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ABSTRACT

This thesis reports on bulk structure-activity relationships of Cu/ZnO catalysts for methanol

synthesis and methanol steam reforming using X-ray diffraction (XRD) and X-ray absorption

spectroscopy (XAS). XRD line profile analysis was applied to series of activated binary

Cu/ZnO catalysts with varying molar ratios to determine the microstructure of Cu and ZnO. The

procedure affords for both phases a considerable microstructural imperfection due to

nanocrystallinity and microstrain as a function of the Cu/Zn ratio. Bulk defects are considered to

be the origin of the observed structural disorder of Cu and ZnO which can originate from

dissolution of Zn in Cu, incomplete reduction and epitaxial bonding of metal Cu clusters to the

ZnO lattice. Additional EXAFS measurements at the Cu K and the Zn K edge show that about 5

% ZnO are dissolved in the CuO matrix of the calcined precursors.

A sample set of binary Cu/ZnO catalysts with varying molar ratios (90/10 through 10/90) is

studied under methanol synthesis conditions at 493 K and at atmospheric pressure. A positive

correlation of the turn-over frequency for methanol production with the observed microstrain of

copper in the Cu/ZnO system is found. In addition, the bulk structure of various binary Cu/ZnO

catalysts for methanol steam reforming is studied by in situ XRD and XAS under activation and

working conditions. The evolution of bulk phases from CuO/ZnO precursors during activation

with hydrogen is studied using temperature programmed reduction (TPR). Using time-resolved

in situ XANES measurements at the Cu K edge during TPR experiments the degree of reduction

was monitored. It is shown that Cu2O forms prior to Cu. The extent of reduction to Cu exhibited

a typical nucleation and growth behavior with an enhanced reaction rate for samples with a

lower copper content. Reduction of CuO/ZnO in the presence of water vapor resulted in Cu

crystallites with a higher selectivity in methanol steam reforming (optimum composition 60-70

mol-% Cu). Adding oxygen (20 vol-%) to the feed gas leads to the formation a mixture of

Cu(II) and Cu(I) oxide accompanied by a complete loss of activity. After switching back to

steam reforming conditions the activity is regained and the catalyst shows an increased Cu

crystallite size (up to 40%). EXAFS measurements at the Cu K and the Zn K edge indicate a

structural disorder of the Cu particles in the medium range order and the dissolution of Zn

atoms (up to ~ 4 mol-%) in the copper matrix. Upon oxidation/reduction cycles the disorder in

the copper particles increases while Zn segregates out of the copper bulk. A structural model is

proposed which ascribes the enhanced activity to structurally disordered (strained) copper

particles due to an improved interface interaction with ZnO.
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KURZZUSAMMENFASSUNG

Diese Arbeit berichtet über Volumenstruktur-Aktivitätsbeziehungen von binären Cu/ZnO

Katalysatoren unterschiedlicher Zusammensetzung für die Methanolsynthese und

Methanoldampfreformierung die aufgrund von Untersuchungen mittels Röntgenbeugung und

Röntgenabsorptionsspektroskopie aufgestellt werden. Eine Röntgenlinienprofilanalyse wurde

auf verschiedene Probenserien von aktivierten Cu/ZnO Katalysatoren angewendet, um die

Mikrostruktur von Kupfer und Zinkoxid zu bestimmen. Die Analyse ergibt für beide Phasen

deutliche mikrostrukturelle Fehler aufgrund der Nanokristallinität und Mikroverzerrungen die

eine Funktion des Cu/Zn Verhältnisses sind. Als Ursache für die beobachtete strukturelle

Unordnung von Cu und ZnO werden Volumendefekte angenommen, die aufgrund einer Lösung

von Zn in der Kupfermatrix, unvollständiger Reduktion und epitaktischer Beziehung der

Kupfermetallcluster zum ZnO-Gitter entstehen können. Zusätzliche EXAFS Messungen an der

Cu K und der Zn K Kante zeigen, daß ungefähr 5% ZnO in der CuO-Matrix des kalzinierten

Präkursor gelöst sind. Eine Probenreihe von Cu/ZnO Katalysatoren mit unterschiedlichen

molaren Verhältnis (90/10 bis 10/90) wird unter Methanolsynthesebedingungen bei 493 K und

unter Normaldruck untersucht. Eine positive Korrelation der Turnoverfrequenz für die

Methanolproduktion mit der beobachten Mikroverzerrung des Kupfers im Cu/ZnO System kann

aufgestellt werden.

Zusätzlich wird die Volumenstruktur von verschiedenen Cu/ZnO Katalysatoren für die

Methanoldampfreformierung mittels in situ XRD und XAS unter Aktivierungs- und

Betriebsbedingungen untersucht. Die Entwicklung der Volumenphasen von CuO/ZnO-

Präkursoren während der Aktivierung mit Wasserstoff wird unter temperatur-programmierten

Reduktionsbedingungen (TPR) beobachtet. Mit Hilfe einer zeitaufgelösten in situ

Röntgenabsorptions-Nahkantenstruktur-Spektroskopie (XANES) an der Kupfer K Kante

während des TPR Experiments ist es möglich, den Reduktionsgrad zu verfolgen. Es kann

gezeigt werden, daß während der Reduktion des CuO sich zwischenzeitlich Kupfer(I)oxid

ausbildet. Der Verlauf der Reduktion zum metallischen Kupfer folgt einem typischen

Keimbildungs- und wachstumsverlauf, mit einer erhöhten Reaktionsrate für Proben mit einem

geringen Kupfergehalt. Die Reduktion von CuO/ZnO in der Gegenwart von Wasserdampf führt

zu Kupferkristalliten mit einer höheren Aktivität bei der Methanol-Dampfreformierungsreaktion

(optimale Zusammensetzung 60 – 70 mol-% Cu). Die Zugabe von Sauerstoff (20 vol-%) zum

Eduktgasstrom resultiert in der Bildung einer Mischung von Kupfer(I)- und Kupfer(II)-oxid,

was mit einem vollständigen Verlust der Aktivität einhergeht. Nachdem die

Ausgangsbedingungen der Dampfreformierungsreaktion wieder eingestellt sind, wird eine
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Zunahme der Aktivität beobachtet; zudem zeigt der Katalysator eine Zunahme der

Kupferkristallitgröße (bis zu 40%). EXAFS Messungen an der Kupfer K und der Zn K Kante

deuten eine strukturelle Unordnung der Kupferpartikel auf einer mittelreichweitigen (~ 6 Å)

Längenskala an und zeigen zudem die Ausbildung von gelöstem Zn in der Kupfermatrix. Nach

Oxidations/Reduktionszyklen nimmt die strukturelle Unordnung in den Kupferpartikeln zu,

während gelöstes Zn aus dem Volumen der Cu Kristallite segregiert. Ein strukturelles Model

wurde entwickelt, daß die erhöhte Aktivität den strukturell ungeordneten (verzerrten)

Kupferpartikeln zuschreibt, was aus einer verbesserten Wechselwirkung des Kupfers an der

Grenzfläche zum ZnO resultiert.
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ZUSAMMENFASSUNG

Günter, Marco Maria:

Studies on the Structure and Activity of Copper/Zinc Oxide catalysts using X-ray

Diffraction and Absorption Spectroscopy.

In der vorliegenden Arbeit wurden Untersuchungen zur Struktur und Reaktivität von

reduzierten Kupfer/Zinkoxid-Katalysatoren in der Methanolsynthese und der Methanol-

dampfreformierung durchgeführt. Dabei wurden Röntgenbeugung und Röntgen-

absorptionsspektroskopie zur Strukturbestimmung sowohl unter ex situ als auch unter in situ

Bedingungen verwendet, um die Mikrostruktur der katalytisch aktiven Kupferphase für die

unterschiedlichen Reaktionen zu bestimmen. Die beiden experimentellen Techniken sind

insofern komplementär zueinander, als daß sowohl die kurzreichweitige als auch die

langreichweitige Ordnung der Volumenstruktur des Katalysatorsystems untersucht werden

kann. Einen thematischen Schwerpunkt der Arbeit stellt die Frage dar, inwieweit die

Defektstruktur des Festkörper für die Aktivität von heterogen-katalysierten Reaktionen von

Bedeutung ist. Die vorgestellten Messungen werden für zwei bei unterschiedlichem pH-Wert

präparierte Probenserien mit variierendem Cu/Zn Verhältnis durchgeführt, um den Einfluß der

naß-chemischen Präparationsbedingungen der Hydroxykarbonatpräkusoren und der

Zusammensetzung auf die katalytisch aktive Phase zurückzuverfolgen.

Die Arbeit gliedert sich in sechs Hauptkapitel, wobei das Einleitungskapitel (Kapitel 1) auf

die Aufgabenstellung hinweist und den bisherigen Erkenntnisstand der Literatur darlegt. Die

verwendeten experimentellen Methode und deren Anwendungspotential für die Untersuchung

der Volumenstruktur von Katalysatoren werden in Kapitel 2 dargestellt. Die experimentellen

Ergebnisse werden in den Kapiteln 3-5 vorgestellt und diskutiert. Eine Zusammenfassung und

ein Ausblick wird in Kapitel 6 gegeben. Im folgenden werden die wesentlichen experimentellen

Ergebnisse wiedergegeben und zusammengefaßt:

In Kapitel 3 wird die Methode der Linienprofilanalyse von Röntgenreflexen von

nanokristallinen Cu/ZnO-Kristallen mit unterschiedlichen Cu/Zn-Verhältnis angewendet, um

die Mikrostruktur von Cu und ZnO zu bestimmen. Die aktivierten Katalysatoren wurden durch

Reduktion von CuO/ZnO Präkusoren mit Wasserstoff bei 523 K und 673 K erhalten, die unter

verschiedenen Fällungsbedingungen (konstanter pH (pH = 7) und abfallender pH-Wert)

präpariert wurden. Die Anwendung der Röntgenprofilanalyse auf Basis der integralen Breite der
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Reflexe beruht auf einer analytischen Beschreibung der Linienprofile mit Hilfe der

Voigtfunktion und erlaubt eine detaillierte Mikrostrukturanalyse in Bezug auf Kristallitgrößen-

und Verzerrungseffekte. Die Bestimmung der Kristallitgröße und der Gitterverzerrung nach der

sogenannten Einzel-Linienmethode-Methode wird vorgestellt und angewendet auf ausgewählte

Beugungsreflexe von Cu und ZnO. Für beide Phasen wird eine strukturelle Unordnung

aufgrund von Kristallitgrößeneffekte und Mikroverzerrungen nachgewiesen, welche eine

Funktion des Cu/Zn-Verhältnisses sind. Die Ergebnisse deuten auf eine gegenseitige

strukturelle Wechselwirkung der beiden Komponenten (Kupfer und Zinkoxid) hin, in der Form,

daß verzerrte Kupferpartikel stabilisiert werden durch unverzerrte Zinkoxid Mikrokristallite.

Die beobachtete strukturelle Unordnung von ZnO für Proben mit hohem Kupfergehalt kann

seinen Ursprung haben in: (a) einer epitaktischen Bindung des ZnO-gitters zum Kupfermetall,

(b) einer unvollständigen Reduktion oder (c) in einem Carbonatrestgehalt aufgrund

unvollständiger thermischen Zersetzung des Hydroxycarbonatpräkursors. Zusätzliche EXAFS

Messungen an der Cu K und Zn K Kante zeigen, daß ungefähr 5% ZnO in der CuO-Matrix des

kalzinierten Präkursors gelöst sind. Weiterhin wurde gezeigt, daß die mikrostrukturellen

Veränderungen (z.B. Kristallitgrößen und Gitterverzerrungen) des Kupfers auf die

Phasenzusammensetzung des dazugehörigen Hydroxykarbonatpräkursors zurückgeführt werden

können.

In Kapitel 4 werden binäre Cu/ZnO Katalysatoren mit unterschiedlichen molaren Cu/Zn

Verhältnissen (Proben präpariert bei konstantem pH- Wert und im Cu/Zn-Verhältnis von 90/10

bis 10/90) unter Methanolsynthesebedingungen bei 493 K unter Atmosphärendruck untersucht.

Die Methanolsyntheseaktivität der Katalysatoren wird korreliert mit ihrer spezifischen Cu-

Oberfläche (N2O Frontalchromatographie, N2O RFC) nach Reduktion in 2 vol-% H2 bei 513 K.

Die Aktivitätsdaten werden erweitert mit den Ergebnissen der detaillierten Analyse der

Kupfermikrostruktur mittels Röntgenbeugungs-Linienprofilanalyse aus Kapitel 3. Die unter

Annahme einer Kugelform der Kupferkristallite abgeschätzte Cu-Oberfläche ist in guter

Übereinstimmung mit den mittels N2O RFC bestimmten Daten. Eine positive Korrelation der

Turnover-Frequenz für die Methanolproduktion mit der beobachteten Mikroverzerrung des

Kupfers in Cu/ZnO kann aufgestellt werden.

In Kapitel 5 wird die Volumenstruktur des Kupfers für unterschiedlich zusammengesetzte

Cu/ZnO Katalysatoren für die Methanoldampfreformierungsreaktion unter Aktivierungs- und

Betriebsbedingungen mittels in situ Röntgenbeugung (XRD) und Röntgenabsorptions-

Spektroskopie (XAS) untersucht. Unter temperatur-programmierten Bedingungen im

Temperaturbereich von 448 – 523 K wird die zeitliche Entwicklung der Volumenkupferphase
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ausgehend von CuO/ZnO Präkursoren während der Aktivierung mit Wasserstoff untersucht.

Somit konnte sowohl der Beginn der Reduktion als auch die Kristallitgröße des sich bildenden

metallischen Kupfers beobachtet werden. Die Reduktionen werden unter zwei verschiedenen

Atmosphären sowohl mit als auch ohne Wasserdampf durchgeführt. Es zeigt sich, daß mit

abnehmendem Kupfergehalt das Einsetzen der Reduktion sich von 473 K (reines CuO) nach

443 K (40 mol-% Cu) verschiebt. Diese Beobachtung geht einher mit einer Abnahme der

Kupferkristallitgröße (von 210 Å bis 40 Å). Auf der Basis von zeitaufgelösten

Röntgenabsorptions-Nahkantenstruktur- (XANES)-Messungen an der Kupfer K Kante während

des TPR Experiments ist es möglich, den Reduktionsgrad zu verfolgen. Es konnte gezeigt

werden, daß während der Reduktion des CuO sich zwischenzeitlich Kupfer(I)oxid ausbildet.

Der Verlauf der Reduktion zum metallischen Kupfer folgt einem typischen Keimbildungs- und

wachstumsverlauf, mit einer erhöhten Reaktionsrate für Proben mit einem geringen

Kupfergehalt. Die Reduktion von CuO/ZnO in der Gegenwart von Wasserdampf führt zu

Kupferkristalliten mit einer höheren Aktivität bei der Methanol-Dampfreformierungsreaktion

(optimale Zusammensetzung 60 – 70 mol-% Cu). Die Zugabe von Sauerstoff (20 vol-%) zum

Eduktgasstrom resultiert in der Bildung einer Mischung von Kupfer(I)- und Kupfer(II)-oxid

Phasen, was mit einem vollständigen Verlust der Aktivität einhergeht. Nachdem die

Ausgangsbedingungen der Dampfreformierungsreaktion wieder eingestellt sind, wird eine

Zunahme der Aktivität beobachtet; zudem zeigt der Katalysator eine Zunahme der

Kupferkristallitgröße (bis zu 40%). EXAFS Messungen an der Kupfer K und der Zn K Kante

deuten eine strukturelle Unordnung der Kupferpartikel auf einer mittelreichweitigen (~ 6 Å)

Längenskala an und zeigen zudem die Ausbildung von gelöstem Zn in der Kupfermatrix. Nach

Oxidations/Reduktionszyklen nimmt die strukturelle Unordnung in den Kupferpartikeln zu,

während gelöstes Zn aus dem Volumen der Cu Kristallite segregiert. Ein strukturelles Model

wurde entwickelt, daß die erhöhte Aktivität den strukturell ungeordneten (verzerrten)

Kupferpartikeln zuschreibt, was aus einer verbesserten Wechselwirkung des Kupfers an der

Grenzfläche zum ZnO resultiert.

Zusammenfassend zeigt ein Vergleich der aufgestellten Struktur-Aktivitätsbeziehungen für

die Methanolsynthese und die Methanoldampfreformierung, daß für beide katalytischen

Prozesse eine strukturelle Unordnung und Verzerrung des Kupfers in einem realen Cu/ZnO

Katalysator nachgewiesen werden konnte, die mit einer erhöhten spezifischen Aktivität

korreliert werden kann. Die beobachteten Aktivitätssteigerungen für verzerrte und defektreiche

Kupfercluster können daher eine Folge der daraus resultierenden Veränderungen der

Oberflächeneigenschaften aufgrund einer Struktursensitivität der Reaktion sein. Die

Untersuchungen belegen, daß dabei Festkörperumwandlungen und die Wechselwirkung der
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Kupfer und der Zinkoxidphase für die Entstehung der Defekte zu berücksichtigen sind. Somit

konnte erstmalig für das Kupfer/Zinkoxid Katalysatorsystem ein experimenteller Beleg erbracht

werden, daß auch Volumeneigenschaften neben der Kupferoberfläche die Reaktivität eines

Heterogenkatalysators beeinflussen können. Weiterhin eröffnet sich aufgrund der

experimentellen Befunde zur Abhängigkeit der Aktivität von den Herstellungsbedingungen des

Katalysators die Möglichkeit durch geeignete Wahl der Präparationsbedingungen des

Katalysators die Volumenstruktur des Katalysator derart zu verändern, daß ein aktivere

Kupferoberfläche resultiert.
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1 Introduction

1.1 Motivation and Strategy

Current research in heterogeneous catalysis is devoted to establish structure-activity

relationships of real catalysts. Those insights are required in order to arrive at a rational approach

in catalysis which eventually enables a rational catalyst design for more efficient processes. In situ

methods are regarded as indispensable tools to establish correlations of the structure of a catalyst

in a working state and the changes in activity/selectivity. The aim of performing in situ

experiments on well-known catalyst systems under practical operating conditions is to rationalize

working principles of a catalyst [Schlögl93].

Today’s understanding in catalysis research has greatly benefited from studies in surface

science [Somorjai94]. However, the wealth of working concepts obtained by surface science

investigation could not be directly transferred to real catalysts systems owing to the inherent

complexity that is referred to as the ‘pressure gap’ and ‘materials gap’. Both terms are coined to

summarize the differences in materials properties that exist between commercial heterogeneous

catalysts and well-defined single-crystal model systems. Moreover, ‘real’ catalysts are usually

polyphasic mixtures of various compounds (e.g. mixed metal oxides) which undergo different

chemical transformations (e.g. phase transformation under reducing conditions) before the actual

catalytic active state is formed [Christmann91]. Therefore, the composition of a commercial

catalyst is up to now optimized empirically in screening methods. However, major efforts are

dedicated to unravel the influence of preparation parameters of precursors on the catalytic activity.

This could open up the opportunity for a rational strategy for developing more efficient

heterogeneous catalysts. Controlled and reproducible preparation parameters are key components

for this approach.

A straightforward approach to obtain a fundamental knowledge of the actual catalytic material

is provided by the investigation of suitable model system using in-situ analytical techniques

probing the geometric and electronic structure of a working catalyst. For bulk structural

investigation under in situ conditions X-ray diffraction (XRD) and X-ray absorption spectroscopy

(XAS) are particularly useful methods as they allow to perform the catalytic reaction under

realistic conditions (i.e. high temperatures and pressures). The complementary character of both

bulk methods affords structural information on the long and short range order scale. In addition,

those techniques enable to follow solid state transformations occurring during activation of the

precursor and catalysis. This methodology is a necessary prerequisite for catalysis studies that aim
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at elucidating the correlation of bulk features with changes in product composition (i.e. catalytic

activity or selectivity) [Schlögl93].

Although reactions in heterogeneous catalysis proceed on the surface of an active catalyst, the

properties of the surface can be influenced or determined by the underlying bulk of the catalyst. It

has been shown that the bulk of a copper metal catalyst can serve as a reservoir for reactive

species (e.g. subsurface oxygen dissolved in the bulk [Bao94]). In addition, certain defects in the

bulk can modify absorption properties of reactants on the catalyst surface thereby influencing the

catalytic activity [Mavrikakis98]. Extended bulk defects can terminate at the surface and modify

the surface properties (e.g. monoatomic steps at outlets of dislocation) which induces a change in

the coordination of the surface atoms. Furthermore, the size and the morphology of catalyst

particles are important parameters to consider as the surface area and the number of exposed

active atoms is determined by the shape and size of the particles.

The objective of this work is a microstructural analysis of binary Copper/Zinc oxide catalysts

using X-ray diffraction and X-ray absorption spectroscopy to establish a correlation between bulk

structural parameters with catalytic performance. Binary Cu/ZnO catalysts are regarded as

realistic model systems in which the complexity of an industrial “real catalyst” is reduced to a

certain extent (no Al2O3 support, promoters and additives); yet they do provide information on the

bulk chemical reactions (e.g. microstructure, possible phases and intermediates) contributing to

the performance of the catalyst. The Cu/ZnO system is investigated for their bulk-structure-

activity relationships both in methanol synthesis and methanol steam reforming.

1.2 Cu/ZnO catalysts in methanol synthesis and methanol steam
reforming

Heterogeneous catalysts containing copper metal and zinc oxide constitute a technical

important system for hydrogenation and deydrogenation reactions. Cu/ZnO catalysts supported on

alumina are common catalysts for the hydrogenation of carbon monoxide and carbon dioxide.

These systems have found industrial use for low pressure methanol synthesis and for the low

temperature water gas shift reaction. Methanol is produced from syngas (CO/CO2/H2).

The conversion of synthesis gas to methanol can be described by the following equation:

CO2 + 3 H2 → CH3OH + H2O (1.1)

CO + 3 H2 → CH3OH (1.2)
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Furthermore, the reverse water-gas shift reaction needs to be considered:

CO2 + H2 → CO + H2O (1.3)

Today desulfurized feedstock (pure CO/H2 or CO2-containing mixtures) allow low temperature

(220 – 280 °C) and low pressure (70 – 100 bar) methanol synthesis and water-gas shift reaction.

Methanol serves as an important bulk chemical whose world-wide demand amounted to 27

million tons in 1994. It is mostly used to produce formaldehyde (about 40 –50 %) which is then

used to make various types of plastic. Other new uses are in the manufacturing of methyl tert-

butyl ether (MTBE) which is used as an octane enhancer in gasoline [Chinchen86].

It is the proposed synergistic effect in the binary copper/zinc oxide that makes this system

interesting for investigations of the effects of structural and chemical promotion [[Klier82]. The

maximum activity is observed in an intermediate compositional range of the catalyst (~ 70 mol-%

Cu), whereas Cu and ZnO alone exhibit only negligible activity [Rasmussen87]. The nature and

the location of the active site of this type of catalyst has been the subject of a vast number of

publications in both surface science and solid state chemistry. Up to now four major theories

concerning the nature of interaction between Cu and ZnO in the system can be found in the

literature. Klier [[Klier82] proposed copper to be incorporated on interstitial and substitutional

sites in the zinc oxide phase assuming three possible valence states Cu0, Cu+ and Cu2+. Klier’s

proposals were made within the framework of bulk defect equilibria based on scanning

transmission electron microscopy (STM), X-ray data and optical spectra [Klier84]. Hence, the

defect structure and, therefore, the bulk of the catalyst determines the catalytic activity. In a recent

publication, Fujitani et al. on the basis of an XRD study corroborated the model of Klier et al.

where they interpreted the effect of ZnO on the catalytic activity in terms of a formation of a Cu-

Zn surface alloy [Nakamura96].

In contrast, Waugh et. al. suggested that it is merely metallic Cu that carries the catalytic

activity and that ZnO is only stabilizing a specific higher Cu surface area [Chinchen86]. Hence, in

their opinion ZnO acts only as an inert support. Waugh’s conclusion is based on the observed

linear relationship between catalytic activity and copper surface area.

It is assumed that ZnO exerts a strong support influence on the copper crystallites acting as a

dispersant, thus keeping a high surface area. The role of ZnO in creating active sites appears to be

rather controversial and different views are presented in the summarizing literature [Spencer99],

[Fujitani00]. Burch et al. and Spencer claim that ZnO is more than just an inert support [Burch90]

[Spencer99]. Within the sequence of elementary reaction steps in methanol synthesis it is assumed
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that the hydrogenation of formate adsorbed on metallic copper is enhanced by spillover of

hydrogen from ZnO which acts as a reservoir of adsorbed hydrogen.

N.-Y. Topsøe and H. Topsøe have presented in situ IR measurements of 1 and 5 % Cu on ZnO

catalysts during methanol synthesis [Topsøe99]. From the observed CO band shift the authors

deduced the formation of a surface Cu-Zn alloy upon migration of ZnO moieties onto reduced Cu

microcrystallites [Nakamura96].

In summary, previous investigations of the interaction (synergy) of Cu and ZnO have

rationalized the real structure of Cu/ZnO catalysts either with morphological changes (dynamic

wetting / non-wetting phenomenon) of copper dependent on the oxidation potential [Ovesen97],

[Clausen94] or as a formation of additional phases (e. g. surface alloy) which leads to an

electronic modification [Nakamura96], [Topsøe99]. The influence of temperature and pH on the

preparation of hydroxycarbonate precursors and on the resulting active catalyst has been pointed

out by Hadden et al. [Hadden95] and Li et al. [Li96]. In the past several authors described X-ray

absorption studies on Cu-based catalysts that were carried out ex-situ on reduced samples after

transfer. [Vlaic85], [Sankar86], [Kau89], [Arnukavalli93]. Analysis of the X-ray absorption

spectra near the Cu K-edge (XANES) showed ambiguous results concerning the oxidation state of

the reduced catalysts. Depending on the activation conditions (hydrogen reduction or treatment

with reactant gases) and the Cu-concentration in the sample all three possible oxidation states of

copper with various relative amounts were detected. An in situ structural investigation of the

activation of a hydroxycarbonate precursor by combined X-ray absorption and diffraction is

reported by Couves et al. [Couves91].

In addition to their use in methanol synthesis Cu/ZnO catalysts can be used to produce

hydrogen by steam reforming of methanol with high selectivity and activity [Takahashi82],

[Amphlett85]. Catalytic hydrogen production by methanol steam reforming is regarded as one of

the most promising ways to produce hydrogen for operating solid polymer fuel cells. Nowadays,

much attention is attracted by fuel cells as a clean and efficient energy source which is an

environmentally sustainable process to cover the increasing demand in energy of electrical power

for both automotive and stationary applications [Wild00]. Thus, methanol is considered as an

alternative “automotive” fuel and could serve as a potential hydrogen source for mobile fuel cell

applications [Peters00]. Current efforts are dedicated to the minimization of CO concentration

which acts as a poison in fuel cell applications [Amphlett94].

The steam reforming reaction can be regarded as the reversed methanol synthesis reaction.

CH3OH + H2O → CO2 + 3H2 (1.4)
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However, a detailed reaction mechanism is still under debate [Peppley99], [Breen99b],

[Peppley99], [Jian93]. In a kinetic model by Peppley et al. it is assumed that different active

phases are present for the methanol decomposition, methanol-steam reforming, and the water-gas

shift reaction [Peppley99].

The Cu/ZnO system has been studied extensively after reduction and under working conditions

for methanol synthesis [Clausen98b], [Clausen91], [Skryzypek94] and cited references therein).

However, the active Cu phase for methanol steam reforming is not fully elucidated yet.

Previously, differences in the reduction kinetics of CuO/ZnO were mainly studied by

conventional TPR methods [Fierro94], [Breen99a]. However, these methods cannot provide a

structural evolution during reduction (e.g. evolution of different bulk phases). Fierro et. al. studied

the reduction of CuO/ZnO with different Cu/Zn ratios and found a promoting effect of ZnO on the

reducibility of CuO [Fierro96]. The reduction kinetics of copper oxide was determined by

thermogravimetric methods [Ruggeri82], [Plewa89] which afforded sigmoidal curves indicating a

nucleation growth mechanism. Himelfarb et al [Himelfarb83] and Porta et al. [Porta89] reported

on an intermediary Cu2O under reduction conditions, whereas this phase was not observed by

Vong et al. [Vong90]. However, the detection of copper(I) oxide is based on ex situ investigations

which may not represent the “real” state of the Cu phase under reduction conditions. Als-Nielsen

et. al. reported on an in situ detection of Cu2O by time-resolved QEXAFS without further

analyzing the growth kinetics [Als-Nielsen95]. Reitz et. al. [Reitz01] observed Cu+ as a transient

species in the reduction of CuO/ZnO catalysts by time-resolved XANES. Fernández-García et al.

reported on the basis of a statistical analysis of TPR data of Cu/Al2O3 that the reduction process of

copper aluminate proceeds via a two step mechanism [Fernández98]. Recently, Grunwaldt et al.

observed dynamical changes of the Cu coordination number upon changes in the reduction

potential by in situ EXAFS during methanol synthesis [Grunwaldt00].

Regarding the active state of Cu/ZnO catalysts, different authors claim that the ratio of Cu/Cu+

governs the methanol conversion [Idem96]. This interpretation is closely related to the model of

the active Cu/ZnO phase in methanol synthesis developed by Klier [[Klier82]. The effects of

preparation condition of precursors for Cu/ZnO catalysts upon precursors phases, surface structure

and catalytic activity for steam reforming of methanol has been investigated by Shen et. al.

[Shen97]. Pepply et al. on the basis of a surface mechanism for methanol steam reforming

proposed in a recent publication that the nature of the active sites differs according to their

function [Peppley99]. The basic assumption was made that there are two distinct types of active

sites on the surface of the catalyst whereas one site is created by the partial decomposition of a
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hydroxy-carbonate phase that supports the hydroxylation of the intermediate surface formates.

The second type of site which is formed by elemental copper was assumed to primarily support

the decomposition reaction. However, no structural details of the bulk phases are provided which

underlines the necessity to perform structural investigations concerning the relationship between

the crystal phase structure of the catalyst and its activity and selectivity.

1.3 Outline of work

In this thesis XRD and XAS techniques are employed both ex situ and in situ because they

conveniently complement each other for investigations of the bulk structure of Cu/ZnO catalyst

after different preparation stages (i.e. after calcination and reduction) of Cu/ZnO catalysts

precursors.

The activation of the CuO/ZnO precursor requires reduction with hydrogen in order to obtain

the active copper phase. The reduction of CuO is a complex chemical process at the gas-solid

interface which is considered as a crucial step that determines the microstructure of the catalyst,

and, hence the activity. Upon reduction of the CuO/ZnO precursors small metallic copper

particles supported on ZnO are obtained. Those copper particles are believed to be the carrier of

the catalytic active phase. Therefore, the phase evolution and the copper crystallite growth is

investigated in situ in more detail under different reduction atmospheres.

In a broader sense the Cu/ZnO system belongs to the important class of supported metal

clusters as classified by Boudart [Boudart85]. The copper metal particles are typically larger than

50 Å. An X-ray diffraction line profile analysis is therefore an ideally suitable method to

investigate microstructural parameters (e.g. crystallite size and microstrain). Based on the Cu

crystallite size determined by XRD a Cu surface area can be estimated. This is shown in more

detail in chapter 4.2. In order to rationalize structural influences apart from the Cu metal surface

on the catalytic activity the concept of turn-over-frequency is applied (e.g. structure-sensitivity of

the reaction [Boudart85]). This concept serves to explain why certain classes of reaction exhibit

rates that depend strongly on particle size/surface structure and on catalyst composition. The idea

that surface reactions may require a metal atom ensemble of specific size or structure has

provided a foundation for establishing structure-property relationships in catalysis by metals.

There are indications that the structure and the composition of hydroxycarbonate precursor

phase, which depends largely on the preparation conditions, may determine the performance of

the active catalyst [Li96], [Hadden95], [Shen97]. It is assumed that microstructural properties of
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the active Cu/ZnO catalyst depend to a large extent on the preparation conditions of the precursor.

This work is in close cooperation with another PhD thesis [Bems01] in order to link preparation

parameters (e.g. pH during precipitation and elemental composition) of Cu, Zn hydroxycarbonate

precursors with structural characteristics obtained at different preparation steps (e.g. calcination,

reduction, working catalyst). In that work, the influence of various preparation parameters of the

wet-chemical coprecipitation of Cu, Zn hydroxycarbonates on the phase composition and thermal

decomposition behavior for a large set of samples is addressed. A reactor set up is used which

permits defined adjusting of important preparation parameters, e.g. temperature and pH value. The

experimental design for the preparation of the samples investigated included two factors, i.e.

variation of the Cu/Zn ratio (systematic series with varying Cu/Zn ratio) and variation of the pH

during precipitation (constant pH of 7.0 and a decreasing pH). The CuO/ZnO precursors are

obtained form thermal decomposition of coprecipitated copper, zinc hydroxycarbonates.

In chapter 3 the structure of the CuO/ZnO precursor is investigated ex situ by XRD and XAS.

In addition, on the basis of X-ray absorption spectroscopy of CuO/ZnO precursors it is

investigated how the phase composition of the multiphasic Cu,Zn-hydroxycarbonate precursor

affects the microstructure of the resulting Cu phase and if there is a structural dependence of the

oxidic precursor on the phase composition of the hydroxycarbonate precursor. After reduction a

detailed analysis of the microstructure of copper and zinc oxides crystallites is carried out by X-

ray diffraction line profile analysis to detect the influence of the composition (i.e. Cu/Zn ratio)

and the pH during preparation on the Cu and ZnO crystallite size and microstrain. In addition, a

sample series (decreasing pH) is reduced at a higher temperature (673 K) to monitor the influence

of the reduction temperature on the bulk structure. Furthermore, it is attempted to clarify the

promotional role of ZnO in creating active sites in catalysis. It is assumed that this approach

provides new insights into microstructural properties of this important catalytic system.

In chapter 4 correlation between the defective copper bulk structure and the methanol synthesis

activity of Cu/ZnO catalysts are revealed. The results of the size and microstrain analysis

provided in chapter 3 are utilized for this analysis. Catalysts with varying molar ratios (90/10

through 10/90) prepared according to the coprecipitation method at constant pH are correlated to

microstrctural characteristics of Cu and ZnO in order to obtain a possible dependence on bulk

structural bulk parameters.

In situ X-ray diffraction and X-ray absorption spectroscopy (XAS) are employed as

complementary bulk techniques in chapter 5 to elucidate bulk structural changes of Cu and ZnO

during the activation and methanol steam reforming of Cu catalyst supported on ZnO. Those
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investigations are performed on a large number of differently prepared CuO/ZnO catalyst and the

aim of the experiments is to establish correlation of the bulk structure and activity. Binary

CuO/ZnO catalyst with varying molar ratios prepared according to the coprecipitation method at

constant pH (pH = 7) and decreasing pH are differently reduced in order to obtain catalyst with

different structural properties but equal composition. First, the evolution of bulk phases during

activation of the catalyst (i.e. reduction in hydrogen with (‘wet’) and without (‘dry’) additional

water vapor) is investigated. Second, correlations between the bulk structure of Cu on ZnO and

activity or selectivity in the steam reforming of methanol are presented. In addition, oxidation/re-

reduction cycles are performed by adding oxygen to the feed in order to detect changes in the bulk

phase and gas phase composition. EXAFS measurements are performed at the Cu K and the Zn K

edge to analyze the changes in the local structure.
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2 Theoretical and Experimental Details

2.1 Introduction

X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) can be used to provide bulk

structural information of heterogeneous catalyst systems. The combination of both experimental

techniques offers the advantage of probing the bulk structure on two different length scales i.e.

long-range (50 Å – 1000 Å) and short range-order (< 6 Å). In that respect both methods

complement each other as XRD gives crystallographic information of the d-spacings and the unit

cell parameters whereas XAS gives information of the coordination sphere of next nearest

neighbor around an absorbing atom. While XRD requires crystalline solids to be conducted, XAS

is also applicable for investigating amorphous materials that exhibit no crystallographic long-

range order. In addition, the element specificity of XAS enables to selectively probe the local

structure of different constituent elements in multicomponent catalyst (e.g. Cu/ZnO). Moreover,

the capability of conducting both experimental techniques under in situ conditions make them

very useful for investigating the active phase of a real catalyst under working conditions of a

catalytic reaction. The successful combination of XRD and XAS for the structural elucidation of

catalysts under operating conditions has been reported in previous studies [Couves91],

[Sankar00], [Clausen98]. In the following the theoretical concepts of the data analysis of both

methods are presented.

2.2 X-ray Diffraction and Line Profile Analysis

2.2.1 X-ray diffraction line broadening of small and ‘real’ particles

The periodic three dimensional array of atoms in a crystal solid scatters X-rays coherently

leading to a constructive interference at specific angles (i.e. diffraction in analogy to optics). The

first description of the diffraction of X-rays by a crystals was developed by Max von Laue

[Laue13]. In 1913, W.H. Bragg and his son developed a simpler way of predicting diffraction

phenomena in crystals assuming reflection of X-rays from crystallographic planes [Bragg13]. The

scattered X-rays of each lattice planes interfere constructively with each other if the path

difference ∆l is an multiple integer of the wavelength. This is described by the Bragg equation:
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λθ ⋅=⋅⋅=∆ ndl sin2 (2.1)
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Figure 2.1: Bragg’ law for the case of a rectangular grid, i.e. AB = BC = dhkl sin θ

In Figure 2.1 a simple crystal is depicted with one atom at each lattice point. The path

difference between the waves scattered by atoms from adjacent (hkl) lattice planes of spacings dhkl

is given by the sum of AB and BC.

If the incident and the scattered beam deviates δθ from the scattering angle θ a phase shift

results. The phase difference between the first and the last phase dependent lattice plane (total

number: n) amounts to:

λ
θδθπ cos4 ⋅⋅⋅=Φ d (2.2)

The addition of the scattered phase-dependent waves resulting from all lattice planes of a

crystallite yields the intensity I of the diffracted beam (assuming equal scattering amplitudes A):
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The line breadth of this function δθ depends on the number n of lattice planes. For small

microcrystallites which are often present in catalyst samples the diffraction peaks are broadened

because fewer lattice planes give rise to Bragg reflection. The most important formula for an

estimation of the crystallite size is the Scherrer equation which relates the peak width of a

broadened peak to the thickness of the crystal in a direction perpendicular to the diffracting planes.

The size determined thereby refers to a coherently diffracting domain of crystallites giving a

volume-weighted crystallite size averaged over all size distributions [Matyi87].

However, further imperfection due to residual stresses and strain contribute to the XRD line

broadening and need to be considered. Strain in a crystalline material can result in two effects in

diffraction pattern. If the stress is uniformly compressive or tensile (macrostress) the distances
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within the unit cell will either become smaller or larger, respectively. This results in a shift of the

peak position of the diffraction peak. (see Figure 2.2 b). If both, tensile and compressive forces act

on a crystal, microstrain is produced and the resulting diffraction profile will be broadened about

the original position. A number of sources can cause microstrain in crystallites: dislocation (most

important source), vacancies, defects, shear planes etc. The effect of residual stress in a crystallite

will cause a distribution of d-values about the normal, unstrained dhkl-value. In Figure 2.2 c) the

effect of nonuniform stress to a row of unit cells is depicted. While the average d-spacing remains

constant, there is a distribution of d-values with an equivalent range of 2θ values resulting in a

broadening of the diffraction line.

Figure 2.2: Schematic representation of the influence of no strain (a), uniform (b) and non-uniform (c) microstrain
on the XRD profile (taken from [Jenkins96]).

A short-range distortion of lattice planes which indicates microstrain can be caused by various

structural inhomogeneities (e.g. variation in composition due to non-stoichiometry, composition

gradients or phase boundaries) [Delhez92]. In Figure 2.3 a strained unit cube of a crystal with

height h and breadth L is shown to illustrate the effect of line (two dimensional) defects (e.g. edge

dislocation) on the microstructure. The edge dislocation have moved various distances through the

crystal. The total displacement of the top of the cube with respect to the bottom is ∆. Each

dislocation contributes a small displacement δi. When a dislocation moves completely across the
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crystal it causes a displacement b. In effect, the various deviations in the distance of the lattice

planes might result in stain-broadening of the XRD line profile.

Figure 2.3: Schematic representation of strain caused by dislocation in a crystal (taken from [Gillmann62]).

2.2.2 XRD measurements in catalysis

In catalyst research XRD is applied on a routine basis to determine the number and amount of

crystalline bulk phases present in the catalyst. In addition, the signal to background ratio compared

to an internal standard of an X-ray pattern affords direct indication on the crystallinity of the

sample [Ertl97]. Beside this valuable information further microstructural properties of the catalyst

particles can be obtained by an analysis of the shape of a peak profile. Thereby, an indication of

the defect structure of the material is gained. In a more detailed analysis of the peak profile the

origin of the peak broadening can be determined.

The crystallite sizes is of principal importance for characterizing metal catalysts because the

metal surface area and hence the number of exposed atoms (taken as the number of active sites) is

determined by the shape and size of the metal particles. With a detailed particle size the resulting

metal surface area can be estimated to apply the concept of turnover frequency. Although

structural characterization of nanocrystalline materials can also be obtained from transmission

electron microscopy (TEM) investigation, XRD offers additional benefits namely the easy

applicability and averaging structural information over the whole bulk. The fundamental

disadvantage of the Scherrer formula for the size determination is that other structural defects (e.g.

microstrain and bulk defects) beside size effects are neglected. However, as it was shown in the

previous section, both size and strain are main reasons for X-ray line broadening. It is assumed

that both effects exhibit different dependencies on the scattering angle which would be one way to
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separate both influences [Delhez92]. Microstrain in crystalline catalyst materials could be

regarded as another important bulk parameter that could have an impact on the catalytic activity.

Today, it is realized that defects in the bulk of a metal catalyst can modify the surface of a catalyst

(e.g. adsorption properties) and thereby directly influencing the catalytic activity [Kampshoff94].

For example on the basis of self-consistent density functional calculations increased CO

adsorption energies on strained metal surfaces have been predicted by [Mavrikakis98]. Therefore,

it is desirable to determine the microstrain of the catalyst bulk experimentally as an additional

important bulk feature.

The XRD profile shape can be mathematically described by analytical profile functions in order

to determine numerical breadth parameters of a broadened diffraction peak. With the advent of

Rietveld methods for structure analysis of crystalline powder materials, profile refining routines of

the whole XRD patterns became available [Delhez92]. In addition, the profile functions

implemented for the refinement allowed for modeling the shape of line profiles which are directly

influenced by the imperfection and microstructural properties of the crystalline material. This

method has greatly influenced the understanding of the profile of diffraction data.

A new technique for determining the mircrostructural properties of polycrystalline materials

relies on pattern decomposition of diffraction peaks applying the Voigt function which was first

introduced by Langford [Langford92]. This fitting procedure deconvolutes a single diffraction

peak into the underlying Gaussian and Lorentzian profiles in real space. Thus, a separation of the

origin of the X-ray line broadening influences by relating them to the respective profiles is

feasible. This procedure is relatively straightforward applicable and affords information on the

microstructure of polycrystalline materials in terms of mean crystallite size (coherently diffracting

domain) and lattice distortions (microstrain).

Among other wide angle X-ray methods for determining microstructural properties the Voigt

method stands out for its easy applicability in comparison to Fourier methods (Warren Averbach

[Warren50] or the Williamson Hall method [Williamson53] both requiring higher orders of

reflection. The basic concept for the application of the single line method was introduced by

Keijser et al. [Keijser82]. According to that analysis selected reflection lines are analyzed

separately to yield microstructural information and therefore this procedure can be used even if

there are only a limited number of reflections available. XRD profile fitting methods are nowadays

commonly employed in materials science and applied crystallography for characterizing

nanocrystalline materials [Jian99], [Krill98], [Santra99] but have found only few application for

catalytic relevant systems.
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2.2.3 XRD peak profile refinement procedure using the Voigt function

The line profile of XRD peaks can mathematically be expressed as the result of a convolution

of a variety of independent profile forms which can be symmetric or asymmetric [Wilson63],

[Warren69]:

h g f g f d2 2 2 2 2 2 2θ θ θ θ θ θ θ= ∗ = ′′
−∞

+∞

− ′� ( )
(2.4)

The experimental profile h is given by h2θ  whereas g2 ′θ describes the broadened profile due to

influences of the diffractometer. The function f2θ  represents the intensity distribution of a

diffractogram under ideal experimental conditions. A solution of eq.(1) is not possible and

therefore numerical deconvolution techniques (e.g. Stokes deconvolution [Stokes48]) are used for

determining the intrinsic instrumental profile function f. In Figure 2.4 an experimental XRD

profile is shown which has been deconvoluted according to Stokes using an instrumental function.
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Figure 2.4: Intrinsic and instrumental line profiles after deconvolution of an experimental XRD peak normalized
to a zero position using the Stokes deconvolution method.

The Voigt function, which is the convolution of a Lorentzian and a Gaussian function can by

presented by:

I x I L z G x z dz
L G

( ) ( ) ( )= −�0
β

β β (2.5)
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where I0 is the peak intensity, ß is the integral breadth (= area/ I0), ßL and ßG are the integral

breadths of the Lorentzian and Gaussian components [Langford78].

The Lorentzian function is presented by:

( ) { } { } 122122 )FWHM/(41/1 −− +=+= LL
V xxxL βπ (2.6)

whereas the Gaussian function is given by the formula:

( ) { } { } 122122 )/()2ln4(exp/exp −− −=−= GG
V FWHMxxxG βπ (2.7)

The Voigt function can be characterized by a shape factor φ, which is defined as the ratio of the

full width at half peak maximum (FWHM) to the integral breadth,

φ = FWHM/β (2.8)

From the definition of the Voigt function, it follows that the convolution of two or more such

functions represents also a Voigt function.

h x f x g x( ) ( ) ( )= ∗ (2.9)

The main reason for its introduction as a profile function to investigate the nature of diffraction

line profiles is that the integral breadth of the Lorentzian and Gaussian function, ßL and ßG, can be

related to microstructural defects causing to peak broadening. Those relations are only valid in a

first approximation. The additive property of the integral breadths of Lorentzian functions and the

squares of the integral breadths of Gaussian function for the measured and instrumental profile

permits an easy “numerical” deconvolution to obtain the sample intrinsic peak broadening. The

following equation illustrate how both intrinsic integral breaths βfL and βfG are obtained:

β β βfL hL gL= − (2.10)

β β βfG hG gG
2 2 2= − (2.11)

An advantage of this deconvolution procedure is that more tedious corrections using Fourier

methods like the Stokes correction [Stokes48] do not have to be performed prior to a profile

refinement.

The Lorentzian and Gaussian functions are limiting cases for the application of the Voigt

function. Therefore the shape parameter φ ranges in the interval of:
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( ) πφπ /2ln2/2 ≤≤ (2.12)

The determination of the integral breadth of the Voigt function together with the integral breath

of the Lorentzian and the Gaussian function is carried out with the use of the software package

WinXAS 2.0 [Ressler98] according to the principles of a single line method analysis [Keijser82].

Within the theory of the single line method it is generally assumed that the integral breadth of

the Lorentzian contribution of the f-profile βfL describes the extent of broadening due to size

effects whereas the integral breadth of the complementary Gaussian breadth βfG is caused

exclusively by microstrain. The corresponding formulae for determining the respective values for

crystallite size and strain are as follows:

D V fL= λ β θ/ cos [rad] (2.13)

giving the volume weighted average size <D>V.

θβ tan4/~
fGe = [2θ] (2.14)

affording the microstrain e~  which describes two extreme values of the lattice spacing d:

dde /~ ∆= (2.15)

The numerical analysis of the profile parameters presented above depends critically on the

empirical assumption that a Gaussian distribution function is valid for microstrain and a

Lorentzian distribution describes exclusively the distribution of crystallite sizes. However, it

should be noted that other profile shapes for the size and strain broadening may exist and that the

true distribution functions are not necessarily limited to the simple case assumed above.

2.2.3.1 Requirements and Procedure for using the Voigt function

Some conditions for the applicability of the deconvolutive X-ray line broadening analysis have

to be met in order to use the Voigt profile for refinements. The peak profile has to be symmetric in

shape and therefore the use of monochromatic Kα X-rays is of great importance. In addition, the

shape factor φ of the experimental profile has to be inside the Vogtian range to yield meaningful

fit results. Possible sources of error in line profile analysis are discussed in the following. Mainly

insufficient counting statistics can cause errors in the quality of the data. However, in contrast to

Fourier methods where truncation of lines is influencing the accuracy of the parameters, the results

of a Voigt analysis are not equally affected because they are calculated from an analytical function
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[Langford88]. The reliability of simplified integral-breadth methods when size and strain effects

simultaneously broaden the profile has been investigated by Balzar and Popović [Balzar96].

Furthermore, the detailed analysis of only one reflection together with the assumptions implicitly

made for the Voigt analysis (simultaneous occurrence of size and strain) introduce systematic

errors. A quantification of this error is not readily possible and the absolute values of a single line

analysis may therefore deviate from the values determined by of a multiple-line approach.

Generally, the single-line analysis ignores order-dependent components of the integral breadths

and, hence, both size and strain values decrease with increasing scattering angle [Langford88].

However, it has previously been shown that the single-line method gives reliable results with self-

consistent relative values of size and strain underlining the applicability of this method. A more

detailed description of experimental and analytical errors and an estimation of their order of

magnitude can be found in ref. [Keijser82].

2.2.4 Ex-situ XRD measurements and line profile analysis

The ex situ XRD experiments were performed on a Stoe transmission diffractometer STADIP-P

(Ge primary monochromator, Cu-Kα1 radiation), equipped with a linear position sensitive detector

(PSD, internal resolution 0.01 °2θ). The X-ray diffraction measurements were conducted in the

Debye-Scherrer mode with a counting time of 4200 s/step. Copper and zinc oxide were used as

internal standards for the line profile analysis to correct for instrumental line broadening. The

copper used as an annealed standard for the line profile analysis was purchased from Heraeus

(purity 99.98 %, sieve fraction 40 – 80 µm). A Williamson Hall analysis afforded a negligible

strain contribution to the line broadening indication that this sample can be used as an “ideal”

standard. The zinc oxide serving as an standard was purchased from Johnson Matthey (Karlsruhe)

in a high purity (Puratronic, T. M. I. 10 ppm) and showed only size broadening effects. Both Cu

and ZnO were taken as reference standards to individually take into account the different

absorption coefficients of both crystalline phases. Thus different instrumental profile breath

parameters were determined for Cu and ZnO used in the deconvolution procedure.

The deconvolutive line profile analysis according to the procedure described by Langford et al.

[Langford78] was applied to single lines [Delhez82] to determine the underlying Gaussian and

Lorentzian profile contributions as described in the previous section. The profile refinement was

performed using the WinXAS v2.0 software package [Ressler98] on selected single (hkl)

reflections of Cu (111) and ZnO (100), (110), (002) each for an interval ∆°2θ of 4 – 6 to ensure a
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correct modeling of the tails of the peak and the linear background function. However, the ZnO

(002) and the adjacent 101 reflection were refined together in one fit operation. The refinement

afforded the integral breadths of the underlying Gaussian and Lorentzian function and the

respective values of size and strain.

In order to estimate a specific copper surface area, SCu(XRD), based on the XRD crystallite size a

spherical shape of the copper crystallite was assumed with the crystallite size as a mean diameter.

The surface areas (SCu(XRD) and SZnO(XRD)) were calculated using a density ρ of 8.92 g·cm-3 for Cu

and 5.673 g·cm-3 for ZnO [CRC99].

2.2.5 In situ XRD set-up and instrumentation

The in situ XRD experiments were conducted on a STOE STADIP P diffractometer in the

Bragg Brentano scattering geometry equipped with a secondary monochromator and a

scintillation counter operated in the stepping mode. Cu Kα radiation was used at 50 kV and 30

mA. The in situ cell consisted of a Bühler HDK S1 high temperature diffraction chamber mounted

onto the goniometer. The cell was connected to a gas feed system for introducing different gases

(He, O2 and H2) and, in addition, He saturated with liquids (H2O or MeOH). Gas flows were

controlled by Bronkhorst mass flow controllers (~ 100 ml/min total flow). The cell volume is

about 400 ml with a gas flow inlet underneath the sample holder, and gas flow outlet above the

sample holder. The sample holder is a resistively heated stainless steel ribbon (12 mm wide). The

sample temperature is measured with a stainless steel clad thermocouple (type K) connected to the

heating band, and is regulated with a Eurotherm 818 PID controller. Temperature measurements

were calibrated using different reference compounds whose characteristic temperatures of phase

transition or decomposition are known (e.g. NH4NO3, KClO4). The experimentally determined

thermal expansion coefficient of Si in the temperature range from RT to 700 K afforded a value of

α = 2.2 10-6 K-1 (literature value: α = 2.2 10-6 K-1) which indicates that the sample holder did not

move during heating. Typically, 12 mg of the catalyst sample were ground and then applied to the

steel band in a slurry with acetone. Prior to any experiment the reactor was purged with He.

The gas phase over the sample was analyzed on-line with a Balzers Prisma 200 quadrupole

mass spectrometer (ionization source: tungsten filament, 300 V, 10 mA). Effluent gases were

extracted with a heated capillary through a differentially pumped leak valve to the mass

spectrometer. The measurements were performed in the multiple ion detection mode with a 1–2

second dwell time per mass using a faraday cup for detection. This multi component analysis
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permits a quantitative analysis of the gas phase.

Hydrogen pulse experiments afforded a residence time distribution that is characteristic for a

continuously stirred tank reactor. A residence time of 230 seconds for a flow of 100 ml/min

indicates a good mixing of the gas phase. Furthermore, blank reactor tests ensured that under the

reaction conditions employed no measurable activity was recorded.

The full width at half maximum (FWHM) and integrated intensity of XRD-lines were

determined by fitting pseudo Voigt (fixed Gauss contribution) and Lorentz profile functions (more

appropriate for strongly broadened profiles) to the Cu (111) peak. The Scherrer formula was used

to estimate the crystallite size on the basis of the FWHM without taking other broadening effects

and correction for instrumental broadening into account [Snyder93]. Calculation of theoretical X-

ray powder patterns and lattice constant refinements were done using the software PowderCell

v2.2 [Kraus99].
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Figure 2.5: Schematic setup of the in situ XRD-cell in Bragg Brentano geometry.

2.3 X-ray absorption spectroscopy (EXAFS and XANES)

2.3.1 Theory of EXAFS and XANES

X-ray absorption spectroscopy (XAS) is a powerful technique that provides element specific

structural information [Koningsberger00]. XAS probes the local order and, hence, can be applied

to structurally disordered and ordered solids, and to dispersed species (e.g. small metal cluster).

Similar to XRD X-ray absorption spectroscopy in the hard X-ray regime (5.0 keV to 30 keV) can
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be performed in situ under working conditions (p ≥ 1 bar, T = 293 – 573 K). Therefore, it offers a

high potential for the structure determination in heterogeneous catalysis complementary to many

standard methods such as X-ray diffraction or Raman spectroscopy.

X-ray absorption spectra exhibit a smooth decreasing intensity towards higher energy. When

the X-ray photon energy is tuned to the binding energy of the core level of a constituent element, a

sudden increase in the absorption coefficient µ(E), known as the absorption edge, occurs. For

atoms, either in a molecule or embedded in a solid or liquid state, the absorption coefficient

displays oscillatory variation as a function of photon energy. In Figure 2.6 a typical X-ray

absorption spectrum of Cu is shown exhibiting the absorption edge (~ 9 keV) and the oscillatory

part at higher energy (E > 9.04 keV). X-ray absorption spectra are commonly separated into

several parts according to the spectral region. The so-called “X-ray absorption near edge

structure” (XANES), refers to a region that begins before the absorption threshold E0 and extends

to about 40 eV (E0 – 100 eV to E0 + 40 eV). The “extended X-ray absorption fine structure”

(EXAFS: E0 +40 to E0 + 1500 eV) exhibits a modulation in total absorption with the energy of the

incident photon which extends to several hundred eV above the absorption edge.
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Figure 2.6: X-ray absorption spectra of Cu K edge of a Cu/ZnO catalyst with 70 mol-% Cu.

In the absorption of X-rays by matter the following basic model can be applied. When the

energy of the incoming photons is high enough to excite an electron from a deeper core level to a

vacant excited state or to the continuum a sharp increase in the absorption intensity is observed
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(XANES). For higher kinetic energies of the ejected photoelectron scattering by neighboring

atoms occurs (EXAFS-region). The outgoing wave is spherical (see Figure 2.7), and is scattered

by all atoms surrounding the absorbing atom (the absorber). Both destructive and constructive

interference processes occurs between the wave function of the outgoing electron and its scattered

parts, leading to a modulation of the absorption coefficient. The position of maxima and minima

in the resulting interference is energy dependent. As a consequence, there is a relation between the

energy of the ejected electron and the distance between absorber and scatterer. The interference

pattern varies between total construction or total destruction as determined by the path length of

both waves which itself is a function of the distance of two neighboring atoms (see Figure 2.7).

Therefore the oscillatory part of the EXAFS contains information about the local structure around

the absorbing atom.

  

 (a) (b)

  

Figure 2.7: Schematic illustration of constructive (in phase, (a)) and destructive (out of phase, (b)) interference
between out going and backscattered photoelectron wave from neighboring atoms.

The EXAFS function χ(k) is defined as the relative difference between the measured absorption

µ(k) and the atomic absorption µo(k):
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(2.16)

The relation between the modulated part χ(k) and the structural parameters contained in the

absorption spectrum has been shown by Sayers, Stern, and Lytle [Stern70]. The EXAFS equation

in the single scattering, plane wave approximation can be written as:
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0
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with
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Nj number of atoms in the jth shell

Rj mean distance between absorber and the jth shell

2
0S amplitude reduction factor

Fj(k) the magnitude of the backscattering amplitude of the jth neighbor

φj(k) phase shift due to the atomic potentials

λ mean free path of the photoelectron

2
jσ relative mean square disorder between the absorber and an atom (Debye Waller factor)

k the photoelectron wavenumber

E0 threshold energy of the absorption process

A Fourier transform (FT) of the EXAFS with respect to the photoelectron wavenumber peaks at

distances corresponding to the nearest-neighbor coordination shells of atoms. The conventional

analysis of the EXAFS modulations contain several well-documented steps [Koningsberger88].

For disordered materials the Debye-Waller factor σ takes into account the fact that a spread in

distance exists in the material due to thermal and structural disorder. The thermal disorder is

induced due to the thermal lattice vibrations of the atoms at higher temperature. Static disorder of

the solid is encountered if atoms of the same coordination shell have slightly different distances to

the central atom. Static disorder is often present in catalyst system for instance in the case of

highly dispersed small metal particles on a support. In the standard EXAFS formalism, originally

derived by Sayers et al. [Sayers71], it is assumed that a gaussian pair distribution function,

characterized by the Debye-Waller factor, σ, describes the structural disorder. For systems with

pair distribution functions that deviate from a Gaussian shape, the cumulant expansion approach

introduced by Bunker [Bunker83] can be used.

A major improvement of analyzing the X-ray absorption spectra has been achieved by ab initio

calculations of multiple scattering processes. In recent publication it has been shown that the

consideration of multiple scattering processes is essential beyond the first shell for the

determination the local structure [Ressler99]. Using theoretical backscattering phases and

amplitudes calculated with the ab initio code FEFF [Rehr94] the EXAFS analysis can be reliably

carried out to distance out to 6 Å. Hence, EXAFS analysis is no longer restricted to the first shell

and the use of reference compounds.
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The XANES part of the spectrum is characterized by electron transitions and multiple-

scattering events. The fine structure in the XANES is sensitive to changes in the local density of

states and the spatial arrangement of scatterers around the absorber, hence, the edge region can

provide information on the geometry of scatterers. A complete analysis of all multiple scattering

paths that contribute to this fine structure yields the geometry of the scatterers around the absorber

[Vaarkamp97]. In addition, the XANES analysis can provide information of the average valence

of the catalyst system investigated due to the energy shift of the edge energy which proves useful

in characterizing catalysts under reducing or oxidizing atmospheres. Furthermore, it is possible to

simulate the near edge part of the absorption spectrum with a linear combination of the XANES of

reference compounds. It is assumed that the absorbance in a set of spectra can be modeled as a

linear sum of individual components. A principal component algorithm (PCA) can be used to

determine the number and type of probable species yielding a quantification of phase mixtures.

Moreover, the available time-resolution for XAS experiments in the quick-scanning EXAFS

modes (QEXAFS) makes dynamical structural investigations (e.g. kinetic studies) of solid state

processes feasible [Ressler01].

In summary X-ray absorption spectroscopy (XAS) is very well suited to study catalysts and

probing the local structure around a particular element at temperature and pressure. The

information on the short and medium order range obtained by XAS (e.g. type and number of

neighbors, distance between atoms, and disorder) together with the long-range order (e.g.

crystallite size and microstrain) determined by XRD enables a more detailed description of the

bulk structure of a “real” catalyst system.

2.3.2 XAS experiments and instrumentation

X-ray absorption experiments can be carried out in different experimental set-up using

synchrotron radiation. The XAS experiments described in this work were all performed in

transmission geometry at Hamburger Sychrotronstrahlungslabor, HASYLAB. A schematic set-up

of a typical beamline is depicted in Figure 2.8. Different optical elements are required to obtain a

monochromatic and focused X-ray beam. In transmission experiments the intensity of the incident

beam I0 and the transmitted I1 beam are measured by an ionization chamber. A reference sample

(usually metal foils of the elements investigated), placed between the second and the third

ionization chamber (I3) is used as an internal standard for the energy calibration.
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I0 I1 I2
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X-rays

Figure 2.8: Schematic representation of experimental set-up for a transmission XAS experiment

The absorption is calculated from:

µdsample = ln (I0/I1) (2.15)

The in situ XAS experiments were carried out in the transmission mode in a flow-reactor at

atmospheric pressures (designed by M. Hagelstein, T. Neisius et al. ESRF, in a collaborative

effort with the Fritz-Haber-Institut, Berlin). In Figure 2.9 a schematic setup of the in situ reactor is

depicted. The “pellet-type” reactor is suitable for reduction and re-oxidation experiments with

hydrogen and oxygen without detectable mass transport limitations. The reaction temperature and

reactant gas flows were controlled with an Eurotherm PID temperature controller and Bronkhorst

mass flow controllers, respectively. A calibrated mass spectrometer (QMS200 Pfeiffer) operated

in a multiple ion detection mode permitted a quantitative analysis of the gas phase during the

experiments.

Gas flow
controller

sample Heating wire

X-ray

Al-window

MS Analysis Thermocouple

Al-window

Figure 2.9: Schematic setup of the in situ XAS-cell operated in transmission geometry.
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2.3.2.1 Ex situ EXAFS measurements

XAFS measurements of the calcined precursors (CuO/ZnO samples prepared at constant pH

and at decreasing pH with Cu/Zn 100/0, 90/10, 80/20, ..., 10/90, 0/100) were performed at the Cu

K edge (E = 8.979 keV) and the Zn K edge (E = 9.659 keV) at room temperature in transmission

at beamline E4 (HASYLAB, Hamburg). The storage ring operated at 3.6 GeV with injection

currents of 150 mA. For the absorption fine structure (EXAFS) analysis, a smooth atomic

background, µ0(k), was obtained using cubic splines. The radial distribution function FT(χ(k)) was

obtained by Fourier transforming the k3-weighted experimental χ(k) function, multiplied by a

Bessel window, into the R space.

2.3.2.2 In situ XAS measurements

The in situ XAS experiments were performed at beam line X1 at the Hamburger Synchrotron

Radiation Laboratory, HASYLAB, using a Si(111) double crystal monochromator. The storage

ring was operated at 3.6 GeV with injection currents of 150 mA. CuO/ZnO-samples prepared

according to both preparation methods were investigated (constant pH samples C70/30, C60/40,

C40/60, C10/90 and decreasing pH samples D70/30, D60/40, D40/60). The samples were mixed

with boron nitride (mass ratio CuO/ZnO: BN = 1:6) and 45 mg of the mixture was pressed with a

force of one tone into a 5 mm in diameter self supporting pellet. The absorption jump at the Cu K

edge was ~1.5 XANES spectra were measured in the Quick-EXAFS mode with a time resolution

of 15 s/spectra (8959-9100 eV). In situ EXAFS spectra were measured after oxidation and re-

reduction to reveal structural changes of the Cu and Zn phases present.

2.3.3 In situ XANES and EXAFS Data Analysis

The software package WinXAS v2.0 [Ressler98] was used for a statistical analysis of time-

resolved Cu K edge XANES data to reveal qualitative and quantitative information on the copper

bulk phases under TPR and steam reforming conditions. Identification of the number of phases

was achieved by principal component analysis (PCA) of the experimental XANES spectra.

Reference spectra of these phases were then used in a least-square fitting procedure of the time-

resolved spectra to determine the fraction of each phase present [Ressler00]. For the absorption

fine structure (EXAFS) analysis, a smooth atomic background, µ0(k), was obtained using cubic

splines. The radial distribution function FT(χ(k)) was obtained by Fourier transforming the k3-
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weighted experimental χ (k) function, multiplied by a Bessel window, into R space. EXAFS data

analysis was carried out using theoretical backscattering phases and amplitudes calculated with the

ab initio multiple-scattering code FEFF 7 [Rehr94]. Single scattering and multiple scattering paths

in the employed model structures were calculated up to 6 Å for Cu metal and up to 5 Å for ZnO

with a lower limit of 2.0 % in amplitude with respect to the strongest backscattering path. In

addition to the Zn-O and Zn-Zn distances additional Zn-Cu shells were employed assuming Zn on

Cu sites in fcc Cu metal. EXAFS fitting and simulation were performed using the standard

EXAFS formula (k range from 2.0 to 13 Å-1, R range 1.5 to 6.0 Å) [Rehr92]. Structural parameters

that are determined by a least-squares EXAFS fit to experimental spectra are (i) one E0 shift for all

scattering paths in the Cu bulk structure, (ii) Debye-Waller factors for single-scattering paths, (iii)

single scattering shell distances, Ri, and (iv) a third cumulant [Bunker83] to account for slight

deviations from a Gaussian pair distribution function. Coordination numbers (CN) were kept

constant in the refinement. This restriction was necessary to reduce the number of free running

parameter (Nfree) to much less than the number of independent parameters (Nind) in the

experimental data used. EXAFS refinements reported here were carried out in R space to fit the

magnitude and imaginary part of a Fourier transformed k3-weighted experimental χ(k). More

details about the XAFS fitting procedure employed can be found in reference [Ressler99].

2.4 Preparation and characterization of CuO/ZnO precursor

In close collaboration with another thesis, the preparative part of the catalyst precorsors was

performed by B. Bems, Fritz-Haber-Institut. Binary hydroxycarbonate precursors of a systematic

series with varying Cu/Zn molar ratios (100/0, 90/10, 80/20, 70/30, 60/40, 50/50, 40/60, 30/70,

20/80, 10/90, 0/100) were obtained and are denoted in the following according to their nominal

Cu/Zn ratio. The CuO/ZnO samples investigated were prepared according to the coprecipitation

method, both at a constant pH of 7.0 and with decreasing pH, from metal nitrate and sodium

carbonate solutions. Calcination of the hydroxycarbonate precursors at 600 K for 3 h in a muffle

furnace in air afforded mixed CuO/ZnO systems. More preparative details are given elsewhere

[Bems01].

Throughout the XRD and XAS experiments described in this work two sample sets of

systematic series with varying Cu/Zn ratio prepared at constant pH of 7.0 and with decreasing pH

were investigated to trace back the influence of the pH-value and the Cu/Zn ratio during

precipitation.
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For the XRD characterization of the reduced catalyst 20 mg of the obtained mixed oxides

(sample set prepared according to constant and decreasing pH) were placed in a quartz tube and

reduced with 5 vol-% H2 in He (120 ml/min) applying a heating ramp of 5 K/min to 523 K and a

holding time at 523 K of 2 h. A second sample series of the decreasing pH batch was heated to

673 K with no subsequent heating time to prevent the formation of brass alloys. Afterwards, the

samples were sealed into 0.3 mm Lindemann capillaries in a glove box (Ar atmosphere with O2 ≤

1 ppm, H2O ≤ 1 ppm) to prevent oxidation of the highly dispersed copper phase.

Specific surface areas were calculated by applying the BET method to the nitrogen isotherms

obtained at liquid nitrogen temperature on samples outgassed at 423 K using a Quantasorp jr.

(Quantachrom) adsorption instrument.

The nomenclature of all the CuO/ZnO samples investigated including the pH of the preparation

and characterization of the calcined precursor with respect to CuO and ZnO crystallite size and the

BET surface area is given in Tab. 2.1.

2.5 Catalyst screening for methanol synthesis activity

The catalytic activity for methanol synthesis was determined using a microreactor set-up which

is described in more detail in ref. [Hinrichsen00]. In a collaborational effort with M. Muhler et al.

the catalytic activity measurements were conducted at Ruhr-Universität-Bochum. The set-up was

equipped with a calibrated quadrupole mass spectrometer for quantitative product analysis

(Balzers GAM 422). The activity measurements were conducted at 493 K under atmospheric

pressure in a glass lined U-tube reactor using typically 100 mg of 250 – 355 µm sieve fraction of

the catalyst. In the activity measurements the mass balance closed to within 5 –10 % by the use of

He as an internal standard and, hence, the experimental error is estimated to be of similar order of

magnitude. Prior to the reaction the sample was reduced in 2 vol-% H2 in He ramping the

temperature at 1 K·min-1 up to 448 K and holding this temperature over night. Finally, the

temperature was increased up to 513 K with a linear heating rate of 1 K·min-1. The flow was

switched to 100 vol-% H2 until the reduction was completed as verified by mass spectrometry (no

further H2O evolution). The reduction was followed by a Cu area determination performed by

passing 1 vol-% N2O in He over the catalyst at 300 K (reactive frontal chromatography

[Chinchen86], [Chinchen87]). For calculation of the exposed Cu surface area a mean surface atom

density of 1.47·1019 m-2 [Anderson85] was used. The reproducibility of the surface area

determination according to N2O RFC was ± 1%. Methanol synthesis activity was measured at
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493 K with a modified space velocity of 500 Nml (min·gcat)-1 to determine activities within the

kinetically controlled regime. The composition of the feed gas was 10 vol-% CO, 4 vol-% CO2, 72

vol-% H2 in He. The activity of the Cu surface was expressed as a normalized turn-over frequency

(TOF) defined as the number of product molecules of MeOH formed per surface atom Cu per

second, which was normalized to the maximum TOF.
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Tab. 2.1: Chemical composition and characterization of calcined CuO/ZnO precursors. Calcination conditions:
695 K for 3 h in stagnant air.

Sample
name nominal

Cu/Zn ratio
[at.%]

chemical
compositiona

Cu/Zn [at.%]

pH during
precipitation

CuO
crystalliteb

size [Å]

ZnO
crystalliteb

size [Å]

SBET
[m2/g]

C100/0 100/0 100/0 constant (7.0) 137 - 33

C90/10 90/10 91/09 constant (7.0) 75 -c 70

C80/20 80/20 82/18 constant (7.0) 41 -c 76

C70/30 70/30 73/27 constant (7.0) 40 40 76

C60/40 60/40 63/37 constant (7.0) 43 46 82

C50/50 50/50 53/47 constant (7.0) 43 46 89

C40/60 40/60 45/55 constant (7.0) 46 45 96

C30/70 30/70 30/70 constant (7.0) 47 60 74

C20/80 20/80 22/78 constant (7.0) -c 75 77

C10/90 10/90 11/89 constant (7.0) -c 80 53

C0/100 0/100 0/100 constant (7.0) - 110 41

D100/0 100/0 100/0 decreasing 125 - 26

D90/10 70/30 91/09 decreasing 109 92 43

D80/20 70/30 82/18 decreasing 88 89 44

D70/30 70/30 74/26 decreasing 100 71 43

D60/40 60/40 66/34 decreasing 78 66 52

D50/50 50/50 53/47 decreasing 58 64 65

D40/60 40/60 45/55 decreasing 62 77 49

D30/70 30/70 30/70 decreasing 48 65 68

D20/80 20/80 22/78 decreasing 60 73 69

D10/90 11/89 11/89 decreasing -c 110 49

D0/100 0/100 0/100 decreasing - 170 34

a Cu/Zn ratio was determined by X-ray absorption experiment. b calculated using the Scherrer equation for CuO
(111) and ZnO (100).c not determined because of poor crystallinity.
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2.6 In situ catalytic tests for methanol steam reforming activity

2.6.1 TPR measurements of catalyst precursor

Reduction of the precursors was performed in the in situ XRD cell following a temperature

program either with 2 vol-% H2 (denoted in the following as ‘dry’ reduction) or with 2.5 vol-% H2

and 3 vol-% H2O (‘wet’ reduction) both in a He-flow of 100 ml/min. Between 433 K and 523 K

an XRD pattern measurement was taken every 5 K at a constant temperature while applying a

temperature ramp between every measurement resulting in an effective heating ramp of 0.5 K/min.

Thus, the uncertainty in on-set temperatures of reduction is 5 K. For the temperature programmed

reduction measurements a counting time of 2 s/step and a step width of 0.04 °2θ was chosen for an

interval of 41 – 46 °2θ.

In the XAS-cell temperature programmed reduction (TPR) runs were performed with 2 vol-%

H2 (constant pH samples) and 8 vol-% H2 (decreasing pH samples) from 448 – 523 K with a

temperature ramp of 5 K/min.

2.6.2 Methanol steam reforming activity screening

The catalytic activity of the Cu/ZnO samples for steam reforming of methanol was determined

at atmospheric pressure at 523 K using saturators for methanol and water at room temperature. For

a typical in situ experiment 12 mg of sample were employed in the in situ XRD set-up and ~ 6 mg

were used in the XAS-cell. After temperature programmed reduction and cooling the sample to

298 K, the binary Cu/ZnO samples were exposed to a MeOH/H2O vapor in a ratio of 4/1

(c(MeOH) ~ 6 vol-%, c(H2O) ~ 1.5 vol-%) diluted in He; total flow in the XRD cell = 120 ml/min,

XAS cell = 25 ml/min. Afterwards the temperature was increased from RT to 523 K at 20 K/min.

Reactants and products (MeOH, H2O, H2, CO2, and CO) were quantitatively monitored with a

mass spectrometer (time resolution 12 s per scan). In order to monitor changes in the phase

composition during oxidation and reduction cycles, oxygen (20 vol-%) was added to the feed at

(523 K) for intervals of 100 min (in situ XRD) and 10 min (in situ XAS) while the reaction was

progressing.

The following reactions of methanol are considered to arrive at a carbon balance:
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i) Steam Reforming Reaction:

CH3OH + H2O → CO2 + 3H2 (2.16)

ii) Methanol Decomposition:

CH3OH → CO + 2H2 (2.17)

iii) Dehydrogenation of Methanol:

CH3OH → CHO + H2 (2.18)

iv) Water-gas shift reaction:

CO + H2O → CO2 + H2 (2.19)

The selectivity refers to CO2 instead of H2 because reactions other than the desired steam

reforming (2.16) produce hydrogen as well. An error is introduced by not differentiating the CO2

stemming from the water-gas shift reaction. However, this reaction occurs to a much smaller

extent. The selectivity and conversion were determined according to the following formulae:

Conversion XMeOH = 
)(

)()(

in

outin

MeOHc
MeOHcMeOHc −

Selectivity SCO2 = 
)()(

)( 2

outin

out

MeOHcMeOHc
COc

−

In order to express the hydrogen production activity in terms of a turn over frequency (i .e.

number of product molecules of hydrogen formed per surface atom Cu per second) the number of

exposed Cu surface atoms must be estimated. The number of surface atoms was calculated for the

Cu surface area using a mean surface atom density of 1.47·1019 m-2 [Anderson85]. The copper

surface area was determined using the XRD crystallite size and assuming a spherical copper

crystallite shape. We have previously shown that the Cu surface area thus determined agrees well

with the surface area based on chemical titration with N2O [Günter01].

2.7 Transmission electron microscopy (TEM) characterization

2.7.1 Application of TEM on catalysts

In addition to the bulk structural methods presented above which yields structural information
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averaged over the whole bulk, electron microscopy is used in selected cases to provide locally

resolved images of the structure and detailed particle morphology of the calcined and reduced

Cu/ZnO catalyst. The most widespread application of transmission electron microscopy in

catalytic research are measurements of crystallite sizes and distribution of supported particles in

order to determine the dispersion of the active phase. In addition, due to the high resolution the

observation of the inner particle structure is possible. Usually supported catalyst particles are not

single crystals but consist of several differently oriented crystallites separated by grain boundaries

or twin planes [Delannay84].

In Transmission electron microscopy (TEM) a primary electron beam of high energy and high

intensity passes through a sample while the attenuation of the beam depends on the density and the

thickness of the sample investigated The transmitted and diffracted electron are used to obtain

structural information. The transmitted electrons form a two-dimensional projection of the sample,

which is subsequently magnified by the electron optics to produce a so-called bright field image.

Another application of TEM is dark-field imaging which is useful in selectively studying

samples containing a mixture of two different crystalline phases (e.g. Cu and ZnO). Dark-field

images of supported particles are obtained from the diffracted electron beams. Therefore the

incident electron beam is tilted so that the objective aperture excludes the unscattered electrons but

accepts some of the electrons diffracted by a preferred oriented set of planes of the particle.

Thereby the interaction between copper metal particle and the supporting ZnO can be investigated.

2.7.2 Experimental details

Transmission electron microscopy was conducted on some selected oxide precursors (samples

of constant pH and decreasing pH preparation) on a Phillips CM 200 FEG TEM with an electron

beam of 200 kV energy. For the microscopic study the catalysts samples were suspended in an

ethanol slurry and the resulting solutions were dispersed on holey-carbon films supported on gold

grids.

For the investigation of a reduced sample a commercial catalyst with a Cu/Zn ratio of 70/30

was reduced in 5 vol-% H2 at 523 K and a sample for electron transmission was prepared in a

glove box to prevent any contact to air. For deposition of the sample on the grid no solvents were

used.
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3 Ex situ Studies on Copper oxide /Zinc oxide

3.1 Copper Oxide/Zinc Oxide Precursor

3.1.1 Introduction

The preparation of an active Cu catalyst is usually carried out in three stages. First the wet-

chemical preparation yields a multiphase hydroxycarbonate by coprecipitation with the

components in highly dispersed form. The starting substances for the preparation of binary Cu, Zn

hydroxycarbonate precursors are nitrate solutions of copper and zinc. The second step comprises

the calcination of the precursor in air after several steps of post-preparation treatment of the

hydroxycarbonates (e.g. aging and drying). During calcination of the precursor the

hydroxycarbonates decompose with the evolution of CO2 and H2O yielding the oxidic phases. In

the last step of preparation the calcined precursor is reduced to afford the active catalyst.

During sequence of preparation stages the structure of the active catalyst is assumed to be

predetermined to some extent by the precursor phase composition. The phase composition of the

coprecipitated Cu, Zn-hydroxycarbonate is considered to have a strong effect on the thermal

decomposition behavior during calcination in air and, hence, is assumed to affect the CuO and

ZnO microstructure (e.g. crystallite size) [Shen97].

In this section the results of the structural characterization of the CuO/ZnO precursor by XRD,

EXAFS and in some selected cases by TEM will be presented. Although all of these techniques

are applied ex situ it is thought that ex situ analysis method is adequate to afford a first insight into

the structural interaction of the calcined and reduced catalysts. An in situ approach to the reduced

system employing XRD and XAS is presented in chapter 5.

The CuO/ZnO precursors were obtained after calcination of the respective hydroxycarbonates

precursors at 600 K. The sample sets of the constant pH and the decreasing pH preparation were

investigated to detect dependencies of structural properties on the preparation conditions and the

elemental composition. X-ray diffraction and profile fitting is employed to determine the

crystallite size of copper and zinc oxide. X-ray absorption spectroscopy is useful to detect changes

in the local structure around the Cu and Zn atoms, i.e. the next nearest neighbor. This is especially

useful because the thermal decomposition affords a structural disordered mixed oxide at an

intermediate compositional range with a lack of long-range order. In addition, electron microscopy

is used to supplement the results of the bulk sensitive methods (XRD and EXAFS) with locally

resolved images of the morphology and size of the particles.
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3.1.2 XRD characterization of CuO/ZnO

Figure 3.1 shows experimental XRD patterns of systematic series of calcined CuO/ZnO

samples of the constant pH (a) and the decreasing pH (b) series. Both series of XRD pattern

exhibit a gradual increase in line width of the CuO (002) and (111) reflection at 35° and 39° 2θ

with increasing Zn content. For the ZnO (100) and (101) reflection at 32° and 36° 2θ on the

opposite are narrowing of the line width can be noticed. At an intermediary compositional range

(from 70/30 to 30/70) the individual reflection lines of CuO and ZnO are broad and strongly

overlapping. Upon comparison of the diffraction data of both sample sets the diffraction lines of

samples obtained at decreasing pH are narrower in line width which points to a larger crystallite

size. In order to further analyze the changes in crystallite size the Scherrer formula is applied to

the CuO (111) and the ZnO (100) peak. In Figure 3.2 the crystallite sizes of CuO and ZnO based

on those peaks are displayed together with the BET surface area. It can be seen that similar

crystallite sizes for CuO and ZnO are determined for an intermediate compositional range (e.g.

CuO and ZnO crystallite size of 45 Å for the sample C50/50). Furthermore, the results show that

the maximum in BET surface area is reflected by a minimum in crystallite size of CuO and ZnO.

For the sample set prepared at constant pH a minimum in CuO and ZnO crystallite size is obtained

in the range from 30 – 60 mol-% Zn with only small differences in size between both phases. For

the CuO and ZnO crystallite sizes of the decreasing pH sample batch a gradual decrease in

crystallite size with increasing Zn concentration can be noted with the smallest crystallite size

(CuO = 45 Å, ZnO = 60 Å) observed at a concentration of 70 mol-% Zn.
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Figure 3.1: XRD patterns of a systematic series of calcined CuO/ZnO samples prepared at constant pH (a) and
decreasing pH (b). Characteristic (hkl) lines for CuO (002), (111) and ZnO (100) and (101) are indicated.
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A more detailed XRD line profile analysis of the CuO and ZnO peaks is not feasible due to the

overlap of the most intense diffraction lines in the interval between 25 – 38 °2θ especially for the

intermediate compositional range. Hence, no further conclusion can be drawn concerning possible

additional broadening effects of the X-ray line. However, EXAFS can be employed in that case to

afford information of the next nearest neighbors of Cu and ZnO.
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Figure 3.2: Crystallite size of CuO and ZnO after calcination at 600 K based on the (111) or (100) reflection for
CuO and ZnO respectively together with the corresponding BET data. (a) constant pH preparation, (b) decreasing pH
preparation.
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3.1.3 EXAFS measurement of CuO/ZnO

In order to further analyze the local structure of the CuO/ZnO precursor which exhibit a high

degree of disorder EXAFS was applied to both sample sets of calcined precursors. The EXAFS

analysis in the section is restricted to a qualitative analysis of the Fourier transformed χ(k) to

detect changes in the local structure with composition and preparation treatment.

In Figure 3.3 the Fourier transformed (FT) Cu K and Zn K edge spectra for the whole series of

CuO/ZnO for the constant and the decreasing pH preparation sample batch is displayed. The peak

distances of the plots are not phase corrected for the phase shift and hence are shifted to lower R

values. The first peak in Figure 3.3 (a) at ~ 1.8 Å corresponds to the first oxygen shell around the

Cu absorber. Beside the Cu-O peak a second distinct peak can be seen at ~ 2.4 Å which

corresponds to a Cu – Cu distance. For the Zn K edge Fourier transformed χ(k) three distinct

peaks can be observed at ~ 1.5 Å, ~ 2.4 Å and at 4 Å. The second peak corresponds to of a

Zn – Zn distance. All series of the RDF exhibit distinct deviations in intensity from a supposed

linear dependence of structural features on composition. For the Cu K edge the series of FT(χ(k))

spectra exhibit a considerable damping in amplitude for the first two coordination shells at a Zn

concentration of 50 and 60 mol-% (Figure 3.3 (a), (b)). This is detectable for both preparation

batches at the same concentration. Furthermore, the Zn K edge FT(χ(k)) reveals for the Zn – O

and Zn – Zn nearest neighbor shells a reduction in amplitude at a Zn concentration of 30 and 50

mol-% Zn for the constant pH series and at 40 and 60 mol-% Zn for the decreasing pH samples.
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Figure 3.3: Fourier transformed experimental Cu K edge χ(k) of systematic series of calcined samples prepared at
constant pH (a) and at decreasig pH (b) and corresponding Fourier transformed experimental Zn K edge χ(k) of the
constant (a) and decreasing (b) pH sample set. Dashed lines represent spectra that deviate from a linear trend in
structure with composition.
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In a further step to analyze the changes in the local structure the imaginary part of the EXAFS

part of the experimental Fourier transformed EXAFS χ(k) is investigated in more detail. In Figure

3.4 the FT χ(k) of pure ZnO, CuO obtained from decomposition of malachite and calcined binary

samples prepared at constant pH with 10 and 20 mol-% Zn are depicted. A significant difference

in the imaginary part of the FT(χ(k)) for the sample 10/90 at about 2.5 Å (indicated with an arrow)

is observed compared to that of ZnO (Figure 3.4 (a)). This deviation is less pronounced for the

imaginary part of the FT(χ(k)) of sample 80/20 which resembles more that of ZnO. The Cu K

edge FT(χ(k)) spectra of the sample 90/10 and 80/20 exhibit a considerable reduction in amplitude

at above 3 Å compared to the FT(χ(k)) fo CuO (lower part of Figure 3.4).
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Figure 3.4: Experimental Fourier transformed Zn K edge χ(k) (magnitude and imaginary part) of ZnO, and
calcined samples with Cu/Zn of 90/10 and 80/20 (a), and experimental FT(χ(k)) of Cu K edge of CuO and calcined
samples with Cu/Zn of 90/10 and 80/20 (b).
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3.1.4 Transmission electron microscopy of CuO/ZnO

Selected CuO/ZnO precursors were investigated by transmission electron microscopy to

determine their crystallite size and morphology as a function of Cu/Zn ratio. The transmission

electron mircographs of selected CuO/ZnO precursors with 60 and 70 mol-% Cu are given in

Figure 3.5. It can be seen that the samples consist of a highly interdispersed network of single

crystalline particles. Although at the magnification used lattice fringes can well be observed (see

inset in Figure 3.5) no easy identification of the individual particles is feasible. For particles of the

calcined precursor obtained at decreasing pH a significantly higher particle size (> 100 Å) can be

observed. For the samples prepared at constant pH smaller agglomerates can be seen which is also

in agreement with the smaller CuO and ZnO crystallite sizes determined by XRD for this sample

series.

Figure 3.5: Transmission electron micrograph of calcined samples C60/40 (a), C70/30 (b), D60/40 (c), and
D60/40. The magnified inset of a catalyst particle of sample C60/40 shows lattice fringes.
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In general, the mean size of the particles taken as the diameter of the crystalline parts is in close

agreement with the XRD-size (see Figure 3.2). This confirms that the particle size of the

CuO/ZnO precursor determined by XRD refers to a primary particle size with no considerable

amount of x-ray amorphous phases present that do not contribute to the X-ray line broadening.

3.1.5 Discussion

The structural investigation of CuO/ZnO precursors by XRD and XAS provides evidence that a

high interdispersion of both oxidic phase is achieved by the mild calcination conditions. The

crystallite sizes of CuO and ZnO were found to be a function of the Cu/Zn ratio. The mutual

interaction of both CuO and ZnO is indicated by the TEM images which showed the fine

interdispersion of CuO and ZnO crystallites. The sizes determined by TEM are in accordance with

those afforded by XRD line profile analysis which proves that no large amounts of amorphous

oxides are formed. The EXAFS proved differences in structural features (amplitude) for CuO and

ZnO that deviate from a supposed linear trend in composition.

The significant deviations in the intensity of the experimental Fourier transformed χ(k) for

distinct Cu/Zn ratio can be related to changes in the phase composition of the hydroxycarbonate

precursor. A phase assignment of the hydroxycarbonate phases obtained from a coprecipitation

procedure at constant pH based on XRD and thermoanalytical data is described in detail elsewhere

[Bems01]. Three multiphasic composition ranges in the hydroxycarbonate precursors can be

distinguished as a function of composition. The first region extends from 0 mol-% Zn to ~15

mol-% Zn and encompasses the pure malachite phase (Cu2(OH)2CO3) as well as the zincian-

malachite phase ((Cu,Zn)2(OH)2CO3)). The second region extends from 20 mol-% Zn to ~50 mol-

% Zn and encompasses the transition from the zincian malachite to the aurichalcite phase

((Cu,Zn)5(OH)6(CO3)2). The third region at a Zn concentration larger than 50 mol-% encompasses

the transition of aurichalcite to the hydrozincite phase (Zn(OH)6(CO3)2). The phase composition

was found to be sensitive to the pH during the coprecipitation procedure. For hydroxycarbonates

obtained at decreasing pH a similar phase assignment can be obtained [Bems01] but for the

second region the existence of the aurichalcite phase is shifted to a lower Zn concentration (~ 40

mol-%). This is reflected by the decreased amplitude of the FT χ(k) of ZnO observed at this

concentration (see Figure 3.3).

The change in short-range order of ZnO and CuO in samples with 10 mol-% Zn (see Figure

3.4) cannot be ascribed to a crystallite size effect because XRD measurements on the oxide

precursors yielded an average crystallite size for CuO of ~ 75 Å. EXAFS data analysis using
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theoretical phases and amplitudes of CuO yielded an enlarged metal-metal distance for shells

above 3 Å. This indicates that Zn may occupy specific Cu sites in the CuO lattice rather than

being randomly distributed. It has been shown in the literature that CuO can form solid solutions

with several bivalent cations (e.g. Mg, Co, Zn, and Ni, concentration < 10 mol-%) [Delorme58].

Therefore, we propose that the inclusion or solid solutions of ZnO in the CuO bulk enables the

formation of a Cu-Zn alloy at a temperature of 523 K. Otherwise, temperatures above 900 K

would be required for the formation of brass from ZnO and CuO under reducing conditions. A

possible dissolution of ZnO in CuO as evidenced by the EXAFS results may be related to the

crystal structure of zincian malachite (rosasite) in which Zn and Cu cations occupy non-equivalent

sites [Roberts86]. After mild calcination the local arrangement is preserved which could result in

the observed Zn “ordering” in the CuO matrix. A second explanation for the structural disorder

observed is possibly related to the incomplete removal of OH- and carbonate groups during

thermal decomposition.
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3.2 Microstructural characteristics of reduced Cu/ZnO catalysts

3.2.1 Introduction

During the course of the preparation of an active Cu/ZnO catalyst the reduction of the calcined

CuO/ZnO precursor is the last stage. The activation is most often carried out by reduction with

hydrogen or CO in which copper oxide is reduced to metallic copper. The structural properties of

the copper phase are dependent on the Cu/Zn ratio and the preparation conditions. In this section

the microstructural characteristics of copper and zinc oxide after reduction in hydrogen at 523 and

673 K are investigated. An X-ray diffraction line profile analysis based on the Voigt profile is

applied to selected Cu and ZnO reflection peaks in order to separate the broadening influences due

to crystallite size and microstrain effects. Those mircostructural characteristics indicate deviations

from the ideal structure (i.e. structural imperfection) that can originate from concentration

variations, finite crystallite size and various kinds of defects such as dislocation, stacking faults,

micro-twins, and stresses. The influence of the reduction temperature, the pH during

coprecipitation of the hydroxycarbonate precursor, and the Cu/Zn ratio crystallite sizes and strain

will be investigated. This approach aims at relating the so-called ‘synergistic’ effect in the Cu/ZnO

system to the defective bulk structure of copper and zinc oxide.

In addition, transmission electron microscopy is utilized for a reduced commercial catalyst to

investigate the morphology and the microstructural orientation of the Cu and ZnO particles.

3.2.2 X-ray diffraction Data

The experimental XRD pattern for the various sample batches of Cu/ZnO reduced at 523 K and

673 K are shown in Figure 3.6 (a) – (c). The XRD pattern indicate that the reduction conditions

used (5 vol-% H2) afforded metallic copper in all cases and that the ZnO phase is unaffected. No

additional oxidic copper phases were detected indicating a complete reduction of CuO and the

successful exclusion of oxygen contamination during sample preparation. In all XRD pattern

series a significant broadening of the Cu (111) and (200) reflection at 43 °2θ and 50 °2θ,

respectively, is observed with increasing ZnO content in the sample. The ZnO (hkl) lines exhibit

an opposed dependence on the composition as their diffraction lines narrow with decreasing Cu

content. After reduction at 673 K (see Figure 3.6 (c)) the triplet of ZnO reflections centered

around 35 ° 2θ is much better resolved for samples with low Zn-content than in the case of the low

temperature reduction (e.g. sample D60/40). No significant narrowing of the ZnO (hkl) lines is

observed in the compositional range from 50/50 to 10/90.
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Figure 3.6: XRD patterns of systematic series of reduced Cu/ZnO catalysts. Samples have been prepared
according to the (a) constant pH, and (b) decreasing pH preparation method after reduction with hydrogen at 523 K,
and (c) decreasing pH preparation after reduction with hydrogen at 673 K, reflections due to an internal standard Si
are marked. Characteristic (hkl) lines for Cu (111) and ZnO (002), (100), (101) and (110) are indicated.

3.2.3 Microstructural characterization of Cu

A Cu (111) peak of a sample with 60 mol-% Cu (reduced at 523 K; decreasing pH) refined with

a Voigt function is shown in Figure 3.7 together with a difference plot after subtraction of the

linear background function.
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Figure 3.7: Experimental data and refined profile of a Cu (111) reflection using a Voigt function. The difference
pot, measured minus refined profile, is shown in the lower part of the graph (sample with 60 mol-%, decreasing pH
reduced at 523 K).
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The numeric results (e.g. shape factor, deconvoluted integral Lorentzian and Gaussian breadth)

of the profile fitting of the constant pH sample series reduced at 523 K and the calculated

crystallite size and microstrain are summarized in Table 3.1. The shape parameter φ ranges in all

cases within the allowed region for the Voigt function. With increasing ZnO-concentration the

shape parameter φ increases indicating that the character of the employed Voigt function is more

approximated by a Gaussian.

Table 3.1: Integral breadth parameters and microstructural properties of Cu based on XRD line profile analysis
for various samples prepared at constant pH after treatment with H2 at 523 K.

nominal
Cu/Zn

ratio [%]

shape factor φ deconvoluted
integral

Lorentzian
breadth βfL

[° 2θ]

crystallite size
<D>V [Å]

deconvoluted
integral

Gaussian
breadth βfG

[° 2θ]

microstrain
e~  [%]

100/0 0.84 0.09 1000 0.07 0.07

90/10 0.73 0.45 210 0.16 0.17

80/20 0.68 0.77 123 0.16 0.18

70/30 0.71 1.03 92 0.19 0.22

60/40 0.69 1.08 88 0.04 0.05

50/50 0.74 2.07 46 0 0

40/60 0.83 1.87 51 1.14 1.25

30/70 0.88 1.16 82 1.66 1.82

20/80 0.91 0.91 104 2.13 2.36
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Figure 3.8: Copper crystallite size (a) and microstrain (b) determined according to the Voigt deconvolution
procedure as a function of the nominal Zn-content of samples reduced in 5 vol-% H2 at 523 K (decreasing and
constant pH) and 673 K (decreasing pH). The data is based on the analysis of the copper (111) peak.

In Figure 3.8 the results of the analysis of the Cu (111) peak in terms of size (a) and strain (b)

are shown for all sample series investigated. For all samples the Cu crystallite size is continuously

decreasing with increasing Zn-content. The reduction at 673 K afforded larger crystallite sizes

compared to those reduced at 523 K. For Zn-concentrations higher than 40 mol-% Zn only small

differences in Cu crystallite size are detected (< 100 Å). For concentration < 50 mol-% Zn the Cu
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microstrain exhibits only small strain contribution to the line broadening (Figure 3.8 (b)). For

more diluted concentrations (50 - 80 mol-% Zn) an considerable increase in strain can be seen,

whereas the samples prepared at constant pH expose higher strain values. The Cu strain for

samples reduced at 673 K displays no systematic behavior in this compositional range, but mostly

lower strain parameters are obtained.

3.2.4 Microstructural characterization of ZnO

In Figure 3.9 refined XRD peaks of ZnO are depicted for a sample with a Cu/Zn ratio of 40/60

(decreasing pH sample). The difference function displays no systematic deviation within

experimental error indicating that the symmetric peak shape of the Voigt function is a good

approximation to the experimental profile. The separation of two adjacent ZnO (002) and (101)

peaks is displayed in Figure 3.9 (b).
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Figure 3.9: Experimental data and refined profile of ZnO (100), (002), (110) and (110) ((a) –(c)) reflection using
the Voigt function. The difference plot, measured minus refined profile, is shown in the lower part of the graph
(sample with 60 mol-%, decreasing pH reduced at 523 K).

The results (shape factor, deconvoluted integral Lorentzian and Gaussian breadth, crystallite

size, and microstrain) derived from the line profile analysis of selected ZnO peaks of the constant

pH sample series reduced at 523 K are summarized in Table 3.2. The shape parameter φ indicates

that the Voigt function is a good approximation and applicable in all cases. With increasing Zn-

concentration the Voigt profile fitting affords more Lorentzian contribution indicating that size

effects become more prominent for line broadening.

In Figure 3.10 (a) the variation of the ZnO crystallite size based on the Lorentzian breadth of

the (100) peak is shown as a function of the Zn-content in the samples for reduction at 523 K and

673 K. The ZnO sizes for samples reduced at 523 K exhibit a decreasing crystallite size with

decreasing Zn-content (from 200 Å down to 100 Å) showing only small differences between both

preparation methods (constant and decreasing pH). After reduction at 673 K the decreasing pH

sample set exhibits a stronger dependence on the Zn-content with larger crystallite sizes (between

~ 450 Å and ~ 150 Å) than those obtained for samples after reduction at 523 K. A similar

dependence on the reduction temperature is obtained for the ZnO microstrain (Figure 3.10 (b)).

The ZnO microstrain was calculated from the Gaussian integral breadth of the deconvoluted Voigt

function. Both sample sets which were reduced at 523 K (constant and decreasing pH) expose a

slight decrease in strain with increasing Zn-content whereas only small differences in absolute

microstrain are detected. After reduction at 673 K the strain has diminished to less than 50% as

compared to the values obtained after low temperature reduction. In addition, no dependence of

the microstrain on the Zn-content in the sample can be observed after high temperature reduction

treatment. To further elucidate microstructural changes of ZnO for different crystallographic

directions after reduction in hydrogen at 523 K and 673 K selected (hkl) reflections were analyzed.
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Table 3.2: Integral breadth parameters and microstructural properties of ZnO based on XRD line profile analysis
for various (hkl) reflections prepared at constant pH after treatment with H2 at 523 K.

nominal
Cu/Zn
ratio

[at.%]

reflection

hkl

shape
factor φ

deconvoluted
integral

Lorentzian
breadth βfL

[° 2θ]

crystallite
size <D>V.

[Å]

deconvoluted
integral

Gaussian
breadth βfG

[° 2θ]

microstrain
e~  [%]

80/20 100

002

110

0.89

0.89

0.85

0.53

0.33

0.85

173

276

188

0.74

0.78

0.53

1.1

1.1

0.69

70/30 100

002

110

0.81

0.74

0.82

0.77

1.24

1.12

120

76

90

0.77

0.53

0.78

1.2

0.75

0.63

60/40 100

002

110

0.78

0.74

0.81

0.90

1.01

1.05

101

91

95

0.62

0.49

0.84

0.95

0.69

0.68

50/50 100

002

110

0.79

0.81

0.83

0.65

0.52

0.88

141

180

114

0.66

0.62

0.75

1.02

0.88

0.61

40/60 100

002

110

0.78

0.75

0.82

0.86

0.89

1.03

106

103
98

0.64

0.53

0.81

0.99

0.74

0.65

30/70 100

002

110

0.82

0.78

0.79

0.71

0.79

0.94

128

126

106

0.53

0.45

0.66

0.82

0.64

0.94

20/80 100

002

110

0.77

0.91

0.78

0.64

0.55

0.88

143

170

114

0.49

0.46

0.54

0.75

0.75

0.44

10/90 100

002

110

0.77

0.72

0.80

0.50

0.53

0.72

183

173

140

0.44

0.27

0.56

0.68

0.38

0.46

0/100 100

002

110

0.70

0.80

0.80

0.45

0.36

0.52

204

253

195

0.39

0.34

0.50

0.61

0.48

0.40
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Figure 3.10: Zinc oxide crystallite size (a) and microstrain (b) determined according to the Voigt deconvolution
procedure as a function of the nominal Zn-content for samples reduced in 5 vol-% H2 at 523 K (decreasing and
constant pH) and 673 K (decreasing pH). The data is based on the analysis of the zinc oxide (100) peak.

In Figure 3.11 (a) the ZnO crystallite size of the constant pH samples reduced at 523 K based

on the (002), (100), and (110) are depicted as a function of the composition. It can be seen that

with increasing ZnO concentration the crystallite sizes are increasing with no systematic

difference in size for the different crystallographic directions. The large scatter of data is

indicative of isotropic sizes for the different crystallographic directions. Contrary to the

dependence of the ZnO crystallite size on the Zn-content the zinc oxide microstrain decreases with
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increasing Zn content (Figure 3.11 b). Some differences in microstrain depending on the

crystallographic direction can be observed. Apparently, the mircostrain is anisotropic and highest

values are measured mostly for the (100) reflection which ranges from 1.2 % at 30 mol-% Zn

down to 0.7 % for pure ZnO.
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Figure 3.11: ZnO crystallite sizes (a) and microstrain (b) after reduction at 523 K as a function of the Zn-content
(constant pH). The values are determined for different crystallographic directions based on the (100), (002) and (110)
reflection.
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The ZnO crystallite sizes based on selected (hkl) reflection after reduction at 673 K are shown

in Figure 3.12 (a). After high temperature reduction the ZnO crystallite sizes display significant

differences depending on the (hkl) reflection used for the size determination. The crystallite sizes

based on the (002) reflection are on the average three times as large as those derived from the

(110) reflection. In Figure 3.12 (b) the dependence of the ZnO microstrain after reduction at 673 K

is shown as a function of the Zn-content (decreasing pH). The values are determined for the (100),

(002) and (101) reflection. With decreasing Zn-content the microstrain is slightly increasing for

the (100) reflection (from 0.3 % at 90 mol-% Zn up to 0.6 % at 10 mol-% Zn). The ZnO

microstrain based on the (002) and (110) reflection shows only a weak dependence on the

crystallographic direction. Moreover, the extent of strain has diminished by a factor of two after

reduction at 623 K as compared to the values obtained for the samples reduced at 523 K.
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Figure 3.12: ZnO crystallite sizes (a) and microstrain (b) after reduction at 673 K as a function of the Zn-content
(decreasing pH). The values are determined for different crystallographic directions based on the (100), (002) and
(110) reflection.

3.2.5 Transmission electron microscopy of Cu/ZnO

For a selected commercial catalyst after reduction in hydrogen the morphology and the

crystallographic orientation of the Cu and ZnO crystallites is investigated in detail by transmission

electron microscopy.

Figure 3.13: Transmission electron micrograph and convergent beam electron diffraction (inset) of a commercial
catalyst reduced at 523 K.
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The morphology of a reduced commercial Cu/Zn-catalyst particle is given in a TEM image

shown in Figure 3.13. Spherically shaped particles are evidenced by the dark contrast ranging

from 40 to 70 Å in diameter. The inset given in Figure 3.13 depicts a convergent electron beam

diffraction pattern which was obtained of the same area. The diffraction pattern exhibits

diffraction spot characteristic of fcc copper along the [110] zone axis. Furthermore, the double

appearance of the spots indicates twining of the Cu crystallite, which can be related to the line

defect in the micrograph detectable in the upper left-hand corner. No diffraction spots belonging to

ZnO can be detected which implies that the for the particle investigated the ZnO support was

either not favorable oriented to the electron beam for diffraction or of amorphous nature.

In Figure 3.14 a selected area electron diffraction pattern and the corresponding bright and dark

field images of a reduced commercial catalyst are shown. The diffraction pattern with sharp

diffraction spots indicates that catalyst particle investigated consists of single crystalline parts. In

the bright-field image a large particle is shown which is build up by a network of interconnected

finely dispersed crystallites with sizes well below 100 Å. This further implies that the single

crystallites are not randomly oriented to each other but rather obtain a preferred orientation. Using

dark filed image technique the particles belonging to the Cu and ZnO phase can be distinguished.

Furthermore, this technique gives an estimate about the size and the spatial distribution of the

individual crystallites. The dark field image from the Cu (111) spot gives the dispersion of the Cu

microcrystallites supported on the ZnO crystallites. The copper particles size ranges from 30 – 70

Å. However, only a small fraction of the Cu crystallites give rise to bright spots (Figure 3.14 (b 3))

whereas the bright areas in the dark field image resulting from the ZnO (010) and (100) diffraction

spot (Figure 3.14 (b 1-2)) are much more widespread. For the ZnO similar crystallite sizes can be

observed. The electron diffraction patterns reveals further microstructural relationships within the

composite particle investigated. A mutual parallel crystal orientation relationship can be seen

between the ZnO support and the Cu clusters by the coincidence of the reflections along certain

crystallographic directions. Indexing of the pattern affords that the ZnO phase is in

crystallographic registry to the metallic copper phase. The spot pattern from an (110) orientation

of Cu is superimposed to an (001) orientation of ZnO. This indicates that the Cu (110) and the

ZnO (001) planes are parallel while the Cu zone axes are [100] is parallel to ZnO [210] axis.
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Cu (111)ZnO (010)

ZnO (100)

(a)

(b)

Figure 3.14: Selected area electron diffraction pattern from a reduced catalyst reduced in 5 vol-% H2 at 523 K
(a); corresponding bright field image and dark field of image of the ZnO phase using the (100) and (010) diffraction
spot ((b) 1,2);dark field image of the Cu phase using the Cu (111) reflection ((b) 3).

This approach gives evidence that there exists a orientation relationship between the Cu and

ZnO phase for this particular sample. However, it can be assumed that more possible parallelism

exist between the Cu and ZnO planes that are not observed. It appears that the epitaxial interface

interaction of both phase is a characteristic property of the Cu/ZnO system. Based on the epitaxial

orientation between the ZnO phase and the reduced copper phase the following schematic

structural arrangement can be proposed to describe the Cu/ZnO interface (Figure 3.15). It is

assumed, that the interface interaction of both phase is of high importance for the structural

interaction of the Cu and ZnO phase. Considering the detected microstrain in the reduced Cu and

ZnO crystallites it appears that the Cu/ZnO interface is the main reason for the structural disorder

observed. At the incoherent interface the lattice mismatch of the adjacent lattice planes can induce

e.g. lattice expansion and/or contraction that can cause microstrain effects.
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ZnO (001)

Cu (110)

Figure 3.15: Schematic representation of crystallographic orientation at the Cu/ZnO interface of a reduced
catalyst showing

3.2.6 Discussion

3.2.6.1 Dependence of microstructure on preparation and reduction treatment

The reduction of CuO/ZnO with 5 % H2 at 523 K and 673 K afforded completely reduced

metallic copper with no copper oxide phases detectable by XRD (lower detection limit ~ 5 %).

The line broadening analysis according to the Voigt method was applicable in all cases to separate

line broadening effects for different reflection lines of ZnO and Cu in terms of size and strain. The

mutual structural interaction of both constituents in binary Cu/ZnO is clearly shown by the

dependence of size and strain effects on the concentration of Zn in the sample (Figure 3.8, 3.9, and

3.10). The line profile analysis afforded a decrease of the Cu crystallite sizes as a function of the

Zn content whereas the microstrain increased with increasing Zn content. For the ZnO crystallites

a similar dependence on the Cu content is detectable. The microstrain measured for ZnO reduced

at 523 K exhibits a monotonous increase in strain with increasing Cu content for both sample sets

(Figure 3.11 b). The thermal treatment during reduction at 673 K is sufficient to cause a release in

microstrain for ZnO that amounts to ~ 50% with respect to the strain measured after reduction

523 K.

The reduction treatment at 673 K gives evidence that the reduction temperature has an

influence on both the crystallite size and the microstrain of Cu and ZnO. After reduction at 523 K

the ZnO crystallite sizes are almost isotropic with mean diameters ranging between 75 and 250 Å.

The XRD profile analysis results obtained for the ZnO microstrain at 673 K indicate that the
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strain is dependent on the reduction temperature. Apparently, a higher reduction temperature

induces annealing processes of the defects that lead to the lattice distortions. This process is

accompanied with an increasing ZnO crystallite size which is a consequence of sintering of the

ZnO particles (see Figure 3.12 (b)). Thus, the total area of the phases boundaries between ZnO and

Cu is reduced leading to a decrease of the microstrain in the ZnO matrix.

In addition, an anisotropy of the domain sizes for ZnO was detected based on a single line

analysis applied to the (002), (100) and (110) reflections representative for different

crystallographic directions after reduction at 673 K (see Figure 3.12). With regard to the ZnO-

crystallite sizes obtained after reduction at 523 K which appeared to be equiaxed, the crystallite

growth proceeded preferentially along the hexagonal basal plane. Assuming a cylindrical

crystallite shape with the long axis along the c – axis the height is given by the size parameter of

the reflection for the (002) peak whereas the perpendicular plane (100) describes the thickness of

the cylinder. The ratio of both crystallite sizes is described by an aspect ratio (i.e. diameter/height

~ DZnO(100) /DZnO (002)).

Comparing our results to data of ZnO crystallite morphology based on different precursors of

pure ZnO precursor compounds (e.g. hydroxide nitrate, oxalate, and hydroxide carbonate) by

Audebrand et. al [Audebrand98] differences in the aspect ratio can be found. Those authors

observed a constant aspect ratio of ZnO nanodomains with the diameter slightly larger than the

height. Our results, however, point to a different aspect ratio of the ZnO crystallites except for the

pure ZnO sample. After hydrogen reduction the crystallite size determined from the (002)

reflection is always larger than the size derived from the (100) peak. Only for the pure ZnO

sample (sample D100/0) the reversed sizes are observed (see Figure 3.12 (a)). Consequently, this

indicates that the crystallite shape of ZnO is influenced by the presence of the Cu-phase resulting

in a crystallite shape anisotropy due to a preferential growth along the c-axis after reduction at

673 K.

In addition, the non uniform distribution of microstrain for different crystallographic

orientations may be associated with stress fields that build up due to distortions in the zinc oxide

lattice. Those distortions might be caused by the interface interaction of the reduced copper

clusters with the ZnO support which are most probably in epitaxial orientation to each other as

shown by TEM. Further possible explanation for the occurrence of strain in ZnO includes the

formation of misfit dislocation due to interface interaction of ZnO with the adjacent Cu-phase.

Especially for low copper concentration an epitaxial orientation of flat Cu particles onto the ZnO

lattice was previously reported by [Herman80]. Former investigation by Warren reported on the
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broadening influence of stacking faults on the XRD line profile which are a common defect in

hexagonal close-packed material [Warren69]. It was shown that only certain orders of reflection

are affected by faulting effect (for hkl with h-k = 3n ± 1). However, those reflections were not

taken into account for the line profile refinement. Therefore, no assumptions concerning this

common type of defect in ZnO can be made on the basis of XRD line broadening. The relieve of

strain upon reduction at higher temperatures together with crystallite growth (Figure 3.12 a + b) of

ZnO is indicative of sintering processes (increase in ZnO crystallite size) together with an

annealing of structural defects (i.e. decrease in microstrain). This might be associated with a

destruction of the Cu/ZnO interface and a loss of the structural interaction of both phases.

In summary the XRD line profile analysis affords reasonable results for size and strain effects

using a large number of samples. The investigation of a series samples enabled to establish general

trends of microstructural properties. Hence, it was possible to determine relative changes of size

and strain parameters as a function of thee Cu/Zn-ratio and the pH during preparation. It is not

intended to determine microstructural parameters on an absolute scale but rather to compare

relative values by using a large set of samples. A disadvantage of the size determination is that it

affords crystallite sizes that are volume weighted without any more specific information

concerning the distribution of the crystallite sizes.

3.2.6.2 Microstructure and Catalysis

On the basis of recently published literature [Kampshoff94], [Mavrikakis98] we envisioned that

the detected microstructural bulk defects of in Cu and ZnO can have an impact on the catalytic

activity. Those bulk defects terminate at the surface of the crystallite where they can introduce

various forms of defect (e.g. terraces and kinks) that modify the surface properties. In contrast to

the prevailing opinion in the literature [Burch90], [Spencer99] the microstructural analysis by

XRD gives evidence that the role of ZnO has to be redefined in the sense that it is not an inert

support under typical operation conditions (e.g. temperature). Previous investigation attributed the

active phase exclusively to metallic copper and therefore sintering of the Cu crystallites was

considered as the main reason for the loss of activity. However, it remains open at this stage if the

defect structure of ZnO directly influences the catalytic activity or if it serves in maintaining

certain copper sites. This question will be further addressed in chapter 5, in which the results of a

combined in situ XRD and XAS approach together with catalytic data is presented.

Presently, there are different models of the microstructure of Cu-Zn catalysts discussed to
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explain the enhanced catalytic activity by the promotional effect of ZnO in methanol synthesis. In

the model developed by Klier the formation of solid solution of copper in ZnO with a upper limit

in solubility with 15 mol-% up to Cu/Zn ratios 30/70 was regarded responsible [Dominiquez83].

The subsequent formation of solute Cu+ in ZnO upon reduction is regarded as one kind of active

site. However, for higher copper concentration (90 mol-% Cu) we have shown on the basis of

EXAFS measurements of CuO/ZnO precursors (see chapter 3.1) that ZnO is incorporated in the

CuO lattice. Therefore, the observed copper microstrain at lower concentration ZnO (< 30 mol-%

Zn) might also be caused by the incorporation of Zn in the Cu-lattice which can be preserved .

In summary, in this chapter the copper microstrain was proven to be an additional bulk property

beside the copper surface area that varies with composition.

3.3 Conclusion

For the calcined precursor samples a dependence of the CuO and ZnO crystallite sizes on the

composition was detected. Although monophasic CuO-ZnO solid solutions are only known in the

case of high temperature preparation (e.g. 0.7 mol-% Cu at 1173 K [Stirling]) the dissolution of

higher amounts of CuO in ZnO (~ 5 mol-%) for high Cu content Cu/ZnO catalysts on the basis of

extended X-ray absorption spectroscopy (EXAFS) investigation was detected. Therefore, the

formation of Cu-Zn bulk alloys was assumed to be enabled under typical reduction temperatures at

523 K.

Furthermore, for reduced Cu/ZnO catalyst with varying molar ratios (90/10 through 10/90) the

single line profile analysis based on the Voigt has been applied to determine the crystallite size

and microstrain. This XRD line profile analysis is especially useful for the investigation of

polyphasic catalyst materials where higher orders of reflection are not accessible for an analysis.

This analysis procedure was successfully performed on the Cu/ZnO catalyst system for a large

number of samples prepared at neutral and decreasing pH with different Cu/Zn ratios. The

CuO/ZnO samples were reduced with 5 vol-% H2 at 523 K and 673 K prior to the XRD

investigation. For copper metal and zinc oxide a separation of size and strain broadening effects

could be performed. Both, the crystallite size and the microstrain in Cu and ZnO are dependent on

the composition and the reduction temperature. According to the results it seems that the pH

during preparation has only a small effect on the microstructure for a given reduction temperate.

Hydrogen reduction at 673 K leads to a pronounced sintering of the ZnO particles with respect to

reduction temperatures at 523 K. The Cu crystallites showed only a minor sintering tendency

especially at higher ZnO concentrations. For the reduced Cu clusters no indications of a size
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anisotropy can be found which supports the assumption of spherical copper particles. This is a

reasonable assumption concerning the morphology for this crystallite size regime of the Cu

particles (100 – 200 Å) investigated, in which a plate- or needle like shape is unlikely to occur.

However, morphological changes (wetting/non-wetting phenomenon) of copper clusters upon

changing the reduction potential in the gaseous environment were ported by Clausen et al.

[Ovesen97]. Those Cu particles refer to Cu/ZnO systems with very low Cu concentration (~5%

Cu) and smaller cluster size (< 30 Å). This crystallite size is not accessible by XRD techniques

and an indication of texture effects due to morphological changes is not feasible. It can be argued

that these small clusters might not represent the industrial important system. However, using

surface science data on Cu singe-crystal surfaces Nørskov and coworkers [Rasmussen94]

formulated a microkinetic model for the methanol synthesis reaction. Incorporating dynamical

morphological changes considering differences in surface area and the higher activity of Cu(110)

and Cu(100) compared to Cu(111) planes a much better description of the measured rates could be

provided by Clausen and coworkers [Ovesen97].

A dimensional anisotropy of the ZnO crystallite shape was observed with the crystallite growth

occurring preferentially along the [001] direction. In addition, the reduction at 623 K afforded a

strain release in the ZnO matrix whereas for copper crystallites only minor differences in

microstrain are detectable. For the occurrence of strain effects compositional inhomogeneities, the

formation of solid solutions of Cu in Zn and interfacial interaction were considered to be the main

reason. The application of transmission electron microscopy for a reduced industrial catalyst gave

evidence for an epitaxial crystallographic orientation of the Cu and ZnO planes at the interface.

The close interfacial interaction of Cu/ZnO is regarded as a main factor for the observed structural

disorder due to an incoherent interface (i.e. lattice mismatch).

Furthermore, the results provide evidence that the hydroxycarbonate precursor phases indeed

have an effect on the microstructural properties of the reduced samples. Taking the results for the

EXAFS characterization of CuO/ZnO precursors into account it was shown that the discontinuous

behavior of the Cu/ZnO microstructure i.e. the increase of the Cu microstrain and the ZnO particle

size is directly influenced by a change in the phase composition of the hydroxycarbonate

precursor.
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4 Implication of Cu mircostructure for methanol synthesis
activity

4.1 Introduction

In this chapter a correlation between the defective bulk structure of copper and the methanol

synthesis activity of Cu/ZnO catalysts will be revealed. Therefore, the composition of the Cu/ZnO

catalyst is systematically varied in order to detect a corresponding variation of the catalytic

performance. The microstructural data of the bulk structure of copper in terms of size and strain

afforded in chapter 3 is utilized for this correlation. The methanol synthesis activity data was

obtained in screening experiments at atmospheric pressure performed in a collaborative effort with

the Ruhr-Universität-Bochum. For the investigation presented emphasis is put on those systems

that are of industrial interest (~ 70 mol-% Cu).

4.2 Microstructural characteristics revealed by X-ray diffraction
line profile analysis

First, the essential microstructural bulk parameters results for the line-profile analysis for the

constant pH sample series are briefly summarized.
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Figure 4.1: Variation of crystallite size and microstrain of copper (a) and zinc oxide (b) as a function of the
nominal composition after reduction at 523 K in 5 vol-% H2 in He. The data are based on the analysis of the copper
(111) peak and the ZnO (100) peak. Composition of interest for industrial application is shown in the shaded area.

The results of a detailed Cu (111) and ZnO (100) line profile analysis using a Voigt function

are shown in Figure 4.1 (a) and (b), respectively. Both graphs show a conspicuous dependence of

Cu and ZnO size and strain on the nominal composition of the samples. For both Cu and ZnO an

increase in strain with decreasing crystallite size can be seen. The calculated strain in copper rich

samples (< 60 mol-% Zn) is small, but a considerable increase in strain can be observed for more

diluted samples (60 – 80 mol-% Zn). The crystallite size of Cu shows a continuous decrease from

~ 1000 Å down to < 100 Å from pure Cu to 20 mol-% Zn and then remains relatively constant

through 80 mol-% Zn. For ZnO a monotonous increase in strain with increasing Cu content was

obtained. With an increasing Cu loading, ZnO exhibits a decrease in crystallite size (from 200 Å

for pure ZnO down to 120 Å for a sample with 60 mol-% Zn). Apparently, the ZnO crystallite

growth is retarded by the presence of copper in the samples.

In Figure 4.2 the refined Cu lattice constant a (fcc, Fm3m, a = 3.6150 Å [Swanson53]) is

depicted with increasing Zn content. Already at a Zn content of 10 mol-% a considerable lattice

expansion (∆aCu/a0,Cu ~ 0.14%) can be observed. In the range from 90/10 to 40/60 the Cu lattice

constant does not change significantly, whereas at Zn concentrations of 70% and 80% mol-%  a

strong lattice expansion is obtained (∆aCu/a0,Cu ~ 0.35%).
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Figure 4.2: Variation of the Cu lattice parameter a with Zn content after reduction in 2 vol.-% hydrogen at 523 K
(measured at RT). Composition of interest for industrial application is shown in shaded area.

4.2.1 Copper surface area measurements

Figure 4.3 shows the dependence of the specific copper surface area, determined by N2O RFC

(SCu(N
2
O)) or estimated using the crystallite size determined by XRD (SCu(XRD)), on Zn

concentration. It can be seen that the “XRD surface areas” SCu(XRD) on the average are higher than

the SCu(N
2
O) values. This difference may originate from a small degree of agglomeration of copper

particles or support interactions which reduce the accessible Cu surface area. In addition, a

varying Cu particle size distribution could result in differences in surface areas.

The deviation of SCu(XRD) from SCu(N
2
O) appears to be more pronounced in the intermediate

composition range. However, in total, both surface areas are in good agreement, which underlines

the applicability of the XRD surface area calculation. Hence, the reliable copper surface area

based on N2O RFC and the nominal Cu content of the sample permits to calculate the ratio of

copper surface atoms to those in the bulk in order to obtain an estimation of the Cu dispersion.

Figure 4.4 shows an increase of dispersion of copper atoms in terms of

Nsurface atoms(N
2
O) / Nbulk atoms with increasing Zn concentration reaching a maximum at a composition

of 70 mol-% Zn.
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Figure 4.3: Copper surface area as a function of the nominal composition. Values are determined either by N2O
RFC (SCu(N2O)) or estimated using the crystallite size determined by XRD (SCu(XRD)). Composition of interest for
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4.2.2 Catalytic activity screening

In agreement with previous investigations [Chinchen86] the methanol synthesis activity of the

Cu/ZnO samples studied proved to be strongly dependent on the nominal composition. The

methanol production rate as a function of composition shows a volcano type behavior as depicted

in Figure 4.5. The maximum in normalized production rate is obtained for the sample with a

composition of Cu/Zn = 80/20, in good agreement with previous publications [Rasmussen87].

An approximately linear dependence of the normalized methanol production rate on the

specific Cu surface area is obtained (Figure 4.6) which is in agreement with result by Joyner et al.

[Joyner90], [Burch90b].
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Figure 4.5: Normalized production rate of methanol with increasing Zn concentration. The reaction was carried
out at 493 K under atmospheric pressure with a feed gas composition of 10% CO, 4% CO2, 72% H2 in He.

This would imply a constant TOF independent on the composition with no other structural

parameters influencing the catalytic activity. In order to clarify if in addition to the Cu surface area

other structural parameters affect the methanol synthesis activity of the samples studied, the

normalized turn-over frequency as a function of the Zn content is shown in Figure 4.7.

Evidently, deviations from the supposedly constant TOF with increasing Zn content exist. A

minimum in normalized TOF is observed for those samples that exhibit basically no

microstructural strain according to Figure 4.1 a. For higher Zn contents (> 70 mol-% Zn) a

considerable increase in TOF can be seen, indicating that other parameters in addition to the Cu

surface area determine the methanol synthesis activity.
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Figure 4.6: Normalized methanol production rate as a function of copper metal surface area. Composition of
interest for industrial application is shown in the shaded area.

0.25

0.5

0.75

1.0

0.0

10 20 30 40 50 60 70 80 90

N
or

m
. T

O
F

mol-% Zn

Figure 4.7: Normalized turn-over frequency (TOF) for methanol production as a function of Zn content.
Composition of interest for industrial application is shown in the shaded area.
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4.2.3 Impact of Cu microstrain on Turn-over-frequency

The normalized TOF for methanol production as a function of the copper lattice strain is

displayed in Figure 4.8.
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Figure 4.8: Normalized turn-over frequency (TOF) for methanol production as a function of the Cu microstrain
derived for the Cu (111) peak.

Evidently, the TOF for methanol production on the Cu/ZnO systems studied exhibits a positive

correlation with the microstrain in the Cu crystallites. Hence, a higher turn-over frequency is

attained for strained copper particles. It appears that a high specific Cu surface area is a necessary

prerequisite for an active Cu/ZnO catalyst but that other microstructural parameters also affect

methanol synthesis activity. However, for moderately strained copper particles (microstrain

< 0.5%) a spread in TOF for various samples can be seen. This can originate from other factors

that can also influence the activity (e.g. different precursor phases and Zn contamination in the Cu

particles).

A correlation of the TOF for methanol production with the degree of dispersion estimated from

the SCu(N
2
O) surface area (Figure 4.4) is depicted in Figure 4.9 (a). It can be seen that the TOF

cannot unequivocally be correlated to the degree of dispersion. Interestingly, two groups of

samples can be observed. One group (A in Figure 4.9 a) shows a constant TOF independent on the

degree of dispersion, whereas the other group (B in Figure 4.9(a)) exhibits a decreasing TOF with

increasing dispersion. The behavior of the group B samples can be ascribed to the increased
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contribution of the Cu strain in these systems which is enhanced by a slight increase in crystallite

size for more diluted samples (e.g. sample 10/90). While maintaining a similar crystallite size as

that of the 30 mol-% Zn the more diluted and strained samples expose a more active surface for

methanol synthesis. In contrast, the group A samples exhibit no significant strain contributions.

Furthermore, it can be seen that Cu/ZnO samples that are of interest for industrial applications (<

60 mol-% Zn) do not possess the most highly dispersed crystallites as it has been claimed in the

literature with respect to e.g. the dynamic spreading behavior of Cu on ZnO [Ovesen97].

The correlation of TOF and Cu lattice strain presented in this work indicates that a combination

of Cu surface area and Cu and ZnO microstructural strain determines the methanol synthesis

activity of Cu/ZnO catalysts. Our results substantiate the assumption of Topsøe and Topsøe

[Topsøe99] that strain would be one possible explanation for the strong CO band shift which was

previously observed with FTIR by Kampshoff et al. [Kampshoff94]. The origin of the microstrain

observed can be explained by (I) an certain fraction of the minority phase dissolved in the bulk of

the majority phase (e.g. ZnO in Cu), or (II) incomplete reduction and hence residual oxygen in the

Cu matrix, (III) interfacial strain caused by epitaxial bonding of Cu on ZnO. Increased CO

adsorption energies on strained surfaces have been predicted on the basis of self-consistent density

functional calculations in ref. [Mavrikakis98]. The model described therein could, in principle, be

extended to the adsorption properties of hydrogen on metal surfaces. The underlying model

assumes that the surface chemisorption properties and the reactivity of metals are affected by a

strain induced shift in the center of the metal d bands. Although the authors report on a linear

variation of adsorption energies of different molecules (e.g. CO and O) with the surface strain the

non-linear dependence of the TOF (onset in TOF at 2% strain) on the copper microstrain observed

in Figure 4.8 might be caused by additional external factors influencing the activity on a

macroscopic scale (e.g. temperature, flow rates).

In Figure 4.9 (b) the normalized TOF for methanol production is shown as a function of the Cu

lattice parameter a. Only the sample 20/80 shows a significant increase in the TOF with expansion

of the Cu lattice. In a previous publication, Fujitani and Nakamura [Fujitani98] have assigned the

observed increase in Cu lattice parameter to a Cu-Zn alloy formation and, hence, have identified

this alloy phase as being responsible for an increasing methanol production activity. Compared to

the Cu lattice parameter of monophasic α-brass [Rao63] the lattice expansion obtained

corresponds to 5 mol-% Zn dissolved in Cu. The amount of Zn dissolved in Cu appears to be

constant up to 60 mol-% Zn. Evidently, the assumption of ZnO incorporated in the CuO bulk is

corroborated by the EXAFS measurements (see Figure 3.4). The dissolution of Zn in CuO may

cause both the Cu lattice expansion and the Cu microstrain measured in the reduced Cu/ZnO
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Figure 4.9: Normalized turn-over frequency (TOF) for methanol production as a function of (a) the copper atom
dispersion (expressed as the ratio of Cu surface atoms determined by N2O RFC to the number of the bulk atoms based
on XRD crystallite size determination), (b) the copper lattice parameter a.

Binary Cu/ZnO samples of industrial interest possess Cu crystallites in the range of 100 – 200

Å. Obviously, XRD is a suitable method to investigate microstructural parameters (e.g. size and

strain) within this crystallite size regime. Other techniques that are more surface sensitive or probe

the short range structural order (e.g. IR and EXAFS) require smaller cluster sizes to elucidate the

minor structural changes in the systems described in this work. Therefore, mostly copper loadings

that are less relevant for industrial application have been investigated and it needs to be kept in
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mind that results obtained for smaller copper clusters may not be directly transferable to the

catalysts used in industry.

There is only a seemingly discrepancy between our findings and other experimental work by

Spencer concerning the precursor phase affording a maximum activity [Spencer99]. In his

publication the activity is given as an absolute production rate expressed per weight catalyst,

whereas we refer to an intrinsic rate in terms of TOF for the most active catalyst. Nevertheless, a

maximum in absolute production rate is attained for a sample with ~ 30 mol-% Zn stemming from

a zincian malachite precursor which is similar to the results by Spencer. Therefore, we propose

that an optimum catalyst should feature both a high specific Cu surface area and strained Cu

clusters.

4.3 Summary

A complete series of binary Cu/ZnO samples was subjected to methanol synthesis screening

experiments. It was found that the production rate of methanol is not a linear function of the

specific Cu surface area over the entire Cu/ZnO composition range. XRD line profile analysis

revealed a considerable microstructural strain in both Cu and ZnO in some samples. Furthermore,

it was shown that the TOF of methanol synthesis is directly correlated to the strain in the Cu metal

phase. This experimental evidence clearly indicates that the specific Cu surface area of Cu/ZnO

samples alone cannot unequivocally account for the observed methanol production rates of these

systems. Structural defects of Cu resulting from ZnO in Cu, incomplete reduction or epitaxial

orientation to ZnO are believed to cause strain which modifies the Cu surface area and, thus,

influences the catalytic activity.

Furthermore, changes in the microstructure of both copper and ZnO (i.e. size, strain, and lattice

parameter) were found to coincide with changes in phase composition of the hydroxycarbonate

precursors (structure of zincian malachite and the transition from the aurichalcite-rich to a Cu

containing hydrozincite phase composition). The formation of ZnO-CuO solid solutions (~ 5 %

ZnO in CuO) was detected which may lead after reduction to the formation of Cu-Zn alloy. For a

compositional range of more than 60 mol-% Zn the strained Cu crystallites expose a Cu surface

which is more active than that of a 30 mol-% Zn catalyst. Hence, it is concluded that the phase

composition of the hydroxycarbonate precursor directly influences the active phase of the Cu/ZnO

catalyst.



5. In situ studies on Cu/ZnO using X-ray diffraction and absorption

91

5 In situ Studies on Cu/ZnO using X-ray diffraction and
absorption

5.1 Introduction

In this chapter the two complementary bulk techniques, in situ X-ray diffraction and X-ray

absorption spectroscopy are employed to elucidate bulk structural changes of Cu in Cu/ZnO

systems during activation and under methanol steam reforming conditions. Recently, the methanol

steam reforming reaction has attracted much interest because hydrogen can be produced with high

selectivity and activity which can be used for mobile fuel cell applications. The steam reforming

reaction can be regarded as the reversed methanol synthesis reaction, which was investigated in

the previous chapter. However, it is assumed that the concept of micro-reversibility can not be

applied to make predictions about the mechanism and kinetics of methanol steam reforming due to

the differences in operating conditions and partial pressures of reacting species (e.g. higher

concentration of MeOH than in methanol synthesis). Furthermore, different bulk phases can be

present due to the different redox potential of the reaction gas which can lead to different bulk

phases and hence active sites.

First, the evolution of bulk phases during activation of the catalyst (i.e. reduction in hydrogen

with (‘wet’) and without (‘dry’) additional water vapor) is investigated. Two different reduction

atmospheres are employed in order to obtain active catalysts with different structural properties.

Second, correlations between the bulk structure of Cu on ZnO and activity or selectivity in the

steam reforming of methanol are presented. Furthermore, oxygen addition to the feed is used to

change the oxidation state of copper during a working conditions for methanol steam reforming.

Corresponding changes in the local structure are followed by a EXAFS analysis carried out at the

Cu K and Zn K edge.

5.2 In situ XRD

5.2.1 Reduction of the CuO/ZnO precursor

Structural changes of the CuO/ZnO system were monitored by in situ XRD during temperature

programmed reduction (TPR). The evolution of the intensity of the Cu (111) line afforded the

onset and extent of reduction while the evolution of the crystallite size was obtained from the

linewidth. In Figure 5.1 (a) the evolution of XRD patterns (for the Cu (111) peak) is shown during

TPR of the sample D70/30 in the range from 433 K to 523 K in 2 vol-% hydrogen. In Figure
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5.1 (b) the normalized H2 and H2O MS signals are correlated to the intensity evolution of the Cu

(111) peak. It can be seen that the uptake of H2 coincides with the evolution of H2O. The increase

in the intensity of the Cu (111) peak indicates the growth of Cu crystallites. Because Cu particles

large enough to be detected by XRD need to form, the onset of the evolution of the Cu (111) line

is delayed with respect to the hydrogen uptake and the evolution of water.

Results of the TPR of all samples are summarized in Table 5.1. In most cases the ‘wet’

reduction occurred at a higher temperature of about ~ 10 K than the dry reduction. In contrast, the

onset temperature is only slightly affected by the Cu and Zn concentration. With decreasing

copper content the onset of reduction is shifted from 468 K (pure CuO, sample C100/0 ‘wet’) to

448 K for the sample C40/60 (‘dry’). In addition, in most cases, the wet reduction leads to an

increase in Cu particle size with respect to that of the ‘dry’ reduced samples (~ 10 Å larger). With

an increasing Zn content the Cu/ZnO samples exhibited a decreasing Cu particle size. The

exception to the decreasing particle size trend are the 60/40 samples.

Table 5.1: Onset of reduction during TPR and the corresponding copper crystallite sizes after reduction measured
by in situ XRD. The reduction was performed under ‘dry’ and ‘wet’ reducing conditions.

Onset of reduction [K] Cu crystallite
size [Å]

Reduction conditions

Sample pH during
precipitation

‘dry’ ‘wet’ d ‘dry’ ‘wet’

C100/0 constant 463 468 215 190

C90/10 constant 443 458 112 127

C80/20 constant 473 443 90 92

C70/30 constant 438 458 68 70

C60/40 constant 443 453 77 78

C50/50 constant 463 453 50 58

C40/60 constant 443 448 42 47

D100/0 decreasing 458 468 148 171

D70/30 decreasing 448 463±5a 81 79

D60/40 decreasing 448 453 101 108

D50/50 decreasing 448 468 45 52

D40/60 decreasing 443 453 38 40

a reproduced in 3 measurements. bdetermined at the end of the TPR run at 523 K. creduction performed in
~ 2 vol-% H2.d reduction performed in ~ 2.5 vol-% H2 and 3 vol-% H2O.
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The evolution of the Cu crystallite size for the constant pH and decreasing pH sample batches

is shown in Figure 5.2 as a function of reduction temperature. The Cu crystallite size appears to

grow linearly with time (applying an effective heating rate of 0.5 K/min). The decreasing slope

with increasing Zn-content indicates that ZnO exerts an “anti-sintering” influence on the Cu

particles during temperature programmed reduction. Figure 5.2 (a) + (b) illustrate that during TPR

the samples with the highest Zn-concentration (samples with C40/60 and D40/60) exhibit only

minor crystallite growth with increasing temperature, whereas the Cu clusters in samples with a

higher Cu-concentration tend to sinter more. Apparently, the tendency to sinter depends on the

interaction with the ZnO-matrix and the Cu/Zn ratio. The exception to the previously mentioned

trends are the samples with 70 mol-% Cu (C70/30 and D70/30) which show after reduction a Cu

crystallite size that is 10 Å lower than that of the sample with 60 mol-% Cu (C60/40 and D60/40).

For lower Cu-concentrations the difference in crystallite size for ‘wet’ and ‘dry’ reduced samples

is much less pronounced than for Cu-rich samples.
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Figure 5.1: (a) Evolution of the Cu (111) peak during reduction of a CuO/ZnO sample (D70/30) in 2 vol-%
hydrogen measured by in situ XRD. Measuring time 7 min/scan and an effective heating ramp of 0.5 K/min. (b)
Corresponding normalized mass spectrometer signals of H2O and H2 during TPR and evolution of integrated intensity
of the Cu (111) peak.
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Figure 5.2: Evolution of Cu crystallite size during TPR for samples with different Cu/Zn ratio measured both in 3
vol-% H2 (‘dry’) and 2.5 vol-% H2 + 3 vol-% H2O (‘wet’) in 100 ml/min for both sets of sample preparations: (a)
constant pH preparation, (b) decreasing pH preparation. The temperature was raised with an effective heating ramp
of 0.5 K/min.
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5.2.2 Steam Reforming of Methanol

The time on stream behavior of time on stream behavior of sample D60/40 in the in situ XRD

cell is shown in Figure 5.3 (a). The catalyst was heated in the feed (MeOH/H2O ~ 4/1 in a flow of

120ml/min He) from RT to 430 K at 5 K/min and then heated stepwise to 523 K at 0.5 K/min

during which XRD measurements were taken at constant temperature. The onset of the steam

reforming reaction at 433 K is detectable by the consumption of water and methanol and the

evolution of the products H2 and CO2. The long-term behavior shows a gradual deactivation of

~ 9 % after 7 h. The concentration of CO during this run was < 1000 ppm. The rapid deactivation

of a pure copper sample (D100/0 ‘wet’ reduced) is depicted in Figure 5.3 (b). It can be seen that

the initial activity for hydrogen production is only 25 % of that of the more active D60/40 Cu/ZnO

sample. After 7 h time on stream the final activity amounted to only 30 % of its initial peak

activity. The characteristics of the catalytic activity of Cu/ZnO catalysts obtained from both

preparation batches and reduction procedures (‘dry’ and ‘wet’) are summarized in Table 5.2.

Because the pure copper samples deactivated very rapidly no reliable conversion and selectivity

data could be obtained. Highest conversion (53 %) is obtained for the ‘wet’ reduced sample

D70/30, whereas the copper rich sample ‘dry’ C90/10 exhibits the lowest conversion. Similarly,

the selectivity shows a strong dependence on the composition and reduction compositions and

ranges from 69 % (‘wet’ C50/50) to 16 % (‘dry’ C90/10). In Figure 5.4 (a) + (b) the selectivity to

CO2 is shown as a function of methanol conversion for both preparation methods (constant and

decreasing pH) and for both reduction procedures (‘dry’ and ‘wet’). It can be observed that the

‘wet’ reduced samples exhibit an enhanced selectivity compared to that of the ‘dry’ reduced

samples at the same conversion.
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Table 5.2: Initial methanol steam reforming catalytic activity data (conversion of methanol, selectivity to CO2,
hydrogen production rate) for differently reduced Cu/ZnO catalysts at 523 K.

Sample Reduction
conditions

Conversion of
MeOH,

XMeOH [%]

Selectivity to
CO2, SCO2

[%]

Hydrogen
productionrate,

rH2

[µmolH2·gcat
-1·s-1]

Cu Surface
areab SCu(XRD)

[m2·g-1]

TOFc

[s-1]

C100/0 dry

wet

No activity

-

No activity

-

13

16

-

-

C90/10 dry

wet

14

15

16

17

92

77

20

18

0.19

0.17

C80/20 dry

wet

26

13

34

0

245

145

22

23

0.46

0.27

C70/30 dry

wet

24

22

60

78

293

333

25

22

0.55

0.54

C60/40 dry

wet

36

20

39

79

350

318

18

19

0.80

0.74

C50/50 dry

wet

29

20

56

72

380

349

24

22

0.64

0.64

C40/60 dry

wet

22

27

50

56

318

385

23

20

0.67

0.61

D100/0 dry

wet

-d

10

-d

29 131

13

13

-

0.41

D70/30 dry

wet

33

38

42

37

485

426

21

21

0.94

0.84

D60/40 dry

wet

32

23

43

72

482

480

15

13

1.27

1.47

D50/50 dry

wet

19

20

50

67

402

460

27

25

0.61

0.75

D40/60 dry

wet

29

27

53

59

433

480

27

23

0.66

0.85

areaction conditions H2O/MeOH = ¼, p= 101 kPa, total flow~ 140 ml/min. bcalculated from the Cu crystallite size
based on XRD data obtained during reaction. chydrogen molecules produced per surface copper atom per second.
dfast deactivation.
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Figure 5.3: (a) Time on stream behavior for sample D60/40 (‘dry’ reduced) measured in XRD in situ cell. (b)
deactivation behavior of a pure Cu sample (D100/0, ‘wet’ reduced). Experimental conditions: MeOH/H2O ~ 4/1 in
120 ml/min He and temperature ramp from 433 K to 523 K at 0.5 K/min.
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Figure 5.4: Selectivity to CO2 as a function of the conversion of MeOH at 523 K with a flow of MeOH/H2O (ratio
of ≈ 4/1) in 120 ml/min He; samples were obtained by ‘dry’ and ‘wet’ reduction, (a) samples prepared by the constant
pH method, (b) samples prepared by the decreasing pH method.

In addition, the in situ XRD investigations allowed to calculate the Cu crystallite sizes of

operating catalysts which can be used to estimate copper surface areas. Hence, it is possible to

detect influences of the Cu crystallite size (and metal surface area) on the activity without

transferring the sample for ex situ measurements. In Figure 5.5 the initial hydrogen production rate

under methanol steam reforming conditions is depicted as a function of the copper surface area for

both reduction and preparation methods.
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Figure 5.5: Initial hydrogen production rate as a function of the Cu metal surface area for catalysts prepared at
constant pH method and at decreasing pH method. Both sample series were activated under ‘wet’ and ‘dry’ reduction
conditions. The Cu surface area is estimated by XRD. Reaction conditions where the same as in Figure 5.3.

No common trend of the production rate on the surface area can be established for all samples.

It can be seen  that the D-series samples exhibit a higher hydrogen production rate than the

samples of the C-series. Furthermore, the samples prepared at constant pH show a higher variation

in production rate with increasing copper surface area.

The TOF for the initial activity as a function of ZnO-content in the catalysts is given in Figure

5.6. The reaction rate is normalized to the number of Cu metal surface atoms which are all

assumed to be the catalytically active sites of copper. It can be seen that the TOF values vary with

the composition. In addition, samples prepared at decreasing pH show a higher intrinsic activity

than the samples of the constant pH series. The reduction conditions afford only small differences

in activity for a given set of samples.
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Figure 5.6: Initial turn-over-frequency (TOF) for hydrogen production as a function of ZnO-content for catalysts
prepared according to the decreasing and the constant pH method (both under ‘dry’ and ‘wet’ reduction conditions).
Reaction conditions where the same as in Figure 5.3.

5.2.2.1 Deactivation during time on stream

The evolution of the FWHM of the Cu (111) line is measured during steam reforming reaction

at 523 K for 7 h by in situ XRD. Figure 5.7 (a) + (b) shows the evolution of Cu crystallite sizes, as

determined from the Cu (111) line width, during time on stream for both preparation batches.

Evidently, the Cu crystallite sizes exhibit only minor changes as a function of the time on stream.
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Figure 5.7: Evolution of Cu crystallite size under steam reforming conditions at 523 K for different catalyst with
compositions and different reduction pretreatment as indicated over course of 7 h: (a) constant pH preparation, (b)
decreasing pH preparation. Reaction conditions: same as in Figure 5.3.

It can be seen that the crystallite size has increased compared to the crystallite sizes after

reduction (Figure 5.2). Furthermore, the same sequence of crystallite sizes as a function of the

composition is obtained, but in some cases the initially larger ‘wet’ reduced particles now exhibit

a smaller crystallite size (e.g. samples C80/20, C60/40, C70/30) than the dry reduced samples. It

was found, that the Cu crystallites sizes exhibit only minor changes as a function of the time on

stream.
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In Figure 5.8 the decrease in hydrogen concentration during time on stream is shown for two

samples together with the increase in crystallite size resulting from sintering. The increase in

crystallite size for the pure copper sample (D100/0) is almost twice as large as that of a copper-

rich sample (D60/40). In addition, this corresponds to a larger decrease in the hydrogen production

rate detected for the pure copper sample.
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Figure 5.8: Evolution of copper crystallite size during time on stream at 523 K together with the effluent
concentration of H2 in the in situ XRD cell; (a) sample D 100/0 (‘wet’ reduced), (b) sample D 60/40 (‘dry’ reduced).
Dashed line is guide to the eye.



5. In situ studies on Cu/ZnO using X-ray diffraction and absorption

104

5.2.3 Oxygen addition cycle

In Figure 5.9 four XRD patterns of a Cu/ZnO catalyst (sample C60/40) obtained  after

calcination (a), steam reforming (b), oxidation (c), and  re-reduction (d) are displayed. The pattern

indicative of CuO (a) is converted to that of metallic Cu (b) after the calcined sample is reduced in

the steam reforming feed with no additional copper oxide phases detectable. The addition of 15

vol-% O2 to the feed at 523 K for 100 min resulted in the formation of mostly Cu(I) oxide together

with some minor amounts of CuO (c). After re-reduction in the feed at 523 K the XRD pattern of

metallic Cu can be seen but with a decreased line width of the Cu (111) peak (d).
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Figure 5.9:X -ray diffraction patterns of a sample with a composition of 60 at-% Cu and 40 at-% Zn (C60/40)
during different stages of treatment. Upon reduction the calcined CuO (a) is transformed into Cu metal which is
preserved under methanol steam reforming conditions at 523 K (b). Oxygen treatment resulted in a mixture of Cu(I)
oxide and Cu(II) oxide (c). The oxidic copper phases are re-reduced in the feed to metallic Cu with a decreased line
width (d). Characteristic (hkl) diffraction lines of CuO, Cu2O, and Cu metal are indicated.

Changes in the gas phase composition (H2, MeOH, CO2, and H2O) during two oxygen addition

cycles are depicted in Figure 5.10. It can be seen that adding oxygen to the feed resulted in a

complete loss of activity for the steam reforming reaction. In addition, the formation of water and

CO2 during the oxygen addition indicates the occurrence of total oxidation of methanol. The low

hydrogen concentration during oxygen addition intervals might result from methanol

dehydrogenation. The oxidative poisoning was, however, completely reversible with no loss in

hydrogen productivity. Oxidation and re-reduction experiments were carried out on selected

samples (C70/30, C60/40, C40/60) activated under ‘dry’ reduction conditions. The copper
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crystallite sizes, the methanol steam reforming activity, and selectivity are summarized in Table

5.3. An increase in conversion, selectivity and hydrogen production rate with the number of

oxidation-reduction cycles is detected. In addition, for all samples the copper crystallite size is

increasing with each oxidation cycle (Table 5.3). For instance, the copper crystallite size of the

sample C70/30 increases from 76 to 110 Å. After the oxidative treatments the XRD peaks of ZnO

(e.g. 100, 002) are equally affected as their profiles become gradually more pronounced. Profile

fitting of the ZnO (100) peak of the same sample gives crystallite sizes that increase slightly upon

oxidation and re-reduction from 80 to 90 Å. The relative changes of the copper and zinc oxide

lattice parameter after reduction, under stream reforming conditions, and after successive

oxygen/re-reduction cycles are depicted in Figure 5.11. The continuous increase in lattice

parameter of Cu and ZnO indicates an expansion of the unit cell under methanol steam reforming

conditions after each oxidation/re-reduction steps with respect to the freshly reduced sample.

0

2

4

6

8

100 200 300 400 500

C
on

ce
nt

ra
tio

n 
[v

ol
.%

]

Time [min]

MeOH

H2

H2O

CO2

T = 523 K

O2-added O2-added
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steam reforming conditions during addition of oxygen (15 vol-% O2) to the feed for two intervals of ~ 100 min.
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Table 5.3: Change of catalytic activity data (conversion of methanol, selectivity to CO2, hydrogen production rate)
obtained in XRD and XAS cells after repeated oxidation and reduction steps. All samples were prepared according to
the constant pH method and reduced at ‘dry’ conditions. The data was obtained at 523 K with a flow of MeOH/H20
(ratio ~ 4/1) in 120 ml/min (XRD cell) or 25 ml/min (XAS cell). Conversion and selectivity are given as initial values.

XRD cell XAS cell

Sample
namea

Number of
oxidation
/reduction

cyclesb

Cu
crystallite
size [Å] a

XMeOH

[%]

SCO2

[%]

rH2
d

[µmolH2·gc

at·s-1]

XMeOH
[%]

SCO2
[%]

rH2
d

[µmolH2·gc

at·s-1]

C70/30 0

1

2c

76

110

120

25

62

-

61

-

483

531

-

25

25

23

54

58

70

145

155

166

C60/40 0

1

2

100

120

130

51

64

62

37

42

42

470

556

535

20

26

27

48

51

53

133

162

176

C40/60 0

1

2

50

70

80

40

44

36

50

80

94

450

620

618

20

24

-

53

53

-

150

160

-

C30/70 0

1

-c - - 20

24

53

53

105

146

C10/90 0

1

2

- - - 13

14

14

55

55

62

92

92

103

a based on the Scherrer equation for the Cu (111) reflection. b “0” denotes the fresh reduced catalyst, where “I”
and “II” refer to first and second oxidation/reduction cycle, respectively. csecond oxidation step not performed. d

production rate of hydrogen per g catalyst and second.

5.3 In situ XAFS

5.3.1 Reduction of CuO/ZnO precursor

In situ X-ray absorption spectroscopy was performed at the Cu K edge to determine the amount

of less crystalline or amorphous copper phases and the evolution of the short-range order structure

under reaction conditions, not accessible by the in situ XRD measurements (less than ~ 5%). In

Figure 5.12 (a) the evolution of Cu K near-edge spectra measured during TPR of a sample with

70 mol-% copper (D70/30) is presented. The gradual decrease of the ‘white line’ of the Cu K edge

indicates the reduction of the copper oxide bulk phase to the Cu metal. A principal component
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analysis of the Cu K edge XANES spectra revealed that three primary components were necessary

to reconstruct the experimental XANES spectra.
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Figure 5.12: a) Evolution of Cu K edge XANES spectra of a CuO/ZnO sample (C70/30) during TPR in 8 vol-% H2
with 5 s/frame and a heating rate of 5 K/min. (b) Change in phase composition together with the MS signal of H2O
(dotted) and H (solid) during TPR. The quantitative phase analysis is based on a least squares fit using suitable
reference spectra of Cu, Cu(I) oxide, and CuO as described in the text.
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Using target transformation three probable reference compounds (i.e. copper, Cu(I) oxide,

Cu(II) oxide) were identified. (Further details on the underlying mathematical algorithm can be

obtained from reference [Ressler00]). In situ XRD results have shown that Cu in the oxide

precursor was CuO and that it was completely reduced by TPR to pure Cu. The “target-

transformed” spectra showed a good match with the first experimental XANES spectrum

(containing only CuO) and the last spectrum (containing only Cu) in the TPR run. However, the

result of the transformation for the third component showed considerable deviations from the

experimental spectra of commercially available pure Cu2O. The poor match is probably due to the

high crystallinity of the reference compound which may not reflect the local disorder (structural

defects, decreased crystallinity and/or crystallite size) of the intermediary formed Cu(I) oxide. In

order to account for the small crystallite sizes a reduction of the amplitude above the XANES edge

of the experimental spectra resulted in an enhanced agreement with the transformed spectra.

Hence, Cu(I) oxide is indeed an intermediate during TPR and the “target-transformed” spectrum

was taken as a reference for Cu(I) oxide for the least square fits. As an example, a Cu K edge

XANES spectra of a partially reduced sample is shown in Figure 5.13 together with a linear fit of

the corresponding reference components. The evolution of the phase composition during TPR of a

D70/30 sample under ‘dry’ reduction conditions (2 vol-% H2 in 25 ml/min He, heating ramp 5

K/min, temperature ramp 448 K to 523 K) is depicted in Figure 5.12 (b). It can be seen that the

onset of reduction coincides with the evolution of H2O and the uptake of H2.
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Figure 5.13: Linear combination XANES fit to a CuO1-x spectrum during reduction using Cu, Cu(I) oxide, and
CuO reference XANES spectra.
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In Figure 5.14 (a) and (b) reduction curves (increase of extent of reduction to copper metal α,

i.e. the amount of metallic copper formed (ranging from 0 to 1)) obtained from TPR (448 – 523 K)

experiments for selected samples are presented. The sigmoidal shape of the reduction curves can

be described by the Avrami-Erofeev equation (α = 1-exp-(kt)n , with k the rate constant, t the

reduction time, and n the exponential factor (ranging from 2.5 to 4.6)).
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Figure 5.14: Evolution of extent of reduction, α, of CuO/ZnO precursor for (a) three decreasing pH samples
(D70/30, D60/40, D40/60) measured by in situ XAFS (8 vol-% H2) at 5 K/min from 433 K to 523 K; (b) three
constant pH samples (C70/30, C60/40, C40/60) reduced with (2 vol-% H2) at 5 K/min from 433 K to 523 K. The
extent of reduction α was taken as the amount of Cu phase as determined by the linear combination XANES fits. The
zero time is defined as the onset of reduction.
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The Avrami-Erofeev kinetic behavior indicates a solid state process whose rate is determined

by the formation and the growth of product nuclei. The fitting parameters obtained from least-

square refinements of the reduction curves using this rate law are given in Table 5.4. For the

CuO/ZnO samples prepared at constant pH the reaction rate k of the reduction in hydrogen

decreases according to kC40/60 > kC70/30 > kC60/40 while for the sample set prepared at decreasing pH

a different sequence in reduction rate is obtained (kD70/30 > kD40/60 > kD60/40). However, in both

cases the sample with 60 mol-% Zn exhibits the lowest reduction rate. The exponential factor n

shows an increase with decreasing copper content in the samples, pointing to differences in the

growth of the Cu nuclei in three dimensions. The D-series samples reduced in a higher H2 partial

pressure (8 vs. 2 vol-%) showed larger exponential factors indicating a different dimensionality in

crystal growth or a different rate (i.e. steps) in nucleation formation.

Table 5.4: Fitting parameters obtained from least-squares refinements using the Avrami-Erofeev equation,
 α = 1 - exp-(kt)n , with α representing the extent of reduction (ranging from 1 to 0), k the rate constant, t the
reduction time, and n the exponential factor for the evolution of the Cu metal phase measured during temperature
programmed reduction in the XAS cell (‘dry’ reduction conditions: 2 vol-% H2 for , C-series samples and 8 vol-% H2
for D-series samples, heat ramp from 433 K to 523 K at 5 K/min) experiments for samples C70/30, C60/40, C40/60,
D70/30, D60/40 and D40/60.

Sample rate constant, [*103] k (s-1) exponential factor, n

C70/30 1.633 2.5

C60/40 1.612 2.7

C40/60 1.77 3.0

D70/30 2.64 4.0

D60/40 1.55 4.2

D40/60 2.03 4.6

In addition to a quantitative phase analysis based on the XANES spectra, the extended fine

structure (EXAFS) was used to analyze the short-range order structure. Repeated cycles of

reduction and re-oxidation at 523 K were investigated by in situ EXAFS. A reversible change

between copper oxide and reduced copper clusters is evident from the Fourier transformed Cu K

edge EXAFS of re-oxidized and re-reduced Cu/ZnO sample (60 mol-% Cu, sample D60/40)

(Figure 5.15). Moreover, the increased amplitude of the Cu-Cu nearest neighbor shells (2.4 Å) in
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the re-reduced state indicates an increased crystallinity and/or crystallite size. The ZnO FT(χ(k))

also reveals an increased intensity of higher Zn-O shells after reduction, which parallels with the

increased crystallinity or particle size of the bulk Cu phase. The observation of the increasing

amplitude of both Cu and ZnO after reduction implies that ZnO undergoes microstructural

modification during reduction and re-oxidation as well and hence may not be a completely inert

support.
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Figure 5.15: Fourier transformed Cu K edge χ(k) of (a) the oxidized (calcined and re-oxidized (Re-Ox.)) and
reduced state (Reduced, Re-Red.) at 523 K together with χ(k) of CuO, Cu2O (both at room temperature). (b) Zn K
edge FT[χ(k)] of the oxidized and reduced state of the same catalyst sample together with χ(k) of pure ZnO. Repeated
reduction (2 vol-% H2) and oxidation (15 vol-% O2) cycles at 523 K of a sample C60/40.
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5.3.2 Redox cycles during steam reforming of methanol

In Figure 5.16 the Cu K edge XANES spectra measured over a period of 20 min during oxygen

addition to the feed at 523 K is presented. It can be seen that adding O2 to the feed (15 vol-%)

results in an increase of the Cu K pre-edge feature. This corresponds to an oxidation of Cu to

CuO.
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Figure 5.16: Evolution of Cu K-edge XANES of CuO/ZnO at 523 K during oxygen addition to a methanol steam
reforming feed (c(MeOH) ~ 6 vol-%, c(H2O) ~ 1.5 vol-% in 25 ml/min He). Different Cu phases are indicated.

The evolution of the concentration of MeOH, H2, H2O and CO2 during two oxygen addition

cycles together with traces of methylformate and CO (lower part of the graph) are depicted in

Figure 5.17 (a). The variation in activity, selectivity and production rate during the cylce

experiment is shown in Figure 5.17 (b). It can be seen that after each oxygen and subsequent

reduction cycle the resulting copper phase exhibited an increased activity and selectivity (see

Figure 5.17 (b)) compared to the initial values obtained after the first reduction. The catalytic

performance after two oxidation/reduction cycles of a number of samples is given in Table 5.3.
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Figure 5.17: (a) Evolution of gas phase composition (H2, MeOH. CO2, and H2O) during oxygen addition to a
methanol steam reforming feed in the in situ XAFS cell. Concentration of CO and HCOOCH3 is shown in the bottom
part of the graph. (b) Changes in selectivity, conversion, and production rate during oxidation and re-reduction
(sample C60/40).

The evolution of the copper bulk phases (i.e. formation of CuO1-x and re-reduction) and the

corresponding gas phase composition during one oxygen addition to the feed is shown in Figure

5.18. In the bottom part of Figure 5.18 the concentration of CO and methyl formate are shown on

a different scale. It can be seen that oxygen in the feed leads to a rapid oxidation of the copper

particles to Cu(I) oxide and CuO (with a ratio of ~ 3/1). After the O2 has been switched off the CO

and H2O concentration decrease, whereas the H2 and CO2 concentration increase. Furthermore,
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after the oxygen is switched off the catalyst is re-reduced in the feed. Apparently, reversible

changes of the oxidation state of copper can be observed during oxygen cycles due to oxidation

and subsequent re-reduction processes in the feed (see Figure 5.18). A catalytic activity similar to

that before the oxidation is regained after 4 min. After that only copper metal can be detected.
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Figure 5.18: Evolution of Cu phase composition during oxygen addition cycles into steam reforming feed at 523
K. Phase analysis was obtained form least-squares fit of reference spectra to the corresponding XANES spectra
shown in Figure 5.16. The two lower sections of the graph depict the evolution of the gas phase in percent and ppm,
respectively. Three transitions in bulk and gas phase composition are marked: I.) copper metal during steam
reforming, II.) oxidation to CuO 1-x, III.) re-reduction of CuO1-x phases.

The extended fine structure (EXAFS) of the experimental XAFS spectra measured under

reaction conditions at the Cu K and Zn K edge was investigated to analyze changes in the short-

range order structure of Cu and ZnO during repeated oxidation and re-reduction at 523 K during

methanol steam reforming reaction. In Figure 5.19 a refinement of a theoretical Cu EXAFS

function to an experimental Cu FT (χ(k)) of sample C70/30 at 523 K under steam reforming

conditions is depicted. Only the four most intense single scattering paths in copper metal are

displayed and a good agreement between experimental data and fit can be seen.
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Figure 5.19: Refinement of a sum of theoretical EXAFS function (dashed line) of Cu to an experimental FT(χ(k))
of sample C70/30 at 523 K after reduction in 2 vol-% H2. Only the four strongest single scattering EXAFS functions
are indicated (thin dark lines). Fitted parameters are found in Table 5.5.

The structural parameters refined are given in Table 5.5. During the fit the coordination

numbers of Cu were kept constant to the values of bulk copper. This restriction is a reasonable

assumption for the particle sizes investigated which are larger than 80 Å as it was shown by XRD.

Therefore, size effects are assumed to play only a minor role for the reduction of the amplitude in

the FT(χ(k)) [Clausen00]. However, an EXAFS refinement with the Debye-Waller factor fixed to

those of Cu bulk afforded an apparent coordination number of ~ 9 for the first Cu-Cu shell. Here

the Debye-Waller (DW) factor is treated as a fitting parameter with coordination numbers fixed to

those of the bulk metal. Hence, the Debye-Waller factor accounts for the apparent structural

disorder in the copper crystallites and, hence, for the reduction in amplitude in the FT (χ(k)).

In the EXAFS analysis the Debye-Waller factors for the first, second, third and fifth Cu-Cu

shells are determined from a refinement of a theoretical EXAFS function to the experimental

EXAFS functions of reduced binary samples measured at room temperature and at 523 K (shown

in Figure 5.20).
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Table 5.5: Structural parameters of Cu/ZnO (C70/30) at 523 K under methanol steam reforming conditions
(Figure 5.19) obtained from a refinement of theoretical EXAFS functions calculated for Cu metal cluster (k = 2.0 to
13.0 Å-1, R = 1.5 to 6.0 Å, Nind = 32, Nfree = 12, 5 single scattering paths and 14 multiple scattering paths).
Parameters refined are E0 (Cu) = 3.83 eV. The fit residual amounted to 2.8. Based on shells # 1, 2, 3, 5 an average
lattice constant of a0 = 3.6410 Å (Cu, Fm3m) was obtained.

Shell CNfixed R, (Å) ∆Rfoil, (Å) σ2, (Å2) w (%)

1. Cu - Cu 12 2.552 - 0.004 0.0158 100

2. Cu - Cu 6 3.647 0.032 0.0246 9.567

3. Cu - Cu 24 4.437 0.01 0.0258 19.86

4. Cu - Cu 12 5.098 0.014 0.0963 0.443

5. Cu - Cu 24 5.826 0.111 0.030 6.187
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Figure 5.20: Cu Debye-Waller (DW) Factors, σ2, for the first, second, third, and fifth Cu-Cu distance obtained
from a refinement of a theoretical EXAFS function to experimental data for reduced samples C70/30, C60/40, C40/60,
C30/70 and Cu foil obtained at 303 K and 523 K under methanol steam reforming conditions.

For comparison, the DW factors obtained for a copper foil at room temperature are also given.

It can be seen that the DW factors for the first three Cu-Cu shells for the samples at 523 K are
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higher than for those measured at room temperature. However, conspicuous deviations from this

trend are detected for the DW factors of the fifth shell at 5.7 Å for the samples (C70/30, C60/40)

measured at 523 K as they are in the same order than that of the samples measured at room

temperature. For the samples C40/60 and C30/70 even higher DW factor are determined at room

temperature than at 523 K. The DW factors of the Cu foil are the lowest in all cases. In Figure

5.21 the Fourier transformed experimental Cu K edge of sample C70/30 is shown under working

conditions at 523 K after different oxidative treatments. As can be seen from Figure 5.21 the

oxidation and re-reduction cycles lead to an increase in the amplitude of the FT peak indicating

structural changes with respect to the fresh reduced catalyst under steam reforming conditions,

with a smaller difference in FT(χ(k)) after the first and the second oxidation cycle.
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Figure 5.21: Fourier transformed experimental Cu K edge χ(k) of sample C70/30 under working conditions for
methanol steam reforming at 523 K (feed composition: c(MeOH) ~ 6 vol-%, c(H2O) ~ 1.5 vol-% in 25 ml/min He)
after initial reduction (fresh reduced) and after two subsequent oxidation and reduction (denoted as first and second
oxidation step).

The variation of the Cu DW factors for the first, second, third, and fifth Cu-Cu distance

obtained from fitting experimental spectra of samples C70/30 and C60/40 obtained under working

conditions at 523 K for different oxidative treatments is displayed in Figure 5.22 a and b. An

increasing Debye-Waller factor for the fifth Cu shell is detected for both samples with each

oxygen addition cycle. This effect seems to indicate an increasing medium range structural

disorder in the copper particles with repeated oxygen addition cycles. Furthermore, changes in the

local structural order of ZnO after oxidation/re-reduction cycles under reaction conditions was

analyzed.
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Figure 5.22: Cu Debye-Waller (DW) Factors, σ2, for the first, second, third, and fifth Cu-Cu distance obtained
from a refinement of a theoretical EXAFS function to experimental data for sample C70/30 (a) and C60/40 (b)
obtained at 523 K during methanol steam reforming conditions after different pretreatment (fresh reduced) and after
two subsequent oxidation and reduction steps (denoted as 1st O2, SR and 2nd O2, SR step).

In Figure 5.23 the evolution of the experimental FT(χ(k)) of ZnO of the sample C70/30 at

523 K during methanol steam reforming after initial reduction and after two oxidation/re-

reduction cycles is depicted. A significant increase in amplitude of the FT(χ(k)) is clearly

detectable with repeated O2-addition cycles. Especially for the Zn-Zn distance at 2.8 Å a
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continuous increase can be seen. Higher shells also become more developed after repeated

oxidation steps. The observation of the increasing amplitude of both Cu and ZnO after oxidation

and reduction implies that ZnO undergoes microstructural modification during oxidation/re-

reduction cycles as well.
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Figure 5.23: Experimental Fourier transformed Zn K edge χ(k) (magnitude and imaginary part) of ZnO for
sample C70/30 obtained at 523 K during methanol steam reforming reaction after different pretreatment (fresh
reduced) and after two subsequent oxidation and reduction steps (denoted as 1st O2, SR and 2nd O2, SR step).

To further elucidate the structural changes in the short-range order of ZnO after oxidation/re-

reduction cycles, a refinement of theoretical EXAFS functions to the experimental spectra was

performed. As an example, Figure 5.24 (a) shows the fit of a theoretical EXAFS function of ZnO

to the experimental Zn K FT(χ(k)) of sample C70/30 under steam reforming conditions at 523 K.

A significant deviation in amplitude and imaginary part of the FT(χ(k)) is observed between the

experimental and the fitted spectra. However, by adding Zn-Cu shells for Zn atoms occupying Cu

sites in Cu clusters a much better fit to the experimental FT is obtained as shown in Figure 5.24

(b). This indicates that Zn in Cu clusters contributes significantly to the FT(χ(k)) of ZnO. By

quantitative EXAFS-fitting of a sum of the two phases (ZnO + Zn in Cu) it is possible to

determine the amount of Zn in the Cu clusters. It was found that a considerable contribution to the

total amplitude from scattering paths of Zn in Cu is present for the fresh reduced samples under

reaction conditions which amounts to ~ 10% for the sample C70/30. This amount diminishes to
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5.1% after the first oxygen addition cycle and to 2.6 % after the second cycle. By relating the

contributions of scattering paths of Zn in Cu to the nominal Zn-content of the samples, the

concentration of Zn in Cu can be estimated. For the fresh reduced sample C70/30 4.3 mol-% Zn

was found to be dissolved in copper. After two subsequent oxygen addition cycles the

concentration of Zn in Cu was 2.2 and 1.1 mol-%, respectively. For the sample C60/40 an amount

of 2.4 mol-% is dissolved in the Cu bulk which is reduced to 1.3 mol-% and 0.8 mol-% after two

oxygen addition cycles.
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Figure 5.24: Refinement of a theoretical EXAFS function (dotted line) of ZnO to an experimental FT(χ(k)) for the
sample C70/30 after reduction in 2 vol-% H2 at 523 K (a) pure ZnO and (b) assuming additional Zn-Cu shells by
doping Zn into the Cu cluster.
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5.4 Discussion

5.4.1 In situ XRD

5.4.1.1 Dependence of reducibility on catalyst composition

The presence of water retards the reduction onset temperature (~ 10 K) and results in higher Cu

crystallite sizes (Figure 5.2). Whereas the Cu/Zn ratio has only a slight effect on the onset

temperature the Cu particle size decreases with increasing Zn-content. However, the lower

crystallite size for both samples with 70 mol-% Cu (C70/30, D70/30) is an exception to the trend

seen in the other samples (Table 5.1). This behavior of the crystallite size of sample 70/30 can be

traced back to changes in phase composition of the hydroxycarbonate precursor for this

compositional range. It was shown in by Bems et al. that for Zn concentrations larger than 40

mol-% the multiphasic phase composition of the hydroxycarbonate precursor shows a transition

from the rosasite phase ((Cu,Zn)2(OH)2CO3) to the aurichalcite phase ((Cu,Zn)5(OH)6(CO3)2)

[Bems01]. The influence of the precursor structure which is apparently preserved in the calcined

CuO/ZnO precursor can lead to an enhanced reduction rate through the beneficial interaction of

various types of defects leading to a better gas phase transport (e.g. solid state diffusion) during

the reduction. Those defects may be introduced during calcination of the hydroxycarbonate

precursor at mild decomposition temperatures affording a high density of defects in the oxide.

Furthermore, the nucleation process influences the reduction rate and it can be imagined that the

interaction of the Cu metal nucleus with ZnO can lead to differences in the growth in three

dimensions. In most cases the addition of water in ‘wet’ reduction experiments caused a shift of

the onset of reduction to higher temperatures (Table 5.1). The influence of water addition could be

explained by both thermodynamical and kinetic effects. First, the water partial pressures employed

for the ‘wet’ TPR (~ 30 mbar) experiments dilutes the hydrogen and results in an increased

formation temperature of the Cu phase. Furthermore, the inhibition of the reduction by additional

water according to the law of mass action can occur as well. Second, there may be a retarding

influence of water on the formation of Cu nuclei. This kinetic explanation has been previously

discussed by Wimmers et al. for a TPR study of Fe2O3 particles under ‘wet’ reduction conditions

[Wimmer86].

5.4.1.2 Effects of precursor preparation and reduction conditions on the catalytic

performance

The influences of the Cu/Zn ratio and the reduction method on the selectivity in methanol

steam reforming are discussed for both constant and decreasing pH sample preparation methods.
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The MS analysis used for the in situ XRD set-up enables to quantify the initial catalytic activity

and the time on stream behavior (Figure 5.3). The selectivity to CO2 for the catalysts tested as a

function of the conversion of methanol is shown in Figure 5.4. The ‘wet’ reduced samples C60/40,

C50/50, C40/60 and D60/40, D50/50, D40/60 of both sample sets show the same sequence in

selectivity (i.e. SCO2,60/40>SCO2,50/50 >SCO2,40/60) with similar absolute values (see also

Table 5.3). Selectivities of the ‘dry’ samples are between 10 and 40% lower than those of the

‘wet’ reduced samples. Highest selectivities to CO2 of ~ 80% at 20% conversion are obtained for

the ‘wet’ reduced samples C60/40 and D60/40 (see Figure 5.4). Most samples exhibit an

increasing selectivity with decreasing conversion. For instance, the selectivities of samples C50/50

and D50/50 increase from ~70% to ~80% while the conversion drops from 20 to 10%. The

reduction procedure affects the catalytic selectivity more clearly than the pH during precipitation

of the precursors. This dependence of the selectivity on the reduction conditions is in contrast to

the TOF which seems to be unaffected by the reduction treatments of the samples. In addition, the

elemental composition has a strong effect on the selectivity. An optimum composition in terms of

selectivity is attained for a narrow range of 60 – 70 mol-% Cu for the constant pH samples. The

most stable sample is C70/30 ‘wet’ as it shows only small variation in conversion and selectivity.

The in situ XRD measurements of Cu/ZnO systems during time on stream indicated that the

deactivation with time is correlated to an increase in the apparent Cu crystallite size (Figure 5.7).

Hence, the loss of activity is connected to sintering processes and/ or morphological changes of

the copper crystallites. ZnO successfully suppresses the sintering of the Cu crystallites and thus

the deactivation (sample D60/40). Stabilization of a specific copper crystallite size is crucial to the

long-term stability of Cu systems in methanol steam reforming. The fast deactivation has been

shown for the pure copper sample D100/0 in Figure 5.3 (b) which lost 70% of its initial activity

after 7 h. This confirms previous investigations concerning the function of ZnO to keep the Cu

crystallites in a dispersed state and thus maintaining a high surface area as previously described by

Chinchen et al. and Spencer [Chinchen88], [Spencer99].

It is clear from Figure 5.5 that there is no straightforward correlation of the production rate with

the Cu surface area over the entire compositional range of the samples. In addition, it can be seen

that although in most cases the ‘wet’ reduction mode results in a higher copper surface area an

enhanced production rate is not observed for those samples (e.g. samples D40/60, D50/50 and

C70/30). In addition, in all cases the D-series samples exhibit a higher activity for a given copper

surface area than the C-series samples.

In order to relate differences in performance of the catalyst to effects originating from
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preparation parameters, the composition, and the reduction conditions, the production rate is

normalized to the Cu metal surface area estimated from the copper XRD crystallite size. The

initial TOF for H2 is a function of the ZnO-content (see Figure 5.6). The TOF values for catalysts

with ZnO-contents higher than 40 mol-% Zn do not show the linear increase in TOF. For

concentration > 40 mol-% Zn the TOF is independent on the Cu surface area and the values do not

differ much as a function of preparation and reduction mode. Furthermore, catalysts prepared at

decreasing pH displayed a higher overall TOF than samples prepared at constant pH. This

indicates that the precipitation pH affects the activity of the copper in the final catalyst. The

influence of the pH during preparation is only seemingly in contrast to the behavior of the

selectivity, which showed no dependence on the pH during preparation, because for the

determination of the TOF for H2 all reactions affording hydrogen were taken into account. In

addition, ‘wet’ reduction leads to higher TOF-values for the decreasing pH sample batch whereas

‘dry’ reduced constant pH samples exhibit a slightly higher intrinsic activity. The significant

deviations from a constant TOF as a function of the composition implies that the copper surface

area alone cannot adequately account for the differences in intrinsic activity. The catalyst D60/40

is exceptional as the activity of a copper surface atom can be twice as high for a given elemental

composition than that for the sample C60/40 indicating the influence of preparation parameters on

the catalytic activity as a function of the pH during preparation (i.e. increased TOF) (Figure 5.6).

The absence of a linear relationship between the copper surface area and the methanol-steam

reforming activity provides additional evidence that the methanol steam reforming reaction is

“structure sensitive”. This behavior is in contrast to the reports of Chinchen et al. who described

methanol synthesis as a “structure-insensitive” reaction [Chinchen91]. The different behavior in

turn suggests that additional parameters beside the Cu metal surface affect the activity. A

“structure-sensitivity” was reported by Hadden et al. [Hadden95] for the water-gas shift reaction.

They have shown that the specific activity is not directly correlated to the Cu metal surface area

and concluded that preparation parameters determine to a large extent the activity for a given Cu

surface area. In a recent publication by Peppley et al. a kinetic model for methanol-steam

reforming is presented [Peppley99]. It was found that the methanol steam reforming reaction and

the methanol decomposition to CO and hydrogen proceed on different active sites, although the

rate-determining step (dehydrogenation of absorbed methoxy groups) is the same in both cases.

Furthermore, it was shown that the active site responsible for the methanol steam reforming

reaction is similar to the one responsible for the water-gas shift reaction. This type of sites is

thought to be formed in situ and incorporates the presence of Cu2+ aggregates stabilized by

hydroxyl and carbonate groups [Andreev95].
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The present work indicates that an additional microstructural parameter different from the Cu

surface area is operative. This becomes more apparent in the catalytic experiments after

oxidation/re-reduction cycles. In situ XRD afforded an increase in crystallite size after oxygen

addition cycle accompanied by an increase in conversion of methanol and selectivity to CO2

(Table 5.3). The increase in crystallite size can reach up to ~ 90 % (form 70 Å to 120 Å for the

sample C70/30). The origin of this pronounced increase in Cu crystallite size after each oxidation

cycle can be related to a structural rearrangement during oxidation and re-reduction (Figure 5.9).

Although the increase in Cu particle size results in a loss of Cu surface area (see Figure 5.8),

higher conversions and selectivities are observed (Figure 5.10) after oxidation cycles. Combining

the activity data for the oxidation cycles shown in Figure 5.10 (sample C60/40) with the Cu

crystallite size determined by in situ XRD an increase of the TOF as a function of oxidation cycle

can be calculated. After the first cycle the TOF increases from 1.1 to 1.5 and after the second cycle

the TOF amounts to 1.6 s-1. Again, these observations are in contrast to the simplified correlation

of the catalytic activity with the Cu surface area, and, hence, the crystallite size [Peppley99]. A

lattice parameter determination by in situ XRD yielded a continuous increase of the copper lattice

parameter and the ZnO lattice parameter a and c under methanol steam reforming conditions and

with each oxygen addition cycle (Figure 5.11). The evolution of the lattice parameters may

originate from the influence of the Cu/ZnO interface which may increase after each oxygen

addition cycle increasing the effect of the misfit of the two lattices (see below, XAS discussion).

Furthermore, these findings corroborate the assumption that other bulk structural features

contribute to the activity as well. In principle, the contribution of strain in the bulk structure

should be detectable by analyzing the XRD profile. However, with the experimental set-up used

(CuKα1-α2 doublet) a detailed size and strain analysis of the broadened XRD profile using the

Voigt function [Langford78] for a peak profile analysis is not easily achievable. However, for

extremely broadened X-ray peaks these limitations might be less severe, hence, a qualitative

analysis was attempted. Using the Voigt method it is found that in addition to size effects the

broadening of the Cu (111) diffraction line is also caused by microstrain in the Cu bulk. For the

sample D60/40 a Cu crystallite size of 90 Å was determined while the extent of strain amounted to

0.7 %. After oxidative treatments the growth of the copper crystallites (increased size of 102 Å)

was not accompanied by an annealing of defects because a similar strain contributions (0.7 %) to

the peak broadening was still present.

Apparently, both, the time on stream and the re-oxidation experiments in the XRD cell show

that a high Cu surface area is a prerequisite for an active Cu/ZnO catalyst. However, additional

microstructural parameters need to be considered to account for the activity and selectivity
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observed. Further evidence for bulk structural changes under reaction conditions were gained from

the in-situ XAFS experiments.

5.4.2 In situ XAFS

5.4.2.1 Activation of the CuO/ZnO catalyst-TPR

Time-resolved XANES experiments at the Cu K edge indicate that Cu(I) oxide is an

intermediate of the reduction of the CuO/ZnO systems studied (Figure 5.12 (a)). In addition, these

experiments afforded the evolution of the three phases CuO, Cu, and Cu(I) oxide during

temperature-programmed reduction of CuO/ZnO (Figure 5.12 (b), Figure 5.13) not accessible by

conventional TPR studies. Previously, features in the TPR spectra of CuO/ZnO system were

attributed to different degrees of dispersion of the CuO without taking possible intermediates

during the reduction processes into account [Fierro94]. Compared to in situ XRD results where the

detection of copper metal requires a certain particle size and therefore during TPR appears to be

shifted with respect to the evolution of water, XAS can afford complementary information on the

early stage of reduction. Apparently, the reducibility of the CuO/ZnO systems (Cu nuclei

formation during reduction) depends not only on the Cu/Zn ratio in the catalyst as has been

reported before [Fierro94] but also on the preparation conditions of the hydroxycarbonate

precursor. Using the Avrami-Erofeev equation the kinetic analysis of the reduction curves of the

two sample sets revealed an increasing exponential factor n with increasing Zn-content indicating

differences in nucleation rate (Figure 5.16). The increasing exponential factor n can result form a

higher dimensionality of growth or an increased number of steps required for the nuclei formation.

Taking the Cu crystallite size based on the XRD analysis into account (Figure 5.2), it seems that a

slower reduction process results in larger crystallite sizes (e.g. 100 Å for C60/40 compared to 85

Å for C70/30 both after ‘dry’ reduction (Table 5.1)). The lower reducibility of the samples C60/40

and D60/40 compared to that of the samples C70/30 and D70/30 cannot directly be related to

differences in crystallite sizes of CuO in the CuO/ZnO precursor as they show a decrease in size

with increasing Zn content (see Tab. 2.1). Similar to the discontinuity in Cu crystallite size

observed by XRD for the sample CuO/ZnO with 60 mol-% Cu, the XAS experiments indicate that

the retarded reduction for these CuO/ZnO samples parallels changes in the phase composition of

the hydroxycarbonate precursors (for Zn concentration large than 40 mol-%). This observation

supports our interpretation that the influence of the hydroxycarbonate precursor structure is

preserved throughout the calcination step and manifests itself in a different reducibility of the

CuO/ZnO precursors.
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5.4.2.2 Steam Reforming of Methanol

Time-resolved in situ XAFS measurement were performed to correlate different copper phases

with catalytic activity during oxygen addition cycles to the methanol steam reforming feed (Figure

5.16). The changes in Cu phase composition and the evolution of the gas phase for one oxygen

addition cycle are shown in Figure 5.18. After the addition of oxygen, Cu(I) and Cu(II) oxide

constitute the major copper bulk phases. In regime III copper metal is formed again which is

accompanied by an increasing hydrogen production but no CO and methyl formate is formed in

that period. This could imply that the methanol dehydrogenation reaction (eq. 2.18) is favored

over Cu in a positive oxidation state (III in Figure 5.18). The formation of CO and methyl formate

(ppm levels) originating from methanol steam reforming is observed only after the concentration

of metallic copper in the bulk phase exceeds 80 w-% (regime III to I in Figure 5.18). The

maximum concentration of CO and methyl formate (1000 ppm) coincides with the complete

reduction of the copper phases to Cu metal. Our observation of both methyl formate (HCOOCH3)

and CO in regime I (Figure 5.18) supports the sequence of reaction steps involving

dehydrogenation and methylformate formation. During subsequent methanol steam reforming, the

CO level is continuously decreasing whereas the concentration of methyl formate remains

constant. In this regime (I in Figure 5.18) methanol steam reforming appears to be the

predominant reaction. It can be concluded that the changes of bulk phase and gaseous product

composition observed during oxygen addition cycles permit to distinguish between different

active states of copper operative in the Cu/ZnO system. The results support previous assumption

based on kinetic analysis of surface reactions that parallel reaction might occur on different active

copper phases during methanol-steam reforming [Peppley99a], [Peppley99b]. Interestingly, the

oxidation and reduction curve of Cu metal in the upper graph in Figure 5.18 exhibits in both cases

a similar sigmoidal shape for both solid state processes indicating identical rate determining steps

and reaction rates.

5.4.3 Mechanistic considerations

Presently two different reaction sequences are discussed to explain the formation of CO during

the steam reforming reaction.

Decomposition-shift mechanism:

CH3OH → CO  + 2H2 (5.1)

CO + H2O → CO2 + H2 (5.2)
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Dehydrogenation - methylformate route:

2CH3OH → HCOOCH3 + 2H2 (5.3)

HCOOCH3 + H2O → HCOOH + CH3OH (5.4)

HCOOH → CO2 + H2 (5.5)

HCOOCH3 → CO + CH3OH (5.6)

According to the decomposition shift mechanism the methanol decomposition to CO and H2 is

followed by the water gas shift reaction which affords CO2 and hydrogen (see eq. (5.2) and (5.4))

[Amphlett88]. On the other hand Jiang et al. and Takahashi et al. developed a kinetic model for

methanol steam reforming involving several reaction steps. First methylformate is formed by the

condensation of methanol (eq. 5.3) which can undergo two different decomposition pathways

depending on the nature of active sites on the surface. The hydrolysis to formic acid and methanol

is assumed to be assisted by surface hydroxyl groups (eq. 5.4). The formaldehyde then

decomposes to CO2 and hydrogen. Whereas the decarbonylation of methylformate to formic

occurs preferentially on metal sites thus affording CO and methanol [Jian93], [Takahashi82],

[Peppley99a].

The CO concentration measured during the in situ XAFS experiments was found to be lower

than 1000 ppm. Based on a methanol decomposition and water-gas-shift mechanism a CO

concentration of ~ 4 % is calculated under thermodynamical equilibrium conditions at 523 K with

H2O and methanol concentrations similar to those used in our catalytic experiment [Purnama].

Hence, a simple methanol decomposition mechanism followed by a water gas shift reaction is

unlikely to account for the low CO-levels. However, no precise conclusion about the equilibrium

attained in the reactor can be made. Our observation of both methyl formate (HCOOCH3) and CO

in regime I (Figure 5.18) supports the assumed sequence of reaction steps involving

dehydrogenation and methylformate formation. Considering the different reaction products during

the oxygen addition experiments (methanol dehydrogenation and methanol-steam reforming) it

remains unclear whether changes in bulk phase composition (Cu oxidation state) directly lead to

various reaction paths or reactions occurring in parallel and are of different significance. A further

clarification is intended for future investigations.
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5.4.4 Implication of microstructural changes of Cu and ZnO on the catalytic
activity

The existence of copper suboxides in the bulk during the methanol steam reforming conditions

can be excluded within the detection limits of XAFS (~ 1 w-%) in the XANES region.

Furthermore, for the Cu EXAFS no additional Cu-O shells were distinguishable after applying the

difference file technique in order to extract contributions of oxygen scatters. Nevertheless, the

formation of mixed valence copper suboxides at the catalysts surface cannot be excluded. The

existence of surface oxygen atoms on copper under methanol oxidation conditions different from

well-defined copper oxides has recently been shown by Knop-Gericke et al. using surface

sensitive in situ XAS [Knop00], [Knop00b].

In recent publications the dynamics of the Cu/ZnO system was ascribed to changes in the

morphology of the Cu surface. Clausen et al. [Ovesen97] observed by EXAFS dynamical changes

of the system upon changing the reduction potential in the gaseous environment and ascribed them

to changes in the surface morphology (wetting/non-wetting phenomena). They showed that by

taking changes in surface area and morphology (i.e. formation of Cu(110) and Cu(100) surfaces

with higher activity) into account a “dynamic” microkinetic model for the methanol synthesis

reaction under different gas atmospheres could be deduced. Sakakini et al. [Sakakini00] reported

on surface morphology changes of a supported Cu/ZnO/Al2O3 catalyst using IR spectra of

adsorbed CO. The copper surface termination and the activity in CO2 decomposition showed a

dependence on the reductive treatment after previous oxidation.

In the work presented here microstructural changes of Cu and ZnO upon oxygen addition

cycles are correlated to methanol steam reforming activity. The EXAFS refinements to the

experimental Cu and ZnO χ(k) gave ample evidence of the bulk structural interaction of both

phases leading to the following structural changes (Figure 5.19, Figure 5.24). The unusual high

Debye-Waller factor of the fifth copper shell indicates a medium range structural disorder of the

Cu/ZnO at room temperature (Figure 5.20). This structural disorder may be caused by the Cu/ZnO

interaction assuming an expansion of the Cu lattice at the interface. An epitaxial orientation of the

Cu (111) surface to the ZnO (001) surface has been found to exist in the Cu/ZnO system

[Herman80]. Upon increasing the temperature to 523 K the copper lattice will expand more than

the ZnO lattice because of the difference in the linear thermal expansion coefficients, α, of Cu

(αCu,500 K =17.4·10-6 K-1 [Uffelmann30] and ZnO (perpendicular to the c-axis: αZnO,500 K =

71.5·10-7 K-1 [Ibach69]). At the elevated temperature the thermal expansion of Cu results in a

partial release of the lattice mismatch at the interface and, thus, in a reduction of structural
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disorder as it can be seen from the decreased or constant DW factors of the fifth Cu shell (Figure

5.21).

In situ EXAFS measurements during oxygen addition cycles under methanol steam reforming

conditions gave further evidence of microstructural changes in the Cu/ZnO samples (Figure 5.21,

Figure 5.23). The Cu Debye-Waller factors indicated that the medium range disorder for copper

particles increased with each oxidation/re-reduction cycle (see Figure 5.22) while the crystallite

grow progressively as detected by XRD after each oxygen addition cycle. Upon

oxidation/reduction of the Cu particles the increase in the medium range disorder is accompanied

by a continuous depletion of Zn incorporated in the Cu clusters (Figure 5.23 and Figure 5.24) (~

4.3 mol-% for sample C70/30 to 1.3 mol-% for C/0/30 after two cycles). The observed lattice

expansion of < 0.02 Å (Figure 5.11) is below the limits for a reliable distance determination by

EXAFS. The Zn atoms dissolved in Cu stem from the structural arrangement in the

hydroxycarbonate precursor structure and maintain their position in the Cu-matrix under the mild

calcination (600 K) and reduction conditions (5 vol-% H2 at 523 K) used [Bems01]. Apparently,

the amount of Zn dissolved in the copper clusters depends not only on the Cu/Zn ratio of the

catalyst but also on the structure of the hydroxycarbonate precursor as indicated by the lower Zn-

concentration for the more Zn-rich sample C60/40. Moreover, substantial dissolution of Cu into

the ZnO matrix ( > 1 %) for Zn-rich catalysts as found by Klier et al. [Dominiquez83] can be

excluded on the basis of the EXAFS results.

Taking these experimental evidence into account it seems reasonable to assume that the

enhanced activity after oxidative treatment for methanol steam reforming is closely related to

disorder and strain in Cu particles in an analogous manner as it was found for Cu/ZnO catalysts in

methanol synthesis. Regarding the role of defects in copper we have recently reported on the

implication of the Cu lattice strain of copper clusters in the crystallite size regime 50 – 200 Å on

the methanol synthesis activity [Günter01]. It is suggested that the microstrain modifies the Cu

surface and thus contributes to an enhanced methanol synthesis activity. The structural defects of

Cu were ascribed to the dissolution of Zn in Cu, incomplete reduction or epitaxial orientation of

Cu and ZnO. This concept seems to be transferable to the active copper phase in the methanol

steam reforming reaction. Modified Cu surfaces were found to have a promotional effect on the

methanol synthesis activity and it appears from our data that for methanol steam reforming a

similar structural disorder of the copper bulk also results in a higher activity and selectivity. This

is clearly shown by the increase of the TOF after each oxidation cycle indicating a smaller but

more active copper surface area. Our results concerning the implication of bulk structural defects

in copper on the catalytic activity and their changes after oxidation/re-reduction steps provide a
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new bulk structural aspect which adds to the understanding of the arrangement of the active

metallic site in copper catalyst.

5.4.5 Model of microstructural changes of Cu and ZnO

The microstructural modifications detected by XAFS and XRD during oxygen addition cycles

under working conditions can be summarized by a schematic model given in Figure 5.25. The

model shows the structural rearrangement of Cu onto ZnO for a freshly reduced catalyst (a) and a

more active catalyst (b) after oxidation and subsequent reduction. For the initially reduced catalyst

the small copper particles are in interfacial contact with the supporting ZnO possibly exhibiting an

epitaxial orientation. The Cu crystallite size is only slightly lower than that of ZnO and the copper

particles exhibit some structural disorder which maybe caused by microstrain originating at the

Cu/ZnO interface. Furthermore, a considerable amount of Zn atoms (up to 4.3 mol-%) are

incorporated into the Cu clusters, occupying Cu lattice sites and, thus, forming a solid solution of

Zn in Cu. Upon oxidation and re-reduction the crystallite sizes of Cu and ZnO increase resulting

in a reduced surface area which may be accompanied by an increased interface area between Cu

and ZnO.

ZnO

Cu Cu

ZnO

Cu

Figure 5.25: Proposed schematic model for copper particles on a ZnO support after initial reduction (a) and after
repeated oxygen addition cycles under methanol steam reforming conditions (b). The microstructural modifications
upon oxidative treatment result in an increasing crystallite size and a larger interface area between Cu and ZnO.
Moreover, the Cu clusters are depleted of Zn accompanied with larger domains of structural disorder (e. g. strain) in
Cu (parallel lines).

However, the crystallite growth observed for Cu and ZnO upon re-reduction, is accompanied

by an increase of structural disorder in the Cu particles as indicated by the increasing Cu Debye-

Waller factors for higher Cu-Cu shells. The re-reduction process leads to a depletion of Zn atoms

in the Cu cluster. It seems that the partial segregation of Zn atoms out of the Cu matrix is

beneficial for the formation of an improved interface interaction of Cu onto ZnO. It is speculated

that the Zn atoms incorporated in the Cu particles annihilate the effect of the Cu/ZnO interface on
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the copper cluster and, therefore, the microstrain cannot build up over the entire copper matrix,

and, more importantly, does not modify the copper surface. Hence, after oxidation and re-

reduction larger domains of distorted and strained copper particles are formed on the ZnO support.

ZnO appears to be a crucial component in creating active copper sites (e.g. interface interaction,

Zn dissolution in Cu particles) and, hence, is much more than an inert support.

Furthermore, we can conclude from the data presented here that the conditions of the reduction

process play an important role possibly by adjusting a certain degree of microstrain in Cu during

nucleation and growth. In that respect it can be imagined that the amount of Zn-doped into the

copper clusters is dependent on the reduction potential and thus directly modifies the extent of

strain in the copper matrix. In this study it has been shown that hydrogen reduction with water

vapor leads to a more selective catalyst than ‘dry’ reduction. Furthermore, the copper crystallite

growth kinetics might also affect the Cu crystallite morphology. Furthermore, with respect to

model systems for nanosized Cu/ZnO catalysts, in light of our findings a suitable model system

needs to account for the strong support influence of ZnO on Cu and for Zn incorporated in the

copper bulk.

5.5 Conclusion

Evolution of bulk phases of Cu/ZnO catalysts under reduction conditions was monitored by in

situ XRD and XAFS revealing the following:

It was shown that under the temperature programmed reduction conditions employed, CuO of

the mixed CuO/ZnO is completely reduced to Cu on ZnO (lower detection limit ~ 1%). From

time-resolved in situ XAFS experiments at the Cu K edge, Cu(I) oxide was found to be an

intermediate of the reduction of CuO/ZnO according to a two step reduction process (CuO →

Cu(I) oxide → Cu). The reduction proceeds via a nucleation-grain growth mechanism.

CuO/ZnO precursors which were less easily reduced (high reduction onset temperature)

afforded Cu crystallites that are more selective in steam reforming of methanol. This is

corroborated by the fact that the ‘wet’ reduction conditions, resulting in a shift of the onset of

reduction to higher temperatures, lead to catalysts exhibiting a higher selectivity.

The structure and phase composition of copper-zinc hydroxycarbonate precursor affect the

reducibility of the CuO/ZnO precursors and determine the activity of Cu/ZnO catalysts (e.g. Zn

incorporation in Cu). Therefore preparation parameters of the hydroxycarbonate precursor (e.g.

pH during precipitation) open up the opportunity to modify the catalyst’s activity.
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Structural and catalytic properties were monitored during methanol steam reforming reaction

by in situ XRD and XAFS and the following conclusions were drawn:

Completely reduced Cu clusters on ZnO constitute the active bulk phase for methanol steam

reforming with no further oxidized Cu species detectable (< 1%).

With respect to the composition of the Cu/ZnO samples studied it was observed that with

increasing ZnO-content the methanol steam reforming activity increases and a maximum

conversion is attained for a narrow compositional range of 60-70 mol-% Cu.

For the EXAFS analysis of Cu clusters on ZnO not only the amplitude reduction due to the

cluster size needs to be taken into account but also the presence of defects (Zn) or imperfection

(strain) in the Cu bulk.

Upon repeated oxygen addition cycles, the catalyst exhibited an enhanced activity (i.e.

increased TOF) and selectivity. It was shown by XRD and EXAFS that repeated oxygen addition

cycles lead to a crystallite growth of the copper and zinc oxide crystallites accompanied by a

segregation of Zn out of the Cu bulk. However, the Debye-Waller factors for higher Cu-Cu shells

suggest an increasing structural disorder (e.g. strain). The strain is thought to be induced at the

Cu/ZnO interface.

ZnO is not just a support but integral part of the active Cu/ZnO catalyst. The bulk structure and,

hence, the catalytically active surface is determined by the intimate Cu/ZnO interface.

The microstructural changes of copper and zinc exhibit a positive correlation with methanol

steam reforming activity and selectivity. This indicates that a high Cu surface area is a prerequisite

for catalytic activity but cannot account for the observed changes in activity and selectivity alone

without taking bulk structural changes into account. We conclude that similar to methanol

synthesis the enhanced activity in Cu/ZnO catalysts after oxidative treatment for methanol steam

reforming is closely related to an increased disorder and microstrain in Cu particles.

In this study it was shown for “real” Cu/ZnO catalysts that solid state transformation and

interaction of the Cu and ZnO phases have an pronounced influence on the catalytic activity.

Therefore, “ideal” Cu clusters fail to describe the structural imperfection observed and, hence,

cannot be expected to be suitable model systems. Apparently, a suitable model system needs to

account for both strong Cu/ZnO interface interactions and Zn incorporated in the copper bulk.
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6 Summary and Perspectives

This thesis reports on bulk structure – activity correlation of binary Cu/ZnO catalyst in

methanol synthesis and methanol steam reforming. X-ray diffraction and X-ray absorption

spectroscopy were employed to characterize the microstructural modifications of the catalytic

binary copper/zinc oxide catalyst system. The implication of microstructural properties of copper

and zinc oxide were accordingly determined on the long-range order as well as the short range

order for a large sample set prepared at constant and decreasing pH during coprecipitation. Taking

full advantage of the combined XRD and XAS approach as applied throughout this thesis for all

intermediate stages of the catalyst formation it has been convincingly demonstrated that only a

combination of both methods yield a complete description of the solid state chemical processes

occurring during calcination, reduction and under working conditions. In particular, the in situ

approach using XRD and XAS techniques has been accomplished to elucidate the role of the real

structure of the active phase of the Cu/ZnO catalyst system under practical working conditions for

methanol steam reforming. This thesis represents a new approach in providing the working

principles of a operating catalyst system utilizing in situ experiments and thus affording guiding

rules for the optimization of existing Cu/ZnO catalyst systems.

The main results of the thesis are summarized in the following:

In chapter 3 the bulk structure of calcined and reduced copper/zinc oxide catalyst was

investigated by ex-situ methods. The concept of the single line profile analysis based on the Voigt

function for determining microstructural properties of crystalline catalyst materials has been

presented. This analysis procedure was successfully applied to the Cu/ZnO catalyst system to

extract microstructural parameters (i.e. size and strain) for a large number of samples prepared at

neutral and decreasing pH with different Cu/Zn ratios. CuO/ZnO precursors with varying molar

ratios (100/0 through 0/100) obtained from calcination of hydroxycarbonates prepared under

controlled condition of ph = 7 and under decreasing pH conditions were reduced with hydrogen at

523 K and 673 K prior to the XRD investigation. For both phases, Cu and ZnO, a separation of

size and strain broadening effects could be performed. The results indicate a mutual structural

interaction of both components (copper and zinc oxide) in the sense that strained copper particles

are stabilized by the unstrained state of the zinc oxide micro crystallites. The observed structural

deformation of Cu in samples with higher ZnO loading can originate, for instance, from epitaxial

bonding of the oxide lattice to the copper metal, insufficient reduction or residual carbonate due to

incomplete thermal decomposition during reduction.

Both, the crystallite size and the microstrain in Cu and ZnO are dependent on the composition
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and thermal treatment. Hydrogen reduction at 673 K leads to a pronounced sintering of the ZnO

and afforded a strain release in the ZnO matrix whereas for copper crystallites only small

differences in microstrain are detectable. Furthermore, a dimensional anisotropy of the ZnO

crystallite shape was observed with the grain growth occurring preferentially along the [001]

direction. The Cu crystallites showed only a minor sintering tendency especially at higher ZnO

concentrations. Compositional inhomogeneities due to the formation of solid solutions of Zn in Cu

and the Cu/ZnO were considered to be the main reason for the observed microstrain

Furthermore, changes in the microstructure of both copper and ZnO (i.e. size, strain, and lattice

parameter) were found to coincide with changes in phase composition of the hydroxycarbonate

precursors (structure of zincian malachite and the transition from the aurichalcite-rich to a Cu

containing hydrozincite phase composition). Additional EXAFS measurements at the Cu K and

the Zn K edge show that about 5 % ZnO are dissolved in the CuO matrix of the calcined

precursors. The formation of ZnO-CuO solid solutions (~ 5 % ZnO in CuO) was detected which

may lead after reduction to the formation of Cu-Zn alloy.

The results provide evidence that the microstructural role of ZnO exerted on the reduced copper

phase can merely be ascribed to a structural promotion alone. A chemical promotion (i.e.

dissolution of ZnO in CuO) can be imagined to account for the reported enhanced reducibility and

activity for diluted Cu/Zn compositions. However, the origin of this promotion can emerge from

the defect bulk structure of both Cu and ZnO and the way these defects, terminating at the surface,

may influence the catalytic reaction.

In chapter 4, binary Cu/ZnO catalysts prepared at constant pH with varying molar ratios (90/10

through 10/90) were studied under methanol synthesis conditions at 493 K and at atmospheric

pressure. The methanol synthesis activity of the catalysts was correlated to their specific Cu

surface area (N2O reactive frontal chromatography, N2O RFC) after reduction in 2 vol-% H2 at

513 K. Activity data were supplemented with a detailed analysis of the microstructure (i.e.

crystallite size and strain) of the reduced Cu and the ZnO phases after reduction using X-ray

diffraction line profile analysis. The estimated copper surface area based on a spherical shape of

the copper crystallites is in good agreement with data determined by N2O RFC. It was found that

the production rate of methanol is not a linear function of the specific Cu surface area over the

entire Cu/ZnO composition range. A positive correlation of the turn-over frequency for methanol

production with the observed microstrain of copper in the Cu/ZnO system. For a compositional

range of more than 60 mol-% Zn the strained Cu crystallites expose a Cu surface which is more

active than that of a 30 mol-% Zn catalyst. Hence, it is concluded that the phase composition of
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the hydroxycarbonate precursor directly influences the active phase of the Cu/ZnO catalyst.

In chapter 5, the bulk structure of copper in various binary Cu/ZnO catalysts for steam

reforming of methanol under activation and working conditions is studied by in situ X-ray

diffraction (XRD) and X-ray absorption spectroscopy (XAS). The evolution of bulk phases from

CuO/ZnO precursors during activation with hydrogen was studied using temperature programmed

reduction (TPR) (448 – 523 K, 2 vol-% H2 with and without water vapor). With decreasing copper

content the onset of reduction is shifted from 473 K (pure CuO) to 443 K (40 mol-% Cu)

accompanied by a decrease in Cu crystallite sizes (from 210 Å to 40 Å). Using time-resolved in

situ XANES measurements at the Cu K edge during TPR experiments the degree of reduction was

monitored. It is shown that Cu2O forms prior to Cu. The extent of reduction to Cu exhibited a

typical nucleation and growth behavior with an enhanced reaction rate for samples with a lower

copper content. Adding oxygen to the feed gas leads to the formation of a mixture of Cu(II) and

Cu(I) phases accompanied by a complete loss of activity. After switching back to steam reforming

conditions a higher activity is attained while the catalyst shows an increased Cu crystallite size (up

to 40%). EXAFS measurements at the Cu K and the Zn K edge indicate a structural disorder of the

Cu particles (e.g. increased Debye-Waller factors) in the medium range order and the dissolution

of Zn atoms (up to ~ 4 mol-%) in the copper matrix. Upon oxidation/reduction cycles the disorder

in the copper particles increases while Zn segregates out of the copper bulk. A structural model is

proposed which ascribes the enhanced activity to structurally disordered (strained) copper particles

due to an improved interface interaction with ZnO.

Although the Cu/ZnO catalyst system has been extensively explored in the past this thesis

contributes an additional microstructural property, i.e. the microstrain, for a better understanding

of the implication of bulk structural features on the catalytic activity. Former investigations by the

Topsøe group attributed the differences in methanol synthesis activity of ZnO-containing Cu

catalysts to changes in the surface termination of copper particles described by a “geometrical

factor”. This parameter takes into account an altered copper particle morphology resulting in

different exposed facets [Ovesen97]. However, the significance of the defective microstructure of

binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis and methanol steam

reforming was hitherto not experimentally proven for Cu/ZnO catalysts. The degree of

microstructural disorder of copper crystallites exhibits a positive correlation with the turnover

frequency for methanol synthesis. A similar correlation also holds for an enhanced activity in

Cu/ZnO catalysts for methanol steam reforming after oxidative treatment for methanol steam

reforming which is followed by an increased disorder and microstrain in Cu particles. The results

concerning the implication of bulk structural defects in copper on the catalytic activity and their
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changes after oxidation/re-reduction steps provide a new bulk structural property which adds to

the understanding of the nature of the active metallic site in Cu/ZnO catalyst. Both experimental

techniques employed, XRD and XAS, identified a strained and disordered copper microstructure

that is beneficial for a higher intrinsic activity in methanol synthesis and methanol steam

reforming.

The observed increase in activity for strained and defective copper particles are considered to

be a consequence of a modification of the surface properties and the structure sensitivity of the

reactions investigated. The results have convincingly shown that solid state reactions and in

particular the strong Cu/ZnO interface interaction are responsible for the formation of the defect

structure and have to be taken into consideration. Thus, for the first time experimental evidence

was provided, that beside the copper surface area also bulk structural properties can influence the

reactivity of a Cu/ZnO catalyst. The origin of the ‘synergistic’ effects in the Cu/ZnO system could

be related to the microstructural properties originating form solid-state interaction in the Cu/ZnO

system. Moreover, the role of ZnO has been found to be much more than an inert support, ZnO

appears to be a crucial component in modifying the microstructure (e.g. interface interaction, Zn

incorporation in Cu particles), and thus the activity of the copper. In that respect, the binary

Cu/ZnO system proved to be a realistic model system which incorporated all bulk structural

characteristics (i.e. solid state transformation and interaction of the Cu and ZnO phases) that

contribute to the observed changes in bulk-structure-activity. This could be regarded as an

approach in bridging the gap between the technical catalysts and ideal models systems using a

suitable model system with a reduced structural complexity.

A new target structure of an active Cu/ZnO catalyst has been identified which is in close

relationship with the hydroxycarbonate precursor phase composition. Hence, this result opens up

the opportunity to optimize the microstructure of the copper particles by an appropriate choice of

the preparation parameters for the hydroxycarbonate in such a way that a more active copper

surface area results. Therefore, much emphasis is put on the wet-chemical preparation process of

the catalyst which appears to be a key component for a rational strategy for developing more

efficient heterogeneous catalysts. Based on these results it seems feasible to transfer the given

working principle of the binary Cu/ZnO catalyst to the industrially important ternary

Cu/ZnO/Al2O3-system. Further investigation will include the application of alternative supporting

materials (e.g. mesoporous ZrO2) which can host the copper particles in order to validate the

qualitative rules of strained and defective Cu particles.

In addition to the precursor chemistry, further research has to focus on the solid state processes
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occurring during the calcination and reduction procedure of the precursor because it has been

shown in this thesis that the solid state chemistry during thermal decomposition and the reduction

process develops the microstructural arrangement of the Cu and ZnO crystallites by a variety of

processes (e.g. nucleation and growth, reduction, diffusion, sintering, etc.), which is pre-

determined by the wet chemical part of the preparation route (e.g. precipitation, ageing, washing

and drying).
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8 Appendix

8.1 List of abbreviation and symbols

Abbreviations:

BET Brunauer-Emmet-Teller

CN Coordination number

DW Debye-Waller-type Factor

EXAFS Extended X-ray absorption fine structure

fcc face centered cubic

FT Fourier Transform

FTIR Fourier transform IR

FWHM Full width at half maximum

RT Room temperature

STM Scanning transmission electron microscopy

TEM Transmission electron microscopy

TOF Turn over frequency

TPR Temperature programmed reduction

XANES X-ray absorption near edge structure

XAS X-ray absorption spectroscopy

XRD X-ray diffraction

Symbols:

2
jσ relative mean square disorder between the absorber and an atom (Debye-Waller

factor)

λ mean free path of the photoelectron

χ(k) EXAFS-function

βG integral breadth of Gaussian function

hkl Miller indices
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φj(k) phase shift due to the atomic potentials

βL integral breadth of Lorentzian function

a cubic lattice constant

dhkl spacing of hkl lattice plane

DV crystallite size based on Voigt deconvolution

e microstrain based on Voigt deconvolution

E0 treshold energy of the X-ray absorption process

f2θ intrinsic XRD profile function

Fj(k) the magnitude of the backscattering amplitude of the jth neighbor

g2θ instrumental XRD profile function

h2θ experimental XRD profile function

k the photoelectron wavenumber

Nj number of atoms in the jth shell

Rj mean distance between absorpber and the jth shell

S surface area
2
0S amplitude reduction factor

φ shape parameter of Voigt profile

σ Debye-Waller factor
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