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Zusammenfassung

Eine Vielzahl moderner Anwendungen setzten die Echtzeitverarbeitung großer Datenmengen voraus. Aus
diesem Grund haben neuerdings verteilte Systeme zur Verarbeitung von Datenströmen (sog. Datenstrom-
Verarbeitungssysteme, abgek. "DSV") eine wichtige Bedeutung als neue Kategorie von Massendaten-
Verarbeitungssystemen erlangt. Das zentrale Entwurfsprinzip dieser DSVs ist es, Anfragen, die potenziell
unendlich lange auf einem Datenstrom laufen, jeweils Eine nach der Anderen zu verarbeiten (Englisch:
"query-at-a-time model"). Das bedeutet, dass jede Anfrage eigenständig vom System optimiert und
ausgeführt wird. Allerdings stellen vielen reale Anwendungen nicht nur lang laufende Anfragen auf
Datenströmen, sondern auch kurz laufende Spontananfragen. Solche Anwendungen können mehrere
Anfragen spontan und zeitgleich erstellen und entfernen. Das bewährte Verfahren, um Spontananfragen
zu bearbeiten, zweigt den eingehenden Datenstrom ab und belegt zusätzliche Ressourcen für jede neue
Anfrage. Allerdings ist dieses Verfahren ine�zient, weil Spontananfragen damit redundante Berechnungen
und Daten-Kopieroperationen verursachen.

In dieser Arbeit legen wir das Fundament für die e�ziente Verarbeitung von Spontananfragen
auf Datenströmen. Wir schließen in den folgenden drei Schritten die Lücke zwischen verteilter
Datenstromanfrage-Verarbeitung und Spontananfrage-Verarbeitung.

Erstens stellen wir ein Benchmark-Framework zur Analyse von modernen DSVs vor. In diesem
Framework stellen wir eine neue Definition für die Latenz und den Durchsatz von zustandsbehafteten
Operatoren vor. Zudem unterscheiden wir genau zwischen dem zu testenden System und dem Treibersystem,
um das o�ene-Welt Modell, welches den typischen Anwendungsszenarien in der Datenstromverabeitung
entspricht, korrekt zu repräsentieren. Diese strikte Unterscheidung ermöglicht es, die Systemleistung
unter realen Bedingungen zu messen. Unsere Lösung ist damit das erste Benchmark-Framework, welches
die dauerhaft durchhaltbare Systemleistung von DSVs definiert und testet. Durch eine systematische
Analyse aktueller DSVs stellen wir fest, dass aktuelle DSVs außerstande sind, Spontananfragen e�zient zu
verarbeiten.

Zweitens stellen wir das erste verteilte DSV zur Spontananfrageverarbeitung vor. Wir entwickeln unser
Lösungskonzept basierend auf drei Hauptanforderungen: (1) Integration: Spontananfrageverarbeitung soll
ein modularer Baustein sein, mit dem Datenstrom-Operatoren wie z.B. Join, Aggregation, und Zeitfenster-
Operatoren erweitert werden können; (2) Konsistenz: die Erstellung und Entfernung von Spontananfragen
müssen konsistent ausgeführt werden, die Semantik für einmalige Nachrichtenzustellung erhalten, sowie die
Korrektheit des Anfrage-Ergebnisses sicherstellen; (3) Leistung: Im Gegensatz zu modernen DSVs sollen
DSVs zur Spontananfrageverarbeitung nicht nur den Datendurchsatz, sondern auch den Anfragedurchsatz
maximieren. Dies ermöglichen wir durch inkrementelle Kompilation und der Ressourcenteilung zwischen
Anfragen.

Drittens stellen wir ein Programmiergerüst zur Verbeitung von Spontananfragen auf Datenströmen
vor. Dieses integriert die dynamische Anfrageverarbeitung und die Nachoptimierung von Anfragen mit
der Spontananfrageverarbeitung auf Datenströmen. Unser Lösungsansatz besteht aus einer Schicht
zur Anfrageoptimierung und einer Schicht zur Anfrageverarbeitung. Die Optimierungsschicht optimiert



periodisch den Anfrageverarbeitungsplan nach, wobei sie zur Laufzeit Joins neu anordnet und vertikal
sowie horizontal skaliert, ohne die Verarbeitung anzuhalten. Die Verarbeitungsschicht ermöglicht eine
inkrementelle und konsistente Anfrageverarbeitung und unterstützt alle zuvor beschriebenen Eingri�e der
Optimierungsschicht in die Anfrageverarbeitung.

Zusammengefasst ergeben unsere zweiten und dritten Lösungskonzepte eine vollständige DSV zur
Spontananfrageverarbeitung. Wir verwenden hierzu unseren ersten Beitrag nicht nur zur Bewertung
moderner DSVs, sondern auch zur Evaluation unseres DSVs zur Spontananfrageverarbeitung.
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Abstract

Many modern applications require processing large amounts of data in a real-time fashion. As a result,
distributed stream processing engines (SPEs) have gained significant attention as an important new class
of big data processing systems. The central design principle of these SPEs is to handle queries that
potentially run forever on data streams with a query-at-a-time model, i.e., each query is optimized and
executed separately. However, in many real applications, not only long-running queries but also many
short-running queries are processed on data streams. In these applications, multiple stream queries are
created and deleted concurrently, in an ad-hoc manner. The best practice to handle ad-hoc stream queries
is to fork input stream and add additional resources for each query. However, this approach leads to
redundant computation and data copy.

This thesis lays the foundation for e�cient ad-hoc stream query processing. To bridge the gap between
stream data processing and ad-hoc query processing, we follow a top-down approach.

First, we propose a benchmarking framework to analyze state-of-the-art SPEs. We provide a definition
of latency and throughput for stateful operators. Moreover, we carefully separate the system under test
and the driver, to correctly represent the open-world model of typical stream processing deployments.
This separation enables us to measure the system performance under realistic conditions. Our solution is
the first benchmarking framework to define and test the sustainable performance of SPEs. Throughout
our analysis, we realize that the state-of-the-art SPEs are unable to execute stream queries in an ad-hoc
manner.

Second, we propose the first ad-hoc stream query processing engine for distributed data processing
environments. We develop our solution based on three main requirements: (1) Integration: Ad-hoc query
processing should be a composable layer that can extend stream operators, such as join, aggregation, and
window operators; (2) Consistency: Ad-hoc query creation and deletion must be performed consistently
and ensure exactly-once semantics and correctness; (3) Performance: In contrast to modern SPEs, ad-hoc
SPEs should not only maximize data throughput but also query throughout via incremental computation
and resource sharing.

Third, we propose an ad-hoc stream join processing framework that integrates dynamic query processing
and query re-optimization techniques with ad-hoc stream query processing. Our solution comprises an
optimization layer and a stream data processing layer. The optimization layer periodically re-optimizes the
query execution plan, performing join reordering and vertical and horizontal scaling at runtime without
stopping the execution. The data processing layer enables incremental and consistent query processing,
supporting all the actions triggered by the optimizer.

The result of the second and the third contributions forms a complete ad-hoc SPE. We utilize the first
contribution not only for benchmarking modern SPEs but also for evaluating the ad-hoc SPE.
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Introduction

This Chapter contains:

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Analyzing SPEs Based on Real-life Streaming Scenarios . . . . . . . . . . . . . . . 3
1.2.2 Composable Ad-hoc Stream Query Processing . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Enriching Ad-hoc Query Processing Layer with Reoptimization and Dynamicity . 5
1.2.4 Ad-hoc Query Processing with Traditional DBMS . . . . . . . . . . . . . . . . . . 6
1.2.5 Distributed vs. Single-node Ad-hoc Query Processing . . . . . . . . . . . . . . . . 6

1.3 Impact of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation
The goal of streaming applications is to query continuous data streams with low-latency, i.e., within a
small time period from the time of receiving the data until the query result is computed. Due to increasing
data volume (e.g., in telecommunications, finance, and internet of things (IoT)), streaming applications
have become ubiquitous. For example, the IoT market is expected to grow from an installed base of 15.4
billion devices in 2015 to 30.7 billion devices in 2020 and 75.4 billion in 2025 [1]. Streaming applications
process large volumes of data generated from such devices that create a continuous stream of information.

Various academic and industrial communities have developed programming models for distributed
stream data processing. Although the proposed models di�er both at the language level and at the
system level, they represent streaming applications as a data flow graph of data streams and operators.
A vertex of the graph represents stream operators, and an edge denotes a data stream. The stream
operators implement transformations on a data stream (e.g., filtering, aggregating, joining). After all
transformations are performed via stream operators, the resulting data tuples are pushed to external
output channels. Apache Storm [2], Apache Spark [3, 4], and Apache Flink [5] are examples of distributed
stream processing engines (SPEs) with significant adoption in industry and the research community.

Cloud computing has gained significant attention as an emerging paradigm for developing and delivering
computing services. Derived from mainframe computing, it has advanced to an on-demand and virtualized
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Figure 1.1: Use-case for an ad-hoc stream query processing

delivery of computing power. As a result, one does not need to make large upfront investments in hardware
and spend time on managing that hardware.

With the advance of cloud computing, several service models have been developed, such as software as
a service (SaaS), infrastructure as a service, and platform as a service. These models allow a third-party
provider to host applications, infrastructure, and platforms, and to make them available to customers over
the Internet. Meanwhile, multi-tenant systems were developed or existing systems extended to support
multi-tenancy. Multi-tenancy is an instance of software and its supporting infrastructure serving multiple
customers, as an extension of the SaaS model. The main idea of multi-tenancy is that sharing resources
among multiple tenants leads to lower costs.

Although multi-tenancy (serving multiple concurrent user queries) has been extensively adopted by
relational database management systems and batch data processing systems, adapting multi-tenancy for
stream processing workloads is challenging. Unlike batch data processing systems, in SPEs ad-hoc queries
target potentially di�erent data tuples, depending on query creation and deletion. An ad-hoc stream
query is a query that is created and deleted on demand. An ad-hoc SPE is a system that is able to
execute concurrent ad-hoc stream queries. The goal of this thesis is to bridge the gap between ad-hoc
query processing and distributed stream data processing.

Figure 1.1 shows a use-case for ad-hoc stream query processing. Electrical bicycle sharing is widely
spread to promote green transportation [6, 7]. In the example scenario in Figure 1.1, electrical bicycles
( ) regularly send information ( ) about user actions, such as (un)locking the bicycle to start (finish)
a journey. In order to use an electrical bicycle, the user installs the related app on her mobile phone
and makes a payment. The mobile phone ( ) also periodically emits click stream ( ). Meanwhile,

electric charging stations ( ) dispatch information ( ) about the technical status of charging bicycles.
In industrial setups the transmitted information is saved at message queues [8]. Users create and delete
ad-hoc stream queries (Q1 and Q2) or submit long-running stream queries (Q3). For example, a user
might want to enrich Clicks stream with UserActions stream emitted at rush hours. Another user
performs a similar computation for customers older than 25 years. After the rush hour is finished, both
queries are deleted. Assuming that the queries share at least one stream data source, the main challenge
is to share computation, minimize data copy, and maximize the amount of served stream queries.

2



1.2 Challenges and Contributions

1

2

3
0

Figure 1.2: Scope of this thesis represented as a puzzle

1.2 Challenges and Contributions
In this section, we explain the challenges and state our contributions. We summarize the scope and
provide a high level overview of this thesis in Figure 1.2. We build this thesis on top of the piece 0 of the
puzzle in the figure. The piece 0 includes a modern SPE that is optimized for single long-running stream

queries. The SPE ingests input tuples ( ) and processes them in a distributed manner ( ). A user

( ) submits ( ) the query ( ) to the system and receives ( ) output results. We describe
each challenge and our contribution by stating the challenge, providing an example scenario, stating short
description of our contribution, and explaining the related piece of the puzzle from Figure 1.2.

1.2.1 Analyzing SPEs Based on Real-life Streaming Scenarios

A thorough analysis of SPEs is essential to discover potential limitations in stream data processing. We
have realized that there are numerous challenges in benchmarking SPEs based on real-life streaming
scenarios. The piece 1 in Figure 1.2 indicates our contributions related to analysis and benchmarking of
SPEs.

Challenge 1: Accurate and objective metric calculations. The metric calculation should have
minimum impact on the performance of the system under test (SUT). Besides, the calculation semantics
must be the same among all SUTs to ensure fairness. Designing a benchmarking framework to ensure
accurate and objective metric calculations for all SPEs is a challenge.

Example. Modern SPEs feature a set of performance metrics, such as latency, throughput, and
resource usage, to monitor applications. Relying on these metrics while analyzing di�erent SPEs might
lead to incorrect results because of di�erent metric calculation semantics, or even because of di�erent
engine design semantics. For example, Flink measures the latency using latency markers, and Spark
measures the runtime of each mini-batch computation. In addition, none of the modern SPEs consider
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Figure 1.3: Number of ingested tuples per time unit

the additional time an input tuple spent outside the SPE (e.g., time spent in the message queue in Figure
1.1).

Contribution 1. We perform a complete separation of the SUT and the test driver ( ). This
enables us to i) isolate the data computation and metric calculation and ii) unify the benchmarking
process among all SUTs objectively.

Challenge 2: Latency of stateful stream operators. Latency is one of the main performance
metrics for SPEs. Yet, the definition of latency is missing for stateful stream operators, such as windowed
aggregations and joins.

Example. Assume that a user in Figure 1.1 executes a windowed aggregation query on the Clicks
stream to calculate the average number of clicks for each user. Each window computes a single aggregate
value and outputs it. Computing the latency of the outputted tuple is nontrivial because potentially many
input tuples inside the window contribute to the value of the output tuple.

Contribution 2. We provide the definition of latency ( ) for stateful stream operators. We
apply the proposed definition to various use-cases, such as windowed aggregations and joins.

Challenge 3: Throughput measurement. Current stream benchmarks either adopt throughput
measurement techniques from batch data processing systems (overall number of tuples divided by the
runtime) or utilize min, max, or average throughput. However, none of these metrics measure the
throughput that can be achieved in a production setting.

Example. Figure 1.3 shows the number of ingested tuples per time unit. The maximum throughput
(8.1M t/s) can be interpreted in two ways. One way is that, the system successfully ingests and processes
input tuples during the high workload. Then, the workload decreases leading to a lesser number of
processed tuples. Another scenario is that the system bu�ers too many tuples because it cannot keep
up with the data arrival rate. Thus, the SUT realizes the backpressure, and all upstream operators slow
down their data ingestion rate. Looking at the figure, it is di�cult to identify which of these scenarios
happened.

Contribution 3. We measure the maximum sustainable throughput of an SPE ( ), i.e., the
highest load of event tra�c that a system can handle. Our benchmarking framework handles system
specific features like backpressure to measure the maximum sustainable throughput.

1.2.2 Composable Ad-hoc Stream Query Processing

Analyzing SPEs is an important approach to identify possible limitations. During our analysis, one of
our takeaways (among others) was that state-of-the-art SPEs are not able to process ad-hoc stream
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queries, which is the main query processing model for multi-tenant cloud architectures. Thus, we provide
a foundation for ad-hoc stream query processing. We indicate this work as the piece 2 in Figure 1.2.

Challenge 4: Composability. Composability is a system design principle in which components of
the system can be assembled and dismantled to satisfy specific user requirements. The challenge is to i)
avoid re-implementing an existing set of SPE features, such as out-of-order stream processing, event-time
processing, and fault tolerance, and ii) design the ad-hoc query processing layer to be easily integrable
with any SPE.

Example. Assume that the service owner decides to replace the existing SPE with another one
because the latter one provides a new set of required features or its performance is higher than the former.
Usually, significant software development e�ort is required if the new engine does not support ad-hoc
stream queries by default.

Contribution 4. We design the ad-hoc query processing tier to be a composable layer of an
underlying SPE. The idea is that the piece 2 (Figure 1.2) is pluggable not only to the piece 0 but also to
other pieces of a similar type. The composable layer supports ad-hoc stream query processing for stream
operators, such as filter, join, aggregation, and window operators.

Challenge 5: Consistency. In the presence of multiple ad-hoc stream queries, adding and removing
queries consistently while ensuring the correctness of results is a challenge.

Example. In Figure 1.1, Q1 and Q2 are ad-hoc stream queries, while Q3 is a long-running stream
query. An ad-hoc SPE must ensure that all the queries are created and deleted in a consistent manner.
For example, in Figure 1.1, Q1 must process only tuples between creation and deletion time of Q1.

Contribution 5. We provide consistent query creation ( ) and deletion ( ), and ensure the
correctness of results for all running ad-hoc queries.

Challenge 6: Performance. A main objective of modern SPEs is to maximize input data
throughput and minimize data latency. In the presence of ad-hoc stream queries, the challenge is to
maximize the query throughput (number of created and deleted ad-hoc queries per time unit) in addition
to the aforementioned objectives.

Example. In Figure 1.1 the ad-hoc SPE serves three parallel user queries. The objective is to
maximize the number of users served at the same time. Q3 shares data with Q1 and Q2. Also, Q1 shares
data with Q2. Depending on the queries submitted, Q1, Q2, and Q3 might also share computation. In
this case, the system computes the computation shared among queries and reuses it.

Contribution 6. We provide a set of incremental computation and optimization techniques to
achieve high performance. Also, we provide a rule-based optimization technique to determine whether
sharing data and computation is beneficial. The piece 2 of the puzzle shows that the ad-hoc ( )
query processing layer enables us to serve multiple user queries ( ) and ensures high performance
( ).

1.2.3 Enriching Ad-hoc Query Processing Layer with Reoptimization and
Dynamicity

Stream data processing with a single-query workload is challenging [9], as it is generally accepted that
stream workloads are unpredictable [10]. With multiple ad-hoc stream queries, the workload is even more
unpredictable, and processing ad-hoc stream queries is more challenging. Thus, we enrich ad-hoc stream
query processing with dynamic and incremental query processing techniques. The piece 3 in Figure 1.2
shows the high-level overview of this part of the thesis.

Challenge 7: Lack of Dynamicity. State-of-the-art SPEs adopt static query execution plans
(QEPs). However, in the presence of ad-hoc stream queries and fluctuating query and data workloads, a
static QEP might be suboptimal. Also, state-of-the-art stream optimizers adopt rule-based strategies that
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optimize input queries at compile-time. However, due to the nature of ad-hoc stream query processing,
compile-time and rule-based query optimization often lead to suboptimal QEPs.

Example. Assume that Q1=ClicksonUserActions (Window=5sec) in Figure 1.1. All the resources

(two ) are allocated to the SPE operators executing Q1. Then, Q2 and Q3 are created. For all
the queries to run smoothly, rescheduling might be required (scale down or scale in) for Q1. A similar
condition might arise for scaling out or scaling up.

Also, assume that Q2=UserActionsonBicycleStatus (Window=1sec) and Q3=ClicksonUserActions
onBicycleStatus (Window=2sec) in Figure 1.1. When Q3 is created, the optimizer assigns
(ClicksonUserActions)onBicycleStatus QEP to it in order to benefit from the sharing opportunity
(ClicksonUserActions) with Q1. After some time, Q1 is deleted, and Q2 is created. Then, the QEP of
Q3 might be suboptimal.

Contribution 7. We provide dynamicity at two layers. Dynamicity at the optimization layer
means that the optimization layer performs regular reoptimization ( ), such as join reordering and
horizontal and vertical scaling. Dynamicity at the data processing layer means that the layer is able to

perform all the actions triggered by the optimizer at runtime, without stopping the QEP ( ).
Challenge 8: Missed Optimization Potential. First, to the best of our knowledge, there is no

ad-hoc SPE providing ad-hoc stream QEP optimization. Second, join operator structure is prone to be the
bottleneck to the whole QEP, because the computation distribution of a join operation is rather skewed
among di�erent stream operators.

Example. The source operator of the SPE is responsible for pulling stream tuples from the message
queue. To execute a join query, e.g., Q1, the join operator bu�ers stream tuples in a window, finds
matching tuples and builds resulting tuples by assembling the matching tuples. The join operator also
implements all the functionalities of a windowing operator. The sink operator pushes the resulting tuples
to output channels provided by the user. Because most of the computation is performed in the join
operator, it can easily become a bottleneck.

Contribution 8. We provide an incremental optimization technique for ad-hoc queries. Also, we
redesign the join operator structure to exploit the pipeline parallelism ( ).

1.2.4 Ad-hoc Query Processing with Traditional DBMS

Traditional DBMSs are designed to handle ad-hoc queries by default. They perform scan and computation
sharing to execute multiple ad-hoc queries [11]. It is also possible to reuse all sophisticated algorithms
and techniques that traditional DBMSs adopt to handle ad-hoc queries for streaming workloads [12, 13].

The ad-hoc query processing techniques discussed in this thesis (Chapters 4 and 5) can be applied to
any data processing system that can handle streaming workloads and are not specific to SPEs. The main
contributions of this thesis are tightly coupled with streaming workloads, not with SPEs.

1.2.5 Distributed vs. Single-node Ad-hoc Query Processing

The contributions of this thesis are designed for distributed data processing environments. We design
our solution to be a composable layer over existing SPEs (Contribution 4). The proposed ad-hoc SPE
(Chapters 4 and 5) does not utilize any centralized computing structure. Our solution adopts dynamicity
and progressive optimization (Contribution 7), which are more essential in distributed environments.
To ensure the correctness of query results, our solution utilizes distributed consistency protocols. Also,
the ad-hoc SPE exploits pipeline-parallelism (Contribution 8). In a single-node environment, however,
task-fusion is more beneficial [14]. Other contributions of our work are not specific to distributed data
processing environments.
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1.3 Impact of Thesis Contributions
Research Publications. The primary results of this thesis have been published in the following
peer-reviewed publications at international top-tier venues:

1. Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, Volker Markl: Benchmarking Distributed Stream Data Processing Systems In
Proceedings of IEEE International Conference on Data Engineering (ICDE), 2018.

2. Jeyhun Karimov: Stream Benchmarks In Proceedings of Encyclopedia of Big Data Technologies,
2018.

3. Jeyhun Karimov, Tilmann Rabl, Volker Markl: AStream: Ad-hoc Shared Stream Processing
In Proceedings of ACM International Conference on Management of Data (SIGMOD), 2019.

4. Jeyhun Karimov, Tilmann Rabl, Volker Markl: AJoin: Ad-hoc Stream Joins at Scale In
Proceedings of VLDB Endowment, 2019.

Research Talks. Parts of the work on benchmarking distributed stream data processing systems
in Chapter 3 have been presented at 4th International Workshop on Performance Analysis of Big data
Systems (PABS) [15]. Also, parts of the work on ad-hoc stream query processing in Chapter 4 have been
presented at the FlinkForward Berlin conference 2019 [16]. FlinkForward is a conference for Apache Flink
and stream processing communities, consisting of industrial experiences, best practices, and research
sessions. We believe that our talk at FlinkForward will promote the adoption of our research contributions
in the industry.

Summary. Our contributions present a realistic way of performance analysis for SPEs, which is
essential for all streaming systems. Also, the contributions made in this thesis provide a foundation for
ad-hoc stream query processing. Our examples show great potential with respect to shared resource
utilization, dynamicity, and query (re)optimization. We believe that our contributions will lead to a new
generation of SPEs to support various industrial use-cases on ad-hoc stream query processing.

1.4 Structure of the Thesis

Chapter 2: Chapter 2 provides background information for the subsequent chapters. We explain the
fundamental concepts of stream data processing. Also, we explain the modern SPEs in detail, including
their computation semantics and di�erences and similarities between them. In addition, we present existing
query optimization techniques, which we adopt and enhance to support ad-hoc query optimization.

Chapter 3: Chapter 3 lays the basis to explore modern SPEs and analyze their strengths and limitations.
We also show drawbacks of existing performance evaluation techniques for SPEs. One outcome of this
work is that modern SPEs are not able to execute ad-hoc stream queries.

Chapter 4: Chapter 4 presents the fundamentals of ad-hoc shared stream query processing. We propose
the first ad-hoc SPE and design our solution based on three principles: ease of integration, consistency,
and performance.

Chapter 5: Chapter 5 bridges the gap between ad-hoc stream query processing, incremental query
processing, and dynamic query processing. We enhance existing ad-hoc stream query processing techniques
with cost-based ad-hoc query (re)optimization techniques and dynamicity.

Chapter 6: Chapter 6 lists additional related research contributions of the author. These contributions
are not covered in the above chapters, but have been accomplished while working on this thesis.
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Chapter 7: Chapter 7 concludes the thesis and provides an outlook to future work.
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Background

This Chapter contains:

2.1 Fundamentals of Stream Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Event-time vs. Processing-time Stream Data Processing . . . . . . . . . . . . . . . 9
2.1.2 Windowed Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Delivery Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Backpressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Distributed Stream Data Processing Engines . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Apache Storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Apache Flink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Fundamentals of Stream Data Processing
The main goal of stream data processing applications is to process high volume, continuous feeds from
live data sources, analyze these feeds, and produce near real-time insights with low latency. Dataflow
[17] and MilWheel [18] can be regarded as one of the first SPEs used in production at web scale. The
Dataflow model is a data processing paradigm proposed by Google. The main idea of this model is to
deal with sophisticated requirements, such as event-time ordering, event-time windowing, and low latency.
The model avoids to groom unbounded datasets into finite pools of information, wait until the pools are
complete, and process resulting pools as a batch. Instead, the Dataflow model assumes that we will never
know if or when we have seen all of our data. The model provides principled abstractions that allow the
practitioner to select the appropriate tradeo�s along the axes of interest: correctness, latency, and cost.
Modern SPEs, such as Apache Flink [5] adopt the Dataflow model in their implementation.

2.1.1 Event-time vs. Processing-time Stream Data Processing

Event-time is the time at which the event itself actually occurred. This time is typically embedded within
stream tuples as a separate attribute and is extracted from the tuple inside an SPE. Event-time data
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processing allows time-based operations, such as time windows, to be computed deterministically. For
example, a 10-second event-time window contains all stream tuples with event timestamp that fall into
the respective 10 second time slot. The semantics of event-time data processing is agnostic to the arrival
time or the arrival order of stream tuples. In contrast to the processing-time stream data processing, in
the event-time stream data processing, the progress of time depends on the data, not on any wall clock.
Event-time data processing is helpful especially when a failure occurs and some portion of the stream is
replayed, or when events arrive late or in an out-of-order manner.

Processing-time is the system time of the machine executing the respective operation. The main
di�erence between the processing-time and event-time is that event-time for a given event never changes,
but processing-time changes depending on the system clock of the machines that run the respective
operator. Stream operators implementing processing-time semantics, such as time windows, use the
system clock of the machines that run the respective operator. For example, a 10-second processing-time
window includes all stream tuples that arrive at the system, which is measured by the system clock, in
the respective 10-seconds time slot.

Compared with event-time, processing-time is a simpler notion of time. With processing-time, no
coordination is needed between streams and machines. Thus, stream operators implementing processing-
time semantics provide a better performance and a lower latency than the ones with event-time semantics.
The main limitation of processing-time semantics is lack of determinism. The main reason is that
processing-time is highly susceptible to the speed at which tuples arrive at the system, to the speed at
which tuples flow between stream operators, to parallelism, scheduling, etc.

Ideally, when the time domain skew between processing-time and event-time is always zero, all events
can be processed immediately as they happen. However, in reality, there is a skew between the two time
domains, as there can be delays due to network, user activity, etc. Therefore, event-time stream data
processing might lead to a certain latency, especially when waiting a certain time for late events and
out-of-order events.
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2.1.2 Windowed Stream Processing

One of the fundamental characteristics of streaming applications is the on-the-fly nature of the computation.
That is, streaming applications do not require access to disk-resident data. Instead, the applications
discretize continuous data and store the most recent history of streams in memory to perform necessary
tasks. This discretized data is often managed using windows. All modern SPEs feature some form of
windowing functionality. Windowing enables stream processing applications to perform blocking relational
operations, such as windowed aggregations, windowed joins, and any user-defined operation.

Usually, stream windows are assigned a window function that is executed in parallel. A window
operator encompasses all windowing features and computations in a single operator. Each parallel instance
of the window operator is deployed on a specific partition of stream data. We call this window type keyed
windows. Non-keyed windows or global windows collect all the stream tuples inside a single global window.
Although the global windows are necessary for some use-cases, their non-parallel and centralized execution
semantics might be a bottleneck for some workloads.

A window assignment operator inside an SPE defines how stream tuples are assigned to windows. A
window is configured by its length and slide. The length parameter controls the duration of a window.
The slide parameter controls how frequently a window is started. As a result, windows can be overlapping
(tuples are assigned to multiple windows) if the slide is smaller than the length. Modern SPEs are
shipped with pre-defined window assigners for the most common use-cases, such as tumbling windows,
sliding windows, and session windows, along with generic user-defined window assigners. Windows can be
constructed based on time, count, or some user-defined logic.

A tumbling window assigner assigns each stream tuple to a single window with a fixed size. Time-based
tumbling windows collect tuples from upstream operators until the closing time of the window is reached.
Then, the window is closed, and processing is performed on the stored data. Afterwards, the outcome
of the computation is sent to the downstream operators, and all the data tuples inside the window are
evicted.

Sliding windows can be regarded as a superset of tumbling windows. These windows continuously
maintain the most recent tuples. Each stream tuple is assigned to one or more windows depending on
the length and the slide of a window. When the window is full, the sliding window evicts only the oldest
tuples instead of all the tuples inside the window.

In session windows, input stream tuples are assigned to windows based on their frequency. Unlike
sliding and tumbling windows, session windows do not overlap and have a dynamic length, defined at
runtime. A session window is regarded as full when the assigner does not receive stream tuples for a
certain period of time. When the session window is full, all the elements are processed. Afterwards, they
are removed from the window.

2.1.3 Delivery Semantics

In a distributed data processing environment, the computers that make up an SPE can always fail
independently of one another. Depending on the action the SPE takes to handle such a failure, the
resulting delivery semantics will di�er.

Assume that a producer receives an acknowledgment message from its downstream consumer for every
message that has been sent. We refer to any two operators that exchange data, whether these operators
are within a single system or not, as a producer and consumer. In case of a failure, such as a network
failure, the producer acknowledgment times out or leads to an error. In this case, the producer might
retry sending the message several times, such that at least one attempt succeeds. This might result in
duplicated messages on the consumer side; however, no message is lost. This delivery option is called
at-least-once delivery semantics.
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When the failure occurs or acknowledgment time exceeds, the producer might avoid sending multiple
messages to the consumer. In this case, the message is delivered zero or one times; meaning messages may
be lost. This delivery option is called at-most-once delivery semantics.

In exactly-once-semantics, even if the producer attempts to send a message to its consumer multiple
times, the message is delivered to the consumer exactly once. This delivery semantics is the most desired
one because it guarantees that the message can neither be lost nor duplicated, and results are correct.

2.1.4 Backpressure

In stream data processing scenarios the input data throughput might fluctuate over time. Source operator
instances (the most upstream operator instances of an SPE) periodically pull input data from external
sources, such as message queues. When an SPE receives data at a higher rate than it can process (e.g.,
during a temporary load spike), it initiates backpressure. Backpressure can occur due to various reasons.
For example, garbage collection stalls or resource bottlenecks, such as CPU, memory, network bottlenecks,
or fluctuating input data throughput might cause an operator to compute at a lower speed than the
output rate of its upstream operator.

There are three main ways to handle backpressure. The first way is that the SPE, which cannot keep
up with the input data rate, drops data tuples. Although this is a reasonable solution for a wide variety
of use-cases, such as approximate computing applications, for some stream use-cases it is not acceptable.
The second way is that the SPE ingests and accumulates all input data, although it cannot sustain the
workload. However, this will eventually result in a shortage of resources, such as lack of memory. The
third way is that the SPE automatically adjusts the data flow rate throughout all stream operators. The
SPE initially detects the backpressure. Then it takes necessary actions to handle it. We discuss specific
backpressure implementations, along with other details, for the state-of-the-art SPEs (Apache Storm,
Apache Spark, and Apache Flink) below.

2.2 Distributed Stream Data Processing Engines
In this section, we provide background information about the state-of-the-art SPEs and their features
used in this thesis. We analyze Apache Storm, Apache Spark, and Apache Flink as they are the most
mature and accepted ones in both academia and industry.

Unlike stream data processing, which performs real-time data analysis, batch data processing collects
newly arriving data elements in groups and processes the whole group at a future time. In other words,
stream processing processes data as they come in and spreads the processing over time, while batch
processing lets the data build up and try to process them at once. While some systems, such as Spark
Streaming [3], inherit a batch data processing architecture to execute streaming workloads, some systems,
such as Flink [5], adopt a stream data processing architecture and implement batch data processing as a
special case of stream data processing.

2.2.1 Apache Storm

Apache Storm is a distributed stream processing framework, which was open sourced after being acquired
by Twitter [19]. Storm operates on tuple streams and provides tuple-at-a-time stream processing. It
supports an at-least-once processing semantics and guarantees all tuples to be processed. In case of
a failure, events are replayed. Storm also supports exactly-once processing semantics with its Trident
abstraction [20].

Stream processing programs of Storm are represented by a computational topology, which consists of
spouts and bolts. Spouts are source operators, and bolts are processing and sink operators. A Storm
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topology forms a directed acyclic graph (DAG), where the edges are tuple streams and vertices are
operators (bolts and spouts). When a spout or bolt emits a tuple, the bolts that are subscribed to this
spout or bolt receive input.

Storm’s lower level APIs provide little support for automatic memory and state management. Therefore,
choosing the right data structure for state management and utilizing memory e�ciently by making
computations incrementally is up to the user. Storm supports caching and batching the state transition.
However, the e�ciency of these operations degrades as the size of the state grows.

Storm has built-in support for windowing. Although the information of expired, newly arrived,
and total tuples within a window is provided through APIs, the incremental state management is not
transparent to the users. Trident, on the other hand, has built-in support for partitioned windowed
joins and aggregations. Storm supports sliding and tumbling windows with processing- and event-time
semantics.

Any worker process in the Storm topology sends an acknowledgment to its upstream executor for a
processed tuple. In case of failure, Storm sends the tuple again. One of the downsides of Storm’s use
of acknowledgments is that the tuples can be only be acknowledged once a window operator completely
flushes them out of a window. This can be an issue on windows with large length and a small slide.

Storm supports backpressure although the feature is not mature yet [21]. This was confirmed throughout
our experiments as well. Storm uses an extra backpressure thread inside the system. Once the receiver
queue of an operator is full, the backpressure thread is notified. This way Storm can notify all workers
that the system is overloaded. Due to its high complexity and centralized nature, Storm’s backpressure
feature can stall the system and, therefore, it is not enabled by default (version 1.0.2).

2.2.2 Apache Spark

Apache Spark is an open source big data processing engine, originally developed at the University of
California, Berkeley [22]. Unlike Storm and Flink, which support tuple-at-a-time, Spark Streaming inherits
its architecture from batch processing, which supports processing tuples in micro-batches. The Resilient
Distributed Dataset (RDD) is a fault-tolerant abstraction of Spark, which enables in-memory, parallel
computation in distributed cluster environments [23].

Spark supports stage-oriented scheduling. Initially, it computes a DAG of stages for each submitted
job. Then it keeps track of materialized RDDs and outputs from each stage and finally finds a minimal
schedule. Unlike Flink and Storm, which also work based on DAG execution graphs, Spark’s computing
unit in a graph (edge) is a data set rather than streaming tuples, and each vertex in a graph is a stage
rather than individual operators.

Spark has improved its memory management significantly in the recent releases (we use Spark v2.0.1
in our experiments). The system shares the memory between execution and storage. This unified memory
management supports dynamic memory management between the two modules. Moreover, Spark supports
dynamic memory management throughout the tasks and within operators of each task.

Spark has built-in support for windowed calculations. With its DStream abstraction [3], it supports
only windows defined by processing-time. The window size must be a multiple of the batch interval
because a window keeps a particular number of batches until it is purged. Choosing the batch interval
can heavily a�ect the performance of window-based analytics. First, the latency and response time of
windowed analytics is strongly relying on the batch interval. Second, supporting only processing-time
windowed analytics, can be a severe limitation for some use-cases.

Spark also supports backpressure. It handles backpressure by putting a bound to block size. Blocks
are created in data source operators per each predefined time unit. Depending on the duration and load
of each mini-batch job, the e�ectiveness of backpressure signal handling from source to destination may
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vary. To detect the backpressure, Spark implements a contract that listens to mini-batch completion
updates from the related operators and maintains a rate limit, i.e. an estimate of the speed at which the
engine should ingest tuples. With every completed mini-batch update event, Spark calculates the current
processing rate and estimates the optimal data ingestion rate.

2.2.3 Apache Flink

Apache Flink started o� as an open-source big data processing system at TU Berlin, leveraging major
parts of the Stratosphere project [24]. At its core, Flink is a distributed data flow engine. Like in Storm,
a Flink runtime program is a DAG of operators connected with data streams. Flink’s runtime engine
supports unified processing of batch (bounded) and stream (unbounded) data, considering former as being
the special case of the latter.

Flink provides its own memory management to avoid long-running JVM’s garbage collector stalls by
serializing data into memory segments. The data exchange in distributed environments is achieved via
bu�ers. A producer takes a bu�er from the pool and fills it up with data. Then, the consumer receives the
data and frees the bu�er informing the memory manager. Flink provides a wide range of high level and
user-friendly APIs to manage state. Incremental state update, managing the memory, or checkpointing
with big states are performed automatically and transparently to the user.

Flink has a strong feature set for building and evaluating windows on data streams. With a wide
range of pre-defined windowing operators, it supports user-defined windows with custom logic. The engine
provides processing-time, event-time, and ingestion-time data processing semantics. Like in Storm, the
timestamps must be attached to each tuple as a separate field. At ingestion time, the system processes
tuples with event-time semantics on these timestamps. Flink provides support for out-of-order streams.
Flink also supports backpressure. It uses blocking queues. Once the congestion is detected, this information
is automatically transferred to upstream operators with negligible cost.

2.3 Query Optimization
We utilize rule- and cost-based query optimization techniques to empower ad-hoc stream query processing,
in Chapters 4 and 5, respectively. To enrich our work with cost-based query optimization, we adopt the
Iterative Dynamic Programming (IDP) technique [25] and enhance it for streaming workloads. Below, we
provide background information about the original IDP technique.

Algorithms based on dynamic programming lay in the core of query optimization. While these
algorithms produce good optimization results (i.e., good query execution plans), its high complexity can be
restrictive for optimizing complex queries or multiple queries. Optimization algorithms that are based on
the IDP principle propose several advantages to deal with highly complex queries. IDP-based algorithms
include both dynamic and iterative programming techniques. Thus, these algorithms are adaptive and
produce as good plans as dynamic programming based algorithms if dynamic programming is viable. If
dynamic programming is not viable (e.g., the problem is too complex), then IDP variants still are able to
produce as-good-as possible plans. Also, existing dynamic programming based query optimizers can be
easily extended to their IDP counterparts. There are two main variants of the IDP approach: IDP1 and
IDP2. In this thesis, we adopt and enhance IDP1. We explain this algorithm below and refer to it as IDP
throughput the thesis.

The main idea behind IDP is to i) break the query into subqueries containing join trees with up to k

relations, ii) calculate the cost of each tree, iii) greedily choose the cheapest plan, iv) replace the cheapest
one by a compound relation, and v) start the process all over again. Figure 2.2 shows an example query
optimization scenario with IDP. The example join query includes 5 relations with block size k=3. The
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first three steps are similar to classic dynamic programming, meaning that the algorithm generates access
plans, 2-way and 3-way join plans, calculates the optimal QEP, and prunes suboptimal plans. Because we
choose the block size to be 3 (k=3), the algorithm breaks in Step 4, and greedily chooses the subplan
with the lowest cost (T). All other plans containing one or more tables considered in the selected plan are
discarded. In Step 5 IDP starts the second iteration with C, E, and T. This process continues until the
final plan is computed (Step 7 in the example).

In the special case where k is equal to the number of relations in the input query (e.g., for smaller
problems), IDP calculates the optimal solution. Thus, tuning k provides a good compromise between
runtime and optimality. Because the algorithm combines greedy heuristics with dynamic programming, it
is able to scale to large problems.
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The need for scalable and e�cient stream analysis has led to the development of many open-source SPEs
with highly diverging capabilities and performance characteristics. While first initiatives try to compare
the systems for simple workloads, there is a clear gap of detailed analyses of the systems’ performance
characteristics. In this chapter, we present a framework for benchmarking distributed stream processing
engines. We use our suite to evaluate the performance of three widely used SPEs in detail, namely
Apache Storm, Apache Spark, and Apache Flink. Our evaluation focuses in particular on measuring the
throughput and the latency of windowed operations, which are the basic type of operations in stream
analytics. For this benchmark, we design workloads based on real-life, industrial use-cases inspired by the
online gaming industry. The contribution of this chapter is threefold. First, we decouple the SUT from the
test driver, in order to correctly represent the open-world model of typical stream processing deployments.
This separation enables our benchmark suite to measure system performance under realistic conditions.
Second, we give a definition of latency and throughput for stateful operators. Third, we propose the first
benchmarking framework to define and test the sustainable performance of SPEs. Our detailed evaluation
highlights the individual characteristics and use-cases of each system.
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3.1 Introduction
Processing large volumes of data in batch is often not su�cient when the new data have to be processed
fast. For that reason, stream data processing has gained significant attention. The most popular SPEs,
with large-scale adoption in industry and the research community, are Apache Storm [2], Apache Spark
[3], and Apache Flink [5]. As a measure of popularity, we consider the systems’ community size, pull
requests, number of contributors, commit frequency at the source repositories, and the size of the industrial
community adopting the respective systems in their production environment.

An important application area of stream data processing is online video games. This application area
requires the fast processing of large scale online data feeds from di�erent sources. Windowed aggregations
and windowed joins are two main operations that are used to monitor user feeds. A typical use-case
is tracking the in-application-purchases per application, distribution channel, or product item (in-app
products). Another typical use-case is the monitoring of advertising: making sure that all campaigns and
advertisement networks work flawlessly, and comparing di�erent user feeds by joining them. For example,
monitoring the in-application-purchases of the same game downloaded from di�erent distribution channels
and comparing users’ actions are essential in online video game monitoring.

In this work, we propose a benchmarking framework to accurately measure the performance of SPEs.
For our experimental evaluation, we test three publicly available open-source engines: Apache Storm,
Apache Spark, and Apache Flink. We use latency and throughput as the two major performance indicators.
Latency, in SPEs, is the time di�erence between the moment of data production at the source (e.g., the
mobile device) and the moment that the SPE has produced an output. Throughput, in this scenario,
determines the number of ingested and processed tuples per time unit.

Even though there have been several comparisons of the performance of SPEs recently [26, 27, 28],
they did not measure the latency and throughput that can be achieved in a production setting. One of
the repeating issues in previous work is the missing definition and inaccurate measurement of latency in
stateful operators (e.g., joins). Moreover, previous work does not clearly separate the SUT and the test
driver. Frequently, the performance metrics are measured and calculated within the SUT, resulting in
incorrect measurements.

In this chapter, we address the above mentioned challenges. Our proposed benchmarking framework
is generic with a clear design and well-defined metrics, which can be applied to any SPE. The main
contributions of this chapter are as follows:

• We accomplish the complete separation of the test driver from the SUT.

• We introduce a technique to accurately measure the latency of stateful operators in SPEs. We apply
the proposed method to various use-cases.

• We measure the maximum sustainable throughput of SPEs. Our benchmarking framework handles
system-specific features like backpressure to measure the maximum sustainable throughput of a
system.

• We use the proposed benchmarking system for an extensive evaluation of Storm, Spark, and Flink
with practical use-cases.

3.2 Related Work
Benchmarking parallel data processing systems has been an active area of research. Early benchmarking
e�orts have focused on batch processing and later on extended to stream processing.
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3.2.1 Batch Processing

HiBench [29] was the first benchmark suite to evaluate and characterize the performance of Hadoop.
Later, it was extended with a streaming component [30]. HiBench includes a wide range of experiments
ranging from micro-benchmarks to machine learning algorithms. SparkBench, features machine learning,
graph computation, SQL queries, and streaming applications on top of Apache Spark [31]. BigBench [32]
is an end-to-end benchmark with all major characteristics of big data systems. The BigDataBench [33]
suite contains 19 scenarios covering a broad range of applications and diverse data sets. Marcu et al. [34]
performed an extensive analysis on Apache Spark and Apache Flink with iterative workloads.

The above benchmarks either adopt batch processing systems and metrics used in batch processing
systems or apply the batch-based metrics on SPEs. We, on the other hand, analyze SPEs with a new
definition of metrics and show that adopting batch processing metrics for SPEs leads to biased benchmark
results.

3.2.2 Stream Processing

Recently, a team from Yahoo! conducted a series of experiments on three Apache projects, namely Storm,
Flink, and Spark and measured their latency and throughput [26]. They used Apache Kafka [35] and
Redis [36] for data retrieval and storage respectively. Perera et al. used the Yahoo Streaming Benchmark
and Karamel [37] to provide reproducible batch and streaming benchmarks of Apache Spark and Apache
Flink in a cloud environment [38]. Later on, it was shown that Kafka and Redis were the bottleneck in
the experiments of the Yahoo! Streaming Benchmark [39].

In this chapter, we overcome these bottlenecks by i) generating the data on the fly with a scalable data
generator (Section 3.3) instead of ingesting data from Kafka and ii) not storing data in a key-value store.

Lopez et al. [27] propose a benchmarking framework to assess the throughput performance of Apache
Storm, Spark, and Flink under node failures. The key finding of their work is that Spark is more robust to
node failures but it performs up to an order of magnitude worse than Storm and Flink. Compared to this
work, we observed a large di�erence with respect to the throughput achieved by the same systems. The
paper allows the SPEs to ingest data at maximum rate. Instead, we introduce the concept of sustainable
throughput: in our experiments, we control the data ingestion rate (throughput) of an SPE, in order to
avoid large latency fluctuations. We argue that sustainable throughput is a more representative metric
which takes into account the latency of a system.

Shukla et al. [28] perform common IoT tasks with di�erent SPEs and evaluate their performance. The
authors define latency as the interval between the source operator’s ingestion time and the sink operator’s
result emission time. As we discuss in Section 3.4, this approach leads to inaccurate measurements. The
same issue is also present in the LinearRoad benchmark [40]. To alleviate this problem, we perform
experiments measuring event-time latency. Additionally, Shukla et al. define throughput as the rate
of output messages emitted from the output operators in a unit time. However, since the number of
result-tuples can di�er from the input-tuples (e.g., in an aggregation query) we measure the throughput
of data ingestion and introduce the concept of sustainable throughput.

StreamBench [41], proposes a method to measure the throughput and latency of SPEs with the use of
a mediator system between the data source and the SUT. In this work, we explain that such a mediator
system is a bottleneck and/or a�ect the measurements’ accuracy. Finally, several SPEs implement their
own benchmarks to measure the system performance without comparing them with any other system [42,
43, 3].

In summary, our benchmarking framework is the first to i) separate the SUT and driver, ii) use a
scalable data generator and to iii) define metrics for system-, and event-time, as well as to iv) introduce
and use the concept of sustainable throughput throughout experiments.
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3.3 Benchmark Design Decisions
In this section, we discuss the main design decisions of our benchmarking framework. Simplicity is one of
the key factors of our benchmarking framework. Also, we embrace on-the-fly data generation, instead of
pulling the data from an external system, such as a message broker or a file system. In addition, we utilize
queues between a data generator and an SPE. Finally, our benchmark design embraces the complete
separation of the system under test and the test driver.

3.3.1 Simplicity is Key

Modern SPE benchmarks, such as Yahoo Streaming Benchmark [26], comprise of complete and end-to-end
industrial use-cases. On the one hand, the resulting setup simulates the real production use-case, with
the test driver, the SUT, and a set of other systems. For example, Yahoo Streaming Benchmark setup
includes Apache Kafka and Redis in addition to the driver and SUTs [26]. On the other hand, third-party
systems in this design might a�ect the benchmark results. In other words, additional systems between the
SPE and the driver are likely to add an extra latency for each tuple.

Our benchmark setup comprises of the test driver and SUT. Third-party systems are not part of the
benchmarking framework. This design decision enables us to measure the performance of the SUT with
minimum overhead from external factors.

3.3.2 On-the-fly Data Generation vs. Message Brokers

SPEs nowadays typically pull the data from message brokers, such as Apache Kafka [35], instead of
directly connecting to push-based data sources. The message broker persists the data coming from various
sources [44], performs data replication, and makes the data available for other systems to use. The data
exchange between the message broker and an SPE may easily become the bottleneck of a benchmark
deployment for two main reasons. First, if the message broker’s data partitioning is not chosen wisely,
data re-partitioning may occur before the data reaches the sources of the SPE. This can happen when
data resides in a di�erent machine in the cluster or the data is partitioned in a di�erent way than the
SPE requires it. Even if the data inside the message broker is pre-partitioned with respect to the SPE’s
partitioning, the SPE might still shu�e the input data. For example, at the time of writing this thesis,
Apache Flink did not support already partitioned sources, meaning it shu�es the input data even if the
data have already been pre-partitioned at the input source. Second, the data needs to be persisted on
disk before going through a de-/serialization layer between the SPE and the message broker.

In our benchmark design, we choose not to use a message broker, but rather, adopt a distributed
in-memory data generator with configurable data generation rates. Each data generator retains a local
queue. The data generator pushes each generated tuple into the local queue. The SUT pulls the tuple
from the local queue for processing. The communication between the driver and the SUT is bounded only
by the network bandwidth and the speed of the data ingestion by the SUT.

The data transfer, between the driver and SUT, utilizes a pull-based approach. The pull- and push-
based data ingestion approaches perform theoretically the same with sustainable workloads. However, the
pull-based approach is the one used by modern SPEs [5, 19, 45]. No matter how high the workload a
system can sustain, it always has an upper limit. As a result, using push-based approaches leaves the user
with no guarantee for possible high workloads.
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(a) Push-based
direct connection

(b) Pull-based connection
via message queues

(c) Pull-based connection
via local data queues

Figure 3.2: Benchmark designs to connect the data generator (on the right) and SUT (on the left)

3.3.3 Queues Between Data Generators and SUT Sources

It is quite common that the throughput (data ingestion rate) of an SPE is not constant throughout the
duration of an experiment. The fluctuations in the ingestion rate can be due to transient network issues,
garbage collection in JVM-based engines, etc. To alleviate this problem, we add a queue between each
data generator and the SUT’s source operators to even out the di�erence in the rates of data generation
and data ingestion.

Figure 3.2 shows three possible cases to link the data generator with the SPE. The simplest design is
to connect the SPE directly to the data generator as shown in Figure 3.2a. Although this is a perfectly
acceptable design, it does not match real-life use-cases. In large scale setups, SPEs do not connect
to push-based data sources, but pull data from distributed message queues. Figure 3.2b shows the
pull-based design, where the data source and the SPE are connected through the message queues. A
common bottleneck of this option is the throughput of the message queuing system. Also, this adds a
de-/serialization layer between the SPE and the data sources. Therefore, we use the third option, which is
a hybrid of the first two. As can be seen in Figure 3.2c, we embed the local data queues as a separate
module in the data generators. This way, the throughput is bounded only by the network bandwidth.
Also, the systems work more e�ciently as there are no de-/serialization overheads.

3.3.4 Separation of Driver and the SUT

In previous work, the throughput was either measured inside the SUT or the benchmark leveraged internal
statistics of the SUT. However, di�erent systems can have very diverse definitions and computation
semantics of latency and throughput. The computation semantis might also be unknown if the system is
not open-source.

In our benchmarking framework, we isolate the test driver (i.e., the data generator, queues, and
measurements) from the SUT (i.e., the SPE), to perform measurements out of the SUT. More specifically,
we measure throughput at the queues between the data generator and the SUT and measure the latency
at the sink operator of the SUT. Each pair of the data generator and the queue resides on the same
machine to avoid any network overhead and to ensure data locality. The queue data is always kept in
memory to avoid disk write/read overhead.

The data generator timestamps each tuple at generation time. It performs so, with a constant speed
throughout the experiment. The event’s latency is calculated from the time instance that it is generated.
So, the longer a tuple stays in a queue, the higher its latency is. We make sure that the driver and SUT
instances do not share computational resources, as they might a�ect each other’s performance.

Figure 3.3 shows the overall architecture of our benchmarking framework. There are two main
components of test deployment: the SUT and the driver. The driver consists of data generators, each of
which maintains local data queues. The driver is responsible for generating and queuing the data. It is
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Figure 3.3: Design of our benchmarking framework

composed of a finite number of instances which are distributed evenly to the worker nodes. The driver
nodes are separate from SUT nodes in the cluster deployment. Data generators and their corresponding
data queues reside in the same machine to avoid any network overhead and to ensure data locality.

3.4 Metrics
SPEs are typically evaluated using two main metrics: throughput and latency. In this section, we make a
distinction between two types of latency, namely event-time latency and processing-time latency. We then
describe two types of throughput, namely maximum throughput and sustainable throughput.

3.4.1 Latency

Modern stream processing semantics distinguish two notions of time: event-time and processing-time
[17]. The event-time is the time when an event is captured while the processing-time is the time when
an operator processes a tuple. Similar to the nomenclature of these two notions of time, we distinguish
between event- and processing-time latency.

Definition 1 (Event-time Latency) We define event-time latency to be the interval between a tuple’s
event-time and its emission time from the SPE’s output operator.

For instance, in an ATM transaction, the event-time is the moment of a user’s action at the terminal.
The event-time latency is the time interval between the moment that the user’s action took place and the
moment that the event has been fully processed by the SPE.

Definition 2 (Processing-time Latency) We define processing-time latency to be the interval between
a tuple’s ingestion time (i.e., the time that the event has reached the input operator of the SPE) and its
emission time from the SPE’s output operator.

For instance, in an ATM transaction, the processing-time is the moment in which the transaction
reaches the source operator of the SPE. The processing-time latency is the time between the moment that
the transaction is reached at the SPE and the moment that it has been fully processed by the SPE.
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3.4.1.1 Event-time vs. Processing-time Latency

Event- and processing-time latencies are equally important metrics. The event-time latency includes the
time that a given event has spent in a queue, waiting to be processed, while processing-time latency is used
to measure the time it took for the event to be processed by the SPE. In practical scenarios, event-time
latency is very important as it defines the time in which the user interacts with a given system. Ideally,
this time should be minimized. Clearly, the processing-time latency makes part of the event-time latency.
We use both metrics to characterize a system’s performance.

Time T1
Data Generation 

Throughput=1M t/s

Time T2
Data Generation 

Throughput=0.5M t/s

Data Processing 
Throughput=1M t/s

Data Processing 
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(a) Data generation inside SUT
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Data Processing 
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Data Generation 
Throughput =1M t/s

Data Processing 
Throughput=0.5M t/s

(b) Our data generation approach

Figure 3.4: An example scenario for coordinated and realistic data generation

Not clearly di�erentiating the two metrics leads to the coordinated omission problem. In coordinated
omission service time (i.e., processing-time) is measured at the SUT and any increasing queuing time,
which is part of the response time (i.e., event-time), is ignored [46]. Friedrich et al. show that coordinated
omission leads to significant underestimation of latencies [47]. Figure 3.4 shows the two data generation
scenarios: data generation inside the SUT and our approach. In Figure 3.4a at time T1 the data generator
produces 1 million tuples per second. At the same time, the downstream data processing operator processes
all the generated tuples. At time T2 the data processing throughput diminishes to 0.5 million tuples per
second. The data generation speed automatically is dropped at the data generator. Thus, the data is
generated on demand, meaning the data generator and the data processing operator perform computation
in a coordinated way.

In real industrial use-cases a data source emits data independently from a data processing system.
For example, a video game player does not adjust the frequency of its actions (e.g., clicks) based on the
performance of the underlying data processing system (e.g., SPE). Figure 3.4b shows our data generation
approach. At time T1, the data generation and processing speeds are equal. Therefore, there are few
tuples residing in data queues. At time T2, the data processing throughput drops. In this case, the data
generation speed is still the same (1 million tuples per second), because it should not depend on the
performance of the SPE. If the SPE cannot catch up with the data generation speed, then after some time
the queue will be full. Also, each subsequent tuple inside the queue will have higher event-time latency.
In this case, the SPE cannot sustain the workload.

3.4.1.2 Event-time Latency in Windowed Operators

Stateful operators, such as window aggregates (e.g., a sum aggregate over an hour’s worth of data), retain
state and return results after having seen a number of tuples over some time. Measuring latency in such
cases is non-trivial. The reason is that the latency of a given windowed operator is a�ected by the tuples’
waiting time until the window is formed completely.
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Figure 3.5: End-to-end example of an aggregation query. The data generator produces tuples and timestamps
their event-time (before time=600). After that, the SPE ingests the tuples, groups them by their key, and
aggregates the tuples (SUM). The event-time latency of the output tuples equals to the maximum event-time
latency of tuples in each window.

Figure 3.5 depicts the data generator and a set of tuples in three queues. The tuples are timestamped
with their event-time when they are generated. The tuples are then grouped by their key and are put in a
10-minute window. Take, for example, the window containing the red tuples with key=US. The timestamps
of these three tuples are 580, 590, and 600. When these tuples are aggregated into a new tuple (the sum of
their values with a total of value=42), we need to assign an event-time to that output. That event-time
is then used to calculate the event-time latency (in this case, latency=10). The main intuition is that in
this way, we exclude the tuples’ waiting time while the window is still bu�ering data. The event-time is
defined more formally below.

Definition 3 (Event-time of Windowed Events) The event-time of a windowed operator’s output
tuple, is the maximum event-time of all tuples that contributed to that output.

In a windowed join operation, the joined tuples’ event-time is the maximum event-time of their window.
Afterwards, each join output is assigned the maximum event-time of its matching tuples. As described in
our example, in order to calculate the event-time latency of an output tuple, all we have to do is subtract
the event-time of that tuple from the current system time. Figure 3.6 shows the main intuition behind this
idea. We join ads (yellow) and purchases (gray) streams in a 10-minute window. The join operator is an
equi-join that is based on the attribute userID and gemPack. The maximum timestamp of the ads stream
tuples (a.time) in the window is 500. For the purchases stream, the maximum event-time timestamp
(p.time) in the window is 600. We assign the event-time of the joined tuple as the maximum of these two
values (a.time and p.time). We use the assigned event-time value to calculate the event-time latency of
the tuple.

3.4.1.3 Processing-time Latency in Windowed Operators

Apart from event-time latency, we need to calculate the processing-time latency of tuples as well. We
define the processing-time of a windowed stream tuple similarly to the event-time.

Definition 4 (Processing-time of Windowed Events) The processing-time of a windowed operator’s
output event, is the maximum processing-time of all events that contributed to that output.
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Figure 3.6: End-to-end join of two streams. The SPE reads tuples and forms a 10-minute window. The
tuples are joined, and the event-time of the result-tuples equals to the maximum event-time of tuples in their
corresponding windows.

The processing-time latency is calculated in the same way as for event-time, with a small di�erence.
Every tuple is enriched with an extra, processing-time field at its ingestion time (when the tuple reaches
the first operator of the SPE). The processing-time field is the system clock of the machines that run
the respective operator. In our example in Figure 3.5, this enrichment happens right after time=601.
To calculate the processing-time latency, we simply subtract the processing-time of that tuple from the
current system time.

3.4.2 Throughput

The throughput of a data processing system is defined as the number of events that the system can process
in a given amount of time. In this context, the throughput and event-time latency often do not correlate.
For instance, an SPE that batches tuples together before processing them can generally achieve higher
throughput. However, the time spent on batching events a�ects the events’ event-time latency.

In practice, the deployment of an SPE has to take into account the arrival rate of data. When the
data arrival rate increases, the system has to adapt (e.g., by scaling out) in order to handle the increased
arrival rate and process tuples without exhibiting backpressure. To reflect this, we define the concept of
sustainable throughput and discuss how we attain it in our experiments.

3.4.2.1 Sustainable Throughput.

An SPE starts to build up backpressure (i.e., the system queues up new tuples in order to process the
tuples that have already been ingested), when the amount of data is more than it can handle. As a result,
from the moment that the backpressure mechanism is initiated, the event-time latency of all queued tuples
increases. As we can see from Figure 3.7a, backpressure can be transient: as soon as the system catches
up again with the tuples’ arrival rate (time T3), the event-time latency will stabilize (between T3 and T4).
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Figure 3.7: Impact of sustainable and unsustainable throughput to the latency, data generation speed, and
data ingestion throughput. All the figures share the same x-axis. The SPE in this figure sustains the given
workload until time T2. The workload between T2 and T3 is unsustainable. The SPE catches up with the
data generation speed and sustains the workload after time T3.
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When the system’s throughput is larger than the tuples’ arrival rate (time T2), the event-time latency
will decrease to the minimum (i.e., the processing-time). Otherwise, the latency increases continuously. In
real-world applications, delays longer than a predefined threshold are unacceptable. For example, if the
server is overloaded because of throughput spikes, skews, and etc., the player observes a loading screen,
which might reduce customer satisfaction. Depending on the Quality of Service (QoS), the delay threshold
can be di�erent.

To avoid the coordinated omission [47] our data generation speed is clearly separated from the data
processing throughput. For example, the data generation speed in Figure 3.7b is stable, although the
data processing throughput drops in Figure 3.7c. The SPE in the figure manages to catch up with the
data generation speed after time T3. Therefore, the system ingests all tuples queued between T2 and T3,
along with the generated tuples at current time. After some time, the SPE finishes to process queued
tuples (between T2 and T3); therefore, the data ingestion throughput diminishes at T4.

Definition 5 (Sustainable Throughput) Sustainable throughput is the highest load of event tra�c
that an SPE can handle without exhibiting prolonged backpressure, i.e., without a continuously increasing
event-time latency.

In our experiments, we make sure that the data generation rate matches the sustainable throughput
of a given deployment. To find the sustainable throughput of a given deployment, we execute each of
the systems under test with a very high generation rate. Then, we decrease the data generation speed
until the system can sustain that data generation rate. We allow for some fluctuation, i.e., we allow a
maximum number of tuples to be queued, as soon as the queue does not continuously increase.

3.5 Workload Design
The workload for our benchmark is derived from an online video game application at Rovio1. Rovio
continuously monitors user actions in games to ensure that their services work as expected. For instance,
the quality assurance team continuously monitors the number of active users and generates alerts when
this number has large drops. Moreover, once a game has an update or receives a new feature, the team
monitors incoming events to check whether the newly added feature is working smoothly. Rovio also
tracks the in-app purchases per game, and distribution channel (e.g., Apple’s AppStore, Google Play), and
per in-app purchased item (e.g., a gem pack) and proposes gem packs to users as their game progresses.

3.5.1 Dataset

Listing 1 shows two data streams: i) the purchases stream, which contains tuples of purchased gem
packs and ii) the ads stream, which contains a stream of proposals of gem packs to users. Both stream
sources contain the time attribute. The purchase time shows the time the user bought the gem pack. The
ads time shows the time the ad was shown to the user.

3.5.2 Queries

We adopt queries from Figure 3.8 as representative queries for stream processing especially in online
gaming scenarios. The real-time sliding windowed aggregation and windowed join queries are the ones that
distinguish SPEs from batch processing system. Moreover, the use-cases are taken from real scenarios.

The first query that we use for our evaluation is a windowed aggregation query. More specifically, the
query calculates the revenue made from each gem pack with a sliding window. The template for this
query can be found in Figure 3.8.

1Creator of the Angry Birds game: http://www.rovio.com/.
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# Streams
PURCHASES( userID , gemPack , pr i ce , time )
ADS( userID , gemPack , time )

# Windowed Aggregation Query
SELECT SUM( p r i c e )
FROM PURCHASES [ Range r , S l i d e s ]
GROUP BY gemPack

# Windowed Join Query
SELECT p . userID , p . gemPack , p . p r i c e
FROM PURCHASES [ Range r , S l i d e s ] as p ,

ADS [ Range r , S l i d e s ] as a ,
WHERE p . userID = a . userID AND

p . gemPack = a . gemPack

Figure 3.8: Query templates used by our workloads

The second query is a windowed join query that is a typical use-case of correlating advertisements
with their revenue. As we can see in Listing 1, each user is presented with a specified proposal to buy a
gem pack at a given time instant. We join this stream with the stream of purchases in order to find which
of the proposed gems has been bought, as a result of proposing the gem to users.

3.6 Evaluation
In this section, we evaluate the performance of three SPEs, namely Storm 1.0.2, Spark 2.0.1, and Flink 1.1.3.
Due to the large number of parameters and variables, it is not possible not include all the experimental
results in this section. Instead, we present the most interesting results.

3.6.1 System Setup

Our experiments have di�erent runtime durations. If one experiment runs shorter than another, it means
the former experiment has higher throughput than the latter. We also fix the data generation speed in all
driver instances. Each data generator produces 100 M events with constant speed. We generate events
with normal distribution on the key field.

Our cluster consists of 20 nodes, each equipped with 2.40GHz Intel Xeon CPU E5620. For our
experiments, we allocate 16 cores and 16GB RAM of each machine. The network bandwidth is 1Gb/s. We
dedicate one node to the master node of the SPEs. All nodes’ system clocks in the cluster are synchronized
via a local NTP server.

We use 25% of the input data as a warmup. So, in all experiments, we exclude the first 25% of output.
We enable backpressure in all SUTs. That is, we do not allow the systems to ingest more input than they
can process and crash during the experiment. If the SUT drops one or more connections to the driver
instance, then the driver halts the experiment with the conclusion that the SUT cannot sustain the given
throughput. Similarly, in real-life if the SPE cannot sustain the user feed and drops the connection, this
is considered as a failure.

3.6.1.1 Tuning the Systems

Tuning configuration parameters of the SPEs is important to achieve good performance. There are several
properties for each SPE, that need to be tuned and customized to the given use-case. We adjust the bu�er
size in Flink to ensure a good balance between throughput and latency. Although selecting low bu�er size
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2-node 4-node 8-node
Storm 0.4 M/s 0.69 M/s 0.99 M/s
Spark 0.38 M/s 0.64 M/s 0.91 M/s
Flink 1.2 M/s 1.2 M/s 1.2 M/s

Table 3.1: Sustainable throughput for windowed aggregations

can result in a low processing-time latency, the event-time latency of tuples may increase. Because the
bu�er size is small, the majority of the tuples will be queued in the driver queues instead of the bu�ers
inside the SPE.

We adjust the block interval in Spark for partitioning RDDs in Spark. The number of RDD partitions
in a mini-batch is bounded by Batch Interval

Block Interval . As the cluster size increases, decreasing the block interval
increases the parallelism. One of the main reasons that Spark scales out very well is the partitioning of
RDDs.

In Storm, the number of workers, executors, and bu�er size are the configurations (among many
others) that need to be tuned to get the best performance. Similar to Flink, tuning the bu�er size is a key
to balance between latency and throughput. For all systems, choosing the right level of parallelism is
essential to balance between an e�cient resource utilization and network or resource exhaustion.

Storm introduced the backpressure feature in recent releases; however, it is not mature yet. With
high workloads, it is possible that the backpressure stalls the topology, causing spouts to stop emitting
tuples. Moreover, we notice that Storm drops some connections to the data queue when tested with
high workloads with backpressure disabled, which is not acceptable according to the real world use-cases.
Dropping connections due to high throughput is considered a system failure.

3.6.2 Performance Evaluation

In this section, we present a set of experiments to evaluate SUTs. We evaluate SUT’s performance on
windowed aggregation and windowed join workloads. Also, we test SUTs’ performance with unsustainable
throughput and with large windows. We also evaluate SUTs’ performance with skewed and fluctuating
workloads.

3.6.2.1 Windowed Aggregations

We use the aggregation query (Figure 3.8) with 8 seconds window length and 4 seconds window slide,
for our first evaluations. Table 3.1 shows the sustainable throughput of the SPEs. We use a four-second
batch-size for Spark, as it can sustain the maximum throughput with this configuration. We identify
that Flink’s performance is bounded by network bandwidth with 4- or more node cluster configuration.
Storm’s and Spark’s performance in terms of throughput are comparable, with Storm outperforming
Spark by approximately 8% in all configurations.

Table 3.2 shows the latency measurements of windowed aggregations. We conduct experiments with
maximum and 90%-workloads. The latency values shown in this table correspond to the workloads given
in Table 3.1. In most cases, where the network bandwidth is not a bottleneck, we can see a significant
decrease in latency when lowering the throughput by 10%. This shows that the sustainable throughput
saturates the system.

Flink has the best min and avg latencies. Although its max latency is way above than its min, from
quantile values we can conclude that those values can be considered as outliers. The main reason for
having such a high max latency is associated with the bu�er size. The large bu�er size enables high
throughput; on the other hand, it can cause some tuples to have high latencies. With 4- and more node
cluster configurations, we can observe that there is a slight di�erence in Flink’s latency statistics between
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2-node
avg min max quantiles (90,95,99)

Storm 1.4 0.07 5.7 (2.3, 2.7, 3.4)
Storm(90%) 1.1 0.08 5.7 (1.8, 2.1, 2.8)

Spark 3.6 2.5 8.5 (4.6, 4.9, 5.9)
Spark(90%) 3.4 2.3 8 (3.9, 4.5, 5.4)

Flink 0.5 0.004 12.3 (1.4, 2.2, 5.2)
Flink(90%) 0.3 0.003 5.8 (0.7, 1.1, 2)

4-node
Storm 2.1 0.1 12.2 (3.7, 5.8, 7.7)

Storm(90%) 1.6 0.04 9.2 (2.9, 4.1, 6.3)
Spark 3.3 1.9 6.9 (4.1, 4.3, 4.9)

Spark(90%) 2.8 1.6 6.9 (3.4, 3.7, 4.8)
Flink 0.2 0.004 5.1 (0.6, 1.2, 2.4)

Flink(90%) 0.2 0.004 5.1 (0.6, 1.3, 2.4)
8-node

Storm 2.2 0.2 17.7 (3.8, 6.4, 9.2)
Storm(90%) 1.9 0.2 11 (3.3, 5, 7.6)

Spark 3.1 1.2 6.9 (3.8, 4.1, 4.7)
Spark(90%) 2.7 1.7 5.9 (3.6, 3.9, 4.8)

Flink 0.2 0.004 5.4 (0.6, 1.2, 3.9)
Flink(90%) 0.2 0.002 5.4 (0.5, 0.8, 3.4)

Table 3.2: Latency statistics, avg, min, max, and quantiles (90, 95, 99) in seconds for windowed aggregations.
For each system experiments are executed with maximum and 90% sustainable throughput.

the maximum and 90%-throughput. The reason is that this workload is not the maximum sustainable
throughput, and it is bounded by the network bandwidth.

As we see from Table 3.2, Spark has a higher latency than Storm and Flink but it exhibits less
variation in avg, min, and max latency measurements. Because Spark processes tuples in mini-batches,
the tuples within the same batch have similar latencies and, therefore, there is little di�erence among the
measurements. Moreover, transferring data from Spark’s block manager to DStream by creating RDDs
adds additional overhead that results in higher avg latencies for Spark compared to Flink and Storm.

The avg and max latency values increase in Storm with large cluster size, while in Spark we see
the opposite behavior, which means Spark can partition the data (RDDs) better in bigger distributed
environments. However, from the quantile values we can conclude that the max latencies of Storm can be
considered as outliers.

Figure 3.9 shows the windowed aggregation latency distribution over time. In all cases, we can see that
the fluctuations are lowered when decreasing the throughput by 10% in Figure 3.10. While in Storm and
Flink it is hard to detect the lower bounds of latency as they are close to zero, in Spark the upper and
lower boundaries are more stable and clearly noticeable. The reason is that a Spark job’s characteristics
are highly dependent on the batch size and this determines the clear upper and lower boundaries for
the latency. The smaller the batch size, the lower the latency and throughput. To have a stable and
e�cient configuration in Spark, the mini-batch processing time should be less than the batch interval. We
determine the most fluctuating system to be Flink in 2-node setup and Storm in 8-node setup as shown in
Figures 3.9g and 3.10b. Those fluctuations show the behavior of backpressure.

Spark splits the input query into multiple sub-queries and executes them in separate jobs. So, the
number of batch jobs for each batch-time interval is at least one. For example, we use reduceByKey() to
parallelize the stages of the mini-batch within a window. It is transformed into two subsequent RDDs:
first a Shu�edRDD and then a MapPartitionsRDD. The coordination and pipelining mini-batch jobs and
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(a) Storm, 2-node (b) Storm, 4-node (c) Storm, 8-node

(d) Spark, 2-node (e) Spark, 4-node (f) Spark, 8-node

(g) Flink, 2-node (h) Flink, 4-node (i) Flink, 8-node

Figure 3.9: Windowed aggregation latency distributions in time series with maximum sustainable throughput

their stages create extra overhead for Spark. In Flink and Storm, on the other hand, this is a single step
both in the logical and physical query plan.

3.6.2.2 Windowed Joins

In this section, we use the windowed join query from Figure 3.8 to benchmark Spark and Flink. Storm
provides a windowing capability but there is no built-in windowed join operator. Initially, we tried Storm’s
Trident v2.0 abstraction, which has built-in windowed join features. However, Trident computed incorrect
results as we increased the batch size. Moreover, there is a lack of support for Trident in the Storm
community. As an alternative, we implemented a simple version of a windowed join in Storm. Comparing
it with Spark and Flink, which have advanced memory and state management features, leads to unfair
comparisons. We implemented a naïve join in Storm and examined the sustainable throughput to be
0.14 million events per second and measured an average latency to be 2.3 seconds on a 2-node cluster.
However, we encountered memory issues and topology stalls on larger clusters. As a result, we focus on
Flink and Spark for the windowed join benchmarks.

Depending on the selectivity of the join operator, a vast amount of join output results can be produced.
Sink operators can be a bottleneck in this case. Also, the vast amount of results of the join operator
can cause the network to be a bottleneck. To address these issues, we generate the input streams such
that the join operator exhibits low selectivity. In general, the experimental results for windowed joins are
similar to the experiments with windowed aggregations.

Table 3.3 shows the sustainable throughput of the SUTs. Flink’s throughput for an 8-node cluster
configuration is bounded by the network bandwidth. Table 3.4 shows the latency statistics for windowed
joins. We can see that in all cases Flink outperforms Spark in all parameters. To ensure the stability of
Spark, the runtime of each mini-batch should be less than batch size in Spark. Otherwise, the size of the
queued mini-batch jobs will increase over time, and the system will not be able to sustain the throughput.
However, we see from Table 3.3 that the latency values for Spark are higher than mini-batch duration (4
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(a) Storm, 2-node (b) Storm, 4-node (c) Storm, 8-node

(d) Spark, 2-nodex (e) Spark, 4-node (f) Spark, 8-node

(g) Flink, 2-node (h) Flink, 4-node (i) Flink, 8-node

Figure 3.10: Windowed aggregation latency distributions in time series with 90% sustainable throughput

2-node 4-node 8-node
Spark 0.36 M/s 0.63 M/s 0.94 M/s
Flink 0.85 M/s 1.12 M/s 1.19 M/s

Table 3.3: Sustainable throughput for windowed joins

sec). The reason is that we are measuring the event-time latency. So, the additional latency is due to
tuples’ waiting in the driver queues.

Figure 3.11 shows the windowed join latency distributions as time-series. In contrast to windowed
aggregations, we observe substantial fluctuations in Spark. Also, we notice a significant latency increase
in Flink compared to its windowed aggregation latency values. The reason is that windowed join is
more expensive than windowed aggregation. We also notice that spikes in latency values are significantly
reduced with 90% workload in Figure 3.12.

Similar to windowed aggregations, in windowed joins Spark’s major disadvantage is having blocking
operators. Another limitation is coordination and scheduling overhead across di�erent RDDs. For
example, in our windowed join query Spark produces CoGroupedRDD, MappedValuesRDD, and
FlatMappedValuesRDD in di�erent stages of the job. Each of these RDDs has to wait for the parent
RDDs to be ready before their initialization. Flink, on the other hand, performs operator chaining during
the query optimization phase and avoids blocking operations. For example, the reduce operation is a
non-blocking operator in Flink. As a result, the system sacrifices some use-cases, which require blocking
reduce, to achieve a better performance. Internally, Storm also has a similar architecture; however, the
semantics of its operators is highly dependent on their implementation. For example, one implementation
of the windowed reduce operator can output the results continuously, while another can chose to perform
so in bulk.
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2-node
avg min max quantiles (90,95,99)

Spark 7.7 1.3 21.6 (11.2, 12.4, 14.7)
Spark(90%) 7.1 2.1 17.9 (10.3, 11.1, 12.7)

Flink 4.3 0.01 18.2 (7.6, 8.5, 10.5)
Flink(90%) 3.8 0.02 13 (6.7, 7.5, 8.7)

4-node
Spark 6.7 2.1 23.6 (10.2, 11.7, 15.4)

Spark(90%) 5.8 1.8 13.9 (8.7, 9.5, 10.7)
Flink 3.6 0.02 13.8 (6.7, 7.5, 8.6)

Flink(90%) 3.2 0.02 12.7 (6.1, 6.9, 8)
8-node

Spark 6.2 1.8 19.9 (9.4, 10.4, 13.2)
Spark(90%) 5.7 1.7 14.1 (8.6, 9.4, 10.6)

Flink 3.2 0.02 14.9 (6.2, 7, 8.4)
Flink(90%) 3.2 0.02 14.9 (6.2, 6.9, 8.3)

Table 3.4: Latency statistics, avg, min, max and quantiles (90, 95, 99) in seconds for windowed joins. For
each system experiments are executed with maximum and 90% sustainable throughput.

(a) Spark, 2-node (b) Spark, 4-node (c) Spark, 8-node

(d) Flink, 2-node (e) Flink, 4-node (f) Flink, 8-node

Figure 3.11: Windowed join latency distributions in time series with maximum sustainable throughput

(a) Spark, 2-node (b) Spark, 4-node (c) Spark, 8-node

(d) Flink, 2-node (e) Flink, 4-node (f) Flink, 8-node

Figure 3.12: Windowed join latency distributions in time series with 90% sustainable throughput
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3.6.2.3 Unsustainable Throughput

Benchmarking SPEs with the sustainable throughput is essential as otherwise, the performance of SPEs
can degrade. We experienced on average 3-10 % performance decrease when we provided the SUTs with
20% more throughput than they can sustain. In general, the decrease in overall throughput is dominated
by the time interval where the system is unstable, meaning the system cannot find the best input data
rate. This is directly related to the backpressure implementation of the systems. For example, when
we execute the windowed aggregation query on 2 nodes with 20% over-saturated workload, the overall
throughput of Storm, Spark, and Flink decreased by 6%, 5%, 3% respectively. With the same parameters
and with the windowed join query, we examine approximately 1.5 times more performance decrease We
notice that with over-saturated workloads, as the window size gets large and window slide length and
bu�er size gets smaller, Storm drops the input sockets more frequently.

3.6.2.4 Queries with Large Windows

Window size and window slide have a significant impact on the SUT’s performance. One interesting
observation is that with the same batch size, as the size of the window increases, Spark’s throughput
decreases significantly. For example, for the aggregation query, with window length and slide 60 seconds,
Spark’s throughput decreases by 2 times. In the meantime, the avg latency increases by 10 times. We
find that the main reason for Spark’s decreasing performance is caching. Especially with windowed join
queries, the cache operation consumes the memory aggressively. Internally when a task receives an input
tuple for processing, it checks if the tuple is marked for caching. If yes, all the following tuples of the
particular RDD will be sent to the memory store of the block manager. Thus, Spark spills the memory
store to disk once it is full. When we disable the caching, we experience a performance decrease due to
the repeated computation.

Storm, on the other hand, can handle the large window operations if the user utilizes advanced data
structures that can spill to disk when needed. Otherwise, we encountered memory exceptions. Flink (as
well as Spark) has built-in data structures that can spill to disk when needed. However, this does not
apply for the operations inside the User Defined Functions (UDFs), as Flink and Spark treat UDFs as
blackbox. The windowed aggregation and windowed join implementations of Flink, Storm, and Spark are
unable to share intermediate aggregate and join results among di�erent sliding windows.

3.6.2.5 Data Skew

Data skew is yet another concern to be addressed by SPEs, as in a production environment data distribution
can be unpredictable We analyzed the SUTs with extreme skew, namely their ability to handle data of a
single key. In Flink and Storm, the performance of the system is bounded by the performance of a single
slot of a machine, meaning it does not scale. For the aggregation query, we measured the throughput 0.48
M tuples/s for Flink and 0.2 M tuples/s for Storm. These measurements do not improve when the SUTs
scale out.

Spark, on the other hand, can handle skewed data e�ciently. We experienced 0.53 M tuples/s
sustainable throughput for Spark in a 4-node cluster for the aggregation query. For the join query, on
the other hand, both Spark and Flink cannot handle skewed data well. That is, Flink often becomes
unresponsive in this test. Spark, on the other hand, exhibits very high latencies. The main reason is that
the memory is consumed quite fast and the backpressure mechanism fails to perform e�ciently.

One reason for the performance di�erence between Spark and Flink with skewed data lies in how the
systems compute aggregations. Flink and Storm use one slot per operator instance. So, if the input data
is skewed, this architecture can cause performance issues. Spark has a slightly di�erent architecture. In
Spark, forcing all partitions to send their reduced values to a specific computing slot can easily cause
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(a) Storm aggregation (b) Spark aggregation (c) Flink aggregation

Figure 3.13: Event-time latency on stream aggregation workloads with fluctuating data arrival rate

(a) Spark join (b) Flink join

Figure 3.14: Event-time latency on stream join workloads with fluctuating data arrival rate

the network to become a bottleneck when partition size is big. Therefore, Spark adopts tree-reduce and
tree-aggregate communication pattern to minimize the communication and data shu�ing. This is the
main reason that makes Spark perform better with skewed input data.

3.6.2.6 Fluctuating Workloads

We also analyze the SUTs with fluctuating workloads by simulating workload spikes. We start the
benchmark with a workload of 0.84 M tuples/s, then decrease it to 0.28 M tuples/s and increase again
after a while. As we can see from Figures 3.13 and 3.14, Storm is the system most susceptible to
fluctuating workloads. Spark and Flink have comparable behavior with windowed aggregations. However,
for windowed joins, Flink can handle spikes better. One reason behind this behavior is the di�erence
between the systems’ backpressure mechanism. As mentioned above, Spark can be thought of as a chain
of jobs with multiple stages. Once the stage is overloaded, passing this information to upstream stages
works in the order of the execution time of job stages; however, this time is in the order of the execution
time of tuples in Flink. We conduct experiments with di�erent cluster and bu�er sizes as well. As we
increase the bu�er or cluster size the spikes get smoother; however, the overall avg latency increases.

3.6.2.7 Event-time vs. Processing-time Latency

Figure 3.15 shows the comparison between the processing-time and event-time latency. We conduct
experiments with the aggregation query (8 seconds window length, 4 seconds window slide) on a 2-node
cluster. Even with a small cluster size (Figure 3.15), there is a significant di�erence between event- and
processing-time latencies. The main reason behind this di�erence is due to the time duration input tuples
wait in the data queues. We did not observe any significant changes in results with di�erent cluster
configurations and with the join query.

To emphasize the necessity of our definition of latency, we draw the reader’s attention to Figure 3.16,
which shows event-time and processing-time latencies for Spark when the system is extremely overloaded.
As we can see from the figures, the processing-time latency is significantly lower than event-time latency.
The reason is that when the SUT gets overloaded, it starts backpressure and lowers the data ingestion
rate to stabilize the end-to-end system latency. We can see that the SUT accomplished this goal as the
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(a) Storm (b) Spark (c) Flink

Figure 3.15: Comparison between event (top row) and processing-time (bottom row) latency

(a) Event-time (b) Processing-time

Figure 3.16: Comparison between event- and processing-time latency of Spark with unsustainable throughput

latency stays stable. However, the event-time latency keeps increasing as the input tuples wait in the data
queues inside the driver. This is just one scenario where we can draw unrealistic or incorrect conclusions
when using processing-time latency for evaluating SPEs. This is not a specific behavior for Spark, as we
observed similar behavior for all SUTs.

3.6.2.8 Observing Backpressure

Backpressure is shown in Figures 3.11a, 3.11b, 3.11c, 3.11d, 3.11e, 3.11f, and 3.9g. Moreover, our driver
can also observe short-term spikes (Figures 3.10b, 3.14a) and continuous fluctuations (Figure 3.12d).
Furthermore, we can observe a wide range of sustainable avg latencies from 0.2 to 6.2 seconds and from
0.003 seconds min latency to 19.9 seconds max latency.

3.6.2.9 Throughput Graphs

As we separate the throughput calculation clearly from the SUT, we retrieve this metric from the driver.
Figure 3.17 shows the sustainable throughput graphs for the aggregation query with 8 seconds window

(a) Storm (b) Spark (c) Flink

Figure 3.17: Throughput graphs of systems under test
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(a) Storm (b) Spark (c) Flink

Figure 3.18: Network usages of the SUTs in a 4-node cluster

(a) Storm (b) Spark (c) Flink

Figure 3.19: CPU usages of the SUTs in a 4-node cluster

length and 4 seconds window slide. We examined the similar behavior in other window settings and for
the join query. As we can see from the figure, data pull rates of Spark and Storm are more fluctuating
than Flink. Despite having a high data pull rate or throughput, Flink has fewer fluctuations. When
we lower the workload, both Flink and Spark have stable data pull rates; however, Storm still exhibits
significant fluctuations.

The reason for the highly fluctuating throughput for Storm is that the system lacks an e�cient
backpressure mechanism to find a near-constant data ingestion rate. The main reason for fluctuation
in Spark is the deployment of several jobs at the same batch interval. Each job retrieves the data into
its input bu�ers and fires. Until a job is finished, its input rate is limited. As a result, we can see a
highly fluctuating throughput for Spark. Flink, on the other hand, benefits from its internally incremental
computation mechanism (like Spark), tuple at a time semantics and e�cient backpressure mechanism.

3.6.2.10 Resource Usage Statistics

Figures 3.18 and 3.19 show the network and CPU usages of the SUTs, respectively. Because Flink’s
performance is bounded by the network, we can see that CPU load is least. Storm and Spark, on the
other hand, use approximately 50% more CPU clock cycles than Flink. As we can see from Figure 3.20,
the scheduler overhead is one bottleneck for Spark’s performance. Initially, Spark ingests more tuples than

(a) Throughput

(b) Scheduler delay

Figure 3.20: Scheduler delay (top row) vs. throughput (bottom row) in Spark.
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3.6 Evaluation

# Streams
PURCHASES( userID , gemPack , pr i ce , time )
ADS( userID , gemPack , time )

# Windowed Aggregation Query
SELECT SUM( p r i c e )
FROM PURCHASES [ Range r , S l i d e s ]
GROUP BY gemPack
WHERE PURCHASES. gemPack > PARAM_VAL1

# Windowed Join Query
SELECT p . userID , p . gemPack , p . p r i c e
FROM PURCHASES [ Range r , S l i d e s ] as p ,

ADS [ Range r , S l i d e s ] as a ,
WHERE p . userID = a . userID AND

p . gemPack = a . gemPack AND
p . gemPack > PARAM_VAL2 AND
a . gemPack > PARAM_VAL3

Figure 3.21: Query templates used for multiple stream query workloads. PARAM_VALn is a parameter
value given by the user.

it can sustain. Because of the scheduler delay, backpressure fires and limits the input rate. Whenever
there is a spike in the input rate, we can observe a similar behavior in the scheduler delay. One reason
behind Spark’s e�cient CPU usage is its automation, transparent resource usages, and many internal
optimizations [48]. For example, Spark handles incremental state management, optimizations with code
generation, and dynamic memory management e�ciently and transparent to a user.

3.6.2.11 Multiple Stream Query Execution

We also evaluate the SUTs with multiple stream queries. We modify the query templates shown in Figure
3.8 with a selection predicate. Figure 3.21 shows the query templates used to generate multiple queries.
PARAM_VAL is a selection predicate parameter to filter the stream source. We submit generated stream
queries to the SUTs at compile-time. Although the aggregation function (SUM) and partitioning key
(PURCHASES.gemPack) is the same among all generated stream queries, none of the SUTs can benefit
from data and computation sharing. The similar limitation also appears in stream queries generated with
the join query template. In both cases, the data and computation redundancy results in a linear decrease
in performance. When we submit the generated stream queries at runtime in an ad-hoc manner, none of
the SUTs were able to handle the requests.

3.6.3 Discussion

If a stream contains skewed data, then Spark is the best choice (Section 3.6.2.5). Both Flink and Spark
are very robust to fluctuations in the data arrival rate in aggregation workloads (Section 3.6.2.6). For
fluctuations in the data arrival rate on join queries, on the other hand, Flink behaves better (Section
3.6.2.6). In general, if the average latency is a priority, then Flink is the best choice (Sections 3.6.2.1 and
3.6.2.2). On the other hand, even with higher average latency, Spark manages to bound latency better
than others (Sections 3.6.2.1 and 3.6.2.2). If a use-case contains large windows, Flink can have higher
throughput with a low latency (Section 3.6.2.4). Overall, we observe that Flink achieves a better overall
throughput both for aggregation and join queries. We define event- and processing-time latency and show
the significant di�erence between them (Section 3.6.2.7). Our analysis shows that the SUTs are not able
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to leverage the sharing opportunities among multiple stream queries and cannot execute ad-hoc stream
queries (Section 3.6.2.11).

3.7 Conclusion
Responding to an increasing need for real-time data processing in industry, we have built a novel framework
for benchmarking SPEs with online video game scenarios. We have identified current challenges in this
area and have built our benchmark to evaluate them. First, we gave the definition of latency of a stateful
operator and a methodology to measure it. The solution is lightweight and does not require the use of
additional systems. Second, we completely separated the SUTs from the driver. Third, we introduced a
simple and novel technique to conduct experiments with the highest sustainable workloads. We conducted
extensive experiments with the three major distributed, open-source stream processing engines - Apache
Storm, Apache Spark, and Apache Flink. In the experiments, we observed that each system has specific
advantages and challenges. We provided a set of rules in our discussion part that can be used as a guideline
to determine the SPE choice based on requirements for a use-case. Based on our experiences throughout
this work, we will explore one of the main limitations of modern SPEs - ad-hoc query processing and
sharing - in the next two chapters.
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4.1 Introduction

In the last decade, many SPEs were developed to perform continuous queries on massive online data.
The central design principle of these engines is to handle queries that potentially run continuously on
data streams with a query-at-a-time model, i.e., each query is optimized and executed separately. In
many real applications, streams are not only processed with long-running queries, but also thousands of
short-running ad-hoc queries. To support this e�ciently, it is essential to share resources and computation
for ad-hoc stream queries in a multi-user environment.

The goal of this chapter is to bridge the gap between stream processing and ad-hoc queries in SPEs
by sharing computation and resources. We define three main requirements for ad-hoc shared stream
processing: (1) Integration: Ad-hoc query processing should be a composable layer which can extend
stream operators, such as join, aggregation, and window operators; (2) Consistency: Ad-hoc query
creation and deletion must be performed in a consistent manner (i.e., ensure exactly-once semantics
and correctness); (3) Performance: In contrast to state-of-the-art SPEs, ad-hoc SPEs should not only
maximize data throughput but also query throughout via incremental computation and resource sharing.

Based on these requirements, we have developed AStream, an ad-hoc, shared computation stream
processing framework. To the best of our knowledge, AStream is the first system that supports distributed
ad-hoc stream processing. AStream is built on top of Apache Flink. Our experiments show that AStream
shows comparable results to Flink for single query deployments and outperforms it by orders of magnitude
with multiple queries.

4.1 Introduction
Several open source distributed SPEs, such as Apache Spark Streaming [3], Apache Storm [2], Apache
Flink [5], and Apache Apex [49], were developed to cope with high-speed data streams from IoT, social
media, and Web applications. Large companies with hundreds of developers use SPEs in their production
environment. Developers in the production environment create long-running queries for continuous
monitoring or reporting and short-lived stream queries for testing on live streams. The best practice today
is to fork the input stream using a message bus like Apache Kafka [50] while adding additional resources
for performing new queries [44]. Hundreds of developers, creating thousands of ad-hoc queries, make this
a challenging and ine�cient setup.

4.1.1 Motivating Example

Typical examples for stream processing setups are online services such as games. Online gaming today is
often cloud-based to satisfy varying user demands. Gaming companies have to provide a flawless gaming
experience to ensure customer satisfaction for millions of concurrent users. According to Tencent [51], the
company which owns the most played online game - PUBG, more than half of the company’s employees,
around 23 thousand, work in research and development departments. These researchers create many
ad-hoc stream queries to analyze the most relevant streams in the company.

Figure 4.2 shows a sample use-case of ad-hoc stream queries. In this example, there are two input
streams: 1) a stream of advertisements, presented to players during the game, and 2) a purchases stream,
which contains purchases of game packs. There are three queries in the figure, the marketing team in
Europe submits a short-lived query, Q1, and after getting enough information, the query is shut down.
The user experience team initiates a long-living query Q2 to monitor the behavior of users under 18.
Query Q3 is a session-based query created and deleted by the system to monitor the loyalty of the pro-level
users. It is common to hire pro-level players to a tester position, as they can reveal bugs in a game (e.g.,
missing or wrong sound e�ects, crashes, and corruption of graphics).
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Figure 4.2: Ad-hoc stream queries in online gaming scenarios

4.1.2 Ad-hoc Stream Requirements

We identify three main requirements for ad-hoc stream query processing.

4.1.2.1 Integration

SPEs should integrate ad-hoc query support by extending stateful operators, such as window operators
with di�erent types and configurations, aggregation, join, and stateless operators, such as filters. This
enables users to issue ad-hoc queries while profiting from built-in features of SPEs, such as out-of-order
stream processing, event-time processing, and fault tolerance.

4.1.2.2 Consistency

An ad-hoc SPE executes multiple queries and serves multiple users or tenants. When removing existing
queries and adding new queries to the system workload, an ad-hoc SPE must handle old and new queries
in a consistent way, ensuring exactly-once semantics and the correctness of the results.

4.1.2.3 Performance

State-of-the-art distributed SPEs focus on maximizing the data throughput and minimizing the latency.
Several well-known stream benchmarks, such as the Yahoo streaming benchmark [26], StreamBench [41],
and Nexmark [52] test systems based on these metrics. Ad-hoc SPEs, in addition to the performance
metrics above, need to sustain a high query throughput. The performance of such systems is boosted not
only by incremental computation and resource sharing, but also by avoiding redundant computation.

4.1.3 AStream

We propose AStream, an ad-hoc shared-computation stream processing framework, which can handle
hundreds of ad-hoc stream queries. We design AStream based on the requirements mentioned above:
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(1) AStream extends a wide set of components of an existing SPE, Apache Flink, but it is not tightly
coupled with it. AStream supports a wide set of use-cases, windowed joins, windowed aggregations,
selections, with ad-hoc query support. (2) AStream provides consistent query deletion and creation, and
ensures the correctness for all running queries in the presence of ad-hoc queries; (3) Our experiments
show that AStream achieves a throughput in the order of hundreds of query creations per second and
is able to execute in the order of thousands of concurrently running queries. AStream achieves this
level of performance through a set of incremental computations and optimizations. AStream features a
rule-based optimizer to trade-o� sharing benefits and disadvantages. Cost-based multi-query optimization
for batch query processing environments relies on existing data statistics and targets static compile-time
optimizations [53]. In streaming environments, there is typically no prior information about data statistics
and workloads. Therefore, we propose a simple, robust, and dynamic rule-based optimizer.

4.1.4 Sharing Limitations in State-of-the-Art Data Processing Systems

Distributed stream engines are mostly designed for a query-at-a-time model and focus on optimizing
each query separately. To the best of our knowledge, there is no work on ad-hoc query processing for
distributed streaming systems where new queries can join the stream processing system, and others leave
the system. Forking the input stream for every new query results in significant overhead. Additional
resource reservations, the starting and stopping of the new query (which might be negligible for long-
running stream queries but significant for ad-hoc short queries), and running new instances of the streaming
engine contribute to this overhead.

Workload sharing is a well-studied topic in the context of batch data processing systems. SharedDB
[54] is one representative example for such systems. SharedDB batches user queries, creates a global
query plan, and shares computation across them. We adopt some ideas from SharedDB, such as tagging
tuples with query IDs to identify di�erent subsets of (possibly computed) relations. If all stream queries
are created when the system is deployed and run infinitely, meaning no ad-hocness, then this approach
perfectly fits for streaming scenarios. In the presence of ad-hoc queries, however, query sharing happens
among queries running on fundamentally di�erent subsets of the data sets, determined by the creation
and deletion times of each query.

Also, AStream is able to handle out-of-order stream data and to exploit and share windows of di�erent
types and configuration. AStream extends ideas from window panes [55], dynamically divides segments of
time into discrete partitions at runtime, and shares overlapping parts among di�erent queries.

We also take into consideration that aggressive work sharing among concurrent queries does not
always lead to performance improvements [56]. Therefore, we compute overlapping parts of a window via
dynamic programming and share if possible. Lastly, AStream is fault tolerant, all changes to query sets
are deterministically replayable, which requires that metadata modifications are deterministically woven
into the streams.

In real-world setups, the performance of SPEs depends not only on its throughput and latency for
individual queries but also on the overall query throughput. The design of AStream reduces the overheads
mentioned above by sharing the execution of queries, avoiding computational duplication, and achieving
high query throughput.

4.1.5 Contributions and Chapter Organization

The main contributions of this chapter are as follows:

• We present AStream, the first distributed ad-hoc stream processing framework. AStream is fully
functional and supports a wide range of ad-hoc stream queries on shared data streams.
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• We provide exactly-once semantics and consistent query creation and deletion for ad-hoc queries.

• We conduct an extensive experimental analysis. AStream shows comparable results to Flink in a
single-query deployment and outperforms Flink by orders of magnitude in multi-query deployments.

The rest of this chapter is organized as follows. Section 4.2 describes the system overview. We 
introduce implementation details in Section 4.3. Section 4.4 shows experimental evaluation. In Section 4.5 
we discuss possible integration of AStream components to other SPEs. We discuss related work in Section 
4.6 and conclude in Section 4.7.

4.2 System Overview
In this section, we describe the architecture of AStream and elaborate on our data models. Figure 4.3 
shows the general architecture of AStream. There are four main components. The shared session accepts 
queries from users and submits them to the job manager. The shared selection, aggregation, and join 
operators process queries in a shared manner. Finally, the router sends tuples to their associated query 
sinks. Our solution supports query sharing for i) selection, ii) windowed join, iii) windowed aggregation, 
and iv) their combination. The main assumption in this work is that operators can be shared as long as 
they have common upstream operators and common partitioning keys.

AStream is a framework, which can be integrated to existing SPEs as a separate layer. AStream 
exploits all the necessary components from an underlying SPE, such as optimizer, scheduler, network layer, 
and code generators. The main rationale is that we reuse already developed components of distributed 
data processing systems, which otherwise would require significant engineering work to build from scratch.

4.2.1 Data Model

In the following subsection, we describe the data model of AStream.

4.2.1.1 Query-set

AStream extends SharedDB’s data model. To each tuple, we add the set of query IDs, that are potentially 
interested in a tuple, as an additional column. We call this column query-set. Unlike SharedDB we 
adopt a bitset data representation for the query-set to be able to perform bitset operations. We assume a 
total numbering of queries in a query-set. We encode queries in a query-set with a bitset data structure.
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Figure 4.4: AStream and naive data model. At time T1 two new queries are submitted (Q1+, Q2+). At
time T2, Q1 remains running (Q1 ·), Q2 is deleted (Q2-), Q3 is created (Q3+), and related changelog (�) is
generated.

For example, a query-set 0010 means that the tuple is relevant only for the query with index 3 (Q3). If
a tuple is not matching any predicates, meaning all bits of its query-set are zero, then we discard the
tuple. In a query-set, each query has a unique index. If a tuple is relevant to ith query, meaning the tuple
matches the selection predicate of the ith query, then the ith bit of tuple’s query-set is set.

We compute the intersection of two query-sets through a bitwise AND operation. For any two tuples,
we perform a join or aggregation if the tuples share at least one query. This way, we avoid redundant
computation. Consider tuples t1, t2, t3, and t4 in Figure 4.4a. The bitwise AND of the query-sets of t2
and t3 returns zero, i.e., they do not share any query. However, t4 shares Q1 with t2 and t1, and Q2 with
t3.

4.2.1.2 Changelog

The above data model works well if stream queries are defined at compile-time and run forever. However,
for ad-hoc scenarios, this data model is not enough. For example, when the workload change occurs at
time T2 in Figure 4.4, we observe that queries and query-sets before T2 and after T2 are di�erent. In
order to perform bitwise operations, we need a consistent query index in all query-sets so that any bitwise
operations of tuples, created at di�erent times, is correct. One way to fulfill this requirement is to assign
a new index to each new query. We demonstrate this append-only approach in Figure 4.4b. Because Q2 is
deleted, its position is permanently zero. So, the new position, 3rd position in the query-set, is assigned
to the new query, Q3. The problem of this approach is that it leads to big and sparse query-sets.

AStream reuses bits of deleted queries for newly created queries in order to keep the changelog-set as
compact as possible. If there is no deleted query, we allocate a new position for a new query. We use
a changelog, a special data structure consisting of i) query deletion and creations meta-data and ii) a
changelog-set, a bitset encoding the associated query deletions and creations.

A bit in a changelog-set is set if a query in the respective position remains unchanged. A bit in
the changelog-set is unset if a query is deleted or a new query is placed in the respective position. For
example, in Figure 4.4c Q2 is deleted and Q3 is created. Because the index of Q2 is empty, Q3 is placed
in this position. The associated changelog-set, 10, indicates that the first position in the query-set remains
unchanged, but the second position is replaced with another query. Also, Figure 4.5b demonstrates the
changelog-sets of the workload shown in Figure 4.5a. At time T5 in Figure 4.5a, there are two new queries
(Q6 and Q7) and one deleted query (Q3). AStream allocates the index of the deleted query to Q6 and
provide a new position for Q7.

By default, we use a changelog-set to indicate query changelogs between two adjacent time slots. For
example, changelog-set 100 at time T2 in Figure 4.5b indicates the query changelog with respect to time
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slot T1. However, for some operations, we need to perform computations between non-adjacent time slots,
such as T3 and T1.

Let CL-set(Ti) be the changelog arrived at time slot Ti, cl-set(Ti, Tj) be the changelog between
Ti and Tj, and f be a function that combines multiple changelogs. Equation 4.1 shows the dynamic
programming technique to calculate cl-set(Ti, Tj). If Ti is the same as Tj, then there is no changelog
(?). If Tj is greater than Ti by one unit time, then the changelog is already encoded in CL-set(Tj).
Otherwise, the function f is called recursively. The function f gets two arguments and returns the bitwise
AND of them (Equation 4.2). Figure 4.5c shows changelog-sets for each time slot with respect to all
previous time slots.

cl-set(Ti, Tj) =

Y
___]

___[

? if Ti=Tj

CL-set(Tj) if Tj= Ti+1

f(CL-set(Tj), cl-set(Ti, Tj-1])) otherwise

(4.1)

f(A, B) = A & B (4.2)

We use changelog-sets to ensure consistency and correctness in any operation among tuples. Also, we
avoid redundant computation by finding only overlapping queries among di�erent time slots. If two time
slots share queries, meaning changelog-set is non-zero, then we filter tuples by performing bitwise AND
between tuples’ query-sets and the changelog-set. For example, assume that we perform a join operation
between the tuples created before T2 and after T2, as shown in Figure 4.4. t5 is filtered, because the
bitwise AND of the t5 query-set, 01, and the changelog-set, 10, is zero. As another example, joining t7
and t4 would result in the tuple with query-set 10 (10&11&11), meaning the resulting tuple matches Q1.

4.3 Implementation Details
In this section, we first explain the implementation of ad-hoc operators (Section 4.3.1) and optimization
techniques adopted by AStream (Section 4.3.2). We elaborate on fault tolerance in Section 4.3.3 and QoS
features in Section 4.3.4.

4.3.1 Ad-hoc Operators

Each operator in AStream keeps a list of active queries. Once active queries are updated with the
changelog, operators change their computation logic accordingly.

4.3.1.1 Shared Session

The shared session is a client module of AStream. The shared session batches user query requests and
generates a changelog. A changelog is generated for every batch-size (number of user requests) or once
the maximum timeout is reached. If there is no user request, no changelog is generated.

4.3.1.2 Shared Selection

The shared selection operator computes the query-set for each tuple and appends the resulting query-set
to the tuple as a separate column. The shared selection maintains the set of active queries. It updates the
set once it receives a changelog.
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(f) Actions taken in di�erent time slots. Blue boxes indicate join operation between
two slices and red boxes show deleted slices.

Figure 4.5: End-to-end ad-hoc query example. Ad-hoc queries (Figure 4.5a) with various window
configurations (Figure 4.5d) are submitted. Their related changelog-sets are generated in Figure 4.5b.
All figures share the same x-axis.
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4.3.1.3 Window Slicing

AStream supports time- and session-based windows with di�erent characteristics (e.g., length, slide, gap).
For queries involving window operators, such as windowed aggregation and windowed join, AStream
divides overlapping windows into disjoint slices. It performs operations among overlapping slices once
and reuses the result for multiple queries. The core of this idea is from window ID representation of events
and panes [57], and sharing computation among panes [55]. The core di�erence between panes and slices
is that, the former computes panes in compile-time, while the latter computes slices in runtime based on
ad-hoc queries and their corresponding windows. The lengths of slices in Figure 4.5e are determined at
runtime based on the created and deleted queries shown in Figure 4.5d. Once a query changelog arrives,
its changelog-set is assigned to the corresponding window slice. Also, the set of running queries inside the
shared join operator gets updated.

4.3.1.4 Shared Join

AStream executes join operations incrementally by joining slices and combining intermediate results.
It joins overlapping slices once and reuses the intermediate results. For each slice, AStream keeps a
computation history. Based on this information, it avoids unnecessary computation among slices and
performs delta query processing. Consider the join operation in Figure 4.5f. At time T2, evaluation of Q2
triggers, and join results are emitted. At time T4, Q1 is evaluated. Note that AStream avoids joining
already joined slices (slice-2 on slice-2). Also, the first slice is deleted, as it is no longer needed. Similarly,
at time T5, AStream joins slices once and reuses them for multiple overlapping query windows (Q4, Q5,
Q6, Q7).

We join two slices as follows: We group tuples in each slice by their query-sets. First, we check the
query-set groups, e.g., G1 in slice 1 and G2 in slice 2. We join tuples residing in G1 and G2, if the tuples
residing in these groups share at least one query. For example, if G1=010 and G2=ú0ú, then tuples
residing in these groups are never joined.

Grouping tuples inside slices enables sharing tuples on-the-fly. The disadvantage of this method is
that the number of possible tuple groups increases exponentially with the number of queries. In early
experiments, we noticed that for more than ten concurrent queries, storing tuples as a list is more e�cient
than storing them inside groups. The number of tuples in tuple groups decreases sharply as the number
of tuple groups increases. Therefore, retrieving a tuple group via an index lookup is less beneficial than
performing a sequential scan.

For switching between a group and a list data structure, we use the following heuristic. As the number
of queries increases, we monitor the average size of tuple groups inside slices. If the average is less than
two, meaning most of the tuple groups contain only a single tuple, then we switch to a list data structure.

4.3.1.5 Shared Aggregation

The shared aggregation works similar to the shared join. One di�erence is that the shared join is a binary
stream operator (has two input streams), but the shared aggregation is a unary stream operator.

In the shared aggregation, each window slice keeps intermediate aggregation results for all active
queries. Instead of materializing input tuples, we update the query intermediate aggregation results for
each new tuple. Then, we discard the tuple. For example, a tuple with the query-set 101 is aggregated
with intermediate aggregation results of Q1 and Q3 and discarded afterwards. Aggregation between two
di�erent slices is also performed in a similar way.
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4.3.1.6 Router

The router is another component of AStream. The routing information for each tuple is encoded in its
query-set. The router sends each tuple to either query output channels or to downstream operators.

4.3.2 Optimizations

AStream uses several optimizations to speed up query processing.

4.3.2.1 Incremental Query Processing

Incremental query processing is a core feature of AStream. As shown in Sections 4.3.1.4 and 4.3.1.5,
AStream computes both ad-hoc stream aggregations and joins in an incremental manner.

4.3.2.2 Data Copy and Shu�ing

AStream avoids data copy in all its components except for the router. The router avoids data copy if
the downstream operator is a shared join or aggregation operator. The query-set attribute in each tuple
enables us to avoid data copy. The router performs data copy only if the downstream operator is a sink
operator, in which the router has to ship results to di�erent query channels.

AStream also avoids redundant data shu�ing by encoding a query-set for each tuple. When running a
single query, this has some performance overhead, but for multiple queries, the overhead is outweighed by
the performance improvements. The shared aggregation and join operators avoid data copy inside slices.
Each tuple is saved only once inside a slice.

4.3.2.3 Memory E�cient Dynamic Slice Data Structure

The shared join operator adapts the data structure based on the workload. If the number of active queries
exceeds a threshold, the shared session sends a marker to downstream operators. Once the marker is
received, the shared join operator changes the data structure of all slices and resumes its computation.

4.3.2.4 Changelog-set Size

After a query is deleted, AStream reserves its position for a future query. This query position becomes
zero after the query is deleted. If no new queries are submitted, then each tuple would carry unnecessary
bits in their query-sets. For example, in Figure 4.5b if no new queries are submitted after T6, then each
tuple would carry two unnecessary bits, two zeros. We handle this issue via changelog-set compression. If
we detect this behavior for some time, then the shared session sends a marker to downstream operators,
informing them about the changelog-set compression.

4.3.3 Exactly-once Semantics

Exactly-once semantics for SPEs ensure that every input tuple is only processed once, even under failures.
Operators in AStream are exactly-once, as long as the underlying distributed streaming architecture
supports exactly-once semantics, as systems like Kafka-streams [58], Spark Structured Streaming [4], and
Apache Flink [5] do. A Stream requires that both tuples and changelog markers and the state of shared
operators are deterministically reproducible by logging the input stream and checkpointing [59].

AStream is deterministic because all its distributed components are deterministic and they are based
on event-time semantics. Event-time is the time at which an event was produced; e.g., the time an ad
is clicked (for tuples) or the time a query is deleted (for changelogs). Event-time semantics ensure the
correctness of out-of-order events because the notion of time depends on the data, not on the system clock.
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Figure 4.6: Design of the driver for the experimental analysis

In event-time stream processing, tuples are assigned to windows based on their event-time [57, 17]. In the
case of a failure, a replayed event is assigned to the same window ID, as the window ID computation is
also deterministic [57, 17]. Our slicing technique (Figure 4.5e) is also deterministic. The length of slices
depends on changelogs. The changelogs also use event-time, which is the time at which query changes
were performed by users.

4.3.4 QoS

Controlling the performance impact of a new query on existing queries is essential to ensure the quality
of service in a multi-query environment. In ad-hoc stream workloads, QoS should be ensured in many
ways, such as individual query throughput, overall query throughput, data throughput, data latency, and
query deployment latency. For example, for data latency, we extend the latency metric implementation
of Flink [60]. To be more specific, in the sink operator of every query, we periodically select a random
tuple and measure the end-to-end latency. The latency results are collected in the job manager. Also, we
show in our experiments (Section 4.4.8) the impact of newly created or deleted queries on existing queries.
AStream is capable of providing the above-mentioned metrics to an external component. If measurements
for a particular metric are beyond acceptable boundaries, new resources can be added. We discuss elastic
scaling in Chapter 5.

4.4 Experiments

4.4.1 Experimental Design

To evaluate AStream, we simulate a multi-tenant environment with ad-hoc queries. We use a parallel
and distributed driver and conduct experiments with two SUTs: Apache Flink [5] (v 1.5.2) and AStream,
which we implement on top of Flink.

52



4.4 Experiments

1 SELECT *
2 FROM A, B [RANGE [VAL1]] [SLICE [VAL2]]
3 WHERE A.KEY = B.KEY AND
4 A.[VAL5] [=|>|<|>=|<=] [VAL3] AND
5 B.[VAL6] [=|>|<|>=|<=] [VAL4]

Figure 4.7: Join query template. VALn is a random number, VAL5 and VAL6 are less than |fields|=5

1 SELECT SUM(A.FIELD1)
2 FROM A [RANGE [VAL1]] [SLICE [VAL2]]
3 WHERE A.[VAL4] [=|>|<|>=|<=] [VAL3]
4 GROUPBY A.KEY

Figure 4.8: Aggregation query template. VALn is a random number, VAL4 is less than |fields|=5

We extend the benchmarking suite described in Chapter 3 to generate queries in addition to tuples.
As shown in Figure 4.6, our driver maintains two FIFO queues: user requests, i.e., query creation or query
deletions and input tuples. Periodically, the driver pops user requests from the FIFO queue, sends them
to a SUT, and waits for the acknowledgement message (ACK) from the SUT. The driver submits the
next set of user requests to the SUT if the SUT ACKs the previous batch. This way, we implement a
backpressure mechanism for user query requests. The longer the user request stays in the queue, the
higher is its deployment latency.

4.4.2 Generators

4.4.2.1 Data Generation

Each generated input tuple has 6 fields: a key field and an array of size 5, named fields. Each
subsequent tuple is generated with key in the form keyΩ (key+1) mod MAX_KEY. This way, we balance
the data distribution among di�erent partitions. The other fields are generated in a random manner,
fields[i]Ωrandom(0, fieldsmax).

4.4.2.2 Selection Predicate Generation

To generate a selection predicate, we select a random field of a tuple (field[i]), generate a random number
(V AL), select a random binary operator: <, >, ==, Æ, or Ø (oi), and combine them to a selection
predicate (oi(field[i], V AL)).

4.4.2.3 Join and Aggregation Query Generation

The join and aggregation query generation consists of two parts: selection predicate generation (see
above) and window generation. We generate window length as random(1, windowmax) and slide as
random(1, length). For session windows, window length and slide are not needed. Figures 5.17 and 4.8
show the query templates for join and aggregation queries. Line 4-5 in Figure 5.17 and Line 3 in Figure
4.8 show selection predicates. For join queries, both input streams have di�erent selection predicates.

4.4.3 Metrics

Basic metrics to evaluate SPEs are event-time latency and sustainable throughput [61]. In addition to
these, we propose several metrics for ad-hoc streaming environments. Query deployment latency is
the time duration between a user request to create or delete a query and the actual query start time. For
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Figure 4.9: Two scenarios for ad-hoc query processing environments

data throughput evaluations, there are two main metrics to consider. Slowest data throughput is the
minimum sustainable throughput among active stream queries in an ad-hoc environment. This metric is
useful for a service or cloud owner, to ensure minimum QoS requirements. Overall data throughput
is the sum of throughputs of all active queries. Query throughput is the highest load of query tra�c
(query deletion and creation) a system can handle with sustainable query deployment latency and input
throughput.

4.4.4 Setup

We conduct experiments in 4- and 8-node cluster configurations. Each node has 16-core Intel Xeon CPU
(E5620 2.40GHz) and 48 GB main memory. The data generator produces data with 1000 distinct keys
(uniform distribution). If a SUT throws an exception or error while stopping or starting a streaming job
or processing submitted queries in an ad-hoc manner (possibly with high frequency), then we consider
this as a failure, meaning the SUT cannot sustain the given workload. We repeat our experiments three
times and let it run for thousand seconds. For a changelog generation, we tried several combinations of
batch-size and maximum timeout configurations. We configure the batch-size to be one hundred and
maximum timeout to be one second, as these configurations are the most suitable for our workloads.

4.4.4.1 Workloads

In Figure 4.9, we show two workload scenarios to evaluate AStream. The main characteristics of the first
workload scenario (SC1) are i) many users, which leads to many parallel queries, ii) few queries that are
stopped or changed, resulting in mostly long-running streaming jobs, and iii) no new ad-hoc queries after
some time. The main characteristics of the second workload scenario (SC2) are i) high query throughput,
i.e., many queries are created or deleted ii) low query parallelism, and iii) short-running queries.

4.4.5 Workload Scenario 1

Figure 4.10 shows data throughput for SC1, 4- and 8-node cluster configurations. n q/s m qp indicates n
queries per second until m active queries. For a single-query deployment in Figure 4.10a, Flink outperforms
AStream. Although query-set generation and bitset operations come with a cost, AStream’s single-query
deployment still exhibits a comparable performance to Flink. Flink cannot sustain ad-hoc workloads in
Figure 4.10. In each run, it either throws an exception or exhibits very high latency.

In Figure 4.10b there is a sharp increase in the overall throughput of served queries. AStream achieves
a better throughput with more ad-hoc queries. However, this performance increase comes with a cost.
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(a) Slowest data throughput

(b) Overall data throughput

Figure 4.10: Slowest and overall data throughputs for SC1, 4- and 8-node cluster configurations. n q/s m qp
indicates n queries per second until m query parallelism

In Figure 4.10a we see that there is a decrease in the slowest throughput because the number of served
queries increases from one query to thousand queries.

In Figure 4.10a, we observe a sharp decrease in the throughput from the single query workload to
the 1 q/s 20 qp workload. As the query parallelism increases (10 q/s 60 qp and 100 q/s 1000 qp), the
decrease in the throughput remains steady. The main reason is that, as the number of queries increases,
the probability of sharing a tuple among di�erent queries also increases. As a result, the slowest data
throughput decreases less with more queries.

We observe several di�erences between join and aggregation query performances in Figure 4.10. First,
data throughput for join queries is less than for aggregation queries, because joins are computationally
more expensive than aggregation in our setup. Second, the performance gap between Flink and AStream
is larger for aggregation queries than for join queries. The main reason is that Flink has a built-in support
for on-the-fly and incremental aggregation. In contrast, windowed join queries in Flink lack those features.

Figure 4.11a shows the query deployment latency for SC1. The changelog batch-size also has a
contribution to the overall latency. For example, 1 q/s, 20 qp has more query deployment latency than
100q/s, 1000qp, as the former has 20 (201 ) di�erent query changelog generations, while the latter contains
10 ( 1000100 ) di�erent query changelog generations.

Figure 4.12 shows query deployment latency for SC1 (1 q/s, 20 qp). Because Flink cannot sustain this
workload, query deployment latency keeps increasing, which is why we do not show this case in Figure
4.10. The longer the query stays in the queue waiting for ACK, the higher is its deployment latency.
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(a) Ad-hoc query deployment latencies for SC1 (b) Average event-time latency for SC1

Figure 4.11: AStream performance for SC1
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Figure 4.12: Query deployment latency, one query per second, up to 20 queries

For example, the sum of all query deployment latencies for Flink is 910 seconds. In general, the query
deployment latency is already high and will be a bottleneck in a multi-tenant environment.

In Figure 4.12 AStream initially exhibits high query deployment latency, because the first query
deployment also involves the physical deployment of operators to the cluster nodes, which is time-
consuming. Even for batch ad-hoc data processing systems with a dedicated scheduler and optimizer,
such as DataPath [62], the first deployment of physical operators is time-consuming. AStream avoids
deploying a new streaming topology for each query. Instead, it creates and deletes user queries on-the-fly
without a�ecting the running topology.

Figure 4.11b presents the average event-time latency for streaming tuples. We note that event-time
latency for shared aggregation queries is lower than shared join queries because joins are computationally
more expensive than aggregations. Throughout our experiments, we observed Flink’s event-time latency for
ad-hoc workloads to be higher than eight seconds. As experiments continued, the latency kept increasing,
which means the system cannot sustain the given workload.

In Figure 4.11b, we notice that event-time latency increases for higher query parallelism for AStream.
However, the given latency measurements for AStream are sustainable. Also, the measurements do not
exhibit continuous backpressure.

4.4.6 Workload Scenario 2

As explained above, SC2 features a more fluctuating workload than SC1. In this case, an e�cient and
incremental query sharing is needed to sustain possible churn in the workload.
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(a) Average event-time latency for SC2. nq/ms means
n queries are submitted and stopped every m seconds. (b) Ad-hoc query deployment latency for SC2

(c) Data throughput of the slowest query (d) Overall data throughput

Figure 4.13: AStream performance for SC2

Figure 4.13a shows the average event-time latency for SC2. We notice that event-time latency in SC2
is lower than SC1 (Figure 4.11b). The reason is that in SC2 the query workload is highly changing, but
does not increase continuously. So, the majority of the queries running in SC2 are short-running queries.

Figures 4.13c and 4.13d show data throughput for SC2. nq/ms indicates n queries are submitted and
stopped every m seconds. Although SC2 exhibits high query fluctuations, the slowest data throughput
in SC2 is higher than the one in SC1 (Figure 4.10), which means that AStream works better in more
fluctuating workloads. The main reason is that the workload in SC2 is more fluctuating, queries are
short-running, and constantly changing; as a result, i) the overall number of active queries is less than
in SC1 and ii) bitset size is less than in SC1. In our experiments, we observe that Flink cannot sustain
ad-hoc workloads. For example, for the setup 10q/10s, the input data throughput of AStream was at
least 10◊ higher than Flink’s, before we stopped the experiment.

Figure 4.13b shows the ad-hoc query deployment latency for SC2. We run this experiment for thousand
seconds. When we compare the query deployment latency of SC1 and SC2, the latter is significantly higher.
The reason is that in SC2, we continuously create and delete queries, while in SC1 we create queries up
to predefined query parallelism. Continuously creating and deleting queries results in continuous query
changelog generation.

4.4.7 Complex Queries

In this section, we conduct experiments with complex queries, consisting of multiple joins and an
aggregation. We generate complex queries by randomly pipelining a selection predicate, n-ary windowed
joins, where 1 Æ n Æ 5, and a windowed aggregation operator. Any complex query involves at least one
selection predicate, one windowed join query, and one windowed aggregation query.
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Figure 4.14: Slowest data throughput (upper), event-time latency (middle), and query count graphs
(bottom) for complex ad-hoc queries, with the same x axis values

Figure 4.14 shows the input data throughput (upper), input latency (middle), and query count graphs
(bottom) for complex concurrent queries. We test three cases in this experiment. First, we perform a sharp
query throughput increase at timestamps 50 and 200. Second, we gradually decrease query throughput
and gradually increase, from time 410 to 1140. Third, we fluctuate query throughput after time 1200.

When we increase query throughput sharply, we notice that the input data latency stays relatively
stable. The reason is that we adopt shared streaming operators and do not change the query execution plan,
which would cause high latencies. The slowest data throughput drops as we increase query throughput.
Also, we notice that in case of fluctuations in query throughput, both slowest data throughput and
event-time latency remains stable.

4.4.8 Sharing Overhead

Figure 4.15 shows slowest data throughput for di�erent query parallelism. Similar to Figure 4.10, we note
that slowest throughput decreases as query parallelism increases. As the number of queries increases,
sharing a tuple among di�erent queries is more probable; as a result, the slope of the figure decreases
slowly with increasing query parallelism.

Adding ad-hoc support to an SPE incurs an overhead. We measure this overhead by comparing
AStream with Flink. In our experiments, we see that Flink cannot sustain ad-hoc workloads. Conducting
ad-hoc experiments with Flink resulted either in an exception or in ever-increasing latency. The main
reason is that Flink is not designed for ad-hoc workloads. Therefore, we can only see the overhead of
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Figure 4.16: Overhead of AStream

sharing between AStream and original Flink in a single query setup. As shown in Figure 4.10 AStream
throughput is 9 % less than Flink’s throughput in the worst case (from 2.15M/sec to 1.95M/sec, windowed
aggregation, 8 nodes) because of the sharing overhead.

We also measure the individual cost of AStream’s components. The cost mainly involves generating
query-sets, bitset operations, and data copy in the router to ship resulting tuples to di�erent query channels.
Figure 4.16a shows an overhead proportion of AStream components in SC1. With low query-parallelism,
the proportion is roughly equal. As the number of concurrent queries increases, data copy becomes a
dominant overhead. Data copy in the router operator is inevitable as AStream has to send resulting
tuples to physically di�erent query channels. Figure 4.16b shows the overhead of AStream (sum of its
components). We can see that with more queries, the overhead of AStream is below 2%. The main reason
is that with more queries the probability of sharing increases.

Figure 4.17 shows the e�ect of executing of ad-hoc join queries to the performance of existing ones.
We perform experiments in a 4-node cluster. We observe that with many running queries, adding ad-hoc
queries does not a�ect their performance much in both scenarios (SC1 and SC2). Also, with a small
number of running queries, SC1 is more susceptible to a performance decrease than SC2. The main reason
is that in SC1 long-running queries are created. In SC2, on the other hand, queries are created and deleted
periodically. As a result, the overall number of queries and the size of query-sets is less in SC2.

Figure 4.18 shows the scalability of AStream queries with di�erent cluster configurations. In this
experiment, we keep the data throughput constant for all cluster configurations. We can see that the
number of ad-hoc queries scales with more nodes. We also observe that SC2 scales better than SC1. The
main reason is, as mentioned above, in SC2 queries are periodically created and removed, which results in
less number of active queries and less bitwise operations.
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Figure 4.17: E�ect of new ad-hoc join queries on existing long-running queries. x-axis shows the number of
long-running queries and the workload scenario
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Figure 4.18: Scalability with the number of queries

4.4.9 Discussion

AStream supports high data and query throughput within regular event-time and deployment latency
boundaries. With thousand concurrent queries, AStream achieves more than 70 millions tuples per second
data throughput (Figure 4.10). Our baseline, Apache Flink is not able to run twenty concurrent queries.

AStream also supports high query throughput. In SC1 AStream is able to start hundred queries in a
single changelog and in SC2 it is able to start 50 queries and delete 50 queries in a single changelog.

AStream processes 70 millions tuples per second (Figure 4.10, 100q/s 1000qp) with 1.2 second average
event-time latency (Figure 4.11b). For SC2, it handles fluctuating ad-hoc queries (creating and deleting
50 queries per 10 seconds) in less than one second event-time latency.

In our experiments, we see that the deployment latency is a major bottleneck for Flink (Figure 4.11a).
AStream, however, has a very low deployment latency, in the order of milliseconds per query.

Integrating AStream has some overhead, which is already outweighed by the e�ciency improvement
with two concurrent queries. The overhead for a single query is in the order of 10% in the worst case.

4.5 Integration
All AStream components can be integrated into an SPE by extending its components. The shared session
is an extension of a remote client module, which accepts user requests and executes the requests in a
remote cluster. We modify this module to generate the changelog data structure for handling user requests.
The shared selection and router are mapper operators with a state. The state is updated for every
changelog. We implement window operators, windowed join and aggregation operators, by customizing
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triggers, evictors, and window functions [63] to be dynamic and updatable at runtime. Any SPE providing
low-level window APIs can integrate shared windowed join and aggregation operators.

We build our prototype of AStream on top of Apache Flink; however, our design is not tightly coupled
with the underlying SPE. Below, we briefly sketch possible integrations with Trill [64] and Spark Structured
Streaming [4]. Unlike previous work, such as DataPath [62], which is a complete system with dedicated
query optimizer and scheduler, AStream is a framework that can be used with di�erent SPEs to enable
ad-hoc query processing.

Because AStream is a pluggable component of an underlying SPE, it also supports optimizations
for data representation and code generation. For example, Trill uses streaming batched-columnar data
representations with a novel dynamic compilation-based system architecture [64]. To support hybrid-
columnar processing with AStream, one can integrate the query-set attribute as a separate column in
Trill’s hybrid columnar data representation. Trill’s stateful operators can integrate AStream. AStream
ensures consistency and correctness; however, the underlying processing semantics, e.g., grouping or join
algorithms, can be performed by another component of an underlying SPE. Trills optimizations, such as
exploiting sort order and skew, are orthogonal to AStream’s processing, as AStream operates on the upper
layer. To integrate changelogs, Trill’s punctuation data structure can be extended to include additional
query meta-data.

Spark Structured Streaming [4] is an example of a distributed SPE with highly optimized code
generation using the catalyst optimizer [65]. In the continuous processing mode, one can adopt a very
similar implementation to the one that we used in Flink. In the mini-batch processing mode, Spark
Structured Streaming adopts bulk-synchronous-processing semantics, handling batch-size dynamically at
runtime. In this setup, all workers can be informed about changelogs at the synchronization phase to use
AStream components.

4.6 Related Work
Below, we explore several further research directions in database management and stream processing
related to our work and discuss the similarities and di�erences.

4.6.1 Query-at-a-time Processing

Query-at-a-time SPEs feature mature and widely accepted optimizers [66, 65]. These systems inherit
methods adopted in traditional relational query optimization [67, 68]. However, traditional query
optimizers lack optimizing ad-hoc queries submitted in real time, as the solution space is non-convex and
the complexity of query optimization in many cases is exponential [53]. AStream adopts shared operators
which can handle multiple user queries and share them if necessary. Thus, we avoid the optimization and
deployment cost of queries created and deleted in runtime.

4.6.2 Stream Multi-query Optimization

Multi-query optimization is one of the fundamental methods to share computation among queries [69].
One drawback of this method is its worst-case complexity (NP-hard) [70]. As the number of stream queries
increases, finding shared parts among queries becomes costly. Another drawback of traditional multi-query
optimization is that all queries should be known at compile-time. Also, multi-query optimization has
limited ability to share queries with blackbox selection predicates, such as with user-defined functions.

Seshadri et al. show the potential limitations of streaming multi-query optimization in a distributed
streaming environment [71]. Hong et al. propose rule-based streaming multi-query optimization [72]. Dobra
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et al. adopt sketch-based techniques to find approximate results for streaming multi-query optimization
[70].

The above work assumes prior knowledge (at compile-time) of stream queries and adopts optimizers
that are not able to react to ad-hoc queries at runtime. AStream, on the other hand, has no prior
knowledge about a workload and can react to ad-hoc queries.

4.6.3 Adaptive Query Optimization

Adaptive query optimization is another method to handle e�cient execution of multiple stream queries.
Although this methodology might work for a small number of input queries, with high concurrent workloads
re-optimization is a limiting factor.

Madden et al. develop an adaptive stream query sharing system [73]. The system works on a single
node and is built on top of Eddies [74]. Ives et al. propose an adaptive query processing framework which
adjusts processing based on I/O delays and data flow rates, and shares the data across multiple queries
[75]. Raman et al. propose STeM, a shared materialization point for join queries [76].

Unlike the work above, AStream is not limited to binary joins but also supports n-way joins, aggregation,
selection predicates, and their combination. Moreover, AStream is designed to be executed in a distributed
environment.

Drizzle is a distributed, fast, and adaptable stream processing framework [77]. It adopts the bulk-
synchronous processing model. Chi is flexible stream processing framework built for tuple-at-a-time
systems [78]. By design, these systems assume that workload and cluster properties change rarely, as
changing the query execution plan is costly. AStream, however, supports highly fluctuating workloads
and performs query creation and deletion on-the-fly, without stopping the topology.

4.6.4 Batch Ad-hoc Query Processing Systems

SharedDB [54] proposes query sharing for OLTP, OLAP, and mixed workloads via shared operators. QPipe,
adopts on-demand simultaneous pipelining, dynamically sharing an operator’s output simultaneously
to parent nodes [11]. AStream is conceptually similar to SharedDB, as it also uses shared operators.
Psaroudakis et al. compare the two main query sharing approaches: simultaneous pipelining, such as
QPipe, and global query plan, such as SharedDB [79].

CJoin [80] and DataPath [62] propose a join operator that supports concurrent queries in data
warehouses. MQJoin e�ciently uses main memory bandwidth and multi-core architectures and minimizes
redundant work across concurrent join queries [81, 82]. Tell has a shared-data architecture, which decouples
transactional query processing and data storage into two layers to enable elasticity and workload flexibility
[83].

To support multiple queries, scan sharing is a common technique. For example, Blink [84] and
Crescando [9] share disk and memory bandwidth. Similarly, CoScan performs cooperative scan sharing in
the cloud merging pig programs from multiple users at runtime [85]. Also, MonetDB [86] and DB2 UDB
[87] perform cooperative scans and maximize bu�er-pool utilization across queries.

BatchDB adopts similar batching ideas with Crescando and SharedDB [88]. However, BatchDB isolates
batching of OLAP queries from the updates propagated by the primary OLTP replica. OLTPShare
specializes in sharing concurrent OLTP workloads [89].

Although there are some similarities between AStream and batch ad-hoc query processing systems,
such as bitsets (CJoin, DataPath, SharedDB, MQJoin), common upstream operators and common
partitioning key (SharedDB and DataPath), query batching (SharedDB, BatchDB, OLTPShare), redundant
computation filtering (MQJoin), scan sharing (Crescando, Blink, MonetDB, DB2 UDB), supporting
complex queries with high consistency (Tell), and high throughput concurrent query processing (MQJoin),
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there are also conceptual di�erences. One di�erence between ad-hoc streaming and ad-hoc batch query
processing is that the former features windows with di�erent configurations. Also, ad-hoc batch data
processing systems feature only ad-hoc query creation. AStream supports ad-hoc query creation and
deletion in a consistent manner. Finally, AStream also adopts techniques to avoid redundant computation
among queries; however, e�ciently using hardware resources, such as CPU and memory bandwidth,
adopted by MQJoin, is out of the scope of our thesis.

4.6.5 Stream Query Sharing

Wang et. al propose sharing windowed join operators for CPU intensive and memory-intensive workloads
[90]. The approach assumes that all input queries are known at compile-time. Our approach, on the other
hand, supports query creation and deletion in an ad-hoc manner. Hammad et al. propose shared join
operator for multiple stream queries [91]. Similar to the previous work, in this work, the main assumption
is that input queries are known at compile-time. Another limitation is that this work adopts selection
pull-up approach, which might result in i) high bookkeeping cost of resulting joined tuples and ii) intensive
consumption of CPU and memory. Besides the limitations mentioned above, the above works ([90, 91,
92]) adopt an Eddies-like approach [74] to route tuples dynamically, which is hard to scale in distributed
environments. Our approach, on the other hand, is designed for distributed stream environments.

Krishnamurthy et al. propose on-the-fly query sharing technique for windowed aggregation queries
[92]. The authors partition tuples into fragments and perform incremental aggregation. Traub et.al
propose a general stream aggregation technique that automatically adapts to workload characteristics [93].
Although we also adopt a similar techniques to compute results incrementally, our solution is not limited
to windowed aggregations. AStream supports windowed queries consisting of selection, aggregation, join,
and their combinations.

Li et. al propose window ID representation of events and panes [57], and sharing computation among
panes [55]. The core di�erence between panes and the window sharing technique of AStream is that
the former computes overlapping parts of a window at compile-time, while the latter computes them at
runtime.

4.7 Conclusion
In this chapter, we presented AStream, the first distributed SPE for ad-hoc stream workloads. We showed
that current state-of-the-art SPEs were not able to process ad-hoc stream workloads. We observed in
our experiments that not only data latency and throughput, but also query deployment latency and
throughput were bottlenecks.

AStream is a layer on top of Flink, which extends existing SPE components and supports the majority
of streaming use-cases. AStream ensures easy integration, correctness, consistency, and high performance
(query and data throughput) in ad-hoc query workloads.

In the next chapter, we will extend AStream with a cost-based optimizer and adaptive query processing
techniques. We calculate a better optimized query plan by grouping similar queries based on sharing
statistics.
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5.1 Introduction

In the last decade, many stream processing engines were developed to overcome the high latency of
batch data processing for real-time scenarios. The processing model of these systems is designed to execute
long-running queries one at a time. However, with the advance of cloud technologies and multi-tenant
systems, multiple users share the same cloud for stream query processing. This results in many ad-hoc
stream queries sharing common stream sources and resources. Many of these queries include joins.

There are two main limitations that hinder performing ad-hoc stream join processing. The first
limitation is missed optimization potential both in the stream data processing and query optimization
layers. The second limitation is the lack of dynamicity in query execution plans.

In this chapter, we present AJoin, a dynamic and incremental ad-hoc stream join framework. AJoin
consists of an optimization layer and a stream data processing layer. The optimization layer periodically
reoptimizes the query execution plan, performing join reordering and vertical and horizontal scaling at
runtime without stopping the execution. The data processing layer implements a pipeline-parallel join
architecture. This layer enables incremental and consistent query processing supporting all the actions
triggered by the optimizer. We implement AJoin on top of Apache Flink, an open-source data processing
framework. AJoin outperforms Flink not only for ad-hoc multi-query workloads but also for single-query
workloads.

5.1 Introduction
SPEs process continuous queries on real-time data, which are series of events over time. Examples of such
data are sensor events, user activity on a website, and financial trades. There are several open-source
streaming engines, such as Apache Spark Streaming [4, 45], Apache Storm [2], and Apache Flink [5],
backed by big communities.

With the advance of cloud computing [94], such as the Software as a Service model [95], multiple users
share public or private clouds for stream query processing. Many of these queries include joins. Stream
joins continuously combine rows from two or more bounded streaming sources. In particular, executing
multiple ad-hoc queries on common streaming relations needs careful consideration to avoid redundant
computation and data copy.

5.1.1 Motivation

Stream join services are used in many companies, e.g., Facebook [96]. Clients subscribed to such a service
create and delete stream join queries in an ad-hoc manner. In order to execute the queries e�ciently, a
service owner needs to periodically reoptimize the query execution plan (QEP).

Let V={vID, length, geo, lang, time} be a stream of videos (videos displayed at user’s profile),
W={usrID, vID, duration, geo, time} a video view stream of a user, C={usrID, comment, length, photo,
emojis, time} a stream of user comments, and R={usrID, reaction, time} a steam of user reactions,
such as like, love, and angry. Figure 5.2 shows an example use-case scenario for ad-hoc stream join
queries. The machine learning module initiates Q1 to feed the model with video preferences of users. The
module targets people living in Germany (‡W.geo=GER) and watching videos in English (‡V.lang=ENG).
The editorial team initiates Q2 to discover web brigades or troll armies [97, 98]. The query detects users
that comment (‡C.length>5) on videos published in US (‡V.geo=US) just a few seconds after watching them
(‡W.duration<10). Usually, these people do not watch videos fully before commenting on videos. The quality
assurance team initiates Q3 to analyze the users’ reactions to promoted videos. Specifically, the team
analyzes videos that are watched in Europe (‡W.geo=EU), receive angry reactions (‡R.reaction=angry), and
at least one emoji in comments (‡C.emojis>0). We use the queries, shown in Figure 5.2, throughout this
chapter.
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Figure 5.2: Ad-hoc stream join queries. TiC and TiD show creation and deletion times of ith query,
respectively.

As we can see from the example above, these stream queries are executed within a finite time duration.
Depending on ad-hoc query creation and deletion time and selection predicates, (WonV) or (WonC) can
be shared between Q1 and Q2 or between Q2 and Q3, respectively. Di�erent sharing strategies can also
require reordering of the join relations.

With many concurrent join queries, data copy, computation, and resource usage will be a bottleneck.
So, scan sharing for common data sources and object reuse are necessary. Also, the data and query
throughput can fluctuate at runtime. To support such dynamic workloads, SPEs need to support scale out
and in, and scale up and down, and join reordering at runtime, without stopping the execution. Note that
the state-of-the-art streaming systems are optimized for maximizing the data throughput. However, in a
multi-user cloud environment it is also important to maximize query throughput (frequency of created
and deleted queries).

5.1.2 Sharing Limitations in Ad-hoc SPEs

Ad-hoc query sharing has been studied both for batch and stream data processing systems. Contrary to
ad-hoc batch query processing systems, in ad-hoc SPEs query sharing happens between queries running
on fundamentally di�erent subsets of the data sets, determined by the creation and deletion times of each
query. Below, we analyze the main limitations of modern ad-hoc SPEs.

5.1.2.1 Missed Optimization Potential

To the best of our knowledge, there is no ad-hoc SPE providing ad-hoc stream QEP optimization. Modern
ad-hoc SPEs embed rule-based query sharing techniques, such as query indexing [99], in the data processing
layer [100]. However, appending a query index payload to each tuple causes redundant memory usage and
computation. As the number of running queries increases, each tuple carries more payload.

Modern ad-hoc SPEs materialize intermediate join results eagerly. Especially with high selectivity
joins, the eager materialization results in high transfer costs of intermediate results between subsequent
operators.

Also, the join operator structure in modern SPEs performs several costly computations, such as
bu�ering stream tuples in a window, triggering the processing of a window, computing matching tuples,
and creating a new set of tuples based on matching tuples. With more queries and n-way (n Ø 3) joins,
the join operation will be a bottleneck in the QEP.
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Figure 5.3: AJoin and AStream: Complete Ad-hoc SPE

5.1.2.2 Dynamicity

Modern ad-hoc SPEs consider ad-hoc query processing only with a static QEP and with queries with
common join predicates. In stream workloads with fluctuating data and query throughput, this is
ine�cient.

5.1.3 AJoin

We propose AJoin, a scalable SPE that supports ad-hoc equijoin query processing. We overcome the
limitations stated in Section 5.1.2 by combining incremental and dynamic ad-hoc stream query processing
in our solution.

5.1.3.1 E�cient Distributed Join Architecture

Because the join operator in modern SPEs is computationally expensive, AJoin shares the workload of
the join operator with a source and sink operator. The join architecture is not only data-parallel but also
pipeline-parallel. Tuples are indexed in the source operator. The join operator utilizes indexes for an
e�cient join operation. AJoin incrementally computes multiple join queries. It performs a scan, data,
and computation sharing among multiple join queries with di�erent predicates. Our solution adopts
late materialization for intermediate join results. This technique enables the system to compress the
intermediate results and passes them to downstream operators e�ciently. Also, the AJoin optimizer
features incremental and iterative optimization with dynamic programming.

5.1.3.2 Dynamic Query Processing

AJoin supports dynamicity at the optimization and data processing layer: dynamicity at the optimization
layer means that the optimization layer performs regular reoptimization, such as join reordering and
horizontal and vertical scaling; dynamicity at the data processing layer means that the layer is able to
perform all the actions triggered by the optimizer at runtime, without stopping the QEP.

5.1.3.3 AJoin and AStream: Complete Ad-hoc SPE

Together AStream and AJoin form a complete ad-hoc SPE. Figure 5.3 shows the architecture of the
resulting system and the main contributions of AStream and AJoin to the resulting system. For example,
AStream proposes query-sets and changelogs. AJoin arranges queries with similar selection predicates
into the same groups. AJoin features a cost-based query optimizer that performs progressive query
optimization periodically at runtime. AStream provides sharing for windowed aggregatiion queries. AJoin,
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contributes the optimizer, which enables sharing data and computation if the sharing is beneficial. Also,
AJoin contributes an e�cient and pipeline-parallelized join architecture. AStream and AJoin contribute
non-atomic and atomic consistency protocols, respectively.

5.1.4 Contributions and Chapter Organization

The main contributions of the chapter are as follows.

• We present the first optimizer to process ad-hoc stream queries in an incremental manner.

• We develop a distributed and pipeline-parallel stream join architecture. This architecture also
supports dynamicity (modify QEP on-the-fly in a consistent way).

• We perform an extensive experimental evaluation with state-of-the-art SPEs.

The rest of the chapter is organized as follows. We present related work in Section 5.2. Section 5.3
gives the system overview. Section 5.4 presents the AJoin optimizer. We provide implementation details
in Section 5.5 and runtime operations in Section 5.6. Experimental results are shown in Section 5.7. We
conclude in Section 5.8.

5.2 Related Work

5.2.1 Shared Query Processing

Shared query processing is a paradigm that shifts from query-at-a-time approaches towards shared work.
Shared operators batch concurrent queries and share possible computations among them. SharedDB is
based on the batch data processing model and handles OLTP, OLAP, and mixed workloads [101, 102].
Giceva et al. adopt SharedDB ideas and implement shared query processing on multicores [103]. CJoin
[80, 104] and DataPath [62] focus on ad-hoc query processing in data warehouses. Braun et al. propose
a hybrid (OLTP and OLAP) computation system, which integrates key-value-based event processing
and SQL-based analytical processing on the same distributed store [105]. BatchDB implements hybrid
workload sharing for interactive applications [88]. SharedHive is a shared query processing solution built
on top of the MapReduce framework [106]. The works mentioned above are designed for batch data
processing environments. Although we also embrace some ideas from shared join operators, we focus on
stream data processing environments with ad-hoc queries.

To increase data throughput, MJoin proposes a multi-way join operator that operates over more
than two inputs [107]. While the bucket data structure in AJoin also mimics the behavior of multi-way
joins, the join operator of AJoin supports binary input streams. To increase data throughput, AJoin
reoptimizes the QEP periodically. FluxQuery is a centralized main-memory execution engine based on the
idea of continual circular clock scans and adjusted for interactive query execution [108]. Similarly, MQJoin
supports e�cient ad-hoc execution of main-memory joins [81]. Hammad et al. propose streaming ad-hoc
joins [91]. The solution adopts a centralized router, extended from Eddies [74]. Also, the work adopts a
selection pull-up approach, which might result in high bookkeeping cost of resulting joined tuples and
intensive CPU and memory consumption. The above works are designed for a single-node environment.
However, AJoin is designed for distributed environments. AJoin does not utilize any centralized computing
structure. Dynamicity and progressive optimization, are more essential in distributed environments. Also,
AJoin exploits pipeline-parallelism. In a single-node environment, however, task-fusion is more beneficial
[14].
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5.2.2 Adaptive Query Processing

Adaptive query processing utilizes runtime feedback to modify a QEP and maximize the given objective
function, such as better response time and more e�cient CPU utilization [109]. Progressive query
optimization, POP, uses cardinality boundaries in which a selected plan is optimal [110]. Our optimizer
uses a similar idea, cost sharing, but we target streaming scenarios. Li et al. propose adaptive join
ordering during query execution [111]. The solution adds an extra operator, a local predicate on the
driving table to exclude the already processed rows if the driving table is changed. We perform join
reordering without extra operators.

Gedik et al. propose an elastic scaling framework for data streams [112]. Cardellini et al. propose
a similar idea on top of Apache Storm [113]. Both works use state migration as a separate phase to
redistribute the state among nodes. AJoin, on the other hand, features a smooth repartitioning scheme,
without stopping the topology. Heinze et al. propose an operator placement technique for elastic stream
processing [114, 115]. AJoin does not perform operator placement optimization for all streaming operators
but only for join and selection operators (e.g., grouping queries and executing them in specific operators).

Drizzle is an elastic layer built on top of Spark Streaming [77]. Although it partly eliminates limitations
of the bulk-synchronous parallel model of Spark Streaming via group scheduling, the solution still
underperforms compared to tuple-at-a-time systems [78]. AJoin, on the other hand, avoids blocking
operations.

5.2.3 Query Optimization

Query optimization for query-at-a-time systems is a challenging problem. Optimizing queries in the
presence of ad-hoc queries is an even harder problem. Trummer et al. solve the join ordering problem via
a mixed integer programming model [116]. The authors perform several nonlinear to linear conversions to
express equations in a linear format. Although this approach is acceptable in a single query environment,
with ad-hoc queries we need an optimization framework that can optimize incrementally. Unlike dynamic
programming approaches [117, 118], current numerical optimization frameworks lack this feature.

The IK/KBZ family of algorithms can construct the optimal join plan in polynomial time [119, 120].
Although this is a very attractive feature, these algorithms perform poorly with large queries (thousands
of joins) [121]. In AJoin our target is not large queries, as there are limited use-cases with large stream
queries. However, the iterative dynamic programming approach also works well with large queries and
combines benefits both dynamic programming and greedy algorithms [25]. We adopt ideas from this
technique and enhance them for our scenario.

5.2.4 Mini-batch Query Processing

Dividing the data into mini-batches and processing the live stream as a set of batch data computations
is also a common technique [4, 3]. Adaptive mini-batch SPEs, such as Drizzle [77], modify a QEP at
mini-batch boundaries. Similarly, AJoin modifies QEP at bucket boundaries. Mini-batch stream processing
utilizes a bulk synchronous processing model, in which all task managers synchronize at every batch
interval. However, AJoin adopts a non-blocking continuous operator model [17].

5.3 System Overview and Example
In this section, we provide a high-level overview of AJoin. Figure 5.4 shows the architecture of AJoin.
The remote client listens to users requests, such as query creation or deletion requests. It batches user
requests in a query batch and sends this batch to the optimizer. Apart from query batches, the optimizer
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periodically receives statistics from the data processing layer. It periodically reoptimizes the QEP based
on statistics and received query batches. As part of the reoptimization, the optimizer triggers actions,
such as scale up and down, scale out and in, query pipelining, and join reordering. Similarly, the data
processing layer performs all the actions at runtime, without stopping the QEP. AJoin supports equi-joins
with event-time windows and selection operators. Below, we elaborate more on the data model (Section
5.3.1) and join operator structure (Section 5.3.2) of AJoin.

5.3.1 Data Model

There are three main data structures in AJoin: a stream tuple, a bucket, and a changelog. Source
operators of AJoin pull stream tuples from external sources. Then, the tuples are transformed into the
internal data structure of AJoin, which is a bucket. Below, we discuss the data structures bucket and
changelog in detail.

5.3.1.1 Bucket

A bucket is the main data structure throughout the QEP. It contains a set of index entries and stream
tuples corresponding to the index entries. Each bucket includes a bucket ID. Stream tuples in a bucket
can be indexed w.r.t. di�erent attributes. Buckets are read-only. All AJoin operators, except for the
source operator, receive buckets from upstream operators and output new read-only buckets. This way,
the buckets can be easily shared among multiple concurrent stream queries.

Figure 5.5a shows stream tuples generated from sources V, W, C, and R and generated buckets from
the respective stream sources. The bucket generated from the stream source V is indexed w.r.t. the V.vID
attribute because the downstream join operator uses the predicate V.vID=W.vID. However, the bucket
generated from the stream source W is indexed w.r.t. two attributes: W.vID and W.usrID. The reason is
that i) Q1 and Q2 requires indexing w.r.t. the attribute W.vID and ii) Q3 requires indexing w.r.t. the
attribute W.usrID. Unless stated otherwise, we assume that the join ordering of Q2 is (VonV.vID=W.vIDW)
onW.usrID=C.usrIDC.

5.3.1.2 Changelog

A changelog is a special marker dispatched from the optimizer. It contains metadata about QEP changes,
such as horizontal or vertical scaling, query deletion, and query creation. A changelog propagates through
the QEP. Operators receiving the changelog update their execution accordingly.

5.3.2 Join Operation

In modern SPEs, such as Spark [4], Flink [5], and Storm [2], the computation distribution of a join
operation is rather skewed among di�erent stream operators: source, join, and sink operators. For example,
the source operator is responsible for pulling stream tuples from external stream sources. The join operator
bu�ers stream tuples in a window, finds matching tuples, and builds resulting tuples by assembling the
matching tuples. The join operator also implements all the functionalities of a windowing operator. The
sink operator pushes the resulting tuples to external output channels. Because most of the computation
is performed in the join operator, it can easily become a bottleneck. With more concurrent n-way join
queries (n Ø 3), the join operator is more likely to be a limiting factor.
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To overcome this issue, we perform two main optimizations. First, we perform pipeline
parallelization sharing the load of the join operator between the source and sink operators. The
source operator combines the input data acquired in the last t time slots and builds a bucket (Section
5.3.1). With this, we transmit the windowing operation from the join operator to the source operator.
Also, buckets contain indexed tuples, which are used at the downstream join operator to perform the join
e�ciently. Afterwards, the partitioner distributes buckets based on a given partitioning function. Then,
the join operator performs a set intersection between the index entries of input buckets. Note that for
all downstream operators of the source operator, the unit of data is a bucket instead of a stream tuple.
Finally, the sink operator performs full materialization, i.e., it converts buckets into stream tuples, and
outputs join results.

Second, we perform late materialization of intermediate join results. After computing the matching
tuples (via intersecting index entries), the join operator avoids performing the cross-product among them.
Figure 5.5b shows the join operation for Q1. Index entries from the two input buckets are joined ( 1 ).
Then, tuples with the matched indexes are retained in the resulting bucket ( 2 ). The late materialization
technique can also be used for n-way joins. For example, Figure 5.5e shows the resulting bucket of Q3.
The bucket keeps indexes of matched tuples from stream sources W, C, and R.

All join predicates in Q3 use the same join attribute (usrID). In this case, the late materialization can
be easily leveraged with built-in indexes (Figures 5.5d and 5.5e). However, if join attributes are di�erent
(e.g. in Q2), then repartitioning is required after the first join. AJoin benefits from late materialization
also in this scenario. To compute Q3, AJoin computes the result of the upstream join operator (Figure
5.5b). Then, the resulting bucket (VonV.vID=W.vIDW) is reindexed w.r.t. W.usrID (Figure 5.5c, 1 ). Note
that reindexing is related to the tuples belonging to W because only these tuples contain attribute usrID.
Instead of materializing the intermediate result fully and iterating through it (VonV.vID=W.vIDW) and
reindexing, AJoin avoids full materialization and only iterates over the tuples belonging to W: (1) every
tuple tp œ W is reindexed w.r.t. W.usrID; (2) a list of its matched tuples from V is retrieved (get list with
index ID=tp.vID); (3) the pointer of the resulting list is appended to tp. When tp is eliminated in the
downstream join operator, all its matched tuples from V are also automatically eliminated. For example,
tuples with usrID=3 in Figure 5.5c 1 , are eliminated when joining with C (Figure 5.5d). In this case, the
pointers are also eliminated without iterating through them.

5.4 Optimizer
In this section, we discuss the query optimization process in AJoin. Figure 5.6 shows the optimization
phases of AJoin. After a changelog ingestion, the optimizer eagerly shares the newly created query with
the running queries ( 1 ). For example, Q2 is deployed at time T2C (Figure 5.2). Then, the optimizer
searches common subqueries among running queries (Q1 in this case), without considering the selection
predicate and the cost. In this case, the optimizer deploys Q2 as (VonW)onC to reuse the existing stream
sources and the join operator. In the following phases, the optimizer performs a cost-based analysis and
reoptimizes the QEP, when necessary. If the optimizer cannot find common subqueries, it will check for
common sources to benefit from scan sharing. The optimizer restarts the optimization process, if a new
changelog has arrived. Below, we explain each phase of the optimization separately and describe when
the optimizer decides to trigger each of them.

5.4.1 Query Grouping

Consider Q4 and Q5 in Figure 5.8. These queries do not share data because of their selection predicates.
Figure 5.7 shows an example scenario for performing shared (Q4 and Q5 together) and separate join (Q4
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Figure 5.7: Cost of shared and separate join execution for Q4 and Q5. Q.S means the stream S of the query
Q.

and Q5 separately). Previous solutions, such as AStream [100], share data and computation aggressively.
However, this might lead to a suboptimal QEP. For example, in Figure 5.7, the cost of shared query
execution is higher than executing queries separately. The reason is that both Q4.V, Q5.V and Q4.W,
Q5.W do not share enough data tuples to benefit from shared execution. Throughout this chapter, we
denote the stream source S of query Q as Q.S and stream partition pi of query Q as Q.pi.

To avoid the drawback of aggressive sharing, we arrange queries in groups. Queries that are likely
to filter (or not filter) a given set of stream tuples are arranged in one query group. For example, after
successful grouping, Q4 and Q5 in Figure 5.7 would reside in di�erent groups. Let t1, t2, t3, and t4 be
tuples with query-sets (100100), (101100), (100100), and (100000), respectively, and Q1-Q6 be queries
with selection operators. Q1 and Q4 share 3 tuples (t1, t2, t3) out of 4. Also, Q2, Q3, Q5, and Q6 do
not share 3 tuples (t1, t3, t4) out of 4. Finding the optimal query groups is an NP-Hard problem, as
it can be reduced to the euclidean sum-of-squares clustering problem [122].

Crd is a function that calculates the cardinality of possibly intersecting sets. We use set union operation
to calculate the cardinality. For example, for 3 sets (A, B, C) the Crd function is shown in Equation 5.1,
which is a specific case of the inclusion-exclusion principle in combinatorial mathematics. Equation 5.2
shows the cost function. bi1 and bi2 are Boolean variables showing if indexing is required on stream S1 and
S2, respectively. AJoin performs indexing when stream S is the leaf node of the QEP (source operator)
or when repartitioning is performed. bm is also a Boolean variable indicating if full materialization is
required. AJoin performs full materialization only at the sink operator.

Figure 5.8 shows our approach to calculate query groups. First, we compare the cost of sharing stream
sources between two queries and executing them separately. If the cost of the former is less than the
latter, we place the two queries into the same query group. Once we find query groups consisting of
two queries, we eagerly check other queries, which are not part of any group, to include into the group.
The only condition (to be accepted to the group) is that the cost of executing the new query and the
queries inside the group in a shared manner must be less than executing them separately (e.g., Figure 5.7).
Query grouping is performed periodically during the query execution. When join reordering is triggered,
it utilizes recent query groups.

|A|+|B|+|C|-|AflB|-|BflC|-|AflC|+|AflBflC| (5.1)

COST(S1onS2)= bi1 ú Crd(S1)
Indexing S1

+ bi2 ú Crd(S2)
Indexing S2

+

Min(DistKeyS1,DistKeyS2)
Index set intersection

+ bm ú Crd(S1onS2)
Full materialization

(5.2)

75



5. AJoin: Ad-hoc Stream Joins at Scale

Resulting query groups
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Figure 5.8: Calculation of query groups. The optimization is performed between time T3C and T1D. Assume
that Q4-Q6 are also being executed at the time of optimization. In the figure, Crd refers to the cardinality
function, and COST refers to the cost function in Equation 5.2.

5.4.2 Join Reordering

After discovering query groups, the optimizer performs iterative QEP optimization. We enhance an
iterative dynamic programming technique [25] and adapt it to ad-hoc stream query workloads. Our
approach combines dynamic programming with iterative heuristics. In each iteration, the optimizer i)
calculates the shared cost of subqueries and ii) selects a subplan based on the cost. The shared cost is the
cardinality of a particular subquery divided by the number of QEPs, sharing the subquery.

Figure 5.9 shows an example scenario for iterative QEP optimization. Assume that Q4-Q6, which are
shown in Figure 5.8, are also added to the existing queries (Q1-Q3). In the first iteration, the optimizer
calculates the shared cost of 2-way joins. For example, Q1.VonW can be shared between Q1 and Q2
because Q1 and Q2 are in the same group (Figure 5.8). Also, the cost of Q1.VonW di�ers when exploiting
all sharing opportunities (MaxShared) and executing the queries separately (MinShared). After the first
iteration, the optimizer selects subplans with minimum costs. Then, the optimizer substitutes the selected
subqueries with T1 and T2. If the cost is shared with other QEPs (e.g., Q1.VonW is shared between Q1
and Q2), then the optimizer assigns the shared cost to all other related queries.

The second iteration is similar to the first one. Note that T1onQ2.C cannot be shared with Q6 because
Q6.VonW and Q2.VonW reside in di�erent query groups. So, the optimizer prunes this possibility. Also,
Q3.WonC is no longer shared with Q2 because in the first iteration the optimizer assigned (VonW)onC to
Q2.

Computing the optimal QEP for multiple queries is an NP-Hard problem [53, 120]. For ad-hoc queries,
this is particularly challenging, since queries are created and deleted in an ad-hoc manner. The optimizer
must therefore support incremental computation. Assume that Q4 in Figures 5.8 and 5.9 is deleted,
and Q7= ‡sp1(W)on‡sp2(C) is created, where sp1 and sp2 are selection predicates. At compile-time, the
optimizer shares Q7 aggressively (without considering the selection predicates) with existing queries. In
this case, the optimizer shares Q7 with Q3.WonC. After collecting statistics, the optimizer tries to locate
Q7 in one of WonC groups (e.g., Figure 5.8). If including Q7 is not beneficial to any query group (if
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Figure 5.9: Join reordering. The optimization is performed between time T3C and T1D. Assume that Q4-Q6
are also being executed at the time of optimization. In the figure, Crd refers to the cardinality function, and
COST refers to the cost function in Equation 5.2.

77



5. AJoin: Ad-hoc Stream Joins at Scale

shared execution is more costly than executing queries in the group and the added query separately),
the optimizer creates a new group for Q7. Assume that Q7 is placed in WonC.G2 (Figure 5.8). In this
case, only the execution of Q4 and Q6 might be a�ected. In other words, the optimizer does not need
to recompute the whole plan, but only part of the QEP. Also, the optimizer does not recompute query
groups from scratch but reuses existing ones.

The cost of incremental computation is high and may result in an suboptimal plan. Therefore, we use
a threshold when to trigger a full optimization. If the number of created and deleted queries exceeds 50%
of all queries in the system, the optimizer computes a new plan (including the query groups) holistically
instead of incrementally. We have determined this threshold experimentally (Section 5.7.7.7), as it gives a
good compromise between dynamicity and optimization cost. Computing the threshold deterministically,
on the other hand, is out of the scope of this thesis. The decision to reorder joins ( 2 in Figure 5.6) is
triggered by the cost-based optimizer using techniques explained above.

There are two main requirements behind our cost computation. The first requirement is that the
cost function should include the computation semantics of our pipeline-parallelized join operator. As we
can see from Equation 5.2, COST consists of the cost of the source operator (indexing S1 and S2), the
cost of join operator (index set intersection), and the cost of sink operator (full materialization). The
second requirement is that the cost computation should include sharing information. We achieve this
requirement by dividing COST by the number of shared queries (Figure 5.9, MaxShared). We select this
cost computation semantics because it complies with our requirements, and it is simple.

5.4.3 Vertical and Horizontal Scaling

AJoin uses consistent hashing for assigning tuples to partitions. The partitioning function PF maps each
tuple with key k to a circular hash space of key-groups: PF(k)=(Hash(k) mod |P|), where |P| is the
number of parallel partitions. At compile-time, partitions are distributed evenly among nodes.

The optimizer performs vertical scaling ( 3 in Figure 5.6), if the latency of tuples residing in specific
partitions is high, and there are resources available on nodes, in which overloaded partitions are located.
The optimizer checks for scaling up first, because scaling up is less costly than scaling out. Note that
when scaling up, the partitioning function and the partitioning range assigned to each node remain the
same. Instead, the number of threads operating on specific partitions are increased. When new operators
are deployed, and existing operators exhibit low resource-utilization, the optimizer decides to scale down
the existing operators.

The optimizer checks for horizontal scaling ( 4 in Figure 5.6) when new and potentially non-shared
queries are created. Also, the optimizer decides to scale out if CPU or memory is a bottleneck. When the
optimizer detects a latency skew, and there are no available resources to scale up, it triggers scaling out.
In this case, the optimizer distributes the partition range, which is overloaded, among new nodes added to
the cluster. Therefore, at runtime, the partition range might not be distributed evenly among all nodes.

5.5 Implementation Details
In this section, we discuss implementation details of AJoin. Specifically, we elaborate on operator-specific
implementation details (Section 5.5.1) and exactly-once semantics (Section 5.5.2).
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Figure 5.10: Example partitioning of the bucket described in Figure 5.5e

5.5.1 Join Phases

5.5.1.1 Bucketing

Bucketing is performed in the source operator. The source operator is the first operator in the AJoin
QEP. Each index, inside a bucket, points to a list of tuples with the common key. If there are multiple
indexes, pointers are used to reference stream tuples. The main intuition is that buckets are read-only; so,
sharing the stream tuples between multiple concurrent queries (with di�erent indexes) is safe.

Each source operator instance assigns a unique ID to the generated bucket; however, bucket IDs are
not unique across di�erent partitions. The bucket ID is an integer indicating the generation time of the
bucket.

5.5.1.2 Partitioning

The partitioner is an operator that partitions buckets among downstream operator instances. This operator
accepts and outputs buckets. Given an input bucket, the partitioner traverses over existing indexes of the
bucket. It maps each index entry and corresponding stream tuples to one output bucket. In this way, the
partitioner traverses only indexes instead of all stream tuples.

The partitioning strategy of AJoin with multiple queries is similar to one with a single query. If queries
have the same join predicate, the partitioner avoids copying data completely. That is, each index entry
and its corresponding tuples are mapped to only one downstream operator instance. If queries possess
di�erent join predicates, AJoin is able to avoid data copy partially. For example, in Figure 5.10 the input
bucket, is partitioned into two downstream operator instances. Note that tuples that are partitioned to
the same node w.r.t. both partitioning attributes (e.g. (1,1,. . . ),(8,4,. . . )) are serialized and deserialized
only once, without data copy.

5.5.1.3 Join

Let Lin and Lout be lists inside a join operator storing buckets from inner and outer stream sources,
respectively. When the join operator receives buckets, bin from the inner and bout from the outer stream
source, it i) joins all the buckets inside Lout with bin, all the buckets inside Lin with bout, and combines
the two results in one output bucket, ii) emits the output bucket, and iii) removes unnecessary buckets
from Lin and Lout.

The join operator handles join queries with di�erent join predicates and window constraints. The
operator receives query changelogs from upstream operators and updates its query meta-data. Figure 5.11
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Figure 5.11: Ad-hoc join example. The join operation is performed between T1C and T2D.

shows an example scenario for incremental ad-hoc join query computation. At time T1 Q1 is initiated. At
time T2 the join operator receives the query changelog indicating the creation of Q2. Also, first buckets
from both streams are joined and emitted. Since the joined buckets are no longer needed, they are deleted.
Q1 and Q2 have the same join predicates but di�erent window length. Therefore, 3 on 3 is shared between
Q1 and Q2, but 2 on 3 and 3 on 2 are associated with only Q2. Since buckets support multiple indexes,
the join operator can share join queries with di�erent join predicates. The rest of the example follows a
similar pattern.

The join operation between two buckets is performed as follows. Firstly, queries with similar stream
sources and join predicates are grouped. We perform scan sharing for the queries in the same group. The
join operation is a set intersection of indexes, as we use a grace join [123] for streaming scenarios.

5.5.1.4 Materialization

The sink operator performs full materialization. Basically, it traverses all indexes in a bucket, performs a
cross-product of tuples with the same key, constructs new tuples, and pushes them to output channels.

5.5.2 Exactly-once Semantics

AJoin guarantees exact-once semantics, meaning every stream tuple is only processed once, even under
failures. AJoin inherits built-in exactly-once semantics of Apache Flink [59]. Whether the unit of data is
a stream tuple or a bucket, under the hood the fault tolerance semantics is the same.

5.5.3 Optimizer

We implement the AJoin optimizer as part of the Flink’s optimizer. Flink v1.7.2 lacks a runtime optimizer.
Therefore, the AJoin optimizer can be easily integrated into Flink’s optimizer. We also integrate the
AJoin optimizer with Flink’s compile-time optimization. The compile-time optimization process consists of
three main phases. In the first phase, AJoin performs logical query optimization. Then, Flink’s optimizer
receives the resulting plan, applies internal optimizations, and generates the physical QEP. Afterwards,
the AJoin optimizer analyzes the resulting physical QEP. For n-way join queries, the AJoin optimizer
inspects if each node contains at least one operator instance of all join operators in the query. For
example, the physical QEP of (AonB)onC should contain at least one instance of the upstream (AonB)
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Figure 5.12: 3-phase atomic protocol

and the downstream join operators ((...)onC) in each node. Also, the optimizer checks if all join operator
instances are evenly distributed among the cluster nodes. It is acceptable if some nodes have free (idle)
task slots. The free task slots provide flexibility for scaling up during the runtime. If there are join
operators that share the same join partitioning attribute, the optimizer schedules them in the same task
slot and notifies Flink to share the task slot between the two join operator instances. For example, in
a query like (AonA.a=B.bB)onB.b=C.cC, the instances of the upstream join operator (AonA.a=B.bB) share
the same task slot with the instances of the downstream join operator ((...)onB.b=C.cC). The reason is to
ensure data locality, as the resulting stream of the upstream join operator is already partitioned w.r.t. the
attribute B.b. The optimizer performs the necessary changes in the physical QEP generated by Flink
(second phase) to perform the optimizations listed above.

5.6 Runtime QEP changes
In this section, we discuss the dynamicity of AJoin in the data processing layer. It is widely acknowledged
that streaming workloads are unpredictable [124]. Supporting ad-hoc queries for streaming scenarios leads
to more dynamic workloads. Therefore, AJoin supports several runtime operations updating the QEP
on-the-fly. These operations are triggered by the optimizer and are submitted to task managers through
the job manager. Below, we discuss consistency protocols of AJoin in Section 5.6.1. Then, we explain
runtime QEP changes, such as vertical scaling (Section 5.6.2), horizontal scaling(Section 5.6.3), and join
reordering (Section 5.6.4).

5.6.1 Consistency Protocols

AJoin features two consistency protocols: atomic and non-atomic. The atomic protocol is a three-phase
protocol. Figure 5.12 shows an example scenario for this protocol. In the first phase, the job manager
requests bID, the current bucket ID, and ts, the current time in the task manager, from all task managers.
In the second phase, the job manager proposes the task managers to ingest the changelog after the bucket
with bID=6. If the job manager receives ack from all task managers, it sends a confirmation message
to the task managers to ingest the changelog. In the non-atomic protocol, on the other hand, the job
manager sends the changelog without any coordination with task managers. Also, the task managers
ingest the changelog without any coordination.
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Figure 5.13: Scale up operation

5.6.2 Vertical Scaling

AJoin features two bu�ering queues between operators: a broadcast queue and a unicast queue. Let
S be a set of subscribers to a queue. In the broadcast queue, the head element of the queue is removed if
all subscribers in S pull the element. Any subscriber si œ S can pull elements up to the last element inside
the queue. Afterwards, the subscriber thread is put to sleep mode and awakened once a new element is
pushed into the broadcast queue. In a unicast queue, on the other hand, the head element of the queue is
removed if one subscriber pulls it. The consequent subscriber pulls the next element in the queue.

The join operation is distributive over union (Aon(BfiC)= AonB fi AonC). We use this feature and the
two queues to scale up and down e�ciently. Each join operator subscribes to two upstream queues: one
broadcast and one unicast queue. When a new join operator is initiated in the same worker node (scale
up), it also subscribes to the same input channels. For example, in Figure 5.13, there are two queues.
If we increase the number of join instances, then both instances would get the same buckets from the
broadcast queue but di�erent buckets from the unicast queue. As a result, the same bucket is joined with
di�erent buckets in parallel.

We use the non-atomic protocol for the vertical scaling. Let S1 and S2 be the two joined streams(S1onS2)
and P={p1,p2,...,pn} be parallel partitions in which the join operation is performed. Vertical scaling in
AJoin is performed on a partition of a stream (i.e., a vertical scaling a�ects only one partition). So, we
show that the scaled partition produces correct results. Assume that k new task managers are created at
partition pi, which output join results to p1i , p2i , ..., pki . Since p1i

t
p2i ,...

t
pki= S1.pionS2.pi (distributivity

over union), the result of vertical scaling is correct. Since there is no synchronization among partitions,
and since each vertically scaled partition is guaranteed to produce correct results, vertical scaling is
performed in an asynchronous manner.

5.6.3 Horizontal Scaling

AJoin scales horizontally in two cases: when a new query is created (or deleted), and when an existing set
of queries needs to scale out (or scale in). We refer to the first case as query pipelining. We assume that
created or deleted queries share a subquery with running queries. Otherwise, the scaling is straightforward
- adding new resources and starting a new job.

Query pipelining consists of three main steps. Let the existing query topology be E and the pipelined
query topology be P. In the first step, the job manager sends a changelog to the task managers of E. Upon
receiving the changelog, the task managers switch sink operators of E to the pause state and ack to the
job manager. In the second step, the job manager arranges the input and output channels of the operators
deployed inside the task managers, such that the input channels of P are piped to the output channels of
E. In the third step, the job manager resumes the paused operators. If the changelog contains deleted
queries, the deletion of the queries is performed similarly. The job manager pauses upstream operators
of deleted stream topologies. Then, the job manager pipelines a sink operator to the paused operators.
Lastly, the job manager resumes the paused operators.

Query pipelining is performed via the non-atomic protocol (Section 5.6.1). Thus, all the partitions of
the pipelined query are not guaranteed to start (or stop) processing at the same time. However, modern
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SPEs [3], [2], [5] also connect to data sources, such as Apache Kafka [125], in an asynchronous manner.
Also, when a stream query in the modern SPEs is stopped, there is no guarantee that all sink operators
stop at the same time.

Scaling out and in can be generalized to changing the partitioning function and computation resources.
We explained the partitioning strategy in Section 5.4.3. Assume that AJoin scales out by N new nodes,
and each node is assigned to execute PÕ partitions. Then, the new partitioning function becomes
PFÕ(k)=(Hash(k) mod (|P|+|PÕ*N|)). Also, each new node is assigned a partition range. The partition
range is determined via further splitting the overloaded partitions. For example, if a partition with hashed
key range [0,10] is overloaded, and one new partition is initiated in the new node, then the hashed key
ranges of the two partitions become [0,5] and (5,10]. The similar approach applies for scaling in.

The change of the partitioning function is completed in three steps. Assume that the partitioning
function of a join operator is modified. There are multiple queries using the join operator with di�erent
window configurations. In the first step, the job manager retrieves the biggest window size, say BW. In
the second step, the job manager sends a partition-change changelog via the atomic protocol. Once the
partitioner receives this marker, it starts double partitioning, meaning partitioned buckets contain data
both w.r.t the old and new partitioning function. The partitioner performs double-partitioning at most
BW time, where BW is the length of biggest window. Then partitions only w.r.t. the recent partitioning
function. In the third step, new task managers are launched (scale out) or stopped (scale in).

Figure 5.14 shows an example scenario for a partitioning function change. First buckets from the stream
A and B have single partitioning info (i.e., they contain tuples partitioned w.r.t. a single partitioning
function). At time T2 the partition-change changelog arrives at the join operator. So, the tuples arriving
before T2 no longer have the new or latest partitioning schema. At time T3, the second and first buckets
are joined w.r.t. the old partitioned data. At time T4, the third and second buckets are joined w.r.t.
the new partitioned data; however, the third and first buckets are joined w.r.t. the old partitioned data.
Starting from T4, the partitioner stops double-partitioning and switches to the new partitioning function.

We use the atomic protocol when changing the partitioning function. Changing the partitioning
function possibly a�ects all partitions. In order to guarantee the correctness of results, there are two
main requirements: i) all partition operators must change the partitioning function at the same time and
ii) downstream operators must ensure the consistency between the data partitioned w.r.t. new and old
partitioning functions. To achieve the first requirement, we use the atomic 3-phase protocol. To achieve
the second requirement, we use a custom join strategy in which we avoid to join old-partitioned and
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Figure 5.15: Join reordering

new-partitioned data. Instead, we perform double-partitioning and ensure that any joined two tuples are
partitioned w.r.t. the same partitioning function. We apply the similar technique, mentioned above, when
query groups are changed.

5.6.4 Join Reordering

Suppose at time T1D, the optimizer triggers to change the QEP of Q2 from (VonVvID=W.vIDW)
onW.usrID=C.usrIDC to VonVvID=W.vID(WonW.usrID=C.usrIDC). Figure 5.15 shows the main idea behind
reordering joins. At time T1, the job manager pushes the changelog marker via the non-atomic protocol.
The marker passes through the partitioner at time T2. The marker informs the partitioner to partition
based on W.usrID, instead of W.vID. At time T3, the changelog marker arrives at the first join operator.
Having received the changelog, the join operator emits the join result, if any, and acks to the job manager.
The job manager then i) pauses the join operator and ii) unsubscribes it from stream V. At time T4, the
marker arrives at the second join operator. Similarly, the second join operator emits the join result, if any.
It informs the job manager about the successful emission of results. The job manager pauses the operator
and unsubscribes it from input channels. Afterwards, the second join operator switches its state with the
upstream join operator. Finally, the job manager subscribes both join operators to the modified input
channels and resumes computation.

We use the non-atomic protocol for join reordering. The reason is that join reordering is performed in
all partitions, independently. Assume that S1, S2, and S3 are streams, W denotes window length, WS
and WE are window start and end timestamps, and T1 and T2 are timestamps in which the changelog
arrives at the first and the second window. Figure 5.16 shows the formal definition of the join reordering.
When the changelog arrives at the first join operator, the intermediate join result (IR1 in Figure 5.16) is
computed and emitted. At this point, AJoin switches the window states of S1 and S3. Then, unjoined
parts of S3 and S2 are joined (IR2 in Figure 5.16). Although IR3 is included in IR1, IR3 is joined with
S1[T1,WE] in the final phase; therefore, the result is not a duplication. Finally, AJoin combines all
intermediate results to the final output (R in Figure 5.16), which is correct and does not include any
duplicated data.
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1 //QEP = (S1 on S2) on S3 WINDOW =[WS , WE]

2 // Assume are windows of S1 , S2 , and S3 , respectively

3 IR1 = (S1[WS ,T1] on S2[WS ,T1]) on S3[WS ,T2],

4 // REORDER S1 with S3 with their window states

5 //QEP = (S3 on S2) on S1 WINDOW =[WS , WE]

6 IR2 = S3[WS ,T2]onS2[T1,WE]

t
S3[T2 ,WE]onS2[WS,WE],

+

7 IR3 = S3[WS ,T2]onS2[WS,T1],

8 R = IR2 on S1[WS ,WE]

t
IR3 on S1[T1 ,WE]

t
IR1

9 = S1[WS, WE] on S2[WS, WE] on S3[WS , WE]

10

+ + +

Figure 5.16: Formal definition of join reordering. The black, blue, and red boxes represent the windows of
S1, S2, and S3. Filled boxes mean that the respective portion of the boxes are joined.

5.7 Experiments

5.7.1 Experimental Design

Our benchmarking framework consists of a distributed driver and two SUTs: Apache Flink v1.7.2 and
AJoin. The driver maintains two queues: one for stream tuples and one for user requests (query creation
or deletion). The tuple queue receives data from tuple generators inside the driver. The driver generates
tuples at maximum sustainable throughout [61]. Tuple creation time is appended to each stream tuple
as event-time information. A SUT pulls tuples from the data queue with the highest throughput it can
process. So, the longer the tuple stays in the queue, the higher its event-time latency. The working
principle of the user request queue is similar to the tuple queue.

The input tuples inside the driver are pulled by the SUT. If the SUT exhibits backpressure, it
automatically reduces the pull rate. Contrary to data tuples, user requests are periodically pushed to the
client module of the SUT. The SUT acks to the driver, after receiving the user request. If the ack timeout
is exceeded or every subsequent ack duration keeps increasing, then the SUT cannot sustain the given
query throughput. Similarly, if there is an infinite backpressure, then the SUT cannot sustain the given
workload. In these cases, the driver terminates the experiment and tests the SUT again with a lower
query and data throughput. We adopt the workloads from Chapter 4.

5.7.2 Metrics and Data Generation

Query similarity shows the similarity between the generated query and the pattern query. Equation
5.3 shows the calculation of the query similarity. To evaluate the similarity between a query Q (e.g.
AonA.a=B.aB) and the pattern query PQ (e.g. AonA.a=B.bB), we i) find the number of the common sources
(ComS) between Q and PQ (A and B), ii) find the number of the common sources with common join
attributes (ComSJA) between Q and PQ (only A.a), and iii) divide the multiplication of the two (2*1)
with square of all sources (AllS) in PQ (22).

Similarity(ComS,ComSJA,AllS)=ComS * ComSJA
(AllS)2

(5.3)
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1 SELECT *

2 FROM S1,S2 ,...,Sn WINDOW =[1|2|3|] sec

3 WHERE S1.[JA1] = S2.[JA2] AND
4 S2.[JA3] = S3.[JA4] AND
5 ...

6 Sn -1.[JAj≠1] = Sn.[JAj]

7 AND
8 S1.[SA1] [=|>|<|>=|<=] [FV1] AND
9 S2.[SA2] [=|>|<|>=|<=] [FV2] AND

10 ...

11 Sn.[SAn] [=|>|<|>=|<=] [FVn] AND

Figure 5.17: Query template used in our experiments. Sn[i] means ith attribute of stream n. JAi (join
attribute) and SAi (selection attribute) (0 Æ JAi,SAi<|6|) are random variables (e.g., Sn[SAi] is SAi

th

attribute of stream Sn). FVi (filtering value) is a randomly assigned value used to filter streams.

To generate query Q with n% similarity with PQ, we apply the following approach. Assume that n is
75% and PQ is AonA.a=B.b1BonB.b2=C.cC.

1. We randomly select ComS, which is between 1 and AllS (e.g., ComS=2).

2. Given ComS=2 and AllS=3, we calculate ComSJA from Equation 5.3. If a stream is a source
stream, it is partitioned by the join attribute of the downstream join operator. If a stream is an
intermediate result, two join operators a�ect the sharing possibility of this stream: the upstream join
operators (how the stream was partitioned) and the downstream join operator (how the stream will
be partitioned). Therefore, each stream can be a�ected by maximum of two partitioning attributes.
If ComSJA number of join attributes cannot be used with ComS number of sources (e.g., 1 stream
source can be a�ected by maximum of 2 join attributes), then we increase ComS by one and repeat
this step.

3. We select ComS number of random stream sources from PQ, such that these stream sources are
joined with each other with a join predicate and not via cross-product (e.g., A◊C is not acceptable).
Similarly, we select random ComSJA number of join attributes from the selected sources.

Figure 5.17 shows a query template for join query generation. For each stream source, we add a
selection predicate. After filtering, we join stream sources based on randomly selected join attributes. All
attributes of the data tuples can be used as a join attribute. The window length of the generated query is
either 1, 2, or 3 seconds. We perform window duration, selection predicate, and join predicate assignment
in a uniform manner.

Each data tuple features 6 attributes. Each attribute of a tuple is generated as a random uniform
variable between 0 and ATR_MAX. We set di�erent seed values for data generation per each stream
source. We use the Java Random class for uniform data generation. Throughout our experiments, we set
ATR_MAX to be 500. The data generation speed for all stream sources is equal.

5.7.3 Workload

Figure 5.18 shows the two workload scenarios we investigate in our experiments. The first workload
scenario (SC1), shown in Figure 5.18a, is applicable when a user activity is higher on specific time
periods. Also, in this workload scenario, users execute long-running queries. Figure 5.18b shows the
second workload scenario (SC2). The second workload scenario is relevant for fluctuating workloads.
Modern SPEs cannot execute ad-hoc stream queries. Therefore, there is no industrial workload for ad-hoc
stream query processing. Therefore, we use the workload used in Chapter 4, which is similar to cloud
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Figure 5.18: Two scenarios for ad-hoc query processing environments

(a) AJoin (b) AStream, Spark, and Flink

Figure 5.19: Overall data throughput of AJoin, AStream, Spark, and Flink with 1, 5, 20, 100, and 500
parallel queries on 4- and 8-node cluster configurations. qp at the legend means query parallelism.

workloads [126, 127, 128, 129, 130, 131]. Nevertheless, the design of AJoin is generic and not specific to
the workloads shown in Figure 5.18.

5.7.4 Setup

We conduct experiments in 4- and 8-node cluster configurations. Each node features 16-core Intel Xeon
CPU (E5620 2.40GHz) and 48 GB main memory. We configure the batch interval of queries (in the client
module) to be 1 second and ack timeout is 15 seconds, as these configurations are the most suitable for
our workloads. The latency threshold for scaling up and out is 5 seconds. The threshold is derived from
the latency-aware elastic scaling strategy for SPEs [132]. We measure the sustainable performance of
the SUTs [61] to detect if the latency spike is due to backpressure or unsustainable workload. If the
latency value is higher than a given threshold because the system cannot sustain the workload, then AJoin
scales up or out. Each created query in AJoin features this threshold value. For simplicity, we set the
same threshold value for all queries. However, the overall methodology remains the same with di�erent
threshold values for each query.

5.7.5 Scalability

Figure 5.19 shows the impact of scalability on the performance of the SUTs. All the queries are submitted
to the SUTs at compile-time. The queries are 2-way joins and have 50% query similarity. For this
experiment, we remove selection predicates from input queries to measure the performance of pure join
operation. We can observe that the performance of all SUTs increases with more resources. Also, with
more parallel queries, the overall data throughput of AJoin increases dramatically. The reason is that
sharing opportunities increase with more parallel queries.

The throughput of AStream is significantly lower than AJoin. The reason is that AStream performs
scan, data, and computation sharing if the input queries have common join predicate. Queries with
di�erent join predicates are deployed as separate stream jobs. The computation sharing in AStream is
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(a) Tuple bu�er (b) Index bu�er

Figure 5.20: Bu�er space used for tuples and indexes inside a 1-second bucket

not always beneficial (e.g., Figure 5.7). Because AJoin supports cost-based optimization, in addition to
rule-based optimization, it groups queries in query groups and shares the data and computation if the
sharing is beneficial. AStream supports static QEP. Each query eagerly utilizes all available resources.
Also, AStream utilizes nested-loop joins.

We execute Spark with hash join implementation with the Catalyst optimizer [65]. With multiple
queries, submitted at compile-time, the optimizer shares common subqueries, such as joins with the same
join predicate. The sharing is possible because there is no selection predicate. For queries with selection
predicates, Spark cannot share the computation and data. For joins with di�erent join predicates, Spark
deploys a new QEP. Also, Spark does not utilize late materialization. The hashing phase in Spark is
blocking. It uses a blocking stage-oriented architecture.

AJoin performs better than AStream, Spark, and Flink even with single query setups. The reason
is the join implementation of AJoin. AJoin uses not only data parallelism (like AStream, Spark, and
Flink) but also pipeline parallelism for the join operation. The join operator in AStream, Spark, and
Flink remains idle and bu�ers input tuples until the window is triggered. AStream and Flink perform
nested-loop joins after the window is triggered. AJoin performs windowing in the source operator. While
the tuples are bu�ered, they are indexed on-the-fly. Therefore the load of join operator is lower in AJoin,
as it performs the set-intersection operation. After the join is performed, AStream, Spark, and Flink
create many new data objects. These new objects cause extensive heap memory usage. AJoin reuses
existing objects, keeps them un-joined (late materialization), and performs full materialization at the sink
operator. Because the data tuples are indexed, AJoin avoids to iterate all the data elements while joining
them, but only indexes. Also, at the partitioning phase, AJoin iterates over indexes to partition a set of
tuples with the same index at once, rather than iterating over each data tuple. Di�erent from Flink, AJoin
performs incremental join computation. Quantifying the impact of each component (e.g., indexing, grace
join usage, late materialization, object reuse, task-parallelism, etc) stated above, is nontrivial because
these components function as an atomic unit. If we detach one component (e.g., indexing), then the whole
join implementation would fail to execute. However, there is a significant improvement in throughput
from 0.1 M t/s in Flink to 2.04 M t/s in AJoin.

Figure 5.20 shows the space used to bu�er tuples and indexes in AJoin. With more queries, AJoin
bu�ers more tuples and indexes. However, AJoin shares tuples among di�erent queries and avoids new
object creation and copy. The bu�er size increases more for indexes than for tuples. The reason is that
each tuple might be reused by di�erent indexes. In this figure, the key space is between 0 and 500. When
we increase the key space in the orders of millions, the index bu�er space also increases significantly.
Although this increase did not cause significant overhead in our setup (48GB memory per node), with
low-memory setups and with very large key space, index usage causes significant overhead for AJoin.
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Figure 5.21: The e�ect of the number of distinct keys in stream sources and the selectivity of selection
operators on the performance of AJoin, AStream, Spark, and Flink. Values on the x-axis show the selectivity
of selection operators.

5.7.6 Distinct Keys

Figure 5.21 shows the e�ect of distinct keys and the selectivity of selection predicates on the performance
of the SUTs. Given that the data throughput is constant, with less distinct keys Flink and AStream
output more tuples as a result of the cross product. This leads to an increase in data, computation,
copy, serialization, and deserialization cost. With more distinct keys the performance of AJoin decreases,
because AJoin cannot benefit from the late materialization. At the same time, the performance of Flink
and AStream increases, because it performs fewer cross products and data copy. As the number of distinct
keys increases, the throughput of Spark first increases then decreases slowly. The reason is that Spark
utilizes hash join. With more keys, maintaining the hash table in memory becomes costly.

As the selectivity of the selection operator increases, the performance of all SUTs decreases. The
decrease is steep in Flink and AStream. The reason is that the performance of the low-selective selection
operator dominates the overall throughput. When the selectivity increases, data copy and ine�cient join
implementation become the bottleneck for the whole QEP.

The e�ect of the selectivity on Spark is more stable than other systems. In other words, as the
selection operator filters more tuples, the overall performance of Spark does not exhibit an abrupt increase.
Although Spark utilizes a hash join implementation, it adopts a stage-oriented mini-batch processing
model. For example, hashing and filtering are separate stages of the job, which operate on the whole RDD.
The subsequent stage cannot be started if all the parent stages are not finished. AJoin, AStream, and
Flink, however, perform a tuple-at-a-time processing model. Therefore, the throughput performance of
these systems is mainly dominated by the performance of filtering operators, especially with low-selectivity
selection operators. Also, Spark’s hash join implementation includes a blocking phase (hashing). Flink
and AStream, on the other hand, perform a nested-loop join, which performs better with less data (after
the filtering phase).

5.7.7 Dynamicity

5.7.7.1 Latency

In this section, we create and delete queries in an ad-hoc manner. Figure 5.22 shows the event-time latency
of stream tuples for SC1. Since Flink cannot sustain ad-hoc query workloads, we show its event-time with
a single query. During our experiments, we choose the selectivity of filter operators to be approximately
0.5. Although event-time latency of Flink is comparable with AJoin, the data throughput is significantly
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Figure 5.22: Average event-time latency of stream tuples with min and max boundaries for SC1

Figure 5.23: Deployment latency for SC1. iq/s jqp indicates that i queries per second were created until
the query parallelism is j.

less than AJoin (Figure 5.19). The error bars in the figure denote the maximum and minimum latency of
tuples during the experiment. In SPEs the latency of tuples might fluctuate due to backpressure, bu�er
size, garbage collection, etc. [61]. Therefore, we measure the average latency of the tuples.

The event-time latency increases with 3-, 4-, and 5-way join queries. The reason is that a streaming
tuple traverses through more operators in the QEP. As the query throughput increases, so does the gap
between latency boundaries. The reason is that AJoin performs runtime optimizations, which result in
high latencies for some tuples. However, these high latencies can be regarded as outliers, because of much
lower average latency.

The overall picture for event-time latency is similar for SC2. The only di�erence is that the average
latency is lower and latency fluctuations are wider than SC1. The reason is that in SC2, the average
number of running queries are less than SC1, which results in lower average event-time latency. The query
throughput is higher in SC2, which results in more fluctuations in event-time latency.

Figure 5.23 shows the deployment latency for SC1 in AJoin. The experiment is executed in a 4-node
cluster. The query similarity again is set to 50%. The query deployment latency for 1qs 20qp (create one
query per second until there are 20 parallel queries) is higher than 10qs 100qp with 2-way joins. The
reason is that query batch time is one second, meaning user requests submitted in the last second are
batched and sent to the SUT. However, with 3- and 4-way joins, the overhead of on-the-fly QEP changes
also contributes to query deployment latency.

5.7.7.2 Breakdown

Figure 5.24 shows a breakdown of the overhead by the AJoin components. We initialize AJoin with
a 2-node cluster configuration and enable it to utilize up to 25 nodes. The overhead is based on the
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Figure 5.24: Breakdown of AJoin components in terms of percentage for SC1

event-time latency of stream tuples. In this experiment, we ingest a special tuple to the QEP every second.
Every component shown in Figure 5.24 logs its latency contribution to the tuple.

Note that the overhead of source, join, and materialization components are similar. This leads to a
higher data throughput in the QEP. As the query throughput increases, the proportional overhead of
horizontal scaling increases. The reason is that the optimizer eagerly shares the biggest subquery of a
created query and eagerly deploys the remaining part of the query. Although the 3-phase protocol avoids
stopping the QEP, it also has an impact on the overall latency. With 3-way and 4-way joins, the cost of
query pipelining and join reordering also increases. With more join operators in a query, subquery sharing
opportunities are high. So, the optimizer frequently pipelines the part of the newly created query to the
existing query. Also, we can see that materialization is one of the major components causing latency.
The reason is that tuples have to be fully materialized, copied, serialized, and sent to di�erent physical
output channels. We notice that similar overhead of source, join, and materialization leads to a higher
data throughput (e.g., the throughput of 2-way is higher than others). The reason is that when n (n-way
join) increases, new stream sources, join operators, and sink operators are deployed. Therefore, the overall
overhead for these operators remains stable. The overhead of the optimizer also increases as n (n-way
join) gets higher and as query throughput increases. The reason is that the sharing opportunities increase
with more queries and with 3- and more n-way joins.

5.7.7.3 Throughput

Figure 5.25 shows the e�ect of n-way joins, query groups, and query similarity to the performance of
the SUTs. We show the performance improvement of AJoin when submitting queries at compile-time
above the dashed lines in the figure. As n increases in n-way joins, the throughput of AJoin drops (Figure
5.25a). The performance drop is sharp from 2-way join to 3-way join. The reason is that 3- and more way
joins benefit from the late materialization more. Also, the performance di�erence between ad-hoc and
compile-time query processing increases as the query throughput and n increase.

Figure 5.25b shows the throughput of AStream, Spark, and Flink with n-way join queries. Because of
the e�cient join implementation, Spark performs better than other SUTs with single query execution.
The performance of Flink and AStream decreases with more join operators. In some 4- and 5-way join
experiments, Flink and AStream were stuck and remained unresponsive. The reason is that each join
operator creates new objects in memory, which leads to intensive, CPU, network usage and garbage
collection stalls. While Spark also performs data copy, its Catalyst optimizer e�ciently utilizes on-heap
and o�-heap memory to reduce the e�ect of data copy on the performance.
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(a) Throughput of
AJoin with
n-way joins

(b) Throughput of
AStream, Spark, and Flink
with n-way joins

(c) Throughput of
AJoin with di�erent
query groups

(d) Throughput of AJoin and AStream with
di�erent query similarities

Figure 5.25: Throughput measurements for AJoin, AStream, Spark, and Flink. +P% above the dashed lines
denote that the throughput increases by P% when queries are submitted at compile-time.

Figure 5.25c shows the e�ect of the number of query groups on the performance of AJoin. With more
query groups the throughput of AJoin decreases. However, the decreasing speed slows down gradually.
Although there are less sharing opportunities with more query groups, updating the QEP becomes cheaper
(as a result of incremental computation). The incremental computation also leads to a decrease in the
overhead of executing queries ad-hoc.

Figure 5.25d shows the e�ect of query similarity on the performance of the SUTs. Both AStream and
AJoin perform better with more similar queries. However, the performance increase is higher in AJoin.
AStream lacks all the runtime optimization techniques AJoin features. As a result, AStream shares queries
only with the same structure (e.g., 2-way joins can be shared only with 2-way joins) and the same join
predicates. The e�ect of executing queries in an ad-hoc manner decreases as the query similarity increases.
The overall picture in SC2 is similar with SC1.

5.7.7.4 Impact of Each Component

Figure 5.26 shows the impact of AJoin’s optimization components on the performance. In this experiment,
we disable one optimization component (e.g., join reordering) and measure the performance drop. When
the number of join operations in a query increases, the impact of join reordering and query pipelining also
increase. Also, with more query throughput, the optimizer shares input queries aggressively. Therefore,
the impact of the query pipelining increases with higher query throughput. As the number of query
groups increases, the impact of the join reordering optimization decreases because of the drop in sharing
opportunities. This also leads to the extensive use of scaling out and in. When all queries are dissimilar,
the join reordering and query pipelining have zero impact on overall execution. With more similar queries,
the e�ect of other components, especially the join reordering component, increases.
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Figure 5.26: Impact of AJoin components in terms of percentage

(a) Impact of data sharing and query-set payload
on the throughput of AJoin and AStream

(b) Impact of the latency threshold value on the
throughput of AJoin

Figure 5.27: Cost of data sharing and the impact of the latency threshold value with 3-way join queries

The overall picture is similar in SC2. The most noticeable di�erence is that the impact of scaling out
and in is less, and the impact of join reordering is more. The execution time and the query throughput in
SC1 are higher than SC2. In SC2, queries are not only created but also deleted with lower throughput.
This leads to a higher impact on join reordering.

5.7.7.5 Cost of Sharing

Figure 5.27a shows the performance of AStream and AJoin with four input streams: 5%, 25%, 50%,
and 75% shared. For example, 50% shared data source means that tuples are shared among 50% of all
queries. We omit experiments with 0% shared data source, as in this scenario all the data tuples are
filtered and no join operation is performed. We perform this experiment with a workload suitable for
AStream (i.e., all join queries have the same join predicate and the same number of join operators) and
disable the dynamicity property (except query grouping) of AJoin. This setup enables us to measure the
cost of sharing and query-set payload of AStream and AJoin. As the proportion of shared data decreases,
the performance gap between AStream and AJoin increases. The reason is that AJoin performs query
grouping that leads to an improved performance (Figure 5.7). The impact of the query grouping is more
evident when the proportion of shared data is small.
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Figure 5.28: Impact of the threshold value of query reoptimization on the performance of AJoin

5.7.7.6 Impact of the Latency Threshold Value

Figure 5.27b shows the throughput of AJoin with di�erent latency threshold values. The latency threshold
value, which is 5 seconds in our experiments, needs to be configured carefully. When it is too low (3
seconds in Figure 5.27b), we experience an overhead for frequent optimizations. When it is too high (24
seconds in Figure 5.27b), there is a loss in optimization potential.

5.7.7.7 Impact of the Query Reoptimization Threshold Value

If the number of created and deleted queries exceeds the threshold value of query reoptimization, the
optimizer computes a new plan (including the query groups) holistically instead of incrementally. Figure
5.28 shows the impact of the threshold value on the performance of AJoin. When the threshold value is
low (20% and 35%), we experience an overhead for frequent optimizations. When it is high (65% and
80%), there is a loss in optimization potential.

5.8 Conclusion
In this chapter we presented AJoin, an ad-hoc stream join processing engine. We developed AJoin based
on two main concepts: (1) E�cient distributed join architecture: AJoin features pipeline-parallel join
architecture. This architecture utilizes late materialization, which significantly reduces the amount of
intermediate results between subsequent join operators; (2) Dynamic query processing: AJoin features
an optimizer, which reoptimizes ad-hoc stream queries periodically at runtime, without stopping the
QEP. Also, the data processing layer supports dynamicity, such as vertical and horizontal scaling and join
reordering;

We benchmarked AJoin, AStream, Spark, and Flink. When all the queries were submitted at compile-
time, AJoin outperformed Flink by orders of magnitude. With single query workloads, AJoin also
outperformed AStream, Spark, and Flink. With more join operators in a query (3-, 4-, 5≠way joins)
the performance gap between AJoin and the other systems even increased. With ad-hoc stream query
workloads, Flink and Spark could not sustain the workload, and AStream’s performance was less than
AJoin’s.
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6
Additional Contributions

This chapter outlines additional research contributions which have been made by the author while working
on this thesis. Although these additional contributions, which are listed below, are not part of the thesis
contents, they are closely related to the thesis topic.

• Bonaventura Del Monte, Jeyhun Karimov, Alireza Rezaei Mahdiraji, Tilmann Rabl, Volker Markl,
Harry Xuegang Huang, Christian Thomsen.
PROTEUS: Scalable online machine learning for predictive analytics and real-time interactive
visualization.
In Proceedings of the 1st International Workshop on Big Data Management in European Projects
(EuroPro) 2017.

• Jeyhun Karimov, Tilmann Rabl, Volker Markl.
PolyBench: The First Benchmark for Polystores.
In Proceedings of the Technology Conference on Performance Evaluation and Benchmarking (TPCTC)
2018.

• Ste�en Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel Renz, Jonas
Traub, Sebastian Breß, Tilmann Rabl, Volker Markl.
Analyzing E�cient Stream Processing on Modern Hardware.
In Proceedings of the International Conference on Very Large Data Bases (PVLDB), 2019.

In the paper PROTEUS: Scalable online machine learning for predictive analytics and real-time
interactive visualization, we design, develop, and provide an open-source and ready-to-use big data
software architecture. The architecture is able to handle extremely large historical data and data streams
and supports online machine learning predictive analytics and real-time interactive visualization. The
overall evaluation of PROTEUS is carried out using a real industrial scenario.

Modern business intelligence requires data processing not only across a huge variety of domains but
also across di�erent paradigms, such as relational, stream, and graph models. This variety is a challenge
for existing systems that typically only support a single or few di�erent data models. Polystores were
proposed as a solution for this challenge and received wide attention both in academia and in industry.
These are systems that integrate di�erent specialized data processing engines to enable fast processing of
a large variety of data models. Yet, there is no standard to assess the performance of polystores. In the
paper PolyBench: The First Benchmark for Polystores we develop the first benchmark for polystores. To
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capture the flexibility of polystores, we focus on high level features in order to enable an execution of our
benchmark suite on a large set of polystore solutions.

In the paper Analyzing E�cient Stream Processing on Modern Hardware [14], we conduct an extensive
experimental analysis of current SPEs and SPE design alternatives optimized for modern hardware.
We reveal potential bottlenecks of modern SPEs and show that they do not exploit the full power of
current and emerging hardware trends, such as multi-core processors and high-speed networks. We
propose a set of design changes to the common architecture of SPEs to scale-up on modern hardware.
Our experimental results show that the single-node throughput can be increased by up to two orders of
magnitude compared to state-of-the-art SPEs by applying specialized code generation, fusing operators,
batch-style parallelization strategies, and optimized windowing. This speedup allows for deploying typical
streaming applications on a single or a few nodes instead of large clusters.
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This thesis establishes fundamentals for ad-hoc stream query processing. Also, it lays the groundwork
for objectively evaluating SPEs. Objective and realistic evaluation of SPEs is essential not only for
ad-hoc stream query processing but also for any system analysis procedure. The major challenges and
contributions in this thesis follow a general-to-specific pattern. First, we analyze current challenges in
benchmarking SPEs. We propose the first benchmarking framework design that i) is able to compute
the latency and throughput for stateful streaming operators, ii) separates the SUT and the test driver
completely, and iii) measures the sustainable performance of SPEs. Second, we analyze modern SPEs
with a new workload, i.e., with ad-hoc stream queries. Realising that the modern SPEs are not capable of
executing ad-hoc stream queries, we propose the first ad-hoc SPE that iv) can be implemented as a a
composable layer on top of any SPE, v) is consistent, and vi) is highly performant. Third, we further
explore ad-hoc stream join query processing and discover the two main limitations: missed optimization
potential and dynamicity. Our solution overcomes the limitations above by adopting vii) new join
operator structure that enables not only data parallelism but also task parallelism and viii) dynamic
query processing techniques. Our solution exhibits comparable performance with single-query workloads
when compared with baselines. With ad-hoc stream queries, our solution always outperforms baselines.

Future Research
This thesis lays the foundation for future research in several directions. In Chapter 3 we brought a new
perspective to benchmarking SPEs. Also, we showed that existing SPE evaluation techniques might lead
to unrealistic results. A future research goal is to extend our benchmarking framework along the lines of
TPC database benchmarks. The main intuition is to define both a workload of queries that should be
concurrently executed and then base the benchmark on a small number of operators that are part of that
workload.

Chapter 5 focuses on optimization and dynamicity ad-hoc join stream queries. A future research goal
is to extend AJoin to support not only stream join queries but also stream queries consisting of arbitrary
stream operators. Also, there are many use-cases which unify stream and batch data computation, such as
enriching stream tuples with lookups from historical data. Supporting ad-hoc queries for these use-cases
is yet another future work.
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Our contributions in this thesis are based on a shared-nothing distributed architecture. However,
with the advance of Internet of Things, the computation environment is becoming rather heterogenous.
Fog computing, which is an architecture that uses edge devices to carry out a substantial amount of
computation, storage, communication locally and routed over the internet backbone, is one example
architecture that supports Internet of Things. A future research goal is to support ad-hoc queries on IoT
databases, which enables diverse new opportunities for novel query optimization techniques.
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