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Abstract

The spectral behavior of classes of structured regular matrix pencils is examined
under certain structure-preserving rank-2 perturbations. For T -alternating, palin-
dromic, and skew-symmetric matrix pencils we observe the following effects at each
eigenvalue λ under a generic, structure-preserving rank-2 perturbation: 1) The largest
two Jordan blocks at λ are destroyed. 2) If hereby the eigenvalue pairing imposed
by the structure is violated, also the largest remaining Jordan block at λ will grow
in size by one. 3) If λ is a single (double) eigenvalue of the perturbating pencil, one
(two) new Jordan blocks of size one will be created at λ.

Key words. Matrix pencil, alternating matrix pencil, palindromic matrix pencil, skew-
symmetric matrix pencil, perturbation theory, rank two perturbation, generic perturbation.
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1 Introduction

Rank-1 perturbations of unstructured matrices were studied in [5, 13, 14, 15, 16] and
the following result was established: When a matrix is subjected to a generic rank-1
perturbation, its largest Jordan block at each eigenvalue is destroyed.

Then, various classes of matrices that are structured with respect to some indefinite
inner product were investigated under structure-preserving rank-1 perturbations in [4, 9,
10, 11, 12]. It was observed that in some cases, not only the largest Jordan block at each
eigenvalue was destroyed under perturbation, but that also the second largest Jordan block
(i.e., the largest remaining block) would grow in size by one.

Then again, unstructured regular matrix pencils were studied under generic low-rank
perturbations in [3]: It was observed that at each eigenvalue of the pencil, not only certain
blocks will be destroyed, but also some new blocks of size one will be created. Now, the
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motivation of this paper is to look into similar results for matrix pencils that have a certain
symmetry structure and low-rank perturbations that preserve this structure.

We will mainly focus on T -alternating matrix pencils (E,A) ∈ Cn,n×Cn,n (identifying
the matrix pair (E,A) with the pencil λE−A whenever convenient), i.e., either E is skew-
symmetric and A is symmetric − then (E,A) is called T -even − or E is symmetric and
A is skew-symmetric − then (E,A) is called T -odd. It is well-known that the eigenvalues
of T -alternating matrix pencils occur in pairs (λ,−λ) and that at 0 and ∞ (where this
pairing degenerates), the sizes of their Jordan blocks have to fulfill certain conditions (see
Theorem 2.5 and also [18, 6]). Some applications that lead to these and other types of
structured matrix pencils are presented in [1].

For unstructured matrix pencils (E,A), a rank-1 perturbation will in general perturb
both E and A, as such perturbations can, e.g., have the form (βuvT , αuvT ). However,
the situation is different for T -alternating matrix pencils: If we consider a T -even rank-1
perturbation (∆E,∆A), then ∆E must be skew-symmetric and thus have even rank, and
at the same time its rank is less than or equal to one, from which we obtain ∆E = 0.
Then, ∆A will have rank one and be symmetric, leading to rank-1 perturbations of the
form (0, uuT ) and similarly to (uuT , 0) in the T -odd case.

The generic spectral behavior of T -alternating matrix pencils (E,A) ∈ Cn,n×Cn,n under
structure-preserving rank-1 perturbations of this type was determined in [1, Theorem 3.2]
to be as follows. If (E,A) has the partial multiplicities n1 ≥ · · · ≥ nm at some (possibly

infinite) eigenvalue λ̂, the partial multiplicities of the perturbed pencil at λ̂ are obtained
by applying the following steps to the list (n1, . . . , nm):

1) Remove the largest element n1 from the list.

2) If n1 = n2 and these two largest blocks are paired, replace n2 by n2 + 1 in the list.

3) If λ̂ is an eigenvalue of the perturbation, add the new entry 1 to the end of the list.

Hereby, as mentioned previously, the situation that identical blocks are paired to one
another as in 2) does only occur if λ̂ is either 0 or ∞. Further, since the perturbation is
equal to (0, uuT ) in the T -even case and (uuT , 0) in the T -odd case, the condition in 3) is

only realized if either (E,A) is T -even and λ̂ =∞ or if (E,A) is T -odd and λ̂ = 0.
Even so, considering T -alternating perturbations where only the symmetric matrix of

the pencil is actually perturbed does not suffice to analyze general low-rank perturbations.
For example, the T -even rank-2 perturbation (uvT−vuT , 0) cannot be decomposed into the
sum of T -even rank-1 perturbations. In this paper, we will consider two different classes
of T -alternating rank-2 perturbations: First, we regard perturbations of the form

[
u v w

]  0 0 λ
0 0 −1
−λ −1 0

uTvT
wT

 or
[
u v w

] 0 0 λ
0 0 −1
λ 1 0

uTvT
wT

 ,
since they seem to be the more generic class of T -alternating rank-2 perturbations (see
Section 3).
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The other type of T -alternating rank-2 perturbations we will examine has the form[
u v

] [ 0 βλ− α
−βλ− α 0

] [
uT

vT

]
or

[
u v

] [ 0 βλ− α
βλ+ α 0

] [
uT

vT

]
.

This class of perturbations is important because in practical applications, the matrices E
and A from a matrix pencil possibly play very different roles, so that it is realistic to have
different perturbations on E and A. Hence, setting one of the parameters α or β to zero, it
is evident that perturbations of only E or A are included in the above class of perturbations,
and in particular, we can realize purely skew-symmetric rank-2 perturbations of the form
(uvT − vuT , 0) or (0, uvT − vuT ).

The next section of this paper will cover preliminary results on low-rank perturba-
tions and structured Kronecker canonical forms. In Section 3, we will then determine
the generic spectral behavior of regular, T -alternating matrix pencils under the above
structure-preserving rank-2 perturbations. In Section 4, the results from Section 3 are
shown to extend to the similarly structured palindromic matrix pencils. Eventually, in
Section 5, analogous results are derived for skew-symmetric matrix pencils followed by a
conclusion in the final section.

Throughout this paper, for square matrices X and Y (not necessarily of the same
dimension), define X ⊕ Y := diag(X, Y ) and let X⊕p := X ⊕ · · · ⊕ X (p times). We
will denote the jth unit vector in Cn by ej,n, where the second index will be omitted
whenever it is clear from the context. Also, we will denote by Jn(λ) the n×n Jordan block
corresponding to the eigenvalue λ and denote the n× n reverse identity matrix by

Rn =

 1

. .
.
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2 Preliminaries

In this paper, the following notion of genericity will be employed.

Definition 2.1 1) A set A ⊆ Cn is called algebraic if there exist finitely many polyno-
mials p1(x), . . . , pk(x), such that a ∈ A if and only if

pj(a) = 0 for j = 1, . . . , k.

2) An algebraic set A ⊆ Cn is called proper if A 6= Cn.

3) A set Ω ⊆ Cn is called generic if Cn \ Ω is contained in a proper algebraic set.

Clearly, the intersection of finitely many generic sets is again generic and for an invertible
matrix X ∈ Cn,n the set XΩ is generic if Ω ⊆ Cn is generic. Subsets of Cn,m or Cn,m×Cn,m

are called generic if they can be canonically identified with generic subsets of Cnm or C2nm,
respectively.

We continue with a lemma on generic sets that will be essential in the following sections.
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Lemma 2.2 Let B ⊆ C` not be contained in any proper algebraic subset of C`. Then,
B × Ck is not contained in any proper algebraic subset of C` × Ck.

Proof. First, we observe that the hypothesis that B is not contained in any proper algebraic
subset of C` is equivalent to the fact that for all nonzero polynomials p(x) in ` variables
there exists an x ∈ B such that p(x) 6= 0. Letting now q(x, y) be any nonzero polynomial in
`+ k variables, then the assertion is equivalent to showing that there is an (x, y) ∈ B×Ck

such that q(x, y) 6= 0.
Thus, for any such q consider the set

Γq :=
{
y ∈ Ck | q( · , y) is a nonzero polynomial

}
which is not empty (otherwise q would be constantly zero). Now, for any y ∈ Γq, by
hypothesis there exists an x ∈ B such that q(x, y) 6= 0 but (x, y) ∈ B × Ck.

2.1 Preliminary results on low-rank perturbations

In this section, we will review some preliminary results on low-rank perturbations of regular
matrix pencils. First, let us introduce the following phrase: We will say that a regular
matrix pencil has partial multiplicities that are greater than or equal to a certain list of
multiplicities, e.g., n1 ≥ · · · ≥ nk > 0, at some eigenvalue λ̂ if its partial multiplicities at
λ̂ are given by n′1 ≥ · · · ≥ n′m > 0 with m ≥ k and n′j ≥ nj for j = 1, . . . , k.

Then, the first result that we recap is the following [3, Lemma 2.1]:

Lemma 2.3 Let (E,A) ∈ Cn,n × Cn,n be regular with the partial multiplicities n1 ≥ · · · ≥
nm > 0 associated with some eigenvalue λ̂ ∈ C and let (∆E,∆A) ∈ Cn,n × Cn,n have rank
at most k. Then, if the perturbed pencil (E + ∆E,A + ∆A) is regular and k ≤ m, it has

partial multiplicities greater than or equal to (nk+1, . . . , nm) associated with λ̂.

Hereby, the rank of (∆E,∆A) means the normal rank of this pencil, i.e., the highest
rank of the matrix λ∆E−∆A for any λ ∈ C. The next property of low-rank perturbations
will frequently be used in the main sections: For all (E,A), (∆E,∆A) ∈ Cn,n × Cn,n we
have by [3, Section 1]

rank(λE − A)− rank(λ∆E −∆A) ≤ rank(λ(E + ∆E)− (A+ ∆A)) (2.1)

≤ rank(λE − A) + rank(λ∆E −∆A)

for any λ ∈ C. Therefore, if (E,A) and (E+ ∆E,A+ ∆A) are both regular, the geometric

multiplicity of (E,A) at an eigenvalue λ̂ cannot change by more than rank(λ̂∆E − ∆A)

under perturbation. Note that only the rank of λ̂∆E −∆A matters for this estimate and
that this number can be zero even for nonzero perturbations.

Lemma 2.4 Let (E,A) ∈ Cn,n × Cn,n be regular and consider a perturbation of the form

(∆E,∆A) =
[
u1 . . . uk

] (
δE, δA

) [
u1 . . . uk

]T
,

where (δE, δA) is an arbitrary but fixed (for the purpose of this lemma) k×k pencil. Then,
the following statements hold:
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1) There exists a generic set Λ ⊆ (Cn)k, so that the perturbed pencil (E+ ∆E,A+ ∆A)
is regular for all (u1, . . . , uk) ∈ Λ.

2) Let there exist a generic set Λ′ ⊆ (Cn)k such that (E + ∆E,A+ ∆A) has at least the

algebraic multiplicity a at some λ̂ ∈ C for all (u1, . . . , uk) ∈ Λ′. If (E+∆E,A+∆A) is

regular and has the algebraic multiplicity equal to a at λ̂ for one (u1, . . . , uk) ∈ (Cn)k,
this also holds on some generic subset of (Cn)k.

Proof. Regarding 1): For fixed (δE, δA), consider the polynomial

n∑
j=0

cjλ
j = det

(
λ(E + ∆E)− A−∆A

)
,

whose coefficients cj = cj(u1, . . . , uk) depend polynomially on the entries of (u1, . . . , uk).
Hence, since cj(0) 6= 0 holds for at least one j (recall that (E,A) is regular), at least one cj
is not constantly zero as a polynomial in the entries of (u1, . . . , uk). Thus, the set Λ of all
(u1, . . . , uk) ∈ (Cn)k, such that cj(u1, . . . , uk) 6= 0 for at least one j, is the desired generic
set.

Regarding 2): By hypothesis, for all (u1, . . . , uk) ∈ Λ ∩ Λ′, the perturbed pencil is
regular and we have

det
(
(λ+ λ̂)(E + ∆E)− A−∆A

)
= λaq(λ),

for a suitable polynomial q(λ), noting that the coefficient q(0) depends polynomially on
the entries of (u1, . . . , uk). For continuity reasons, this factorization even holds for all
(u1, . . . , uk) ∈ (Cn)k. Since there is one particular (u1, . . . , uk) such that q(0) 6= 0, by
definition q(0) 6= 0 is satisfied on some generic set Λ′′ ⊆ (Cn)k. Then, clearly, Λ ∩ Λ′ ∩ Λ′′

is the desired generic set.

2.2 Structured Kronecker canonical forms

In this section we briefly recap some structured Kronecker canonical forms that will be
essential in the main proofs. The following T -even Kronecker form was deduced in [18].

Theorem 2.5 (T -even Kronecker form) Let (E,A) ∈ Cn,n × Cn,n be a T -even matrix
pencil. Then, there is a nonsingular matrix X ∈ Cn,n, such that

X(E,A)XT = KI ⊕KZ ⊕KF ⊕KS ,

where

KI = I2δ1+1 ⊕ · · · ⊕ I2δ`+1 ⊕ I2ε1 ⊕ · · · ⊕ I2εm ,
KZ = Z2ρ1+1 ⊕ · · · ⊕ Z2ρr+1 ⊕Z2σ1 ⊕ · · · ⊕ Z2σs ,

KF = Fφ1 ⊕ · · · ⊕ Fφt ,
KS = Sτ1 ⊕ · · · ⊕ Sτu ,

and the blocks are given as follows:
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1) I2δj+1 is one (2δj + 1)× (2δj + 1) block corresponding to the eigenvalue ∞:

(


0

. .
.

1

. .
.

. .
.

0 1

. .
.
−1

. .
.

. .
.

0 −1


,

 1

. .
.

1

) ∈ C(2δj+1)×(2δj+1).

2) I2εj contains two 2εj × 2εj blocks corresponding to the eigenvalue ∞:

(


0

. .
.

1

. .
.

. .
.

0 1
0

. .
.
−1

. .
.

. .
.

0 −1


,



1

. .
.

1
1

. .
.

1


)
∈ C4εj×4εj .

3) Z2ρj+1 contains two (2ρj + 1)× (2ρj + 1) blocks corresponding to the eigenvalue 0:

(


1

. .
.

1
−1

. .
.

−1


,



0

. .
.

1

. .
.

. .
.

0 1
0

. .
.

1

. .
.

. .
.

0 1



)
∈ C(4ρj+2)×(4ρj+2).

4) Z2σj is one 2σj × 2σj block corresponding to the eigenvalue 0:

(


1

. .
.

1
−1

. .
.

−1


,


0

. .
.

1

. .
.

. .
.

0 1


)
∈ C2σj×2σj .
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5) Fφj contains two φj×φj blocks that correspond to the eigenvalues λj,−λj ∈ C\{0}:

(


1

. .
.

1
−1

. .
.

−1


,



λj

. .
.

1

. .
.

. .
.

λj 1
λj

. .
.

1

. .
.

. .
.

λj 1



)
∈ C2φj×2φj .

6) Sτj contains two singular blocks of dimension (τj + 1)× τj and τj × (τj + 1):

(


1
. .
.

0

1 . .
.

0 0
−1 0

. .
.

. .
.

−1 0


,



0
. .
.

1

0 . .
.

0 1
0 1

. .
.

. .
.

0 1


)
∈ C(2τj+1)×(2τj+1).

We note that there exists an analogously structured T -odd Kronecker form that will not
be needed in this paper. We refer the reader to [18] for the corresponding theorem.

The following skew-symmetric Kronecker form is also taken from [18].

Theorem 2.6 (Skew-symmetric Kronecker form) Let (E,A) ∈ Cn,n×Cn,n be a skew-
symmetric matrix pencil. Then, there is a nonsingular matrix X ∈ Cn,n, such that

X(E,A)XT = K̂I ⊕ K̂F ⊕ K̂S ,

where

K̂I = Îδ1 ⊕ · · · ⊕ Îδ` , K̂F = F̂ε1 ⊕ · · · ⊕ F̂εm , K̂S = Ŝτ1 ⊕ · · · ⊕ Ŝτu ,

and the blocks are given as follows:

1) Îδj contains two δj × δj blocks corresponding to the eigenvalue ∞:

(


0

. .
.

1

. .
.

. .
.

0 1
0

. .
.
−1

. .
.

. .
.

0 −1


,



1

. .
.

1
−1

. .
.

−1


)
∈ C2δj×2δj .
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2) F̂εj contains two εj × εj blocks corresponding to the eigenvalue λj ∈ C:

(


1

. .
.

1
−1

. .
.

−1


,



λj

. .
.

1

. .
.

. .
.

λj 1
−λj

. .
.
−1

. .
.

. .
.

−λj −1



)
∈ C2εj×2εj .

3) Ŝτj contains two singular blocks of dimension (τj + 1)× τj and τj × (τj + 1):

(


1
. .
.

0

1 . .
.

0 0
−1 0

. .
.

. .
.

−1 0


,



0
. .
.

1

0 . .
.

0 1
0 −1

. .
.

. .
.

0 −1


)
∈ C(2τj+1)×(2τj+1).

3 T-alternating low-rank perturbations

Let us now turn to rank-2 perturbations of T -alternating matrix pencils, i.e., the normal
rank of the perturbation (∆E,∆A) is prescribed to be two. First, we aim to derive a
generic T -even Kronecker form of T -even rank-2 perturbations assuming the dimension
n to be greater than two. Clearly, if (∆E,∆A) is a T -even matrix pencil with normal
rank two, then both ∆E and ∆A have rank two, i.e., the pencil will have the form (uvT −
vuT , xyT + yxT ) for certain u, v, x, y ∈ Cn.

Then, assuming the generic condition that u and v are linearly independent (otherwise
there were ∆E = 0), there must exist an invertible S ∈ Cn,n so that ST [u, v] = [e1, e2]
since this is a transformation to reduced row echelon form, i.e.,

ST (∆E,∆A)S = (e1e
T
2 − e2eT1 , x̃ỹT + ỹx̃T )

setting x̃ := STx and ỹ := STy. Now, it is a generic assumption that the third entry of ỹ
is nonzero, i.e., there exists an invertible T ∈ Cn,n so that T T ỹ = e3 and also T T [e1, e2] =
[e1, e2], so that

T TST (∆E,∆A)ST = (e1e
T
2 − e2eT1 , x̂eT3 + e3x̂

T )

setting x̂ := T T x̃. Clearly, if the normal rank of this matrix pencil shall be equal to two,
x̂ must have the form [x1, x2, 0, . . . , 0]T . But now, whenever the generic condition x1 6= 0
is satisfied, multiplying the third row and column by 1/x1 and then adding a suitable
multiple of the first row and column onto the second, we obtain the matrix pencil

(e1e
T
2 − e2eT1 , e1eT3 + e3e

T
1 ),
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whose T -even Kronecker form is given by S1 ⊕ S⊕n−30 in terms of the blocks defined in
Theorem 2.5. Since similar arguments hold in the T -odd case, a T -alternating matrix
pencil with normal rank two can generically be displayed in the form

[
u v w

]  0 0 λ
0 0 −1
−λ −1 0

uTvT
wT

 or
[
u v w

] 0 0 λ
0 0 1
λ −1 0

uTvT
wT

 (3.1)

in the T -even or T -odd case, respectively. This observation seems related to [2, Theorem
3.2] describing the generic Kronecker structure of matrix pencils with fixed rank. In par-
ticular, the generic Kronecker structure of a matrix pencil with rank one is given by one
singular block corresponding to either a left or a right minimal index one. Since the singu-
lar blocks of T -even matrix pencils come in pairs, the simplest nontrivial singular structure
that is allowed for T -even matrix pencils is the block S1, and by the above observation this
singular structure is also generic if we prescribe the normal rank to be equal to two.

On the other hand, one can consider T -alternating rank-k perturbations of the form[
ũ1 . . . ũk

] (
δE, δA

) [
ũ1 . . . ũk

]T
,

assuming that (δE, δA) is a generic T -alternating k × k pencil and that ũ1, . . . , ũk ∈ Cn

are generic vectors. Hereby, the set of T -alternating k × k pencils forms a vector space of
dimension k2, which is why we consider a subset of it to be generic if it can canonically be
identified with a generic subset of Ck2 .

In [1, Section 3], it was shown that under these conditions, the above rank-k pertur-
bation is generically the sum of both rank-1 perturbations of the form (0, uuT ) or (uuT , 0)
treated in [1] and rank-2 perturbations of the form[

u v
] [ 0 λβ − α
−λβ − α 0

] [
uT

vT

]
or

[
u v

] [ 0 λβ − α
λβ + α 0

] [
uT

vT

]
, (3.2)

in the T -even or T -odd case, respectively. In particular, considering this type of pertur-
bations is useful because setting the parameter α to zero allows us to only perturb the
skew-symmetric matrix of a T -alternating pencil (perturbations of only the symmetric
matrix were already analyzed in [1]).

Let us now consider an example of perturbations as in (3.1) that also illustrates the
main idea of the proof of Theorem 3.4.

Example 3.1 Let (E,A) ∈ Cn,n × Cn,n be a regular T -even matrix pencil that has the
partial multiplicities (6, 5, 5, 4) at the eigenvalue 0 and let (∆E,∆A) be a generic T -even
rank-2 perturbation as in (3.1).

From Lemma 2.3 follows that (E+ ∆E,A+ ∆A) has partial multiplicities greater than
or equal to (5, 4) at 0, but there cannot occur an odd number of blocks of size 5 at 0
by Theorem 2.5. Hence, the algebraic multiplicity of (E + ∆E,A + ∆A) at 0 cannot fall
below 10, and in fact (for details see the proof of Theorem 3.4) it is generically equal to
10. Therefore, the generic partial multiplicities can be either (6, 4) or (5, 5).
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In order to decide between the possible partial multiplicities (6, 4) and (5, 5) at 0, we
consider a further T -even rank-1 perturbation (0, xxT ) of (E+∆E,A+∆A): By Lemma 2.3,
for any x so that (E + ∆E,A + ∆A + xxT ) is regular, its partial multiplicities at 0 are
given by

(6, 5, 5, 4)
rank-2−−−−−−→ (6, 4)

rank-1−−−−−−→≥ (4) or

(6, 5, 5, 4)
rank-2−−−−−−→ (5, 5)

rank-1−−−−−−→≥ (5),

where ≥ (k) stands for ‘greater than or equal to k.’ Then again, a perturbation of the form
(∆E,∆A + xxT ) is a T -even rank-3 perturbation, that we will show in Subsection 3.1 to
generically produce the following partial multiplicities at 0:

(6, 5, 5, 4)
rank-3−−−−−−−−−−−−−−−−−−−−→ (4).

It is now intuitive (for details see again the proof of Theorem 3.4) that this leads to a
contradiction if (6, 4) are not the generic partial multiplicities of (E + ∆E,A+ ∆A) at 0.

This can be interpreted as follows: The multiplicity sequences (6, 4) and (5, 5) do not
differ in geometric or algebraic multiplicity − even so, the situation (6, 4) is ‘more sensitive’
to future perturbation, which is why it might generically be created.

Example 3.2 Let (E,A) ∈ Cn,n × Cn,n be a regular T -even matrix pencil that has the
partial multiplicities (4, 1, 1) at the eigenvalue 0 and let (∆E,∆A) be a generic T -even
rank-2 perturbation as in (3.1). As in Example 3.1, we obtain that (E + ∆E,A + ∆A)
has multiplicities greater than or equal to (1) at 0, but again, there cannot occur an odd
number of blocks of size 1 at 0. Thus, the possible partial multiplicities are (2) and (1, 1),
whereby the difference to Example 3.1 is that (1, 1) includes one new block being created
instead of an existing one growing in size.

Now, from Examples 3.1 and 3.2 we conclude that to get the full picture on T -even
rank-2 perturbations, we need some information on T -even rank-3 perturbations, which is
why we dedicate the next subsection to studying them.

3.1 T-even rank-3 perturbations

Let us now prove the rank-3 perturbation result that will be essential for our main theorem.

Theorem 3.3 Let (E,A) ∈ Cn,n×Cn,n be regular and T -even with the partial multiplicities

n1 ≥ · · · ≥ nm > 0 associated with some eigenvalue λ̂. Also, consider a T -even rank-3
perturbation of the form (∆E,∆A+xxT ), where (∆E,∆A) is a T -even rank-2 perturbation.

1) If λ̂ = 0, n1 is even, and n2 = n3 is odd, the following statements hold:
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(a) If (∆E,∆A) has the form (3.2), then for each (α, β) ∈ (C×C) \ {0} there is a
generic set Ω ⊆ (Cn)3 such that for all (u, v, x) ∈ Ω, the perturbed pencil (E +
∆E,A+∆A+xxT ) is regular and has the partial multiplicities (n4, . . . , nm, 1, 1)
if α = 0 and (n4, . . . , nm) otherwise at 0.

(b) If (∆E,∆A) has the form (3.1), then there is a generic set Ω′ ⊆ (Cn)4 such that
for all (u, v, w, x) ∈ Ω′, the perturbed pencil (E+ ∆E,A+ ∆A+ xxT ) is regular
and has the partial multiplicities (n4, . . . , nm) at 0.

2) If λ̂ =∞, n1 is odd, and n2 = n3 is even, the following statements hold:

(a) If (∆E,∆A) has the form (3.2), then for each (α, β) ∈ (C×C) \ {0} there is a
generic set Ω ⊆ (Cn)3 such that for all (u, v, x) ∈ Ω, the perturbed pencil (E +
∆E,A+∆A+xxT ) is regular and has the partial multiplicities (n4, . . . , nm, 1, 1, 1)
if β = 0 and (n4, . . . , nm, 1) otherwise at ∞.

(b) If (∆E,∆A) has the form (3.1), then there is a generic set Ω′ ⊆ (Cn)4 such that
for all (u, v, w, x) ∈ Ω′, the perturbed pencil (E+ ∆E,A+ ∆A+ xxT ) is regular
and has the partial multiplicities (n4, . . . , nm, 1) at ∞.

Proof. We consider the proof of 1) since 2) is shown by analogous arguments. First, by
Lemma 2.3 and (2.1) it is clear that if the perturbed pencil (E + ∆E,A + ∆A + xxT )
is regular, it has partial multiplicities greater than or equal to the above given partial
multiplicities at λ̂ in each case.

Thus, by Lemma 2.4 it is sufficient to show that there exist particular (u, v, x) or
(u, v, w, x) in the case (1a) or (1b), respectively, so that (E + ∆E,A+ ∆A+ xxT ) has the
algebraic multiplicity n4 + · · ·+ nm + 2 if α = 0 in case (1a) and n4 + · · ·+ nm otherwise.
To construct these particular perturbations, let us in the following assume that (E,A) is

already in T -even Kronecker form as in Theorem 2.5, where the λ̂ blocks come first and
are ordered decreasingly with respect to their size.

Concerning (1a), let us regard the specific perturbation defined by u = en1+1, v =
en1+n2+1, and x = e1, since then the perturbed part of (E + ∆E,A + ∆A + xxT ) is given
by[
λ
[

0 Rn1/2
−Rn1/2 0

]
−Rn1Jn1(0)−e1eT1

]
⊕
[

0 −Rn2Jn2(−λ)+(βλ−α)e1e
T
1

−Rn2Jn2(λ)−(βλ+α)e1e
T
1 0

]
(3.3)

having the determinant
(
λn1 − (−1)n1/2

)(
λn2 + βλ+ α

)(
λn2 + βλ− α

)
.

On the other hand, in the case (1b) we consider the particular perturbation with u = 0,
v = en1+1, w = en1+n2+1 and x = e1, as then the perturbed part of (E + ∆E,A + ∆A +
xxT ) also has the form (3.3) setting β = 0 and α = 1. Clearly, since the blocks not
included in (3.3) are unchanged by these particular perturbations, we obtain in the case
that (∆E,∆A) has the form (3.2) and α = 0, that the perturbed pencil has the partial
multiplicities (n4, . . . , nm, 1, 1) at 0 and otherwise that its multiplicities at 0 are given by
(n4, . . . , nm).
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3.2 T-alternating rank-2 perturbations

Now, we are in a position to prove our main theorem on T -alternating rank-2 perturbations.
Since it will in the following be crucial, we recall that λ̂ is an eigenvalue of the singular
perturbating pencil (∆E,∆A) if the rank of λ̂∆E − ∆A is less than the normal rank of
(∆E,∆A) (which is two in (3.1) and (3.2)). In particular, the perturbation (3.1) has no
eigenvalues and (3.2) has only the eigenvalues α/β and −α/β.

Theorem 3.4 Let (E,A) ∈ Cn,n×Cn,n be regular and T -alternating with the partial mul-

tiplicities n1 ≥ · · · ≥ nm > 0 associated with an eigenvalue λ̂ and consider a structure-
preserving rank-2 perturbation (∆E,∆A). Then, the following statements hold:

1) If (∆E,∆A) has the form (3.2), then for each (α, β) ∈ (C×C)\{0} there is a generic
set Ω ⊆ (Cn)2 such that for all (u, v) ∈ Ω, the perturbed pencil (E + ∆E,A+ ∆A) is

regular and has the partial multiplicities at λ̂ as in Table 3.1.

2) If (∆E,∆A) has the form (3.1), then there is a generic set Ω′ ⊆ (Cn)3 such that
for all (u, v, w) ∈ Ω′, the perturbed pencil (E + ∆E,A + ∆A) is regular and has the

partial multiplicities at λ̂ as in Table 3.1.

Table 3.1: Rank-2 perturbations of T -alternating matrix pencils.

(∆E,∆A) eigenvalue λ̂ n1 + n2 multiplicities

λ̂ no eigenvalue of (∆E,∆A)
λ̂ ∈ {0,∞} even (n3, n4, . . . , nm)

odd (n3 + 1, n4, . . . , nm)

λ̂ ∈ C \ {0} (n3, n4, . . . , nm)

λ̂ eigenvalue of (∆E,∆A)
λ̂ ∈ {0,∞} even (n3, n4, . . . , nm, 1, 1)

odd (n3 + 1, n4, . . . , nm, 1, 1)

λ̂ ∈ C \ {0} (n3, n4, . . . , nm, 1)

Proof. It is sufficient to prove this theorem if (E,A) is T -even, since otherwise we can
consider the reverse pencil (A,E). The proof will in the following be given distinguishing

by λ̂: We will first consider the case λ̂ ∈ {0,∞} and then the case λ̂ ∈ C \ {0}.
In the remainder of this proof, let us always assume that (E,A) is already in T -even

Kronecker form as in Theorem 2.5, where the λ̂ blocks come first and are ordered decreas-
ingly with respect to their size.

Case λ̂ ∈ {0,∞}: We will tackle this proof assuming λ̂ = 0, since the other case is almost
identical. In view of the Lemmas 2.3 and 2.4, the perturbed pencil (E + ∆E,A + ∆A) is
generically regular and has partial multiplicities greater than or equal to (n3, . . . , nm) at
0. If, in addition, 0 is an eigenvalue of (∆E,∆A), it must be a double eigenvalue and we
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even obtain that these partial multiplicities are greater than or equal to (n3, . . . , nm, 1, 1)
because of (2.1). We proceed considering the following two subcases.

Subase n1 + n2 even: This case is realized if either n1, n2 are even or n1, n2 are odd. In
the latter case, as odd-sized 0 blocks occur an even number of times, we obtain n1 = n2.

Let us first consider the case that (∆E,∆A) has the form (3.2). We regard the particular
perturbation with u = e1 and v = en1+1, since then the perturbed blocks of (E + ∆E,A+
∆A) are given by λ

[
0 Rn1/2

−Rn1/2 0

]
−Rn1Jn1(0) (βλ− α)e1e

T
1

−(βλ+ α)e1e
T
1 λ

[
0 Rn2/2

−Rn2/2 0

]
−Rn2Jn2(0)

 (3.4)

or [
0 −Rn1Jn1(−λ) + (βλ− α)e1e

T
1

−Rn1Jn1(λ)− (βλ+ α)e1e
T
1 0

]
, (3.5)

depending on n1, n2 being both even or n1 = n2 being odd, respectively.
On the other hand, if (∆E,∆A) has the form (3.1), we consider a perturbation given

by u = 0, v = e1, and w = en1+1. Again, the perturbed blocks of (E + ∆E,A+ ∆A) have
the form (3.4) or (3.5), respectively, whereby β = 0 and α = 1.

As in both cases, no other blocks are affected by these particular perturbations, we
compute the algebraic multiplicity of (E+∆E,A+∆A) at 0 to be equal to n3+ · · ·+nm+2
if 0 is an eigenvalue of (∆E,∆A) and equal to n3 + · · · + nm otherwise. Therefore, by
Lemma 2.4, (E+ ∆E,A+ ∆A) is generically regular and has these algebraic multiplicities
− and hence the partial multiplicities in the first and fourth row of Table 3.1 − at 0.

Subcase n1 + n2 odd : As odd-sized 0 blocks occur an even number of times, this case
can only be realized if n1 is even and n2 is odd; then also n2 = n3 is obtained by the same
argument.

In this case, we observe that neither the partial multiplicity sequence (n3, . . . , nm) nor
(n3, . . . , nm, 1, 1) can occur at 0 in a T -even pencil as n3 is odd and they include an odd
number of chains of length n3. Thus, the algebraic multiplicity of (E + ∆E,A+ ∆A) at 0
generically has to be at least n3 + · · · + nm + 3 if 0 is an eigenvalue of (∆E,∆A) and at
least n3 + · · ·+ nm + 1 otherwise.

To show that this minimum algebraic multiplicity is generically attained, consider the
following argument. If (∆E,∆A) has the form (3.2), regard the particular perturbation
with u = e1 and v = en1+1+en1+2+en1+n2+1; then the perturbed blocks of (E+∆E,A+∆A)
are given by λ

[
0 Rn1/2

−Rn1/2 0

]
−Rn1Jn1(0) e1(e1 + e2)

T (βλ− α) e1e
T
1 (βλ− α)

(e1 + e2)e
T
1 (−βλ− α) 0 −Rn2Jn2(−λ)

e1e
T
1 (−βλ− α) −Rn2Jn2(λ) 0

 . (3.6)

The determinant of this pencil is computed in the appendix (setting the dummy elements
to x = βλ− α and y = −βλ− α) to be given by

λn1+2n2 + 2(−1)n1/2(β2λ2 − α2)λn2+1.
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Then again, if (∆E,∆A) has the form (3.1), consider a perturbation given by u = 0,
v = e1, and w = en1+1 +en1+2 +en1+n2+1. Then, the perturbed blocks of (E+∆E,A+∆A)
also have the form (3.6) with β = 0 and α = 1. Thus, in both cases, applying Lemma 2.4
yields that (E + ∆E,A + ∆A) is generically regular and has the algebraic multiplicity
n3 + · · ·+ nm + 3 if 0 is an eigenvalue of (∆E,∆A) and n3 + · · ·+ nm + 1 otherwise.

Now, in order to determine the generic partial multiplicities of (E + ∆E,A + ∆A) at
0, let us group together Jordan blocks of the same size, i.e., let

(n1, n2, n3, . . . , nm) = (s1, s2, . . . , s2︸ ︷︷ ︸
t2

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

),

then we have s1 = n1 with t1 = 1 and s2 = n2 = n3 where t2 ≥ 2 is even. Now, the partial
multiplicities of the perturbed pencil at 0 are greater than or equal to (n3, . . . , nm, 1, 1) or
(n3, . . . , nm), i.e.,

(s2, . . . , s2︸ ︷︷ ︸
t2−1

, s3, . . . , s3︸ ︷︷ ︸
t3

, . . . , sν . . . , sν︸ ︷︷ ︸
tν

, 1, 1) or (s2, . . . , s2︸ ︷︷ ︸
t2−1

, s3, . . . , s3︸ ︷︷ ︸
t3

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

),

respectively, whereby either exactly one of these blocks will be larger by one or exactly one
more block of size one will exist. But to have an even number of Jordan chains of length
s2 at 0 in the perturbed pencil, this can only be realized by either

(s2+1, s2, ..., s2︸ ︷︷ ︸
t2−2

, s3, ..., s3︸ ︷︷ ︸
t3

, ..., sν , ..., sν︸ ︷︷ ︸
tν

, 1, 1) or (s2+1, s2, ..., s2︸ ︷︷ ︸
t2−2

, s3, ..., s3︸ ︷︷ ︸
t3

, ..., sν , ..., sν︸ ︷︷ ︸
tν

)

(3.7)
if 0 is an eigenvalue of (∆E,∆A) or not, respectively; or for ν ≥ 3 and s3 = s2 − 1 by:

(s2, ..., s2︸ ︷︷ ︸
t2

, s3, ..., s3︸ ︷︷ ︸
t3−1

, ..., sν , ..., sν︸ ︷︷ ︸
tν

, 1, 1) or (s2, ..., s2︸ ︷︷ ︸
t2

, s3, ..., s3︸ ︷︷ ︸
t3−1

, ..., sν , ..., sν︸ ︷︷ ︸
tν

) (3.8)

if 0 is an eigenvalue of (∆E,∆A) or not, respectively; or for ν = 2 and s2 = 1 by:

(s2, . . . , s2︸ ︷︷ ︸
t2

) (3.9)

if 0 is not an eigenvalue of (∆E,∆A). (If 0 is an eigenvalue of (∆E,∆A), the geometric
multiplicity at 0 is fixed under perturbation by (2.1), i.e., no additional block of size one
can be there.) Illustrating these possibilities, we note that in Example 3.1 we chose (3.7)
over (3.8), whereas in Example 3.2 we had to decide between (3.7) and (3.9).

Then, aiming to prove that the partial multiplicities in (3.7) are generically realized in
(E + ∆E,A + ∆A) at 0, let us assume the opposite: First, in the case that (∆E,∆A) is
as in (3.2), let there exist some (E,A) so that (E + ∆E,A + ∆A) is regular and has the
partial multiplicities from (3.8) or (3.9) at 0 for all (u, v) ∈ B, where B is not contained
in any proper algebraic subset of (Cn)2. Then, we apply a T -even rank-1 perturbation
(0, xxT ) to (E + ∆E,A + ∆A). By Lemma 2.3 (or equivalently, by [1, Theorem 2.7]), for
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all (u, v, x) ∈ B ×Cn that are such that the pencil (E + ∆E,A+ ∆A+ xxT ) is regular, it
has partial multiplicities at 0 that are greater than or equal to

(s2, . . . , s2︸ ︷︷ ︸
t2−1

, s3, . . . , s3︸ ︷︷ ︸
t3−1

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

, 1, 1) or (s2, . . . , s2︸ ︷︷ ︸
t2−1

, s3, . . . , s3︸ ︷︷ ︸
t3−1

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

)

resulting from (3.8) if α = 0 or α 6= 0, respectively, or greater than or equal to

(s2, . . . , s2︸ ︷︷ ︸
t2−1

)

resulting from (3.9). On the other hand, Theorem 3.3 (1a) states that (E+ ∆E,A+ ∆A+
xxT ) is regular and has the partial multiplicities at 0 given by

(s2, . . . , s2︸ ︷︷ ︸
t2−2

, s3, . . . , s3︸ ︷︷ ︸
t3

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

, 1, 1) or (s2, . . . , s2︸ ︷︷ ︸
t2−2

, s3, . . . , s3︸ ︷︷ ︸
t3

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν

)

if α = 0 or α 6= 0, respectively, for all (u, v, x) ∈ Ω̂, where Ω̂ is a generic subset of (Cn)3

(that includes the case ν = 2 and s2 = 1 of (3.9)). Then, a contradiction is obtained as
by Lemma 2.2 the set B×Cn is not contained in any proper algebraic subset of (Cn)3 and

thus, clearly, (B × Cn) ∩ Ω̂ is not empty.
In the second case that (∆E,∆A) is as in (3.1), a contradiction is obtained by similar

arguments using Theorem 3.3 (1b). Therefore, there exist generic sets Ω ⊆ (Cn)2 and
Ω′ ⊆ (Cn)3 such that (E + ∆E,A+ ∆A) is regular and has the partial multiplicities (3.7)
− i.e., the ones in the second and fifth row of Table 3.1 − at 0 for all (u, v) ∈ Ω or
(u, v, w) ∈ Ω′, respectively.

Case λ̂ ∈ C \ {0}: Resulting from the Lemmas 2.3 and 2.4 and equation (2.1), the
perturbed pencil (E + ∆E,A + ∆A) is generically regular and has partial multiplicities

greater than or equal to the ones from the third and sixth row of Table 3.1 at λ̂.
Thus, it remains to show that the respective partial multiplicities of (E + ∆E,A +

∆A) generically cannot exceed (n3, . . . , nm, 1) or (n3, . . . , nm) depending on λ̂ being an
eigenvalue of (∆E,∆A) or not, respectively, using Lemma 2.4. Let us first consider the
case that (∆E,∆A) has the form (3.2). Since the diagonal block of (E,A) including the

largest blocks at λ̂ is given by

(P, J) =
(

0 Rn1

−Rn1 0
0 Rn2

−Rn2 0

,


0 Rn1Jn1(λ̂)

Rn1Jn1(λ̂) 0

0 Rn2Jn2(λ̂)

Rn2Jn2(λ̂) 0

),
we consider the particular perturbation with u = e1 + e2n1+n2+1 and v = en1+1 + e2n1+1.
Then, the first two blocks of the perturbed pencil λ(E+∆E)−A−∆A, that we left-multiply
with P T are given by
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Jn1

(µ+) + (βλ+ α)en1
eT1 0 0 (βλ+ α)en1

eT1
0 −Jn1(−µ−) + (βλ− α)en1e

T
1 (βλ− α)en1e

T
1 0

0 −(βλ− α)en2e
T
1 Jn1(µ+)− (βλ− α)en2e

T
1 0

−(βλ+ α)en2
eT1 0 0 −Jn1

(−µ−)− (βλ+ α)en2
eT1

,
using the notation µ+ := λ + λ̂ and µ− := λ− λ̂. The determinant of the above pencil is
computed in the appendix (setting ν− := βλ− α and ν+ := βλ+ α) to be given by[

(λ+ λ̂)n1(λ− λ̂)n2 − (λ+ λ̂)n1(βλ+ α)− (−1)n1(λ− λ̂)n2(βλ+ α)
]

·
[
(λ− λ̂)n1(λ+ λ̂)n2 + (−1)n2(λ− λ̂)n1(βλ− α) + (λ+ λ̂)n2(βλ− α)

]
.

Thus, as detP T = 1 holds, in the first block-part of the perturbed pencil the eigenvalue λ̂
(and also −λ̂) does not occur if λ̂β 6= ±α and only occurs with algebraic multiplicity 1 if

λ̂β = ±α.
If, on the other hand, (∆E,∆A) has the form (3.1), we consider a perturbation with

u = 0, v = e1 + e2n1+n2+1 and w = en1+1 + e2n1+1; then analogous arguments show that λ̂ is
not an eigenvalue of the first block-part of the perturbed pencil. Therefore, in both cases
we obtain by Lemma 2.4 that the perturbed pencil (E+∆E,A+∆A) is generically regular
and has the partial multiplicities from the third and sixth row of Table 3.1 associated with
λ̂.

4 T-palindromic rank-2 perturbations

In this section, let us consider palindromic matrix pencils. A matrix pencil P (λ) is called
palindromic if it is either T -palindromic, i.e., P (λ) = λB + BT for some B ∈ Cn,n or if it
is T -anti-palindromic, i.e., P (λ) = λB −BT for some B ∈ Cn,n.

In order to investigate the impact of structure-preserving rank-2 perturbations on palin-
dromic matrix pencils, we aim to use the results on T -alternating rank-2 perturbations
obtained in Section 3. To that end, recall that the Cayley transformations with pole at +1
and −1 are given by

C+1(P )(µ) = (1− µ)P

(
1 + µ

1− µ

)
and C−1(P )(µ) = (1 + µ)P

(
µ− 1

1 + µ

)
and that the structure of P (λ) corresponds to that of its Cayley transform as in the
following table that is extracted from [7].

Clearly, T -alternating and palindromic matrix pencils are closely related by these Cay-
ley transformations and the reader is referred to [8] for a collection of properties and invari-
ants of this type of transformations (in the more general setting of Möbius transformations
of matrix polynomials). In particular, we will derive analogous classes of palindromic rank-
2 perturbations by applying C−1 to the T -alternating rank-2 perturbations from Section 3.
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P (λ) C−1(P )(µ) C+1(P )(µ)

T -palindromic T -odd T -even

T -anti-palindromic T -even T -odd

T -even T -palindromic T -anti-palindromic

T -odd T -anti-palindromic T -palindromic

Concerning T -alternating rank-2 perturbations as in (3.1), applying C−1 yields

[
u v w

] 0 0 λ−1
0 0 −λ−1

−λ+1 −λ−1 0

uTvT
wT

 or
[
u v w

] 0 0 λ−1
0 0 −λ−1

λ−1 λ+1 0

uTvT
wT


(4.1)

in the T -palindromic or T -anti-palindromic case, respectively. We note that the ‘middle
pencil’ of these palindromic perturbations can be transformed to a palindromic Kronecker
form derived in [17], by replacing [u, v, w] with some [ũ, ṽ, w̃]. However, since [u, v, w] and
[ũ, ṽ, w̃] can then be transformed into one another by multiplication with an invertible
matrix, it is equivalent to consider generic perturbations of the one or the other form, and
as our proof is based on reusing results from Section 3, we will for simplicity regard the
above form (4.1).

Similarly, palindromic analogues to (3.2) are given by (applying C−1)[
u v

] [ 0 λγ + 1
λ+ γ 0

] [
uT

vT

]
or

[
u v

] [ 0 λγ + 1
−λ− γ 0

] [
uT

vT

]
, (4.2)

in the T -palindromic or T -anti-palindromic case, respectively (setting −1 = α + β and
γ = β − α). In [1, Section 4], an argument was presented that shows that these types
of perturbations stem from a certain type of generic palindromic rank-k perturbation. In
particular, perturbations of this type include the important special case γ = 0, i.e., the
matrix B standing for the palindromic matrix pencil λB ± BT is subjected to a generic
rank-1 perturbation of the form B + uvT .

The generic change in Jordan structure of palindromic pencils under these types of
structure-preserving rank-2 perturbations is described in the following theorem, where the
symbol C∞ stands for C ∪ {∞}.

Theorem 4.1 Let P (λ) ∈ Cn,n×Cn,n be regular and palindromic with the partial multiplic-

ities n1 ≥ · · · ≥ nm > 0 associated with an eigenvalue λ̂ and consider a structure-preserving
rank-2 perturbation Q(λ). Then, the following statements hold:

1) If Q(λ) has the form (4.2), then for each γ ∈ C there is a generic set Ω ⊆ (Cn)2

such that for all (u, v) ∈ Ω, the perturbed pencil P (λ) + Q(λ) is regular and has the

partial multiplicities at λ̂ as in Table 4.1.
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2) If Q(λ) has the form (4.1), then there is a generic set Ω′ ⊆ (Cn)3 such that for
all (u, v, w) ∈ Ω′, the perturbed pencil P (λ) + Q(λ) is regular and has the partial

multiplicities at λ̂ as in Table 4.1.

Table 4.1: Rank-2 perturbations of palindromic matrix pencils.

Q(λ) eigenvalue λ̂ n1 + n2 multiplicities

λ̂ no eigenvalue of Q(λ)
λ̂ ∈ {1,−1} even (n3, n4, . . . , nm)

odd (n3 + 1, n4, . . . , nm)

λ̂ ∈ C∞ \ {1,−1} (n3, n4, . . . , nm)

λ̂ eigenvalue of Q(λ)
λ̂ ∈ {1,−1} even (n3, n4, . . . , nm, 1, 1)

odd (n3 + 1, n4, . . . , nm, 1, 1)

λ̂ ∈ C∞ \ {1,−1} (n3, n4, . . . , nm, 1)

Proof. We restrict ourselves to the case that P (λ) is T -palindromic; otherwise an analo-
gous proof is obtained. Thus, for any perturbation Q(λ), applying C+1 yields

C+1(P +Q)(µ) = C+1(P )(µ) + C+1(Q)(µ),

as C+1 is a linear transformation on the vector space Cn,n × Cn,n. Also, since Q(λ) is
T -palindromic, C+1(P )(µ) and C+1(Q)(µ) are T -even and C+1(P )(µ) is regular with partial

multiplicities (n1, . . . , nm) associated with the transformed eigenvalue µ̂ = (λ̂− 1)/(λ̂+ 1)
by [8, Theorem 5.3] (see also [19]). Further, if Q(λ) is as in (4.2), we compute than

C+1(Q)(µ) =
[
u v

] (
µ

[
0 γ − 1

1− γ 0

]
−
[

0 γ + 1
γ + 1 0

]) [ uT
vT

]
,

is a T -even rank-2 perturbation of C+1(P )(µ) that has the form (3.2). Analogously, if Q(λ)
is as in (4.1), then

C+1(Q)(µ) =
[
u v w

]  0 0 2µ
0 0 −2
−2µ −2 0

 uT

vT

wT

 ,
is a T -even rank-2 perturbation of C+1(P )(µ) of the form (3.1).

Thus, by Theorem 3.4, there exist generic sets Ω ⊆ (Cn)2 and Ω′ ⊆ (Cn)3 such that for
all (u, v) ∈ Ω or (u, v, w) ∈ Ω′, respectively, the perturbed pencil C+1(P )(µ) + C+1(Q)(µ)
is regular and has the partial multiplicities at µ̂ given by Table 3.1, where (∆E,∆A) is

replaced by C+1(Q)(µ) and λ̂ is replaced by µ̂.
Now, applying the inverse transformation C−1, we obtain that for all (u, v) ∈ Ω or

(u, v, w) ∈ Ω′, respectively, the perturbed pencil P (λ)+Q(λ) is regular and has the partial

multiplicities at λ̂ = (1 + µ̂)/(1− µ̂) given by Table 4.1 (using again [8, Theorem 5.3]).
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5 Skew-symmetric rank-2 perturbations

In this section we will consider skew-symmetric matrix pencils (E,A) ∈ Cn,n × Cn,n, i.e.,
both E and A are skew-symmetric. Since for each λ ∈ C the matrix λE − A is skew-
symmetric, it follows that n is even if we assume that (E,A) is regular. Also, by Theo-
rem 2.6 skew-symmetric matrix pencils have each Jordan block appearing twice: if (E,A)
has the partial multiplicities n1 ≥ n2 ≥ · · · ≥ nm > 0 at some eigenvalue, then m is
even with n2j−1 = n2j for j = 1, 2, . . . ,m/2, but there is no eigenvalue pairing for skew-
symmetric matrix pencils as for T -alternating ones.

Similar considerations as in the third section of this paper (which we do not elaborate
here for the sake of brevity) lead to the following two classes of skew-symmetric rank-2
perturbations. First, there are skew-symmetric rank-2 perturbations of the form

λ∆E −∆A =
[
u v w

]  0 0 λ
0 0 −1
−λ 1 0

uTvT
wT

 , (5.1)

and second, there are rank-2 perturbations of the form

λ∆E −∆A =
[
u v

] [ 0 λβ − α
−λβ + α 0

] [
uT

vT

]
(5.2)

for α, β ∈ C. The following theorem characterizes the generic change in Jordan structure
of regular skew-symmetric matrix pencils under these types of rank-2 perturbations.

Theorem 5.1 Let (E,A) ∈ Cn,n × Cn,n be regular and skew-symmetric with the partial

multiplicities n1 ≥ · · · ≥ nm > 0 associated with an eigenvalue λ̂ ∈ C and consider a
skew-symmetric rank-2 perturbation (∆E,∆A). Then, the following statements hold:

1) If (∆E,∆A) has the form (5.2), then for each (α, β) ∈ (C×C)\{0} there is a generic
set Ω ⊆ (Cn)2 such that for all (u, v) ∈ Ω, the perturbed pencil (E + ∆E,A + ∆A)

is regular and has the partial multiplicities at λ̂ given by (n3, . . . , nm, 1, 1) if βλ̂ = α
and (n3, . . . , nm) otherwise.

2) If (∆E,∆A) has the form (5.1), then there is a generic set Ω′ ⊆ (Cn)3 such that
for all (u, v, w) ∈ Ω′, the perturbed pencil (E + ∆E,A + ∆A) is regular and has the

partial multiplicities (n3, . . . , nm) at λ̂.

Proof. By the Lemmas 2.3 and 2.4 and inequalities (2.1), in each of the cases from above,
the perturbed pencil is generically regular and has partial multiplicities greater than or
equal to the ones stated in the assertion. Thus, in view of Lemma 2.4, it is sufficient to
give a particular perturbation that creates these partial multiplicities in each of the cases.
Thus, let us in the following assume that (E,A) is in skew-symmetric Kronecker form as in

Theorem 2.6 and that the blocks corresponding to λ̂ come first and are ordered decreasingly
with respect to their size.
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If (∆E,∆A) has the form (5.2), consider a perturbation with u = e1 and v = en1+1

since then the perturbed part of (E + ∆E,A+ ∆A) is given by[
0 −Rn1Jn1(λ̂− λ)+(βλ− α)e1e

T
1

Rn1Jn1(λ̂− λ)−(βλ− α)e1e
T
1 0

]
.

On the other hand, if (∆E,∆A) is as in (5.1), then we let u = 0, v = e1, and w = en1+1

to also obtain that the perturbed part of (∆E,∆A) is given by the above pencil setting
β = 0 and α = 1. In both cases, for this particular perturbation, the perturbed pencil at
λ̂ clearly has the partial multiplicities (n3, . . . , nm, 1, 1) if λ̂ is an eigenvalue of (∆E,∆A)
and (n3, . . . , nm) otherwise, which implies the assertion.

Remark 5.2 An analogous result for the infinite eigenvalue of (E,A) is obtained by ap-
plying the above theorem to the reverse pencil (A,E).

6 Conclusion

We have investigated regular T -alternating matrix pencils under two classes of structure-
preserving rank-2 perturbations. The difference to T -alternating rank-1 perturbations
studied in [1] is that now both matrices of the pencil are subjected to perturbation, so that
the perturbation is not forced to have the eigenvalue 0 or∞, but instead a pair of complex
(possibly infinite) eigenvalues (γ,−γ).

Underlying all the different cases that were considered, we find the following principles
governing T -alternating rank-2 perturbations: At each eigenvalue λ̂ of (E,A), the Jordan
structure of the perturbed pencil (E+∆E,A+∆A) is that of (E,A) except for the following
changes:

1) The largest two Jordan blocks corresponding to λ̂ are destroyed.

2) If the largest Jordan block at λ̂ is unpaired and the second largest block is paired to
an identical one, this largest remaining Jordan block will grow in size by one.

3) If λ̂ is a single (or double) eigenvalue of the perturbation (∆E,∆A), i.e., ±λ̂ = γ,

one (or two, respectively) new Jordan block(s) of size one will be created at λ̂.

Using Cayley transformations, we saw that parallel results hold for palindromic matrix pen-
cils. Further, skew-symmetric matrix pencils were investigated under structure-preserving
rank-2 perturbations, as a nontrivial skew-symmetric perturbation will at least have rank
two. The result was that at each eigenvalue λ̂ of the skew-symmetric pencil, the pair con-
sisting of the largest two Jordan blocks is destroyed under perturbation and that two new
blocks of size one are created if λ̂ is an eigenvalue of the perturbation.
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Appendix (1)

Letting x and y be dummy elements, we aim to compute the determinant of the following
matrix pencil. Let us assume that n1 is even, n2 is odd, and that in the top-left n1 × n1

block there are n1/2 instances of each −λ and λ on the anti-diagonal.

detT (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ x x x
. .
.
−1

. .
.
. .
.

−λ −1

y λ
y . .

.
−1

. .
.

. .
.

λ −1

y −λ
. .
.
−1

. .
.

. .
.

−λ −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1

n2

n2

.

We observe that an odd number of row permutations gives

−detT (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ x x x
. .
.
−1

. .
.
. .
.

−λ −1

−λ −1
. . .

. . .

. . . −1
y −λ

λ −1
. . .

. . .

y
. . . −1

y λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1

n2

n2

.

We make a Laplace expansion with respect to the last row

− detT (λ) = −y detT1(λ) + λ detT2(λ),
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where

T1(λ) =



λ x x x
. .
.
−1

−λ . .
.

−1

−λ −1
. . .

. . .

. . . −1
−λ

λ −1
. . .

. . .
λ −1



n1

n2

n2 − 1

n1 − 1 n2 n2

and

T2(λ) =



λ x x x
. .
.
−1

. .
.
. .
.

−λ −1

−λ −1
. . .

. . .

. . . −1
y −λ

λ −1
. . .

. . .

. . . −1
y λ



n1

n2

n2 − 1

.

n1 n2 n2 − 1

Another Laplace expansion with respect to the last row yields

detT2(λ) = y detT3(λ) + λ detT4(λ)
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where

T3(λ) =



λ x x x
. .
.
−1

−λ . .
.

−1

−λ −1
. . .

. . .

. . . −1
−λ

λ −1
. . .

. . .
λ −1



n1

n2

n2 − 2

n1 − 1 n2 n2 − 1

and

T4(λ) =



λ x x x
. .
.
−1

. .
.
. .
.

−λ −1

−λ −1
. . .

. . .

. . . −1
y −λ

λ −1
. . .

. . .

. . . −1
λ



n1

n2

n2 − 2

.

n1 n2 n2 − 2

We go on to compute

detT4(λ) = λn2−2(−1)n1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ −1
. . .

. . .

. . . −1
λ x x

−λ −1
. . .

. . .

. . . −1
y −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1

n2

n1 n2

= λn2−2
[
− λn1+n2 + (−1)n1/2y detT5(λ)

]
,
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where

detT5(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

−λ
. . .
. . . −1

λ x x

−λ −1
. . .

. . .
−λ −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1

n2 − 1

= det

[
x x
−λ −1

]
= x(λ− 1).

n1 − 1 n2

We obtain

detT4(λ) = λn2−2
[
− λn1+n2 + (−1)n1/2y detT5(λ)

]
= λn2−2

[
− λn1+n2 + (−1)n1/2xy(λ− 1)

]
= −λn1+2n2−2 + (−1)n1/2λn2−2xy

(
λ− 1

)
.

Inserting this into the formula for detT (λ) yields

detT (λ) = y detT1(λ)− λy detT3(λ)− λ2 detT4(λ)

= y detT1(λ)− λy detT3(λ) + λn1+2n2 + (−1)n1/2λn2xy
(
1− λ

)
.

We finally compute

detT1(λ) = x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
. .
.
. .
.

−λ . .
.

−1

−λ −1
. . .

. . .

. . . −1
−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1 − 1

n2

= −(−1)n1/2xλn2 ,

n1 − 1 n2

and since detT3(λ) = − detT1(λ) holds it is:

detT (λ) = y detT1(λ)− λy detT3(λ) + λn1+2n2 + (−1)n1/2λn2xy
(
1− λ

)
= λn1+2n2 − 2(−1)n1/2xyλn2+1.
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Appendix (2)

The following matrix is denoted by T and we want to compute its determinant:

µ+ 1
. . .

. . .

. . . 1
ν+ µ+ ν+

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

µ− −1
. . .

. . .

. . . −1
−ν+ −ν+ µ−



.

n1 n1 n2 n2

Laplace expansion with respect to the first column gives

detT = µ+ detT1 + (−1)n1+1ν+ detT2 + ν+ detT3,

where

detT1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ+ 1
. . .

. . .

. . . 1
µ+ ν+

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

µ− −1
. . .

. . .

. . . −1
−ν+ µ−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n1 − 1 n1 n2 n2
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= µn1−1
+

(
µn2
− − ν+

)
detTmid,

denoting by Tmid the middle (n1 + n2)× (n1 + n2) block of T . Moreover, we have

detT2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

µ+
. . .
. . .

. . .
µ+ 1

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

µ− −1
. . .

. . .

. . . −1
−ν+ µ−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n1 − 1 n1 n2 n2

=
(
µn2
− − ν+

)
detTmid

and

detT3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

µ+
. . .
. . . 1

µ+ ν+
µ− −1

. . .
. . .
. . . −1

ν− µ− ν−
µ+ 1

. . .
. . .
. . . 1

−ν− −ν− µ+
µ− −1

. . .
. . .
µ− −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n1 − 1 n1 n2 n2

= (−1)n1+1ν+ detTmid.
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Putting these computations together, we obtain

detT =
[
µn1
+ (µn2

− − ν+) + (−1)n1+1ν+(µn2
− − ν+) + ν2+(−1)n1+1

]
detTmid

=
[
µn1
+ µ

n2
− − µn1

+ ν+ − (−1)n1µn2
− ν+

]
detTmid.

We continue with computing

detTmid =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− −1
. . .

. . .

. . . −1
ν− µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− −ν− µ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

n1 n2

A Laplace expansion with respect to the first column yields

detTmid = µ− detT4 + (−1)n1+1ν− detT5 + (−1)n1+n2ν− detT6,

where

detT4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− −1
. . .

. . .

. . . −1
µ− ν−

µ+ 1
. . .

. . .

. . . 1
−ν− µ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= µn1−1

−

[
µn2
+ + (−1)n2ν−

]

n1 − 1 n2

and

detT5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

µ−
. . .
. . .

. . .
µ− −1

µ+ 1
. . .

. . .

. . . 1
−ν− µ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n1−1

[
µn2
+ + (−1)n2ν−

]

n1 − 1 n2
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as well as

detT6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

µ−
. . .
. . . −1

µ− ν−
µ+ 1

. . .
. . .
µ+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n1−1ν−.

n1 − 1 n2

Hence, we obtain

detTmid = µn1
− (µn2

+ + (−1)n2ν−) + ν−(µn2
+ + (−1)n2ν−) + (−1)n2+1ν2−

= µn1
− µ

n2
+ + (−1)n2µn1

− ν− + µn2
+ ν−,

which altogether yields

detT =
[
µn1
+ µ

n2
− − µn1

+ ν+ − (−1)n1µn2
− ν+

][
µn1
− µ

n2
+ + (−1)n2µn1

− ν− + µn2
+ ν−

]
.

30


