
Orchestrating Secure Workflows
for Cloud and Grid Services

vorgelegt von
Dipl.-Inform.
André Höing

aus Berlin

Von der Falultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

- Dr. Ing. -

genehmigte Dissertation

Promotionaausschuss:

Vorsitzender: Prof. Dr. Hans-Ulrich Heiß
Gutachter: Prof. Dr. Odej Kao

Prof. Dr. Wilhelm Hasselbring

Tag der wissenschaftlichen Aussprache: 07.10.2010

Berlin 2010

D83

ii

Acknowledgement

I would like to show my gratitude to all the people who accompanied me during my
studies and my PhD and made this thesis possible. I especially want to thank my advisor
Odej Kao for his guidance and inviting me to work in his group. My appreciation also go
to Wilhelm Hasselbring for agreeing to review this thesis.

This work would not have been possible without my colleagues Guido Scherp and Stefan
Gudenkauf from Oldenburg. Thanks for all the online meetings, discussions, and the
great teamwork during the BIS-Grid project with all its ups and downs. I would also like
to mention all other project partners and thank them for the successful cooperation.

Special thanks also go to Matthias Hovestadt, Philipp Berndt, Daniel Warneke, Dominic
Battré, Guido Scherp, and Martin Raack for proofreading my thesis.

Thanks go also to the entire working group “Complex and Distributed IT Systems” at
TU-Berlin for the awesome past three years. Thanks for making this job probably the best
in my life. You are more than colleagues for me. We had a great time and I hope to stay
in contact with you forever. I also thank my former colleague and friend Felix Heine for
encouraging me to start my PhD after finishing my Diploma thesis.

Finally, I would like to thank my family for their support during all the time. A special
thanks goes to my dear girlfriend Ellen for her love and patience especially during writing
this thesis.

iii

iv

Abstract

The modern design of business and scientific IT landscapes is based upon service-oriented
architectures. In doing so, small functional units are encapsulated as services accessi-
ble via standardized interfaces. Grid and Cloud computing both employ such services:
Grid computing provides access to mostly scientifically used compute resources and data.
Cloud computing is a commercially-driven, recently emerging technology that offers ser-
vices to access compute power, platforms, and software solutions. Nowadays, workflows
are the preferred means for the combination of services into added value service chains
representing functional business processes or complex scientific experiments. However,
the advantages of integrating services from all three domains (business, science, and
Cloud computing) into one workflow is not exploited sufficiently. The integration of ex-
ternal services within workflows raises various challenges.

This thesis presents a novel architecture for a workflow engine that is capable of integrat-
ing services from all three domains. It starts with an analysis of workflow life cycles and
infers requirements from these. Additionally, it considers the idea of providing a Cloud
service for workflow orchestration. This service offers effective means to deploy and ex-
ecute workflows completely on external resources. Simultaneously, it allows elasticity
and fair billing models in the context of Cloud computing. The resulting architecture is
based on standards without creating a new proprietary workflow description language di-
alect in order to increase acceptance and sustainability. It especially targets security and
communication barriers, which originate from the diversity of service providers as well as
handling stateful services with default WS-BPEL activities.

The architecture is evaluated with respect to its requirements and in two exemplary real-
life business scenarios. Furthermore, the thesis illustrates the general applicability, with
some limitations, to scientific workflows with the help of example workflows for typical
scientific tasks. Finally, it analyses the performance of the new components.

v

vi

Zusammenfassung

Modernes Design betrieblicher und wissenschaftlicher IT Landschaften basiert auf service-
orientierten Architekturen. Dabei werden kleine funktionale Bestandteile durch Dien-
ste mit standardisierten Schnittstellen gekapselt. Sowohl Grid als auch Cloud Comput-
ing benutzen solchen Dienste: Grid Computing bietet Zugang zu meist wissenschaftlich
genutzten Rechen-Resourcen und Daten. Cloud Computing ist eine kommerziell getriebene
und an Bedeutung zunehmende neue Technologie, die Dienste für den Zugriff auf Rechen-
leistung, Plattformen und Software-Lösungen bereit stellt. Heutzutage sind Workflows
das bevorzugte Mittel zur Kombination von Diensten zu Wertschöpfungsketten, die be-
triebliche Prozesse oder komplexe wissenschaftliche Experimente repräsentieren. Den-
noch werden die Vorteile einer Integration von Diensten aus allen drei Bereichen (be-
triebliches, wissenschaftliches und Cloud Computing) in einen Workflow nicht ausre-
ichend ausgeschöpft. Diese Integration von externen Diensten in Workflows wirft ver-
schiedenste Fragestellungen auf, z.B. im Bezug auf Kompatibilität und Sicherheit.

Die Arbeit präsentiert eine neuartige Architektur für eine Workflow Engine, welche die
Integration von Diensten aus allen drei Bereichen ermöglicht. Sie beginnt mit der Anal-
yse von Workflow Lebenszyklen und leitet hieraus Anforderungen ab. Zusätzlich wird
noch die Idee eines Cloud-Dienstes zur Dienstorchestrierung betrachtet. Solch ein Di-
enst bietet effektive Mittel zum Einrichten und Ausführen von Workflows auf externen
Ressourcen. Gleichzeitig ermöglicht er Elastizität und faire Abrechnungsmodelle im Kon-
text von Cloud Computing. Die sich daraus ergebende Architektur basiert auf Standards
ohne einen neuen proprietären Workflow-Dialekt zu erzeugen, um die Akzeptanz und
Nachhaltigkeit zu erhöhen. Dabei werden besonders Sicherheits- und Kommunikations-
barrieren behandelt, die sich aus der Dienstanbietervielfalt und dem Umgang mit zus-
tandesbehafteten Diensten ergeben.

Die Architektur wird in Bezug auf die erarbeiteten Anforderungen und in zwei exemplar-
ischen, realen betrieblichen Szenarios evaluiert. Weiterhin veranschaulicht die Arbeit die
generelle Anwendbarkeit, mit geringen Einschränkungen, für wissenschaftliche Work-
flows anhand von Beispielen für typische wissenschaftliche Aufgaben. Schließlich wird
die Performanz der neuen Komponenten analysiert.

vii

viii

Contents

1 Introduction 1
1.1 Problem Definition . 3
1.2 Contribution . 5
1.3 Outline of the Thesis . 7

2 Fundamentals 9
2.1 Service-oriented architectures – SOA . 10

2.1.1 SOAP Message Processing . 13
2.2 Workflow Execution . 14

2.2.1 WS-BPEL . 15
2.2.2 WS-BPEL compliant workflow engines 19

2.3 Grid Computing . 23
2.3.1 Web Services Resource Framework 25
2.3.2 Globus Toolkit 4 . 27
2.3.3 UNICORE 6 . 28

2.4 Cloud Computing . 33
2.4.1 Infrastructure as a Service . 35
2.4.2 Platform as a Service . 35
2.4.3 Software as a Service . 36
2.4.4 Cloud Computing as innovation engine 36

3 Requirements for secure Workflow Orchestration 39
3.1 Business vs. Scientific Workflows . 40

3.1.1 Business Workflows . 41
3.1.2 Scientific Workflows . 42

3.2 Orchestration as a Service . 45
3.3 Requirements . 47

3.3.1 Basics . 48
3.3.2 Workflow Management . 52
3.3.3 Workflow Execution . 53
3.3.4 Requirements Summary . 55

4 Orchestration Architecture 59
4.1 Architecture . 60

ix

Contents

4.1.1 Technology Selection . 61
4.1.2 Main Component Overview . 67
4.1.3 Workflow Management Service 69
4.1.4 Workflow Service . 72
4.1.5 WS-BPEL/WSRF instance mapping 74
4.1.6 Load balancing . 76
4.1.7 Fault handling . 80

4.2 Workflow Security . 81
4.2.1 Security Infrastructure Recommendation 83
4.2.2 Confidentiality . 86

4.3 Integration of Grid and Cloud Services 87
4.3.1 BPEL Pattern for WSRF-compliant services 87
4.3.2 External service invocations . 90

4.4 Human Interaction . 92

5 Prototype 95
5.1 UNICORE 6 service extensions . 95

5.1.1 Workflow Management Service 95
5.1.2 Workflow Service . 96

5.2 External Service Plugins . 97
5.3 Adapter Concept . 99
5.4 Deployment package . 101

6 Evaluation 103
6.1 Architecture Review . 104
6.2 Applicability for Business Workflow in SMEs 108

6.2.1 SME Information Systems Integration 108
6.2.2 Example: Information System Integration 113
6.2.3 Example: Interactive Workflow 115

6.3 Applicability for Scientific Workflows 118
6.3.1 Example: Grid Job Submission 119
6.3.2 Example: Hierarchical workflow composition 122
6.3.3 Example: Globus Toolkit 4 integration 125

6.4 Performance . 126

7 Related Work 133
7.1 Web Service Orchestration . 133
7.2 Grid Workflow Orchestration . 135
7.3 Cloud Workflow Orchestration . 140

8 Future Work and Conclusion 145

x

Contents

8.1 Outlook and Future Work . 145
8.1.1 Quality of Service for Workflow Execution 147
8.1.2 Workflow Optimization using Cloud Interoperability 147
8.1.3 Elastic business information systems in a Cloud 148

8.2 Conclusion . 148

Bibliography 151

xi

1 Introduction

Contents
1.1 Problem Definition . 3

1.2 Contribution . 5

1.3 Outline of the Thesis . 7

The cooperation of departments, enterprises and scientific institutes is an important factor
for successful work. Such cooperations yield in significant synergy effects since selected
information systems may be outsourced to partners. With regard to business information
technologies (IT), outsourcing means purchasing services from partners and therewith re-
ducing costs for IT services since the partner “can achieve economies of scale, economies
of scope, and economies of specialization” [11].

Modern technologies such as service-oriented architectures (SOA) [97] allow the forming
of different IT systems to a coherent IT landscape. Such architectures enable the mapping
of functional business processes on a technical system level. Small business functions are
encapsulated in loosely-coupled services which are combined to executable workflows.
This allows a flexible integration of enterprise IT services that are hosted in-house. Inte-
grating outsourced IT or systems hosted at specialized service providers entails manifold
challenges for both partners such as security.

Workflow management is the technology of choice for business processes, realizing a
well-defined and orchestrated execution of multiple inter-dependent tasks. Numerous
commercial workflow management systems are available, like Microsoft BizTalk, Or-
acle Business Process Manager, and Sun’s Java Composite Application Platform Suite
which supports companies in the technical realization of workflows. Furthermore, sev-
eral open-source products underline the large market for service composition. While the
workflow management systems mentioned above differ significantly in their architecture
and functionality profile, WS-BPEL [75] has evolved as de-facto standard for workflow
description. Such mostly expensive systems are already established in big enterprises,
the introduction of service-oriented architectures and professional workflow management
tools proceeds only slowly in small companies [21]. However, the direct technical support
of processes is an important factor for the effectiveness of all companies.

1

1 Introduction

The term eScience abstracts the execution of complex scientific experiments as simula-
tions executed on compute resources. Today, such experiments are of enormous impor-
tance in numerous scientific domains such as physics, astronomy, informatics, and health.
The realization demands the cooperation of different scientific domains and institutes to
exploit the full potential of large data centers. This demand constitutes Grid computing
[49, 80, 81] that has evolved as a well established instrument for sharing compute and
data resources. Scientists are provided with access to external resources allowing them to
execute complex experiments and simulations in a short period of time compared to the
duration that the experiment would have taken on their office computers or smaller local
clusters.

The scientific domain also uses workflows for the realization of simulated experiments
that facilitate the cooperation of different sites and data centers. Scientific workflows are
usually mapped to Grid services. Such services are stateful and high secured Web ser-
vices providing access to high performance compute resources. Grid middleware systems
provide mechanisms for executing stateful Grid services complying to industry level stan-
dard like WSRF [103]. These middleware systems are following general SOA principles
since they encapsulate typical high performance compute functions as small services. In
contrast to the business domain, the scientific community did not agreed on a standard
for workflow description. Hence, many scientific communities created their individual
workflow description languages, tailored to specific requirements and available execution
engines, but incompatible to other available languages.

Grid computing shared usage of large resources results in cost-efficiency since purchas-
ing a large resource for only one experiment would not be sustainable. Although cost-
efficiency is from enormous importance even for the business domain, Grid computing
has not been accepted as default technology there. This possibly originates from partly
missing features like quality of service agreements and the extreme focus on high per-
formance compute jobs instead of general information system provisioning. Thus, the
IT market leaders strive to develop new means for providing all kind of IT services to
business customers.

Cloud computing is the new paradigm for externally hosted IT in a commercial way. It
exactly targets the trend for cooperation and outsourcing with the provisioning of infras-
tructure, platforms, and software in a cheap and scalable way to a broad range of cus-
tomers. Cloud providers usually operate huge data centers to exploit the advantages of the
economies of scale and to guarantee a well-defined degree of quality of service. Buyya
et al. in [25] and Armbrust et al. in [10] anticipate that we will see a plethora of Cloud
computing offerings such as computers, data, and instruments in the near future. This will
force the evolution from an already existing InterGrid – the cooperation between different
scientific institutes – to a new InterCloud – a (loose) partnership between providers and
users. Cloud services often are cheaper than services on dedicated possibly outsourced

2

1.1 Problem Definition

resources since modern technologies enable the concurrent usage of hardware resources
without the risk of interleaving customers. This is denoted as the multi-tenant architecture
of Cloud systems.

Cloud providers use proprietary Web services frameworks enriched with various tech-
nologies (e.g. for security) for the realization of the actual services. Hence, there is no
common standard which would enable interoperability between Cloud computing prod-
ucts. Additionally, the combination of cross-provider Cloud services to workflows is not
possible.

1.1 Problem Definition

As described in the introduction, service-oriented architectures has evolved as a mature
technology, established in the academic and commercial domain. It facilitates the inte-
gration of different applications by means of common interface descriptions and com-
munication protocols. Additionally, the need for cooperation increases constantly due
to an increasing complexity of business and scientific tasks. The increasing acceptance
of Grid and Cloud technologies in all domains underlines the need for external resources.
However, the technical realization of such integration scenarios even across administrative
boundaries is still difficult because of incompatible service frameworks.

Figure 1.1 depicts a small and exemplary cutout of typical IT landscapes, all based on
SOA. It outlines the separated domains of business and science as well as the newly
upcoming Cloud services. The exemplary data centers are annotated with information
according commercial information systems, Grid middlewares, and Cloud providers to
underline the diversity of used Web service frameworks and middlewares. In particular,
the IT of small and medium enterprises is often still entirely separated from the outside
world for security reasons. At the same time, some of them apply a service-oriented ap-
proach for realizing internal IT and workflows for mapping the business processes on this
landscape.

In contrast to this, the scientific domain already cooperates in cross-institutional com-
munities. Such communities usually agree to use a single Grid middleware system as
well as a workflow engine (e.g. [109, 38, 104]) supporting this Grid middleware system,
offering all required functions. Furthermore, communities often develop workflow en-
gines tailored to their particular requirements. Thus, some scientific workflow engines
are based on older and partly non SOA-enabled middleware releases that are incompati-
ble to modern Grids. For improving the level of interoperability, some workflow engines
(e.g. Triana [119]) are using an additional abstraction layer allowing the mapping of the
workflow on different middlewares.

3

1 Introduction

Middleware‐
dependent

orchestration

Middleware‐
dependent

orchestration

business

science

orchestration
engine

orchestration
engine

Orchestration
Engine

FIGURE 1.1: Service landscapes including business, scientific, and
Cloud systems

On the right hand side, Figure 1.1 depicts some commercial Cloud providers offering
diverse services to end-users. Each Cloud provider offers a portfolio of services on dif-
ferent levels of abstraction such as access to compute power and data, frameworks for
hosting customer-developed software, and comprehensive software stacks in the sense of
application service provisioning.

This thesis targets the realization of business processes and scientific workflows that com-
bines various services from all of the above mentioned service types. This will increase
interoperability between the different domains as well as between the services inside one
domain and ease switching between service providers. In doing so, we consider stateless
as well as stateful services according to the WSRF [103] standards. For workflow orches-
tration, we have chosen the WS-BPEL standard as it is well established and tested in this
business domain since several years. The capability to integrate services from different
providers will alleviate the cooperation of enterprises and scientific institutes significantly
and help them to concentrate on the respective core competencies instead of being ham-
pered by proprietary IT and interoperability details.

The central component of the architecture is a workflow orchestrator engine that serves
as interoperability interface between the different services types since it supports different
technologies and standards to overcome the technical barriers. Additionally, customers
will benefit from the architecture since it is also applicable to be offered as an orchestra-

4

1.2 Contribution

tion Cloud service in a shared environment. This allows for billing workflow execution
with fair pricing models, for example on an on-demand and pay-per-usage basis. These
properties will increase the attractiveness of IT outsourcing and enterprise application in-
tegration for small and medium enterprises which would not be able to profit from the
advantages of SOA, otherwise.

Also scientists will benefit from additional flexibility and the possibility to integrate dif-
ferent service types in one workflow since it will allow a faster realization of experiments
with services that do not fit in the existing Grid middlewares. For instance, self-written
and hosted services can be used instead of implementing more complex Grid services that
additionally have to be deployed by the partner on his hardware.

The main challenges when designing the architecture can be summed up in the following
sub-goals:

1. Overcoming technical barriers to enable the integration of different service types in
one workflow.

2. Handling stateful and stateless service implementations efficiently in one workflow.

3. Encapsulating workflows again inside services to allow hierarchical workflow com-
positions.

4. Realizing a fine-grained and role-based access control system that is applicable in
the scientific domain and particularly the commercial domain as well.

5. Designing the orchestration service as a multi-tenant architecture to enable a cheap
and efficient workflow provisioning.

1.2 Contribution

This thesis describes the requirements, design, implementation, and evaluation of a new
orchestration architecture that facilitates the integration of stateful and stateless services
across organizational boundaries. It considers requirements from the business but as well
from the scientific domain to enable a modern form of (enterprise) application integration.
The architecture provides solutions to the following three challenges:

Firstly, it allows even small and medium enterprises to employ outsourcing as a means
to lower costs. In the context of Cloud computing, several commercial tools for stan-
dard business tasks like customer relationship or accounting and billing are available as
comprehensive service products on the Internet. The architecture empowers small and
medium enterprises to integrate Cloud services with in-house or other externally hosted
IT services.

5

1 Introduction

Secondly, the architecture describes a flexible workflow engine for eScience that is not
limited to Grid middlewares but is extendable to integrate new services, e.g. commercial
Cloud services or self-hosted more simple Web services. Thus, scientists become more
independent of the complex Grid technologies and get the opportunity to self-provide ser-
vices or to combine other services with Grid computing. This will speedup science since
it allows a faster and more flexible service usage especially interesting for scientific com-
munities whose focus is another than computer science and therefore have difficulties with
setting up and maintaining Grid middlewares. Since the actual workflow orchestration is
based on WS-BPEL, the scientific domain will possibly profit from further advances in
the business domain instead of creating further proprietary workflow engines.

Thirdly, the architecture allows customers (and scientists) to deploy and run their work-
flows on an external infrastructure. Such a service must be designed as a multi-tenant
architecture to facilitate high hardware utilization and therewith a cheap and fair pricing
model. Since the operation of a workflow engine requires a lot of know-how and money,
it exceeds the capabilities of many small enterprises. Often such enterprises only require
few workflows so that already the license costs of a professional workflow engine would
exceed the budgets. Thus, a Cloud service for workflow execution will enable such enter-
prises to integrate own and partners’ IT systems with adequate costs.

Parts of this thesis have been released in the following publications:

1. S. Gudenkauf, W. Hasselbring, F.Heine, A. Höing, O. Kao, G. Scherp
BIS-Grid: Business Workflows for the Grid
In: Proceedings of Cracow Grid Workshop 2007 (CGW07), ACC CYFRONET
AGH, 2008, pp. 86-93

2. S. Gudenkauf, W. Hasselbring, F. Heine, A. Höing, O. Kao, G. Scherp
A Software Architecture for Grid Utilisation in Business Workflows
In: Proceedings of Multikonferenz Wirtschaftsinformatik (MKWI08), GTO-Verlag
Berlin, 2008, pp. 91-102

3. S. Gudenkauf, W. Hasselbring, A. Höing, G. Scherp, O. Kao
Workflow Service Extensions for UNICORE 6 – Utilizing a Standard WS-BPEL
Engine for Grid Service Orchestration
In: Proceedings of Euro-Par 2008 Workshops - Parallel Processing (UNICORE08),
Springer, 2009, pp. 103-112

4. A. Brinkmann, S. Gudenkauf, W. Hasselbring, A. Höing, O. Kao, H. Karl, H.
Nitsche, G. Scherp
Employing WS-BPEL Design Patterns for Grid Service Orchestration using a Stan-
dard WS-BPEL Enngine and a Grid Middleware
In: Proceedings of Cracow Grid Workshop 2008 (CGW08), ACC CYFRONET
AGH, 2009, pp. 103-110

6

1.3 Outline of the Thesis

5. A. Höing, G. Scherp, S. Gudenkauf, D. Meister, A. Brinkmann
An Orchestration as a Service Infrastructure using Grid Technologies and WS-
BPEL
In: Proceedings of the 7th International Joint Conference on Service-Oriented Com-
puting (ICSOC-ServiceWave ’09), Springer, 2009, pp. 301-315

6. A. Höing, G. Scherp, S. Gudenkauf
The BIS-Grid Engine: An Orchestration as a Service Infrastructure
International Journal of Computing, Volume 8, 2009, pp. 96-104

7. S. Gudenkauf, G. Scherp, W. Hasselbrink, A. Höing, O. Kao
Workflow Modeling for WS-BPEL-based Service Orchestration in SMEs
In: Proceedings of the Software Engineering 2010 Workshops
Grid Workflow Workshop (GWW10), GI, 2010, pp. 185-192

8. S. Gudenkauf, W. Hasselbring, A. Höing, G. Scherp, O. Kao
Using UNICORE and WS-BPEL for Scientific Workflow Execution in Grid Environ-
ments
In: Proceedings of Euro-Par 2009 Workshops - Parallel Processing (UNICORE09),
Springer, 2010, pp. 335-344

1.3 Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Fundamentals

Chapter 2 gives background information that helps to understand the design
decisions and finally the architecture. The section includes short introduc-
tions into the following topics: service-oriented architectures, the workflow
execution in SOAs, an overview of Grid computing and Grid security as well
as an introduction into the Cloud computing.

Chapter 3: Requirements for secure Workflow Orchestration

Chapter 3 presents and compares the two main application scenarios covered
by the thesis: business and scientific workflows. Additionally, we concrete
the idea of offering a workflow engine as Cloud service to allow cheap and
reliable orchestration without running an in-house workflow engine. Based
on these scenarios, we conclude with a list of requirements for the targeted
workflow orchestration architecture.

7

1 Introduction

Chapter 4: Orchestration Architecture

Chapter 4 constitutes the main chapter of the thesis. It presents the general
architecture of the workflow engine, denoted as Grid and Cloud workflow
engine, including a component overview, the security infrastructure, and the
plug-in mechanism for supporting various external service providers. Some
concept are explained by means of the prototype implementation, the BIS-
Grid workflow engine. Furthermore, the chapter briefly discusses some ideas
how human interaction can be realized with respect to the cooperation sce-
narios. It concludes with a review of the architecture considering the require-
ments derived in Section 3.3.

Chapter 5: Prototype

Chapter 5 briefly describes the prototype implementation and highlights the
realization of the most important concepts. Additionally, it presents the BIS-
Grid deployment package which includes all information on workflow de-
ployment.

Chapter 6: Evaluation

Chapter 6 presents the evaluation of the BIS-Grid workflow engine. We ex-
amined the applicability to business scenarios in two commercial application
scenarios that were part of the BIS-Grid project. Additionally, we illustrate
the feasibility of the engine with respect to the integration of Grid services for
scientific workflows and the integration of Cloud services. Lastly, we debate
a short performance evaluation.

Chapter 7: Related Work

Chapter 7 discusses related work. We mainly focus on papers about Grid or-
chestration, first approaches on Cloud workflows, and the adaption of Grid
workflow engines to Cloud services. Related work on Web service orches-
tration is only outlined shortly because the orchestration of Web services has
become a mainstream technology today.

Chapter 8: Conclusion

Chapter 8.2 concludes the thesis with a summary and an outlook on future
work.

8

2 Fundamentals

Contents
2.1 Service-oriented architectures – SOA 10

2.1.1 SOAP Message Processing 13

2.2 Workflow Execution . 14
2.2.1 WS-BPEL . 15

2.2.2 WS-BPEL compliant workflow engines 19

2.3 Grid Computing . 23
2.3.1 Web Services Resource Framework 25

2.3.2 Globus Toolkit 4 . 27

2.3.3 UNICORE 6 . 28

2.4 Cloud Computing . 33
2.4.1 Infrastructure as a Service 35

2.4.2 Platform as a Service . 35

2.4.3 Software as a Service . 36

2.4.4 Cloud Computing as innovation engine 36

This chapter describes the fundamental basic technologies that are used for Enterprise
Application Integration (EAI) today. Nowadays, EAI is realized through service-oriented
architectures often realized with Web service technologies. Additionally, Cloud and Grid
computing are modern technologies in the scientific and business information technology
domain. Both are also based on the SOA paradigm.

Firstly, we provide some background about service-oriented architectures. Therein, busi-
ness functions are encapsulated in loosely-coupled services, mostly based on Web service
technologies. Secondly, we introduce workflows, which are a means to combine such
services in a structured way. The industrial de-facto standard for workflows in SOA is
the Web Service Business Process Execution Language (WS-BPEL). WS-BPEL offers the
possibility to map business processes to the technical system level by describing the pro-
cesses – as far as possible – in an executable workflow description language. Workflow
technologies are widely accepted in both, the science and the business domain, but re-
quire high setup and maintenance costs. Thus, often only big enterprises and scientific
data centers have the ability to run a comprehensive SOA.

9

2 Fundamentals

By extending the standard EAI solutions and offering possibilities to connect modern
computing infrastructures, these technologies will become more attractive. Grid and
Cloud computing are such modern computing infrastructures offering a cheap and very
flexible means to access large data centers, software applications, or comprehensive IT
solutions. The last two sections of this chapter outline the main characteristics for Grid
and Cloud computing.

2.1 Service-oriented architectures – SOA

Nowadays, the architecture of modern IT landscapes is an important but also very com-
plex topic in enterprises. The term service-oriented architecture is a buzzword for the
design of such landscapes since it was formed in the end of the nineties. Since then, the
term was used in various contexts and without a unique definition. An OASIS Technical
Committee tried to develop a document that describes the most important aspects of a
SOA as a reference model [97]. However, this reference model only defines some con-
cepts, principals, and relationships that are necessary for the design of a SOA. A concrete
architecture or implementation is beyond the scope of the reference model.

Service

Provider
User

Registry

Publish Service

Desciption

Service Usage

Search and Find

Services

FIGURE 2.1: SOA triangle - main components of an service-oriented
architecture

Services are the main concept of a SOA. A service refers to an arbitrary piece of software
that offers a well-defined function via standardized interfaces. A service can be used by
other services, legacy applications, or customers. This requires that service interfaces and
communication protocols must be platform neutral. SOA services are loosely-coupled and
can be reused whenever their functionality is required. A services based IT architecture
requires a registry as a central point of information where all available services are listed.
This list includes the general interfaces of each service but also technical details to invoke
it. Hence, a SOA generally consists of three components: a registry, service providers

10

2.1 Service-oriented architectures – SOA

and their services, and the service users. As depicted in Figure 2.1, the service provider
pushes the descriptions of his services into the registry. This again offers means to search
for services using various criteria. As result of such an query, the user gets a list of
appropriate services and the technical information to invoke them.

When introducing SOA to an IT landscape, there is not necessarily a direct mapping of
services to existing applications. Services should be designed according to tasks in busi-
ness processes and form small and reusable units. Therefore, a service possibly needs to
access different databases or backend applications. This is a paradigm shift from solution
islands, where one application exactly solves one problem, towards a layer of loosely-
coupled services (cf. [78]).

The SOA reference model makes no assumption about the technologies that should be
used for building a SOA. Generally, nearly all programming languages or technologies for
distributed systems can be used, because on a very high level of abstraction only the cross-
platform communication is a requisite. However, if the SOA should be interoperable, it is
necessary that the communication is also independent from the service implementation.
For example, Java RMI can be used to create a SOA but integration with other program-
ming languages is difficult. Today, Web services are the de-facto standard used for the
realization of SOAs. Such services use SOAP [60] and Internet protocols like HTTP for
message exchange. Service descriptions are published using the Web Services Descrip-
tion Language (WSDL) [30]. All these technologies are platform independent and enjoy
significant support from the industry. Today, several proprietary and open-source frame-
works are available as well as tools for Web service implementation and orchestration of
Web services with WSDL and SOAP.

Beside SOAP-based Web services, also other communication protocols are used in mod-
ern SOAs, depending on the complexity. REST (Representational State Transfer) [45]
services have become more and more popular during the last years because the protocol
partly works without XML. REST communication is closely related to the HTTP proto-
col, as it supports the following HTTP operations on stateful Web services. A resource is
an object that represents the state of the service.

• GET: Requests the resource representation. The operation has no effect on the
resource state.

• POST: Adds or modifies a resource. For example, this can cause an update in a
database.

• PUT: Creates new resources or replaces a resource.

• DELETE: Deletes a resource.

11

2 Fundamentals

In contrast to SOAP-based services, a RESTful service does not publish its interface in a
standardized way. Instead, setting up a communication requires detailed knowledge about
the interfaces. In compliance with the HTTP standard, parameters are submitted via the
URL or as HTTP content – normally as XML. The advantage of REST services is its
simplicity. It guarantees a high scalability because of a small software stack. However,
the missing possibility for interface descriptions and the propagation of errors as HTTP
error codes hamper a debugging of the communication compared to SOAP.

The loosely-coupling of Web services offers various options for service combination for
example as executable workflows. The most used techniques for workflow implementa-
tion are service orchestration and service choreography. While service orchestration is
the arrangement of services from a central instance, service choreography routes mes-
sages in a peer-to-peer style directly between the participating services. Both ways have
advantages and disadvantages, e.g. regarding communication overhead, monitoring, or
flexibility. In industrial scenarios, like the integration of information systems, service or-
chestration is preferred as a direct mapping of business processes to technical workflow
descriptions is possible. Furthermore, a central orchestrator can easily offer capabilities
for business process monitoring. Section 2.2 will introduce the Web Services Business
Process Execution Language (WS-BPEL) in more detail and compare some implementa-
tions of WS-BPEL-based orchestrator services.

Since SOAP has a much longer history and SOAP-based Web services provide their in-
terfaces in a well-defined way, several workflow engines for SOAP based communication
are available on today’s market and well established in the business domain. Workflow
engines for RESTful services are rare, except some examples like [35]. The development
of a comprehensive and accepted workflow language that supports RESTful services is
still open. As a workaround, IBM presented a tutorial on how to map RESTful interfaces
to WSDL interfaces in [96]. It highlights the possibility to integrate RESTful services in
SOAP based workflow engines if a mapping between the WSDL interface and the REST
calls is available.

To conclude, a SOA is a paradigm to integrate different information systems and to inter-
connect legacy systems. All components are implemented as or encapsulated by loosely-
coupled services. For this, different technologies can be used as long as they all support at
least a common communication protocol for message exchange. Through orchestration,
informal business processes can be mapped to the technical system level. For example,
workflows help to develop a consistent user interface that integrate several backend ap-
plications as a single service. The complexity of the involved interfaces in the backend
communication is hidden transparently from the user client. Without SOA, the user would
have to handle different application clients, each communicating with its own backend
counterpart. Such simplified user clients will increase the users’ work speed and lower
training costs.

12

2.1 Service-oriented architectures – SOA

Web Server

Web Service Framework

Web
Service

De-serial-
ization

De-serial-
ization

Dis-
patching

Dis-
patching

SecuritySecurity
Invoc-
ation
Invoc-
ation

Post-
Processing

Post-
Processing

RoutingRouting
Serial-
ization
Serial-
ization

SendingSending

FIGURE 2.2: Typical architecture of an Web service framwork

2.1.1 SOAP Message Processing

Many different open source Web service frameworks are available (e.g. Apache Axis,
Apache CXF, XFire, or ASP.NET). Such frameworks offer means to implement Web ser-
vices and to handle SOAP messages in a structured way. The general functionality is the
same for all of these implementations. The SOAP message (incoming or outgoing SOAP
message) is processed by a so-called handler pipeline. Each handler in such a pipeline
fulfills a small but well-defined functionality during message processing. This typical
message processing architecture is depicted in Figure 2.2 as an example. The incoming
pipeline firstly de-serializes the message. The second handler uses the data to find the
target service while the third handler checks the message for included security tokens and
processes access control. The actual invocation on the service implementation is done
by the fourth handler. The outgoing message pipeline includes further handlers for ex-
ample for post-processing, evaluation of routing information, message serialization, and
message sending.

Handlers possibly require a well defined execution order because some handlers depend
on information from previously executed handlers. To pass this information through the
handler pipeline, there is often a common data structure that is passed through the whole
message processing pipeline. We call this object the message context. It comprises all
message and handler dependent information as security tokens, the actual message(s),
or arbitrary other information that is stored by one handler and reprocessed by another
one.

In most cases, the frameworks offer the possibility to configure the handler pipeline via a
configuration file that is read when the framework is started. Different handler pipelines
can be configured for each deployed Web service.

13

2 Fundamentals

2.2 Workflow Execution

In modern enterprises, various tasks are supported by information technology. Informa-
tion systems store data about e.g. vendors, customers, or products that is required in dif-
ferent business processes. Thus, enterprise information systems comprise a variety of dif-
ferent applications, tools, and databases. Small enterprises mandate IT specialists to run
such systems and bigger enterprises even run an IT department. During the past years,
the external hosting of services at specialized service vendors has become increasingly
popular.

Today, the integration of such external systems is a very important task to offer a homoge-
neous working environment to employees. Therefore, the IT landscape is often designed
as service-oriented architecture. The integration of services in multi-purpose business pro-
cesses that require the combination of multiple services are realized as workflows. Today,
many different workflow modeling standards exist like the Business Process Modeling
Language (BPML) [122], the Business Process Execution Language (WS-BPEL) [75],
the Business Process Modeling Notation (BPMN) [105], the Yet Another Workflow Lan-
guage (YAWL) [125], or the XML Process Definition Language (XPDL) [50]. However,
not all of these standards are capable of describing workflows in a machine executable
way; For example, BPMN specifies only a graphical notation but no interpretable file
format that could be used for execution. Such languages are rather used for modeling
business processes on a functional instead of an technical level.

Figure 2.3(a) shows the importance of the above presented modeling languages derived
from the search volume index at the Google search engine. The figure underlines the as-
sumption that BPEL is the de-facto standard for workflow execution. The other workflow
languages are only of minor importance. Additionally, it shows that the the BPMN has
gained more importance in the past years as it is very popular to model workflows on a
functional level while BPEL is used for the technical realization. We also apply these two
standards for the architecture realization and the evaluation.

The importance of SOAP based Web services for modern IT infrastructures is depicted
in Figure 2.3(b). Since the end of 2007, the REST protocol has evolved to become as a
second standard for Web service communication.

We focus on the orchestration of SOAP based Web services, because today’s services
are mostly used for information system integration, especially in the scientific and the
business domain. Modern Grid middlewares offer their services as SOAP based Web
services and all commercial big players sell workflow engines that are based on SOAP
services.

14

2.2 Workflow Execution

(a) Relevance of different modeling languages for workflows

(b) Relevance of SOAP and REST Web Service

FIGURE 2.3: Google Trends from 14.06.2010

2.2.1 WS-BPEL

WS-BPEL is an XML-based workflow description language designed for the orchestration
of SOAP-based Web services. This standard focuses on the pure orchestration and ignores
issues like security or versioning. A good overview is given in the WS-BPEL Primer [102]
and in [79]. In the following, we present some background information and describe the
most important WS-BPEL elements.

WS-BPEL 2.0 [75] is the second version of the original BPEL4WS [7] standard that was
firstly published in July 2002 as a joint work of IBM, Microsoft, and BEA. It is inspired
by the companies’ internal workflow languages WSFL (IBM) and XLANG (Microsoft).

15

2 Fundamentals

One of the goals of BPEL4WS [90] was to create a new XML based workflow description
language that uses Web service interfaces (WSDL) only, meaning that all involved ser-
vices are described with WSDL but also the workflow itself offers a WSDL interface. In
May 2003, version 1.1 was released and nearly at the same time submitted to the OASIS
technical committee. WS-BPEL 2.0 became approved as an OASIS standard in March
2007.

The WS-BPEL standard focuses on the creation of an XML file that can be interpreted by
a WS-BPEL compliant workflow engine. This XML code is hard to read and to under-
stand for humans without any graphical representation. Hence, often graphical editors are
used for workflow modeling; for instance, the Netbeans BPEL editor presents WS-BPEL
similar to the BPMN workflow modeling language.

WS-BPEL offers various activities for manipulating data, defining the data- and control-
flow, reacting on faults and events, or validating messages. In the scope of this thesis,
we only describe the most important structures and features of WS-BPEL and omit less
important details.

Generally, a WS-BPEL process consists of partner links (described below), variables, and
the actual business process that is composed of several activities. These activities can
be executed sequentially or in parallel. Thereby, we distinguish basic and structured
activities.

Basic activities are simple activities that interact with the outside world, manipulate data
stored in process variables, generate faults, terminate the process, or just wait for some
time. The most important activities for modeling workflows are the interaction activities
<receive>, <reply>, and <invoke>. When executing a <receive>-activity the
process waits for an incoming message that instantiates a new process or provides infor-
mation to a running process. A <reply>-activity is used to send a result to a client.
A combined <receive> and <reply> – using the same partner link and operation –
models a synchronous communication between a client and the business process. The an-
swer of an asynchronous communication can be modeled as an <invoke>-activity using
a one-way-operation. <invoke> is also used to invoke an asynchronous or synchronous
external service depending on the message exchange pattern. The <assign>-activity is
used for manipulating variables, preparing messages, processing XSLT transformations,
or applying relational, arithmetical, or logical operations. These activities are mandatory
activities to model a basic workflow.

Structured activities determine the control-flow of a workflow. In WS-BPEL, activi-
ties that should be executed sequentially are placed inside a <sequence>-tag (see Fig-
ure 2.4(a)); activities that should be executed in parallel inside a <flow>-tag (see Fig-
ure 2.4(b)). Inside a flow, an execution order can be defined through <link>s. Such

16

2.2 Workflow Execution

links connects activities and is traversed when the source activity is finished and an op-
tional transition condition evaluates to true. It is also possible to nest structured activities
arbitrarily.

The WS-BPEL <if>-activity is the equivalent to an if-statement in most programming
languages including the possibility to formulate a single conditional branch (if) or multiple
branches (if-else and if-elseif-else). For modeling loops, BPEL provides a <while> and
a <repeatUntil> operation.

WS-BPEL provides the <scope>-tags to structure several activities to a semantical sec-
tion of the overall workflow. As well as the whole process can have extra handlers for
compensating faults or reacting to some optional events, such elements can be also at-
tached to scope elements. Furthermore, it is possible to define variables limited to a
scope.

BPEL also provides some mechanisms to deal with faults during workflow execution.
They can be cached by special activities that allows for reacting with further BPEL code.
Furthermore, the compensation of previously executed service calls can be modeled with
compensation handlers attached to activities or scopes. The possibility for compensation
enables the support for long running transactions, because already executed ACID trans-
actions can be rolled back and e.g. a retry of the complete process scope is possible. All
these fault mechanisms apply only to business faults. Exceptions thrown in the technology
stack are not covered by WS-BPEL and result in a crashed workflow.

Partner links are a central concept in WS-BPEL. All communication partners, clients,
services, and the workflow itself, in a WS-BPEL process are modeled as such links.
Therefore we distinguish two kinds of partner links, for invoked partner and for client
partner [79]. Each process needs at least one client partner link that is used to create and
start the WS-BPEL process. Normally, it also has at least one invoked partner link.

As already described above, one goal of BPEL is that all workflow operations are of-
fered by Web service interfaces using the WSDL for interface description and SOAP as
communication protocol. This allows the hierarchical composition of workflows since
workflows can be invoked from higher-level workflows. This enables reusability of low
level business processes and a simpler modeling of complex high level workflows.

Figure 2.4 shows two simple workflow examples that are modeled with the Netbeans
BPEL editor. Both invoke the same service twice, sequentially (Figure 2.4(a)) and in
parallel (Figure 2.4(b)). The partners of a workflow are placed on the right (invoke partner)
and left (client partner) border. The middle lane shows the actual workflow logic (stored
as WS-BPEL code) as BPMN that provides standardized symbols for different activities.
Both workflows are synchronous because they start with a receive and end with a reply
activity.

17

2 Fundamentals

(a) Sequential Workflow (b) Parallel Workflow

FIGURE 2.4: A simple workflow example

A business processes has a state by nature, i.e. the current execution progress, process
variables, and partner links. WS-BPEL provides workflows as stateless Web services.
Standards for stateful Web services like WSRF [103, 14] are out of the scope of the spec-
ification. Instead, WS-BPEL uses a self-designed mechanism to map messages to the
corresponding workflow instances, so-called correlation sets. Correlation sets compare
some messages data with some variable to find the corresponding instance. This requires
that some unique data is stored in each workflow and that the invoker puts this information
into the message to address the workflow instance.

The WS-BPEL standard includes an extensibility mechanism to introduce new elements -
with new semantics - within a WS-BPEL process [75]. One example for an WS-BPEL ex-
tension is BPEL4People [101] that introduces new activities for integrating human tasks
in WS-BPEL workflows. The extension mechanism is handy if new functions are re-
quired but it has one major drawback: The WS-BPEL engines have to be extended to
support such new activities, otherwise the process is not executable. This creates a direct
dependency between the WS-BPEL processes that use this extension and the extended
WS-BPEL engine and thus the workflow is incompatible to other WS-BPEL compliant
workflow engines.

18

2.2 Workflow Execution

2.2.2 WS-BPEL compliant workflow engines

To find the most appropriate WS-BPEL compliant workflow engine, we here compared
several implementations. An overview concerning some basic WS-BPEL engine proper-
ties, such as License, supported BPEL version, development project status, availability,
and target system is given in [62]. The report served as basis to find a suitable WS-BPEL
workflow engine as basis for the orchestration architecture. This section again outlines
an updated version of the report. The final selection of the WS-BPEL workflow engine is
discussed in Section 4.1.1.

The overview [62] includes a list of fifty-five Workflow engines used for Web and Grid
service orchestration. Several of these engines do not support WS-BPEL and are therefore
omitted in the deeper analysis. At the end, [62] compares nine WS-BPEL compliant en-
gines with respect to the feasibility to build a flexible Grid and Cloud workflow engine.

In the subsequent sections, we sum up the main characteristics of the ActiveBPEL work-
flow engine – that was finally selected –, the Apache ODE workflow engine – that was
also a acceptable candidate –, and the Sun BPEL Engine that is also feasible but was not
available when we did the first evaluation. The following criteria are used for compari-
sion:

1. License - What kind of license is used for publishing the BPEL engines source
code? It need to be open source.

2. Platform - What prerequisites are necessary to deploy the BPEL engine?

3. Features - What additional features are provided beyond the actual workflow exe-
cution?

4. Tooling - What tools for debugging and administration are available?

5. Community - Is the community still active?

Generally, all WS-BPEL engines that are standard compliant should be able to execute
the BPEL code created in an arbitrary editor. As the WS-BPEL standard excludes sug-
gestions for a consistent deployment, each engine has its own deployment mechanisms.
Normally a deployment package is used that contains all necessary information for the
deployment and the provisioning of the workflow as Web service. Such a deployment
package includes all resources like WSDL oder XML Schema files. Furthermore, some
engines, like ActiveBPEL, use a central file – the so-called deployment descriptor – to de-
fine additional configuration parameters such as endpoint references for partner services,
persistence settings, or versioning information.

19

2 Fundamentals

ActiveBPEL

The ActiveBPEL workflow engine used to be an open source project initiated and hosted
by ActiveEndpoints. The company provided the freely downloadable source code on its
homepage and gave basic user support. At the same time ActiveEndpoints sold a com-
mercial version of the workflow engine with additional features. In 2007, the engine was
under massive development and the first choice regarding its features, available support,
documentation, and the already existing acceptance in the Grid domain (see e.g. [39]).

From 2007 to the end of 2008, the engine migrated from version 3.1 to version 5.0.2.
ActiveBPEL integrated several new features such as the support of human interactions
according to the BPEL4People standard [101]. But the company changed its business
strategy and begun the distribution of a new product called ActiveVOS. In general, Ac-
tiveVOS is the commercial version of the ActiveBPEL workflow engine. But from then
on, all new features were published under a closed source license.

For a short period, ActiveEndpoints still provided the open source version of ActiveBPEL
on its homepage but in 2009, they removed the version 5.0.2. From then, only the older
ActiveBPEL version 2.1 has been available on the ActiveVOS homepage. That engine is
not WS-BPEL 2.0 compliant and it only supports the older version BPEL4WS.

Today, the latest open source version is again available on SourceForge1 but has no active
community. The sourceforge project website does not provide any documentation nor user
tutorials but there are still some copies of the original documentation and guides available
on the web. These sources are the basis for a successor project, called “bpel-g”2 that
develops a WS-BPEL engine for the Apache ServiceMix Enterprise Service Bus.

Table 2.1 shows the properties of the ActiveBPEL 5.0.2 version, as it is published on the
sourceforge website, according to our evaluation criteria. The commercial version offers
additional features that are not listed.

The engine demands a deployment package that contains all necessary information in a
proprietary format. One part of the deployment package is the Deployment Descriptor
that includes the actual service endpoints and workflow specific configuration parameters
for the workflow engine. The basic version only supports a workflow management based
on the file system as workflows are moved to or deleted from a dedicated deployment
folder. After the successful deployment, the workflow is offered as service whose name
is also defined in the descriptor file.

Beside this, the engine is shipped with a BPEL Admin servlet that provide additional
functionality. It offers a simple-to-use web site that allows for engine configurations such

1http://sourceforge.net/projects/activebpel502/
2http://code.google.com/p/bpel-g/

20

2.2 Workflow Execution

License: GNU General Public License (GPL).
Platform: The engine can be deployed in an Apache Tomcat 5.5.28 service con-

tainer.
Features: ActiveBPEL 5.0.2 is completely WS-BPEL 2.0 compliant. It optionally

offers workflow persistence if a database is available. The deployment
descriptor offers possibilities for a service binding at deploy-time and
some configurations concerning the used handler pipeline for external
service invocations.
The latest version of the engine offers services that implement the WS-
Human Task standard [1], but without documentation. This makes the
feature unusable for untrained users.

Tooling: ActiveEndpoints provides the ActiveVOS Designer. This is a graphi-
cal editor to model WS-BPEL workflows and to create the matching
deployment descriptor. Since version 5 the editor also supports means
for implicitly modeling human tasks and the integration into the work-
flows. But today, the license a only temporally limited evaluation li-
cense. Hence, the ActiveBPEL engine does not provide a free editor,
today. Workflow modeling is still possible with other editors but the
deployment descriptor must be created by hand.
The ActiveBPEL workflow engine offers Web interfaces for deployment
and monitoring of workflows. Furthermore, a web page presents the
most important configuration and monitoring information. It shows all
deployed processes, active workflows, and a detailed process log includ-
ing fault information as well as web service interfaces to retrieve this
information via SOAP calls.

Community dormant

TABLE 2.1: ActiveBPEL 5.0.2 Overview

as logging and persistence. Additionally, it supports the debugging of workflows since
it produces includes a deployment and debugging view. Another service can be used for
workflow deployment via a SOAP call.

Sun BPEL Engine

The Sun BPEL Engine is a service engine (SE) for the OpenESB3 implementation. The
basic components of an Enterprise Service Bus (ESB) are a message router, service en-
gines, and binding components [29]. The router is responsible for message transformation

3https://open-esb.dev.java.net/

21

2 Fundamentals

and delivery to services inside the service bus.

Service engines (SE) are software components that are deployed directly in the service bus
and provide some kind of business logic. Examples for service engines are BPEL SE for
workflow execution and JavaEE SE for hosting of JavaEE programs. Binding components
(BC) are used to connect external services to the ESB (e.g. HTTP BC, REST BC, Email
BC).

The OpenESB is compliant to the Java Business Integration (JBI) specification [128] -
JSR 208 is the basic specification for the realization of a Java-based enterprise service bus.
Hence, all components can generally be deployed on every JBI compliant ESB framework.
The OpenESB runs in a GlassFish application server. It is perfectly integrated into the
Netbeans Editor (if the SOA plug-in is installed). The open source community, mainly
driven by Sun, offers a lot of general documentation as well as some video tutorials for
designing workflows with Netbeans.

For the deployment of a BPEL process, a so-called service assembly that is part of the JBI
specification, is necessary. Such an assembly includes information about the BPEL code,
the services that are consumed during process execution, and the configurations for the
required BC. It is somehow comparable to the deployment package of ActiveBPEL as it
includes general information to deploy a workflow, but it has no central configuration file.
The workflow service URL can be chosen arbitrarily with respect to the port and the URL
path.

The engine is capable of invoking external services that are not directly deployed in the
OpenESB by using the BCs. The configuration of the BCs is part of the service assem-
bly.

Table 2.2 lists the properties of the Sun BPEL Engine regarding to our criteria.

Apache ODE

Apache ODE4 (Orchestration Director Engine) is the WS-BPEL engine developed in the
Apache foundation. The former basis for the project was the Process Execution Engine
(PXE) from FiveSight which has been bought by Intalio. The engine is well documented
on its website.

The user has to create a process artifact for workflow deployment. This artifact con-
tains the Apache ODE specific deployment descriptor beside the WS-BPEL, WSDL and
schema files. There are no Web service interfaces provided. For the deployment of an

4http://ode.apache.org/

22

2.3 Grid Computing

License: Common Development and Distribution License (CDDL)
Platform: The engine is part of the OpenESB that is shipped within the GlassFish

container.
Features: The Sun BPEL Engine is WS-BPEL 2.0 compliant. It is fully inte-

grated into the OpenESB though guaranteeing interoperability with var-
ious ESB internal and external services. All service endpoints are taken
directly from the WSDL files of the invoked services that are included
in the assembly package.

Tooling: The Sun-BPEL-Engine SE is partly configurable within the GlassFish
administrator web interface. The Netbeans Rich client provides a WS-
BPEL editor that can also be used for deployment of service assemblies
and interactive debugging session. A deployment, debugging, and mon-
itoring without Netbeans is possible but not documented.

Community active

TABLE 2.2: Sun BPEL Engine Overview

artifact, it is simply copied to the deployment folder of the engine. Nevertheless, the en-
gine provide some Web services that enables management tasks such as the activation and
deactivation of workflows, retrieving a list of all processes, process instances. On instance
level, the user can ask for process variables and the event log. Thus, workflow monitoring
is possible.

Table 2.3 gives the overview of this engine.

2.3 Grid Computing

The term “Grid” originates from the idea to make access to compute power as easy as
to the electric power grid. It is mainly used in eScience. An early definition of Grid is
presented by Ian Foster and Karl Kesselman in [80] and refined in [81]. According to
Forster and Kesselman, the idea is to provide a middleware that enables inexpensive, de-
pendable, consistent, and pervasive access to high-end computational capabilities. This
should enable a new cooperation model that is called virtual organization (VO). Members
of a VO do not necessarily need to belong to the same affiliation but can still work to-
gether in projects even across enterprise boundaries. A VO defines clearly and carefully
what resources (compute or data resources) are shared and who is allowed to access this
resources (cp. [49]).

Nowadays, a Grid environment has a typical architecture. A high-end compute resource
is offered to the VO members through a so-called Grid middleware. Such a middleware

23

2 Fundamentals

License: Apache License 2.0
Platform: The engine can be deployed into either a Tomcat web server with in-

stalled Axis2 framework or into a JBI compliant service bus.
Features: The Apache ODE engine is not fully WS-BPEL compliant. There are

some open issues e.g. with the <receive>-tag as only allowing mes-
sage variables, or multiple start activities. All open issues are listed on
the website.
Nevertheless, it provides some other useful features such as process ver-
sioning and persistent execution of workflows. All process information
is persisted in the databased and can be retrieved through a Web service.
Furthermore, Apache ODE implements several WS-BPEL extensions,
like “Activity Failure and Recovery”, “Iterable ForEach”, etc.

Tooling: Apache ODE provides no tooling for workflow modeling; for workflow
deployment and monitoring a Java client API is available.

Community active

TABLE 2.3: Apache ODE Overview

offers services to allocate compute resources or access data resources. Modern middle-
wares use the advantages of a service-oriented architecture and offer these functions via
SOAP-based Web services. To guarantee security and the traceability of Grid activities
each user needs a personal certificate (normally a X.509 certificate issued by a commonly
trusted institution) for communicating with Grid services. Thus, it is possible to map each
activity directly to a natural person and formulate access rules that are based on identities.
Another important Grid feature, especially for workflow execution, is the possibility to
delegated rights to another Grid component, e.g. the grid middleware. This enables the
middleware to execute operations on resources on behalf of the user. The user can define
the delegation rights in a fine-grained way.

A Grid is composed of several Grid sites that offer different kinds of resources to the
users as shown in Figure 2.5. In this cooperation, each site is maintained by its own
independent administrative domain. The distributed Grid infrastructure is established by
using a common VO management system. Such a system allows the administration of
members, their VO memberships, and user group attributes inside VOs.

The Grid sites decide what VO or more fine-grained who is allowed to access their Grid
services. Grids often provide a central monitoring and registry services to discover re-
sources or to retrieve more detailed resource information, like installed libraries, or length
of the job queue. This enables the user to find the most appropriate resource for a par-
ticular task. The detailed architecture of a Grid depends on the used middleware, the
additional deployed systems and tools, the participating Grid sites, and the rules for re-

24

2.3 Grid Computing

Registry/Monitoring
Server

Middleware Server Site D
(Grid Frontend)

Compute
Cluster

Middleware Server Site C
(Grid Frontend)

Compute
Cluster

Middleware Server Site B
(Grid Frontend)

Compute
Cluster

Middleware Server Site A
(Grid Frontend)

Compute
Cluster

Grid User

Grid VO Management

FIGURE 2.5: Example Grid infrastructure

trieving a valid Grid certificate.

Typical Grid middleware services offer the possibility to submit jobs (e.g. described in an
XML-based job description language such as JSDL [8]), process file transfers (from the
client to a Grid storage, vice versa, or between two Grid sites), but generally it is also
possible to host self-implemented services. For submitting jobs to a cluster, the middle-
ware communicates with a scheduler that manages the actual job execution on the worker
nodes in the cluster backend. In the following subsections, the WSRF specification for
Grid services and two famous middlewares

2.3.1 Web Services Resource Framework

Web services are normally stateless services. This means that the service stores no in-
formation about calls and acts the same way, each time it receives the same input data.
Each call is independent from the previous and successive one. But in some scenarios,
Web service calls are not really independent as the successful execution of a task needs
the invocation of several different operations on one (stateful) service. This problem is
tackled with the introduction of stateful Web services. A simple solution is the implicit
management of instances, so that each massage includes a service instance ID to correlate
the messages within the Web service implementation. Often, the correlation information

25

2 Fundamentals

is part of the message payload. The WS-Addressing specification [23] addresses this lack
and defines Web service instance addressing in a standard way.

Since Grid Jobs are often long running jobs with several state information such as the
progress, the allocated resources, the job description, the start, end, wall time, and other
state information, the Grid community facilitates a standard to model such stateful Web
services: the Web Services Resource Framework (WSRF) [103, 14]. Since WSRF is the
standard for realizing modern Grid middlewares, we call such services Grid services in
this thesis. Beside the WSRF-compliance, Grid services require some kind of advanced
security support.

WSRF is a bundle of five different standards that specifies so-called resources as instances
of a Web service. State information is given as resource properties:

1. WS-Resource [52]: A WS-Resource as an instance of a Web service. A resource is
addressable by an endpoint reference according to the WS-Addressing [23] speci-
fication. As an example in UNICORE 6, a resource is addressed via an unique ID
that is attached as parameter ?res=<id> to the service address URL.

2. WS-ResourceProperties (WSRF-RP) [53]: The definition of resource properties as
the state information that distinguishes two instances of the same service. This
includes standard operations to retrieve, update, and delete state information.

3. WS-ResourceLifetime (WSRF-RL) [115]: This document standardizes the con-
cepts and operations for controlling the lifetime of a resource. Normally, a resource
has a limited lifetime after which it is destroyed and not reachable any longer. The
user can extend the lifetime by setting a new termination time.

4. WS-ServiceGroup (WSRF-SG) [95]: WS-ServiceGroup enables the grouping or
aggregation of Web services and resources that are defined according to the WSRF-
RP standard. This is necessary to manage WS-Resources in a registry and to enable
the querying of complex requests. The belonging to a service group is defined
through rules.

5. WS-BaseFaults (WSRF-BF) [91]: This specification defines the base fault type that
is used to inform users about basic faults during the interaction with WSRF-based
Web services.

The WSRF standards are implemented in various Grid middlewares like Globus Toolkit 4
and UNICORE 6 (see following sections) but also in the Apache Muse 2.2.0 Web service
framework. The different frameworks are all based on different technology stacks with
advantages and disadvantages. A performance comparison is given in [84].

26

2.3 Grid Computing

2.3.2 Globus Toolkit 4

The Globus Toolkit 45 (GT4) is a worldwide known Grid middleware that is used in a
multitude of different Grid projects. The system is generally designed as a Web ser-
vice framework, offering services (e.g. WS Grid Resource Allocation and Managament
(GRAM) services for compute job submission using the Resource Specifiaction Language
(RSL)), a resource discovery and monitoring service (MDS), and client tools that can com-
municate with these services. GT4 uses the SOAP communication protocol and is based
on a modified Apache Axis 1.26. This is extended with implementations for the WSRF
standards. Some GT4 services are also available via other protocols, e.g. GridFTP for up
and downloading files to/from a grid site. It is possible to implement new services and
deploy them into the GT4 Grid middleware.

FIGURE 2.6: GSI Security Overview [129]

The GT4 security infrastructure is named Grid Security Infrastructure (GSI) and uses
X.509 certificates (or very rarely user name/password) for authentication. A certificate
is data that uniquely validates the owner and additional properties of a public key. The
owner is identified with a unique string, called the user’s distinguish name (DN).

The GSI supports three different security stacks [129] for authorization, credential del-
egation, authentication, and message protection. Figure 2.6 shows the three stacks in-
cluding message-level security (MLS) – MLS encrypts part of the SOAP message – or
transport-layer security (TLS) – TLS uses an encrypted transport channel. MLS offers
more flexibility if messages must be routed via several Web service hops but encryption
and signature on the basis of SOAP message content costs performance [110].

5http://www.globus.org/toolkit
6http://ws.apache.org/axis/

27

http://ws.apache.org/axis/

2 Fundamentals

One basic concept in GSI is the usage of proxy certificates, a self-signed certificated issued
by the user and signed with the users’s permanent Grid certificate. Such certificates can be
used for credential delegation – delegating some of the user’s privileges to another entity.
The set of privileges is defined by so-called restrictions in the proxy certificate.

The left and middle stack in Figure 2.6 show communication using MLS. Hence encryp-
tion and signature are done on basis of the XML message and not on the transport layer.
Standards for MLS are WS-Security and WS-SecureConversation [85, 86]. The user name
and password authentication, without certificates is rather unusual and prevents the possi-
bility of credential delegation. For example, the D-Grid, German Grid initiative, does not
allow user name/password authentication.

The right hand stack shows GSI using transport layer security. The user utilizes his perma-
nent Grid certificate to connect and authenticate against the server. Delegation is possible
via proxy certificates.

Security configuration (choice of the stack) can be done separately for each service. The
clients need to know which security stack is required.

Server-side access control information is stored in the the so-called grid-mapfile, a kind
of table that entries map certificate’s distinguished names to local user accounts. If a user
successfully authenticates with the server and an entry for this user exists in the grid-
mapfile, access to the resource is granted.

2.3.3 UNICORE 6

UNICORE is a Grid middleware mainly developed at the “Forschungszentrum Jülich”. It
is based on Web services technologies since version 6, released in 2008. Technically, it
builds up on a Jetty servlet container7 and the last version of the Web service framework
XFire8 that has evolved into Apache CXF9. On top of this software stack, a lightweight
WSRF layer (called WSRFlite) is created that enables the management of stateful Web
services compliant to the WSRF [14] standards.

UNICORE 6 is composed of three components: the gateway, the extended UNICORE
user database (xUUDB), and the UNICORE/X service container. Each of these compo-
nents is a standalone program that communicating via Web service means with the other
components. Thus, it is possible to run each component on a different machine. Figure 2.7
shows a typical UNICORE 6 environment. Normally, it provides a single point of entry,
the Gateway that is installed only once. The Gateway knows all participating Grid sites

7http://jetty.codehaus.org
8http://xfire.codehaus.org
9http://cxf.apache.org/

28

http://jetty.codehaus.org
http://xfire.codehaus.org
http://cxf.apache.org/

2.3 Grid Computing

G
at

ew
ay

UNICORE/X Service
Container

XUUDB

Grid User

Compute
Cluster

FIGURE 2.7: UNICORE architecture overview

and dispatches messages to the sites that names are part of the message destination URL.
On each site, a UNICORE/X service container is installed that serves as a hosting en-
vironment for the UNICORE Atomic services. These services provide basic functionality
for typical Grid tasks such as compute job submission and file transfers. The UNICORE 6
middleware supports several job description languages, like the Job Submission Descrip-
tion Language (JSDL) [8].

The user database (xUUDB) manages a table of user entries, storing the users’ distin-
guished names, the local user names, and some basic role information. If the xUUDB is
used by several sites, there must be one entry for each site the user has access to. The role
information is rather some kind of user/admin role distinction than a role-based authoriza-
tion system, as the roles for each user are fixed and not session dependent. As a Grid is
a federation of several independent Grid sites, all of these have different access policies.
Hence, the sites normally administrate the xUUDB entries locally instead of sharing a
single instance that keeps control over all resources.

To submit a job to the back-end cluster, the UNICORE/X uses a component called Target
System Interface (TSI). It is an interface between UNICORE 6 and the cluster scheduler
that manages the job execution on the backend machines. UNICORE 6 is implemented in
Java. TSIs can be implemented in an arbitrary programming language.

Security

As already stated, the Gateway is the single point of entry to a UNICORE 6 based Grid.
To communicate with the Gateway, the user needs a trusted certificate (issued by a trusted
certificate authority (CA)). UNICORE 6 uses TLS to protect message information. The
Gateway blocks all communication except if the user presents a valid certificate. The
user checks the identity of the Gateway and vice versa. The communication between
all other UNICORE 6 components is secured the same way to guarantee a trustworthy
relationship between these components. When forwarding the message to the Grid site,

29

2 Fundamentals

the Gateway attests the identity of the user with a signed SAML [33] assertion. Such
an assertion states that the Gateway guarantees that the user has authenticated himself
correctly. The Security Assertion Markup Language (SAML) is an OASIS standard for
XML based authentication and authorization data exchange. Hence, the site can be sure
about a user’s identity and gets the user’s distinguished name from the assertion. This
name is used as an id for querying the xUUDB.

UNICORE 6 adopts the OASIS standard eXtensible Access Control Markup Language
(XACML) in version 1.1 [41] for authorization. This standard describes a mechanism to
make an authorization decision with information from different information sources.

An XACML request contains the sections:

• The subject contains information about the user.

• The target defines the target resource that should perform an action.

• The action reflects the operation that should be performed on the target resource.

The UNICORE 6 default configuration provides the following information in such a re-
quest:

• Subject: The user’s distinguish name, the user’s role retrieved from the xUUDB,
and the consignor of the message. The consignor only different from the users
distinguish name if the call uses credential delegation.

• Target: The service instance that is addressed in the message. A stateless service is
described by the service name. For stateful services, also the resource identifier and
instance owner are added.

• Action: The operation name that is targeted with the actual message.

The request is internally sent to the Policy Decision Point (PDP) where it is evaluated
against the deposited XACML policies. An XACML policy consists of one or several
rules that are evaluated if applicable. Each rule contains of two sections that define the
applicability of the rule:

• Target: It contains one section for matching to the XACML request: Subjects, Re-
sources, Actions. In each section, matching rules are defined, like “the distinguish
name of the subject have to be equal to a fixed distinguish name”, or “the resource-
id of the target resource must be equal to a fixed service name”. Therefore, XACML
provides a large set of comparator operators for basic but also complex data types
that are typically used in an authorization process. These rules are limited to the
information of the respective section.

30

2.3 Grid Computing

• Condition: This section is used to define conditions between the user, the resource,
and the action. As example, it is possible to formulate the following condition:
”evaluate to true if the subject’s distinguish name equals the resource owners dis-
tinguish name”.

Only if both parts and all the included functions evaluate to true, the rule is applicable.
Each rule evaluates either to a permit or a deny result. XACML offers means to combine
several rules to a policy.

As already described, UNICORE 6 uses SAML assertions to confirm the authenticity of a
user. For credential delegation, it also utilizes the SAML standard. The client that wants
to delegate rights to another entity (another client or service) attaches a signed SAML
assertion to the message he sends to the second entity. This delegation assertion includes
– among others – the DN of the user and the DN of the second entity. The latter can use
this assertion to prove the delegated rights to athird party. It is possible to delegate all but
also only a well defined portion of rights e.g. only the right to execute a single operation
on an external service.

UNICORE Virtual Organization Service

The xUUDB provides only very basic user attributes such as a single role and the local
user login. For managing VOs, where a single person can participate in several VOs and
hold different roles in each VO, a more sophisticated user attribute management system is
necessary. The UNICORE 6 team developed a VO management system called UNICORE
Virtual Organizations System (UVOS) [18] – within the Chemomentum project10.

This system can be integrated into each UNICORE 6 installation and substitutes the xU-
UDB as information provider for the authorization process. In UVOS, users are managed
as entities to those administrators can attach arbitrary attributes. Such entities can become
member of hierarchical organized groups that can be seen as VOs. The administrator of a
group can grant group administrator rights to other entities so that there can be different
administrators for each group. UVOS distinguishes three kinds of attributes [19], global
attributes, group-assigned attributes, and group-scoped entity attributes. Global at-
tributes are directly attached to an entity and are always valid. Group-assigned attributes
are attached to a group and all members of this group automatically inherit the attribute.
Group-scoped entity attributes are again assigned directly to an entity, but are restricted to
a special group and are invalid outside the context of this group.

10http://uvos.chemomentum.org/

31

http://uvos.chemomentum.org/

2 Fundamentals

Unicore VO System

Identity
Management

VO/Group A

VO/Group B

VO/Group C

VO/Group D
Management
Administrators

2 Fetch signed
SAML Assertion TrustA. Fetch Signed

SAML Assertion

PDP1 Send Request
3/C. Check Attributes

against Policies

P
E
P

B. Send Request
i l di th PUsers / VO

Members
including the
signed SAML
assertion

FIGURE 2.8: UNICORE Virtual Organization Systems - Push and Pull
Attribute retrieval

Those attributes can be retrieved as SAML assertions in two ways, push and pull. Both
ways are depicted in Figure 2.8 (1-3, A-C). Generally, the responsible identity manage-
ment administrators maintain the user entities of their VO – adding or removing users from
the VO, partitions them in subgroups, and assign attributes. These tasks are independent
from querying the information.

The two mechanisms to retrieve attribute information from UVOS demand additional ef-
fort for at least the Grid site administrator. When using the push mechanism (A-C), the
user is responsible for fetching the SAML attribute assertion from the UVOS server. This
way, he can control what attributes should be included in the assertion by defining the
context situation for the call. This offers data security and data minimality because each
site cannot request all information about the user.

In the pull scenario (1-3), the UNICORE 6 middleware requests the assertion for the cur-
rent user from the UVOS server. The server does not know the context of the current call
and therefore requests all attributes. It is possible to restrict the access to user attributes to
some VOs but inside these limitations the server can ask for all attributes, even if they are
not important for the current call.

Both ways result in a number of user attributes available during the authorization process
that is triggered at the UNICORE 6 Policy Decision Point (PDP). These attributes enable
the service provider to define more finer-grained access control rules for the deployed

32

2.4 Cloud Computing

services. This enables the possibility to introduce a role based access control mechanism
that considers the user’s roles in the different VOs.

In the remaining of the thesis, we distinguish the UNICORE 6 architecture not such de-
tailed. If we talk about UNICORE 6, we regard the system as an hosting environment for
stateful services.

2.4 Cloud Computing

This section introduces the idea of Cloud Computing, as it has been formed over the past
two years. The term “Cloud Computing” is mainly driven by the industry and has been
largely adopted by the research domain. The cutting-edge commercial cloud computing
provider is Amazon with the Amazon Web services11 that offer various possibilities to
use compute power from Amazon’s data centers. These services are all based either on
storage or on virtual machines technology enriched with additional services for e.g. load
balancing, monitoring, or relational databases.

The main characteristics of cloud computing products are [126, 26, 10]:

• on-demand: the user can allocates resources in a very short time and configure these
resource according to his needs (e.g. main memory size or software stack).

• pay-per-use billing: the user only has to pay for resources he really allocates, often
on a resources-per-time basis.

• easy-to-use: the usage of the resources is rather simple and can mostly be done
without a lot of experience and knowledge about the services background.

• scalable: the user can allocate as many resources as he needs, nearly without limi-
tations.

• minimal management effort: the system must provide an easy registration, moni-
toring, and billing capabilities.

• elasticity: the possibility to dynamically scale up or down in a short period of time

To maximize the utilization of data center resources, each Cloud computing product is
designed as a multi-tenant architecture. This means that several customers commonly use
the same hardware but without knowing anything about each other. The configuration,
data, or deployment of one customer must not affect the configuration, data, or deploy-
ment of another customer. He should not even know that someone else is using the same

11http://aws.amazon.com

33

http://aws.amazon.com

2 Fundamentals

hardware. For this, often virtualization technologies are used to isolate the customers from
each other.

Since the introduction of the first Amazon Web services, many other companies took up
the idea of Cloud computing and offer Internet services that fit into the above listed cri-
teria. Today, a diversity of Cloud services is available from hosting virtual machines to
offering a complete browser-based online solution for a customer relationship manage-
ment.

���		�
��

��
���	

���������
��������
������

������
���	

�
�����������������������	

���
�����������

���������
�����������
���
���

���	�
�

�����
�����������
���	

�
������
�����	

������
��

���
�����	�

FIGURE 2.9: Ontology of Cloud computing [132]

Yousseff et al. have given a first definition of cloud computing shapes in [132]. They
distinguish five layers, cf. Figure 2.9. The bottom most layer is the actual hardware in
the data center, as compute resources and network, called Hardware as a Service (HaaS).
Above this layer, the Software Kernel, all the software that is necessary to run a Cloud
service is placed. As examples, this can be software for virtualization of the hardware
resources so that each user can get his environment or a Grid middleware. On top of
these two layers, the actual Cloud services that the provider sells to his customers are
placed. Yousseff et al. call these layers Cloud Software Infrastructure, Cloud Software
Environment, and Cloud Application.

This definition dealt as basis for developing a common understanding of Cloud computing
definition, but the concepts has been defined slightly differently in other papers and arti-
cles, e.g. [27, 126, 10]. Today, the terms Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS) are widely accepted and also used in
this thesis. Furthermore, the thesis presents Orchestration as a Service (OaaS) as a special

34

2.4 Cloud Computing

occurrence of PaaS (cp. Section 3.2). The following sections describe the main properties
of these three Cloud computing shapes.

2.4.1 Infrastructure as a Service

The term Infrastructure as a Service (IaaS) describes all services that directly provide
some kind of infrastructure to the user. This includes compute power, network, and stor-
age. Normally, the compute resources are sold as virtual machines that the user configures
according to his requirements. The images for these virtual machines are stored at the
Cloud storage service where the user can download or upload nearly arbitrary amounts of
data. Among these basic services, the vendor often offers additional services like network
services, load balancers, or firewalls. It is possible to (automatically) scale the number of
virtual machine instances according to the current load. The seamless and rapid scaling
capabilities of resources are called Cloud elasticity.

On this layer, the user has to pay for the actually used resources mostly on a per hours
basis. As index for the pricing model, vendors use the number of CPUs, the size of the
main memory, or predefined instances with a fixed number of CPUs and main memory.
Storage resources are billed by the size of the used storage and data transfer is billed by
the amount of in- and outgoing data. Services like load balancer or monitoring services
are billed separately also on a per-usage pricing model.

Some famous vendors of IaaS provider are Amazon12, ServePath13, and Rackspace14.

2.4.2 Platform as a Service

The Platform as a Service (PaaS) layer offers an environment, where customers can de-
ploy their self written programs or applications on the vendor’s hardware. The advantage
of this compared to IaaS is that the user does not need to care any longer about maintaining
the operating system or installing the runtime environment for his application.

Each PaaS provider offers an API that supports the software developer by offering means
for e.g. storing data, monitoring the application, or authentication and authorization capa-
bilities. Of course, programming against such an API causes a strong dependency between
the PaaS provider and the PaaS user because changing the vendor will result in at least
reprogramming some parts of the application. Furthermore, platforms are often restricted
to only a few programming languages so that the user must choose his provider carefully.

12http://aws.amazon.com
13http://www.gogrid.com
14http://www.rackspacecloud.com

35

http://aws.amazon.com
http://www.gogrid.com
http://www.rackspacecloud.com

2 Fundamentals

Often, PaaS providers offer other features to the customers like scaling the application or
cost control mechanisms.

The billing of PaaS services is based on the same criteria as IaaS. The applications are
running on hardware resources that are equipped with the platform software. For instance,
the ratio of hardware consumption is billed on the pay-per-usage model. Storage, network
traffic, and additional services like load balancer are also billed separately.

Google provides the Google App Engine15 as its PaaS software stack. It is a platform
for Python and Java applications that are billed only on the really consumed CPU cycles
– idle services are for free. As a second example, Microsoft offers a platform for .Net
services, the Microsoft Windows Azure Cloud16 that is integrated in the Visual Studio
IDE. The user can test the implementation locally and can deploy it on the cloud within a
few seconds.

2.4.3 Software as a Service

Software as a Service (SaaS) is the Cloud computing shape with the smallest degree of
freedom. It originates from the application service provisioning. A SaaS provider runs
software in its data center that is used via Web service interfaces or simply via a browser.
The vendor is responsible for the complete software stack and hardware. Thus the end
user does not need to handle any software updates or patches. The usage of a SaaS service
is also billed with a pay-per-usage model, e.g. a fix price for each user account per month
or number of stored datasets. When using SaaS, the customer saves the money for running
and maintaining own hard- and software.

The provider must guarantee a very high quality of service, especially concerning avail-
ability. He has to improve his product regularly to preserve its competitiveness. The major
drawback for a customer is that he depends on the SaaS provider because a migration to
another SaaS provider will be costly. Often such systems lack on standard data in- and
export mechanisms.

A cutting-edge SaaS provider is salesforce.com with an Customer Relationship Software
for all sizes of companies.

2.4.4 Cloud Computing as innovation engine

The idea of Cloud computing enables a paradigm shift in running IT for private and busi-
ness applications. Especially small and medium enterprises that are not able to finance

15http://code.google.com/appengine/
16http://www.microsoft.com/windowsazure/

36

http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/

2.4 Cloud Computing

an IT department can profit from using services on a Cloud infrastructure. Thus, it is
possible to cheaply introduce some sophisticated software from a SaaS provider that sup-
ports business process tasks or to setup some services on an IaaS or PaaS infrastructure
for offering products/information to customers. The initial fixed costs for buying hard-
or software and the resulting costs for maintaining this hard or software often hamper the
realization of risky business ideas. Additionally, possible projects that do not justify the
purchasing of high performance computing systems, e.g. projects with only a temporary
high resources demand, are now possibly realizable.

The Cloud computing products help to face these barriers with simple and relatively cheap
mechanisms. Today, it is possible to offer services in a simple and scalable way without
initial costs in each of the three Cloud computing layers. Each layer offers different means
to provide some kind of services. This allows for using of professional software support
and to offer scalable services with nearly no initial costs. The scalability of such systems
guarantees quality of service so that customers are not scared by possible downtimes due
to overloaded services. A famous example for this is the “Animoto” service that started
with only 50 instances on the Amazon EC2 cloud and scaled up to 3,500 instances within
three days after integrating the service in facebook [34].

37

2 Fundamentals

38

3 Requirements for secure Workflow
Orchestration

Contents
3.1 Business vs. Scientific Workflows 40

3.1.1 Business Workflows . 41
3.1.2 Scientific Workflows . 42

3.2 Orchestration as a Service . 45
3.3 Requirements . 47

3.3.1 Basics . 48
3.3.2 Workflow Management . 52
3.3.3 Workflow Execution . 53
3.3.4 Requirements Summary . 55

The first hype for Web services as a key technology for integrating information systems
is over. Today, especially in the business domain, means like SOA and Web service or-
chestration have been established in a productive manner. In eScience, workflows have
been gaining more and more importance during the past few years. These experiences
from both domains allow us to state that SOA is a feasible concept for realizing flexible
IT landscapes.

In the business domain, the integration of enterprise information systems is called Enter-
prise Application Integration (EAI) and is a well-established means to powerfully support
business workflows on the technical system layer. EAI offers extensive benefits for the
management, maintenance, and reusability of IT systems. It helps the employees to focus
on their work instead of hampering with different graphical interfaces for each applica-
tion, entering the same data twice, or waiting for data to be processed [108]. A fully
integrated system will ease the everyday work, accelerate business processes, thus saving
money and making the company more competitive.

In the scientific domain, scientists often use only small self-provided infrastructures with-
out the support of an IT department. Compute resources are only required temporarily
so that establishing local data centers in many scientific institutions is unprofitable. But
the complexity of scientific problems has increased over the recent years and therewith
the demand for high performance compute resources has grown. This increases the need

39

3 Requirements for secure Workflow Orchestration

for new cooperations between scientific institutes to allow the operation of large high per-
formance data centers and a collaborative usage of these resources. This paradigm for
distributed computing in science is called electronic science or short eScience. eScience
provides adequate means for collaborative research. It enables scientists – not only com-
puter scientists – to access relevant resources and tools for handling complex scientific
questions from the respective domains.

This chapter gives an overview of the two main application domains, information sys-
tem integration for science and business. It describes these two scenarios and points out
the differences. Furthermore, we present a new idea for information system integration
called Orchestration as a Service that facilitates the usage of outsourced orchestration
services.

3.1 Business vs. Scientific Workflows

Technologies for distributed computing like Grid and Cloud computing are used in many
different application domains. Grid computing originates from the scientific community
but has also been adopted by large enterprises, e.g. the Enterprise Grid. The basic Cloud
computing idea is lead by the Amazon Web Services offering numerous services to cus-
tomers ranging from accessing the online shop up to requesting human labor1. Addition-
ally, Amazon provides compute and data storage services with thousands of customers
from all over the world, mainly originating from the business domain. Recently, scientists
started to explore the advantages of Cloud computing for their work and adopted Cloud
technologies for eScience. In this field, Grid and Cloud technologies (especially IaaS) are
partly competitive technologies, both having advantages and disadvantages regarding to
different scientific scenarios and the respective requirements to the compute infrastruc-
ture.

Before defining the requirements for the Grid and Cloud services orchestration engine pre-
sented in this dissertation, we have a closer look on both scenarios especially with respect
to the people and roles who are involved in workflows’ life cycles. Since the orchestration
engine originates from the BIS-Grid project that had an explicit focus on business work-
flows, the architecture will primarily target business demands, but considering scientific
computing requirements as far as possible.

1https://www.mturk.com/mturk/welcome

40

3.1 Business vs. Scientific Workflows

Modeling

Deployment

Execution

Monitoring

Analysis
Business specialist

Employee

IT specialist

Business analyst

IT specialist

(a) Business Process

Experiment/

Workflow

Design

Workflow
Preparation

Execution

Analysis

Hypothesis

Scientist

(b) Scientific Process

FIGURE 3.1: Process Life Cycle and Roles

3.1.1 Business Workflows

The usage of workflow management systems has a long tradition in business computing.
Since the 90s, used techniques evolved and are a well established means for supporting,
monitoring, and improving business processes today. Modern workflow management and
execution frameworks are well tested and provide a comprehensive range of functionality.
Executable workflows are used for mapping business processes to a technical system level
and establishing a high level of IT support. By integrating notification systems or special
Web services for human interaction, it is even possible to directly integrate employees into
the workflow on this technical level.

Goal

The goal of workflow management in business computing is to enable, accelerate, and
support business processes. Such business processes can be manifold, representing of-
ten an important part of the company’s business core competence. Business processes
are long-living. Several life cycle iterations are usual before a production-level quality
of a process has been achieved. Such stable processes are often used as building block
for standard enterprise tasks [15]. The productive character of business workflows is of
paramount importance, as customers pay for the execution expecting a guaranteed quality
of service level for functional amd non-functional properties.

41

3 Requirements for secure Workflow Orchestration

Life cycle

The structure of a modern enterprise is composed of several departments. The realization
as well as the execution of each business process normally requires the cooperation be-
tween a couple of those departments. Specialists continuously analyze the workflows for
finding weaknesses and improving their efficiency.

The typical life cycle of a business workflow consists of five consecutive phases: model-
ing, deployment, execution, monitoring, and analysis. Each of these phases is conducted
by some expert roles in Figure 3.1(a). Hence, each phase requires an expert who is respon-
sible for the particular life cycle phase. Generally, we can distinguish such specialists ac-
cording to their roles [113]. Analogously, each specialist uses his own highly specialized
tool that requires expert knowledge of the respective domain. The following enumeration
describes the five phases, the roles, and examples for the tooling:

• Modeling: A business specialist models the new process, e.g. using the Business
Process Modeling Notation (BPMN) [105]. For typical business processes, the pro-
cess control-flow is more important than the data-flow. This means that generally an
activity does not start until another activity is finished [93]. If a process is modeled
for the first time, it is very helpful to model the as-is state in advance as a starting
basis.

• Deployment: An IT specialist, well trained in SOA and executable workflow mod-
eling, transfers the process model into an executable format (e.g. WS-BPEL) and
deploys it on the company‘s workflow engine.

• Execution: The employees or customers are executing the workflow. Usually, a
company provides a client application or Web page to provide an interface for in-
teraction with the workflow.

• Monitoring: Another IT specialist collects monitoring data, on the one hand for
finding failures and technical bottlenecks in the workflows and the IT infrastructure.
On the other hand he collects data as input for the business analysis.

• Analysis: To improve the business process, a business analyst examines monitored
data. The focus of this analysis is on business indicators for identifying errors or
non-optimal order of activities in the process.

3.1.2 Scientific Workflows

Nowadays, scientists have to deal with similar problems like companies. The growing
complexity of experiments creates an increasing demand for resources and cooperation
of several scientific institutes. This raises the need for a flexible integration of various

42

3.1 Business vs. Scientific Workflows

information systems, compute resources, and scientific instruments [15]. More and more
scientific applications, compute power, and experimental data are becoming available as
service via the Internet and scientists use these resources conjointly. They require an
high quality of service especially for security, data provenance, and remotely executed
computations. In eScience and in the context of Grid computing, such consortia are called
virtual organizations.

As example, numerous scientists evaluate data that is collected at the “Large Hadron Col-
lider” (LHC). The LHC experiments produce peta-bytes of data that is made available
over the Internet to scientists all over the world. These scientists need compute power
for processing this information in their experiments and evaluations. Beside the advan-
tages, such as availability of the data, cooperative scientific computing raises new techni-
cal challenges such as the flexible handling of diverse data formats. Scientists often have
to integrate experimental data, e.g. raw data from scientific instruments or proprietary data
formats from partners. SOA and workflows provide means to handle such different data
formats and services. The scientists are enabled to combine data sources and services to
transform data and to collect the information from different sources and process them on
many compute resources.

In the recent years, the idea to adapt workflow management systems from the business
domain to model arose, execute, and monitor scientific workflows. Several papers and
articles like [51, 93, 113, 15] analyzed the main characteristics of both workflow domains
and stressed out the differences in requirements. [15] classified four kinds of workflows
that are similar in both domains but also identified some diversity in the typical workflow
life cycle.

The characteristics of stable and productive workflows can also be found in science work-
flows, especially if non-IT experts or domain beginners only use workflows as recurring
tasks instead of modifying workflows. As example, energy minimization in molecular
science experiments is a standard task that requires a fixed workflow. In contrast to such
standard tasks, a lot of scientific workflows show highly dynamic properties. Scientists
have to build new workflows from the scratch, modify activities from template workflows,
or change the experimental design to improve results. Such activities require the scientist
to be enabled to handle all workflow life cycle phases.

Goal

Ludäscher [93] describes the goals of scientific workflows twofold. On the one hand, it
is to save scientists’ time by enabling them to deal with domain specific aspects rather
than dealing with complex data management and software issues. On the other hand,

43

3 Requirements for secure Workflow Orchestration

workflows should save processing time through optimizing the utilization of available
resources.

In e-Science, scientists use information systems and compute resources to confirm or
invalidate their hypotheses. Since compute resources and domain specific applications
become available for many scientists, many experiments are done as so-called in-silica
experiments because of simplicity and cost reduction. In-silica means that the experi-
ments are simulated on compute resources instead of real experiments. This allows the
scientists to process hundreds of experiments in a short time and without costs for scien-
tific equipment or dangerous materials. Of course, this requirements for compute and data
storage resource for in-silica experiments cannot be provided by a single institute. Thus,
the need for resource sharing and cooperation has become essential. This need shall be
met by scientific workflow execution.

Workflows also provide the possibility to clearly describe a complex experiment and guar-
antee reproducibility and provenance of scientific results.

Life cycle

A typical scientific life cycle is similar to the life cycle of a business workflow, but the
importance of life cycle phases differ. Figure 3.1(b) on page 41 presents a scientific work-
flow life cycle (cf. [93]). The already described explorative character of scientific work-
flows results in only few workflow iterations. For a scientist, the experimental design and
analysis phases are often more important than a stable workflow execution.

The life cycle depicts the most significant difference between business and scientific work-
flows: A single scientist is responsible for all life cycle phases. This requires compre-
hensive knowledge about workflow modeling, execution, and result analysis. Hence, a
scientist needs an easy-to-use but extensive tooling support.

The scientific workflow life cycle phases are the following:

• Hypothesis: The scientist starts with designing the experiment according to his
hypothesis or experimental goals.

• Experiment/Workflow Design: To prove the hypothesis, the scientist designs a
workflow. This includes the selection of required data, applications, and compute
resources. Possibly former or third party workflows are reused, integrated, or mod-
ified.

• Workflow Preparation: This phase includes the allocation of compute resources
and provisioning of data, i.e.upload data in repositories. The scientist must deploy

44

3.2 Orchestration as a Service

the workflow or use workflow design tools that implicitly generate an executable
workflow description and make it executable on a workflow engine.

• Execution: A typical scientific workflow consumes data and produces new data.
Scientific workflows represent the data-flow rather than the control-flow. Due to the
explorative and long-running properties of scientific workflows, the scientist often
requires runtime monitoring to check progress and evaluate intermediate results.
Sometimes an online reconfiguration of the workflow is desirable.

• Analysis: During the data reprocessing, the scientist generally checks the produced
data, whether it confirms the hypothesis or not. Sometimes, it is necessary to re-run
the experiment with different parameters, to slightly change the workflow descrip-
tion, or to adjust the hypothesis and re-start the workflow life cycle.

3.2 Orchestration as a Service

A Web service orchestration engine is a complex system that is costly to setup and to
maintain. Running a commercial engine can exceed the IT budget for scientific institutes
as well as for small and medium enterprises. But workflow engines are a central compo-
nent of modern SOAs and helpful for flexible integration solutions. As already presented,
workflows are beneficial for both domains, science and business.

Scientists have already noticed the lack of resources for running an orchestration engine
on their own. Therefore, domain specific VOs create powerful tools for modeling and
executing workflows. Numerous examples for such projects exist such as projects for
molecular chemistry, high energy physics, or astronomy. For these cooperations, the usage
of Grid computing technologies is a common means.

As described in Section 2.4, Cloud computing offers technologies to use resources, infras-
tructures, and software on-demand that are hosted externally at a service provider’s data
center. SOA and Web technologies create the basis for information system integration,
Grid and Cloud computing. Thus, the ideas to offer a service that provides capabilities
for service orchestration in a Cloud computing fashion come into mind. Such a service
shall be able to integrate various kinds of Cloud services as well as services hosted in the
company’s IT department. In the same time, it shall be applicable to several application
domains to address a high number of possible customers. Its architecture must be built on
standards to reach a high confidence level. Since different security technologies are used
in Web, Grid, and Cloud services, it shall be expandable to support new Web services and
security types. We named this idea Orchestration as a Service (OaaS).

OaaS is a central topic in this dissertation and arises additional requirements for the design
of a workflow engine that should be applicable this context.

45

3 Requirements for secure Workflow Orchestration

Scientist

manage
execute

Orchestration

business

science

Orchestration
Platform

manage execute

kflWorkflow
Designer Employee

FIGURE 3.2: Orchestation as a Service scenario

Figure 3.2 depicts the general idea of Orchestration as a Service embedded in the IT land-
scape presented in Section 1.1 on page 3. Again, the data centers are annotated with
products’, companies’, middlewares’, and Cloud computing providers’ names to illustrate
the diversity of the service landscape. Generally, an OaaS provider offers means to man-
age self-designed workflows and execute these workflows in a secure and privacy-aware
manner. Concurrently, it shall be flexible enough to support various kinds of services and
security requirements. Ideally, the OaaS workflow engine is be applicable for business as
well as for scientific scenarios.

With the default terms of Cloud computing, an OaaS platform can be seen as a specialized
form of Platform as a Service (PaaS) from the workflow developer’s view. The developer
gets a platform to deploy and also to offer workflows to his users. Such workflows gen-
erate additional value for the users without revealing any internals of the workflow. They
simply use some kind of Web service at a service provider. These are basic characteristics
of the Software as a Service (SaaS) definition (from the workflow user’s view). To make
an orchestration service a Cloud service, OaaS needs to adopt the main non-functional
Cloud computing characteristics as presented in Section 2.4: easy-to-use, pay-as-you-go
pricing, elastic scalability, and on-demand usage [126, 26, 10].

For guaranteeing privacy and security of workflow definition, workflow execution, and
workflow data, a platform for OaaS must be designed as a multi-tenant architecture. This

46

3.3 Requirements

means that workflows must run completely isolated from each other. Furthermore, run-
ning workflow instances and even deployed workflow definitions must solely be visible
for the corresponding workflow administrator and authorized customers. Since the OaaS
platform shall be cheap and competitive, it is necessary to consolidate workflows of dif-
ferent customers on the same hardware instead of providing individual hardware to each
customer. This requires appropriate mechanisms regarding access control and information
filtering according to the user’s identity.

Customers will benefit from OaaS. The usage of a professionally hosted Cloud orchestra-
tion service will lower initial costs for integration of in-house hosted information systems.
Due to the extremely focused business concept of providing the orchestration engine, the
service will reach a higher availability and reliability than self-maintained workflow en-
gines. It is maintained by specialists, always up-to-date, and probably even a 24/7 support
is available.

3.3 Requirements

To achieve the benefits listed above using orchestration services in business and eScience
and to face the presented challenges, the workflow engine architecture must fulfill several
requirements. The implementation of a technical solution for complex integration scenar-
ios requires a flexible and expendable workflow engine that offers high security standards
and connects to different modern Internet services.

This section lists functional and non-functional requirements that are firstly important
business collaborations as well as for eScience. In doing so, we include the two following
application scenarios:

• the integration of Internet-available stateless and stateful Cloud and Grid services
in business processes (and eScience) where today’s workflow engines only support
very limited security capabilities.

• the integration of Cloud and Grid services as added value using the “Orchestration
as a Service” model. Here, the workflow orchestration itself is the product that is
offered to customers.

Since this work focuses on orchestration, we basically limit the requirements analysis
to the technical management and execution of workflows. These tasks are mandatory
for both life cycles. Topics like workflow modeling, business process analysis, and the
interpretation of intermediate results are only of minor importance. Some requirements
have been investigated in the scope of the BIS-Grid project and are published in the project
deliverable 3.1 [62] that mainly considers the integration of Grid services for business
scenarios.

47

3 Requirements for secure Workflow Orchestration

The here presented requirements are based on that deliverable but we also consider new
requirements arising from the OaaS scenario. Furthermore, [40, 113] provided further
ideas to refine this early requirement analysis.

3.3.1 Basics

The following requirement are general and not categorized to workflow modeling or exe-
cution.

RQ1: Standards

The business domain has been developing workflow management systems for the past
two decades. The in this process established methods and standards are well tested in
several hundred productive environments. To increase the acceptance of the workflow
management solution it shall be based on a mature fundament. In the recent years, several
scientific projects have developed workflow engines as well (see Chapter 7), but these
engines were tailored to different scientific application domains and hardly applicable to
other domains. There is no common standard for Grid service orchestration in eScience
as the de-facto standard WS-BPEL in the business domain.

Several scientists evaluated the applicability of commercial workflow management en-
gines and standards for eScience. They try to adopt the WS-BPEL workflow language
and the whole business process management systems to model, execute, and monitor
scientific workflows and listed missing features for an efficient reuse of this technology
(cf. [112, 61, 39, 111]).

The adoption of existing standards allows for reusing standard compliant components
and the the adoption of already existing third-party tools. Additionally, such standard-
ized components are exchangeable with other standard-compliant interfaces which partly
increase system and vendor independence.

RQ2: SOAP communication protocol

SOAP is the basic technology for Web service message exchange as shown in the funda-
mentals (see Chapter 2). It is used in several modern Web service development frame-
works like Apache Axis2, XFire3 and its successor Apache CXF4. These frameworks also
form the basis for modern Grid middleware systems like UNICORE 6 (XFire, Version 1.6)

2http://ws.apache.org/axis/
3http://xfire.codehaus.org/
4http://cxf.apache.org/

48

http://ws.apache.org/axis/
http://xfire.codehaus.org/
http://cxf.apache.org/

3.3 Requirements

and Globus Toolkit 4.0.8 (Apache Axis, Version 1.2 RC2) as well as for Cloud comput-
ing offerings and hundreds other publicly available Web services. For example the Cloud
services “Amazon EC2” and the SaaS provider “Salesforce” support a SOAP interface as
well as traditional Web services like the “PayPal” payment service or “eBay”.

Furthermore, SOAP is a standard that matured over the past decade and is evaluated as
suitable for Enterprise Application Integration and workflow processing. Several open
source and commercial workflow engines are available to support SOAP-based workflow
orchestration. The workflow orchestration engine developed in the context of this disser-
tation shall be compatible to existing EAI solutions. Hence, we demand the support of
SOAP as message exchange protocol to also facilitate the communication with modern
Grid middlewares and Cloud services.

RQ3: Basic Activities Support

Emmerich et al. [39] demand support for so-called basic activities to orchestrate Grid ser-
vices. Here we generalize this requirement. An orchestration must be capable of invoking
Web, Grid, and Cloud services and to model the control- and data-flow between such invo-
cations (cp. RQ10). Furthermore, it must support the assembly/extraction of data to/from
message content. Especially in the context of Grid computing, it must be possible to
submit jobs to Grid middleware systems and to initiate third-party data transfers between
Grid sites.

RQ4: Role-based Access Control

Role-based access control is a standard procedure in business IT. The access to workflows
and services is restricted to company roles actually participating in the business process.
The user normally authenticates him against the system with a user name and password.
Sometimes, he has to choose one available role for the current session to realize separation
of duties. Access rights are not granted to users but to roles.

As described in Section 2.3, Grid computing uses the concept of virtual organizations to
grant access to resources. The precondition for becoming a VO member is the possession
of a valid Grid certificate issued by a Grid-wide accepted Certificate Authority. Though
there are also different roles in a virtual organization, the access rights to resources are
mostly granted on the basis of virtual organization membership.

As a requirement for the Grid and Cloud workflow engine, we demand the ability to
handle role based access control as well as certificate based authentication. Especially for
usage szenarios that must enable credential delegation – as required for accessing Grid

49

3 Requirements for secure Workflow Orchestration

resources from a third-party workflow engine – personal certificates for each user are a
core requirement.

RQ5: Secure Communication

When executing workflows across enterprise boundaries, the cheapest solution is to use
the Internet as communication platform. Solutions like VPNs are adequate to enable
an end-to-end communication between partners but they are inflexible on the other side.
The integration of new partners in VPNs is costly since both partners must set-up new
connection endpoints. As Cloud computing offers various capabilities to deploy and use
services as well as preserving the possibility to rapidly exchange a partner or to use an
identical service at another provider, we need a more flexible way for communication.

Therefore, we demand directly encrypted end-to-end communication between the work-
flow engine, users, and invoked services.

RQ6: Integration of new service providers

Cloud services evolve quickly and the market grows steadily. To integrate Cloud services
in workflows the workflow engine must be enabled to handle various security mechanisms
for authorization and authentication.

This demands a flexible mechanism for integrating new security mechanisms into the
workflow engine. It must be possible to deposit credentials as well as to implement sup-
port for additional security technologies.

RQ7: Hierarchical Composability

The complexity of workflows (business and scientific) can be very high. Hence, it must be
possible to structure workflows in sub-workflows that can be seamlessly integrated into
higher level workflows.

RQ8: Stateful Services Orchestration

Grid services are implemented according the WSRF standard that explicitly enables Web
services to manage and to offer standard means for manipulating a Web service instance
state. The workflow engine must be capable of orchestrating stateful services. This
includes the creation, invocation, and destruction of WSRF-compliant Grid service in-
stances as well as invoking the operations for state manipulation.

RQ9: WSRF-compliance

A state is an inherent property of workflows, for instance, the current execution progress,
content of workflow variables, or involved partners. To enable the retrieval and manip-

50

3.3 Requirements

ulation of workflow states in a standard manner (cp. RQ1), the workflow orchestration
engine should provide the workflows as WSRF-compliant Grid services.

One major advantage of WSRF-compliant services is the standardized addressing of in-
stances. The standard defines that the instance identifier must be part of the addressing
information in the SOAP header. This enables the workflow engine to identify the target
workflow instance before delivering the message to the workflow service. Today’s work-
flow engines use correlation sets for mapping messages on workflow instances (on basis
on message payload as identifier). These correlation sets are complex and must be defined
separately for each workflow. The workflow service implementation can only determine
the workflow instance after the Web service framework has passed the message to the
workflow service.

The usage of an state-aware Web service framework such as UNICORE 6 allows an access
decision before passing the message to the service. For making an access decision, the
security system can also consider data from the workflow instance’s state as well as the
workflow owner because the instance is explicitly identified. This enables more sophisti-
cated mechanisms for access control system and access rule definition. Additionally, the
explicitly marked instance identifiers are useful for load balancing issues.

RQ10: Control-flow and data-flow modeling

Business workflow modeling focuses on the control-flow which is the coordination and
structuring (sequential, parallel) of activities. In contrast, the data-flow refers to the path
of input and output data between workflow activities. The control-flow is in the focus of
business workflows since it describes the chain of activities in a business process. Sci-
entific workflows are rather data-flow oriented. The availability of data at the processing
nodes and the streaming of data from one node to another are more important than the
separated execution of tasks.

Since, passing of large amounts of data through an orchestration engine would require
extremely high capacity regarding bandwidth and compute power, the workflow engine
must be capable of initiating and controlling third-party data transfers. The process de-
signer shall be able to model both, control- and data-flow.

RQ11: Workflow Isolation/Design for multi-tenant usage

The whole system shall be designed to be used in a multi-tenant environment. This means
that several customers work on the same hardware without knowing each other. For every
customer it seems that he uses a dedicated instance of the service. However, modern
Cloud computing services use the hardware resources in a shared way to profit from a
higher resource utilization and provide the services cheaper. For this, Cloud providers
employ technologies as virtualization to separate customers from each other.

51

3 Requirements for secure Workflow Orchestration

The targeted OaaS scenario requires a workflow engine that serves as a shared platform
for several customers. However, each of these customers shall only be aware of his own
workflows. Adequate means must assure that the access to is prohibited for foreigners and
that a deployed workflow cannot affect workflows of other customers.

RQ12: Scalability

In both, business and scientific scenarios, a workflow engine has to manage the deploy-
ment of workflows but also the execution of many workflow instances. In particular, if the
workflow engine is used in the OaaS scenario, it has to manage various workflows from
various domains representing a multitude of execution behaviors. The workflow engine
must be capable of scaling with the number of workflows and must support load balancing
abilities.

3.3.2 Workflow Management

Workflow Management comprises the deployment and undeployment of workflows. The
following requirements target the component that deals with these activities.

RQ13: Hot-deployment

Workflow Management operations such as deployment and undeployment should not af-
fect running workflows. Thus, the workflow engine needs an hot deployment mechanism
that allows the deployment and undeployment without restarting any component.

RQ14: Functional Correctness Tests

The demands sketched in Emmerich et. al [39] imply testing functional correctness of
invoked services before deploying a workflow like automated UNIT tests. As this re-
quirement does not directly affect workflow execution, it is a shall-criterion only.

RQ15: Workflow Execution Statistics

Traditional business workflow management systems collect data about finished and cur-
rently executing workflow instances for enabling business activity monitoring (BAM).
This is an important task of the business workflow life cycle and helps for analyzing the
effectiveness of the process, supporting business decisions, or detecting problems during
the added value chain. Therefore, it is required to enable the collection of process infor-
mation not only for a single process but also for deeper analysis of information retrieved
from global knowledge.

52

3.3 Requirements

3.3.3 Workflow Execution

The execution of workflows is the primary function of each workflow management sys-
tem. These requirements shall be considered for the design of the workflow execution
component.

RQ16: Web Service Interfaces

A workflow must provide a Web service interface that offers the full range of functionality.
This will allow for handling workflows as a fully integrated part of a SOA. Furthermore,
this will simplify the hierarchical composability (see RQ7) of workflows since higher
level workflows can use standard invocation mechanisms to invoke a workflow as part of
a more abstract process.

RQ17: Variables

To integrate and orchestrate information systems, the workflow engine must be capable
of temporarily storing some data for reusability in a later message exchange . This allows
for passing message content from one service to another. Furthermore, simple processing
of information with means of WS-BPEL is possible, for instance the aggregation of data
from several services. Even more important is the ability for using such data for control-
flow steering.

RQ18: Fault/Failure Handling

During workflow execution, we have to deal with two kinds of faults. On the one hand,
business faults such as the unavailability of a flight in an holiday booking process includ-
ing hotel, flight, and rental car occur. On the other hand, we have to deal with technical
failures, such as a temporarily unavailable service.

Business faults need adequate compensation mechanism to roll back previously processed
activities. Normally, these activities are explicitly modeled in the business process de-
scription as failure cases. However, a bad response of an invoked service is not limited
to business processes. In scientific workflows, such “business” faults can be the unavail-
ability of data or a negative response from a service that automatically checks the correct-
ness of intermediate results. This possibly also requires the compensation of previously
changed data. In contrast to technical faults, business faults are reported as SOAP mes-
sages.

Technical failures – such as a missing Internet connection or service unavailability –
cannot be compensated through workflow logic. Policies like retrying or automatically
switching to an equivalent service can enable some failure tolerance but not all errors are
temporary or can be masked. If such policies do not work properly, the workflow will fail

53

3 Requirements for secure Workflow Orchestration

due to a non-executable activity. In this case, at least the information at what activity the
failure occurred must be made available for the workflow customer as debugging data.

RQ19: Workflow Monitoring

Users must be enabled to monitor the progress of the overall workflow as well as the ex-
ecution state of each workflow activity. This is important for long running workflows,
where the user has to check intermediate results in eScience. Furthermore, this informa-
tion can be used for debugging erroneous processes when testing the workflow or to detect
technical faults during workflow execution.

RQ20: Persistence

All relevant workflow execution data shall be stored persistently. This shall enable the
recovery of completed workflows or at least the retrieval of the latest workflow state before
the workflow engine crashed.

RQ21: Human Interaction

Human interaction is extremely important in business processes. Often such processes
are only semi-automated and need some human input. The workflow framework should
provide meachanisms allowing humans to interact with the workflow. Typical human
interaction activities are the request for information as the current workflow progress or to
make a decision that influences the workflow’s actual executed control-flow. For example
according to the above mentioned travel agency scenario, a employee has to check the
automatically chosen flights before booking them. Depending on his answer the workflow
books the flights or repeats the selection process.

RQ22: Quality of Service Properties

When workflow customers are charged for the usage of a workflow, a certain service qual-
ity level must be guaranteed. This includes both functional and non-functional properties
like reliability, availability, or response time. This requirement is closely related to some
other requirements like the handling of technical faults (RQ18), the persistence of process
information (RQ20), and scalability (RQ12).

The realization of quality of service (QoS) guarantees is challenging. On the one hand it
is complex to calculate an assessment of QoS of a workflow that is potentially composed
of dozens of services including human interaction as well as services that are hosted by
third-party enterprises or other administrative domains (e.g. Grid sites). In addition, the
control-flow of a workflows can be complex as including several compensation activities
for different faults or it is highly dynamically if it depends on the results of preliminary
executed activities. On the other hand, it is impossible to establish a judicial applicable
monitoring system that can determine what service provider or whether the workflow is

54

3.3 Requirements

responsible for the failure in such a spacious environment. This situation gets even more
worse if customers integrate arbitrary or at least self provided services in their work-
flows.

RQ23: Accounting and Billing

An adequate accounting and billing system is mandatory for a commercially offered for
workflow execution. Often accounting and billing data is based on monitoring informa-
tion: “Who executed which workflow?” and “When was the workflow executed?” are
examples for accounting questions. The workflow system should provide mechanisms for
collecting this information. The pricing model for the executed workflow depends on the
contract between the provider and the customer.

RQ24: Adaptivity

As described, some scientific workflows show experimental behavior. Scientists often
process their experiments in a trial-and-error way, needing the possibility to adjust the
workflow during execution (ad-hoc changes). This requires direct access of the modeling
tool to the workflow engine. [113].

Moreover, Grid workflows usually require the processing of large amounts of data in
several steps. It should be possible to specify rules for resource allocation, so that some
tasks are executed on the same infrastructure where the data is stored to avoid unnecessary
time-consuming file transfers of intermediate results.

RQ25: Provenance

For scientists provenance of data is very important. Experiments have to be repeatable,
even in a dynamic environment like a SOA. Sonntag et. al [113] state that business work-
flow management systems collect information on workflow instance level for an audit trail,
but this does not suffice for scientific scenarios. The workflow shall log exact information
about search, selection, and integration of all involved services.

3.3.4 Requirements Summary

Requirement Summary
Basics

RQ1: Standards Reuse of commonly accepted standards, such as
SOAP and WS-BPEL.

RQ2: SOAP communication
protocol

The usage of SOAP as default communication
protocol for message exchange.

RQ3: Basic Activities Support: The workflow language and engine must support
all necessary activities for workflow enactment.

55

3 Requirements for secure Workflow Orchestration

Requirement Summary
RQ4: Role-based Access Con-
trol:

The workflow engine must consider user roles
for access control.

RQ5: Secure Communication: The workflow engine must guarantee security
during message exchanges, e.g. Transport Layer
Security.

RQ6: Integration of new service
providers:

It should support a simple integration of new ser-
vice providers.

RQ7: Hierarchical Composabil-
ity

Workflows must be callable again from higher
level workflows.

RQ8: Stateful Services Orches-
tration

The handling of stateful services must be sup-
ported.

RQ9: WSRF-compliance The workflow must provide itself as WSRF-
compliant service.

RQ10: Control- and data-flow
modeling

The workflow description language must be ca-
pable of modeling the control and data-flow.

RQ11: Workflow isolation The system must be realized as a multi-tenancy
architecture.

RQ12: Scalability In the context of OaaS, the system shall be scal-
able for several hundred customers.

Workflow Management
RQ13: Hot-deployment The deployment and undeployment of work-

flows without restarting any component.
RQ14: Functional Correctness
Tests

It shall be possible to test invoked services for
functional correctness before deployment.

RQ15: Workflow Execution
Statistics

The system shall provide some statistics about
workflow execution for further analysis.

Workflow Execution
RQ16: Web Service Interfaces The workflow must provide its interface by Web

service means.
RQ17: Variables It must be possible to define variables and steer

the control-flow with its content.
RQ18: Failure/Fault Handling Failures and Faults must automatically be cor-

rected or coped as far as possible.
RQ19: Workflow Monitoring Each workflow must provide some information

about the workflow progress and its state.
RQ20: Persistence The state of the system must be stored persis-

tently to allow a recovery after a crash.

56

3.3 Requirements

Requirement Summary
RQ21: Human Interaction The assignment of tasks to humans during work-

flow execution is very helpful for business pro-
cesses.

RQ22 Quality of Service Proper-
ties:

It shall be possible to offer the workflows with a
certain degree of QoS.

RQ23 Accounting and Billing: The workflow engine shall collect and provide
accounting and billing information.

RQ24 Adaptivity: It shall be possible to adapt the workflow at run-
time.

RQ25 Provenance: The workflow shall provide provenance infor-
mation after execution.

TABLE 3.1: Review of the architecture with respect to the requirements

57

3 Requirements for secure Workflow Orchestration

58

4 Orchestration Architecture

Contents
4.1 Architecture . 60

4.1.1 Technology Selection . 61

4.1.2 Main Component Overview 67

4.1.3 Workflow Management Service 69

4.1.4 Workflow Service . 72

4.1.5 WS-BPEL/WSRF instance mapping 74

4.1.6 Load balancing . 76

4.1.7 Fault handling . 80

4.2 Workflow Security . 81
4.2.1 Security Infrastructure Recommendation 83

4.2.2 Confidentiality . 86

4.3 Integration of Grid and Cloud Services 87
4.3.1 BPEL Pattern for WSRF-compliant services 87

4.3.2 External service invocations 90

4.4 Human Interaction . 92

The integration of various service types in a secure and flexible way offers advantages
for both application domains: business and science. Scientists are enabled to combine
the complex Grid service infrastructures with free, commercial, and self-provided ser-
vices. Enterprises are empowered to extend their business processes by integrating Grid
and Cloud services to cooperate with partners or to offer value added workflows in the
context of the Orchestration as a Service paradigm. In return, OaaS is also interesting
for scientists since it allows for providing standard experiments encoded as workflows to
junior scientists or students or for provenance reasons.

The realization of such an integration infrastructure must meet many requirements. This
chapter describes the architecture for the secure orchestration of Grid and Cloud services;
a workflow engine that enables workflow execution across several administrative domains
as it integrates services that require different security mechanisms. The general concepts
of the architecture are illustrated by reference to the UNICORE 6 Grid middleware system
but are also applicable to other service frameworks.

59

4 Orchestration Architecture

The chapter is structured as follows: Firstly, we discuss the selection of base technologies
and standards to realize the architecture. In this process, we consider the requirements
from Section 3.3. The major goal is to integrate various kinds of services into one work-
flow. Section 4.1 presents the overview of the architecture, resulting problems, and our
solutions to these problems.

Secondly, in Section 4.2 outlines a security infrastructure that is applicable to the idea
of Orchestration as a Service. It must be possible to integrate several existing identity
management systems from companies or scientific institutions to a low a concurrent us-
age. Additionally, access control must be implemented in a fine-grained and role-based
manner.

Section 4.3 addresses the integration of external services into workflows. On the one hand,
this includes the handling of stateful WSRF-compliant services in a WS-BPEL workflow
and on the other hand a plug-in technology to support various security mechanisms for
the invocation of external services.

The chapter concludes with a short overview on how to integrate human interaction into
workflows without extending the orchestration language.

4.1 Architecture

The first important decision is not to create a new workflow engine from the scratch but to
build upon an existing and well tested business process management system. Today, open-
source business process management systems are available that are well tested and already
used in a productive manner. Furthermore, existing solutions from this domain already fit
into the business process life cycle. The architecture will extend a workflow engine to
meet the requirements for cooperations between enterprises. Since the engine originates
from the business domain, this section outlines how to integrate Grid and Cloud services
in business workflows and evaluate the resulting engine with respect to its application to
scientific workflow in Section 6.

In order to integrate various Web service technologies with a special focus on different
security frameworks, an extendable architecture is required. The engine must be build
upon well known and established standards for orchestration and security to reach a high
user acceptance. We discuss these basic standards and technology frameworks in Sec-
tion 4.1.1.

The subsequent subsections present the final architecture. It mainly consists of two service
extensions for workflow management and workflow execution that we implemented as
stateful services into a Grid middleware. Furthermore, we present some ideas about load
balancing and fault handling in this architecture.

60

4.1 Architecture

4.1.1 Technology Selection

The selection of appropriate basic technologies and standards is the first step in the design
process towards the new workflow engine. The chosen technologies should already pro-
vide as many functions as possible so that we can focus on new requirements like security
and the integration of different service types.

As basic technologies, we firstly require a suitable workflow description language, sec-
ondly a basic Web service framework to implement the service extensions, and thirdly an
appropriate workflow framework to interpret this language.

Orchestration Language

The capabilities of the workflow description language essentially influence the capabili-
ties of the resulting workflow engine. For choosing the language, we consider language
related requirements such as RQ2, RQ3. In the following, we discuss different workflow
description languages from both application domains and present the final candidate.

During the past years, the Grid domain created several workflow execution languages
since different scientific communities developed them in parallel. These languages are
often designed for one specific community or application scenario. Thus, there is a mul-
titude of scientific workflow languages and engines today and no commonly accepted
scientific orchestration standard. This fact precludes the selection of the most accepted
Grid orchestration language.

For instance, GWorkflowDL [4] and the Grid Flow Description Language [54] are both
languages based on Petri Nets. Both are capable of orchestrating Globus Toolkit Grid
services. They provide different modeling tools for the respective workflow engine and
language. None of the engines provide Web service interfaces to communicate with the
workflow as demanded by RQ16. This is typical for pure Grid service orchestration en-
gines since Grid workflows are often started directly from the workflow editor. In such
cases, the input data for the workflow is provided by a data source that is directly ad-
dressed in the workflow.

Although most Grid workflow engines do not offer WSDL interfaces, they use SOAP for
communication, because modern Grid services are build upon SOAP-based Web service
frameworks. An integration with arbitrary services is not possible and beyond the scope
of the design goals. Additionally, the capability to manipulate the control-flow based on
workflow data (see RQ17) is missing in most Grid workflow languages.

61

4 Orchestration Architecture

Furthermore, limited failure handling and roll-back mechanisms (RQ18) and e.g. the miss-
ing integration of human interaction (RQ21) are arguments against the usage of a Grid
workflow language as basis for the Grid and Cloud services enabled workflow engine.

Thus, GWorkflowDL and most other Grid workflow description languages are unsuitable
for the technical support of business processes because many requirements such as RQ1,
RQ3, RQ6, and RQ7, are not sufficiently solved. For further details about Grid workflow
systems see Section 7.2.

As described in Section 2.2.1, WS-BPEL is the de-facto standard for workflow orchestra-
tion in the business domain. Therefore, it is a candidate for an orchestration engine that
enables advanced workflows in cooperation scenarios in the business domain.

Since the workflow engine shall be applicable for both domains, we have a closer look
on the applicability of WS-BPEL for the scientific domain: The general appropriate-
ness of BPEL4WS [7] (the predecessor of WS-BPEL) and WS-BPEL for scientific work-
flow execution has already been discussed in several publications. Leymann [89] states
that BPEL4WS fulfills many requirements to orchestrate WSRF-based Grid services.
Dörnemann et al. [38] describes how the WS-BPEL extension mechanism can be used
to introduce new BPEL activities that enable Grid service communication. Both extended
a workflow engine with activities for the creation of a WSRF instance (Grid create), the
invocation of this WSRF instance (Grid invoke), and the destruction of the instance (Grid
destroy). Slomiski [111] describes ideas about how to extend BPEL4WS for the integra-
tion with OGSI [124] and WSRF services. He also uses the BPEL built-in extensibility
mechanisms. Emmerich et al. [39] illustrate their experience in orchestrating scientific
workflows gained from an extensive case study for the automation of a polymorph predic-
tion application, using BPEL4WS. They describe the extent with which BPEL4WS sup-
ports the definition of scientific workflows. Furthermore, they present the evaluation of
reliability, performance, and scalability of the open source workflow engine ActiveBPEL
on executing this complex scientific workflow.

The applicability of WS-BPEL for scientific workflows is closely related to the topic of
the applicability of business workflow management systems for scientific workflows. In
[113], Sonntag et al. state that such systems are limitedly appropriate for the orchestration
of scientific workflows. They conclude with a list of seven points that should be improved
but they do not doubt the applicability of WS-BPEL for scientific workflows. Other publi-
cations [40, 112] also agree that WS-BPEL is generally capable of orchestrating eScience
workflows.

In [56], we discuss the appropriateness of WS-BPEL for Grid service orchestration ac-
cording to the identified requirements. In the following, we outline the advantages of
WS-BPEL with respect to the extended requirement analysis presented in Section 3.3:

62

4.1 Architecture

• RQ2: WS-BPEL is designed as a workflow engine to orchestrate Web services that
communicate with SOAP messages.

• RQ3: The WS-BPEL specification only comprises the communication with SOAP-
based Web services. Security issues and the orchestration of stateful services is be-
yond the goals of the specification. Most Grid and Cloud services are based on stan-
dard SOAP communication and mainly differ technologically in security require-
ments. Hence, we assume WS-BPEL is generally applicable to invoke Grid and
Cloud services if the corresponding security mechanisms are supported (cp RQ6).

• RQ7: The standard defines that each workflow advertises itself as a Web service
using WSDL for interface description. This enables the hierarchical composition of
workflows as workflows can be invoked from higher level workflows.

• RQ10: WS-BPEL allows the definition of the control-flow e.g. by using conditions,
loops, sequences, or flows. Data-flow modeling, as it is necessary for scientific
workflows is more difficult, since the WS-BPEL is designed to be interpreted in a
central orchestration engine. Small data amount can be passed through the engine
as SOAP messages and can also be used to affect the control-flow. But WS-BPEL
is not capable of processing large amounts of data or data streams since there is no
activity for a peer-to-peer data transfer between two invoked services. Furthermore,
SOAP is extremely inefficient as a transport protocol for large data amounts.

• RQ16: Each workflow features a Web service interface with a valid WSDL descrip-
tion. The workflow is accessible via SOAP message exchange pattern.

• RQ17: A WS-BPEL process stores all messages in variables and offers the possi-
bility to define arbitrary variables that can store combined or processed data. The
XPath standard [31] standard enables the selection of single information and the
application of arithmetical, logical, and compares operators. This allows the for-
mulation of complex conditions to alter the control-flow.

• RQ18: WS-BPEL is able to react on business (or logical) faults if the designer
models the workflow in an appropriate fashion. Technical faults such as commu-
nication errors are beyond the fault handling capabilities of the WS-BPEL process
description.

To conclude, we state that WS-BPEL is generally applicable for modeling and executing
workflows that are composed of SOAP-based Grid and Cloud services.

63

4 Orchestration Architecture

Basic Web Service Framework

The second basic technology is an appropriate Web service framework for the implemen-
tation of additional functions. This selection has a major impact on the final design of the
architecture. The workflow engine will combine Web services, Grid services, and Cloud
services. It is obvious to reuse a technology stack from one of these domains. Cloud com-
puting is mainly commercially driven and each provider uses a different technology stack.
Hence, we limit the selection process on freely available and open source service frame-
works for Web services, Grid middlewares, and the possibility of extending an existing
WS-BPEL workflow engine.

Grid middleware frameworks are based on Web service frameworks with additional func-
tions as WSRF-compliance and advanced security. According to RQ9, pure Web service
frameworks are not the first choice. Thus, we choose between

• a Grid middleware that does not provide a WS-BPEL workflow engine implemen-
tation or

• a WS-BPEL engine and the corresponding Web service framework. Such an engine
normally neither supports Grid security standards nor stateful services.

RQ1 states that the architecture should be built upon standards to increase the acceptance,
especially in the business domain. Therefore, we have to consider the costs of extending
one of the above listed components with the additional required standards. The reimple-
mentation of the WS-BPEL standard into a Grid middleware is beyond question because
this would be much too labor-intensive and error-prone and no simple library for orches-
tration is available.

The extension of a WS-BPEL engine seems to be more promising because several open
source WS-BPEL engine like ActiveBPEL and ApacheODE are available and offer ex-
plicit extension points. However, the extension would require at least the following
tasks:

• Firstly, we have to enable the handling of stateful and WSRF-compliant Grid ser-
vices.

• Secondly, we have to implement advanced security and configuration mechanisms
for invoking Grid and Cloud services.

• Thirdly, we have to secure the WS-BPEL engine with Grid security standards and
enable role-based access control. Furthermore, this security architecture must be
capable of serving as a multi-tenant platform.

64

4.1 Architecture

These changes would require wide modifications on the WS-BPEL engine, as the fol-
lowing example shows. Dörnemann et al. [38] patched an early version of ActiveBPEL
workflow engine (version 2.1) to invoke Grid Services by introducing a new WS-BPEL
dialect. They implemented new Grid invoke activities for the creation, the usage, and the
destruction of WSRF instances. However, the creation of such an proprietary WS-BPEL
dialect results in a proprietary workflow engine implementation since the new language
is only supported by this modified workflow engine. This heavily decreases the sustain-
ability and acceptance of the solution. If the WS-BPEL standard evolves, the dialect must
be adapted to the new version. Furthermore, enterprises are not able to keep a perhaps
already existing WS-BPEL compliant engine if they want to integrate Grid and Cloud ser-
vices in their workflows. For these reasons, we agree on neither to modify the WS-BPEL
standard nor to implement new features in the WS-BPEL workflow engine. Hence, we
decided to use and not to extend an existing WS-BPEL engine implementation. Instead
of this, we implement the additional functions as services in a Grid middleware that again
communicates with a standard WS-BPEL engine.

The most famous Grid middlewares are based on Web service technologies: UNICORE 6
is build upon the WSRFlite framework and Globus Toolkit 4 (GT4) upon the WS-Core
framework. In [84], Kübert et al. examined the performance of these two frameworks.
Additionally, they also considered the Apache Muse1 framework which is also WSRF
compliant. They conclude the paper with the statement that “WSRFLite performs dra-
matically better then both GT4 and Muse. GT4 is in general performing better than
Muse” [84]. Additionally, UNICORE 6 already supports some interesting authorization
features like eXtensible Access Control Markup Language (XACML) [41] and a rudimen-
tary role based access control system. In contrast, GT4 is based upon an old version of
the Apache Axis framework and only its security is partly based upon proxy certificates
that are not a commonly accepted standard.

As a result of the issues discussed above, UNICORE 6 is the first choice as basis Web
service framework candidate for the realization of the architecture. This decision partly
meets the following requirements:

• RQ1: UNICORE 6 is based on several well-known and accepted standards such as
WSRF, XACML, and personal X.509 certificates.

• RQ2: UNICORE 6 is based on the WSRFlite framework that is a SOAP based Web
service framework for stateful services.

• RQ4: The identity management system of UNICORE 6 already includes rudimen-
tary roles. Additionally, the UNICORE VO System (cf. Section 2.3.3) that can be
used as sophisticated identity management system is well tested and fully integrated
with UNICORE 6.

1http://ws.apache.org/muse/

65

http://ws.apache.org/muse/

4 Orchestration Architecture

• RQ5: Encrypted HTTPS channels are used for the communication with and be-
tween the UNICORE 6 components.

• RQ9: WSRFlite is a WSRF compliant Web service framework.

• RQ20: The WSRFlite framework stores a service instance’s state persistently.

WS-BPEL Engine

Generally, the solution presented in this section is devised to be independent of the con-
crete WS-BPEL implementation. However, we have to select a workflow engine for the
prototypical realization. Some of the requirements – like monitoring – are only realizable
if the WS-BPEL engine offers some additional services beside the actual Web service
orchestration.

In [62] and in Section 2.2.2, we presented an analysis of several workflow engines and
their main properties. This analysis reveals that fully WS-BPEL compliant and open
source workflow engines are rare. As result of the analysis, ActiveBPEL2 and ApacheODE3

are the most promising candidates. Finally, we chose ActiveBPEL because the engine
is distributed commercially and the vendor4 offers support for the open-source commu-
nity.

Beside the ability to execute WS-BPEL workflows, ActiveBPEL offers some additional
services that help to meet the following requirements:

• RQ13: The deployment and undeployment can be done by moving and removing
deployment archives to/from the deployment directory. Furthermore, ActiveBPEL
offers a Web service to deploy workflows. A Web service for undeployment is
missing.

• RQ19: ActiveBPEL provides a Web Service interface which allows for requesting
a list of all finished workflows and the current execution state of running workflow
instances.

• RQ20: ActiveBPEL can be configured to use a database to store the current execu-
tion state in a persistent manner. That way, this information is still available after a
crash and a process recovery becomes possible.

2http://sourceforge.net/projects/activebpel502/
3http://ode.apache.org/
4http://www.activevos.com/index.php

66

http://sourceforge.net/projects/activebpel502/
http://ode.apache.org/
http://www.activevos.com/index.php

4.1 Architecture

• RQ23: The monitoring information also includes a detailed process execution log
with timestamps. It can serve as basis for accounting data. Hovever, in the default
version, it is not possible to map workflows to users since the log does not include
authentication data.

4.1.2 Main Component Overview

As stated in the previous section, the new orchestration engine architecture should be
composed of the following two components:

1. A WS-BPEL compliant workflow engine that forms the basis for the orchestration
process. We choose the ActiveBPEL workflow engine for the prototype.

2. Service extensions to the Grid middleware UNICORE 6 that realize the additional
functions as required.

The general architectural idea is the realization of the additional functions as a two way
proxy deployed in the Grid middleware. This proxy completely encapsulates the WS-
BPEL workflow engine. The additional functions are completely transparent for the WS-
BPEL workflow engine. By doing so, we distinguish the workflow processing that is done
at the WS-BPEL workflow engine and the additionally implemented functions realized as
the new services.

An overview of the architecture is shown in Figure 4.1. The figure focuses on the most
important aspects of the architecture and does not comprise all details.

The shown WSRF-compliant services, the Workflow Management Service and the Work-
flow Service, are the core service extensions for workflow management and workflow
execution. Together, these services and the arbitrary WS-BPEL engine, in this case Ac-
tiveBPEL, represent the Grid and Cloud workflow engine. For each workflow – de-
ployed via an instance of the Workflow Management Service – one version of the Work-
flow Service will be created using a hot deployment mechanism (RQ13) without restart-
ing. Each Workflow Service represents the functions of exactly one deployed workflow.
Each running workflow is represented as Workflow Service instance according to the
WSRF standard (RQ9).

The prototype realizes the service as Grid Services within the WSRFlite service container
hosted within the UNICORE 6 runtime environment. These service extensions are placed
next to the default UNICORE 6 services but they have no direct dependencies. Of course,
invocations of arbitrary UNICORE 6 services can be done in workflows.

Figure 4.1 also highlights that the WS-BPEL workflow engine is only loosely-coupled
with the additional services via HTTP(S) communication channels. This allows a separate

67

4 Orchestration Architecture

WSRF service container

Workflow
Management Service

Workflow Service

create

W
S-B

P
EL En

gin
e

manage

use

Third-party ServicesExternal
Services

Process
Manager

User

Grid and Cloud Workflow Engine

FIGURE 4.1: Components of the workflow engine

68

4.1 Architecture

deployment of the WS-BPEL workflow engine on extra hardware and the usage of several
WS-BPEL workflow engines with one additional services installation – for example for
load balancing issues (cf. Section 4.1.6).

Despite all these advantages, some problems arise when using such a decoupled architec-
ture without WS-BPEL extensions:

Firstly, the WS-BPEL code that is necessary to call a Grid service is slightly more com-
plex than the introduction of new Grid-specific activities as presented in [38] since we
have to explicitly deal with the invoked services’ instance IDs. A Grid service requires
to explicitly create and destroy the service instance. At least three WS-BPEL invoke ac-
tivities are necessary for the invocation of one stateful service. We tackle this problem
by hiding the complexity from the user and also as far as possible from the workflow de-
signer. Therefore, we present some basic Grid service usage pattern that can be used as
template for these invocations. A sophisticated BPEL editor could present this pattern in
a much simpler way e.g. as a single Grid invoke activity symbol. The pattern is described
in more detail in Section 4.3.1.

Secondly, the realization of workflow management and the mapping between the Work-
flow Service and the service that represents the workflow in the WS-BPEL workflow
engine differs from engine to engine and requires some additional effort for the adaption
to new WS-BPEL engines (see Section 5.3).

Thirdly, we have to deal with two instances of the same workflow, one instance in the
Workflow Service and one instance in the WS-BPEL workflow engine. The mapping of
these two instances on each other also requires additional effort (cf. Section 4.1.5). Fur-
thermore, the retrieval of the current execution state of the WS-BPEL workflow instance
depends on the capabilities offered by the WS-BPEL engine because they are beyond the
scope of the standard. Here, we also need an adaptable solution to deal with different
WS-BPEL workflow engines.

4.1.3 Workflow Management Service

The Workflow Management Service is a stateful service for workflow deployment and
workflow management. It consists of a factory and the actual service implementation, both
services with different WSDL interfaces. The function range comprises operations for
workflow deployment, undeployment, redeployment, and a search operation for deployed
workflows. The use cases are depicted in Figure 4.2. We assume the user to be an expert
who has detailed knowledge about workflow modeling and deployment requirements.

69

4 Orchestration Architecture

FIGURE 4.2: Use cases – Workflow Management Service

The redeployment is an immediate undeployment of the workflow description and a sub-
sequent deployment of the new workflow. Therefore, the redeployment includes the de-
ployment and undeployment use cases that are published in [58] and also presented in this
section.

The deployment starts after creating a new Workflow Management Service instance and
sending a deployment package (see Section 5.4) to this service instance. The deployment
package comprises all necessary deployment information such as the BPEL code, the in-
terface descriptions (partners and workflow) as WSDLs, and the deployment descriptor.

Controlling the access to the Workflow Management Service instance is crucial since
the detailed process information and therewith internal business details are published.
Therefore, each instance has an owner who is identified by his certificate’s distinguished
name. The default owner is the person who created the instance. The default access
policy states that only the owner and administrators are allowed to access the Workflow
Management Service instance, but more fine-grained policies are possible. Additionally,
the instance stores more detailed information about the creator such as the affiliation,
department, role, or similar attributes included in the creator’s identity. With minimal
implementation effort, this information can be made a part of the authorization process as
well.

Beside the default creation method, the factory service provides the possibility to search
for deployed workflow descriptions. As search index the workflow name and as search
parameter regular expression are used. If the the architecture is applied to an OaaS sce-

70

4.1 Architecture

nario, it is necessary to filter the results according to the invokers’s identity to prevent the
workflows of other tenants from being included in the answer (RQ11). The filter therefore
considers the enriched creator information. The search response message contains a list
of Workflow Management Service instance as endpoint references whose names match
with the search parameter and the filter rules.

Since the Workflow Management Service is a WSRF service it publishes its state infor-
mation via the default WSRF operations [14]. In the current prototype, all state informa-
tion of a Workflow Management Service instance is immutable. Only by triggering the
redeployment operation (or a consecutive undeployment and deployment), the state infor-
mation changes. The instance state comprises the packed deployment package but also
detailed information such as the deployment descriptor or the default access policies for
the Workflow Service and the corresponding factory.

During deployment, a new Workflow Service is created and the endpoint reference to the
Workflow Service Factory is published as state information of the Workflow Management
Service instance. This Workflow Service Factory offers means to create new instances
of a Workflow Service that represent exactly one instance of the executable workflow
(cf. Section 4.1.4).

The following enumerations provide a more detailed view on the two main use cases,
the deployment and undeployment of workflows (see [58]). These processes can be sub-
divided into several steps. If one step fails the complete deployment or undeployment
process fails, and the preceding steps must be rolled back. The deployment process is as
follows (compensation steps are omitted for the sake of clarity):

1. The workflow deployment package is stored in a previously specified local file space
and is unpacked.

2. The deployment package is checked for correctness and completeness as far as pos-
sible.

3. The WS-BPEL workflow description and WSDLs are modified to solve the WS-
BPEL/WSRF workflow engine mapping problem. Details about this problem and
the solution are described in Section 4.1.5.

4. The workflow is deployed to the WS-BPEL workflow engine. An adapter concept
allows a deployment process that automatically adapts to the used WS-BPEL work-
flow engine implementation.

5. The corresponding Workflow Service (see Section 4.1.4) is created and registered
with the service container.

Subsequently, undeployment is executed as follows:

71

4 Orchestration Architecture

1. The factory service of the corresponding Workflow Service (see Section 4.1.4) is
deregistered and removed from the service container to prevent the creation of new
Workflow Service instances.

2. The undeployment process waits for the termination of active workflow instances.
The initiator of undeployment may decide whether these instances shall terminate
normally (expiration date is infinite), instantly (expiration date is 0), or at a specific
date (expiration date is specified either explicitly or by a grace time). Except for
normal termination, Workflow Service instance termination is enforced by the un-
deployment process at the given expiration date. By default, the normal termination
strategy is used.

3. The actual Workflow Service (see Section 4.1.4) is deregistered and removed from
the WSRF service container.

4. The WS-BPEL workflow is undeployed from the WS-BPEL workflow engine by
using the above mentioned adapter. It has to be ensured that all data concerning the
WS-BPEL workflow to be undeployed is removed.

5. The workflow deployment package and all related data are removed from the re-
spective local file space.

Since the Workflow Management Service is WSRF-compliant, the instance has a limited
lifetime, but the user can extend this lifetime regularly or even set it to unlimited to prevent
an unintended deletion of the Workflow Management Service that includes the immediate
undeployment of the workflow and all associated services and data.

4.1.4 Workflow Service

The Workflow Service is a generic two-way proxy for workflow enactment deployed in
the service container. As it is WSRF-compliant, it offers all state information as resource
properties accessible via the default WS-Resource [53] operations. For workflow instance
creation, the service provides an additional service factory, the Workflow Service Fac-
tory.

Figure 4.3 illustrates the use cases for the Workflow Service. The main actor is the work-
flow user. Examples for possible other users are scientists who process in-silica experi-
ments or employees who are part of a business process. These workflow users are asso-
ciated with the workflow enactment use cases such as the creation of workflow service
instances, the actual workflow execution, the retrieval of workflow state information for
monitoring, and the alteration of the workflow configuration. The prototype supports the
reconfiguration of external service invocations including the redirection of messages to

72

4.1 Architecture

FIGURE 4.3: Use cases – Workflow Service

equivalent services or the adjustment of security configurations for a successful commu-
nication.

Since workflow users are often no technical experts, simple user interfaces and appropri-
ate client applications should be provided for facilitating the use cases. Such applications
should hide the complexity of WSRF-compliant services for example by implicitly creat-
ing workflow instances when a new workflow starts. The users must not necessarily know
about the internal technical processes.

The second participant in the Workflow Service use cases is an IT specialist. He collects
monitoring information about currently and finished running workflows to get an overview
about the ongoing business processes. This enables the complex process analysis by the
aggregation of state information from several workflow instances.

During the deployment process at the Workflow Management Service instance, a special-
ized version of the generic Workflow Service is registered at the service container that
represents this new workflow. The interface of the workflow service is composed of three
parts:

• The workflow execution operations that are also offered by the workflow’s WSDL
at the WS-BPEL workflow engine.

• The default WS-Resource operations to retrieve and edit the state of the service
instance.

• Additional operations to provide additional information to the workflow for exam-
ple to deposit credentials for credential delegation.

73

4 Orchestration Architecture

WSRF service container W
S-B

P
EL

W
o

rkflo
w

En

gin
e

External
Services

ProxyWorkflow Service

FIGURE 4.4: Integration of the proxy

Since all operations are combined in one interface, a client sends messages generally to
the same service. The service is responsible for the correct handling of the message.
If a workflow execution operation is triggered it forwards the message to the WS-BPEL
workflow engine. But before this, it removes all Grid or Cloud specific tokens from the
message so that such details are transparent for the WS-BPEL workflow engine. Messages
dedicated to the other operations are processed in the Workflow Service.

The other way around, the existence of the Workflow Service should also be transparent
for the WS-BPEL workflow engine. Therefore, it is necessary to reconfigure the host-
ing environment of the engine (Tomcat in case of ActiveBPEL) to use a HTTP(S) proxy.
All messages that are directed to external services are rerouted to the proxy. The WSRF
service container provides an additional proxy component that is capable of receiving
the messages and dispatching them to the correct Workflow Service instance (see Fig-
ure 4.4). At the instance, the message is modified according to the configuration and then
forwarded to the external service. Synchronous answers are returned the same way back-
wards. Asynchronous answers are handled as described above. The usage of a HTTP
proxy is a common feature that is supported by nearly all service containers and will not
limit the exchangeability of the WS-BPEL workflow engine.

However, not all HTTP calls are forwarded to a Workflow Service instance. For in-
stance, during workflow deployment, the WS-BPEL workflow engine requests additional
resources as referenced WSDLs or XML Schema files if these are not included in the
deployment package. The proxy distinguishes such messages from workflow enactment
messages and acts as a standard HTTP(S) proxy in these cases: It simply forwards the
request to the external service and passes the response back to the WS-BPEL workflow
engine.

4.1.5 WS-BPEL/WSRF instance mapping

The loosely-coupling of the WS-BPEL workflow engine and the Workflow Service in-
stances which add additional functionality for Grid and Cloud service integration requires
the synchronization of information between both components. Figure 4.5 depicts a typical

74

4.1 Architecture

WSRF service container

WS-BPEL
workflow

Engine

P
ro

xy

Process1
WorkflowService

Process2
WorkflowService

FIGURE 4.5: Mapping of Workflow Service and WS-BPEL engine
instances

situation with two deployed workflows and therewith two Workflow Services. Each cur-
rently running workflow exists twice, in the WS-BPEL workflow engine (circles) and the
respective Workflow Service instances (stars) at the service container. Thus it is necessary
to map these instances to each other to allow an unique assignment of messages to the
corresponding instances.

The mapping requires the exchange of IDs that uniquely identify the instances at the
partner component. This is done by passing the identifiers to the opponent as additional
payload during the normal message exchange. Since we do not want to adjust the WS-
BPEL workflow engine, we decided to handle the IDs as part of the WS-BPEL workflow.
This requires modifications in the WSDL files to add the ID as message payload as well
as to apply changes in the WS-BPEL code to store the ID and reinsert it in outgoing
messages during workflow execution. We address these aspects by applying architecture-
specific patterns [24]. These patterns are automatically applied to the WS-BPEL process
description during process deployment via XSL transformations. As a result, the existence
of the patterns and the entire mapping problem is completely transparent to workflow
users and designers.

On the one hand, the identification of the Workflow Service instance at the WSRF-compliant
service container requires the identifier to be included in every message initiated by the
WS-BPEL engine. For instance, the service instance in UNICORE 6 is identified by a
resource ID consisting of the service name and the unique instance ID. Instances of a

75

4 Orchestration Architecture

WS-BPEL process are identified by their process IDs. On the other hand, the identifier of
the workflow in the WS-BPEL workflow engine is necessary to define the instance if we
want to use additional services provided by the workflow engine.

For the first mapping, we applied two patterns to the WS-BPEL code and to the WSDL
interface of the workflow: The pattern On Receive ID Retrieve expects that each message
sent to a process instance provides the resource ID of the corresponding Workflow Service
instance. Within the process instance, this ID is stored in a specific WS-BPEL variable.
The second pattern, Pre-Invoke ID Assign, ensures that the previously stored resource ID
is appended to the message header of each message that is sent from the process instance
by using an appropriate endpoint reference. A more comprehensive example of these
modifications can be found in [68]. The patterns are described in more detail in Table 4.1
as one pattern to solve the instance mapping problem.

The second mapping is of minor importance because the basic orchestration is already
possible if only the first mapping is applied but it enables additional functions. To request
data about a process instance, the Workflow Service instance needs to know the process
ID at the WS-BPEL workflow engine. The handling and even the existence of process IDs
is beyond the scope of the WS-BPEL specification. Hence, different WS-BPEL engine
implementations use different concepts to address workflow instances. ActiveBPEL, for
example, simply increases a process ID counter with every new process instance.

We address this issue by extending the Pre-Invoke ID Assign pattern to assign some WS-
BPEL process ID to each outgoing message. The pattern is described in Table 4.2. It is
abstract enough to handle arbitrary ID data types. Again, a detailed example can be found
in the project deliverable [68]. Since the internal ID management of workflow instances is
not part of the WS-BPEL specification, the pattern has to be adjusted for each WS-BPEL
engine implementation.

4.1.6 Load balancing

The OaaS scenario requires a load balancing concept that allows for the execution of
several thousand workflows simultaneously (cf. RQ12). We present some ideas for load
balancing which are refined in this section in more detail in [57]. Since the architec-
ture consists of two components, each component can be a bottleneck during workflow
execution.

The loosely-coupling of the WSRF service extensions and the WS-BPEL workflow engine
offers the possibility to install both components on different hardware. Generally, the
workflow processing steps which are executed in a WS-BPEL engine are rather simple –
mostly sending or receiving messages or copying small data amounts between variables.
The processing steps for a single message in the service extensions are also rather simple

76

4.1 Architecture

Motivation In the architecture, messages sent from a process instance must be
mapped to the corresponding Workflow Service instance.

Intention Change the WS-BPEL process description and its WSDL interfaces to
manage a unique ID that identifies a corresponding Workflow Service
instance. Regarding UNICORE 6, the service name and the unique in-
stance ID can be used for identification.

Structure (1) WSDL:
Identify the WSDL representing the interface of the WS-BPEL process
and insert an additional message part for each incoming message to
carry a WSRF service instance ID.
(2) WS-BPEL:
(a) Create a new process variable that shall store a WSRF service in-
stance ID.
(b) Insert an assign activity after each receive or pick activity
that has an attribute createInstance set to yes. This assign
copies a WSRF service instance ID that is appended to an incoming
start message into the previously created process variable.
(c) Create a new process variable that shall store a dynamic endpoint
reference. (d) Before each invoke activity, insert an assign ac-
tivity that initializes a dynamic endpoint reference by copying a lit-
eral XML-skeleton representing the type EndpointReference into
the variable previously created, copying the service instance ID into
the ReferenceProperties part of the variable, and copying the
variable to the partnerLink of the Grid Service to be invoked. The
BPEL code and the EndpointReference literal XML-skeleton is
presented in [68].

Participants The proxy service, the WS-BPEL engine.
Behavior The Workflow Service instance attaches its ID to each message ad-

dressed to the WS-BPEL engine. The targeted WS-BPEL process stores
the ID and attaches it to each outgoing message — e. g. for external ser-
vice invocation. The proxy service then uses the ID to forward the mes-
sage to the corresponding Workflow Service instance, where the ID is
removed from the message header before it is redirected to the external
service.

Consequences (1) Changes of both the WSDL description and the process descrip-
tion are necessary. (2) Non-domain-specific code is inserted into the
WS-BPEL process description (i. e. code not being part of the domain-
specific service to be represented by the process).

TABLE 4.1: Pattern WSRF/WS-BPEL Instance Mapping

77

4 Orchestration Architecture

Motivation Workflow management and monitoring require the identification of run-
ning WS-BPEL process instances.

Intention Implement a mechanism that propagates the ID of WS-BPEL process
instances to the Workflow Service instance.

Structure Extend the pattern Pre-Invoke ID Assign by modifying the assign
activity that is inserted before each invoke activity in the re-
spective WS-BPEL description (cp. Table 4.1): (1) Extend the
EndpointReference XML-fragment to store a process ID. (2) Add
a copy statement that uses the WS-BPEL engine’s function to retrieve
the process ID and that stores it in the newly created XML-fragment
part.

Participants The Workflow Service, the WS-BPEL workflow engine.
Consequences (1) Changes of the WSDL description are unnecessary because the

SOAP header is used to propagate the process ID. (2) The Workflow
Service is able to address the WS-BPEL process instance via its ID only
after the first invoke activity has been executed. (3) Non-domain-
specific code is inserted into the WS-BPEL process description.

TABLE 4.2: Pattern Process ID Retrieval

because most messages are forwarded with only small modifications. Even the security
checks are not very costly for a single message. However, the mass of messages, message
transformations, and workflow executions for example in an OaaS scenario can increase
load on the components and possibly cause a bottleneck. This section describes some
ideas to deal with bottlenecks but these ideas are not evaluated in detail.

The design of the Workflow Management Service and Workflow Service allows the man-
agement of several WS-BPEL workflow engines on different resources. When a new
Workflow Service instance is created, the factory assigns one of the available WS-BPEL
workflow engines to the new instance according to a load balancing strategy (e.g. Round
Robin). This will facilitate scalability if the WS-BPEL workflow engine is the bottle-
neck.

If the Workflow Service itself is the bottleneck load balancing is slightly more complicated
because UNICORE 6 is not shipped with load balancing for services. Since the services
are stateful, we cannot use a standard Web service load balancer that dispatch messages
without considering dependencies between two messages directed to the same instance.
The following enumeration presents some load balancing strategies for the Workflow Ser-
vice with a special focus on the WSRF-properties and with respect to the OaaS scenario:

1. Customer-based balancing: It is possible to install one instance of the secure Grid
and Cloud workflow engine for each customer. Then, the dispatching mechanism

78

4.1 Architecture

WSRF service container

DispatcherDispatcher
Service

WSRF service container

Grid and Cloud
workflow engine

W
S-

B
P

EL
En

gin
e

W
S-

B
P

EL
En

gin
e

WSRF service container

Grid and Cloud
workflow engine

W
S-

B
P

EL
En

gin
e

W
S-

B
P

EL
En

gin
e

External
Services

External
Services

User

FIGURE 4.6: Load Balancing Architecture

of the UNICORE Gateway can be used for load balancing. If a server is overloaded,
the customer rents another server that is registered with the gateway. The customer
handles the mapping of workflows and workflow instances to the workflow engine
instances on his own. This solution is not very sophisticated since a lot of resources
on less used servers are wasted and the system does not scale in the sense of Cloud
computing.

2. Workflow-based balancing: A dispatcher that tries to balance workflows according
to their load on several installations can improve load balancing. The balancer
represents all interfaces to the user and dispatches the messages according to the
workflow name. This allows the coexistence of workflows of different customers on
the same machine. It will still be problematic if one workflow exceeds the capacity
of one Grid and Cloud workflow engine.

3. Workflow-and-resource-based balancing: If a workflow gets more popular and load
increases, a single machine might not suffice. The system can deploy the workflow
on another resource and dispatches the messages not only according to the work-
flow name but also considering the resource ID. The Workflow Service Factory
must register new service instances at the dispatcher service so that it can route the
messages correctly. In [57], we presented a slightly different version of this strategy
wherein all workflows are deployed on all resources.

Figure 4.6 shows an overview of a load balanced landscape of two cooperating Grid and
Cloud workflow engines. Each engine splits up the workflow instances to altogether four
WS-BPEL workflow engines. The already mentioned dispatcher service forwards the
messages to the installations according to one of the above presented strategies.

79

4 Orchestration Architecture

4.1.7 Fault handling

Errors can occur in various shapes during the execution of a WS-BPEL process. We
discuss the three main fault scenarios and how the Grid and Cloud workflow engine can
handle these (cf. RQ18).

Firstly, faults can affect the business logic. For example a travel agency scenario: if a
hotel and rental car is available but the matching flight is overbooked, the workflow must
cancel the rental car and hotel bookings. We call such faults business faults. They must
be handled on the business and not on the technical level. WS-BPEL offers means – such
as compensation and event handler – to deal with business faults. Such handlers allows
for rolling back already processed workflow tasks by additional service invocations or
retrying some tasks with different parameters.

Secondly, external services can fail. This is critical because a connection exception gen-
erally causes the complete workflow to fail. Generally, a workflow engine provider has no
influence on the availability of the involved services since they are not under his admin-
istrative control. A common method to coat such errors is to use some kinds of message
buffer that resends the message after a time period hoping that the service is available
again. In addition, standards like WS-Reliable Messaging [44] can help to increase fault
tolerance. However, if the service will not be available for a longer time period, even such
mechanisms must report an exception to the workflow. The handling of such technical
errors is not in the scope of the WS-BPEL standard. Since the architecture uses SOAP
message communication the available coating mechanisms can be reused to increase fault
tolerance.

Thirdly, the architecture engine includes an additional potential point of failure. If one
of the two components – WS-BPEL workflow engine or the service extensions – fails the
workflow will fail, too. If the service extension crashes, the WS-BPEL engine encounters
a connection error and the corresponding workflow fails. Clients also receive errors that
the Grid and Cloud workflow engine is unreachable but they can try to resend the message
later. If the WS-BPEL workflow engine fails the service extension returns faults to the
callers. Both components are able to store their state persistently, but, at the moment, the
components do not synchronize state and recovery information with the partner.

In the current version, technical fault handling is not implemented in the prototype but
business faults can be handled by means of WS-BPEL.

80

4.2 Workflow Security

4.2 Workflow Security

Security is one of the most important issues when executing workflows across multiple
enterprises’ boundaries and especially when using the Internet for message transport. The
thesis considers different kinds of security such as communication security, access control,
and data privacy. Grid technologies already support cross-organizational communication
and security protocols since the exchange of confidential data is a usual task in the Grid
domain. The basic concepts for the security architecture are published in [65] and [69].

As the prototype is build upon the UNICORE 6 Grid middleware that is designed with
respect to modern security standards, we can partly profit from the Grid security capabil-
ities provided there as basis for our security system. If another WSRF-compliant service
framework is used for the realization, either an implementation of the applied standards
or a similar solution must be implemented based on the below described concepts.

Grid security is based upon long-living and personalized X.509 certificates issued by a
Certificate Authority (CA) or an associated Registration Authority (RA). Everyone who
intends to participate in a Grid has to register with this CA. Access permissions are granted
on basis of the membership in so-called virtual organizations (VO) often founded by dif-
ferent communities and maintained in dedicated VO management systems.

This registration process is neither applicable to OaaS scenarios with many customers
nor to workflow execution in the business domain. A company, possibly having several
hundred employees and high employee fluctuation, cannot send each new employee per-
sonally to a RA in order to apply for a personalized certificate. Additionally, the setup and
maintenance of an own Public Key Infrastructure (PKI) is often beyond the capabilities of
small and medium enterprises. Hence, a more flexible and easy to use solution with low
cost is necessary. Furthermore, the Grid way of assigning rights according to the mem-
bership in VOs does not provide enough flexibility for companies. Rights shall be bound
to business roles from already existing identity management systems without the need to
maintain all users a second time in a Grid VO management system. These facts require
a distributed identity management system which is capable of integrating local identity
management systems and the possibility to grant or revoke role-based permissions in a
short period of time.

The access control process requires at most two complex tasks. Firstly, we have to ensure
that the user who requests access, actually is person he claims to be (authentication); and
secondly, we have to check whether this user is allowed to process the targeted operation
(authorization) on the targeted resource. This section presents a more detailed view on the
UNICORE 6 authorization and authentication process and expands it to a more applicable
solution for the Grid and Cloud workflow engine architecture.

81

4 Orchestration Architecture

For authentication, the user has to prove his identity. Therefore, he has to provide some
information, such as user name and password or a certificate that is only in his possession
and therewith confirms his identity. Grid middlewares usually apply X.509 certificates
for user authentication. For instance, a user who provides a valid certificate issued by a
trusted certificate authority has successfully authenticated with the system and is allowed
to communicate with UNICORE 6. Certificates are a secure and approved way to realize
authentication as it is very hard to fake valid certificates. Of course, the user must keep
the private part of his certificate secret. Disadvantages are, for instance, the high costs for
sending all employees to a Grid RA and that it is difficult to revoke rights because these
are directly conjunct with certificate.

For authorization, UNICORE 6 evaluates access rules – defined as XACML [41] – that
are uniquely defined for each deployed service. The default UNICORE 6 system fetches
information from the xUUDB component such as the user’s role and local login name (to
execute compute jobs on the cluster system). The xUUDB is a very simple user database
that can be shared over several sites. Since its capabilities are very limited, it is only
limited applicable for cooperation scenarios. The returned user attributes are passed to
the XACML access control system that renders an access decision according to the de-
posited rules. To allow the passing of more detailed user information such as its affiliation,
department, and current role to the authorization system, we have to modify the default
UNICORE 6 security architecture. More details about this are given in Section 4.2.1.
Previously, we present some general properties – necessary for the security infrastruc-
ture realization – of the security standards SAML [33] and XACML [41] in the next two
paragraphs.

SAML is a standard that is capable of encoding arbitrary attributes, such as roles and
affiliations, into a so-called assertion. Such assertions can be issued by an identity man-
agement system. SAML also provides the capability to define fine-grained credential del-
egation rights, for example, to express that an entity is cleared for processing an activity
on a resource during a well defined time frame. As UNICORE 6 already supports SAML,
we assume that this standard is an appropriate basis to transport enriched user information
from an identity management system to the Grid and Cloud orchestration engine.

The XACML standard offers sophisticated means for defining fine-grained access control
rules and evaluating access decisions on these rules. A rule is described by means of the
user, the targeted resource, and the desired action. Furthermore, conditions can be added
that express dependencies between these elements. An XACML rule evaluator, called the
Policy Decision Point (PDP), is capable of considering the user attributes that are part of
the signed SAML assertion. The result of a rule is to either deny or grant access to the
resource. By using one of several different combining algorithms, XACML allows the
combination of several rules to one overall result that is the final access decision. Since

82

4.2 Workflow Security

the requested and provided user attributes have to match exactly, the policy designer has
to be aware of the organizational structures and roles of the participating affiliations.

The architecture allows for including access rules in the deployment descriptor (see Sec-
tion 5.4) and instantiates them during the deployment process according to RQ13. Hence,
each workflow designer is enabled to freely formulate new access rules for his work-
flows.

4.2.1 Security Infrastructure Recommendation

As recommendation for an appropriate security infrastructure that supports a distributed
identity management system with low maintenance costs and the capability to integrate
different identity management systems such as Active Directory or OpenLDAP we sug-
gest Shibboleth [70]. In combination with GridShib [3] the system is able to automat-
ically issue short-lived certificates (SLC) together with a SAML assertion that includes
the user’s attributes. Welch et al. describe such an architecture in more detail in [130]
and [16] for the Globus Toolkit 4 and gLite Grid middlewares. The idea of issuing Short
Lived Credentials with a service (Short Lived Credential Service (SLCS)) is presented by
SWITCH [116].

The major advantage of this security architecture is the seamless integration of existing
identity management (IdM) systems. In-house hosted and maintained IdM systems can
be used to check the provided credentials and to supply user attributes. Such attributes
represent, for instance, the user’s company internal roles, his department, or some other
user specific information. As such attributes are encoded as SAML assertion, there are no
limitations for the number or the types of included information.

An SLC usually has a short lifetime of at most one million seconds (approx. 11 days), so
that the user’s identity including his roles becomes invalid after this period. Additionally,
it is possible to reduce the lifetime, for example, to one day. This guarantees that roles
and permissions are only valid for a short period and must be renewed every workday.
The short period is important since a mechanism to revoke certificates is missing in our
architecture. Since SLCs are X.509 certificates, the system fits in the UNICORE 6 security
architecture.

Figure 4.7 shows the general overview of the security architecture. To authenticate with
UNICORE 6, the user needs an SLC that includes the necessary user attributes. To obtain
it, he sends a request to the Shibboleth Service Provider that in turn redirects the user to his
home Identity Provider (IdP). There, he authenticates himself with his home credentials,
e.g. user name and password. After this, the Shibboleth Service Provider retrieves the
user attributes from the IdP, generates and signs a short-lived certificate that includes these

83

4 Orchestration Architecture

Federated Identity Management System
Identity Provider

Company B

Identity Provider
(In House)

Shibboleth Service
Provider

Online CA

Company Boundary

Sign

Exchange
attributes

(In‐House) Provider

Authenticate

Identity
Management
Administrator

Trust

User
Request SLC

Grid and Cloud Workflow Engine

Trust

Grid and Cloud Workflow Engine

PDP

P
E
P

Invocation
with Short Lived Certificate

Check identity and attributes
against Access Rules

Pwith Short Lived Certificate
including user attributes

FIGURE 4.7: Federated Security Infrastructure

attributes5. Now, this certificate can be used for the communication with UNICORE 6.
Since UNICORE 6 must be able to check the validity of the certificate, there has to be
a trustful relationship between the federated IdM system (especially with the OnlineCA
that signs the certificate) and the UNICORE 6 service container.

The new authorization process is similar to the original UNICORE 6 process. The user
utilizes the SLC to establish an SSL connection to the prototype, denoted as BIS-Grid
workflow engine, so that transport layer security as well as secure user authentication is
guaranteed. During the authorization process, all requests have to pass the Policy Enforce-
ment Point (PEP) before being delivered to the actual service. The PEP asks the Policy
Decision Point (PDP) for a decision that is based on the well-defined XACML rules. In
this request, the PEP includes all attributes that are attached to the SLC. Only when access
is granted, the request is delivered; otherwise the user gets an “access denied” response.

Generally, it is possible to integrate many companies with the presented federated IdM
system. But the integration also requires some additional effort. Each participant has
to extend the locally existing IdM system to communicate with the Shibboleth service.
This is an advanced task that exceeds the IT capabilities of many companies or the know-

5A more detailed process is given in [116]

84

4.2 Workflow Security

how of a scientist. Of course, other scenarios are realizable (see below) but this one
guarantees an high security level and is expandable, scalable, and flexible at the same time.
Furthermore, the usage of X.509 certificates is mandatory if the tracking of indirect user
activities (cf. RQ19, RQ21, RQ23, RQ25) initiated by the workflow engine is required
since credential delegation is the only possibility to realize this.

The idea to integrate Shibboleth and SLCS with the UNICORE system is not completely
new. In [43], Faroughi et al. present an integration with UNICORE 5.

Portal scenario

Today, portals are popular user clients. They provide browser based access to various
functions as portlets – a pluggable interface to a logical subsystem. A portal is an addi-
tional component that is placed between the user and the services and so hides the user
through the indirect communication. Such an additional component also requires addi-
tional effort for security, if the user’s identity needs to be ensured.

If a portal is used, a valid credential delegation requires at least two delegation steps:
from the user to the portal and from the portal to the used service (the BIS-Grid workflow
engine in this case). All participants, the user and the portal, need valid certificates to sign
the delegations. But, a portal can also help to realize a scenario without user certificates
that is easier to handle for users, but with a slightly lower level of security.

The user logs in at the portal as usual, e.g. with user name and password credentials. Now,
the portal tends for the communication with the BIS-Grid workflow engine. It fetches the
user attributes from the local identity management system that creates a signed SAML
assertion. For this and for the communication with the service, the portal uses a portal
certificate that identifies the portal instead of the end-user. The authentication and autho-
rization process is then strictly split in two parts: the portal certificate is used to authorize
the portal as valid and trustful communication endpoint and the authorization decision
is completely based on the user’s attributes included in the SAML assertion. Of course,
there must be a trustful relationship between the portal and the service.

This scenario is slightly more unsafe than the previous scenario, because the portal is a
single point of failure. If it is hacked, the attacker is possibly able to obtain assertions that
includes administrator privileges. With this assertion, he possibly gets access to restricted
functions.

Another problem is that an assignment of service certificates is sometimes not applicable
to the legal rules of Public-Key-Infrastructures. As example, the D-Grid PKI does not
allow certificates for services.

85

4 Orchestration Architecture

UVOS

Due to the high setup costs for Shibboleth, we decided to use a simpler solution for the
prototype and for the exemplary evaluation with our project partners. This solution uses
SAML and user certificates for communication and user attribute encoding. In the same
time, it should be possible to manage different user groups and accounts as necessary for
an OaaS scenario.

The UNICORE Virtual Organisations System (UVOS), presented in Section 2.3.3, allows
for the administration of user identities combined with arbitrary attributes for each iden-
tity. Additionally, hierarchical organizations can be mapped to hierarchically organized
groups and attributes can be attached to groups. Group members inherit group attributes.
Groups or sub-group members and attributes can be managed by different administra-
tors. All UVOS-managed information can be queried by SAML2-compatible applica-
tions [33]. UVOS responds to such a query with a signed SAML assertion including all
attributes (group belongings, group attributes, global attributes, and user attributes). The
combination of UVOS and UNICORE 6 is fully integrated and well-tested during the
Chemomentum [109] project, in which UVOS was developed originally.

The usage of UVOS instead of a real federated identity management system has some
disadvantages, for instance:

• The missing integration of already existing companies’ identity management sys-
tems. Thus, the maintenance of user roles and attributes is necessary twice.

• Generally, each user needs a valid permanent X.509 certificate to communicate with
the Grid and Cloud workflow engine and to retrieve his attributes from the UVOS
system. Although, it is possible to query UVOS with only user name and password
credentials, a valid certificate to communicate with UNICORE 6 is still required.
Thus, all users still have to register at the RA.

4.2.2 Confidentiality

After discussing authentication and authorization, we have to consider privacy, too. If
several companies work with the same workflow engine, e.g. in an Orchestration as a Ser-
vice scenario, it must be ensured that only authorized users can see what workflows are
deployed or what workflows are currently running. Authorized, in this case, does not nec-
essarily require that the user has the right to completely use the workflow or management
service. He is possibly only allowed to retrieve monitoring information. This autho-
rization decision must be very fine-grained and based on the user’s attributes. XACML
policies are not sufficient for this issue since they control access to service methods but
are not applicable to information filtering according to the user’s identity.

86

4.3 Integration of Grid and Cloud Services

The Workflow Management Service and Workflow Service support means to filter infor-
mation during search operations. These filters apply the user’s authentication attributes
to information stored in the instances, for example, the instance creator’s distinguished
name. Instances of the Workflow Management Service store the creator’s distinguished
name, his affiliation, and his business role. If someone ask for all deployed workflows,
the Grid and Cloud orchestration engine will only show workflows matching the same
affiliation and business role. Both must be included in the user’s authorization and au-
thentication security tokens. A similar filter also guarantees privacy for searching for
instances of a Workflow Service. The rules for this filtering are currently hard-coded in
the prototype but a configurable filtering is also realizable. The actual access to these
instances to retrieve detailed information is secured with XACML access control rules.

Additionally, it is desirable that even the requests for the WSDL descriptions are secured
by some kind of policy so that only authorized persons are able to view internal details.

To sum up, the architecture provides security aspects on all layers. Besides technical
and organizational issues discussed in this dissertation, the realization of an appropriate
security infrastructure also requires to consider legal issues that are beyond the scope of
this work.

4.3 Integration of Grid and Cloud Services

The main goal of this thesis is the secure integration of various service types as Grid or
Cloud services. Such services are possibly stateful or support only proprietary security
mechanisms. This section includes two parts. It firstly presents a WS-BPEL pattern to
handle stateful services according to the WSRF standard and secondly it describes the
plug-in mechanism for the realization of successful communication with various partner
service types.

4.3.1 BPEL Pattern for WSRF-compliant services

The WSRF specification [103] defines in WSRF-RL (Resource Lifetime) [114] the life
cycle of a WSRF resource (instance). Such a life cycle can be partitioned in three phases:
instance creation, instance usage, instance destruction. Figure 4.8 shows the WSRF life-
cycle graphically.

The standard interfaces for WSRF-RL mirror this life cycle by offering operations for re-
newing the termination time or destroying the resource immediate or scheduled. However,

87

4 Orchestration Architecture

FIGURE 4.8: WSRF service utilization

a default interface for instance creation is omitted in the WSRF specification because fac-
tory requirements would be too varied [114]. Hence, instance creation operations differ
in their exact interface but they all target the same function.

The general pattern to handle Grid services with pure WS-BPEL means is described in
Table 4.3 and published in [24]. An extended version with all technical details can be
found in the project deliverable [68]. The development of the Grid Service Invoke pattern
is based on observations of the SOAP message exchange between clients and Grid services
as well as on a similar solution described by Ezenwoye et al. [42].

As example, we implemented the Grid Service Invoke pattern in WS-BPEL for both the
UNICORE 6 middleware and for Globus Toolkit 4 (v4.0.5). It uses a simple counter
service, which is started with an initial integer value that can be arbitrarily incremented
during service lifetime. Globus Toolkit 4 provides such a service and a corresponding
client by default. For UNICORE 6, we implemented an analogous service and client. The
general procedure is that after the creation of a Grid Service instance via a corresponding
factory service, information referencing the instance is returned. This information is then
used to create new endpoint references for further dynamic invocations of the Grid Service
instance, for example, to invoke an operational method (increment counter) or to destroy
the Grid Service instance.

The complexity of Grid service invocations in WS-BPEL is caused by the dynamic service
invocation and especially by the construction of endpoint references with given WS-BPEL
activities. Figure 4.9 illustrates the corresponding WS-BPEL process – within the figure,
the WS-BPEL activity names are annotated in brackets. The example invokes the counter
service (a value is added) twice.

The pattern illustrates that the handling of stateful services invocations for WSRF-compliant
service frameworks is possible with pure WS-BPEL means. It is not necessary to extend
the standard. This increases exchangeability of the WS-BPEL workflow engine and there-
with sustainability of the complete architecture.

88

4.3 Integration of Grid and Cloud Services

Motivation In Grid environments, Grid middlewares are based on the Web Ser-
vice Resource Framework (WSRF). Thus, services provided in Grids
are WSRF services, which are stateful and require instantiation. The
invocation of such a Grid service is complex and demands the execu-
tion of certain activities in order.

Intention Define a workflow pattern that invokes a Grid service by using its fac-
tory for instantiation, using the instance, and destroying the instance.

Behavior See Figure 4.8
Participants The invoker of the Grid service, the Grid service factory, the Grid

service instance.
Consequences (1) Complex Grid service invocation is encapsulated in a work-

flow. This reduces invocation errors and redundant implementation
by reuse.
(2) The Grid service invocation workflow can be provided as a service
itself. This simplifies the protocol of higher-level workflows and ab-
stracts from invocation details. When the workflow language is hier-
archical, the Grid service invocation may be described with the same
language as the high-level workflows.

TABLE 4.3: Pattern “Grid Service Invoke”

FIGURE 4.9: WS-BPEL WSRF counter service example

89

4 Orchestration Architecture

4.3.2 External service invocations

As already described, messages sent from the WS-BPEL engine are redirected to the BIS-
Grid proxy implementation that again forwards the messages to the correct Workflow
Service instance. This Workflow Service instance applies to the external service call con-
figuration that depends on the external service type. For the WS-BPEL workflow engine,
this (re-)configuration should be completely transparent. In this section, we describe the
mechanism for the reconfiguration in more detail.

Cloud computing does not dictate any limitations for service providers to design their
communication and security requirements. Therefore, we need a plug-in mechanism to
easily extend the capabilities in communicating with external services. As general param-
eters for SOAP based message communication, we identified the following:

1. The content of the SOAP header that encapsulates additional information such like
routing or security tokens. Therefore, it is important that the system is enabled to
edit the SOAP header.

2. The communication requirements (transport layer and protocols) can be manifold.
Thus, the system shall be expandable by new communication means.

The Workflow Service instance collects necessary information for both configurations
from its current workflow state. This allows the adjustment of the configurations at run-
time since the user can call the WS-Resource operations [52] to modify this state infor-
mation.

Section 2.1.1 on page 13 describes how modern SOAP message processing frameworks
work. The approach harnesses the reconfigurable handler pipelines to realize a plug-in
mechanism. Each external service or service provider respectively has specific require-
ments for security and communication protocols. These requirements are normally well-
defined and do not change over time. Hence, plug-ins that exactly target the requirements
of one service provider can be developed and associated with an configuration name. The
workflow designer (or at least the user) has to match the service invocations with the cor-
responding configuration and provide the required security tokens for instance as part of
the deployment package. Perhaps these information can be collected automatically from
a sophisticated service registry in a later version.

Figure 4.10 depicts the internal message processing architecture for external service in-
vocations. The proxy passes the message to the correct Workflow Service instance. The
instance looks up the correct service description in its resource properties. As index, the
destination of the message is used. It can be found either in the SOAP WS-Addressing
header or in target URL of the HTTP request. In our prototype, we additionally allow

90

4.3 Integration of Grid and Cloud Services

WSRF service container
W

S-B
P

EL
W

o
rkflo

w

En
gin

e
External
Services

ProxyWorkflow Service

FIGURE 4.10: Handler pipeline for external service invocations

to use the service name (extracted as last section of the URL) as index for the service
descriptions to be more flexible.

A service description includes three information:

1. The service type defines the type of the external service (for instance, insecure
Web, UNICORE 6, Globus Toolkit 4, or Amazon services)

2. The credential description ID determines the corresponding credential configura-
tion for this external service call.

3. An optional endpoint reference allows the redirection of the call to an equivalent
service. This enables a late service binding and the usage of “dummy” service
addresses in the WS-BPEL description.

The credential description ID is used to retrieve the credential configuration for this ex-
ternal invocation which are part of the Workflow Service instance state information. The
credential descriptions are separated from service descriptions so that the same credential
can be used to invoke different services of one or several providers. The prototype sup-
ports certificate based HTTPS authentication (UNICORE 6, BIS-Grid workflow engine,
or an additional uploaded certificate), credential delegation with proxy certificates (GT4)
and SAML assertions (UNICORE 6), WS-SecureConversation (implemented and tested
with GT4 libraries), and simple user name and password HTTPS authentication.

Generally, the target service type defines the handler pipelines for the message exchange.
But also security issues affect them, e.g. a handler that inserts credential delegation in-
formation. The architecture allows to implement simple plug-ins that reconfigures the
handler pipelines according to the different requirements of the service provider. Such
plug-ins are simple configuration classes that adds specialized handler into the default
handler chain.

Although SOA technologies enforce platform independence, there are often some compat-
ibility problems between the different Web service frameworks. Communication works
as long as the client and the service are based on the same framework and use default

91

4 Orchestration Architecture

WSRF service container
W

S-B
P

EL
W

o
rkflo

w

En
gin

eExternal
Services

ProxyWorkflow Service

FIGURE 4.11: Integration of third-party message processing libraries

communication methods. But communication across several frameworks is more often
difficult since not all frameworks are standard compliant. For instance, the Amazon Web
services require that empty-tag-elements have a whitespace before the slash although this
is optional according to the XML standard. Another example is the support of proxy
certificates that is only available in Globus Toolkit 4 user clients.

Frameworks normally offer some kind of API or software developer kit for the implemen-
tation of services and clients that supports the respective features. A reimplementation of
such features in the xFire framework that is the basis for the BIS-Grid workflow engine is
too expensive. Hence, concept for reusing third party libraries is very helpful.

Figure 4.11 depicts the general idea of switching the SOAP message processing to a third-
party framework. Normally, the last outgoing-pipeline handler establishes the connection
to the partner. This handler is substituted by a new one that switches to the third-party
message processing framework. Therefore, a mapping of the current message content and
context information into the new third party message context is required. After that, a
second service provider specific handler pipeline is started. The answer message need to
be transformed again into the original context. This task often requires the reengineering
of the third-party framework because a generic SOAP client for the respective framework
is not necessarily available.

As example, we use this approach to reuse the Globus Toolkit 4 libraries for supporting the
complex Grid Security Infrastructure. So we reused the original Axis handler pipeline that
is already able to handle proxy certificates as well as message level transport security.

4.4 Human Interaction

The integration of people in automated workflows is an interesting topic. Although it
is not central for this work, we list some possibilities to integrate people in WS-BPEL

92

4.4 Human Interaction

workflows.

The creation of an asynchronous Web service that in turn serves as contact point to humans
– e.g. an e-mail gateway – is an obvious way to integrate humans in business processes.
But this way is very static since new activities need either a new service implementation
or they are not fault tolerant since it is hard to generically validate answer messages. For
scenarios with only small human interaction, such service implementations are applicable,
but more complex scenarios require a more sophisticated solution that considers typical
human task characteristics as delayed execution or the reassignment of tasks.

In [101], Agrawal et al. present an extension for WS-BPEL, called BPEL4People, to
define a new “people activity” that is used to invoke people from the workflow in a similar
way compared to a normal Web service invocation. It allows the usage of in-line – directly
contained in the WS-BPEL code and all interfaces are available at the workflow engine –
and standalone human tasks – given as WS-HumanTask [1] documents and executed as
an external service.

WS-Human Task (WS-HT) [1] allows the design of services that represent an human
activity. These services are Web services and can be invoked from a WS-BPEL engine.
On the one hand, the specification allows for defining a service WSDL that represents
the task interface from the invoker’s point of view. On the other hand, the employees
get appropriate interfaces to manage, retrieve, and process tasks. Typical management
functions are the assignment of tasks to a person or a group of persons, the insertion of
result information, and notification and escalation activities if a task is overdue.

Since the actual task that the human should execute is provided via a WSDL interface,
the integration of human task without the BPEL4People extension directly in workflows
is possible. The information that represents the task is given as WS-HT document that
defines the interfaces for the respective Web service. Hence, an implementation of the
WS-HT specification will suffice for the integration of human tasks in workflows. Al-
though WS-HT uses an implicit addressing of task instances, we propose an implementa-
tion according to the WSRF standard. This will reduce the interface complexity since the
task ID must not be part of each message payload.

93

4 Orchestration Architecture

94

5 Prototype

Contents
5.1 UNICORE 6 service extensions . 95

5.1.1 Workflow Management Service 95

5.1.2 Workflow Service . 96

5.2 External Service Plugins . 97
5.3 Adapter Concept . 99
5.4 Deployment package . 101

This chapter presents a short overview about the most important features of the architec-
ture and how they are realized in the prototype, the BIS-Grid workflow engine. It focuses
on the main components and the realization of the plug-in mechanism for external service
invocations. Additionally, the adapter concept for supporting different WS-BPEL work-
flow engines is introduced. The section concludes with the description of the BIS-Grid
deployment package.

5.1 UNICORE 6 service extensions

The Workflow Management Service and the Workflow Service are the main components
that form the BIS-Grid workflow engine. We briefly introduce the main functions and
state information as implemented in the prototype. We omit all minor important details
and already presented features of the services. The project deliverables [64, 63] and the
project website1 provide additional details.

5.1.1 Workflow Management Service

The Workflow Management Service is a stateful Grid service that offers means to deploy
and administrate workflows. Figure 5.1 shows the factory and the actual service interfaces
as class diagram.

1http://bis-grid.sourceforge.net/

95

http://bis-grid.sourceforge.net/

5 Prototype

FIGURE 5.1: Interfaces - Workflow Management Service

FIGURE 5.2: Interface - Workflow Service

As described in Section 4.1.3 on page 69, the factory provides an interface for creating
and searching for workflows. The response of a creation call is the endpoint reference to
the newly created service instance. The result of an search operation is a list of available
workflows the invoking person is allowed to see. The actual Workflow Management Ser-
vice comprises operations for workflow deployment, redeployment, and undeployment,
as well as the default WSRF operations to manipulate the life cycle or resource properties
(not shown in Figure 5.1).

During deployment, the WSDL files and the WS-BPEL file are modified to meet the WS-
BPEL/WSRF instance mapping problem. Both, the original and the modified files, are
provided as resource properties so that both are accessible by the workflow designer. Of
course, the endpoint reference of the corresponding Workflow Service that represents the
executable workflow is also available as resource property.

5.1.2 Workflow Service

The Workflow Service is the core component for workflow execution. For each deployed
workflow, a new Workflow Service is created and deployed in the UNICORE 6 service
container. The factory offers similar methods as the Workflow Management Service fac-
tory. It enables the user to instantiate new workflows and to retrieve a list of his work-
flows.

The interfaces for both, factory and service implementation, are depicted in Figure 5.2.

96

5.2 External Service Plugins

The class diagram omits the default WSRF operations for both services. Usually, factory
services are stateless, since their dependency to the actual service is static. Since the
workflow name is not fixed, we implemented a stateful factory service that manages the
dependency to the actual service as resource property.

The processBPELCall-method is invoked if the incoming handler pipeline identified
the message as workflow execution message. It gets the whole message context and pro-
cesses the forwarding to the WS-BPEL workflow engine. Since there is no actual imple-
mentation for workflow execution messages, we adjusted the incoming handler pipeline
for faking the existence and then invoking this generic forwarding method.

The second method, processExternalCall, is used to pass messages from the proxy
to the Workflow Service instance. The Workflow Service creates new pipelines according
to the external call configurations and executes the actual service invocation.

The third method is a default implemented service method that analyses the security to-
kens and stores the included delegation credentials for a later reuse in external invoca-
tions.

The Workflow Service prototype offers various information as resource properties that are
interesting for the user who executes the workflow. The most important ones are:

• The WS-BPEL engine (type, host, and port) that is used for the actual execution.

• The endpoint that represents the workflow at the WS-BPEL engine.

• The current service and credential descriptions that are used for external service
invocations. The user can reconfigure this properties before or during workflow
execution.

• The current workflow execution state if a monitoring adapter (see Section 5.3) for
the used workflow engine is available. The state includes the overall workflow state
(running, faulted, completed) as well as state information for each BPEL activity in
the workflow including possible error messages.

5.2 External Service Plugins

In Section 4.3.2, we have already presented the general idea of configuring the handler
chain for the integration of various kinds of services. Here we present some technical
details.

For a successful message exchange between the BIS-Grid workflow engine and the exter-
nal service, the system has to support the partner’s communication and security protocols

97

5 Prototype

FIGURE 5.3: Configuration of external service calls

and to provide the necessary credentials to get access to the external resource. The infor-
mation is retrieved from the current instance’s state and the handler pipeline is adjusted
according to these configurations.

Figure 5.3 depicts the abstract classes that are responsible for these configurations. A
CredentialConfigurator is responsible for configuring and providing the creden-
tials. The IAuthenticationConfiguration is used to configure the HTTP(S)
client. Furthermore, the class provide means to insert additional handlers into the han-
dler pipelines which add credential delegation tokens for instance. This configuration is
only applicable if the default UNICORE 6 libraries suffice for invoking the partner ser-
vice. Otherwise, the configuration information is passed to the third-party implementation
which handles the security configuration.

An ExternalCallConfigurator modifies the handler chain according to the type
of the partner service. Therefore, we need one implementation for each supported service
type:

WebService

This configuration allows the invocation of simple Web services without any security
requirements.

UNICORE 6

The support of UNICORE 6 services is rather simple because the Workflow Service is
based on UNICORE 6 technologies and therewith all necessary functionality is already
available. Since UNICORE 6 requires secured communication and at least certificate-
based user authentication, the a Keystore is urgently required.

98

5.3 Adapter Concept

Globus Toolkit 4

Message exchange with the Globus Toolkit 4 middleware demands the reuse of third party-
libraries since both Grid middlewares, UNICORE 6 and GT4, are based on Web services
technologies but not on the same security protocols. GT4 applies mechanisms based on
proxy certificates and the Grid security infrastructure. Therefore, we integrated the GT4
client technology directly into the message processing pipeline. A new handler copies
the xFire message context into an Axis call object and creates a new Globus-specific
handler pipeline. This pipeline is then adjusted according to the credential configuration
and processes the actual call.

Partly, both technologies are based on the same libraries e.g. a library for XML signature.
Since both implementations are only running with exactly one but different version of the
same library, we must not only switch the message processing technology but also the
Java libraries context. A new class loader re-bootstraps all necessary classes from the
GT4 libraries for establishing the new context just before switching to Axis.

Amazon Web Services

The Amazon Web Services (AWS) provide a diversity of services. The portfolio range
from payment and advertising services to the hosting of high performance compute re-
sources and the allocation of human intelligence. All these services are accessible via
RESTful and SOAP-based Web service interfaces. After registering with the AWS, the
user can obtain two different security credentials, either a user ID and password, called
Access Key ID and Secret Access Key, or a downloadable certificate. The user proofs his
authenticity by signing at least the message body and a time stamp with one of the secret
credentials.

We solved the support for the AWS by implementing a new handler that signs the message
according to Amazon’s requirements using the certificate and libraries for WS-Security
[85].

Another handler previously reformats the message body to face the non-standard-compliant
requirements of the AWS XML parser: Empty-element-tags must include a whitespace
before the slash although it is optional in the XML specification. The handler rewrites the
message so that it can be used for signature.

5.3 Adapter Concept

To support different WS-BPEL workflow engines, the usage of engine specific functions
that are not part of the WS-BPEL specification is mandatory. Each engine supports dif-

99

5 Prototype

FIGURE 5.4: Adapter Concept

ferent deployment package formats and means to deploy such a package. As example,
the ActiveBPEL engine offers a Web service interface for deployment, but no means for
undeployment; the Sun-BPEL-Engine offers no Web service interfaces for both operations
but a command line tool shipped with the application server.

Some engines offer means for monitoring that are also applicable for debugging issues.
For instance, ActiveBPEL provides an administration Web service interface that allows
for querying for a list of all (available) workflows and for more detailed monitoring in-
formation. The latter requires the internal ActiveBPEL workflow identifier to directly ad-
dress the corresponding workflow. Section 4.1.5 describes the ID exchange between the
ActiveBPEL engine and the Workflow Service. The pattern requires that the WS-BPEL
workflow engine enables the retrieval of the process ID as part of the workflow execu-
tion, e.g. as engine specific WS-BPEL extension. Since such extensions depend on the
workflow engine type, the actual pattern slightly differs for each type.

We realized all engine specific functions – usage of additional provided Web services,
command line tools, and the injection of engine specific WS-BPEL or WSDL modifica-
tions – in so-called adapter modules (see Figure 5.4). Each AdapterModule is respon-
sible for a special purpose such as monitoring and deployment. Generally, the deployment
module is mandatory for each supported WS-BPEL workflow engine while other modules
are optional. The sum of all adapter modules forms an Adapter. The WS-BPEL spec-
ification only state that the workflow must be published as Web service without defining
details. Hence, an adapter also provides a method to retrieve the URL of the workflow.

100

5.4 Deployment package

5.4 Deployment package

The deployment package includes all information that is necessary to manage and execute
one workflow. It consists of the following files:

• Deployment descriptor: The file includes all configuration parameters for the work-
flow. This parameters are:

– The process name.

– The filename of the WS-BPEL description.

– A list of partner links. An invoked partner link (partnerRole) can either
be static or dynamic. Static means that the partner is predefined at design
time and the corresponding endpoint reference is given in the deployment de-
scriptor. Dynamic means that the partner’s endpoint will be calculated during
runtime. Additionally, the client partner link (myRole) defines the name of
the service that represents the workflow at the WS-BPEL workflow engine.

– A list of all referenced WSDLs, XML Schemas, and other files: These entries
maps the imports in the WS-BPEL document to the actual location of the files
(inside the deployment package or as downloadable URL reference).

– A list of service descriptions (see below).

– A list of credential descriptions (see below).

– A list of access rules (see below).

• WS-BPEL process description: The WS-BPEL code of the workflow.

• WSDL files: All WSDL files referenced in the deployment descriptor as local.

• XML Schema files: Schema files referenced in the deployment descriptor as local.

• Other files: It is possible to insert all kind of files into the deployment package
to make these files available at the services (e.g. keystore or XSLT transformation
files). If these files are not directly conjuncted with the WS-BPEL code, they must
not necessarily referenced in the deployment descriptor.

The service descriptions and the credential descriptions form the default configuration pa-
rameters for all workflow instances with respect to the invoked services. The access rules
define the access control policy for the new services in the BIS-Grid workflow engine:

A service description defines the service type, e.g. UNICORE 6, Globus Toolkit 4, Ama-
zon Web Service, or default Web service. Additionally, it provides the ID of the credential
descriptions necessary to communicate with the service. The Workflow Service instance

101

5 Prototype

reconfigures the handler pipeline according to the service type. Optionally, it includes a
new service endpoint for the redirection of the message at runtime.

A credential description defines the type of credentials that are necessary to commu-
nicate with the external service. The prototype allows the description of the following
credentials, each in one section of the description:

• User name and password (e.g. for sending these credentials in the HTTP header)

• A keystore description that points to a Java keystore including a user certificate as
well as possible trustful certificate authorities’ certificates (e.g. for certificate-based
HTTPS connections).

• An ID for a previously deposited credential delegation token (SAML assertion or
proxy certificate). As ID, the issuer’s distinguish name is used. The delegation
tokens have to be previously deposited at the instance.

It is also possible to combine several sections of the credential delegation. As example, a
UNICORE 6 service with credential delegation needs a certificate-based HTTPS connec-
tion and a SAML assertion as part of the message header.

The third section provides XACML [41] access rules that control the access to services.
These rules are inserted into the UNICORE 6 authorization module during the workflow
deployment process. The deployment algorithm ensures that the rules are restricted to
either the Workflow Service or the Workflow Service Factory before it instantiates them.
This prevents the unwanted installation of rules that affect other services.

102

6 Evaluation

Contents
6.1 Architecture Review . 104
6.2 Applicability for Business Workflow in SMEs 108

6.2.1 SME Information Systems Integration 108

6.2.2 Example: Information System Integration 113

6.2.3 Example: Interactive Workflow 115

6.3 Applicability for Scientific Workflows 118
6.3.1 Example: Grid Job Submission 119

6.3.2 Example: Hierarchical workflow composition 122

6.3.3 Example: Globus Toolkit 4 integration 125

6.4 Performance . 126

The architecture is designed with the goal to enable the orchestration of secure Web,
Grid, and Cloud services. This should ease the integration of modern service offers in
enterprises’ and scientific communities’ application landscapes. Technologies such as
Grid and Cloud computing enforces the cooperation of enterprises and institutes to realize
the respective goals more efficiently. In this context, security plays a major role as in all
out-sourcing and cooperation scenarios.

The design of the orchestration engine is based on the WS-BPEL workflow description
language that is the de-facto standard for business workflows. The presented architecture
allows the integration of all kind of SOAP-based services without creating a WS-BPEL
dialect. In doing so, the BIS-Grid workflow engine has to adapt to the partner’s services
to support their communication and security protocols.

This chapter presents the evaluation of architecture and the BIS-Grid workflow engine as
prototype. The next section outlines a review of the architecture according to the require-
ments listed in Chapter 3. Afterwards, it examines the applicability for business scenarios
in Section 6.2 with a focus on small and medium enterprises. Section 6.3 illustrates the us-
ability of the architecture for typical workflows used in scientific scenarios. Furthermore,
this section evaluates the prototype concerning its technical characteristics in Section 6.4.
This analysis compares among others the performance of a secured workflow with the
BIS-Grid workflow engine to a pure ActiveBPEL workflow.

103

6 Evaluation

6.1 Architecture Review

This section presents a review of the architecture by listing all requirements from Section
3.3 and briefly describing how the architecture meets these. The third column rates the
compliance of the architecture with respect to the requirement. “+” means that the re-
quirement is fulfilled, “∼” that it is partly fulfilled, and “−” that the fulfillment requires
some future work that is beyond the scope of this thesis.

Requirement Review
Basics

RQ1: Standards The complete architecture is based upon standards.
Some examples are SOAP for communication; WS-
BPEL for workflow execution, SAML and XACML
for authorization and authentication.

+

RQ2: SOAP com-
munication protocol

SOAP is the default protocol for message exchange.
The basic technologies used for the architecture are
a SOAP-based Grid service framework and the WS-
BPEL that is designed for workflow orchestration of
SOAP-based services.

+

RQ3: Basic Activi-
ties Support:

WS-BPEL already comprises nearly all necessary ba-
sic activities. Instead of extending WS-BPEL, we
realized additionally required activities with default
means. The security and communication protocols can
be adjusted for each external service call. This allows
the invocation of SOAP-based services with different
requirements if the respective plug-in exists. The WS-
BPEL pattern for WSRF-compliant services also en-
ables the handling of stateful services.

+

RQ4: Role-based
Access Control:

The proposed security architecture intends the integra-
tion with companies’ identity management systems.
In doing so, it allows for seamlessly reusing roles and
attributes from these systems during the authentication
and authorization process. The XACML-based access
control mechanism enables the definition and applica-
tion of fine-grained access control rules.

+

RQ5: Secure Com-
munication:

The communication is secured with transport layer se-
curity using certificate-based authentication. For the
communication with invoked services, the architecture
adapts to the respective requirements that possibly de-
mand none or other security mechanisms.

+

104

6.1 Architecture Review

Requirement Review
RQ6: Integration
of new service
providers:

The usage of handler pipelines for realizing the com-
munication with external services and the integration
of service provider’s client technologies allow for a
relatively simple integration of new services. The
prototype demonstrates this concept with plug-ins for
UNICORE 6, Globus Toolkit 4, Amazon Web ser-
vices, and simple insecure Web services

+

RQ7: Hierarchical
Composability

The reuse of workflows is possible in higher level
workflows since the workflow presents itself as a state-
ful Grid service.

+

RQ8: Stateful Ser-
vices Orchestration

The handling of stateful services is targeted with pat-
terns which serve as template to handle stateful ser-
vices with default WS-BPEL means. This prevents
from creating a proprietary WS-BPEL dialect. A so-
phisticated workflow editor could partly hide the com-
plexity of these patterns.

+

RQ9: WSRF com-
pliance

The architecture offers all workflows as stateful ser-
vices according the the WSRF standards.

+

RQ10: Control-flow
and data-flow mod-
eling

Since the workflow description language is WS-
BPEL, the control-flow can be modeled well and ex-
plicitly. In the sense scientific computing, the data-
flow cannot be modeled explicitly. Instead, file trans-
fers should be initiated with the explicit invocation of
file transfer Grid services that again require a well-
defined cooperation of several Grid services. This
partly hampers the modeling of scientific workflows.
Perhaps some kind of file transfer workflows or pat-
terns could support scientists without introducing WS-
BPEL extensions.

+/∼

RQ11: Workflow
isolation

The architecture provide means to filter information
during search operations. Additionally, the com-
prehensive security system allows for defining fine-
grained access rules so that the workflow engine is
ready for a multi-tenant usage.

+

RQ12: Scalability We presented some ideas about load balancing that
make use of the WSRF-compliant architecture. The
evaluation of load balancing is future work. In Sec-
tion 6.4, we outline some performance measurements
of a single BIS-Grid workflow engine instance.

∼

105

6 Evaluation

Requirement Review
Workflow Management

RQ13: Hot-
deployment

The Workflow Management Service allows the hot de-
ployment of workflows. During deployment, a spe-
cialized version of the generic Workflow Service –
with respect to the interface and functions of the work-
flow – is created and registered at the WSRF service
container.

+

RQ14: Functional
Correctness Tests

We assume that the invoked services are functionally
correct. An explicit test before deployment is only of
minor importance for the actual workflow execution.

−

RQ15: Workflow
Execution Statistics

The architecture allows low level workflow monitor-
ing provided as part of the resource properties. This
helps to collect data for higher level monitoring tasks.
The actual implementation of such higher level moni-
toring tools is beyond the scope of this work.

+/∼

Workflow Execution
RQ16: Web Service
Interfaces

The workflows are offered as services in a WSRF-
compliant service container with WSDL interfaces.
The interface comprises WSRF, workflow, and other
operations.

+

RQ17: Variables The WS-BPEL standard defines the usage of process
variables to steer the control-flow. XPath can be used
as query language for such variables. It provides basic
compare and arithmetical operators. The process ap-
plies imported XML types (from WSDLs or imported
XML Schema files) to initialize variables.

+

RQ18: Failure Han-
dling

Business faults can be handled by using the WS-BPEL
compensation means. The handling of technical faults
is beyond the standard. However, standard means as
reliable messaging can be used to increase fault toler-
ance during workflow enactment.

+/∼

RQ19: Workflow
Monitoring

If it is possible to retrieve the current workflow execu-
tion state from the WS-BPEL workflow engine (as it
is possible with the ActiveBPEL engine) the Workflow
Service offers the workflow state as part of its resource
properties. Therefore, an adapter for monitoring col-
lects monitoring data directly from the engine. The
”process id retrieval” pattern is used to map the two
workflow instances to each other.

+

106

6.1 Architecture Review

Requirement Review
RQ20: Persistence Both components, the UNICORE 6 service extensions

and the ActiveBPEL workflow engine, are capable of
storing their state information persistently. But this
guarantees not the failure free recovery of workflows
after a crash.

+/∼

RQ21: Human Inter-
action

WS-HT defines means to map human tasks to SOAP-
based services. An implementation of this specifica-
tion or simpler but less flexible Web services (spe-
cialized on exactly one task) can be used to realize
human interaction in WS-BPEL-based workflows. In
scenarios with only little human interaction, one spe-
cialized service can used as representation for each hu-
man task.

∼

RQ22 Quality of
Service Properties:

The definition of QoS properties for a workflow is
very difficult since it combines services across enter-
prise boundaries providing different QoS guarantees.
Therefore, QoS is beyond the scope of this thesis and
future work.

−

RQ23 Accounting
and Billing:

Accounting and billing is not directly considered yet.
However, workflow monitoring and the simple adap-
tion of the message processing pipelines allow for the
gathering of accounting information. Furthermore,
credential delegation allows a detailed tracking of user
activities. Billing models are beyond the scope of this
work but we propose on-workflow-execution or on-
external-workflow-invocation models with respect to
Cloud computing services.

∼

RQ24 Adaptivity: Todays WS-BPEL workflow engines do not support
online adaptivity such as repeating workflow tasks or
changing process variables. Since the architecture is
build upon a standard WS-BPEL workflow engine, the
support of adaptivity is not possible without extending
the WS-BPEL workflow engine. The redirection of
service invocations tries to allow a minimum of adap-
tivity.

−

107

6 Evaluation

Requirement Review
RQ25 Provenance: The collection of provenance data such as the invoked

services, used credentials, exchanged messages, and
timestamps can be collected during external service
invocations via appropriate handlers in the message
processing pipelines. For the performance evaluation,
we already implemented handlers that store parts of
this information.

∼

TABLE 6.1: Review of the architecture

6.2 Applicability for Business Workflow in SMEs

Small and medium enterprises (SMEs) have a special need for efficient IT support since
the IT directly supports the actual business field. However, IT is also expensive and the
return of investment is often hard to assess. Thus, the importance of IT support is often
underestimated. This often scares IT decider to invest in new hard- and software because
maintenance and licenses of sophisticated IT systems that would better support the core
business are often extremely expensive.

Thus, SMEs have a stronger need for the integration of externally hosted services than
global players that own the power to run large data centers. This section analyses the
special challenges for cross-enterprise information system integration as necessary in out-
sourcing scenarios. After that, we evaluate the applicability of the BIS-Grid workflow
engine in two exemplary scenarios.

6.2.1 SME Information Systems Integration

The application of a SOA is still a problem that is hard to solve for SMEs because of
the lack of available resources. Hence, these enterprises do not yet profit from the bene-
fits such as the reuse of small service units, the flexible recombination of these, and the
mapping of business processes to the technical system level.

In [21], the authors list several factors that affect the decision for the acquisition of Web
service based IT. These are:

• size of the business (number of employees)

• the business sector (service, manufacturing, retail ...)

108

6.2 Applicability for Business Workflow in SMEs

• the market focus (local, regional, national ...)

• level of IT expertise (is there an IT department or some IT experts among the staff)

• annual turnover

• past experience with information technologies

Beside these mainly organizational factors also technical challenges must be faced, too.
Running a SOA does not only require the initial setup but also a regular maintenance
and updates [123]. If the SME has no expertise in such IT administration tasks, it has to
finance further resources, such as employing new personal or purchasing consultant ser-
vices. Both are costly and the return of investment must be foreseeable for the enterprise’s
management, in particular if IT is not the core business.

In contrast to these challenges, the introduction of service-oriented architectures offers a
lot of advantages: Through the three tier architecture as described in [78, 108], compa-
nies are enabled to handle access to legacy applications, databases, and other information
systems with loosely-coupled functional services instead of large and static application in-
terfaces. Such services provide only small and simple interfaces that hide the functionality
and complexity of the backend systems and better fit into the business processes as main-
frame systems. This will strongly decrease future costs for the technical implementation
of business process and future application integration. Additionally, SOA technologies
provide a basis for the integration of external services.

Since Grid and Cloud providers are extremely specialized in their products and exploit
economies of scale by running large data centers, they offer services cheaper and with
a higher quality of service than the small enterprise’s in-house IT departments can do.
Hence, the integration of such services in the enterprises’ IT will prevent SMEs from
purchasing expensive off-the-shelf software. Additionally, the on-demand character and
the fair billing models of Cloud computing increase attractiveness and allow for handling
irregularly arising load peaks effectively.

Beside these advantages, outsourcing of business relevant IT systems is still a tough topic,
especially for SMEs. The integration of external services in business processes or external
hosting of business crucial data is unpopular even if the external service can provide an
appropriate quality of service. The opinion of the chief information officer (in SMEs often
the business owner) is determinative. This requires a security concept built upon modern
standards for communication and data security as well as suitable non-technical service
level agreements between the service providers and SMEs.

The usage of Cloud computing services that are designed as multi-tenant architectures
arise new concerns according to security as hardware is shared with possible competitors.
But such multi-tenant architecture increase hardware utilization and allow for offering
services on a pay-per-usage basis. Of course, Cloud services can also be installed on

109

6 Evaluation

dedicated hardware if more restrictive service level agreements are required but only for
additional costs.

The in this thesis presented architecture is applicable for different cooperation scenarios
that facilitates the support of business processes by SOA technologies (see also [65]).
Figure 6.1 gives an overview on those scenarios:

Figure 6.1(a) shows an in-house integration scenario, better known as Enterprise Appli-
cation Integration (EAI) as it can often be found today. In this case, the new orchestration
engine is not really necessary but it’s employment permits switch to one of the other
scenarios with minimal effort. Of course, it is also possible to use a default WS-BPEL
workflow engine and substitute it with the secure orchestration engine later. However,
architecture already provide features that are advantageously even for a pure in-house
scenario such as role-based access control.

The Figures 6.1(b) and 6.1(c) depict two outsourcing scenarios where the workflow en-
gine is hosted in-house. These scenarios guarantee that business knowledge included in
the process description does not leave the enterprise’s boundaries. In Figure 6.1(b), only
minor important information systems are outsources and all business crucial data stays un-
der the enterprise’s administrative domain. The scenario depicted in Figure 6.1(c) presents
an company with full outsources information systems only running a workflow engine in-
house. This scenario seems to be improbable since the operation of a workflow engine is
usually not the core competence of SMEs.

As the maintenance of a workflow engine is complex and rather a task for workflow en-
gine specialists than for small IT departments we also consider scenarios employing an
outsourced workflow orchestration engine in the sense of Orchestration as a Service:

The Figures 6.1(d), 6.1(e), and 6.1(f) depict OaaS scenarios similar to the respective above
presented scenarios. The scenario in Figure 6.1(d) enables SMEs to benefit from the tech-
nical realization of business processes without introducing and maintaining a workflow
engine. The next scenario (Figure 6.1(e)) is especially interesting for companies that want
to outsource minor important services as well as the orchestration but keep the full control
on business crucial information systems. The industrial partners of the BIS-Grid project
state that this scenario matches with SMEs’ requirements if the partners agree on an ap-
propriate service level agreement.

We assume that the last scenario (Figure 6.1(f)) will be ideal for start-up companies. They
profit from the elasticity and the fair billing models of Cloud computing since they can
offer their services without initial costs. In the same time, it is possible to easily scale-up
if the business becomes successful. Communities such like mySpace or Facebook allow
promoting products to a huge number of possible customers possibly resulting in a rapidly
growing number of customers. Without the availability of large data centers, such services
cannot scale in an appropriate way so that customer satisfaction would decrease.

110

6.2 Applicability for Business Workflow in SMEs

Enterprise

(a) classical EAI

EnterpriseEnterprise

External

(b) EAI with partly outsourced IS

Enterprise

E t lExternal

(c) EAI with full outsourced IS

EnterpriseEnterprise

ExternalExternal

(d) Orchestration as a Service
(OaaS)

E t iEnterprise

External

(e) OaaS with partly outsourced
IS

Enterprise

External

(f) OaaS with full outsourced IS

FIGURE 6.1: Usage scenarios for information system integration using
a secure workflow engine

111

6 Evaluation

FIGURE 6.2: The call center process for read-only data retrieval as
BPMN diagram. [69]

112

6.2 Applicability for Business Workflow in SMEs

6.2.2 Example: Information System Integration

The first SME evaluation scenario examines the applicability of the architecture for an
exemplary workflow with a focus on the integration of several different information sys-
tems. It originates from a real-life scenario developed by the photo finisher enterprise
“CeWeColor” that was part of the BIS-Grid project. It is the number one services part-
ner for first-class trade brands on the European photographic market supplying stores and
Internet retailers with photographic products.

For the company, the impact of digital photography affected requirements to business
information systems (BIS) and processes, opened up new distribution channels, and facil-
itated new product lines. Product mass customization and the need to flexibly respond to
market development demand BIS that can adapt dynamically. The new direct distribution
channel of photographic products to the customers over the Internet, the handling of cus-
tomer support request became more important as the amount of call center requests grows
constantly. Therefore, the company has identified the call center as one area where IT op-
timization and flexibility is required to lower IT costs. We applied our workflow approach
[69, 55] to firstly discover the as-is and to-be state; secondly to identify an exemplary sub
process that is feasible for business information system integration; and thirdly to model
and to implement this exemplary process with the prototype of the architecture. Before
the project, the company had neither experience in workflow modeling nor in workflow
execution.

Regarding the call center scenario, information of different sources must be accessed by
call center agents to provide feedback to customers – for example about order status,
production failures, or accounting data. This access has to be uniform and with hard
constraints to the quality of the demanded services. The exemplary process, modeled as
BPMN, is depicted in Figure 6.2. The process collects information from four different
enterprise information systems and provides the data as a single web service call from the
user’s point of view. The company implemented a graphical interface that is completely
integrated with their main client application. Before that, the agent had to switch between
three different applications to get access to the different information system. The con-
tinuous entering of identifier data to query the information system was cumbersome and
slowed down the agent’s productivity.

After the detailed modeling of the workflow as BPMN as well as the Web services and the
data structures, the workflow has been modeled as WS-BPEL process within the NetBeans
BPEL editor – Figure 6.3 shows a screenshot of the workflow. As input, the customer and
order identifiers are required and used to get the data from the first services: production,
customer, and order database. Only if the customer is an end customer and not a reseller,
the data from the fourth system, the accounting database, is required.

113

6 Evaluation

FIGURE 6.3: Example WS-BPEL workflow for information system in-
tegration [87]

114

6.2 Applicability for Business Workflow in SMEs

fraction 0− 1 sec 1− 5 sec > 5 sec
> 90% perfekt acceptable inacceptable
> 80% acceptable inacceptable inacceptable
<= 80% inacceptable inacceptable inacceptable

TABLE 6.2: evaluation criteria for “short response times”

During the first phase of the evaluation, the workflow was tested as in-house scenario
without secured Web services and access control. During the second phase, it was eval-
uated according to the OaaS scenario. We tested with respect to two different locations
of the BIS-Grid workflow engine installation: on a second in-house server and on the
Grid cluster at the University of Paderborn. Due to serious security concerns, the OaaS
scenario was only performed with dummy data in dummy backend information systems
but providing the original service interfaces. These concerns originate not from the fact
that the company perceives the BIS-Grid workflow engine as insecure, but the invoked
services were only implemented as Web services without security.

The evaluation states that the BIS-Grid workflow engine fulfills the required functional
properties with respect to the in-house and the OaaS scenario. As non-functional require-
ment, the company needs a “short response time” of the system so that the call center
agent can quickly answer to the customer’s questions. They defined time constraints for
this as listed in Table 6.2 and measured the workflow response time on the locally installed
prototype using the productive backend systems during normal business operations. The
measurements are presented as part of the evaluation results in the project deliverable
4.3 [87] (confidential due to protect business secrets). As result, the evaluation partner
stated that more than 90% of the requests were answered within one second and the re-
maining 10% within less than 5 seconds so that the process fits in the time constrains.
Nevertheless, this evaluation must be seen critical because only one hundred workflow
repetitions served as basis for these results. A detailed performance analysis of the BIS-
Grid workflow engine components with different load scenarios is given in Section 6.4 of
this thesis.

6.2.3 Example: Interactive Workflow

The second small enterprise evaluation partner is the world market leader in the field
of wire drawing and draw-peeling for the automotive industry, named “KIESELSTEIN
GmbH”. Their core business is engineering and building large machines, each partly ad-
justed according to the customer’s wishes. These individual adaptations bear challenges
during the construction process.

115

6 Evaluation

For them, one challenge according to IT is to integrate enterprise resource planning (ERP)
data and product (CAD/PDM) data that are distributed across different sites. The systems
store information redundantly, since the company grew together from three different pro-
ducing factories, each providing their own information systems. The different sites are
connected with dedicated and therewith expensive communication lines providing only
small bandwidth for security reasons.

The formal modeling of business processes as well as the technical support of such pro-
cesses was completely new for the evaluation partner. Therefore, they work together with
a system integrator for the machine construction industry. Both companies already coop-
erated before the BIS-Grid project as the integrator maintains the whole IT for the SME.
Thus, a trustful relationship was already established. The system integrator supported the
SME during the technical realization of the exemplary workflow process and the evalua-
tion.

They chose the matching of articles and resources – necessary for realizing components of
the total machine – between two information systems as exemplary process. Before this
automation, an employee had to match the lists of such articles and resources manually.
Although the introduction of the workflow partly automates this task it still requires the
participation of an employee since the matching needs a lot of know-how about the re-
spective components. The final workflow matches data from both information systems: a
CAD system that manages technical drawings and an enterprise resource planning system.
Both products are off-the-shelf software.

Figure 6.2.3 depicts the first half of the workflow as screenshot. Generally the work-
flow reads a list of all necessary parts from the CAD system and tries to find a matching
counterpart in the ERP system. Not found or not matching article data is passed to the
employee for manual handling. After this, the data is stored in the ERP system and again
feedback is given to the employee. In the next step, the resources list – a list of articles,
amounts, types etc. – is loaded from the ERP system and matched with the articles. The
employee again checks this list and inserts missing data. After that, the data is stored as
assembly into the ERP as well as into the CAD system. At last, the employee gets an
confirmation about the successful storage operation.

The figure gives a hint of the complexity of the workflow and the high degree of user
interaction. The interface on the left includes six different operations used by the user
during the execution of one workflow. For simplicity of the evaluation scenario, the human
interaction is realized as synchronous communications initiated by the user that returns
the next required data as answer. This requires some kind of business logic also in the
user client but supersedes special services for realizing human interaction as presented
in Section 4.4. The interfaces on the right outline the two information systems. Not all
operations are connected with the workflow because some workflow scopes are folded
and therewith the connections are hidden by the editor, too.

116

6.2 Applicability for Business Workflow in SMEs

FIGURE 6.4: Interactive WS-BPEL workflow (first half) [82]

117

6 Evaluation

The CAD drawings as well as information about articles and resources for new machines
are secret information. Hence, these data is handled very carefully. At the moment,
the information systems are hosted in-house at the SME but maintained by the system
integrator. Due to the trustful relationship and the complex setup and maintenance of a
workflow engine, the SME would allow the external hosting of the workflow engine at
the system integrator’s data center. This would turn the system integrator into an OaaS
provider.

The workflow has been evaluated in the following scenario. The system integrator sup-
ported the SME in workflow discovery and modeling and served as process designer.
This illustrates the different roles according to the different actors in the use cases of the
Workflow Management Service. Simultaneously, the system integrator provided the or-
chestration infrastructure in the context of OaaS. The information systems were placed
in-house and encapsulated by secured Web services. Unfortunately, the ERP system of-
fered no appropriate interfaces for the provisioning as Web service. As substitute, all ERP
data was exported to a simple database. The employee of the SME who normally did the
matching by hand was the user.

The evaluation result reveals that the technical workflow support saves a lot of time since
the employee can process the matching within only a small portion of the original dura-
tion. But the SME also sees some drawbacks in the complexity of the required IT infras-
tructure (e.g. introduction of a Linux-based system in an otherwise completely Windows-
based server landscape) as well as the additional maintenance. This underlines the fact
that OaaS is a promising solution for SMEs. As further disadvantage, they identified
the usage of personal certificates as it is usual in the Grid community. Such certificates
hamper a dynamic assignment of tasks to employees. If the technical support for human
interaction would be realized in a more flexible way e.g. with WS-HT [1], a dynamic task
assignment would be possible even with personal certificates.

6.3 Applicability for Scientific Workflows

The applicability of WS-BPEL for scientific workflow execution has been evaluated in
several papers (cf. related work about Gird Workflow Orchestration in Section 7.2). One
usability problem of BPEL4WS [7], the former BPEL specification, is the parameterized
execution of compute jobs (cf. Section [40] and 7.2). This problem is partly solved since
WS-BPEL version 2.0 [75]. The newly introduced <forEach>-activity allows the exe-
cution of activities in parallel. An array that includes the parameter configurations serves
as input. One parallel execution is spawned for each element of this array.

The major problem when using WS-BPEL for workflows on Grid resources is the sup-
port for several middlewares and the respective security infrastructures. To evaluate the

118

6.3 Applicability for Scientific Workflows

applicability of the Grid and Cloud orchestration architecture for scientific workflows, we
implement workflows that represent typical Grid scenarios. These workflows are the sub-
mission of compute jobs and the reuse of this workflow to realize the notification after
the job has finished. Beside the general applicability for the scientific domain, we also
present the capabilities of orchestrating stateful services and the integration of both Grid
middlewares UNICORE 6 and Globus Toolkit 4.

We only illustrate the general applicability to execute scientific tasks with WS-BPEL
workflows and the reusability in more complex workflows. A comprehensive evaluation
of WS-BPEL for complex experiments and modeling mainly data-flow-oriented work-
flows is beyond the scope of this evaluation.

6.3.1 Example: Grid Job Submission

The implementations of job submission services can be manifold. As example, UNI-
CORE 6 support different services as the TargetSystemService or the OGSA-BES (OGSA
Basic Execution Services) [46]. In this case, both services use the Job Submission De-
scription Language (JSDL) [8] to define the compute task. Using job submission services
results in almost generic sequences of Grid services invocations for most jobs (cf. [135])
that can be encapsulated in a generic and configurable WS-BPEL (sub-)workflow. The
presented JobSubmissionWorkflow is such a workflow that represents the default submis-
sion of a compute jobs.

We identified a WS-BPEL pattern [59] for orchestrating Grid Services using standard
WS-BPEL in Section 4.3.1. Based on this, we developed a workflow to encapsulate Grid
service invocations for job submission to UNICORE 6. A description of this workflow is
presented in Table 6.3.

Job submission to UNICORE 6 consists of several phases that are described briefly in the
following. Additionally, Figure 6.5 illustrates the corresponding workflow steps. Please
note that we omitted exception handling and compensation for the sake of clarity; both
are not necessary for proving the general applicability of the BIS-Grid workflow engine
for eScience workflows. The signature of the job submission workflow is described in
Table 6.4. At least, the endpoint to a UNICORE 6 target system and the JDSL Job de-
scription is mandatory.

1. Job Submission Receive: A JSDL job description and configuration pa-
rameters are received and stored in process variables.

2. Target System Service Instance Create: A TargetSystemService in-
stance is created via the default factory instance.

119

6 Evaluation

Motivation Scientific workflows are often designed as non-interactive computa-
tional tasks in the form of (batch) jobs. The submission of such a
job requires a well-defined invocation of several Grid services. Since
this sequence can be reused in a high percentage of possible job sub-
mission scenarios it can be completely abstracted from the user. The
workflow enables the submission of a compute job with only calling
one service.

Intention Define a workflow that submits a job to a UNICORE 6 installation by
using the TargetSystemService and JobManagementService to submit
and start the compute job given as JSDL description.

Behavior See Figure 6.5.
Participants The invoker of the job submission workflow, the TargetSystem-

FactoryService, the TargetSystemService, and the JobManagement-
Service.

Consequences Job submission is encapsulated in a workflow using the WS-BPEL
description language. This facilitates the reuse on a higher level of
abstraction and reduces submission errors.

TABLE 6.3: Job Submission Workflow description

3. Target System Service Instance Submit Job: The job description
is submitted to the newly created TargetSystemService instance. One part of the re-
sult is the endpoint reference to the newly created JobManagementService instance.

4. Job Management Service Instance Start Job: The endpoint of the
JobManagementService instance is assigned to a new partner link and used to start
the actual job execution.

5. Job Result Reply: The workflow sends both endpoint references, the end-
point of the newly created TargetSystemService instance and JobManagementService
instance, back to the invoker.

The JobSubmissionWorkflow submits the JSDL description to the UNICORE 6 system and
does not care for the execution result or possible error. These tasks are in the authority
of the user. Thus, the Grid service destroy pattern – as introduced in Section 4.3.1 –
is not applied in the workflow. The endpoint references of the TargetSystem- and the
JobManagementService instance are returned to the invoker for a possible reuse.

Since the anonymous submission of jobs is prohibited in some Grid installations, the
workflow supports credential delegation. When the user starts the workflow, he also sub-
mits the SAML assertion that state that the Workflow Service is allowed to act on behalf

120

6.3 Applicability for Scientific Workflows

Name Type Description
Input parameters

TargetSystemFactory
(mandatory)

wsa:EndpointReferenceType The endpoint to the TargetSystemFactoryService that shall
create the Target System Service instance.

JSDL (mandatory) jsdl:JobDefinition Type The job description according to the JSDL standard.

LifetimeIntervall (op-
tional)

xsd:duration Maximum runtime for job execution. If omitted, a default
lifetime is used. The maximal runtime is added to the cur-
rent time stamp to define the jobs wall time

Output parameters
TargetSystem wsa:EndpointReferenceType The endpoint reference that points to the newly created tar-

get system.

JobManagement wsa:EndpointReferenceType The endpoint reference which points to the newly created
job management that is responsible for this single job exe-
cution.

TABLE 6.4: Signature of the job submission workflow.

FIGURE 6.5: JobSubmissionWorkflow

121

6 Evaluation

of the user to the Workflow Service instance. This instance stores the assertion and uses
it for all calls to the Grid site during workflow enactment.

The JobSubmissionWorkflow still has some potential for optimization. Each user only
requires one active, reusable TargetSystem to submit several jobs to a UNICORE 6 site.
If he has already created a TargetSystem, he should be enabled to optionally submit its
endpoint reference instead of the TargetSystemFactory endpoint reference. The workflow
should automatically check the service name and skip the Target System Service
Instance Create step.

Data staging

Data staging is an important part of all scientific compute jobs. UNICORE 6 provides a
StorageManagementService that can be used for initiating data transfer between two Grid
sites. This requires the cooperation of several Grid sites and services as the FileTrans-
ferService is responsible for the actual data transfer and the StorageManagementService
provide access to the file system.

A file transfer can explicitly be modeled as workflow that communicates with at least
two sited. But a central orchestrator is only applicable to control instead of processing
file transfers. Transferring huge data amounts through a WS-BPEL engine would cause
enormous communication overhead as data must be transferred twice and will furthermore
slow down the engine. Additionally, WS-BPEL is not capable of modeling or processing
data streams.

As workaround, we can use JSDL capabilities to instruct the JobManagementService to
implicitly execute file transfers as data staging. The JSDL schema includes dedicates
sections to model data staging as part of the job description. In both cases, explicit or
implicit file transfers, the data must be previously available at a Grid storage service.

6.3.2 Example: Hierarchical workflow composition

The workflows deployed in the BIS-Grid workflow engine are stateful Grid services. We
reuse the JobSubmissionWorkflow in a higher level workflow for illustrating the composi-
tion abilities of deployed workflows.

In contrast to GT4, UNICORE 6 does not support notifications when jobs are done.
Hence, the user has to poll regularly to get the current job execution progress. As so-
lution, the JobSubmissionWorkflow is encapsulated into a second, higher level workflow
that polls the JobManagement service instance regularly and notifies the user after the job

122

6.3 Applicability for Scientific Workflows

Motivation UNICORE 6 supports no notifications. The client should receive a
message when the workflow is finished so that it can react in a proper
way.

Intention Define a workflow that submit a job on a UNICORE 6 by reusing
the JobSubmissionWorkflow and check the state of the workflow reg-
ularly. When the workflow is finished or faulted, send the result and
the endpoint references of the participating UNICORE 6 services to
the user.

Behavior See Figure 6.6.
Participants The invoker of the workflow, the respective services (Workflow Ser-

vice Factory and Workflow Service) of the JobSubmissionWorkflow.
Consequences The workflow offers a service that submits JSDL jobs and notifies the

invoker after the execution is finished or a fault occurred.

TABLE 6.5: Job Submission and Notification Workflow description

is done. Hence, this workflow again can be reused to execute jobs in a higher level work-
flow that triggers new events after the previous job is finished. The workflow is described
in more detail in Table 6.5.

The workflow behavior is depicted in Figure 6.6 and is composed of the following tasks:

1. Job Submission Receive: A JSDL job description and configuration pa-
rameters are received and stored in process variables.

2. Job Submission Workflow Create: The JobSubmissionWorkflowFactory
service is used to create a new instance of the JobSubmissionWorkflow.

3. Job Submission Workflow Submit Job: The endpoint and input mes-
sage to start the job submission workflow service is prepared and send to the Work-
flow Service instance. This triggers the actual job submission to the UNICORE 6
site as presented in Section 6.3.1. The result is the endpoint references to the
TargetSystem- and JobManagementService.

4. Check Job Execution State: According to the WSRF standard, the cur-
rent state of job execution is presented as resource property of the JobManagement-
Service. After assigning the endpoint reference to a partner link the workflow
repeats the retrieval of this property until the execution state changes to either
FAILED or SUCCESSFULL.

5. Submit Job Reply: The workflow answers the invoker with the endpoint ref-
erences of both, TargetSystem- and JobManagementService.

123

6 Evaluation

FIGURE 6.6: Job Submission and Notification Workflow

Note that we omit the destruction of the workflow instance in spite of it would be reason-
able. The interface of the workflow is the same as for the pure job submission workflow
(cf. Table 6.4).

Both workflows represent only a prove of concept for Grid services integration, hierarchi-
cal composition of workflows, and the feasibility to model typical scientific computing
tasks with the BIS-Grid workflow engine. They still offer some improvement capabili-
ties.

Firstly, adding optional input parameter allows for redefining the length of the wait inter-
val between JobManagementService state retrievals. Since only the user can estimate the
job execution time, it saves a lot of state requests or wait time (for short running jobs).
The introduction of an initial wait interval before regularly asking for the execution state
would also be helpful.

Secondly, the current workflow description uses a synchronous communication pattern –
for simplicity reasons – to invoke the job submission and notification workflow. Since the
actual job execution will take a while (minutes, hours, or even days), the connection will
fail because of the TCP timeout. This does not affect the workflow execution but the an-
swer message is discarded. Asynchronous communication would me more sophisticated
but would require a Web service port on client side.

Thirdly, we have to consider that the job exceeds the default lifetime of a JobManagement-
Service instance. At the moment, it is laborious to get this instance regularly and set a new

124

6.3 Applicability for Scientific Workflows

FIGURE 6.7: GT4 Counter Workflow

termination time. The workflow could automatically check the current execution state
after a “wait”-period and increase the termination time, if necessary.

Fourthly, the user assigns the Grid site that is used for job execution. As a Grid normally
provide some kind of monitoring about job queue length for each site, a higher level
workflow could query such a monitoring service and submit the job to the Grid site with
the shortest queue.

6.3.3 Example: Globus Toolkit 4 integration

With the integration of UNICORE 6, we already outlined the feasibility of the BIS-Grid
workflow engine to orchestrate stateful Grid services and the usage of the WS-BPEL or-
chestration language for basic scientific workflows, such as the submission of compute
jobs to a Grid site. As a second Grid middleware, we also evaluated the feasibility of
orchestarting Globus Toolkit 4 (GT4) services. As described in Section 2.3, the two mid-
dlewares differ in several points:

• GT4 offers different services for the same typical Grid computing functionality.

• The encoding of the instance identifier in the endpoint reference is different.

• GT4 uses the so-called Grid Security Infrastructure (GSI) that basically differs
from the UNICORE 6 security infrastructure.

Since we already outlined the usage of Grid services for job submission, we implemented
only a demonstrator workflow that generally illustrates the usage of GSI secured commu-
nication and the handling of GT4 endpoint references.

125

6 Evaluation

FIGURE 6.8: Example Workflow

For this, we implemented a workflow that simply invokes the GT4 CounterService that
is shipped with the GT4 installation as depicted in Figure 6.3.3. The workflows allies
the three basic steps on the CounterService: Grid Service Instance Create,
Grid Service Instance Use, and Grid Service Instance Destroy cor-
responding to the typical WSRF usage pattern in Section 4.3.1 on page 87.

We tested the workflow without and also with message-level security based on WS-Security
and WS-SecureConversation (cf. Section 2.3.2 on page 27). WS-SecureConversation re-
quires the usage of credential delegation to identify the original user. Therefore, we cre-
ated and send a valid proxy certificate within the SOAP header of the workflow start mes-
sage to the BIS-Grid workflow engine. The workflow uses this certificate for the actual
service calls on the GT4 CounterService.

Since all workflows has been executed successfully, the evaluation illustrates that the BIS-
Grid workflow engine is capable of integrating GT4 services or in more detail services that
are secured by the Grid Security Infrastructure.

6.4 Performance

The evaluation scenarios have already outlined that the importance of performance de-
pends on the workflow and the application scenario. The OaaS usage scenario requires
an acceptable performance as well as the possibility to scale. Scalability is rather an issue
for load balancing than for the performance of individual workflow executions.

This section presents some performance measurements to illustrate the additional costs of
the BIS-Grid workflow engine architecture. Anyway, the usage of a central workflow en-
gine for time critical orchestrations is not recommendable in most cases. A choreography
approach or a client that implicitly realize the orchestration logic would save communica-
tion overhead.

The evaluation setup is as follows: Two servers (AMD Athlon 64 X2 3800+, 4 GB RAM)
and an additional computer as client are used. The BIS-Grid workflow engine and ad-
ditionally a default ActiveBPEL workflow engine (version 5.0.2 on a tomcat 5.5.28) are

126

6.4 Performance

Test Case 1: Default ActiveBPEL
Test Case 2: BIS‐Grid Engine insecure
Test Case 3: BIS‐Grid Engine secure

BIS‐Grid
UNICORE 6
EchoServiceU

N
IC
O
E
6

G
at
ew

ay

U
N
IC
O
E
6

G
at
ew

ay

Workflow Engine
EchoService

Client
U

ActiveBPEL
CXF

hActiveBPEL EchoService

FIGURE 6.9: Test Case Scenarios for Performance Measurements

installed on the first machine. The second server hosts the invoked services on two differ-
ent service frameworks: UNICORE 6 and ApacheCXF. All machines are connected with
a 100 megabit local area network.

Both invoked services are echo services that simply return the input. These test cases allow
us for comparing the performance of the default insecure orchestration to the BIS-Grid
workflow engine supporting Grid security standards for authentication and authorization.
The workflow the has been used in all test cases is presented in Figure 6.8. It simply
invokes the external service one time and directly returns the answer to the user.

Figure 6.9 sums up the three different test scenarios:

1. The first test case is a simple, insecure Web service workflow: The workflow runs
at the ActiveBPEL workflow engine and invokes a default CXF Web service (Ac-
tiveBPEL – CXF).

2. The second test case represents the BIS-Grid workflow engine and invokes the de-
fault CXF Web service (BIS-Grid – CXF).

3. The third test case uses a secured workflow: The workflow runs at the BIS-Grid
workflow engine and invokes a stateless copy of the echo service secured with UNI-
CORE 6 security (BIS-Grid – UNICORE).

Since the BIS-Grid workflow engine and the UNICORE 6 echo service run in a default
UNICORE 6 installation, the messages have to additionally pass a UNICORE 6 Gateway.
This requires an extra (in this case local) communication step. Thus, the execution of

127

6 Evaluation

test case 1 requires two HTTP connections; and test case 2 requires two HTTPS and one
HTTP connection; and test case 3 requires four HTTPS connections.

We measured the duration for each workflow execution – exclusive workflow creation time
– at the client. The BIS-Grid workflow engine requires the explicit creation of workflow
instances. This consumes additional resources at the BIS-Grid workflow engine but the
creation of workflow instances is a usual task. Nevertheless, the workflow is such simple
that the ratio of workflow execution to workflow creation is not representative for real-life
application scenarios. Since we disregard this fact, the presented measurements represent
a worst case scenario.

For each test case, the workflow was executed 2000 times with 1, 10, 50, and 100 concur-
rent client threads that simulate different load scenarios. During this, we journalize the
timestamps:

1. for the client message exchange

a) just after the request arrived at the BIS-Grid workflow engine.

b) right before the request is send to the WS-BPEL workflow engine.

c) just after the answer arrived at the BIS-Grid workflow engine.

d) right before the answer is send to the client.

2. for the external service message exchange

a) just after the request arrived at the BIS-Grid workflow engine proxy.

b) right before the request is send to the external service.

c) just after the answer arrived at the BIS-Grid workflow engine.

d) right before the message is send back to the WS-BPEL workflow engine

3. at the client

a) right before the message is send.

b) just after the answer is received

With this timestamps, we can calculate the durations for message processing at the differ-
ent components of the BIS-Grid workflow engine, the WS-BPEL workflow engine, and
the external service. Since we measured the timestamps with handlers only at the UNI-
CORE 6 server, the time for the HTTP(S) communication is included in the duration of
the WS-BPEL workflow engine or the external service call duration. However, since we
use the same services for each workflow execution, the implementation reuses the existing
TCP connections so that the overall error should relatively small.

128

6.4 Performance

1 10 50 100

Threads

P
er

ce
nt

ag
e

of
 c

om
pu

te
 ti

m
e

co
ns

um
pt

io
n

0
20

40
60

80
10

0

BIS−Grid
CXF

1 10 50 100

EXTERNAL service
BPEL engine
BIS−Grid OUT
BIS−Grid IN

Threads

BIS−Grid
UNICORE

0
20

40
60

80
10

0
FIGURE 6.10: Medium Time Consumption expressed as a percentage

Figure 6.10 illustrates the percentage of time consumed in the different components of the
BIS-Grid workflow engine and the external service for the test cases 2 (on the left) and 3
(on the right):

• BIS-Grid IN means the time required for forwarding a client message to the WS-
BPEL workflow engine and the other way around ((1b− 1a) + (1d− 1c)),

• BIS-Grid OUT stands for the consumed time for processing the in- and out-message
to call the external service in the Workflow Service ((2b− 2a) + (2d− 2c)),

• BPEL engine is the ratio of time consumed for all processing steps in the WS-
BPEL workflow engine including the communication from/to the Workflow Service
((1c− 1b)− (2d− 2a)),

• and EXTERNAL service is the fraction of time for invoking the external service
including the communication from/to the Workflow Service (2c− 2b).

We can deduce the following interesting facts from the resulting distributions:

• The ratios of all bars are relatively fixed (with the exception of 10 concurrent
clients). This means that all services slow down in the same way if the load in-
creases.

• BIS-Grid IN is slower than BIS-Grid OUT although both pass the message through
the Workflow Service instance. This originates from the fact that BIS-GRID IN
includes the time for the access control process.

• The complete processing time in the BIS-Grid workflow engine including the WS-
BPEL engine (the sum of three bars at the lower end) costs only about 1 to 4 times

129

6 Evaluation

●●●●●●

●●
●
●●
●●●●
●
●●
●●
●●●●

●

●

●
●●●
●●
●
●●
●●●
●●●

●

●

●

●●
●

●●

●
●
●●●
●●

●

●
●
●●●
●●●
●●●●
●

●●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

ActiveBPEL
CXF

BIS−Grid
CXF

BIS−Grid
UNICORE

0
50

0
10

00
15

00
20

00
25

00

tim
e

in
 m

s
10 concurrent clients

●

●
●

●

●●
●

●

●●

●●

●●
●

●
●

●

●●●●●

●

●
●●●

●

●●●●●●●●●●●●●●
●●
●
●
●●●●●
●●
●●●
●
●
●
●
●●●●●●●

●●

●

●●●●●
●

●

●

●

●

●

●

●●●
●

●
●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●

●●

●

●●●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

ActiveBPEL
CXF

BIS−Grid
CXF

BIS−Grid
UNICORE

0
20

00
40

00
60

00

50 concurrent clients

●
●●
●
●●●●●●●●●●●●

●

●

●
●
●
●●●●

●●
●●●●●●●●●●●●●
●
●
●●●
●
●
●●●
●
●●
●
●
●●
●●
●
●●
●●
●
●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●
●●
●●●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●●

●●

●●●●●●●●

●

●●

●

●●●●

●
●
●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●●
●●

●

●●
●●

●
●
●●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

ActiveBPEL
CXF

BIS−Grid
CXF

BIS−Grid
UNICORE

0
50

00
10

00
0

15
00

0

100 concurrent clients

FIGURE 6.11: Response Time Distribution

more than the invocation of an simple stateless UNICORE 6 service but about 5 to
10 times more than a simple unsecured Web service.

• The ActiveBPEL engine seems to scale slightly worse than the UNICORE 6 ser-
vice extension since the BPELEngine ratio growth disproportionate to the other
components , but we assume that this originates from the handling overhead for the
additional concurrent TCP connections if it has to handle more workflows concur-
rently.

Figure 6.11 denotes the response time distribution – measured at the client – grouped
by the number of client threads as box-whisker plots [98]. Box-whisper plots depict a
distribution by its five-number summary: the minimum, the lower quartile, the median,
the upper quartile, and the largest observation. The whiskers (dashed lines) are 1.5 times
the distance between the medium and the respective lower or upper quartile and give a
hint to identify outliers.

One can observe that, of course, the test case 1 is generally faster than test case 2 and 3 but
also that test case 2 is faster than test case 3. This matches with the number of HTTP(S)
connections of the different test cases. Additionally, time is consumed due to the access
control mechanism that is necessary once in test case 2 and twice in test case 3.

The proportion of the test cases’ distributions seems similar for the depicted load scenar-
ios, but the y-axes are scaled differently. Of course, additional load also causes higher

130

6.4 Performance

response times but the figure denotes that the test cases scale in a similar way. The larger
diffusion for the BIS-Grid workflow engine test cases most probably originates from the
worker thread architecture of Web service frameworks. Such frameworks queue incom-
ing messages and work off the messages with a fixed number of worker threads. If the
number of concurrent messages grows, also the mean wait time in such queues grows
proportional. These times add up if more connections are used.

To conclude, we can state that the additional security mechanisms also causes additional
costs with respect to the response times of the workflow. But these costs grow proportional
with respect to the costs of an insecure workflow.

131

6 Evaluation

132

7 Related Work

Contents
7.1 Web Service Orchestration . 133
7.2 Grid Workflow Orchestration . 135
7.3 Cloud Workflow Orchestration . 140

This chapter presents related work grouped by three main topics. Firstly, we address some
related work for simple Web service orchestration. Secondly, we outline related work in
the context of Grid service orchestration and thridly we discuss some new approaches for
the integration of Cloud services in workflows.

7.1 Web Service Orchestration

Within the last decade, the composition of Web services to more complex workflows has
become more and more popular. Many different approaches for the combination of Web
services have been tested and evaluated. Since this is a research topic for so long, we
cannot list all work done in this are. Therefore, we give an overview about related work
concerning common Web service orchestration with a special focus on cross-enterprise
boundary composition:

In the year 2002, Ian Foster et have al. already outlined the idea to use Grid technologies
for the integration of Web services across distributed, heterogeneous, and dynamic orga-
nizations (cf. [48]). As basis for this, they propose the Open Grid Service Architecture as
hosting environment that is today the basis for the Globus Toolkit middleware. They have
foreseen the trend towards the distribution of enterprise computing functions as a result of
the need for economies of scale.

Peltz defines the term “orchestration” and compares it to “choreography” in [106]. He
states that orchestration, Web services composition conducted by a central orchestrator, is
rather used in enterprise internal application scenarios while choreography is feasible for
enterprise cooperation. As choreography language, he presents “Web Services Choreog-
raphy Interface” (WSCI) [9] because that is a collaboration extension to WSDL. It defines
the message exchange between Web services that allows for cooperating without a central

133

7 Related Work

instance. Furthermore, the concept of abstract BPEL processes is presented as compara-
ble to WSCI both describe only a collaborative protocol. Concrete details on the creation
of executable workflows are omitted.

Through the usage of a Web services orchestration engine that applies high security stan-
dards and flexibility to integrate various third-party services – as presented in this disser-
tation, enterprises are enabled to outsource IT systems. As Tilley et al. state in [123], the
outsourcing of non-crucial IT services that provide no competitive advantage will enable
companies to focus on what they do well, namely its core competences.

Jung, Kim, and Kung provide an overview about standard-based approaches for B2B
workflow integration in [77]. The paper presents a reference model that they used to
compare three approaches for B2B workflow integration:

• Workflow Systems Interoperability: The Wf-XML specification [32] is used to de-
fine a message exchange binding between two independent workflow systems, each
in one participating enterprise. They note that this approach is simply to implement
but it misses some important issues, like e.g. security.

• Web Service Choreography: This approach uses Web services to realize a loosely
coupled integration. A workflow engine should be enabled to invoke services from
diverse enterprise domains. As appropriate standards for this, they propose XPDL
[50], BPML [122], WSCI [9], and BPEL [7]. This matches our concept for inte-
grating cross-enterprise services in one business process.

• Multi-Phase Process Composition: B2B communication is realized as a coupling
of private (enterprise internal) and public processes, both enacting independently.
This approach requires much more implementation effort since several workflow
engines must be integrated to guarantee independent management and maintenance
of workflows.

In [17], Benatallah et al. describe the design for a Web service orchestration framework
called Self-Serv based on three components: a language for process-based composition,
the concept of service communities, and a peer-to-peer orchestration model. The resulting
implementation uses a model-driven approach to compose services.

The authors distinguish three kinds of services: elementary services, composite services,
and service communities. Elementary services are basic services that provide access to
an application; composite services represent a mix of several elementary or other com-
posite services; and service communities embody a set of services that provide the same
functionality.

Service communities are realized by registering mappings between a predefined commu-
nity interface and the actual service interfaces. In doing so, rather operations are mapped
instead of complete WSDL interfaces to allow registrations that only comprise a subset

134

7.2 Grid Workflow Orchestration

of the community interface. Communities are used for late service binding using multi
attribute service selection policies.

Composite services are modeled with state charts but the authors outline that it is also
possible to adapt other modeling languages as BPEL. Transitions can be annotated with
conditions. All participating service-operations (including the new composite service) are
described as the sum of all in- and out-parameters.

The enactment of services is realized by a peer-to-peer based approach. Each state in the
state chart is attached with a state coordinator that is responsible for the execution of this
state. After the actual execution, it notifies the coordinator of the next state that should be
executed then. Coordinators only execute activities when all preconditions are fulfilled.

Mecella et al. [99, 100] present an orchestration management system for services, called
the PARIDE framework. It is based on a cooperative technology layer as CORBA, EJB,
or .NET. It supports the cross-enterprise orchestration of services. As modeling language
for the service and orchestration behavior, they propose Petri nets.

Beside the listed papers and mostly freely available workflow engines also commercial
companies provide Web service orchestration engines in their portfolios. Such engines are
partly also capable of integrating services across administrative domains, but commercial
vendors do only rarely publish internal architectural details. Hence, we omit commercial
approaches for related work.

7.2 Grid Workflow Orchestration

Grid workflow orchestration is a common means in eScience scenarios. Some experimen-
tal setups need the execution of many compute jobs that have to be processed in a certain
order. Workflows can be used to model and execute the execution of such compute job
pipelines.

Akram et al. [2] identify requirements for scientific workflows – namely modularity, ex-
ception handling, mechanisms for compensation/recovery, adaptivity and flexibility, and
workflow management – by the example of a protein crystallography workflow. They also
describe how the BPEL language addresses these requirements, and the shortcomings of
BPEL for scientific workflows. Most prominently, these are the limited adaptivity regard-
ing workflow modifications at run-time, the lack of support for user interactions, and the
need to wrap non-portable engine-specific workflow management capabilities using ap-
propriate standards in order to use them in a portable manner. We fully agree with these
statements.

135

7 Related Work

Regarding the use of BPEL for Grid service orchestration, Leymann proposes BPEL4WS
as foundation since it already fulfills many requirements to orchestrate services according
to the WSRF standard [89]. The appropriateness of BPEL is also examined and confirmed
in [28], [38], [39], [42], and [111]. These works mainly focus on scientific workflows
and, except for Ezenwoye et al. [42], rely on extending or adapting BPEL, thus creating
dialects. In [74], Joncheere et al. state that BPEL4WS offers some drawbacks for Grid
services orchestration as the missing possibility to model cross-cutting concerns as tackled
with aspect-oriented software development.

Tan and Turner present their concept to orchestrate Grid services with ActiveBPEL and
Globus Toolkit 4 in [118]. They conclude that BPEL can be used to support orchestration
of Grid services but they see some open issues like the incompatibility of Axis versions to
deploy both frameworks on the same Tomcat, missing support of GSI in ActiveBPEL, and
a complicated handling of resource keys (instance identifiers) within the workflow engine.
The presented architecture of this dissertation facilitates among others the handling of
resource IDs with WS-BPEL pattern.

Dörnemann et al. [38] describe how the WS-BPEL extension mechanism can be used to
introduce new BPEL activities that enable Grid service communication. They introduce
three new activities to support the invocation of stateful WSRF services:

• GridCreateResourceInvoke calls the factory of a WSRF service that creates
a new resource. The resource key then stored in a BPEL variable.

• GridInvoke invokes the actual service instance identified by the previously stored
resource key.

• GirdDestroyResourceInvoke destroys the service instance.

The implementation targets Globus Toolkit 4 services and supports the Grid Security
Infrastructure (GSI). It is based on the ActiveBPEL 2.1 workflow engine that supports
BPEL4WS [7] instead of the newer WS-BPEL [75]. As workflow designer, they extended
the Eclipse BPEL editor by introducing new symbols that represent the new BPEL ac-
tivities. The BPEL extensions tackle the similar problems as our WSRF BPEL pattern
presented in Section 4.3.1.

The execution of jobs with WS-BPEL is also discussed in [117] in which a two-stage
approach is proposed. In the first stage, a base flow is modeled to define job execu-
tion, supplemented by a JSDL job description and a fault-handling policy based on WS-
Policy [127]. This base flow is expanded automatically in the second stage by additional
WS-BPEL fault-handling activities corresponding to the respective fault-handling pol-
icy. The execution of the workflow requires two additional non-WS-BPEL services, a job
proxy to encapsulate job execution and to receive notification messages from a scheduling

136

7.2 Grid Workflow Orchestration

system, and a fault-handling service to apply extended fault-handling strategies such as
workflow instance migration.

In [135], Zhao et al. present a visual tool that abstracts a typical sequence of BPEL activ-
ities for scientific computing to a new single activity. This sequence comprises steps like
submitTask or getTaskStatus and looks slightly similar to the job submission workflow we
presened in Section 6.3.1. However, Zhao et al. focus on visual complexity in the work-
flow editor. The proprietary code is translated to standard WS-BPEL that is then deployed
in a WS-BPEL engine. This is a similar idea like hiding our Grid Service Invoke pattern
as single activity in an sophisticated WS-BPEL editor.

The importance of the BIS-Grid workflow engine approach is strengthened since a work-
flow engine with similar design goals is presented in [94]. The authors describe their idea
of a BPEL-based workflow engine including a load balancing mechanism. They want to
solve four main issues: the support of WSRF services, dynamic and late service binding,
high scalability, and friendly workflow definition. To enable the hierarchical integration of
composite services, they also demand that the workflows are presented as stateful WSRF
services.

However, the actual implementation is completely different compared to the BIS-Grid
workflow engine. As basis, they also used ActiveBPEL but they exchanged the service
invoking layer that support WSRF services. For workflow modeling, they suggest an
editor that can be used to combine standard activities. These standard activities have
no direct mapping to BPEL. Instead of this, an activity is defined by a proprietary code
snippets before deployment that are mapped to more complex WS-BPEL code snippets.
These snippets are created by domain experts and allow a simpler reuse for unskilled
users. As future work, the authors plan to integrate the workflow engine with Globus
Toolkit 4. The paper gives no information about security issues.

The adaption of WS-BPEL for eScience workflows in the context of the Linked Environ-
ment for Atmospheric Discovery (LEAD) is presented in [61]. The authors also state –
as we do – that the diversity of Grid workflow specification languages hampers the in-
teroperability of Grid workflow systems. They adopt the Apache ODE workflow engine
and tried to let the WS-BPEL standard untouched, but party unsuccessful. The adoption
requires some modifications that are implemented as plug-in mechanisms into the ODE
engine and can probably easily be implemented also in other WS-BPEL compliant work-
flow engines. Furthermore, they tried to cover some issues with auxiliary WS-BPEL code
that is injected by the XBaya workflow composer. This is a similar approach as the pre-
sented pattern injection during workflow deployment in our architecture. Furthermore, the
authors emphasize that WS-BPEL is appropriate for parameter studies as it introduces the
new <for-each> activity that allows the sequential and parallel execution WS-BPEL
activities.

137

7 Related Work

In [6], Amnuaykanjanasin and Nupairoj describe a solution to orchestrate Globus Toolkit
services secured with the Grid Security Infrastructure (GSI). For each Grid service, a Web
service proxy implementation is generated automatically when the user requests it. To
overcome the GSI, Proxy Certificates are requested dynamically from a MyProxy imple-
mentation. This architecture aims on scientific workflows without considering business
issues as role-based access control.

Janciak, Kloner, and Brezany present a workflow engine that is capable but also limited
to orchestrate stateful Globus Toolkit 4 services supporting also the GSI in [73]. They
provide the workflow engine functions as stateful Web services that manages two WS-
Resources: a “Template Resource” represents a workflow description and an “Engine
Resource” symbolizes a workflow instance. The functions are similar to our Workflow
Management Service and Workflow Service instances. The engine uses WS-BPEL for
workflow description. At runtime, it creates client stubs from the WSDL definitions to
call invoked services, but no details about the internal processing and the handling of
problems with incompatible service frameworks are given.

During the past years, several other Grid workflow systems – using other execution lan-
guages than WS-BPEL – appeared. Most of them are driven by a specific domain-
dependent community. Here we list some famous examples:

In [83], Krishnan et al. adapt ideas of WSFL [88], one of the predecessors of WS-BPEL,
to create a new Grid Services Flow Language (GSFL). They outline a framework to exe-
cute GSFL that has some common properties with the approach of this dissertation. GSDL
is capable of providing the composition of Grid services again as a stateful Grid Service
according to the OGSA standard [47] and the framework uses also a central orchestrator.
They see large data transfers as problematic if a central orchestrator is used. As solu-
tion, they use the OGSA notification system to initiate and control peer-to-peer transfers
between Grid sites.

GridAnt [5] is a Grid workflow execution tool especially designed for scientists that do
not want or cannot handle complex workflow management systems. They adapt the basic
ideas of the Ant build tool to define tasks (Grid Jobs) that are executed in a predefined
order. The framework is capable of invoking Globus Toolkit version 2 and version 3
services. Ant tasks are normally executed locally. However, since Grid jobs are long
running and the client cannot be online during the workflow execution, they propose to use
a server-side service that controls workflow execution with GridAnt. The service offers
an interface that allows the client to request progress information during the execution.

The KEPLER1 workflow engine [92] is also designed especially for scientific workflow
execution but is capable of invoking more than only Grid services. It provides an graphi-
cal interface to combine and configure so-called actors. Each actor processes a predefined

1project website at http://kepler-project.org

138

http://kepler-project.org

7.2 Grid Workflow Orchestration

task, for instance execute a Grid job, upload a file to a Grid storage, download a website
from a given URL, or doing an XSLT transformation. To flexibly support Web services,
a “Web service harvester” analyzes WSDL files and creates new actors for the service.
Actors are similar to plug-ins that are capable of executing one specific task. In doing
so, they hide all computation logic from the user. The “actor”-concept comes from the
underlying PTOLEMY II framework that allows the combination of actors with commu-
nication channels. The control-flow, in the paper discussed as “model of computation”
(e.g. sequential, parallel) is generally independent from the actual actors. The additional
attached “Director” component determines the control-flow and improves therewith the
reusability of actors and actor groups. The framework also allows the hierarchical com-
position of KEPLER workflows with the help of a sub-workflow-actor.

The Taverna2 [104] workflow system originates from the bioinformatics domain. It pro-
vides a graphical tool for creating and executing workflows consisting of processors. The
Simple conceptual unified flow language (Scufl) is used as workflow description language.
Scufl workflows allows the composition of such processors, each representing an atomic
task as calling basic Web services, bioinformatic applications, or low-level Scufl work-
flows. Processors are connected via data links that model the data-flow between a data
sources (processor output or workflow input) and data sinks (processor input or workflow
output).

The UNICORE 6 middleware also provide a workflow execution engine that was devel-
oped within the Chemomentum3 project. The engine consists of two UNICORE 6 service
containers. The first represents a workflow engine that processes workflows on a logical
level, the second represents a service orchestrator that transforms so-called Work Assign-
ments into jobs, given in the Job Submission Description Language (JSDL) [8]. Both, this
UNICORE 6 workflow system and the BIS-Grid engine, are implemented as service ex-
tensions to the UNICORE 6 service container. One currently existing drawback is that it is
not possible to define dependencies between compute jobs, so that both jobs are executed
on the same Grid site to avoid unnecessary data transfers. However, the UNICORE 6
workflow system does not support the integration of a WS-BPEL workflow engine. Some
description of this workflow engine is given in [109] and on the UNICORE 6 and Chemo-
mentum website.

The Grid workflow execution service (GWES) [67] is a workflow engine developed within
the K-Wf Grid project4. The GEWS uses the GWorkflowDL (Generic Workflow Descrip-
tion Language) [4] that allows for modeling workflows as high-level Petri Nets. Accord-
ing to the authors, such Petri Nets are capable of modeling the control- and the data-flow.

2project website at http://www.taverna.org.uk/
3project website at http://www.chemomentum.org
4project website at http://www.kwfgrid.eu/

139

http://www.taverna.org.uk/
http://www.chemomentum.org
http://www.kwfgrid.eu/

7 Related Work

Both, GWES and GWorkflowDL allow the support of several different layers of abstrac-
tions, e.g. abstract operations, a mapping of these operations to available resources, and a
mapping of these to a concrete workflow. As client tool, the system provides an intuitive
and graphical user interface as portlet. Basically, the GWES is able to orchestrate Globus
Toolkit 4 services, but the authors state that it is easy to extend. The GEWS system is
used in several D-Grid5 projects.

In [36], Deelman et al. describe the Pegasus system. As execution environment, the
Globus middleware is targeted. Pegasus defines a new dedicated server – the submit
host – that schedules the actual jobs to the different Grid sites. The Pegasus software
stack consists of is the Pegasus services, DAGMan[120], and Condor [121]. It uses sev-
eral information systems as the Globus Monitoring and Discovery Service (MDS) and the
Replication Location Service (RLS) to map abstract to concrete executable workflows,
both defined as directed acyclic graphs (DAG). Since Pegasus workflows can be very
large, the system schedules tasks only until a dynamic scheduling horizon. This partly
enables the adaption of a changing Grid environment during workflow execution. The
article presents a case study that uses a real-life workflow originating from the astronomy
science.

Yu and Buyya present another interesting approach for realizing Grid workflows with late
scheduling in [133]. They describe their Workflow Enactment Engine (WFEE) that is
capable of invoking services on Grid middlewares. The prototype uses Globus Toolkit
but with some more implementation effort other middlewares should be addressable. For
workflow description, Yu and Buyya introduced a new XML-based workflow description
language called xWFL (XML-based WorkFlow Language) consisting of tasks. A task
represent an executable defined by a name, the host, in- and output ports, data links (to
model the data-flow), and parameters (key-value pairs to allow parameter studies). The
“workflow coordinator” (WCO) component controls the execution at the Grid sites. Yu
and Buyya propose the usage of tuple spaces for message exchange between the central
WCO and the Task Managers (TM) each responsible for a single task.

7.3 Cloud Workflow Orchestration

Several upcoming and new projects that target the orchestration of Cloud services un-
derline the relevance of this topic. The current Cloud computing hype boost the idea of
outsourcing IT systems and also the reintegration of such systems with the in-house IT
landscape. Hence, the idea of Orchestration as a Service becomes more popular.

5project website at www.d-grid.de

140

www.d-grid.de

7.3 Cloud Workflow Orchestration

This section presents some commercial approaches for workflows in Cloud computing
environments, but the companies do neither reveal internal architectural details on their
websites nor publish scientific paper. Thus, we can only provide a very brief overview
about those commercial products. Beside this, we also list related work for scientific
approaches that integrate Grid workflow engines with Cloud services. Additionally, we
list related work that deals with Cloud interoperability.

Microsoft provides the .NET Workflow Service as part of the .Net Services of the Azure
Services Platform6 in order to execute user-defined declarative workflows as lightweight
service orchestrations. These services facilitate the idea of an Internet Service Bus that
addresses the need for cross-enterprise service orchestration, supporting both the Software
as a Service paradigm as well as Microsoft’s Software-plus-Services strategy.

CSC7 announced Cloud Orchestration Services and Trusted Cloud Services promising
various features such as service level management, remote monitoring, reporting, data
transparency, and security while ensuring industry-specific compliance and auditing ser-
vices. Business Process as a Service (BPaaS) is named as one category of Trusted Cloud
Services. Unfortunately, there is very little information on the concrete services, their
realization, and the respective Service Level Agreements.

As a third example, Cordys also promotes cloud-based service orchestration, called En-
terprise Cloud Orchestration8. They emphasize the still-traditional nature of the SaaS
distribution model in contrast to the Cloud idea as a federation of different Clouds that
may range from general-purpose Clouds to specialized Clouds in the future. Fundamen-
tally this requires an orchestration layer in the Cloud to enable enterprises developing new
business models and facilitate Application Service Provisioning.

Nowadays, the need for the integration of Cloud services originates from the business
domain that already uses Clouds in a productive manner. For scientists it is still unusual
to use Cloud services for eScience: The usage of commercial clouds is often not funded
by scientific projects’ budgets or resources for setup and managing a local Cloud are
missing. Nevertheless, the scientific interest for eScience Clouds increases since the need
for compute resources is enormous.

The main goal for scientists is the technical support for eScience experiments as today
often realized with Grid computing. Cloud computing complements this technology. For
such experiments, the availability of compute power and storage resources is most impor-
tant. Thus, the usage of IaaS is much more interesting for scientists than PaaS or SaaS. In
Section 7.2, we presented several workflow engines that allow the execution of scientific

6product website at http://www.microsoft.com/azure/workflow.mspx
7product website at http://www.csc.com/cloud/
8product website at http://www.cordys.com/cordyscms_com/enterprise_cloud_
orchestration.php

141

http://www.microsoft.com/azure/workflow.mspx
http://www.csc.com/cloud/
http://www.cordys.com/cordyscms_com/enterprise_cloud_orchestration.php
http://www.cordys.com/cordyscms_com/enterprise_cloud_orchestration.php

7 Related Work

workflows on Grid sites. Some of the developers try to use IaaS for enabling the allocation
of additional resources.

In [66], Hoffa et al. uses the Pegasus Workflow engine [36] to compare different runtime
environments for scientific workflow: a local machine, a local cluster, a virtual machine,
and a virtual cluster. They conclude that virtual environments can tackle scalability prob-
lems in scientific workflows.

The workflow engine that is used in [107] also uses IaaS to allocate additional resources.
The engine schedules tasks – modeled as DAGs according to different quality of service
policies – either on a Grid, or a Cloud infrastructure, or both. This increases the probabil-
ity of holding agreed deadlines.

Juhnke et al. [38] present a Grid workflow engine based on an extended ActiveBPEL im-
plementation. In [37] the authors ouline the idea of using the Amazon EC2 Cloud for
allocation of additional resources. The workflow is not used to integrate Cloud services as
part of the business process, but the workflow engine supports the dynamic provisioning
of additional resources if an invoked service is overloaded. The authors extend the Ac-
tiveBPEL 2.1 workflow engine with a load balancing module that measures worker nodes’
load and starts new worker node instances if the load exceeds a threshold. A “dynamic
resolver” that substitutes the original ActiveBPEL invoke handler is responsible for late
service binding and therewith the actual load balancing. Generally, the on-demand provi-
sioning of virtual resources is helpful to guarantee a certain degree of quality of service,
but load balancing infrastructures are already included in some IaaS frameworks that pro-
vide similar functionality without the conjunction with a WS-BPEL engine. Furthermore,
the load balancing only works with services that are based on virtual machine images
provided by the same administrative domain.

In [76], Juhnke et al. again extend the architecture by introducing a fault tolerance mech-
anism that again uses the on-demand provisioning mechanisms for load balancing and
additionally for masquerading technical faults. Through this, a broken service will not
necessarily cause the crash of the workflow if e.g. another service instance can be used
instead. This techniques require the independence of service invocations and is therefore
limited to stateless services.

Wlodarczyk, Rong, and Thorsen introduce in [131] a collaboration idea that should en-
able enterprises to share their Cloud resources. They define an enterprise Cloud as a
special form of a public Cloud with additional functions such as workflow administra-
tion, workload management, and monitoring. Such enterprise clouds are again the basis
for inter-enterprise integration of information systems, which they call “Industrial Cloud”.
Industrial Clouds facilitate integration tasks like policies, reliability management, security
and trust, outsourcing, and subcontracting.

142

7.3 Cloud Workflow Orchestration

Some other work [13, 26] stress out the need for workflow engines for collaborative ser-
vices based on Clouds. However, they give no details about the concrete implementation
or how to bridge different security technologies. In [12], Hewlett Packards Labs present
their idea of a multi enterprise content management collaboration platform. The platform
offers a SaaS cloud that allows the storage and distribution of content such as documents,
files, information. They also demand the automatic combination of information to new
documents with the help of workflows.

143

7 Related Work

144

8 Future Work and Conclusion

Contents
8.1 Outlook and Future Work . 145

8.1.1 Quality of Service for Workflow Execution 147
8.1.2 Workflow Optimization using Cloud Interoperability 147
8.1.3 Elastic business information systems in a Cloud 148

8.2 Conclusion . 148

This chapter gives an outlook onto future work and interesting related research topics.
Furthermore, it concludes this thesis with a summary of the main contributions.

8.1 Outlook and Future Work

The presented architecture realizes interoperability between different Web services imple-
mentations especially considering the aspects of stateful services as well as security and
communication protocols. The prototypical implementation misses some features to be-
come a productively applicable software. The following items list a number of necessary
and nice-to-have features:

• Recovery: If one of the two BIS-Grid workflow engine components fails, the other
component should automatically stop to prevent failures because of internal errors.
If the ActiveBPEL engine tries to send messages as long as UNICORE 6 is still
down, workflows will fail due to connection errors. The introduction of a reliable
messaging component will help to cope with such faults. An active state synchro-
nization after the recovery is not necessary since both instances store their states
separately. The Workflow Service instance fetches the workflow execution state
directly from backend workflow engine if necessary.

• Fault Tolerance: Since the workflow engine integrates services from different ven-
dors and service providers, a crash or unattainability of some services is occasion-
ally possible. This demands the introduction of fault tolerance mechanisms for
coping with the failure of external services. The usage of reliable messaging pro-
tocols for sending and receiving messages as well as retrying service executions or
selecting equivalent services before throwing a fault will increase fault tolerance.

145

8 Future Work and Conclusion

• Load Balancing: In Section 4.1.6, the thesis presents the general idea for the
implementation of load balancing. For the realization, a BIS-Grid workflow en-
gine dispatcher service (forwarding broker) is necessary that allows the cooperation
of several BIS-Grid workflow engine instances. As the dispatcher must consider
the stateful properties of Workflow Management Service and Workflow Service in-
stances, it is not possible to reuse default existing Web service load balancers.

• Automatic Service Selection: The implementation of an automatic service selec-
tion and dispatching for invoked services would be helpful in scenarios where multi-
ple services from different providers offer same functions. The user could define his
preferences e.g. as utility functions to configure the importance of (non-)functional
properties as presented in [134].

However, the usage of Cloud services that do not reveal the actual location of the
data center, raises additional legal issues. Since the data centers underlie the law of
the respective country, it is a major difference, for instance, whether a European or
US data center stores secret data. Thus, the system must consider Cloud-specific
non-functional restrictions during the selection process.

• RESTful services: The importance of RESTful services is increasing especially for
simple services and mash-ups. In [96], Mandel presents a way to describe REST-
ful services with WSDL interfaces. If it is possible to automatically generate such
WSDL interfaces and map the SOAP operations into a generic REST client inte-
grated in the prototype, the seamless integration of REST services becomes possible
within workflows.

• Human Interaction: As the thesis has already presented in the evaluation scenario,
human interaction is an urgently required use case in many workflows. Thus, the
implementation of a Human Task [1] service that is integrated with the companies’
identity management systems (similar to the in this thesis proposed access control
system) will provide additional value for companies in the context of OaaS.

Amazon Mechanical Turk1 already realizes a proprietary Human Task service. It
provides a Web service interface to create simple human tasks, called Human Intel-
ligence Tasks or HITs. Everyone can execute HITs and earn the offered fee for that.
However, the service is not applicable for critical business processes or company
internal usage since some functions like escalation, the automatic assignments of
tasks to departments or experts, and a separated multi-tenant usage for companies
are missing.

1https://www.mturk.com/mturk/welcome

146

https://www.mturk.com/mturk/welcome

8.1 Outlook and Future Work

The listed tasks are mainly focused on implementation, but the usage of Cloud computing
technologies in workflows and in business outsourcing scenarios as well as the OaaS idea
offer new approaches for future research.

8.1.1 Quality of Service for Workflow Execution

Each service that is integrated in a productive business process needs to provide a well
defined quality of service (QoS). This also holds for services that represent workflows,
e.g. according to the OaaS model. The question on how to determine QoS properties for a
workflow is interesting but also very complex if the workflow exhausts the complete power
of WS-BPEL. For example, user input or service responses possibly affect the workflow
execution path and impede the exact calculation of QoS properties. Furthermore, the
invoked services are possibly distributed over several providers all offering different QoS
properties.

Some scientists have already worked on this problem and published rules on how to aggre-
gate QoS properties for e.g. workflow sequences, parallel scopes, and conditions [20, 72].
However, the full complexity of WS-BPEL is not covered yet. For instance, the effect of
compensation or event handlers in workflows as well as user input or service responses
that induce changes in the workflow execution path is not sufficiently considered, up to
now. In this context, a sophisticated monitoring system that allows for exactly determin-
ing who is responsible for a fault is urgently required. The realization of such monitoring
capabilities is extremely costly because of the numerous participating parties in one work-
flow. Thus, the relationships between the partners must be partly based on trust instead of
technical control mechanisms.

8.1.2 Workflow Optimization using Cloud Interoperability

The execution of workflows on Cloud services entails new questions for service selection
and workflow optimization. Cloud services are often not limited to a single country or
language. For example, the provisioning of infrastructure or standard enterprise applica-
tions such as customer relationship management (CRM) are worldwide applicable. But
client experience is different when using Cloud infrastructures depending on the location
of the data center and the customer. Additionally, some tasks have strong dependencies
such as data transfers and the corresponding job executions on this data. The relevance
of this topic is underlined by the fact that some Cloud providers (e.g. Amazon) already
provide the same services on different continents.

Thus, the selection and scheduling of invoked Cloud services in workflows is an interest-
ing and complex research topic. For example, it is possibly valuable to migrate services

147

8 Future Work and Conclusion

from a US Cloud to a European Cloud if the user profile with respect to the users’ lo-
cations change over time. Another goal is to optimize the invoked services according to
non-functional preferences like response time or costs. But for this, we firstly require more
Cloud interoperability and the provisioning of similar services by different providers. The
usage of IaaS Clouds can partly cover this if virtual machines with the same services can
be deployed on differently located Clouds. Such machines can also serve as basis for PaaS
and SaaS services.

8.1.3 Elastic business information systems in a Cloud

Another interesting research topic is the question whether it is possible to exhaust the
full potential of Cloud computing to realize fully elastic business information systems
landscapes. Cloud technologies allow for a rapid scaling of services in both directions.
The demand for business information systems strongly depends on the daytime in most
application scenarios. Several systems are only required during the core work time or
even more rarely and can be reduced otherwise to save resources and money.

This topic is only partly related to workflows but since workflows represent the business
processes, a detailed analysis of the currently running workflows can help to determine the
required resources and services in the future to scale them as far as possible in advance.

8.2 Conclusion

This thesis presents a novel architecture that allows for combining Web, Grid, and Cloud
services in a single workflow. The architecture is based upon process modeling and ex-
ecution technologies originating from the business domain. It extends a standard fully
WS-BPEL-compliant workflow engine by services that provide additional functions dur-
ing the actual workflow execution. In doing so, the architecture neither extends the WS-
BPEL standard nor the WS-BPEL engine itself. Instead of this, the support of manifold
communication protocols and security technologies is realized with a configurable mecha-
nism for various service types. Additionally, the mechanism allows for reusing third party
message processing clients for proprietary communication protocols.

The new technology makes the integration of professionally hosted hard- and software
from Grid and Cloud computing providers possible. At that, it also affects formally only
internally executed business processes since it securely links a company with manifold
service vendors. Therewith, it allows enterprises, especially small and medium enter-
prises, increasing the flexibility of business processes. Summarizing, it helps enterprises

148

8.2 Conclusion

to better support their core competencies with internal and now also external IT ser-
vices.

Stateful services require a complex workflow modeling since instance identifiers must be
considered for service addressing. The thesis introduces WS-BPEL patterns for handling
such endpoint references without any WS-BPEL extensions. This increases platform in-
dependence since no proprietary Grid invocation dialect is introduced. We think that the
complexity of the patterns can generally be hidden as one or a set of special stateful in-
voke activities in a graphical WS-BPEL editor. However, a too static mapping of the
create, use, and destroy service invocations to one activity would hamper the flexibility of
stateful service handling, e.g. for multiple invocations of the same stateful instance. As we
do not rely on a new WS-BPEL dialect, the architecture is ready for workflow language
advancements as it is possible to exchange the only loosely-coupled WS-BPEL workflow
engine.

The presented architecture can also be applied as a basis for a Cloud service that provides
workflow management and execution capabilities to its customers. The thesis describes
the Orchestration as a Service paradigm which allows customers to orchestrate Web, Grid,
and Cloud services by using (not running) an orchestration engine as a Cloud service. The
costs for licenses of commercial workflow engines or the actual operating of such an en-
gine often exceeds SMEs’ IT departments’ budgets and capabilities. An OaaS service
constitutes a possibility for SMEs to benefit from the advantages of service-oriented ar-
chitectures and information system integration with little initial set-up and mostly only
variable operating expenses. As the OaaS service is designed as a multi-tenant Cloud
service, workflows are charged on a pay-per-use basis so that it is profitable to realize
even infrequent workflows. Hence, OaaS will boost new innovations since it is especially
applicable for startups that directly benefit from Cloud elasticity and the combination of
Cloud services without operating own IT.

Furthermore, the dissertation completes the architecture with a proposal for a security
infrastructure that enables the seamless integration of companies’ identity management
systems with the Grid and Cloud workflow engine. The application of a federated iden-
tity management system increases the reusability of the users’ authentication information
without doubling maintenance costs for a second external identity management system.
This is especially important if access control policies should be based on the companies’
identity and role models. The application of a federated identity management system also
matches to the idea of Orchestration as a Service since it eases the integration of sev-
eral customers’ identity management systems with one instance of the Grid and Cloud
workflow engine.

The thesis evaluates the applicability of the architecture in two exemplary business sce-
narios. The first scenario requires an integration of three information systems realized
with four services. The second exemplary workflow realizes a partly automatic matching

149

8 Future Work and Conclusion

of articles and resources between a CAD and an ERP system for a machine constructing
company. Both scenarios have different functional and non-functional requirements such
as a short response time or human interaction. As result, the SMEs participating in the
evaluation state that the architecture is applicable to both scenarios. Furthermore, both
enterprises see the idea of using external orchestration services as reasonable, if a trustful
relationship between the partners exists. Thus, the thesis illustrates the practicability of
the architecture for the exemplary business scenarios. Since the it is built upon business
workflow execution technologies, we can generalize that it is applicable to at least all
typical WS-BPEL business workflows.

Additionally, the thesis examines the relevance of architecture for scientific workflows.
The general functional applicability as realizing a job submission workflow that sketches
a common task in eScience is revealed within an example workflow. Furthermore, the
thesis presents an example for the hierarchical composition of workflows that allows for
modeling more complex scientific experiments by reusing basic eScience workflows as
parameterized standard tasks. The architecture supports different Grid middlewares and
increases therewith the interoperability of these middleware implementations.

Since scientists are mostly workflow beginners but have to supervise all life cycle phases,
they need appropriate design tools which hide most of the complexity. Hence, editors that
allow for composing patterns or workflows with basic eScience tasks will increase the
acceptance of WS-BPEL-based orchestration in scientific communities. Simultaneously,
scientists will benefit from the already existing tooling around commercial workflow exe-
cution systems. The creation of such an editor is beyond the scope of the thesis.

Lastly, the thesis analyzes the prototype with respect to its performance during workflow
execution with a special focus on the different components. This analysis outlines that the
additional services consume extra time, but they scale proportionally compared to a pure
ActiveBPEL engine.

150

Bibliography

[1] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, F. Leymann,
R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen, M. Rowley,
P. Schmidt, I. Trickovic, A. Yiu, and M. Zeller. Web Services Human Task (WS-
HumanTask). http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf,
June 2007. Version 1.0.

[2] Asif Akram, David Meredith, and Rob Allan. Evaluation of BPEL to Scientific
Workflows. In CCGRID ’06: Proceedings of the Sixth IEEE International Sympo-
sium on Cluster Computing and the Grid, pages 269–274, Washington, DC, USA,
2006. IEEE Computer Society.

[3] The Globus Alliance. GridShib. Online http://gridshib.globus.org/
(last visited 23.04.2010).

[4] Martin Alt, Andreas Hoheisel, Hans werner Pohl, and Sergei Gorlatch. A Grid
Workflow Language Using High-Level Petri Nets. In Wasniewski (Eds.), PPAM,
in: Lecture Notes in Computer Science, pages 715–722. Springer, 2005.

[5] Kaizar Amin, Gregor von Laszewski, Mihael Hategan, Nestor J. Zaluzec, Shawn
Hampton, and Albert Rossi. GridAnt: A Client-Controllable Grid Work.ow Sys-
tem. In HICSS ’04: Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04) - Track 7, page 70210.3,
Washington, DC, USA, 2004. IEEE Computer Society.

[6] Pichet Amnuaykanjanasin and Natawut Nupairoj. The BPEL Orchestrating Frame-
work for Secured Grid Services. Information Technology: Coding and Computing,
International Conference on, 1:348–353, 2005.

[7] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana
Trickovic, and Sanjiva Weerawarana. BPEL4WS, Business Process Execution Lan-
guage for Web Services Version 1.1. IBM, 2003.

[8] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen
McGough, Darren Pulsipher, and Andreas Savva. Job Submission Description Lan-
guage (JSDL). http://www.gridforum.org/documents/GFD.56.pdf, Nov 2005.

151

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://gridshib.globus.org/

Bibliography

[9] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi,
David Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-
Nagy, Ivana Trickovic, and Sinisa Zimek. Web Service Choreography Interface
(WSCI) 1.0. online http://www.w3.org/TR/wsci/, August 2002. W3C
Standard.

[10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Sto-
ica, and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Computing.
Technical Report UCB/EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley, Feb 2009.

[11] Benoit A. Aubert, Michel Patry, and Suzanne Rivard. A framework for information
technology outsourcing risk management. SIGMIS Database, 36(4):9–28, 2005.

[12] David Banks, John S. Erickson, and Michael Rhodes. Multi-tenancy in Cloud-
based Collaboration Services. Technical Report 2009-17, Hwelett Peckard Laps,
2009.

[13] David Banks, John S. Erickson, and Michael Rhodes. Toward Cloud-based Col-
laboration Services. In Proceedings of Hot Topics in Cloud Computing (HotCloud
09), June 2009. (Online Proceedings).

[14] Tim Banks. Web Services Resource Framework (WSRF) Primer v1.2, 2006.

[15] Roger Barga and Dennis Gannon. Scientific versus Business Workflows. In Work-
flows for e-Science, pages 9–16. Springer London, 2007. ISBN 978-1-84628-519-6
(Print) 978-1-84628-757-2 (Online).

[16] Tom Barton, Jim Basney, Tim Freeman, Tom Scavo, Frank Siebenlist, Von Welch,
Rachana Ananthakrishnan, Bill Baker, Monte Goode, and Kate Keahey. Identity
federation and attribute-based authorization through the Globus toolkit. In Shibbo-
leth, GridShib, and MyProxy. In Proceedings of the 5th Annual PKI R&D Work-
shop, 2005.

[17] Boualem Benatallah, Marlon Dumas, and Quan Z. Sheng. Facilitating the Rapid
Development and Scalable Orchestration of Composite Web Services. In Dis-
tributed and Parallel Databases, 2005.

[18] K. Benedyczak, M. Lewandowski, and P. Bala. Towards a common authorization
infrastructure for the Grid. In Euro-Par 2009 Workshops: Parallel Processing,
2010.

152

http://www.w3.org/TR/wsci/

Bibliography

[19] Krzysztof Benedyczak. UNICORE Virtual Organisations Service -
Overiew. http://zam904.zam.kfa-juelich.de/svn/repo/
chemomentum/uvos/uvos-server/tags/rel-1.3.1/src/main/
docs/UVOSOverview.pdf, Februrary 2008.

[20] Rainer Berbner. Dienstgüteunterstützung für Service-orientierte Workflows. PhD
thesis, Technischen Universität Darmstadt, April 2007.

[21] R. Bose and V. Suumaran. Challenges for Deploying Web Services-Based E-
Business Systems in SMEs. International Journal of E-Business Research, 2(1):1–
18, 2006.

[22] Luc Bougé, Martti Forsell, Jesper Larsson Träff, Achim Streit, Wolfgang Ziegler,
Michael Alexander, and Stephen Childs, editors. Euro-Par 2007 Workshops: Par-
allel Processing, HPPC 2007, UNICORE Summit 2007, and VHPC 2007, Rennes,
France, August 28-31, 2007, Revised Selected Papers, volume 4854 of Lecture
Notes in Computer Science. Springer, 2008.

[23] Don Box, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey Frey,
Marc Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad Lovering,
Steve Lucco, Steve Millet, Nirmal Mukhi, Mark Nottingham, David Orchard, John
Shewchuk, Eugène Sindambiwe, Tony Storey, Sanjiva Weerawarana, and Steve
Winkler. Web Services Addressing (WS-Addressing). Online http://www.w3.
org/Submission/ws-addressing/, August 2004. W3C Member Submis-
sion.

[24] Andre Brinkmann, Stefan Gudenkauf, Wilhelm Hasselbring, André Höing, Odej
Kao, Holger Karl, Holger Nitsche, and Guido Scherp. Employing WS-BPEL De-
sign Patterns for Grid Service Orchestration using a Standard WS-BPEL Engine
and a Grid Middleware. In The 8th Cracow Grid Workshop, pages 103 – 110,
Cracow, Poland, March 2009. Academic Computer Center CYFRONET AGH.

[25] Rajkumar Buyya, Suraj Pandey, and Christian Vecchiola. Cloudbus Toolkit for
Market-Oriented Cloud Computing. In CloudCom ’09: Proceedings of the 1st
International Conference on Cloud Computing, pages 24–44, Berlin, Heidelberg,
2009. Springer-Verlag.

[26] Rajkumar Buyya, Suraj Pandey, and Christian Vecchiola. Cloudbus Toolkit for
Market-Oriented Cloud Computing. In Jaatun et al. [71], pages 24–44.

[27] Rajkumar Buyya, Chee S. Yeo, and Srikumar Venugopal. Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as Computing
Utilities. In HPCC ’08: Proceedings of the 2008 10th IEEE International Confer-
ence on High Performance Computing and Communications, pages 5–13, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

153

http://zam904.zam.kfa-juelich.de/svn/repo/chemomentum/uvos/uvos-server/tags/rel-1.3.1/src/main/docs/UVOSOverview.pdf
http://zam904.zam.kfa-juelich.de/svn/repo/chemomentum/uvos/uvos-server/tags/rel-1.3.1/src/main/docs/UVOSOverview.pdf
http://zam904.zam.kfa-juelich.de/svn/repo/chemomentum/uvos/uvos-server/tags/rel-1.3.1/src/main/docs/UVOSOverview.pdf
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/

Bibliography

[28] Kuo-Ming Chao, Muhammad Younas, Nathan Griffiths, Irfan Awan, Rachid
Anane, and C-F Tsai. Analysis of Grid Service Composition with BPEL4WS. In
Proceedings of the 18th International Conference on Advanced Information Net-
working and Application (AINA’04), volume 01, page 284, Los Alamitos, CA,
USA, 2004. IEEE Computer Society.

[29] David Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.

[30] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Service Definition Language (WSDL). Technical report, World Wide Web
Consortium, March 2001.

[31] James Clark and Steve DeRose. XML Path Language (XPath). http://www.
w3.org/TR/xpath/, Nov 1999.

[32] Workflow Management Coalition. Workflow Management Coalition Workflow
Standard - Interoperability Wf-XML Binding. online http://www.wfmc.
org/standards/docs/Wf-XML-11.pdf (last visited 23.06.2010), Nov
2001. Specification.

[33] OASIS Security Services Technical Committee. Security Assertion Markup Lan-
guage (SAML). http://docs.oasis-open.org/security/saml/v2.
0/saml-2.0-os.zip, March 2005.

[34] Mache Creeger. CTO Roundtable: Cloud Computing. Commun. ACM, 52(8):50–
56, 2009.

[35] Francisco Curbera, Matthew J. Duftler, Rania Khalaf, and Douglas Lovell. Bite:
Workflow Composition for the Web. In Bernd J. Krämer, Kwei-Jay Lin, and Priya
Narasimhan, editors, ICSOC, volume 4749 of Lecture Notes in Computer Science,
pages 94–106. Springer, 2007.

[36] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anas-
tasia C. Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for
mapping complex scientific workflows onto distributed systems. Scientific Pro-
gramming, 13(3):219–237, 2005.

[37] Tim Dornemann, Ernst Juhnke, and Bernd Freisleben. On-Demand Resource Pro-
visioning for BPEL Workflows Using Amazon’s Elastic Compute Cloud. In CC-
GRID ’09: Proceedings of the 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, pages 140–147, Washington, DC, USA, 2009.
IEEE Computer Society.

154

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.wfmc.org/standards/docs/Wf-XML-11.pdf
http://www.wfmc.org/standards/docs/Wf-XML-11.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip

Bibliography

[38] T. Dörnemann, T. Friese, S. Herdt, E. Juhnke, and B. Freisleben. Grid Workflow
Modelling Using Grid-Specific BPEL Extensions. German e-Sience Conference
2007, May 2007.

[39] Wolfgang Emmerich, Ben Butchart, Liang Chen, Bruno Wassermann, and Sarah L.
Price. Grid Service Orchestration using the Business Process Execution Language
(BPEL). Journal of Grid Computing, 3:283–304, 2005.

[40] Sharanya Eswaran, David Del Vecchio, Glenn Wasson, and Marty Humphrey.
Adapting and Evaluating Commercial Workflow Engines for e-Science. In E-
SCIENCE ’06: Proceedings of the Second IEEE International Conference on e-
Science and Grid Computing, page 20, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[41] OASIS eXtensible Access Control Markup Language Technical Committee. eX-
tensible Assertion Markup Language (XACML). http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=xacml, July 2003.

[42] Onyeka Ezenwoye, S. Masoud Sadjadi, Ariel Cary, and Michael Robinson. Or-
chestrating WSRF-based Grid Services. Technical report, School of Computing
and Information Sciences, Florida International University, April 2007.

[43] Arash Faroughi, Roozbeh Faroughi, Philipp Wieder, and Wolfgang Ziegler. At-
tributes and VOs: Extending the UNICORE Authorisation Capabilities. In Bougé
et al. [22], pages 121–130.

[44] Christopher Ferris and David Langworthy. Web Services Reliable Messaging
Protocol. (online) http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-rm/ws-reliablemessaging200502.pdf
(last visited 27.05.2010), Februrary 2005.

[45] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine,
2000.

[46] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pick-
les, D. Pulsipher, C. Smith, and M. Theimer. OGSA Basic Execution Ser-
vice. online http://www.ogf.org/documents/GFD.108.pdf (last vis-
ited 23.06.2010), Nov 2008. Grid Final Document (GFD).

[47] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
http://www.globus.org/alliance/publications/papers/ogsa.pdf, 2002.

[48] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid Services for
Distributed System Integration. Computer, 35:37–46, 2002.

155

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-reliablemessaging200502.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-reliablemessaging200502.pdf
http://www.ogf.org/documents/GFD.108.pdf

Bibliography

[49] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. International Jounral of Supercomputer Ap-
plications, 15(3), 2001.

[50] Orlin Genchev and John Galletly. XPDL: bringing business and software together
- a case study. In CompSysTech ’09: Proceedings of the International Confer-
ence on Computer Systems and Technologies and Workshop for PhD Students in
Computing, pages 1–6, New York, NY, USA, 2009. ACM.

[51] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, and J. Myers. Examining the Challenges of Scientific Work-
flows. Computer, 40(12):24–32, Dec. 2007.

[52] Steve Graham, Anish Karmarkar, Jeff Mischkinsky, Ian Robinson, and
Igor Sedukhin. Web Services Resource 1.2 (WS-Resource). (On-
line) http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.
2-spec-os.pdf, April 2006. OASIS Standard.

[53] Steve Graham and Jem Treadwell. Web Services Resource Properties 1.2 (WS-
ResourceProperties). (Online) http://docs.oasis-open.org/wsrf/
wsrf-ws_resource_properties-1.2-spec-os.pdf, April 2006. OA-
SIS Standard.

[54] Zhijie Guan, Francisco Hernandez, Purushotham Bangalore, Jeff Gray, Anthony
Skjellum, Vijay Velusamy, and Yin Liu. Grid-Flow: a Grid-enabled scientific work-
flow system with a Petri-net-based interface: Research Articles. Concurr. Comput.
: Pract. Exper., 18(10):1115–1140, 2006.

[55] S. Gudenkauf, G. Scherp, W. Hasselbrink, A. Höing, and O. Kao. Workflow Model-
ing for WS-BPEL-based Service Orchestration in SMEs. In Gregor Engels, Markus
Luckey, Alexander Pretschner, and Ralf Reussner, editors, Software Engineering
2010 – Workshops, volume P-160 of Lecture Notes in Informatics, pages 185–192.
GI, 2010.

[56] Stefan Gudenkauf, Wilhelm Hasselbring, Felix Heine, André Höing, Odej Kao,
and Guido Scherp. A Software Architecture for Grid Utilisation in Business Work-
flows. In Martin Bichler, Thomas Hess, Helmut Krcmar, Ulrike Lechner, Florian
Matthes, Arnold Picot, Benjamin Speitkamp, and Petra Wolf, editors, Multikon-
ferenz Wirtschaftsinformatik, pages 91–102. GITO-Verlag, Berlin, 2008.

[57] Stefan Gudenkauf, Wilhelm Hasselbring, Felix Heine, André Höing, Odej Kao,
and Guido Scherp. BIS-Grid: Business Workflows for the Grid. In The 7th Cra-
cow Grid Workshop, pages 86–93. Academic Computer Center CYFRONET AGH,
2008.

156

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

Bibliography

[58] Stefan Gudenkauf, Wilhelm Hasselbring, André Höing, Guido Scherp, and Odej
Kao. Workflow Service Extensions for UNICORE 6 - Utilising a Standard WS-
BPEL Engine for Grid Service Orchestration. In E. César, M. Alexander, A. Streit,
J.L. Traff, C. Cérin, A. Knüpfer, D. Kranzlmüller, and S. Jha, editors, Euro-Par
2008 Workshops - Parallel Processing, volume Lecture Notes in Computer Science
of 5415, pages 103–112, April 2009.

[59] Stefan Gudenkauf, Wilhelm Hasselbring, André Höing, Guido Scherp, and Odej
Kao. Using UNICORE and WS-BPEL for Scientific Workflow Execution in Grid
Environments. In Euro-Par 2009 Workshops - Parallel Processing, volume 6043
of Lecture Notes in Computer Science, pages 335–344, 2010.

[60] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Yves Lafon, Jean-Jacques
Moreau, Anish Karmarkar, and Henrik Frystyk Nielsen. SOAP Ver-
sion 1.2 Part 1: Messaging Framework (Second Edition), April 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[61] Thilina Gunarathne, Chathura Herath, Eran Chinthaka, and Suresh Marru. Expe-
rience with adapting a WS-BPEL runtime for eScience workflows. In GCE ’09:
Proceedings of the 5th Grid Computing Environments Workshop, pages 1–10, New
York, NY, USA, 2009. ACM.

[62] Felix Heine, André Höing, Stefan Gudenkauf, Guido Scherp, Holger Nitsche, and
Jens Lischka. BIS-Grid - Betriebliche Informationssysteme: Grid-basierte Integra-
tion und Orchestrierung – Deliverable 3.1: WS-BPEL Engine Specification. (On-
line) https://bi.offis.de/bisgrid/tiki-download_file.php?
fileId=270 (last visited 27.05.2010), Decembre 2007.

[63] André Höing, Stefan Gudenkauf, and Guido Scherp. BIS-Grid - Betriebliche
Informationssysteme: Grid-basierte Integration und Orchestrierung – Deliverable
3.5: Documentation GT4 Interoperarbility. (Online) https://bi.offis.
de/bisgrid/tiki-download_file.php?fileId=352 (last visited
26.05.2010), April 2010.

[64] André Höing, Stefan Gudenkauf, Guido Scherp, Holger Nitsche, and Dirk Meis-
ter. BIS-Grid - Betriebliche Informationssysteme: Grid-basierte Integration und
Orchestrierung – Deliverable 3.4: Documentation BIS-Grid Workflow Engine Pro-
totype. (Online) https://bi.offis.de/bisgrid/tiki-download_
file.php?fileId=351 (last visited 26.05.2010), April 2010.

[65] Andre Höing, Guido Scherp, and Stefan Gudenkauf. The BIS-Grid Engine: An
Orchestration as a Service Infrastructure. International Journal of Computing,
8(3):96–104, December 2009.

157

https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=270
https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=270
https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=352
https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=352
https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=351
https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=351

Bibliography

[66] Christina Hoffa, Gaurang Mehta, Tim Freeman, Ewa Deelman, Kate Keahey, Bruce
Berriman, and John Good. On the Use of Cloud Computing for Scientific Work-
flows. eScience, IEEE International Conference on, 0:640–645, 2008.

[67] Andreas Hoheisel. Grid Workflow Execution Service Dynamic and Interactive Ex-
ecution and Visualization of Distributed Workflows. In Proceedings of the Cracow
Grid Workshop 2006, Cracow, 2007.

[68] André Höing, Guido Scherp, and Stefan Gudenkauf. BIS-Grid - Be-
triebliche Informationssysteme: Grid-basierte Integration und Orchestrierung
– Deliverable 2.1: Catalogue of WS-BPEL Design Patterns. (On-
line) https://bi.offis.de/bisgrid/tiki-download_file.php?
fileId=269 (last visited 27.05.2010), August 2008.

[69] André Höing, Guido Scherp, Stefan Gudenkauf, Dirk Meister, and André
Brinkmann. An Orchestration as a Service Infrastructure Using Grid Technologies
and WS-BPEL. In ICSOC-ServiceWave ’09: Proceedings of the 7th International
Joint Conference on Service-Oriented Computing, volume Volume 5900/2009 of
301–315. Springer- Verlag Berlin / Heidelberg, Nov 2009.

[70] Internet2 Initiative. Shibboleth. Online http://shibboleth.internet2.
edu/ (last visited 23.04.2010).

[71] Martin Gilje Jaatun, Gansen Zhao, and Chunming Rong, editors. Cloud Com-
puting, First International Conference, CloudCom 2009, Beijing, China, Decem-
ber 1-4, 2009. Proceedings, volume 5931 of Lecture Notes in Computer Science.
Springer, 2009.

[72] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Muhl. QoS Aggregation
in Web Service Compositions. In EEE ’05: Proceedings of the 2005 IEEE In-
ternational Conference on e-Technology, e-Commerce and e-Service (EEE’05) on
e-Technology, e-Commerce and e-Service, pages 181–185, Washington, DC, USA,
2005. IEEE Computer Society.

[73] I. Janciak, C. Kloner, and P. Brezany. Workflow enactment engine for WSRF-
compliant services orchestration. In GRID ’08: Proceedings of the 2008 9th
IEEE/ACM International Conference on Grid Computing, pages 1–8, Washington,
DC, USA, 2008. IEEE Computer Society.

[74] Niels Joncheere, Wim Vanderperren, and Ragnhild Van Der Straeten. Require-
ments for a Workflow System for Grid Service Composition. In Johann Eder
and Schahram Dustdar, editors, Business Process Management Workshops, volume
4103 of Lecture Notes in Computer Science, pages 365–374. Springer, 2006.

158

https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=269
https://bi.offis.de/bisgrid/tiki-download_file.php?fileId=269
http://shibboleth.internet2.edu/
http://shibboleth.internet2.edu/

Bibliography

[75] Diane Jordan and John Evdemon. Web Services Business Process Execution Lan-
guage Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, April
2007.

[76] Ernst Juhnke, Tim Dornemann, and Bernd Freisleben. Fault-Tolerant BPEL Work-
flow Execution via Cloud-Aware Recovery Policies. Software Engineering and
Advanced Applications, Euromicro Conference, 0:31–38, 2009.

[77] Jae-Yoon Jung, Hoontae Kim, and Suk-Ho Kang. Standards-based approaches to
B2B workflow integration. Computers & Industrial Engineering, 51(2):321 – 334,
2006. Special Issue: Logistics and Supply Chain Management, Selected Papers
from The 33rd. ICC&IE.

[78] Matjaz B. Juric. EAI and Web Services. In eAI Journal, pages 31–35, 2002.

[79] Matjaz B. Juric. Business Process Execution Language for Web Services BPEL and
BPEL4WS 2nd Edition. Packt Publishing, 2006.

[80] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, November 1998.

[81] Carl Kesselman and Ian Foster. The Grid. Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2. a. edition, December 2003.

[82] E. Kieselstein, S. Zimmer, J. Kieselstein, F. Swoboda, P. Hillebrand, and
E. Mauersberger. BIS-Grid - Betriebliche Informationssysteme: Grid-basierte In-
tegration und Orchestrierung – Deliverable 4.7: Dokumentation der auf BIS-Grid
basierenden Softwarelösung für das Anwendungsszenatrio KIESELSTEIN. (con-
fidential), April 2010.

[83] Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL: A Work-
flow Framework for Grid Services. Technical report, ARGONNE NATIONAL
LABORATORY, 9700 S. CASS AVENUE, ARGONNE, IL 60439, 2002.

[84] Roland Kübert, Hai-Lang Thai, and Axel Tenschert. A SOAP performance com-
parison of different WSRF implementations. In MEDES ’09: Proceedings of the
International Conference on Management of Emergent Digital EcoSystems, pages
269–273, New York, NY, USA, 2009. ACM.

[85] Kelvin Lawrence and Chris Kaler. Web Services Secu-
rity: 4 SOAP Message Security 1.1. online http://www.
oasis-open.org/committees/download.php/16790/wss-v1.
1-spec-os-SOAPMessageSecurity.pdf, Februrary 2006.

159

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

Bibliography

[86] Kelvin Lawrence and Chris Kaler. WS-SecureConversation. online http:
//docs.oasis-open.org/ws-sx/ws-secureconversation/v1.
4/os/ws-secureconversation-1.4-spec-os.pdf, February 2009.

[87] Stefan Leugers, Herbert Nase, and Manfred Neugebauer. BIS-Grid - Betriebliche
Informationssysteme: Grid-basierte Integration und Orchestrierung – Deliverable
4.3: Dokumentation der auf BIS-Grid basierenden Softwarelösung für das Anwen-
dungsszenatrio CeWe Color. (confidential), April 2010.

[88] Frank Leymann. Web Services Flow Language.
http://www.itee.uq.edu.au/ infs7201/Assessments/AssignmentFL.pdf, May
2001.

[89] Frank Leymann. Choreography for the Grid: towards fitting BPEL to the resource
framework: Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1201–
1217, 2006.

[90] Frank Leymann, Dieter Roller, and Satish Thatte. Goals of the
BPEL4WS Specification. Online http://xml.coverpages.org/
BPEL4WS-DesignGoals.pdf (last visited 09.05.2010).

[91] Lily Liu and Sam Meder. Web Services Base Faults 1.2 (WS-BaseFaults). (Online)
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.
2-spec-os.pdf, April 2006. OASIS Standard.

[92] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific work-
flow management and the Kepler system. Concurr. Comput. : Pract. Exper.,
18(10):1039–1065, 2006.

[93] Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers. Sci-
entific Workflows: Business as Usual? In Umeshwar Dayal, Johann Eder, Jana
Koehler, and Hajo Reijers, editors, 7th Intl. Conf. on Business Process Manage-
ment (BPM), LNCS 5701, Ulm, Germany, 2009.

[94] Ru-Yue Ma, Yong-Wei Wu, Xiang-Xu Meng, Shi-Jun Liu, and Li Pan. Grid-
Enabled Workflow Management System Based On BPEL. Int. J. High Perform.
Comput. Appl., 22(3):238–249, 2008.

[95] Tom Maguire, David Snelling, and Tim Banks. Web Services Service Group
1.2 (WS-ServiceGroup). (Online) http://docs.oasis-open.org/wsrf/
wsrf-ws_service_group-1.2-spec-os.pdf, April 2006. OASIS Stan-
dard.

160

http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://xml.coverpages.org/BPEL4WS-DesignGoals.pdf
http://xml.coverpages.org/BPEL4WS-DesignGoals.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf

Bibliography

[96] Lawrence Mandel. Describe REST Web services with WSDL 2.0. Tech-
nical report, IBM, May 2008. (online) http://download.boulder.
ibm.com/ibmdl/pub/software/dw/webservices/ws-restwsdl/
ws-restwsdl-pdf.pdf (last visited 20.05.2010).

[97] C. Matthiew, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah Matz.
Reference Model for Service Oriented Architecture 1.0. Technical report, OASIS,
October 2006.

[98] Robert McGill, John W. Tukey, and Wayne A. Larsen. Variations of Box Plots. The
American Statistician, 32(1):12–16, 1978.

[99] Massimo Mecella, Barbara Pernici, Monica Rossi, and Andrea Testi. A Repository
of Workflow Components for Cooperative e-Applications. In in Proceedings of the
1st IFIP TC8 Working Conference on E-commerce/E-business, 2001.

[100] Massimo Mecella, Francesco Parisi Presicce, and Barbara Pernici. Modeling E-
service Orchestration through Petri Nets. In in Proceedings of the 3rd VLDB Inter-
national Workshop on Technologies for e-Services (VLDB-TES 2002), Hong Kong,
Hong Kong SAR, pages 38–47. Springer-Verlag, 2002.

[101] OASIS BPEL4PEOPLE Technical Committee. WS-BPEL
Extension for People (BPEL4People). http://www.oasis-
open.org/committees/download.php/27505/BPEL4Peopleontribution.pdf, June
2007.

[102] OASIS WSBPEL Technical Committee. Web Services Business
Process Execution Language (WSBPEL) Primer. http://www.oasis-
open.org/committees/download.php/23974/wsbpel-v2.0-primer.pdf, May 2007.

[103] OASIS WSRF Technical Committee. Web Services Resource Framework
v1.2. http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsrf.

[104] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Tim Carver, Matthew R.
Pocock, and Anil Wipat. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20:2004, 2004.

[105] OMG. Business Process Model and Notation (BPMN).
http://www.omg.org/spec/BPMN/2.0/Beta1/PDF, August 2009. Version 2.0 -
Beta 1.

[106] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52,
2003.

161

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-restwsdl/ws-restwsdl-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-restwsdl/ws-restwsdl-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-restwsdl/ws-restwsdl-pdf.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

Bibliography

[107] Lavanya Ramakrishnan, Daniel Nurmi, Anirban Mandal, Charles Koelbel, Den-
nis Gannon, T. Mark Huang, Yang-Seok Kee, Graziano Obertelli, Kiran Thya-
garaja, Rich Wolski, Asim YarKhan, and Dmitri Zagorodnov. VGrADS: Enabling
e-Science Workflows on Grids and Clouds with Fault Tolerance. In SC’09 The
International Conference for High Performance Computing, Networking, Storage
and Analysis, Portland, OR, 2009. (Accepted).

[108] Poornachandra Sarang, Ramesh Loganathan, Matjaz B. Juric, and Frank Jennings.
SOA Approach to Integration: XML, Web services, ESB, and BPEL in real-world
SOA projects. Packt Publishing, 2007.

[109] Bernd Schuller, Bastian Demuth, Hartmut Mix, Katharina Rasch, Mathilde
Romberg, Sulev Sild, Uko Maran, Piotr Bala, Enrico del Grosso, Mosé Casalegno,
Nadège Piclin, Marco Pintore, Wibke Sudholt, and Kim Baldridge. Chemomen-
tum - UNICORE 6 Based Infrastructure for Complex Applications in Science and
Technology. In Bougé et al. [22], pages 82–93.

[110] Satoshi Shirasuna, Aleksander Slominski, Liang Fang, and Dennis Gannon. Per-
formance Comparison of Security Mechanisms for Grid Services. Grid Computing,
IEEE/ACM International Workshop on, 0:360–364, 2004.

[111] Aleksander Slomiski. On using BPEL extensibility to implement OGSI and
WSRF Grid workflows: Research Articles. Concurr. Comput. : Pract. Exper.,
18(10):1229–1241, 2006.

[112] Aleksander Slomiski. Adapting BPEL to Scientific Workflows. In Dennis B. Gan-
non Ian J. Taylor, Ewa Deelman and Matthew Shields, editors, Workflows for e-
Science, pages 212–230, December, 2007. Springer London.

[113] Mirko Sonntag, Dimka Karastoyanova, and Frank Leymann. The Missing Features
of Workflow Systems for Scientific Computations. In Software Engineering 2010
– Workshops, pages 209–216. Gesellschaft für Informatik e.V. (GI), Februar 2010.

[114] Latha Srinivasan and Tim Banks. Web Services Resource Lifetime 1.2.
Online http://docs.oasis-open.org/wsrf/wsrf-ws_resource_
lifetime-1.2-spec-os.pdf, April 2006.

[115] Latha Srinivasan and Tim Banks. Web Services Resource Lifetime 1.2
(WS-ResourceLifetime). (Online) http://docs.oasis-open.org/wsrf/
wsrf-ws_resource_lifetime-1.2-spec-os.pdf, April 2006. OASIS
Standard.

[116] SWITCH. Description of the SLCS. Online http://www.switch.ch/
grid/slcs/about/about_long.html (last visited 23.04.2010).

162

http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://www.switch.ch/grid/slcs/about/about_long.html
http://www.switch.ch/grid/slcs/about/about_long.html

Bibliography

[117] Wei Tan, Liana Fong, and Norman Bobroff. BPEL4Job: A Fault-Handling De-
sign for Job Flow Management. In ICSOC ’07: Proceedings of the 5th interna-
tional conference on Service-Oriented Computing, pages 27–42, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[118] Koon Leai Larry Tann and Kenneth J. Turner. Orchestrating Grid Services using
BPEL and Globus Toolkit 4. In 7th Annual Post Graduate Symposium on the Con-
vergence of Telecommunications, Networking and Broadcasting, June 2006.

[119] Ian Taylor, Matthew Shields, Ian Wang, and Roger Philp. Grid Enabling Appli-
cations Using Triana. In Workshop on Grid Applications and Programming Tools.
Held in Conjunction with GGF8, 2003.

[120] Condor Team. DAGMan. Online http://www.cs.wisc.edu/condor/
dagman/ (last visited 12.05.2010).

[121] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the grid. In Grid
Computing: Making the Global Infrastructure a Reality. John Wiley, 2003.

[122] Rajesh K. Thiagarajan, Amit K. Srivastava, Ashis K. Pujari, and Visweswar K.
Bulusu. BPML: A Process Modeling Language for Dynamic Business Models.
In WECWIS ’02: Proceedings of the Fourth IEEE International Workshop on Ad-
vanced Issues of E-Commerce and Web-Based Information Systems (WECWIS’02),
page 239, Washington, DC, USA, 2002. IEEE Computer Society.

[123] S. Tilley, J. Gerdes, T. Hamilton, S. Huang, H. Müller, D. Smith, and K. Wong.
On the business value and technical challenges of adopting web services. J. Softw.
Maint. Evol., 16(1-2):31–50, 2004.

[124] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, Http://www.
Ggf. Org/ogsi wg K. Czajkowski, P. Vanderbilt (eds.), I. Foster Anl, J. Frey Ibm,
C. Kesselman Usc/isi, D. Snelling, Fujitsu Labs, and P. Vanderbilt Nasa. Open Grid
Services Infrastructure (OGSI), 2003.

[125] W. M. P. van der Aalst and Ter. YAWL: yet another workflow language. Information
Systems, 30(4):245–275, June 2005.

[126] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A Break
in the Clouds: Towards a Cloud Definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, 2009.

[127] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad
Yendluri, Toufic Boubez, and Ümit Yalçinalp. Web Services Policy 1.5 -
Framework. Online http://www.w3.org/TR/ws-policy/ (last vistited
10.06.2010), September 2007. W3C Recommendation.

163

http://www.cs.wisc.edu/condor/dagman/
http://www.cs.wisc.edu/condor/dagman/
http://www.w3.org/TR/ws-policy/

Bibliography

[128] Steve Vinoski. Java Business Integration. IEEE Internet Computing, 9:89–91,
2005.

[129] V. Welch. Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Per-
spective. http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf,
2005.

[130] Von Welch, Tom Barton, Kate Keahey, and Frank Siebenlist. Attributes,
Anonymity, and Access: Shibboleth and Globus.Integration to Facilitate Grid Col-
laboration. In Proc. Fourth Ann. Public Key Infrastructure R&D Workshop, 2005.

[131] Tomasz Wiktor Wlodarczyk, Chunming Rong, and Kari Anne Haaland Thorsen.
Industrial Cloud: Toward Inter-enterprise Integration. In Jaatun et al. [71], pages
460–471.

[132] L. Yousseff, M. Butrico, and D. Da Silva. Toward a Unified Ontology of Cloud
Computing. In Grid Computing Environments Workshop, 2008. GCE ’08, Novem-
ber 2008.

[133] Jia Yu and Rajkumar Buyya. A Novel Architecture for Realizing Grid Workflow
using Tuple Spaces. In GRID ’04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pages 119–128, Washington, DC, USA, 2004. IEEE
Computer Society.

[134] Tao Yu and Kwei jay Lin. Service selection algorithms for composing complex
services with multiple qos constraints. In In: ICSOC 05: 3rd Int. Conf. on Service
Oriented Computing, pages 130–143, 2005.

[135] Zhili Zhao, Ruisheng Zhang, Jiazao Lin, Ying Chen, Huajian Zhang, and Lian Li.
An Improved Visual BPEL-Based Environment for Scientific Workflow. In GCC
’08: Proceedings of the 2008 Seventh International Conference on Grid and Coop-
erative Computing, pages 435–441, Washington, DC, USA, 2008. IEEE Computer
Society.

164

	1 Introduction
	1.1 Problem Definition
	1.2 Contribution
	1.3 Outline of the Thesis

	2 Fundamentals
	2.1 Service-oriented architectures – SOA
	2.1.1 SOAP Message Processing

	2.2 Workflow Execution
	2.2.1 WS-BPEL
	2.2.2 WS-BPEL compliant workflow engines

	2.3 Grid Computing
	2.3.1 Web Services Resource Framework
	2.3.2 Globus Toolkit 4
	2.3.3 UNICORE 6

	2.4 Cloud Computing
	2.4.1 Infrastructure as a Service
	2.4.2 Platform as a Service
	2.4.3 Software as a Service
	2.4.4 Cloud Computing as innovation engine

	3 Requirements for secure Workflow Orchestration
	3.1 Business vs. Scientific Workflows
	3.1.1 Business Workflows
	3.1.2 Scientific Workflows

	3.2 Orchestration as a Service
	3.3 Requirements
	3.3.1 Basics
	3.3.2 Workflow Management
	3.3.3 Workflow Execution
	3.3.4 Requirements Summary

	4 Orchestration Architecture
	4.1 Architecture
	4.1.1 Technology Selection
	4.1.2 Main Component Overview
	4.1.3 Workflow Management Service
	4.1.4 Workflow Service
	4.1.5 WS-BPEL/WSRF instance mapping
	4.1.6 Load balancing
	4.1.7 Fault handling

	4.2 Workflow Security
	4.2.1 Security Infrastructure Recommendation
	4.2.2 Confidentiality

	4.3 Integration of Grid and Cloud Services
	4.3.1 BPEL Pattern for WSRF-compliant services
	4.3.2 External service invocations

	4.4 Human Interaction

	5 Prototype
	5.1 UNICORE 6 service extensions
	5.1.1 Workflow Management Service
	5.1.2 Workflow Service

	5.2 External Service Plugins
	5.3 Adapter Concept
	5.4 Deployment package

	6 Evaluation
	6.1 Architecture Review
	6.2 Applicability for Business Workflow in SMEs
	6.2.1 SME Information Systems Integration
	6.2.2 Example: Information System Integration
	6.2.3 Example: Interactive Workflow

	6.3 Applicability for Scientific Workflows
	6.3.1 Example: Grid Job Submission
	6.3.2 Example: Hierarchical workflow composition
	6.3.3 Example: Globus Toolkit 4 integration

	6.4 Performance

	7 Related Work
	7.1 Web Service Orchestration
	7.2 Grid Workflow Orchestration
	7.3 Cloud Workflow Orchestration

	8 Future Work and Conclusion
	8.1 Outlook and Future Work
	8.1.1 Quality of Service for Workflow Execution
	8.1.2 Workflow Optimization using Cloud Interoperability
	8.1.3 Elastic business information systems in a Cloud

	8.2 Conclusion

	Bibliography

