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Zusammenfassung

Aktivierungen von Gehirnarealen verursachen lokale Änderungen des Blutvolumens
sowie der Sauersto�versorgung. Diese wiederum verursachen Absorptionsänderun-
gen von Licht im nahinfraroten Bereich. Nahinfrarotspektroskopie (NIRS) ist in der
Lage, diese Absorptionsänderungen erfassen, indem Licht punktuell in den Kopf ge-
geben und wenige Zentimeter entfernt von Detektoren erfasst wird. In den letzten
zwei Jahrzehnten entwickelte sich die NIRS zu einem viel genutzten funktionellen
Bildgebungsverfahren.

Zur Erhöhung der räumlichen Au�ösung, kann Anzahl der optischen Fasern
erhöht und zusätzlich können sie in engerem Abstand zueinander auf der Kopfhaut
angebracht werden. Dieser Ansatz wird Di�use Optische Tomographie (DOT) ge-
nannt. Eine hohe Anzahl von Messkanälen in Kombination mit einem Verfahren
zur Bildrekonstruktion führen im Ergebnis zu dreidimensionale Karten von Ab-
sorptionsänderungen (und damit lokaler Aktivierungen) im Gehirn.

Obwohl die optische Tomographie der klassischen NIRS in vielen Punkten über-
legen ist, wird sie bisher nur von wenigen Gruppen angewandt. O�ene Fragen dieser
Methode umfassen unter anderem i) optimale Rekonstruktionsalgorithmen, ii) feh-
lende Evaluation in Simulationsstudien sowie daraus resultierend iii) fehlende in

vivo Daten. Im Rahmen dieser Dissertation werden diese drei Themenkomplexe
ausführlich behandelt.

In der Simulationsstudie generiere ich realistische Daten indem ein Rauschmo-
dell verwendet wird, dass auf in vivo Messungen basiert. Es werden verschiedene
Methoden implementiert und bewertet, darunter häu�g verwendete lineare Ver-
fahren sowie deren tiefen- und rauschgewichtete Varianten aber auch kürzlich ein-
geführte `sparse' Methoden. Zwei dieser sparsen Methoden werden von aus dem
Bereich der EEG- Quellenlokalisation adaptiert und im Rahmen dieser Arbeit erst-
mals auf das DOT-Rekonstruktionsproblem angewandt.

Im Rahmen dieser Evaluation schlage ich auch ein objektiviertes Verfahren zur
Regularisierung des unterbestimmten inversen Problems vor. Dies ermöglicht die
unvoreingenommene und datenbasierte Bildrekonstruktion für den Fall, dass linea-
re Methoden verwendet werden. Ich kann zeigen, dass diese häu�g angewandten

vii



viii

Methoden schnell und ausreichend genaue Ergebnisse liefern. Die Präzision kann
jedoch mit sparsen Methoden erhöht werden. Unabhängig vom Signal-zu-Rausch-
Verhältnis, kann der LCMV Beamformer einzelne Aktivierungen mit der gröÿten
Genauigkeit rekonstruieren. Bei mehreren korrelierten Aktivierungen führt die mi-
nimum `1-norm Abschätzung zum besten Resultat.

Der zweite Teil widmet sich intensiv den Möglichkeiten von DOT als in vivo

Bildgebungsverfahren. Zuerst präsentiere ich eine Studie zum somatosensorischen
System, in der ich zeige, dass eine räumliche laterale Au�ösung von unter einem
Zentimeter erreicht werden kann. Weiterhin zeige ich, dass DOT und funktionelle
Magnetresonanztomographie (fMRT) zu einem groÿen Teil vergleichbare Ergebnis-
se liefern. Die sich anschlieÿende Studie zu kontrastmittelverstärkter Bildgebung
zeigt, dass extra- und intra-zerebrale Schichten räumlich gut von einander getrennt
werden können. Ich zeige das frühe Ansteigen der Absorption in kortikalen Schich-
ten sowie das späte Auswaschen in den oberen Hautschichten. Die dritte Studie
befasst sich mit der DOT im Ruhezustand (resting state). Ich zeige ein mit DOT
erstelltes Tiefenpro�l sogenannter spontaner hämodynamischer Schwingungen. Wir
�nden niederfrequenten Schwingungen in Bereich von 0,1Hz sowohl im Gehirn als
auch in der Haut, Pulssignale jedoch werden überwiegend in den Hautschichten
lokalisiert.



Abstract

Focal brain activity is accompanied by a metabolic demand and local changes in
blood volume and oxygenation, which in turn results in changes of the absorption
properties of the brain tissue. These changes can be determined by near infrared
spectroscopy (NIRS).

During the last two decades, NIRS has emerged as a tool for functional brain
imaging that can detect these absorption changes. Light is applied to the head from
discrete locations and detected a few centimeters away. However, the topographic
spatial resolution is in the order of a few centimeters. This is rather poor compared
to other brain imaging methods such as functional magnetic resonance imaging
(fMRI).

To enhance the spatial resolution of the method, an increased number of op-
tical point sources and detectors can be applied in a dense grid with overlapping
probing volumes (high-density measurement). This approach is termed Di�use

Optical Tomography (DOT). In DOT, measured light intensity changes from hun-
dreds of optical data channels need to be reconstructed in order to achieve a 3D
representation of changes of absorption properties.

Although DOT is advantageous over classical NIRS-topography, it has only
been reported by few specialized laboratories. This is mainly due to the many open
questions such as i) optimal reconstruction algorithms, ii) missing evaluations in
simulations and iii) missing in vivo data.

With this thesis I aim to address all three issue by evaluations in computer simu-
lations of functional brain activation, in vivo measurements during a somatosensory
stimulation, contrast enhanced brain imaging and resting-state measurements.

For the simulation study, I mimic a highly realistic DOT measurement by
adding noise that originated from an in vivo measurement. In contrast to the
usually added white noise, this model preserves all speci�c features such as hemo-
dynamic �uctuations and �ber distance-dependent noise levels, which often a�ect
the reconstruction quality. To test the theoretical boundaries of the method and
to �nd the optimal reconstruction method, I implement and evaluate frequently
used linear methods, depth and noise-weighted variations of these methods, and
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recently proposed sparse methods. Two of these sparse methods are adapted from
the EEG source localization problem and I introduce them to cerebral DOT for
the �rst time.

In the course of this evaluation, I propose an objective process for regularization
to solve the under-determined inverse problem of DOT. This allows the un-biased
and data driven image reconstruction when linear methods are used. I show that
linear reconstruction methods provide fast and adequate results. However, their
accuracy can be increased by implementing sparse algorithms, albeit at the expense
of computational time and e�ort. Independent of the applied noise level, I �nd
that the linearly constrained minimum variance (LCMV) beamformer is best for
single spot activations with perfect location and focality of the result, whereas the
minimum `1-norm estimate succeeds with multiple targets.

The central contribution of this thesis is a broad evaluation of how far the limits
of DOT as a functional and physiological brain imaging tool can be pushed. There-
fore, a large part of this work is dedicated to the in vivo ability of high-density
DOT. For the study on somatosensory stimulation I show that a spatial resolu-
tion of under one centimeter can be obtained. Additionally, DOT and fMRI �nd
comparable lateral positions in seven out of ten �nger representations. The study
on contrast enhanced imaging succeeds in the attempt of showing the separation
of intra- and extra cerebral tissue by tracking the bolus of safe dye. I show the
early arrival of the contrast agent in deeper (cortical) layers and the late wash out
from super�cial (skin) layers. The last study utilizes resting state measurements
and demonstrates that DOT allows a depth pro�ling of spontaneous hemodynamic
rhythms in the adult head. Low frequency oscillations (0.1Hz) are found in cor-
tical but also super�cial voxels, whereas heart beat signals are localized within
super�cial layers.
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1 | Introduction

1.1 Di�use Optical Tomography in Functional

Brain Imaging in Humans

Functional near infrared spectroscopy (fNIRS) is an optical tool to monitor
changes in cerebral blood oxygenation. FNIRS measures changes in the ab-
sorption of near infrared light in the cortex and allows estimating the func-
tionally evoked changes in cerebral oxygenated (HbO2) and deoxygenated
hemoglobin (HbR) concentration due to local brain activation. For fNIRS,
light in the near infrared-range (650-850nm) is brought to the head by a
light source (e.g. LED or laser) and the back re�ected light is detected some
centimeters away.

NIRS is non-invasive, low cost and easy to apply. To some extent, it can
serve as a substitute for functional magnetic resonance imaging (fMRI), espe-
cially for studies where the task is not suitable for an MRI scanner, e.g. when
auditory stimuli are involved or more importantly when children or even new-
borns are investigated. Research with fNIRS in children include developmen-
tal and psychiatric studies (Aslin, 2012; Franceschini et al., 2007; Hyde et al.,
2010; Wilcox et al., 2012) and monitoring of brain-injured children (Murkin
and Arango, 2009; Go� et al., 2010; Kwak et al., 2007; Mittnacht, 2010). Ap-
plication in adults includes physiological and psychological (Gagnon et al.,
2012; Hyodo et al., 2012; Jackson et al., 2012; Suhr and Chelberg, 2013; Tsujii
et al., 2013) as well as an increasing number of psychiatric or pathophysiolog-
ical studies such as monitoring stroke patients (Budohoski et al., 2012; Oldag
et al., 2012; Pizza et al., 2012) and epilepsy (Buchheim et al., 2004; Nguyen
et al., 2013; Slone et al., 2012). Within the last decade, fNIRS technology has
been advanced to be applicable also for modern research questions such as
the use in brain-computer-interfaces (BCI) to enhance classi�cation accuracy
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(Birbaumer, 2006; Birbaumer et al., 2006; Fazli et al., 2012b,a; Pfurtscheller
et al., 2010; Power et al., 2012; Sitaram et al., 2009) and new types of mon-
itoring at the bed-side. For instance, resting state analysis using NIRS has
been shown to be appropriate to identify functional connectivity networks
yielding comparable results as fMRI (Franceschini et al., 2006; Medvedev,
2013; Mesquita et al., 2010; Sasai et al., 2012, 2011; Tong et al., 2013).

Besides these promising applications and a wide approval of the method
within the scienti�c community, fNIRS has some serious drawbacks. First
of all, the photon propagation is governed by di�usion and most set-ups ap-
ply a few channels only (8-100) to gather information on functional brain
regions. This results in a poor spatial resolution on the order of centimeters.
Furthermore, since the photons are back re�ected from the brain, they need
to pass the scalp and skull. Therefore, NIRS data are highly sensitive to
hemodynamic �uctuations in the skin. Systemic or task-induced increases in
blood pressure or spontaneous hemodynamic �uctuations often contaminate
the comparatively small cortical signals (Kirilina et al., 2012). This contam-
ination is enhanced by the fact that the highest sensitivities are located close
to the head surface.

One way to alleviate these drawbacks is the so-called multi-distance or
di�use optical tomography (DOT) approach (Barbour et al., 2001; Bluestone
et al., 2001). DOT aims at transforming light intensity changes measured on
the head surface with di�erent source-detector separations (`multi-distance')
into three-dimensional images instead of planar back-projection maps that
are obtained with fNIRS.

In the �eld of neuroscience, DOT studies have focused on motor (Boas
et al., 2004; Gibson et al., 2006; Joseph et al., 2006) and visual stimulation
(White and Culver, 2010a; Ze� et al., 2007). Boas et. al ((Boas et al., 2004))
inspired the �eld by showing planar representations of three-dimensional re-
constructions of motor activation in the human cortex and compared these
to topographic back projection maps. The group demonstrated an increasing
lateral resolution, when overlapping multi-distance measurements were used.
Moreover, White and Culver (2010b) demonstrated an improved lateral res-
olution when a denser imaging grid is used.

Beside this ground research, DOT has not found its way to a wide sci-
enti�c community yet. One reasons for this retention is that the image gen-
eration (`reconstruction') is not as straight forward as in fNIRS, where after
raw data processing, the measured intensity changes are converted into con-
centration changes of the chromophores.
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As a �rst step in DOT image reconstruction, the �uence of light within
the head has to be simulated and a sensitivity pattern of all volume elements
for a speci�c source and detector arrangement has to be determined. This
is the so-called forward problem and until a few years ago, user-friendly,
realistic and fast implementations of this forward modeling were not avail-
able. Furthermore, the problem of merging the forward space and the real
world measurement space was open. Another challenge is solving the under-
determined and ill-posed inverse problem of reconstructing inner changes in
optical properties from measured light intensity changes. This inversion relies
on stabilization due to the nature of the sensitivity matrix. Reliable methods
to determine this stabilization parameter have been missing and a systematic
benchmarking of di�erent reconstruction methods for cerebral DOT has not
been performed.

1.2 Scienti�c Proposal

This work aims at promoting DOT as a functional brain imaging tool. I
hypothesize that DOT vastly improves fNIRS, bringing it closer to the capa-
bilities of fMRI. Due to its multi-distance approach and its increased spatial
resolution, DOT is able to detect very small activations and can separate
cortical from non-cortical signals in a 3D manner. To test and to corrobo-
rate this hypothesis, I will perform extensive simulation studies as well as
in vivo measurements using HR-DOT in humans. The simulation studies
aim at evaluating standard and newly introduced image reconstruction pro-
cedures as well as promoting a method to minimize user-guided in�uence on
the reconstruction process. I perform various in vivo studies to evaluate and
improve the applicability of DOT and to test its limitations and potentials
concerning spatial resolution and depth separation.

1.3 Outline of the Thesis

In the �rst part of this thesis (chapters 2 and 3) I will discuss principles that
are involved in DOT. This includes the physiological processes facilitating
the detection of cortical activation and the physical premises including light
propagation in tissue and detection of back re�ected light. In the method-
ological section I will especially address approaches for image reconstruction
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and quality assessment.
In chapter 4, I will demonstrate results from a simulation study. By sim-

ulating realistic DOT measurements, I assess drawbacks and advantages of
a high number of reconstruction methods. These include algorithms that I
adopt from the EEG-source localization problem and which I apply to the
inverse problem of DOT for the �rst time. I can show, that a beamforming
algorithm yields excellent results independently from the noise level of the
data when one activation site is assumed. However, this method fails when
more spots in the volume are activated. Other source localization meth-
ods such as SFLEX or minimum `1-norm approaches outperform standard
methods such as tSVD or minimum `2-norm, which tend to blur images.

For these frequently used linear methods, which allow for a fast recon-
struction, I demonstrate how much the reconstruction quality depends from
the chosen regularization. To minimize the subjective in�uence on the choice
of regularization, I promote a cross-validation procedure to determine the
speci�c values automatically and only depending on the data.

The simulation study is followed by chapter 5, in which I depict results
from in vivo DOT measurements for functional brain imaging. In order to
investigate the limits of spatial resolution I apply a somatosensory �nger
stimulation. I �nd that DOT is capable to resolve brain activation in the
sub-centimeter range.

Two other in vivo studies (see chapters 6 and 7) focus on the separation
of cortical and non-cortical compartments. In the �rst study, I utilize an
optical contrast agent whereas in the second I utilize intrinsic spontaneous
hemodynamic oscillations. This is the �rst time, that the di�erentiation
between di�erent layers of the head is shown with DOT in a three-dimensional
manner.

1.4 List of Publications

Some of the work reported in this dissertation has already been reported
elsewhere.

1.4.1 Publications in peer reviewed journals

• C. Habermehl, J. Steinbrink, K.R. Müller, S. Haufe. Optimizing
the Regularization for Image Reconstruction of Cerebral Di�use Optical
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• Investigating the origin of hemodynamic �uctuations using high-resolution
di�use optical tomography in humans. Functional Near Infrared Spec-
troscopy, University College London (2012)

• Three-dimensional Superposition of Optical Tomography Results on Sub-
jacent Anatomic Structures. Optical Society of America & SPIE: Eu-
ropean Conference of Biomedical Optics (ECBO), München, (2011).

• Contrast-enhanced di�use optical tomography of brain perfusion in hu-
mans using ICG. SPIE: Photonics West, San Francisco, (2012).

• Investigating hemodynamics in scalp and brain using high-resolution
di�use optical tomography in humans. Optical Society of America:
BIOMED, Miami, (2012).

1.4.4 Posters

• Three-dimensional Superimposition of Optical Tomography Results on
Subjacent Anatomic Structures. Organisation for Human Brain Map-
ping: OHBM, Barcelona, (2010)

• Depth sensitivity in multi-distance NIRS measurements in humans.
Optical Society of America: BIOMED, Miami, (2012)



2 | NIRS - detecting brain activ-
ity with light

2.1 Physiological Background

Within the last 20 years, there has been an almost exponential increase
of publications investigating human brain function with near infrared spec-
troscopy.When searching Pubmed (http://www.ncbi.nlm.nih.gov/pubmed)
for `near infrared spectroscopy' and `human brain' for publications in the
year 1990, six results are obtained. For 2000, we get 78 results and for 2012
we �nd 304 publications (see, Figure 2.1). Although still in a niche within
neuro-scienti�c methods (the same search for EEG showed more than 4000
results for 2012), this development shows the increased impact of this optical
method for human brain imaging.

The basic principles of NIRS are widely discussed in the literature and a
good introduction can be obtained from Taber et al. (2010). In the follow-
ing, we will shortly explain fundamentals that allow assessing human brain
function via an optical method. The link between cortical activity and its
noninvasive detection with light is the principle of neurovascular coupling.
Neuronal activity that may be caused by a speci�c task or stimulus initiates
the release of neurotransmitters. The restoration of ionic gradients and re-
cycling of neurotransmitters increases the demand of ATP and therefore the
need of oxygen and glucose. This causes an increase in local cerebral blood
�ow. Since there is less demand of oxygen than of glucose, there is an over-
supply of hemoglobin and the concentrations of both states within the tissue
drift apart; with a time delay of ∼5s, the concentration of HbO2 increases
whereas the fraction of HbR within the tissue decreases (for a sketch of the
temporal response see Figure 2.2).

7
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2.2 Physical Background-Light Propagation, Ab-

sorption and Detection

The connection between concentration changes of HbO2 and HbR and their
determination with near infrared (NIR) light is the so-called `optical window'
(see, Figure 2.3). Light propagation in biological tissue is highly di�usive,
which means that the reduced scattering (µ′s) of applied photons dominates
over absorption (µa). For example, the values for 760nm and scalp tissue
can be assumed as 7.3 cm-1 for µ′s and 0.177cm-1 for µa (skull: 9.3/0.125,
cerebrospinal �uid: 0.1/0.021, brain: 11.8/0.192 )(Strangman et al., 2003).

However, absorption of NIR light is mainly a�ected by the two chro-
mophores HbO2 and HbR. For NIRS, light of two di�erent wavelengths is
applied to the subject's head via an optical �ber (optode). The lower wave-
length in the range of 690-750nm is more sensitive to changes in HbR whereas
the higher (830-850nm) is mainly absorbed by HbO2). A few centimeters
away, the leaving light is detected by a photodiode. One source-detector
combination is de�ned as an `optical data channel'.

Changes in light attenuation between source and detector can be trans-
formed into changes in the concentration of HbO2 and HbR by applying the
modi�ed Beer-Lambert law (Delpy et al., 1988; Sassaroli and Fantini, 2004).
The average of the trajectories of the detected photons passing the tissue
between source and detector has a typical ellipsoid (`banana') shape (see,
Figure 2.4).

Usually, fNIRS studies use a topographic approach with inter-�ber-distances
of 2 to 4cm, covering particular regions of interest (Franceschini et al., 2003;
Holper et al., 2010) or the whole head (Franceschini et al., 2006; Takeuchi
et al., 2009) depending on the imaging machine, the number of available
optical �bers and the focus of the research.

This topographic fNIRS has been widely used within the last decade, and
has become an accepted tool in brain research as a stand-alone method for
physiological (Holper et al., 2009; Miyai et al., 2001), psychological (Hyde
et al., 2010; Nakahachi et al., 2010; Wartenburger et al., 2007) or psychiatric
studies (Kameyama et al., 2006; Zhu et al., 2010) and has been also frequently
used in combined NIRS-EEG studies (Fazli et al., 2012a; Telkemeyer et al.,
2011). Previously, resting state analysis using NIRS with a high coverage
of the head identi�ed the same functional connectivity networks as fMRI
experiments (Franceschini et al., 2006; Mesquita et al., 2010)
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Figure 2.3: Molar extinction coe�cient for oxygenated (HbO2) and deoxygenated (HbR)
hemoglobin.

Figure 2.4: Schematic of the topographical NIRS approach. Light source and detector
are placed on the head with a distance of 2-4 cm. The photons passing the head between
one source-detector-combination (optical channel) form an ellipsoid (`banana') shape and
some reach the cortex.



3 | DOT: Multi Distance Approach
for NIRS

Beside its sensitivity to super�cial signals, the spatial resolution of topo-
graphic fNIRS is limited to several centimeters. However, for many applica-
tions a higher spatial resolution and depth discrimination are mandatory.

For example, investigation of rehabilitation induced changes of cortical
function and neuroplasticity need a higher spatial resolution than conven-
tional topographic NIRS can provide. By applying a multi-distance approach
(Barbour et al., 2001; Bluestone et al., 2001), the spatial resolution can be
increased. Dense arrays of optical �bers allow for recording many optical
data channels from di�erent source-detector (SD) distances and therefore
also from di�erent tissue depths (Figure 3.1).

The approach of di�use optical tomography (DOT) transforms the sig-
nal content from di�erent measuring distances into depth information, thus
forming three-dimensional image maps instead of the planar back-projection,
which is obtained with topographic fNIRS.

In DOT, the inter-�ber distance can vary according to the task and the
imaging machine. Most groups, (Boas et al., 2004; Joseph et al., 2006; White
et al., 2009; Ze� et al., 2007) use �ber grids with a minimum SD separation of
about 13-25mm. In the following, we refer to this approach as `high-density'
DOT.

The sampling distance can be exceeded by applying a tighter set-up, using
co-located optical �bers. Those can serve as source and detector at the same
time and a lean design of the optodes allows a minimum distance of 7.5mm
(see, Figure 3.2). With this `ultra-density' set-up, a much higher amount of
data channels can be obtained.

In contrast to fNIRS, DOT has not found its way to a wider scienti�c
community, yet. Most publications examine certain aspects of the meth-

11
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Figure 3.1: Di�use optical tomography applies a multi-distance approach. Optical �bers
are placed in a dense grid, allowing for a recording of many overlapping optical data
channels and imaging of di�erent tissue depths.

Figure 3.2: Ultra-high density approach for DOT. Optical �bers are placed on the head
surface with an inter-optode distance of under 10mm. Fibers serve as source and detector,
allowing for recording of multiple optical data channels.
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ods like forward modeling or reconstruction methods, but applied studies
are rare. 3D DOT image recovery is not as straightforward as the planar
back-projection of fNIRS, where changes in light attenuation can be directly
transformed into changes of HbO2 or HbR concentration by a single 2x2
matrix inversion. On the contrary, DOT with its hyper-dense approach ac-
quires a multiple of data of di�erent source-detector distances and aims at
recovering three-dimensional images out of this vast amount of data.

For brain imaging, it is widely accepted, that the main coe�cient of inter-
est is absorption, since scattering can be assumed stable over the time of the
measurement (Arridge and Hebden, 1997). Therefore it is justi�ed to neglect
changes in µ′s and reconstruct for changes in µa, only. It is also accepted to
calculate relative changes between two sampling points (di�erence imaging
or pertubation approach) since functional brain imaging aims at retrieving
cortical activation instead of absolute values of chromophore concentration.
Since the changes in µa are small, the reconstruction can be approximated
by a linear representation.

The reconstruction problem in DOT aims at recovering ∆µa in N volume
elements givenM measurements (optical data channels). Therefore, the light
propagation within the tissue must be modeled in order to create a sensitiv-
ity function, which contains information about the in�uence of absorption
changes in each element to the measured intensity changes on the surface.

In this chapter, the main challenges that are associated with DOT and
its forward and inverse problem are discussed. Furthermore, we propose
solutions to obstacles which may occur when cerbral DOT experiments are
conducted.

3.1 Forward Modeling

First of all, a discretized representation of the scanned volume has to be
created, which is typically implemented with a �nite element mesh (Arridge
et al., 1993). Depending on the requirements on the accuracy of reconstruc-
tion and the prerequisites of the experiment, this model can be a simple
shell, a homogeneous head model or a realistic head model (atlas or indi-
vidual) with inhomogeneous distribution of optical properties and arbitrary
geometry of di�erent layers.

Given the surface of the volume of interest, the location of sources and
detectors on the tissue surface and inner optical properties µa, we de�ne the
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forward problem as �nding the measurement data y on the boundary.

The result of the simulated light propagation is a sensitivity/Jacobian
matrix J , with the dimension M × N , where M is the number of measure-
ments (optical data channels) and N the number of volume elements (e.g.
mesh nodes) in the reconstruction volume. J describes the logarithmic rela-
tionship between changes in measured boundary data (∆y) that are caused
by small changes of µa within the tissue, for each channel-node combination
with

∆y = J∆µa (3.1)

Since the investigated medium can be seen as isotropic after a few scatter-
ing lengths (few mm from the light source), this forward problem is usually
solved by applying the di�usion equation

S(r, t) = −∇(D∇φ(r, t)) + µaφ(r, t) +
1

v

δφ(r, t))

δt
(3.2)

where v is the speed of light within the medium, µa(r) is the absorption and
D(r) the di�usion coe�cient at position r with

D =
1

3[µa(r) + µ′s(r)]
(3.3)

µ′s(r) is the reduced scattering coe�cient which is de�ned as µ′s = (1 −
g)µs, g is the anisotropy factor and µs is the scattering coe�cient. The
photon �uence φ(r, t), which is measured in response to the light source
S(r, t) can be used to recover the distribution of µa(r) and D(r) in the 3D
volume.

Such a model naturally simpli�es the processes of light transport and
requires assumptions about the underlying optical properties of each tissue
type (skull, scalp, gray matter, white matter, cerebrospinal �uid). In the
past, these properties have been determined post mortem or in vitro, and
sometimes not for the speci�c wavelength which is used in the experiment.
Researchers should be aware of this source of inaccuracy. However, it is
considered as tolerable when the perturbation approach is followed.
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3.2 Matching Measurement Space and Recon-

struction Space

DOT measures changes in cortical concentration of relevant chromophores
but it reveals no information about the measurement's underlying anatomi-
cal structures. Therefore, one challenge in optical imaging is the transfer of
the measurement space in the real world to the forward model (and recon-
struction) space.

There are three possible constellations for the integration of spatial priors.
Figure 3.3 lists the options depending on whether an anatomic scan of the
subject is available and whether a subject-speci�c model is desired.

Figure 3.3: Schematic for di�erent possibilities of matching the DOT measurement space
with the forward model and reconstruction space.

3.2.1 Individual Models for Forward Modeling and Re-
construction

For some studies it might be desirable to create a forward model for each
individual subject. This requires an anatomic scan (e.g. MR scan), segmen-
tation of the di�erent head and brain tissues, discretization of the volumes,
and knowledge about optical properties of the tissue types. Various groups
have developed tools that help solving these challenges.

Segmentation of di�erent brain tissue has been widely discussed and tools
are available such as SPM (Statistical Parametric Mapping; Wellcome De-
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partment for Cognitive Neurology, University College London, United King-
dom; (Ashburner, 2012; Friston et al., 1995)) or the commercial BrainVoy-
ager (Goebel, 2012). These programs focus on brain segmentation and were
developed mainly for fMRI data processing. However, for DOT additional
compartments such as scalp and bone play an important role in light propa-
gation. Segmenting the soft brain tissue types from anatomic MRI scans is
feasible but these scans are inappropriate to present detailed bone structures,
since the magnetic resonance signals produced in bones are weak. Dogdas
et al. Dogdas et al. (2005) o�er mathematical morphological operations to
distinguish between scalp and skull based on anatomic MRI scans and this
tools helps to close the gap in producing a detailed layered head model.

Based on the segmented head, a masking and meshing software (Nirview)
(Jermyn et al., 2012) can be used to create a 3D tetrahedral mesh. This mesh
forms the basis to calculate the photon transport and thus provide the frame-
work to simulate cortical activation. The free available NIRFAST software
(Dehghani et al., 2008) provides a toolbox to calculate forward models based
on the FE method with the possibility to incorporate individually gener-
ated meshes of di�erent tissue types like head models. Other free tools that
are available include fast, voxel based Monte Carlo (MC) simulations for
photon transport using graphics processing units based parallel computing
techniques (Fang and Boas, 2009) and another one to solve MC simulations
based on FE meshes (Fang, 2010).

3.2.2 Fiduciary Mark Approach

There may be cases, where individual MR scans of each subject are available
but a generic head model is used for forward simulation and reconstruction
due to the complexity of generating individual models or the possibility to
calculate group analysis. It has been shown that using a head model leads
to su�cient good reconstruction quality and only slight localization error
(Cooper et al., 2012; Custo et al., 2010). In this case, the positions of optical
�bers have to be translocated from the measurement space to the model
space.

The �duciary marks approach requires the acquisition of an anatomical
MR scan. Before or after the optical data acquisition, the corner positions of
the imaging grid or other appropriate reference points of the �ber set-up have
to be marked with markers that generate a high magnetic resonance (e.g. oil-
�lled capsules), serving as high-contrast �duciary marks in T1 weighted MR
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images. Subsequently, an anatomical MRI scan is acquired.
Then, the subject's anatomic scan is nonlinearly co-registered with the

MR scan of the generic head model on which the FE-model is based. As
a spatial processing tool for 3D MR scans, SPM (Ashburner, 2012; Friston
et al., 1995) can be used for a spatial normalization of the subject's MR
scan and the model scan. The subject's scan serves as the source image,
wheras the model's scan is the template. The SPM spatial normalization
tool computes an a�ne and subsequently a nonlinear transformation between
the two volumes. The source image is warped to �t into the boundaries of
the template image without losing structural information (Ashburner et al.,
2011). This results in a translocation of the subject's coordinates to the
forward model space. Figure 3.4 (a) shows one example of one subject that
was `warped' into the model space. Finally, the positions of the optical �bers
are interpolated between the coordinates of the �duciary marks and assigned
to the �nite element model boundary.

3.2.3 Anatomic Landmark Approach

Due to limited availability and high costs of MR scans, individual anatomic
scans are not accessible for the subjects in all cases. Therefore, we describe a
method that does not require any structural scan but uses the generic head
model for anatomical mapping.

Coordinates of reference points on the subjects head surface (e.g. from
the International 10-20 system (Klem et al., 1999)) and of the reference points
within the �ber pad have to be recorded using a 3D digitizer (e.g. Polhemus)
or a photogrammetric software (PhotoModeler, Eos Systems Inc., Vancouver,
Canada)(Figure 3.5).

Then, the �ber pad coordinates are translocated to the FEM model space
by solving the least square problem of the subject's reference points and the
same model's reference points. This can be achieved for instance by us-
ing Horn's quaternion-based method (Horn, 1987). This approach contains
translation, rotation and scaling. Finally, the �ber positions are translo-
cated onto the FEM mesh, thereby ensuring the correct position of the re-
constructed volumetric images.

http://www.polhemus.com
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Figure 3.4: Fiduciary mark approach; transformation of the imaging grid corner positions
obtained from individual MR scan to the FEM model space. (a) T1 weighted MR-scan of
one subject. Corner positions of the probe pad are indicated by four spheres. (b) MR-scan
of the generic brain model. (c) Subject's MR image after a spatial normalization (warping)
to the generic brain model geometry. (d) The positions of 30 optical �bers are interpolated
between the �duciary marks and assigned to the �nite element model boundary.
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Figure 3.5: Anatomic landmark approach; transformation of the optical �ber pad corner
positions to the FEM model space without individual MR scan. (a) 19 reference points
(red dots) and coordinates of the �ber pad corners (blue dots) were acquired from the
subject's head surface. (b) MR scan of the generic model with 19 marked reference points
(green dots) derived by (Jurcak et al., 2005). (c) Solving the least square problem of the
two coordinate systems. (d) The coordinates of the grid corners are now in the generic
model space, the positions (blue dots) are mapped onto the model's head surface. (e) The
positions of the optical probes are interpolated and determined on the FEM model.
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3.3 The Inverse Problem

Given the measured boundary data ∆y (readouts of combinations of di�erent
sources and detectors) and the sources and detectors at the tissue boundary
the inverse problem of DOT is de�ned as �nding the optical properties µa in
every volume element.

For a reconstruction of DOT images, J needs to be inverted, which is an
under-determined and ill-posed problem. First, countless distributions of µa
within the volume can explain the same surface measurement and secondly,
near infrared light can pass skin and bone but is highly attenuated with
increasing depth. With a penetration depth of three to four centimeters,
light reaches the cortex, but there is a vast sensitivity loss in the depth. This
leads to a sparse matrix and the largest fraction of the volume contains very
small sensitivity values. Furthermore, small changes in optical properties in
the depth have to be recovered from boundary measurements with underlying
nodes that have a high sensitivity to super�cial signals and therefore make
them sensitive to noise.

To reduce the problem of ill-posedness, the dimensions of J can be mod-
ulated; limiting the reconstruction volume to the �eld of view of the optical
�bers is the most natural �rst step for reduction. Nodes with the lowest
sensitivities in the depth can be excluded from the reconstruction, since they
are unlikely to have contributed to the measurement. By choosing a higher
inter-node-distance the number of nodes in the forward model is reduced,
however, spatial resolution decreases. Additionally, the result space can be
limited to cortical nodes but this requires exact knowledge of the underlying
anatomy and therefore is appropriate for simulation studies but can only be
an approximation in real-world experiments. In the following, we refer to this
reduced Jacobian as J̃ with the dimension of M̃ measuring channels and Ñ
reconstruction nodes. Naturally, in cases with no applied spatial constraints
J = J̃ with N = Ñ and M = M̃ .

3.4 Image Reconstruction Methods

To solve the inverse problem a variety of image reconstruction methods is
available.

As mentioned before, image reconstruction in DOT estimates changes
of the interior absorption of the brain (∆µa) based on changes, which are



3.4. IMAGE RECONSTRUCTION METHODS 21

measured on the head surface (∆y). The reconstruction problem can be
seen as linear since the aim is to recover relative changes instead of absolute
concentration values. However, since the number of measurements is much
smaller than the number of reconstruction nodes, the linear system Eq. 3.1
is heavily under-determined, and a unique solution for ∆µa can only be
obtained under additional constraints.

Alternative approaches to reconstruct brain activation are provided by
developments in electrophysiological dipole mapping. Based on a volume-
conducting model, the inverse problem of electroencephalography (EEG)
aims at localizing the position of the active cerebral current source from
measured surface �elds and therefore is comparable to the inverse problem
of image reconstruction in DOT.

In the following paragraphs, we review seven image reconstruction meth-
ods, which are a set of

1. widely applied linear reconstruction methods such as truncated singular
value decomposition, minimum `2-norm estimates, and a depth and
noise weighted variation,

2. recently proposed sparse methods (minimum `1 and a smooth minimum
`0-norm estimate) (Kavuri et al., 2012; Prakash et al., 2013; Shaw and
Yalavarthy, 2012b,a; Suzen et al., 2010)

3. and �nally we adapt two EEG source localization algorithms and in-
troduce them to the DOT inverse problem. More precisely, we apply
the linearly constrained minimum variance (LCMV) (Van Veen et al.,
1997), a scanning/beamformer method and a method for source local-
ization using spatial �exibility (S-FLEX), which has been shown to be
a good compromise between focality and smoothness and allows recov-
ering multiple activation foci (Haufe et al., 2011).

These methods form the basis of a study which is described in chapter 4.
This study simulates a cerebral DOT experiment in order to benchmark the
quality of di�erent approaches and to investigate the in�uence of the selected
parameter for regularization.

3.4.1 Minimum `2-norm estimate (`2MNE)

Since it is computational fast and e�ortless, one common way of constraining
the brain source activity ∆µa is to penalize its norm, thereby encoding a
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preference for the `least-active' (or, least-complex) brain state that gives rise
to the measurement. In the simplest case, the complexity is measured using
the `2 norm. The minimum `2 norm estimate (`2MNE) of the DOT inverse
problem can be written as

∆̃µa = arg min
∆µa
‖J̃∆µa −∆yℵ‖2

2 + λ‖∆µa‖2
2 (3.4)

(Hamalainen and Ilmoniemi, 1994). The solution is obtained as

∆̃µa = Hλ∆yℵ (3.5)

where ∆yℵ are the noisy measurements, λ adjusts the degree of regular-
ization, Hλ = J̃T (J̃ J̃T + λI)−1 is a pre-computable pseudo-inverse matrix,
and I is the M̃ × M̃ identity matrix.

3.4.2 Minimum `1 -norm estimate (`1MNE)

In the EEG/MEG literature, it is often noted that linear inverses (i.e., those
employing `2-norm penalties) lead to blurred images of source activity, and
are furthermore unable to spatially separate multiple simultaneously active
brain sites (Haufe et al., 2008, 2011). As a remedy, it is often suggested
to estimate brain activation maps using `1-norm penalties. Using `1-norm
penalties leads to sparse solutions, i.e., activity maps, which are zero almost
everywhere. Here we consider a depth-weighted variant of the method pro-
posed by (Matsuura and Okabe, 1995). The minimum `1-norm solution is
given by

∆̃µa = arg min
∆µa
‖J̃∆µa −∆yℵ‖2

2 + λ‖W∆µa‖1 (3.6)

The weight matrix W is chosen to be the same as in Eq.3.12. The mini-
mum of Eq.3.6 is obtained using an iterative optimization algorithm.

3.4.3 Smoothed minimum `0-norm estimate (`0MNE)

The method described in (Mohimani et al., 2009) has been applied for a
cylindrical geometry for DOT in (Prakash et al., 2013). It aims at a direct
minimization of the `0-norm

∆̃µa = arg min
∆µa
‖J̃∆µa −∆yℵ‖2

2 + λ‖∆µa‖0 (3.7)
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Thus, it searches for the solution with the smallest number of active
voxels. Since this leads to a combinatorial optimization problem, a smooth
approximation of the (discontinuous) `0-norm of a vector is considered, which
leads to optimizing a sequence of certain continuous cost functions. The
function, which approximates `0-norm, includes an additional parameter σ,
which determines the quality of the approximation in terms of balancing
smoothness and sparsity of the result.

3.4.4 Truncated Singular Value Decomposition (tSVD)

The MNE solution Eq. 3.4 is de�ned for any positive regularization constant
λ. The limit

J̃+ = lim
λ→0

J̃T (J̃ J̃T + λI)−1 (3.8)

is called the Moore-Penrose (MP) pseudo inverse of J̃ The MP solution
J̃+∆yℵ is the source activity with smallest `2-norm ful�lling Eq.3.1 exactly,
while solutions Hλ∆yℵ for λ > 0 generally do not explain the data perfectly
anymore. The computation of J̃+ can be performed using the singular value
decomposition (SVD)

J̃ = UΣV T (3.9)

of J̃ where Σ = diag(σ1, . . . , σM̃) is a M̃ × M̃ diagonal matrix, σ1 ≥
... ≥ σM̃ are the singular values, U is an orthogonal M̃ × M̃ matrix with
UTU = UUT = I and V is an Ñ × M̃ matrix with V TV = I.

The Moore-Penrose pseudoinverse of J̃ is given by

J̃+ = V Σ−1UT (3.10)

Similarly, for λ > 0, the SVD can be used to compute Hλ = V (Σ +
λI−1)UT , and thus to solve Eq. 3.5. The formulation of J̃+ in terms of U , Σ
and V o�ers an alternative to regularizing the source activity using an `2 -
norm penalty. Given that Σ−1 = diag(σ−1

1 , . . . , σ−1

M̃
) it is possible to compute

a reduced-rank pseudoinverse

J̃+
m = VmΣ−1

m UT
m (3.11)

using truncated matrices Vm, Σ−1
m and Um, where the Ñ ×m matrix Vm

and the M̃ ×m matrix Um are obtained by selecting the �rst m rows of V
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and U , respectively, and where Σ−1
m = diag(σ−1

1 , . . . , σ−1
m ) is m×m.

Performing image reconstruction using J̃+
m corresponds to constraining

the source estimate J̃+
m∆yℵ to lie within the m-dimensional subspace of the

brain in which brain activity contributes most strongly to the sensors.
These two methods have widely been used for image reconstruction since

they are computational fast and easy to implement. One big advantage
is the possibility to create a pseudo inverse of the Jacobian prior to the
experiment, when �ber positions and head geometry (e.g. a head atlas) are
known. This allows for a fast reconstruction within a few seconds or even an
online reconstruction.

3.4.5 Weighted minimum norm estimate (wMNE)

Reconstructing activations only in those parts of the brain having a high
impact on the measurements (as in tSVD) is reasonable, since doing so en-
sures that weak signal components (which might simply be noise) are not
over-interpreted. However, one often wants to ensure that activations from
di�erent parts of the brain are equally likely to be detected. To this end,
weighted minimum-norm estimates (wMNE) are employed. The idea here
is to adjust the `2-norm penalty in Eq. 3.4 to compensate for the di�erent
gains activation foci have at the detector level depending on their depth.
Formally, this is achieved by introducing a Ñ × Ñ weight matrix W in the
penalty term:

∆̃µa = arg min
∆µa
‖J̃∆µa −∆yℵ‖2

2 + λ‖W∆µa‖2
2 (3.12)

The solution of Eq. 3.12 is given by

∆̃µa = J̃T (J̃ J̃T + λWW T )−1∆yℵ (3.13)

Here, we use a diagonal matrixW = diag(w1, . . . , wM̃) the entries wi = Sii
of which are the diagonal of S = J̃T (J̃ J̃T )−1J̃ ((Haufe et al., 2008)).

3.4.6 Sparse basis �eld expansions (S-FLEX)

The selection of active voxels by sparse inverses tends to be unstable and
highly noise-dependent. Moreover, the `1 -norm penalty prevents multiple
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voxels with correlated activity to be jointly selected, which may lead to scat-
tered solutions. To cope with these shortcomings, it has been suggested
to replace sparsity in voxel domain by sparsity in a space of appropriately
de�ned spatial basis functions (Haufe et al., 2011). The basis function dictio-
nary of the proposed S-FLEX (sparse basis �eld expansion) approach consists
of Gaussian blobs of di�erent widths, centered at each voxel. Sparsifying the
expansion coe�cients corresponding to these blobs thus amounts to integrat-
ing the assumption that 'plausible' activation maps are composed of a small
number of blob-like activities, i.e., have a simple structure. Denoting the
Ñ × KÑ matrix of Gaussian basis functions by G and the vector of corre-
sponding expansion coe�cients by c, where K is the number of blob widths,
S-FLEX decomposes the estimated brain source activity into

∆̃µa = W−1Gc̃ (3.14)

where W is the weight matrix de�ned in the section above. S-FLEX
minimizes the squared deviation from the data under an additional `1 -norm
constraint ensuring the sparsity of c:

c̃ = arg min
c
‖J̃W−1Gc−∆yℵ‖2

2 + λ‖c‖1 (3.15)

The minimum of Eq. 3.15 is inserted into Eq. 3.14 to yield the estimated
brain activation ∆̃µa. Note that for G = I, the S-FLEX solution coincides
with the weighted minimum `1-norm solution Eq.3.6.

For time series, S-FLEX estimates the brain activations at all available
time points jointly under the assumption that a common set of spatial basis
functions is active throughout the recording. To this end, coe�cients corre-
sponding to the same basis function but di�erent time instants are grouped
together and jointly sparsi�ed using a so-called `1,2-norm penalty (Haufe
et al., 2011). Note, that without this technique, the sparsity pattern would
jump from each reconstructed sample to the next, obfuscating entirely the
temporal structure of the activations at the voxel level. We use the technique
also for the minimum `1-norm approach. The minimum `0-norm approach,
for which this problem also occurs, can however not be extended to time-
series data as easily.
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3.4.7 Linearly Constrained Minimum Variance (LCMV)
beamformer

In contrast to the previously discussed techniques, beamforming is not con-
cerned with estimating activity across the entire brain at once, but rather
does the estimation separately for each node. To this end, activity from each
voxel q is extracted by means of a designated linear spatial �lter vq, which is
optimized for the given the data ∆yℵ. The estimated brain activity is then
obtained as ∆̃µa = [v1, . . . , vÑ ]T ∆yℵ.

The idea of the linearly constrained minimum variance (LCMV) beam-
former is to construct �lters, which let signals from a speci�c location pass
with unit-gain, while suppressing all noise components (Van Veen et al.,
1997). The optimal �lter for location q is obtained as the solution to the
optimization problem

ṽq = arg min
vq

v T
q Cvq s.t. vTq J̃q = 1 (3.16)

where C is the covariance matrix of the data ∆yℵ taken across time, and
J̃q is the gain vector for the q-th voxel (the q-th column of J̃ . The solution
is obtained as

ṽq =
[
J̃ T
q C−1J̃q

]−1

J̃ T
q C−1 (3.17)

The linear constraint vTq J̃q = 1 here ensures that brain activity from
voxel q (i.e., the signal of interest) is not damped, while the minimization
of v T

q Cvq amounts to minimizing the overall (signal + noise) power of the
projected data vq∆yℵ. In total, Eq. 3.17 thus maximizes the signal-to-
noise ratio. This, however, only holds if source activity at di�erent voxels is
uncorrelated. If there is correlated activity, the estimation of (in particular
of the power of) the sources may be biased.

3.5 General Linear Model

Each of the image reconstruction procedures results in a matrix with the
dimension Ñ × samples. The most intuitive way to detect activation is
to �nd time courses that show the expected `behavior' after stimulus onset,
which is shown in Figure 2.2. By identifying time courses with a signi�cantly
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decreased concentration of HbR and an increased concentration of HbO2 5-8s
after stimulus onset, the activated areas can be detected. Another approach
is to calculate a general linear model (GLM)

X = βP + ε (3.18)

with a model P of the expected hemodynamic response, a matrix of
reconstructed time courses X , and the unexplained variance ε. The aim is
to �t P to the reconstructed data X in order to minimize ε and to maximize
the value of β. This �tting is usually done with a least-square approach.
Application of the GLM for optical brain imaging data has been increasingly
used within the last years. However, it requires an adequate knowledge about
the input model function and is sensitive to over �tting and a su�cient
preprocessing of the data is necessary to eliminate artifacts.

3.6 Determining reconstruction quality in sim-

ulation studies

In simulation studies aiming at benchmarking di�erent reconstruction ap-
proaches or other aspects of the reconstruction procedure, the localization
error between simulated activation and result can be estimated. This in-
cludes the focality of the result or in other words, how much the result has
been spread and the positioning error of the peak value.

The most intuitive way to determine positioning error is calculating the
Euclidean Distance between simulated and recovered activation. Since co-
ordinates of both are available, their distance is calculated by applying the
Pythagorean formula. Di�culties may appear when more than one target is
recovered or the result is rather blurry.

A more sophisticated measure of quality takes localization errors and blur
of the result into account.

The Earth Mover's Distance (EMD) (Rubner et al., 1998) is a measure
of distance for two signatures, which is based on the transportation problem
between a set of suppliers R (in our case the normalized histogram of the
reconstruction result) and a set of costumers S (the normalized histogram
of the simulation). It aims at minimizing the work F that is necessary to
transform the distribution R into S given a ground distance D = [dr,s] :
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∑
r∈R

∑
s∈S

drsfrs (3.19)

with the constraints

f rs ≥ 0 (3.20)

∑
r∈R

f rs = ys (3.21)

∑
s∈S

f rs ≤ xr (3.22)

where xr is the total supply of supplier r and ys is the total capacity of
consumer s.

The last constraint ∑
s∈S

ys ≤
∑
r∈R

xr (3.23)

is a feasibility condition, which makes sure that the total demand does
not exceeds the total supply. In our case, both histograms are normalized
and their total weight is 1. Having found the optimal �ow F, the EMD is
de�ned as

EMD(R, S) =

∑
r∈R

∑
s∈S drsfrs∑

s∈S ys
. (3.24)

3.7 Summary

Within this work, I present new approaches that aim at determining the po-
tential of DOT as a functional brain imaging tool. So far, I discussed typical
challenges in DOT experiments such as the forward model generation and
integration of the measurement space to the reconstruction space. A variety
of standard algorithms for image reconstruction and additionally newly pro-
posed methods were discussed. Those will be evaluated within the curse of
the next chapter.



4 | Simulation study on Algorithms
for Image reconstruction

As discussed in the previous chapter, a variety of reconstruction procedures
is available. However, most applied DOT studies utilize one of the linear re-
construction methods (Dehghani et al., 2009; Kavuri et al., 2012; Niu et al.,
2010a; White and Culver, 2010a). Though yielding su�ciently good results,
these standard algorithms tend to yield blurry rather than sharp-edged im-
ages. Furthermore, they rely on regularization to handle the rectangular and
ill-conditioned nature of J . This regularization parameter is often chosen
ad hoc and lacks objective criteria. For researchers it may be challenging to
�nd an appropriate regularization parameter, since the measured data vary
highly between experiments, depending on the setup, the imaging device,
tissue properties and noise level.

This chapter presents results from an extensive simulation study which
has two aims.

The �rst part is concerned with the problem of regularization. We demon-
strate how the reconstruction quality depends on the chosen parameter when
distributed source localization methods are used, thereby demonstrating the
need of an independent parameter selection. This selection should be solely
based on the features of the measurement data and avoid interference by
the user. We illustrate that cross-validation for parameter selection allows
to determine the degree of regularization automatically and data-driven and
that it yields high quality results.

The second part includes an extensive evaluation of the seven image re-
construction methods, presented in section 3.4, which are a set of (I) linear
reconstruction methods depending on (cross-validated) regularization, (II)
noise-and depths-weighted modi�cations of these procedures and (III) two
adapted EEG source localization algorithms. Especially sparser methods

29
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could provide an alternative to the smooth results that are often obtained
with linear methods. To our knowledge, such extensive evaluation not been
performed for cerebral DOT, in which data have to be reconstructed in 3D
space by relying on back-re�ected light, only.

In order to provide a framework for this comparative study, we simulated
a DOT measurement in a highly realistic setting. We used an atlas-based
�ve-layered head model in combination with a real-world noise model that
was added to the generated data. This noise model considers �ber distance-
dependent noise levels and the spatio-temporal distribution of typical hemo-
dynamic �uctuations.

Major parts are taken from the publication Optimizing the Regulariza-
tion for Image Reconstruction of Cerebral Di�use Optical Tomography, by
Habermehl et al., Journal of Biomedical Optics, 2014.

4.1 Methods

4.1.1 Head Atlas and Meshing

To achieve a simulation, which is close to a real measurement we used the
Montreal ICBM 2009a head atlas, an unbiased nonlinear average of 152
anatomical MR images with 1×1×1mm voxel size (Fonov et al., 2011, 2009)
and the corresponding tissue probability maps for cerospinal �uid, gray mat-
ter, and white matter (Collins et al., 1999). In order to receive information
about scalp and skull sturctures, we additionally segmented the ICBM2009a
images using mathematical morphological operations (Dogdas et al., 2005)
(Figure 4.1). Based on this segmented �ve-layered head atlas, we used a
masking and meshing software (Nirview) (Jermyn et al., 2013) to create a
3D tetrahedral �nite element mesh. This mesh was then used to calculate
the photon transport and thus provides the framework to simulate cortical
activation and test the outcome of di�erent reconstruction methods.

4.1.2 Forward simulation and spatial constraints

Optical �ber positions on the boundary of the FE mesh were chosen according
to the setting of a previous real world cerebral DOT experiment conducted
under resting conditions (Figure 4.1 (b)).
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Due to the use of registration landmarks from the EEG 10-20 system
and known source-detector distances, the coordinates for each �ber were
known. To model light propagation, we used the Nirfast software toolbox
(Dehghani et al., 2008), a Matlab-based freely available light modeling and
reconstruction software. Nirfast applies the di�usion equation approxima-
tion, which is appropriate when scattering events dominate over absorption
and the medium can be assumed to be an isotropic �uence �eld.

One challenge in DOT is the sensitivity of the measurement to signals
coming from non-cortical regions. The HbO2 speci�c wavelength is often
contaminated with hemodynamic �uctuations from super�cial veins in the
scalp (Kirilina et al., 2012). On the other hand, the decrease in absorption
from the HbR sensitive wavelength is highly correlated to the BOLD response
in fMRI (Steinbrink et al., 2006). For this simulation study we therefore use
light model and data from the HbR sensitive wavelength of 760nm. Optical
properties µa and µ

′
s were assigned to each node of the FE mesh according

to Strangman and co-workers (Strangman et al., 2003).
Since the reconstruction volume was not entirely covered with the optode

set, and since DOT has only a limited penetration depth of 3-4cm, we con-
strained J in order to reduce the result space and thus reduce the `degree of
ill-posedness'. One criterion for the exclusion of nodes was their a�liation
to non-cortical tissue. Nodes belonging to scalp, skull, or cerebrospinal �uid
were discarded.

To exclude `weak' channels with very low sensitivity (e.g., due to large
source-detector separation), we calculated the vector norm for all rows of J .
Rows having a norm lower than 1% of the maximum value were discarded.
The same procedure was performed for the mesh nodes, excluding nodes from
the result space that had hardly been reached by any measuring channel.

This step reduced the result space from 256 channels to 232, and from
150,000 nodes to approx. 10,000. In the following, we refer to this reduced
Jacobian as J̃ with the dimension of M̃ measuring channels and Ñ recon-
struction nodes. Figure 4.1 (d) depicts the total sensitivity of J and Figure
4.1 (e) J̃ , which is calculated as the sum of the sensitivity over all measure-
ment pairs for all used nodes within the head volume.

4.1.3 Signal Generation and Noise Model

As an input signal, we modeled a hemodynamic response function (hrf) for
absorption changes at 760nm peaking 5s after stimulus onset (Boynton et al.,
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Figure 4.1: (a) Segmented head atlas (ICBM 2009a, a non-linear average of 152 MR
images). From outer to inner layer: scalp, skull, cerebrospinal �uid, gray matter, white
matter. (b) Sketch of the optical �ber setup as used in the forward model (1st nearest
neighbor distance: 13 mm. (c) Finite element (FE) mesh of the left hemisphere with
optical properties (µa). (d) Example of the total sensitivity of an unconstrained Jacobian.
(e) Total sensitivity of the spatially constrained Jacobian J̃ : sensitivities for skull, scalp
and CSF were set to zero.
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1996), thereby mimicking a 400s experiment with a stimulus duration of 20s
and an inter-stimulus interval of 20s. This was necessary for testing the linear
constrained minimum variance (LCMV) beamformer reconstruction method,
which requires time-series data. Moreover, it allowed us to superimpose the
arti�cial data with realistic noise of the same dimensionality obtained from
the above-mentioned resting-state recording.

Detector readings were generated as follows. A sparse matrix Asim with
dimension of Ñ×Ñactive was created, where Ñactive is the number of `activated'
nodes. Each column of Asim labels one node by setting Asim(l) = 1 at a
speci�c location l, while all other nodes are set to `0'. The locations for
these `activated' nodes were chosen randomly, but due to restrictions of the
reduced Jacobian J̃ , all were cortical. The speci�c sensitivity pattern p in
the activated node/nodes is de�ned by

p = J̃ ∗ Asim (4.1)

with p having the dimensions M̃× Ñactive , and the simulated DOT measure-
ment y is de�ned by the M̃ × sampleshrf matrix

y = p ∗ hrf (4.2)

where the Ñactive × sampleshrf matrix hrf contains the activations of the
simulated brain activity at the active nodes.

We applied a realistic noise model for the purpose of testing di�erent
reconstruction algorithms under natural conditions. Most studies add white
noise to the data to simulate real measurements. In real life measurements,
however, the noise is usually temporally and spatially correlated and not
normally distributed. We typically observe a highly increased noise level for
larger source and detector separations than for short distances.

Secondly, the noise often has a high fraction of hemodynamic oscillations,
which often interfere with the hemodynamic response and are sometimes
hard to remove. Rather than applying a random noise term, we utilized data
from a 10min DOT experiment conducted under resting conditions as the
noise model ℵ. For recording these resting state data, we used a compact
tomography imager that provides up to 32 sources* 32 detectors (NIRScoutX
Tomography Imager, NIRx Medizintechnik GmbH, Germany). This allowed
us to achieve realistic simulation data with characteristic features of real
measurements. The setup for that resting state experiment was the same as
the simulation setup, so that �ber distances and orientations were preserved.
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We selected the rows of the noise matrix ℵ according to the choice of
channels for J̃ so that identical channels were used. Additionally, we took
a subset of sampling/time points (columns) from ℵ , so that y and ℵ had
the same dimension. Finally, ℵ and y were normalized by their respective
Frobenius norms in order to calibrate arti�cial measurement and noise ma-
trix. Given y, ℵ and s, where s is the signal level with a value between 0 and
1, the noisy simulated measurement yℵ was constructed as

yℵ = ys+ ℵ(1− s) (4.3)

According to real measurements, we low pass-�ltered (�rst order But-
terworth) the generated data with a cut-o� frequency of 0.4Hz to remove
cardiac signals. In Figure 4.2 (a), we see detector readings from the resting
measurement for large, medium, and short source-detector separations, and
the dependence of the noise level on the �ber distances.

Figure 4.2 (b) depicts examples of the generated signal for two di�erent
measurement channels, each with a signal strength of 50% (s = 0.5), but due
to di�erent location and source-detector-separation, the signal in the upper
measurement is less dominated by noise, compared to the second example in
the lower graph.

4.1.4 Automatic determination of the regularization pa-
rameter using cross-validation

Distributed inverses such as `2MNE, `1MNE, `0MNE, tSVD, wMNE, and S-
FLEX estimate the source activity ∆̃µa directly. This means that for an M̃×
T sensor time series, Ñ×T parameters have to be estimated, where Ñ >> M̃ .
Under these circumstances, regularization is necessary (as outlined above).
The choice of the regularization parameter crucially a�ects whether the �tted
model is too complex (over-�tting the data), too simple (not explaining the
relevant aspects of the data), or `just right'.

Beamformers, on the other hand, are characterized by a low number of
parameters. The estimation is therefore typically very stable. The LCMV
beamformer (Eq. 3.17), for example, solves Ñ optimization problems (one
for each voxel), each of which is concerned with the estimation of only a
single M̃ -dimensional �lter ṽq based on the covariance matrix of a M̃ × T
dataset ∆yℵ where T is the number of samples, and typically T >> M̃ .

The parameter λ of regularized models drives the estimated brain acti-
vation (∆̃µa) away from the solution that explains the measurement best to
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Figure 4.2: (a) Simulated DOT measurement with additive realistic noise recorded in
resting condition using a compact tomography imager (NIRScoutX, NIRx, Medizintechnik,
Germany). The noise level depends strongly on the source-detector-separation. (b) Two
di�erent measurement channels and generated signals with no noise (blue line) and with
50% noise (green line) added. The lower channel is noise-dominated, since the signal
generated is 100 times smaller compared to the upper example. Due to di�erent location
and source-detector separation, noise has a di�erent impact on the generated signal and
may hamper the correct reconstruction.
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a solution with `simpler' structure. As such, λ critically a�ects the shape of
the chosen solution, and the reconstruction accuracy. Choosing the `right'
amount of regularization is therefore very important. This choice should not
be based on visual inspection or other subjective measures in order not to
bias the later neurophysiological interpretation of the results. Rather, an
automatic selection criterion is required.

One way of assessing the quality of a regularized model is to measure
how well it explains unseen data, which have not been used for estimating
the model parameters. This can be done using cross-validation (CV). In k-
fold CV, the data is split into k chunks. The model is �tted on k− 1 chunks,
and evaluated on the remaining `test' chunk. This procedure is repeated for
each choice of the regularization parameter, and for each choice of the test
chunk. The parameter explaining the test data best on average is selected,
and used for training a �nal model based on the entire data available.

In distributed inverse source reconstruction, data folds are created by
dividing the measurement channels into k sets, and the performance criterion
to be estimated is the squared loss at the `test' channels, i.e., ‖J̃ testµ̃a −
∆ytestℵ ‖2

2, where J̃
test and ∆ytestℵ are the parts of J̃ and ∆yℵ belonging to the

test channels.
For inverse methods estimating the brain activations as linear combina-

tions of the data using some pseudo inverse J̃#
λ (such as MNE, wMNE and

tSVD), an approximation to leave-one-out cross-validation (i.e., k-fold CV
with k = M) can be carried out in closed form. The so-called generalized
CV score g(λ) is given by

g(λ) =
‖J̃ J̃#

λ yℵ − yℵ‖2
2

trace(I − J̃ J̃#
λ )2

(4.4)

where J̃#
λ is the pseudo-inverse constructed using the regularization pa-

rameter λ (Golub et al., 1979; Murase et al., 2004; Jagannath and Yalavarthy,
2012). The value of g(λ) is calculated for every λ to be tested, and the pa-
rameter with minimal score is used for reconstruction.

One goal of this work is to demonstrate the dependance, of the reconstruc-
tion quality on the choice of regularization values used for the reconstruction.
Methods that estimate ∆µa directly are highly depending on the choice of
this parameter. To visualize this relationship, we �rst generated one target,
then added 50% noise to the arti�cial measurement matrix and �nally we
reconstructed this speci�c activation using a wide range of values for λ. For
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every of these reconstruction result, the EMD was calculated. This proce-
dure was repeated 50 times for `2MNE and wMNE. To test the same for
tSVD, we proceed in the same manner, except that we increased the number
of singular values used for reconstruction, starting with the 10 highest and
ending with using all (m = 231).

4.1.5 Estimating the reconstruction quality

Each image reconstruction process resulted in a matrix with the dimension
Ñ×sampleshrf . To estimate the quality of the result, we calculated a general
linear model in a sense of a linear regression for all reconstructed time courses
x1,...,Ñ with hrf as the regressor. Thus, for each voxel of the reconstruction
volume a t-value was derived. All negative t-values and those with a t-value
smaller than 20% of the maximum t-value were eliminated.

As a measure of quality, we employed the Earth Mover's Distance (EMD,
(Rubner et al., 1998)) to the reconstruction results (t-values) of all methods
as well as the Euclidean Distance between simulation and the location of the
maximum t-value of the reconstruction.

4.1.6 Estimating the impact of the chosen regulariza-
tion parameter

In this chapter, we want to show, how the reconstruction quality is in�uenced
by the use of di�erent regularization values. Methods that estimate ∆µa di-
rectly are highly depending on the choice of this parameter. To visualize this
relationship, we (1.) generated one activation, (2.) added 50% noise to the
arti�cial measurement matrix and (3.)reconstructed this speci�c activation
using a wide range of values for λ.

For every of these reconstruction results, the EMD was calculated. This
procedure was repeated 50 times for MNE and wMNE. To test the same for
tSVD, we proceed in the same manner, except that we increased the number
of singular values for reconstruction, starting with the 10 highest and ending
with using all (m = 231).
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4.2 Results

In the following section, we quantify how the choice of the regularization
parameter λ (or in case of tSVD, the number of singular valuesm) impacts on
the e�ectiveness of the proposed methods . Secondly, we present simulation
results that were achieved using the seven methods described above. We
benchmark their performance in a realistic DOT simulation for one and two
activated spots.

4.2.1 Reconstruction Quality Highly Depends on the
Choice of the Regularization Parameter

To visualize the impact of the chosen value for regularization, Figure 4.3
depicts an example of reconstruction for tSVD, where the activation was
recovered using di�erent numbers of singular values for the inversion of J̃ .

Figure 4.3 (b) shows the best possible reconstruction result for this simu-
lation with the lowest EMD (number of singular values m = 30). The result
that was achieved when the number of singular values was determined au-
tomatically by cross-validation (m = 60) is shown in Figure 4.3 (c). Both
parameters resolve the activation reasonably well with a correct location and
little blur. The result with an arbitrarily chosen high number of singular val-
ues (m=160, see Figure 4.3 (d)) leads to over-�tting, which is evident from
a high number of phantom activations.

Figure 4.4 depicts multiple graphs, each representing one of the dis-
tributed reconstruction methods used. The red solid line shows the mean
EMD for 50 di�erent simulations and a wide range of values for λ (increasing
number of singular values m for tSVD, respectively). The red transparent
area represents the standard error of the mean and the blue area the stan-
dard deviation. In all quality plots, we see clearly how EMD alters with the
di�erent regularization parameter. We �nd a high EMD when very small
or very high regularization values are chosen, rendering data that are either
over- or under-�tted. Between them, we �nd a global minimum, which is
indicated by the red dot representing the best possible EMD.

Assuming that the location of this minimum would be known prior to re-
construction, this λ (m, respectively) would be the �rst choice for parameter
selection. However, in real world experiments the true location and extent
of the activation is unknown and such a plot is not available. For overcom-
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ing this challenge, this optimum is approximated by CV as described in the
section above. The blue dots in each subplot indicate the mean value for λ
(m, respectively) estimated using CV and the respective mean EMD. In all
three methods, the cross-validated value leads to results that are comparable
in quality to the best possible result.

Please note that since `1MNE, `0MNE and S-FLEX cannot be solved in
closed form and rely on numerical optimization, calculation time for such a
large number of variations was unreasonably high. Results for these meth-
ods are therefore not shown here. In practice, we choose the regularization
strengths for these methods indirectly by selecting λ such that the data is
explained to the same extent as it is explained by wMNE using a cross-
validated λ. The LCMV beamformer is also omitted here, since it does not
depend on the choice of a regularization parameter in the same way as do
the other methods, as mentioned above.

Figure 4.3: Example for image reconstruction using tSVD and with di�erent numbers
of singular values used for inversion of J̃ (a) Simulated target activation. (b) Result using
30 used singular values for reconstruction (EMD = 12.6, best possible result). (c) Result
using (cross-validated) 60 singular values (EMD = 15.1). (d) Result from reconstruction
with 160 singular values (EMD = 57.3).
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Figure 4.4: Depiction of the relation between regularization and reconstruction quality
of three distributed reconstruction methods (noisy data, one activated spot). (a) Result
for `2MNE. In each simulation run, the activation was reconstructed using 100 di�erent
regularization parameters. The red line depicts the average EMD for 50 simulation runs.
The geometric mean of the best possible regularization value (red dot) and the same for
the automatically detected (cross-validated) (blue dot) and their respective mean EMD.
(b) Reconstruction quality for tSVD using an increasing number of singular values for
reconstruction. (c) Result for wMNE.
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4.2.2 LCMVBeamforming resolves single activation spots
best.

The second focus of this chapter is on benchmarking source reconstruction
methods, among which are frequently used methods, recently proposed sparse
algorithms, and EEG-source localization methods. All methods are described
in detail in section 3.4.

Figure 4.5 gives an impression of the simulation and the reconstruction
result with the seven reviewed methods for a single spot activation in a single
case. For visualization, we show transverse cross sections covering the area
of the simulated activation.

The arrow in Fig 4.5 (a) indicates the node that was set `active'. Rows
1-7 in Figure 4.5 (b) show the reconstructed images for all tested methods
in a noise-free simulation. Within each row, the EMD between simulation
and result is pointed out in the last column. Figure 4.5 (c) shows the same
simulation but with 50% noise in the data.

For `2MNE, tSVD, and wMNE we �nd a relatively good localization of
the peak activation with slight blurring in the noise-free simulation. This
blurring increases when noise is added to the data. Compared to `2MNE,
wMNE shows an increased sparsity and a lower EMD. S-FLEX and `1MNE
show small positioning errors in the noisy case and a focal result. In both
noise levels, we �nd ideal results for LCMV, with no displacement, and a
high focality. All the latter three methods appear to be rather insensitive to
the applied noise level. `0MNE performs well in the noise-free case but fails
when noise is added to the data.

For an overall comparison of all methods, the average EMD of 100 simu-
lations with one activated spot and four di�erent noise levels (0%, 25%, 50%,
and 75%) can be found in Figure 4.6 (a) and the respective mean Euclidean
distance between simulation and maximum value of the reconstruction result
can be found in Figure 4.6 (b).

Similar to the single case we �nd the best reconstruction at every noise
level when LCMV is used. In almost all simulations, the beamformer achieves
a correct positioning with minimal blurring even at the highest noise level.
S-FLEX and `1MNE perform well and recover sparse results; however, their
results are dislocated by a few millimeters. Interestingly, S-FLEX and `1MNE
do not achieve their best EMD scores at the lowest noise levels with high
signal level s (see Eq. 4.3). This may be due to the fact that for e�ciency
reasons the optimization for both methods is stopped after the data have
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been �tted with a goodness-of-�t of gof = 0.95, where gof = 1 − ‖J̃∆̃µa −
∆yℵ‖2/‖∆yℵ‖2 The data may thus be insu�ciently �tted for very low noise
levels.

`2MNE, tSVD, and wMNE show a clear dependence on the noise level:
With higher noise, their respective EMD increases. This can be observed es-
pecially in tSVD. However, although reaching a high EMD, tSVD still shows
only a small positioning error (Euclidean distance) between the peak value
of the reconstruction and the simulation (Figure 4.6 (b)); within the highest
noise level, the average Euclidean distance between result and simulation is
8.3mm (`2MNE: 15mm, wMNE: 11mm, LCMV: 0.2mm, S-FLEX: 10.1mm,
`1MNE: 8.8mm).

This implies that the main reason for high EMD is a higher blur level
rather than malpositioning; this blur could possibly be reduced by thresh-
olding the result. The highest sensitivity to noise is found in `0MNE: From
low noise levels, the EMD and the positioning error increase dramatically.
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4.2.3 Minimum `1 -norm achieves best result when two
spots are active

When investigating a relatively small area of the brain there is often only
one spot of activation within the probe. Nevertheless, there are approaches
where larger areas or even the whole head are scanned.

When the medium is larger, the possibility of including two or more ar-
eas with simultaneously �uctuating rhythms caused by a synchronic hemo-
dynamic answer rises. We therefore simulated two additional areas with
perfectly correlated activity in the brain.

Recovering two (or more) activation foci in an algorithm is a challenge.
TSVD, `2MNE, and wMNE show no signi�cant di�erences in their EMD
which is attributable to the generally increased level of blur. That makes it
harder to distinguish the quality using the EMD method.

Nevertheless, when looking at single cases with visualized reconstruction
results (Figure 4.7), we can see that all methods except the beamformer are
capable of recovering both activations. Since `1MNE can reconstruct sparser
activation patches than the other methods, its performance is better, though,
again some slight positioning errors do occur. At lower noise levels, S-FLEX
yields results comparable to those of `1MNE but their quality decreases at
the highest noise levels. `0MNE can recover both targets almost perfectly in
a noise-free dataset, but fails again when noise is added. Due to reduced blur,
wMNE shows a slight but not signi�cant advantage over `2MNE, and with
increased noise levels also over tSVD. Finally, it is obvious that the LCMV
beamformer cannot resolve correlated activity at di�erent brain sites, and
therefore highly decreases in performance .
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Figure 4.5: Exemplary reconstruction images for a single spot activation. (a) Transversal
slices of the reconstruction volume with the simulated activation in column 6. The other
columns depict transverse cross sections adjacent to the central layer (z-direction, slice
depth: 1mm). (b) Reconstruction result for a 0% noise level. Each row represents the result
from one particular reconstruction method. The number in the right column indicates the
Earth Movers Distance (EMD) for this speci�c example. (c) 50% noise added to the data.
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Figure 4.6: (a) Overall EMD statistics for single spot activation, four applied noise levels
and all seven reconstruction methods. (b) Averaged Euclidean Distance between simulated
target and maximum value of the result in mm for all methods and noise levels. Black bar
indicates standard error of mean.
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Figure 4.7: 7 Exemplary reconstruction images for two activations. (a) Simulated acti-
vation: two nodes in di�erent locations were de�ned as `active' (indicated by the arrow).
(b) Reconstruction results for noise-free data and from seven di�erent reconstruction al-
gorithms (c) Results for noisy data (50%). Columns represent transverse cross sections of
the reconstruction volume (z-direction, slice depth: 1mm).
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Figure 4.8: Overall EMD statistics (n=100) for all seven methods and four di�erent
noise levels and two activated spots. Black bar indicates standard error of mean.
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4.3 Discussion

We conducted this simulation study to illustrate how image reconstruction
methods depend on the regularization parameters chosen, and to benchmark
a wide range of reconstruction procedures for cerebral DOT in a semi-in�nite
medium. To our knowledge, such an extensive study had not yet been per-
formed.

The implementation aimed at mimicking a most realistic environment
for DOT measurements. However, assumptions of the nature of the used
medium had to be made. For instance, the choice of optical properties to
model light propergation in the head were intermediate values, since their
true values alter and a variety of values have been reported (Bevilacqua et al.,
1999; Okada et al., 1997; Torricelli et al., 2001). Furthermore, Choi et al.
(2004) reported an decreasing scattering coe�cient when looking at larger
optode distances (re�ecting deeper tissue) which is in contrast to the values
used from Strangman et al. (2003) assuming an increasing value for µ′s.

For a most realistic data generation, we added noise originating from a
real world experiment, including all the speci�c features such as hemody-
namic �uctuations and �ber distance-dependent noise levels that can in�u-
ence reconstruction quality. This allowed the generation of data sets, to be
recorded in psycho-physiological experiments, while at the same time allow-
ing for a direct assessment of the reconstruction quality. In contrast to other
studies (Prakash et al., 2013; Shaw and Yalavarthy, 2012a), all methods were
tested on a semi-in�nite medium. This geometry can rely on back-re�ected
light only and there might be di�erences to the usually used circles or cylin-
ders where light is applied from all sides.

Since experimental setups and imaging devices alter between experiments
and labs, parameters such as regularization values should be determined for
every reconstruction in a data-dependent (and user-independent) way. In
this work, we demonstrated that cross-validation is able to ascertain the de-
gree of regularization required for a good balance between data and noise.
It can be easily implemented within the reconstruction routine and leads to
high-quality results by relying solely on the measurement and the Jacobian.
Cross-validation is one of the most popular methods for model selection due
to its high robustness and stability. Note, however, that CV assumes sta-
tionarity and i.i.d. (independent and identically distributed) properties of
the underlying data. In the setup of the present study, both assumptions
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are ful�lled: (1) Even though di�erent channels are left out, the reconstruc-
tion of the signal on the remaining channels follows the overall distribution
without causing non-stationarity (Sugiyama et al., 2007) and (2) Due to the
low spatial range of NIRS it can be safely assumed that the data is spatially
independent.

Linear methods such as tSVD and `2MNE are widely used in cerebral
DOT and NIRS experiments or phantom studies, because they allow for fast
or even real-time volumetric image reconstruction of time series. However,
they often provide heavily blurred images, in which the true activation may
be indistinguishable. To overcome this drawback, sparse methods such as
`1MNE or S-FLEX may be used. These methods prefer spatially focal results
and they have proved able to distinguish multiple activation foci. They have
provided good results regardless of the number of activated spots within
a medium noise level. Besides the promising results for sparse methods,
some aspects may also hamper their application. The most important is
that they are nonlinear in the data. Thus, unlike the linear methods, they
cannot be implemented as a multiplication of the data matrix with a pre-
calculated pseudoinverse matrix, but rather require iterative optimization for
each new data point or chunk. This makes these algorithms unsuitable for
online use, and even hard to apply to large data recordings (such as psycho-
physiological experiments) at all. An increased number of measuring channels
and/or a higher reconstruction resolution will increase the reconstruction
time dramatically.

As a further sparse method, we tested `0MNE, which failed to reconstruct
noisy data properly. In contrast to S-FLEX or `1MNE, the proposed imple-
mentation of `0MNE lacks the potential to treat time series in its entirety.
Since the inverse solution is recalculated for every time point, the sparsity
patterns vary likewise. The performance could probably be improved if the
activation is localized for one entire time series (rather than one sample at a
time) with the constraint that identical voxels must be chosen for the whole
time course, as was the case in implementing for S-FLEX or `1MNE.

In addition to the distributed imaging approaches discussed above, we also
introduced the linearly constrained minimum variance (LCMV) beamformer,
another reconstruction method used in the EEG �eld (although originally de-
veloped for radar arrays), which provides linear �lters for transforming sensor
measurements into source activations, and can thus be applied e�ciently just
like tSVD, `2MNE and wMNE. Although LCMV provides a �lter matrix of
the size of a pseudoinverse of J̃ , it technically does not provide a solution to
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the general forward equation. This means that certain parts of the measured
data may not be explained at all, while the variance in other components may
be accounted for many times in di�erent voxels. The reason for this behaviour
lies in the beamformer's property of modeling the activation at each voxel
separately. Consequently, it shows excellent results when only one brain area
is active, or when multiple brain sites show uncorrelated activation, but it is
unable to deal with correlated source signals. Furthermore, in contrast to all
other methods, LCMV �lters must be computed from a large amount of data.
This prohibits the localization of single measurement samples and hampers
straightforward online application. Its broad utilization in functional brain
imaging experiments with potentially multiple correlated sources of activa-
tion has to be considered carefully regarding paradigm, imaging setup and
the presumed area(s) of activation.

Besides the implemented methods, a huge variety of other source lo-
calization algorithms exist. A few of them are mentioned here, such as
the sub-space preconditioned least square root (SP-LSQR) (Jacobsen et al.,
2003), the generalized Tikhonov regularization (GTR), GTR in combina-
tion with the L-curve criterion (GTR-MLCC) (Salehi Ravesh et al., 2013),
`1/`2-norm estimate (group lasso), `1+`1/`2 (sparse group lasso) (Montoya-
Martinez et al., 2012), a total variation (TV) regularization (Fan, 2012), and
a time-frequency mixed-norm estimate (TF-MxNE) (Gramfort et al., 2013)
that uses time-frequency analysis for regularization.

With this work, we performed a highly realistic simulation of a functional
brain imaging study with cerebral DOT in humans which is performed on
a whole multi-layered �nite element model of the human head. A choice
of volumetric image reconstruction approaches were benchmarked including
two recent methods for EEG source localization. We showed that linear
reconstruction methods provide fast and adequate results. However, its ac-
curacy can be increased by implementing sparse algorithms, albeit at the
expense of computational time and e�ort. Using this presented framework, a
robust system for cerebral DOT can be established and the necessary model
parameters can be selected with the CV approach.



5 | In Vivo Functional Brain Imag-
ing: Exploring the Lateral Res-
olution

The next chapters will focus on in vivo capabilities of functional DOT. The
study, which is described now aims at investigating the capability and limits
of DOT to increase the spatial resolution in optical brain imaging. Wide
parts of this section have been published in Habermehl et al.: `Somatosensory
activation of two �ngers can be discriminated with ultrahigh-density di�use
optical tomography', Neuroimage, 2012 (Habermehl et al., 2012).

As already mentioned, the spatial resolution of fNIRS with its topographic
approach is limited to several centimeters. Figure 5.1 depicts a result (signif-
icant decreased HbR concentration) for a motor task of the left hand. This
rather rough activation map is obtained with the 2D back-projection scheme
when few optical �bers are used.

A better resolution may not be required for many applications, but within
the clinical setting it might be required. For example, monitoring the pa-
tient's progress in recovery and rehabilitation by investigating changes of
cortical function requires a higher spatial resolution than conventional fNIRS
can provide.

In this chapter, we show that for demanding functional mapping tasks,
such as demonstrated on the somatosensory system, DOT in conjunction
with high spatial sampling signi�cantly improves the spatial resolution. Fur-
thermore we show, that it is essential to visualize and distinguish very small
activation patterns. In contrast to many studies focusing on the primary
motor-system (Boas et al., 2004; Franceschini et al., 2003; Joseph et al., 2006)
or primary/secondary visual system (Liao et al., 2010; White and Culver,
2010b; Ze� et al., 2007), we are only aware of two reports on somatosensory
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studies with NIRS (Custo et al., 2010; Franceschini et al., 2003), both using
a median nerve stimulation procedure.

The primary somatosensory cortex (SI) was chosen here as a model sys-
tem for several reasons: The super�cial location at the posterior wall of the
central sulcus makes it easily accessible to DOT measurements. Activations
within SI are of small extent with short distances between representational
areas of the �ngers of one hand, suitable to demonstrate the need for and the
bene�t of high spatially resolved optical imaging. Furthermore, the highly
individual and variable representational distribution provides a challenge and
an interesting quality assessment for the comparison between NIRS and fMRI
activations. And �nally, beyond pure and basic research, there may be rel-
evant future clinical applications in neurorehabilitation and rehabilitation
monitoring, e.g. in stroke patients by assessing cortical neuronal plasticity.

In previous fMRI studies, �nger representations have been con�rmed to
be localized within the contra lateral postcentral gyrus and to show a soma-
totopic arrangement; generally, the �rst �nger (thumb, d1) is represented in
the most lateral, anterior and inferior position, with the other �nger repre-
sentations following in a superior medial direction along the central sulcus
(Kurth et al., 2000; Maldjian et al., 1999; Weibull et al., 2008). Repeated
measurements show comparable results for individual subjects. However,
there is high inter-individual variability in somatotopic arrangement as well
as in hemodynamic response strength (Kurth et al., 2000; Schweizer et al.,

Figure 5.1: Example for optical �ber placement in fNIRS (left) and the obtained acti-
vation map for a motor task of the left hand.
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2008).
In this study, we extended our previously published results on vibrotactile

�nger stimulation (Koch et al., 2010) towards the comparison of classical
topographic image generation and a three-dimensional image reconstruction.
Additionally, the same subjects underwent fMRI using the same experimental
design to compare the functional activations of both imaging modalities.
Finally, the individual position of optical �bers in the forward model were
taken into account in the current study allowing to co-register volumes of
functional activation with the individual anatomy.

fNIRS still is exceedingly used in brain research compared to optical to-
mography. In this study, we show that there are applications where the
three-dimensional tomographic approach is essential to image brain activ-
ity: with a topographic setup or even with a conventionally dense tomo-
graphic setup the speci�c activation foci cannot be distinguished properly.
Furthermore, we demonstrate that our imaging and reconstruction procedure
is able to separate cortical answers to di�erent stimuli not only laterally but
also transversely, with the activation pattern being found in di�erent tissue
depths. Additionally, we show that DOT and 3T fMRI as tools of functional
brain imaging in humans yield comparable results.

In contrast to other groups, e.g.(Ze� et al., 2007) that use �ber grids with
a minimum SD separation of 13mm and �bers that are separated sources and
detectors (not co-located) we applied a tighter �ber arrangement (see section
5.1), exceeding the sampling density of other multi-distance approaches. In
the following, we refer to this strategy as ultrahigh-density DOT.

5.1 Methods

5.1.1 Subjects and Stimulus Procedure

We investigated eight healthy right-handed volunteers (mean age 26.8± 4.6
years, 2 female) who had no history of any neurological disease. Written
consent was obtained from each volunteer prior to the experiment. Subjects
were monetarily rewarded for their participation. The study was approved
of by the local ethic committee.

Volunteers underwent vibrotactile stimulation of the 1st (thumb, d1) and
5th �nger (little �nger, d5) of their right hand using a piezoelectric transducer
(model PL-127.251, PI Ceramic) with a �at semicircle-shaped rubber pad
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(diameter: 13mm); the frequency of the vibration was 40Hz. The transducer
was gently �xed at the participant's �ngertips with adhesive tape to assure
the correct position throughout the experiment. D1 and d5 were stimulated
40 times each. Stimulation periods of 20s were separated by resting periods of
equal length. The sequence of d1 and d5 stimulation was pseudo-randomized
but identical for all subjects and for both the DOT and the fMRI sessions.
For DOT measurement, the subjects sat in a chair in a dimly-lit, silent room.
The fMRI measurement was performed in supine position. Except from the
position, the stimulation procedure was identical for both, the DOT and the
fMRI experiments. In addition to the fMRI measurements in a 3T scanner,
which was performed on a subsequent day after the DOT measurements we
acquired an anatomical MRI in a 1.5T scanner just prior to the DOT session
in each participant. For a schematic of the experimental setup see Figure
5.2.

For each subject four data sets were acquired: (i) a 1.5T anatomical scan
prior to (ii) the DOT measurement, (iii) a 3T functional and (iv) anatomical
MRI measurement.

5.1.2 Optical Data Acquisition

We used a DYNOT 232 instrument (NIRx Medizintechnik GmbH, Berlin,
Germany) to acquire the DOT data. The system performs continuous-
wave measurements using two frequency-encoded laser sources at 760nm and
830nm with a sampling rate of 1.8Hz in a time-multiplexed scanning fashion.
The instrument employs an optical switch to provide a large number of illumi-
nation sites in a sequential illumination fashion. In conjunction with dynamic
gain switching of the optical detectors, this provides the very high dynamic
measurement range needed for di�use-tomographic multi-distance measure-
ments. Details of the measuring system can be found elsewhere (Schmitz
et al., 2002). In this speci�c study DOT measurements used 30�ber-optic
probes (optodes). Each optode can act as a source and as a detector, thereby
providing 900 combinations, each entering the analysis as one optical data
channel. The optodes were arranged in a rectangular grid of 6 × 5 probe
positions, with a center-to-center distance of 7.5mm for neighboring optodes
(Figure 5.2 (b)). Because of the co-located source-detector design and the
tight �ber arrangement, our setup allows for uniquely dense spatial sampling,
from 0mm (i.e, co-located) to about 30mm source-detector distance.

Because the spatial sampling density is much higher than in other to-
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Figure 5.2: (a) Experimental setup: The �ngers d1 and d5 of the right hand were
stimulated by piezoelectric vibration devices. (b) 30 optical �bers (inter-optode distance
7.5mm) were placed around C3. The positions of the �ber grid corners were marked with
vitamin E capsules (c) Fiduciary mark approach for co-registration: subject's MR scan
in the real world space with the �duciary marks on the head surface. (d) Anatomic MR
scan of the generic head atlas on which the FE mesh is based. (e) Subject's MR scan,
warped into space and shape of the atlas. (f ) Atlas with a sub-mesh (blue) of the FE
model, covering the area of interest. (g) Within the sub-mesh, the locations of the optical
�bers (red dots) on the boundary were de�ned individually for each subject.
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mographic or multi-distance approaches (e.g. minimum SD distance 19mm:
(Boas et al., 2004), 13mm: (Ze� et al., 2007; Gregg et al., 2010)), we refer
to this strategy as ultrahigh-density DOT.

The instrument's rigid sca�olding head gear employs individual spring-
loaded mounts of the �ber tips and allows parting of the subject's hair.
It provides a stable optical contact to the skin to minimize artifacts from
mechanical instabilities or subject motion. Since the activation for �nger
stimulation is expected to be located over the left, post-central gyrus, contra-
lateral to the stimulated hand, we located the probe grid around the C3
position relating to the 10-20 System (Klem et al., 1999).

5.1.3 Forward Model

Co-registration of the individual optode-positions and the cortical anatomy
required three steps, using the �duciary marks approach (Figure 5.2, which
is described in detail in section 3.2.2.

To create the Jacobian matrix J we used the BrainModeler tool of the
NIRx NAVI imaging suite, which is implemented in MATLAB (The Math-
Works, Natick, MA, USA). The mesh was based on a brain atlas, obtained by
an anatomical MR scan with 1mm resolution. For each of these meshes there
are approx. 400 boundary nodes on the head surface with a spatial resolu-
tion of 4mm. These surface nodes are considered as potential source/detector
positions and the FEM discretized photon di�usion equation using Type III
boundary condition (Paulsen and Jiang, 1995) was solved for each sub-mesh,
providing the reference detector values and the weight function, respectively.
The forward solution was computed based on the simpli�ed assumption of
homogenous interior optical properties (µa = 0.06cm−1 and µs = 10cm−1).

We selected the sub-mesh that best approximated the area of our mea-
surements, according to the translocated positions of the �ber grid. This
sub-mesh was used for all subjects and contains 3884 nodes and 16772 tetra-
hedrons with a dimension of 60 × 71 × 78mm (depth × width × height).
Because the �ber positions within the mesh varied between subjects, we in-
dividually assigned the positions of the optical �bers to the mesh for each
participant. A further limitation of the reconstruction space by means of
spatial constraints was omitted due to the nature of the generic head model.
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5.1.4 Image Reconstruction

Raw data were band-pass �ltered between 0.016 and 0.4Hz to attenuate phys-
iological noise (very slow �uctuations and pulse). Data channels exceeding a
noise level of 15% (coe�cient of variation) were excluded from further analy-
sis. For seven of the eight participants all 900 data channels were retained for
image reconstruction. For the remaining participant (subject 5) 84 channels
exceeded the noise level and were discarded, so that 816 channels were used
for the image reconstruction. Due to the better �ber-skin contact in all other
subjects, we observed inferior data quality in this subject, as judged by the
variance of the raw data. We are aware that the threshold of 15% is a rather
weak criterion allowing most of the channels to be used for reconstruction,
but the main procedure de�ning `activated DOT voxels' is the t-test after
image reconstruction (see below). It separates DOT voxels showing real ac-
tivation over a longer period after stimulus onset from those that �uctuates
randomly.

When looking at di�erent source-detector separations (e.g., 7.5mm vs.
30mm) we did observe deterioration of data quality with increasing distances
but this was limited to few channels still not reaching the 15% level. Con-
sistently we observed a slightly better signal-to-noise level in data measured
with 760nm (to which HbR contributes more).

We obtained images of hemodynamic changes using the normalized dif-
ference method (Pei et al., 2001) in which di�erences between predicted and
measured surface data are related to changes of interior optical properties
(e.g. absorption) of the investigated medium compared to a reference medium
(perturbation approach). To make the weight matrix J more uniform and
less ill-conditioned, and to suppress numerical errors and accelerate conver-
gence, J was scaled by normalizing the column vectors to their respective
mean values. No constraints or weightings concerning the reconstruction
space (e.g. limiting it to cortical nodes) were made. The inversion was then
calculated by performing a truncated singular value decomposition which has
been shown to reconstruct large time series of from very high number of opti-
cal data channels computational e�cient and su�ciently precise (see section
3.4.4).
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5.1.5 Statistics

To identify DOT voxels with a stimulus-related hemodynamic response, t-
tests between a baseline interval from -10 to -1s and the stimulus interval
from 13 to 20s both with regard to stimulus onset were calculated. Within
this functional study, we focus on changes in HbR, which we regard the more
reliable indicator of a hemodynamic response in the brain's cortex. HbO2

is often confounded by super�cial tissue signaling such as blood pressure
(Franceschini et al., 2003) and other global (i.e., non-task speci�c) hemody-
namics (Kirilina et al., 2012).

Since the activation-induced increase in regional cerebral blood �ow over-
compensates the regional increase in oxygen uptake (Fox and Raichle, 1986)
a decrease in HbR is expected (see Figure 2.2 on page 8). Negative t-values
in the HbR maps therefore indicate activation in the respective DOT voxel.
Due to the expected small activations and a high inter-subject variability,
activation data were evaluated on single subject level. We did not use the
same cuto�-value for all subjects and conditions, but determined individ-
ual thresholds, since the di�erent signal amplitudes and signal-to-noise levels
were determined. The t-values ranged between 70% and 90% of the maximum
t-value. Only DOT voxels with values below this threshold are displayed as
`active'.

The NAVI software provides the reconstructed images in a 2D array,
which contains a time series of the whole experiment for each node of the
FE mesh. All statistical calculations were performed on this 2D-array and
then transformed into Cartesian 3D space using an interpolation routine from
MATLAB (The Mathworks, Natick, MA, USA).

5.1.6 Topographic and sparse tomographic analysis

We sought to test the hypothesis that tomographic imaging renders a bet-
ter and more adequate representation of the activation pattern in the so-
matosensory cortex than topographic NIRS. To allow a direct comparison of
a topographic, a sparse tomographic, and a dense tomographic approach in
the same data sets, we de�ned a subset of second nearest neighbor (2NN)
source detector combinations mimicking a topographic set-up.

This topographic approach was based on �ve sources and four detectors
which were not co-located. Similar to the tomographic setting, data were
band pass �ltered at 0.016-0.4 Hz. To compute concentration changes in
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HbO2 and HbR we used a modi�ed Beer-Lambert law as is usually done
in topographic approaches (Cope et al., 1988). Statistical inference was the
same as for the tomographic imaging: t-tests between pre-stimulus baseline
to late-stimulation intervals (-13 to -1s and 13 to 20s with respect to stimulus
onset).

To further assess the in�uence of probe density on the separability be-
tween activation foci we additionally mimicked a sparser sampling DOT,
using 15 instead of 30 probes and 225 optical data channels instead of 900.
The image reconstruction for this sparse tomographic approach was the same
as described in section 5.1.4.

5.1.7 Functional MRI Data Acquisition and Analysis

To provide a `gold standard' of spatial resolution with regard to the hemo-
dynamic response we acquired functional MRIs in the volunteers. The stim-
ulation procedure was identical to the DOT experiment. FMRI data were
acquired on a 3T MR scanner (TRIO, Siemens, Erlangen Germany) em-
ploying a T2*-weighted BOLD-sensitive echoplanar imaging (EPI) sequence
(TR=2000ms, TE=18ms, 3mm isotropic fMRI voxel size) covering almost the
entire brain. Immediately before functional imaging, an anatomical image
volume was acquired (TR 1300ms TE 3.93ms, �ip angle10◦, 1mm isotropic
fMRI voxel size) for superposition of statistical t-maps. For each subject, we
acquired 1200 fMR scans, resulting in a total duration of 54min.

SPM8 was used to perform analysis on imaging data. The initial ten
images of each data set were discarded to account for T1 saturation e�ects.
Preprocessing of functional images comprised realignment to the mean func-
tional image and spatial smoothing (Gaussian kernel; FWHM= 6×6×6mm).
Voxel wise time courses were temporally high-pass-�ltered (cuto� period
128s). Statistical t-maps were calculated by regression analysis based on
the general linear model (Friston et al., 1995), de�ning regressor functions as
the respective stimulus onset functions convolved with the canonical hemo-
dynamic response function. According to the procedure applied to the DOT
data, we set individual thresholds for all subjects and conditions in the fMRI
experiment. The resulting t-maps for both conditions were superimposed on
the 1.5T individual anatomical brain scans of each single subject, which were
co-registered to the 3T anatomical brain scans. Data were masked within a
hypothesis-driven region of interest (ROI) by selecting only clusters contra
lateral to the stimulated hand. Thresholded t-maps of the two conditions
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were then superimposed on the individual brain, which was extracted with
the SPM8 segmentation tool.

5.2 Results

5.2.1 Ultrahigh-density DOT reveals distinct activations
for 1st and 5th �nger

In �ve (out of eight) subjects, we found two distinct separate activation foci
for the two �ngers using the ultrahigh-density DOT approach as shown in Fig-
ure 5.3. The volumes were reconstructed from the 900 optical data channels
and are mapped onto the individuals' anatomies. In these �ve participants,
the activations were found in the post-central gyrus, which is in line with the
expected activation in response to the vibrotactile stimulation. However, the
exact locations of the activations for the two �ngers vary notably between
individuals. Two subject (s4 and s6) showed the expected spatial orientation
in the z-dimension with d1 activation inferior to d5 (s4) or with d1 activation
anterior to d5 (s6).Three subjects (s2, s3 and s5) showed a pattern in which
d1 stimulation elicited an activation superior to that during d5 stimulation.
Although the individual functional-anatomical tomography varied, the dis-
tance between activations of the d1 and d5 was quite homogeneous (mean
distance dd1, d5 13.7mm, standard deviation 5.6mm).

The remaining three participants (s1, s7 and s8) showed activation pat-
terns for one of the two �ngers only in the DOT measurements. It is worth
noting that the same subjects did not reveal two activation foci during the
fMRI experiment, either (data not shown).

Figure 5.3 shows all volumes in which remarkable changes were detected
for both, d1 (magenta) and d5 (blue) stimulation. To reach distinct non-
overlapping areas of activation for each �nger the thresholds were adjusted
individually. A �xed threshold across subjects blurred the contrast between
�ngers. This is unsurprising given the fact that absolute changes depend
on many factors such as background optical properties which are known to
vary largely between individuals and individual signal-to-noise ratio. The
thresholding at a �xed percentage of the peak activation, however, yielded
largely similar results as the arbitrary (hypothesis driven) threshold. We
conclude that for identifying small activations, such as in our paradigm, it
may be required to use hypothesis-driven thresholds.
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5.2.2 Ultrahigh-density DOT is essential to identify small
activations.

To illustrate the relevance of ultrahigh-density DOT, we mimicked the use of
sparser probe arrays in our experiment by omitting channels from the data
set and compared the reconstructed results.

The results in two subjects (s2 and s6) are illustrated in Figure 5.4. A
sparse NIRS setup using a next neighbor approach with 12 channels (�ve
sources and four detectors) is shown in the top row of Figure 5.4. The mid-
dle row illustrates the results which would be obtained using a moderately
dense sensor placement for tomography (15 �bers with all potential combi-
nations), yielding 225 optical channels. For s2 (middle column), the di�er-
ences between a topographic nearest neighbor measurement (upper row) and
ultrahigh-density DOT (lower row) are substantially di�erent. The interme-
diate approach (middle row) reveals less focalized activations but shows the
same general pattern as ultrahigh-density DOT. For s6 (right column), we
can see a comparable orientation of the activation clusters with d1 anterior to
d5 in all three setups, however the activation foci in response to the di�erent
�ngers are separated only when the ultrahigh-density approach is used.

While individual results di�ered in the other subjects the general supe-
riority of the ultrahigh-density approach with regard to a separation of the
activation foci was present in all data sets.

5.2.3 Ultrahigh-density DOT shows good relative depth
resolution but the activation volumes are projected
to extra-cerebral layers.

One of the challenges in DOT is the correct depth localization because the
underlying reconstruction methods favor solutions close to the tissue surface
and therefore have a tendency to underestimate activation depth. This ef-
fect is particularly prominent in partial-view DOT imaging such as the back
re�ection geometry that is necessary in optical neuro imaging when no spa-
tial constraints are applied. To illustrate the e�ect, Figure 5.5 shows the
result from a simulation as described in chapter 4. In Figure 5.5 (a) we see
the simulated target and (b) shows the reconstructed result without spatial
constraints concerning the reconstruction space comparable to the discussed
experiment.
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Figure 5.6 (a) shows two activation clusters in a frontal view. The activa-
tion areas are clearly separated, with the d1 representation located somewhat
deeper than that of the d5. This clearly demonstrates the ability of ultrahigh-
density DOT to resolve cortical activation with good spatial resolution not
only laterally, but also with remarkable relative depth discrimination.

While both activations are resolved in depth, the overlay with the anatom-
ical structure demonstrates that the absolute depth placement is incorrect;
both activation regions are projected to structural areas outside of the cor-
tex. The reconstruction algorithm manages to locate the activations some
distance below the outermost tissue layers but fails to achieve a more accu-
rate placement within the brain matter. This is a well-known phenomenon
which is caused mainly by the fact that the Jacobian derived from the forward
model has the highest sensitivity values close to the surface and a signi�cant
decrease in deeper layers. As a result, any solution to the inverse problem
that includes super�cial optical changes is heavily favored over deeper-laying
variations in optical dynamics.

There are several strategies to counter this e�ect (Niu et al., 2010b; Xu
et al., 2007), each of which with particular advantages and disadvantages.
The problem is to �nd objective criteria for manipulating W prior to the im-
age reconstruction (Niu et al., 2010a) or to adjust the reconstructed images
to the correct depth. The method by Xu et al. Xu et al. (2007) has not
been tested on physiological data so far. In our study we used a physiol-
ogy/anatomy driven approach to correct the depth localization of the recon-
structed volumes. Instead of applying model-based correction schemes, which
bear signi�cant risk of image distortion in themselves, we a�ne-transformed
the DOT result and this way forced it into the cortical layers (Figure 5.6 (b),
(c).

Based on the knowledge that somatosensory �nger representation is mainly
found in super�cial cortical areas, we determined the minimum distance that
was needed to project the result volumes `back' into the outermost cortical
layer. Relating to the outer boundaries of the activation foci, it was consis-
tently found that a translocation of about 15mm parallel to the head surface
was needed to place the activation in cortical tissue. This was the least
assumptive and invasive correction strategy and it led to a conservation of
the size and relative orientation of the activation clusters to each other. No
lateral distortions of the activation clusters were observed due to this a�ne
transformation.
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Figure 5.3: Results for vibrotactile stimulation of d1 (pink) and d5 (blue) of the right
hand, mapped onto the individual brain anatomy of �ve subjects (s2-s6). Gray spheres
indicate the corners of the grid.
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Figure 5.4: Comparison of activation patterns for vibrotactile stimulation of the d1
(pink) and d5 (blue) of the right hand for two subjects (s2, s6) when simulating three
di�erent densities of probes. Top row: Topography approach using 12 NIRS- channels
(light red ellipses between light source (red dots) and detectors (blue dots). Middle row:
DOT approach with a medium-dense grid of co-located sources and detectors (bi -colored
dots, minimum SD distance 15mm) yields 225 optical data channels. Lower row: DOT
approach with an ultrahigh-density grid and 900 channels. The increasing number of
channels leads to a better lateral resolution and allows distinguishing between the two
activations in both subjects (middle and right column).
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Figure 5.5: Challenge of correct depth localization. (a) DOT simulation of cerebral ac-
tivation (b) reconstructed activation using tSVD and no spatial constraints in the forward
model. The result was `allowed' in all voxels.
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Figure 5.6: Reconstruction-based dislocation of the activation foci for d1 (pink) and d5
(blue) stimulation of the right hand in �ve subjects (s2-s6). (a) Frontal view reveals that
activation clusters for both �ngers was determined in di�erent tissue depths but still there
is insu�cient depth localization. (b) Depth correction of the result volume localization:
the volumes were translocated into the brain by 15mm parallel to the head surface in x
and z direction. (c) Frontal view of a 10mm slice of the activated area for four subjects
(s2-s5) after depth correction.
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5.2.4 DOT and fMRI �nd comparable lateral positions
in seven out of ten �nger representations

Figure 5.7 illustrates the comparison between the results of DOT when com-
pared to the corresponding fMRI measurements. Two clearly separate foci
of activation for the d1 and d5 stimulation were seen-with both methods-in
�ve of the eight subjects (s2-s6). The left column shows the reconstructed
DOT results, and the right column contains the fMRI �ndings, all mapped
onto the individual anatomies of the subjects.

We determined the coordinates of centers of activation for both �ngers
and imaging modalities by normalizing all anatomical scans and the DOT
and fMRI volumes to a standard brain (Evans et al., 1993) using SPM 8. The
Euclidean distances between DOT and fMRI activation were calculated for
each condition and subject to obtain the lateral distance d(DOTx,y, fMRIx,y)
and the distance in 3D space d(DOTx,y,z,fMRIx,y,z) (see Table 5.1). Regard-
ing the absolute position of the activation foci we �nd six out of ten �nger
representations where the position error between DOT and fMRI result is
less than 10mm in 3D space (lateral and depth di�erence) and in seven out
of ten �nger representations when taking only the lateral distance into ac-
count. When discussing these distances, one should keep in mind, that there
is still some positioning error occurring from the previously described depth
localization problem in DOT which not only a�ects the z-direction but also
the x-direction.

From our view more interesting than the absolute position of the acti-
vation is the relative orientation of the foci: three out of the �ve subjects
(s2-s4, top three rows) show substantially similar activation patterns in DOT
and fMRI. Interestingly, while s4 displays the typically assumed functional
organization that places d1 activation inferior to d5, s2 and s3 show the oppo-
site behavior, and consistently do so in both DOT and fMRI. Reconstructing
this `switched' and rather unusual activation pattern with both methods give
further indication that ultrahigh-density DOT and fMRI have a comparable
access to cortical activation. In two other subjects (s5 and s6) the pattern
was not identical, with a more posterior rather than inferior orientation of d5
(s5) and with a higher distance of both activations in s6 in fMRI and DOT.
In these two cases, only the activation for d1 was similarly localized.
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Table 5.1: Coordinates of the centers of activation for DOT and fMRI. Eu-
clidean distances d between the activation foci of both methods were calculated for
d(DOTx,y,fMRIx,y) and d(DOTx,y,z, fMRIx,y,z)

.
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Figure 5.7: Comparison of NIRS and fMRI activation. All results were mapped onto the
individual anatomy. Left column: reconstructed activation maps from DOT experiment
for vibrotactile stimulation of d1 (pink) and d5 (blue) of the right hand for �ve subjects
(s2-s6). Colored boxes indicate the cut-o� t-values. Right column: results for the fMRI
experiment.
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5.3 Discussion

The aim of this multi-modal functional imaging study was two-fold. Firstly,
we wanted to investigate whether ultrahigh-density DOT allows identify-
ing distinct activation patterns for stimuli that are known to activate cor-
tical areas of a small extend. Secondly, we examined the comparability of
high density optical measurements with the gold-standard in functional brain
imaging, fMRI.

For the optical measurement, we used an ultrahigh-density grid of optical
�bers with an inter-optode distance of less than 10mm. We showed that a
classic 12-channel topographic approach fails to resolve small activations and
that a medium-dense grid can only partly reconstruct the expected results.

By attaching 30 optical �bers over an area of about 12 cm2, we achieve a
much denser spatial sampling compared to previous tomography approaches
that use wider inter-optode distances (Custo et al., 2010; Dehghani et al.,
2009; White and Culver, 2010a). We found that satisfactory results in terms
of the location and separation of small functional activations such as present
in the somatosensory system can only be achieved with DOT if the spatial
sampling density approaches the scale on which feature resolution is desired,
in our case, about 10mm.

The bene�t of ultrahigh-density DOT is further substantiated by the
similarities between the �ndings in HR-DOT and fMRI results. Seven of ten
�nger representations were detected in the same location. In three out of �ve
subjects, showing two activation foci, we found a similar relative orientation
of the activation maps, including two unusual switched patterns. For three
remaining subjects, a stimulus answer could be detected neither with DOT
nor in fMRI, which we take as further indication that both imaging modalities
provide comparable access to small activations.

Even though the activation patterns showed strong qualitative similarities
in both methods, we also observed consistent di�erences worth mentioning.
For almost every subject, we received more than one result cluster below the
chosen threshold for DOT, whereas in fMRI mostly one cluster for each stim-
ulus was present. One possible explanation for this observation may be that
methodological di�erences in the speci�cs of each of the modalities' analysis
introduce this bias. Even though it is also possible that these additional
clusters of activation in the DOT result could be false positive results, we
deem this unlikely, given the fact that these areas appear in isolated places
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and in the form of continuous patterns, rather than showing a distributed,
grainy appearance throughout the entire volume, as one would expect from
noise.

Even though we demonstrate the high functional sensitivity and good
lateral resolution of ultrahigh-density DOT, there is signi�cant potential in
improving the depth pro�ling accuracy. Although we observe the remarkable
capability of resolving di�erent activation depths, the anatomical localization
of those is still poor. The algorithm underestimates the activation depth and
places the activation in super�cial layers that correspond mostly to extra-
cortical areas, such as the scalp and skull.

We have good reason to assume that the activation actually stems from
the cortex. Recently we demonstrated that our imaging system using the
same �ber con�guration is able to access hemodynamics the cortex as shown
in chapter 6. Furthermore, the observed signals show distinct focal areas
instead of noisy patterns that correspond well with the known idiosyncrasy
of hemodynamics connected with functional activation of the brain (Obrig
and Villringer, 2003).

There are a number of methods to improve depth localization in DOT.
Because this was not the scope of this speci�c study, we did not employ but
would rather mention them. One way would be manipulating the Jacobian to
restrain the result space to DOT-voxels that are located within cortical tissue.
This is possible and has been shown to achieve good results in simulation
studies where the head geometry -in contrast to this study- is known. Other
less constraining algorithms look to correct the position error introduced in
the reconstruction process. One proposed method (Niu et al., 2010b) adjusts
the weight matrix by multiplying a matrix with an inversely arranged order of
increasing values from outer to deeper layers, thus counterbalancing the loss
of sensitivity in deeper layers. The problem with such correction methods
is the identi�cation of objective criteria to what extent and in which way to
adjust the weight matrix.

One source of inaccuracy in the applied DOT method is the generic for-
ward model geometry. The generation of individual forward models is time
and energy consuming and not feasible when many subjects are investigated.
It has been shown by (Custo et al., 2010) that using a generic head model can
lead to an image reconstruction within the correct gyrus. The relative dif-
ference method, which we applied for image reconstruction (Pei et al., 2001)
has been proven to be robust to inaccuracies of the initial guess and there-
fore allowed us to use a forward model with homogenous interior properties.
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Nevertheless, di�erences in the skull geometry of subject and forward model
and high variability of cortical structures can lead to distortions of results.

Despite the improvement in methods for DOT there seem to be di�cul-
ties that make the method yet unattractive to be widely used for functional
studies in adults. Most studies deal with visual or motor tasks. Studies
concerning the limitations of DOT application in human brains are not pub-
lished so far. A relatively high noise level of the data compared to other
imaging modalities may constrain extensive use of DOT.

One possibility to increase the signal-to-noise ratio and to extend the
�eld of application could be the use extrinsic contrast agents instead of in-
trinsic agents like hemoglobin. A study applying an optical contrast agent
in conjunction with DOT to increase the signal level and to obtain a clear
separation of di�erent tissue depths is discussed in the next chapter.



6 | In Vivo Functional Brain Imag-
ing: Detecting Extrinsic Agents
in the Brain

Most in vivo studies of NIRS or DOT can be assigned to one of two �elds:
functional or (patho-)physiological. In the previous chapter, we showed the
potential of functional DOT to resolve small and proximate activations. We
also showed a good relative depth discrimination, even for low-contrast acti-
vations.

The next part of this thesis will examine the potential of DOT to detect
physiological processes, more precisely, we evaluate if high-resolution DOT
(in contrast to fNIRS) is able to separate cortical from non-cortical compart-
ments and thereby detect changes in cortical blood supply. This could give
rise for applications in a clinical setting.

For instance, bedside monitoring of brain perfusion or perfusion based
therapies in neurointensive care patients is highly desirable. It may help to
evaluate the patient's pathological state and to guide treatment. Existing
imaging modalities such as X-ray computed tomography, MRI, or positron
emission tomography (PET) are not always within a timely reach at the in-
tensive care unit (ICU) and are not suited for constant monitoring of the
brain. Furthermore, imaging facilities may be remote from the ICU and
require undesirable intensive-care patient transport. Other established neu-
rological monitoring techniques like intra-cranial pressure assessment, micro-
dialysis and transcranial Doppler ultrasonography cannot monitor perfusion
of the brain parenchyma.

Contrast enhanced DOT has the potential to close this gap and to serve as
a quasi-continuous brain perfusion monitor. It is portable, noninvasive, and
may be applied regularly (e.g. every 20-60min) without undue discomfort or

73
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adverse health e�ects.

Previous fNIRS studies of brain perfusion using indocyanine green (ICG)
focused on the measurement of cerebral blood �ow (CBF) and cerebral blood
volume (CBV) (Hopton et al., 1999; Keller et al., 2003) or di�erences of bolus
kinetics in a�ected and una�ected hemispheres in stroke patients (Terborg
et al., 2004, 2009). All these studies employed a topographic NIRS approach,
which uses next-nearest neighbor measurements of optical �bers that are
equally separated up to 5 cm. One major challenge of this approach is that
the signal of the contrast agent in super�cial layers like skin can dominate the
measured absorption change. That's why methods are needed that are able
to di�erentiate between tissue depths and that assess the contribution of the
signal that originates from the brain: Studies using depth resolved NIRS, like
time-domain (TD) (Liebert et al., 2006, 2004) and frequency-domain (FD)
techniques (Kohl-Bareis et al., 2002) have shown the passage of an ICG bolus
in the brain. Consistently, it was found that in healthy subjects the bolus
was detected �rst in deeper (cerebral) layers and a few seconds later in the
super�cial (skin) layers. Figure 6.1 shows a schematic of the expected bolus
behavior.

Figure 6.1: Schematic of the expected behavior of an injected optical contrast agent.
Few seconds after injection, the bolus arrives in the cortex, followed by an arrival in the
scalp and a fast washout from the brain. The tracer can be found in the skin many seconds
later.
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It can be expected that signals from intra-cerebral tissue decline faster
than signals from super�cial layers. This is in good agreement with the
known high perfusion of brain tissue, and this phenomenon allows evaluating
the separation of intra- and extra-cerebral fractions of the signal. While these
FD and TD results are promising, we believe that the introduction into
clinical use would bene�t greatly from the application of continuous wave
(cw) DOT, which is technically much less demanding and more economic
compared to other approaches. In this study, we used the ultra-high density
DOT system which is discussed in the previous section to detect absorption
changes caused by an injected ICG bolus.

With this study, we are the �rst to demonstrate the bolus kinetics of an
ICG injection using a cw HR-DOT system. We visualize the di�erent bolus
kinetics in the several compartments of the head, demonstrating the separa-
tion of intra-and extra-cerebral tissue, thus con�rming the results that were
obtained with more complex imaging devices. This is a contribution to the
attempt of many research groups to develop a bedside-monitoring tool for
brain perfusion. In contrast to other groups we do not aim for measuring
absolute values of CBF or CBV which may not be necessary when the pa-
tient is repeatedly monitored. Major parts in this chapter are taken from
the publication Habermehl et al. (2011): `Contrast enhanced high-resolution
di�use optical tomography of the human brain using ICG'.

6.1 Methods

We investigated three healthy, voluntary subjects (2 male, mean age 38
years). All subjects were collaborators of this study. We diluted 50mg in-
docyanine green (ICG-PULSION, PULSION Medical Systems, Germany) in
30ml aqua ad injectabilia. Di�erent amounts of ICG were injected into the
cubital vein of the right arm of each subject. Subject 1 received two boli
(9mg ICG as the �rst bolus, 16mg as the second bolus) with a 10min de-
lay. Subject 2 and 3 were administered one bolus of 12.5mg ICG each. ICG
is a non-toxic �uorescent dye (Desmettre et al., 2000; Ebert et al., 2011)
that binds tightly to serum proteins and has been frequently used in clinical
routine. ICG absorbs light in the near infrared spectrum with an absorp-
tion and emission maximum at 805nm in plasma solution (Landsman et al.,
1976). In experimental stroke models, it was shown that a disturbance of the
blood-brain-barrier (BBB) together with an ICG injection and the exposure
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to near-infrared light does not lead to photo-toxicity (Keller et al., 2002).
This is important since stroke patients often su�er from a disruption of the
BBB.

We measured absorption changes with the DYNOT tomography imager
(NIRx Medizintechnik GmbH, Berlin, Germany), which applies light of two
wavelengths (λ1=760nm and λ2=830nm) to the subject's head. Thirty co-
located optical �bers (serving as source and detector) were placed over C4
in a 5× 6 optical �ber grid covering ∼12cm2 of the right hemisphere (inter-
optode separation: 7.5mm) (Fig 6.2) thereby achieving 900 overlapping op-
tical data channels. To �xate the optical �bers on the head surface and to
ensure stable optical contact, we used an open sca�olding structure and in-
dividually spring-loaded �bers. This design allows easy access of the �ber
tips for parting of the hair before placing an optode. We obtained images
of hemodynamic changes using the normalized di�erence method (Pei et al.,
2001) with an image reconstruction using tSVD (see section 3.4.4 on page
23) using all singular values that explain 98% of the data.

The Jacobian was determined using BrainModeler (NIRx Medical Tech-
nology, LLC, NY) which provides a library of subvolumes from a MRI-scan
based �nite element (FE) mesh with precalculated inverse parameters for
all possible source and detector combinations on the subvolume's bound-
ary. Each of these subvolumes contains precalculated forward solutions of
the photon di�usion equation and reference detector values. These forward
solutions are computed based on the simpli�ed assumption of homogenous in-
terior optical properties (µa = 0.06cm-1,µs = 10cm-1). We used the same FE
mesh for image reconstruction for all three subjects. This mesh contains 3332
nodes with a resolution of ∼4mm and has the dimension of 72× 68× 52mm
(height× width× depth).

All data were low-pass �ltered to reduce high-frequency noise before fur-
ther processing (fcuto�=0.3Hz). We reconstructed the time courses of relative
absorption changes for every node of the �nite element mesh using tSVD,
which resulted in an array of 3332 time courses. For visualizing the bolus
kinetics in di�erent compartments of the volume, we determined the time
(in s after bolus injection) of the ICG arrival for each node (de�ned as the
time point when 50% of the maximum value was reached). In combination
with the spatial coordinates of each node we �nally converted the result in a
3D volume. Results were comparable in all three subjects. Interestingly, no
quantitative di�erences were observed due to di�erent amounts of injected
ICG. Therefore we will report detailed results for one subject only.
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Figure 6.2: Imaging setup. (a) Absorption changes were measured with a DOT imaging
system (DYNOT, NIRx Medizintechnik GmbH, Berlin, Germany) (b) A 5 × 6 �ber grid
with 30 co-located sources and detectors was placed pericentrally over the right hemi-
sphere. (c) Subvolume, which was selected for forward modeling.(d) Finite element mesh
that was used for image reconstruction of relative absorption changes.
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6.2 Results

6.2.1 An earlier increase in absorption can be observed
for larger optode distances

Three-dimensional DOT uses multi-distance measurements of di�erent SD
combinations. Light that is detected far away from the source is assumed to
have passed deeper tissue layers than light that is detected close to the source.
Signals measured with 3rd nearest neighbor (NN) combinations (∼22.5mm
SD distance) can be assumed to have signi�cant components originating from
brain tissue, while signals from 1st NN (∼7.5mm SD distance) channels con-
tain mainly information of skin and skull tissue.

A few seconds after injection, the passing of the bolus is clearly indicated
in the raw signals by a transient decrease (indicating a higher absorption of
the light). When examining the raw detector readings (not shown), we �nd
an averaged decrease in the measured intensity of 8% for 1st NN and 12% for
3rd NN combinations (standard deviation of a 45s pre-bolus baseline: 0.5%
for 1st NN and 0.8% for 3rd NN).

To compare the di�erent bolus kinetics directly, Figure 6.3 shows nor-
malized detector readings from 1st NN and 3rd NN measurements (data from
subject 1, 1st bolus and λ = 760nm). The averaged 1st NN response (red)
shows a clear delay in the bolus-related signal decrease, compared to the
mean 3rd NN signal (blue). This is explained because the larger optode sep-
arations have a signi�cant signal contribution from deep tissue (i.e., cortex),
which due to better perfusion is reached �rst by the bolus compared to skin.
Short SD separations, in contrast, are much less sensitive to deep tissue and
are mainly in�uenced by super�cial activity, such as skin perfusion, which is
known to be delayed with respect to the brain. This clearly demonstrates
the sensitivity of the di�erent SD distances to di�erent tissue depths, even
in the raw (non-reconstructed) signals.
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Figure 6.3: Normalized detector readings following an ICG bolus (subject 1, λ = 760nm).
Thin red lines indicate the time course of all 1st NN combinations (SD distance 7.5mm).
Thin blue lines represent the time course for all 3rd NN combinations (SD distance
22.5mm). The average 1st NN and 3rd NN time courses are depicted by the bold lines.
The insert box in the left corner depicts the �ber grid set-up and the channels taken for
the di�erent time courses.
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6.2.2 Reconstruction in DOT allows the separation of
extra- and intracerebral tissue

To be able to locate the bolus dynamics in a volumetric view, we recon-
structed a three-dimensional time series of absorption changes within the
sampled tissue, using the forward geometry and de�nition of the optical �ber
arrangement shown in Figure 6.2 (c).

Figure 6.4 (a) depicts a frontal view on the reconstructed result volume,
visualizing the early arrival of ICG in deeper voxels at t=5s and the arrival
of the dye in super�cial layers approximately at t = 7s. Figure 6.4 (b) shows
the arrival time of the bolus in each voxel by color-coding the time at which
50% of the maximum absorption value is reached. In both �gures we �nd a
clear border at a depth of 10-12mm, beneath which the early response is seen.
This indicates the location of the cortical surface that runs about 10-14mm
blow the head surface (see, Figure 6.4 (c).

Figure 6.5 shows the averaged reconstructed time courses from two regions
of interest (ROI) of di�erent tissue depth for subject 1. One ROI is located
in the super�cial (skin) layer (red), and the other one in the brain region
(blue). Since the image reconstruction procedure calculates relative changes
of absorption, the baseline prior to the bolus �uctuates around zero. The
measured relative increase of absorption due to the bolus injection ranged
from 1.0 × 10−5 to 2.6 × 10−5mol/l for deep voxels and from 1.3 × 10−5 to
2.4×10−5mol/l for super�cial voxels. To allow for a direct comparison of the
di�erent bolus kinetics, we normalized each time course.

In both boli of subject 1 and for each wavelength we �nd a systematic
earlier increase of absorption in deeper voxels and delayed (1.5-4s) increase
of absorption within the super�cial layer. We also observe a fast decline
in the time courses of the deeper voxels. This observation is in line with
contrast enhanced perfusion-weighted MRI and has also been observed using
frequency and time domain systems (Kohl-Bareis et al., 2002; Liebert et al.,
2006).

Figure 6.6 presents the results for subject 2 and subject 3, demonstrat-
ing the robustness of the method. Similar to the results of subject 1 we
can clearly separate deeper voxels with an early arrival of the absorber and
super�cial voxels with a later increase of absorption. Due to the somewhat
slower injection of the bolus we �nd a more broadened answer in the deeper
voxels than in subject 1. We determined the characteristic shape in the time
courses of the in- and out-�ow of the contrast agent in extra-and intracerebral
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tissue in all three subjects, demonstrating that three-dimensional perfusion
imaging of the brain is possible using cw HR-DOT.

To show the improved resolution of the method, Figure 6.7 presents a sec-
ondary result. When viewing the HR-DOT images for subject 1 in an angle
perpendicular to the head surface, we consistently observe a distinct pattern
of the arriving absorber in the most super�cial layer. The bolus dynamics
in the outermost layer (10mm thickness) displays the arrival of the ICG at
t=7s, spreading from anterior/inferior to posterior/superior. These results
were con�rmed for every bolus injection and wavelength (data only shown
for 1st bolus and λ = 760nm). This is further indication of the excellent
lateral and depth resolution of the used imaging system and reconstruction
procedure.
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Figure 6.4: (a) Single frames from a video can be accessed via Optics Express, depicting a
cross-section of the reconstructed result volume (subject 1, 1st ICG bolus and λ = 760nm).
Green voxels indicate increased absorption. Voxels are colored semi-transparent, bolus
injection was at t = 0 − 1s. (b) Same view on the reconstructed result volume as in (a),
displaying for each voxel the time (in s after bolus injection) when 50% of the maximum
absorption value was reached. (c) Transversal slice from an anatomical scan of the used
forward model geometry.

http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-19-18636&seq=1
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Figure 6.5: Time courses of normalized relative absorption changes for subject 1 and
both boli and wavelengths. Red lines represent the averaged intensity values from super-
�cial voxels; blue lines represent intensity values from voxels from deeper (cortical) layers.
Injection of the ICG bolus was at t=0-1s. Note, that due to manual injection, this time
point is only an approximation. (a) 1st ICG bolus, λ = 760nm. (b) 1st bolus, λ = 830nm.
(c) 2nd bolus, λ = 760nm. (d) 2nd bolus, λ = 830nm.
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Figure 6.6: Subject 2. (a) Frontal view on the reconstruction volume, color-coded voxels
depict the time (in s after bolus injection (t=0-3s)) when 50% of the maximum absorption
value was reached. (b) Subject 2, reconstructed time courses for deep and super�cial voxels
for λ = 760nm. (c), (d) Same as (a) and (b) but for subject 3.
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Figure 6.7: Single frames from a video accessible via Optics Express of a lateral view on
a 10mm thick slice (60× 60mm wide) of super�cial layers for subject 1, the 1st ICG bolus
and λ = 760nm. Green voxels indicate increased absorption.

http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-19-18636&seq=2
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6.2.3 Ultra-high density or high density DOT are manda-
tory to separate cortical from non-cortical layers

The �rst column of Figure 6.8 shows the reconstructed results obtained on a
single subject, considering all 900 data channels. The �rst row illustrates the
FE mesh with the de�ned position of the 30 co-located sources and detectors
on the boundary. The second and third row depict the time of arrival of the
bolus in each voxel, seen from di�erent angles. We clearly observe an early
increase in absorption in deeper layers (∼12mm depth) and a later increase
in super�cial layers. This is con�rmed when de�ning two separate regions of
interest for skin and brain and averaging all time courses within each of these
(last row). As expected, the absorption dynamic in the brain region shows
an early increase, followed by rapid decay. In contrast, we �nd a delayed
increase and a slower decline in super�cial voxels.

The center column of Figure 6.8 shows reconstructed results from the
same experiment; however, here we only considered data from those 225
optical channels that one would obtain using a dense grid of 30 optodes, of
which 15 are sources and 15 are detectors (i.e., no collocated positions). Even
though the spatial resolution decreases to some extent, this setup would be
su�cient to separate both layers and reconstruct the di�erent bolus kinetics
in the two ROI.

The right column presents the reconstructed result volume with data from
9 optical data channels. This corresponds to a topographical NIRS setup
which contains only neighboring optodes and does not a�ord any overlapping
measurement channels. The so reduced setup is not capable of distinguishing
between di�erent layers, and the spatial resolution is greatly diminished.
The location of regions with speci�c arrival times is greatly distorted in
comparison to the cases shown in the left and center columns. The time
varying absorption from ROI in the skin and brain layer shows no clear
separation in �ooding or washout dynamics.
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Figure 6.8: Results for one subject. The �rst row shows the �ber location on the
FE-mesh, the second and third rows present the reconstructed volume with the voxels
color-coded with the time of arrival of ICG (de�ned as the time in s after injection when
50% of the maximum value was reached).The bottom row shows the reconstructed time
courses of brain and skin region. Left column: Results using data from all 900 optical data
channels (including zero-distance measurements). Center column: Results considering a
subset of data corresponding to a �ber-setup using separate sources and detectors. Right
column: Results considering only �bers at topographic distances.
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6.3 Discussion

Monitoring of cerebral perfusion in neurointensive care is highly desirable
and as of yet is only partially realized owing to the scarcity of neuro-ICU
equipped with dedicated imaging equipment on one hand, and the limited
monitoring capability of existing equipment on the other. A tool that enables
the regular monitoring at short intervals at the bedside using a safe dye would
be helpful, also because many patients cannot easily be transported. Unlike
topographic NIRS, we demonstrate that the continuous wave high resolution
DOT has su�cient depth and lateral resolution to be used for cerebral perfu-
sion monitoring. It furthermore overcomes the technical challenges of more
demanding frequency or time domain NIRS approaches.

In this study, we investigated the feasibility of separating intra- and extra-
cerebral tissue by using a cw HR-DOT imaging system which is normally used
to determine concentration changes of HbO2 and HbR (Habermehl et al.,
2012; Koch et al., 2010; Schmitz et al., 2000) due to brain activation. We
were able to reproduce previous results (Kohl-Bareis et al., 2002; Liebert
et al., 2006) with a less demanding system in all three subjects. Three-
dimensional result volumes of absorption changes were reconstructed within
a few seconds due to the use of pre-calculated forward solutions. The images
show a high lateral and good depth resolution and allow the separation of
intra- and extra-cerebral tissue.

The used wavelengths are close to the maximal absorption spectrum of
ICG in plasma. We are aware of the fact that there are three chromophores
that mainly contribute to the measured signal, but the impact of changes
in HbO2 and HbR concentration (which can be seen in �uctuations of the
baseline) is relatively small and stable over time compared to the high am-
plitude changes in light attenuation caused by the ICG. For example, re-
ferring the measurement with λ = 760nm (subject 1, bolus 1, intracerebral
ROI) we found an almost 10-fold increased amplitude of the ICG response
(1.1∗10−5mol/l) compared to the standard deviation of a 45s pre-bolus base-
line (1.2∗ 10−6mol/l). For λ = 830nm (same measurement) we found a more
than 20-fold increase.

Nevertheless, hemodynamics can be observed in the signal; especially
within the 830nm time courses, to which HbO2 is the predominantly con-
tributing hemoglobin species, we see oscillations that are part of systemic
signals (Kirilina et al., 2012; Obrig et al., 2000). For further studies, we
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consider the implementation of a third wavelength, allowing for a better sep-
aration of the signals. However, the typical bolus kinetics with di�erent
bolus arrival times within the di�erent compartments and the fast decline
of the signal within cerebral tissue and can clearly be seen using a single
wavelength. The distinct border of the early arrived bolus at 12mm tissue
depth indicates the cerebral boundary.

In this study we succeeded in the attempt of showing the separation of
intra- and extra cerebral tissue by using a cw HR-DOT imaging system in
combination with the injection of a safe dye. In our results, we see the
early arrival of the ICG for larger SD-separations in the raw data and the
expected bolus kinetics in di�erent layers of the reconstructed volume. This
work can help to promote the use of DOT for monitoring patients undergoing
brain trauma or stroke. It could be highly useful to detect changes in brain
perfusion in time without expensive measurements and di�cult transport of
the patient. We highly recommend further studies using a more complex
system that takes changes of all important chromophores into account.

Additional to the detection of extrinsic contrast agents, we will investigate
the possibility of using intrinsic markers that are related to cerebral perfusion.
The reconstruction of the spatial distribution of low frequency oscillations in
brain and skin will be discussed in the next chapter.
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7 | In Vivo Functional Brain Imag-
ing: Intrinsic Cortical Signals

A strong signal that occurs in many NIRS measurements are spontaneous
hemodynamic oscillations in the 0.1Hz band, so-called low frequency oscilla-
tions (LFO). They could serve as an additional marker for local brain per-
fusion. Together with heart beat (HB) signals (around 0.9-1.2Hz) they are
found in almost all NIRS and DOT measurements. Figure 7.2 shows an
example of one measurement channel of a DOT resting state measurement
using 830nm. LFO that occur every ten seconds (Figure 7.2 (a) and the
cardiac signal (b)) can be clearly observed.

Even though the driving mechanism for LFO remain unclear, they are
connected to blood pressure, cerebral blood �ow and autoregulation (Sas-
saroli et al., 2012; Schytz et al., 2012; Tong and Frederick, 2010). Various
fNIRS studies have been performed to evaluate LFO in the context of di�erent
diseases (Phillip et al., 2013; Schytz et al., 2013) or resting state connectivity
(Nakao et al., 2013; Medvedev, 2013; Mesquita et al., 2010). Since all stud-
ies used topographical NIRS, one main question remains unresolved: do the
measured signals origin from the brain or the skin? To visualize the problem
of super�cial blood vessels interfering with cortical signals, Figure 7.1 shows
an anatomical specimen of super�cial arteries in the human head.

In section 6, we described the discrimination of di�erent layers of the
head by tracking a bolus of an extrinsic contrast agent. Based on these
promising results, we aimed at achieving the same by relying on intrinsic
slow oscillations. Therefore, we demonstrate that DOT with its 3D image
reconstruction allows a depth pro�ling of hemodynamic rhythms in the adult
head.
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Figure 7.1: Preparation of super�cial arteries of the head with red wax from Friedrich
Schlemm, 1830 (Anatomische Sammlung am Centrum für Anatomie der Charité Berlin).
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Figure 7.2: Example of detector readings from a DOT measurement (resting state) from
a wavelength of 830nm which is dominated by changes in the concentration of HbO2. Low
frequency oscillations (0.1Hz) and heart beat signals can be clearly seen and dominate the
resting measurement.
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7.1 Methods

For the measurement, we used the same imaging system and set-up described
in section 4.1.3 on page 31 (NIRScoutX (NIRx Medizintechnik, Germany)
with 32 sources* 32 detectors, 760nm & 850nm). We placed two grids of op-
tical �bers bilateral, peri-centrally over C3 and C4 (each side: 16 sources *16
detectors) achieving 2*256 data channels with a minimum source-detector
separation of 13mm and a 3.91 Hz sampling frequency. Eight subjects (2
female, 6 male, mean age 33.8 ± 6.7 years) performed a 10min resting task
in a sitting position.

Image reconstruction was performed for both hemispheres independently.
For forward modeling and image reconstruction we used the methods de-
scribed in sections 6.1. A schematic of the �ber setup and forward model
can be found in Figure 7.3.

To investigate localization of the power of LFO and HB, the reconstructed
time series were linearly detrended and normalized by their respective mean
value to discard the DC part in the spectrum. We calculated the power
spectral density (PSD) for each reconstructed HbO2 time course in every
node of the �nite element mesh. These power spectra were normalized by
their respective integral to give all nodes (especially the deeper ones) the
same impact. For visualization purpose, the normalized power at 0.1Hz (and
subject-speci�c heart beat rate, respectively) was interpolated into one vol-
ume. To generate one �nal result, volumes of all subject were averaged and
a central slice of the reconstruction volume was superimposed onto the brain
atlas.



7.1. METHODS 95

Figure 7.3: (a) Imaging device (NIRScoutX), (b) Schematic of the �ber setup, (c)
Discretization for the forward model. This setup achieved 256 optical data channels over
each hemisphere with a minimum inter-optode distance of 13mm.
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7.2 Results

In the following, we analyze the distribution of speci�c oscillations; �rst
we investigate the distribution of typical hemodynamic signals in the raw
data concerning wavelength of the used light and di�erences within di�erent
source-detector separations. Finally, we investigate their spatial distribution
within reconstructed volumes.

7.2.1 Raw Data of both wavelengths are contaminated
with hemodynamic oscillations.

Figure 7.4 shows the power spectrum for normalized, un�ltered raw data
from a resting measurement. For all measurement channels with a short
(13mm) and with a large (35mm) inter-optode distance, the power spectral
density was calculated and averaged. This was done for both wavelengths
(red: 830nm, blue: 760nm). This corresponds to a topographic NIRS setup.
We �nd in all wavelengths and both �ber distances low frequency oscillations
of ≤0.1Hz and heart beat signals; relying on a topographical data analysis
does not allow to ascertain their origin within the volume. Consequently, the
analysis of the spatial distribution was based on the reconstructed volumes.

Figure 7.4: Power spectral density for all averaged 1st and 3rd nearest neighbors (13mm
and 35mm, respectively) and both measured wavelenghts.
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7.2.2 Oscillations are stronger in HbO2 time courses.

In the following, we concentrate on the reconstructed time courses for ab-
sorption changes of HbO2 and HbR in each volume element. In functional
brain imaging as described in chapter 5 the HbR signal is more reliable since
it is less contaminated with global or super�cial signals. However, in this
study we are particularly interested in these global signals. As a �rst anal-
ysis, we compared the absolute power values for all reconstructed nodes in
all subjects. Not suprisingly, we found that the hemodynamic signals are
more prominent in HbO2 time courses. Figure 7.5 shows the average of the
normalized power spectral density of all reconstructed time courses for HbO2

and HbR for one subject. When looking in all subjects, the power in HbO2

was 1.8times higher (±0.65) for the 0.1Hz oscillations and 2.1 times higher
(±0.73)for the heart beat signal. Hence, we concentrate in the following on
results based on this chromophore.

7.2.3 LFO are mainly found in deep and super�cial lay-
ers, whereas heart beat is seen in the skin.

Based on the frequency analysis of reconstructed time courses of HbO2 ab-
sorption changes, we �nd a speci�c pattern which can be observed in almost
all subjects.

We �nd that a high fraction of the signal variation that can be explained
by LFO origins from deeper layers but they can also be seen in the skin
voxels. When when looking at regions of interest (brain and skin), we �nd
an equal distribution of the power for LFO. The ratio powerskin/powerbrain
is 0.94± 0.4 for the left hemisphere and 1.00± 0.3 for the right hemisphere
(grand average for all subjects).

On the other side, time courses that have a high power for heart beat
signals are mainly found in super�cial voxels. In seven out of eight subjects
we �nd a higher power in the skin region (ratio powerskin/powerbrain: 1.94±1.2
for the left side and 1.41± 0.4 for the right side).

Figure 7.6 shows the average power for LFO and heart beat for all eight
subject, both hemispheres and the two regions of interest. Please note, that
these averaged values can only give a �rst impression about the spatial dis-
tribution, since there is a high localization of regions with high power.

For a more intuitive visualization, Figure 7.7 shows this distribution of
the power values as a grand average of all subjects in a volumetric view.
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One middle cross section of the reconstruction volumes for each hemisphere
is mapped onto the brain atlas (see (a) for LFO and (b) for heart beat sig-
nal). Since there are subject-speci�c di�erences due to variations in anatomy,
position of the �ber pad and signal-to-noise level of the measurement, cross-
sections of all individual subjects are shown in �gure 7.8.
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Figure 7.5: Averaged Power Spectrum for all reconstructed HbO2 and HbR timecourses
for one subject.

Figure 7.6: Averaged power for the frequency band of 0.1Hz (LFO) and heart beat rate
for eight subjects and two regions of interest (brain and skin).
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Figure 7.7: Frontal view on the reconstruction volumes of both hemispheres. Voxels
are color-coded with their average power at (a) 0.1 Hz and (b) heart beat rate for eight
subjects (grand average).
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Figure 7.8: Frontal view on the reconstruction volumes of both hemispheres. Voxels
are color-coded with their normalized power at 0.1 Hz (left) and heart beat rate (right
column) for eight individuals.
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7.3 Discussion

In this study, we demonstrated that DOT in conjunction with 3D image re-
construction allows a depth pro�ling of hemodynamic rhythms in the adult
head. Contamination of NIRS measurements with low frequency oscillations
in the 0.1Hz band and heart beat signals have been frequently reported.
However, the spatial origin of these blood-�ow related signals remained un-
clear, since fNIRS provides no depth resolution. Nevertheless, within the
last years LFO have become a target to investigate resting state connectivity
with NIRS (Tong and Frederick, 2010; Schytz et al., 2012; Phillip et al., 2013;
Nakao et al., 2013). This study aimed at investigating the (spatial) origin
of LFO and heart beat signals in NIRS measurements. Skin or brain, that
was the question. We showed that DOT as a 3D modality of NIRS allows to
determine the origin of LFO in optical measurements. We found a high rela-
tive fraction of LFO in cortical voxels. However, slow �uctuations were also
seen in short �ber-distances in the raw data as well as in super�cial voxels
of the reconstruction volume, we must assume that a part of the measured
oscillations actually stem from the skin. The same analysis for heart beat
signals revealed a concentration within super�cial layers. These �ndings were
consistent throughout all subjects.

There are some important implications of these results. First, the higher
contamination with LFO in HbO2 compared to HbR time courses is in line
with observations from our and other groups, stressing the necessity of a
careful pre-processing of NIRS data from the HbO2 sensitive wavelength.
Again, we underline the importance of HbR time courses when analyzing
functional brain imaging data. Second, fNIRS might be an inappropriate
tool to investigate resting state networks based on LFO, since the fraction of
cortical and non-cortical LFO can not be estimated without depth resolution.

However, when looking forward to potential clinical applications e.g. in
neurointensive care patients, we have to investigate, if monitoring these
hemodynamic features with a tomographic setup could be an additional
module to detect changes in cerebral blood �ow at the bedside. A corre-
lation between a changed pattern of the distribution of LFO and a changed
or reduced perfusion has not been investigated so far but is subject to further
studies. Since there is usually no continuous monitoring of brain perfusion,
neurointensive care patients with a risk of su�ering from an under-supply of
oxygen could bene�t from such a bedside monitor.
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Aim of this work was to promote DOT as a functional brain imaging tool.
I demonstrated, that DOT vastly improves fNIRS, bringing it closer to the
capabilities of fMRI, the gold standard of functional brain imaging. Due
to its multi-distance approach and its increased spatial resolution, DOT is
able to detect very small activations in the sub-centimeter range. Even more
important, I showed that DOT is able to separate cortical from non-cortical
signals.

I performed extensive simulation studies, thereby introducing a novel ap-
proach to generate highly realistic arti�cial data and adapted a wide range
of reconstruction methods for DOT. I demonstrated the superiority of sparse
reconstruction methods but also showed, that linear methods can provide
su�cient good results with low computational costs. Furthermore, I demon-
strated a fast way to chose the regularization parameter independent from
user in�uence.

In the second part, results from in vivo measurements using high-resolution
DOT in humans were presented. I evaluated and improved the applicability
of DOT and tested its limitations and potentials concerning spatial resolution
and depth separation.

Future studies will investigate multi-modal image reconstruction, simulta-
neously using EEG and DOT in order to obtain a more robust reconstruction
for complex sources.

Small and mobile devices that cover large areas of the head will be needed
for future applications. First steps are done by our group (Piper et al.,
2014) but still have the potential for improvement, especially concerning head
coverage, �ber design and �ber application. Pointed �bers could minimize
the e�ort which is still necessary to apply the �bers on the head and in the
same time, the spatial resolution could be improved by ultra-dense �ber grids
and more data channels. Consequently this would reduce the ill-posedness
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of the inverse problem and decrease the sensitivity to noise.
An easy-to-apply mobile tomography system could serve in many areas of

research, starting with investigations in the �eld of developmental psychology
with experimental set-ups in real-life environments like schools. It would
encourage more psychiatric studies and in general a wider spread of the
method. As already mentioned, we deem the technique now ready for a
broad usage in clinical studies, diagnosis, and general neuroscience research:
studies on epilepsy and brain perfusion will follow.
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