)"
〈proof 〉

An object’s most special type is the annotation; any other type an object
may have is a supertype thereof.
lemma obj_inv_elim : " [[e,L ` Obj f U : U ]] =⇒ (dom f = do U ∧ (∀ l
∈ (do U) . e<0:U,param (the U^l)>,L ` (the (f l)) : fst (the (U^l))))"
〈proof 〉

A well-typed object has all methods described in its type annotation.
lemma dom_lem: "e,L ` Obj f (Object fun) : Object fun =⇒ dom f = dom
fun"
〈proof 〉

Elimination rule for method invocation.
lemma abs_typeE: "e,L ` (Call (Obj f U) l b) : T =⇒ (

∧
V. ((e<0:U,param

(the U^l)>),L ` the (f l) : T) =⇒ P) =⇒ P"
〈proof 〉

Lifting preserves well-typedness

Lifting does not change the domain.
lemma lift_option_dom [simp] : " ∀ b. dom (λl. lift_option (i) (b l))
= dom b"
〈proof 〉

lemma lift_lift_option : "∀ l ∈ dom b . (lift (the (b l)) x) = the
(lift_option x ( b l))"
〈proof 〉

Lifting maintains typing.
lemma lift_type [intro!]: " e,L ` t : T =⇒ (

∧
U V. ∀ i ≤ env_length

e . (e〈i:U,V〉,L ` lift t i : T))"
〈proof 〉

lemma select_suc [simp] : " [[i < length list ]] =⇒((a # list) ! (Suc i))
= list!i"
〈proof 〉

Substitution preserves Well-Typedness

Substitution does not change domains.
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lemma subst_option_dom [simp] : " dom (λl. subst_option i x y (b l))
= (dom b)"
〈proof 〉

lemma subst_option : "∀ l ∈ dom b . ((the (b l))[y,z/x]) = the (subst_option
x y z( b l))" 〈proof 〉

Substitution maintains typing (under some circumstances).

lemma subst_lemma:
" e,L ` t : T =⇒ (

∧
e’ i U u v V. i ≤ env_length e’ ∧ e’,L `

u : U ∧ e’,L ` v : V =⇒ e = e’〈i:U,V〉 =⇒ e’,L ` t[u,v/i] : T)"
〈proof 〉

Subject Reduction

First part of Type Soundness.

lemma type_dom [simp] : " [[env,L ` (Obj a A) : A ]] =⇒ dom a = do A" 〈proof 〉

Invocation yields the expected type-

lemma select_preserve_type [simp] : " !! l1 l2 f env t n. [[env,L ` Obj
f (Object t) : Object t; env〈0:(Object t), param (the (t l2))〉,L ` n :
(fst (the (t l2))); l1 ∈ dom t; l2 ∈ dom t ]]

=⇒ env〈0:(Object t),param (the (t l1))〉,L ` (the ((f(l2 |-> n))
l1)) : (fst (the (t l1)))"

〈proof 〉

lemma dB_induct3:
"[| !!n. P (Var (n));!!f T. Q f ==> P (Obj f T);

!!d1 d2 l.[| P d1; P d2 |] ==> P (Call d1 l d2);
!!d1 l d2. [| P d1; P d2 |] ==> P (Upd d1 l d2);
!!x. Q empty;
!!d1 f l. [| l ~: dom f; P d1; Q f |] ==> Q (f(l |-> d1));
!!d1 i. P d1 ==> P (dB.Asp_Label i d1) |]

==> P db & Q f"

〈proof 〉

A well-typed term is also well-typed in any bigger environment.

lemma empty_env’ : " [[env1,L ` t : A ]] =⇒ ((env1+x),L ` t : A)"
〈proof 〉

lemma empty_env’’ : " !! x env . [[env,L ` t : A ]] =⇒ ((env+x),L `
t : A)" 〈proof 〉
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Typed in the Empty Environment implies typed in any Environment (no
free variables).

lemma empty_env : " [[ Env [],L ` t : A ]] =⇒ ( env,L ` t : A)"
〈proof 〉

lemma empty_env_shift : " [[((Env [])<0:X,Y>),L ` t : A ]]
=⇒ ((env<0:X,Y>),L ` t : A)"

〈proof 〉

Variables can have super/subtypes of the expected types.

lemma var_subsumption’ :
" e,L ` t : T
=⇒ (

∧
e’ A B C D x. x ≤ env_length e’ ∧ e = e’〈x:B,D〉

∧ A <: B ∧ C <: D =⇒ e’〈x:A,C〉,L `
t : T)"
〈proof 〉

lemma var_subsumption: " [[e〈x:B,D〉,L ` t : T; x ≤ env_length e; A <:
B; C <: D ]] =⇒ e〈x:A,C〉,L ` t : T"
〈proof 〉

Main Lemma

lemma subject_reduction: "e,L ` t : T =⇒ (
∧
t’. t -> t’ =⇒ e,L ` t’

: T)"
〈proof 〉

theorem subject_reduction’: "t →β
∗ t’ =⇒ e,L ` t : T =⇒ e,L ` t’

: T"
〈proof 〉

Properties to establish Progress

lemma type_members_equal : " [[do A = do B; ∀ i. A^i = B^i ]] =⇒ A = B"
〈proof 〉

If it’s typed in the empty environment, it can’t be a variable

lemma not_var : " [[Env [],L ` a : A ]] =⇒ ∀ x. a 6= Var x"
〈proof 〉

A well typed invocation calls an existing method.

lemma Call_label_range: " [[(Env []),L ` Call (Obj c T) l b : A ]] =⇒
l ∈ dom c"
〈proof 〉

lemma Call_subterm_type: " [[Env [],L ` Call t l b: T0 ]] =⇒ (∃ T. Env
[],L ` t : T) ∧ (∃ T. Env [],L ` b : T) "
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〈proof 〉

lemma Upd_label_range: "!!x. [[Env [],L ` Upd (Obj c T) l x : A ]] =⇒l
∈ dom c"
〈proof 〉

lemma Upd_subterm_type: " [[ Env [],L ` Upd t l x : T0 ]] =⇒ (∃ T. Env
[],L ` t : T) " 〈proof 〉

lemma no_var :" [[ ∃ T . Env [],L ` Var x :T ]] =⇒ false"
〈proof 〉

Delabelling

A function to remove all aspect labels after weaving.

primrec
delabel :: "dB ⇒ dB"

and
delabel_option :: "[ dB option ] => dB option"

where
"delabel (Var n) = Var n"
|"delabel (l 〈 t 〉 ) = delabel t"
|"delabel (Call s l b) = Call (delabel s) l (delabel b)"
|"delabel (Upd s l t) = Upd (delabel s) l (delabel t)"
|"delabel (Obj f B) = Obj (λ l. (delabel_option (f l))) B"
|"delabel_option None = None"
|"delabel_option (Some t) = Some (delabel t)"

A function that establishes whether a term has labels.

primrec
nolabel :: "dB ⇒ bool "

and
nolabel_option :: "[ dB option ] => bool"

where
"nolabel (Var n) = True"
|"nolabel (l 〈 t 〉 ) = False"
|"nolabel (Call s l b ) = ((nolabel s) ∧ (nolabel b))"
|"nolabel (Upd s l t) = ((nolabel s) ∧ (nolabel t))"
|"nolabel (Obj f B) = ( ∀ l . nolabel_option (f l))"
|"nolabel_option None = True"
|"nolabel_option (Some t) = nolabel t"

lemma delabel_option_dom [simp] : " dom (λl. delabel_option (b l))
= (dom b)"
〈proof 〉

Delabelling is idempotent.
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lemma delabel_idempotent’ :"(delabel t = delabel (delabel t)) & (! T.
(delabel (Obj f T) = delabel (delabel (Obj f T))))"
〈proof 〉

lemma delabel_idempotent : "(delabel t = delabel (delabel t))" 〈proof 〉

lemma delabel_not_a_label’: "(! i x . (delabel t 6= i 〈x〉)) & (! x i
T . (delabel (Obj f T) 6= i 〈x〉)) "
〈proof 〉

lemma delabel_not_a_label’’ : "(! i x . (delabel t 6= i 〈x〉)) " 〈proof 〉

lemma delabel_not_a_label : "~ (∃ t’. i 〈 d1 〉 = delabel t’)"
〈proof 〉

Delabel is transparent w.r.t. typing.

lemma delabel_preserves : "e,L ` t : A =⇒ e,L ` delabel t : A"
〈proof 〉

Progress

Final Type Soundness Lemma

lemma pre_progress : "(!A. (∃ t’ . t= delabel t’) & Env [],L ` (t)
: A −→ ¬(∃ c T . ( (t) = Obj c T)) −→ (∃ b . ( (t) →β b)))

& (!A. Env[],L ` Obj f A : A −→ ¬(∃ c T. ( Obj f
A = Obj c T)) −→ (∃ b . ( Obj f A →β b)))"

〈proof 〉

theorem progress : " [[ (∃ t’ . t= delabel t’) ; Env [],L ` t : A; ¬(∃
c A. ( t = Obj c A)) ]] =⇒ (∃ b . ( t →β b)) "
〈proof 〉

theorem progress’’ : " [[ Env [],L ` (delabel t): A; ¬(∃ c A. ((delabel
t) = Obj c A)) ]] =⇒ (∃ b . ((delabel t) →β b)) "
〈proof 〉

end

A.5 Aspect Orientation

theory Weaving imports "../coreCalculus/Sigma" begin
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Aspects

An Aspect consists of a list of labels and a naked method body. The self
parameter will be bound to the base term, in the vein of Clifton/Leavens,
using Ligatti et al style Labels.

datatype aspect = ASP "nat list" dB ("_._")

primrec
pc :: "aspect ⇒ nat list"

where
"pc (ASP poc advi) = poc"

primrec
adv :: "aspect ⇒ dB"

where
"adv (ASP poc advi) = advi"

Weaving function

A simple notion of weaving - the aspect code is woven into the existing term,
creating a well-typed term, iff the base term was well typed. We see this
approach as static weaving.

primrec
weave :: "[ dB, aspect ] => dB"

and
weave_option :: "[ dB option, aspect ] => dB option"

where
WeaveVar: "weave (Var n) a = Var n"
|WeaveLab: "weave (l 〈 t 〉 ) a = (if (l mem (pc a)) then (l 〈 (adv

a)[(weave t a),(Obj empty (Object empty))/0] 〉 ) else (l 〈 (weave t a)
〉 ))"

|WeaveCall: "weave (Call s l t) a = Call (weave s a) l (weave t a)"
|WeaveUpd: "weave (Upd s l t) a = Upd (weave s a) l (weave t a)"
|WeaveObj: "weave (Obj f B) a = Obj (λ l. (weave_option (f l) a))

B"
|WeaveNone: "weave_option None a = None"
|WeaveSome: "weave_option (Some t) a = Some (weave t a)"

constdefs Weave :: "[dB, aspect list] => dB" "Weave t l == foldl weave
t l"
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Basic lemmas about weaving

lemma dom_weaveoption_lem: "dom (λ l . weave_option (f l) A ) = dom
f"
〈proof 〉

lemma weave_option_lem : "(l::Label) ∈ dom (b::(Label -~> dB)) =⇒ (the
(weave_option (b l) a)) = (weave (the (b l)) a)"
〈proof 〉

lemma empty_pc_weaving’ : "((pc asp) = [] −→ ((weave t asp) = t))
∧ (! T. (pc asp) = [] −→ ( weave (Obj f T) asp = (Obj f T)))"

〈proof 〉

lemma empty_pc_weaving : " [[ (pc asp) = [] ]] =⇒ ((weave t asp) = t)"
〈proof 〉
end

theory Compositionality imports "../coreCalculus/Confluence" Weaving
begin

Aspect Compositionality

consts FVcalc :: "dB ⇒ nat ⇒ dB set"

primrec FVtestvar :: "Variable ⇒ nat ⇒ bool"
where

FVSelf: "FVtestvar (Self x) n = (x < n)"
|FVParam: "FVtestvar (Param x) n = (x < n)"

primrec FVtest :: "dB ⇒ nat ⇒ bool"
and

optionFVtest :: "dB option ⇒ nat ⇒ bool"
where

FVVar: "FVtest (Var i) n = FVtestvar i n"
|FVActive: "FVtest (Asp_Label m a) n = FVtest a n"
|FVCall: "FVtest (Call a l b) n = (((FVtest a) n) ∧ ((FVtest b) n))"
|FVUpd: "FVtest (Upd a l b) n = ((FVtest a n) & (FVtest b (n+1)))"
|FVObj: "FVtest (Obj f T) n = fold (λx y. y ∧ (optionFVtest (f

x) (n+1))) True (dom f) "
|FVoption: "optionFVtest None n = True"
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|FVoption’: "optionFVtest (Some a) n = (FVtest a n)"

constdefs noFV :: "dB ⇒ bool" "noFV t == FVtest t 0"

constdefs justoneFV :: "dB ⇒ bool" "justoneFV t == FVtest t 1"

lemma dB_induct: " [[
∧
nat. P (Var nat);

∧
fun type. (

∧
x. Q (fun x)) =⇒

P (Obj fun type);∧
dB1 Label dB2. [[P dB1; P dB2 ]] =⇒ P (Call dB1 Label dB2);∧
dB1 Label dB2. [[P dB1; P dB2 ]] =⇒ P (Upd dB1 Label dB2);

∧
nat dB. P

dB =⇒ P nat〈dB〉;
Q None;

∧
dB. P dB =⇒ Q (Some dB) ]]

=⇒ P dB ∧ Q option"
〈proof 〉

lemma fold_implies’:" [[finite B; Finite_Set.fold_graph (λ x y. y ∧
P x) True B x ]] =⇒(∀ x ∈ B. P x) −→ x"
〈proof 〉

lemma fold_implies:" [[finite B; (∀ x ∈ B. P x); Finite_Set.fold_graph
(λ x y. y ∧ P x) True B x ]] =⇒ x"
〈proof 〉

lemma fold_lem: " [[finite B; (∀ x ∈ B. P x) ]] =⇒ fold (λ x y. y ∧
P x) True B "
〈proof 〉

interpretation fun_left_comm "(λ x y. y ∧ P x)"
〈proof 〉
lemma fold_lem_inv: " [[finite B; fold (λ x y. y ∧ P x) True B; x: B
]] =⇒ P x"
〈proof 〉

lemma fold_FVlem:
" [[finite (dom fun); fold (λx y . y ∧ optionFVtest (fun x) (Suc n)) True
(dom fun); fun l = Some a ]] =⇒ optionFVtest(fun l)(Suc n)"

〈proof 〉

lemma nFV_eq[rule_format] : "(!n. FVtest t n −→ lift t n = t)&(! n.
FVtest (the s) n −→ lift_option n s = s)"
〈proof 〉

lemma nFV_eq’ : "FVtest t n =⇒ lift t n = t"
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〈proof 〉

lemma justoneFV_eq[rule_format] : "(justoneFV t −→ lift t 1 = t)"
〈proof 〉

lemma nFVsubst [rule_format]: "(! m. FVtest t m −→ (! s v. ! n. m <
n −→ t [s,v/n] = t))&

(! m. FVtest (the t’) m −→ (! s v. ! n. m < n −→ subst_option
n s v t’ = t’))"
〈proof 〉

lemma nFVsubst’’ [rule_format]: "(! n s v. FVtest t n −→ t [s,v/n]
= t)&

(! n s v. FVtest (the t’) n −→ subst_option n s v t’ = t’)"
〈proof 〉

lemma noFVsubst [rule_format]: "noFV t −→ t [s,v/ Suc n] = t"
〈proof 〉

lemma noFVsubst_zero [rule_format]: "noFV t −→ t [s,v/0] = t"
〈proof 〉

lemma noFVsubst’’’ [rule_format]: " [[noFV t ]] =⇒ t [s,v/n] = t"
〈proof 〉

lemma justoneFVsubst_zero [rule_format]: "justoneFV t −→ t [s,v/Suc
0] = t"
〈proof 〉

lemma justoneFVsubst_nozero [rule_format]: "(justoneFV t & n > 0 −→
t [s,v/ Suc n] = t)"
〈proof 〉

lemma justoneFVsubst [rule_format]: "(justoneFV t −→ t [s,v/ Suc n]
= t)"
〈proof 〉

lemma FVtest_leq [rule_format]: "(! n. FVtest t n −→ (! m. n <= m −→
FVtest t m))&
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(! n. optionFVtest t’ n −→ (! m. n <=
m −→ optionFVtest t’ m))"
〈proof 〉

lemma justoneFV_leq[rule_format] : "(justoneFV t ∧ n >= 0 −→ lift t
(Suc n) = t)"
〈proof 〉

lemma lift_subst_adv: "justoneFV a =⇒ (lift (a[s,v/0]) 0) = a [(lift
s 0),(lift v 0)/0]"
〈proof 〉

lemma lift_subst_n_adv: " [[ justoneFV a; n >= 0 ]] =⇒ (lift (a[s,v/0])
n) = a [(lift s n),(lift v n)/0]"
〈proof 〉

lemma weave_lift_adv [rule_format]:
"(∀ n. justoneFV (adv a) −→ weave (lift s n) a = lift (weave s

a) n) &
(∀ n. justoneFV (adv a) −→ weave_option (lift_option n t) a =

lift_option n (weave_option t a))"

〈proof 〉

lemma weave_lift: "justoneFV (adv a) =⇒ weave (lift s 0) a = lift (weave
s a) 0"
〈proof 〉

lemma noFVlift_zero [rule_format]: "(noFV t −→ noFV(lift t 0))"
〈proof 〉

lemma comp_weave_subst [rule_format]:
"(! a n s v. justoneFV (adv a) −→ (weave(t[s,v/n]) a) = ((weave

t a)[(weave s a),(weave v a)/n]))
& (! a n s v. justoneFV (adv a) −→ (weave_option (subst_option n

s v t’) a) =
(subst_option n (weave s a)(weave v a)(weave_option

t’ a)))"

〈proof 〉

lemma comp_weave_subst’:
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"justoneFV (adv a) =⇒ (weave(t[s,v/n]) a) = ((weave t a)[(weave s
a),(weave v a)/n])"
〈proof 〉

lemma comp_weave_par [rule_format]:
" [[ justoneFV (adv a); t -> t’ ]] =⇒ (weave t a) => (weave t’ a)"

〈proof 〉

lemma comp_weave [rule_format]:
" [[ justoneFV (adv a); t -> t’ ]] =⇒ (weave t a) ->> (weave t’ a)"

〈proof 〉

end

theory TypeSafety imports Weaving Compositionality "../types/TypedSigma"
begin

Aspect Safety

Aspect well-formedness

An aspect is well formed, if applying it to a base term of a given type
preserves that type in the empty environment. The base term types are
defined by a list of labels. This is regardless of the actual base-term.
constdefs void :: type
"void == Object empty"

lemma empty_void: "enva,La` Obj empty (Object empty) : void"
〈proof 〉

constdefs wf_adv :: "[ type list, aspect] => bool"
"wf_adv L a == ∀ l . (l mem (pc a)) −→ ((Env []<0:(L!l),void>),L

` (adv a): (L!l))"

An aspect is compatible to a given base term, if the aspect is well formed
and the base application is well-typed using the same label list.
constdefs wf_at :: "[type list, type, dB, aspect] => bool"

"wf_at L T t a == (Env [], L ` t: T) ∧ (wf_adv L a)"

Using many aspects.
constdefs wf :: "[type list, type, dB, aspect list] => bool"

"wf L T t A == (Env [], L ` t: T) ∧ (∀ a ∈ (set A). wf_at L T
t a)"
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primrec
wf_test :: "[type list, nat list, dB] => bool"

where
"wf_test L [] ad = True"
|"wf_test L (a#p) ad = ((((Env [])<0:(L!a),void>),L ` (ad): (L!a)) ∧
(wf_test L p ad))"

Basic lemmas about weaving
lemma fewer_aspects : "wf L T t (a # A) =⇒ wf L T t A"
〈proof 〉

lemma dom_weaveoption_lem: "dom (λ l . weave_option (f l) A ) = dom
f"
〈proof 〉

lemma rev_wf: " wf L t T A =⇒ wf L t T (rev A)"
〈proof 〉

lemma weave_option_lem : "(l::Label) ∈ dom (b::(Label -~> dB)) =⇒ (the
(weave_option (b l) a)) = (weave (the (b l)) a)"
〈proof 〉

Weaving of well-formed aspects yields safe terms
lemma weaving_preservation’: "!! env L A . [[ wf_adv L A; Env [], L `
t : T ]] =⇒ wf_adv L A −→ Env [], L ` weave t A : T "
〈proof 〉
thm T_lab

〈proof 〉

lemma weaving_preservation’’: "!! env L A . [[ wf_adv L A; Env [], L
` t : T ]] =⇒ Env [], L ` weave t A : T "
〈proof 〉

lemma weaving_preservation_wf: "!! env L A . [[ wf L T t (a#A) ]] =⇒ wf
L T (weave t a) A "
〈proof 〉

theorem weaving_preservation: " [[ wf L T t A ]] =⇒ Env [], L ` Weave t
A : T"
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〈proof 〉

theorem aspect_preservation_delabel : " [[ wf L T t A; delabel(Weave t
A) -> t’ ]] =⇒ e, L ` t’: T"
〈proof 〉

theorem aspect_preservation: " [[ wf L T t A; Weave t A -> t’ ]] =⇒ e,
L ` t’: T"
〈proof 〉

theorem aspect_progress: " [[ wf L T t A; ~(∃ c T . delabel (Weave t A)
= Obj c T) ]]

=⇒ (∃ t’. delabel (Weave t A) -> t’)"
〈proof 〉
thm progress
〈proof 〉

constdefs Weave’ :: "[dB, aspect list] => dB" "Weave’ t l == delabel
(Weave t l)"

theorem aspect_preservation’: " [[ wf L T t A; Weave’ t A -> t’ ]] =⇒
e, L ` t’: T"
〈proof 〉

theorem aspect_progress’: " [[ wf L T t A; ~(∃ c T . (Weave’ t A) = Obj
c T) ]]

=⇒ (∃ t’. (Weave’ t A) -> t’)"
〈proof 〉

Properties of typed Aspects

Well–formed aspects are typed. Typed terms have no free variables and are
thus compositional

lemma env_len_FV’ : " e,L ` t : T =⇒ (!! i. env_length e <= i =⇒
FVtest t i)"
〈proof 〉
thm conjI
〈proof 〉

theorem env_len_FV : " [[e,L ` t : T ]] =⇒ FVtest t (env_length e)" 〈proof 〉

lemma env_len_no_FV : " [[Env [],L ` t : T ]] =⇒ noFV t"
〈proof 〉

lemma env_len_one_FV : " [[Env []〈0:A,void〉,L ` t : T ]] =⇒ justoneFV
t"
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〈proof 〉

theorem WFAsp_typed : " [[wf_adv L a ]] =⇒ ((pc a) = []) ∨ (∃ A .( (Env
[]〈0:A,void〉,L ` (adv a) : A)))"
〈proof 〉

theorem typed_or_emty_comp : " [[((pc a) = []) ∨ (∃ A .( (Env []〈0:A,void〉,L
` (adv a) : A))); t -> t’ ]] =⇒ (weave t a) ->> (weave t’ a)"
〈proof 〉

theorem WFAsp_comp : " [[wf_adv L a ; t -> t’ ]] =⇒ (weave t a) ->> (weave
t’ a)"
〈proof 〉

end
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