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Abstract

Piezoceramic sensors and actuators have found broad fields of applications in recent
decades. In the range of small strains resulting from weak electrical and/or mecha-
nical loads, the behavior of piezoceramics is usually described by linear constitutive
equations. Nonlinear hysteretic models are used to describe polarization processes or
the behavior of piezoceramics in presence of strong electric fields and/or mechanical
stresses above coercive magnitude giving rise to polarization switching processes.

On the other hand, nonlinear behavior of a softening Duffing-oscillator including
jump phenomena or multiple stable amplitude responses at the same excitation voltage
amplitude and frequency can be observed, when polarized piezoceramics are excited
by weak electric fields far away from coercive ones. These are referred to as dynamic
tests in the following. The present work is focused on the description of the non-
linear effects at ranges of moderate strains, as they occur typically in such dynamic
tests. These nonlinear effects can classically be described by introducing nonconserva-
tive and higher-order terms into electric enthalpy or constitutive equations. Using the
amplitude–frequency responses from dynamic experiments near resonance, the para-
meters of piezoceramics can be determined. Unfortunately, it is difficult to decide on
some of the nonlinear characteristics, for example the type of conservative (mechanical,
coupling or dielectric) nonlinearities or of nonconservative (damping) ones.

To overcome these problems, quasi-static experiments with moderate applied elec-
tric fields as well as tension and compression tests at moderate stresses resulting in
strains of the same order as those in the dynamic cases are performed. Transversally
polarized piezoceramics subjected to moderate quasi-static electric field in the pola-
rization direction exhibit nonlinear hysteretic relations between the longitudinal strain
or the electric displacement density and the applied fields. Stress–strain hysteretic
behavior are also observed in tension and compression tests. These quasi-static re-
sponses can then be described by four of the most common hysteresis models, namely
the classical Preisach model, the Prandtl-Ishlinskii model, the Masing model and the
Bouc-Wen model, which are related to one another.

The Masing and Bouc-Wen models have the advantage to be described by the dif-
ferential evolution equations of internal variables, so that these hysteresis models are
easily integrated into the linear conservative modeling of longitudinal vibrations of
piezoceramics. Finally, the mechanical nonlinearities can be determined directly from
the results of tension and compression tests on the condition that the electrodes of
piezoceramics are short-circuited. The identified parameters are then used for the de-
scription of the dynamic case. The results suggest that the nonlinear dynamic effects
are mainly based on nonlinear hysteretic stress–strain behavior.
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Zusammenfassung

Piezokeramische Sensoren und Aktoren wurden in den letzten Jahrzehnten in zahl-
reichen Bereichen der Technik angewendet. Im Bereich von kleinen Dehnungen, die aus
schwachen elektrischen oder mechanischen Belastungen resultieren, wird das Verhalten
von Piezokeramiken in der Regel durch lineare konstitutive Gleichungen beschrieben.
Nichtlineare hysteretische Modelle werden verwendet, um den Polarisationsprozess oder
das Verhalten von Piezokeramiken unter starken elektrischen Feldern oder mecha-
nischen Spannungen oberhalb der koerzitiven Feldstärken zu beschreiben, wobei Orien-
tierungsvorgänge der Domänen vorkommen.

Auf der anderen Seite kann nichtlineares Verhalten, vergleichbar mit einem degres-
siven Duffing-Oszillator, einschließlich Sprungphänomenen oder mehrfachen stabilen
Lösungen bei gleicher Erregersspannungsamplitude und -frequenz beobachtet werden,
wenn polarisierte Piezokeramiken durch schwache elektrische Felder weit unterhalb der
koerzitiven Feldstärke angeregt werden. Im Folgenden werden diese als dynamische
Experimente bezeichnet. Die vorliegende Arbeit konzentriert sich auf die Beschrei-
bung der nichtlinearen Effekte in Bereichen von mäßigen Dehnungen, wie sie typis-
cherweise bei der Resonanzanregung solcher schwach gedämpfter Systeme bei dynamis-
chen Untersuchungen vorkommen. Diese nichtlinearen Effekte können klassischerweise
durch die Einführung von nichtkonservativen Termen und Termen höherer Ordnung
in die elektrische Enthalpiedichte beziehungsweise in die konstitutiven Gleichungen
beschrieben werden. Mit den Amplitudenfrequenzgängen aus dynamischen Versuchen
nahe der Resonanz können die Parameter von Piezokeramiken bestimmt werden. Es ist
aber schwierig, bei den nichtlinearen Kenngrößen zu entscheiden, welche Art der kon-
servativen (mechanischen, piezoelektrischen oder dielektrischen) Nichtlinearität oder
Dämpfung vorliegt.

Um diese Probleme zu bewältigen werden quasistatische Versuche mit angelegten
mäßigen elektrischen Feldern sowie Zug- und Druckversuche bei mäßigen Spannun-
gen, die in Dehnungen in der gleichen Größenordnung wie im dynamischen Fall re-
sultieren, durchgeführt. Transversal polarisierte Piezokeramiken unter mäßigem qua-
sistatischem elektrischem Feld in der Polarisationsrichtung weisen nichtlineare Hys-
teresen zwischen der Längsdehnung oder der elektrischen Verschiebungsdichte und den
angelegten Feldern auf. Spannungs-Dehnungs-Hystereseverhalten wird auch bei Zug-
und Druckversuchen beobachtet. Dieses quasistatische Verhalten kann dann durch
vier der gängigsten Hysteresemodelle beschrieben werden, nämlich durch das klassis-
che Preisach-Modell, das Prandtl-Ishlinskii-Modell, das Masing-Modell und das Bouc-
Wen-Modell, die miteinander verknüpft sind.

Aufgrund des Vorteils, dass die Masing- und Bouc-Wen-Modelle durch die Differen-
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tialevolutionsgleichungen mit den inneren Variablen beschrieben werden, können diese
Hysteresemodelle in die Modelle von Längsschwingungen der Piezokeramiken leicht
eingebunden werden. Schließlich können die mechanischen Nichtlinearitäten direkt aus
den Ergebnissen der Zug- und Druckversuche, unter der Bedingung, dass die Elek-
troden der Piezokeramik kurzgeschlossen sind, bestimmt werden. Die identifizierten
Parameter werden dann für die Beschreibung des dynamischen Falls verwendet. Die
Ergebnisse weisen darauf hin, dass die nichtlinearen dynamischen Effekte wesentlich
auf dem nichtlinearen hysteretischen Spannungs-Dehnungs-Verhalten basieren.
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Chapter 1

Introduction

In recent decades, piezoceramics have found broad fields of applications. On the one
hand, these smart materials, which possess piezoelectric properties, have been used for
sensor applications, e.g. in accelerometers, microphones, load cells or rather for dam-
ping and power harvesting purposes by exploiting the direct piezoelectric effect [4]. On
the other hand, the inverse piezoelectric effect can be used in actuators, for example
polarized piezoceramics are bonded to the stator of travelling wave ultrasonic motors
(USM), which are used e.g. to adjust the lens in the autofocus camera. The piezoce-
ramics produce bending waves in the stator and the vibrations of the stator are then
transmitted to the rotor by friction at contact points [42]. The stator of USM can also
be fully made of piezoceramic material [104]. In automobile technology, piezoceramic
stack actuators are used to control a needle valve that opens and closes a nozzle in
order to spray fuel in the cylinder of an internal combustion engine [83]. Actuation
systems of aircraft or helicopters based on piezoelectricity may gradually substitute
conventional hydraulic systems [22]. In a recent project of NASA (National Aeronau-
tics and Space Administration, USA) a full-scale helicopter with rotor blades containing
piezoelectric stack actuators controlling the flap were tested. The results show that the
system significantly reduced vibrations, saved energy and controlled rotor movement
more precisely [105]. Piezoceramics are even integrated into sport equipments, such
as snowboards [114,115], bicycle structures [73] or golf clubs [43], where the materials
undertake both energy harvesting and the function of dampers. Further applications
of piezoelectric actuators, e.g. in information technology, robotics, bio and medical ap-
plications or ecological and energy applications can be found in [112].

The broad use of piezoceramic actuators is based on the number of advantages es-
pecially compared to pneumatic and hydraulic actuators in micro electro mechanical
systems [24]. According to the manufacturer PI Ceramic, piezoceramic actuators can
produce changes of position with subnanometer resolution and generate (or bear) forces
of several tons. The response time of piezoceramic actuators is in range of microsecond
and accerelation of 10,000 g can be reached. Electrical energy is only absorbed during
dynamic operation of piezoceramic actuators and there is even no power consumption
holding strong loads. Piezoceramic actuators are compatible with vacuum and clean-
room applications due to no use of lubricants or no abrasion. However, piezoelectric
actuators also have several limitations, such as for the stack actuator the applied elec-
tric field is only allowed to be in the range from −0.3 to 1.5 kV/mm, tension forces and
bending or torsion moments have to be avoided. Dynamic excitation results in dielec-
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2 Chapter 1. Introduction

tric and mechanical losses, which are nonlinearly related to the excitation frequency
and amplitude or the humidity. The temperature in the actuators must typically be in
the range from −40oC to 80oC [56]. Although only giving rise to small displacement,
piezoceramic actuators exhibit nonlinear response relation with hysteresis and creep
effects.

It is known that piezoceramics subjected to strong electric fields and/or mechanical
stresses reveal a nonlinear behavior, such as hysteresis relations between the applied
electric fields and spontaneous polarizations or strains, as well as creep phenomena.
This is the case in the manufacturing processes to polarize the ceramic materials or the
case of micro positioning where large displacements are required. Dealing with these
nonlinearities, there have been numerous publications [1, 7, 8, 25, 51, 62–64, 77, 84, 93,
102, 103, 124, 130, 133], partially with specific applications and using different hystere-
sis models. These problems are often combined with other ones such as degradation
of piezoelectric properties with respect to time [26] or combination with higher-order
terms in the constitutive equations or energy functions [101,102,109]. Since these non-
linearities usually have a detrimental influence on the performance of piezoceramics in
position and control applications, the description and solution of correponding prob-
lems are taken interest in by a lot of works, for example [10,21,35,57,67,74,85,94,129].

These above-mentioned nonlinear effects can be accounted for by so-called polari-
zation switching processes initiated when the electrical and/or mechanical loads reach
sufficient coercive magnitude. On the other hand, in the range of very small strains
resulting from weak electric fields or mechanical stresses, the behavior of piezoceramics
can be described by linear constitutive equations in company with Newton’s second
law of motion, the linear strain–displacement relations as well as Maxwell’s equations
from the electric part. This linear theory can be found in a large number of textbooks,
e.g. [9, 19, 47, 52, 79, 80, 86, 99, 111]. However, in some applications, for instance in
piezo–beam systems [120] or ultrasonic travelling wave motors [104], piezoceramics are
often excited near resonance by weak electric fields, under which switching processes
may occur but are expected not to play a dominant role since the necessary magni-
tude of electrical or mechanical loads is not reached. Even for amplitude of electric
fields in the range of 1–10 V/mm piezoceramics distinctly exhibit typical nonlinear
vibration effects such as jump phenomena, multiple stable responses at the same ex-
citation and the presence of superharmonics in spectra with monofrequent excitation.
On the one hand, nonlinear effects can be taken into account by using nonlinear strain–
displacement relations of von Kármán type as described e.g. in [58–60, 97, 98]. In the
present work, displacements and strains are sufficiently small so that the linear me-
chanical relations can approximately be applied. On the other hand, the nonlinearities
were dealt with by lots of authors starting with [11,12], where higher-order elastic and
dielectric terms were introduced into the uncoupling constitutive equations. Nonlinear
energy functions, e.g. electric enthalpy and internal energy, were generally formulated
in [79, 80]. This method was applied in several works, also with nonlinear boundary
conditions [2,5,61,89–92,117–122,128]. Energy harvesting applications based on piezo–
beam systems regarding to such nonlinearities were also investigated [72,108,113].

In addition, investigations of nonlinear behavior of piezoceramics under strong me-
chanical stresses were done by performing tension and compression tests on both un-
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polarized as well as polarized piezoceramics [31–34, 131]. The results obviously show
asymmetric stress–strain behavior. Difference in plastic strains can be observed for
polarized and unpolarized materials or for the same stress in tension and compression.
A depolarization will occur in polarized piezoceramics subjected to tension stresses
perpendicular to the polarization direction.

The aim of this work is to describe in more detail nonlinear dynamic effects caused
by loads resulting in ranges of moderate strains occurring during the resonance ope-
ration of piezoceramic actuators excited by weak external electric fields far away from
coercive ones, e.g. up to 3% of coercive electric field, in the case of the inverse 31-effect.
According to the method of von Wagner [117] introducing higher-order conservative and
nonconservative terms into the piezoelectric constitutive equations gives rise to good
qualitative and quantitative accordance with experimental results. However, several
questions remain open, for example for the type of nonlinearities, i.e. mechanical or
coupling nonlinearities and quadratic or cubic ones, which plays a dominant role in
the explanation of the nonlinear effects and for the model of the damping. Therefore,
quasi-static experiments are performed with moderate electrical or mechanical loads
resulting in moderate strain of the same order as in the dynamic experiments. The
observed hysteretic behavior can be simulated by using different hysteresis models.
Compatible models are then integrated into the linear dynamic modeling in order to
interpret the dynamic nonlinearities. In another way, mechanical nonlinear parame-
ters are determined directly from experimental hysteretic results and introduced into
the nonlinear dynamic modeling. The corresponding results should be compared with
those of experiments.

The present work is organized in nine chapters. In chapter 1 the problem state-
ment, literature review and objective of the work are briefly given. Results in chapters
2–5 basically follow the work [117]. The fundamentals of piezoelectricity are described
in chapter 2 introducing the direct and inverse piezoelectric effects in combination
with the polarization process. Here the linear piezoelectric theory is also found inclu-
ding the thermodynamic energy function for the application of Hamilton’s principle
for piezoelectric continua, the linear piezoelectric constitutive equations, the mecha-
nical equilibrium equations, the strain−displacement relations and quasi-electrostatic
Maxwell’s equations. Chapter 3 presents dynamic experiments with transversally po-
larized piezoceramics excited near the first resonance to longitudinal vibrations with
respect to the inverse 31-effect. Various nonlinear effects can be observed at weak
electric fields but resulting in moderate strains. In chapter 4 a linear modeling for
longitudinal vibrations of the piezoceramics taking account of dissipative effects in the
constitutive equations is considered. Chapter 5 contains the nonlinear modeling for
the longitudinal vibrations describing the nonlinear effects observed in the dynamic
experiments, where the quadratic and cubic nonlinearities are taken into account. The
introduced parameters are then determined by fitting the experimental displacement
amplitude responses. An additional consideration for quadratic nonlinearities leads
to the ambigious problems of decision on the dominant type of nonlinearities or on
modeling of the damping. In chapter 6 quasi-static experiments with transversally
polarized piezoceramics excited by moderate electric fields using the inverse 31-effect
or by moderate longitudinal mechanical stresses are described. The piezoceramics ex-
hibit nonlinear hysteretic behavior of strain as well as electric displacement density
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to the excitations respectively. Chapter 7 is devoted to the modeling for these non-
linear hysteretic relations, where four of the most common hysteresis models are used.
The corresponding parameters of the models are identified by using the experimental
hysteresis curves. The interesting results of the combination of the dynamic and hys-
teretic modelings are presented in chapter 8. As above-mentioned, one possibility is
integrating the hysteresis models into the linear conservative dynamic modeling and
the other one is introducing the parameters identified from the stress–strain hysteretic
relations into the nonlinear dynamic modeling. This work finishes with a conclusion
and an outlook in chapter 9.



Chapter 2

Fundamentals of piezoelectricity

2.1 Piezoelectric effects

The (direct) piezoelectric effect was experimentally discovered in 1880 by the French
physicists Jacques Curie and Pierre Curie [19, 52]. The brothers demonstrated that
compressing certain crystals, for example those of tourmaline, quartz or Seignette’s
salt, generates internally electrical charges which results in an electric field inside the
crystal [23]. In the following year, the inverse effect predicted from thermodynamic
consideration by Lippmann [76], that the crystals is deformed when subjected to an
external electric field, was also verified by the brothers Curie. Due to the fact that
the above natural monocrystalline materials exhibit very weak piezoelectric effects,
polycrystalline materials with enhanced properties have been developed. The most
widely used materials in modern technical applications are barium titanate (BaTiO3)
and lead zirconate titanate (PZT) which is mainly synthesized from lead zirconate
(PbZrO3) and lead titanate (PbTiO3). The samples used in this work are made of
PZT, manufactured by PI Ceramic, Germany.

The genesis of both piezoelectric effects in barium titanate or PZT can be explained
by considering an unit cell for example of barium titanate sketched in figure 2.1 [63].
Above the Curie temperature TC (BaTiO3: 120 − 130oC, PZT: 250 − 370oC) the
unit cell is of cubic shape and the centers of positive and negative electric charges
coincide. In this state, there is no permanent dipole within the unit cell, i.e. it possesses
no spontaneous polarization. Below the Curie temperature TC the unit cell becomes
tetragonal, the centers of positive and negative charges no longer coincide. Hence, the
unit cell now has a spontaneous polarization and consequently piezoelectric properties.
Indeed, the unit cell subjected to a mechanical stress is deformed leading to a relative
displacement of the centers of the positive and negative charges. This changes the
polarization or rather the electric state. On the other hand, when an electric field is
applied to the unit cell, if the direction of the field is the same as that of the spontaneous
polarization, then the centers of the charges move apart from each other and vice versa
for an opposite electric field. This movement brings about a corresponding elongation
or contraction of the unit cell.

In the manufacturing operations, the piezoceramic materials (barium titanate or
PZT) suffer a sintering at temperatures above the Curie temperature followed by a
subsequent cooling to temperatures below the Curie temperature [6, 63]. During the
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6 Chapter 2. Fundamentals of piezoelectricity

Pspon

T > TC

a0

a0
a0

T < TCa

a

c

Ba2+ O2− Ti4+

Figure 2.1: Unit cell of barium titanate (BaTiO3). Left: cubic cell at temperature
above Curie temperature (T > TC). Right: tetragonal cell below Curie temperature
(T < TC) with a shift of the centers of the positive and negative electric charges
resulting in spontaneous polarization Pspon. At room temperature c ≈ 1.01a [55, 63].

cooling process, the central cation of each unit cell can move along one of three axes
of the original cube, giving six different possibilities of the spontaneous polarization.
Therefore, the spontaneous polarization of the unit cells is not unique over a grain
with specific orientation of crystal lattice but distributed randomly with homogeneous
direction only in substructures of the grain, called Weiss domains. Due to this random
distribution, the spontaneous polarization of the domains cancel macroscopically each
other conducting the thermally depoled state of the material, in which the macroscopic
continuum exhibits no piezoelectricity.

For the use in technical applications as sensors or actuators the thermally depoled
piezoceramic materials have to be polarized, so that they possess piezoelectric pro-
perties. The polarization process is performed by applying a strong electric field with
a magnitude above the coercive field Ec, at which the spontaneous polarizations of
the domains begin switching. The manufacturer PI Ceramic gives the value of the
coercive electric field as 1.2 kV/mm and 1.5 kV/mm in case of the PZT materials PIC
255 and PIC 181 respectively. After removal of the poling electric field, the ceramic
has a remanent polarization in the direction of the applied electric field named z- or
3-direction. Because the spontaneous polarization of some domains may not switch
to coincide perfectly with the direction of the field, the actual value of the remanent
polarization can only reach to the so-called saturation polarization Psat ≤ Pspon. The
orientation of the macroscopic polarization is accompanied by a remanent strain of
the whole material as a result of the spontaneous elongations of the unit cells. The
remanent strain gets a maximum value called saturation strain Ssat which can not
exceed the strain corresponding to the spontaneous polarization.

Applying an external electric field to the free polarized piezoceramic body in the
3-direction results in an elongation or contraction in the same direction (depending
on the direction of the external field), called the inverse 33-effect which relates to the
piezoelectric coefficient d33, in company with a corresponding lateral strain of opposite
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sign, named the inverse 31-effect, for which the piezoelectric coefficient d31 is relevant.
Figure 2.2 illustrates these effects for a piezoceramic rod subjected to a constant electric
voltage. On the other hand, an applied electric field in the transverse (1-)direction
perpendicular to the polarization direction gives rise to a shear strain in the 13-plane,
called the inverse 15-effect with respect to the piezoelectric coefficient d15, where the
index “13” is abbreviated by “5” as later shown in table 2.1. All three inverse effects
are used for piezoceramic actuators including e.g. stack, bending or shear actuators.
The direct piezoelectric effects used in sensors are obtained when mechanical stresses
are applied to the piezoceramics resulting in measurable electrode potential.

PE3

+

−

l03

∆l3
2

l01

∆l1
21

23

Figure 2.2: Deformation of piezoceramics under an electric field in the polarization
direction: the inverse piezoelectric 33- and 31-effects.

P

E1

+

−

1

2

3

Figure 2.3: Deformation of piezoceramics under an electric field perpendicular to the
polarization direction: the inverse piezoelectric 15-effect.

For a thorough understanding of the piezoelectric effects, the so-called dielectric
hysteresis and butterfly hysteresis, which are directly related to the polarization pro-
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Figure 2.4: Dielectric hysteresis [63]. Left: polarization P vs. applied electric field E
for PIC 151. Right: schematic sketch of dielectric hysteresis.

Figure 2.5: Butterfly hysteresis [63]. Left: strain S vs. applied electric field E for PIC
151. Right: schematic sketch of butterfly hysteresis.

cess, respectively shown in figure 2.4 and 2.5 will be described. This was presented in
the excellent review article of Kamlah [63].

Experiments with free thermally depoled piezoceramic specimens of the material
PIC 151 were done by applying a strong uniaxial electric field and recording polariza-
tion and strain in the direction of the field. Starting from the state 1 with the random
orientation of the polarization of the domains and raising the strength of the electric
field to the coercive value Ec initiates the switching processes of the domains. In the
state 2 corresponding to E = 2 kV/mm almost uniform orientation of the domains is
reached. Reducing the electric field to zero attains the polarized state 3 , where the
piezoceramic is then ready for utilization.

The electric field is now applied in opposite direction and reaching the coercive field
−Ec in the state 4 will theoretically depolarize the piezoceramics. Here the macro-
scopic polarization also vanishes but the distribution of the domains may be different
from that in the state 1 . Next, the piezoceramics could be repolarized by raising the
electric field strength up to 2 kV/mm again then withdrawing the field as from the
state 4 to 6 . A new reversing of the applied electric field results in the responses of
the material in the similar way that follows the states 6 - 7 - 2 .
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Figure 2.6: Ferroelastic hysteresis [63]. Left: applied compressive stress −σ vs. com-
pressive strain −S for PIC 151. Right: schematic sketch of ferroelastic hysteresis.

In the present work, the nonlinear behavior of the polarized piezoceramics in the
vicinity of a so-called working point corresponding to the states 3 or 6 will be con-
sidered. This is normally the main operating region of piezoceramics in applications.

Figure 2.7: Polarization switching possibilities under strong mechanical stresses [63].

Also according to Kamlah [63] switching processes can be initiated by strong me-
chanical stresses as well. In experiments, thermally depoled piezoceramics of the ma-
terial PIC 151 were subjected to strong uniaxial compressive stresses in three loading–
unloading cycles. The so-called ferroelastic response of the material and the corre-
sponding schematic sketch are shown in figure 2.6. For small stress near to the starting
point 1 the material exhibits a linear elastic behavior. Reaching the coercive stress
−σc starts polarization switching processes of the domains. There are four different
possibilities for the compressive stress to switch an unit cell by 90o as sketched in figure
2.7 (top), where no direction is preferred. The piezoceramics now show a nonlinear
stress–strain relation. The fully switched domain structure is derived in the state 2 .
Due to the random distribution of the spontaneous polarizations of the domains in the
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plane perpendicular to the compressive load, the domain state is now isotropic in that
plane. Therefore, the piezoceramics possess no macroscopic remanent polarization.
This domain structure is essentially conserved when the load is reduced to zero in the
state 3 as well as in next loading–unloading cycles. In this work, tension and compres-
sion test are carried out, but the magnitude of the mechanical loads is only about 10%
of that mentioned above and the hysteretic stress–strain relation is macroscopically of
interest.

2.2 Linear theory of piezoelectricity

2.2.1 Field quantities

In the theory of piezoelectricity, both the mechanical and electrical quantities are con-
sidered, including

T = (Tij), i, j = 1, 2, 3 or i, j = x, y, z : Stress tensor,

S = (Sij), i, j = 1, 2, 3 or i, j = x, y, z : Strain tensor,

~u = (ux, uy, uz) or ~u = (u, v, w) : Mechanical displacement vector,

~D = (Di), i = 1, 2, 3 or i = x, y, z : Electric displacement field vector,
~E = (Ei), i = 1, 2, 3 or i = x, y, z : Electric field vector,

ϕ : Scalar electric potential.

The field quantities are coupled in the piezoelectric constitutive equations. New-
ton’s second law and the strain–displacement equations are used for the mechanical
behavior and Maxwell’s equations are used for the electrical one.

2.2.2 Mechanical equations

Deriving from Newton’s second law, the equations of motion for a continuum can be
expressed in Cartesian coordinates as

∂Txx
∂x

+
∂Txy
∂y

+
∂Txz
∂z

+ Fx = ρ
d

dt
(u̇x), (2.1)

∂Txy
∂x

+
∂Tyy
∂y

+
∂Tyz
∂z

+ Fy = ρ
d

dt
(u̇y), (2.2)

∂Txz
∂x

+
∂Tyz
∂y

+
∂Tzz
∂z

+ Fz = ρ
d

dt
(u̇z), (2.3)

where Fi and ρ are respectively the body forces per unit of volume acting on every
point within the body and the constant mass density of the material. These equations
can be more shortly rewritten using Einstein summation convention as

Tij,j + Fi = ρ
d

dt
(u̇i), (2.4)

where ()•,j is shorthand for the partial derivative with respect to the coordinates
j = 1, 2, 3 or j = x, y, z. The strain–displacement equations represent the relation
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between the displacement and the strain

Sxx =
∂ux
∂x

, Syy =
∂uy
∂y

, Szz =
∂uz
∂z

, (2.5)

Sxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
, Sxz =

1

2

(
∂ux
∂z

+
∂uz
∂x

)
, Syz =

1

2

(
∂uy
∂z

+
∂uz
∂y

)
, (2.6)

which can be abbreviated as

Sij =
1

2
(ui,j + uj,i). (2.7)

2.2.3 Electrical equations

Because the phase speeds of electromagnetic waves are five orders of magnitude higher
than the speeds of elastic waves [82,111,117], the quasi-electrostatic approximation can
be used. This simplifying assumption reduces Maxwell’s equations to

Di,i = ρf , (2.8)

Ei = −ϕ,i, (2.9)

where ρf denotes the free charge density. Piezoceramics will be considered as polari-
zable dielectrics only, so the free charge density ρf = 0. Therefore,

Di,i = 0. (2.10)

The equations describing the relation between mechanical and electrical fields can
be formulated using the principle of conservation of energy as well as Hamilton’s prin-
ciple for a piezoelectric medium [127].

2.2.4 Hamilton’s principle for a piezoelectric solid

In the absence of volume forces, Hamilton’s principle for a piezoelectric continuum in
a volume V bounded by a surface A is expressed as [127]

δ

∫ t1

t0

L(ui, ϕ) dt+

∫ t1

t0

δW (ui, ϕ) dt = 0. (2.11)

In the equation (2.11), the Lagrangian L is defined by

L =

∫

V

(
1

2
ρ u̇2i −H

)
dV =

∫

V

(T −H) dV, (2.12)

where ρ denotes the constant mass density, T and H correspond to the kinetic energy
density and the electric enthalpy density respectively. In addition, the virtual work
done by the nonconservative surface forces in a virtual displacement (δui) of the surface
and the electrical analog of the virtual work done by the surface charges in a variation
of electric potential (δϕ) are given as

δW =

∫

A

(f̄i δui − σ̄ δϕ) dA, (2.13)

with f̄i and σ̄ are respectively the prescribed surface forces and surface charge density
on some part of the surface A.
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2.2.5 Linear constitutive equations

Starting from the principle of conservation of energy and considering the independent
variables Sij and Ei, the electric enthalpy density in a linear theory can be constructed
in a homogeneous quadratic form as [111]

H =
1

2
cEijkl Sij Skl − eijk Ei Sjk −

1

2
εSij EiEj, (2.14)

so that the following conditions are satisfied

Tij =
∂H

∂Sij

, Di = −
∂H

∂Ei

. (2.15)

Then the linear piezoelectric constitutive equations can be derived as

Tij = cEijkl Skl − ekij Ek, (2.16)

Di = eikl Skl + εSik Ek, (2.17)

where cEijkl, eijk and εSij correspond to elastic, piezoelectric and dielectric constants.
The superscripts E and S indicate the constant electric field and strain conditions for
the parameter determination, respectively.

In case the stress Tij and the electric field Ei are considered as independent variables,
the constitutive equations can be obtained as [52,61]

Sij = sEijkl Tkl + dkij Ek, (2.18)

Di = dikl Tkl + εTik Ek, (2.19)

where sEijkl, dijk and εTij correspond to elastic, piezoelectric and dielectric constants.

Due to the symmetry of the elastic and piezoelectric tensors, these equations can be
expressed using a compressed matrix notation. The following identifications are first
introduced [82]





sEijkl = sEpq, i = j ∧ k = l
2 sEijkl = sEpq, i = j ∧ k 6= l
4 sEijkl = sEpq, i 6= j ∧ k 6= l

and

{
dikl = diq, k = l

2 dikl = diq, k 6= l
, (2.20)

Tij = Tp and

{
Sij = Sp, i = j

2Sij = Sp, i 6= j
, (2.21)

where the new indices p and q are set according to table 2.1. The linear constitutive
equations (2.18) and (2.19) now become

Sp = sEpq Tq + dkpEk, (2.22)

Di = diq Tq + εTik Ek. (2.23)

In the general case, these constitutive equations contain 21 independent elastic con-
stants, 18 independent piezoelectric constants and 6 independent dielectric constants.

The piezoceramics used in this work show the behavior of an orthotropic material
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ij or kl p or q

11 1
22 2
33 3

23 or 32 4
31 or 13 5
12 or 21 6

Table 2.1: Tensor index abbreviations.

after polarization process, where in the 1-direction perpendicular to the polarization
direction the piezoceramics exhibit an isotropic behavior. Therefore, the number of
the material constants reduces to 5 elastic constants, 3 piezoelectric constants and 2
dielectric constants. The linear constitutive equations (2.22) and (2.23) can then be
expanded as [127]

S1 = sE11 T1 + sE12 T2 + sE13 T3 + d31E3, (2.24)

S2 = sE12 T1 + sE11 T2 + sE13 T3 + d31E3, (2.25)

S3 = sE13 T1 + sE13 T2 + sE33 T3 + d33E3, (2.26)

S4 = sE44 T4 + d15E2, (2.27)

S5 = sE44 T5 + d15E1 (2.28)

S6 = 2 (sE11 − sE12)T6, (2.29)

D1 = d15 T5 + εT11E1, (2.30)

D2 = d15 T4 + εT11E2, (2.31)

D3 = d31 T1 + d31 T2 + d33 T3 + εT33E3. (2.32)

2.2.6 The system of linear equations of piezoelectricity

In summary, a determined system of equations of the linear theory of piezoelectricity
is taken into account. This differential algebraic system consists of 22 equations in 22
variables [111]. The equations are three equilibrium equations (2.4) with respect to 6
components of the stress tensor and 3 components of the displacement vector with the
neglected body forces, six equations for the strain–displacement relation (2.7) with 6
elements of the strain tensor as additional variables, four Maxwell’s equations (2.9) and
(2.10) with 7 additional variables, which are 3 elements of the electric displacement
field vector, 3 elements of the electric field vector and the scalar electric potential, and
nine linear constitutive equations (2.22) and (2.23).
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Chapter 3

Dynamic experiments

In contrast to the linear behavior represented by the linear theory of piezoelectricity de-
scribed in section 2.2, nonlinear effects can easily be observed in dynamic experiments
for longitudinal vibrations of piezoceramics. Such experiments with transversally po-
larized piezoceramics will be presented in this chapter. In the dynamic experiments,
piezoceramics are excited close to the first resonance by weak electric fields with respect
to the inverse 31-effect. These experiments are performed according to the correspon-
ding procedure described in [90,117].

For experimental investigations transversally polarized piezoceramic rods of the ma-
terials PIC 255 and PIC 181 manufactured by PI Ceramic in Lederhose (Thüringen),
Germany, are used. Due to possessing slight damping, the “hard” piezoceramic PIC 181
particularly exhibits more evident nonlinear effects.

3.1 Experimental setup

An overview of experimental setup used in this work for dynamic experiments under
weak electric fields is shown in figure 3.1. A free piezoceramic rod, which is transversally
polarized in the z-direction, is excited to longitudinal vibrations near the first resonance
by harmonic excitation voltages using the inverse 31-effect, this means the applied
electric field in the polarization direction z is transversal to the main vibration direction
x. Experiments were performed with variety of piezoceramic samples made of the
material PIC 255 and PIC 181. The amplitude and phase of the displacements at
one end of the piezoceramic rods can be obtained by means of the experimental setup
sketched in figure 3.2. The actual experimental setup is presented in figure 3.3.

In fact, the piezoceramics are excited near the first eigenfrequency by using an
gain-phase analyzer (Hewlett-Packard 4192A LF). This gain-phase analyzer generates
a sweep up and sweep down of excitation frequency and processes the response signal.
The excitation signal is magnified by a power amplifier (Brüel & Kjær 2713) and then
applied to the piezoceramics. This output of the amplifier is simultaneously fed to the
gain-phase analyzer as a reference input. An oscilloscope (Gould DSO 1504) and an
integrating digital multimeter (Prema 6030) are used to monitor the excitation voltages
and responses. Data from the gain-phase analyzer are finally transfered to a measuring
computer through an USB/GPIB-Interface cable (Aligent Technologies 82357A).

15
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Figure 3.1: Polarized piezoceramic rod subjected to electric voltage.

Measuring

Computer

Gain-Phase Analyzer

Test Ref.
ChannelChannel

Channel 1

Channel 2

Data

Power Amplifier

Input

Input

Output

Output

OutputMonitor

Digital

Multimeter

Oscilloscope

Vibrometer

Controller
Sensor Head

Piezoceramic

Figure 3.2: Schematic experimental setup of dynamic experiments.

The responses of the piezoceramics can be derived as velocities measured by two
units of a laser vibrometer (Polytec). The laser beam from the sensor head (OFV-302)
is directed at the surface of the piezoceramics. The reflected signals are processed by
the modular controller (OFV-3000) and passed to the test channel of the gain-phase
analyzer. The output of the vibrometer is recorded in the measuring computer and
also monitored by the oscilloscope.

The gain-phase analyzer produces a measurement for gain and phase shift between
the excitation signal and the response signal by comparing the reference channel with
the test one. The excitation voltage can be regarded as an ideal harmonic. There exist
superharmonics in the responses, but near the first resonance they are in much smaller
order of magnitude in comparision with the part corresponding to the excitation fre-
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Figure 3.3: Experimental setup of dynamic experiments: sensor head (1), polarized
piezoceramic rod located on a soft foam foundation (2), power amplifier (3), digital
multimeter (4), gain-phase analyzer (5), vibrometer controller (6), oscilloscope (7) and
measuring computer (8).

quency. Therefore the response signals can also be considered to be harmonic, so that
the gain can be interpreted as amplitude behavior of the velocity to the excitation.
Then from the amplitudes of the harmonic velocities, it is easy to calculate the cor-
responding displacement amplitudes at one end of the piezoceramics with the given
excitation frequencies.

3.2 Nonlinear dynamic behavior

Dynamic experiments on samples of the material PIC 255 with the dimensions 70 ×
25 × 3.3 mm3 (l × b × h) and those of the material PIC 181 with the dimensions 30
× 3 × 2 mm3 are performed. The first eigenfrequency is about 20 kHz for PIC 255
samples and 56 kHz for PIC 181 samples. Figures 3.4 and 3.5 show the displacement
amplitude–frequency responses of PIC 255 and PIC 181 samples, respectively, near to
the first resonance at various excitation voltages, where the displacement amplitude is
normalized by the excitation amplitude. The following nonlinear phenomena can be
observed from these experimental results:

• The first resonance frequency is reduced by higher excitation voltage.

• The normalized displacement amplitude is reduced by higher excitation voltage.

• There exist jumps of the displacement amplitude and different stable responses
for the sweep up and sweep down of excitation frequency for the material PIC 181.

The experiments on the material PIC 181 also indicate that the approximately linear
behavior can no longer be observed even with very small external applied electric field of
about 1 V/mm. The aforementioned nonlinear effects are the same as those in [90,117],
where they also occurred for the normalized electric current through the piezoceramics.
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Figure 3.4: Normalized displacement amplitude response of PIC 255.
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Figure 3.5: Normalized displacement amplitude response of PIC 181. The jumps on
the right and on the left correspond to the sweep up and sweep down of excitation
frequency respectively.
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The form of the amplitude–frequency response curves shows a behavior of a con-
ventional Duffing oscillator with softening cubic stiffness. However, this can also be
accounted for by quadratic stiffness [87]. The reduction of the normalized resonance
amplitude can be explained by nonlinear damping or nonlinear piezoelectric coupling
effects [117]. In comparision with PIC 181, the “soft” piezoceramic material PIC 255
exhibits a low mechanical quality, or in other words, it is a material with higher dam-
ping.
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Chapter 4

Linear dynamic modeling

In this chapter a linear modeling of the dynamic behavior of piezoceramics exhibited
in the experiments described in chapter 3 is presented. This modeling was briefly given
in [90, 117]. First the linear equation of motion is derived by using the linear theory
of piezoelectricity described in section 2.2. From this equation, eigenfrequencies and
eigenfunctions of free longitudinal vibrations of transversally polarized piezoceramic
rods are obtained. Applying Ritz discretization to the equation of motion, an appro-
ximate solution can be found. Furthermore nonconservative effects are considered by
introducing linear damping terms into the piezoelectric constitutive equations.

4.1 Linear constitutive equations

In order to derive a simple linear modeling for longitudinal vibrations of tranversally
polarized piezoceramic rods, it can be assumed, that the transversal stresses, the shear
stresses, the shear strains and the electric field in the directions perpendicular to the
polarization direction are negligible, this means

Tyy = Tzz = Txy = Tyz = Txz ≡ 0, Sxy = Syz = Sxz ≡ 0, Ex = Ey ≡ 0. (4.1)

The linear piezoelectric constitutive equations (2.24)–(2.32) reduce to

Sxx = sE11 Txx + d31Ez, (4.2)

Syy = sE12 Txx + d31Ez, (4.3)

Szz = sE13 Txx + d33Ez, (4.4)

Dz = d31 Txx + εT33Ez. (4.5)

Solving equation (4.2) for the stress Txx and substituting this into (4.5) yields

Txx = E(0) Sxx − γ0Ez, (4.6)

Dz = γ0 Sxx + ν0Ez, (4.7)

where

E(0) =
1

sE11
, γ0 =

d31
sE11

, ν0 = εT33 −
d231
sE11

. (4.8)

According to (2.15) and (4.1)

Txx =
∂H

∂Sxx

, Tyy =
∂H

∂Syy

= 0, Tzz =
∂H

∂Szz

= 0, Dz = −
∂H

∂Ez

(4.9)

21
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Hence, the respective electric enthalpy density H has to be a quadratic form as (2.14)

H =
1

2
E(0) S2

xx − γ0 SxxEz −
1

2
ν0E

2
z . (4.10)

4.2 Linear equations of motion

Neglecting the volume force Fx and using the assumption (4.1), the equation of motion
for the longitudinal vibrations of piezoceramic rods can be derived from Newton’s
second law (2.4) as

T ′
xx = ρ ü, (4.11)

where ()′ = ∂()/∂x and u(x, t) is the displacement in longitudinal direction of the rod.
Taking the constitutive equation (4.6) into account leads to

E(0) S ′
xx − γ0E

′
z = ρ ü. (4.12)

Substituting the strain from (2.5)
Sxx = u′ (4.13)

and the electric field from (2.9), namely

Ez = −
∂ϕ

∂z
(4.14)

into the equation (4.12), the linear equation of motion is obtained as

ρ ü = E(0) u′′ (4.15)

because from Maxwell’s equation (2.10) and the constitutive equation (4.7)

∂2ϕ

∂z2
= 0. (4.16)

Since an alternating voltage U(t) = U0 cosΩt is applied to the electrodes of the
piezoceramic rod, the electric potentials at these electrodes can be written as

ϕ

(
z =

h

2
, t

)
= −

U0

2
cosΩt, (4.17)

ϕ

(
z = −

h

2
, t

)
=

U0

2
cosΩt. (4.18)

Then the electric potential is the solution of the boundary value problem (4.16)–(4.18)

ϕ = −
U0

h
z cosΩt (4.19)

and the electric field can be obtained from the equation (4.14) as

Ez =
U0

h
cosΩt, (4.20)

where U0 is the excitation voltage amplitude, Ω is the excitation angular frequency and
h is the thickness of the piezoceramic rod. Therefore, two boundary conditions can be
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derived by appling the constitutive equation (4.6) to both free ends of the rod where
the stress Txx vanishes

E(0) u′
(
−
l

2
, t

)
= E(0) u′

(
l

2
, t

)
= γ0

U0

2
cosΩt. (4.21)

The linear equation of motion (4.15), together with the dynamic boundary condi-
tions (4.21), can also be derived by using Hamilton’s principle as presented in [90].

4.3 Eigenfrequencies and eigenfunctions

The linear eigenfunctions and eigenfrequencies of the free longitudinal vibrations can
be derived by solving the field equation (4.15) with the dynamic boundary conditions
(4.21) in the case of vanishing excitation, i.e. U0 = 0. This physically means, that the
electrodes are short-circuited. The rewritten field equation is now considered as

ü = c2 u′′, c =

√
E(0)

ρ
. (4.22)

Unlike the case of the longitudinal vibrations of polarized piezoceramics with respect
to the 33-effect described in [117], here the free vibrations of the transversally polarized
piezoceramics are the same as those of a rod without piezoelectric properties. There-
fore, assuming separation of variables, solutions will be sought of the product form

u(x, t) = U(x) p(t). (4.23)

Both sinusoidal and cosine eigenfunctions can then be derived [41]. Indeed, the sinu-
soidal eigenfunctions are

Uk(x) = sin
[
(2k − 1) π

x

l

]
, x ∈

[
−
l

2
,
l

2

]
, (4.24)

where l is the length of the rod and k = 1, 2, 3, . . . ,∞. Each of the sinusoidal eigen-
functions belongs to an angular eigenfrequencies which can be determined as

ωk =
(2k − 1) π

l

√
E(0)

ρ
, k = 1, 2, 3, . . . ,∞. (4.25)

On the other hand, the cosine eigenfunctions are

U∗
k (x) = cos

(
2 k π

x

l

)
, x ∈

[
−
l

2
,
l

2

]
and k = 1, 2, 3, . . . ,∞. (4.26)

The corresponding angular eigenfrequencies can be calculated as

ω∗
k =

2 k π

l

√
E(0)

ρ
, k = 1, 2, 3, . . . ,∞. (4.27)

Here ω∗
0 = 0 means the displacement of the rod as a rigid boby, which is not considered.
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However, the cosine eigenmodes of the longitudinal vibrations could not be excited
by applying an electric field. Let us consider longitudinal vibrations of a piezoceramic
rod excited by alternating voltage U(t) = U0 cosΩt. The form of solution

u(x, t) = U(x) cosΩt (4.28)

is used and this satisfies the field equation (4.22) if

U(x) = C1 cos
Ω

c
x+ C2 sin

Ω

c
x, (4.29)

where C1 and C2 are unknown constants. Substituting the solution of the field equation
into the boundary conditions (4.21) yields

C1 sin
Ω

c

l

2
+ C2 cos

Ω

c

l

2
= γ0

U0

2E(0)

c

Ω
, (4.30)

−C1 sin
Ω

c

l

2
+ C2 cos

Ω

c

l

2
= γ0

U0

2E(0)

c

Ω
. (4.31)

In general, it can be found that C1 = 0, this confirms the impossibility to excite the
cosine eigenmodes. This fact is valid for all cases in this work. Thus, from now on all
cosine eigenfunctions will be omitted.

The remaining constant C2 can also be calculated, then the forced vibrations are
obtained as

u(x, t) =
γ0 U0 l

4E(0) λ cosλ
sin

(
2λ

l
x

)
cosΩt, (4.32)

with

λ = Ω
l

2

√
ρ

E(0)
and x ∈

[
−
l

2
,
l

2

]
.

4.4 Ritz discretization

So far the field equation for the linear undamped system can be solved exactly, it is
not necessary to use this approximation method with a spatial discretization. However,
this discretization will be utilized later for the nonlinear case in chapter 5. Therefore,
the discretization process should first be described here in detail for the simple case of
a linear conservative system and then extended for the nonconservative case.

Using the Ritz ansatz [41]

u(x, t) =
n∑

k=1

Uk(x) pk(t), (4.33)

where Uk(x) are the sinusoidal eigenfunctions of the longitudinal vibrations of piezo-
ceramics found in section 4.3 and pk(t) are the unknown time functions which have to
be determined, the variations of the displacement and its partial derivatives are

δu =
n∑

k=1

Uk(x) δpk(t), δu̇ =
n∑

k=1

Uk(x) δṗk(t), δu′ =
n∑

k=1

U ′
k(x) δpk(t). (4.34)
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Applying Hamilton’s principle (2.11) with the electric enthalpy density given in the
equation (4.10) and the virtual work δW = 0 yields

A

∫ t1

t0

∫ l
2

− l
2

(
ρ u̇δu̇− E(0) u′ δu′ + γ0Ez δu

′
)

dx dt = 0, (4.35)

with the electric field given in (4.20), Ez =
U0

h
cosΩt.

Substituting the Ritz ansatz and the corresponding variations δu̇ and δu′ into the
above equation leads to

A

∫ t1

t0

∫ l
2

− l
2

(
ρ

n∑

i,k=1

Ui Uk ṗi δṗk − E(0)

n∑

i,k=1

U ′
i U

′
k pi δpk + γ0Ez

n∑

k=1

U ′
k δpk

)
dx dt = 0.

(4.36)
The first summation can be integrated by parts with respect to time t as

∫ t1

t0

ṗi δṗk dt =
[
ṗi δpk

]t1
t0

−

∫ t1

t0

p̈i δpk dt = −

∫ t1

t0

p̈i δpk dt (4.37)

since all variations δpk vanish at t0 and t1. Therefore, the equation (4.36) can be
rewritten as

A

∫ t1

t0

n∑

k=1

[
−

n∑

i=1

p̈i ρ

∫ l
2

− l
2

Ui Uk dx−
n∑

i=1

piE
(0)

∫ l
2

− l
2

U ′
i U

′
k dx

+ γ0Ez

∫ l
2

− l
2

U ′
k dx

]
δpk dt = 0 (4.38)

Note that the eigenfunctions are orthogonal over the interval −l/2 ≤ x ≤ l/2 and the
same for their derivatives with respect to x, namely

∫ l
2

− l
2

Ui Uk dx = 0 and

∫ l
2

− l
2

U ′
i U

′
k dx = 0 if i 6= k and i, k = 1, 2, 3, . . . , n.

The equation (4.38) reduces to

A

∫ t1

t0

n∑

k=1

[
− p̈k ρ

∫ l
2

− l
2

U2
k dx− pk E

(0)

∫ l
2

− l
2

U ′
k
2 dx

+ γ0
U0

h

∫ l
2

− l
2

U ′
k dx cosΩt

]
δpk dt = 0. (4.39)

Since the variations δpk are arbitrary, the expression in the square brackets in the
equation (4.39) vanishes for all positive integers k. The equations of motion can then
be derived as

mk p̈k + c
(1)
k pk = f

(1)
k cosΩt, k = 1, 2, 3, . . . , n (4.40)

with

mk = ρ

∫ l
2

− l
2

U2
k (x) dx, c

(1)
k = E(0)

∫ l
2

− l
2

U ′
k
2
(x) dx, f

(1)
k = γ0

U0

h

∫ l
2

− l
2

U ′
k(x) dx.
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4.5 Linear damping

Up to now the vibrating piezoceramic rods are only considered as conservative systems.
But in fact dissipative forces always exist, thus it is necessary to introduce dissipation
in the linear modeling of the system. According to [117], dissipative behavior can be
described by a viscoelastic material constitutive relation and a piezoelectric as well as
dielectric analog. So the linear constitutive equations (4.6) and (4.7) are extended with
dissipative terms as

Txx = E(0) Sxx − γ0Ez + E
(0)
d Ṡxx − γ0d Ėz, (4.41)

Dz = γ0 Sxx + ν0Ez + γ0d Ṡxx + ν0d Ėz. (4.42)

Hence, the virtual work δW in Hamilton’s principle is no longer equal to zero, namely

δW = −A

∫ l
2

− l
2

(
E

(0)
d Ṡxx − γ0d Ėz

)
δu′ dx. (4.43)

Substituting the electric enthalpy density H in (4.10) and the virtual work δW in
(4.43) into Hamilton’s principle (2.11) and considering Ritz discretization yields the
linear equations of motion of the linear damped system as

mk p̈k + dk ṗk + c
(1)
k pk = f

(1)
k cosΩt− f

(1)
kd Ω sinΩt, k = 1, 2, 3, . . . , n (4.44)

with

mk = ρ

∫ l
2

− l
2

U2
k (x) dx, dk = E

(0)
d

∫ l
2

− l
2

U ′
k
2
(x) dx, c

(1)
k = E(0)

∫ l
2

− l
2

U ′
k
2
(x) dx,

f
(1)
k = γ0

U0

h

∫ l
2

− l
2

U ′
k(x) dx, f

(1)
kd = γ0d

U0

h

∫ l
2

− l
2

U ′
k(x) dx.
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Nonlinear dynamic modeling

The nonlinear phenomena exhibited by piezoceramics observed so far can be classi-
fied according to the magnitude of excitations. For example, nonlinear phenomena
with strong electrical loads are represented by hysteresis curves as shown in figures 2.4
and 2.5, where an occurrence of domain switching processes leads to the irreversible
macroscopic polarization, this means the switched domain structure basically remains
after the withdrawal of applied electric fields. This hysteretic behavior can be modeled
e.g. by using a phenomenological consitutive modeling as well as a thermodynami-
cally consistent constitutive one described in [63]. The polarization and strain are
decomposed into reversible and irreversible parts. In contrast to the irreversible part,
the reversible one vanishes after unloading. For the phenomenological modeling of
dielectric and butterfly hysteresis presented in figures 2.4 and 2.5, respectively, the
reversible part conforms to a linear constitutive law, whereas the irreversible one is
represented for instance by piecewise linear evolution equations. In the thermodyna-
mically based model, microscopically motivated internal variables are introduced. The
macroscopic irreversible quantities are then assumed to be functions of these variables.
The evolution equations for the internal variables are chosen in order to satisfy the
Clausius-Duhem inequality.

By contrast, this chapter gives a dynamic modeling of nonlinear phenomena ob-
served in experiments described in chapter 3 corresponding to weak electrical loads
basically resulting in no switching process, i.e. the microscopic structure of the ma-
terial and the remanent polarization remain unchanged. Based on the work of von
Wagner [117] the nonlinear elastic, piezoelectric and dielectric terms are first consi-
dered in the electric enthalpy density. Then the linear and nonlinear dissipative terms
are introduced into the nonlinear conservative constitutive equations. Using Hamilton’s
principle and a single-mode Ritz discretization gives rise to the nonlinear equation of
motion. This equation can be approximately solved by using Lindstedt-Poincaré per-
turbation technique. Fitting the theoretical displacement amplitude responses to the
experimental ones, parameters of piezoceramics can be determined. Along with an
extra consideration for quadratic nonlinearities it can be seen, that the identification
problem has multivalued solutions as already shown in [117]. This leads to an ambi-
guity in the decision on the type of nonlinearities to explain the observed nonlinear
dynamic effects.

27
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5.1 Nonlinear constitutive equations

The nonlinear dynamic behavior of tranversally polarized piezoceramics excited close
to resonance by weak electric fields using the inverse 31-effect can be modeled based
on adequate nonlinear constitutive relations. Due to the occurrence of both quadratic
and cubic nonlinearities observed in experiments, the third and the fourth order terms
are first introduced into the electric enthalpy density [90,117]

H =
1

2
E(0) S2

xx − γ0 SxxEz −
1

2
ν0E

2
z

+
1

3
E(1) S3

xx −
1

2
γ
(1)
1 S2

xxEz −
1

2
γ
(2)
1 SxxE

2
z −

1

3
ν1E

3
z

+
1

4
E(2) S4

xx −
1

3
γ
(1)
2 S3

xxEz −
1

2
γ
(2)
2 S2

xxE
2
z −

1

3
γ
(3)
2 SxxE

3
z −

1

4
ν2E

4
z , (5.1)

where E(1) and E(2) are the parameters of the quadratic and cubic elastic terms respec-
tively, γ(1)1 , γ(2)1 , γ(1)2 , γ(2)2 , γ(3)2 are the parameters of nonlinear piezoelectric coupling
terms and ν1, ν2 are the parameters of the higher-order dielectric terms.

The nonlinear conservative constitutive equations result from (2.15) and afterwards
are extended by both linear and nonlinear dissipative terms

Txx = E(0) Sxx − γ0Ez + E
(0)
d Ṡxx − γ0d Ėz

+ E(1) S2
xx − γ

(1)
1 SxxEz −

1

2
γ
(2)
1 E2

z + E
(1)
d

˙(S2
xx)− γ

(1)
1d

˙(SxxEz)−
1

2
γ
(2)
1d

˙(E2
z )

+ E(2) S3
xx − γ

(1)
2 S2

xxEz − γ
(2)
2 SxxE

2
z −

1

3
γ
(3)
2 E3

z

+ E
(2)
d

˙(S3
xx)− γ

(1)
2d

˙(S2
xxEz)− γ

(2)
2d

˙(SxxE2
z )−

1

3
γ
(3)
2d

˙(E3
z ), (5.2)

Dz = γ0 Sxx + ν0Ez + γ0d Ṡxx + ν0d Ėz

+
1

2
γ
(1)
1 S2

xx + γ
(2)
1 SxxEz + ν1E

2
z +

1

2
γ
(1)
1d

˙(S2
xx) + γ

(2)
1d

˙(SxxEz) + ν1d ˙(E2
z )

+
1

3
γ
(1)
2 S3

xx + γ
(2)
2 S2

xxEz + γ
(3)
2 SxxE

2
z + ν2E

3
z

+
1

3
γ
(1)
2d

˙(S3
xx) + γ

(2)
2d

˙(S2
xxEz) + γ

(3)
2d

˙(SxxE2
z ) + ν2d ˙(E3

z ), (5.3)

where E(1)
d and E(2)

d correspond to the parameters of the quadratic and cubic dissipative

mechanical terms, γ(1)1d , γ(2)1d , γ(1)2d , γ(2)2d , γ(3)2d are the parameters of nonlinear dissipative
piezoelectric terms and ν1d, ν2d are the parameters of higher-order dissipative dielectric
terms.
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5.2 Ritz discretization

In order to obtain equations of motion, the nonlinear enthalpy density given in (5.1)
and the virtual work formulated from the nonlinear constitutive equations (5.2) and
(5.3) should be substituted into Hamilton’s principle (2.11). However unlike the linear
case, the electric field Ez in the nonlinear case is now coupled with the strain Sxx and
can be derived as solution of Maxwell’s equation

∂Dz

∂z
= 0. (5.4)

Applying perturbation technique with the damping terms and the nonlinear terms
considered to be of order ε this nonlinear partial differential equation can be solved for
the zeroth approximation of Ez which is the same as that of the linear case in (4.20)

Ez =
U0

h
cosΩt. (5.5)

Furthermore in the resonance case, the weak excitation electric field is considered to be
of order ε, thus the higher order approximations of the electric field have no influence
on the zeroth approximation of the displacement. Therefore, the eletric field can also be
assumed to be homogeneous and given in the equation (5.5) for the nonlinear case [117].
This means the small variation of the electric field δEz vanishes.

For the discretization, the Ritz ansatz (4.33) is used again. The shape functions
Uk(x) are still the sinusoidal eigenfunctions (4.24) of the linear system. In the linear
case, owing to the orthogonality of the shape functions, the discretized equations of
motion are decoupled. By contrast, due to the nonlinear terms the separate differential
equations can no longer be generated. For this reason, the Ritz ansatz (4.33) is re-
stricted to a single eigenfunction, which corresponds to the eigenfrequency close to the
excitation frequency (the first resonance frequency in this work). It has been verified
that using only one eigenfunction gives sufficiently accurate results [90,118,120].

Considering the excitation near to the k-th eigenfrequency, the single-mode Ritz
ansatz is used as

u(x, t) = Uk(x) pk(t). (5.6)

Substituting this into Hamilton’s principle and performing the respective variations
yields the nonlinear equation of motion for the longitudinal vibrations of the piezoce-
ramic rod close to the k-th resonance

mk p̈k + dk ṗk + c
(1)
k pk + c

(2)
k p2k + c

(2)
kd pk ṗk + c

(3)
k p3k + c

(3)
kd p

2
k ṗk

= f
(1)
k cosΩt− f

(1)
kd Ω sinΩt+ f

(2)
k pk cosΩt+ f

(2)
kd ṗk cosΩt− f

(2)
kd pk Ω sinΩt

+ f
(3)
k cos2 Ωt− f

(3)
kd Ω cosΩt sinΩt+ f

(4)
k p2k cosΩt+ 2 f

(4)
kd pk ṗk cosΩt

− f
(4)
kd p

2
k Ω sinΩt+ f

(5)
k pk cos

2 Ωt+ f
(5)
kd ṗk cos

2 Ωt

− 2 f
(5)
kd pk Ω cosΩt sinΩt+ f

(6)
k cos3 Ωt− f

(6)
kd Ω cos2 Ωt sinΩt, (5.7)
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with

mk = ρ

∫ l
2

− l
2

U2
k (x) dx, dk = E

(0)
d

∫ l
2

− l
2

U ′
k
2
(x) dx, c

(1)
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2
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2
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2
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2

U ′
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2
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2
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U ′
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U ′
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2
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2
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(2)
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(1)
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h
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2

U ′
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2
(x) dx,
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1

2
γ
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1

U2
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2
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k(x) dx, f

(3)
kd = γ
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− l
2
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k(x) dx,

f
(4)
k = γ

(1)
2

U0

h
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2

− l
2

U ′
k
3
(x) dx, f
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(1)
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U0

h
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2
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k
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k = γ
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kd = γ
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2

U ′
k
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(x) dx,
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γ
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2

U3
0
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2

− l
2

U ′
k(x) dx, f

(6)
kd = γ

(3)
2d

U3
0

h3

∫ l
2

− l
2

U ′
k(x) dx.

5.3 Solution by perturbation analysis

In order to find out an approximation of the periodic solution of the equation of mo-
tion (5.7), the respective dimensionless equation will be attacked using perturbation
technique [40, 87]. First the nondimensional time τ and the ratio η of the excitation
frequency to the natural frequency are introduced [117]

τ = ω0 t with ω0 =

√
c
(1)
k /mk, (5.8)

η =
Ω

ω0

. (5.9)

Considering the phase shift between the excitation voltage and the displacement re-
sponse, the phase of the excitation is set as (Ωt+ ψ) instead of Ωt and that in nondi-
mensional form corresponds to

cos ητ → cos(ητ + ψ) = h1 cos ητ + h2 sin ητ, (5.10)

sin ητ → sin(ητ + ψ) = −h2 cos ητ + h1 sin ητ, (5.11)

where h1 = cosψ and h2 = − sinψ, thus

h21 + h22 = 1. (5.12)
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Introducing the “small” parameter ε and assuming that the quadratic and cubic
nonlinearities, damping terms as well as linear excitation terms are of the first-order
ε [117], the discretized equation of motion (5.7) can be expressed as

p′′ + ε k p′ + (12) p+ ε α∗
1 p

2 + ε α∗
1d p p

′ + ε α1 p
3 + ε α1d p

2 p′

= ε q (h1 cos ητ + h2 sin ητ) + ε qd η(−h2 cos ητ + h1 sin ητ)

+ ε α∗
2 p (h1 cos ητ + h2 sin ητ) + ε α∗

2d p
′ (h1 cos ητ + h2 sin ητ)

− ε α∗
2d p η(−h2 cos ητ + h1 sin ητ) + ε2 α∗

3 (h1 cos ητ + h2 sin ητ)
2

− ε2 α∗
3d η (h1 cos ητ + h2 sin ητ)(−h2 cos ητ + h1 sin ητ)

+ ε α2 p
2 (h1 cos ητ + h2 sin ητ) + 2 ε α2d p p

′ (h1 cos ητ + h2 sin ητ)

− ε α2d p
2 η(−h2 cos ητ + h1 sin ητ)

+ ε2 α3 p (h1 cos ητ + h2 sin ητ)
2 + ε2 α3d p

′ (h1 cos ητ + h2 sin ητ)
2

− 2 ε2 α3d p η(h1 cos ητ + h2 sin ητ)(−h2 cos ητ + h1 sin ητ)

+ ε3 α4 (h1 cos ητ + h2 sin ητ)
3

− ε3 α4d η(h1 cos ητ + h2 sin ητ)
2(−h2 cos ητ + h1 sin ητ), (5.13)

where

()′ =
d

dτ
, k =

d

εmk ω0

, α∗
1 =

c
(2)
k

εmk ω2
0

, α∗
1d =

c
(2)
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εmk ω0

,

α1 =
c
(3)
k

εmk ω2
0

, α1d =
c
(3)
kd

εmk ω0

, q =
f
(1)
k

εmk ω2
0

, qd = −
f
(1)
kd

εmk ω0

,

α∗
2 =

f
(2)
k

εmk ω2
0

, α∗
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f
(2)
kd

εmk ω0

, α∗
3 =

f
(3)
k

ε2mk ω2
0

, α∗
3d =

f
(3)
kd

ε2mk ω0

,

α2 =
f
(4)
k

εmk ω2
0

, α2d =
f
(4)
kd

εmk ω0

, α3 =
f
(5)
k

ε2mk ω2
0

, α3d =
f
(5)
kd

ε2mk ω0

,

α4 =
f
(6)
k

ε3mk ω2
0

, α4d =
f
(6)
kd

ε3mk ω0

and the subscript k is dropped for simplicity of the notation.

Applying the Lindstedt-Poincaré method considering the excitation near to the
natural frequency, an expansion for η is defined as

η = 1 + ε η1 + ε2 η2 + · · · . (5.14)

Hence,

12 = η2 − 2 ε η1 + · · · . (5.15)

Assuming that p(τ) can be found as an expansion of the following form

p(τ) = p0(τ) + ε p1(τ) + ε2 p2(τ) + · · · , (5.16)

substituting (5.15) and (5.16) into the equation (5.13), then equating the coefficients
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of ε0 and ε1 on both sides yields

ε0 : p′′0 + η2 p0 = 0, (5.17)

ε1 : p′′1 + η2 p1 = − k p′0 + 2 η1 p0 − α∗
1 p

2
0 − α∗

1d p0 p
′
0 − α1 p

3
0

− α1d p
2
0 p

′
0 + q (h1 cos ητ + h2 sin ητ) + qd η (−h2 cos ητ + h1 sin ητ)

+ α∗
2 p0 (h1 cos ητ + h2 sin ητ) + α∗

2d p
′
0 (h1 cos ητ + h2 sin ητ)

− α∗
2d p0 η (−h2 cos ητ + h1 sin ητ) + α2 p

2
0 (h1 cos ητ + h2 sin ητ)

+ 2α2d p0 p
′
0 (h1 cos ητ + h2 sin ητ)− α2d p

2
0 η (−h2 cos ητ + h1 sin ητ). (5.18)

Since the phase shift ψ between the excitation voltage and the displacement re-
sponse has already been taken into account, the solution of the equation (5.17) is given
as

p0(τ) = A cos ητ, (5.19)

where the amplitude A is unknown. Substituting the zeroth approximation (5.19) into
the equation (5.18) and eliminating the secular terms [40,87] yields

2 η1A−
3

4
α1A

3 +

(
q +

3

4
α2A

2

)
h1 +

(
− qd +

1

4
α2dA

2

)
η h2 = 0, (5.20)

k η A+
1

4
α1d η A

3 +

(
qd −

3

4
α2dA

2

)
η h1 +

(
q +

1

4
α2A

2

)
h2 = 0, (5.21)

with three unknown variables A, h1 and h2. Solving these equations for h1, h2 and
introducing them into the equation (5.12) leads to a fifth-order polynomial equation
with respect to A2, from which the stationary amplitude A of the zeroth approximation
response can be found. Then the phase shift ψ can be determined as

arctanψ = −
h2
h1
. (5.22)

It can be observed that the quadratic parameters E(1) and E
(1)
d , the nonlinear

piezoelectric parameters γ(1)1 , γ(1)1d , γ(2)1 , γ(2)1d , γ(2)2 , γ(2)2d , γ(3)2 and γ
(3)
2d have no influence

on the solution of the perturbation method. In addition, due to the assumption of the
given excitation electric field Ez, all dielectric parameters ν0, ν0d, ν1, ν1d, ν2, ν2d are
also absent from the solution. However it can later be seen in section 5.5, that the
quadratic terms will affect the zeroth approximation of the solution if they are taken
of order ε while the cubic terms, damping terms and the linear excitation terms are
of order ε2. Although this trick is not verified by experiments, where superharmonics
at the first resonance frequency of comparable order of magnitude can be observed by
excitation at one half or one third of the first resonance frequency [90, 117], quadratic
nonlinear behavior is always expected to occur with piezoceramics which are structured
by asymmetric unit cells.
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5.4 Determination of parameters

In this section, the parameter identification for the piezoceramic materials is presented.
The parameters will be determined in Mathematica, such that the deviation between
the theoretical displacement amplitude–frequency curves near the first resonance and
the respective experimental ones is minimized by using the built-in function FindF it
which finds a least-squares fit. Moreover, these parameters can manually be corrected
with the help of a Mathematica program written by the author himself.

It has been pointed out in section 5.3 that a series of nonlinear parameters does
not take part in the zeroth approximation response of the piezoceramic rods. There-
fore, only the following parameters can be determined by fitting in the modeling and
measuring results

• Linear elastic modulus E(0) and linear piezoelectric parameter γ0,

• Parameters of linear damping terms E(0)
d and γ0d,

• Parameters of cubic conservative terms E(2) and γ(1)2 ,

• Parameters of cubic dissipative terms E(2)
d and γ(1)2d .

In order to utilize the identification program, the influence of the material parame-
ters on the displacement amplitude response should be considered, for example in the
neighborhood of a response curve corresponding to a set of chosen parameters. The
following is such consideration for the case of piezoceramic rods of PIC 181 with the
dimensions 30×3×2 mm3 excited close to the first resonance frequency at the voltage
amplitude of 15 V.
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Figure 5.1: Theoretical displacement amplitude responses of PIC 181 at 15 V for diffe-

rent E(0)

[
N

m2

]
: E(0) = 8.95× 1010 (1), E(0) = 8.80× 1010 (2), E(0) = 8.65× 1010 (3).
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Figure 5.2: Theoretical displacement amplitude responses of PIC 181 at 15 V for

different E(0)
d

[
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m2

]
: E(0)

d = 1600 (1), E(0)
d = 600 (2), E(0)

d = 300 (3).
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Figure 5.3: Theoretical displacement amplitude responses of PIC 181 at 15 V for

different E(2)

[
N

m2

]
: E(2) = 0 (1), E(2) = −5.8× 1016 (2), E(2) = −12.0× 1016 (3).
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Figure 5.4: Theoretical displacement amplitude responses of PIC 181 at 15 V for

different E(2)
d

[
Ns

m2

]
: E(2)

d = 110× 109 (1), E(2)
d = 16× 109 (2), E(2)

d = 9.05× 109 (3).
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Figure 5.5: Theoretical displacement amplitude responses of PIC 181 at 15 V for

different γ0

[
N

Vm

]
: γ0 = −4.5 (1), γ0 = −7.0 (2), γ0 = −9.8 (3).
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Figure 5.6: Theoretical displacement amplitude responses of PIC 181 at 15 V for

different γ0d

[
Ns

Vm

]
: γ0d = 0 (1), γ0d = 1.0× 10−5 (2), γ0d = 2.0× 10−5 (3).
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Figure 5.7: Theoretical displacement amplitude responses of PIC 181 at 15 V for

different γ(1)2

[
N

Vm

]
: γ(1)2 = 3.0× 108 (1), γ(1)2 = 0.3× 108 (2), γ(1)2 = −1.0× 108 (3).
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Figure 5.8: Theoretical displacement amplitude responses of PIC 181 at 15 V for

different γ(1)2d

[
Ns

Vm

]
: γ(1)2d = 0 (1), γ(1)2d = 200 (2), γ(1)2d = 400 (3).

In each of figures 5.1–5.8 a parameter varies, whereas the remaining parameters
take the values in the following set

E(0) = 8.8× 1010
N

m2
, E

(0)
d = 300

Ns

m2
, E(2) = −5.8× 1016

N

m2
,

E
(2)
d = 9.05× 109

Ns

m2
, γ0 = −9.8

N

Vm
, γ

(1)
2 = 0.3× 108

N

Vm
, γ0d = γ

(1)
2d = 0

Ns

Vm
.

From these figures it can be inferred how the resonance curve changes according to a
“small” change in the parameters.

• E(0): Figure 5.1 shows that decreasing the linear elastic modulus will move the
displacement amplitude response curve to the left. This means the first resonance
frequency decreases, but the resonance amplitude and the difference between the
two jump frequencies nearly remains.

• E
(0)
d : It can be seen in figure 5.2, that jump phenomena can not be observed

with the linear damping of sufficient large magnitude. If the linear damping is
decreased, under the influence of the cubic nonlinearities the jump phenomena
may occur and the range of multiple solutions is greater.

• E(2): As shown in figure 5.3, the resonance curves bend more to the left when
the negative cubic elastic parameter increases in absolute value. Thus the range
of multiple stable responses is extended. Like in the case of E(0), the maximal
amplitude almost remains.

• E
(2)
d : The influence of the cubic damping shown in figure 5.4 is basically similar

to that of the linear damping.
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• γ0: Figure 5.5 presents an increase in response amplitude with increasing the
linear piezoelectric parameter in absolute value. The jump frequencies decrease
as a result and the range of multiple solutions is also greater. That is because
the amplitude f (1)

k of the harmonic excitation in the equation of motion (5.7) is
directly proportional to the parameter γ0.

• γ0d: It is demonstrated in figure 5.6 that if the linear dissipative piezoelectric pa-
rameter increases, then the resonance curves are enlarged. This is not consistent
with the condition that the corresponding term has to only dissipate energy of
the system. Moreover, this is also valid in case γ0d < 0.

• γ
(1)
2 : In figure 5.7 decreasing the cubic conservative piezoelectric parameter en-

larges the displacement amplitude responses even if this parameter is negative.
In contrast to the case of the damping parameters E(0)

d and E(2)
d , the jump phe-

nomena always occur.

• γ
(1)
2d : Figure 5.8 indicates that the cubic dissipative piezoelectric parameter has a

small influence on the resonance curves and that is similar to in the case of γ0d.
Extension of the resonance curves with increasing γ(1)2d is also not appropriate to
the dissipative prerequisite for this parameter.

In all cases except for the elastic modulus E(0), only small changes in the jump-up
frequencies can be observed. Due to the inconsistency of the dissipative piezoelectric
parameters γ0d and γ(1)2d , they will be set equal to zero in the present work.

5.4.1 Parameter identification from linear behavior

In the first step, the piezoceramic samples are excited close to the first resonance by
low excitation voltages, so that an approximately linear behavior can be observed. By
fitting the experimental displacement resonance curves, the linear parameters E(0), γ0
and E(0)

d can be found, if all nonlinear parameters are put to be equal to zero. In other
words, from the equation (4.8) the elastic constant sE11, the piezoelectric constant d31
and the linear damping parameter E(0)

d are obtained. Here the mass density ρ takes
the values of the manufacturer PI Ceramic.

For the piezoceramic PIC 255, the linear parameters given by the manufacturer are

ρ = 7800
kg

m3
, sE11 = 1.59× 10−11 m2

N
, d31 = − 1.74× 10−10 m

V
.

sE11

[
m2

N

]
d31

[m
V

]
E

(0)
d

[
Ns

m2

]
γ0d

[
Ns

Vm

]

1.662× 10−11 − 1.88× 10−10 6035 0

Table 5.1: Identified linear parameters for PIC 255.

Using the optimized linear parameters given in table 5.1 for the excitation voltage
of 2 V, a very good coincidence between theoretical result and measurement can be
derived as shown in figure 5.9.
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Figure 5.9: Linear parameters optimization for PIC 255.

For the piezoceramic PIC 181, the linear parameters given by the manufacturer are

ρ = 7850
kg

m3
, sE11 = 1.175× 10−11 m2

N
, d31 = − 1.08× 10−10 m

V
.

The optimized linear parameters are given in table 5.2. A very good coincidence
between theoretical and experimental results with respect to the excitation voltage of
0.5 V can also be seen in figure 5.10. It is obvious that the determined values for sE11
and d31 are in good agreement with those of the manufacturer.

sE11

[
m2

N

]
d31

[m
V

]
E

(0)
d

[
Ns

m2

]
γ0d

[
Ns

Vm

]

1.136× 10−11 − 1.11× 10−10 285.91 0

Table 5.2: Identified linear parameters for PIC 181.

In addition, the linear dielectric parameters ν0 and ν0d in principle can be deter-
mined from the electric current amplitude responses of piezoceramics excited close to
resonance. In this case the electric current through the piezoceramics can be calculated
as [90,117]

I(t) =
dQ

dt
= −

d

dt

∫

F

Dz(x, t) dF, (5.23)

where Q is the electric charge transferred through one electrode and F is the area
of the electrode. The electric displacement density is given in the linear constitutive
equation (4.42) and with γ0d = 0 this reduces to

Dz = γ0 Sxx + ν0Ez + ν0d Ėz, (5.24)

where the linear electric field given in (4.20) is used taking account of the coefficients
h1 and h2 which represents the phase shift between the diplacement response and the
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Figure 5.10: Linear parameters optimization for PIC 181.

excitation voltage. Using the strain–displacement relation (2.5), Sxx = u′, and the
displacement for the first resonance case in the form

u(x, t) = A sin
πx

l
cosΩt, (5.25)

the electric current can be found from the equations (5.23) and (5.24) as

I(t) = − b
d

dt

∫ l
2

− l
2

[
γ0A

π

l
cos

πx

l
cosΩt+ ν0

U0

h
(h1 cosΩt+ h2 sinΩt)

+ ν0d
U0

h
Ω (h2 cosΩt− h1 sinΩt)

]
dx, (5.26)

where l and b correspond to the length and the width of the electrode as well as of the
piezoceramic samples. From the equation (5.26) the electric current amplitude can be
calculated as

I0 = bΩ

√(
2 γ0A+ ν0 l

U0

h
h1 + ν0d Ωh2

)2

+

(
ν0d Ωh1 − ν0 l

U0

h
h2

)2

. (5.27)

Fitting this electric current amplitude response to the experimental results, the para-
meters ν0 and ν0d can be obtained.

5.4.2 Parameter identification from nonlinear behavior

In order to identify the nonlinear parameters of piezoceramics, the samples are again
excited near to the first resonance but by higher excitation voltages. The linear conser-
vative and nonlinear parameters can be derived by fitting the theoretical displacement
responses with the experimental curves, where the linear damping E

(0)
d obtained in

section 5.4.1 is used in identification process.
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U0 [V] sE11

[
m2

N

]
d31

[m
V

]
E

(0)
d

[
Ns

m2

]
E(2)

[
N

m2

]
E

(2)
d

[
Ns

m2

]
γ0d

[
Ns

Vm

]
γ
(1)
2

[
N

Vm

]
γ
(1)
2d

[
Ns

Vm

]

20 1.679× 10−11 − 1.90× 10−10 6035 − 1.08× 1018 4.40× 1012 0 1.87× 108 0

30 1.690× 10−11 − 1.91× 10−10 6035 − 8.02× 1017 3.58× 1012 0 1.87× 108 0

40 1.697× 10−11 − 1.92× 10−10 6035 − 6.73× 1017 2.92× 1012 0 1.87× 108 0

50 1.706× 10−11 − 1.93× 10−10 6035 − 6.24× 1017 2.72× 1012 0 1.87× 108 0

Table 5.3: Identified parameters for PIC 255.

U0 [V] sE11

[
m2

N

]
d31

[m
V

]
E

(0)
d

[
Ns

m2

]
E(2)

[
N

m2

]
E

(2)
d

[
Ns

m2

]
γ0d

[
Ns

Vm

]
γ
(1)
2

[
N

Vm

]
γ
(1)
2d

[
Ns

Vm

]

5 1.136× 10−11 − 1.11× 10−10 285.91 − 6.10× 1016 7.40× 109 0 3.0× 107 0

10 1.138× 10−11 − 1.11× 10−10 285.91 − 5.40× 1016 8.50× 109 0 3.0× 107 0

15 1.136× 10−11 − 1.11× 10−10 285.91 − 5.85× 1016 9.05× 109 0 3.0× 107 0

20 1.136× 10−11 − 1.11× 10−10 285.91 − 5.71× 1016 9.05× 109 0 3.0× 107 0

Table 5.4: Identified parameters for PIC 181.
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A similar optimization of the parameters was done in [117] using both displacement
and electric current amplitude responses. For the material PIC 255, applying nonlinear
parameters determined from the responses at 30 V to the case of 20 V resulted in a
small difference between modeling and experiment in both resonance frequency and
amplitude. In other words, a dependence of the elastic modulus and the damping
upon the excitation amplitude were exhibited. This can here be verified when a set
of parameters is determined for each excitation voltage by fitting the corresponding
experimental displacement amplitude response. The piezoelectric parameters γ0 and
γ
(1)
2 are held to be constant.

Tables 5.3 and 5.4 contain the identified parameters of PIC 255 and PIC 181 re-
spectively. The determined values for sE11 and d31 also approximate to those of the
manufacturer. In table 5.3, the linear elastic parameter sE11 of PIC 255 increases with
increasing the excitation voltage, i.e. the linear elastic modulus E(0) decreases. This
may be a characteristic of piezoceramic materials, but a heating of piezoceramics after
consecutive dynamic experiments close to resonance can also account for the increase
in their compliance. In addition, the cubic parameters E(2) and E

(2)
d also decrease in

absolute value. The changes in parameters of PIC 181 is unclear due to the imperfect
shape of resonance curves shown in figures 5.16–5.18.

A very good coincidence between theoretical and experimental results is illustrated
in figures 5.11–5.18. It can be seen that the material PIC 255 possesses much higher
damping than PIC 181, so that the typical jump phenomenon of Duffing oscillator is
suppressed.
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Figure 5.11: Nonlinear parameters fit for PIC 255 at 20 V.
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Figure 5.12: Nonlinear parameters fit for PIC 255 at 30 V.
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Figure 5.13: Nonlinear parameters fit for PIC 255 at 40 V.
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Figure 5.14: Nonlinear parameters fit for PIC 255 at 50 V.
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Figure 5.15: Nonlinear parameters fit for PIC 181 at 5 V.
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Figure 5.16: Nonlinear parameters fit for PIC 181 at 10 V.
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Figure 5.17: Nonlinear parameters fit for PIC 181 at 15 V.
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Figure 5.18: Nonlinear parameters fit for PIC 181 at 20 V.

5.5 Consideration for quadratic nonlinearities

Based on the experimental results, that the superharmonic of comparable order of
magnitude at the first resonance frequency can be observed when the piezoceramics
are excited at one half and one third of the first eigenfrequency [90,117], both quadratic
and cubic nonlinearities in the equation (5.13) were taken of the same order ε. As a
result, the quadratic nonlinearities were missing in the solution and they could not be
determined.

However, it is indicated in [87] that a quadratic nonlinearity can also result in
a softening effect on the frequency response curves if the quadratic nonlinearity is
considered of order ε and the damping, the cubic nonlinearity and the excitation are
taken of order ε2. A nondimensional equation of motion similar to (5.13) can be derived
as

p′′ + ε2 k p′ + p+ ε α∗
1 p

2 + ε2 α∗
1d p p

′ + ε2 α1 p
3 + ε2 α1d p

2 p′

= ε2 q (h1 cos ητ + h2 sin ητ) + ε2 qd η(−h2 cos ητ + h1 sin ητ)

+ ε2 α∗
2 p (h1 cos ητ + h2 sin ητ) + ε2 α∗

2d p
′ (h1 cos ητ + h2 sin ητ)

− ε2 α∗
2d p η(−h2 cos ητ + h1 sin ητ) + ε3 α∗

3 (h1 cos ητ + h2 sin ητ)
2

− ε3 α∗
3d η (h1 cos ητ + h2 sin ητ)(−h2 cos ητ + h1 sin ητ)

+ ε2 α2 p
2 (h1 cos ητ + h2 sin ητ) + 2 ε2 α2d p p

′ (h1 cos ητ + h2 sin ητ)

− ε2 α2d p
2 η(−h2 cos ητ + h1 sin ητ)

+ ε3 α3 p (h1 cos ητ + h2 sin ητ)
2 + ε3 α3d p

′ (h1 cos ητ + h2 sin ητ)
2

− 2 ε3 α3d p η(h1 cos ητ + h2 sin ητ)(−h2 cos ητ + h1 sin ητ)

+ ε4 α4 (h1 cos ητ + h2 sin ητ)
3

− ε4 α4d η(h1 cos ητ + h2 sin ητ)
2(−h2 cos ητ + h1 sin ητ), (5.28)
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where

()′ =
d

dτ
, k =

d

ε2mk ω0

, α∗
1 =

c
(2)
k

εmk ω2
0

, α∗
1d =

c
(2)
kd

ε2mk ω0

,

α1 =
c
(3)
k

ε2mk ω2
0

, α1d =
c
(3)
kd

ε2mk ω0

, q =
f
(1)
k

ε2mk ω2
0

, qd = −
f
(1)
kd

ε2mk ω0

,

α∗
2 =

f
(2)
k

ε2mk ω2
0

, α∗
2d =

f
(2)
kd

ε2mk ω0

, α∗
3 =

f
(3)
k

ε3mk ω2
0

, α∗
3d =

f
(3)
kd

ε3mk ω0

,

α2 =
f
(4)
k

ε2mk ω2
0

, α2d =
f
(4)
kd

ε2mk ω0

, α3 =
f
(5)
k

ε3mk ω2
0

, α3d =
f
(5)
kd

ε3mk ω0

,

α4 =
f
(6)
k

ε4mk ω2
0

, α4d =
f
(6)
kd

ε4mk ω0

.

Applying the Lindstedt-Poincaré method again with the appoximate solution

p(τ) = p0(τ) + ε p1(τ) + ε2 p2(τ) + · · · (5.29)

and another expansion for η2 as

η2 = 1 + ε2 δ + · · · , (5.30)

where the term of order ε is omitted so that the corresponding secular term vanishes
and it is also reasonable to assume that the deviation of the frequency ratio η from
resonance should be O(ε2) when the excitation is O(ε2) [87, 117].

Substituting (5.29) and (5.30) into the equation (5.28) and equating the coefficients
of ε0, ε1 and ε2 on both sides yields

ε0 : p′′0 + η2 p0 = 0, (5.31)

ε1 : p′′1 + η2 p1 = −α∗
1 p

2
0, (5.32)

ε2 : p′′2 + η2 p2 = − k p′0 + δ p0 − 2α∗
1 p0 p1 − α∗

1d p0 p
′
0 − α1 p

3
0

− α1d p
2
0 p

′
0 + q (h1 cos ητ + h2 sin ητ) + qd η (−h2 cos ητ + h1 sin ητ)

+ α∗
2 p0 (h1 cos ητ + h2 sin ητ) + α∗

2d p
′
0 (h1 cos ητ + h2 sin ητ)

− α∗
2d p0 η (−h2 cos ητ + h1 sin ητ) + α2 p

2
0 (h1 cos ητ + h2 sin ητ)

+ 2α2d p0 p
′
0 (h1 cos ητ + h2 sin ητ)− α2d p

2
0 η (−h2 cos ητ + h1 sin ητ). (5.33)

The general solution of the equation (5.31) is the same as that of (5.17) with the
unknown amplitude A

p0(τ) = A cos ητ. (5.34)

Substituting p0 into (5.32), a stationary solution for p1 can be derived as

p1(τ) = −
1

2η2
α∗
1A

2

(
1−

1

3
cos 2ητ

)
. (5.35)

Substituting p0 and p1 into (5.33) and eliminating the secular terms yields

δ A−
3

4
α1A

3 +
5

6η2
α∗2
1 A

3 +

(
q +

3

4
α2A

2

)
h1 +

(
− qd +

1

4
α2dA

2

)
η h2 = 0, (5.36)

k η A+
1

4
α1d η A

3 +

(
qd −

3

4
α2dA

2

)
η h1 +

(
q +

1

4
α2A

2

)
h2 = 0. (5.37)
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Taking account of h21+h
2
2 = 1, a fifth order polynomial equation with respect to A2

can be obtained. It is obvious that the quadratic nonlinearities now have an effect on
the zeroth-order response. If the cubic conservative nonlinearity is neglected (α1 = 0),
then the corresponding quadratic one always has a softening effect. Otherwise, the
effects of the nonlinearities depend on which effect is predominant.
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Figure 5.19: Nonlinear parameters fit for PIC 255 at 30 V: Case 1.
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Figure 5.20: Nonlinear parameters fit for PIC 255 at 30 V: Case 2.



Chapter 5. Nonlinear dynamic modeling 49

PSfrag

excitation frequency [kHz]

d
is
p
la

ce
m

en
t

am
p
li
tu

d
e

[µ
m

] theory

experiment

30 V (3)

17 18 19 20 21 22 23

1.5

1.25

1

0.75

0.5

0.25

0

Figure 5.21: Nonlinear parameters fit for PIC 255 at 30 V: Case 3.
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Figure 5.22: Nonlinear parameters fit for PIC 255 at 30 V: Case 4.
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Figure 5.23: Nonlinear parameters fit for PIC 181 at 10 V: Case 1.
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Figure 5.24: Nonlinear parameters fit for PIC 181 at 10 V: Case 2.
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Figure 5.25: Nonlinear parameters fit for PIC 181 at 10 V: Case 3.
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Figure 5.26: Nonlinear parameters fit for PIC 181 at 10 V: Case 4.
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γ
(1)
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[
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Vm

]

1 1.69× 10−11 − 1.91× 10−10 6035 0 − 8.02× 1017 3.58× 1012 1.87× 108

2 1.69× 10−11 − 1.91× 10−10 6035 2.07× 1014 0 3.31× 1012 9.12× 108

3 1.69× 10−11 − 1.91× 10−10 6035 1.77× 1014 − 2.12× 1017 3.35× 1012 8.16× 108

4 1.69× 10−11 − 1.91× 10−10 6035 2.41× 1014 2.83× 1017 3.31× 1012 9.12× 108

Table 5.5: Different sets of identified parameters of PIC 255 at U0 = 30 V with γ0d = γ
(1)
2d = 0.
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1 1.138× 10−11 − 1.11× 10−10 285.91 0 − 5.40× 1016 8.50× 109 3.00× 107

2 1.138× 10−11 − 1.11× 10−10 285.91 6.59× 1013 0 8.50× 109 3.43× 107

3 1.138× 10−11 − 1.11× 10−10 285.91 4.30× 1013 − 3.10× 1016 8.50× 109 2.70× 107

4 1.138× 10−11 − 1.11× 10−10 285.91 7.94× 1013 2.41× 1016 8.50× 109 4.10× 107

Table 5.6: Different sets of identified parameters of PIC 181 at U0 = 10 V with γ0d = γ
(1)
2d = 0.
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Tables 5.5 and 5.6 contain the different sets of the parameters determined by fit-
ting the experimental displacement amplitude responses for the material PIC 255 and
PIC 181, respectively, in four typical cases: (1) – without the quadratic nondissipa-
tive mechanical terms, (2) – without the cubic nondissipative mechanical terms, (3) –
with both quadratic and cubic nonlinearites having a softening effect, and (4) – with
the cubic nonlinearity having a stiffening effect, whereas the quadratic nonlinearity
has a softening effect. Figures 5.19–5.26 show a very good coincidence between the
theo-retical and experimental results. It can be pointed out that there exist even more
possibilities for the identified parameters, leading also to such good coincidence. In
other words, the parameter identification is ambiguous, nonlinear behavior of piezo-
ceramics can be accounted for either by the quadratic nonlinearities or by the cubic
ones as well as either by mechanical terms or by piezoelectric coupling terms. In the
large choice of the parameters, the cubic piezoelectric parameter γ(1)2 may be unne-
cessary at all, as suggested in [117] that the nonlinear elastic terms play a dominant
role with the nonlinear behavior of the transversally polarized longitudinal oscillators.
To verify this and improve the modeling of the nonlinear dynamic effects, quasi-static
behavior of piezoceramics will be considered by performing corresponding experiments
in chapter 6.
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Chapter 6

Quasi-static experiments

In order to specify the role of the introduced nonlinear or nonconservative terms in
the explanation of the nonlinear effects described in chapter 5 and find a more con-
sistent modeling for the dynamic behavior, quasi-static experiments with longitudinal
deformations of transversally polarized piezoceramics are performed. The relations
between the applied electric field or mechanical stress and the strain as well as the
electric displacement density are considered. In contrast to the dynamic experiments
described in chapter 3, the electrical and mechanical loads of moderate magnitude are
quasi-statically applied to the piezoceramics respectively, so that the corresponding
strains are of the same order as those in the dynamic case. Here the excitations are
no longer “weak” but it is assumed that they are not “strong” enough to initiate the
polarization switching processes. This means the magnitudes of the excitations are still
significantly lower than the coercive ones.

As in the dynamic experiments, transversally polarized piezoceramic samples of the
materials PIC 255 and PIC 181 manufactured by PI Ceramic are used again. Piezoce-
ramic rods of PIC 255 will be subjected to moderate quasi-static electric fields, whereas
those of PIC 181 are used for tension and compression tests under moderate mechanical
stresses.

6.1 Experiments with moderate electric field

First, nonlinear behavior of piezoceramics under moderate quasi-static electric fields is
experimentally investigated. Experiments are performed at the Chair of High Voltage
Technology, Department of Energy and Automation Technology, Technische Univer-
sität Berlin (TUB). A free transversally polarized piezoceramic rod as shown in figure
3.1 is excited to longitudinal vibrations by a quasi-static excitation voltage far from
resonance, using the inverse 31-effect. The experiments are carried out at 60 Hz on
piezoceramic samples of PIC 255 with the dimensions 70 × 25 × 3.3 mm3, whose first
eigenfrequency is about 20 kHz. The longitudinal strains Sxx and the electric displace-
ment density Dz in the direction of the excitation electric fields can be obtained with
the help of the experimental setup illustrated in figures 6.1 and 6.2. This setup is quite
similar to that of the dynamic experiments described in section 3.1.
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Figure 6.1: Schematic setup of experiments under moderate electric fields.
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Figure 6.2: Experimental setup of experiments under moderate electric fields: function
generator (1), oscilloscope (2), high voltage power amplifier (3), sensor head (4), po-
larized piezoceramic rod located on an insulated foundation (5), vibrometer controller
(6), FFT analyzer (7) and measuring computer (8).
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The excitation signals are generated by a function generator (Philips PM-5318) and
sent to the piezoceramics through a high voltage power amplifier (Trek 10/10A). An
oscilloscope (LeCroy 9384AL) is used to monitor the excitation voltages. The mecha-
nical responses are also derived as velocities at one end of the piezoceramics detected by
the laser vibrometer. The corresponding displacements can numerically be calculated
by integrating the velocity signals with respect to time. Then the longitudinal strains
are determined as

Sxx(t) =
2

l
u

(
±
l

2
, t

)
, (6.1)

where l is the length of piezoceramic samples and u(±l/2, t) denotes the displacements
at the ends of the piezoceramics.

On the electric side, the monitored voltage Umon(t) and the current I(t) through the
piezoceramics can directly be obtained as the outputs of the power amplifier. With the
assumption of a homogeneous electric field in the z-direction between the electrodes
the electric displacement density in this direction is calculated from the equation (5.26)
as

Dz(t) =
1

F

∫ t

0

I(τ) dτ, (6.2)

where F is the area of each electrode. All measuring data are finally acquired by a fast
Fourier transform (FFT) analyzer and then recorded in a measuring computer.
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Figure 6.3: Electric field Ez(t) at 60 Hz applied to piezoceramics PIC 255.

In experiments the electric fields in the form of triangular signal as shown in figure
6.3 are used to excite the piezoceramics. Using the samples with a thickness of 3.3 mm,
the maximum applied voltage in absolute value is 1000 V corresponding to the electric
field of about 0.3 kV/mm which is only 25% of the coercive field for PIC 255 given by
the manufacturer Ec = 1.2 kV/mm. The results obtained from such experiments for
the longitudinal strains and the electric displacements are plotted in figures 6.4 and 6.5
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respectively. It is obvious that under moderate electric fields the piezoceramics exhibit
a nonlinear hysteretic behavior in both mechanical and electrical responses.
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Figure 6.4: Mechanical hysteresis – longitudinal strain Sxx vs. applied electric field Ez
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6.2 Experiments with moderate mechanical stress

To investigate the pure mechanical behavior of piezoceramics in the same range of
moderate strains occuring when they are subjected to weak electric fields close to re-
sonance, the tension and compression tests are performed on transversally polarized
piezoceramic rods of the material PIC 181 with the dimensions 30 × 3 × 2 mm3.
Experiments are done at the Chair of Continuum Mechanics and Material Theory,
Department of Applied Mechanics, TUB. Figure 6.6 presents a principle of such expe-
riments, where the moderate stresses are quasi-statically applied in the main deforma-
tion direction x perpendicular to the polarization direction of the piezoceramics. The
longitudinal stresses and strains can be derived by means of the experimental setup
shown in figure 6.7.

l

b

h

P
x

y
z

σ σ

Figure 6.6: Transversally polarized piezoceramic rod subjected to longitudinal stress.

Figure 6.7: Experimental setup of tension and compression tests.

Excluding the influence of coupling and dielectric parameters, the samples are short-
circuited, i.e. no electric field occurs in the piezoceramics. A microforce testing system
(Tytron 250) with MTS TestStar IIs controller is used to generate an uniaxial force
up to 250 N applied to the piezoceramic rods in the x-direction. This excitation is
monitored by a force transducer (MTS 661.11B-02). The strains in the direction of
the stresses can be measured either by using a laser extensometer of the type parallel
scanner (Fiedler P-50) or by using strain gauges. Due to the necessity to reach a
moderate stress with restriction of the excitation force, the cross-section of the samples
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should be small enough, only 6 mm2 in this work. Therefore it is quite difficult to
ensure, that a sample is always subjected to a concentric axial load during the tests
and thus special clamping devices for both ends of the sample have to be built. As
shown in figure 6.7, the piezoceramic rod is fixed at each end by two cylinders connected
with two balls. The clamping force is generated by the screws from two sides. Using
these clamps, the bending moment acting on the sample (if any) can be minimized.
The sample with clamps is then suspended from the testing system so that it can have
three rotating degrees of freedom. In addition, for the use of the laser extensometer the
upper side of the rod is painted over in black color and four white stripes are sticked
on this surface. The strains will be found from a change in the distance of these stripes
detected by a laser head.

R1 R2

R3R4

V

Uin Uout

Figure 6.8: Wheatstone full bridge circuit.

It can be pointed out in experiments that the results from the laser extensometer
are unstable due to the difficulty in orienting the samples. Hence, the measurements
given by strain gauges are only used in this work. The measuring principle using
strain gauges is based on the Wheatstone full bridge circuit shown in figure 6.8, which
contains four strain gauges as variable resistors, a direct current (DC) voltage source
and a voltmeter. Two active strain gauges R1 and R3 are glued to a main sample along
its length on two opposite sides, while the other strain gauges R2 and R4 are the same
way glued to another free sample for temperature compensation. Because the four
strain gauges (HBM 3/350LY11) have the same gauge factor k = 2.01 and the same
resistance R = 350 Ω, the following measurement can be derived [48]

Uout

Uin

=
k

4
(S1 − S2 + S3 − S4) , (6.3)

where Uout and Uin correspond to the output and input voltage of the bridge and Si

(i = 1, . . . , 4) are the strains of the gauges respectively. In the ideal case, S1 = S3 = Sxx

and S2 = S4 = 0 the measuring quantity becomes

Uout

Uin

=
k

2
Sxx. (6.4)

Thus the longitudinal strain can be obtained as

Sxx =
2

k

Uout

Uin

. (6.5)
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Figure 6.9: Tension and compression stress applied to PIC 181.
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Figure 6.10: Stress–strain hysteresis from tension and compression test for PIC 181.
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Figure 6.11: Tension and compression stress applied to PIC 181.
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Figure 6.12: Stress–strain hysteresis from tension and compression test for PIC 181.
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Figure 6.13: Compression stress applied to PIC 181.
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Figure 6.14: Stress–strain hysteresis from compression test for PIC 181.
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In experiments, the piezoceramics are subjected to consecutive loading–unloading
cycles by tension and/or compression stresses in magnitudes up to about 40 MPa
and a maximum loading rate of about 0.5 MPa/s. Figures 6.9, 6.11 and 6.13 show
the longitudinal tension and compression stresses applied to the samples over time.
The corresponding stress–strain curves are presented in figures 6.10, 6.12 and 6.14
respectively. It is evident that the polarized piezoceramics also exhibit a nonlinear
hysteretic behavior under moderate mechanical stresses. In addition, figure 6.10 indi-
cates that the piezoceramics reveal a nearly symmetrical stress–strain relation in this
case. Experiments with tension and compression in succession under larger stresses
are not successful because it is quite difficult to center precisely the samples on the
testing system, so that they often broke at the clamping positions during the tensions.
The tension tests always have to be performed very carefully because piezoceramics
are brittle materials. Due to the difficulty of the tension tests, only results from the
compressions tests will be used in the following.



Chapter 7

Nonlinear quasi-static modeling

This chapter is dedicated to the phenomenological modelings of the nonlinear hysteretic
behavior of piezoceramics observed in the quasi-static experiments described in chapter
6. The electrical and mechanical loads are applied to the piezoceramics at low frequen-
cies which are much less than their natural frequency. Therefore this behavior can
be considered as a static hysteresis and thus it can be described by rate-independent
hysteresis models. In the present work, four of the most common hysteresis models
will be used, which are the classical Preisach model, the Prandtl-Ishlinskii model, the
Masing model and the Bouc-Wen model respectively.

Experiments show that the hysteretic behavior of the piezoceramics has a nonlocal
memory. This means the current value of output response depends not only on the cur-
rent value of input excitation but also on a history of the input. The classical Preisach
model is absolutely appropriate to this type of hysteresis due to its capability to ac-
cumulate the past extremum values of the input. In relation with the Preisach model,
the Prandtl-Ishlinskii model and its inverse are particular cases having an advantage
that the implementation is simpler, because their distribution functions determining
the shape of the hysteresis loops can be expressed in analytical forms. The Masing
model is structured by a parallel combination of elasto-slide elements as the same as
the Prandtl-Ishlinskii model, but the input–output relation is represented by another
approach using evolution equations for the internal variables. The last one, Bouc-Wen
hysteresis model, can be considered as a generalization of the Masing model. Applying
these hysteresis models, a good agreement between theoretical and experimental results
can be obtained for both electrical and mechanical cases.

The similar hysteretic behavior of piezoceramics subjected to electric fields has been
investigated in several other works. For example, in [44, 45, 126] the classical Preisach
model was also used to simulate hysteretic nonlinearities of piezoceramics under strong
electric fields (up to 2 kV/mm) initiating polarization switching processes with respect
to the inverse 33-effect. The Prandtl-Ishlinskii model can be found in [68, 70] under
the name of the Maxwell resistive capacitor model for the description of dielectric hys-
teresis in piezoceramic transducers with moderate electric fields (less than 80% of the
coercive field) using the inverse 31-effect. This model was also applied in [3, 106, 130]
describing nonlinear relations between strong excitation electric fields and displacement
responses of piezoelectric actuators or nanopositioners. For representing the hysteretic
nonlinearity of piezoelectric actuators in control problems, the Bouc-Wen model was

65
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utilized e.g. in [38,75,123].

On the mechanical side, analogue tension and compression or bending tests at
strong stresses in the range from −400 to 80 MPa were considered for instance by
[31–34, 131, 132], where “soft” piezoceramics were subjected to loading–unloading cy-
cles. The nonlinear stress–strain behavior can then be explained by domain switching
but no hysteresis was taken into account.

7.1 Hysteresis models

7.1.1 Classical Preisach model

The first hysteresis model used in this work was originally proposed for ferromagnetic
effects by Preisach [95] and independently developed by Everett and coworkers [27–30]
for adsorption of gases by porous solids. An engineering description of this model can
be found in a monograph of Mayergoyz [81].

A hysteresis system can be considered as a transducer which is characterized by
an input u(t) and a corresponding output f(t). For piezoceramics u(t) is the applied
electric field, while f(t) is the electric polarization or u(t) is the stress and f(t) is
the strain. The classical Preisach model is based on a simplest hysteresis operator
γ̂αβ represented by a rectangular loop (also called two-position relay) in figure 7.1.
Thresholds α and β are “up” and “down” switching values of input, respectively, with
the physical assumption that α ≥ β. Output of this elementary hysteresis operator
is normally assumed to take only two values +1 and −1 corresponding to “up” and
“down” positions, but it may also take two value +1 and 0 [36,66].

u

γ̂αβ[u]

αβ

−1

0

1

Figure 7.1: Elementary hysteresis operator.

The Preisach model can be defined as a weighted superposition of the elementary
operators by [81]

f(t) = Γ̂[u(t)] =

∫∫

α≥β

µ(α, β) γ̂αβ[u(t)] dα dβ, (7.1)
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where µ(α, β) is the weight function named the Preisach function, which can be identi-
fied from experimental data. An interpretation diagram of the Preisach model is shown
in figure 7.2 containing infinite elementary operators. But normally, the identification
problem can be solved for a discrete approximation to this diagram with finite num-
ber of two-position relays. The larger the number of operators used, the better the
experimental hysteresis curve is fitted.

u(t) f(t)

Γ̂

γ̂α1β1

γ̂α2β2

γ̂αnβn

µ(α1, β1)

µ(α2, β2)

µ(αn, βn)

∫

Figure 7.2: Preisach hysteresis model as a continuous weighted superposition of two-
position relays (n→ ∞).

α

α

β

β

α0

β0

S

γ̂αβ

α
=
β

Figure 7.3: The restricted half-plane α ≥ β.

In order to calculate the integral in (7.1), the Preisach model is geometrically in-
terpreted as follows. The two-position operator γ̂αβ is uniquely characterized by a pair
of numbers α and β, which are the switching values of the input u(t), the same as a
point of the half-plane α ≥ β (called the Preisach plane). In practice, the input value
is always limited, so the half-plane α ≥ β can also be restricted to a right triangle S
shown in figure 7.3 by a maximum value α0 of the “up” switching values of the input
and a minimum value β0 of the “down” switching values. This means that the Preisach
function µ(α, β) vanishes outside the area S.
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As presented in figure 7.4, starting from the negative boundary state of the hys-
teresis system when the initial value of the input u(t0) ≤ β0, i.e. the input value is
less than or equal to the “down” switching values of all γ̂αβ-operators in the triangle
S, all of them are in the “down” position and all their outputs are equal to −1. The
input increases monotonically to some value u1 at time t1. At the time t ∈ (t0, t1),
γ̂αβ-operators, which have the “up” switching value α < u(t), turned into the “up”
position and their outputs are equal to +1. Thereby, the triangle S is subdivided by
the line α = u(t) into two areas S+(t) and S−(t) corresponding to the γ̂αβ-operators in
“up” and “down” position respectively. The dividing line moves upwards until t = t1.
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Figure 7.4: The subdivisions of S with respect to the variations of the input: u(t0) = β0
and ui = u(ti) with i = 1, 2, 3, 4.

Next, the input decreases monotonically to some value u2 at time t2. At the time
t ∈ (t1, t2), γ̂αβ-operators, which have the “down” switching value β > u(t), turned
into the “down” position and their outputs are equal to −1 again. The triangle S is
subdivided into two new areas S+(t) and S−(t), between them the interface L(t) now
has two segments. The horizontal segment belongs to the line α = u1 and the vertical
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one is specified by the line β = u(t) which moves to the left until t = t2.

We assume that the input increases monotonically again to some value u3 < u1 at
time t3 and then decreases monotonically to some value u4 > u2 at time t4. Similarly
above, this variation of the input will result in a new interface L(t) which now consists
of four segments, two horizontal segments are on the lines α = u1 and α = u3, and two
vertical others are on the lines β = u2 and β = u4.

In summary, at any instant of time the limiting triangle S is subdivided into two
areas consisting of points (α, β) for which

γ̂αβ[u(t)] =

{
+1 if (α, β) ∈ S+(t),
−1 if (α, β) ∈ S−(t).

(7.2)

Hence, the integral in (7.1) can be subdivided as

f(t) =

∫∫

S+(t)

µ(α, β) dα dβ −

∫∫

S−(t)

µ(α, β) dα dβ. (7.3)

Having the above geometric interpretation, it is proven in [81], that a hysteresis
system can be represented by the Preisach model if and only if it satisfies both wiping-
out and congruency properties. The wiping-out property means that a local maximum
of the input wipes out the vertices of the interface L(t) if their α-coordinates are less
than this maximum and a local minimum of the input wipes out the vertices whose
β-coordinates are greater than this minimum. Thus, only the alternating series of
dominant extrema of the input are remaining. For the congruency property, back-and-
forth variations of inputs between the same two consecutive extremum values results
in hysteresis loops which are geometrically congruent.

It is obvious that the Preisach model is characterized by the weight function µ(α, β)
which can be determined from a set of experimental first-order reversal curves. These
curves are formed as a monotonic increase of the input from some value less than β0
is followed by a subsequent monotonic decrease. This variation corresponds to the
first reversal of the input. Starting from the negative boundary state of a hysteresis
system, the input increases monotonically to some value α and subsequently decreases
to some value β as shown in figure 7.5. The corresponding output values are fα and
fαβ respectively. Defining the Everett function

F (α, β) =
1

2
(fα − fαβ) =

∫∫

T (α,β)

µ(α̃, β̃) dα̃ dβ̃ (7.4)

leads to an analytical expression for the Preisach function [81]

µ(α, β) = −
∂2F (α, β)

∂α ∂β
. (7.5)

For the calculation of the output f(t) and the identification of the Preisach function
µ(α, β), the corresponding formulas (7.3) and (7.5) should be implemented numerically.
Indeed, the zigzag interface L(t) between the positive (S+) and negative (S−) areas
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has vertices whose α- and β-coordinates are elements of the set of the dominant input
extrema {Mk} and {mk} respectively. The equation (7.3) can be written in the form

f(t) = −

∫∫

S

µ(α, β) dα dβ + 2

∫∫

S+(t)

µ(α, β) dα dβ, (7.6)

where S = S+(t) ∪ S−(t).
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β β

α0

β0
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T (α, β)

αβ α0

β0
u

f

fαfαβ

Figure 7.5: The formation of a first-oder reversal curve.
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Figure 7.6: Subdivisions of the positive area S+(t) with n = 3.

Subdividing the positive area S+(t) into n trapezoids Qk as shown in figure 7.6 and
paying attention to the definition (7.4) yields [81]

f(t) = −F (α0, β0) + 2

n(t)∑

k=1

[F (Mk,mk−1)− F (Mk,mk)] , (7.7)
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where mn = u(t) which is the current value of the input and in the case presented in
figure 7.6(a) it is valid else that Mn = u(t).

Direct problem

We assume that the input u(t) starts from some value u(t0) ≤ β0 and the Preisach
function µ(α, β) on the limiting triangle S is given, the output f(t) can easily be
evaluated by using the formula (7.7). At any instant of time, a set of sequent dominant
extrema of the input {Mk,mk} is determined. Then the values of the Everett function
at all vertices of the interface L(t), namely all terms in (7.7), are computed by using the
equation (7.4). If only discretized Preisach function is given for a square mesh covering
the triangle S as shown in figure 7.7, interpolating function for each cell should be used

µ(α, β) =

{
µ0 + µ1α + µ2β for triangle cells,
µ0 + µ1α + µ2β + µ3αβ for square cells,

(7.8)

where the coefficients µi (i = 0, 1, 2, 3) can be found by matching the Preisach function
values given at the cell vertices.

α

β
α
=
β

α0

β0

Figure 7.7: A square mesh covering the limiting triangle S.

Instead of the Preisach function, a set of first-order reversal curves can numerically
be given. This set comprises the output values fαβ at the nodes of the mesh. Then the
mesh values of the Everett function are also computed by using the formula (7.4) with
fα ≡ fαα. The values of the Everett function at the vertices of the interface L(t) can
then be interpolated as

F (α, β) =

{
F0 + F1α + F2β for triangle cells,
F0 + F1α + F2β + F3αβ for square cells,

(7.9)

where the coefficients Fi (i = 0, 1, 2, 3) are determined by matching the mesh values of
the Everett function at the cell vertices.
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Identification problem

As presented in the direct problem, the Preisach model is specified if a set of first-
order reversal curves or the Preisach function is given. Therefore, a solution of the
identification problem can be derived directly from experimental results. First, bring
the hysteresis system to the negative boundary state by decreasing the input to some
value u(t0) ≤ β0. Next, a major hysteresis loop can be formed when the input is mono-
tonically increased to the “up” limiting value α0 and then monotonically decreased to
the “down” limiting value β0 again. The further first-order reversal curves is obtained
by the same way, but the input is only increased until it reaches some value α with
β0 < α < α0. Of course, all corresponding output values fαβ are measured.

Another solution of this problem is the Preisach function µ(α, β) which is deter-
mined from the above first-order reversal curves. Indeed, by fitting this experimental
curves a surface fαβ(α, β) with a given analytic form can be found [39]. Then an
analytic expression for the Preisach function is obtained from (7.4) and (7.5) as

µ(α, β) =
1

2

∂2fαβ
∂α ∂β

. (7.10)

By a similar method, the Preisach function is assumed as a well-known distribution
function, such as factorized Cauchy-Lorentz, lognormal/Gaussian, Gaussian/Gaussian
[13, 46], or Cauchy-Lorentz/Gaussian, Cauchy-Lorentz/lognormal [96] distributions.
The parameters of the distribution functions are then determined by fitting the ex-
perimental major loop. These methods have the advantage that there are only few
parameters and the major hysteresis loop is easily measured. However, it can be seen
in [46, 96] that even the approximation of the major loop is not so precise and the
minor loops are obviously inaccurate.

In another way, the Preisach function can be directly identified with a better preci-
sion from experimental data. Two similar algorithms are proposed in [14–16] and [50]
respectively. With the first algorithm the weight function can be determined at any
point in the Preisach plane for arbitrary accuracy by applying two appropriate input
functions around this point. By contrast, the later algorithm calculates simultaneously
all values of the weight function in the discretized Preisach plane by applying a finite
number of chosen input functions. This number depends on the number of the cells.
From the numerical results, the weight function can be approximated as a linear com-
bination of suitable basis functions, where the constant coefficients are computed by a
least squares method [49]. These algorithms are very simple to evaluate the discretized
Preisach function, but the corresponding measurements are complex and the result is
sensitive to experimental errors.

Solving also a constrained least squares problem, the discretized Preisach function
can be found by fitting the concatenation of the first-order reversal curves, where the
function within each cell in the Preisach plane is assumed to concentrate at the cell
center as a discrete mass [54, 107, 110]. Nevertheless, the input has to be discretized
so that the vertices of the interface L(t) between positive and negative areas in the
Preisach plane always coincide with the nodes of the grid. In other words, it is difficult
to use this solution for a general input, of which some dominant extremum value does
not correspond to any node of the grid.
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Figure 7.8: Discretization of the Preisach plane for n = 4.

In this work, a simple method to identify the Preisach function will be presented
as follows. In experiments, a set of n first-order reversal curves is measured. Then
the Preisach plane can be discretized into n levels on each axes. Figure 7.8 shows an
example for n = 4, where the cells are labeled upwards and from left to right. The
upper left corner of each cell takes also the index of the cell.

As mentioned above, the mesh values of the Everett function Fij (i, j = 1, . . . , n
and i ≥ j) can be computed from the first-order reversal curves by using the first
equation in (7.4). Then the double integral of the Preisach function over each cell is
easily determined

Iij =

∫∫

Cij

µ(α, β) dα dβ. (7.11)

The first n integrals over the triangle cells are directly obtained from (7.4)

Iii = Fii (i = 1, 2, . . . , n). (7.12)

The next n− 1 integrals over the adjacent cells can be derived from the equations
(7.4) and (7.11). It is clearly that

Fi+1,i = Ii+1,i + Iii + Ii+1,i+1 (i = 1, 2, . . . , n− 1). (7.13)

Therefore,
Ii+1,i = Fi+1,i − Iii − Ii+1,i+1 (i = 1, 2, . . . , n− 1). (7.14)

The rest cells Cij of the Preisach plane is divided into n − 2 levels due to the
difference inside their indices, ∆i = i− j. The integrals of the Preisach function over
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these cells can be found for each level ∆i from 2 to n − 1 in succession. From the
equations (7.4) and (7.11),

Fij = Iij + Fi,j+1 + Fi−1,j − Fi−1,j−1. (7.15)

Thus,
Iij = Fij − Fi,j+1 − Fi−1,j + Fi−1,j−1, (7.16)

with i = ∆i+ 1, . . . , n and j = i−∆i.

Assume that the discretized Preisach function within each cell in the Preisach plane
is constant. From the equation (7.11),

Iij = µij Aij, (7.17)

where Aij are the areas of the cells and µij correspond to n(n+1)/2 unknown constants
respectively. Hence, these values of the discretized Preisach function can be computed
from (7.17) by using the integral values in (7.12), (7.14) and (7.16) as

µij =
Iij
Aij

(i, j = 1, 2, . . . , n and i ≥ j). (7.18)

Note that the Preisach function should be non-negative, as it plays the role of a density
function. This condition is automatically satisfied when the input and the output are
in direct variation, that means they increase or decrease together.

More generally the Preisach function in each cells µij(α, β) can be assumed to
represent a plane or a doubly ruled surface. First, all values of the Preisach function
at the nodes on the line α = β are determined by the method of Biorci and Pescetti
summarized in [50]. For n triangle cells, the Preisach function has the form

µii(α, β) = µ0 + µ1α + µ2β (i = 1, 2, . . . , n), (7.19)

where the µ-coefficients are found by fitting the corresponding integral Iii in (7.12) and
the two specified vertex values of the Preisach function in the cell.

For the rest cells, the Preisach function has the form

µij(α, β) = µ0 + µ1α + µ2β + µ3αβ, (7.20)

with the µ-coefficients are found by fitting the corresponding integral Iij in (7.14) or
(7.16) and the three specified vertex values of the Preisach function in the cell.

7.1.2 Prandtl-Ishlinskii model

The second hysteresis model introduced here is a Prandtl-Ishlinskii model of stop-
type [116]. It is represented by a parallel combination of elementary stop hysterons,
each of them is composed of a linear spring coupled in series with a pure Coulomb
friction element. Figure 7.9 shows such a system, where the stiction force H0 of the
zeroth slide element is assumed to be infinitely large. Because this construction was
initially proposed by Maxwell, it may be referred to as Maxwell model or Maxwell
resistive capacitor model in literature e.g. [37,68–71].
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The constitutive behavior of the system shown in figure 7.9 can be described by

F (t) = c0 u(t) +
n∑

i=1

Ki(t), (7.21)

Ki =

{
ci (u− ui) if |Ki| < Hi or |Ki| = Hi ∧ sgn(u̇Ki) ≤ 0,

Hi sgn(u̇) otherwise,
(7.22)

where u is the input displacement, F is the output force, and Ki, ci, Hi and ui are the
output force, spring stiffness, stiction force and displacement from initial equilibrium
of the i-th elasto-slide element respectively. The friction force is assumed to be equal
to the stiction force when a block slips.

u

F

u1

un

c0

c1

cn

µ

µ

N1

Nn

(H1)

(Hn)

Hi = µNi

(i = 1, 2, . . . , n)

Figure 7.9: Prandtl-Ishlinskii model.

The Prandtl-Ishlinskii (PI) model and its inverse are established to be particular
cases of the classical Preisach model described in section 7.1.1 and the Preisach function
can be determined in an analytic form [100]. Considering a PI model with n = 2 elasto-
slide elements and assuming that H1 > H2, it is easy to construct the relationship of
the output f(t) ≡ F (t) to the input u(t) as plotted in figure 7.10. This hysteretic
nonlinearity is completely characterized by the parameters c0, c1, c2, w1 and w2, with

wi = 2
Hi

ci
(i = 1, 2). (7.23)

The skeleton lines for the descending and ascending branches are respectively re-
presented by

f = c0 u±H1 ∓H2

(
1 + 2

c1
c2

)
. (7.24)

In order to find the Preisach function µ(α, β) first-order reversal curves fαβ should
be specified and then the formula (7.10) is applied. It is obvious from figure 7.10 that

fαβ =





(c0 + c1 + c2) β + A1 if α− w2 < β ≤ α,

(c0 + c1) β + A2 if α− w1 < β ≤ α− w2,

c0 β −H1 −H2 if −∞ < β ≤ α− w1,

(7.25)
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where the constants A1 and A2 depend on the input values at the first-order reversal
points α.
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Figure 7.10: Simple Prandtl-Ishlinskii model with n = 2.

Hence, the partial derivative of fαβ with respect to β can be derived as

∂fαβ
∂β

=





c0 + c1 + c2 if β ≤ α < β + w2,

c0 + c1 if β + w2 ≤ α < β + w1,

c0 if β + w1 ≤ α <∞.

(7.26)

With the Heaviside step function

θ(x) =

{
1 if x ≥ 0,

0 otherwise,
(7.27)

the above partial derivative can be grouped into the following equation

∂fαβ
∂β

= (c0 + c1 + c2) θ(α− β)− c1 θ(α− β − w1)− c2 θ(α− β − w2). (7.28)

From the equation (7.10) the Preisach function is obtained as

µ(α, β) =
1

2
[(c0 + c1 + c2) δ(α− β)− c1 δ(α− β − w1)− c2 δ(α− β − w2)] , (7.29)

where δ denotes the Dirac delta function.

For the case of figure 7.9, the Preisach function can be generalized as [71]

µ(α, β) =
1

2

{
n∑

i=0

ci δ(α− β)−
n∑

i=1

[ ci δ(α− β − wi) ]

}
, (7.30)
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with wi = 2Hi/ci (i = 1, 2, . . . , n) as given in (7.23). It is obvious that the Preisach
function of the PI model consists of the line α = β and n lines α = β + wi parallel to
this line for a finite number of elasto-slide elements.

For numerical implementation and model identification, the Everett function should
be found by using its definition (7.4)

F (α, β) =

∫∫

T (α,β)

µ(α̃, β̃) dα̃ dβ̃ =

∫ α

β

[∫ α

β̃

µ(α̃, β̃)dα̃

]
dβ̃. (7.31)

Introducing (7.30) into (7.31) yields

F (α, β) =
1

2

{
n∑

i=0

ci (α− β)−
n∑

i=1

[ ci (α− β − wi) θ(α− β − wi) ]

}
, (7.32)

where θ denotes the Heaviside step function. It can be seen that the value of the Everett
function of the PI model is constant along lines parallel to the line α = β. Unlike the
Preisach function, F (α, β) is a continuous function over the limiting triangle S in the
Preisach plane.
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Figure 7.11: Prandtl-Ishlinskii model identification.

Since the PI model is a particular case of the classical Preisach model, it can be
identified by using the Everett function values calculated from the experimental first-
order reversal curves. The limiting triangle S is now divided by n+1 lines α = β +wi

(i = 0, 1, . . . , n) as shown in figure 7.11. It is possible to average the values of the
experimental Everett function along each of these lines. These averaged values can be
expressed as

Fαi =
1

α0 − β0 − wi

∫ α0

β0+wi

F (α, α− wi) dα. (7.33)

From the equations (7.32) and (7.33),

Fαi =
1

2

(
i∑

k=0

wi ck +
n∑

k=i+1

wk ck

)
(i = 0, 1, . . . , n). (7.34)
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Giving the distances wi and the corresponding values Fαi the unknown stiffnesses
ci can be solved by

c = 2




w0 w1 w2 · · · wn−1 wn

w1 w1 w2 · · · wn−1 wn

w2 w2 w2 · · · wn−1 wn

...
...

...
. . .

...
...

wn−1 wn−1 wn−1 · · · wn−1 wn

wn wn wn · · · wn wn




−1

Fα, (7.35)

where c = [ c0, c1, . . . , cn ]
T and Fα = [Fα0, Fα1, . . . , Fαn ]

T. Then the corresponding
stiction forces can be determined from (7.23)

Hi =
1

2
ciwi (i = 1, 2, . . . , n). (7.36)

In a special case of the symmetric limiting triangle S with |α0| = |β0| and the values
wi decrease equally in length

wi = 2α0

(
1−

i

n+ 1

)
(i = 0, 1, . . . , n), (7.37)

the equations (7.35) and (7.36) become

c =
n+ 1

α0




n+ 1 n n− 1 · · · 2 1
n n n− 1 · · · 2 1

n− 1 n− 1 n− 1 · · · 2 1
...

...
...

. . .
...

...
2 2 2 · · · 2 1
1 1 1 · · · 1 1




−1

Fα

=
n+ 1

α0




1 −1 0 · · · · · · 0

−1 2 −1
. . . . . .

...

0 −1 2 −1
. . .

...
...

. . . −1 2 −1 0
...

. . . . . . −1 2 −1
0 · · · · · · 0 −1 2




Fα (7.38)

and

Hi = ci α0

(
1−

i

n+ 1

)
(i = 1, 2, . . . , n). (7.39)

The inverse Prandtl-Ishlinskii model

We consider now the PI model given in figure 7.9 but with the input F (t) and the
output u(t). From figure 7.10 permuting the role of input and output, and generalizing
for the case of figure 7.9 will lead to the Preisach function of the inverse PI model

µ(α, β) =
1

2

{
n∑

i=0

ci δ(α− β) +
n∑

i=1

[
ci δ(α− β − wi)

]
}
, (7.40)
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where an overline denotes that it is for the inverse and δ refers to the Dirac delta
function,

c0 =
2

n∑
k=0

ck

−
1

c0
, (7.41)

ci =
1

i−1∑
k=0

ck

−
1
i∑

k=0

ck

(i = 1, 2, . . . , n) (7.42)

and

wn = wn

n∑

k=0

ck , (7.43)

wi−1 = wi + (wi−1 − wi)
i∑

k=0

ck (i = n, . . . , 3, 2). (7.44)

Substituting the equation (7.40) into (7.31), the Everett function of the inverse PI
model can be derived as

F (α, β) =
1

2

{
n∑

i=0

ci (α− β) +
n∑

i=1

[
ci (α− β − wi) θ(α− β − wi)

]
}
, (7.45)

where θ denotes the Heaviside step function (7.27).

The difference between the inverse and direct PI model is that the Preisach function
µ(α, β) is non-negative having physically meaning of a density function, whereas µ(α, β)
is positive only on the line α = β. Additionally, in the direction of (α, β) = (1,−1) the
slope of the Everett function F (α, β) increases in value, but that of F (α, β) decreases
in value in the same direction.

Similar to the direct PI model, the inverse model can be determined from the
experimental first-order reversal curves as following

c = 2




w0 2w0 − w1 2w0 − w2 · · · 2w0 − wn−1 2w0 − wn

w1 w1 2w1 − w2 · · · 2w1 − wn−1 2w1 − wn

w2 w2 w2 · · · 2w2 − wn−1 2w2 − wn

...
...

...
. . .

...
...

wn−1 wn−1 wn−1 · · · wn−1 2wn−1 − wn

wn wn wn · · · wn wn




−1

Fα, (7.46)

where 0 < wi ≤ α0 − β0 are the given distances from the line α = β to lines parallel
to that line, c = [ c0, c1, . . . , cn ]

T and Fα = [F α0, F α1, . . . , F αn ]
T, with Fαi are the

average values of the experimentally determined Everett function along each of the
lines α = β + wi,

F αi =
1

α0 − β0 − wi

∫ α0

β0+wi

F (α, α− wi) dα (i = 0, 1, . . . , n). (7.47)
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Then from the equations (7.41)–(7.44) the parameters of the direct PI model can
be extracted as follows

c0 =

(
2

n∑

k=0

ck − c0

)−1

, (7.48)

ci =

(
1

/
i−1∑

k=0

ck − ci

)−1

−
i−1∑

k=0

ck (i = 1, 2, . . . , n), (7.49)

wn = wn

/
n∑

k=0

ck , (7.50)

wi−1 = wi + (wi−1 − wi)

/
i∑

k=0

ck (i = n, . . . , 3, 2) (7.51)

and the stiction forces Hi =
1

2
ciwi (i = 1, 2, . . . , n) as given in (7.36).

7.1.3 Masing model

As the third applied hysteresis model, the Masing model proposed in [78] will be here
presented. The structure of this model is the same as that of the Prandtl-Ishlinskii
model shown in figure 7.9. Therefore, the equations (7.21) and (7.22) also represent
the constitutive behavior of the Masing model corresponding to the input u(t) and the
output F (t). Differentiating the equation (7.22) with respect to time yields

K̇i =

{
ci u̇ if |Ki| < Hi or |Ki| = Hi ∧ sgn(u̇Ki) ≤ 0,

0 otherwise.
(7.52)

The evolution equation for the output force Ki acting on the i-th elasto-slide element
(i = 1, 2, . . . , n) can be summarized as [88]

K̇i =
1

2
ci u̇

{
1− sgn(K2

i −H2
i )− sgn(u̇Ki)

[
1 + sgn(K2

i −H2
i )
]}
. (7.53)

Due to the presence of the sign function, it is difficult to integrate this equation
numerically. Indeed, the right-hand side of (7.53) is discontinuous and the exact value
zero of the function sgn(K2

i −H2
i ) when |Ki| = Hi can hardly be obtained. To reduce

these numerical difficulties, the following approximation is introduced [65]

sgn(K2
i −H2

i ) ≈

∣∣∣∣
Ki

Hi

∣∣∣∣
m

− 1 for |Ki| ≤ Hi, m ∈ R ∧ m > 1. (7.54)

Figure 7.12 illustrates this approximation for several values of the exponent m. The
equation (7.53) then becomes

K̇i = ci u̇

{
1−

1

2
[1 + sgn(u̇Ki)]

∣∣∣∣
Ki

Hi

∣∣∣∣
m}

(i = 1, 2, . . . , n). (7.55)

It is evident that the remaining sign function in (7.55) results in no discontinuity on
the right-hand side, since |Ki/Hi|

m or the whole right-hand side will vanish at the
switching point of the function sgn(u̇Ki).
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Figure 7.12: Comparision of the function sgn(K2
i − H2

i ) with its approximation
|Ki/Hi|

m − 1.

7.1.4 Bouc-Wen model

The last hysteresis model used in this work is the Bouc-Wen model describing the
dependence of the output F (t) on the input u(t), for instance the relation between
forces and given displacements. This model was first proposed in [17, 18] where the
force is described by a memory function in form of the Riemann-Stieltjes integral

K(t) =

∫ t

0

µ[x(t)− x(τ)] u′dτ, (7.56)

with ()′ = d/dτ , the derivative u′ is assumed to be continuous and x(t) is the total
variation of u [20]

x(t) =

∫ t

0

∣∣∣∣
du

dτ

∣∣∣∣ du(τ) ⇔ ẋ = |u̇| with x(0) = 0. (7.57)

Applying the general form of the Leibniz integral rule

Ġ(t) =
d

dt

∫ b(t)

a(t)

g(t, τ) dτ = g[t, b(t)]
db

dt
− g[t, a(t)]

da

dt
+

∫ b(t)

a(t)

∂

∂t
g(t, τ) dτ (7.58)

to differentiate under the integral sign the function (7.56) with respect to t yields

K̇(t) =

∫ t

0

µ̇[x(t)− x(τ)] u′dτ + µ(0) u̇(t). (7.59)

In the special case of an exponential function

µ(x) = α e−γx with α, γ > 0, (7.60)
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an evolution equation for the hysteresis force can be derived as

K̇ = u̇ {α− γ sgn(u̇K) |K|} . (7.61)

This evolution equation was then extended in [125] as

K̇ = u̇ {α− [β + γ sgn(u̇K)] |K|m}, m ≥ 1. (7.62)

The equation (7.62) can be considered as a general case of (7.55) and it describes
behavior of some hysteresis element called Bouc-Wen element.

More generally the Bouc-Wen model can be represented by a paralellel combination
of the above Bouc-Wen elements similar to the construction of the Prandtl-Ishlinskii
or Masing model. Then the behavior of this hysteresis system is described by

F (t) = c0 u(t) +
n∑

i=1

Ki(t), (7.63)

K̇i = u̇ {αi − [βi + γi sgn(u̇Ki)] |Ki|
m}, m ≥ 1, (7.64)

where c0, αi, βi, γi and m are constant parameters of the Bouc-Wen model.

To identify the parameters of the model several methods were introduced in [65] such
as using a dynamic programming, simplex and gradient method or multiple shooting
method. Many other methods can be found in the review paper [53]. The later results
in the present work show that a linear spring coupled in parallel with one Bouc-Wen
element is appropriate to describe the hysteretic behavior of piezoceramics. Then the
total force in the equation (7.63) reduces to

F (t) = c0 u(t) +K(t), (7.65)

with the evolution equation for the hysteresis force K is given in (7.62). Therefore, the
parameters of this simple Bouc-Wen model can be determined by using the built-in
function FindF it of Mathematica which finds a least squares fit of the experimental
first-order reversal curves.

7.2 Modeling of piezoceramics with hysteresis

The four models described in section 7.1 are now applied to simulate the nonlinear hys-
teretic behavior of transversally polarized piezoceramics subjected to moderate quasi-
static loads. Fitting the experimental results given in chapter 6, the parameters of each
model can be determined.

The classical Preisach (CP) model has theoretically an infinite number of para-
meters, which are the values of the Preisach function µ(α, β) at all points inside the
limiting triangle S. A discretization of S will naturally restrict to a finite number of
parameters. This number of the values of the discretized Preisach function depends on
the number of the first-order reversal curves obtained in experiments. With a set of
n first-order reversal curves the Preisach plane S can be divided into n(n+ 1)/2 cells,
inside each of them the Preisach function has a constant value.
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The Prandtl-Ishlinskii and the Masing models have the same construction, thus the
parameters determined for the Prandtl-Ishlinskii model will be used for both of them.
The last model used in this work is the simple Bouc-Wen model containing only one
hysteresis element.

7.2.1 Piezoceramics under moderate electric field
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Figure 7.13: The identified Preisach function for the relation between applied electric
field Ez and longitudinal strain Sxx of PIC 255.

Following the identification procedure described for each hysteresis model in section
7.1, the corresponding parameters can be determined and then used to simulate the
results from experiments. For the nonlinear hysteretic behavior of piezoceramics of the
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Figure 7.14: The identified Everett function for the relation between applied electric
field Ez and longitudinal strain Sxx of PIC 255.

electric field Ez [kV/mm]

st
ra

in
S
x
x

[h
]

measurement

CP model

−0.3 −0.2 −0.1

−0.1

−0.05

0.30.2

0.1

0.1

0.05

0

0

Figure 7.15: Comparision of the classical Preisach model with experiments for PIC
255: longitudinal strain Sxx vs. applied electric field Ez.

material PIC 255 under moderate quasi-static electric fields, both relations between
the applied electric field Ez and the longitudinal strain Sxx as well as between Ez and
the electric displacement density Dz are fitted. From the experimental first-order re-
versal curves, the Preisach and the Everett functions are first identified. Figure 7.13
shows the Preisach function µS(α, β) for the strain output as a three-dimensional (3D)
graphic together with a density plot. The discretization of the Preisach plane into
n = 10 levels on each axes is based on the fact that a set of ten first-order reversal
curves is taken from experiments. The corresponding Everett function FS(α, β) is pre-
sented in figure 7.14. With these identified Preisach and Everett functions a very good
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coincidence between theoretical and experimental results can be obtained as shown in
figure 7.15, where only five reversal curves are plotted for ease of observation.

The same good result is also derived for the electric displacement output. The
Preisach function µD(α, β) and the Everett function FD(α, β) are illustrated in figures
7.16 and 7.17 respectively. By comparision of the Everett functions in figures 7.14 and
7.17, it can be seen that the surface represented by FS(α, β) has a larger curvature
since the strain–electric field hysteresis loops open more than that for the electric dis-
placement density. Using the identified functions leads again to an extreme coincidence
between the Preisach model and experiments as shown in figure 7.18.
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Figure 7.16: The identified Preisach function for the relation between applied electric
field Ez and electric displacement density Dz of PIC 255.
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Figure 7.17: The identified Everett function for the relation between applied electric
field Ez and electric displacement density Dz of PIC 255.
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Figure 7.18: Comparision of the classical Preisach model with experiments for PIC
255: electric displacement density Dz vs. applied electric field Ez.

As a particular case of the classical Preisach model, the Prandtl-Ishlinskii model is
also specified by its weight function and the respective Everett function. To model the
dependence of the strain and the electric displacement density on the excitation electric
field, the inverse PI model is applied because the ascending branches of the hysteresis
loops are below the descending ones. Table 7.1 gives the identified parameters of the PI
models containing n = 5 elasto-slide elements. The corresponding Preisach and Everett
functions of the model for the strain response are presented in figures 7.19 and 7.20
respectively. It is noted after the equation (7.40) that an overline refers to the inverse
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model. Here the characteristics of the Preisach and Everett functions of the PI model
and its inverse mentioned in section 7.1.2 can visually be demonstrated: the Preisach
function µS(α, β) consists of the line α = β and n lines parallel to this line; along the
length of each line this function has a constant value which is directly related to the
spring stiffnesses of the elasto-slide elements. The Everett function F S(α, β) represents
a surface with the same form as that of the classical Preisach model. Figure 7.21 shows
an acceptable agreement of the model with experimetal results. Theoretically the
more elasto-slide elements, the better hysteresis curves resulting from the PI models.
However, from experiments it is difficult to satisfy an essential property of the PI
models that all hysteresis loops have a point of symmetry, thus non-physical negative
values of spring stiffness or stiction force of a PI model with many elasto-slide elements
may be derived. This problem can be overcome by using least square method with a
constraint that all parameters of the PI model are positive, but it is not considered
within this work.

i 0 1 2 3 4 5

Sxx [h]
ci 1.87461 0.10543 0.27529 0.33848 0.59349 2.45203

Hi ∞ 0.00789 0.01451 0.01131 0.01052 0.02174

Dz [C/m2]
ci 385.281 37.8361 21.3268 35.0863 50.7523 78.3657

Hi ∞ 0.01799 0.00774 0.00907 0.00834 0.00644

Table 7.1: Identified parameters of the PI models with n = 5 for PIC 255.
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Figure 7.19: The identified Preisach function of the inverse PI model for the relation
between applied electric field Ez and longitudinal strain Sxx of PIC 255.
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Figure 7.20: The identified Everett function of the inverse PI model for the relation
between applied electric field Ez and longitudinal strain Sxx of PIC 255.
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In contrast, a good coincidence between results of the inverse PI model and ex-
periments can be obtained for the electric displacement response as shown in figure
7.24. The corresponding Preisach and Everett functions of the model are presented in
figures 7.22 and 7.23 respectively. In this case the aforementioned characteristics of
these functions are also verified.
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Figure 7.22: The identified Preisach function of the inverse PI model for the relation
between applied electric field Ez and electric displacement density Dz of PIC 255.
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Figure 7.23: The identified Everett function of the inverse PI model for the relation
between applied electric field Ez and electric displacement density Dz of PIC 255.
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Figure 7.24: The inverse PI model with n = 5 compared to experiments for PIC 255:
electric displacement density Dz vs. applied electric field Ez.

Next, introduce the identified parameters of the Prandtl-Ishlinskii model given in
table 7.1 into the Masing model (7.55) with the exponent m = 2, a good accordance
of theoretical results with experiments can be derived for both strain and electric
displacement responses as shown in figures 7.25 and 7.26 respectively.
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Figure 7.25: The Masing model with n = 5 compared to experiments for PIC 255:
longitudinal strain Sxx vs. applied electric field Ez.
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Figure 7.26: The Masing model with n = 5 compared to experiments for PIC 255:
electric displacement density Dz vs. applied electric field Ez.

Finally the Bouc-Wen model (7.63) and (7.64) containing a single hysteresis element
is used. Choosing the exponent m = 2 and fitting the first-order reversal curves, the
parameters of the model can be determined as given in table 7.2. A good agreement
between theoretical and experimental results for strain as well as electric displacement
response are presented in figure 7.27 and 7.28 respectively.

Output c0 α β γ m

Sxx [h] 0.54 −0.32 126 292 2

Dz [C/m2] 0.0026 −0.00075 −540 37000 2

Table 7.2: Identified parameters of the Bouc-Wen model with n = 1 for PIC 255.
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Figure 7.27: The Bouc-Wen model with n = 1 compared to experiments for PIC 255:
longitudinal strain Sxx vs. applied electric field Ez.
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Figure 7.28: The Bouc-Wen model with n = 1 compared to experiments for PIC 255:
electric displacement density Dz vs. applied electric field Ez.
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7.2.2 Piezoceramics under moderate mechanical stress

Due to the difficulty of the tension tests described in section 6.2, only hysteresis stress–
strain curves obtained from the compression tests are used. This means the stresses
and strains are now negative unipolar or the hysteresis loops are defined in the third
quadrant of the stress–strain plane. Therefore, the classical Preisach model should be
modified so that the Preisach function can hold the physical property of a distribution
function, i.e. it is a non-negative function.
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Figure 7.29: The identified Preisach function for the dependence of longitudinal strain
Sxx upon applied stress Txx of PIC 181.

The Preisach model is now defined as a weighted superposition of new elementary
hysteresis operators γ̂αβ of which the output values at “up” and “down” positions cor-
respond to 0 and −1 instead of −1 and +1 as described in section 7.1.1. The Preisach
function µ(α, β) can be found by fitting the first-order increasing reversal curves (in-
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stead of the decreasing ones so far), each of which is formed when a monotonic decrease
of the input from value above the “up” limiting α0 to some value β is followed by a
subsequent monotonic input increase [81]. If fβ denotes the output value at the rever-
sal point u(t) = β and fβα is used for the output value on the respective first-order
increasing reversal curve at u(t) = α, the Everett function is modified for this case as

F (α, β) = fβ − fβα. (7.66)
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Figure 7.30: The identified Everett function for the dependence of longitudinal strain
Sxx upon applied stress Txx of PIC 181.
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Figure 7.31: Comparision of the classical Preisach model with experiments for PIC
181: longitudinal strain Sxx vs. applied stress Txx.

Using the modification of the elementary hysteresis operator and the Everett func-
tion the stress–strain relation of piezoceramics PIC 181 under moderate quasi-static
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mechanical stresses can be simulated by a quite similar way to that described in section
7.1.1. First the Preisach and Everett functions of the model are identified by fitting
the experimental first-order increasing reversal curves as shown in figures 7.29 and
7.30 respectively. In this case the stress Txx is considered as the input, whereas the
strain Sxx is the output. Figure 7.31 presents a good agreement between results of the
Preisach model and those from experiments.
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Figure 7.32: The identified Preisach function for the dependence of stress Txx upon
strain Sxx of PIC 181.

By contrast, if the dependence of the stress Txx upon the strain Sxx is of interest,
then the inverse Preisach model has to be used. The corresponding Preisach and Eve-
rett functions are determined by fitting the first-order reversal curves as demonstrated
in figures 7.32 and 7.33 respectively. It can be seen that, the Preisach function of the
inverse model has negative values. A good accordance of the modeling results with
experiments can also be obtained as presented in figure 7.34.
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Figure 7.33: The identified Everett function for the dependence of stress Txx upon
strain Sxx of PIC 181.
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Figure 7.34: Comparision of the inverse Preisach model with experiments for PIC 181:
applied stress Txx vs. longitudinal strain Sxx.

In contrast to the Preisach models, the inverse Prandtl-Ishlinskii model is basically
used for the dependence of the strain Sxx on the applied stress Txx, whereas for the
direct Prandtl-Ishlinskii model the strain is considered as the input and the stress is
the output. The identified parameters of the PI model comprising n = 5 elasto-slide
elements for each case are given in table 7.3 and 7.4. The Preisach and Everett functions
corresponding to the inverse and direct PI model are presented in figures 7.35–7.36 and
7.38–7.39 respectively.
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i 0 1 2 3 4 5

ci [N/mm2] 38735.0 4231.4 1093.8 1707.5 3479.2 4545.1

Hi [N/mm2] ∞ 1.295 0.26 0.295 0.388 0.254

Table 7.3: Identified parameters for the PI model with n = 5 for the dependence of
strain Sxx upon stress Txx of PIC 181.
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Figure 7.35: The identified Preisach function of the inverse PI model with n = 5 for
the dependence of longitudinal strain Sxx upon applied stress Txx of PIC 181.
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Figure 7.36: The identified Everett function of the inverse PI model with n = 5 for the
dependence of longitudinal strain Sxx upon applied stress Txx of PIC 181.
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Figure 7.37: The inverse PI model with n = 5 compared to experiments for PIC 181:
longitudinal strain Sxx vs. applied stress Txx.

i 0 1 2 3 4 5

ci [N/mm2] 142539 22420 12184 14078 8373 19072

Hi [N/mm2] ∞ 3.699 1.584 1.408 0.544 0.668

Table 7.4: Identified parameters for the PI model with n = 5 for the dependence of
stress Txx upon strain Sxx of PIC 181.
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Figure 7.38: The identified Preisach function of the PI model with n = 5 for the
dependence of applied stress Txx upon longitudinal strain Sxx of PIC 181.
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Figure 7.39: The identified Everett function of the PI model with n = 5 for the
dependence of applied stress Txx upon longitudinal strain Sxx of PIC 181.
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Figure 7.40: The PI model with n = 5 compared to experiments for PIC 181: applied
stress Txx vs. longitudinal strain Sxx.

Since the applied stress Txx is now negative unipolar, the identified parameters of the
PI model given in table 7.4 can no longer be introduced into the Masing model. In this
case, parameters of the Masing model has to be determined by using the identification
procedure for the PI model in the following way. First the experimental first-order
reversal curves are shifted so that the zero point is the center of the major hystereis
stress–strain loop, this changes the stress and the strain to become bipolar. Applying
then the identification method for the PI model to fit these modified first-order reversal
curves, the parameters ci and Hi of the Masing model can be found as given in table
7.5. As a result of the offset, the identified parameters here are about half of those
given in table 7.4 for the PI model with the same structure.
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i 0 1 2 3 4 5

ci [N/mm2] 70301.1 12178.6 6091.8 7038.9 4186.5 9535.9

Hi [N/mm2] ∞ 2.01 0.792 0.704 0.272 0.334

Table 7.5: Identified parameters of the Masing model with n = 5 for PIC 181.

The stress–strain relation is now modeled by using the equations (7.21) and (7.55)
with the exponent m = 2 as

Txx = c0 Sxx +
5∑

i=1

[Ki(t)−Hi], (7.67)

K̇i = ci Ṡxx

{
1−

1

2

[
1 + sgn(ṠxxKi)

] ∣∣∣∣
Ki

Hi

∣∣∣∣
2
}

(i = 1, 2, 3, 4, 5). (7.68)

A good agreement of theoretical and experimental results is derived as presented in
figure 7.41.
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Figure 7.41: The Masing model with n = 5 compared to experiments for PIC 181:
applied stress Txx vs. longitudinal strain Sxx.

Last the Bouc-Wen model with a single hysteresis element is used to simulate the
stress–strain hysteresis. Table 7.6 gives the parameters of the model determined by
fitting the experimental first-order reversal curves. Introducing these parameters into
the equations (7.63) and (7.64) results in a relatively good accordance of modeling
results with experiments as demonstrated in figure 7.42.
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c0

[
N

mm2

]
α

[
N

mm2

]
β

[
mm2

N

]
γ

[
mm2

N

]
m

82491.6 13238.3 −3030.93 4.85461 2

Table 7.6: Identified parameters of the Bouc-Wen model with n = 1 for PIC 181.
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Figure 7.42: The Bouc-Wen model with n = 1 compared to experiments for PIC 181:
applied stress Txx vs. longitudinal strain Sxx.
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7.2.3 Comparision of hysteresis models

Comparing the results of the four hysteresis models presented in sections 7.2.1 and 7.2.2,
it is obvious that the classical Preisach model is the best giving an extreme coincidence
between the theoretical and experimental first-order reversal curves. As particular
cases of the Preisach model, the Prandtl-Ishlinskii model and its inverse result also in an
agreement of the modelings with experiments. Since the Preisach and Everett functions
of the PI models are analytic expressions, it is easy to calculate their values over the
Preisach plane. However, the symmetry of these functions restricts the flexibility of
the PI models compared to the Preisach model considering the shape of the hysteresis
curves. For both the Preisach and PI models a history of the input is required as a set
of its dominant extrema, but all evaluations are only arithmetic. By contrast, using
the Masing and Bouc-Wen models only differential evolution equations with internal
variables have to numerically be solved without the requirement for the input history.
Therefore, they can easily be combined with the dynamic modeling to describe the
nonlinear behavior of piezoceramic oscillators as shown in next chapter. Nevertheless,
errors of these models are more significant than those of the others. The results of the
Masing and Bouc-Wen models are sensitive to the accuracy of measurements including
the initial conditions.



Chapter 8

Combination of nonlinear

modelings

As mentioned at the end of section 5.5, it is expected that the nonlinear dynamic
behavior of piezoceramics subjected to weak electric fields can be explained by using the
hysteresis stress–strain nonlinearities. First, instead of the nonlinear model described
in chapter 5, the differential hysteresis models, namely the Masing and Bouc-Wen
models are integrated into a linear conservative vibration system. The parameters of
these models determined from the compression tests as given in section 7.2.2 can be
applied to describe harmonic vibration behavior of piezoceramics because the hysteresis
stresses represented by the models depend only on the rate of the strains. Moreover, the
derivative of the hysteresis stress with respect to the strain dK/dSxx depends only on
the sign of the strain rate. This means the hysteresis stress–strain relations described
by the Masing and Bouc-Wen models are independent of frequency. Another method
is introducing the mechanical parameters determined from the stress–strain hysteresis
into the dynamic nonlinear model.

8.1 Dynamic modeling with Masing hysteresis

In this section, a polarized piezoceramic rod subjected to weak electric fields with
respect to the inverse 31-effect is considered as a vibration system, whose nonlinear
quasi-static mechanical behavior is represented by a Masing model containing a single
elasto-slide element for a simple case. Using Hamilton’s principle, the equations of
motion can be derived. Here the electric enthalpy density for the linear modeling given
in the equation (4.10) is used

H =
1

2
E

(0)
0 S2

xx − γ0 SxxEz −
1

2
ν0E

2
z . (8.1)

The linear conservative constitutive law for the stress Txx is then extended by a
hysteresis term K as

Txx = E
(0)
0 Sxx − γ0Ez +K, (8.2)

K̇ = E
(0)
1 Ṡxx

{
1−

1

2

[
1 + sgn(ṠxxK)

] ∣∣∣∣
K

H1

∣∣∣∣
2
}
. (8.3)
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The parameters of this Masing model determined from the stress–strain relations are
given in table 8.1. For a single elasto-slide element, the corresponding well simulated
results compared to experiments can even be obtained as shown in figure 8.1.

The kinetic energy density T and the virtual work δW can be expressed as

T =
1

2
ρ u̇2(x, t) and δW = −Ap

∫ l
2

− l
2

K δu′ dx, (8.4)

where Ap is the cross-section area of the piezoceramic rod.

i 0 1

E
(0)
i [N/mm2] 79057.7 22611.4

Hi [N/mm2] ∞ 2.261

Table 8.1: Identified parameters of the Masing model with n = 1 for PIC 181.
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Figure 8.1: The Masing model with n = 1 compared to experiments for PIC 181:
applied stress Txx vs. longitudinal strain Sxx.

It is pointed out in section 5.2 that for the excitation near to the k-th eigenfrequency,
the displacement response in the 1-direction of piezoceramic rod can be approximated
by the single-mode Ritz ansatz as

u(x, t) = Uk(x) p(t), (8.5)

where Uk(x) is the sinusoidal eigenfunction corresponding to k-th eigenfrequency of the
linear system as given in the equation (4.24). Substituting this function into Hamil-
ton’s principle (2.11) and carrying out the variations leads to the following nonlinear
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equations of motion

m p̈+ c(1) p = f (1) cosΩt−

∫ l
2

− l
2

K U ′
k(x) dx, (8.6)

K̇ = U ′
k(x)E

(0)
1 ṗ

{
1−

1

2
[1 + sgn(ṗ K)]

∣∣∣∣
K

H1

∣∣∣∣
2
}
, (8.7)

with keeping in mind that Sxx = u′, U ′
k(x) ≥ 0 for −l/2 ≤ x ≤ l/2 and

m = ρ

∫ l
2

− l
2

U2
k (x) dx, c(1) = E

(0)
0

∫ l
2

− l
2

U ′
k
2
(x) dx, f (1) = γ0

U0

h

∫ l
2

− l
2

U ′
k(x) dx.

Assuming that the hysteresis stress K is independent of position x, the above
equations of motion can be expressed as

m p̈+ c(1) p = f (1) cosΩt− idK, (8.8)

K̇ =
id
l
E

(0)
1 ṗ

{
1−

1

2
[1 + sgn(ṗ K)]

∣∣∣∣
K

H1

∣∣∣∣
2
}
, (8.9)

where

id =

∫ l
2

− l
2

U ′
k(x) dx.
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Figure 8.2: Normalized amplitude response with Masing hysteresis for PIC 181.

Using the mass density of PIC 181 given by the manufacturer ρ = 7850 kg/m3, the
piezoelectric constant d31 = −1.11 × 10−10 m/V determined in section 5.4, the hys-
teretic parameters given in table 8.1 and giving the excitation voltage U(t) = U0 cosΩt,
the stationary amplitude–frequency response can be found by solving numerically the
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equations (8.8) and (8.9). Some results of such a calculation are presented in figure
8.2, where the displacement amplitude is normalized by the amplitude of the corre-
sponding excitation voltage. It is very interesting that the present model gives rise
to the nonlinear effects of Duffing-type observed from dynamic experiments including
decrease of the first resonance frequency and the normalized displacement amplitude
with increasing excitation voltage. Nevertheless, there is no jump of the displacement
amplitude although the low damping material PIC 181 is considered. In addition, the
resonance amplitude and frequency resulting from the model are different from those of
experiments. Figure 8.3 shows a comparision of theoretical with experimental results
for the excitation voltage at 40 V. It is obvious that despite having the same order of
magnitude, the modeling resonant amplitude is only about 40% of the experimental
one. Due to the superposition of two elastic moduli of the chosen Masing model, the
modeling resonant frequency is greater than that from experiment, which corresponds
to the linear modulus determined in section 5.4.
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Figure 8.3: Displacement amplitude response of PIC 181 at 40 V. Left: system with
Masing hysteresis. Right: experimental sweep up (solid line) and sweep down (dashed
line) of the excitation frequency.

8.2 Dynamic modeling with Bouc-Wen hysteresis

As a further try to integrate a hysteresis model into the dynamic one, the Bouc-Wen
model is used here. Following the same way applied to the Masing model, the linear
conservative constitutive law of piezoceramics is extended by a hysteresis term K as

Txx = E(0) Sxx − γ0Ez +K, (8.10)

K̇ = Ṡxx

{
α−

[
β + γ sgn(ṠxxK)

]
K2
}
, (8.11)

with the parameters of the Bouc-Wen model are given in table 7.6 and E(0) = c0.
Applying again Hamilton’s principle with the single-mode Ritz ansatz (8.5) and the
assumption that K = K(t) results in nonlinear equations of motion

m p̈+ c(1) p = f (1) cosΩt− idK, (8.12)

K̇ =
id
l
ṗ
{
α− [β + γ sgn(ṗ K)]K2

}
, (8.13)
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Figure 8.4: Normalized amplitude response with Bouc-Wen hysteresis for PIC 181.

where

m = ρ

∫ l
2

− l
2

U2
k (x) dx, c(1) = E(0)

∫ l
2

− l
2

U ′
k
2
(x) dx, f (1) = γ0

U0

h
id, id =

∫ l
2

− l
2

U ′
k(x) dx.

Similar to the modeling with Masing hysteresis, solving numerically the equations
(8.12) and (8.13) for the stationary solution, the normalized amplitude response of
piezoceramic rod excited by the harmonic voltage near resonance is obtained. Figure
8.4 shows such amplitude responses at various excitation voltages. These results are
comparable in both resonance amplitude and frequency to those for the system with
Masing hysteresis presented in figure 8.1. Decrease of the normalized displacement
amplitude with increasing excitation voltage can also be observed, but the behavior
of Duffing oscillator with hardening cubic stiffness is revealed and the differences in
resonance amplitude and frequency between the model and experiments are remaining.
This may result from the error of parameters identification. The use of different samples
(with the same material and dimensions) in quasi-static and dynamic experiments can
also account for the deviation of the resonance frequency. In further investigations,
the quasi-static and dynamic experiments must successively be performed on the same
sample, but it is difficult to do with relatively small samples (30 × 3 × 2 mm3) as
used in this work. The quasi-static experiment should be done first because the strain
gauges have to be glued on the clean surfaces of piezoceramics. Besides, epoxy is also
used to prevent the slight slip of the sample in the clamps. Therefore, for the next
dynamic experiment it is difficult to recover the clean initial state of the piezoceramics.
Due to technical restrictions of the author in experiments, the dynamic behavior of
piezoceramics can only be obtained by using laser vibrometer instead of the strain
gauges. In addition, the assumption of the independence of the hysteresis force upon
position x has a specified role in the deviation of the modelings from the experiments.
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8.3 Dynamic modeling with variable mechanical

parameters

In this section, another possibility to account for the nonlinear dynamic effects occu-
ring in experiments using the hysteretic stress–strain relation will be presented. From
the results in section 7.2.2, it can be seen that this hysteretic behavior has been well
simulated by the classical Preisach model. Keep in mind that this model has basically
congruency property, i.e. hysteresis loops resulting from back-and-forth variations of
inputs between the same two consecutive extremum values are congruent [81]. This
property can be verified and approximately extended by the result of a compression
test shown in figure 8.5, where three almost congruent minor hysteresis loops are pro-
duced as the stress varies back-and-forth between consecutive extremum values whose
difference are nearly the same. This extension is assumed to be valid for thin hystere-
sis nonlinearity, corresponding to that the Preisach function concentrates in adjacent
region of the line α = β. Examples of such Preisach functions are illustrated in figure
7.16 or 7.29.
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Figure 8.5: Congruent stress–strain hysteresis loops for PIC 181.
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With the above important assumption, the experimental stress–strain hysteresis
curves are academically shifted so that the zero point is the center of each hysteresis
loop. Figure 8.6 shows the results of this academic step. The modified curves are
now considered as dynamic responses of piezoceramics subjected to weak electric field,
which is generated by the applied voltage U(t) = U0 cosΩt, close to the first resonance.
This is based on the fact that the maximum value of the strains considered here is
of the same order as that obtained from the dynamic experiments. Therefore, the
longitudinal displacement of the piezoceramic rod can be expressed by using the single-
mode Ritz ansatz containing the first eigenfunction and the harmonic time function
with excitation frequency as

u(x, t) = A sin
πx

l
cosΩt. (8.14)

Substituting the solution (8.14) into (2.5) yields the dynamic longitudinal strain
and its derivative with respect to time as

Sxx = Ŝ(x) cosΩt, (8.15)

Ṡxx = −Ω Ŝ(x) sinΩt, (8.16)

where
Ŝ(x) = A

π

l
cos

πx

l
. (8.17)
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Figure 8.6: Shifted stress–strain hysteresis loops for PIC 181.

To identify the parameters of piezoceramics, some constitutive piezoelectric relation
will be chosen, for example

Txx = E(0) Sxx − γ0Ez + E
(0)
d Ṡxx − γ0d Ėz. (8.18)

In the quasi-static tension and compression tests, two electrodes of the piezoelectric
samples are short-circuited, so the electric field Ez vanishes. This eliminates the in-
fluence of all piezoelectric coupling parameters. Giving the excitation frequency and
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fitting the theoretical stress–strain curves with the modified hysteresis loops shown in
figure 8.6, the mechanical parameters of piezoceramics e.g. E(0) and E(0)

d can be deter-
mined. These parameters are no longer constant as so far but they depend on the strain
amplitude Ŝ, thus on the displacement amplitude A and on the position x, as well as on
the excitation frequency. However, close to the first resonance it can be assumed that
the mechanical parameters are approximately independent of frequency. This is verified
by the calculations taking account of the frequency dependence of the parameters, from
which the same results are obtained. Introducing the identified mechanical parameters
into the nonlinear dynamic model described in chapter 5 with given displacement am-
plitude and excitation frequency, the necessary excitation voltage can be calculated.
Therefore, a sweep of displacement amplitude together with a sweep of excitation fre-
quency will result in a set of amplitude–frequency responses corresponding to various
amplitudes of the applied voltage. In the following several mechanical constitutive
equations are considered, leading to respective amplitude responses as contour plots
in comparision with dynamic experimental results. The excitation frequency used to
determine the mechanical parameters is specified by the first resonance frequency of
piezoceramic rod of PIC 181, i.e. about 55.8 kHz, as shown in figure 5.10.

Starting from the simplest case, the linear conservative constitutive equation is

Txx = E(0) Sxx. (8.19)

The identified elastic modulus of PIC 181 in dependence on strain amplitude is shown
in figure 8.7, where each point results from a hysteresis stress–strain loop and the
solid line is the result of fitting the set of these points with a linear function. From this
linear relation it can be inferred that the conservative modeling possesses the quadratic
nonlinearity. This accounts for nonlinear effects shown in figure 8.8 which is a contour
plot of the displacement amplitude response for excitation voltage up to 100 V. The
resonance amplitudes go to infinity since there is no damping in this case.
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Figure 8.8: Amplitude response with linear conservative parameter for PIC 181.

Introducing a linear damping term into the linear conservative constitutive equation
leads to

Txx = E(0) Sxx + E
(0)
d Ṡxx. (8.20)

Then the stress–strain hysteresis can well be simulated as presented in figure 8.10. The
results for identified elastic modulus and linear damping of the material can be seen
in figure 8.9. Both of them are fitted with linear functions which are plotted with the
solid lines. The corresponding displacement amplitude response is shown in figure 8.11.
Due to the presence of the higher linear damping in comparision with that identified
from the dynamic experiments given in table 5.2, the jump phenomena and multiple
stable amplitude responses can no longer be observed.
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Figure 8.10: Comparision of the stress–strain hysteresis loops for PIC 181.
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Figure 8.11: Amplitude response with linear parameters for PIC 181.

We consider now a nonlinear constitutive equation consisting of both conservative
and nonconservative quadratic and cubic terms as

Txx = E(0) Sxx + E
(0)
d Ṡxx + E(1) S2

xx + E
(1)
d

˙(S2
xx) + E(2) S3

xx + E
(2)
d

˙(S3
xx). (8.21)

As demonstrated in figure 8.12, a very good coincidence between the theoretical
and experimental hysteresis curves is obtained. Figure 8.14 gives the results of fitting
the identified parameters with compatible functions. Linear functions are used for
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E(0), E(0)
d , E(1)

d and E
(2)
d whereas a quadratic function for E(1) and a cubic one for

E(2). Introducing these parameters into the nonlinear dynamic model results in the
displacement amplitude responses plotted in figure 8.13.
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Figure 8.12: Comparision of the stress–strain hysteresis loops for PIC 181.
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Figure 8.13: Amplitude response with mechanical nonlinearities for PIC 181.
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Figure 8.14: Nonlinear mechanical parameters of PIC 181.

In case the nonlinear constitutive equation contains no quadratic terms as

Txx = E(0) Sxx + E
(0)
d Ṡxx + E(2) S3

xx + E
(2)
d

˙(S3
xx), (8.22)

a good agreement of the simulated stress–strain hysteresis relation with experiments is
also derived as shown in figure 8.15. Fitting the identified parameters can be done in
the same way as described above, namely for E(0), E(0)

d and E
(2)
d linear functions are

used and a cubic function for E(2). Figure 8.16 shows the results of such a process and
figure 8.17 presents the corresponding results for the displacement amplitude responses.
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Figure 8.15: Comparision of the stress–strain hysteresis loops for PIC 181.
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As a last example of the constitutive equation, the linear damping is omitted and
a small change is made for the cubic dissipative term, we have

Txx = E(0) Sxx + E(2) S3
xx + E

(2)
d Ṡ3

xx. (8.23)

It can be seen in figure 8.18 that the theoretical stress–strain curves are now acute at
both ends but an acceptable accordance of them with the experimental results holds.
The identified parameters with the corresponding fitted curves are shown in figure 8.19,
where a linear function is applied for E(0), a cubic function for E(2) and a quadratic
function for E(2)

d . Figure 8.20 shows the respective displacement amplitude responses.

In order to verify the above-calculated results, the experimental displacement am-
plitude response of a piezoceramic rod of PIC 181 excited near to resonance at 40 V is
once again plotted in figure 8.21. It can be seen that for all cases of the constitutive
equation the first resonance frequency is shifted from an experimental value 55.8 kHz
to that of the modeling results 60 kHz approximately. This stems possibly from the
academic establishment of the stress–strain hysteresis relations. If it is possible to
overcome the difficulty of the tension tests, fitting the original measuring stress–strain
loops may result in the elastic modulus of piezoceramics which is smaller in value than
that so far, then the suitable resonance frequency can be derived. Due to the presence
of high linear damping the jump phenomena is missing, and the resonance amplitude
is only about 20% of the experimental value. From figures 8.11, 8.13 and 8.17 it is evi-
dent that the linear damping is dominant over the dissipative nonlinear terms. So far
the best modeling result obtained from the last constitutive equation shown in figure
8.20 is good not only with regard to quality, revealing typical dynamic nonlinearities
such as jump phenomenon and multiple stable responses, but also basically owning
quantitatively an appropriate order of magnitude of the displacement amplitude.
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Chapter 9

Conclusion and outlook

Following the results of von Wagner [117] this work intends to find consistent descrip-
tion of nonlinear dynamic behavior of piezoceramic actuators in resonance operation
under weak electric fields far away from coercive ones. In chapter 2, nonlinear effects
occurring in piezoceramic PZT materials subjected to strong quasi-static electrical or
mechanical loads has been described referring to the results of Kamlah [63]. In this
case the nonlinear behavior of piezoceramics results from polarization switching pro-
cesses and reveals itself e.g. as dielectric or butterfly hysteresis when relations between
applied electric fields and polarizations or strains are considered respectively.

By contrast, in chapter 5 nonlinear phenomena exhibited by piezoceramics in re-
sonance operation are described, where moderate strains can be produced by weak
applied electric fields. Typical dynamic nonlinearities, for instance jump phenomena
in the stationary amplitude, multiple stable response at the same excitation as well as
a decrease of the normalized response amplitude with increasing excitation amplitude
can experimentally be observed as described in chapter 3. This nonlinear behavior is
usually modeled by introducing higher-order conservative and dissipative terms into
the piezoelectric constitutive equations, giving good qualitative and quantitative re-
sults in accordance with experiments.

Nevertheless, due to the ambiguity in the role of the type of nonlinearities and in
the description of the damping, quasi-static experiments described in chapter 6 have
been carried out with moderate electrical or mechanical loads respectively resulting in
strains of the same order as those in the dynamic experiments. In both cases, piezo-
ceramics exhibit hysteretic behavior that can well be modeled by using the classical
Preisach model, the Prandtl-Ishlinskii model, the Masing model and the Bouc-Wen
model.

Introducing the Masing model into the linear conservative dynamic modeling pre-
sented in chapter 4 leads only to qualitatively appropriate results. For the same use of
the Bouc-Wen model, unsuitable results are derived. On the other hand, applying the
nonlinear dynamic model with the mechanical parameters identified from the stress–
strain hysteretic relations brings out good results in both quality and quantity. From
the results of this work it can be concluded, that mechanical nonlinearities from the
stress–strain relation play a dominant role in the explanation of the observed nonlinear
dynamical behavior.
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The nonlinear dynamic effects presented in this work correspond to the inverse 31-
effect, so the above conclusion should be verified in the case when polarized piezocera-
mics excited using the inverse 33- or 15-effect are considered as described respectively
in [89,119]. There the phenomena and the order of nonlinearities are absolutely similar
to those described for the inverse 31-effect. With similar assumptions as mentioned in
the present work, coupling and dielectric cubic nonlinear parameters (if existent) may
also have an influence on the zeroth order approximation of displacement responses
in the case of the inverse 33- and 15-effects. On the other hand, the systems under
investigation are subjected to very weak external electric fields, owing to the resonance
excitation and slight damping, giving rise to moderate strains and stresses, but both
of them are still far away from the nonlinear effects described in section 2.1. Therefore
it can also be expected for the case of the inverse 33- and 15-effects, that nonlinear
stress–strain relations play a dominant role in the nonlinear dynamic effects. In addi-
tion, the piezoelectric coupling coefficient d15 of many piezoceramic materials, such as
PIC 255 and PIC 181, is greater than d33 and d31 in absolute value, thus the inverse
15-effect will be useful to technical applications.

In chapter 7 the nonlinear hysteresis behavior of piezoceramics under moderate
quasi-static electric fields has well been modeled. It is assumed that this nonlinearity
does not influence the nonlinear dynamic effects since the electric fields in the dynamic
case are still much smaller than the moderate fields (about 10%). However, in further
work the combination of hysteresis effects in both pure mechanical and coupling aspects
should be considered to describe the nonlinear dynamic behavior of piezoceramics.

In the study so far, due to the great difficulty in performing tension and com-
pression tests, the modeling has not given accurate description of experimental results
yet. Hence, the most necessity for further investigation is improving the precision of
the corresponding tests. New clamping devices can be designed with respect to appro-
priate forms of samples, for instance samples with borings and/or in bone-shaped form.
Longer samples can also be used to enhance the accuracy of measurements with laser
extensometer. On the other hand, an extension to various materials, such as “hard”
and “soft” PZT piezoceramics, lead-free or low-lead piezoceramics and to different use
of piezoelectric effects can simultaneously be taken into account. From that answers
for some remaining questions are expected to be found. For example, a few of such
problems are given as following:

• Type of the nonlinearities.

• Quadratic or cubic nonlinearities.

• Modeling of the damping.

• Influence of the boundary conditions and the surroundings on the nonlinearities.

• Behavior of lead-free or low-lead piezoceramics.
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[65] Kolsch, H.: Schwingungsdämpfung durch statische Hysterse - Modellierung
von Bauteilen, Parameteridentifikation, Schwingungsberechnungen. Fortschr.-
Ber. VDI Reihe 11 Nr. 190, VDI-Verlag, Düsseldorf, 1993.

[66] Ktena, A.; Fotiadis, D. I.; Spanos, P. D. and Massalas, C. V.: A
Preisach model identification procedure and simulation of hysteresis in ferromag-
nets and shape-memory alloys. Physica B: Condensed Matter, 306 (1-4), 84–90,
2001.

[67] Kuhnen, K. and Krejci, P.: Compensation of Complex Hysteresis and Creep
Effects in Piezoelectrically Actuated Systems - A New Preisach Modeling Ap-
proach. IEEE Transactions on Automatic Control, 54 (3), 537–550, 2009.



126 Bibliography

[68] Lee, S.-H.; Ozer, M. B. and Royston, T. J.: Hysteresis Models for Piezoce-
ramic Transducers. Journal of Materials Processing and Manufacturing Science,
9, 33–52, July 2000.

[69] Lee, S.-H.; Ozer, M. B. and Royston, T. J.: Piezoceramic Hysteresis
in the Adaptive Structural Vibration Control Problem. Journal of Intelligent
Material Systems and Structures, 13, 117–124, February/March 2002.

[70] Lee, S.-H. and Royston, T. J.: Modeling piezoceramic transducer hysteresis
in the structural vibration control problem. Journal of Acoustical Society of
America, 108 (6), 2843–2855, December 2000.

[71] Lee, S.-H.; Royston, T. J. and Friedman, G.: Modeling and Compensa-
tion of Hysteresis in Piezoceramic Transducers for Vibration Control. Journal of
Intelligent Material Systems and Structures, 11, 781–790, October 2000.

[72] Lee, S. K.; Kim, Y. S.; Park, H. C.; Yoon, K. J.; Goo, N. S.; Yu,

Y. and Cho, C.: Performance analysis of a lightweight piezo-composite actua-
tor considering the material non-linearity of an embedded PZT wafer. Smart
Materials and Structures, 14 (6), 1101–1106, 2005.

[73] Li, S.; Sun, S.-J.; Liu, D.-C.; Lin, S.-P.; Juang, D.-P.; Wang, C.-H.

and Ger, G.-S.: Vibration suppressed bicycle structure. United States Patent
No. 6,986,521 B1, 2006.

[74] Li, Y. and Xu, Q.: Adaptive Sliding Mode Control With Perturbation Esti-
mation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Microma-
nipulator. IEEE Transactions on Control Systems Technology, 18 (4), 798–810,
2010.

[75] Lin, C. J. and Chen, S. Y.: Evolutionary Algorithm Based Feedforward Con-
trol for Contouring of a Biaxial Piezo-Actuated Stage. NEMS/MEMS Technology
and Devices, Advanced Materials Research, 74, 235–238, 2009.

[76] Lippmann, M. G.: Principe de la conservation de l’électricité. Annales de
chimie et de physique, 24 (5), 145–178, 1881.
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