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The effect of industry delocalization on global energy use: A global 
sectoral perspective 

 

1. Introduction 

In order to achieve ambitious climate change mitigation targets as formulated in the Paris 

Agreement (UNFCCC, 2015), emission reductions will be necessary across all sectors of the global 

economy. While a first best climate policy, i.e. putting a uniform, global price on carbon would 

ensure that improvement potentials in economic sectors are realized in the most cost-efficient 

way (Weitzman, 2014), it is rather unlikely to unfold in the near future (Cramton et al., 2017; 

Edenhofer et al., 2015; MacKay et al., 2015).  

Differing ambition levels of unilateral climate policies are feared to induce competitiveness1 

losses for implementing regions (Branger and Quirion, 2015, 2014; Carbone and Rivers, 2017) and 

carbon leakage (see e.g., Jakob et al. 2014) through different channels (Carbone and Rivers, 2017; 

Dechezleprêtre and Sato, 2017). Inter alia, energy- and emission intensive trade exposed 

industries (EITE) (Carbone and Rivers, 2017), such as steel or aluminum could see large increases 

in relative production prices (Alexeeva-Talebi et al., 2012; Böhringer et al., 2012), and hence re- 

or delocalize to regions that have less ambitious regulations and less efficient production 

technologies in place. Thus, a higher price of emission-intensive goods in one region could inter 

alia lead to increased imports from non-regulated regions (Markusen 1975, Siebert 1979), an 

                                                      

1 Identifying a good proxy for competitiveness is challenging (Jaffe et al., 1995). Depending on underlying studies, 

inter alia output, exports, employment profitability or market share have been applied (Carbone and Rivers, 2017).  
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effect that potentially supports pollution havens (Cole et al., 2006; Dietzenbacher and 

Mukhopadhyay, 2007; Eskeland and Harrison, 2003).  

As no natural counterfactual to policies exists, and effects, which are difficult to isolate, are likely 

heterogeneous across countries, it is difficult to explicitly evaluate policy impacts (Dechezleprêtre 

and Sato, 2017). Reviewing the Computable General Equilibrium (CGE) modelling literature on 

impacts of unilateral climate policy, Carbone and Rivers (2017) find evidence for resulting 

negative effects on output, exports and employment as well as carbon leakage. Nevertheless, it 

has been argued that depending on the rate of technological spillover and the additional 

technological development caused by environmental regulations, the effects of (carbon) leakage 

could be more than offset (Gerlagh and Kuik, 2014). Literature also acknowledged that depending 

on relocation barriers, domestic effects might be more relevant than effects between countries 

(Dechezleprêtre and Sato, 2017). For instance, the US clean air act had no impact on the cement 

industry, i.e. relocation of production capacities, but contributed to large health benefits 

(Dechezleprêtre and Sato, 2017). In the same vein, the introduction of EU ETS has not led to 

measurable effects for the overall economy (Dechezleprêtre and Sato, 2017). In specific cases, 

environmental legislation can also increase firm profits, as Branger and Quirion (2015) show for 

the European cement industry. Nevertheless, considering the findings of Carbone and Rivers 

(2017), it is conceivable that unilateral climate policy can negatively affect EITE-sectors and hence 

be relevant for delocalization of production capacities. 

Thus far, delocalization effects have mainly been explored at aggregated economic level. Voigt et 

al. (2014) and Löschel et al. (2015) have decomposed the structural component of energy 

intensity changes into a between- and a within-country structural effect. Both studies show that 

while a shift towards a less energy intensive economic structure is at work in most countries, the 

delocalization of production (between-country structural effect) partly compensates for this 

development. Although drivers of changes in emissions have been investigated at sectoral level, 

see e.g. Branger and Quirion (2015), and predictions have been made using CGE modelling 
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(Carbone and Rivers, 2017), an empirical investigation of sector-specific delocalization effects is 

currently missing.  

In this study we aim to close this gap. We apply an advanced Logarithmic Mean Divisa Index 

(LMDI) decomposition methodology (Ang and Wang, 2015) to decompose energy use into value 

added, technological progress 2  and delocalization along sectoral lines of the economy. Our 

analysis is based on data from the Global Trade Analysis Project (GTAP), for the years 2001, 2004, 

2007 and 2011 (Dimaranan, 2006; Narayanan et al., 2015) (details in Section 2), which allows to 

track changes over time. We consider 57 different sectors and up to 140 regions, which we 

transfer into a multi-regional input-output table (Andrew and Peters, 2013). We are interested in 

how delocalization effected the energy consumption of global sectors. Here, we understand 

delocalization as a relative shift of production capacities between countries for single sectors. We 

assume that if production technologies in two country were different and a relative shift in 

production capacities occurred, the global average technology and consequently the sectoral 

energy consumption changed. Our analysis uses these changes and gives indirect evidence when 

and in which sectors delocalization occurred.  

We find that the increases of value added have consistently driven energy use at the sectoral 

level, while technological change has continuously led to decreases in energy use in the decade 

2001-2011. We find evidence for ongoing sectoral delocalization. For most sectors, delocalization 

increases sectoral energy use by 1-6% per year. Delocalization effects have increased sharply in 

manufacturing industries that consume more than 50% of the global energy after 2004. 

                                                      

2 We use the energy intensity improvement rate to approximate technological progress. We use energy use per 

value added (VAD). Production chains are increasingly globalizing and fragmenting (Baldwin and Martin, 1999; 

Koopman et al., 2014; Timmer et al., 2014). It is hence important to adequately measure the contribution of single 

production steps. In contrast to output, VAD allows to reflect the significance and efficiency of a production step, i.e. 

how much additional value is generated from the inputs. 
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Subsequently, technological progress rates within manufacturing sectors have declined (2007-

2011). 

The remainder of our paper is structured as follows. Section 2 introduces the data and the 

methodological foundations of the decomposition analysis. Section 3 provides the results for 

different sectoral aggregation levels. Section 4 discusses the results and concludes. 

2 Data and Methodology 

This section develops a framework that allows identifying delocalization between countries at 

sectoral level. In contrast to former studies, which have focused on energy intensity in countries 

or regions, we consider sectoral value added and its distribution, which is decisive considering 

total energy use-driven GHG emissions. We decompose sectoral energy intensity changes into 

delocalization and technology components, envisaging the delocalization component as being the 

structural effect within sectors and between countries. 

 

2.1 Data  

For our analysis we use the Global Trade Analysis Project (GTAP) Data Base. The GTAP Data Base 

can be converted into a multi-regional input-output table (Peters et al., 2011), which allows to 

calculate sectoral value-added. In contrast to other multi-regional input-output datasets, such as 

Eora (Lenzen et al., 2013) and WIOD (Timmer et al., 2015), there are no annual releases of the 

GTAP Data Base. However, it does provide relatively high sectoral and regional resolutions 

(homogeneous across regions) (Tukker and Dietzenbacher, 2013), which are crucial for 

investigating delocalization effects, along with data on energy use. Table 1 shows the 

specifications of the different GTAP Data Base releases used in this analysis. The four years of data 

available generate three time windows for our analysis: 2001 to 2004, 2004 to 2007 and 2007 to 

2011. Wherever the regional resolution differs within a time window, the higher resolved version 

is aggregated into the lower resolved one (see Appendix). Each separate year in GTAP is the 

reference year for the monetary value (Aguiar et al., 2016). Hence, we apply price deflator factors 

provided by the Worldbank (Worldbank, 2017) to adjust all monetary values to 2011 USD. 
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Year 2001 2004 2007 2011 

GTAP Data Base version 6 9 

Documentation Dimaranan 
(2006) 

Narayanan et al. 
(2015) 

number of regions 87 140 

number of sectors 57 

Table 1: Overview of different GTAP versions used for each year, including their respective numbers of sectors and 
regions. 

2.2 Factorizing sectoral energy intensity changes with Index Decomposition Analysis 

In order to analyze the impact of delocalization on sectoral energy usage trends, we take the 

perspective of global production sectors, adapting and modifying the decomposition 

methodology by Ang and Wang (2015). Let 𝑆 denote the set of considered sectors and 𝑅 the 

set of considered regions in a dataset. With 𝐸𝑈𝑠
𝑡 we denote energy usage in the global sector 

𝑠 ∈ 𝑆 at time 𝑡; 𝐸𝑈𝑠,𝑟
𝑡  refers to the energy usage of sector 𝑠 in region 𝑟 ∈ 𝑅 at time 𝑡. With 

𝑌𝑠
𝑡 we denote the value-added of the global sector 𝑠 at time 𝑡, while 𝑌𝑠,𝑟

𝑡  refers to the value-

added of sector 𝑠 in region 𝑟 at time 𝑡. 𝐸𝑈𝑠
𝑡 can thus be decomposed in the following way: 

 

 𝐸𝑈𝑠
𝑡 = ∑

𝑟

𝑌𝑠,𝑟
𝑡

𝑌𝑠
𝑡 ∙

𝐸𝑈𝑠,𝑟
𝑡

𝑌𝑠,𝑟
𝑡 ∙ 𝑌𝑠

𝑡  

= ∑

𝑟

𝐿𝑠,𝑟
𝑡 ∙ 𝑇𝑠,𝑟

𝑡 ∙ 𝑌𝑠
𝑡. 

(1)  

The first component of the right side of equation (1), 𝐿𝑠,𝑟
𝑡 =

𝑌𝑠,𝑟
𝑡

𝑌𝑠
𝑡  is the share of the global value-

added of sector 𝑠 that is created in region 𝑟 at time 𝑡. This factor is novel to energy usage 

decomposition studies as it analyses the effect of shifts in the location of production within a 

global sector on energy usage. In the following we call factor 𝐿  the localization factor, the 
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change in localization will be denoted as delocalization. The second term 𝑇𝑠,𝑟
𝑡 =

𝐸𝑈𝑠,𝑟
𝑡

𝑌𝑠,𝑟
𝑡  is the 

sectoral energy intensity of sector 𝑠 in region 𝑟 at time 𝑡. We call this term 𝑇 the technology 

factor. The third term 𝑌 refers to the economic size of the global sector, as it considers total 

value added. 

2.3 Calculating the effects on energy usage change: Log Mean Divisia Index method 

The factorization of energy use, as in equation (1), represents a static perspective at a given point 

in time. Our approach aims to derive the temporal variation of sectoral value added, energy 

efficiency developments and production locations. To comply with this dynamic approach, we 

apply the additive Logarithmic Mean Divisia Index method (LMDI) to equation (1) (Ang and Wang, 

2015).  

We use the logarithmic weight function according to Ang and Wang (2015): 

 

 ℓ(𝑥, 𝑦) = (𝑥 − 𝑦)/𝑙𝑛(
𝑥

𝑦
). (2) 

 

We obtain - analogously to Ang and Wang (2015) and Ang (2015) - the global changes in energy 

usage which are assigned to the factors 𝐿, 𝑇 and 𝑉 between two points in time 𝑡0 and 𝑡1: 

 

 Δ𝑡0,𝑡1𝐸𝑈𝑠(L) = ∑ ℓ(𝐸𝑈𝑠,𝑟
𝑡1 , 𝐸𝑈𝑠,𝑟

𝑡0 ) ⋅ 𝑙𝑛 (
𝐿𝑠,𝑟

𝑡1

𝐿𝑠,𝑟
𝑡0

)𝑟   (3) 

Δ𝑡0,𝑡1𝐸𝑈𝑠(T) = ∑ ℓ(𝐸𝑈𝑠,𝑟
𝑡1 , 𝐸𝑈𝑠,𝑟

𝑡0 ) ⋅ 𝑙𝑛 (
𝑇𝑠,𝑟

𝑡1

𝑇𝑠,𝑟
𝑡0

)𝑟   (4) 

Δ𝑡0,𝑡1𝐸𝑈𝑠(Y) = ∑ ℓ(𝐸𝑈𝑠,𝑟
𝑡1 , 𝐸𝑈𝑠,𝑟

𝑡0 ) ⋅ 𝑙𝑛 (
𝑌𝑠

𝑡1

𝑌𝑠
𝑡0

)𝑟 .  (5) 
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The total of these three contributions give the overall absolute change in energy use of the global 

sector s between time t0 and t1 

 

Δ𝑡0,𝑡1𝐸𝑈𝑠 = 𝐸𝑈𝑠
𝑡1 − 𝐸𝑈𝑠

𝑡0 = Δ𝑡0,𝑡1𝐸𝑈𝑠(L) + Δ𝑡0,𝑡1𝐸𝑈𝑠(T) + Δ𝑡0,𝑡1𝐸𝑈𝑠(Y). (6) 

 

Outcomes of Equations (3) to (5) can be positive or negative. The following results are possible: 

i) Δ𝑡0,𝑡1𝐸𝑈𝑠(L) < 0 means that delocalization contributed to a decrease in global 

energy usage, i.e. a shift towards more efficient regions, while  

ii) Δ𝑡0,𝑡1𝐸𝑈𝑠(L) > 0  shows that the delocalization factor between 𝑡0  and 𝑡1 

contributed to increases in global energy usage, i.e. a shift towards less efficient 

regions. 

iii) Δ𝑡0,𝑡1𝐸𝑈𝑠(𝑇) < 0 means that the technology factor contributed to a decrease in 

global energy usage, i.e. the global sector became more energy efficient, while  

iv) Δ𝑡0,𝑡1𝐸𝑈𝑠(𝑇) > 0  shows that the technology factor between 𝑡0  and 𝑡1 

contributed to increases in global energy usage.  

v) Δ𝑡0,𝑡1𝐸𝑈𝑠(Y) < 0 means that sectoral decline contributed to a decrease in global 

energy usage, while  

vi) Δ𝑡0,𝑡1𝐸𝑈𝑠(Y) > 0 means that sectoral growth lead to increases in energy usage. 

To avoid misinterpretation, it is important to note that the relative delocalization effect described 

by a change in the localization factor 𝐿 is not equivalent to the usual meaning of delocalization. 

In fact, the data used in this paper do not allow the tracking of displacement of single 

organizations at micro level. What we observe are changes in the proportion of regional 

production of the global sector 𝑠 and its relationship to the sectoral energy usage. Put another 
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way, the localization factor indicates whether production shares of a sector 𝑠  has moved, 

between 𝑡0 and 𝑡1, to more (or less) energy-intensive countries. 

3 Results  

In this section we first introduce selected stylized facts and major trends. We then continue with 

detailed results of our sectoral decomposition, which was introduced in detail in Section 2. 

3.1 Stylized facts and major trends 

Looking at aggregated energy use patterns across the globe, we observe a major shift of regional 

weights, see Figure 1. Aggregated energy consumption between 2001 and 2011 almost doubled 

in East Asia, replacing North America as the world’s largest energy consuming region3.  

In fast growing developing countries energy consumption has grown disproportionally in every 

macro sector4, see Figure 2. When assessing the proportion of regional consumption by macro 

sector, the share of consumption in “Heavy-“, and “Light Manufacturing”, “Utilities and 

Construction”, “Transport and Communication” “Textiles and Wearing Apparel” and “Processed 

Food” in Asia has significantly increased. For all other macro sectors, shares remain relatively 

constant. In contrast, EU25 and North American countries have demonstrated declining energy 

usage shares in some macro sectors. 

                                                      

3 See Appendix table A3 for an overview of regions and countries. 

4 Note that we separate between aggregated “macro” sectors and “micro” sectors that are further disaggregated. 

Table A2 gives a full list of sectors and how they are aggregated into “macro” sectors.  
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Figure 1: Primary energy usage of different world regions in Exajoules for 2001-2011. 

Looking at growth in sectoral energy consumption, “Heavy Manufacturing”, “Utilities and 

Construction” and “Transport and Communication”, which are together responsible for almost 

90% of global energy consumption, grew by 28%, 44.5% and 32.5% respectively, for the period 

2001-2011. These values compare to a total growth rate of 31.9% across all sectors. The only 

sectors to witness a slight energy use reduction in this time period are “Textile and Wearing 

Apparel” and “Lifestock and Meat Products”, which are the macro sectors with the lowest energy 

usage. The energy use in the remaining macro sectors has increased. 
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Year 2001 2004 2007 2011 

Total Energy Use [EJ] 511.4 581.3 628.5 674.3 

Heavy Manufacturing 259.3 292.8 310.1 331.9 

Utilities and Construction  127.4 147.6 167.1 184.1 

Transport and Communication  67.9 80.5 86.4 90.2 

Other Services 19.7 20.8 22.4 23.4 

Light Manufacturing 11.6 11.7 12.5 12.9 

Extraction 11.5 12.7 14.2 15.5 

Processed Food 4.6 5.4 5.5 5.9 

Grains and Crops 4.5 5.0 5.3 5.6 

Textile and Wearing Apparel 2.6 2.7 2.7 2.6 

Livestock and Meat Products 2.5 2.1 2.2 2.3 
 

Figure 2: Total energy use in EJ (circles, left axis) and regional shares (bars, right axis) per region and sector for 
2001, 2004, 2007 and 2011, respectively (RoW = Rest of the World, MENA = Middle East and Northern Africa, NA 
= North America, EU-25 = European Union of 25 members, see table A4 in the Appendix for more detail). Table 
shows sectoral energy use in EJ for different years.  

3.2 Decomposition 

In order to understand the energy consumption patterns observed, we apply the decomposition 

technique described in Section 2. Results are summarized in Figure 3.  
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Figure 3: Average annual contributions to changes in energy usage of macro sectors by the technology, 
delocalization and sectoral value added factors for the period 2001-2011. 

For all macro sectors, growth in the sectoral value added factor contributed to increases in energy 

usage. On average, its effect on energy use was 3-7% per year. The largest average contributions 

(10-15%) were observed in the “Heavy Manufacturing” and “Extraction” sectors. The increase in 

the latter could be a side effect of increases in the former, as extracted resources are relevant 

inputs for “Heavy Manufacturing”. In contrast, technological improvements have constantly led 

to decreasing energy consumption, almost equating to the increases from value added 

contributions. For the entire period, delocalization has shown to have smaller impacts (<5%). Only 

one sector, “Grains and Crops”, saw decreases in energy consumption due to delocalization. In 
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contrast, two of the three most important energy consuming macro sectors, “Utilities and 

Construction” and “Transport and Communication” witnessed a growth in delocalization-driven 

energy use. As both macro sectors largely reflect infrastructure, the observed delocalization could 

be driven by large (necessary) investments to build-up and improve infrastructure in China, India 

and other Asian economies (Schäfer, 2005; Steckel et al., 2013; Steinberger et al., 2010), which is 

already provided in OECD countries.  

Investigating delocalization for macro sectors in more detail, i.e. considering all periods 

separately, reveals a different picture, see Figure 4. 

 

  

Figure 4: Delocalization effects at macro level. Annual percentage changes in energy intensities of macro sectors 
caused by delocalization.5  

“Utilities and Construction”, “Other services” and “Transport and Communication” are the only 

sectors that had a one-directional contribution and hence confirm the aggregated results when 

                                                      

5 Effects for macro sectors are derived by summing the effects of micro sectors. 
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looking at separate periods. Nevertheless, the former two reveal a decreasing delocalization rate. 

For all other sectors, there are significant variations in contributions of delocalization, with five 

sectors experiencing a reverse in the trend. The positive effect of delocalization on energy 

intensities of “Livestock and Meat Products” and “Extraction” in 2001-2004 reversed in the 

subsequent periods. The opposite is true for “Heavy Manufacturing”, “Light Manufacturing” and 

“Textiles and Wearing Apparel”, which recently (after 2004) witnessed relevant relative 

production shift to less energy efficient production locations6. Such effects have been indicated 

by observed structural changes in economies (Voigt et al., 2014) and the decline in US 

manufacturing (Acemoglu et al., 2016). They might be inter alia related to an increasing 

competitiveness of Asian economies in manufacturing sectors (McMillan et al., 2014; Rodrik, 

2015).  

Assessing contributions of change in technology at a more detailed level by increasing the 

temporal resolution, see Figure 5, shows a rather constant cross-sectoral contribution of energy 

efficiency improvements to the decrease in energy use. 

 

  

                                                      

6 The energy-intensive trade-exposed sectors (EITE) include glass, steel, metals, pulp and paper, aluminum and 

chemicals (ACEEE, 2017). Hence, EITE sectors subsets part of “Heavy Manufacturing” and “Light Manufacturing”. 
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Figure 5: Annual percentage changes in sectoral energy intensities of macro sectors related to changes in the 
technology factor. 

Even though some variance exists, only “Utilities and Construction”, “Textiles and Wearing 

Apparel”, “Grains and Crops” and “Processed Food” have a single period of positive contributions 

to energy consumption through changing technology. They are the only macro sectors that have 

seen a change in trend. Some sectors have experienced constantly decreasing improvement rates, 

i.e. “Extraction” and “Other services”. A recent decline in the improvement rate of more than 8 

percentage points in “Heavy Manufacturing” is particular interesting in this respect as it is the 

largest energy consuming macro sector (~50% of world energy consumption). Note that in 

addition to this trend the delocalization factor for the same sector contributes to increases in 

energy intensities since 2004 (see also Figure 4). 

As the macroeconomic sectors consist of multiple, non-homogeneous sectors, with contrasting 

shares of energy consumption, see Figure 2 and Table A3, a more detailed investigation is 

indispensable to understand observed developments at the macro sectoral level. Investigating 

the most relevant macro sector “Heavy Manufacturing” in more detail, see Table 2, we find 

substantial internal heterogeneity across the effects. While the dominant sector “Petroleum and 
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Coal Products” has shown very little changes due to delocalization7, all other sectors except for 

“Mineral Products nec”’s first period, i.e. “Chemical, Rubber and Plastics”, “Ferrous Metals”, 

“Metals nec”, “Machinery and Equipment” and “Electronic Equipment” demonstrate continuous 

and relevant increases in energy consumption due to delocalization. The contributions of 

“Ferrous Metals” and “Machinery and Equipment” have exceeded 4% for the entire period. For 

all cases, except for “Mineral Products nec” and “Electronic Equipment” in 2001-2004, 

delocalization-driven energy use increases are outweighed by technology effects. Observed 

reductions in energy intensity improvements also hold for all “Heavy Manufacturing” subsectors. 

Large reductions are identified for “Petroleum and Coal Products”, “Ferrous Metals”, “Metals 

nec” and “Machinery and Equipment nec”. Please see the Discussion for potential reasons. 

Also for other macro sectors, delocalization is relevant at the sub level. For the second and third 

most energy consuming macro sectors, i.e. “Utilities and Construction” and “Transportation and 

Communications”, the subsectors “Electricity”, “Construction”, “Water” and “Communication” 

show continuously increasing energy consumption due to delocalization.  

Taken together, subsectors of the three highest energy consuming macro sectors, showing 

continuously positive delocalization effects, accounted for approximately 280 Exajoules in 2011. 

That corresponds to more than 40% of global annual energy use and illustrates that delocalization 

is a relevant issue. In total, we observe that over the period 23 out of 57 GTAP sectors have 

constantly contributed to growing energy consumption due to delocalization. Seven sectors have 

constantly contributed to increases greater than 3%: “Ferrous metals”, “Machinery and 

Equipment”, “Construction”, “Communication”, “Motor Vehicles and Parts”, “Dwellings” and 

“Transport Equipment”. In contrast, only two sectors have demonstrated a constant decrease in 

their energy consumption due to delocalization: ”Oil seeds” and “Sugar”, possibly because of 

delocalization towards more productive regions, i.e. Brazil in case of “Oil seeds” (Bustos et al., 

                                                      

7 This sector is dependent on local endowments, thus finding little influence of delocalization makes perfect sense.  
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2016). The more detailed decomposition of micro sectors (see Table 2) confirms that changes in 

sectoral value added have primarily contributed to increasing energy use.  

The contrary is true for technology development. Both findings are in line with observations at 

aggregated sectoral level. Remarkably, the contribution of value added significantly declined in 

2007-2011 compared to 2004-2007 for almost all sectors. This is possibly because of the global 

crisis in 2008, see the Discussion for more detail. 

Factor Delocalization Technology Value added 

Year 2001- 
2004 

2004- 
2007 

2007- 
2011 

2001- 
2004 

2004- 
2007 

2007- 
2011 

2001- 
2004 

2004- 
2007 

2007- 
2011 

Heavy 
Manufacturing 

-4.1  1.8  1.7  -13.8  -15.8  -7.1  22.0  15.9  7.2  

P_C -5.9  0.9  1.0  -17.9  -18.6  -7.8  27.4  19.0  8.0  
CRP 0.4  3.3  2.8  -2.9  -6.3  -4.9  6.3  6.2  5.0  
I_S 4.9  5.3  4.0  -9.9  -9.1  -4.5  12.7  8.8  5.5  
NMM -3.1  6.0  5.3  14.9  -10.5  -8.2  0.7  8.8  5.3  
NFM 5.5  4.0  1.0  -13.5  -13.5  -5.8  10.3  11.1  6.9  
OME 4.9  5.9  5.2  -6.2  -11.1  -4.4  8.1  7.4  3.3  
ELE 4.0  1.8  2.9  17.6  -4.0  -3.3  -4.4  4.0  2.7  

Utilities and 
Construction  

1.9  1.0  0.2  2.1  -2.9  -0.3  1.3  6.3  2.6  

ELY 1.9  0.8  0.2  3.1  -2.4  -0.3  0.5  6.0  2.8  
GDT 0.4  2.3  -2.4  -16.9  -11.1  4.3  14.8  13.1  -1.3  
CNS 3.2  4.7  3.9  3.8  -7.3  -7.1  10.4  8.6  2.0  
WTR 5.0  5.9  1.9  -8.7  -7.7  -2.8  5.0  7.7  3.7  

Transport and 
Communication  

2.0  1.0  0.2  -0.8  -3.5  -2.8  5.0  4.9  3.6  

OTP 1.5  1.3  -0.1  -0.9  -3.5  -2.5  6.1  4.7  3.7  
ATP 2.7  0.1  0.0  -1.5  -2.5  -1.5  2.2  3.7  1.5  
TRD -1.2  1.6  1.3  3.1  -4.7  -3.9  1.1  5.6  3.6  
WTP 8.6  -0.1  0.6  -4.6  -3.9  -4.7  9.8  8.1  6.8  
CMN 3.0  5.1  4.4  -7.0  -6.1  -5.8  10.1  6.7  3.8  

Other Services 2.2  2.9  2.1  -9.0  -5.4  -4.3  8.3  5.2  3.2  
OSG 1.3  2.8  2.3  -6.8  -5.3  -4.9  13.6  5.1  3.8  
ROS 1.7  1.4  1.7  -11.5  -4.3  -4.0  -3.4  4.7  3.1  
OBS 4.0  3.9  2.0  -8.2  -6.1  -3.4  9.3  5.6  2.0  
OFI 6.0  2.8  1.6  -16.8  -5.6  -3.3  12.0  6.0  3.4  
ISR 1.5  6.7  4.2  -17.5  -6.5  -4.4  7.4  4.5  3.0  
DWE 11.2  5.3  3.7  0  -8.3  -1.1  26.1  3.8  3.2  

Light 
Manufacturing 

-0.8  4.4  4.1  -2.5  -8.0  -6.0  3.8  5.7  2.7  

PPP -2.1  3.6  3.1  0.8  -6.9  -7.4  2.4  4.6  2.6  
FMP -1.8  6.5  6.5  -7.9  -8.8  -4.6  7.1  6.6  2.1  
MVH 4.2  3.4  3.9  -10.6  -4.1  -4.7  7.3  6.9  2.5  
LUM 5.9  6.4  2.6  -7.4  -16.9  -2.2  1.5  4.9  0.8  
OMF -7.6  3.7  4.9  8.0  -7.1  -6.8  2.0  8.4  5.2  
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OTN 3.3  3.9  5.3  -8.8  -4.2  -5.2  6.0  7.1  3.8  
LEA -4.3  4.1  3.1  8.0  -10.9  -11.1  3.7  6.6  4.7  

Extraction 4.3  -0.1  -1.8  -18.6  -11.1  -5.3  17.9  15.0  9.4  
OIL 0.5  -0.8  0.3  -34.4  -15.8  -8.4  30.6  17.4  8.3  
GAS 6.0  -3.2  -10.0  -12.4  -9.1  7.2  12.1  13.2  4.7  
OMN 0.0  1.6  0.9  -6.5  -5.8  -7.9  18.1  16.5  10.7  
FSH 0.6  -2.7  -2.3  -2.1  -7.1  -6.5  -4.3  10.0  10.8  
COA 27.4  3.9  -0.2  -16.5  -13.4  -9.9  11.4  13.5  15.1  
FRS 3.3  2.6  -2.4  -4.0  -8.5  -2.4  3.0  10.5  5.9  

Processed Food 0.0  3.6  2.4  3.4  -9.6  -5.3  2.8  7.1  4.7  
OFD 0.2  3.5  2.7  -0.2  -8.8  -4.9  6.6  6.0  4.4  
B_T -4.3  5.2  2.8  19.7  -8.8  -7.2  -1.9  5.5  4.5  
MIL 6.7  4.8  2.6  0.3  -13.2  -4.0  9.1  8.8  3.4  
SGR -5.9  -2.1  -2.4  -3.0  -6.0  -2.8  -7.7  10.6  5.9  
VOL 6.5  -0.6  1.8  -0.2  -13.5  -6.8  -6.9  15.5  10.2  

Grains and Crops -3.1  1.1  -0.8  5.0  -8.8  -6.7  1.9  9.2  9.0  
V_F 0 0.6  -1.4  1.2  -7.6  -6.2  2.3  9.3  7.5  
OCR -2.5  0.0  -1.7  2.3  -8.1  -4.2  2.2  3.8  4.9  
WHT -13.4  2.5  1.9  15.1  -10.6  -6.5  -1.0  11.4  9.3  
GRO -0.8  3.2  -1.4  5.9  -11.6  -7.4  5.0  16.5  10.2  
PCR -12.9  4.5  0.4  0.5  -9.7  -5.6  -7.3  12.8  11.6  
OSD -1.5  -0.2  -1.7  7.6  -9.5  -7.7  16.5  9.3  11.3  
PFB -0.3  0.9  1.8  11.0  -8.5  -12.5  -3.4  6.9  12.7  
PDR 5.9  0.2  -1.9  5.6  -7.2  -8.2  1.2  6.5  14.0  
C_B 0.2  1.6  0.2  3.9  -9.8  -7.5  1.0  9.9  14.7  

Textile and 
Wearing Apparel 

-1.9  3.9  3.7  4.2  -9.3  -9.8  -1.1  5.9  4.5  

TEX -2.7  3.9  3.8  1.7  -8.9  -9.3  -1.1  5.9  4.8  
WAP 1.1  4.0  3.5  13.7  -10.1  -11.2  -1.0  6.0  3.8  

Livestock and Meat 
Products 

3.5  0.1  -1.4  -9.4  -9.7  -4.6  1.0  10.2  7.2  

OAP 2.8  -1.9  -1.1  -11.9  -8.2  -5.7  -0.1  11.0  8.1  
RMK 8.7  -1.3  -1.9  -17.2  -8.6  -3.9  3.0  9.4  7.0  
OMT -1.7  -0.6  0.1  -6.1  -12.0  -2.9  -0.1  10.9  3.5  
CTL 3.0  -0.3  -4.0  -8.4  -9.0  -5.6  2.7  8.2  10.5  
CMT 4.3  5.3  -0.6  -3.0  -11.3  -3.7  1.8  9.8  5.3  
WOL 7.8  1.3  0.5  19.5  -11.9  -7.9  -10.5  16.1  13.8  

Table 2: Annual relative changes in energy use in percent, decomposed to the relative delocalization, energy 
efficiency and sectoral value added factors. Sorting of macro sectors and internal sorting of subsectors follows the 
share of energy consumption (see Table A3 in the Appendix).  

4 Discussion and Conclusion  

In this paper, we investigate the role of delocalization on annual changes in sectoral energy use 

for the period 2001-2011. Within this decade global energy use increased by one third, and 

sectoral energy use patterns have shifted significantly between regions. Our results, using a LMDI 

decomposition along sectoral lines, show that increases in (sectoral) value added have 
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continuously been the dominating factor and boosted overall energy use. This effect is partly 

counterbalanced by technological improvements, which have, however, decelerated over time, 

at least for most energy intensive sectors. Although delocalization does not show a clear cross-

sectoral trend, in most sectors it has increased energy consumption within the range of 1-6% per 

annum. This holds especially for sectors with high overall energy consumption. 

Manufacturing sectors show a strong increase in production shares in more energy-intensive 

regions since 2004. More specifically, “Ferrous metals”, “Machinery and Equipment”, 

“Construction”, “Communication”, “Motor Vehicle and Parts”, “Dwellings” and “Transport 

Equipment” have experienced constant annual delocalization-driven increases of energy use by 

more than 3% per annum for the entire period (2001-2011). It is important to note that those 

manufacturing sectors are among the most flexible in terms of production location in the global 

economy (McMillan et al., 2014; Rodrik, 2015). Production can hence adjust relatively easily to 

changes in political or economic framework conditions. This could imply that an increasing 

segregation of climate policy across the world might well accelerate the delocalization of energy-

intensive sectors from regulated towards non-regulated regions, leading to overall increasing 

energy demand and hence emissions. At least, our results give no indication that a stronger 

delocalization trend, which could be caused by environmental regulation, increases energy 

intensity improvement rates, as theoretically laid out by Gerlagh and Kuik (2014) and Grubb et al. 

(2002). 

It is important to note that from a global perspective it seems as technological improvement rates 

in some manufacturing sectors also slow down in subsequence of delocalization, see Table 2. This 

coincides with technological research capacities and abilities to adopt efficient technologies being 

(currently) mainly located in industrialized countries (Dechezleprêtre et al., 2013, 2011). 

Delocalization might hence induce second order effects that impede achieving ambitious climate 

change mitigation as future energy intensity progress rates are negatively impacted. Our small 

sample does not allow to investigate this hypothesis statistically. In addition, other explanations 
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need to be considered. Thus the global economic crises in 2008/20098, which majorly hit OECD 

economies (China for instance experienced only small impacts on GDP growth rates (The World 

Bank, 2017)) and led to declines in oil prices (Nasdaq, 2017) could have had relevant influence on 

the observed decline in energy intensity improvement rates (Csereklyei et al., 2016; 

Dechezleprêtre et al., 2011). 

The applied approach allows to identify the pure sectoral relative delocalization effects within 

single sectors9, which has not been done before. However, our analysis does not allow to give an 

ex-post explanation for the effects observed.10 Nevertheless, multiple theoretical explanations 

and channels have been identified (Dechezleprêtre and Sato, 2017). An approximate 

understanding of potential policy impacts and their dynamics can currently only be gained by the 

application and evaluation of CGE models (Carbone and Rivers, 2017).  

Considering the ambitious climate mitigation targets laid down in the Paris Agreement it is 

important to understand how the impacts associated to observed delocalization can be alleviated. 

Targeting emissions in specific economic sectors across all countries (or at least a relevant set of 

countries, e.g. within the G20) might be an effective and feasible second best option for climate 

policy as long as no global approach exists. Negotiations on specific targets or regulations could 

be faster and implementation easier compared to economy wide approaches (Ahman et al., 2016; 

den Elzen et al., 2008; Kuik et al., 2008; Schmidt et al., 2008). Such mitigation strategies might be 

                                                      

8 Note that according to Figure 1, the Middle East, Southern and East Asia saw significant increases in energy 

consumption for 2007-2011, while North America and the EU25 saw declines. The increases overcompensated the 

declines. Nevertheless, in subsequence of the global economic crisis, the growth rate of energy consumption declined 

(The annual growth rate for 2007-2011 is ~5.5% compared to 8.2% (2004-2007) and 13.6% (2001-2004)). 

9 This also implies that we can depict the real sectoral energy intensity progress rate as delocalization effects can be 

segregated.  

10 Inter alia no policy counterfactual exists and hence effects cannot be disentangled to their origin. 
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particularly feasible for manufacturing sectors, which are both prone to delocalization, 

responsible for a large share of energy consumption and show large efficiency variations across 

countries (Kim and Kim, 2012; Saygin et al., 2011). Given that manufacturing sectors also imply 

significant energy consumption in their supply chains, targeting selected energy intensive sectors 

might imply significant reductions in both, energy consumption and emissions in upstream 

sectors (Ward et al., 2017).  

How to organize and incentivize intra-sectoral technology transfer is open to debate. Targeted 

development assistance and foreign direct investments could foster technological progress in 

developing countries (Javorcik, 2004; Peterson, 2008). One additional possibility would be to 

make entire sectors (e.g., in the form of industry associations) eligible for climate finance, for 

instance to enforce sector wide efficiency standards (Saygin et al., 2011) or targeted technological 

access (United Nations, 1992). Nevertheless, intellectual property rights in developing countries 

that have been identified as a major obstacle to technological progress and diffusion of efficient 

technologies will have to improve (Dechezleprêtre et al., 2013). 

Carbon tariffs are frequently proposed to tackle delocalization resulting from environmental 

regulation, more specifically emission leakage (Böhringer et al., 2012). Our results do not 

necessarily support this claim. They do not allow to disentangle whether observed delocalization 

is caused by existing differences in environmental regulation (Jakob et al., 2014), differences in 

productivity as described by Rodrik (2015), ongoing fragmentation and specialization in global 

supply networks (Timmer et al., 2014) or differing regional growth dynamics leading to relative 

shifts in the production network (Voigt et al., 2014). Further, it is unclear whether delocalizing 

sectors are primarily producing for export or for domestic demand (Jakob et al. 2013). It is hence 

questionable whether carbon tariffs would trigger technological improvements in countries using 

inefficient technologies and thus abate impacts by delocalization. Future research could focus on 

trade patterns of delocalizing sectors along the lines of the sectoral decomposition we propose.  
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Appendix 

In GTAP, raw energy data are categorized according to three criteria. The first is the energy source 

or service: GTAP accounts for coal, gas, oil, electricity, petroleum and coal products and gas 

distribution. In the second, the origin is considered (domestic or imported). The third 

characteristic accounts for the type of final consumption where the energy is used (households, 

government use, company use). For the analysis carried out in this paper, only companies are 

used as they use energy in industrial production. Before energy data can be used in the 

decomposition analysis, the data has to be adapted to the input-output framework. 

Single flows in GTAP raw energy use data consider the year 𝑡, sector 𝑠, region 𝑟, energy source 

𝑒 and origin 𝑜 (domestic/import), so that each one can be written as 𝐸𝑠,𝑟,𝑡,𝑒,𝑜. First, values for 

imported and domestic energy for each energy source are totaled for each region and sector.  

As energy flows are given in tons of oil equivalent (toe), they have to be transformed into Joules 

(J), the unit used by the International System and used in preference to indicate energy intensity 

(J/$). Since the calorific value depends on the fuel considered, the transformation is carried out 

by applying energy-source dependent conversion coefficients 𝐶𝐶𝑒 as displayed in Table A1. 

 

Energy commodity conversion coefficient (MJ/toe) 

Coal  41868 

Crude oil  41868 

Natural gas  41868 

Electricity  41868 

Petroleum products  44500 

Gas products (mainly LPG)  47310 

Table A1: Conversion coefficients for different energy commodities (Lee, 2008). 

In the next step, the energy use for different energy sources is aggregated, since this 

differentiation is not relevant for our analysis. As a result, three 140 × 57 matrices (for 2011, 

2007and 2004) and one 87 × 57 matrix (2001) emerge:  
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 𝐸𝑠,𝑟,𝑡 = ∑𝑒 (∑𝑜 𝐸𝑠,𝑟,𝑡,𝑒,𝑜 ⋅ 𝐶𝐶𝑒) (11) 

 

As regions considered in GTAP versions 6 and 9 vary, it is necessary to harmonize the regional 

dimension. Regions that are available in GTAP 9 which are not separately covered in GTAP 6 are 

treated in a special way. Such regions are aggregated to the corresponding "X" ("rest of") region 

they geographically belong to, please see the corresponding GTAP manuals (Dimaranan, 2006; 

Narayanan et al., 2015). The Rest of the World (XTW) region was disregarded as it included 

different regions in the two versions. For this reason, we consider 86 regions instead of 87 that 

are available in GTAP 6 when analyzing development from 2001 to 2004.  

The data contains regional sectors that have negative value added. Using those negative values 

would lead to negative energy intensities. For computational consistency we set all entries to zero 

(in both years for a decomposition analysis) if they exhibited negative value ex ante.  

 

sector macro sector 

abbreviation name abbreviation name 

PDR  Paddy rice  GrainsCrops  Grains and Crops  

WHT  Wheat  GrainsCrops  Grains and Crops  

GRO  Cereal grains nec  GrainsCrops  Grains and Crops  

V_F  Vegetables, fruit, nuts  GrainsCrops  Grains and Crops  

OSD  Oil seeds  GrainsCrops  Grains and Crops  

C_B  Sugar cane, sugar beet  GrainsCrops  Grains and Crops  

PFB  Plant-based fibers  GrainsCrops  Grains and Crops  

OCR  Crops nec  GrainsCrops  Grains and Crops  

CTL  Bovine cattle, sheep and goats, horses  MeatLstk  Livestock and Meat Products  

OAP  Animal products nec  MeatLstk  Livestock and Meat Products  

RMK  Raw milk  MeatLstk  Livestock and Meat Products  

WOL  Wool, silk-worm cocoons  MeatLstk  Livestock and Meat Products  

FRS  Forestry  Extraction  Mining and Extraction  

FSH  Fishing  Extraction  Mining and Extraction  

COA  Coal  Extraction  Mining and Extraction  
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OIL  Oil  Extraction  Mining and Extraction  

GAS  Gas  Extraction  Mining and Extraction  

OMN  Minerals nec  Extraction  Mining and Extraction  

CMT  Bovine meat products  MeatLstk  Livestock and Meat Products  

OMT  Meat products nec  MeatLstk  Livestock and Meat Products  

VOL  Vegetable oils and fats  ProcFood  Processed Food  

MIL  Dairy products  ProcFood  Processed Food  

PCR  Processed rice  GrainsCrops  Grains and Crops  

SGR  Sugar  ProcFood  Processed Food  

OFD  Food products nec  ProcFood  Processed Food  

B_T  Beverages and tobacco products  ProcFood  Processed Food  

TEX  Textiles  TextWapp  Textile and Wearing Apparel  

WAP  Wearing apparel  TextWapp  Textile and Wearing Apparel  

LEA  Leather products  LightMnfc  Light Manufacturing  

LUM  Wood products  LightMnfc  Light Manufacturing  

PPP  Paper products, publishing  LightMnfc  Light Manufacturing  

P_C  Petroleum, coal products  HeavyMnfc  Heavy Manufacturing  

CRP  Chemical, rubber, plastic products  HeavyMnfc  Heavy Manufacturing  

NMM  Mineral products nec  HeavyMnfc  Heavy Manufacturing  

I_S  Ferrous metals  HeavyMnfc  Heavy Manufacturing  

NFM  Metals nec  HeavyMnfc  Heavy Manufacturing  

FMP  Metal products  LightMnfc  Light Manufacturing  

MVH  Motor vehicles and parts  LightMnfc  Light Manufacturing  

OTN  Transport equipment nec  LightMnfc  Light Manufacturing  

ELE  Electronic equipment  HeavyMnfc  Heavy Manufacturing  

OME  Machinery and equipment nec  HeavyMnfc  Heavy Manufacturing  

OMF  Manufactures nec  LightMnfc  Light Manufacturing  

ELY  Electricity  Util_Cons  Utilities and Construction  

GDT  Gasmanufacture, distribution  Util_Cons  Utilities and Construction  

WTR  Water  Util_Cons  Utilities and Construction  

CNS  Construction  Util_Cons   Utilities and Construction  

TRD  Trade  TransComm  Transport and Communication  

OTP  Transport nec  TransComm  Transport and Communication  

WTP  Water transport  TransComm  Transport and Communication  

ATP  Air transport  TransComm  Transport and Communication  

CMN  Communication  TransComm  Transport and Communication  

OFI  Financial services nec  OthServices  Other Services  

ISR  Insurance  OthServices  Other Services  

OBS  Business services nec  OthServices  Other Services  

ROS  Recreational and other services  OthServices  Other Services  

OSG  Public Adm., Defense, Education, Health  OthServices  Other Services  

DWE  Dwellings  OthServices  Other Services  
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Table A2: Sectors and macro sectors as from GTAP Data Base. 

 

Year 2001 2004 2007 2011 

Total 511.4 581.3 628.5 674.3 

Heavy Manufacturing 259.3 292.8 310.1 331.9 

P_C 192.5 213.4 222.8 233.4 

CRP 36.1 40.3 44.2 49.3 

I_S 11.4 14.0 16.2 19.3 

NMM 10.2 14.0 15.9 17.4 

NFM 5.1 5.4 5.7 6.2 

OME 3.0 3.6 3.8 4.5 

ELE 1.0 1.6 1.7 1.8 

Utilities and Construction  127.4 147.6 167.1 184.1 

ELY 118.6 138.1 156.2 173.0 

GDT 5.5 5.3 6.0 6.1 

CNS 1.7 2.6 3.1 2.9 

WTR 1.5 1.5 1.8 2.1 

Transport and Communication  67.9 80.5 86.4 90.2 

OTP 38.4 46.3 49.8 52.0 

ATP 13.7 15.1 15.7 15.7 

TRD 9.4 10.4 11.1 11.6 

WTP 5.5 7.8 8.7 9.7 

CMN 0.8 1.0 1.1 1.3 

Other Services 19.7 20.8 22.4 23.4 

OSG 9.2 11.5 12.3 12.9 

ROS 4.7 2.9 3.0 3.1 

OBS 4.3 5.0 5.5 5.7 

OFI 1.0 1.1 1.2 1.2 

ISR 0.4 0.3 0.4 0.4 

DWE 0.0 0.0 0.0 0.0 

Light Manufacturing 11.6 11.7 12.5 12.9 

PPP 5.2 5.4 5.6 5.2 

FMP 2.2 2.0 2.3 2.6 

MVH 1.2 1.2 1.5 1.6 

LUM 1.2 1.2 1.0 1.1 

OMF 1.0 1.1 1.2 1.4 

OTN 0.5 0.5 0.6 0.7 

LEA 0.2 0.3 0.3 0.2 

Extraction 11.5 12.7 14.2 15.5 

OIL 4.5 4.2 4.3 4.3 

GAS 2.2 2.5 2.6 2.8 

OMN 1.9 2.6 3.6 4.1 

FSH 1.2 1.0 1.0 1.1 

COA 1.2 1.9 2.2 2.6 

FRS 0.4 0.5 0.5 0.5 

Processed Food 4.6 5.4 5.5 5.9 

OFD 2.3 2.8 2.8 3.1 
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B_T 0.9 1.2 1.3 1.3 

MIL 0.5 0.8 0.8 0.9 

SGR 0.5 0.2 0.3 0.3 

VOL 0.3 0.3 0.3 0.4 

Grains and Crops 4.5 5.0 5.3 5.6 

V_F 1.4 1.6 1.7 1.7 

OCR 0.8 0.9 0.8 0.7 

WHT 0.6 0.6 0.7 0.8 

GRO 0.4 0.6 0.7 0.8 

PCR 0.3 0.1 0.2 0.2 

OSD 0.3 0.5 0.5 0.5 

PFB 0.3 0.3 0.3 0.3 

PDR 0.2 0.3 0.3 0.3 

C_B 0.1 0.1 0.1 0.2 

Textile and Wearing Apparel 2.6 2.7 2.7 2.6 

TEX 2.1 1.9 2.0 1.9 

WAP 0.5 0.8 0.8 0.6 

Livestock and Meat Products 2.5 2.1 2.2 2.3 

OAP 0.8 0.6 0.6 0.6 

RMK 0.4 0.3 0.3 0.4 

OMT 0.4 0.3 0.3 0.3 

CTL 0.4 0.4 0.3 0.4 

CMT 0.4 0.4 0.5 0.5 

WOL 0.0 0.1 0.1 0.1 

Table A3: Sectoral annual energy use in Exajoules.  

Country Region  Country Region 

China EastAsia  Austria EU_25 

Hong Kong EastAsia  Belgium EU_25 

Japan EastAsia  Cyprus EU_25 

Korea EastAsia  Czech Republic EU_25 

Mongolia EastAsia  Denmark EU_25 

Taiwan EastAsia  Estonia EU_25 

Rest of East Asia EastAsia  Finland EU_25 

Brunei Darassalam EastAsia  France EU_25 

   Germany EU_25 

   Greece EU_25 

Bahrain MENA  Hungary EU_25 

Iran Islamic Republic of MENA  Ireland EU_25 

Israel MENA  Italy EU_25 

Jordhan MENA  Latvia EU_25 

Kuwait MENA  Lithuania EU_25 

Oman MENA  Luxembourg EU_25 

Qatar MENA  Malta EU_25 

Saudi Arabia MENA  Netherlands EU_25 

Turkey MENA  Poland EU_25 
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United Arab Emirates MENA  Portugal EU_25 

Rest of Western Asia MENA  Slovakia EU_25 

Egypt MENA  Slovenia EU_25 

Morocco MENA  Spain EU_25 

Tunisia MENA  Sweden EU_25 

Rest of North Africa MENA  United Kingdom EU_25 

     
Benin SSA  Australia Oceania 

Burkina Faso SSA  New Zealand Oceania 

Cameroon SSA  Rest of Oceania Oceania 

Cote d'Ivoire SSA    
Ghana SSA  Cambodia SEAsia 

Guinea SSA  Indonesia SEAsia 

Nigeria SSA  Lao People's Democratic Republ SEAsia 

Senegal SSA  Malaysia SEAsia 

Togo SSA  Philippines SEAsia 

Rest of Western Africa SSA  Singapore SEAsia 

Central Africa SSA  Thailand SEAsia 

South Central Africa SSA  Viet Nam SEAsia 

Ethiopia SSA  Rest of Southeast Asia SEAsia 

Kenya SSA    
Madagascar SSA  Canada NAmerica 

Malawi SSA  United States of America NAmerica 

Mauritius SSA  Mexico NAmerica 

Mozambique SSA  Rest of North America NAmerica 

Rwanda SSA    
Tanzania SSA  Bangladesh SouthAsia 

Uganda SSA  India SouthAsia 

Zambia SSA  Nepal SouthAsia 

Zimbabwe SSA  Pakistan SouthAsia 

Rest of Eastern Africa SSA  Sri Lanka SouthAsia 

Botswana SSA  Rest of South Asia SouthAsia 

Namibia SSA    
South Africa SSA    
Rest of South African Customs  SSA    

     
Argentina LatinAmer  Switzerland RestofWorld 

Bolivia LatinAmer  Norway RestofWorld 

Brazil LatinAmer  Rest of EFTA RestofWorld 

Chile LatinAmer  Albania RestofWorld 

Colombia LatinAmer  Bulgaria RestofWorld 

Ecuador LatinAmer  Belarus RestofWorld 

Paraguay LatinAmer  Croatia RestofWorld 

Peru LatinAmer  Romania RestofWorld 
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Uruguay LatinAmer  Russian Federation RestofWorld 

Venezuela LatinAmer  Ukraine RestofWorld 

Rest of South America LatinAmer  Rest of Eastern Europe RestofWorld 

Costa Rica LatinAmer  Rest of Europe RestofWorld 

Guatemala LatinAmer  Kazakhstan RestofWorld 

Honduras LatinAmer  Kyrgyztan RestofWorld 

Nicaragua LatinAmer  Rest of Former Soviet Union RestofWorld 

Panama LatinAmer  Armenia RestofWorld 

El Salvador LatinAmer  Azerbaijan RestofWorld 

Rest of Central America LatinAmer  Georgia RestofWorld 

Dominican Republic LatinAmer  Rest of the World RestofWorld 

Jamaica LatinAmer    
Puerto Rico LatinAmer    
Trinidad and Tobago LatinAmer    
Caribbean LatinAmer    

     

Table A4: Overview of countries and regions used. 




