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Abstract

Video applications have emerged in various fields of our everyday life. They have con-
tinuously enhanced the user experience in entertainment and communication services.
All this would not have been possible without the evolution of video compression stan-
dards and computer architectures over the last decades. Modern video codecs employ
sophisticated algorithms to transform raw video data to an intermediate representation
consisting of syntax elements, which allows enormous compression rates before recon-
structing the video with minimal objective quality losses compared to the original video.
Modern computer architectures lay the foundation for these computationally intensive
tasks. They provide multiple cores and specialized vector architectures to exploit the
massive amount of parallelism that can be found in video applications. Customized
hardware solutions follow the same principles. Parallel processing is essential to satisfy
real-time performance constraints while optimizing energy efficiency, the latter being
the most important design goal for mobile devices.

One of the main tasks in modern video compression standards implements a highly
sequential algorithm and lacks data-level parallelism in contrast to all other compute-
intensive tasks: Context-based Adaptive Binary Arithmetic Coding (CABAC). It is the
entropy coding module in the state-of-the-art High Efficiency Video Coding (HEVC)
standard and also its successor Versatile Video Coding. Its purpose is the compression
and decompression of the intermediate video representation by exploiting statistical
properties, thus achieving minimal bitrates. CABAC is one of the main throughput
bottlenecks in video coding applications due to the limited parallelization opportunities,
especially for high-quality videos. Close-distance control and data dependencies make
CABAC even more challenging to implement with modern computer architectures.
This thesis addresses the critical CABAC decoding throughput bottleneck by proposing
multiple approaches to uncover new parallelization opportunities and to improve the
performance with architectural optimizations.

First of all, we quantitatively verify the severity of the CABAC decoding throughput
bottleneck by evaluating the HEVC decoding performance for various workloads using
a representative selection of state-of-the-art computer architectures. The results show
that even the most powerful processors cannot provide real-time performance for several
high-quality workloads. The profiling results clearly show that CABAC decoding is the
main reason for that in most cases.

Wavefront Parallel Processing (WPP) is a well-established high-level parallelization
technique used in video coding and other applications. It can lead to a high degree
of parallelism, however, it suffers from inefficiencies due to the dependencies between
consecutive rows in a frame. We present three WPP implementations for HEVC CABAC
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decoding with improved parallel efficiency. The WPP versions based on more fine-
grained dependency checks allow speed-ups up to 1.83× at very low implementation
cost.

We also present a bitstream partitioning scheme for future video compression standards.
It enables additional parallelism in CABAC decoding by distributing syntax elements
among eight bitstream partitions. Besides the parallelization opportunities, this allows
specialization of the subdecoders responsible for the processing of their corresponding
partitions as they have to process fewer types of syntax elements. This leads to further
improvements in clock frequency and significant hardware savings compared to a full
replication of the CABAC decoder as it is required for approaches such as WPP. Decod-
ing speedups up to 8.5× at the cost of only 61.9% extra hardware area and less than
0.7% bitstream overhead for typical Full High Definition videos make this technique a
promising candidate for use in future video compression standards.

Furthermore, a cache-based architectural optimization is presented. It replaces the
context model memory – a critical component in the CABAC decoder pipeline – by a
smaller cache, thus increasing the achievable clock frequency. An application-specific
adaptive prefetching algorithm is used together with a context model memory layout
optimized for spatial and temporal locality. We perform a design space exploration of
different cache configurations, finding that a cache of 2×8 context models provides the
best performance. It allows for a 17% increase in clock frequency and miss rates of less
than 2%, resulting in performance improvements up to 16.7%.

We also propose techniques for more efficient CABAC decoding on general-purpose
processors. Frequent hardly predictable branches lead to very inefficient implementations
with these processors. Using more complex but linear arithmetic functions for the parallel
decoding of binary symbols provides a speedup of up to 2.04×. A separate bitstream
partition for this type of binary symbol even allows speedups up to 2.45× at the cost
of not more than 0.2% higher bitrate for typical Full High Definition videos.

Finally, we provide recommendations for future video compression standards and com-
puter architectures as well as further research ideas for video coding in general and
CABAC in particular. The research conducted in this thesis shows multiple approaches
that can substantially improve the performance of CABAC decoding, thereby addressing
one of the most critical throughput bottlenecks in modern video coding applications.



Zusammenfassung

Videoanwendungen haben sich in vielen Bereichen unseres täglichen Lebens etabliert
und dabei die Nutzererfahrung in den Bereichen Unterhaltung und Kommunikation
zunehmend verbessert. Das wäre ohne die ständige Weiterentwicklung von Videokom-
pressionsstandards und Computerarchitekturen nicht möglich gewesen. Moderne Video-
codecs nutzen komplexe Algorithmen, um rohe Videodaten in eine aus Syntaxelementen
bestehende Zwischenrepräsentation zu transformieren, was enorme Kompressionsraten
erlaubt. Die anschließende Rekonstruktion der Videodaten kann mit minimalen Qua-
litätsverlusten im Vergleich zum Originalvideo durchgeführt werden. Modern Compu-
terarchitekturen legen die Grundlage für diese rechenintensiven Prozesse. Sie stellen
zahlreiche Rechenkerne und spezialisierte Vektorarchitekturen zur Verfügung, welche
die zahlreichen Parallelisierungsmöglichkeiten in Videoanwendungen ausnutzen. Die
parallele Datenverarbeitung ist essenziell, um die Echtzeitfähigkeit zu gewährleisten
und gleichzeitig die Energieeffizienz zu optimieren, was insbesondere für Mobilgeräte
eines der wichtigsten Entwicklungsziele darstellt.

Context-based Adaptive Binary Arithmetic Coding (CABAC) ist das Entropiekodie-
rungsverfahren im aktuellen High Efficiency Video Coding (HEVC) Standard, sowie
in dessen Nachfolger Versatile Video Coding. CABAC ist für die Kompression und
Dekompression der Zwischenrepräsentation eines Videos unter Ausnutzung statistischer
Gegebenheiten verantwortlich, wodurch minimale Bitraten erreicht werden können. Da-
für wird ein sequentieller Algorithmus verwendet, der CABAC im Vergleich zu allen
anderen rechenintensiven Komponenten aktueller Videokompressionsstandards keine
Ausnutzung von Datenparallelität ermöglicht. Durch die mangelnden Parallelisierungs-
möglichkeiten ist CABAC eine der kritischsten Komponenten, welche die Gesamtleistung
eines Videodekoders beschränken. Das gilt insbesondere für Videos mit hoher Quali-
tät und dementsprechend hohen Bitraten. Außerdem stelle eine Vielzahl an Steuer-
und Datenabhängigkeiten in CABAC moderne Computerarchitekturen vor große Her-
ausforderungen. Das Ziel dieser Doktorarbeit ist die Verbesserung der Leistung des
CABAC-Dekoders, da er die Gesamtleistung aktueller Videodekoder maßgeblich beein-
flusst. Wir stellen dafür verschiedene Ansätze vor, die einerseits neue Parallelisierungs-
möglichkeiten schaffen und andererseits durch architekturelle Optimierungen effizientere
Implementierungen ermöglichen.

Zuerst verifizieren wir quantitativ, dass CABAC für den Dekodierungsprozess in HEVC
eine kritische Komponente ist. Dafür analysieren wir die Dekodierleistung einer reprä-
sentativen Auswahl aktueller Computersysteme für verschiedene typische Videoanwen-
dungen. Die Ergebnisse zeigen, dass selbst die performantesten Prozessoren nicht für
alle Anwendungen echtzeitfähig sind. Weitere Untersuchungen bestätigen deutlich, dass
CABAC in den meisten Fällen dafür hauptverantwortlich ist.

v



vi

Anschließend beschäftigen wir uns mit der Optimierung von Wavefront Parallel Proces-
sing (WPP). Dabei handelt es sich um eine weit verbreitete Parallelisierungstechnik, die
in der Videokodierung und vielen anderen Anwendungen verwendet wird. WPP erlaubt
ein hohes Maß an Parallelisierung, erleidet aber wegen der Abhängigkeiten zwischen
benachbarten Bildbereichen Einbußen in seiner Effizienz. Wir stellen drei Implemen-
tierungsvarianten vor, die die Effizienz der Parallelisierung mit WPP für CABAC in
HEVC deutlich verbessern. Dies wird durch eine feingranularere Prüfung von Abhän-
gigkeiten im Vergleich zu konventionellen WPP-Implementierungen erreicht. So kann
die Dekodierung von Videos um einen Faktor von bis zu 1.83× beschleunigt werden,
während die Implementierung nur unwesentlich komplexer wird.

Dann stellen wir ein Bitstreampartitionierungsschema für zukünftige Videokompressions-
standards vor, welches zusätzliche Parallelisierungsmöglichkeiten schafft. Dies wird
durch die Aufteilung aller Syntaxelemente unter Berücksichtigung ihrer Abhängigkei-
ten auf acht Partitionen erreicht. Zusätzlich ermöglicht dies deutliche Erhöhungen der
Taktfrequenz eines Hardwaredekoders, da die spezialisierten Teildekoder für die verschie-
denen Partitionen weitaus weniger verschiedene Syntaxelemente bearbeiten müssen. Die
reduzierte Komplexität der Teildekoder erlaubt außerdem drastische Hardwareeinspa-
rungen, vor allem im Vergleich zu Techniken wie WPP, die eine vollständige Replikation
des CABAC-Dekoders erfordern. Der vorgestellte Dekoder erlaubt eine Beschleunigung
um bis zu 8.5× bei lediglich 61.9% zusätzlichen Hardwarekosten und einer Erhöhung
der Bitrate um maximal 0.7% bei typischen Full-HD-Videos.

Außerdem stellen wir einen Cache-basierten CABAC-Dekoder vor. Dieser ersetzt den
Context-Model-Speicher durch einen kleineren Cache und ermöglicht somit den Betrieb
mit höheren Taktfrequenzen, da der Speicherzugriff den kritischen Pfad beeinflusst. Die
auftretenden Fehlzugriffe auf den Cache werden mit einem optimierten Speicherlay-
out und einem adaptiven Vorhersagealgorithmus effektiv reduziert. Die Untersuchung
verschiedener Cache-Architekturen zeigt, dass ein 2×8 Context-Model-Cache die beste
Leistung liefert. Durch die Erhöhung der Taktfrequenz um 17% und eine Fehlzugriffsrate
von maximal 2% kann der Durchsatz des Dekoders um bis zu 16.7% erhöht werden.

Die letzte vorgestellte Optimierung behandelt die Software-CABAC-Dekodierung. Der
Algorithmus beinhaltet viele schwer vorhersagbare Verzweigungen im Steuerfluss, was
für aktuelle Prozessoren eine große Herausforderung darstellt und zu ineffizienten Imple-
mentierungen führt. Der Einsatz komplexer arithmetischer Instruktionen zur parallelen
Dekodierung führt zu einer Beschleunigung bis zu 2.04×. Die Nutzung von zwei Bit-
streampartitionen für verschiedene Arten von binären Symbolen ermöglicht es sogar,
die Dekodierung einer davon ohne Rechenaufwand durchzuführen. Folglich ist eine noch
höhere Beschleunigung bis zu 2.45× bei höchstens 0.2% höherer Bitrate möglich.

Abschließend sprechen wir Empfehlungen für die Entwicklung zukünftiger Videokom-
pressionsstandards und Computerarchitekturen aus. Weitere Forschungsideen für Video-
kodierung im Allgemeinen und CABAC im Besonderen werden ebenfalls diskutiert. Die
dieser Arbeit zugrunde liegende Forschung demonstriert bereits einige vielversprechende
Ansätze, welche die Leistung von CABAC und damit des gesamten Dekoders deutlich
erhöhen können. Durch die Behandlung dieser kritischen Komponente leisten wir einen
wichtigen Beitrag zur Verbesserung vieler aktueller und zukünftiger Videoanwendungen.
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CHAPTER1
Introduction

Video is widespread in many applications on a variety of computing systems. The
emergence of video-on-demand services, IP television, video chatting and conferencing,
and others has pervaded many types of digital systems. 75% of all internet traffic
has been video data in 2017 according to the Cisco Visual Networking Index and
it is predicted to increase up to 82% in 2022 [76]. Video coding standards define a
format to represent video data efficiently, such that its storage and transmission over
a network becomes feasible. Only five minutes of raw video data can be stored on a
50 GB dual-layer Blu-ray disc when Full High Definition resolution (FHD, 1920×1080
samples), 50 frames per second and a basic color format are used. This is reduced to a
few seconds with higher resolutions and color depths. Consequently, video compression
becomes inevitable to realize all kinds of entertainment applications. The ever increasing
demand for higher video resolutions (4K/8K) and higher quality levels makes video
compression a very important research field now and in the future.

1.1 Motivation

Video coding standards have evolved in the last decades and constantly improved their
compression efficiency (see Figure 1.1). High Efficiency Video Coding (HEVC/H.265
[8] [9]) is the latest video coding standard developed by the Joint Collaborative Team
on Video Coding (JCT-VC). It provides a 50% decrease in bitrate compared to its
predecessor H.264/AVC [14] at the same subjective quality [26]. The potential for
another 40% bitrate reduction for HEVC’s in-development successor Versatile Video
Coding (VVC [17]) was confirmed after the Joint Video Exploration Team studied
the performance of new coding tools [36]. Modern video codecs provide compression
rates between 100× and 1,000× without a noticeable difference in subjective quality
compared to the uncompressed video. This is mainly achieved by sophisticated algo-
rithms that remove spatial and temporal redundancies in similar frame areas. It is also
exploited that the human visual system is insensitive to specific information, which can
be removed without affecting the perceived quality. However, these algorithms have a
very high computational complexity and push even modern high-performance computer
architectures to their limits. Video coding applications and computer architectures
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Figure 1.1: Average improvement in compression efficiency for interactive
and entertainment applications of previous video coding stan-
dards compared to MPEG-2. Results derived from [26].

have mutually influenced each other during the last decades. Modern video compression
standards such as HEVC employ multiple high-level parallelization tools to exploit the
capabilities of today’s multi- and many-core architectures. It is inevitable to make use of
these thread-level parallelism (TLP) opportunities to implement high-performance and
energy-efficient video applications. Furthermore, many video compression algorithms
are designed to allow high-throughput processing by relaxing some data and control
dependencies even though this might introduce small losses in compression efficiency.
On the other hand, modern general-purpose processors (GPPs) provide wide vector
extensions to efficiently process the massive amount of data-level parallelism (DLP) that
can be found in video processing applications. Modern GPPs show real-time decoding
capabilities for high-quality 4K video material, however, with poor energy efficiency.
Therefore, dedicated video encoding and decoding hardware is used in many comput-
ing systems, especially mobile devices, to drastically reduce their energy consumption.
These mobile devices heavily rely on maximized energy and compression efficiency while
real-time performance is a minimum requirement.

One component in HEVC and also in other video compression standards is often a
throughput bottleneck, especially for high-quality videos: context-based adaptive bi-
nary arithmetic coding (CABAC [44]). The CABAC decoder extracts syntax elements
from the compressed bitstream and controls all other decoder modules with this in-
formation. It implements a strictly sequential algorithm with close-distance data and
control dependencies which makes optimizations very challenging. In contrast to all
prediction, transform and filtering modules in HEVC, it does not contain any DLP. As
a result, CABAC can neither benefit from the vector extensions of modern GPPs nor
from vectorization approaches in customized hardware. This strictly limits the overall
speedup that can be achieved with vectorization. Amdahl’s Law suggests that the maxi-
mum application speedup is determined by the non-parallelizable fraction [77]. CABAC
decoding can easily account for 20% to 40% of the runtime for high-quality videos in
a non-vectorized decoder, in extreme cases even more than 80%. Consequently, the
overall vectorization speedup is limited to 5×, 2.5× and 1.25× respectively, although
much higher improvements can be reached for the other components.
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The performance of video decoding is more critical than video encoding in most appli-
cations. Especially in video-on-demand services, playback from Blu-ray discs, etc., a
video needs to be encoded only a few times while decoding can easily be done billions
of times. The performance of the encoding process does not matter too much as it can
be done offline. On the other hand, real-time performance is essential on the decoder
side and energy efficiency is also of utmost importance considering that the number
of mobile devices used for video playback is rapidly increasing. Applications with real-
time encoding requirements, such as digital cameras and video communication, can
always aim for a lower compression rate to reduce the performance requirements. This
tradeoff makes insufficient encoder performance less critical than at the decoder side.
Furthermore, the inefficient compression increases the workload for the decoder. As
a matter of fact, the efficient implementation of CABAC is more challenging in the
decoder in general as the currently decoded syntax element determines which one needs
to be decoded next. Compared to that, the next syntax elements are always known in
the CABAC encoder which allows more efficient pipelining strategies. This thesis is
focused on addressing the critical CABAC decoding throughput bottleneck that limits
the performance of many video applications.

1.2 Objectives

In this thesis, we develop and evaluate different optimization strategies for HEVC
CABAC decoding. We also propose modifications in the HEVC standard that allow
more efficient CABAC decoding in future video coding standards.

Objective 1: Identify main performance bottlenecks in video decoding.
The performance of the overall video decoder determines the quality of experience in
video-based applications. Therefore, an analysis of the work distribution between the
different decoder modules is essential to identify bottlenecks that need to be addressed.
Video coding applications are especially challenging in this regard as the work distribu-
tion highly depends on the video content, characteristics and quality.

Objective 2: Improve the performance and efficiency of CABAC decoding.
Based on the results of Objective 1, CABAC decoding has been identified as the main
performance bottleneck for high-quality video decoding. Consequently, we will focus
on optimizing CABAC decoding as high-quality video decoding is most challenging for
modern computer architectures. We aim at implementing the existing HEVC CABAC
algorithm as efficiently as possible on a variety of today’s computing systems.

Objective 3: Enable new parallelization opportunities in CABAC decoding.
CABAC decoding implements a sequential arithmetic coding algorithm which, unlike
all other major decoder modules, does not allow the use of DLP techniques for per-
formance improvement. While modern computer architectures – especially graphics
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processing units (GPUs) and GPPs – constantly improve their support for exploiting
DLP, CABAC is the only module in state-of-the-art video codecs that does not benefit
from this development. Finding alternative parallelization opportunities is essential to
compensate for the lack of DLP. Modifications in the HEVC standard might be neces-
sary to achieve this goal. Therefore, the developed techniques can be seen as proposals
for future video coding standards.

By addressing the CABAC decoding throughput bottleneck, the data-parallel capabil-
ities of modern computer architectures become also more effective as the sequential
fraction in the video decoding process is reduced.

1.3 Contributions

The research conducted in this thesis is supposed to improve the performance and
efficiency of modern video decoders in hardware and software implementations. Due to
the versatility of video coding applications, we provide a comprehensive performance
analysis of the HEVC decoder. The CABAC decoder is identified as the main perfor-
mance bottleneck for high-quality videos in this analysis. Consequently, we develop and
evaluate strategies to optimize the CABAC decoding process on different levels, e.g.
frame, block and symbol level. Furthermore, we aim at enabling new parallelization
opportunities for use in future video coding standards. The main contributions are as
follows:

• We provide a quantitative performance evaluation of the HEVC software decoder.
Therefore, we employ multiple processors to represent a wide range of computing
devices, from smartphones to high-performance desktop computers. We also use
testsets that are typical for different video coding applications and evaluate them
in a broad range of quality levels. Based on this analysis, the main decoder
bottlenecks and architectural limitations can be identified. We further provide
recommendations for future video coding standards and computer architectures
to better match the capabilities and requirements of each other.

• Wavefront Parallel Processing (WPP) is an established tool to exploit intra-frame
parallelism by processing consecutive rows of pixel blocks, however, it suffers from
parallel inefficiencies. When analyzing the dependencies that lead to the common
horizontal offset between consecutive rows, it can be found that they are most
relaxed for CABAC. To exploit that, we propose three methods that improve the
parallel efficiency of WPP for CABAC decoding when it is decoupled from the
reconstruction process. The methods differ in the granularity at which dependency
checks are performed.

• We propose a modified bitstream format for future video coding standards that en-
ables additional parallelization opportunities and substantial speedups for CABAC
decoding. A common HEVC bitstream is divided into eight partitions that can be
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processed simultaneously with few dependencies. The fixed partitioning scheme
works best for high-quality videos when CABAC throughput is most critical. Fur-
thermore, the bitstream overhead and hardware cost are much smaller than with
the existing high-level parallelization tools in HEVC.

• Architectural improvements for CABAC hardware decoding result in higher achiev-
able clock frequencies and consequently higher throughput. We present a context
model cache architecture with an application-specific memory layout. An adaptive
prefetching algorithm is used to reduce the miss rate to a negligible level. The
use of this cache architecture leads to improvements in performance and energy
efficiency with low hardware overhead.

• Although many devices have dedicated video coding hardware, software is often
used as a fallback solution, e.g. when advanced video features are used. We present
an improved technique for parallel bypass-bin decoding on GPPs. Although it
is based on simple integer arithmetic, common CABAC decoding is inefficient
on GPPs due to frequent hardly predictable branches. We achieve substantial
decoding speedups by replacing such code by a branch-free version based on more
complex arithmetic instructions.

The contributions of this thesis are based on previous works that have been published
as follows:

1. P. Habermann, "Design and Implementation of a High-Throughput CABAC
Hardware Accelerator for the HEVC Decoder, Lecture Notes in Informatics - Sem-
inars, Informatiktage 2014, pp. 213-216, Potsdam, Germany, March 2014

2. P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, "Optimizing HEVC
CABAC Decoding with a Context Model Cache and Application-specific Prefetch-
ing", Proceedings of the 11th IEEE International Symposium on Multimedia
(ISM 2015), pp. 429-434, Miami, FL, USA, December 2015, Best Student Pa-
per Award

3. P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, "Application-
Specific Cache and Prefetching for HEVC CABAC Decoding", IEEE Multimedia,
volume 24, issue 1, pp. 72-85, January 2017

4. P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, "Syntax Element
Partitioning for high-throughput HEVC CABAC Decoding", Proceedings of the
42nd IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2017), pp. 1308-1312, New Orleans, LA, USA, March 2017

5. P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, "Improved Wave-
front Parallel Processing for HEVC Decoding", Proceedings of the 13th Interna-
tional Summer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems (ACACES 2017), pp. 253-256, Fiuggi,
Italy, July 2017
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6. P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, "A Bin-Based
Bitstream Partitioning Approach for Parallel CABAC Decoding in Next Gener-
ation Video Coding", Proceedings of the 33rd IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2019), pp. 1053-1062, Rio de Janeiro,
Brazil, May 2019

7. P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, "Efficient Wave-
front Parallel Processing for HEVC CABAC Decoding", Proceedings of the 28th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP 2020), pp. 339-343, Västerås, Sweden, March 2020

The author of this thesis developed the research ideas of all publications. He performed
the implementation work, designed and executed the evaluations, and wrote the papers.
The co-authors assisted in technical discussions, by providing software that was used as
a starting point for the implementation (publications 1-3), and by performing reviews.

1.4 Thesis Organization

Chapter 2 provides a brief overview of the fundamentals of video coding with a focus
on the HEVC standard. We also present the results of the conducted performance
evaluation to identify the main throughput bottlenecks in the HEVC decoder. Finally,
we provide a more detailed description of CABAC as it is the main decoder module
covered in this thesis. Related work is discussed in Chapter 3. The analysis of existing
work is divided into multiple parts that cover parallelization approaches on different
levels, as well as architectural optimizations. Based on the results of the analysis we
propose multiple optimizations which are covered in the following chapters.

Three WPP implementations for CABAC decoding are presented in Chapter 4. They
perform more fine-grained dependency checks and improve the parallel efficiency com-
pared to conventional WPP. The proposed techniques yield best results for low-delay
applications which also benefit the most from the improved parallel efficiency within
a frame. Afterwards, we propose a bitstream partitioning approach in Chapter 5 that
enables additional parallelism and significantly improves the performance of CABAC
decoding for future video coding standards. At the same time, the hardware cost and bit-
stream overhead are substantially smaller than for the HEVC high-level parallelization
approaches because these metrics have been specifically targeted in the design process
of the bitstream partitioning scheme. Chapter 6 shows architectural enhancements with
an application-specific context model cache architecture, the corresponding adaptive
prefetching algorithm, and an optimized context model memory layout. A design space
exploration has been performed to find the best cache configuration in terms of perfor-
mance, energy efficiency and hardware cost. Different techniques for improved CABAC
decoding on GPPs are presented in Chapter 7. The replacement of frequent hardly
predictable branches by more complex but branch-free arithmetic instructions leads to
substantial speedups when exploiting the bypass-bin grouping in HEVC.
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Finally, the thesis is concluded and promising future work is discussed in Chapter 8.
We also provide recommendations for developers of video compression standards and
computer architectures based on the findings in this thesis.





CHAPTER2
Background

This chapter provides the background information to which we will refer in the thesis.
Section 2.1 covers information about video coding, especially the HEVC standard.
Furthermore, the results of a performance analysis of the HEVC decoder are presented
in Section 2.2 to quantitatively motivate the need for further optimizations in CABAC
decoding. Finally, a more detailed description of HEVC CABAC is provided in Section
2.3 as it is the main topic of this thesis.

2.1 Video Coding

Most modern video coding standards employ a hybrid approach with prediction tech-
niques and a transformed residual signal. Intra- and inter-picture prediction are used to
remove spatial and temporal redundancies in similar frame areas. As these predictions do
not yield perfect results, a transformed and quantized version of the difference between
the real frame area and its prediction is also transmitted. In this way, video data can be
reconstructed based on previously decoded information. The post-processing with image
filters and the compression of the prediction and residual information with an entropy
coding method complete the majority of state-of-the-art video coding standards.

Sampling is applied to videos to transform them into a time-discrete fixed spatial
resolution. The time-discrete sampling determines the number of frames per second
(fps) a video consists of. 20 to 60 fps are typically used in most applications to allow
smooth transitions between frames. The spatial resolution determines the amount of
details that can be observed in video data. Full High Definition (FHD, 1920×1080
samples) is a widespread resolution that is used in many entertainment applications.
Table 2.1 shows more video resolutions that are typically used.

Video data is commonly represented in the YCbCr color scheme. It consists of luminance
information (luma, Y) and two chrominance (chroma) components that represent the
deviation from gray towards blue (Cb) and red (Cr). This decorrelation of the color
components is beneficial for the compression efficiency. Furthermore, chroma subsam-
pling is often applied to reduce the amount of required data, exploiting that the human
visual system is more sensitive to luminance than to chrominance. Only one Cb and

9
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Table 2.1: Common video resolutions for different aspect ratios (4:3, 16:9,
17:9).

4:3 16:9 17:9
VGA 640×480 HD 1280×720
SVGA 800×600 FHD 1920×1080 2K 2048×1080
UXGA 1600×1200 UHD-1 3840×2160 4K 4096×2160
QXGA 2048×1536 UHD-2 7680×4320 8K 8192×4320

Table 2.2: Chroma subsampling modes with chroma resolutions relative to
an N × N luma block.

Mode 4:2:0 4:4:4 4:2:2 4:0:0
Chroma resolution
(width × height)

N
2 × N

2 N ×N N
2 ×N –

Cr sample are used together with a block of 2×2 Y samples in the most common 4:2:0
mode, which is equivalent to half the horizontal and vertical resolution for Cb and Cr
compared to Y. A list of common chroma subsampling modes can be seen in Table 2.2.

2.1.1 High Efficiency Video Coding

The HEVC standard has been released in 2013. Since then, it has been updated to
the current version of November 2019 [9]. Multiple extensions have been specified to
extend its applicability to more areas, e.g. range extensions [11], scalable video coding
[12], as well as multiview and 3D extensions [13]. The HEVC Test Model (HM [10]) is
the corresponding reference software that provides an implementation of the encoder
and decoder. The following description of the HEVC standard is based on the work of
Sullivan et al. [8].

Each frame is divided into coding tree units (CTUs) in the HEVC standard (see
Figure 2.1). CTUs are square blocks of 64×64, 32×32 or 16×16 samples. The CTU size
is fixed for a video and can be selected to allow the best compression efficiency (64×64)
or lowest processing latency (16×16). A coding quadtree per CTU can recursively divide
the area into square coding units (CUs) (see Figure 2.2a). The largest possible CU
size is equal to the CTU size while the smallest size is 8×8 samples. The decision
about the prediction mode (intra- or inter-picture) is made on the CU level. Every CU
is associated with one, two or four prediction units (PUs) and a (potentially empty)
transform tree. The area of a CU can be divided into PUs with a variety of shapes
(see Figure 2.2b) to better match the structure of the corresponding frame content
and allow more efficient prediction. While only square shapes are available for intra-
picture prediction, all shapes can be used for inter-picture prediction as long as the
resulting PUs have at least a size of 4×8/8×4 samples. The transform tree represents
the residual signal, i.e. the difference between the real block and the predicted block.
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Figure 2.1: Partitioning of a frame into 64×64 CTUs. (Cactus test sequence
from JCT-VC common test conditions [23])

(a) Recursive quadtree splitting

N×N N
2 × N

2 N× N
2

N
2 ×N

N
4 ×N (l) N

4 ×N (r) N× N
4 (u) N× N

4 (d)

(b) PU shapes

Figure 2.2: Block partitioning in HEVC.
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The transform tree can also be recursively divided into square transform units (TUs)
with a minimum size of 4×4 samples. TUs consist of multiple transform blocks (TBs)
for the color components Y, Cb and Cr.

An overview of the most important modules in the HEVC decoder is presented in Fig-
ure 2.3. First, the entropy coding module extracts syntax elements – a non-sample-based
representation of a frame – from the compressed input bitstream. HEVC uses CABAC
as the only entropy coding method. The extracted syntax elements are then used to
control other decoding steps, such as prediction and filters. Intra prediction exploits
spatial similarities of neighboring blocks within a frame to remove redundant data and
decrease the required data rate. Inter prediction targets the same goal by exploiting
temporal similarities of blocks in consecutive frames. In the encoder, the residual is
transformed to the frequency domain and quantized before compression. Inverse quan-
tization and inverse transforms are applied to the transform coefficient syntax elements
in the decoder to restore the residual data which is added to the predicted block before
filters are applied. The deblocking filter (DBF) is used to reduce compression artifacts
that arise due to the block-wise processing of video data. Afterwards, the sample adap-
tive offset (SAO) filter reduces sample distortion by adding specific offsets to different
sample categories. The main components are described in more detail in the following.

CABAC is the only entropy coding method in HEVC. It employs binary arithmetic
coding which is known to provide high compression performance at high computational
complexity. Context modeling is used to compress binary symbols (bins) efficiently and
to enable an adaptive entropy coding method that can work well with very different video
characteristics. A more detailed description of CABAC will be provided in Section 2.3.4
as it is the main decoder component discussed in this thesis.

Intra Prediction predicts the signal of a block based on the adjacent pixels in the
top-left, top, top-right, left and bottom-left blocks. It is predominantly used to exploit
spatial similarities in regular structures and homogeneous regions in a frame. HEVC
intra prediction supports a DC mode, a planar mode, and 33 directional modes for
prediction. Neighboring samples are extrapolated in the respective prediction direction
when a directional mode is used. The DC mode fills the whole predicted block with
an average value of all neighboring samples. The planar mode creates a gradient that
provides a smooth transition from the adjacent samples to the predicted area. Intra
prediction is performed on 4×4, 8×8, 16×16 or 32×32 blocks.

Inter Prediction exploits temporal similarities in different frames to predict a block
of samples from previously decoded frames. This method is particularly effective as
consecutive frames in a video are most often very similar. As a result, inter prediction
is one of the most important techniques being responsible for the very high compression
rates in modern video compression standards. A motion vector is signaled to indicate
the location of the reference block in a previous frame compared to the predicted block.
Motion vectors compensate for the movement of objects or the camera in consecutive
frames. Further information is coded to identify the reference frame that should be
used. An eight-tap interpolation filter is used for luma inter prediction (four-tap for
chroma) to achieve quarter-pixel (eighth-pixel for chroma) accuracy. Bi-prediction is
used to perform a weighted interpolation between two different reference frames.
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Inverse Quantization is applied to undo the quantization in the encoder. The quan-
tization process divides the transformed residual signal by a specific value to reduce
the amount of data that has to be coded. There are losses in precision when undoing
the quantization step due to the use of integer arithmetic. The quantization parameter
(QP) determines the extent of data loss.

Inverse Transform is performed after the inverse quantization process. Discrete cosine
transforms and discrete sine transforms are applied to the residual signal in the encoder
to transform it into the frequency domain. As the human visual system is less sensitive
to specific parts of the frequency spectrum, they can be removed without affecting
the noticeable quality. The inverse process is performed in the decoder to restore the
initial residual signal, however, it might be inaccurate due to the quantization that was
performed in between. HEVC specifies 4×4, 8×8, 16×16 and 32×32 discrete cosine
transforms and a 4×4 discrete sine transform.

The DBF is applied after the residual signal was added to the predicted block. The
main purpose of the filter is the reduction of artifacts that arise due to the block-based
coding. The DBF is only applied to PU and TU boundaries on an 8×8 grid. Different
filter strengths are used. The strongest is applied if at least one of the involved blocks is
intra-predicted. A weak filter is applied when either of the blocks has non-zero transform
coefficients or when the inter prediction data differs from each other.

The SAO Filter is the final step in the decoder pipeline. It can enhance the video quality
in smooth areas and around edges by providing two modes that conditionally manipulate
all samples based on parameters that are encoded in the compressed bitstream. The band
offset mode adds specific offsets to all samples whose values are within a specific range
while the edge offset mode manipulates samples if their horizontal, vertical or diagonal
neighbors fulfill certain requirements that make the samples local minima/maxima or
edge samples.

The work distribution among the described decoder modules depends on the frame
content and especially on the video quality. The QP is the most important parameter
to determine the quality of the residual signal and, consequently, also the quality of
the reconstructed video. Lower QPs result in higher video quality and higher bitrates.
Typical QPs for low quality are 32 and 37, while 22 and 27 are used for high-quality
videos. QPs of 12 and 17 are used for very high video quality in special applications.

Different modes are commonly used in video coding. All-intra (AI) does not use inter
prediction, thereby removing dependencies between frames at the cost of much higher
bitrates. Random-access (RA) makes use of the effective inter prediction for better
compression efficiency. Intra frames are typically used every second to provide access
points. This is the common mode for most applications. Low-delay (LD) makes use of
inter prediction but limits the maximum decoding delay by restricting the available
reference frames.



2.1 Video Coding 15

2.1.2 Other Video Coding Standards

HEVC is by far not the only existing video coding standard. In this section, we will briefly
describe the main differences to HEVC’s predecessor H.264 and its in-development
successor VVC. We further provide an overview of the emerging AV1 standard.

H.264/AVC [14] [15] was released in 2003 and has been the widely established standard
before the introduction of HEVC. It requires about twice the bitrate as HEVC for
compressing videos at the same subjective quality. A major reason for that is HEVC’s
support of 64×64 CTUs. This allows a much more efficient compression than with
the 16×16 macroblocks in H.264. Furthermore, HEVC intra prediction supports 33
instead of eight directional modes in H.264, thereby allowing a much more fine-grained
directional prediction. The inter prediction interpolation precision was improved with
seven- and eight-tap filters compared to a six-tap filter in H.264. The H.264 DBF
was applied on a 4×4 grid. The simplified filter decision on an 8×8 block granularity
in HEVC makes the filter easier to parallelize. The SAO filter did not exist at all in
H.264. Finally, H.264 supported two entropy coding methods. In addition to CABAC,
context-based adaptive variable length coding (CAVLC) could also be selected. It
has a lower computational complexity but does not reach the coding efficiency of
CABAC. Furthermore, the CABAC design has been significantly improved to allow
higher throughput.

VVC [17] aims to reduce the bitrate by another 50% in comparison to HEVC. The
Joint Video Experts Team (JVET) is currently supervising the development process
and the release is planned for 2020. An important step in this direction is the increase
of the CTU size to 256×256 samples. The nesting of a multi-type tree into the coding
quadtree allows a better mapping of coding blocks to objects in a frame by also allowing
binary and ternary splits. The number of directional intra modes was increased from 33
to 65 for more fine-grained prediction. Transform sizes have been increased from 32×32
up to 128×128. Another new feature is the introduction of the adaptive loop filter (ALF)
which was also part of HEVC but was removed before its release. It applies a Wiener filter
to minimize the mean square errors between original samples and reconstructed samples
from SAO and thereby allows significant bitrate reductions at the same quality level.
While the CABAC implementation is very similar as in HEVC, some refinements have
been applied, e.g. adaptive context model initialization and multi-hypothesis probability
estimation. The VVC Test Model [18] is the corresponding reference software.

AV1 (AOMedia Video 1, [19]) is an open-source video coding standard developed by
the Alliance for Open Media. It has been released in 2018 [20] and succeeds Google’s
VP9 standard [21] [22]. Both aimed at providing a royalty-free alternative to H.264
and HEVC video coding standards and implement the same hybrid approach, however,
there are many differences in the coding tools. AV1 specifies 128×128 superblocks
compared to the 64×64 CTUs in HEVC. The partitioning of the coding quadtree is
more flexible and allows smaller block sizes. 56 directional modes are available for
intra prediction and an intra block copy allows to fully reuse previously decoded blocks
in the same frame. Interesting techniques in AV1 inter prediction include overlapped
block motion compensation, warped motion compensation, and advanced compound



16 2 Background

prediction. Besides the DBF, a constrained directional enhancement filter is applied for
deringing and one of two loop restoration filters can be used. AV1 supports frame super-
resolution which offers coding gains at low bitrates by processing a frame at a lower
resolution and upscaling it afterwards. AV1 employs a multi-symbol entropy coding
scheme compared to the binary arithmetic coder in HEVC. 15-bit precision is used for
the probabilities of all potential symbols to enable improved accuracy, especially for
infrequent symbols.

A comparison of the coding efficiency of HEVC, H.264 and AV1 has been provided by
Grois et al. [37]. They found 32.8% and 38.4% bitrate reductions of HEVC compared
to H.264 and AV1 respectively. The results have been partly confirmed by Laude et al.
[38] who measured the same bitrate increase of AV1 compared to HEVC. Furthermore,
they have shown an average 27.7% and 44.6% bitrate reduction in the RA configuration
of VVC over HEVC and AV1 respectively. They also found a 9.7× and 32.6× increase
in encoding time of VVC and AV1 over HEVC. This might limit the applicability
of the new standards in applications with timing constraints or lead to performance
reductions due to necessary tradeoffs between runtime and coding efficiency. In general,
the performance comparison between different video codecs is a challenging task. The
results vary significantly depending on the encoder configuration, the evaluated metrics
(objective/subjective) and especially the employed testsets. An established metric for the
comparison of the compression performance of different encoders at the same objective
quality is described in [40].

2.1.3 Parallelism in Video Coding

Video coding applications contain a massive amount of parallelism on different lev-
els. High-quality real-time video applications can only be efficiently implemented by
exploiting these parallelization opportunities.

Frame-level Parallelism refers to the simultaneous processing of multiple frames.
This is generally possible in HEVC as every frame is coded in a separate slice, however,
some inter-frame dependencies need to be considered. Slices are data structures that
allow independent processing of the corresponding frames or frame areas. A frame
consists of at least one slice and can contain multiple slices, which also enables parallel
processing within a frame. HEVC supports I-, P- and B-frames. I-frames use only
intra-prediction and consequently do not depend on other frames. That is why they are
mainly used as access points in a video. P-frames can be inter-predicted from previously
decoded frames. B-frames can make use of bi-prediction to be reconstructed from two
other frames. Both P- and B-frames can also use intra-prediction. The decision for the
prediction mode is made at CU granularity.

Figure 2.4 shows a typical structure of a group of pictures (GOP) and the dependencies
between them. The dependencies and the resulting decoding order are chosen to make
the best use of the effective bi-prediction. Every video sequence starts with an I-frame
(index 0). Afterwards, a P-frame (index 8) can be predicted from the I-frame. The
B-frame at index 4 can be decoded as soon as both the I- and the P-frame are decoded.



2.1 Video Coding 17

Picture order
Decoding order

0 1 2 3 4 5 6 7 8 . . . 16 . . . 24
0 4 3 5 2 7 6 8 1 . . . 9 . . . 17

I P
B

B B
B B B B

P. . . I

Figure 2.4: GOP structure with one I-frame every 24 frames.

The first frame-level parallelization opportunities within a group of nine frames arise
when frames 2 and 6 can be decoded in parallel. After that, even four frames can be
processed simultaneously (1, 3, 5, 7). In addition to the parallelism inside a group of
nine frames, multiple of these groups can also be processed at the same time, i.e the
I-frame at index 24 (and all other multiples of 24) in parallel with the I-frame at index
0, and the P-frame at index 16 in parallel with the B-frame at index 4. Overall, many
frames can be processed in parallel, however, due to delay constraints and limitations
in computational and memory resources, the number of parallel frames is very limited
in practice.

Block-level Parallelism refers to the parallel processing of multiple blocks within a
frame. These are most commonly CTUs, however, the approach can also be applied to
PUs, TUs, and even smaller blocks of samples, especially when performing operations for
the different color components. Three high-level parallelization techniques for parallel
CTU processing are specified in the HEVC standard: Slices [33], Tiles [34] and WPP
[35]. A frame can consist of multiple slices whose corresponding areas can be processed
independently (see Figure 2.5a). Slices contain a set of CTUs which are processed
row by row. A frame can also be divided into rectangular tiles for independent parallel
processing (see Figure 2.5b). The frame partitioning approaches prevent some prediction
opportunities at tile boundaries and thereby reduce the compression efficiency. WPP
allows the parallel processing of multiple rows of CTUs (see Figure 2.5c). The decoding
of a CTU row can be started as soon as the second CTU in the above row has been
processed because the CABAC context information needs to be forwarded. These
dependencies lead to a wavefront-like progression of multiple threads over the frame.
WPP can also lead to a reduced compression efficiency compared to sequential decoding
as the CABAC learning process is interrupted. Furthermore, a ramp-up and -down in
the number of active parallel threads limits the efficiency of WPP within a single frame,
however, this problem becomes negligible as soon as multiple frames can be processed
in parallel. Slices, Tiles and WPP depend on even load balancing for best parallel
scalability. Unfortunately, the load is most often concentrated in specific frame areas.
Differently-sized slices and tiles can adapt to the load-intensive areas and reach a better
work distribution.

An analysis of the parallel scalability and efficiency of HEVC parallelization approaches
has been provided by Chi et al. [30]. One of the main contributions of this work is a
technique called Overlapped Wavefront (OWF) which extends WPP to multiple frames.
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(a) Slices (b) Tiles (c) WPP

Figure 2.5: High-level parallelization tools in HEVC.

This three-dimensional parallelization approach substantially improves the scalability
and efficiency of WPP.

Task pipelining is also an effective technique at the CTU level. Instead of performing
entropy decoding, inverse transform and quantization, prediction, and filtering for a
CTU after each other before processing the next CTU, these steps can be pipelined. A
single thread can perform the entropy decoding for CTU N . When the work is done,
it can directly proceed with the entropy decoding for CTU N + 1. At the same time,
another thread can execute all inverse transform and quantization operations for CTU
N while a third thread performs the prediction for CTU N − 1 and a fourth thread
executes the DBF and SAO filter for CTU N − 2. Load balancing is also the main
limiting factor for performance improvements, as with Slices, Tiles and WPP. Task
pipelining can also be applied at the frame-level, however, it induces immense memory
requirements as information for multiple frames needs to be stored for the next thread.
This is also not optimal in terms of data locality.

Sample-level Parallelism can be found in all prediction, transform and filtering tasks
in the HEVC decoder. The same operations are most often applied to all samples in
a block. The vector extensions of modern processors can be used to process many of
these samples in parallel and with reduced overhead for instruction fetch, decode, etc..
The same vectorization approaches can also be implemented in customized hardware.
Vectorization is greatly responsible for the existence of high-performance and energy-
efficient real-time video coding applications as it provides significant speedups up to
5× for the entire HEVC decoder [31]. This work by Chi et al. provides an overview
of the vectorization techniques applied to all components of the HEVC decoder that
contain significant DLP. The evaluation covers many different processors with a variety
of vector extensions. It has also been shown that the improvements in energy-efficiency
grow very similar to the speedup achieved by vectorization [32].

2.2 Performance Evaluation

The HEVC decoder is a complex application consisting of multiple components (see Fig-
ure 2.3) that differ in their computational and memory requirements. The performance
of the whole decoder is limited if only one component does not deliver the required
throughput for real-time decoding. It is necessary to identify these bottlenecks and
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address them with specific optimizations to improve the overall decoder performance
in the most efficient way. Therefore, we perform an analysis of the HEVC software
decoder providing useful general insights that also apply to hardware decoding as the
same operations are possible in hardware, however, most often more efficiently. The
resulting higher computational performance in dedicated hardware might bring new
bottlenecks to light, especially limitations of the memory system. Nevertheless, this
can also be mitigated with application-specific cache architectures or customized data
layouts for improved data reuse.

An overview of complexity-related aspects in the HEVC standardization process has
been provided by Bossen et al. [27] shortly before the publication of the standard in
2013. Although the main focus is a comparison to H.264, the performance results can
be used as a reference. An optimized HEVC software decoder has been used for the
evaluation that evolved from the one used in [29]. Intel SSE 4.1 and ARM Neon vector
extensions are used to exploit the significant amount of DLP. The authors evaluated
single-threaded decoding performance in RA mode with QPs of 27 and 32. An Intel
Core i7-3720QM mobile CPU (central processing unit) can process all JCT-VC class B
testsequences (1920×1080 samples) while an embedded 1 GHz ARM Cortex-A9 CPU
can process all JCT-VC class C testsequences (832×480 samples) in real-time. The
most time-consuming decoding tasks in this configuration are motion compensation
(43%/49%), entropy decoding (24%/21%) and loop filters (21%/18%).

Ultra High Definition (UHD, 3840×2160 samples) real-time decoding capabilities have
been demonstrated by Bross et al. [28] using a 3.1 GHz eight-core server processor (Intel
Xeon E5-2687W) and the Fraunhofer HHI HEVC software decoder in 2013. Although
only achieved for lower quality levels, the general feasibility of UHD real-time decoding
is shown.

Chi et al. provided a more exhaustive performance evaluation of a fully vectorized
HEVC software decoder on multiple AMD, Intel and ARM processors in 2015 [31].
In addition to the existing evaluation by Bossen et al., the effect of multiple vector
extensions is investigated. They demonstrate a substantial speedup due to the newer
AVX2 vector extension which doubles the vector register size compared to SSE 4.1 and
AVX. Further optimizations such as chroma interleaving have been applied to achieve
a better utilization of the vector registers. Furthermore, UHD video material has been
used for performance measurements as it is one of the emerging use cases of HEVC.
The authors also used a wider spectrum of video quality levels (QP 24, 28, 32, 36).
Multithreading has also been added to the evaluation. A WPP approach has been
extended to multiple frames [30] to efficiently exploit TLP and get the most out of
modern multi-core architectures. The evaluation shows that multithreaded real-time
software decoding of 1080p videos is easily achievable for all architectures except an
ARM Cortex-A9. Some of the more powerful processors can even decode 10-bit 2160p
videos in real-time.

Real-time decoding capabilities have been demonstrated for many types of video coding
applications since the introduction of HEVC. However, as computer architectures and
video coding use cases have evolved in the last years, we provide an up-to-date evaluation.
It is necessary to identify the main throughput bottlenecks so that the optimization
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work leads to the largest speedup for the overall decoder. The main contributions
compared to existing works are:

• An analysis of real-time decoding capabilities and performance bottlenecks that
need to be addressed in future standards such as VVC.

• Multiple state-of-the-art processor architectures that represent different comput-
ing devices.

• A testset of commonly used video coding applications.

• Evaluation of the latest 512-bit vector extensions (AVX-512).

In the following, we describe the experimental setup and show performance and profiling
results for different applications on a variety of processors. Furthermore, we draw main
conclusions from the performance analysis.

2.2.1 Experimental Setup

One of the main goals of the performance analysis is to provide an overview of the real-
time decoding capabilities of modern GPPs for typical video coding applications. Four
different platforms are used for evaluation to cover a wide range of computing systems.
Each of the selected processors is representative of a class of devices: smartphones,
mobile computers, desktop computers and high-performance desktop computers. An
overview of the selected platforms can be seen in Table 2.3. The Kirin 970 is a commonly
used smartphone processor that consists of four high-performance ARM Cortex-A73
cores and four low-power ARM Cortex-A53 cores. We further employ the Intel Core
i7-8550U ultrabook CPU and the Intel Core i7-7700K desktop CPU for evaluation.
Although all these three CPUs have four main processor cores, their performance is
very different. The ultrabook processor and especially the smartphone processor are
designed to be very energy-efficient. Therefore, they operate at a lower clock frequency
and have a different cache architecture. Besides the smaller vector register size, the
Kirin 970 also lacks simultaneous multithreading, i.e. the ability to execute two threads
on the same core at the same time while sharing functional units. The high-performance
desktop processor (Intel Core i9-7960X) has 16 cores which makes it much more powerful,
even with the slightly reduced clock frequency. Furthermore, the doubled vector register
width in comparison to the conventional desktop and ultrabook CPU is expected to
allow a better exploitation of the available DLP in video coding applications. We use
an optimized HEVC decoder developed by Spin Digital Video Technologies GmbH [78].
A previous version of it has already been used in [31]. We employ WPP with one thread
per core for the smartphone processor and two threads per core for all others for the
evaluation.
Video coding is used in very different fields and the corresponding applications have
different requirements regarding video resolution, frame rate, color format and depth,
quality and bitrate. In the following, we list six typical applications that will be used
for the evaluation in this work.
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Table 2.4: Video coding applications. Separate bitrate ranges are shown for
the lower and higher quality levels.

Video Class #Videos Mode QPs Bitrate
(MBit/s)

Low-delay Common testset
Class E 3 LD 22, 27, 32, 37 0.1 - 0.4

0.4 - 2.2
Screen
content

Range Extensions
YCbCr 444 SC 6 RA 22, 27, 32, 37 0.2 - 1.8

0.5 - 6.6

Animation Range Extensions
YCbCr 444 Animation 3 RA 22, 27, 32, 37 0.3 - 1.9

1.8 - 7.3
FHD

playback
Common testset

Class B 5 RA 22, 27, 32, 37 0.4 - 2.4
1.7 - 33.1

Video
production

Range Extensions
RGB 444 8 AI 12, 17, 22, 27 27.9 - 548.1

74.0 - 1117.1
UHD

playback EBU UHD-1 4 RA 12, 17, 22, 27 5.1 - 87.1
135.9 - 793.6

• Low-delay applications, e.g. video conferencing and video chatting in LD mode.

• Screen content, e.g. presentation slides and web browsing videos.

• Animation as found in animated movies.

• FHD playback of videos that are streamed over the internet or stored on media
such as DVDs.

• Video production in AI mode with high quality and color depth.

• UHD playback of videos as in FHD playblack, but typically at higher quality
levels.

An overview of the testsets is provided in Table 2.4. More details about the testsets
can be found in [23] [24] [25]. We use the same modules as seen in Figure 2.3 for the
profiling of the video decoder components, however, there are two exceptions. First,
inverse quantization is merged with inverse transform (IQ/IT) because they are often
processed together. Second, there is a category for remaining tasks that do not belong
to any of the existing categories, e.g. writing reconstructed frames to memory (Others).

2.2.2 Evaluation

Table 2.5 shows the real-time decoding capabilities of all platforms for the selected
testsets. We use the average decoding performance for evaluation. However, it should
be noted that the complexity of different frames can vary significantly. Consequently,
higher performance might be necessary for judder-free playback. All platforms deliver
sufficient performance for the basic low-delay, screen content, animation and FHD
applications. On the other hand, only the HP desktop can process the high-bitrate
video production testset as well as the high-resolution UHD testset in real-time. In the
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Table 2.5: Performance overview showing the worst-case performance of any
video of the corresponding testset compared to the required real-
time performance.

Smart-
phone

Ultra-
book Desktop HP

Desktop
Low-delay 5.35× 11.75× 23.93× 22.45×

Screen content 2.40× 10.47× 18.50× 30.49×
Animation 1.96× 6.11× 12.23× 23.51×

FHD playback 1.22× 2.67× 5.15× 11.76×
Video production 0.15× 0.24× 0.49× 1.30×

UHD playback 0.12× 0.22× 0.31× 1.12×

Table 2.6: Detailed performance results of selected testsets in fps.

a) Smartphone
FHD (1920×1080), RA QP22 QP27 QP32 QP37

BasketballDrive 50 fps 96.14 121.60 142.87 157.18
BQTerrace 60 fps 73.45 132.05 156.68 169.36
Cactus 50 fps 100.09 135.74 153.75 162.87
Kimono1 24 fps 107.83 126.02 140.00 157.18
ParkScene 24 fps 95.03 121.31 138.63 160.14

b) HP Desktop
Video Prod. (1920×1080)∗, AI QP12 QP17 QP22 QP27

DucksAndLegs 30 fps 89.20 93.60 101.22 124.43
EBULupoCandlelight 50 fps 108.56 184.28 349.50 538.31
EBURainFruits 50 fps 114.18 175.58 254.40 362.29
Kimono1 24 fps 79.49 105.46 202.58 368.25
OldTownCross 50 fps 64.83 75.60 97.41 168.28
ParkScene 24 fps 65.90 83.65 122.02 192.28
Traffic 2560x1600, 30 fps 46.27 61.36 84.39 123.66
VenueVu 30 fps 162.82 270.85 378.11 490.16

c) HP Desktop
UHD (3840×2160), RA QP12 QP17 QP22 QP27

EBULupoCandlelight 50 fps 62.94 109.66 244.84 322.95
EBULupoConfetti 50 fps 71.28 176.07 312.37 365.96
EBURainFruits 50 fps 56.09 112.65 210.54 288.36
EBUWaterfallPan 50 fps 62.28 128.29 207.46 272.76
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Figure 2.6: Smartphone + FHD testset profiling with Neon vectorization.
Speedup over Scalar shown on top.

following, we take a more detailed look at the performance measurements for specific
testsets (Table 2.6). We further aim to identify performance bottlenecks by analyzing
the decoding time that is spent on specific tasks in the single-threaded HEVC decoder
(Figures 2.6, 2.7, 2.8).
Playback of FHD content on smartphones is one of the most widely used applications.
Therefore, the corresponding performance results are shown in Table 2.6a. There is at
least a 90% performance margin over real-time decoding for all videos and quality levels
except BQTerrace at QP22 (22%). While this provides sufficient performance for video
decoding, it is not a fully satisfying situation as other aspects also need to be considered,
e.g. video resolutions beyond FHD, other applications running on the processor, voltage
and frequency scaling for improved energy efficiency. The profiling results in Figure 2.6
show that inter prediction is clearly the dominating kernel across all quality levels on
the smartphone platform. Due to the limited vector size of 128 bits, the massive amount
of DLP cannot be efficiently exploited. This is a huge disadvantage compared to other
processors when dealing with data-parallel applications, not only for performance but
also for energy efficiency [79]. The emergence of ARM’s Scalable Vector Extensions
(SVE, [82]) is expected to address this issue in the next years. However, the underlying
memory system needs to be adjusted accordingly.
We also look at the detailed results for the most challenging applications (video pro-
duction, UHD playback) to see how the HP desktop processor deals with them. The
results in Table 2.6b demonstrate general real-time decoding capabilities of the HP
desktop processor for the video production testset. The measured performance for all
videos is at least 30% higher than the required real-time performance. The variance
between different frames is also much smaller because all frames are intra-predicted.
Nevertheless, the profiling results in Figure 2.7 show two critical issues. First, CABAC
clearly contributes most of the decoding time, e.g. 40% to 70% for the scalar decoder.
When vectorization is applied, the contribution even increases to above 80% as it is
the only kernel that does not benefit from vectorization due to the lack of DLP. This
directly results in the second critical aspect: poor vectorization speedups. The overall
speedup is at most 1.8× due to the small vectorizable fraction of the decoder. Another
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Figure 2.7: HP desktop + video production testset profiling with different
vector extensions. Speedup over Scalar shown on top.

Scalar
SSE4.2

AVX2
AVX-512

Scalar
SSE4.2

AVX2
AVX-512

Scalar
SSE4.2

AVX2
AVX-512

Scalar
SSE4.2

AVX2
AVX-512

0%

20%

40%

60%

80%

100% 5.2×4.3×3.7×4.1×3.5×3.2×2.5×2.3×2.3×1.7×1.6×1.7×

QP12 QP17 QP22 QP27

CABAC Inter Intra IQ/IT DBF SAO Others

Figure 2.8: HP desktop + UHD testset profiling with different vector exten-
sions. Speedup over Scalar shown on top.
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influencing fact is that higher video quality tends to result in smaller blocks for the
prediction, transform and filtering kernels. Consequently, larger vectors cannot be fully
utilized, thus they do not improve performance. Even worse, most processors operate
at a lower clock frequency to stay in their thermal budget when wider vectors are used.
This results in smaller speedups with wider vectors as shown for all quality levels. We
even observed performance drops compared to the scalar baseline for some videos when
vectorization was applied.

The UHD testset pushes the HP desktop to its limits. The average decoding performance
satisfies real-time requirements, but only by a small margin as can be seen in Table 2.6c.
For the highest quality (QP12) the achieved performance is between 12% and 43% above
the required real-time performance. Considering the varying complexity of different
frames this might not be sufficient for smooth playback. On the other hand, at least 4×
the real-time performance can be reached with QPs 22 and 27. Figure 2.8 shows that
vectorization yields a higher overall application speedup for these quality levels (up to
5.2×). Vectorization becomes less effective for lower QPs, e.g. only a 1.7× speedup is
possible with QP12. The same reasons as discussed for the video production testset
can be found here, i.e. a significant CABAC decoding time fraction and lower vector
utilization for higher video quality, although not to the same extent.

2.2.3 Conclusions and Recommendations

Although modern processors are very well capable of real-time decoding suitable work-
loads, we identified two main bottlenecks that lead to performance constraints and
inefficient decoding. Entropy decoding is the only strictly sequential part of today’s
hybrid video decoders. Therefore, it cannot exploit the constantly improving vector
extensions of modern processors and consequently contributes most of the decoding
time for high-quality videos and in certain applications that require AI mode. Regarding
entropy coding, there are only small modifications in HEVC’s successor VVC, which
will not affect this bottleneck. A fundamental redesign of the entropy coding algorithm
is required or additional parallelization opportunities need to be established. This the-
sis aims to address the critical CABAC throughput bottleneck in high-quality video
decoding with performance optimizations on different levels as well as architectural
enhancements.

The evaluation has also shown that vectorization becomes less efficient with higher
video quality. The constantly growing vector registers cannot be fully utilized as block
sizes for different kernels tend to decrease with higher quality. VVC allows larger blocks,
however, this does not affect high-quality videos which rarely use such large blocks.
On the other hand, the introduction of differently shaped blocks partly addresses the
problem. Microarchitectural support for two-dimensional block processing (e.g. [80])
might be much more beneficial for video coding and many other applications than
pushing the vector sizes to new dimensions. This can also be emulated in software
to some extent, however, gather-load and scatter-store operations might be the main
limitation with current memory architectures.
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More potential for improvement can be found in the field of heterogeneous computing. It
has been shown that the use of processor cores with different instruction set architectures
(ISA) allows substantial performance improvements and energy savings compared to
homogeneous-ISA multiprocessors [81]. Modern video coding standards do not use
floating-point operations and especially entropy coding can work with a basic 16-bit
integer ISA and without vector extensions. This allows multiple of such cores instead of
a single general-purpose core at the same chip area, thereby improving parallelization
opportunities and energy efficiency.

2.3 Context-based Adaptive Binary
Arithmetic Coding

CABAC was first introduced in the H.264 video coding standard [45] as an alternative
to the less complex but also less efficient CAVLC. The underlying M coder, which
implements the binary arithmetic coding algorithm without multiplications, is described
in [47]. Arithmetic entropy coding methods have been used in video coding before, e.g.
in H.263 [16] where it could optionally be used. CABAC addressed some drawbacks of
earlier arithmetic coders by introducing adaptive probability models and a simplified
binary arithmetic coding process. Consequently, it is the only entropy coding method
in HEVC due to its superior compression performance. A CABAC implementation
consists of three main parts: a general binary arithmetic coding implementation, suitable
binarization schemes for specific syntax elements, and an application-specific context
model design. All these aspects will be discussed in the following.

2.3.1 Binary Arithmetic Coding

Arithmetic coding is a lossless entropy coding method that allows the compression of
data at minimum entropy [48]. According to Shannon [49], the minimum entropy for
encoding data consisting of N symbols with probabilities pi is

H = −
N∑

i=1
pi log pi

Consequently, for achieving minimum overall entropy, a symbol must be represented
by a number of bits equal to the negative logarithm of its probability: − log2 pi. More
probable symbols are coded with fewer bits which leads to a reduction of the average
number of bits per symbol. A direct translation of symbols to bits works well for
probabilities that are the inverse of powers of two, e.g. − log2( 1

2 ) = 1 bit per symbol,
− log2( 1

4 ) = 2 bits per symbol, etc.. For other probabilities, an approximation of the
number of bits for minimum entropy must be derived that allows a proper translation
of symbols to bits. A set of symbols (A,B,C) with probabilities pA = 0.7, pB = 0.2 and
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pC = 0.1 could be coded with an average of

H = −pA log2 pA − pB log2 pB − pC log2 pC

= −0.7 · log2(0.7) − 0.2 · log2(0.2) − 0.1 · log2(0.1)
≈ (0.36 + 0.46 + 0.33) bits per symbol
≈ 1.16 bits per symbol

The compression with 1.16 bits per symbol can only be achieved when a non-integer
number of bits can be used to represent a symbol, however, only integer numbers can be
used in many entropy coding methods. This requires an approximation of the optimal
code lengths which could look as follows: A = 02, B = 102, C = 112. This coding
requires on average

H = (pA · 1 + pB · 2 + pC · 2) bits per symbol
= (0.7 · 1 + 0.2 · 2 + 0.1 · 2) bits per symbol
= (0.7 + 0.4 + 0.2) bits per symbol
= 1.3 bits per symbol

This reduction in compression efficiency is one of the main disadvantages of many
entropy coding methods compared to arithmetic coding, which does not suffer from this
limitation and can compress symbols with minimum entropy.
An arithmetic encoder works with a range that is initialized to [0,1). When encoding
a symbol, the range is divided into subranges for all potential symbols. The sizes of
the subranges are proportional to their probabilities. Depending on the symbol, the
corresponding subrange is chosen as the range for the next symbol. This recursive
subinterval division leads to a step-wise reduction of the size of the range. At the end
of the encoding process, the sequence of symbols can be represented by any value inside
the final range. For best compression, an offset within the range is selected that can be
represented by the smallest number of bits.
The arithmetic decoder also starts with a range [0,1). Furthermore, it uses the offset that
resulted from the encoding process. For every symbol, the range is again divided into
subranges according to the probabilities of the respective symbols. The decoded symbol
is selected based on the subrange the offset is located in. The subrange is selected as the
new range for the next symbol and the process is recursively repeated until all symbols
are decoded.
A binary arithmetic coder only uses two symbols and divides the range into two sub-
ranges accordingly. Binarization is performed when more than two potential symbols
are available. This way, they can also be processed by the binary arithmetic coder. An
example of the binary arithmetic encoding process for the bin sequence 0102 is shown
in Figure 2.9. The specific probabilities are chosen for the purpose of demonstration.
The range is commonly represented by two values, i.e. its lower boundary (low) and
its size (range). They are initialized to low = 0.0 and range = 1.0. Encoding bin0 = 0
results in the new range [0.0,0.6) which is represented by low = 0.0 and range = 0.6.
The right subrange [0.3,0.6) is chosen when encoding bin1 = 1. In the end, [0.3,0.39) is
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0.0 0.6 1.0

lowinit = 0.0, rangeinit = 1.0

bin0 = 0
probability = 0.6

low = 0.0
range = 0.6

0.0 0.3 0.6
bin1 = 1
probability = 0.5

low = 0.3
range = 0.3

0.3 0.39 0.6
bin2 = 0
probability = 0.3

low = 0.3
range = 0.09

offset = 0.375 = 0.0112

Figure 2.9: Arithmetic encoding example for the bin sequence 0102. The
offset can be any value in the range [0.30,0.39). 0.375 is chosen
because it can be represented by the least number of bits.

0.0 0.6 1.0

offsetinit = 0.375, rangeinit = 1.0

probability = 0.6 bin0 = 0
range = 0.6

offset = 0.375

0.0 0.3 0.6
probability = 0.5 bin1 = 1

range = 0.3

0.3 0.39 0.6
probability = 0.3 bin2 = 0

range = 0.09

Figure 2.10: Arithmetic decoding example for the bin sequence 0102.
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the final subrange after encoding bin2 = 0. Any value from this range can be selected
to represent the encoded bin sequence, however, 0.375 = 0.0112 can be coded with only
three bits (0112) because only the fractional part needs to be stored.

The decoding process depicted in Figure 2.10 is very similar. The order of the symbols
and the corresponding subranges are the same as in the encoding process. Starting with
the offset 0.375 and recursively following the subranges the offset is located in restores
the bin sequence 0102.

2.3.2 Context Modeling and Adaptation

Arithmetic coding allows the compression of symbols with minimum entropy if the
probabilities for the respective symbols can be accurately estimated. Consequently,
probability modeling is an essential task in arithmetic coding. A statistical analysis of
the probability distribution of all potential symbols can be performed and the results
can be used in the encoding and decoding process. For example, looking at the English
alphabet consisting of 26 characters, ten digits, and approximately a dozen special
characters, one will notice that the whitespace and the letter e appear much more
frequently than the letters j and z. Incorporating this probability distribution allows
the compression of English texts very close to the minimum entropy. Context models
estimate the probabilities for symbols in a specific context, e.g. the general probability
for the letter u is significantly increased when the previous symbol was the letter q.
Context modeling can greatly enhance the probability estimation but requires additional
knowledge of the characteristics of an application. Context models are also used in video
coding, e.g. for deriving probabilities for block partitioning syntax elements based on the
partitioning of neighboring blocks. Furthermore, context models in HEVC are initialized
based on the QP which determines the video quality.

Context models are particularly simple in binary arithmetic coding. Only the least
probable symbol (LPS) and its probability need to be stored as the probability for the
most probable symbol (MPS) can be derived by

pMP S = 1 − pLP S

The same simplicity can be found in the calculations for the subranges:

rangeLP S = range · pLP S

rangeMP S = range · pMP S = range · (1 − pLP S)

Accurate probability estimation becomes very challenging when the characteristics of
an application are unknown or dynamically changing such as in video coding. Adaptive
context modeling can be used to train and improve the context models. Every time a
context model is used, its probability distribution is updated based on the result of the
encoded or decoded symbol. This allows the step-wise improvement of the probability
estimation over time in case the application characteristics are changing or after an
unsuitable context model initialization. A probability estimation is not possible in
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Table 2.7: Binarization schemes in HEVC with Nmax = 7.

N Fixed-length Unary Truncated Unary Exponential Golomb
0 000 0 0 1
1 001 10 10 010
2 010 110 110 011
3 011 1110 1110 00100
4 100 11110 11110 00101
5 101 111110 111110 00110
6 110 1111110 1111110 00111
7 111 11111110 1111111 0001000

some cases. To reduce the number of maintained context models, arithmetic coding is
performed with equal probabilities for all symbols in this case. These so-called bypass-
coded (bc) bins are also easier to encode and decode. Context-coded (cc) bins are
associated with context models for improved compression efficiency.

2.3.3 Binarization

Binarization is used in binary arithmetic coding to transform N -ary symbols into one
or multiple bins. Efficient binarization schemes lay the foundation for the compression
rates achieved by entropy coders such as CABAC. Four different binarization schemes
are used in HEVC (see Table 2.7). Fixed-length binarization transforms every symbol
into a bin sequence of the same length. The length is determined by the maximum
symbol value Nmax such that ⌈log2(Nmax + 1)⌉ bins are used. Every symbol is then
transformed into its binary representation. Unary binarization transforms a symbol
N into a sequence of N 1-bins followed by a zero bin. Truncated unary binarization
works the same way except for the largest symbol Nmax. The trailing zero-bin can
be skipped since it is known that no larger symbols exist. Exponential Golomb
binarization consists of a prefix and a suffix. The prefix is a sequence of leading zeros
followed by a one-bin. The suffix contains as many bins as there are zero-bins in the
prefix. The symbol value is then derived by the number of leading zeros in the prefix
(nlz) and by the suffix: N = 2nlz − 1 + suffix.

Fixed-length binarization is commonly used when the symbols are evenly distributed.
On the other hand, the smallest symbol values are much more frequently found for many
syntax elements. Unary, truncated unary, and exponential Golomb are more efficient
binarization schemes under these conditions. Unary and truncated unary binarization
is more efficient up to N = 4 than exponential Golomb. The latter is the preferred
option for N ≥ 5 as the length of the bin sequence is logarithmically growing compared
to the linear growth of the unary and truncated unary binarization schemes.
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2.3.4 HEVC CABAC
The H.264 CABAC implementation has been significantly improved in HEVC to allow
higher throughput. The main improvements are described by Sze et al. [44] and a
quantitative throughput comparison is provided in [46]. First of all, the overall number
of bins was reduced by using optimized binarization schemes and inferring the values of
some bins. A hierarchical approach in the transform unit coding also avoids redundant
bins. The number of cc bins was reduced, e.g. by replacing many of them with bc bins
for motion vector difference and transform coefficient level coding. The grouping of bins
with the same context models reduces speculative memory accesses when attempting to
decode multiple cc bins simultaneously, e.g. when coding the significance map. The same
goal is targeted when reducing context model selection dependencies. The grouping of
bc bins can enable additional parallelization opportunities. Their decoding is relatively
simple and multiple bc bins can potentially be decoded at the same time. This has
been applied to motion vector difference coding and especially for transform coefficient
levels and sign bits. Parsing dependencies with other decoder modules might stall the
whole entropy decoding process which is already a throughput bottleneck. To avoid
this, CABAC decoding has been decoupled from all other modules, e.g. by removing the
dependence on the merge candidate list generation. Finally, the reduction of memory
requirements was one of the main goals as memory accesses are often part of the critical
path and significantly contribute to the energy consumption of the decoder. This was
achieved by reducing the number of context models from 447 in H.264 to 154. In addition
to that, a 20× reduction of the line buffer size was achieved.
The implementation of the arithmetic coding process in HEVC is realized using integer
arithmetic for reduced complexity. This requires two things: a suitable representation
of range and offset, as well as renormalization. The state of the arithmetic coder can
be represented by two unsigned integer variables. One of them is used for the size of
the range. In the encoder, the other one (low) stores the lower boundary of the range
(see Figure 2.9). The second variable in the decoder (offset) stores the distance of the
offset relative to the lower boundary of the range. Renormalization is necessary because
a 32-bit offset variable cannot contain all of potentially millions of fractional digits of
the real offset. Therefore, only the most significant bits are kept in the offset variable.
Furthermore, the size of the range can also become infinitely small. To address this
issue, the size of the range is always kept in the interval [256,510]. Whenever a selected
subrange is smaller than 256, both, the range and low/offset are repeatedly multiplied
by two (left-shifted) until the range is in the allowed interval. At the same time, new
fractional bits from the bitstream are inserted in the least significant positions of the
offset. It is common to implement an offset buffer in the eight rightmost offset bits.
This buffer contains up to eight bits more than actually needed for the decoding of the
current bin, thereby allowing a more efficient refill of the buffer due to the byte-wise
memory access.
HEVC uses context models for most of its syntax elements, e.g. for block partitioning
of the coding and transform quadtree, for inter and intra prediction, for TBs and for
the SAO filter. In the following, we will provide a detailed description of the TB syntax
elements. They contribute most bins in high-quality video coding and we will refer to
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2 -3 1 -1

1 -1 0 0

0 2 0 0

0 0 0 0

4×4 transform block diagonal scan order

Coefficients (reverse order) -1 0 2 0 1 -1 0 -3 1 2
last_sig_coeff_x 3
last_sig_coeff_y 0

sig_coeff_flag 0 1 0 1 1 0 1 1 1
coeff_abs_lvl_greater1_flag 0 1 0 0 1 0 1
coeff_abs_lvl_greater2_flag 0

coeff_abs_lvl_remaining 1 0
coeff_sign_flag 1 0 0 1 1 0 0
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bins

Figure 2.11: TB compression example.

them frequently in this thesis. An overview of the distribution of syntax elements for
different video quality levels is provided in [39].

Figure 2.11 illustrates how a 4×4 TB can be represented by the corresponding syntax
elements. First of all, the coefficients are parsed in a specific scan order. This example as-
sumes a diagonal scan order, however, horizontal or vertical orders may also be used. The
position of the last non-zero coefficient in scan order is coded by the last_sig_coeff_x
and last_sig_coeff_y syntax elements. In this case, it is the coefficient in the top-right
position of the TB at the coordinates (3,0). Beginning from this position, all coefficients
are parsed in reverse scan order and a sig_coeff_flag is assigned to all of them to
indicate whether they are equal to zero or not. The last significant coefficient does not
require this flag because it is implicitly set to 1 and does not need to be coded. This
information completes the significance map. As a next step, the level of the significant
coefficients needs to be determined. Therefore, a coeff_abs_lvl_greater1_flag is sig-
naled for up to eight coefficients to indicate whether their absolute level is greater than
one. The first coefficient with a positive coeff_abs_lvl_greater1_flag also gets a co-
eff_abs_lvl_greater2_flag. All coefficients whose absolute levels are not determined yet
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are assigned a coeff_abs_lvl_remaining syntax element which contains the difference
between the absolute level and the level that has been determined so far by other syntax
elements. Finally, one coeff_sign_flag is assigned to every significant coefficient. The
syntax elements are then binarized if necessary, e.g. last_sig_coeff_x = 3 is binarized as
1112 (truncated unary, Nmax = 3) and coeff_abs_lvl_remaining = 1 is binarized as 102
(truncated unary for small values, exponential Golomb for larger ones). Afterwards, the
syntax elements are grouped to conform with the throughput improvement techniques
described above, i.e. grouping of bins with the same context model and grouping of bc
bins.

2.3.5 Other Entropy Coding Methods

There are other entropy coding methods besides CABAC. The most relevant in the
context of this thesis will be discussed in the following.

Huffman coding [50] is one of the most well-known entropy coding methods. It gener-
ates a codeword table for all symbols based on their frequencies. As with all entropy
coding methods, more frequent symbols are coded with fewer bits. Every symbol is
then replaced by its corresponding codeword during compression and vice versa during
decompression. The main limitations are the restriction to integer-sized codewords
and the complex adaptation. Huffman coding can compress data at minimum entropy
when the probabilities of the symbols are the inverse of powers of two. Only under
these circumstances, Huffman coding can provide the same compression efficiency as
arithmetic coding. In other cases, especially for probabilities that are greater than 50%,
the restriction to integer-sized codewords constrains the compression rate. This can
be partly addressed by assigning codewords to combinations of symbols, however, the
exponential growth of the codeword table limits this approach to only a few symbols.
When the probabilities change dynamically, the whole Huffman codeword table has
to be regenerated, which is impractical in real-time applications such as video coding.
This is much easier in CABAC as only the corresponding context model needs to be
updated. CAVLC is based on Huffman coding and has been used in H.264 as one of
two entropy coding methods besides CABAC.

Probability Interval Partitioning Entropy (PIPE, [51] [52]) coding has been developed
to address the throughput limitations of CABAC. It divides the probability interval
(0.0,0.5] into multiple partitions and distributes all bins among them according to
their probabilities. Multiple bins per partition can be coded at the same time because
the corresponding codewords are precomputed with a representative probability for
every interval. Furthermore, the bins for all partitions can also be coded in parallel.
This allows a highly parallel entropy coding algorithm. The main drawbacks of PIPE
are the additional hardware requirements for the parallel interval processing and the
reduced compression efficiency compared to arithmetic coding due to the probability
approximation. Kirchhoffer et al. report an average 0.5% bitrate increase compared to
arithmetic coding when combining PIPE with a set of systematic variable-to-variable
length codes [52].
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Arithmetic coding can also be used with N -ary symbols by dividing the range into N
subranges. While this allows removing the binarization process, it is computationally
more complex. It requires to store N − 1 probabilities and to perform the same number
of range partitioning operations and comparisons. Binary arithmetic coding is often
preferred due to its simplicity as it requires only one probability to be stored. The
encoding can be done with one subrange calculation and only one comparison is needed
to determine the bin value at the decoder.





CHAPTER3
Related Work

This chapter provides an overview of the state-of-the-art in CABAC decoding. The
analysis is not limited to HEVC CABAC because the CABAC implementation in H.264
is very similar and most of the optimizations proposed for H.264 can also be applied
to HEVC. On the other hand, HEVC CABAC has been designed for high-throughput
processing [44] which enables new optimization approaches.

The performance of a CABAC decoder can be decomposed into two components: its
throughput Tcyc in bins per cycle and the clock frequency f in cycles per second it
operates at. The overall throughput T in bins per second is

T = Tcyc · f

An improvement in either of the components Tcyc and f directly results in the same
improvement in the overall throughput T . Tcyc can be increased by decoding multiple
bins simultaneously while f benefits from architectural improvements. A strict separa-
tion of parallelism and clock frequency is not possible in most cases. Many approaches
implement complex parallelization techniques that affect the critical path of the decoder
and consequently lead to slightly reduced clock frequencies. This chapter is structured
according to the two components that determine the throughput in CABAC decoding.
First, we will analyze techniques for parallel CABAC decoding on different levels, i.e.
CTU- and bin-level. Frame-level parallelization techniques are not discussed because
there are no dependencies in the CABAC decoding process between different frames.
Therefore, the parallelization at this level is only limited by computational and memory
resources. We also analyze architectural optimizations such as pipelining, context model
caches and data path optimizations. We derive research ideas based on the analysis of
existing works, which will be discussed in more detail in the following chapters.

3.1 CTU-level Parallelism

There are substantial parallelization opportunities within a frame in HEVC and also in
other video coding standards. Multiple high-level parallelization techniques are specified
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in the HEVC standard to exploit the capabilities of modern multi- and many-core pro-
cessors: Slices, Tiles and WPP. They have been described in Section 2.1 (see Figure 2.5).
Slices can divide a frame into multiple independent areas and there must be at least
one slice per frame. Consequently, Slices can be used for intra- and inter-frame paral-
lelization. Tiles are restricted to only one frame which can be divided into rectangular
areas. WPP processes consecutive rows of CTUs in parallel with a horizontal offset of
at least two CTUs. This allows exploiting prediction opportunities between vertically
neighboring blocks and consequently leads to smaller coding losses than Slices and Tiles.
Furthermore, context models are forwarded to the next row after processing the second
CTU which enables a faster context adaptation process than Slices and Tiles offer.
Chi et al. found that Tiles and especially Slices induce a much higher coding penalty
when dividing a frame into a similar number of partitions as WPP [30]. The average
coding losses are 8.8% with one slice per CTU row (17 rows), 3.9% with 6×3 tiles, and
1.4% with WPP (also 17 CTU rows) for a FHD testset [23]. Similar results are also
presented for higher video resolutions. The difference is mainly due to the restricted
inter-slice and inter-tile prediction opportunities, as well as overhead in the slice header.
While all three techniques depend on even load balancing for good parallel scalability,
the parallel efficiency of WPP also suffers from a ramp-up and -down phase in the
number of active threads within a frame. When the processing of a frame is started,
only one thread can be active. After it passed the second CTU, the second thread can
start to process the next CTU row. In a FHD frame (30×17 CTUs), not even all threads
are allowed to start processing their corresponding CTU rows when the first thread
has finished its work. So, the maximum amount of parallelism is never reached. When
multiple frames are processed simultaneously, the ramp-up/down problem becomes
negligible as it occurs only once per video instead of once per frame. However, the
simultaneous processing of multiple frames is very limited for low-delay applications
and also for embedded processors due to their restricted computational and memory
resources.
Multiple works exist that aim at addressing the shortcomings of WPP. Chi et al.
proposed OWF to extend WPP to multiple frames [30]. OWF substantially improves
the parallel scalability but puts restrictions on the vertical motion vector components.
This means that it cannot be used for HEVC decoding in general, but only if motion
vectors are restricted in the encoder accordingly. Inter-Frame Wavefront processing
has been proposed for HEVC encoding by Chen et al. [41]. The authors exploited
additional parallelization opportunities compared to OWF by taking the dependencies
between consecutive uni- and bi-predicted frames into account. Zhang et al. developed a
mathematical model for WPP and experimented with different optimization techniques,
i.e. smaller CTU sizes, and combining WPP with slice- and frame-level parallelism [42].
However, the assumption of equal processing time for all CTUs is highly optimistic
because there can be huge differences due to the varying complexity of the corresponding
frame content.
We propose multiple fine-grained WPP implementations (FG-WPP, [7]) to address the
shortcomings of conventional WPP and the other high-level parallelization techniques
(see Table 3.1 for a comparison). We are able to substantially increase the parallel
intra-frame efficiency of WPP by performing more fine-grained dependency checks as
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Table 3.1: Comparison of high-level parallelization tools in HEVC.

Intra-Frame
Scalability

Inter-Frame
Scalability

Coding
Losses

Full HEVC
Conformance

Slices high high high ✓

Tiles high low medium ✓

WPP medium medium low ✓

OWF medium high low ✗

FG-WPP high medium low ✓

on a CTU level. This can be achieved with the same low coding losses as conventional
WPP and also with negligible implementation overhead. The increased intra-frame
scalability is especially beneficial for low-delay applications, as well as for performance-
and memory-constrained architectures. Furthermore, it is orthogonal to frame-level
parallelization techniques and can be combined with them. A detailed description of
the FG-WPP implementations for CABAC decoding is provided in Chapter 4. Although
it is limited to CABAC decoding in this thesis, the approach can also be extended to
the other main modules in the HEVC decoder [5].

3.2 Bin-level Parallelism

There are multiple dependencies between consecutive bins that make their parallel
decoding very challenging. First of all, the range and offset variables are required for
the decoding of all bins. So they need to be updated before the next bin can be decoded.
A special case occurs during the decoding of bc bins. As the renormalization of the
range compensates for their division into two equally sized subranges, the range variable
always keeps the same value when a bc bin is decoded. The decoding of cc bins is more
complex because context models are involved. This allows the division of the range
at arbitrary positions. Furthermore, the context model adaptation also requires an
update before the decoding of the next bin. Although the grouping of bins with the
same context models allows some optimizations regarding the context model memory
access, it introduces more frequent context model dependencies between consecutive
bins. Finally, the values of many bins determine the next syntax elements that need to
be decoded. This means that the context model selection can only be initiated after the
previous bin is decoded. The number and versatility of bin-to-bin dependencies limits
bin-level parallelization approaches to very few bins in the general case.

A parallel CABAC algorithm has been proposed by Sze et al. [56]. The range is divided
into four subranges to decode two bins in parallel. In general, this approach can be
used for an arbitrary number of parallel bins, however, it is limited to two or three bins
in practice due to the exponential complexity increase. While this allows a significant
average throughput gain of 1.37× to 1.79× for different video quality levels with a
1.3% bitrate increase, the reported theoretical reduction in energy consumption is not
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evaluated. It is also not evaluated how much of the throughput gain is compensated
by the reduced clock frequency due to the more complex circuit. Multi-symbol cc
bin decoding has also been implemented by Lin et al. [53]. The decoding of multiple
cc bins in parallel requires multiple context models which can only be provided by
multi-port context model memories. MPS speculation is implemented in the CABAC
decoder of Kim and Park [72]. Although it is just a concatenation of two bin decoders,
the update process is simplified because the second decoder speculates that the first
decodes the MPS. This allows optimizations in the update processes which shortens
the critical path. As a result, two bins together can be decoded faster than if they
were decoded separately, however, sometimes the second bin needs to be discarded in
case the speculation was wrong. Another speculative technique is proposed by Yang
et al. [60]. It relies on situations when a context model update does not modify its
state. In this case, the consecutive decoding of two cc bins can be simplified. Although
this situation is quite rare in common use cases, it might appear very frequently for
significance flags and coefficient level flags in high-quality videos when using HEVC.
Liao et al. [59] improve the decoding of two cc bins even more. They merge two bin
decoders and perform mathematical transformations to precompute all subranges in
a highly parallel way. Speculation is also not required in this work. Another CABAC
decoder was presented by Chen et al. [61]. It can process combinations of two cc bins,
two bc bins, and a cc bin followed by a bc bin. Two concatenated bin decoders are
used for that. Furthermore, the authors employed a prediction-based parallel processing
method as well as a context memory reallocation scheme to improve the utilization of
the two-bin arithmetic decoder. Zhang et al. implemented a variable-bin-rate decoder
[62]. It is based on the observation that a single bit in the compressed bitstream might
be used to decode multiple cc bins as long as the MPS is decoded for all of them.

The parallel decoding is much easier for bc bins since context models are not involved
and the range is not updated. It is also very efficient in HEVC as it can be used more
frequently because of the grouping of bc bins. Furthermore, the group size is also often
known before which removes parsing dependencies. The hardware decoding of multiple
bc bins per clock cycle has been implemented among others by Sze [71], Habermann et
al. [1] [3] and Shi et al. [73]. In this thesis, we also present a technique for highly parallel
software bc bin decoding. GPPs suffer from frequent hardly predictable branches in
CABAC decoding. Replacing the code by branch-free but more complex arithmetic
instructions leads to throughput improvements. The exploitation of bc bin grouping in
HEVC and the implementation of a bc bin reservoir allows getting significant speedups
on a wide range of video qualities and characteristics.

Plenty of research on high-performance HEVC software decoding has been performed,
however, it is either focused on vectorization of all decoder modules except CABAC
[31] or on high-level parallelization techniques [30]. On the other hand, only a few
works for CABAC decoding on GPPs exist as most of the proposed optimizations are
hardware-based. A TLP approach has been presented by Chen et al. [63] with three
separate bitstream partitions. Other bitstream partitioning approaches that can be used
on GPPs, although mainly developed for hardware decoders, include Syntax Element
Partitioning (SEP [70] [69]) by Sze and Bin-Based Bitstream Partitioning (B3P [4][6])
by Habermann et al.. Optimization methods for Very Long Instruction Word processors
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Table 3.2: Comparison of bitstream partitioning approaches and high-level
parallelization tools. Tiles are used in a configuration that allows
similar speedups as WPP and B3P, i.e. 3×2 tiles.

Speedup Hardware Cost Coding Losses
WPP high high low
Tiles high high medium
SEP medium low low
B3P high low low

have been proposed in two US patents [66][67]. The bc bin reservoir is the first low-level
CABAC optimization technique for HEVC decoding on GPPs. A detailed description
and evaluation of the bc bin reservoir is provided in Chapter 7.

Many of the bin-to-bin dependencies can be removed when parallel bin decoding is
applied on a slightly higher level, but still within a CTU. Bitstream partitioning ap-
proaches have been proposed that distribute specific types of syntax elements among
different partitions in the compressed bitstream, e.g. syntax elements for prediction
information and for luma and chroma transform coefficients. In this case, only high-
level parsing dependencies need to be considered to allow the parallel decoding of all
bitstream partitions. In P3-CABAC [63] Chen et al. divide all H.264 syntax elements
into three groups for parallel decoding on multi-core processors. SEP is a hardware ap-
proach by Sze that divides H.264 syntax elements into five groups which are dynamically
assigned to three bitstream partitions for better load balancing. SEP can be a good
alternative for CTU-level parallelization approaches such as Tiles and WPP because it
does not require a full replication of the decoding hardware. Only 70% more resources
are needed for 3× parallelization. Furthermore, the coding losses are much smaller. The
main drawback of SEP is that it performs well mainly for low video qualities when the
real-time throughput requirements for CABAC decoding are relatively low. We address
this shortcoming by proposing an HEVC-based bitstream partitioning approach (B3P)
that provides the highest speedups for high-quality videos, i.e. when CABAC decoding
is the most critical part in the overall video decoder. The implementation of eight
partitions allows a higher degree of parallelization than SEP. On the other hand, even
slightly fewer hardware resources are needed due to a static partitioning approach that
still allows the highest speedups for high-quality videos and similar coding losses. A
qualitative comparison of SEP, B3P, as well as the high-level parallelization tools WPP
and Tiles is provided in Table 3.2. A more detailed description and evaluation of our
bitstream partitioning approach is presented in Chapter 5.

3.3 Architectural Optimizations

Increasing the clock frequency, i.e. the number of clock cycles per second, is the only
way to improve the overall throughput when the number of bins per clock cycle is at
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Figure 3.1: Four-stage CABAC decoder pipeline.

its limit. In the following, we will discuss existing work for multiple optimization ap-
proaches. Pipelining is probably the most well-established technique for clock frequency
improvements and can be found in most CABAC decoders. We will further look at
context model caches as they accelerate the context model memory access which is
most often in the critical path. Other data path optimizations are also discussed.

3.3.1 Pipelining

A pipeline in the CABAC decoder divides the decoding process for a bin into multiple
steps. Instead of processing all steps for a bin before decoding the next one, the decoding
of the second bin can be started as soon as the first step for the previous bin has been
completed. In this way, the decoding of multiple consecutive bins can be overlapped.
The same throughput in bins per cycle can be reached when the pipeline is filled,
however, much higher clock frequencies can be used as the critical path of the decoding
pipeline is also divided. Efficient pipelining depends on an even distribution of the
critical path among the pipeline stages as the achievable clock frequency is determined
by the longest stage.
Most works agree on a conceptual pipeline of four stages (see Figure 3.1). The context
model that is needed for the decoding of the next bin is determined in the context
selection stage. Afterwards, the context model memory is accessed in the context load
stage. Next, the actual binary arithmetic decoding task is performed before the final
debinarization step produces the decoded syntax element. Neighboring stages are often
merged because the dependencies between consecutive bins limit the pipelining approach
to only a few stages. In general, the outcome of the debinarization stage might be needed
as input for the context selection stage. In this case, pipeline stalls cannot be avoided and
the throughput is reduced. Binary arithmetic coding allows removing some dependencies
because a bin can only have two different values. This was exploited by Habermann [1]
when implementing the context selection stage for both possible bin values. As soon as
the bin is provided by the arithmetic decoding stage, the correct context model can be
selected. This technique allows removing a lot of pipeline stalls at a slightly increased
hardware cost. The same strategy can be applied at the debinarization stage, which
can be merged with the arithmetic decoding stage for a shorter pipeline with the same
throughput.
Decoders with three pipeline stages were presented by Yi and Park [75], Kim and
Park [72] and Chang [74]. Shi et al. designed a four-stage pipeline that resolves all
structural and data hazards with forwarding and redundant circuits [73]. Chen and
Sze [71] proposed an even deeper pipeline than the one presented in Figure 3.1. A
fifth pipeline stage is added at the beginning to compute a binary decision tree that
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Table 3.3: Comparison of CABAC decoders with context model caches.

Cache
Design Space Prefetching Evaluation

Yi et al. [75] 1×8 none performance
Yang et al. [54] 2×9 none performance
Hong et al. [55] 2×? static performance

Habermann et al. [3] 1×4 - 64×4
1×8 - 32×8 adaptive

performance,
miss rate,

energy efficiency

is used for state prefetching in the remaining stages, thereby reducing pipeline stalls.
Additionally, their implementation decodes up to two bc bins per cycle, resulting in a
throughput of up to 1.7 Gbins/s, which represents the state-of-the-art.

3.3.2 Context Model Cache

The context model memory access is often part of the critical path. Consequently, the
context load stage often determines the clock frequency in a pipelined design. The
context load stage can be shortened when the context model memory is replaced by
a small cache. The stage might be even removed when the cache access fits into an
adjacent stage. The shorter pipeline might then result in fewer pipeline stalls. Cached
designs for H.264 CABAC decoding have been proposed by Yi and Park [75], Yang
and Guo [54] and Hong et al. [55], but potential performance degradations due to
cache misses have not been evaluated. Prefetching was used to reduce the cache miss
rate [55], but results for this optimization were also not provided. Our work evaluates
both, the cache miss rate and the effectiveness of prefetching [2] [3]. Furthermore, it is
the first HEVC CABAC hardware decoder with a context model cache. We perform
a design space exploration of different cache sizes and propose an optimized context
model memory layout for HEVC. We also designed a prefetching algorithm that uses the
context models’ adaptation capabilities to deliver high performance for all types of video
content with different characteristics. Table 3.3 shows that our evaluation is way more
comprehensive than related work and can assist in selecting the best cache architecture
for high performance and energy efficiency. The full design space exploration of different
cache architectures is provided in Chapter 6.

3.3.3 Data Path Optimizations

Sze et al. proposed subinterval reordering to relax dependencies in the decoding process
of a single cc bin and allow partly parallel processing [57] [58]. The size of the LPS
range is commonly derived by a table lookup. It is then subtracted from the range to
get the size of the MPS range. A comparison between the offset and the MPS range
finally yields the decoded bin. This three-step process is necessary because the MPS
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range is by definition the lower part of the range while the LPS range is the upper part.
Switching the order of the subintervals allows the comparison of the offset to the LPS
range. As a result, the subtraction operation to calculate the MPS range does not need
to be performed before the comparison to determine the bin. It can be postponed and
executed in parallel with other post-comparison update operations. This optimization
leads to a 14% to 22% reduction in critical path delay of the circuit.

Liao et al. designed an optimized data path for the decoding of two consecutive cc bins
[59]. They realize a more efficient circuit compared to the pure concatenation of two
bin decoders by applying mathematical transformations and precomputing hierarchical
subranges. Another optimization in this decoder affects the context model memory
design. Up to three context models are needed for the decoding of two cc bins in one
clock cycle. This cannot be realized with a single SRAM. On the other hand, storing all
context models in registers results in very high hardware cost. The authors distributed
all context models among SRAM and registers based on the analysis which context
models can be used together. This hybrid memory significantly reduces the hardware
cost while maintaining the throughput of two cc bins per clock cycle.

3.4 Summary

The performance of a CABAC decoder is determined by two components, i.e. its through-
put in bins per clock cycle as well as its clock frequency. The former can be improved
with parallelization techniques at different levels while the latter benefits from archi-
tectural optimizations such as pipelining, context model caches, and other data path
optimizations. The analysis of existing work has shown a lot of potential for further
improvement. We will present different approaches from most of these categories in the
following chapters which address the shortcomings of existing works.



CHAPTER4
Wavefront Parallel Processing

WPP [35] is a high-level parallelization technique that provides better compression
efficiency compared to Slices and Tiles [30] as discussed in Section 2.1.3. On the other
hand, it suffers from a ramp-up and -down in the number of active parallel threads due
to the delayed decoding start of consecutive CTU rows in HEVC. This is not an issue
when multiple frames are decoded simultaneously, however, the decoding is most often
limited to a few frames at a time on memory-constrained systems and especially for
low-delay applications, such as video streaming/conferencing. A more efficient WPP
implementation can increase the parallelism per frame and thereby reduce the required
number of frames in flight to reach the target performance.

CABAC decoding is especially challenging for low-delay applications. First, the re-
stricted encoding time usually leads to higher bitrates which results in more work
for the CABAC decoder. Second, the computational work for motion compensation –
commonly the main throughput bottleneck besides CABAC – is significantly reduced
when only uniprediction is used, which is very common in low-delay video coding. Fur-
thermore, many typical low-delay applications, such as video conferencing/chatting,
have low motion in general due to a static background and little movement of persons.
Consequently, the relative decoding time for CABAC is increased.

Efficient CABAC decoding requires the exploitation of TLP as with WPP to compensate
for the lack of DLP and reach similar throughput as other video coding tasks. A
theoretical analysis of the worst-case dependencies of the HEVC decoding tasks with
respect to WPP is provided in [5]. It shows that a more efficient implementation
than conventional WPP is feasible, especially for CABAC. This work aims to exploit
this opportunity, thereby making the following contributions to efficient parallel video
decoding.

• An improved WPP implementation for CABAC decoding with no overhead in
the dependency check.

• Two fine-grained WPP implementations with dependency checks at CU and syntax
element granularity. Both significantly improve parallel efficiency while introduc-
ing only a small overhead.

45
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The work is based on the following publications:
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Processing (PDP 2020), pp. 339-343, Västerås, Sweden, March 2020

An analysis of the CABAC decoding dependencies with respect to WPP is provided
in Section 4.1. Based on the analysis we present three improved implementations in
Section 4.2. The performance of these implementations in terms of speedup and parallel
efficiency is evaluated in Section 4.3. Finally, the work is concluded in Section 4.4.

4.1 Dependency Analysis

WPP is commonly implemented with a horizontal offset of two CTUs between consecu-
tive rows (WPP2) to satisfy all decoding dependencies (see Figure 2.5c), including the
context model initialization for CABAC decoding, intra prediction, and motion vector
derivation. However, this two-CTU offset is only needed at the beginning of each CTU
row for the context model initialization. Afterwards, the CTU row processing threads
could be allowed to come below the two-CTU threshold. This is possible because the
decoding of different CTU rows requires different amounts of time due to the varying
complexity of the corresponding frame content. The worst case dependencies in terms
of distance between consecutive CTU rows are between one and two CTUs for intra
prediction and motion vector derivation [5] (see Figure 4.1). The distance is less than
one CTU for CABAC decoding after the context model initialization which allows a
more efficient WPP implementation when decoupling it from the reconstruction process.
The number of active threads can be increased faster, thus leading to a larger amount
of parallelism and consequently a lower delay in decoding. The following dependencies
need to be considered for CABAC decoding when WPP is used.

1. The context model initialization at the beginning of each CTU row needs the
context models after the decoding of the second CTU from the row above.

2. The context model selection for the split_cu_flag is based on the coding
quadtree depth of the above CU.

3. The context model selection for the cu_skip_flag depends on the same syntax
element in the above CU.

4. An intra prediction mode candidate from the above PU might be needed to
determine the intra prediction mode for the current PU.
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Figure 4.1: Worst-case dependencies in WPP. PUs require information from
the hatched CUs.

Dependencies 2, 3 and 4 only need to be checked if the CU above is not in the same
CTU. Otherwise, the availability of the required information is ensured by the z-scan
order inside a CTU.

4.2 Fine-grained WPP
Based on the analysis of the CABAC decoding dependencies we propose three methods
for more efficient WPP CABAC decoding. First, a one-CTU offset (WPP1) is
implemented. Of course, a two-CTU offset must be ensured at the beginning of each
CTU row for the context model initialization. Afterwards, this distance is reduced to
one CTU. This method allows for the faster progression of dependent threads and does
not add any implementation overhead as the dependency check is still performed at
the CTU level. Two more fine-grained WPP methods work as the previous one but
allow threads to come even below the one-CTU offset. They differ in the granularity at
which dependency checks are performed: at SE level or CU level. For syntax-element-
based WPP (SE-WPP), dependency checks are performed when a split_cu_flag or
cu_skip_flag needs to be decoded or if an intra prediction mode candidate is required for
one of the top CUs of a CTU. If the required information from the CTU above is not yet
available, the processing thread has to be stalled until then. The fine-grained dependency
check adds some implementation overhead, however, the required data is commonly
already stored in the line buffers and therefore easily accessible. CU-based WPP
(CU-WPP) aims to reduce the implementation overhead by performing more coarse-
grained dependency checking. CUs are marked as available as soon as all prediction



48 4 Wavefront Parallel Processing

information is decoded but before the decoding of the transform tree. There can be a
significant amount of transform tree data, especially for high-quality videos. However,
the information is never needed by the dependent thread. Before the decoding of a CU,
this thread checks if the above neighboring CUs are available. This can be implemented
with one integer counter per CTU row that is incremented in z-scan order.

4.3 Evaluation

A behavioral model of a CABAC decoder that can decode one cc bin or up to two
bc bins per clock cycle (as implemented in [3]) has been integrated into the HEVC
reference software [10]. It is used to simulate the behavior for WPP2, WPP1, CU-WPP
and SE-WPP CABAC decoding with one thread per CTU row. The JCT-VC common
test conditions (class A-F) [23] are used for evaluation. Every class consists of three to
five videos. The geometric mean of the single speedups is presented in the following.
The videos are encoded in AI, RA and LD modes with QPs of 22, 27, 32 and 37. It
should be noted that some combinations of video classes and coding modes are not
specified in the common test conditions, i.e. class A in LD mode and class E in RA
mode.

The evaluation is focused on the improvement of our proposed techniques compared to
common WPP2, i.e. improving the parallel efficiency of WPP inside a single frame with
the same number of threads. Other related techniques improve the performance due
to an increased number of threads by extending WPP to multiple frames or exploiting
parallelism from bitstream partitioning. Both techniques are orthogonal to our approach
and can be combined with it, hence the comparison between them does not provide
meaningful insights.

4.3.1 Decoding Speedup

Figure 4.2 shows the decoding speedup of the proposed methods over conventional
WPP2 for the full test videos with 64×64 CTUs. The results for single frames are
highly variant and range from 1.00× (same performance) up to 2.56× because the
speedup highly depends on the frame content. The optimal case is low complexity on
the left side of the frame and high complexity and therefore lots of decoding work in the
center or the right side. With this work distribution, threads can quickly process the
first two CTUs of each row and allow the next thread to start very soon. In contrast to
WPP2, the proposed methods allow dependent threads to catch up and not be stalled
as soon as the above threads proceed slower when reaching more complex frame areas.

The WPP1 implementation gives solid speedups between 1.06× and 1.55× which is
already a good improvement considering that there is no additional complexity in the
dependency check. Both fine-grained implementations allow for even higher speedups
in the range of 1.07× to 1.83×. Best results are achieved for class E (video conference



4.3 Evaluation 49

QP22 QP27 QP32 QP37
1.0 x

1.1 x

1.2 x

1.3 x

1.4 x

1.5 x

1.6 x

sp
ee

du
p

a) One-CTU offset WPP

QP22 QP27 QP32 QP37
1.0 x

1.1 x

1.2 x

1.3 x

1.4 x

1.5 x

1.6 x

sp
ee

du
p

b) CU-based WPP

QP22 QP27 QP32 QP37
1.0 x

1.1 x

1.2 x

1.3 x

1.4 x

1.5 x

1.6 x

sp
ee

du
p

c) Syntax-element-based WPP

Class A Class B Class C Class D Class E Class F
all-intra random-access low-delay

Figure 4.2: Speedup of improved WPP implementations over two-CTU offset
WPP.
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Figure 4.3: Parallel efficiency for WPP CABAC decoding of class B videos
in RA mode with one thread per CTU row and different CTU
sizes (64×64, 32×32, 16×16).

content). In video conferences, people are usually found in the center of the frame with
a static background. This is very close to the optimal work distribution described above.
High-quality video conferencing (class E in LD mode with QP 22-27) gives an average
speedup of 1.52× - 1.54× for both fine-grained WPP methods. This is a very impressive
result, considering that only a more fine-grained dependency check is implemented to
enable more parallelism. The decoding performance for class B (FHD entertainment
videos, 1.38× - 1.43× speedup) is also significantly better with fine-grained WPP.

The results for CU-WPP and SE-WPP are very similar. In fact, the difference is not
even noticeable in most cases. This makes CU-WPP the superior method as it achieves
almost the same speedups as SE-WPP with an implementation that is only slightly
more complex than conventional WPP2.

4.3.2 Parallel Efficiency

A speedup in parallel processing can be achieved by adding more threads or by increasing
the parallel efficiency of the implementation. Parallel efficiency describes how much
of the maximum potential speedup can be reached with a specific number of threads.
The proposed WPP implementations improve the parallel efficiency and use the same
number of threads as conventional WPP2. A common way to allow more threads to
work on the decoding of a frame is the reduction of the CTU size to 32×32/16×16
samples. This doubles/quadruples the number of CTU rows for WPP but also increases
the bitrate, e.g. by 2.20%/12.05% for class B videos in RA mode (representative of
FHD entertainment applications such as video streaming). As a result, more work
has to be done by the CABAC decoder, thus reducing the parallel efficiency. Other
decoder modules are also negatively affected as the smaller CTU sizes lead to decreased
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vectorization opportunities due to smaller blocks.

Figure 4.3 shows the parallel efficiency of all WPP implementations in combination with
different CTU sizes for class B videos in RA mode. WPP2 with 64×64 CTUs and QP
22 results in a parallel efficiency of only 26.8% on average. The use of WPP1 increases
the efficiency to 34.5% and the fine-grained WPP implementations even reach 37.3%.
For the same configuration, smaller CTU sizes allow a speedup as the number of parallel
threads can be doubled or quadrupled, however, the parallel efficiency is decreased to
21.9%/18.4% with 32×32/16×16 CTUs. The quantitative results are slightly different
for higher QPs as this affects the spatial work distribution in a frame. However, the
significant parallel efficiency improvement of the proposed WPP implementations can
be demonstrated for all video quality levels.

4.4 Conclusions

We have proposed three methods to improve the parallel efficiency of WPP for HEVC
CABAC decoding. They differ in the granularity at which dependency checks are
performed. One-CTU offset WPP already offers up to 1.55× speedup without any
implementation overhead. The more fine-grained CU-based and syntax-element-based
WPP implementations even allow speedups up to 1.83×. CU-based WPP is the preferred
method as it can be implemented at very low cost while showing no noticeable difference
in performance to syntax-element-based WPP. The proposed WPP implementations
perform best for video content that is typical for low-delay applications such as video
conferencing. Especially these applications benefit most from the increased parallelism
within a frame because the number of simultaneously processed frames is very limited
due to delay restrictions. The increased parallel efficiency is also important for memory-
and performance-constrained systems that cannot process multiple frames at the same
time. Both fine-grained WPP methods can be applied to other tasks of the HEVC
decoder as well but the expected speedup is smaller as it is for CABAC. The proposed
techniques can tolerate load imbalances better than conventional WPP and thereby
reduce the impact of one of the most critical drawbacks of WPP.

WPP and its fine-grained variations exploit parallelism at the CTU level. In the next
chapter, we will present a bitstream partitioning approach that allows exploiting bin-
level parallelism within a CTU.





CHAPTER5
Bin-based Bitstream

Partitioning

In this chapter, we propose a modified bitstream format that enables additional thread-
level parallelism for CABAC decoding: Bin-Based Bitstream Partitioning (B3P). We
also present the corresponding hardware decoder to show that B3P is especially ben-
eficial for hardware decoding in terms of performance and hardware cost. This is the
main advantage compared to existing high-level parallelization approaches such as Tiles
and WPP because their use requires the replication of the complete CABAC decoding
hardware.

To address this issue, Sze proposed SEP [69] for H.264/AVC. Parallelism is exploited by
distributing five groups of syntax elements among three different bitstream partitions so
that they can be decoded simultaneously. This enables a significant decoding speedup
with only minimal losses in coding efficiency. As only parts of the decoding hardware
need to be replicated, there is only a 70 % increase in hardware cost. This proposal
requires a modification of the bitstream format and is therefore not compliant with the
H.264/AVC standard. However, the multiplication of the decoding throughput with
minimal coding losses and moderate hardware requirements makes the SEP concept
a promising candidate for adoption in future video compression standards. The main
drawback of the proposed SEP scheme is that it performs best for low-quality videos
when CABAC decoding throughput is least critical. P3-CABAC [63] is a similar proposal
from Chen et al. that divides syntax elements into three groups for parallel decoding
on multicore processors.

We propose an improved bitstream partitioning scheme based on HEVC CABAC. It
is specifically tailored to perform best for high-quality videos when CABAC decoding
throughput is the main bottleneck for the overall video decoder, as was shown in
Section 2.2. In contrast to the high-level parallelization approaches that process multiple
frame areas or even frames at the same time and thus require significantly more memory,
our approach exploits parallelism at the syntax element and bin level which needs almost
no extra buffering capacity. The parallelization at this level within a specific frame area
is also beneficial for low-delay applications such as video conferencing.

53
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The general bitstream partitioning approach and the proposed B3P format are presented
in Section 5.1. Afterwards, Section 5.2 provides a detailed overview of the B3P hard-
ware decoder implementation. Experimental results for decoding speedup, bitstream
overhead and hardware cost are discussed in Section 5.3. Finally, the work is concluded
in Section 5.4.

5.1 Bitstream Format

Bitstream partitioning aims to divide a common bitstream into multiple parts that can
be decoded in parallel. Figure 5.1 illustrates the effect by showing the decoding process
for three groups of syntax elements. In the example, there is one for luma and one for
chroma TBs, as well as a group for control information that contains all remaining syntax
elements, e.g. for block partitioning, prediction modes and loop filters. In a common
HEVC bitstream, all syntax elements are coded consecutively in a single partition,
which makes their sequential decoding necessary (Figure 5.1a). However, if they are
distributed among different partitions, parallel decoding is possible (Figure 5.1b). Luma
and chroma TBs are completely independent of each other. Their decoding process can
be started as soon as the corresponding control block is decoded. At the same time,
the decoding of the next control block can be initiated. This allows the overlapped
decoding of all three partitions, resulting in shorter decoding time. The reconstructed
video is the same as with the non-partitioned bitstream because the syntax elements
are not modified but only distributed differently.

The proposed B3P scheme consists of eight partitions. First, the common bitstream
is divided into three parts according to the example in Figure 5.1: control, luma and
chroma. Each of these partitions is further split into separate parts for cc and bc bins.
The bc bins are coded without context models, which simplifies the decoding process. In
fact, a bc bin corresponds to a bit and does not need to be encoded or decoded at all if it
is not interleaved with cc bins in a common bitstream. This separation allows the highly
parallel retrieval of bc bins as they only need to be read from memory. Unfortunately,
the luma and chroma cc partitions still contain significantly more bins than others for
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Figure 5.1: Decoding of syntax element partitions.

high-quality videos. To achieve a more balanced distribution, they are divided into two
parts, one for the significance map and the other for the coefficient levels. All other
bins are moved to the Control CC/BC partitions.

A further split into partitions for both chroma components is not gainful as they use the
same context models, thus making their parallel decoding very challenging. In contrast to
SEP, we use a static partitioning scheme that does not adapt to video characteristics. A
dynamic scheme allows a more balanced distribution of bins among the partitions for all
test sequences. However, the Luma/Chroma Significance Map partitions almost always
contain the majority of cc bins for high-quality videos. Although the Luma/Chroma BC
partitions contain even more bins, these bc bins can be decoded in a highly parallel way,
so that the maximum speedup is still determined by the Luma/Chroma Significance
Map partitions. As they cannot be split further, a dynamic partitioning would not lead
to a higher speedup. However, the corresponding decoding hardware can be simplified
for static partitions because every subdecoder only processes bins of specific syntax
elements. The decoding of low-quality videos is most often dominated by the size of
the Control CC partition and does not benefit from this static partitioning in terms
of load balancing. Nevertheless, the throughput requirements for low-quality videos
are also very low, so that real-time decoding is possible even without the use of B3P.
An overview of the proposed distribution among bitstream partitions is provided in
Table 5.1. It should be noted that some syntax elements appear in more than one
partition as they consist of cc and bc bins. Also, the same syntax elements exist for
luma and chroma TBs.
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Figure 5.2: Variable-sized partition length fields.

The following features are the main improvements compared to the existing SEP scheme
by Sze:

• Eight instead of three partitions to enable more parallelism

• A static partitioning scheme for reduced complexity and bitstream overhead, as
well as for optimal customization of the subdecoders

• A more fine-grained partitioning based on bins instead of syntax elements

• Separate bc bin partitions for highly parallel decoding

• An optimized partitioning scheme for the best workload distribution for high-
quality videos

The common bitstream format has to be modified to implement the B3P scheme.
Instead of one length field for the slice bitstream, every bitstream partition needs a
separate length field. To minimize the overhead, a variable-sized length field is used
(see Figure 5.2). Small partitions (up to 127 bytes) will only need one byte, while only
very large partitions (more than 2 MB) need four bytes. Especially low-quality videos
benefit from the variable-sized length fields because the overhead constitutes a significant
fraction of the overall bitstream size for them. The static partitioning scheme requires
less extra bits per partition than the dynamic scheme of SEP because no information
about the distribution of syntax element groups among bitstream partitions needs to
be transmitted. This partly compensates for the overhead induced by the increased
number of partitions.

5.2 Parallel Decoder Architecture

The B3P scheme is designed to allow a highly efficient hardware decoder implementation.
First of all, eight bitstream partitions create plenty of opportunities for parallel process-
ing. Additionally, the static partitioning scheme enables the implementation of highly
specialized subdecoders. The high-level decoder architecture can be seen in Figure 5.3.
It consists of a Control Decoder and two Transform Block Decoders, one for luma and
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one for chroma. The Control CC/BC Decoders process the corresponding partitions,
thereby extracting information that is needed to control other decoding tasks, e.g. intra
and inter prediction. It also sends job information to the Transform Block Decoders,
such as the position and size of TBs to be decoded. The Significance Map Decoder
reads this information from the corresponding buffer and determines the positions of
all non-zero transform coefficients by decoding the sig_coeff_flags. This significance
map is forwarded to the Base Level Decoder at a 4×4 block granularity to keep the
size of the intermediate buffers and the latency small. The Base Level Decoder extracts
coeff_abs_level_greater1_flags and coeff_abs_level_greater2_flags and forwards the
updated 4×4 block to the Remaining Level Decoder. Here, the final transform coefficient
levels are determined after decoding the coeff_abs_level_remaining syntax elements
and coeff_sign_flags.

5.2.1 CC Bin Subdecoder

The subdecoders for cc bins, i.e. the Control CC Decoder as well as the Significance
Map Decoders and Base Level Decoders for luma and chroma, are implemented as a
two-stage pipeline (see Figure 5.4). In the context model selection stage, the required
context model index is calculated based on the current state of the state machine, some
settings registers, previously decoded syntax elements, and the previously decoded bin.
The index is used as an address for the synchronous context model memory which
separates the two pipeline stages. The size of the memory varies for all the subdecoders
as different numbers of context models are needed (see Table 5.2). The table also shows
that the number of states in the state machines is highly varying as it depends on
the number of different syntax elements that are decoded. The actual bin decoding is
performed in the binary arithmetic decoding stage, using the context model, bitstream
state registers as well as data from the encoded input bitstream. The context model and
bitstream state are updated and fed back to their respective memories. The decoded
bin is used for debinarization in case the processed syntax element consists of multiple
bins. Fully decoded syntax elements are then stored in local registers before they are
finally forwarded to other B3P subdecoders or consecutive decoder components, such
as intra/inter prediction, inverse transform and loop filters.

5.2.2 BC Bin Subdecoder

The architecture of the bc bin subdecoders, i.e. the Control BC Decoder and the
Remaining Level Decoders for luma and chroma, are less complex than the cc bin
subdecoders. Context model selection and the context model memories are not needed
as the decoding is performed without context models. Furthermore, the bin decoding
process is as simple as reading bits from memory because a bc bin corresponds to a
bit when no cc bins are in the same bitstream partition. This allows the very efficient
retrieval of multiple bc bins per clock cycle. All bc bin subdecoders can process up to 16
bc bins per clock cycle. The subdecoders need to extract fixed-length codes, sequences
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Table 5.2: Architectural characteristics and maximum clock frequencies for
a sequential CABAC decoder and B3P subdecoders. Clock fre-
quencies have been derived with a 32nm Synopsys standard cell
library.

Decoder # States # Context Model
Memory Entries

Clock
Frequency Speedup

Sequential 63 162 405 MHz baseline
B3P Control CC 39 88 463 MHz 14.4%
B3P Control BC 18 0 463 MHz 14.4%
B3P Significance Map Luma 2 28 699 MHz 72.7%
B3P Significance Map Chroma 2 16 699 MHz 72.7%
B3P Base Level Luma 3 20 725 MHz 79.0%
B3P Base Level Chroma 3 10 725 MHz 79.0%
B3P Remaining Level Luma 2 0 556 MHz 37.2%
B3P Remaining Level Chroma 2 0 556 MHz 37.2%

of leading ones, as well as combinations of these two from the bitstream. While the
decoding of fixed-length codes is straightforward, determining the length of a sequence
of one-bits is more complex and requires a specialized circuit to be performed efficiently
and with low delay. Figure 5.5 shows a circuit for determining the number of leading
ones from an eight-bit input sequence. It serves to demonstrate the functionality of the
circuit for any input sequence of 2N bits and can be easily extended to the required 16
bits.

The Remaining Level Decoders are also implemented as a two-stage pipeline where
the sequences of leading ones and fixed-length codes are extracted in the first stage
while the remaining coefficient level is calculated in the second stage. The Control BC
Decoder is not pipelined because the coefficient level calculation is not needed for the
syntax elements it decodes.

5.2.3 Improvements over Sequential Decoding

Besides the parallelism that comes from the bitstream partitioning, the specialization
of the subdecoders results in significant improvements in clock frequency which also
contributes to the overall speedup (see Table 5.2). In comparison to a sequential decoder
that also uses a two-stage pipeline, it can be seen that most of the B3P subdecoders
need only a small fraction of decoder states and context model memory entries, which
is the main reason for the improved clock frequencies. The Control CC/BC Decoders
reach only a slightly higher (14.4%) clock frequency than the sequential decoder because
they still contain most of the complexity, i.e. they decode most of the syntax element
types. They are tightly coupled to allow efficient bidirectional data exchange. Therefore,
they are operated at the same clock frequency. On the other hand, the Significance Map
Decoders only process one syntax element type. Due to this high degree of specialization,
they can operate at a 72.7% higher clock frequency. The Base Level Decoders process two
types of syntax elements and can operate at a 79.0% higher clock frequency. Although
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be built.



5.2 Parallel Decoder Architecture 63

the Remaining Level Decoders can only operate at a 37.2% increased clock frequency,
they offer much higher throughput than the other subdecoders due to the highly parallel
bc bin decoding.

5.2.4 Design Challenges

The operation of eight subdecoders and the data exchange between them leads to
some design challenges, load balancing and multiple clock domains being the most
important ones. Effective load balancing is of utmost importance for the overall decoder
performance. On a high level, the B3P decoder can be viewed as a pair of four-stage
pipelines, one for luma and one for chroma. If only one of the subdecoders is not able
to deliver the required throughput, all other subdecoders in the same pipeline will be
stalled. Unfortunately, the load for the subdecoders varies significantly for different
videos for two major reasons: First, the video quality has a huge impact on the load
distribution between the Control Decoder and the Transform Block Decoders. This has
been discussed in Section 5.1 and was considered in the design of the B3P scheme.
The problem is addressed by optimizing the bitstream partitioning format as well as
the hardware decoder for high bitrates, i.e. allowing the highest throughput for the
Transform Block Decoders. The Control Decoder is the main throughput bottleneck for
low bitrates, however, the required throughput is very low in this case and could even be
reached by a sequential decoder. So, the CABAC decoding performance is not critical for
the overall performance of the video decoder in this case. Second, in a video and even in
a single frame there are huge load distribution differences due to the varying complexity
of the corresponding frame content. To address this, sufficiently sized Transform Block
Buffers are needed to avoid the stalling of Transform Block Decoders due to the absence
of decoding tasks, as well as the stalling of the Control Decoder due to full buffers. The
Transform Block Buffers for luma and chroma both contain 16 entries. Although there
are potentially twice as many chroma TBs as luma TBs, the former can most often be
processed faster, thus allowing the same buffer size for both. The intermediate buffers
between the subdecoders that are part of the Transform Block Decoders are used to
forward data at a 4×4 block granularity to reduce the latency. Only two entries are
used for every intermediate buffer to minimize the hardware cost because the use of
larger intermediate buffers did not result in significant performance improvements.

Operating all subdecoders at the same clock frequency would limit the performance
of most of them drastically as the lowest frequency has to be used for all. Therefore,
four different clock domains are used in the B3P hardware decoder, one for the Control
CC Decoder and Control BC Decoder, one for both Significance Map Decoders, one
for both Base Level Decoders, and one for both Remaining Level Decoders. The data
exchange between different clock domains is made possible by using SRAM for all
intermediate buffers which allow the operation of read and write ports at different
clock frequencies. As maintaining four clock domains can add noticeable overhead to
the decoder, there is also a way to use only two clock domains without affecting the
overall decoder performance too much. Operating the Significance Map Decoders and
the Base Level Decoders at the same clock frequency (699 MHz) reduces the maximum
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performance of the latter by only 3.6%. As they need to process fewer bins per 4×4
block than the Significance Map Decoders, this performance reduction is not noticeable.
Furthermore, the Remaining Level Decoders can be operated at the clock frequency of
the Control CC/BC Decoders (463 MHz) which decreases their potential throughput
by 16.7%. However, due to their highly parallel bin decoding, they still deliver sufficient
throughput and rarely stall other subdecoders.

5.3 Evaluation

The HEVC reference software [10] has been modified to encode and decode bitstreams
according to the proposed B3P scheme. Furthermore, a cycle-accurate architectural
model of the corresponding hardware decoder has been implemented as part of the
reference software to evaluate the speedup that can be achieved with the parallel
decoding. A 32 nm Synopsys standard cell library (saed32lvt_ss0p95v25c) has been
used for synthesis to evaluate the clock frequency improvements and hardware cost.
Besides the parallel decoder, a functionally equivalent sequential version is used as the
baseline for throughput and hardware cost evaluation. To cover a wide range of video
sequences, the following JCT-VC test sets are used for evaluation.

• Common test conditions (class A-F) [23]

• Natural content coding conditions for HEVC range extensions (YCbCr 4:2:2,
YCbCr 4:4:4, RGB 4:4:4) [24]

They are encoded in AI, RA and LD modes with QPs from 12 up to 37 (common test set
only specified for QP 22 to 37). The presented speedup results are the geometric means
while the bitstream overhead results are the arithmetic means of all test sequences of
a specific combination of video classes and coding modes. The remaining evaluation
section covers the decoding speedup, bitstream overhead and hardware cost resulting
from the implementation of the proposed B3P scheme. We also provide comparisons to
SEP, as well as the HEVC high-level parallelization tools WPP and Tiles. Slices are not
considered in the comparison because their main purpose is the resynchronization in the
event of data losses. A comparison to the presented low-level optimization approaches
is not provided as they exploit parallelism on a different level. Therefore, they can
be easily combined with each of the high-level approaches. In fact, the B3P decoder
and the sequential baseline both implement the most common low-level parallelization
techniques: pipelining and multiple bins per clock cycle.

5.3.1 Parallel Decoding Speedup

Two effects contribute to the significant speedup of the parallel B3P decoder imple-
mentation. The first is the parallel decoding of eight bitstream partitions. Second, the
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specialization of the subdecoders allows a much higher clock frequency than with the
sequential decoder, as discussed in Section 5.2 (see Table 5.2). A sequential hardware
decoder version is used as a baseline and can either process one cc bin or up to two bc
bins per clock cycle.

The most significant improvements can be reached for AI sequences (see Figure 5.6).
They require the highest bitrates as they go without the effective inter-picture predic-
tion. Smaller QPs also raise the speedups as the resulting increased bitrates lead to a
more balanced distribution of bins among the different partitions. For very low bitrate
sequences, the Control CC partition contains most bins and determines the overall
decoding throughput. Furthermore, the fraction of bc bins grows with decreasing QPs.
This also improves the throughput as they can be decoded in a highly parallel way.

For all high bitrate sequences from the common test set, the Luma Significance Map
partition is the decoding bottleneck. The maximum speedup for a single sequence from
this test set is 6.2×. This is a significant improvement compared to the implementation
of Sze, which reached a speedup of up to 2.3× for high bitrates. The sequences from the
range extensions test set allow an even better distribution of bins among the partitions
due to the reduced chroma subsampling. 4:2:2 subsampling results in the best-balanced
partitions, while the decoding of 4:4:4 sequences is dominated by the size of the Chroma
Significance Map partition. The result is a maximum speedup of 8.5× for a single test
sequence, which leads to the highest measured throughput of 3.94 Gbins/s. The upper
speedup limit for Tiles grows linearly with the number of tiles, and for WPP with the
number of CTU rows respectively. However, this limit can only be reached with perfect
load balancing, which is unrealistic due to the varying complexity of the corresponding
frame content.

5.3.2 Bitstream Overhead

The ability to decode multiple bitstream partitions in parallel comes at the cost of
additional bitstream overhead. First, there is a variable-sized length field for every
partition (1-4 bytes) to signal the starting position of the next partition. Additionally,
there is an arithmetic coding overhead for each of the five cc partitions (2 bytes).
Finally, byte alignment bits are added to all partitions (0-7 bits). Altogether, this adds
11-43 bytes of additional bitstream size per slice. We measured that 23-31 bytes per slice
are typically needed for high-quality videos, while the overhead of SEP is approximately
19 bytes.

The Bjøntegaard delta bitrate (BDR) is the average difference in bitrate at the same
PSNR (peak signal-to-noise ratio). As the video is not changed due to the modified
bitstream format, the relative bitstream overhead is the same as the BDR. It highly
depends on the bitrate of the video and can be significant for very low bitrates (see
Figure 5.7). This means that AI videos add less relative overhead to the bitstream than
RA and LD videos. Also, lower QPs result in a smaller relative overhead. Except for
the very low bitrate videos in LD mode or with high QPs, the overhead is less than one
percent and therefore negligible. This is especially true for the range extensions test
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set. B3P can be disabled for videos where it results in a significant overhead as their
throughput requirements are very low. Even a sequential decoder can achieve real-time
decoding throughput in these cases. A single bit in the sequence parameter set or the
slice header can be used to control the usage of B3P.

There is one abnormal value in the results because a single test sequence (DucksAndLegs)
has 60× more overhead than the other sequences from the RGB 4:4:4 class when encoded
in AI mode with QP 12. The reason is that there are many zero bytes in one of the
partitions. According to the HEVC standard [9], an emulation_prevention_3_byte is
always added after two consecutive zero bytes. This behavior depends on the video
characteristics and cannot be avoided. However, the resulting overhead of the specific
sequence is still only 0.024% and therefore negligible.

Figure 5.8 shows a bitstream overhead comparison between the proposed B3P scheme
and SEP, as well as WPP and Tiles. We provide results for two common video coding
use cases. The first represents video streaming over the internet or to a television device
as well as video playback from a DVD or Blu-Ray Disc. Class B from the common test
set (FHD resolution) in RA mode is a typical configuration for this use case. The second
application is video editing as it can be found in video content production. Much higher
video quality is required in this case. Therefore, the RGB-444 class from the range
extensions test set is used in AI mode. While the results for B3P, WPP and Tiles are
measured by comparing different encodings of the test videos with the HEVC reference
software, the bitstream overhead for SEP is calculated based on the description of the
author. She states that approximately 50 additional bits are needed for each of the
three bitstream partitions. For Tiles, the videos are encoded with two rows and three
columns of rectangular tiles because this allows similar speed-ups as with B3P.

B3P has a very similar bitstream overhead as SEP for the video streaming/playback
configuration (see Figure 5.8a), even though it uses eight instead of three bitstream
partitions. This is due to the variable-sized partition length fields that most often
only use one byte for these low to medium bitrate videos. WPP and Tiles need 2× to
4× more additional bits than B3P and SEP. This is a very important advantage for
B3P and SEP, especially for low-bitrate videos, where the bitstream overhead adds a
substantial amount of data to the original bitstream. SEP performs better than B3P for
video production applications (see Figure 5.8b). While SEP has a constant bitstream
overhead, B3P suffers from the increasing size of the partition length fields. However,
as the maximum measured overhead is only 0.024%, the difference is not important as
it contributes only a very small part of the overall bitstream size. The results for QP12
with B3P are affected by the abnormal value for one test video as described above. The
use of Tiles leads to a much higher overhead while WPP performs only slightly worse
than B3P for QP22 and QP27. It is interesting to note that the use of WPP decreases
the bitstream size for some videos with QP12 and QP17. Apparently, the local copying
of context models in the two left CTU columns of a frame results in a better CABAC
learning process than the row-wise processing with the same context models for the
whole frame in some cases. This highly depends on the frame content and can only be
noticed because the overhead for the use of WPP is negligible when very high bitrates
are used.
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Overall, the bitstream overhead is insignificant for all parallelization approaches for
very high bitrates as they can be found in video production applications. On the other
hand, the overhead that is added for the implementation of the presented approaches
for low to medium bitrates can contribute a substantial amount of data to the bitstream.
Thanks to the well-thought-out design, B3P performs as good as SEP in this case, while
it significantly outperforms WPP and Tiles. B3P can be combined with Tiles and WPP
when ultra-high throughput is required. Therefore, eight partitions are needed per tile
or CTU row for WPP, as well as the corresponding bitstream overhead. However, the
bitstream overhead will not grow linearly with the number of tiles/CTU rows because
the partitions will be smaller, thus requiring shorter partition length fields. Also, the
combination of these parallelization techniques becomes necessary only for very high
bitrates. In these cases, the bitstream overhead is usually less than 0.01%, so that even
a duplication per tile/CTU row is barely noticeable.

5.3.3 Hardware Cost

Eight parallel subdecoders require more hardware resources than a single sequential
decoder because some components need to be replicated, e.g. bin decoders and bitstream
buffers. Other parts, such as control state machines and context model memories, are
distributed among the subdecoders. This does not result in a significant increase in
resources. Also, memories for the decoding results are not modified. The B3P decoder
uses 61.9% more logic area (SEP uses 70.0% more) and 6.4% more SRAM area than
the sequential decoder. The overall extra hardware area is only 9.2% because SRAM
consumes more than 90% of the decoder area. The total area of the parallel decoder
including SRAM is 1.56mm2 when implemented with the 32 nm standard cell library.

B3P requires significantly less hardware than the high-level parallelization techniques
WPP and Tiles. For those, the speedup scales linearly with the hardware cost in the
best case, i.e. with perfect load balancing. Although an encoder can attempt even load
distribution, this can rarely be achieved due to the highly varying complexity of different
frames and frame areas.

5.4 Conclusions

We have presented a bin-based bitstream partitioning approach for parallel CABAC de-
coding in next-generation video coding using the widely adopted HEVC/H.265 standard
for evaluation. Significant decoding speedups up to 8.5× are achieved by distributing
bins over eight fixed bitstream partitions. The specialization of the parallel subdecoders
allows their operation at a much higher clock frequency, resulting in a throughput of
up to 3.94 Gbins/s. The hardware overhead is 61.9% for the decoder and only 9.2%
when the bitstream and result memories are also considered. A comparison to the
related SEP, as well as to the HEVC high-level parallelization tools WPP and Tiles
is provided in Table 6.4. Our approach outperforms SEP significantly, especially for
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high-quality videos, where CABAC decoding throughput is most critical for the overall
decoding performance. At the same time, the bitstream overhead is comparable and the
hardware cost is even slightly better. B3P needs significantly less hardware in contrast
to WPP and Tiles as they require a full replication of the CABAC decoding hardware
to allow parallel processing. Today’s mainstream consumer applications benefit from
B3P, however, its main target is ultra-high bitrate video coding as it can be found
on the content production side as well as in emerging 4K/8K use cases. We strongly
recommend considering the B3P approach for adoption in next-generation video coding
standards because it addresses the critical CABAC decoding throughput bottleneck for
high-resolution and high-quality videos.

The bitstream partitioning approach in this chapter, as well as the fine-grained WPP
implementations in the previous chapter, increase the number of decoded bins per
clock cycle. An architectural optimization to improve the clock frequency of a CABAC
hardware decoder will be presented in the next chapter.



CHAPTER6
Context Model Cache and

Prefetching

The context model memory access is often part of the critical path in the pipeline of
CABAC hardware decoders. The replacement of the memory by a smaller cache has been
proposed to optimize the critical memory access and thereby improve the throughput
[75] [54]. Unfortunately, the effect of potential cache misses has not been properly
evaluated. Cache misses result in a performance degradation that might jeopardize the
throughput improvements reached by the introduction of the cache. Hong et al. have
proposed prefetching to address this issue [55], but also did not quantitatively evaluate
their proposal. In this work we evaluate both, caches and prefetching, to justify if these
are gainful optimizations. We perform a design space exploration of different cache
architectures, thereby making the following contributions for HEVC CABAC hardware
decoding:

• an optimized context model cache architecture (as a result of an extensive evalu-
ation of different configurations),

• an efficient context model memory layout optimized for spatial locality and
prefetching efficiency, as well as the corresponding adaptive prefetching algorithm,

• an evaluation of prefetching efficiency, real-time decoding capabilities and energy
efficiency for different cache configurations.

This work is based on the following publications:

• P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, "Optimizing HEVC
CABAC Decoding with a Context Model Cache and Application-specific Prefetch-
ing", Proceedings of the 11th IEEE International Symposium on Multimedia
(ISM 2015), pp. 429-434, Miami, FL, USA, December 2015, Best Student Pa-
per Award

• P. Habermann, C. C. Chi, M. Alvarez-Mesa and B. Juurlink, Application-Specific
Cache and Prefetching for HEVC CABAC Decoding, IEEE Multimedia, volume 24,
issue 1, pp. 72-85, January 2017
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The proposed decoder architecture is presented in Section 6.1. It contains a description
of the context model cache design, the context model memory layout, as well as the
adaptive prefetching algorithm. The evaluation results in terms of clock frequency, cache
miss rate, and overall performance improvement are discussed in Section 6.2. We also
provide results regarding the real-time decoding capabilities, hardware cost, and energy
efficiency of the CABAC decoder. Finally, our work is concluded in Section 6.3.

6.1 Decoder Architecture

The proposed decoder architecture is implemented with a two-stage pipeline (see Fig-
ure 6.1). The use of more pipeline stages is avoided to keep the design complexity low.
The Context Model Selection stage computes the next state of the decoder control
state machine, calculates the index of the required context model and accesses the
context model cache. The cache contains context model sets (CMS’s). It is clocked with
a phase-shifted clock signal to allow the access at the end of the pipeline stage. In the
Binary Arithmetic Decoding stage one cc bin or up to two bc bins are decoded by the
arithmetic decoder. The decoded bins are fed back to the first stage and the context
model is updated and written back to the cache. Finally, de-binarization is performed
to build syntax elements from the decoded bins.

6.1.1 Context Model Cache and Memory Layout

A non-cached version of the decoder has been implemented as a reference where the
context model memory is directly accessed. The memory contains sixteen memory sets
of context models and is capable of fast in-memory copies. This allows the maintenance
of multiple context model memory sets and thus supports efficient CABAC decoding
when high-level parallelization tools (WPP, Slices, Tiles) are used. A cache can be
used to replace the context model memory in the critical path and thereby allow a
higher clock frequency. The prefetching unit sends CMS requests to the memory. The
CMS’s are written back when they have to be replaced. In our implementation, a cache
miss results in a penalty of two clock cycles while the missing CMS is loaded from
memory. CMS replacement is handled by a least recently used (LRU) policy. The cache
is fully-associative and contains a generic number of cache lines (1 to 64) each storing
one CMS. The decoder can be configured to use CMS’s of four or eight context models.

Tables 6.1 and 6.2 show the optimized context model memory layout for the configuration
with eight context models per CMS (CMS8). Mostly, context models for the same type
of syntax element are grouped to exploit spatial locality, e.g. last_sig_coeff_x/y_prefix
(ll. 0-4), sig_coeff_flags (ll. 8-10, 12, 13) and coeff_abs_level_greater1/2_flags (ll. 16-
21). In other cases, context models for consecutively decoded syntax elements are
grouped (ll. 5-7, 14). Figure 6.2 shows an example where the decoding flow can go three
different ways based on the decoding of two consecutive syntax elements. This can
make the prefetching of the required context models very difficult because it has to be
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Figure 6.2: CU decoding flow extract in a B/P-Slice.

initiated two clock cycles before the context models are needed. The CMS8 configuration
allows removing the dependency from the decoded pred_mode_flag as all potential next
context models fit in a CMS (l. 5), while there is no conflict with the goal to exploit
spatial locality (part_mode requires four different context models). The memory layout
for four context models per CMS (CMS4) cannot use this technique as often as CMS8.
This is one of the advantages of using eight instead of four context models per CMS.
Another one is the improved capability to exploit spatial locality, especially for the
sig_coeff_flags of 4×4 transform blocks (ll. 10, 12) and the consecutively decoded
last_sig_coeff_x/y_prefixes (ll. 0-4), as the required corresponding context models
exceed the CMS4 capacity.

Other CMS sizes are also imaginable. However, at least three last_sig_coeff_x/y_prefix
and sig_coeff_flag context models as well as four coeff_abs_level_greater1_flag context
models are potentially needed for the decoding of a 4×4 transform sub-block. As
these sub-blocks contribute most of the bins in high bitrate bitstreams, the CMS4
configuration already represents the smallest reasonable CMS size. Bigger CMS sizes
require that context models for different types of syntax elements are merged to keep
the memory overhead small. Unfortunately, the context models that are used for the
decoding of consecutive groups of equal syntax elements often depend on different
parameters. For example, sig_coeff_flags depend on the transform block size and
scan pattern while coeff_abs_level_greater1_flags depend on the decoded bins in the
previous 4×4 sub-block. This limits the expected gain of bigger CMS sizes. As other
issues such as hardware cost and memory bus width need to be considered, our evaluation
is limited to the CMS4 and CMS8 configurations.
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6.1.2 Adaptive Prefetching

Application-specific context model prefetching can significantly reduce the cache miss
rate in HEVC CABAC decoding. Admittedly, the required context model often depends
on the results of the previously decoded bin and cannot be prefetched early enough.
However, most of the time one can be sure that the required context model is contained
in a specific set of context models. If this set is available in the cache, it is not necessary
to know the exact context model in advance, but a cache hit is still guaranteed.

The prefetching module reads the current state of the control state machine, the video
sequence parameters (e.g. slice type, minimum coding unit size), some decoded syntax
elements (e.g. prediction mode, PU partition mode) and the currently decoded bin (see
Figure 6.3). Based on this information, it selects up to two CMS candidates that are
likely to be needed soon. As the module keeps track of the CMS’s in the cache, it can
see if they are already present. If one is not, a read request is sent to the context model
memory. The first candidate has a higher priority than the second, so the second is only
fetched when the first is already available. Unfortunately, this can lead to a behavior
where the first candidate is available and will be replaced by the second because it is
the next to be replaced according to LRU. A refresh mechanism is implemented to
avoid this behavior. This is done by resetting the LRU index of the first context model
set candidate if it is already in the cache. As a result, it will not be replaced next.

The prefetching strategy depends on the number of available cache lines (CLs). The
strategy for at least four CLs fetches CMS’s that might be used soon, while for smaller
caches CMS’s are only fetched when there is a high probability that they will be needed.
In general, the strategy for two CLs is more careful to avoid the replacement of CMS’s
that might still be used. Prefetching with one CL can only be used when no CMS is
currently in use or if it is known when it will not be needed anymore. Also, the second
candidate is not used by the strategy for one CL.

The design of a general prefetching strategy is very challenging if it has to work well
for all kinds of video sequences. Both, encoding parameters as well as characteristics
of the video content usually influence the decoding flow and need to be taken into
account. While encoding parameters such as the QP can be considered, the prediction
of video characteristics is not that obvious. We solved this problem by using context
models for decisions in the prefetching strategy. Context models store an estimated
probability that the corresponding syntax element will have a specific value. The MPS
can be used to predict branches in the decoding flow with high accuracy. As context
models are adaptable to video characteristics, the prefetching strategy inherits this
capability. The proposed prefetching algorithm keeps track of the MPS’s of the context
models for the following syntax elements: cu_skip_flag, pred_mode_flag, cbf_luma
and last_sig_coeff_y_prefix (only for first bin). Figure 6.2 can be used as an example
to understand how this prediction works. Before entering the presented decoding flow,
either the CMS containing the pred_mode_flag context model or the CMS containing
the merge_idx context model is prefetched. The decision is based on the MPS of the
cu_skip_flag context model. Basically, the CMS for the more probable branch is fetched.
The same prediction is performed for the pred_mode_flag in the CMS4 configuration.
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6.2 Evaluation

A hybrid HEVC decoder has been realized as hardware-software co-design on the Xilinx
Zynq-7045 SoC (system on chip) [83] to validate the functionality of the proposed
CABAC hardware decoder. The CABAC decoder is implemented in the Zynq Pro-
grammable Logic, i.e. a Kintex-7 field-programmable gate array (FPGA), while the
remaining decoder components are executed by the Processing System (ARM Cortex-
A9 CPU). The highly optimized HEVC software decoder developed by the Embedded
Systems Architecture Group at TU Berlin is used [31]. Five test sequences from the
JCT-VC class B test set (FHD) serve for evaluation [23]. They are encoded in AI and
RA mode with QPs of 17, 22, 27, 32 and 37. The QP of 17 is added to those specified in
the JCT-VC Common Test Conditions to cover a wider range and get more meaningful
results, especially for very high bitrate videos.
The remaining evaluation section is structured as follows. First, the impact of different
cache configurations on the clock frequency is shown to provide an upper boundary
for the overall speed-up. Then, the cache miss rate without prefetching is presented
to illustrate that a cache does not improve the overall throughput without further
measures. Afterwards, it is demonstrated that the miss rate can be significantly reduced
when application-specific context model prefetching is used, resulting in different overall
gains depending on the cache configuration. A configuration M×N represents a cache
with M cache lines and N context models per cache line. All configurations from 1×4
to 64×4 and 1×8 to 32×8 will be evaluated. 64×8 is not needed as all required context
models for the decoding of a CTU fit into 32 CLs due to the increased cache line capacity.
Finally, we provide results regarding the real-time capabilities, resource utilization and
energy efficiency of the proposed CABAC decoder.

6.2.1 Clock Frequency

The purpose of replacing the context model memory in the data path by a smaller cache
is to shorten the critical path and thereby increase the achievable clock frequency and
throughput. The proposed design has been synthesized with Xilinx Synthesis Technology
14.6 (optimization goal: speed). Both, the memory and the cache are forced to be
synthesized with the same FPGA resources to get a fair comparison that is not only
valid for FPGAs. The influence of the number of cache lines and the number of context
models per CMS on the maximum clock frequency of the decoder can be seen in
Figure 6.4.
First, it should be noted that there is no consistent clock frequency difference between
the configuration with four and eight context models per CMS (CMS4/8). The small
variations can be explained with the FPGA synthesis technology that does not lead to
completely predictable results. The independence of the CMS size is surprising as one
would expect bigger CMS’s to result in a higher delay during the selection of the required
context model from the CMS. However, when the CMS size is doubled from four to
eight context models, only half of the CMS’s are needed to contain all context models.
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Figure 6.4: Decoder clock frequency for a different number of cache lines
(CLs) and context models per CMS (CMS4/8). The horizontal
lines show the clock frequencies for the corresponding non-cached
designs.

This shortens the CMS address by one bit and thereby simplifies its computation. The
simplification of the address generation logic compensates for the bigger selection tree
and keeps the overall critical path delay constant.
On the other hand, the number of cache lines affects the achievable clock frequency
significantly. For CMS4 (CMS8) it is increased by 23.4% (20.7%) for a single CL, by
18.0% (17.0%) for two CLs and by 10.1% (6.1%) for four CLs. While there is only a
marginal variation for eight CLs (2.6% for CMS4, -2.0% for CMS8), the clock frequency
is reduced for bigger caches. The rapid clock frequency reduction comes from the
LRU implementation and CL selection which are not well suited for bigger caches
with full associativity. It should also be noted that these results can vary for different
implementations, e.g. shorter pipeline stages can lead to greater relative improvement.
While the improved clock frequency accelerates the decoding of all bins, only cc bins
can result in cache misses. The fraction of cc bins in the test sequences varies from 63%
to 78%. However, as up to two bc bins can be decoded in parallel, the decoding time
fraction for cc bins is slightly increased (73% to 84%).

6.2.2 Performance without Prefetching

Unfortunately, the improved clock frequency comes at the cost of potential cache misses.
They lead to stalls in the decoder pipeline and thereby reduce the overall throughput.
The cache miss rates for different cache sizes and video modes are presented in Figure 6.5
for CMS4 and Figure 6.6 for CMS8 configurations. The results show the arithmetic
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Figure 6.5: Cache miss rate without prefetching and CMS4.
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Figure 6.6: Cache miss rate without prefetching and CMS8.
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mean of the five different test sequences. In general, the miss rate grows with higher
QPs. This is due to the fact that smaller QPs result in more bins because of less
quantization. As bins of the same syntax elements are grouped, temporal and spatial
locality can be better exploited when accessing the required context models in the cache.
A significant miss rate reduction can be observed for all video modes when the number
of CLs is increasing. However, there is no noticeable improvement with 64×4 and 32×8
configurations where all required context models for the decoding of a specific CTU fit
in the cache. This means that all resulting cache misses are cold misses during the first
access. In this case, the fraction of missing accesses decreases with the total number of
cc bins, which is higher for smaller QPs. Often not all context models are used during
the decoding of a CTU, especially if only a few bins are decoded as in the RA QP37
configuration. In this case, 32×4 and 16×8 are also sufficient and lead to the same
results as 64×4 and 32×8.

As there are high miss rates for a few CLs and reduced clock frequencies for more than
eight CLs, an overall performance improvement cannot be reached without prefetching.
Even in the best case with an AI QP17 video and a 2×8 cache (73% cc bin cycle fraction,
17% higher clock frequency, 11% miss rate) the overall performance is just the same as
with a non-cached decoder.

6.2.3 Performance with Prefetching

The proposed prefetching algorithm significantly reduces the cache miss rate. The miss
rates with only one CL are separately presented in Table 6.3 as they reach much higher
values than with more CLs. A 1×4 cache is still not acceptable as the miss rate is
greater than 15% for all videos because of the restricted prefetching opportunities.
The 1×8 configuration allows a satisfying overall throughput improvement of 7.0%
to 13.1% (see Figure 6.9), but only for high bitrate videos (AI QP17 and QP22, RA
QP17). For lowest bitrates, the decoder performance is up to 11.5% less than with the
non-cached baseline. Unexpected results can be observed for the 1×4 configuration,
where AI QP17 videos lead to a higher miss rate than AI QP22 videos. Usually, the
miss rate decreases with a higher bitrate due to the improved exploitation of temporal
and spatial locality. However, the fraction of 4×4 transform blocks also increases with
higher bitrates (from 64.5% for AI QP22 to 72.8% for AI QP17 on average). Unlike
bigger transform blocks they require a different context model for every bin of the
luma last_sig_coeff_x/y_prefix syntax elements. Furthermore, nine instead of four

Table 6.3: Cache miss rate with prefetching and 1CL.

QP17 QP22 QP27 QP32 QP37

CMS4
AI 16.40% 15.85% 16.95% 17.78% 18.32%
RA 17.31% 18.29% 19.98% 21.55% 23.24%

CMS8
AI 4.39% 6.09% 8.75% 11.23% 13.54%
RA 7.73% 10.84% 14.81% 18.35% 21.90%
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Figure 6.7: Cache miss rate with prefetching and CMS4.

context models are potentially needed for the sig_coeff_flags. These requirements
combined with the limited cache size of only four context models lead to an increased
miss rate.

The miss rates for more than one CL are presented in Figure 6.7 for CMS4 and Figure 6.8
for CMS8 configurations. A 2×4 cache already leads to significant improvements for
all video configurations. The miss rates of 1.3% to 4.2% lead to overall throughput
improvements of 15.7% to 10.4% (see Figure 6.9) due to the enhancement of the clock
frequency by 18%. With a 4×4 cache and all configurations with more CLs, the miss rate
is less than 1.3% for all videos. As a result, the decoder performance is not noticeably
affected anymore and almost the full gain of the clock frequency improvement remains.
The 4×4 cache results in a consistent throughput gain of 7.8% to 9.7%. More CLs lead
to even smaller miss rates. However, a significant speed-up cannot be achieved because
of the constant or decreased clock frequency.

The resulting miss rates for all configurations with eight context models per CMS are
qualitatively similar to the ones with four context models per CMS but slightly lower. For
a 2×8 cache, the miss rates range from 0.2% to 2.0%, leading to an overall performance
improvement of 16.7% to 13.2%. More CLs reduce the miss rates to less than 0.9% and
make them negligible. The 4×8 configuration is capable of increasing the throughput
by 4.8% to 6.0% which is mainly limited by the clock frequency improvement of 6.1%.
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Figure 6.8: Cache miss rate with prefetching and CMS8.

More CLs reduce the decoder performance because the clock frequency falls below that
of the non-cached baseline.

Figure 6.9 shows a comparison of the throughput improvement for all cache config-
urations with one to eight CLs. It can be observed that two CLs lead to highest
improvements. Although the 2×4 cache allows for a slightly higher clock frequency
improvement of 18% compared to 17% of the 2×8 cache, the latter reaches the greatest
overall performance gain because the miss rates are less than half due to the doubled
CMS size. For a single CL, the throughput varies heavily as the miss rate strongly
depends on the video characteristics. For four and eight CLs on the other hand, the
throughput improvements are very similar for all videos. Here, all miss rates are less
than 1.3% which allows a throughput gain close to the clock frequency improvement.

It can be concluded that a 2×8 cache allows the highest speed-up for all test videos.
Although it contains two times the number of context models as the 2×4 cache, the
size is still very small (2 CLs × 8 context models × 7 bits = 112 bits). A comparison to
previous cached CABAC hardware decoders is provided in Table 6.4. The comparison
of our HEVC CABAC decoder to H.264 CABAC decoders can be performed because
the general CABAC algorithm is the same in both standards. However, the throughput
might be slightly increased in HEVC CABAC due to some optimizations in the standard
that allow the decoding of more bins per clock cycle. Our configuration is very similar
to the one of Yang and Guo [54] who used a 2×9 cache for an H.264 CABAC decoder.
Hong et al. [55] also implemented a cache with two CLs, but information about the
CL size was not provided. The proposal of Yi and Park [75] used only one CL of eight
context models which might reduce the overall performance due to the mandatory stall
cycles coming with every CL switch. Our decoder reaches similar throughput as the
180nm CMOS decoders but it is outperformed by the 130nm CMOS implementation
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Figure 6.9: Throughput improvement with prefetching for different cache
configurations (compared to non-cached decoder).



6.2 Evaluation 89

Table 6.4: Comparison to other hardware decoders.

This work Yi [75] Yang [54] Hong [55]
Standard HEVC H.264 H.264 H.264

Technology 28nm
FPGA

180nm
CMOS

180nm
CMOS

130nm
CMOS

Cache 2×8 1×8 2×9 2×?
Prefetching ✓ ✗ ✗ ✓

Frequency 93 MHz 225 MHz 140 MHz 333 MHz
bins/cycle 1.13 0.24 0.86 1.08

Throughput 106 Mbins/s 54 Mbins/s 120 Mbins/s 360 Mbins/s

due to the significantly higher clock frequency. Although our decoder is implemented
using an advanced 28 nm FPGA, it cannot reach the competitors’ clock frequencies due
to the inherent routing logic overhead and the limited customizability of the FPGA
technology. A more detailed comparison of the cache architectures cannot be realized
as neither the clock frequency increase nor the resulting miss rates are presented in
former works.

6.2.4 Real-time Decoding

Table 6.5 shows the real-time decoding capabilities of the proposed HEVC CABAC
decoder with a 2×8 cache and prefetching. Table 6.5a presents the average throughput
in RA test videos with one intra frame per second. The throughput requirements are
fulfilled for all videos with a QP of 22 or higher, but not for all QP17 videos. Nevertheless,
a QP of 22 already allows for high perceptive video quality. As a consequence, the
proposed HEVC CABAC decoder enables real-time decoding of high-quality FHD
videos with a low-power platform such as the Zynq-7045.

Unfortunately, there are significant variations in the required bitrate for different frames
of the same video. Especially intra frames often require much higher bitrates as they
cannot remove temporally redundant information in consecutive frames using inter-
picture prediction. The presentation of the throughput requirements for videos that
are encoded only with intra frames (see Table 6.5b) provides an indication of the
peak throughput that is needed to decode single frames in real-time. However, as the
varying throughput requirements also depend on the content of a frame, the real peak
throughput will be higher. The requirements are met for all videos with a QP of 27 or
higher and some QP22 videos. This means that the proposed CABAC decoder cannot
fulfill the real-time requirements for every frame separately. However, if the decoding
latency of a few frames and the additional hardware for frame buffers are acceptable,
judder-free streaming can be realized.
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Table 6.5: Average throughput in Mbins/s for RA (a) and AI (b) video modes.
Each cell shows the achieved throughput with a 2×8 cache and
prefetching (top) as well as the required throughput for real-time
decoding (bottom). The green cell color indicates that real-time
throughput requirements are met.

a) RA average QP17 QP22 QP27 QP32 QP37
BasketballDrive 97.7 95.6 92.9 90.2 87.6

(1080p, 50 fps) 88.6 22.1 7.5 3.5 1.9
BQTerrace 98.5 94.2 91.0 88.1 84.9

(1080p, 60 fps) 175.7 57.2 10.2 3.1 1.4
Cactus 97.1 94.2 93.0 90.0 86.9

(1080p, 50 fps) 101.8 23.5 6.9 3.3 1.7
Kimono 98.1 98.3 96.1 93.2 89.6

(1080p, 24 fps) 17.2 5.7 2.6 1.3 0.7
ParkScene 96.3 94.1 91.9 89.1 86.1

(1080p, 24 fps) 24.5 9.2 4.0 1.9 0.9

b) AI average QP17 QP22 QP27 QP32 QP37
BasketballDrive 101.4 99.0 95.8 92.4 89.4

(1080p, 50 fps) 219.9 89.4 36.7 20.1 11.7
BQTerrace 105.6 102.6 99.6 95.0 91.1

(1080p, 60 fps) 331.8 224.9 95.8 49.6 28.0
Cactus 103.9 101.0 98.6 94.8 91.3

(1080p, 50 fps) 285.0 127.2 58.2 32.2 17.9
Kimono 103.1 105.1 102.6 99.2 95.7

(1080p, 24 fps) 66.0 26.1 14.4 8.3 4.8
ParkScene 105.3 102.9 99.2 95.3 91.9

(1080p, 24 fps) 117.3 62.3 34.3 18.3 9.3
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Table 6.6: Resource utilization on the Xilinx Zynq-7045 SoC. Each cell shows
the absolute (top) and relative (bottom) device utilization. (LUT:
lookup table, BRAM: block RAM, DSP: digital signal processor)

Design Registers LUTs BRAMs DSPs
base CMS4
(area opt)

3,008
0.23%

7,562
1.15%

15
2.75%

1
0.11%

2×4 cache
(area opt)

3,193
0.24%

8,157
1.24%

15
2.75%

1
0.11%

2×4 cache
(speed opt)

3,239
0.25%

9,046
1.38%

15
2.75%

1
0.11%

base CMS8
(area opt)

3,061
0.23%

7,628
1.16%

15
2.75%

1
0.11%

2×8 cache
(area opt)

3,352
0.26%

8,200
1.25%

15
2.75%

1
0.11%

2×8 cache
(speed opt)

3,402
0.26%

9,152
1.40%

15
2.75%

1
0.11%

available 1,311,600 655,800 545 900

6.2.5 Resource Utilization

Table 6.6 compares the resource utilization of the non-cached CABAC decoder with
four and eight context models per CMS with the corresponding cached designs with two
CLs. Synthesis has been performed with area optimization to get meaningful results for
a comparison between the different designs. Results with speed optimization are also
provided to allow a fair comparison with other implementations. Three main conclusions
can be drawn from the results. First, the cached designs (2×4 and 2×8) require only
6.2% and 9.5% more registers, as well as 7.9% and 7.5% more lookup tables (LUTs),
compared to the non-cached designs. This is a reasonable trade-off, considering that the
decoder throughput is increased by 10.4% up to 16.7%. Second, The decoder with a 2×8
cache utilizes 5.0% more registers and 0.5% more LUTs than the decoder with a 2×4
cache, while leading to 1.8 more percentage points in average throughput improvement.
However, as the register utilization is only a quarter of a percent, it is not critical and
the design with the higher throughput can be preferred. Finally, less than 3% of the
FPGA resources are needed to implement the CABAC decoder including the processor
interface. This means that more decoder components can be implemented in the FPGA
as most of the resources are not used yet.

The number of block memories (BRAM) is constant for all configurations. It should
be noted that only one of them is used as the context model memory for the actual
decoder. The remaining BRAMs are required to store all decoded syntax elements. A
single digital signal processing (DSP) unit is used in all configurations to perform the
inverse quantization of decoded transform coefficients.
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The comparison to related work is difficult as all previous cached CABAC hardware
decoders were implemented in 130nm or 180nm CMOS technology while the proposed
decoder is realized with an FPGA. Also, the proposed decoder covers HEVC while the
others address the prior H.264. Another FPGA-based CABAC decoder was presented
by Hahlbeck and Stabernack [68], however, we excluded it from the former comparison
as it does not contain a context model cache. This particular decoder reaches 0.76 bins
per cycle and a clock frequency of 180 MHz, resulting in slightly higher throughput
than with our decoder. On the other hand, it uses significantly more hardware resources.
Nevertheless, a detailed comparison of the resource utilization is not meaningful because
the CABAC decoder has been designed to be part of a full FPGA-based HEVC decoder
[43]. Therefore, it utilizes a substantial amount of additional resources that favor the
throughput of the overall decoder.

6.2.6 Energy Efficiency

The power consumption of the HEVC CABAC decoder is measured with the Xilinx
Vivado Power Analysis tool. A constant static power of 241 mW is consumed by all
designs. The static power is only used to keep the state of the configurable FPGA
logic. That is why it is not considered in the evaluation. The dynamic power is of more
interest as it varies for the different designs. The best performing design with a 2×8
cache consumes 88.3 mW.

Varying cache sizes affect the power consumption in different ways. On the one hand,
a bigger cache requires more hardware resources which consume more power. On the
other hand, the miss rate reduction that comes with bigger caches leads to fewer memory
accesses which saves power. Furthermore, it has been shown that the achievable clock
frequency decreases significantly for bigger caches (see Figure 6.4), and so does the
power consumption of the corresponding decoder. These opposing effects result in a
power consumption that is almost constant for different cache sizes, as well as for the
non-cached decoder. Considering also the average throughput for various test videos
leads to the energy efficiency as shown in Figure 6.10. A peak can be observed for both
configurations (CMS4 and CMS8) with 4 CLs around 1.1 Gbins/Joule. These designs
are 8.5% and 12.0% more energy efficient than the non-cached baselines. Although the
throughput is higher with 2 CLs, this is achieved with a higher clock frequency which
degrades energy efficiency. More CLs also result in reduced energy efficiency because
the throughput is significantly lower.

6.3 Conclusions

A quantitative analysis of the effects of an application-specific context model cache with
prefetching in an HEVC CABAC hardware decoder has been conducted in this work. We
focused on the evaluation of the miss rate when the context model memory is replaced by
a smaller cache. While this replacement allows significant clock frequency improvements
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Figure 6.10: Energy efficiency in Gbins/Joule for a different number of cache
lines (CLs) and context models per CMS (CMS4/8). The hor-
izontal lines show the energy efficiency for the corresponding
non-cached designs.

for small cache sizes, the resulting cache misses nullify the effect. However, the cache
miss rate can be effectively reduced with a well-designed context model memory layout
and the corresponding prefetching strategy.

Results have shown that two cache lines are sufficient to reduce the miss rate to the
point where it only marginally affects the overall performance and almost the full gain
of the clock frequency improvement remains. The decoder configurations with two cache
lines are most promising as they allow the highest speed-ups for all test videos compared
to a non-cached decoder. The 2×4 cache reduces the miss rate to a fraction of 1.3% up
to 4.2% which leads to a speed-up of 15.7% to 10.4% thanks to the 18% clock frequency
improvement. Although the clock frequency improvement of the 2×8 cache is slightly
smaller (17%), the overall throughput gain is in the range of 16.7% to 13.2% due to
the miss rates of 0.2% to 2.0%. Four cache lines allow for even lower miss rates but the
overall speed-up is limited due to the clock frequency improvement of only 10.1% for a
4×4 cache and 6.1% for a 4×8 cache. A single cache line results in miss rates of more
than 20% and leads to significant throughput degradations for low bitrate videos.

Using the best performing configuration (a 2×8 cache), it has been shown that real-
time decoding of high-quality FHD videos is possible on a low-power platform such as
the Zynq-7045. This cached decoder is on average 12% more energy efficient than the
non-cached decoder. Despite the direct throughput improvement due to the enhanced
clock frequency, other designs might remove the pipeline stage that performs the context
model memory access when the cache can be shifted to an adjacent stage. The shortened
pipeline might also significantly improve the throughput as the strong dependencies in
CABAC decoding make deep pipelining inefficient.

The optimizations presented in the current and the preceding chapter are mainly tar-
geting CABAC hardware decoders. In the next chapter, we will present an optimization
approach for CABAC software decoding on GPPs.





CHAPTER7
CABAC Decoding on GPPs

CABAC is the main throughput bottleneck in high-quality video decoding on GPPs in
HEVC as demonstrated in Section 2.2. Although transform coefficient coding has been
improved in HEVC [64][65], most of the bins in CABAC are associated with it, e.g. at
least 70% for high-quality videos in a common FHD testset, and even more than 98%
for single videos in extreme cases. Bc bins for transform coefficients can contribute up to
50% of the overall bins and are mainly responsible for the high bitrates for high-quality
videos due to their ineffective compression. In this chapter we propose three techniques
for improved bc bin decoding for transform coefficients:

• a bypass-bin reservoir for parallel bin decoding

• a division-free version of the bypass-bin reservoir

• a bitstream partitioning approach for computationless decoding

This chapter is structured as follows. The HEVC bc bin decoding implementation is
described in Section 7.1. The proposed approaches for parallel bc bin decoding are pre-
sented in Section 7.2. Afterwards, Section 7.3 provides the corresponding performance
evaluation before the work is concluded in Section 7.4.

7.1 HEVC BC Bin Decoding on GPPs

The foundation of the HEVC CABAC implementation using integer arithmetic has
already been described in Section 2.3.4. The following pseudocode description of the
CABAC bc bin decoding functionality is based on the HEVC reference software [10].
We employ C++ syntax with small variations for better readability. Irrelevant parts
are removed.

The implementation of CABAC in the HEVC decoder is based on three variables that
represent the bitstream state (see Listing 1). range and offset are used as described
earlier (Section 2.3.4). The bitsNeeded variable states how many bits are needed in the

95
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Listing 1 Bitstream state variables for HEVC CABAC decoding.
1 uint32_t o f f s e t ;
2 uint16_t range ;
3 int8_t bitsNeeded ;

Listing 2 Common bc bin decoding function.
1 uint8_t decodeBcBin ( ) {
2 o f f s e t = o f f s e t << 1 ;
3 i f (++bitsNeeded >= 0) {
4 bitsNeeded = −8;
5 r e f i l l ( ) ;
6 }
7
8 u int scaledRange = range << 7 ;
9 i f ( o f f s e t >= scaledRange ) {

10 o f f s e t −= scaledRange ;
11 return 1 ;
12 } else {
13 return 0 ;
14 }
15 }

offset buffer. The smallest possible value is −8, indicating that the buffer is full. As
soon as the value becomes positive (0 or higher) the offset buffer has to be refilled.
Based on that, a function for decoding a single bc bin can be written as seen in Listing 2.
Instead of dividing the range in the middle, the offset is doubled to achieve the same
comparison result (l. 2). A conditional refill of the offset buffer is performed afterwards
(ll. 3-6). The range is shifted to align it with the offset and ignore the offset buffer (l. 8)
before the comparison to the offset is performed (l. 9). The offset is then updated in
case of a one-bin (l. 10) before the bin value is returned (ll. 11 or 13).
The bin decoding function is used to implement functions for bin sequences, i.e. fixed-
length and leadings-ones sequences (see Listing 3). The latter (getNumLeadingOnes) is
realized by decoding single bc bins until a zero-bit is found. The number of preceding
one-bits is returned as the result. There is also a version of this function that limits the
sequence to a maximum value, however, its implementation is not discussed for brevity.
The fixed-length sequence (decodeBcBins) is simply implemented by decoding all the
required bins and concatenating them accordingly (ll. 14-15).
Although the bc bin decoding is based on very simple integer operations, its execu-
tion by modern GPPs is inefficient. There are two main reasons for this. First, the
close-distance data and control dependencies limit the exploitation of instruction-level
parallelism in today’s superscalar out-of-order processors. Second, the high frequency
of hardly predictable branches leads to frequent pipeline flushes and consequently lower
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Listing 3 Functions for decoding multiple bc bins.
1 uint8_t getNumLeadingOnes ( ) {
2 uint8_t leadingOnes = 0 ;
3 do {
4 uint8_t bin = decodeBcBin ( ) ;
5 leadingOnes += bin ;
6 } while ( bin == 1 ) ;
7
8 return l eadingOnes ;
9 }

10
11 uint32_t decodeBcBins ( u int numBins ) {
12 uint32_t b ins = 0 ;
13 for ( int n = 0 ; n < numBins ; n++) {
14 b ins = bins << 1 ;
15 b ins += decodeBcBin ( ) ;
16 }
17
18 return bins ;
19 }

throughput. The offset comparison (Listing 2, l. 9) is not predictable as bc bins have
equal probabilities for both possible bin values by definition. However, it should be
noted that there can be a slight shift in either direction due to video characteristics. A
branch-free implementation of the actual bin decoding (ll. 8-14) is also possible, however,
it results in sequential dependent code and more executed instructions on average.

A cabac_bypass_alignment_enabled_flag in the HEVC sequence parameter set can be
used for alignment and consequently more efficient encoding and decoding of transform
coefficient bc bins, however, it is deactivated in all except high-throughput intra profiles
([9], Annex A).

Due to these inefficiencies, CABAC decoding throughput is limited on GPPs. In the
next section, we present a more efficient version that removes the majority of hardly
predictable branches and decodes many bc bins in parallel.

7.2 Parallel BC Bin Decoding

The bin decoding function in Listing 2 shows a left-shift of the offset and a subtraction
of the shifted range in case the offset is larger. Doing this repeatedly leads to the
same result as the division offset / range, where the quotient represents the decoded
bin sequence. Multiplying the decoded bins by the range and subtracting the product
from the offset results in the updated offset. Considering that an integer division is
a long-running operation, it is questionable whether this can improve the decoding
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throughput. According to the Intel Architectures Optimization Reference Manual, a
32-bit integer division executes in 20-26 clock cycles on Skylake processors [84]. Other
instructions have to wait during that time as they need the result of the division. In
our experiments, we found that this parallel decoding by division resulted in a speed-
up when a sequence of five or more bins was decoded. These sequences can only be
frequently found in high-quality videos and rarely in others [46], making the technique
in this form obsolete for general HEVC decoding. In the following, we will show how
it can be implemented in a way such that it allows substantial speedups for all quality
levels. We will further present a division-free implementation and a modification of the
HEVC bitstream format that removes the need to decode bc bins at all.

7.2.1 Bypass-Bin Reservoir

HEVC CABAC has been designed for improved throughput [44] compared to its prede-
cessor in H.264. Besides an overall higher fraction of bc bins and other improvements, bc
bin grouping has been introduced. This mainly affects the bins for transform coefficients.
While the significance flags and base levels for the coefficients use cc bins, the sign bits
and remaining coefficient levels are solely composed of bc bins. Instead of interleaving
cc and bc bins by grouping bins that are associated with the same coefficients, HEVC
CABAC codes all significance flags and base levels in a 4x4 transform coefficient block
first. Afterwards, the sign bits and remaining coefficient levels are grouped to create
a large sequence of bc bins. The combination of the large group of bc bins with the
division-based parallel bc decoding algorithm allows the development of our efficient bc
bin decoding technique: the bypass-bin reservoir (BBR). Instead of decoding as many
bc bins as needed, we decode as many as possible and store them in the BBR. The size
of the offset buffer is increased to 23 bits, i.e. the maximum number that can be realized
with a 32-bit unsigned integer offset, to reduce the frequency of divisions. Thereby, one
division instruction can decode up to 23 bins in parallel. The bin decoding functions
for fixed-length and leading-ones sequences extract the already-decoded bins from the
BBR.
The BBR state is represented by three variables (see Listing 4). initBbr always represents
the BBR after the division as this is needed to clear the BBR after decoding and put
unused bits back to the offset buffer. bbr is updated when bins are extracted. It always
contains the next bins in the leftmost bits. numBbrBins always contains the number
of bins in the BBR. The function for filling the BBR is shown in Listing 5. The bin
decoding is performed by the division (l. 2). Invalid bins are masked out in case of a
non-full offset buffer (bitsNeeded > −24) (l. 3). Also, the number of bins in the BBR
is set according to the offset buffer (l. 4). Finally, the decoded bins are shifted to the
leftmost position in the BBR for fast extraction (l. 5). The BBR has to be cleared
after decoding the bc bin group. This is done by masking the actually decoded bins in
initBbr, multiplying them by range, and subtracting the product from offset.
The implementation of a decoding function for fixed-length bin sequences is straightfor-
ward. The required number of bins is taken from bbr and it is updated together with
numBbrBins accordingly. The function for leading-ones sequences can make use of a
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Listing 4 BBR state variables for HEVC CABAC decoding.
1 uint32_t in i tBbr ;
2 uint32_t bbr ;
3 int8_t numBbrBins ;

Listing 5 Fill BBR function.
1 void f i l l _ b b r ( ) {
2 in i tBbr = o f f s e t / range ;
3 in i tBbr &= ~((1 << (24 + bitsNeeded ) ) − 1 ) ;
4 numBbrBins = −bitsNeeded − 1 ;
5 bbr = in i tBbr << 9 ;
6 }

special instruction for counting the number of leading zeros (clz) on the inverted bbr.
This instruction is available in many modern processors and can be used with a gcc
builtin function (see Listing 6, l. 2). The bbr and numBbrBins need to be updated by
one additional zero-bin that finishes the sequence of one-bins (ll. 3-4).

So far, we have ignored that there might be hundreds of consecutive bc bins but at most
23 bins available in the BBR. Therefore, a refill function for the BBR is necessary. We
decided to check for the necessity to refill during the decoding of a bin sequence. If the
number of bins in the BBR is not sufficient for the current bin sequence (fixed-length
or leading-ones), all available bins are extracted first. Then, the BBR is refilled and
the remaining bins are extracted. This has two advantages over refilling at other points
in time. First, a new division operation for refilling is only executed when it is really
needed. Second, the refill always works on an empty BBR which simplifies the function
a lot.

The proposed BBR implementation produces mostly branch-free code. The only excep-
tion is for the refill check. If refills are needed frequently, it means that a lot of bins are
decoded in parallel which is the main purpose of the BBR.

7.2.2 Division by Inverse Multiplication

The main complexity of the BBR implementation is in the fill and refill functions due
to the long-running integer division. The BBR implementation works best when a
fast division is available in a processor. However, the decoding process might be even
decelerated in processors with slow division operations. Some processors do not even
have a hardware divider, e.g. the ARM Cortex-A9. In this case, the compiler has to
generate a code sequence that leads to the same result, but that most often executes in
many more clock cycles. In general, a division can be replaced by a multiplication with
the inverse. While this works for floating-point numbers, the inverse of any integer greater
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Listing 6 Extract leading-ones from BBR.
1 uint8_t getNumLeadingOnes ( ) {
2 uint8_t nlo = __built in_clz (~ bbr ) ;
3 bbr = bbr << ( nlo + 1 ) ;
4 numBbrBins −= ( nlo + 1 ) ;
5 return nlo ;
6 }

Listing 7 Division by inverse multiplication. (inv: inverse, add: add indicator, shamt:
shift amount)

1 uint64_t tmp = ( uint64_t ) o f f s e t ∗ inv ;
2 in i tBbr = ( uint32_t ) ( tmp >> 3 2 ) ;
3 in i tBbr += add∗ o f f s e t ;
4 in i tBbr = in i tBbr >> shamt ;

than one is less than one and therefore not accurately representable with integers. A
common way to still implement it is to perform a 64-bit multiplication with the inverse
multiplied by 232, which provides the quotient in the top 32 bits of the result (see
Listing 7, ll. 1-2). Unfortunately, this is not accurate and produces incorrect results in
some cases, which is acceptable in approximate algorithms but not in CABAC. The
leftmost bits of the inverse are zero for larger divisors. The accuracy can be improved
by shifting the inverse to the left, thereby enabling additional bits on the right for
improved accuracy, and performing the inverse shift after the multiplication (l. 4). For
a fully accurate division, an add indicator can be used to get the desired results. It
depends on the divisor and is either zero or one (l. 3).
The inverse multiplication is commonly used by compilers when the divisor is known
at compile-time. This is not the case for the range variable. However, as its value can
only be in the interval [256:510] in HEVC CABAC, we can use a lookup table (LUT)
that contains the inverse, the shift amount and the add indicator to implement the
division with the algorithm described above. The LUT needs 255 · (4 + 1 + 1) = 1530
bytes in memory. It can also be compressed to 1275 bytes by using the same byte for
the shift amount (at most five bits) and the add indicator (one bit). The LUT needs
to be accessed only once per bc bin group for the BBR fill. The LUT entry can then
be locally stored and used later for every refill because range is constant during that
time. We refer to the division-free BBR implementation with inverse multiplication by
BBR-IM for the remaining chapter.

7.2.3 Bitstream Partitioning

While BBR and BBR-IM can be used for common HEVC bitstreams, we also propose
a bitstream partitioning approach with a separate bc bin partition (BBP) for the use



7.3 Evaluation 101

in future video coding standards that can accelerate CABAC decoding even more. Due
to the equal probability for both values of bc bins, a bc bin corresponds to a bit in
the bitstream. It is due to the interleaving with cc bins, that the bc bin encoding and
decoding require computational work in the first place. When using separate bitstream
partitions for cc and bc bins, the latter can simply be stored in memory when encoding
and be read from memory when decoding. This computationless processing of bins
is highly efficient and should be considered in future standards. After all, the large
fraction of bc bins in high-quality videos allows the high potential for performance
improvements when CABAC decoding is the main throughput bottleneck.

The bitstream overhead constitutes of one additional length field for the bc bin partition.
A dynamic field of 1-4 bytes can be used with a leading-ones sequence of at most three
bits to determine the size of the field and the remaining bits to determine the size of
the partition. The size of the length field is one byte if the first bit is 02, two bytes
if the first two bits are 102, three bytes for 1102, and four bytes for 1112. Bitstream
partitioning approaches have been proposed in previous works, but in schemes with
three [63][70] and eight [4][6] bitstream partitions. This proposal only makes use of the
highly efficient bc/cc bin splitting while keeping the cost very low. Compared to BBR
and BBR-IM, a separate bc partition improves the decoding of all bc bins, not only
the ones associated with transform coefficients. Furthermore, it enables two threads to
work on the decoding in parallel.

7.3 Evaluation

We evaluate the performance of the proposed BBR, BBR-IM and BBP approaches for
HEVC CABAC bc bin decoding of transform coefficients. Two processors are used for
evaluation: the Intel Core i9-7960X and the ARM Cortex-A9. While the former is a
modern high-performance processor, the latter is much older and less powerful. The
reason for including it in the evaluation is its lack of hardware division support which
makes it well-suited to evaluate the division-free BBR-IM approach compared to BBR.
We use the single-threaded HEVC reference software (version 16.20 [10]) for evaluation.
Although it is known for low performance, e.g. due to the lack of vectorization, the bc bin
transform coefficient decoding part is implemented efficiently, thus making it suitable
for the evaluation of the proposed techniques. C++ std::chrono::high_resolution_clock
is used for measurement of the time taken to process the bc bin part in transform
coefficient decoding, including BBR filling, refilling and clearing.

We employ Class B of the JCT-VC common test conditions [23] and the RGB-444
class from the range extensions test conditions [24]. The former represents a widely
used configuration of FHD videos in RA mode, while the latter is characterized by
very high-bitrates due to higher video quality, the absence of chroma subsampling and
the use of AI mode. Class B is used with QPs of 22, 27, 32 and 37. The RGB testset
even uses very high-quality QPs of 12 and 17 but skips 32 and 37. The results are the
geometric means of all videos from the respective testsets.
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The speedups of transform coefficient bc bin decoding with the proposed techniques are
shown in Figures 7.1 (Intel Core i9-7960X) and 7.2 (ARM Cortex-A9). The BBR and
BBR-IM techniques provide very similar speedups on the Core i9-7960X processor in the
range between 1.36× and 1.53× for the Class B testset and between 1.55× and 1.84×
for the RGB-444 testset. The RGB-444 testset allows higher speedups because there
are many more bc bins in these high-bitrate videos which makes the parallel decoding
more effective. BBR is the preferred technique for the Core i9-7960X processor as it
yields very similar performance results but does not require the 1.53 kB LUT for the
data associated with the inverse multiplication, which can occupy a relevant part of
the 32 kiB first-level data cache. The BBP technique avoids the fill, refill and clear
operations for the BBR and consequently results in 1.90× up to 2.22× performance
compared to common bc bin decoding. The maximum speedups for single videos are
2.00×, 2.04× and 2.45× for BBR, BBR-IM and BBP respectively.
The results for the Cortex-A9 processor are significantly different. In general, the per-
formance improvements are smaller as the shorter processor pipeline in the Cortex-A9
microarchitecture (9-12 stages) induces smaller penalties for mispredicted branches
than the pipeline in the Core i9-7960X’s Skylake-X microarchitecture (14-19 stages).
This means that the common bc bin decoding is more efficient and the opportunities
for improvement are smaller. As a result, the speedup with the BBP technique is only
in the range between 1.18× and 1.65×. Due to the lack of hardware division support,
the BBR technique even reduces the performance down to 0.88× in some cases. For
very high-quality videos, a speedup of up to 1.12× is still possible as the exploitation
of parallelism for the extreme number of bc bins compensates for the inefficient divi-
sion implementation. Compared to BBR, BBR-IM performs significantly better on the
Cortex-A9 processor with speedups up to 1.30× and no performance degradation for
low-quality videos.
The bitstream overhead for the BBP approach is negligible. It is less than 0.2% for all
videos from the Class B testset and even less than 0.002% for the RGB-444 testset.
Considering the substantial speedups in bc bin decoding across all quality levels and
the removal of any computation for encoding and decoding, we strongly recommend
considering separate cc bin and bc bin partitions in future video coding standards.

7.4 Conclusions

We have presented three techniques to improve bc bin decoding for transform coefficients
in HEVC CABAC. We propose the bypass-bin reservoir (BBR) as a combination of
a division-based algorithm to decode many bins in parallel and the exploitation of bc
bin grouping in HEVC. A division-free version of the BBR is implemented that can
achieve similar performance by replacing the division by inverse multiplication (BBR-
IM). Performance improvements are demonstrated for embedded processors without
hardware division support. Furthermore, BBR-IM can be beneficial for systems with
less-powerful division hardware, e.g. mobile processors. Finally, we propose the use
of a separate bitstream partition for bc bins (BBP), which makes their encoding and
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Figure 7.1: Speedup over common bc bin decoding on the Intel Core i9-
7960X processor with the bypass-bin reservoir technique (BBR),
its division-free implementation (BBR-IM), and the use of a
separate bc bin partition (BBP).
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Figure 7.2: Speedup over common bc bin decoding on the ARM Cortex-
A9 processor with the bypass-bin reservoir technique (BBR), its
division-free implementation (BBR-IM), and the use of a separate
bc bin partition (BBP).
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decoding computationless and affects all bc bins. The maximum decoding speedups for
transform coefficient bc bin decoding are 2.00×, 2.04× and 2.45× for BBR, BBR-IM
and BBP respectively. While BBR and BBR-IM can be used with the current HEVC
standard, BBP is strongly recommended for the use in future video coding standards
due to its substantial performance improvements, negligible bitstream overhead, and
high potential for energy savings.



CHAPTER8
Conclusions

The ever-increasing demands for higher video resolution and quality require even greater
computational performance growth. At the same time, higher compression performance
is one of the most important goals of video codec development to make the best use
of the available network bandwidth and device storage. Modern video compression
standards represent a trade-off to reach the best compression rate while maintaining
real-time capabilities. This means that the best compression algorithms cannot always
be used due to performance limitations. Furthermore, energy efficiency is of utmost
importance given the tremendous number of video applications used on mobile devices.
Especially these devices also require optimizations in hardware area and cost. HEVCs
successor VVC will require even more computational power as the compression gains
are reached with the introduction of more complex coding tools.
High-quality video encoding and decoding are computationally complex processes that
require highly efficient parallel implementations to achieve real-time performance. For-
tunately, there is a massive amount of parallelism in video coding applications that can
be exploited by today’s multi- and many-core systems. Vectorization is also commonly
used to improve both the performance and energy efficiency of most video coding com-
ponents. The one major exception in state-of-the-art video compression standards is
CABAC, which is without any doubt a challenging task for modern computer architec-
tures. Although it can benefit from high-level parallelization, its underlying sequential
algorithm and lack of DLP prevents the use of vectorization techniques and makes the
development of customized hardware solutions very difficult. The profiling results in
Section 2.2 clearly show that the decoding time fraction for CABAC is increasing with
the vector size up to the point where it takes most of the time in many workloads on
modern processors. Other optimization approaches are essential to address this major
throughput bottleneck in modern video coding applications.

8.1 Summary
In this thesis, we have presented multiple approaches to improve CABAC decoding
throughput (see Table 8.1). They cover parallelization on different levels and architec-
tural optimizations.

105
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First, we have developed three improved WPP implementations for HEVC CABAC
decoding. Conventional WPP establishes a horizontal offset of at least two CTUs
between consecutive CTU rows to make sure that all dependencies are satisfied. CABAC
decoding only depends on the CTU above the currently processed one. As a result,
decoupling CABAC decoding from the reconstruction process allows reducing the WPP
offset to only one CTU once the context initialization is finished. The unbalanced load
among all CTUs allows threads that process specific CTU rows to catch up with other
threads once they reach more complex frame areas while conventional WPP would lead
to stalls. This results in improved parallel efficiency of the WPP implementation. The
relaxed WPP implementation leads to average speedups up to 1.55×. The throughput
improvements highly depend on the frame content. Best results were achieved for low-
delay applications such as video conferencing and video chatting, as well as for FHD
entertainment applications. Two more fine-grained WPP implementations (FG-WPP)
perform dependency checks at the CU and syntax element level instead of CTU level.
This results in even higher speedups up to 1.83× on average. CU-level dependency checks
are the preferred method because the performance is negligibly worse than with syntax
element granularity while a single integer counter per CTU row that is incremented in
z-scan order suffices to implement the fine-grained dependency checks. All in all, the
proposed WPP implementations significantly improve the parallel efficiency within a
frame at a very low cost compared to conventional WPP.

The presented B3P approach enables a substantial amount of parallelism during the
decoding of a single CTU. The bins of a regular bitstream are distributed across
eight static partitions for parallel decoding. This also allows the specialization of the
corresponding subdecoders as they process the bins of fewer different types of syntax
elements, resulting in significant clock frequency improvements and reduced additional
hardware cost. The partitioning scheme was designed to reduce dependencies between
partitions and to achieve optimal load balancing for high-quality videos when CABAC
decoding is most critical for the overall decoding process. The B3P approach leads to
speedups up to 8.5× while using only 61.9% more logic area. The bitstream overhead is
negligible for high bitrates and does not exceed 0.7% for FHD entertainment applications
of all quality levels. B3P outperforms high-level parallelization tools such as WPP and
Tiles in terms of bitstream overhead and especially hardware cost. Compared to the
related Syntax Element Partitioning we achieve much better speedups for high-quality
videos at the same bitstream overhead and slightly lower hardware cost.

A context model cache architecture has been implemented to shorten the critical path
of the CABAC decoder and reach higher clock frequencies. In addition, a prefetching
algorithm was implemented to minimize stalls due to cache misses. The prefetching
algorithm adapts to different video characteristics by using specific context models
for prefetching decisions. The context model memory layout was designed to exploit
spatial and temporal locality with respect to the HEVC CABAC decoding algorithm.
We performed a design space exploration of different cache and cache line sizes to find
the best architecture in terms of performance, hardware cost and energy efficiency. We
have demonstrated that a cache with two cache lines of eight context models suffices
to reduce the miss rate to at most 2% for all test videos. This leads to performance
improvements of 13.2% to 16.7% thanks to the clock frequency enhancement of 17%.
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Table 8.1: Overview of the presented CABAC optimization approaches. FG-
WPP compared to conventional WPP. Other approaches com-
pared to identical baseline without the technique. HW/SW suit-
ability: ✓ (full), ❍ (limited), ✗ (none). Bitstream Overhead based
on FHD testset (JCT-VC Class B). Some results are not evaluated
within the scope of this thesis (n.a.).

HW SW Max.
Speedup

Hardware
Overhead

Bitstream
Overhead

HEVC Con-
formance

FG-WPP ✓ ✓ 1.83× 0.0 % 0.0 % ✓

B3P ✓ ❍ 8.50× 61.9 % < 0.7 % ✗

Cache ✓ ✗ 1.17× 7.5 % 0.0 % ✓

BBR ❍ ✓ 2.04× n.a. 0.0 % ✓

BBP ✓ ✓ 2.45× n.a. < 0.2 % ✗

Finally, we have optimized bc bin decoding on GPPs. The decoding performance of
this task suffers from frequent hardly predictable branches. We proposed a Bypass-Bin
Reservoir (BBR) to significantly enhance bc bin decoding throughput. This is achieved
by decoding as many bc bins as possible in one step with linear but more complex
arithmetic functions instead of control-intensive bin-by-bin decoding. We thereby exploit
the bc bin grouping that has been introduced in HEVC for improved throughput.
Furthermore, the separation of cc and bc bins into different partitions is proposed to
remove the computational work for bc bin decoding at all. The BBR leads to speedups
up to 2.04× while the bin partitioning approach with a separate bc bin partition (BBP)
allows speedups up to 2.45×. The cost for the higher speedup with BBP is a bitstream
overhead of less than 0.2%.

We have demonstrated that significant performance improvements are achievable with
the presented approaches. Most of them can be combined because they are orthogonal
and exploit parallelism on different levels, thus multiplying their speedups. An exception
is the combination of B3P with BBR/BBP as all of them exploit bin-level parallelism.
Also, the effectiveness of other approaches is affected in some cases.

Using B3P/BBP with WPP multiplies the bitstream overhead for the former as it is
needed for every WPP substream. However, It should be noted that the combination
of these techniques is only necessary for very high-quality video coding. As the bit-
stream overhead is orders of magnitude below one percent for these workloads, even a
multiplication is still insignificant.

The effectiveness of a context model cache is reduced when used with the B3P approach
as the original context model memory is distributed among the subdecoders. The smaller
memories have less potential for clock frequency improvements when replacing them
with caches. On the other hand, prefetching becomes less complex.

Overall, the thoughtful combination of the presented approaches allows reaching even
higher performance goals.
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8.2 Recommendations and Future Work

Video applications and computer architectures have influenced the development of each
other for decades and their co-development is also essential in the future to allow further
spreading and enhancement of these applications in our everyday life. In the following,
we provide recommendations for video codec developers and computer architects, as
well as research ideas for improved video coding in general and CABAC in particular.

Computer architectures have undergone substantial improvements in performance and
energy efficiency for decades. Homogeneous Multiprocessors maintained the rate of
improvement for another decade by exploiting parallelism when the pure increment
in clock frequency hit power barriers. Today, the heterogeneity of processor cores and
customized hardware accelerators is one of the most promising techniques for further
improvements in performance and energy efficiency. The absence of floating-point arith-
metic in modern video compression standards is an excellent example where GPPs and
especially GPUs waste a lot of chip area that remains unused. CABAC decoding can
even be implemented with a basic 16-bit integer ISA. Furthermore, the low complexity
of the involved operations might lead to shorter processor pipelines, thus reducing the
branch misprediction penalties for this control-intensive task. These simplifications
allow multiple of such cores instead of a single GPP core at the same chip area, thereby
improving high-level parallelization opportunities and energy efficiency.

Another example of heterogeneity is the emergence of FPGA-SoCs. While most video
coding tasks can be quite efficiently implemented using the vector extensions of mod-
ern processors, sequential CABAC decoding can be accelerated by a tightly-coupled
FPGA. FPGAs also allow optimizations regarding multi-standard video coding as many
modern video compression standards are very similar in their general design principles.
Reconfigurability would lead to significant savings in chip area compared to separate
hardware accelerators for all required video compression standards. CABAC decoding
might also be suitable for application-specific instruction set processors as the simple
yet control-intensive decoding process for a bin can be merged into a single instruction,
thus greatly improving this critical task.

The limited benefit from the further increasing width of vector extension registers has
also been demonstrated. It might be way more useful for video applications to implement
support for two-dimensional block processing. While this imposes severe challenges on
the memory system, it might very well be suitable on the cache level.

Fine-grained WPP has been proven to significantly improve the parallel efficiency
for CABAC decoding compared to conventional WPP with a two-CTU offset. The
concept is applicable to the other major video coding components as well, although the
expected benefit is smaller as it is for CABAC due to rare extreme cases that induce
dependencies close to the two-CTU offset. Avoiding the use of intra prediction directions
and motion vector candidates in the encoder that lead to these extreme cases might
result in more efficient WPP implementations for the whole decoder with only marginal
bitrate increases.
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Merging blocks for concurrent processing and thereby better utilizing modern vector
architectures is a very promising approach as long as the operations for these blocks
are sufficiently similar. This is among others possible for motion compensation for PUs
with motion vectors that differ only in the fractional part. Their memory accesses cover
adjacent memory areas while the arithmetic operations are the same except for fixed
coefficients that can be adjusted accordingly. Furthermore, motion vectors of adjacent
PUs are often identical. The coding quad-tree structure in HEVC is highly responsible
for that as it splits a block into four subblocks if only a small part of the corresponding
frame area needs to be predicted differently. The more flexible coding tree structure in
VVC is a good step to reduce such inefficiencies. An encoder-based approach for better
vectorization opportunities is the sacrification of compression performance to a higher
extent to avoid small block sizes and consequently allow higher throughput.

The sequential CABAC algorithm is for sure one of the most critical throughput bottle-
necks in modern video compression standards. The situation is not expected to change
in VVC as CABAC is not significantly modified. Frame- and CTU-level parallelization
techniques affect all video coding tasks to a similar degree while CABAC is the only
one that lacks DLP. Relaxing low-level dependencies to allow more efficient hardware
solutions, and enabling more parallelization opportunities specifically for CABAC is
required to compensate for the lack of DLP. The bitstream partitioning approach pre-
sented in Chapter 5 serves this purpose. A less complex yet effective approach has been
evaluated in Chapter 7. The separation of cc and bc bins enables the parallel processing
of both bin types and removes any computation for bc bin decoding. This partition-
ing approach is most effective with a high bc bin fraction, i.e. for high bitrates when
CABAC decoding is most critical for the overall decoding performance. Consequently,
we strongly recommend considering separate cc and bc bin partitions for future video
compression standards given that the bitstream overhead is negligible.

Relaxing bin-to-bin dependencies would allow further low-level parallelization opportu-
nities. Bins that use the same context model are often grouped to reduce the amount
of context speculation. However, this introduces dependencies between the decoding
processes for two consecutive bins as the context model needs to be updated before it
can be reused. Using constant context models within a 4x4 subblock in TB decoding
might be a reasonable trade-off. It removes dependencies and thereby allows higher
throughput while not sacrificing compression efficiency too much. This technique is
expected to have a significant impact on overall decoding performance as the majority
of bins is associated with TB decoding in high-quality videos.

After all, further advances in computational and compression performance, energy effi-
ciency, and hardware area and cost besides the natural evolution of computer architec-
tures are only possible when video coding applications are designed to better match the
capabilities of these architectures. They in turn need to be able to exploit the massive
amount of parallelism in video coding applications at all levels to implement them most
efficiently. These advances are essential to further increase the quality, further spreading,
and emergence of future video applications.
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