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Earliest arrival flows capture the essence of evacuation planning. Given a network with capacities and transit
times on the arcs, a subset of source nodes with supplies and a sink node, the task is to send the given supplies
from the sources to the sink “as quickly as possible”. The latter requirement is made more precise by the earliest
arrival property which requires that the total amount of flow that has arrived at the sink is maximal for all points
in time simultaneously. It is a classical result from the 1970s that, for the special case of a single source node,
earliest arrival flows do exist and can be computed by essentially applying the Successive Shortest Path Algorithm
for min-cost flow computations. While it has previously been observed that an earliest arrival flow still exists for
multiple sources, the problem of computing one efficiently has been open for many years. We present an exact
algorithm for this problem whose running time is strongly polynomial in the input plus output size of the problem.
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1. Introduction In typical evacuation situations, the most important task is to get people out of
an endangered building or area as fast as possible. Since it is usually not known how long a building can
withstand a fire before it collapses or how long a dam can resist a flood before it breaks, it is advisable to
organize an evacuation such that as much as possible is saved no matter when the inferno will actually
happen. In the more abstract setting of network flows over time, the latter requirement is captured by
so-called earliest arrival flows. Before we discuss this in more detail, we first give a short and descriptive
introduction into flows over time.

Flows Over Time. We consider a network N = (V,A) with capacities ue ≥ 0 and transit times τe ≥ 0
on the arcs e ∈ A. The capacity of an arc bounds the flow rate (i.e., flow per time) at which flow can enter
the arc. The transit time of an arc specifies the amount of time it takes for flow to travel from the tail to
the head of the arc. Moreover, there is a set of source nodes S+ ⊆ V and a set of sink nodes S− ⊆ V \S+.
Each source s ∈ S+ has a supply v(s) > 0 and each sink t ∈ S− has a demand −v(t) > 0 such that

v(S+ ∪ S−) = 0 ,

where v(S′) :=
∑
w∈S′ v(w) for S′ ⊆ S+ ∪ S−.

A flow over time1 specifies for each arc e and each point in time the flow rate at which flow enters the
arc (and leaves the arc again τe time units later). Flow conservation constraints require that at every
point in time and for every intermediate node w ∈ V \ (S+ ∪ S−) the rate of flow entering w equals the
rate of flow leaving w.

Flows over time have been introduced by Ford and Fulkerson [9] (see also [10]). Given a network with
a single source node s, a single sink node t, and a time horizon θ ≥ 0, they consider the problem of
sending as much flow as possible from s to t within time θ. They show that a maximal s-t-flow over time
can be determined by a static2 min-cost flow computation where transit times of arcs are interpreted as
cost coefficients.

Ford and Fulkerson [9] also introduce the concept of time-expanded networks that consist of one copy
of the node set of the given network for each time unit (we call such a copy a time layer). For each arc e
of the original network with transit time τe the time-expanded network contains copies connecting any
two time layers θ and θ′ with θ′ − θ = τe. For more details, we refer to [9, 7, 35]. On the positive side,

1There exist two different but closely related models for flows over time—a discrete and a continuous model. We consider

the continuous model but the presented results also hold in the discrete model. For more details on this issue we refer to [8].
2In order to distinguish them from flows over time, we refer to classical network flows also as static flows.
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Figure 1: A network with one source and two sinks with unit demands. All arcs have unit capacity and
the transit times are given in the drawing. The two flow units at the source can satisfy the demands
at the sinks by time 2: First, the flow unit for sink t2 is pumped into arc (s, a) uniformly during time
interval [0, 1); it proceeds along arc (a, t2) and arrives at t2 during time interval [1, 2). Then, the flow
for sink t1 is sent into arc (s, a) uniformly during time interval [1, 2); it proceeds along arc (a, t1) and
arrives at t1 during time interval [1, 2) as well. The described schedule is the only one that satisfies both
demands by time 2. On the other hand, if we want to maximize the amount of flow that has reached the
sinks by time 1, we have to deviate from this schedule and satisfy the demand at sink t1 first. Thus, an
earliest arrival flow does not exist.

most flow over time problems can be solved by static flow computations in time-expanded networks. On
the negative side, time-expanded networks are huge in theory and in practice. In particular, the size
of a time expanded network is linear in the given time horizon θ and therefore exponential (but still
pseudopolynomial) in the input size.

Hoppe and Tardos [17] consider the quickest transshipment problem which is defined as follows. Given
a network with several source and sink nodes with given supplies and demands, find a flow over time
with minimal time horizon θ that satisfies all supplies and demands. Hoppe and Tardos give a strongly
polynomial algorithm for this problem which employs submodular function minimization within the
parametric search framework of Megiddo [26, 27]. They present their result for the discrete time model.
Fleischer and Tardos [8] show that it also holds in the continuous time model.

Earliest Arrival Flows. Shortly after Ford and Fulkerson introduced flows over time, the more elab-
orate earliest arrival s-t-flow problem was studied by Gale [11]. Here the goal is to find a single s-t-flow
over time that simultaneously maximizes the amount of flow reaching the sink t up to any time θ ≥ 0.
A flow over time fulfilling this requirement is said to have the earliest arrival property and is called
earliest arrival s-t-flow. If we consider flows from more than one source, we omit the prefix “s-t”.
Gale [11] showed that earliest arrival s-t-flows always exist. Minieka [28] and Wilkinson [37] both gave
pseudopolynomial-time algorithms for computing earliest arrival s-t-flows based on the Successive Short-
est Path Algorithm [23, 18, 3]. Hoppe and Tardos [16] present a fully polynomial-time approximation
scheme for the earliest arrival s-t-flow problem that is based on a clever scaling trick.

In a network with several sources and sinks with given supplies and demands, flows over time having
the earliest arrival property do not necessarily exist [5]. We give a simple counterexample with one source
and two sinks in Figure 1. An open problem in this context is being discussed in the concluding section of
this paper. Note that we consider flows in networks with given supplies and demands as transshipments
in the following.

For the case of several sources with given supplies and a single sink, however, earliest arrival transship-
ments do always exist [32]. This follows, for example, from the existence of lexicographically maximal
flows in time-expanded networks; see, e.g., [28]. We refer to this problem as the earliest arrival trans-
shipment problem. Hajek and Ogier [14] give the first polynomial time algorithm for the earliest arrival
transshipment problem with zero transit times. Their algorithm uses O(|V |) maximum flow computa-
tions. Fleischer [5] describes an algorithm that solves the problem in the same asymptotic time as one
maximum flow computation by essentially reducing it to a parametric maximum flow problem that fits
into the framework provided by Gallo, Grigoriadis, and Tarjan [12]. Fleischer and Skutella [6] use con-
densed time-expanded networks to approximate the earliest arrival transshipment problem for the case
of arbitrary transit times. They give an FPTAS that approximates the time delay as follows: For every
time θ ≥ 0 the amount of flow that should have reached the sink in an earliest arrival transshipment
by time θ, reaches the sink at latest at time (1 + ε)θ. Tjandra [36] shows how to compute earliest arrival
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transshipments in networks with time dependent supplies and capacities in time polynomial in the time
horizon and the total supply at sources. The resulting running time is thus only pseudopolynomial in
the input size.

Earliest arrival flows and transshipments are motivated by applications related to evacuation. In the
context of emergency evacuation from buildings, Berlin [2] and Chalmet et al. [4] study the quickest
transshipment problem in networks with multiple sources and a single sink. Jarvis and Ratliff [22]3

show that three different objectives of this optimization problem can be achieved simultaneously: (1)
Minimizing the total time needed to send the supplies of all sources to the sink, (2) fulfilling the earliest
arrival property, and (3) minimizing the average time for all flow needed to reach the sink. Hamacher
and Tufecki [15] study an evacuation problem and propose solutions which further prevent unnecessary
movement within a building.

Our Contribution. While it has previously been observed that earliest arrival transshipments exist
in the general multiple-source single-sink setting, the problem of computing one exactly and efficiently
has been open. All previous algorithms rely on time expansion of the network into exponentially many
time layers. We solve this open problem and present a polynomial time algorithm which, in particular,
does not rely on time expansion.

Using a necessary and sufficient criterion for the feasibility of transshipment over time problems by
Klinz [24], we first recursively construct the earliest arrival pattern, that is, the piece-wise linear function
that describes the time-dependent maximum flow value obeying supplies and demands. Similar to the
algorithm of Hoppe and Tardos [17] for the quickest transshipment problem, our algorithm employs
submodular function minimization within the parametric search framework of Megiddo [26, 27]. As a
by-product, we present a new proof for the existence of earliest arrival transshipments that does not
rely on time expansion. We finally show how to turn the earliest arrival pattern into an earliest arrival
transshipment based on the quickest transshipment algorithm of Hoppe and Tardos [17].

Our algorithm can be interpreted as a non-trivial extension of Fleischer’s algorithm [5] for the special
case of zero transit times. Similar to her approach, we identify a nested sequence of source nodes S0 )
S1 ) · · · ) Sk together with corresponding time bounds θ0 < θ1 < · · · < θk such that the sources in
Si \Si+1 have run empty at time θi+1. In order to find the subsets Si and times θi for the case of general
transit times, we need to employ parametric submodular function minimization while Fleischer uses a
parametric max-flow computation. On inputs where all transit times are zero, the problems that our
algorithm solves via submodular function minimization are indeed classical minimum cut problems.

The running time of our algorithm is polynomial in the input size plus the number of breakpoints
of the earliest arrival pattern. Since the earliest arrival pattern is more or less explicitly part of the
output of the earliest arrival transshipment problem, we can say that the running time of our algorithm
is polynomially bounded in the input plus output size.

Outline. In the next section we state a necessary and sufficient criterion for the feasibility of transship-
ment over time problems and apply it to our setting. In Section 3 we give an in-depth analysis of the
structure of the earliest arrival pattern and present a recursive algorithm to compute it. How to compute
the actual earliest arrival transshipment out of the pattern is shown in Section 4. We conclude with two
open problems for future research in Section 5.

2. Preliminaries We consider a network with capacities and transit times on the arcs, source
nodes S+ and sink nodes S− with supplies and demands v : S+ ∪ S− → R. For θ ≥ 0 and S′ ⊆ S+ ∪ S−
let oθ(S′) be the maximum amount of flow that can be sent from the sources S+ ∩S′ to the sinks S− \S′
within time θ (ignoring supplies and demands).

We make use of the following result of Klinz [24]. It determines the feasibility of a given instance. We
use here the continuous version which was extended from the discrete version of Klinz by Fleischer and
Tardos [8].

3Strictly speaking, Jarvis and Ratliff [22] only consider the single-source case but their observation also applies to the

more general case with multiple sources.
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Figure 2: A simple example of a graph with two sources, unit capacities, and unit transit times where
the optimal arrival pattern of a feasible earliest arrival transshipment is piecewise linear and non-convex.

Lemma 2.1 (Klinz [24]; Fleischer and Tardos [8]) There exists a flow over time with time hori-
zon θ that satisfies all supplies and demands if and only if

oθ(S′) ≥ v(S′) for all S′ ⊆ S+ ∪ S−.

For θ ≥ 0 and S′ ⊆ S+ ∪ S−, the value oθ(S′) can be obtained by a static min-cost flow computation.
Consider the extended network N ′ defined as follows. Starting from N , introduce a super source s that
is connected to all sources S+ ∩S′ by an uncapacitated arc with transit time zero and a super sink t that
can be reached from all sinks S− \ S′ by such an arc. By construction of N ′, the value oθ(S′) is equal
to the value of a maximal s-t-flow over time in N ′ with time horizon θ. Further extend N ′ by adding an
uncapacitated dummy arc from t to s. It follows from the work of Ford and Fulkerson [9] that

oθ(S′) = −min
{

costθ(x) | x circulation in N ′
}
. (1)

Here, costθ(x) denotes the cost of circulation x where transit times on arcs are interpreted as cost
coefficients and the cost coefficient of dummy arc (t, s) is τ(t,s) := −θ. That is,

costθ(x) =
∑
e

τexe

where the sum ranges over all arcs e in the extended network N ′. As a consequence of (1), the work
of Ford and Fulkerson [9] implies that the function θ 7→ oθ(S′) is the negative of the cost function of a
parametric min-cost flow problem. As such, it is well known to be piecewise linear and convex. (This
follows, e.g., from a more general result on parametric linear optimization; see, e.g., [31, Sect. 6.5].)

Based on the work of Megiddo [25], Hoppe and Tardos [17] observe that the function oθ : S+∪S− → R
is submodular, that is,

oθ(S′) + oθ(S′′) ≥ oθ(S′ ∪ S′′) + oθ(S′ ∩ S′′)

for all S′, S′′ ⊆ S+ ∪ S−.

For the rest of the paper we restrict to networks with a single sink t. The earliest arrival pattern p :
R+ → R+ is defined by setting p(θ) to the maximal amount of flow that can be sent into the sink by
time θ without violating supplies at the sources. Using this definition, an earliest arrival transshipment is
a flow over time such that p(θ) units of flow have arrived at the sink by time θ for all θ ≥ 0 simultaneously.

For the case of a single source S+ = {s} with unbounded supply, the s-t-earliest arrival pattern
is p(θ) = oθ({s}) and thus piecewise linear and convex. For the case of several sources, the earliest arrival
pattern p is still piecewise linear (see Corollary 2.1 below) but not necessarily convex. A simple example
with two sources is given in Figure 2. Notice that in this example the rate of flow arriving at the sink
(i. e., the derivative of p) suddenly decreases since the entire supply of source s1 has arrived at node t and
this source has therefore run empty. In Section 3 we will observe this effect in a more general context.

The following lemma is essentially a reformulation of Lemma 2.1 for the setting of earliest arrival
transshipments and will later turn out to be useful. Recall that oθ(S′), S′ ⊆ S+, denotes the maximum
amount of flow that can be sent out of sources in S′ into sink t since t /∈ S′.
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v̄(t) := −q
t
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N

t′

v̄(t′) := −v(S+) + q

Figure 3: The extended network N ′ used in the proof of Lemma 2.2. We use v(t) := −q as an upper
bound on the demanded flow that can enter the sink t. The remaining flow, namely v(S+)− q flow units,
enters the additional sink t′ that is connected from all sources via uncapacitated, zero transit time arcs.

Lemma 2.2 Let θ, q ≥ 0. Then p(θ) ≥ q if and only if
oθ(S′) ≥ q − v(S+ \ S′) for all S′ ⊆ S+. (2)

Proof. Consider an extended network N ′ with an additional sink t′ that can be reached from
any source by an uncapacitated, zero transit time arc4. The demand of the new sink t′ is defined to
be v̄(t′) := q − v(S+) and the demand of the original sink t is set to v̄(t) := −q. The supplies of sources
remain unchanged, i.e., v̄(s) := v(s) for all s ∈ S+. For B ⊆ S+ ∪ {t, t′} let ōθ(B) denote the maximum
amount of flow that can be sent from the sources S+ ∩ B to the sinks {t, t′} \ B. Notice that p(θ) ≥ q
if and only if the transshipment problem in the extended network N ′ with time horizon θ and supplies
and demands v̄ is feasible; see Figure 3. By Lemma 2.1 this is the case if and only if

ōθ(B) ≥ v̄(B) for all B ⊆ S+ ∪ {t, t′}. (3)
It remains to show that (2) holds if and only if (3) holds.

(2) ⇐ (3): By definition of N ′ we get for S′ ⊆ S+

oθ(S′) = ōθ(S′ ∪ {t′})
(3)

≥ v̄(S′ ∪ {t′}) = v(S′) + q − v(S+) = q − v(S+ \ S′) .

(2) ⇒ (3): Let B ⊆ S+ ∪ {t, t′}. We distinguish several cases. If B ∩ S+ = ∅, then v̄(B) ≤ 0 ≤ ōθ(B).
We therefore assume from now on that B ∩ S+ 6= ∅. Since t′ can be reached from every source node
in S+ by an uncapacitated arc with transit time zero, we get oθ(B) =∞ > v̄(B) if t′ 6∈ B. We therefore
assume from now on that t′ ∈ B. If also t ∈ B, then v̄(B) ≤ 0 ≤ ōθ(B). It remains to consider the case
that B = S′ ∪ {t′} for some S′ ⊆ S+. In this setting we get

ōθ(B) = oθ(S′)
(2)

≥ q − v(S+ \ S′) = v(S′) + q − v(S+) = v̄(B) .

This concludes the proof. �

As a consequence of Lemma 2.2, we can show that the earliest arrival pattern is a piecewise linear
function.

Corollary 2.1 The earliest arrival pattern p is piecewise linear.

Proof. As a result of Lemma 2.2 we get
p(θ) = min{oθ(S′) + v(S+ \ S′) | S′ ⊆ S+} .

Since θ 7→ oθ(S′) is a piecewise linear (and convex) function for all S′ ⊆ S+, the result follows. �

In the next section we show how we can determine the earliest arrival pattern of the earliest arrival
transshipment problem. The earliest arrival transshipment itself can be obtained from the given earliest
arrival pattern as shown in Section 4.

3. Constructing the Earliest Arrival Pattern Throughout this section we use the following
example instance to illustrate the presented ideas and techniques.

Example. Assume we are given a network as depicted in the upper left corner of Figure 4 with unit
transit times and unit capacities. The supplies of the sources are given in the figure.

4A similar construction is described by Ford and Fulkerson [10] for the Caterer Problem.
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Figure 4: Example of a network N = (V,A), the network expanded by a supersource, and the corre-
sponding s-t-earliest arrival pattern where individual supplies are ignored.

3.1 The Structure of the Earliest Arrival Pattern We show that the earliest arrival pattern p
is composed of several s-t-earliest arrival patterns in extended networks with an additional supersource s
that is connected to certain subsets of sources in S+. We start by considering the extended network N0

that arises from connecting supersource s to all nodes in S+ by an uncapacitated, zero transit time arc.
The nodes in S+ are no longer sources but take the role of intermediate nodes in N0 and their entire
supply v(S+) is shifted to the supersource s; see Figure 4 for an example. Thus, a feasible s-t-flow over
time in the extended network N0 induces a flow over time in N where v(S+) units of flow are being sent
from the sources in S+ to sink t. Notice, however, that the induced flow over time in N might violate
individual supplies at the source nodes.

The s-t-earliest arrival pattern in N0 is the function θ 7→ oθ(S+). For every θ ≥ 0 it holds that p(θ) ≤
oθ(S+). If p(θ) = oθ(S+) for all θ ≥ 0, we are done since we know how to obtain the s-t-earliest arrival
pattern θ 7→ oθ(S+). Otherwise, let θ1 := sup{θ | p(θ) = oθ(S+)}.5 We use the following lemma to prove
that p(θ) = oθ(S+) for all 0 ≤ θ ≤ θ1.

Lemma 3.1 Let S′′ ⊆ S′ ⊆ S+ and 0 ≤ θ′ ≤ θ. Then,

oθ
′
(S′)− oθ

′
(S′′) ≤ oθ(S′)− oθ(S′′) .

Proof. Consider an extended network N ′ with an additional sink t′ that can be reached from t
through an uncapacitated arc (t, t′) with transit time θ − θ′. The underlying intuition is that all flow
arriving at t before time θ′ can be forwarded to the new sink t′ where it arrives before time θ. For S̄ ⊆
S+ ∪ {t, t′} let ōθ(S̄) denote the maximum amount of flow that can be sent from the sources in S̄ to the
sinks in (S+ ∪ {t, t′}) \ S̄ by time θ. By construction of N ′ we get for S̄ ⊆ S+ the following equalities:

ōθ(S̄) = oθ(S̄) and ōθ(S̄ ∪ {t}) = oθ
′
(S̄) . (4)

We can now prove the statement of the lemma. By (4) and submodularity of ōθ(·) we get

oθ
′
(S′)− oθ

′
(S′′) = ōθ(S′ ∪ {t})− ōθ(S′′ ∪ {t})

≤ ōθ(S′)− ōθ(S′′)
= oθ(S′)− oθ(S′′) .

This concludes the proof. �

Corollary 3.1 It holds that p(θ) = oθ(S+) for all 0 ≤ θ ≤ θ1.

5The supremum here is indeed a maximum since p(θ) and oθ(S+) are both continuous functions of θ and an upper bound

for the time horizon is easily computable.
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Proof. Assume by contradiction that p(θ) < oθ(S+) for some 0 ≤ θ < θ1. By Lemma 2.2 there
exists S′ ⊆ S+ with

oθ(S′) < oθ(S+)− v(S+ \ S′) .

It follows from Lemma 3.1 that

oθ1(S′) < oθ1(S+)− v(S+ \ S′)

which implies that p(θ1) < oθ1(S+) by Lemma 2.2. This contradicts the choice of θ1. �

Example. In order to compute the s-t-earliest arrival pattern for the network given in the left part
of Figure 4 we insert a supersource s as depicted in the upper right corner of Figure 4. Applying the
Successive Shortest Path Algorithm to this network yields, for example, the two paths P1 = (s, s1, a, t)
and P2 = (s, s3, a, b, t), both with flow rate 1. The resulting arrival pattern up to time 6 is given in the
lower part of Figure 4.

Notice that the flow arriving at sink node t after time 3 violates the supply of node s1 since more than
one unit of flow has been sent through path P1. On the other hand, it can easily be seen that we can reroute
the flow gaining a path decomposition with P ′1 = (s, s3, a, t), P ′2 = (s, s1, a, b, t), and P ′3 = (s, s2, a, b, t)
where the flow rate on path P ′1 is 1 and the flow rates on paths P ′2 and P ′3 are only 1/2. Notice that the
flow arriving over these paths at the sink does not violate supplies up to time 5 and has still the same
arrival pattern. Further, there is no other way of sending flow obeying the supplies of sources s1, s2, s3
for longer than 5 time units. After time 5 the slope of the earliest arrival pattern p decreases since no
more flow out of sources s1 and s2 can reach the sink. In particular, the value of θ1 equals 5.

In our example, any flow over time in N that sends p(θ1) units into the sink t by time θ1 must use up
the supplies of sources s1 and s2. In other words, the bounded flow values over time determined by the
supplies of these sources are the reason why p(θ) < oθ(S+) for θ > θ1. The next lemma illuminates this
effect for general instances.

Lemma 3.2 There exists a subset of sources S1 ( S+ such that

oθ1(S1) = oθ1(S+)− v(S+ \ S1) .

Before we prove the lemma, we first give an intuitive interpretation of its statement. In an earliest
arrival transshipment, p(θ1) = oθ1(S+) units of flow reach the sink by time θ1. The lemma states that
at most oθ1(S+)− v(S+ \ S1) of these units can originate from sources in S1. The remaining v(S+ \ S1)
units must originate from sources in S+ \ S1. These sources therefore run empty and cannot contribute
to flow arriving after time θ1 at the sink.

Proof. By contradiction assume that

oθ1(S′) > oθ1(S+)− v(S+ \ S′) for all S′ ( S+.

Since oθ(S′) and oθ(S+) are continuous functions of θ, there exists ε > 0 such that

oθ1+ε(S′) ≥ oθ1+ε(S+)− v(S+ \ S′)

for all S′ ⊆ S+. By Lemma 2.2 this implies

p(θ1 + ε) ≥ oθ1+ε(S+) .

This contradicts the choice of θ1. �

We consider the reduced instance of the earliest arrival transshipment problem that is obtained by
setting the supplies of all sources in S+ \S1 to zero. The earliest arrival pattern of the modified instance
with source set S1 is denoted by p′. The following theorem is the main result of this section.

Theorem 3.1 Let S1 ( S+ be chosen according to Lemma 3.2 and p′ the earliest arrival pattern of the
modified instance with source set S1. Then,

p(θ) =

{
oθ(S+) if θ < θ1,
p′(θ) + v(S+ \ S1) if θ ≥ θ1.
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Figure 5: Optimal pattern p′ for the problem with the reduced set of sources S1 = {s3} (left) and the
combined pattern p as the lower bound of the line segments (right).

Proof. It follows from Corollary 3.1 that p(θ) = oθ(S+) for θ ≤ θ1. It remains to show that

p(θ) = p′(θ) + v(S+ \ S1) for all θ ≥ θ1.

It is clear that “≤” holds since by time θ at most p′(θ) and v(S+ \ S1) units of flow can reach the sink
originating from sources in S1 and S+ \ S1, respectively.

It remains to show that “≥” holds, that is, p′(θ) + v(S+ \ S1) units of flow can be sent into the sink t
by time θ ≥ θ1 without exceeding supplies at the sources. We check the condition given in Lemma 2.2.
For S′ ⊆ S+ and θ ≥ θ1 we get:

oθ(S′) ≥ oθ(S′ ∩ S1) + oθ(S′ ∪ S1)− oθ(S1) by submodularity of oθ(·)

≥ oθ(S′ ∩ S1) + oθ1(S′ ∪ S1)− oθ1(S1) by Lemma 3.1

≥
(
p′(θ)− v(S1 \ S′)

)
+
(
oθ1(S+)− v

(
S+ \ (S′ ∪ S1)

))
by Lemma 2.2 and Lemma 3.2

−
(
oθ1(S+)− v(S+ \ S1)

)
= p′(θ)− v(S1 \ S′)− v

(
S+ \ (S′ ∪ S1)

)
+ v(S+ \ S1)

= p′(θ)− v(S+ \ S′) + v(S+ \ S1) .

The result now follows from Lemma 2.2. �

As a result of Theorem 3.1, we have reduced the problem of constructing the earliest arrival pattern p
to the problem of computing an s-t-earliest arrival pattern and computing an earliest arrival pattern for
a smaller number of sources S1.

Example. Concerning our example given in Figure 4 we have already seen that up to time θ1 = 5 flow
of value 5 including the total supply of the sources s1 and s2 can be sent into the sink. In particular, it
holds that

oθ(S′) ≥ oθ(S+)− v(S+ \ S′)

for all S′ ⊆ S+ and θ ≤ θ1. For the set S1 := {s3} ⊆ S+ and θ = θ1 this inequality is tight. The
function θ 7→ oθ(S+) is already known (see the lower part of Figure 4).

For the restricted earliest arrival transshipment problem with sources S1 = {s3}, the earliest arrival
pattern p′ is given in the left part of Figure 5. By Theorem 3.1, the resulting earliest arrival pattern p of
the original instance is the lower envelop of the two functions depicted in the right part of Figure 5.

3.2 Computing the Earliest Arrival Pattern Theorem 3.1 reduces the problem of computing
the earliest arrival pattern to an earliest arrival s-t-flow problem and an earliest arrival transshipment
problem on a reduced instance with a strictly smaller set of sources. Applying this result recursively to
the reduced instance finally yields Algorithm 1 which computes the earliest arrival pattern p.
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Algorithm 1: Computing the earliest arrival pattern.
Input: (G,S+, t)
Output: Earliest arrival pattern p.
set i := 0, Si := S+, and θi := 0;
while Si 6= ∅ do1

compute the maximal value θi+1 ≥ 0 such that2

oθi+1(S′) ≥ oθi+1(Si)− v(Si \ S′) for all S′ ⊆ Si;

compute an inclusion-wise minimal Si+1 ( Si with3

oθi+1(Si+1) = oθi+1(Si)− v(Si \ Si+1) ; (5)

compute the function θ 7→ oθ(Si) on the interval [θi, θi+1) and set4

p(θ) := oθ(Si) + v(S+ \ Si) for θ ∈ [θi, θi+1);

i := i+ 1;
set p(θ) := v(S+) for all θ ≥ θi;

For the understanding of the algorithm it is helpful to observe that θi < θi+1 for all i ≥ 0. The
statement is clear for i = 0 since the sources in S+ \ S1 have positive supply and therefore cannot run
empty at time θ0 = 0. For i ≥ 1 assume by contradiction that θi+1 ≤ θi. This yields

oθi(Si+1) ≤ oθi(Si) + oθi+1(Si+1)− oθi+1(Si) by Lemma 3.1

= oθi(Si)− v(Si \ Si+1) by (5)

= oθi(Si−1)− v(Si−1 \ Si)− v(Si \ Si+1) by (5) with i := i− 1

= oθi(Si−1)− v(Si−1 \ Si+1)

which contradicts the minimal choice of Si ) Si+1 in step 3 of the algorithm.

Theorem 3.2 Algorithm 1 computes the earliest arrival pattern and can be implemented to run in
strongly polynomial time in the input plus output size.

In order to prove this theorem, we need the following technical lemma which gives a bound on the
computational complexity of step 4.

Lemma 3.3 For 0 ≤ θi ≤ θi+1 and S′ ⊆ S+, the piecewise linear function g : [θi, θi+1)→ R with g(θ) :=
oθ(S′) can be computed in time polynomial in the input size plus the number of breakpoints.

Proof. In order to compute g(θ) = oθ(S′), we consider the extended network N ′ that is obtained
as follows. Add a supersource s that is connected to all sources in S′ by an uncapacitated arc with
transit time zero and that can be reached from t by an uncapacitated dummy arc (t, s). As already
stated in (1), g(θ) is equal to the negative of the cost of a static min-cost circulation in N ′ where the cost
coefficient of the dummy arc (t, s) is set to τ(t,s) = −θ. We denote the cost of an arbitrary circulation x
in this network by costθ(x).

We start by computing a static min-cost circulation x in N ′ for θ = θi. Let N ′x denote the residual
network of x and let θ′ be the length of a shortest s-t-path in N ′x. Since there is the uncapacitated dummy
arc (t, s) of cost −θi in N ′x, optimality of x implies θ′ ≥ θi. Moreover, for all θ ∈ [θi, θ′], the circulation x
is still a static min-cost circulation and g(θ) = −costθ(x). Since the cost of x depends linearly on θ,
the function g is thus linear on the interval [θi, θ′]. If θ′ ≥ θi+1, then we are done. Otherwise we have
discovered a breakpoint of g at θ′. Notice that x is no longer optimal for θ > θ′ since the cost can be
reduced by augmenting flow on a negative cycle formed by a shortest s-t-path of length θ′ in N ′x and the
dummy arc (t, s) of length −θ.

We obtain the next linear piece of g starting at θ′ as follows. Compute the subnetwork N ′′x of the
residual network N ′x that is formed by all arcs that lie on some shortest s-t-path. Compute a maximum
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static s-t-flow in N ′′x and turn it into a circulation y in N ′x by sending all flow from t back to s on the
dummy arc (t, s). Augmenting x according to y yields a new circulation x. The new circulation is optimal
for all θ ∈ [θ′, θ′′] where θ′′ > θ′ is the length of a shortest s-t-path in the new residual network N ′x, x
the actual circulation, and determines the next breakpoint of g.

The described process is iterated until the length of a shortest s-t-path in the residual network is
at least θi+1. Notice that the overall running time is dominated by the initial static min-cost s-t-flow
computation plus number of breakpoints many maximum static s-t-flow computations. �

Example. In our example depicted in Figure 4 we can find the function g : [θi, θi+1)→ R as described
above. For the interval [θ0, θ1) we get the networks N ′,N ′x, and N ′′x as follows. (Remark that by conven-
tion given in Algorithm 1 we always set θ0 = 0.) Network N ′ is constructed by adding a supersource s
connected to all sources by uncapacitated, zero transit time arcs and an uncapacitated arc (t, s) with transit
time τ(t,s) = 0. A static min-cost (maximum flow) circulation in this network is obviously the zero circu-
lation. The residual network N ′(1)x of N ′ thus equals the original network N ′. A shortest path in N ′(1)x

for example is the path s, s1, a, t and has length θ′(1) = 2. The network with zero flow and the shortest
path found in the residual network is depicted in Figure 6.1. Next we need to consider subnetwork N ′′(1)x

consisting of all arcs being part of some shortest s-t-path (see Figure 6.2). In this network we compute a
maximum static s-t-flow. Such a flow is given by sending one unit of flow for example over path s, s2, a, t.
Reconsidering network N ′(1)x together with a new circulation of one unit of flow along cycle s, s2, a, t, s
results in the new residual network N ′(2)x which is depicted in Figure 6.3. The actual flow x is optimal
for τ(t,s) = −2 There the shortest s-t-path, for example path s, s3, a, b, t, has length θ′(2) = 3. In the sub-
network N ′′(2)x consisting of all arcs being part of some s-t-path of length 3 we compute again a maximum
static s-t-flow. Such a path flow s, s1, a, b, t is depicted in Figure 6.4. Sending one unit of flow along
cycle s, s1, a, b, t, s in network N ′(2)x yields in network N ′(3)x which is depicted in Figure 6.5. There no
(shortest) s-t-path remains and therefore the value of θ′(3) equals infinity which is strictly greater than θ1.
Thus we have found function g on the interval [θ0, θ1) which is of the form shown in Figure 6.6.

Proof of Theorem 3.2. The correctness of the algorithm follows from Section 3.1 and in particular
from Theorem 3.1. It thus remains to prove the stated bound on the running time of Algorithm 1.

First notice that the number of iterations of the while-loop in step 1 is bounded by the number of
sources since at least one source is eliminated from Si in every iteration. Since step 4 can be done in
strongly polynomial time, it remains to show that steps 2 and 3 can also be done in strongly polynomial
time.

We start with the computation of θi+1 in step 2. For θ ≥ 0 we define the function fθ : 2Si → R by

fθ(S′) := oθ(S′)− oθ(Si) + v(Si \ S′)
for S′ ⊆ Si. Computing θi+1 thus amounts to finding the maximal value θ ≥ 0 such that

fθ(S′) ≥ 0 for all S′ ⊆ Si. (6)

Since oθ is submodular and the function

S′ 7→ v(Si \ S′)− oθ(Si)
is modular, fθ is submodular. According to equation (1), computing fθ(S′) for some S′ ⊆ Si requires
two static min-cost flow computations where the cost coefficients depend linearly on the parameter θ.
It was shown by Grötschel, Lovász, and Schrijver [13] that there is a strongly polynomial algorithm for
minimizing a submodular function. Combinatorial algorithms achieving strongly polynomial running time
are given by Iwata, Fleischer, and Fujishige [21] and by Schrijver [33]. A fully combinatorial algorithm
is given by Iwata [19]. It can therefore be tested in strongly polynomial time whether (6) is fulfilled
for a fixed value θ. Thus, the maximum value of θ fulfilling (6) can be found in (weakly) polynomial
time by embedding the submodular function minimization algorithm into a binary search framework.
We can even achieve a running time bound for step 2 that is strongly polynomial in the input size if we
replace binary search with Megiddo’s parametric search framework (see [26, 27]). More details are given
in Remark 3.1 below.

We finally discuss how to compute Si+1 in step 3 in strongly polynomial time. Notice that (5) translates
to fθi+1(Si+1) = 0, that is, Si+1 minimizes the submodular function fθi+1 . By submodularity of fθi+1 ,
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Figure 6: Networks used to compute the function g : [θ0, θ1)→ R as described in the proof of Lemma 3.3
for the network given in Figure 4.

there exists a unique inclusion-wise minimal subset Si+1 which can be obtained as follows6 (see, e.g., [34,
Chapter 45]). Initialize Si+1 := Si. For each s ∈ Si, check whether the minimum value of fθi+1 over
all subsets of Si+1 \ {s} is zero. If so, reset Si+1 := Si+1 \ {s}. Doing this for all elements of Si finally
yields the unique inclusion-wise minimal subset Si+1 with fθi+1(Si+1) = 0. Nagano [29] even presents an
efficient algorithm for submodular function minimization which provides a compact representation of all
the minimizers. We can thus compute the desired subset Si+1 more efficiently with only one call to this
algorithm. �

In the following remark we shortly discuss the parametric search framework referred to in the proof
above. In a second remark we point out that the running time of our algorithm can be further improved
by employing a more specialized algorithm for parametric submodular function minimization.

Remark 3.1 We give a rough outline of Megiddo’s parametric search framework: Consider a fully com-
binatorial algorithm A for the non-parametric problem, that is, for standard submodular function mini-
mization. A fully combinatorial algorithm uses only additions, subtractions, comparisons, and oracle calls
for function values. For submodular function minimization, such an algorithm A is given by Iwata [19].
Algorithm A is now modified in order to solve the parametric problem. For this, the modified algorithm
has to work with linear functions of the parameter θ instead of just constant numbers. Notice that adding
or subtracting two linear functions yields a linear function again. Comparing two linear functions, how-
ever, imposes a problem. Whenever algorithm A compares two numbers, the modified version first has
to determine whether the desired value θi+1 is smaller or larger than the unique point θ at which the two
linear functions cross (if at all). This can be decided by calling any algorithm B for submodular function
minimization as a subroutine for the fixed parameter value θ.7 The number of calls of B is bounded by
the number of comparisons performed by A which is strongly polynomial in the input size. In this way,

6For the purpose of our algorithm it is, of course, advantageous to choose the minimal subset Si+1 in order to reduce

the number of sources as far as possible.
7For a more detailed but still intuitive description of Megiddo’s parametric search in the context of flows over time we

refer to [17, Sect. 5].
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Figure 7: On the left hand side, we draw the earliest arrival pattern p with breakpoints (xi, fi), i =
1, 2, . . . , k = 6. On the right hand side, the modified network is depicted. The capacity of arc ei = (t, ti)
is set to (fi − fi−1)/(xi − xi−1).

finding the desired value θi+1 is reduced to a series of submodular function minimizations that decide (6)
for fixed values of θ.

Remark 3.2 As explained in Remark 3.1, the problem of computing θi+1 boils down to a sequence of
submodular function minimizations for certain values θ1, θ2, . . . , θk of the parameter θ. Instead of calling
submodular function minimization algorithm B with input fθ

i

and thus computing the minimum of fθ
i

from scratch, for i = 1, . . . , k, one can get an improved running time as follows. It is not difficult to
observe that our parametric submodular functions fθ(·) fulfill the increasing difference condition8, that
is,

fθ(S′)− fθ(S′′) ≤ fθ
′
(S′)− fθ

′
(S′′) for all S′ ⊇ S′′ and θ ≤ θ′.

Fleischer and Iwata [20] present an algorithm that minimizes a sequence of submodular functions fulfilling
this condition within the same asymptotic running time as a single execution of their submodular function
minimization algorithm. Nagano [29] applies the same idea to a faster algorithm for submodular function
minimization presented by Orlin [30]. We omit any further details that are beyond the scope of this
paper.

4. Turning the Earliest Arrival Pattern into an Earliest Arrival Transshipment In this
section we assume that we are given the piecewise linear earliest arrival pattern p of the earliest arrival
transshipment problem by its breakpoints (x0, f0), (x1, f1), . . . , (xk, fk), that is,

p(θ) =


0 if θ ≤ x0,
fi + fi+1−fi

xi+1−xi
(θ − xi) if xi ≤ θ ≤ xi+1,0 ≤ i < k,

fk if θ ≥ xk.

An illustration is given in Figure 7. Notice that the values xi determine points in time and the values fi
determine an amount of flow for all i.

Further notice that
x0 < x1 < · · · < xk

and x0 is the first point in time when flow can reach the sink (i. e., x0 is the transit time of a shortest
path leading from any source to the sink). Moreover,

0 = f0 ≤ f1 ≤ · · · ≤ fk = v(S+) .

We show that the problem of finding an earliest arrival transshipment can be reduced to finding a
transshipment over time in a slightly modified network N ′ with k additional arcs leading from t to k new
sink nodes t1, . . . , tk. An illustration of the modification is given in Figure 7.

8In the literature, a sequence of submodular functions fulfilling this condition is also referred to as a strong map sequence.
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Node t is no longer a sink but just an intermediate node of the modified network N ′. For i = 1, . . . , k,
the demand of sink ti is set to −(fi − fi−1) such that the total demand −fk of the sinks and the total
supply v(S+) at the sources cancel out each other. The arc leading from t to sink ti is called ei. The
transit time of arc ei is defined to be τei

:= xk − xi, its capacity is (fi− fi−1)/(xi− xi−1) and thus equal
to the derivative of p within the interval [xi−1, xi]. Notice that the capacity of ei is chosen such that the
demand of sink ti is fulfilled if flow is being sent at maximal rate into arc ei within time interval [xi−1, xi).
As a consequence of this observation, we can state the following lemma.

Lemma 4.1 An earliest arrival transshipment in N with earliest arrival pattern p naturally induces a
feasible transshipment over time with time horizon xk satisfying all supplies and demands in N ′

Proof. Take an earliest arrival transshipment in N and turn it into a transshipment over time in N ′
by sending all flow arriving at t in time interval [xi−1, xi) to ti along arc ei. �

The reverse direction of Lemma 4.1 also holds.

Lemma 4.2 A transshipment over time with time horizon xk that satisfies all supplies and demands in
the modified network N ′ naturally induces an earliest arrival transshipment in N .

Proof. We must prove that the flow passing through node t in an arbitrary feasible transshipment
over time in N ′ with time horizon xk meets the earliest arrival pattern p. Since, for i = 1, . . . , k, the
capacity of arc ei equals the derivative of the earliest arrival pattern p in the time interval [xi−1, xi] and
since the negative of the demand of sink ti is equal to this capacity times xi − xi−1, it suffices to prove
the following claim:

Claim 1 For each i = 1, . . . , k the following holds: In a feasible transshipment over time the demand of
sink ti is satisfied by flow being sent into arc ei within time interval [xi−1, xi].

We prove this claim by induction on i. The case i = 1 is clear since no flow can arrive at node t before
time x0 and, due to the transit time xk − x1 of arc e1, flow being sent into arc e1 after time x1 arrives
at t1 after time xk. In order to prove the claim for i > 1 notice that the total amount of flow passing
through node t before time xi−1 is bounded from above by p(xi−1) = fi−1. Since this amount is equal
to the negative of the total demand of sinks t1, . . . , ti−1, it follows by induction that all flow passing
through t before time xi−1 must be used to satisfy the demands of t1, . . . , ti−1. Thus, no flow is sent into
arc ei before time xi−1. On the other hand, since the transit time of arc ei is xk −xi, no flow is sent into
this arc after time xi. This concludes the proof. �

We finally prove that a transshipment over time with time horizon xk that satisfies all supplies and
demands in the modified network N ′ actually exists. As a consequence of Lemma 4.2, this yields a new
proof for the existence of an earliest arrival transshipment in N .

Lemma 4.3 There exists a transshipment over time with time horizon xk satisfying all supplies and
demands in N ′.

Proof. We denote the set of sources in N ′ by S+ and the set of sinks by S− = {t1, . . . , tk}. For an
arbitrary S′ ⊆ S+ ∪ S− let ōθ(S′) denote the maximum amount of flow that can be sent within time θ
from sources S+ ∩ S′ to sinks S− \ S′. By Lemma 2.1 we have to show that ōθ(S′) ≥ v(S′) for θ = xk.

Let oθ(S+∩S′) denote the maximum amount of flow that can be sent within time θ from sources S+∩S′
to t. By Lemma 3.1 we get

oθ(S+ ∩ S′) + v(S+ \ S′) ≥ p(θ) for all θ ≥ 0.

This inequality can be interpreted as follows: If we assume that the total supply v(S+ \ S′) of the
sources S+ \ S′ is already in t by time zero, then we can send v(S+ ∩ S′) additional flow units from
the sources in S+ ∩ S′ (ignoring their individual supplies) into t such that the amount of flow at t is
at least p(θ) at any time θ ≥ 0. By forwarding flow from t to the sinks in S− (similar to the proof of
Lemma 4.1), we get a flow over time with time horizon xk that satisfies the demands of all sinks in S−.
From this flow over time we now remove the v(S+ \ S′) flow units that we assumed to be in t at time
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zero. This yields a flow over time with time horizon xk from the sources in S+ ∩ S′ to the sinks S− such
that the total amount of flow sent is v(S+ ∩S′) and no sink in S− gets more than its demand. Therefore
the flow arriving at sinks in S− \ S′ is at least v(S+ ∩ S′) + v(S− ∩ S′) = v(S′). We have thus shown
that ōθ(S′) ≥ v(S′) for θ = xk. This concludes the proof. �

As a consequence we can state the following theorem.

Theorem 4.1 Given the earliest arrival pattern p with k breakpoints for network N , an earliest arrival
transshipment in N can be obtained by computing a transshipment over time in a modified network N ′
with k additional nodes and arcs.

In order to compute a transshipment over time in the modified network N ′ we can use the algorithm
of Hoppe and Tardos [17]. Since the running time of this algorithm is bounded by a polynomial in the
encoding size of the input N ′ and since the encoding size of N ′ is of the same order as the encoding size
of N plus the encoding size of p, the required running time is polynomial in the input plus output size
of the earliest arrival flow problem on N .

5. Conclusions We conclude with two interesting open problems for future research. The second
one was pointed out by one of the referees.

(i) The algorithm for computing the earliest arrival pattern described in Section 3 only works on the
network given as an input. In particular, it does not employ any form of time-expansion. Strictly
speaking, this property does unfortunately not hold for the algorithm presented in Section 4.
In order to turn the earliest arrival pattern into an earliest arrival transshipment, we use an
extended network with additional sink nodes. In the worst case, the number of these sinks is
exponential in the input size (but polynomial in the output size). It is an open problem to come
up with an algorithm that only works on the given network and small (polynomial) extensions
of it.

(ii) As mentioned in the introduction, earliest arrival flows do in general not exist in networks with
more than one sink. It is an open problem to classify multi-sink networks where earliest arrival
flows do exist and provide efficient algorithms for computing them.
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