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Abstract
We study inequalities that simultaneously relate the number of lattice points, the vol-
ume and the successive minima of a convex body to one another. One main ingredient
in order to establish these relations is Blaschke’s shaking procedure, by which the
problem can be reduced from arbitrary convex bodies to anti-blocking bodies. As a
consequence of our results, we obtain an upper bound on the lattice point enumerator
in terms of the successive minima, which is equivalent to Minkowski’s upper bound
on the volume in terms of the successive minima.
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1 Introduction and results

LetKn denote the class of all compact convex sets in Rn with non-empty interior. For
K ∈ Kn with K = −K , the i th successive minimum is defined as

λi (K ) = min
{
λ > 0 : dim(λK ∩ Z

n) ≥ i
}
, (1.1)

for i = 1, . . . , n. More generally, if K is not necessarily symmetric, we define
λi (K ) = λi (cs(K )), where cs(K ) = 1

2 (K − K ). The successive minima have origi-
nally been introduced byMinkowski and he related them to the volume in the following
way:

1

n!
n∏

i=1

2

λi (K )
≤ vol(K ) ≤

n∏

i=1

2

λi (K )
. (1.2)

This classical result is known as Minkowski’s second theorem on successive minima.
For origin-symmetric K , this has been proven by Minkowski [17,Ch.2, Theorems 9.1
and 9.2]. For general K ∈ Kn , the upper bound follows directly from the inequal-
ity vol(K ) ≤ vol(cs(K )), which in turn is a special case of the Brunn-Minkowski
inequality [17,Ch.1, Theorem 1.7]. The lower bound can also be proved by an inclu-
sion argument, similar to the symmetric case: One considers the convex hull of the n
segments in K that realize the λi (K ) [20,Remark 1.1].

Many alternatives to Minkowski’s complicated original proof have been obtained.
One of the first short proofs was given by Davenport [13]. More analytic proofs were
obtained by Weyl [31] and Estermann [14]; and Bambah, Woods and Zassenhaus
provided three new proofs in [2]. A more recent example was obtained by Henk [18].

The result has been extended, for instance, to more general successive minima by
Hlawka [17,Sect. 9.5]; tomore general discrete sets, not necessarily lattices, byWoods
[32]; to intrinsic volumes by Henk [19]; or to surface area measures by Henk, Henze
and Hernández Cifre [20].

The lower and upper bound in (1.2) are attained, e.g., by simplices and cubes
respectively. Betke, Henk andWills studied the relation of the lattice point enumerator
G(K ) = |K ∩ Z

n| to the successive minima of K and obtained for K = −K that

1

n!
n∏

i=1

(
1

λi (K )
− 1

)
≤ G(K ) ≤

n∏

i=1

(
2i

λi (K )
+ 1

)
,

where for the lower bound λn(K ) ≤ 2 is needed [4,Proposition 2.1 and Corollary
2.1]. While the lower bound is best-possible, it is conjectured that the upper bound
can be strengthened as follows [4,Conjecture 2.1]:

Conjecture 1 (Betke, Henk, Wills) Let K ∈ Kn and λi = λi (K ). Then one has

G(K ) ≤
n∏

i=1

⌊ 2

λi
+ 1

⌋
,

where for a real number x ∈ R, �x� = max{z ∈ Z : z ≤ x} denotes the floor function.
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Interpolating between volume and lattice point enumerator… 719

Equalitywould be attained, e.g., for boxes of the form [−m1,m1]×· · ·×[−mn,mn],
where mi ∈ Z>0. In dimension 2 the conjecture has been confirmed by Betke, Henk
and Wills themselves [4,Theorem 2.2] and in dimension 3 it has been shown by
Malikiosis [25,Sect. 3.2]. Moreover Malikiosis also proved that [25,Theorem 3.2.1]

G(K ) ≤ 4

e

(√
3
)n−1

n∏

i=1

(
2

λi
+ 1

)
, (1.3)

where again λi = λi (K ). To this day, (1.3) is the best known upper bound for G(K )

in terms of the successive minima in general dimension.
Betke, Henk and Wills also pointed out in [4,Proposition 2.2] that any inequality

of the form

G(K ) ≤
n∏

i=1

(
2

λi
+ ci

)
, (1.4)

for some numbers ci , 1 ≤ i ≤ n, independent of K (but not necessarily of n),
would imply the upper bound in Minkowski’s second theorem (1.2). Indeed, one can
asymptotically approximate the volume of K by the lattice point enumerator with
respect to progressively finer lattices (using the properties of the Riemann integral),
to which (1.4) could then be applied, and the resulting limit is precisely Minkowski’s
bound.

In this paper, we use Minkowski’s second theorem to show (1.4) with ci = n (cf.
Corollary 1.2). In order to do so, we aim to express the deviation between G(K ) and
vol(K ) in terms of the successive minima λi (K ), i = 1, . . . , n. Our approach stems
from another conjecture by Betke, Henk and Wills that relates the volume, the lattice
point enumerator and the successive minima simultaneously.

Conjecture 2 (Betke, Henk, Wills) Let K ∈ Kn and λi = λi (K ). Then,

G(K ) ≤ vol(K )

n∏

i=1

(
1 + i λi

2

)
(1.5)

and, if λn ≤ 2
n ,

G(intK ) ≥ vol(K )

n∏

i=1

(
1 − i λi

2

)
, (1.6)

where intK denotes the interior of K . Moreover, if K = −K and λn ≤ 2, we have

G(intK ) ≥ vol(K )

n∏

i=1

(
1 − λi

2

)
. (1.7)

The bound (1.7) is stated asConjecture 2.2 in [4], where it is formulated for arbitrary
n-dimensional lattices. However, there is no loss of generality in restricting to the
integer lattice Zn . (1.5) and (1.6) have been communicated to the authors by Martin
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720 A. Freyer, E. Lucas

Henk personally. In the general case, we obtain the following weakenings of (1.5) and
(1.6):

Theorem 1.1 Let K ∈ Kn and λi = λi (K ), i ∈ [n]. Then we have

G(K ) ≤ vol(K )

n∏

i=1

(
1 + nλi

2

)
. (1.8)

Moreover, if λn ≤ 2
n , we have

G(intK ) ≥ vol(K )

n∏

i=1

(
1 − nλi

2

)
. (1.9)

From this we can deduce immediately, by applying the upper bound in (1.2) to the
volume in (1.8), the following inequality:

Corollary 1.2 Let K ∈ Kn and λi = λi (K ), i ∈ [n]. Then we have

G(K ) ≤
n∏

i=1

(
2

λi
+ n

)
.

While our bound is tight for convex bodies r K , r → ∞, it is weaker than Malikio-
sis’s bound (1.3), if, e.g., λi (K ) = 1/c for some fixed number c > 0. Then our bound
is of order nn , while the bound in (1.3) is of order

√
3
n
.

The proof of Theorem 1.1 makes use of an inequality of Davenport [12], which
states that for any convex body K ∈ Kn one has the bound

G(K ) ≤
n∑

k=1

∑

I∈([n]
k )

voln−k(K |L⊥
I ), (1.10)

where L I = span{ei : i ∈ I } and K |L⊥
I denotes the orthogonal projection of K

on L⊥
I . Schymura generalized Davenport’s inequality and obtained for an arbitrary

linearly independent set {b1, . . . , bn} ⊆ Z
n that

G(K ) ≤
n∑

k=1

∑

I∈([n]
k )

voln−k(K |L⊥
I )volk(PI ), (1.11)

where L I = span{bi : i ∈ I } and PI = ∑
i∈I [0, bi ] [22,Lemma 1.1]. We reverse

(1.11) in the following way.

Theorem 1.3 Let K ∈ Kn and let b1, . . . , bn ∈ Z
n be linearly independent. Then

vol(K ) ≤
∑

I⊆[n]
G
Zn |L⊥

I
(intK |L⊥

I ) (1.12)
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Interpolating between volume and lattice point enumerator… 721

holds, where L I = span{bi : i ∈ I } and G
Zn |L⊥

I
denotes the lattice point enumerator

with respect to the projected lattice Zn|L⊥
I . The inequality is tight.

The factor volk(PI ) in (1.11) is hidden in the correspondingly higher density of
Z
n|L⊥

I . In fact, one has det(Z
n|L⊥

I ) ≥ volk(PI )−1.
Apart from yielding discrete versions of Minkowski’s second theorem, Conjecture

2 is interesting in its own right; on the one hand, one can deduce the well-known
formula

lim
r→∞

vol(r K )

G(r K )
= 1

from it, since λi (r K ) tends to 0 as r → ∞. On the other hand, if K contains an
n-dimensional set of lattice points it follows that λi (K ) ≤ 2 holds, and, if K = −K ,
one has λi (K ) ≤ 1, 1 ≤ i ≤ n. Therefore, we retrieve the universal bounds

G(K ) ≤ (n + 1)! vol(K ),

for K with dim(K ∩ Z
n) = n, and

G(intK ) ≥ 2−n vol(K ),

for K = −K with dim(K ∩ Z
n) = n from Conjecture 2. These bounds essentially

correspond to classical results of Blichfeldt [7] and van der Corput [17,Ch.2, Theorem
7.1].

In fact, all inequalities in Conjecture 2 have equality cases that are invariant with
respect to integer scaling; (1.5) is tight, e.g., for integer multiples of the standard
simplex Tn = conv{0, e1, . . . , en}, since λi (Tn) = 2 and thus,

vol(mTn)
n∏

i=1

(
1 + iλi (mTn)

2

)
= 1

n!
n∏

i=1

(m + i),

where the right hand side is exactly the Ehrhart polynomial of Tn [3,Theorem 2.2 (a)].
In view of [3,Theorem 2.2 (b)], we have

G
(
int(mTn)

) = 1

n!
n∏

i=1

(m − i) = vol(mTn)
n∏

i=1

(
1 − iλi (mTn)

2

)

and so (1.6) is tight for integer multiples of Tn as well. As it has been mentioned
already in [4], equality cases for (1.7) are given for example by boxes parallel to the
coordinate axes with integral side lengths.

In dimension 2, we can confirm the upper bound in Conjecture 2. For the non-
symmetric lower bound we obtain an asymptotic confirmation:

Theorem 1.4 Let K ∈ K2 and λi = λi (K ). Then we have

G(K ) ≤ vol(K )

(
1 + λ1

2

)
(1 + λ2) (1.13)
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722 A. Freyer, E. Lucas

and

G(intK ) ≥ vol(K )

(
1 − λ1

2
− λ2

)
. (1.14)

In particular, for any ε > 0, if λ1 ≤ 2ε
1+ε

it follows from (1.14) that

G(intK ) ≥ vol(K )

(
1 − λ1

2

)
(1 − (1 + ε)λ2) .

Moreover, (1.7) can be confirmed for the special class of origin-symmetric lattice
polygons.

Proposition 1.5 Let P ∈ K2 be an origin-symmetric lattice polygon, i.e., we have
−P = P and P is the convex hull of finitely many integer points. Then we have

G(intP) ≥ vol(P)

(
1 − λ1

2

)(
1 − λ2

2

)
,

where λi = λi (P).

In dimension n, we also obtain the following bounds in terms of the covering radius
μ(K ) of K ∈ Kn , i.e., the smallest number μ > 0 such that μK + Z

n = R
n .

Proposition 1.6 Let K ∈ Kn and μ = μ(K ). Then we have

G(K ) ≤ vol(K )
(
1 + μ

)n
. (1.15)

If μ ≤ 1, i.e., K + Z
n = R

n, we also have

G(intK ) ≥ vol(K )
(
1 − μ

)n
. (1.16)

Both inequalities are tight.

The upper bound (1.15) has also been shown independently by Dadush in
[11,Lemma 7.4.1].

The disadvantage of (1.15) in comparison to the upper bound (1.8) is that it cannot
profit from K being large in a lattice subspace. Consider the convex body K =
[−r , r ]n−1 × [−1/2, 1/2], where r is large. Then it holds that μ(K ) = 1, so the
constant in (1.15) is 2n . But the constant in (1.8) is of order n + 1, since λi (K ) tends
to 0 for i < n as r → ∞.

On the other hand, (1.16) is actually stronger than the lower bound (1.9) in Theorem
1.1. We will use (1.16) to prove (1.9) in Sect. 4.

Applied to the special class of convex lattice tiles, i.e., convex bodies K with
K +Z

n = R
n and intK ∩ (z + intK ) = ∅, for all z ∈ Z

n \ {0}, Proposition 1.6 yields
for r ≥ 1 that

(r − 1)n ≤ G(int(r K )) ≤ G(r K ) ≤ (r + 1)n,

since vol(K ) = μ(K ) = 1 and μ(r K ) = μ(K )
r , which is sharp for K = [0, 1]n and

r ∈ Z>0.
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Interpolating between volume and lattice point enumerator… 723

The paper is organized as follows: In Sect. 2 we introduce basic terms and facts
from convex geometry and the geometry of numbers that are necessary for the proofs.
In Sect. 3 we consider the so-called anti-blocking convex bodies. These are convex
bodies K ⊆ R

n≥0 such that for every x = (x1, . . . , xn) ∈ K one has {x ′ ∈ R
n≥0 : x ′

i ≤
xi , ∀ 1 ≤ i ≤ n} ⊆ K . We will show that it is enough to prove Theorems 1.1 and
1.4 for anti-blocking bodies. Section 4 contains the proofs of Theorems 1.1 and 1.3,
as well as Proposition 1.6. In Sect. 5 we prove Theorem 1.4 and Proposition 1.5.

2 Preliminaries

For a vector u ∈ R
n \ {0} we denote by u⊥ the hyperplane orthogonal to u passing

through the origin and by |u| its Euclidean length. For two vectors u, v ∈ R
n , we

let 〈u, v〉 be the standard scalar product. For a linear subspace L ⊆ R
n and a set

A ⊆ R
n we denote by A|L the image of the orthogonal projection of A onto L .

We write {x}|L = x |L . The Minkowski sum of two non-empty sets A, B ⊆ R
n is

denoted by A + B = {a + b : a ∈ A, b ∈ B}. Also, for a number λ ∈ R, we write
λA = {λa : a ∈ A} and −A = (−1)A. The convex hull of a set A is denoted by
convA. If A = {x, y}, we write [x, y] = convA. Moreover, for n ∈ N, we write
[n] = {1, . . . , n} and ([n]

k

) = {I ⊆ [n] : |I | = k}.
The class of all n-dimensional convex bodies, i.e., compact and convex sets, is

denoted by Kn . For K ∈ Kn , we denote its support function by h(K , ·), which is
defined for x ∈ R

n as follows:

h(K , x) = max{〈x, y〉 : y ∈ K }.

If K satisfies −K = K , its gauge function | · |K is defined as

|x |K = min{r > 0 : x ∈ r K },

where x ∈ R
n . As an alternative to (1.1), one can use the gauge function of

cs(K ) to define the successive minima. Namely, one has λ1(K ) = min |z|cs(K ),
where z ranges over Z

n \ {0}, and λi (K ) = min |z|cs(K ), where z ranges over
Z
n \ span(λi−1(K )cs(K ) ∩ Z

n
)
.

A lattice � ⊆ R
n is the integral span of linearly independent vectors x1, . . . , xk ∈

R
n , i.e.,

� =
{

k∑

i=1

mi xi : m1, . . . ,mk ∈ Z

}

.

Wewill use that for any X ⊆ �, the set�|span(X)⊥ is also a lattice. For a set A ⊆ R
n

and a lattice � ⊆ R
n , we consider the lattice point enumerator G�(A) = |A ∩ �|. In

most cases, we will be concerned with � = Z
n and we write G(A) = GZn (A). We

will also need the following result which is due to van der Corput [17,Ch.2, Theorem
6.1].
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724 A. Freyer, E. Lucas

Theorem 2.1 (van der Corput) Let M ⊆ R
n be a Jordan-measurable set. Then there

exists a vector t ∈ R
n such that

vol(M) ≤ G(M + t). (2.1)

3 Anti-blocking convex bodies

A convex body K ⊆ R
n≥0 is anti-blocking if for every x = (x1, . . . , xn) ∈ K the set

{x ′ ∈ R
n≥0 : x ′

i ≤ xi , ∀i ∈ [n]} is also contained in K . Given the convexity of K , the

latter condition is equivalent to K ∩ e⊥
i = K |e⊥

i , for all i ∈ [n].
Anti-blocking bodies have been introduced in [15]. Their volumes have been exten-

sively studied in [1]. In the discrete setting, the set of lattice points K ∩Z
n inside of an

anti-blocking body K is called a compressed set. Compressed sets have been consid-
ered in [16] (in the context of sum-set estimates) and in [26] (in the context of discrete
isoperimetric inequalities).

The goal of this section is to prove the following statement:

Theorem 3.1 For any convex body K ∈ Kn, there exists an anti-blocking convex body
A ⊆ R

n≥0 such that the following holds:

(i) vol(K ) = vol(A),
(ii) G(K ) ≤ G(A),
(iii) G(intK ) ≥ G(intA) and
(iv) λi (K ) ≥ λi (A), for all i ∈ [n].
This shows that it is enough to prove (1.5) and (1.6) for the special class of anti-

blocking bodies.
An important tool for the proof of Theorem 3.1 is the Blaschke shaking of a convex

body K ∈ Kn with respect to an oriented hyperplane u⊥, u �= 0, which is defined as

shu(K ) =
⋃

x∈K |u⊥

[
x, x + fu,K (x)

|u| · u
]

,

where fu,K (x) denotes the length of the preimage of x under the orthogonal projection
K → u⊥ (cf. Fig. 1). The Blaschke shaking has been introduced in [6]. This process,
which bares resemblance to Steiner’s symmetrization, belongs to awider class of trans-
formations known as “shakings”. These processes have been explored, for instance,
to obtain discrete isoperimetric inequalities by Kleitman [24], and more recently by
Bollobás and Leader [8]. Stability results, akin to that of Gross for Steiner’s sym-
metrization, have been obtained by Biehl [5], Schöpf [28], and more recently, Campi,
Colesanti and Gronchi [9], for example. Other applications were obtained in [10, 30].

The operator shu is known to preserve convexity [9,Lemma 1.1] and we have the
following lemma:

Lemma 3.2 Let K ∈ Kn and u ∈ R
n \ {0}. For the Blaschke shaking shu(K ), the

following relations hold:
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Interpolating between volume and lattice point enumerator… 725

Fig. 1 Illustration of two consecutive Blaschke shakings. The body she2 (she1 (K )) is anti-blocking

(i) K |u⊥ ⊆ shu(K )

(ii) vol(K ) = vol(shu(K )),
(iii) |u|cs(K ) = |u|cs(shu(K )),
(iv) |x |cs(K ) ≥ ∣∣x |u⊥∣∣

cs(shu(K ))
, for all x ∈ R

n.

If u = ei , for some i ∈ [n], we also have
(v) G(K ) ≤ G(shei (K )),
(vi) G(intK ) ≥ G(int(shei (K )).

Proof (i) and (ii) follow directly from the definition of shu(K ). For (iii), if u =
(r/2)(x − y) for any x, y ∈ R

n and any r ∈ R \ {0}, projecting onto u⊥ yields
x |u⊥ = y|u⊥. If we denote �z = z + Ru for z ∈ K |u⊥, and dz = d(u⊥, �z ∩ K )

the signed Euclidean distance, then dx = dy and by definition z ∈ K if and only if
z − dzu ∈ shu(K ). Therefore, given r > 0 and considering

r · x − y

2
= r · (x − dxu) − (y − dxu)

2

we obtain that u ∈ r cs(K ) if and only if u ∈ r cs(shu(K )), i.e. iii).
For (iv) let r = |x |−1

cs(K ). Then there are a, b ∈ K such that r x = 1
2 (a − b) and

from (i) it follows that

r · x |u⊥ = 1

2

(
a|u⊥ − b|u⊥) ∈ cs

(
shu(K )

)
.

Thus
∣∣r · x |u⊥∣∣

cs(shu(K ))
≤ 1, which implies (iv) by the choice of r .
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726 A. Freyer, E. Lucas

In order to prove (v), we start with an interval I = [a, b] ⊆ R and show that the
number of lattice points in an interval of length b − a is maximized when a ∈ Z.
Otherwise, we could let δ = a − �a� and observe that

|(I − δ) ∩ Z| = �b − δ� − �a − δ� + 1 = �b − δ� − �a� + 1

≥ �b� − �a� = �b� − �a� + 1 = |I ∩ Z|

In order to obtain (v) it is then enough to note that the lattice points in K and shei (K )

are contained in intervals of the same lengths, while in shei (K ), these intervals start
at a lattice point and therefore contain at least as many lattice points as those in K (cf.
Fig. 1).

(vi) is proved with the same argument, but since the intervals involved are open,
translating them such that they start at a lattice point will potentially reduce, but never
increase, their lattice point count. ��
Proof of Theorem 3.1 Letv1, . . . , vn ∈ Z

n be linearly independent such that |vi |cs(K ) =
λi (K ). Since all the functionals involved are invariant with respect to unimodular
transformations, we may assume that the matrix [v1, . . . , vn] is an upper triangular
matrix (e.g., a Hermite-normal-form [29,Sect. 4.1]). Let K0 = K and for j ∈ [n], let
K j = she j (K j−1). We show that A := Kn is the desired body. To this end, we prove
the following statement inductively. ��
Claim 1 For j ∈ {0, . . . , n}, there exist linearly independent vectors u1, . . . , un ∈ Z

n

such that |ui |cs(K j ) ≤ λi (K ) and the matrix [u1, . . . , un] is of the form
(
Dj 0
0 Tn− j

)
,

where Dj is a j × j-diagonal matrix and Tn− j is an (n− j)× (n− j)-upper triangular
matrix.

For j = 0, Claim 1 is clearly true with ui = vi , 1 ≤ i ≤ n. So we assume that the
claim holds for some j < n.We choose u′

i = ui |e⊥
j+1, for i �= j+1, and u′

j+1 = u j+1.
In view of K j+1 = she j+1(K j ), Lemma 3.2 (iv) and our induction hypothesis, we have

∣∣u′
i

∣∣
cs(K j+1)

=
∣∣∣ui |e⊥

j+1

∣∣∣
cs(K j+1)

≤ |ui |cs(K j ) ≤ λi (K ),

for all i �= j + 1. From Lemma 3.2 (iii) it also follows that

∣∣∣u′
j+1

∣∣∣
cs(K j+1)

= ∣∣u j+1
∣∣
cs(K j )

≤ λ j+1(K ).

The matrix [u′
1, . . . , u

′
n] differs from [u1, . . . , un] only by the zeros in the ( j + 1)th

row after the diagonal entry. Therefore, the system u′
1, . . . , u

′
n ∈ Z

n is also linearly
independent and it fulfills the requirements of Claim 1 for j + 1.
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Interpolating between volume and lattice point enumerator… 727

Fig. 2 The construction for the proof of Claim 2

Hence, A = Kn satisfies λi (A) ≤ λi (K ) for all i ∈ [n]. The other requirements
(i)–(iii) on A follow from a repeated application of Lemma 3.2 (ii), (v) and (vi). It
remains to prove that A is indeed anti-blocking. To this end, we use induction again
to prove:

Claim 2 For j ∈ {0, . . . , n} and x ∈ K j , we have x |e⊥
i ∈ K j , for all 1 ≤ i ≤ j .

For j = 0, the statement is trivial. So we assume Claim 2 holds for some j ∈ [n].
Let x ∈ K j+1. By Lemma 3.2 (i) it follows that x |e⊥

j+1 ∈ K j+1. So we consider
i ∈ [ j]. Let x j+1 be the ( j + 1)th entry of x and let y ∈ K j be the lowest (with
respect to e j+1) point in the preimage of x |e⊥

j+1 under the orthogonal projection

K j → e⊥
j+1 (cf. Fig. 2). Then, [y, y + x j+1e j+1] ⊆ K j . By induction, it follows

that [y|e⊥
i , y|e⊥

i + x j+1e j+1] ⊆ K j . Since (y|e⊥
i )|e⊥

j+1 = (x |e⊥
i )|e⊥

j+1, the interval

[(x |e⊥
i )|e⊥

j+1, (x |e⊥
i )|e⊥

j+1 + x j+1e j+1] is contained in K j+1. Since (x |e⊥
i )|e⊥

j+1 +
x j+1e j+1 = x |e⊥

i , Claim 2 holds for j + 1.
For j = n, Claim 2 yields that A is anti-blocking.
The proof of Claim 2 essentially corresponds to the argument given in the proof of

Lemma 1.2 in [9].
One of the reasons why anti-blocking bodies are beneficial when dealing with

successive minima problems is that the successive minima are always realized by the
standard basis of Zn .

Lemma 3.3 Let K ∈ Kn be anti-blocking. Then the coordinates can be permuted in
such a way that |ei |cs(K ) = λi (K ) holds. In this case, one also has 2

λi (K )
ei ∈ K,

1 ≤ i ≤ n.
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728 A. Freyer, E. Lucas

Proof Let v1, . . . , vn ∈ Z
n be linearly independent with |vi |cs(K ) = λi (K ). Then there

exists a permutation σ of [n] such that the σi th entry of vi is non-zero. Otherwise the
determinant of [v1, . . . , vn] would be zero, a contradiction. For the sake of simplicity
we assume that σ is the identity. Since K is anti-blocking, the projection wi of vi on
span{ei } = ⋂

j �=i e
⊥
j is contained in K and a repeated application of Lemma 3.2 (iv)

shows that |wi |cs(K ) ≤ |vi |cs(K ) = λi (K ). By the minimality of the λi ’s and the fact
that wi ∈ span{ei } ∩ Z

n , we obtain wi = ei and |ei |cs(K ) = λi (K ).
For the second part we deduce from |ei |cs(K ) = λi (K ) that

1

λi (K )
ei = 1

2
(a − b),

for some a, b ∈ K . Since 1/λi (K ) is the maximal number r such rei ∈ cs(K ), bi
must be zero. So b is a member of e⊥

i and since K is anti-blocking we obtain

2

λi (K )
ei =

(
2

λi (K )
ei + b

) ∣∣∣span{ei } = a|span{ei } ∈ K

as desired. ��

4 n-Dimensional case

We start by proving Proposition 1.6.

Proof of Proposition 1.6 For the upper bound, it is enough to show that μK contains a
measurable set S with S + Z

n = R
n and intS ∩ (z + intS) = ∅, for all z ∈ Z

n \ {0}.
In that case, we have

G(K ) = vol((K ∩ Z
n) + S) ≤ vol(K + μK ) = (1 + μ)nvol(K ).

In order to find S, let P = [0, 1]n . There are finitely many translatesμK +xi , xi ∈ Z
n ,

1 ≤ i ≤ m, that cover P . We define inductively P1 = P ∩ (μK + x1) and

Pi =
⎛

⎝P \
⎛

⎝
⋃

j<i

Pj

⎞

⎠

⎞

⎠ ∩ (μK + xi ).

Now, let Si = Pi − xi ⊆ μK and S = ⋃m
i=1 Si . We claim that S is the desired set. To

prove this, we show that S has volume 1 and that its Zn-translates do not overlap.
Clearly the Pi ’s are interiorly disjoint, i.e., int(Pi ) ∩ int(Pj ) = ∅, and satisfy⋃m
i=1 Pi = P . The Si ’s are interiorly disjoint too; suppose there are i �= j such that

intSi intersects intS j . Then, intPi intersects intPj + xi − x j . Since the Zn translates
of P are interiorly disjoint, we must have xi = x j , a contradiction. Therefore the Si ’s
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are interiorly disjoint and it follows that

vol(S) =
m∑

i=1

vol(Si ) =
m∑

i=1

vol(Pi ) = vol(P) = 1.

Now assume that intS intersects intS+ x for some x ∈ Z
n . Then there exist i, j ∈ [m]

such that intPi − xi intersects intPj − x j + x . Again, since the Z
n-translates of P

are interiorly disjoint, as well as the Pi ’s, we must have i = j and x = 0. Hence, the
Z
n-translates of S are interiorly disjoint and so S is as desired. This finishes the proof

of the upper bound.
For the lower bound, we apply (2.1) to K ′ = (1 − μ)intK and obtain a vector

t ∈ R
n such that vol(K ′) ≤ G(K ′ + t). Since μK + Z

n = R
n , we may assume that

t ∈ μK holds. Thus, since μ ≤ 1,

vol(K )(1 − μ)n = vol(K ′) ≤ G(K ′ + t) ≤ G
(
(1 − μ)intK + μK ) = G(intK ).

In order to see that the inequality is tight, consider K = [0,m]n , where m ∈ Z>0.
For such cubes one has vol(K ) = mn , G(K ) = (m + 1)n , G(intK ) = (m − 1)n and
μ(K ) = 1/m. So equality is achieved for both of the bounds. ��

The strategy of finding an appropriate tiling used in the proof of the upper bound
above has also been applied, for instance, in the proof of Blichfeldt’s classical variant
of Theorem 2.1 [17,Ch.2, Theorem 5.2]. Moreover, in [33], the authors showed that
convex tilings in these conditions need not exist.

Next, we come to the proof of Theorem 1.1.

Proof of Theorem 1.1 In order to prove (1.8), wemay assume that K is anti-blocking by
Theorem 3.1. After renumbering the coordinates, we can also assume that |ei |cs(K ) =
λi , 1 ≤ i ≤ n holds (cf. Lemma 3.3). For a set I ⊆ [n], let L I = span{ei : i ∈ I }. An
inequality of Rogers and Shephard [27,Theorem 1] yields that

volk(K ∩ L I )voln−k(K |L⊥
I ) ≤

(
n

k

)
vol(K ), (4.1)

for any I ∈ ([n]
k

)
. By Lemma 3.3 we have 2

λi
ei ∈ K , so from (4.1), we deduce that

voln−k(K |L⊥
I ) ≤

(
n

k

)
vol(K )

volk(K ∩ L I )
≤
(
n

k

)
vol(K )

volk(conv{(2/λi )ei : i ∈ I })
= k!

(
n

k

)
vol(K )

∏

i∈I

λi

2
≤ vol(K )

∏

i∈I

nλi

2
.

Combining this with Davenport’s inequality (1.10) yields

G(K ) ≤ vol(K )
∑

I⊆[n]

∏

i∈I

nλi

2
= vol(K )

n∏

i=1

(
1 + nλi

2

)
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730 A. Freyer, E. Lucas

as desired. In order to prove (1.9), we use the lower bound (1.16) in terms of μ(K ),
as well as the relation [23,Lemma 2.4]

μ(K ) ≤
n∑

i=1

λi

2
. (4.2)

Since λn ≤ 2/n, (4.2) yields that μ(K ) ≤ 1. Thus, we may apply Proposition 1.6 and
obtain

G(intK ) ≥ vol(K )
(
1 − μ(K ))n ≥ vol(K )

(

1 −
n∑

i=1

λi

2

)n

= vol(K )

(
1

n

n∑

i=1

(
1 − nλi

2

))n

≥ vol(K )

n∏

i=1

(
1 − nλi

2

)
,

where we used the inequality of arithmetic and geometric means in the last step. ��
Since K is anti-blocking in our case, (1.10) can also be derived directly as follows:

G(K ) = vol
(
(K ∩ Z

n) + [−1, 0]n) ≤ vol(K + [−1, 0]n)

=
n∑

k=1

∑

I∈([n]
k )

voln−k(K |L⊥
I ),

where the last equation follows, since K is anti-blocking and thus, theMinkowski sum
can be decomposed into a union of disjoint prisms:

K + [−1, 0]n =
⋃

I⊆[n]

{
x ∈ R

n : x |L⊥
I ∈ K |L⊥

I and xi ∈ [−1, 0], ∀i ∈ I
}

.

Next, we come to the proof of our reverse version of Schymura’s inequality (1.11).

Proof of Theorem 1.3 For an ordered linearly independent set B = {b1, . . . , bk} and a
vector x = ∑k

i=1 αi bi ∈ span B, we write suppB(x) = {i : αi �= 0}. We will show
the following statement:

Claim 3 Let � be an n-dimensional lattice and B = {b1, . . . , bn} ⊆ � be a linearly
independent set. For any convex and bounded (but not necessarily closed) set K ⊆
span(�), and any t ∈ span(�), it holds that

G�(K + t) ≤
∑

I⊆suppB (t)

G�|L⊥
I
(K |L⊥

I ), (4.3)

where L I = span{bi : i ∈ I }.
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If t = 0 there is only one summand in (4.3) corresponding to I = ∅, and so (4.3)
reads as G�(K ) ≤ G�(K ), a tautology. Thus, from now on we assume that t �= 0.

First we note that if n = 1, then (4.3) states for non-zero t that

G�(K + t) ≤ G�(K ) + 1. (4.4)

Since any convex body K ⊆ R
1 is an interval, the statement is confirmed.

Now, for any n > 1, wewill prove (4.3) by induction on |suppB(t)|. If |suppB(t)| =
1 then t = α1b1 for some α1 �= 0, and thus

G�(K + t) =
∑

x∈K |b⊥
1 ∩�|b⊥

1

G�((K + t) ∩ (x + Rb1)).

Since the bodies on the right hand side are segments parallel to t , we can apply (4.4)
and obtain

G�(K + t) ≤
∑

x∈K |b⊥
1 ∩�|b⊥

1

(
G�(K ∩ (x + Rb1)) + 1

)

= G�(K ) + G�|b⊥
1
(K |b⊥

1 ),

(4.5)

which corresponds to (4.3) in this case.
Finally, let t = ∑n

i=1 αi bi be an arbitrary non-zero vector in span(�). Consider
any j ∈ suppB(t). We define t ′ = t − α j b j and t ′′ = t ′|b⊥

j as well as B ′ = B \ {b j }
and B ′′ = B ′|b⊥

j . Then, we observe that

suppB(t ′) = suppB′′(t ′′) = suppB(t) \ { j}.

Therefore, we obtain with L̃ I = span{bi |b⊥
j : i ∈ I } that

G�(K + t) =G�(K + t ′ + α j b j )

≤G�(K + t ′) + G�|b⊥
j
((K + t ′)|b⊥

j )

=G�(K + t ′) + G�|b⊥
j
(K |b⊥

j + t ′′)

≤
∑

I⊆suppB (t)\ j
G�|L⊥

I
(K |L⊥

I )

+
∑

I⊆suppB (t)\ j
G

(�|b⊥
j )|L̃ I

⊥((K |b⊥
j )|L̃ I

⊥
)

=
∑

I⊆supp(t)\ j

(
G�|L⊥

I
(K |L⊥

I ) + G�|L⊥
I∪ j

(K |L⊥
I∪ j )

)

=
∑

I⊆suppB (t)

G�|L⊥
I
(K |L⊥

I ).

For the first inequality we used (4.5), and for the second inequality we used the
induction hypothesis (4.3) applied to K , �, B and t ′, as well as to K |b⊥

j , �|b⊥
j , B

′′
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and t ′′. This finishes the proof of Claim 3 and so we obtain

G(intK + t) ≤
∑

I⊆[n]
G
Zn |L⊥

I
(intK |L⊥

I )

for any t ∈ R
n . Now inequality (1.12) follows from (2.1).

To see that it is tight let K = [0, ki ] × · · · × [0, kn], where ki ∈ Z>0, and bi = ei .
Then we have

vol(K ) =
n∏

i=1

ki =
n∏

i=1

(
(ki − 1) + 1

)

=
∑

I⊆[n]

∏

i∈I
(ki − 1) =

∑

I⊆[n]
G
Zn |L⊥

I
(intK |L⊥

I ).

5 Two-dimensional case

We start with the proof of Proposition 1.5. By Pick’s Theorem [3,Theorem 2.8], we
have for a lattice polygon P that

G(intP) = vol(P) − G(bdP)

2
+ 1. (5.1)

An inequality of Henk, Schürmann and Wills yields that [21,Equation 1.6]

G(bdP)

2
≤ vol(P)

(
λ1(P)

2
+ λ2(P)

2

)
(5.2)

holds, if −P = P .

Proof of Proposition 1.5 Let λi = λi (P). Combining (5.1) with (5.2) yields

G(intP) ≥ vol(P) − vol(P)

(
λ1

2
+ λ2

2

)
+ 1.

By the upper bound in (1.2), we have 1 ≥ vol(P)λ1λ2/4. Hence,

G(intP) ≥ vol(P)

(
1 − λ1

2
− λ2

2
+ λ1λ2

4

)
≥ vol(P)

(
1 − λ1

2

)(
1 − λ2

2

)
,

and the proof is finished. ��
For the proof of Theorem 1.4, we take the reduction from Sect. 3 a step further, by

shaking K in such a way that it is anti blocking and, in addition, located below the
diagonal line passing through (2/λ1)e1 and (2/λ1)e2 (cf. Fig. 3).

To this end, we consider non-orthogonal shakings as a generalization of the
Blaschke shakings in Sect. 3; For an affine line � ⊆ R

2 and a vector u ∈ R
2 \ {0}

123



Interpolating between volume and lattice point enumerator… 733

Fig. 3 Illustration of the shaking process T

which is not parallel to �, let πu,� denote the projection on � along u. For K ∈ K2, we
then define

shu,�(K ) =
⋃

x∈πu,�(K )

[
x, x + vol1 (K ∩ (x + Ru))

u

|u|
]

as the Blaschke shaking of K with respect to u and �. Note that in the setting of Sect.
3, we have shu = shu,u⊥ .

As we saw in Sect. 3, it is enough to prove Theorem 1.4 for K ∈ K2 anti-blocking.
Starting with anti-blocking body K that satisfies |ei |cs(K ) = λi (K ) (cf. Lemma 3.3),
we construct a new body A by shaking K first vertically and then horizontally from
below against a lattice diagonal D = {x ∈ R

2 : x1+x2 = m},m ∈ Z, and finally back
down on e⊥

2 . (The value m ∈ Z may be chosen arbitrarily since lattice translations do
not change the involved parameters.) Formally, we define A = T (K ), where

T = she2 ◦ sh−e1,D ◦ sh−e2,D .

We claim that A satisfies the following properties:

Lemma 5.1 Let K and A be as above. Then the following statements hold true:

(i) A is convex,
(ii) A is anti-blocking,
(iii) vol(A) = vol(K ),
(iv) G(A) ≥ G(K ),
(v) G(intA) ≤ G(intK ),
(vi) λ1(A) ≤ λ1(K ),
(vii) λ2(A) = λ2(K ) and
(viii) A ⊆ {x ∈ R

2 : x1 + x2 ≤ 2/λ1(A)}.
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734 A. Freyer, E. Lucas

We will prove Lemma 5.1 at the end of this section. For the proof of Theorem 1.4,
we also need the following estimates, which follow from elementary properties of
concave functions:

Lemma 5.2 Let f : [a, b] → R be a concave function, then we have

1

2

(
f (a) + f (b)

)
(b − a) ≤

∫ b

a
f (t) dt .

Moreover, if f ′(a) exists, we also have

∫ b

a
f (t) dt ≤ (b − a)

(
f (a) + (b − a)

1

2
f ′(a)

)
.

Proof For the upper bound, let g be the affine linear function given by g(a) = f (a)

and g(b) = f (b), i.e., g(t) = f (b)− f (a)
b−a (t − a)+ f (a). By concavity, we have f ≥ g

and therefore

∫ b

a
f (t) dt ≥

∫ b

a
g(t) dt = 1

2

(
f (a) + f (b)

)
(b − a).

For the upper bound let h be the tangent of f at a, i.e., h(t) = f ′(a)(t − a) + f (a).
Again by concavity, we have h ≥ f and, thus,

∫ b

a
f (t) dt ≤

∫ b

a
h(t) dt ≤ (b − a)

(
f (a) + (b − a)

1

2
f ′(a)

)

��

Proof of Theorem 1.4 We write λi = λi (K ), i = 1, 2. In view of Theorem 3.1 and
Lemma 5.1, we can assume that K is an anti-blocking body with |ei |cs(K ) = λi and
K ⊆ {x ∈ R

2 : x1 + x2 ≤ 2/λ1}. We let �t = {x ∈ R
2 : x2 = t} denote the horizontal

line at height t ∈ R and we consider

f :
[
0,

2

λ2

]
→ R, t �→ vol1(K ∩ �t ).

We observe that h(K , e2) = 2/λ2 holds. Since K is convex, this implies that f is
concave. Moreover, since K is anti-blocking, f is decreasing. From the inclusion
K ⊆ {x ∈ R

2 : x1 + x2 ≤ 2/λ1} it follows that

f (t) ≤ f (0) − t = 2

λ1
− t (5.3)
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holds for all t ∈ [0, 2/λ2]. Exploiting the fact that the sections K∩�t are 1-dimensional,
we obtain that

G(K ) =
�2/λ2�∑

i=0

G(K ∩ �t ) ≤
�2/λ2�∑

i=0

(
f (i) + 1

)

= 1

2
( f (0) + f (�2/λ2�) +

�2/λ2�∑

i=1

(
1

2

(
f (i − 1) + f (i)

)) + �2/λ2� + 1.

We apply (5.3) to f (�2/λ2�) and the lower bound in Lemma 5.2 to the summands
1
2

(
f (i − 1) + f (i)

)
and deduce

G(K ) ≤ 2

λ1
− 1

2
�2/λ2� +

∫ �2/λ2�

0
f (t) dt + �2/λ2� + 1

≤ vol(K ) + 2

λ1
+ 1

λ2
+ 1

≤ vol(K )

(
1 + λ2 + λ1

2
+ λ1λ2

2

)

= vol(K )

(
1 + λ1

2

) (
1 + λ2

)
,

where we used the lower bound in Minkowski’s second theorem (1.2), applied to the
summands 2/λ1, 1/λ2 and 1 each, to obtain the third line. This shows the upper bound
(1.13) of the theorem.

For the lower bound,we assume that f is differentiable. Else, wemight approximate
f with a linear splineϕ frombelow.ϕ in turn can be approximated by a smooth concave
function g from below by rounding its corners. This function satisfies g(0) = f (0),
and thus, the anti-blocking convex body

K ′ = {(x, y) ∈ R
2 : 0 ≤ y ≤ 2/λ2, 0 ≤ x ≤ g(y)} ⊆ K

is located underneath the diagonal {x ∈ R
2 : x1 + x2 = 2/λ2(K ′)} as well.

We observe that �2/λ2 − 1� is the height of the highest horizontal integer line that
intersects intK . Therefore, we can estimate the number of interior lattice points of K
as follows:

G(intK ) =
�2/λ2−1�∑

i=1

G(intK ∩ �i ) ≥
�2/λ2−1�∑

i=1

(
f (i) − 1

)

=
�2/λ2−1�∑

i=1

f (i) − �2/λ2 − 1�.
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We use the upper bound in Lemma 5.2 in order to estimate

f (i) ≥
∫ i+1

i
f (t) dt − 1

2
f ′(i),

for all 1 ≤ i < �2/λ2 − 1� and, since 2/λ2 − �2/λ2 − 1� ≤ 1,

f
(�2/λ2 − 1�) ≥

∫ 2/λ2

�2/λ2−1�
f (t) dt − (2/λ2 − �2/λ2 − 1�)1

2
f ′(�2/λ2 − 1�).

Combining this, we obtain

G(intK ) ≥
�2/λ2−1�−1∑

i=1

∫ i+1

i
f (t) dt +

∫ λ2/2

�2/λ2−1�
f (t) dt

+ 1

2

⎛

⎝
�2/λ2−1�−1∑

i=1

( − f ′(i)
) − (2/λ2 − �2/λ2 − 1�) f ′(�2/λ2 − 1�)

⎞

⎠

− �2/λ2 − 1�

= vol(K ) −
∫ 1

0
f (t) dt

+ 1

2

⎛

⎝
�2/λ2−1�−1∑

i=1

( − f ′(i)
) − (2/λ2 − �2/λ2 − 1�) f ′(�2/λ2 − 1�)

⎞

⎠

− �2/λ2 − 1�
(5.4)

Due to (5.3), we have ∫ 1

0
f (t) dt ≤ 2

λ1
− 1

2
. (5.5)

Next, we estimate the bracket term in the last but one line of (5.4). To this end, we
observe that− f ′ is increasing, since f is concave, and that− f ′ is non-negative, since
K is anti-blocking. Therefore, we obtain that

�2/λ2−1�−1∑

i=1

( − f ′(i)
) − (2/λ2 − �2/λ2 − 1�) f ′(�2/λ2 − 1�)

≥
�2/λ2−1�−1∑

i=1

∫ i

i−1
− f ′(t) dt

+ (
(2/λ2 − 1) − (�2/λ2 − 1� − 1)

)
(− f ′(2/λ2 − 1))

≥
∫ 2/λ2−1

0
− f ′(t) dt = f (0) − f (2/λ2 − 1)
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≥ 2

λ2
− 1,

where we used (5.3) in the last step. Substituting this and (5.5) into (5.4) yields

G(intK ) ≥ vol(K ) − 2

λ1
+ 1

2
+ 1

2

(
2

λ2
− 1

)
−
⌈
2

λ2
− 1

⌉

≥ vol(K ) − 2

λ1
− 1

λ2
= vol(K )

(
1 − 1

vol(K )

(
2

λ1
+ 1

λ2

))

≥ vol(K )

(
1 − λ1

2
− λ2

)
,

wherewe used vol(K ) ≥ 2
λ1λ2

in the last step. Therefore, the proof of (1.14) is finished.
��

It remains to prove Lemma 5.1. We will use that non-orthogonal Blaschke shakings
are monotonous:

Lemma 5.3 Let K , L ∈ K2 with K ⊆ L. Also, let � ⊆ R
2 be a line and u ∈ R

n \ {0}
be not parallel to �. Then we have

shu,�(K ) ⊆ shu,�(L).

This is a widely known fact in the context of classical Blaschke shakings (cf.
[9,Lemma 1.1 (iii)]).

Proof Let sh = shu,� and π = πu,�. Consider a point x ∈ sh(K ). Then we have
x ∈ π(K ) ⊆ π(L). Also, by inclusion, we have

l1 := vol1
(
K ∩ (x + Ru)

) ≤ vol1
(
L ∩ (x + Ru)

) =: l2.

Hence, since x ∈ sh(K ),

x ∈
[
π(x), π(x) + l1

u

|u|
]

⊆
[
π(x), π(x) + l2

u

|u|
]

⊆ sh(L).

��
Proof of Lemma 5.1 For (i) we show that shu,�(K ) is convex for all u, K and � as in
Lemma 5.3. To see this, we consider x, y ∈ shu,�(K ). Let x and y denote the points in
K on the lines x +Ru and y +Ru respectively that minimize 〈·, u〉. Then, the points

z̃ = z + |z − πu,�(z)| · u/|u|, z ∈ {x, y},

are contained in K . Lemma 5.3 then yields that

conv{πu,�(x), πu,�(y), x, y} = shu,�

(
conv{x, x̃, y, ỹ}) ⊆ shu,�(K ).
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Fig. 4 Behaviour of the vertical segments when passing from B to T (B)

In particular, [x, y] ⊆ shu,�(K ), which shows that shu,�(K ) is convex. Thus, A is
convex as well.

Next, we consider the box B = [0, 2/λ1(K )] × [0, 2/λ2(K )]. Clearly, we have
K ⊆ B and by Lemma 5.3 it follows that A ⊆ T (B). The vertical segments sh−e2,D

are of length 2/λ2(K ). The vertical segments in sh−e1,D(sh−e2,D(B)) are also not
longer than those in sh−e2,D(K ). Therefore, all vertical segments in T (B) (and thus
also in A) are of length at most 2/λ2(K ) (cf. Fig. 4). On the other hand, by considering
the triangle

� = conv{0, 2/λ1(K )e1, 2/λ2(K )e2} ⊆ K ,

which fulfills T (�) = � because of λ1(K ) ≤ λ2(K ), we see that the segment
over the origin in A has length precisely 2/λ2(K ). Since by construction we have
A ∩ e⊥

2 = A|e⊥
2 , we obtain from this A ∩ e⊥

1 = A|e⊥
1 as well. Therefore, A is anti-

blocking and fulfills |e2|cs(A) = λ2(K ), as well as |e1|cs(A) ≤ |e1|cs(�) = λ1. So we
obtained (ii), (vi) and (vii). ��

(iii) Follows from Fubini’s Theorem applied to span{u} and u⊥, since also for arbi-
trary non-orthogonal shakings one has that shu,�(K )|u⊥ = K |u⊥ and vol1(shu,�(K )∩
(x + Ru)) = vol1(K ∩ (x + Ru)), for any x ∈ u⊥.

(iv) and (v) are proven in the same way as Lemma 3.2 (v) and (vi), since
π−ei ,D(Z2) = Z

2 ∩ D and, thus, all the shaken lattice segments in ei -direction of
any sh−ei ,D(K ) contain a lattice point on D as an endpoint.

For (viii), let p denote the lowest point on the diagonal (with respect to e2) such
that p ∈ sh−e1,D(sh−e2,D(K )). Then we have

sh−e1,D(sh−e2,D(K )) ⊆ conv{me2, p|e⊥
1 , p},
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where m is the integer with the property that me2 ∈ D (cf. Fig. 3). Applying she2 to
both sides of the inclusion yields that

A ⊆ conv{0, 2/λ1(A)e1, 2/λ1(A)e2} ⊆ {x ∈ R
2 : x1 + x2 ≤ 2/λ1(A)}.
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