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Summary

This thesis is concerned with two models from equilibrium statistical mechanics of disordered

systems. Both of them are variants of the Hop�eld model, and belong to the class of mean-�eld

models.

In the �rst part, we treat the case of p-spin interactions (p � 4 and even) and super-extensively

many patterns (their numberM scaling as �Np�1). We consider two choices of the Hamiltonians.

We �nd that there exists a critical temperature, at which the replica overlap changes from 0 to

a strictly positive value. We give upper and lower bounds for its value, and show that for one

choice of the Hamiltonian, both of them converge as p ! 1 to the critical temperature (up to

a constant factor) of the random energy model. This critical temperature coincides with the

minimum temperature for which annealed free energy and mean of the quenched free energy are

equal. The relation between the two results is furnished by an integration by parts formula that

is proved by perturbative expansion of the Boltzmann factors. We also calculate the uctuations

of the free energy which are shown to be of the order of N�1=2. Furthermore, we �nd that there

exists a critical � above which with large probability the minimum of the Hamiltonian is not

realized in the vicinity of any of the patterns. This means that while there is a condensation for

low temperatures, the Gibbs measure does not concentrate around the patterns.

In a second part of the thesis, we prove upper bounds on the norm of certain random matrices

with dependent entries. These estimates are used in Part I to prove the uctuations of the free

energy. They are proved by the Chebyshev-Markov inequality, applied to the trace of large powers

of the matrices. The key ingredient is a representation of the trace of these large powers in terms

of walks on an appropriate bipartite graph. This reduces the calculation of the expectation of the

trace to the combinatorial problem of counting the maximum number of sub-circuits of a given

circuit. The results show that the dependence between the entries cannot be neglected.

Finally, in the last part, we consider a two pattern Hop�eld model with Gaussian patterns.

We show that there are uncountably many pure states indexed by the circle S1. This symmetry

is randomly broken in the sense that the metastate is supported on a continuum of pairs of pure

states that are related by a global (spin-ip) symmetry. We prove these results by studying

the random rate function of the induced measure on the overlap parameters. In particular, the

breaking of the symmetry is shown to be due to the uctuations of this rate function at the

(degenerate) minima of its expectation. These uctuations are described by a random process on

S1 whose global minima determine the chosen set (eventually a pair) of states.
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Zusammenfassung

Diese Dissertation behandelt zwei Modelle aus der statistischen Mechanik ungeordneter Sys-

teme. Beide sind Varianten des Hop�eld-Modells und geh�oren zur Klasse der Molekularfeldmod-

elle.

Im ersten Teil behandeln wir den Fall mit p-Spin-Wechselwirkungen (p � 4 und gerade) und su-

perextensiv vielen Mustern (deren AnzahlM wie �Np�1 w�achst), wobei wir zwei verschiedene En-

ergiefunktionen betrachten. Wir beweisen die Existenz einer kritischen Temperatur, bei welcher

der sogenannte Replika�uberlapp von Null auf einen strikt positiven Wert springt. Wir geben obere

und untere Schranken f�ur ihren Wert an und zeigen, da� f�ur die eine Wahl der Hamiltonfunktion

beide mit p ! 1 gegen die kritische Temperatur (bis auf einen konstanten Faktor) des Ran-

dom Energy Model konvergieren. Diese kritische Temperatur f�allt mit der kleinsten Temperatur

zusammen, f�ur welche die ausgegl�uhte freie Energie und der Erwartungswert der abgeschreck-

ten freien Energie identisch sind. Der Zusammenhang zwischen diesen beiden Resultaten wird

durch eine partielle Integrationsformel geliefert, welche mit Hilfe einer St�orungsentwicklung der

Boltzmannfaktoren bewiesen wird. Au�erdem berechnen wir die Fluktuationen der freien Energie

und erhalten, da� sie von der Ordnung N�1=2 sind. Weiterhin beweisen wir die Existenz eines

kritischen �, oberhalb dessen das Minimum der Hamiltonfunktion mit gro�er Wahrscheinlichkeit

nicht in der N�ahe eines der Muster angenommen wird. Dies bedeutet, da�, obwohl sich das Gibb-

sma� bei kleinen Temperaturen auf einer kleinen Teilmenge des Zustandsraumes konzentriert,

dies nicht in der N�ahe der Muster geschieht.

In einem zweiten Teil beweisen wir obere Schranken f�ur die Norm von gewissen zuf�alligen Ma-

trizen mit abh�angigen Eintr�agen. Diese Absch�atzungen werden im ersten Teil zur Berechnung der

Fluktuationen der freien Energie benutzt. Sie werden mit der Chebyshev-Markov-Ungleichung,

angewandt auf die Spur von hohen Potenzen der Matrizen, bewiesen. Das zentrale Resultat

dazu ist eine Darstellung der Spur von diesen hohen Potenzen als Wege auf gewissen bipartiten

Graphen. Dies transformiert das Berechnen des Erwartungswertes der Spur auf das kombina-

torische Problem, die maximale Anzahl kreisf�ormiger Teilgraphen eines gegebenen Eulergraphen

zu bestimmen. Die Resultate zeigen, dass die Abh�angigkeit zwischen den Eintr�agen eine wichtige

Rolle spielt und nicht vernachl�assigt werden kann.

Im letzten Teil schlie�lich betrachten wir ein Hop�eld-Modell mit zwei Gau�'schen Mustern.

Wir zeigen, da� �uberabz�ahlbar viele extremale Gibbszust�ande existieren, welche durch den Ein-

heitskreis S1 indiziert werden. Diese Symmetrie wird zuf�allig gebrochen im Sinne, da� der

Metazustand von einem Kontinuum von Paaren von extremalen Gibbsma�en getragen wird,

welche durch eine globale Spinsymmetrie verkn�upft sind. Wir beweisen diese Resultate mit Hilfe

der zuf�alligen Ratenfunktion des induzierten Ma�es auf den �Uberlapparametern. Insbesondere

zeigen wir, da� die Symmetriebrechung durch die Fluktuationen der Ratenfunktion auf den (en-

tarteten) Minima ihrer Erwartung erzwungen wird. Diese Fluktuationen werden durch einen

zuf�alligen Proze� auf S1 beschrieben, dessen globale Minima die Menge (schlussendlich ein Paar)

der extremalen Zust�ande ausw�ahlen.

iii



To Antoinette, Erik, and Simon



CONTENTS

1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1

1.1 Disordered Systems: Spin Glasses, Biopolymers and Memory : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 The p-Spin Hop�eld Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.3 Norms of Random Matrices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :11

1.4 Thermodynamic Limit: Metastates and Chaotic Size Dependence : : : : : : : : : : : : : : : : : : : : 14

1.5 Gaussian Hop�eld Model: Random Symmetry Breaking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

1.6 Acknowledgments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

Part i: The Multi-Spin Interaction Model

2 Results and Relation to the REM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.1 De�nition and Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.2 Second Moment Method: the REM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3 Annealed Free Energy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :37

4 Critical � and Convergence to the REM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

4.1 Estimates on the Truncated Partition Function : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

4.2 Proof of the Lower Bound : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

4.3 Upper Bound on the Critical � : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

4.4 Convergence to the REM: Proof of Theorem 2.3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

5 Fluctuations of the Free Energy: Proof of Theorem 2.4 : : : : : : : : : : : : : : : : : : : : : : : : : 57

6 Condensation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

6.1 Integration by Parts Formula: Proof of Theorem 2.5 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

6.2 Condensation: Proof of Theorem 2.6 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :73

6.3 Spin Glass Phase: Proof of Theorem 2.7 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

7 Proofs of the Results for the Second Interaction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

7.1 Annealed Free Energy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

7.2 Critical Temperature : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

7.3 Fluctuations of the Free Energy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

7.4 Replica Overlap: Proof of Theorem 2.6' : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :95

Part ii: Random Matrices

8 Bounds on the Norm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :101

9 Proof of the Estimates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :103

9.1 Graph Representation of the Trace : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

9.2 Proof of Theorem 8.1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :105

9.3 Proofs of Theorem 8.2 and Theorem 8.3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112



vi

Part iii: Gaussian Hopfield Model

10 Main Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

11 Concentration of the Induced Measures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122

12 Uniqueness of Extrema of Certain Gaussian Processes : : : : : : : : : : : : : : : : : : : : : : : : :136

13 Volume Dependence, Empirical Metastates, Superstates : : : : : : : : : : : : : : : : : : : : : : 143

Appendix: A Deviation Inequality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :145

References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149



1 Introduction

1.1 Disordered Systems: Spin Glasses, Biopolymers, and Memory

Disordered systems are modeled in statistical physics by random interactions. The underlying

assumption is that the disorder comes about by a process (preparation) one cannot precisely

control, but that its e�ect is such that a typical system (in the frequentist sense of \most of

the realizations") behaves as if it were sampled from an appropriate probability distribution.

The precise distribution chosen should reect the knowledge about this process that realizes the

disorder. Most often one makes the quite general (`universality') assumption that the results

depend only on a few parameters (such as mean and variance), and not on the �ner properties of

this process. One then argues that any distribution having the appropriate values will give the

correct answers.

There are two qualitatively di�erent classes of disordered systems, whose distinction is not

sharp, though. The �rst one could be characterized vaguely by saying that its elements are in

some way small perturbations of a standard, non-disordered model. For example, in a model for

ferromagnetism on a lattice (Ising, for example), impurities, dislocations, insertions, and other

lattice defects may be viewed as small perturbations (provided their density is not too high).

Since their precise positions are unknown, one models them in the above spirit by some sort of

random variables. In fact, if the results of the standard models are to be taken seriously, they

should show some robustness against such small changes, since it is clear that no macroscopic

lattice is completely perfect.

On the other hand, there are physical systems that show features that cannot be considered

as small perturbations of homogeneous systems. Before providing a motivation for the Hop�eld

model that will be studied in this thesis, we would like to present some of these realistic examples

from physics and biology, where a truly random interaction is the appropriate way to model

natural phenomena.

Among the most prominent examples are the so called spin glasses. Typically, these are

substitutional alloys of two or more metals. Examples are binary alloys of the type noble metal

{ transition metal such as AuFe, CuMn, and alloys of two transition metals such as FeNi (for

more examples see [Cho], Appendix A). Experiments revealed that at low temperatures, the spins

are frozen in a seemingly random way.1 The existence of a phase transition is indicated by the

behavior of the susceptibility as a function of temperature. Moreover, their dynamics show very

peculiar features. In fact, spin glasses show the phenomenon of aging, which means that the

dynamical properties depend strongly on the time elapsed since preparation.2 Recent reviews of

theoretical results can be found in [S] (equilibrium thermodynamics), and [BCKM] (dynamical

aspects). For a broader exposition, as well as experimental results and techniques, see [Cho].

In this case, the preparation process distributes the moment carrying atoms as substitutions

on the lattice. Believing that the above assumption is veri�ed, one replaces this deterministic

process by a stochastic one. This process, indexed by the sites of the lattice, indicates for each

1More precisely, one observes a local magnetic �eld characteristic of frozen spins, and an absence of correspond-

ing Bragg peaks in neutron di�raction experiments, ruling out a periodic pattern.
2This is a consequence of the fact that the system does not truly attain an equilibrium state even on macroscopic

time scales.
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position the presence or absence of an atom of the particular element. One then introduces a

deterministic Hamiltonian, which is supposed to model the interaction between the spins in a

more or less realistic way. The disorder enters thus through site variables, and the corresponding

model is said to have site disorder.

Conversely, one can consider the spin variables to be the same at all sites, and introduce the

disorder through a random interaction between pairs of spins. The models are then said to have

bond disorder.

A sequence of models of decreasing complexity has been introduced over the years, simplifying

to the extreme the interactions, but still showing very peculiar features unknown in more classical

models, and supposed to grasp some of the aspects of real spin glasses.

On one end of this sequence is the so called RKKY-model (after Rudermann-Kittel-Kasuya-

Yoshida, see [Cho]). In this site-disorder model, the system is described by variables �i (taking

value in some compact space) for each site i of the lattice, which interact pairwise via the coupling

Ji;j = Gi;jninj , where ni are the i.i.d. occupation number random variables (describing absences

or presence of magnetic atoms), and Gi;j describes the e�ective coupling between spins by (� and

qF are two positive parameters)

Gi;j =
1

�+ ji� jj

��qF ji� jj cos(qF ji� jj) + sin(qF ji� jj)
qF ji� jj3

�
:

This model is extremely diÆcult to analyze and essentially nothing is known on a rigorous math-

ematical level (see however [Z]).

On the other end, one considers the Sherrington-Kirkpatrick (SK) model [SK], which is of the

mean-�eld type,3 and has bond-disorder. In this model, the system is described by variables

�i taking values �1 at each site i 2 f1; : : : ; Ng. Their interaction is given by the couplings

N
�1=2

Ji;j, where the Ji;j are i.i.d. standard normal random variables (that is, each pair of spins

interacts at the same scale, irrespective of their positions). Physicists predict by non-rigorous

methods that this model shows a very peculiar behavior at low temperatures. However, not

only the methods, but even the results are diÆcult to cast into a mathematical form. A nice

presentation from a rigorous viewpoint can be found in [NS2].

Let us now turn to an example from biochemistry which touches upon one of the most promi-

nent unsolved problems in this �eld, namely the folding of biopolymers such as RNA and proteins.

These biopolymers can be thought of as a strand of basic monomers4 whose interactions give the

whole polymer its bioactive three dimensional shape (see the relevant chapters of [Sty] for thor-

ough explanations). While it is hopeless to determine analytically the exact structure from the

sequence, it is nevertheless interesting to analyze the general aspects of this folding mechanism.

In particular, one tries to model the fact that for real biopolymers, there is a critical temperature,

above which the polymer denaturizes, that is, it unfolds into a random coil. At low temperatures,

it assumes its functional form.

3Here mean-�eld means that there is no notion of distance between sites. Models of this form are also called

neighbor models. There exists also a more precise de�nition of the term mean-�eld in the setting of disordered

systems [BG1], which however does not include the SK-model.
4
Amino acids in the case of proteins, respectively nucleotides, each consisting of a base, a sugar, and a phosphate

group, in the case of RNA. There are also proteins that consist of several polymers.
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If we assume that the polymer building process is not biased towards certain arrangements,

then one would sensibly model it by an i.i.d. sequence of letters from a �nite alphabet. Obviously,

this is an unrealistic assumption of the situation in nature since such a bias is present (this is

the whole point of evolution). However, it can be thought of as the state in which nature was in

a prebiotic age, that is, before evolution set in. One can then ask whether the above mentioned

phase transition occurs also in sequences that did not undergo evolutionary selection (see for

example [PPRT]).

Other aspects involve the role of evolution more explicitly. For instance, it is very interesting

to note that protein folding takes places on a time scale of milliseconds, which is far less than

physicists predict for a stochastic dynamics. This means in fact that the proteins that appear in

nature are not only optimized for functionality, but also for folding in that they (almost) never get

stuck in a local minimum which does not correspond to the functional shape. Stated di�erently,

the bioactive form is a minima with an extremely large domain of attraction. Certainly, this has

to be an e�ect of evolution (see e.g. [GG] and references therein). Of course, this is just a narrow

aspect of protein evolution, since they also have to be optimized for other criteria (functionality,

stability in the presence of other bioactive substances).

We now turn to the model which will occupy us for the rest of this work, the Hop�eld model.

It was introduced by Figotin and Pastur [FP1, FP2] as a model for a spin glass. However, it was

also introduced independently by Hop�eld [Ho] in the context of neural networks, and it is in this

spirit that we would like to present it.

This model is not derived directly from a physical or biological system. Rather, it was in-

troduced as simple model for a content-addressable (also termed auto-associative) memory. This

means the following: one wants to store a certain amount of information, and retrieve and/or

recognize it on the basis of partial or corrupted data. This is an extremely diÆcult task for a

usual search algorithm. However, it is a task that even very simple living beings like insects are

capable of. Hop�eld introduced a model based on earlier work by McCullough and Pitts [MCP],

and Hebb [H], who respectively proposed a model for the transmission of information by neurons

through their synapses, and a rule on how these connections should be altered during the learning

process. In the following, we will assume that the system has already learned the information,

and we will concentrate on the retrieval mechanism.

To be precise, suppose that �i 2 f�1;+1g = � describes the state of neuron i: �ring, or not

�ring.5 Suppose furthermore that the system has learned M di�erent binary patterns of size N ,

each of them described by a sequence (�
�

i
)i=1;::: ;N , where �

�

i
2 f�1;+1g.

Based on Hebb's rule, he proposed to associate to the possible states (�i)i=1;::: ;N 2 �N of the

system an energy functional H, given by

H(�) = � 1

N

X
i;j

�i�j

MX
�=1

�
�

i
�
�

j
: (1:1)

Suppose now that the system is fed a corrupted sequence (�0
i
)i=1;::: ;N , which does not di�er too

5These terms refer to whether an electric potential is transmitted across the synaptic interface to the connected

neurons. Obviously, a two element state space is a drastic simpli�cation of the biological reality, and is due to

[MCP].
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much from one of the memorized patterns (��
i
)i=1;::: ;N . The system should then evolve in such a

way as to end up (ideally) in the non-corrupted state (��
i
)i=1;::: ;N .

Obviously, a gradient dynamics derived from H will typically fail to reach the desired state,

since the system gets trapped in any local minima that it encounters. To escape them, one

would therefore choose a stochastic dynamics, which will eventually �nd the global minimum.

Natural candidates are dynamics of the Glauber type. These are stochastic processes which

have the equilibrium Gibbs measures corresponding to the Hamiltonian (1.1) as their invariant

distributions. For such an evolution to end up where it should, there should be an equilibrium

Gibbs measure corresponding to the pattern (��
i
)i=1;::: ;N , meaning that it gives large weight only

to a few (compared to the 2N possible) con�gurations, which are close to this pattern.

Since we are using the notion of closeness, a word has to be said about distance in the space

of con�guration. One usually chooses the following function. For two con�gurations �; �0, their

overlap is given by

R(�; �0) =
1

N

X
i

�i�
0
i: (1:2)

This parameter is obviously not a distance (since for identical con�gurations its value is 1).

However, it is straightforward to check that it relates to the Hamming distance dH by

R(�; �0) = 1� 2

N
dH(�; �

0):

In the special case where �0 is the memorized pattern (�
�

i
)i, one denotes the corresponding overlap

by m�(�), that is,

m
�(�) =

1

N

X
i

�i�
�

i
: (1:3)

These latter parameters turn out to be quite important. In fact, the Hamiltonian can be written

entirely as a function of them,

H(�) = �N
MX
�=1

�
m
�(�)

�2
; (1:4)

or, if one considers m� as the �th component of an M dimensional vector, H(�) = �Nkm(�)k22.
The last expression shows that in the case of only one pattern, the model is equivalent to the

Curie-Weiss model of ferromagnetism.6

So, where does randomness come into play? This is incorporated in the model by the following

reasoning. Suppose the model should be capable of storing arbitrary patterns, with no inherent

structure (neither in the patterns, nor between them), and one is interested in the behavior of

the system for \typical choices" of these patterns. Then it is reasonable to choose the �
�

i
as i.i.d.

random variables on some probability space (
;F ;P) and taking values in f�1;+1g (obviously, if
the stored information takes values in a larger space, then one should also choose the spin space

accordingly7 ). If one is to model patterns that have no bias towards one of the two spin values,

6To see this equivalence, consider the con�guration �
0, obtained by the local gauge transformation �

0

i
= �i�

1

i
.

7However, in Part III we will treat a situation where this is not the case. The motivation for that model lies

not really in the context of neural networks, though.
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the appropriate choice for P is clearly the measure which makes the �'s symmetric Bernoulli

variables. Until further notice (that is, until the introduction to Part III), we will adhere to this

choice. The introduction of this random variables turns the Hamiltonian into a random variable

too. Moreover, the (�nite volume) Gibbs measure, de�ned through

GN (�) =
1

ZN
e
��HN (�)

; (1:5)

is now a random measure on the space of con�gurations �. Since the normalization constant ZN
is random, so is its normalized logarithm, the free energy, FN = 1

N
lnZN .

One is generally interested in the system for large sizes N , and thus also in the thermodynamic

limit N ! 1. It turns out that a crucial parameter of the system is the ratio � of number of

patterns M to system size N . In fact, if � tends to zero as N grows to in�nity, the analysis is

much simpler than in the case when � stays strictly positive.

It is beyond the scope of this introduction to overview even the rigorous mathematical results

on this model. Let us just briey indicate one of the most successful strategies to deal with

it. Since the Hamiltonian H depends on � only through the (random) parameters m�(�), the

induced distribution Q of these quantities contains essentially all information about the Gibbs

states themselves. The study of Q, which is a measure on the space RM , turns out to be simpler

since it is \less random" than the distribution of the spins. This approach is in the spirit of large

deviation theory, that is, one studies the random rate function for Q which has nice self-averaging

properties. For a more detailed discussion, see Section 2.3 in [BG1].

We remark that from the point of view of statistical mechanics, this approach is rather natural

if � � 1. Indeed, if this is the case, the system is controlled by a few (�N) parameters, as

opposed to the N spin degrees of freedom of the system.

While much is known about this model already (the veri�cation of the replica symmetric

solution [T3], concentration of Q on the union of small balls [BG1], the weights that are given

to the di�erent balls [BM], precise statements about the Gibbs measures [BG3], central limit

theorems for the overlap parameters [BG4, GL]), we will not go into any details. The above short

explanation serves just as an indication on how one can treat this case. It will turn out that the

variant to be introduced shortly is not amenable to this techniques, and this is one motivation to

study it.

1.2 The p-Spin Hop�eld Model

Having introduced the standard Hop�eld model, we now motivate the variants which will be

studied in the �rst part of this thesis. We will then state the main results and indicate some

of the auxiliary results used in their proof. This exposition is informal in style. For precise

statements and more ideas and remarks, we refer to Chapter 2.

Suppose that we want to incorporate higher order synaptic connections into our Hamiltonian

(1.1). A straightforward way to this is to de�ne (compare (1.4))

�HN (�) = �N
MX
�=1

���m�(�)
���p; (1:6)



6 Chapter 1

for an even number p, larger than four.8 This Hamiltonian appeared for the �rst time in [Lee],

respectively [PN]. A crucial role is again played by the number of patterns M . If one chooses

it proportional to N , that is M � �N , then one is in a situation that can be handled by the

standard tool of the induced measure Q of the overlap parameters m� (see [BG1] for details). The

main point here is that one expects (from numerical simulations) a good retrieval capability even

for M as large as �Np�1! The only rigorous results in this situation are to our knowledge due

to Newman [N1], treating the question of storage capacity of such a network. More precisely, he

gives bounds on the probability that the patterns are surrounded by macroscopic energy barriers

at a certain (Hamming) distance. This distance measures the maximal error rate which is allowed

in the retrieval process. Furthermore, he �nds a relation between p and the maximal � for which

the result holds. This con�rmed earlier non-rigorous and numerical work.

For normalization reasons, becoming more transparent in Chapter 2, one subtracts a constant

from the above Hamiltonian (its expectation) and multiplies the result by some constant sp, so

that our �nal choice is

�HN (�) = �N
sp

�N
p�1X

�=1

����m�(�)
���p � E

���m�(�)
���p� : (1:7)

The normalization sp is in fact chosen in such a way that �H, considered as a random process

indexed by the con�gurations � has mean zero and covariance function

E �HN (�) �HN (�
0) = �Nfp(R(�; �

0)); (1:8)

where fp is (in leading order in N) a weighted sum of all even powers less than p of its argument,

and R is the overlap parameter (distance function) de�ned in (1.2).

While the interaction (1.7) is the most direct generalization of the usual model, there is a

second, in some sense better choice. Observe that in (1.7), the interaction not only contains

couplings between groups of p spins, but in fact all multi spin interactions coupling even numbers

(less than p) of spins at the same scale. These additional interactions are reected in the function

fp appearing in the covariance (1.8) of the Hamiltonian.

Let us see what a true p-spin interaction might look like. There is already a disordered model

of which has such an interaction, which in addition has Gaussian form, the p-spin SK-model. It

has been considered recently by M. Talagrand, who made considerable progress in its analysis.

In this model, the state space is the same that we consider, but its Hamiltonian is given by

H
SK
N

(�) = �
�

p!

Np�1

� 1
2 X
1�i1<:::<ip�N

Ji1;::: ;ip�i1 � : : : � �ip ; (1:9)

where the Ji1;::: ;ip are i.i.d. standard normal random variables. Its mean is zero and its covariance

is simply

E HSK
N

(�)HSK
N

(�0) = NR
p(�; �0); (1:10)

8We will not consider odd p, due to technical diÆculties. One expects a similar behavior for this case.



Introduction 7

where R is again the overlap de�ned in (1.2). We now observe that each of the quantities

~Ji1;::: ;ip =

�
1

�Np�1

� 1
2
M(N)X
�=1

�
�

i1
� : : : � ��

ip

converges in distribution to a standard normal random variable. However, although they are

pairwise uncorrelated, they are not independent variables. Nevertheless, in analogy with the

Hamiltonian (1.9), we de�ne a new Hop�eld interaction by

HN (�) = �
�

p!

Np�1

� 1
2 X
1�i1<:::<ip�N

~Ji1;::: ;ip�i1 � : : : � �ip

= �
�

p!

Np�1

� 1
2
M(N)X
�=1

X
1�i1<i2<:::<ip�N

pY
l=1

�
�

il
�
il
:

(1:11)

This function contains only those parts of the Hamiltonian (1.7) that couple exactly p spins,

being therefore a pure p-spin interaction. This new Hamiltonian has mean and the covariance

(compare (1.10))

E HN (�)HN (�
0) = �NR(�; �0)p; (1:12)

in leading order in N . For the rest of this introduction, we will restrict our attention to the

interaction H.

As mentioned above, we are interested in the case whereM grows super-extensively. Obviously,

the induced measure Q does not help much in this setting. Indeed, this measure now lives in a

space of dimension �Np�1, which is \in�nitely" much larger than the number N of spin degrees

of freedom. Its behavior is therefore at least as diÆcult to describe as the Gibbs state itself. In

particular, there is no hope for a large deviation principle in this case. New tools have therefore

to be found. Fortunately, and this provides another motivation to study this model, the progress

made by M. Talagrand in the p-spin SK-model (the Hamiltonian (1.9), see [T4]) relies on di�erent

methods. This is necessary since in this model, no prototypical spin con�gurations as the patterns

in the case of the Hop�eld model are present. Hence, there are no induced measures to be studied

either. He was therefore forced to use di�erent methods, which we now applied to our model.

However, the SK-Hamiltonian is Gaussian, and this being a very special type of process, one could

at �rst suspect that the approach taken depended strongly on its rather particular properties and

would fail to be useful in other settings.

The study of our variant of the Hop�eld model thus yields the opportunity to see whether this

is true, and this might be the point to announce that these methods, which essentially rely on

calculations of second moments of suitably truncated partition functions seem indeed to be rather

general and do not depend too strongly on the Gaussian nature of the Hamiltonian. However,

the ensuing calculations are much longer than in the non-Gaussian setting of the Hop�eld model

(as one would expect of course).

We will try to explain the main points of these calculations in Section 2.2 in the case of the most

simple disordered mean-�eld model, the Random Energy Model (introduced by Derrida [D1]). In

this model, the Hamiltonian is simply i.i.d. random �eld. For each con�guration, the energy is
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a Gaussian random variable with mean zero and variance N (that is, it does not depend on the

precise con�guration at all, and they are just used to index the process).

Let us now turn to our results. The principal object of interest is of course the sequence of

(random) Gibbs measure (we will for the rest of the introduction consider mainly the interaction

H)

GN (�) =
1

ZN
e
��HN (�)

; (1:13)

where the random quantity Z is called the partition function. However, this measure is quite

diÆcult to study as a whole, and we will thus look at it from a particular angle. Observe that

for � = 0 (corresponding to in�nite temperature), the measure G does not depend at all on the

interaction, and is thus just the product measure on the on the spins. One can then pose the

following, vaguely stated

Question 1: For which values of the parameters � and � can G be considered a small perturbation

of the product measure on the spins?

Of course, one has to make precise the notion of closeness. A usual approach is the following:

Take two copies of the system with the same realization of the disorder variables �, and consider

the order parameter

E G 
 G
�
jR(�; �0)j

�
;

where, as usual, E denotes integration with respect to the disorder, and for any function f , G[f ] is
its expectation with respect to the Gibbs measure.9 The above order parameter is conventionally

called replica overlap.

For � = 0, one has by the weak law of large numbers,

lim
N"1

E G 
 G
�
jR(�; �0)j

�
= 0: (1:14)

We say therefore that a couple (�; �) lies in the high-temperature region, if the associated (random)

Gibbs measure satis�es (1.14). The main result can then be stated by the following two partial

answers.

Result 1.1: For each � > 0, there exists a critical �p such that for all � < �p, the couple (�; �)

lies in the high-temperature regime.

One would like to have a complementary statement, expressing the fact that for all values of �

above �p,

lim inf
N"1

E G 
 G
�
jR(�; �0)j

�
> 0: (1:15)

Unfortunately, the result we are able to prove is slightly weaker. Namely, we have

Result 1.2: For each � and each � > �p, there exists a set I � (�; �p) of strictly positive

Lebesgue measure, on which inequality (1.15) holds.

9That is, G[f ] =
R
�N

f dG.
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Obviously, one expects (or rather hopes) that �p+" > �̂p. But until now, I have not been able to

�nd a (monotonicity) argument ruling out the contrary, which could be called a reentrant phase

transition.

In the course of the proof, we obtain upper and lower bounds bounds on the critical �p, which

are both proportional to ��1=2 for large values of �, and constant for small values. An analysis

of these bounds and some other straightforward calculations show moreover

Result 1.3: The critical �p and the mean free energy converge as p " 1 to the corresponding

values of the Random Energy Model at rescaled temperature, that is

lim
p"1

lim
N"1

E
1

N
lnZN;� = lim

N"1
E

1

N
lnZREM

��1=2�
;

and

lim
p"1

�p = �
�1=2

�REM:

The Results 1.1 and 1.2 can be expressed as follows. For small values of �, the entropy of the

con�gurations wins against the minima of the Hamiltonian. That is, the measure G is \spread

out" over the con�gurations. For large �, the measure G gives a high weight to a comparatively

small subset of the con�guration space.

It is natural to ask where this concentration10 takes place, and in particular, whether the

con�gurations close to one of the patterns get this extraordinary weight. Since the con�guration

where the global minimum of H is attained is a candidate to lie in this subset, we can ask

Question 2: Does the extremum of the Hamiltonian lie close to one of the patterns?

A partial answer is given by

Result 2: For large enough �, the probability that the extremum of H lies in the vicinity of any

pattern tends to zero.

Vicinity means a ball in the Hamming distance centered at the patterns. Their diameter is

increasing in �. In fact, we show slightly more: The minimum value of the Hamiltonian on the

union of these balls is separated by a macroscopic di�erence from the absolute minimum. This

implies that while we cannot be sure that the absolute minimum is assumed in the subset of

large G measure, the single con�guration arg supH has more weight than the union of the balls

around the patterns. However, it could still be that there are secondary minima which are much

atter than the absolute one, which would imply that the measure concentrates around these

subminimum con�gurations.

A word or two about the proofs seem to be appropriate. Result 2 follows essentially from the

calculations of the uctuations of H in the balls around the patterns in the spirit of [N1], and

from estimates on the extremum of H. Result 1.1 is a consequence of the following result.

10
Condensation might be a physically more appropriate term.
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Result: In leading order in N ,

E
@F

@�
=
@F

an

@�

�
1� E G 
 G[R(�; �0)p]

�
; (1:16)

where F = 1
N
lnZ is the free energy and F an = 1

N
ln E Z is the annealed free energy.

The equivalent of relation (1.16) in the Gaussian SK-models is an exact identity and is just an

integration by parts formula [ALR, T4]. Here, we will need an expansion of the Boltzmann

factors to prove it. Given this result, one then compares the functions FN and F an. By Jensen's

inequality, it is always true that E FN � F
an. One then de�nes

�p = supf� : lim sup
N

E FN = lim
N

F
ang;

from which Result 1.1 follows.

The problem with the low temperature phase is the fact that (1.16) relates derivatives of

functions, while one only has knowledge about the function themselves. In the regime (�p; �p+"),

we simply use a continuity argument (which does not give any bound on "). For � > �p, we are

in a better situation as we have an estimate on the derivative of E FN obtained from a bound on

the extremum of H.

Finally, we would like to state some open problems which seem to be worth studying. The

ultimate goal is obviously to describe the Gibbs measures completely. While this is for the moment

a hopeless task, one expects to gain some insight into the structure of the condensed phase. The

following are some steps in this direction, motivated by the successful answers in the case of the

p-spin SK-model.

Open problem 1: Determine the uctuations of the free energy precisely.

We are aiming at a result of the following type:

P[jFN � E FN j > cN
�1=2] � e

�CN
; (1:17)

or some other, summable (in N) function on the right, and valid for all �. The reason why one

expects this, is the fact that the above result holds for the interaction �H. Moreover, for high

temperatures, we will show that for �H, the uctuations are only of the order N�1. Also, recent

results [BKL] show that in the Gaussian models, the order of the uctuations of the free energy

in the hight temperature regime decreases in p (for the SK-model), and is on an exponential small

scale in case of the REM (see [BKL]).

If a bound of the form (1.17) is true, then it follows by Borel-Cantelli, that the free energy is

self-averaging, that is, limN jFN � E FN j = 0, P-almost surely (observe that in general, and in

particular for the low temperature regime, it is not expected that E FN itself converges).

Also, if such a bound holds, Result 2 can be sharpened to: For large enough �, with probability

one, for all but �nitely many N , the minimum of H does not lie in the vicinity of any pattern.

The main objective is obviously a precise description of the Gibbs measures themselves. The

following is reasonable conjecture.
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Open problem 2: Show that in the low temperature phase, the set of con�gurations which

essentially carries the mass of the Gibbs measure is further decomposed into disjoint subsets,

termed lumps, and show that di�erent lumps are orthogonal. In particular, show that there exist

at least two lumps that are not related by a global spin ip.

In fact, the existence of one lump follows from the fact that the replica overlap is strictly positive

(see the construction in [T4]). Once the decomposition of the state space into these lumps is

proved, the next step towards the description of the Gibbs measures is

Open problem 3: Determine the relative weights given to the di�erent lumps, that is, �nd their

order statistics.

We know that the lumps are not close to any of the patterns for large �. However, if � is small,

one expects the contrary:

Open problem 4: Show that for small �, and � larger than the critical value, the Gibbs measures

give large weight to con�gurations that are close to one of the of the patterns ��, that is, each

lump contains at least one pattern.

1.3 Norms of Random Matrices

A second part of this thesis is devoted to the study of the norms of certain random matrices. This

topic lies somewhat o� the main line of this work. However, not only are these results crucial to

the proofs of the uctuations of the free energy in Part I, but the matrices appearing are rather

natural and the results in our view of general interest in the context of the spectral theory of

random matrices.

Random matrices were introduced by Wigner and Dyson in an attempt to describe resonances

of slow neutrons and very heavy nuclei. Since it is a hopeless task to �nd exactly the highly excited

energy levels, it was proposed to study instead an ensemble of Schr�odinger operators, satisfying

the symmetries prescribed by the physical system. Of primary interest was the distribution of

the spectrum of these operators. In his seminal work [Wi1,Wi2], Wigner proved the famous

semi-circle law. We refer to [Wi3] for a nice overview.

Another important question concerns the behavior of the large eigenvalues.11 One type of

result is a re�ned analysis of the limiting behavior of the spectral distribution at the edge of the

spectrum [SnSo]. Of special is interest is also the operator norm of the matrix, that is, the largest

eigenvalue. This point has been studied by Geman [Ge], F�uredi and Komlos [FK], and recently

by Soshnikov [So]. The types of matrices considered until now encompass principally symmetric

N by N matrices with independent entries (Wigner ensemble) and sample covariance matrices

(Marchenko-Pastur ensemble) [Si, BaY, YBaK, BdMS, Ba].

Estimates on the norms of sample covariance matrices have played a crucial role in the investi-

gation of the (standard) Hop�eld model [ST, Ko, BGP2, BG1,BG2]. Not surprisingly, estimates

on the norms of a di�erent type of random matrices do play a crucial role in the study of our vari-

ant of the Hop�eld model. The matrices we will consider have the following form. Let f��
i
g�;i2N

11Here and in the following, large eigenvalue means large in absolute value.
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be an array of i.i.d. Bernoulli random variables, taking values +1 and �1 with equal probability.

Construct the M �M matrix A with entries

A
�� �M

�1

 
NX
i=1

�
�

i
�
�

i

!q

=M
�1

X
(il)l=1;::: ;q

qY
l=1

�
�

il
�
�

il
: (1:18)

We are interested in the behavior of the norm of A when N ! 1 and M scales as Nq
0

, that is,

MN
�q0 ! �, for some positive constant �.

Before presenting our results, we like to give a (wrong) heuristic argument, which shows that

the dependence between the o�-diagonal entries of the matrix cannot be neglected. Let us for

the moment look at the case q0 = q, that is, M = �N
q. Then the matrix elements of A can be

written as

A
�� = �N

� q
2

 
1p
N

NX
i=1

�
�

i
�
�

i

!q

= �N
� q

2 (w�;�)
q
:

Each of the random variables w�;� converges in law to a standard normal random variable.

Moreover, they are pairwise uncorrelated. Suppose now (it is here that we go wrong) that they

are all independent. Then we are in the setting of Bai and Yin [BaY] (in particular, their moment

condition is satis�ed), and from their result, we get that

kAk � �CqN
q
2 :

It turns out that while this heuristics gives the correct answer if q is even, it is by a factor
p
N

too large in the case of odd q. More precisely, we have

Result 1: The result is that whenever q0 � q � 2, the norm kAk satis�es

kAk � C

(
N

q�1
2 ; q odd

N
q
2 ; q even

(1:19)

on a set of probability larger than 1� e
�N l

, for some positive l.

The di�erence in the result for odd and even q is indeed due to the higher order correlations of

the elements, as will be become apparent in the proof. We also remark that the estimates do not

depend on q
0, as long as it is larger than q. This is due to the (deterministic) diagonal terms.

Subtracting them would give a new estimate, which involves both q and q0.

A second matrix B we consider is a variant of the above. Namely, in the sum on the right of

(1.18), we only retain the \completely o�-diagonal" terms. That is,

B
�� =

X
(il)l=1;::: ;q

di�erent

qY
l=1

�
�

il
�
�

il
; (1:20)

where di�erent indicates that no two indices have the same value. This restriction may seem

harmless, since after all, most choices of values of the indices satisfy it. However, it turns out

that the scale of the norm changes drastically. Indeed, we obtain
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Result 2: If q0 > q � 2,

kBk � C (1:21)

on a set of probability at least 1� e
�C0N

1
2
�"

for all " > 0 and N large enough.

To understand the above results, it is worthwhile to look at the idea of the proofs. The general

strategy to get upper bounds on the norm of a symmetric random matrixM of dimension d is the

following. The matrix being symmetric, its trace is equal to the sum of the eigenvalues. Suppose

we knew that all of them are positive, then certainly the trace would be an upper bound on the

largest of them, and 1
d
trM a lower bound.

Now, look at a very high, even power Mk of M . Then the eigenvalues are indeed all positive.

Moreover, the kth power of the largest eigenvalue tends to dominate all others, and for increasing

k, the trace of Mk becomes a better and better bound on it.

To get the estimate of the excess probability, one uses this observation together with the

Chebyshev-Markov inequality. That is,

P

Mk > c

i
= P

h
kMkk > c

k

i
� P

h
trMk

> c
k

i
� c

�kE trMk
:

(1:22)

The key to the proof is therefore an accurate upper bound on the expectation of the trace of Mk.

In the setting where the matrix M is built up from i.i.d. random variables, one generally tries to

represent the trace ofMk as a sum of walks on a graph whose edges correspond to the underlying

i.i.d. variables. Taking the expectation then means counting the number of possible walks, that

satisfy certain restrictions that are due to the particular distribution of the random variables.

In our case, it will be shown in Chapter 9 that E trAk can be calculated by the following

procedure. Let the graph G be a circuit12 with k edges and r vertices. Let Gq be the graph

obtained from G by replacing each edge by q edges. The main step then consists in solving

Problem 1: Determine the maximum number of subgraphs any partition of the edge set of Gq
into circuits can contain.

It will turn out that one can get a suÆciently good bound s(k; r) of the above quantity in terms of

r and k only. Moreover, the partitions with maximum number of elements maximize the number

of small subgraphs (with one or two edges). It will be shown that the expectation of the trace is

then the sum over all possible graphs G with r � k of the quantity Mr�k
N
s(k;r).

Under the condition q
0
> q, the dominant contribution will come from the term for which

r = k. This means that by reducing r, the loss in powers of M is much larger than the possible

gain due to the larger number of di�erent graphs G. Looking at this maximum term now allows

to understand the di�erent behavior for even and odd q. Indeed, if r = k, then the graph G is

just a cycle (meaning that no vertex is visited twice). Suppose that q is even. Then we obviously

12A circuit is a graph such that each vertex has an even number of incident edges.
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can decompose the edges between two adjacent vertices into q

2
circuits of length 2. As mentioned

above, the maximizing partitions are just of this form. Thus s(r = k; k) = kq

2
.

On the other hand, if q is odd, then only q�1
2

circuits of length two can be built between two

adjacent vertices of Gq, leaving one edge between them. These remaining edges form a graph

isomorphic to G, and so they form one single big circuit which cannot be decomposed further.13

The total number of circuits is thus s(r = k; k) =
k(q�1)

2
+ 1. The resulting extra factor N will

not play any role, since one chooses at the end k growing with N .

In the case of the matrix B, one proceeds as in (1.22). However, the condition on the values

of the indices implies that one has to solve (with G being the same graph)

Problem 2:Determine the maximum number of subgraphs of any partition of the edge set of G
into circuits.

Obviously, this problem is easy to solve once the answer to Problem 1 is known (as the graph

under consideration is much simpler). In fact, the maximum number can be bounded again in

terms of k and r, namely by s0(k; r) = k� r+1. Again, the expectation of the trace is then given

by the sum over all possible graphs G for r � k of the quantity Mr�k
N
qs
0(k;r). The dominant

contribution comes also from the term with r = k.

Finally, to actually get exponential estimates of the excess probability, one has to choose k as

a power of N . Analysis of the combinatorial terms which appear in the lower order contributions

shows that k has to be less than N
1
2
�" for some positive ".

Before turning to the last part of the introduction, we state again some open problems. As

remarked before, the diagonal terms in the matrices prevent us from getting more accurate bounds

for q0 strictly larger than q (in fact, our bounds do not really involve q0). Thus, we state

Open problem 1: Find bounds on the matrices A0 and B
0 that are obtained by setting the

diagonal entries of A, respectively B to zero.

To get these bounds, one has to calculate �ner estimates on the combinatorics in the analogues

of Problem 1, respectively Problem 2.

A second natural problem which seems tractable concerns the distribution of the eigenvalues

near the spectral edge. In fact, the recent work of Soshnikov and Sinai [SiSo, So] on Wigner

matrices relies essentially on the calculation of very high moments of the trace (up to moments of

order
p
N). Since in the course of our proofs we do also calculate these moments (up to almost

the same order), it seems reasonable that one could get results in this direction in our case as

well. We therefore state vaguely

Open problem 2: Determine the distribution of the eigenvalues of the matrices A and B.

1.4 Thermodynamic Limit: Metastates and Chaotic Size Dependence

In the last part of the thesis, we study a simple model of the Hop�eld type to illustrate certain

notions in the description of large disordered systems and their thermodynamic limit. To put this

13Of course, one has to prove that the maximizing partitions are indeed of this form.
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into a larger context, we briey look in this section at some fundamental aspects of equilibrium

statistical mechanics of disordered systems. Our model will be introduced and discussed in

Section 1.5.

Recall that one of the main goals of statistical mechanics is to describe the phenomenon of phase

transitions. That is, one tries to solve the apparent paradox that smooth interactions give rise to

discontinuous behavior of large systems (such as discontinuity of the density, magnetization etc.).

It was realized that no �nite system can exhibit this feature, and that the appropriate description

is furnished by in�nite systems. In doing so, the basic underlying assumption is the following

postulate:

A system with a large number of degrees of freedom is close to an in�nite system.

Of course, the above has to be given a precise meaning. This means that one has to solve the

following two problems:

(a) De�ne a consistent notion of an in�nite system.

(b) In what sense are �nite systems close to an in�nite system? In particular, if there are

more than one in�nite volume states (corresponding to a phase transition), which of them

describe(s) the �nite volume state most accurately?

In the case of lattice spin systems, these points have been answered in a satisfactory way. The

theory, which goes back to the seminal work of Dobrushin [Do], and Lanford and Ruelle [LR],

is now well developed and understood (see [G, vEFS]). Let us very briey sketch the set-up for

this theory (we follow [B3]). For the sake of an example and to keep diÆculties to a minimum,

we restrict our attention to models on the lattices Zd with �nite spin space � and �nite range

interaction � = f�AgA�Z;�nite.14 The con�guration space �1 = �Z
d

is equipped with the �-

algebra F generated by the �nite dimensional cylinder sets. We also de�ne for any � � Zd the

�-algebra F�, which is generated by the cylinder sets with �nite basis in �. The measurable

space (�1;F) is then given an a priori measure �, which in the case of �nite � is usually taken

to be the counting measure. For a given interaction �, the �nite volume Hamiltonians are de�ned

by

H�(�) = �
X

A\�6=;

�A(�):

A local speci�cation for � is then a family of probability kernels
n
�
(�)
�;�

o
��Zd

from (�1;F) to
itself such that

(i) for all � and all A � F , the function �(�)�;�(A) is F�c-measurable;

14In general, compactness of the spin space is quite essential to existence proofs. However, the �nite range

condition can often be relaxed, replacing it by the notion of a regular interaction which means that a condition

on the decay at in�nity is satis�ed. See [G, vEFS] for more details.
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(ii) For any � 2 �1, �
�

�;� is a probability measure on (�1;F) satisfying

�
�

�;�(�) =
e
��H�((��;��c ))

Z
�

�;�

��(��)Æ��c ;

where (��; ��c) is the con�guration that agrees with � on � and with � on �c, �� and

�� are the restrictions to � of the respective objects, Z
�

�;� is the normalization constant,

and � the inverse temperature.

Local speci�cations satisfy compatibility relations analogous to conditional expectations. Namely,

for any �;�0 � Zd, with � � �0,

�
�

�0;�(�) =
Z
�1

�
�

�0;�(d�)�
�

�;�(�) =
Z
�1

�
�

�0;�(d�)�
(��0c ;��0 )

�;� (�);

where the second equality follows by from the de�nitions. This equality is abbreviated by �
(�)
�0;� =

�
(�)
�0;��

(�)
�;� .

15 The speci�cations can thus be viewed as \conditional expectations waiting for a

measure" (quote from [B3]). One thus de�nes:

A measure �� on (�1;F) is called compatible with the local speci�cation
n
�
(�)
�;�

o
��Zd

if for all � � Zd and all A 2 F

��(AjF�c) = �
(�)
�;�(A); �� � a:s:

A measure which is compatible with a local speci�cation is called a Gibbs measure.

In our setting, the existence of such a measure is guaranteed by compactness. Moreover, all

possible in�nite volume measures appear as weak limit points in the spaceM1(�1) of probability

measures16 of the set of �nite volume measures (the speci�cations). This means that by choosing

appropriate boundary conditions �, and an increasing and absorbing sequence of �nite volumes,17

the corresponding measures converge weakly to the in�nite volume limit. In this sense, both

problem (a) and (b) above are solved.

Let us now see what happens in the disordered case. We still assume that the (now random)

interaction �[!] is �nite range, and the spin space is compact. Moreover, we suppose that the

underlying probability space (
;B;P) has a product structure, that is, 
 = 
Z
d

0 , where 
0 is a

topological space, and B is the Borel �-algebra generated by the product topology. This set up is

valid for most cases of interest. A reasonable de�nition of a Gibbs measures is then the following:

A measurable map � : 
!M1(�1;F) is a random Gibbs measure for the random in-

teraction � if for almost all !, �[!] is compatible with the local speci�cation
n
�
(�)
� [!]

o
for this interaction.

15The product of two probability kernels is a probability kernel: (�1�2)(!;A) =
R
�1(!; d!

0)�2(!
0
;A).

16The test functions for this topology are the local functions, that is, functions that depend only on the value

of a �nite number of spins.
17These volumes should be smooth, in the sense that their surface to volume ratio tends to zero along the

increasing sequence. For more details on this point, see [vEFS], Section 2.4.1.
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Now, in this case, the question of existence of such a measure is more subtle. Of course, by

compactness, for almost all ! the �nite volume measures �
�

�[!] taken along an increasing and

absorbing subsequence �n has limit points. We can therefore extract subsequences of �nite volume

measures converging to a Gibbs measure for the interaction �. The delicate point here is that

these subsequences will in general depend on the realization ! of the disorder, and this in turn

questions the measurability of the map �[!]. A way out of this diÆculty is to extend the local

speci�cations, which are measures on (�1;F), to measures K
�

�;� on the space (
� �1;B 
 F)
such that

(i) the marginal distribution of K
�

�;� on 
 is P, and

(ii) the conditional distribution, given �1 
 B, is the local speci�cation ���;�[!].

This in fact suÆces to show the existence of a random Gibbs measure if � is compact. Indeed,

one can show [B3]

Theorem: If � is compact, then there exists an increasing and absorbing sequence �N such

that the weak limit

lim
N"1

K
�

�N ;�
= K

�

�
;

exists, and the conditional distribution

K
�

�
(�j�1 
 B)

is a random Gibbs measure.

It turns out, however, that the resulting Gibbs measure is in some sense a mixed state of systems

with disorder that agrees on �nite domains. This is due to the fact that the proof involves

taking averages over the disorder at in�nity (this means averaging over the tail �-algebra B1 =

\��ZdB�c). In light of question (b) above, this is certainly not an appropriate way of describing

the system. A second extension, �rst proposed by Aizenman and Wehr [AW], and subsequently

promoted by Newman and Stein [NS4], should capture in more detail the asymptotic dependence

on the disorder.

The setting is the following. Let M1(�1) be the space of probability measures on (�1;F),
equipped with the weak topology and the induced Borel �-algebra W. Consider the space 
 �
M1(�1), equipped with the product �-algebra of B and W. For any � � Zd, let K�

�;� be a

measure on 
�M1(�1) such that

(i) the marginal distribution on 
 is P, that isZ
M1(�1)

K�

�;�(d!; d�) = P(d!);

(ii) the conditional measure ��;�[!](�) onM1(�1) given F is the Dirac measure on �
�

�;�[!],

that is,

��;� [!](�) � K�

�;�(�jM1(�1)
F)[!] = Æ��
�;�

[!]:
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Again by compactness, one has existence of limit points of the above objects. More precisely, one

proves [B3]

Theorem: If � is compact, then there exist increasing and absorbing sequences of volumes �N
such that the limit

lim
N"1

K�

�N ;�
� K�

�

exists. Moreover, the conditional distribution �
�

�
� K�

�
(�jB 
M1(�1)) given B is a probability

distribution on M1(�1) that for almost all ! gives full measure to the set of Gibbs measures

corresponding to the underlying interaction. Furthermore,

K
�

�
(�jB) = K�

�
(�jB):

The measure �
�

�
is called the Aizenman-Wehr (conditioned) metastate.

Let us look at two examples.

(i) Suppose that we have almost sure convergence of the local speci�cations, that is

�
�

�N ;�
[!]! �1[!]; P � a:s: (1:23)

In general, almost sure convergence cannot be expected, and should be considered as exceptional.

The corresponding metastate is given by

�(�)[!] = Æ�1[!]; P � a:s: (1:24)

That is, if �1[!] does depend on the realization of the disorder (this should be the generic case),

then the metastate shows a non-trivial structure even in the case of almost sure convergence. We

will in fact �nd such a behavior in our model, where we enforce almost sure convergence by an

external �eld.

Now, suppose that there exists an exact symmetry in the system. To be concrete, consider the

standard Ising model (non-random) with free boundary conditions. There is no disorder in this

model, but we can arti�cially introduce a degenerate measure P on the space of interactions. It

is well known that below the critical temperature

�
free
�N ;�

! 1

2
�
+
�
+

1

2
�
�
�
;

where �+
�
and ��

�
denote the extremal Gibbs measures with positive, respectively negative mean

magnetization. Convergence is obviously almost sure with respect to P (and the limit does not

depend on !). The metastate is thus simply

�(�)[!] = Æ 1
2
�
+
�
+ 1

2
�
�

�
:

(ii) The metastate gives the most useful information, when the �nite volume measures con-

verge in law to some limiting measure, that is, if we have

�
�

�N ;�

D�! �
�

1;�
:
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In this case, the Æ distribution appearing in (1.23) is replaced by some more general distribution.

Our model, which is however of the mean-�eld type, shows in fact this behavior. We will see

that an exact symmetry (global spin ip) is present too, which implies that the corresponding

metastate is a distribution on the measures

1

2
�
+
�
[!] +

1

2
�
�
�
[!]; (1:25)

where the two measures are related by global spin ip and do depend on !. Our results also exhibit

clearly the supplementary information provided by conditioning on F (compare Theorem 10.3

with Corollary 10.4).

Unfortunately, more interesting, concrete examples are hard to �nd, and until now, they are

mostly restricted to mean-�eld type models (random �eld Curie-Weiss model [Ku1, Ku2], Hop�eld

model [BG3]). Therefore, any new tractable model is welcome, and should be studied to increase

our understanding of the mechanisms.

There is also the notion of an empirical metastate, introduced by Newman and Stein [NS2,

NS3]: Let f�NgN be an increasing and absorbing sequence of �nite volumes. De�ne a random

empirical measure on M1(�1) by

�
em
N (�)[!] � 1

N

NX
n=1

Æ��
�N ;�

[!]:

Convergence of this object has been studied for some models by K�ulske [Ku1]. He found that

extremely sparse subsequences are necessary to achieve almost sure convergence, whereas for

subsequences that grow more slowly, convergence in law can be shown. In our model as well, we

�nd that for suÆciently sparse sequences, convergence in law holds.

Finally, to capture even more precisely the behavior of the measures along the sequence of

increasing volumes, Bovier and Gayrard [BG3] proposed, in analogy with the invariance principle,

a superstate: For a �xed sequence of volumes �N , let

�
�

�N
(t)[!] � (t� btnc

n
)�

�

�btnc+1
[!] + (1� t+

btnc
N

)�
�

�btnc
[!];

where bxc is the largest integer less than or equal to x (this is just the usual linear interpolation

scheme, as in the invariance principle). �
�

�N
(t) is a stochastic process with state space M1(�1).

Convergence of this object to some random process ��(t)[!] can reasonably only be expected

in distribution. Thus, we are in the same situation as with the Gibbs measures themselves.

One might therefore construct a Aizenman-Wehr metastate on the level of Gibbs measure valued

random processes.18 Again, there are at present only a few examples where detailed information

about this object has been obtained, and it is interesting to note that Brownian motion appears

in all of them. We refer to [BG3, Ku3] for details. In our case, we are stuck with a S1 valued

random process with quite peculiar features, see Chapter 13.

18We remark that for this construction, there is no canonical choice for the appropriate topology, see also

[BG3].
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This quick overview concentrated on the lattice spin setting. The constructions of AW-meta-

states, empirical metastates, and superstates can however also been done in the case of mean-

�eld (neighbor) models. The only di�erence lies in the construction of the Gibbs measures.

In particular, since there is no notion of a boundary in this case, limit points of an increasing

sequence of volumes are in general mixtures of pure states (these are the extreme elements of the

set of Gibbs measures). To construct these pure states, one can either apply an external �eld

(which is taken to zero after the thermodynamic limit), or condition on certain tail events (this

means that one works in the canonical ensemble). For a general discussion on the issue of limiting

Gibbs measures in mean-�eld models, we refer to [BG1], Section 2.4, and [BG3], Section 2. With

this, we �nish our quick tour of general aspects of the thermodynamic limit and turn to some

precise, physical questions and conjectures.

The unfortunate point about disordered lattice spin systems is the fact that concrete, mathe-

matically worked out models are scarce (there is essentially one example, the random �eld Ising

model). In particular, spin glass type models (that is, models with random multi spin interactions)

have turned out to be extremely hard to analyze.

Physicists, however, have proposed a number of di�erent scenarios for the behavior such sys-

tems. As is often the case when few rigorous results are present, there is a vigorous debate about

the issue. Let us briey present the di�erent proposals. The main point of the discussion is

the question about the number of pure states in lattice spin glasses. On one hand there are the

proposals of Fisher and Huse [FH1{4], predicting the existence of only two pure states in any

dimension higher than 3. Their conjecture is based on a scaling argument.

At the other extreme, Parisi and collaborators [MPV, MPR] predict an in�nity of pure states

in the thermodynamic limit. Their proposal is inspired by the (non-rigorous) picture of the

SK-model. Although this model is of the mean-�eld type, it is nevertheless claimed that the

situation is also correct for �nite dimensional models (down to d = 3). In particular, their analysis

concentrates on the so called overlap distribution P (q).19 The use of this order parameter (better:

function) in analytical and numerical studies has been questioned in [FH4, NS5].

Intermediate scenarios have been discussed as well [BF, NS1{6, N, vE]. The main idea in the

approach of Newman and Stein is to classify the possible scenarios on the basis of �rst principles,

using only general ergodic properties using the concept of metastates described above.

In this context, in one of their most recent papers [NS6], they also conjectured that in a

disordered lattice system, in any approximate decomposition of a �nite volume Gibbs states into

\pure states", the weights in this decomposition should be mostly concentrated on a single subset

of states that are related by an exact symmetry of the system, while other states would appear

with a weight that tends to zero as the volume tends to in�nity. The particular subset chosen

could of course be random and could depend strongly on the volume. This behavior is called

chaotic size dependence.

The model we shall introduce shortly, illustrates these concepts in the case where the number

of pure states is uncountable. While models with a �nite number of pure states are common, and

also a case with countably many states has been treated (the standard Hop�eld model with �N

patterns [BG3]), the appearance of a continuum of limiting states in a model with discrete spins

19The overlap distribution is the distribution on [0;1] of the replica overlap under the product of two Gibbs

measures with the same realization of the disorder.
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is rather rare.

1.5 Gaussian Hop�eld Model: Random Symmetry Breaking

Let us state the de�nitions of our variant of the Hop�eld model and the main quantities of

interest. This is again informal in style; we refer to Chapter 10, for more precise de�nitions

and exact results. The general set up is as in Section 1.1. The (�nite) con�guration space is

�N = f�1;+1gN . The disorder is modeled by random variables �
�

i
[!], i 2 N, � = 1; 2. However,

in this case, we not only take only two patterns,20 but they are also standard Gaussian variables

instead of Bernoulli.

The overlap parameters m
�

N
[!](�) are de�ned as in (1.3), that is

m
�

N
[!](�) =

1

N

NX
i=1

�
�

i
[!]�i: (1:26)

The Hamiltonian is

HN [!](�) = �N
2

X
�=1;2

�
m
�

N
[!](�)

�2
= �N

2
kmN [!](�)k22: (1:27)

This system has a peculiar feature. If we rewrite �01
i
= �

�1
i
= �

1
i
cos(�) + �

2
i
sin(�) and �

02
i
=

�
0�
i
= �

1
i
sin(�)� �2

i
cos(�) the Hamiltonian has the same form in the primed variables. However,

this transformation is a statistical symmetry, mapping one disorder realization of the model to

another one, drawn from the same distribution, as opposed to for example the spin-ip symmetry

which is an exact symmetry for any given realization of the disorder.

Through this Hamiltonian, �nite volume Gibbs measures on �N are de�ned by

GN;�[!](�) � 2�N
e
��HN [!](�)

ZN;� [!]
: (1:28)

We will be concerned exclusively with the low temperature region, that is � > 1. Since the

number of pattern is very small compared to the system size, we base our analysis on the induced

distribution of the overlap parameters (compare the remarks in Section 1.1, page 5)

QN;� [!] � �N;�[!] ÆmN [!]
�1
: (1:29)

The extremal Gibbs measures are constructed by tilting the Hamiltonian (1.27) with an external

magnetic �eld, that is,

H
h

N [!](�) � �N
2
kmN [!](�)k22 �N(h;mN [!](�)); (1:30)

where h = (b cos(#); b sin(#)) 2 R2 . The corresponding measures on the spins and on R2 are

denoted by Gh
N;�

[!] and Qh

N;�
[!], respectively. So, the �rst problem to be solved is

20Any �nite number would do; two is the least non-trivial case and is chosen to keep technicalities minimal.
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Question 1: What is the set of extremal measures?

The answered is found by taking �rst the thermodynamic limit and then relaxing the magnetic

�eld to 0, that is, the iterated limits limb#0 limN"1.

Result 1.1: For each direction of the external �eld, the measures Qh

N
[!] and Gh

N
[! converge

almost surely. The limit

lim
�#0

lim
N"1

Qh

N
[!] = Æ(r� cos(#);r� sin(#));

where r� is a positive number depending on �, is independent of !, whereas the limit of Gh
N

does

depend on !.

This means that the AW-metastate on the level of the induced measures is just a Dirac mass on

a deterministic point mass in R2 . On the other hand, the metastate on the level of the Gibbs

measures is a Dirac mass on a random measure depending on the realization of the disorder. We

have here the situation (1.23), respectively (1.24). Since there is one degree of freedom in the

magnetic �eld (its direction), one readily gets

Result 1.2: The set of limiting induced measures is indexed by the circle �1. Moreover, for each

! 2 
, the set of limiting Gibbs measures is indexed by �1.

The more interesting problem is the case without a tilting �eld.

Question 2: What are the limiting states when no external �eld is applied?

It turns out that in this case we are in the situation described under point (ii) (page 18), namely

that one has convergence in distribution of the measures QN and GN , and the corresponding

metatstate is of the form (1.25).

Result 2: Both QN [!] and GN [!] converge in distribution. The AW-metastate on the level of

the induced measures is the image of the uniform distribution on [0; �) under the map

[0; �) 3 # 7! 1

2
Æm(#) +

1

2
Æ�m(#);

where m(#) = (r� cos(#); �� sin(#)) 2 R2 and r� is as in Result 1.1. The AW-metastate on the

level of the Gibbs measures is the image of the uniform distribution on [0; �) under the map

[0; �) 3 # 7! G1;�;m[!](f�I = sIg) =
1

2

Y
i2I

e
�si(�i[!];m)

2 cosh�(�i[!];m)
+

1

2

Y
i2I

e
��si(�i[!];m)

2 cosh�(�i[!];m)
:

The fact that the metastates are images of the uniform distribution on an interval is a consequence

of the stochastic symmetry which was mentioned before. We also mention that the breaking of

the stochastic symmetry is not universal. In particular, the standard Hop�eld model with two

patterns, that is, if the �
�

i
are i.i.d. �1 Bernoulli random variables, the uctuations are too small

too provoke it. The metastate on the level of the induced measures is in this case supported on
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point masses at all four points in R2 that are related by a stochastic symmetry (this points lie on

the coordinate axes at a certain distance m� from the origin, where m� satis�es the Curie-Weiss

consistency relation m� = tanh�m�).

The proofs of the above results are close in spirit to large deviation theory. More precisely, one

deals with a random rate function for the induced measures Q. In particular, its uctuations have
to be controlled. The proof of Result 2 is the more delicate one. In fact, one has to consider the

number of global extrema of a sequence of random processes on �1 that converges in distribution

to a Gaussian process. We thus prove �rst a result on the limiting process, and use then a strong

approximation result. This means that there exists a sequence of processes that converge almost

surely to the limiting process and is equal in distribution to the original sequence. This allows to

get the results for the original sequence. We observe that it is absolutely necessary that we have

a �nite number of patterns, which implies that all the processes take value in the same space,

namely R2 (or some other �nite dimension).

So, Result 2 shows that �nite systems are eventually well approximated by a pair of states.

The next question is then obviously, which of the uncountably many achieve this:

Question 3: Which limiting measures describe a �nite system most accurately?

We will show that the answer to the above question depends sensitively on the system size. In

particular, there is a subsequence of volumes such that along this sequence, the best in�nite pairs

are distributed uniformly on the circle. On the level of the induced measures, this is the following

statement.

Result 3: There exist deterministic sequences of volumes Nk such that the empirical metastate

taken along Nk converges almost surely to the law of the limiting induced measure.

This means that the sequence of measures comes close to any of the in�nite states. The system

thus shows chaotic size dependence. The result relies on the fact that �nite size measures are

approximately independent if the sequence is sparse enough (Nk = k! will do).

Finally, we want to conclude with some open problems inspired by this model. As mentioned

above, it is crucial that we have only a �nite number of patterns. A canonical question is thus

Open problem 1: Consider the case of a growing number of patterns.

The methods used in the results above depend critically on the fact that the number of patterns

is �nite. New ideas have therefore to be found to treat this problem.

All models treated in this thesis are of mean-�eld type. A generalization in a di�erent direction

is to look at a corresponding model on the lattice with long-range interactions.

Open problem 2: Consider a Kac variant of this model. That is, take as phase space f�1;+1gZ
and a formal interaction,

H [!](�) = �1

2

X
(i;j)2Z2

MX
�=1

�
�

i
�
�

j
J(i� j)�i�j;

where J(i� j) = J(ji � jj), and J(x) = 1I[�1=2;1=2].
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Kac models have recently gained a renewed interest. In particular, the magnetization pro�le

was considered (for example in the random �eld Ising model [COP], or in the standard Hop�eld

model [BGP3]). In our case, the relevant feature is again that the mesoscopic magnetization has

uncountably many equilibrium values (indexed by S
1), being thus closer to a rotor model (in

the sense that there may be arbitrarily small excitations of the ground states). With this, we

conclude the introduction to this thesis.
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Part I

The Multi-Spin Interaction

Model





2 Results and Relation to the REM

2.1 De�nitions and Results

In this �rst part, we deal with the Hop�eld model with p-spin interactions. We �rst recall the

de�nitions and then present in detail our results. There will be a certain overlap with Section 1.2,

but statements are cast into a more precise form.

Let (
;F ;P) be an abstract probability space and f��
i
gi;�2N a family of i.i.d. Bernoulli vari-

ables, taking values 1 and �1 with equal probability. Let � = f+1;�1g, and �N the Cartesian

product. We equip �N with the product topology and the uniform distribution as a priori measure

P� .

De�ne for each N 2 N a (�nite) random Hamiltonian, that is, a function HN : 
 � �N ! R

by

HN [!](�) � �
�

p!

N2p�2

� 1
2
M(N)X
�=1

X
i1<:::<ip

pY
l=1

�
�

il
�il : (2:1)

The value of p is considered a �xed parameter of the model, and will in the following be even and

at least be 4. The upper limit M(N) in the �rst sum of (2.1) should scale as Np�1, i.e.

lim
N"1

M(N)

Np�1 = � <1: (2:2)

The limit � will also turn out to be a crucial parameter for the behavior of the system. In the

sequel, we will write with slight abuse of notation M(N) = �N
p�1 even for �nite N .

To simplify notation, we will use the following multiindex notation. For �nite subsets I of the

natural numbers, and real numbers (xn)n2N, let by xI =
Q

l2I xl. The Hamiltonian (2.1) can

then be written as

HN [!](�) = �
�

p!

N2p�2

� 1
2
M(N)X
�=1

X
I�N

jIj=p

�
�

I�I ; (2:3)

where N = f1; : : : ; Ng.
These Hamiltonians de�ne random, �nite volume Gibbs measures GN;�[!] by assigning each

con�guration � 2 �N a weight proportional to its Boltzmann factor, that is

GN;�[!](�) = 2�N
e
��HN [!](�)

ZN;� [!]
: (2:4)

Consider now the Hamiltonian as a random process indexed by � 2 �N . We state the following

identities, which are veri�ed by direct calculations. The mean of HN with respect to P vanishes

for all �, that is

E HN (�) = 0; 8� 2 �N
; (2:5)

whereas the variance satis�es (for some number C depending on p only)

�N(1� CN
�1) � E HN (�)2 =

p!

N2p�2

M(N)X
�=1

X
I�N

jIj=p

1 � �N; (2:6)
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which motivates our choice of normalization in the de�nition of HN . The covariance is given as

E HN (�)HN (�
0) =

p!

N2p�2

M(N)X
�=1

X
I�N

�I�
0
I = �NR

p(�; �0)(1 +O(N�1)); (2:7)

where R(�; �0) � 1
N

P
N

i=1 �i�
0
i
is the (normalized) replica overlap. Note that this covariance is in

leading order and up to the factor � the same as the covariance for the p-spin SK-model ([T4]).

The normalizing factor ZN in (2.4) is called partition function and it is given by

ZN;� [!] = E� e
��HN [!](s)

; (2:8)

where E� is the expectation with respect to the a priori distribution on �N . The annealed

partition function is the mean of ZN under P. Observe that for any � 2 �N , the Hamiltonian

HN (�) has the same distribution, and thus E E �ZN = E�E e
��HN = E e�HN (�).

The quenched free energy FN;� [!] is de�ned as the normalized logarithm of the partition

function, that is, FN;� [!] � 1
N
lnZN;�[!].

21 The annealed free energy F an
N;�

is the normalized

logarithm of the expectation of the partition function, i.e. F an
N;�

= 1
N
ln E ZN;� . Observe that by

H�olders's inequality, the quenched free energy and the annealed free energy are convex functions

of �.

We also recall the second model that will be considered. On the same con�guration space and

with the same random variables �, we de�ne macroscopic random order parameters

m
�[!](�) � 1

N

NX
i=1

�
�

i
�
i
: (2:9)

These parameters are considered as components of a vector in RM(N) with M(N) as in (2.2) (in

fact, the resulting vector is con�ned to [�1; 1]M(N)). A new sequence of random Hamiltonians in

now de�ned through

�HN [!](�)�
N

sp

�
km[!](�)kpp � E km[!](�)kpp

�
; (2:10)

where s = sp > 0 satis�es

s
2 = s

2
p
= (2p� 1)!!� ((p� 1)!!)2; (2:11)

and n!! is de�ned as22

n!! =

8>>>>><>>>>>:

n�2
2Y

i=0

(n� 2i); if n is even;

n�1
2Y

i=0

(n� 2i); if n is odd.

(2:12)

21Note that physicists often use a di�erent normalization, FN = � 1

�N
lnZN .

22This is the number of possible arrangements of n+ 1 elements in pairs.
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From the above de�nitions, one easily deduces that

E �HN (�) = 0; 8� 2 �N
; (2:13)

and

E �HN (�) �HN (�) = �N(1 +O(N�1)): (2:14)

The fundamental di�erence to the Hamiltonian H appears, when we look at the covariance of �H.

It is given by

E �HN (�) �HN (�
0) =

�N

s2p

pX
q=2
even

((p� q � 1)!! )2
�
p

q

�2

q!R(�; �0)q(1 +O(N�1))

= �Ngp(R(�; �
0))(1 +O(N�1));

(2:15)

where the double factorial is set to one for non-positive values of the argument. From the above

expression, we clearly see that the Hamiltonian �H always contains a contribution corresponding

to the p = 2 Hamiltonian. It is therefore not surprising, that the limit p ! 1 behaves quite

di�erently than in the case of the interaction H. We de�ne the Gibbs measures and the free

energies in exactly the same way as for H. The resulting quantities will be denoted by an

additional bar.

The �rst result we prove for both choices of the Hamiltonian is that for high enough temper-

atures (that is, low values of �), the limit of the annealed free energy exists.

Theorem 2.1: If � < e
�2(p!)

1
2 � �

0
p
, then the annealed free energy corresponding to H

satis�es

F
an
N;� =

��
2

2
(1 +O(N�1)): (2:16)

The corresponding result for the interaction �H reads

Theorem 2.1': Assume that � <
sp

2
= ��0p. Then

�F an
N;� =

��
2

2
(1 +O(N�1)): (2:17)

Note that for larger values of �, the annealed free energy diverges, that is, limN F
an
N;�

= +1.

Jensen's inequality implies that the expectation of the free energy is less than the annealed free

energy,

E FN;� =
1

N
E lnZN;� �

1

N
ln E ZN;� = F

an
N;�

: (2:18)

We de�ne the critical temperature to be the in�mum of values for which the annealed free energy

exists and equality in (2.18) holds, i.e. in terms of �,

�p � sup
�
� � 0 : lim sup

N"1
E FN;� = lim sup

N"1
F
an
N;�

	
; (2:19)
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and the analogue value �0p for the Hamiltonian �H. Observe that in general limN E FN need not

exist.

Relation (2.7) shows that up to a very small error, the covariance of the interaction H is

identical to the covariance of p-spin SK Hamiltonian. This motivates a comparison with the

random energy model (REM), introduced by Derrida [D1,D2] as a caricature of a spin-glass. Let

us recall its de�nition. In this model, the energy associated to the spin con�gurations � 2 �N

are i.i.d. Gaussian variables
p
NX� with mean zero and variance N (i.e. the fX�g�2�N are i.i.d.

standard normal random variables). The partition function is then

Z
REM
N;� = E� e

�
p
NX� : (2:20)

It follows from standard results on extremes of independent random variables (for this and sharp

results on the uctuations see [BKL]) that23

f
REM

�
= lim

N!1

1

N
E lnZREM

N;�
=

(
�
2
=2, if � �

p
2 ln 2

�
p
2 ln 2� ln 2; if � �

p
2 ln 2

(2:21)

whereas the annealed free energy satis�es

1

N
ln E ZREM

N;�
=
�
2

2
; (2:22)

for all values of �.

It will turn out that as p tends to in�nity,
p
��p tends to the critical value

p
2 ln 2 of the REM.

Moreover, pointwise in �; �,

1

�
lim
p!1

lim
N!1

1

N
E lnZN;� =

1

�
f
REM

�
: (2:23)

It is a priori not clear, why this behavior should be expected. First of all, our couplings between

spins are not Gaussian variables. Also, although the covariance process of our Hamiltonian

converges pointwise to the covariance process of the REM Hamiltonian, it is obviously a \quite

di�erent matter to make the iterated limits limp"1 limN"1, or the iterated limits limN"1 limp"1"

(quote from [T4], page 3).

The reason is that the great number of �'s makes the \spin couplings" behave in some sort

like Gaussians. This fact is already reected in the calculation of the annealed free energy. In

fact, the bound �0p is exactly the value for which the Gaussian approximation fails. Below this

value of �, one shows that the free energy, as well as the critical � are essentially equal to those in

the p-spin SK-model, for which the convergence of these quantities to the REM have been shown

(compare [T4]). The precise statement is given by the next theorem. First, recall the de�nition

of the Cram�er entropy I(t):

I(t) =

� 1
2
(1� t) ln(1� t) + 1

2
(1 + t) ln(1 + t); if jtj � 1;

+1; otherwise.
(2:24)

23This is already contained in [D2]
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We then have the following bounds on the critical temperature.

Theorem 2.2: The critical value �p = �p(�) satis�es

�p(�)
2 � min

 
�
0
p
2

4
; inf
t2[0;1]

I(t)
1 + t

p

�tp

!
� ��p(�)

2
: (2:25)

Furthermore, if � � 8 ln 2
p!

= �p then

�p(�)
2 � 2 ln 2

�
� �̂p(�)

2
: (2:26)

If � � �p, then �
2
p � p!

4
.

Remarks: (i) It is reasonable to suspect that the inequality (2.26) is strict. Indeed, in the

case of the p-spin SK-model, this can be shown by a judicious bound on the supremum of the

Hamiltonian which supposedly could be used in our case as well [B2].

(ii) The bounds on the critical temperature are essentially (up to a factor
p
�) the same as for

the p-spin SK-model ([T4], Theorem 1.1).24

It is elementary that as p tends to in�nity,

inf
0�t�1

(2(1 + t
p)I(t))1=2 = 2

p
ln 2

�
1� 2�p�1

ln 2

�
+O(p32�2p): (2:27)

This, together with the convexity of the free energy in �, will allow us to prove the following

statement.

Theorem 2.3: As p!1, the lower bound ��p " �̂. Moreover, pointwise in �, �,

lim
p"1

lim
N"1

1

N
E FN;� = f

REM

���1=2 : (2:28)

The basic strategy used to prove these results are rather general. In Section 2.2, we will explain

them by means of the analogous calculations in the REM. For now, we just mention that the

hard part is to prove the lower bound (2.25), whereas the upper bound (2.26) is comparatively

easy and will follow from an estimate on the ground state energy.

In the case of the Hamiltonian �H, we get the following bounds.

Theorem 2.2': The critical value ��p = ��p(�) satis�es

��p(�)
2 � min

 
��0p

2

4
; inf
t2[0;1]

I(t)
1 + gp(t)

�gp(t)

!
� ��p(�)

2
: (2:29)

Furthermore, if � � 8 ln 2
p!

= �p then

�p(�)
2 � 2 ln 2

�
� �̂p(�)

2
: (2:30)

24Observe that in [T4], the normalization of the Hamiltonian contains an extra factor 2�1=2.
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If � � �p, then �
2
p � p!

4
.

An important point in the study of disordered models is the question of self-averaging of the free

energy. The following result settles this matter in the case of the interaction H.

Theorem 2.4: There exists a constant C such that the variance of the free energy satis�es

E
�
(FN � E FN )2

�
� CN

�1
: (2:31)

Furthermore, for " 2 (0; 1
2
), and � > 0,

P
�
jFN � E FN j � �N

�"� � C�
�2
N

2"�1
: (2:32)

This shows that, as one would expect, the uctuations of the free energy are of the order of

N
�1=2. However, the above result is very weak. At least one hopes for a result of the form (1.17).

Moreover, from the results in the p-spin SK-model, the REM (for these cases, see [BKL]), and

the result below on the second Hamiltonian, one suspects that the uctuations are of much lower

order, at least for small �.

Theorem 2.4': If � < ��p(�) (as in (2.29)), then there exist C1; C2 > 0 such that

P

�
�FN � 1

N
ln E �ZN � u

N

�
� C1e

f(u)
; (2:33)

where

f(u) = max

��
u� 2 ln 2

�C2

�
;
u� 2 ln 2

�C2

�
: (2:34)

Moreover, for all values of �,

P

�
�FN � 1

N
ln E �ZN +

u

N

�
� e

�u
: (2:35)

The estimate on the uctuations above the annealed free energy follows immediately from Cheby-

shev's inequality with �rst mean, applied to the function �ZN . This argument obviously holds

also for the Hamiltonian HN .

The following results connects the critical temperature to the behavior of the order parameter

R(�; �0). The �rst one might be called an integration by parts formula since in the case of Gaussian

interactions (the p-spin SK-model, see [T4]), it is an easy consequence of the relation

E [gf(g)] = E [g2 ]E [f 0(g)]; (2:36)

which holds for any centered Gaussian random variable g and any function f not growing faster

than some polynomial at in�nity.

Theorem 2.5: The replica overlap R(�; �0) satis�es

�E
@FN

@�
= ��

2(1� E GN;� 
 GN;�[R(�; �0)p](1 +O(N�1)); (2:37)
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Observe that the �rst term on the right is in fact the derivative of the annealed free energy.25

We then have the following consequence to Theorem 2.2 and Theorem 2.5.

Theorem 2.6: If � < �p, then

lim sup
N"1

E GN;� 
 GN;� [R(�; �0)p] = 0: (2:38)

If lim supN E @FN

@�
< ��, then

lim inf
N"1

E GN;� 
 GN;� [R(�; �0)p] > 0: (2:39)

In particular, (2.39) holds for all � � �̂p. Moreover, for every " > 0 there exists a set I �
(�p; �p + ") of strictly positive Lebesgue measure on which the condition (2.39) is also satis�ed.

It seems reasonable that (2.39) holds for all � above the critical �p, but there is no a priori reason

which prohibits a reentrant phase transition.26

Inequality (2.39) expresses in a strong way that below the critical temperature, the Gibbs

measure condensates on a small subset of the con�guration space. From the results in the p = 2

model, one expects this subset to be close to some of the patterns �� for small values of �. On

the other hand, for large values of �, one can show that this almost never happens:

Theorem 2.7: Suppose that � satis�es ��p(�) > (p!)�1=2. Then there exists a Æ 2 (0; 1
p
) and

C > 0 such that for all N large enough

P[arg sup jHN (�)j 2
M(N)[
�=1

BÆ(�
�)] � N

�1
; (2:40)

where BÆ(�
�) is the NÆ-ball around �� in the space RN with respect to the Hamming metric. In

particular, there exists an �sp = �sp(p) such that (2.40) holds for all � > �sp.

The proof of this result is based on the comparison between the ground state energy of the system

and an estimate on the values of the Hamiltonian in the balls around the patterns. While the

former increases as
p
�, the latter is almost constant and with high probability close to N(p!)�1=2.

While one cannot show at this point that the system condensates on a set that is close to the

extremal value of the Hamiltonian, the above theorem already tells us that this single con�guration

has exponentially more weight than the balls around the patterns. More precisely, one expects to

have di�erent disjoint regions in con�guration space (termed lumps) which carry the mass of the

measure. And these lumps will not be close to the patterns. This means that we are in a region

of disordered condensation, or a spin glass phase.

To conclude, we state a result for the interaction �HN which goes in the same direction as

2.6. However, the proof does not rely on an integration by parts formula similar to (2.37), but is

25Our order parameter (the second term on the right) is thus the di�erence between the derivatives of the two

free energies, which from a physical point of view is a quite nice result.
26In fact, the set of points where this happens could be countably in�nite and even have an accumulation point

at �p. Of course such a pathological behavior is not expected.
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based on the extremely small uctuations in the low temperature region (Theorem 2.4', inequality

(2.34)).

Theorem 2.6': If � < ��p(�) (as in (2.29), then there exist constants ;K > 0 such that

E [�N;� 
 �N;�[e
NR(�;�0)2 ]] � K; (2:41)

for all  < 
�. In particular, this implies that

E [exp(�N;� 
 �N;� [NR(�; �
0)2])] � K: (2:42)

The rest of Part I is organized as follows. In Section 2.2, we explain the ideas behind the proof of

the bounds on the critical temperature by calculating the corresponding quantities in the REM.

In Chapter 3, Theorem 2.1 is proved. Chapter 4 and 5 are devoted to the lower, respectively the

upper bound on the critical � (as well as the proof of Corollary 2.3). In Chapter 6 the results on

the uctuations are proved. Chapter 7 deals with the result on the replica overlap (Theorem 2.5

and Corollary 2.6). In the last chapter of this part, we collect the proofs of all results on the

second Hamiltonian �HN . Finally, the Appendix A contains a concentration of measure result

which is a slight improvement of a theorem by Ledoux [Le] and is used in the course of the proof

of Theorem 2.2.

2.2 Second Moment Method: The REM

In this section, we like to comment upon and explain the methods used to prove the bounds on

the critical temperature. Since the calculations are somewhat technical in our case, we illustrate

the general idea in the case of the REM. The ideas are the same, but the simple structure of this

models allows to understand better the main argument.

The upper bound (2.26) is in fact a rather trivial corollary of the extreme value behavior of the

Hamiltonian, that is, the ground state energy, in physicists' terms. The key idea is to bound the

supremum of HN (�) by the supremum of independent random variables. One also knows that

the derivative of the free energy with respect to � is equal to the expectation of the Hamiltonian

with respect to the associated Gibbs measure. This gives an upper bound on the former quantity,

from which one can directly deduce an upper bound on the critical �.

Let us explain this in the case of the REM. Recall that in this model, the Hamiltonian is a

i.i.d. random process indexed by the con�gurations �, distributed asN (0; N). By straightforward

calculation, one veri�es the following identity,27

@F
REM
N

@�
= � 1

N
GN;�[HN ]; (2:43)

and thus

E
@FN

@�
� 1

N
E [sup

�

jHN (�)j]: (2:44)

27This relation obviously holds for any Hamiltonian. In fact, it is a paradigm of statistical physics that

mean values of extensive quantities are obtained by taking the derivative of the free energy with respect to their

conjugated intensive quantities.
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A well known inequality (veri�ed by integration by parts) then states that

1

N
E [sup

�

HN (�)] =

1Z
0

P [sup
�

jHN (�)j > Nu]du: (2:45)

Estimating the excess probability of the supremum of random variables by the sum of the excess

probabilities for each of the variables28 yields immediately

P [sup
�

jHN (�)j > tN ] � 2NP [jHN (�)j > tN ] � 2N+1
e
� t2N

2 : (2:46)

We use (2.46) in (2.45) for t �
p
2 ln 2. For values less than this cuto�, we use the a priori bound

P [sup� jHN (�)j > tN ] � 1. This implies that

1

N
E [sup

�

HN (�)] �
p
2 ln 2 + 2

1Z
p
2 ln 2

e
�N( t

2

2
�ln 2)

dt

�
p
2 ln 2 + CN

�1 � �
0 + CN

�1
:

(2:47)

This is the upper bound on the derivative of the expectation of the free energy. Suppose now

that � >
p
2 ln 2 = �

0. The bounds (2.44) and (2.47) then imply that

E FN (�) � E FN (�0) + (� � �
0)�0 + CN

�1
; (2:48)

and in the limit

lim sup
N"1

E FN (�) � ��
02

2
+ ��

0 =
�
2

2
� 1

2
(� � �

0)2 <
�
2

2
; (2:49)

which by de�nition means that �0 � �REM. In the case of the p-spin Hop�eld model, the above

calculations are identical except for the bounds on the extrema of the Hamiltonian, where the

non-Gaussian character induces somewhat more involved calculations.

The basic idea behind Talagrand's approach to prove the lower bound (which he did for the

p-spin SK-model in [T4]), is to obtain a variance estimate on the partition function. This will

imply that the expectation of the logarithm behaves like the logarithm of the expectation of this

quantity. In the REM, one would naively compute

E [ZREM
N;�

2] = E�;�0 E e
�
p
N(X�+X�0)

= 2�2N

0@X
� 6=�0

e
N�

2

+
X
�

e
2N�

2

1A
= e

N�
2
h
(1� 2�N ) + 2�NeN�

2
i
:

(2:50)

28Note that in the case of independent Gaussian random variables, even the distribution of the supremum is

well known. See [LLR] for an introduction to extreme value theory.
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The second term in the brackets is exponentially small if and only if �2 < ln 2, and this cannot

be the critical value since it violates the upper bound �0 above.29 The point is that while in the

computation of E e2�
p
NX� , the dominant contribution comes from the part of the distribution of

X� around X� = 2�
p
N , whereas in E ZREM

N;�
the main part is contributed by X� around �

p
N .

One is thus led to consider the second moment of a suitably truncated version of ZREM
N;�

. Namely,

for c > 0,
~ZREM
N;�

(c) = E� e
�
p
NX�1IfX�<c

p
Ng: (2:51)

One then �nds that (modulo irrelevant prefactors)

E ~ZREM
N;� (c) =

8<: e
�2N
2 ; if � < c;

1p
N(��c)

e
N�c�Nc2

2 ; if � > c:

(2:52)

Trivially, for � � c,

E ~ZN;� (c) � E ZN;�

�
1� e

� 1
2
(c��)2N

�
(2:53)

On the other hand,

E ~ZN;� (c)
2 = (1� 2�N )

�
E ~ZN;� (c)

�2
+ 2�NE e2�

p
NX�1IfX�<c

p
Ng; (2:54)

where the second term satis�es

2�NE e2�
p
NX� �

(
2�Ne2�

2
N
; if 2� < c

2�Ne2c�N�
c2N
2 ; otherwise;

(2:55)

or

2�NE e2�
p
NX�1IfX�<(1+")�

p
Ng

� (E ~ZN;� )
2 �

(
e
�N(ln 2��2)

; � <
c

2
;

e
�N(c��)2�N(ln 2� c2

2
)
;
c

2
< � < c:

(2:56)

Hence, for all c <
p
2 ln 2, and all � 6= c

E
( ~ZN;�(c)� E ~ZN;� (c))

2

E [ ~ZN;� (c)2]
� e

�Ng(c;�)
; (2:57)

where g(c; �) > 0. Thus, by Chebyshev's inequality, it is immediate that

lim
N"1

1

N
E ln ~ZN;�(c) = lim

N"1

1

N
ln E ~ZN;� (c); 8c <

p
2 ln 2: (2:58)

Since this gives a lower bound of the free energy that is as close to the upper bound as desired,

we see that the upper bound gives in fact the true value.

This is a remarkable feature of the REM: the expectation of the logarithm of the partition

function coincides with the log of the expectation of a suitably truncated partition function. This

is clearly rather special to the REM. However, the above method is general enough to provide

lower bounds in the far more complicated situations of the p-spin SK-model (see [T4]) and, as we

will show, in the p-spin Hop�eld model.

29This is already contained in [D2]
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In this chapter, the existence of the free energy for small enough � is proved (Theorem 2.1). As

remarked after (2.8) above, E ZN;� = E e��HN [!](�) and is independent of �. Hence,

ln E ZN;� = ln E e��HN [!](�) = ln E exp
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where we introduced the abbreviation Y � N
� p

2

P
I�N �

1
I . We now expand the exponential

function according to the bound
���ex � 1� x� x

2

2

��� < jxj3ejxj. Thus,
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(3:2)

Observe that the quadratic term is in fact just the variance of HN . We will show in a moment that

the expectation on the right-hand side of (3.2) is bounded by a constant times N3� 3p
2 . Assuming

this and recalling that p � 4, we get

ln E ZN �M(N) ln(1 +
�
2
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On the other hand, for N large enough,

ln E ZN �M(N) ln(1 +
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The bounds (3.3) and (3.4) are the statement of the theorem.



38 Chapter 3

We still have to show that the remainder on the right-hand side of (3.2) is indeed bounded by

the claimed value. To to this, we decompose the exponent into two factors, and use on one the

obvious bound jY j � (p!)�1Np=2. This yields

E

h
jY j3 exp
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�(p!)
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(3:5)

The term jY j2=p behaves like the square of a Gaussian. More precisely, we have the following

bound.

Lemma 3.1: Let fXigi=1;::: ;N be a sequence of i.i.d. Bernoulli variables, taking values +1,

�1 with equal probability. Then 8C 2 (0; e�p) there exists an "
0
C
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�N 2 N such that for all " > "
0
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264
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Proof: We shall show that
P
I�N XI is a function of

P
i2N Xi only. Since the distribution of

this latter random variable is well known, all we have to do is to �nd an accurate upper bound

for the function relating the two quantities. And since we are only interested in the tail behavior,

we can restrict our attention to large values of the sum (large meaning at least of the order ofp
N).

Suppose that
P

i2N Xi = N � 2l. Then the quantity
P
I XI is given byX

I�N

jIj=p
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pX
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(�1)k
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l
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where bzpc(�) � 1
p!

@
p

@zp
�
���
z=0

is the operator which extracts the coeÆcient of the term z
p from a

formal power series. To evaluate this coeÆcient, we consider the polynomial on the right-hand

side of (3.7) as a function from C ! C (by de�nition, it is analytic). Then, by Cauchy's integral

formula
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�p�1(1 + z)N�l(1� z)l dz; (3:8)

for any closed path C surrounding the origin counterclockwise. To evaluate this integral, we apply

the well known saddle point method (see for instance [CH]). We choose C to be a circle around

the origin with radius

r =
N � 2l

2(N � p)

 
1�

s
1� 4p(N � p)

(N � 2l)2

!
: (3:9)

Suppose that
4p(N�p)
(N�2l)2 < � < 1. Then the argument of the square root is positive. Moreover, the

following bounds for r hold,

p

N � 2l
� r � p

N � 2l
(1 + C1(�)); (3:10)
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where C1 increases from zero to some �nite constant as � varies from zero to 1.

Indeed,
p
1� x is C1 for all jxj < 1. Therefore, for all � < 1, we can �nd a C > 0 such thatp

1� x � 1� x

2
� Cx

2, for all jxj < �. Obviously, C tends to 1
8
as � tends to zero. This implies

the upper bound. On the other hand,
p
1� x � 1 � x

2
, for all x � �1, which yields the lower

bound.

The contour integral in (3.8) then becomes
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As usual, we expand the function g around its maximum (which happens to lie at # = 0) and try

to control the error. This yields

I = exp
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The main contribution comes from the term r
�p(1+ r)N�l(1� r)l. Using (3.10), this is bounded

by

r
�p(1 + r)N�l(1� r)l = exp (�p ln r + (N � l) ln(1 + r) + l ln(1� r))
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The integral in (3.12) is explicitly
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and can be bounded by (for all N large enough)�
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Finally, we estimate the error due to the remainder in the Taylor expansion in (3.12). One shows

by a straightforward computation that for all �; Æ > 0 there exists an �N�;Æ 2 N such that

jg(3)(#)j � p(1 + C1(�)) (1 + �(1 + C1(�)) + Æ) = pC3(�; Æ); (3:16)

where C3 = 1 for � = Æ = 0. Hence, the error committed can be bounded as (if N > �N�;Æ)
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This follows from the exact expression for g(3),
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which one gets through straightforward derivation.30

Inserting the bounds (3.13), (3.15), and (3.16) into the estimate (3.12) then gives

I � (N � 2l)p
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e
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and thus
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Let �(�; Æ) = e
(C1(�)+C3(�;Æ))p, for � 2 (0; 1) and Æ > 0. Then � is increasing in � and bounded

below by ep. Thus, for all C 2 (0; e�p), we can �nd ~� 2 (0; 1) and ~Æ > 0 such that C � �(~�; ~Æ)�1.
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Suppose that " > "~�;~Æ and N � �N~�;~Æ. Then, we have that
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by the standard bound on sums of Bernoulli variables. On the other hand, since
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implies that
4pN

(N � 2l)2
< ~� < 1; (3:24)

30Or alternatively with Mathematica.
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the condition following (3.9) is satis�ed and hence the above bound on f(
P

i2N Xi) is valid. Thus
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Hence, by (3.22) and (3.25),
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Thus, we have shown that for all C 2 (0; e�p), there exists ~"C = "~�;~Æ such that (3.26) holds for

all " > ~"C and all N large enough. Together with the analogue bound for the negative tails, this

proves the lemma. �

To �nish the proof of the theorem, let us go back to (3.5). To get the claimed bound, it is enough

to show that the integral on the right-hand side is bounded uniformly in N . Indeed, since the

variable Y satis�es the bound (3.6) of the lemma, we get for any C 0 < e
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By the preceding lemma, for any � � e
�2(p!)

1
2 , we can �nd C 0 < e

�p and a corresponding "0
C0

such that the above integral is �nite. This proves the theorem. �

We observe that we could have equally well replaced HN by in �HN in the proof of Theorem 2.1,

without changing the result (since only the square of the Hamiltonian does enter). We therefore

have readily the following result, which we state for further use.

Corollary 3.2: If � < �
0
p, then

E E �e
�HN = e

��2N
2

(1+O(N�1))
: (3:28)

Proof: Completely analogous to the proof of Theorem 2.1. �



4 Critical � and Convergence to the REM

4.1 Estimates on the Truncated Partition Function

We start with a lemma which will be applied frequently.

Lemma 4.1: If � < 1
2
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p, then there exists a constant C > 0 such that
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for all N large enough.

Proof: The proof is actually almost identical to the proof of Theorem 2.1. We start by expanding

the exponential up to order two, with the same error as in the proof of Theorem 2.1 (inequality

(3.2)). This error term is then treated similarly, by �rst decoupling the terms in � and �0 with

Cauchy-Schwarz. This already shows why � has to be less than half the bound of Theorem 2.1.

The linear term in the expansion vanishes, whereas the quadratic term gives us the covariance

term R(�; �0)p. Indeed, if we set Y �(�) = N
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I�I , we get
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We now apply the triangle inequality and Cauchy-Schwarz to the error term, which yields
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if � < 1
2
�
0
p
and N large enough, by the result in the proof of Theorem 2.1 (cf. the remark after

(3.2)).

The quadratic term in (4.2) is evaluated easily. One obtains (observing that the covariance of

HN appears)
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Hence,
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that is,
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This proves the lemma. �

To get the lower bound for the critical temperature, we would like to compare E Z2
N;�

and

(E ZN;� )
2. However, as mentioned in the introduction and explained in Section 2.2, it is es-

sential to do this comparison for a truncated partition function. De�ne therefore

eZN;�(c) � E�

h
e
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i
; (4:7)

for c > 1. The key observation is that the truncation has no inuence on the expectation of the

partition function if c is chosen appropriately. This is the content of the following lemma.
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Proof: Let us estimate (here and in the rest of the proof, q = q(N) � ��
2
N),
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Chebyshev's exponential inequality (applied to the expectation with respect to the disorder) yields

E ZN;� � E eZN;� � E� inf
t>0

e
�tcqE

h
e
��(1+t)HN (�)

i
: (4:10)

We now use Theorem 2.1 with � replaced by (1 + t)�. If (1 + t)� < �
0
p, we obtain

inf
t>0

e
�tcqE

h
e
��(1+t)HN (�)

i
� inf

t>0
e
�tcq+ (1+t)2q

2
+qCN�1

: (4:11)

The exponent is minimized for t = c� 1. For this value, the above condition is satis�ed since we

assumed that �c < �
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p, and we get
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where the second inequality follows from (2.16) in Theorem 2.1. Plugging (4.12) into (4.9) implies

the statement of the lemma. �

We now turn to the square of the truncated partition function. We bound the quantity

E e��H(�)��H(�0 )1If�HN�c��Ng1If�HN�c��Ng (4:13)

by two di�erent functions. When calculating the expectation with respect to � and �0, we use one

bound for small values of the replica overlap R(�; �0), and the other for the rest. De�ne therefore
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Then eZN;�(c)2 � S(b) + T (c; b; 1); (4:16)

for all b 2 (0; 1). We now control each of the terms separately. We start with S(b).
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Proof: If � satis�es the above condition, we can apply Lemma 4.1 to the integrand of the

right-hand side of (4.14). One obtains
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Thus,

E S(b) � E�;�0

�
e
��

2
N(1+R(�;�0)p+CN�1)1IfjR(�;�0)j<bg

�
� E�;�0

�
e
��

2
N(1+R(�;�0)2bp�2+CN�1)1IfjR(�;�0)j<bg

�
= e

��
2
NE�;�0

�
e
��

2
N(R(�;�0)2bp�2+CN�1)

�
:

(4:20)

By condition (4.17), for all " > 0 there exists N" 2 N such that
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for all N � N".

We now use a convenient identity for Gaussian variables, which goes under the name of

Hubbard-Stratonovich transform. In fact, for a standard normal random variable g (i.e. g is

distributed with density (2�)�1=2 exp(�x2=2) with respect to Lebesgue measure on R), one has

e
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2 = E ega . This identity, together with inequality (4.21), allows us to bound the second factor

on the right-hand side of (4.20) by
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We now use the fact that
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N
)
�Ni

:

(4:23)

As is easily checked by series expansion, coshx � exp x
2

2
, for all real x. Thus, for all " < 1

2
� ,

E g

h�
cosh(g

r
2( + ")

N
)
�Ni � E g

�
exp(g2( + "))

�
=

s
1

1� 2( + ")
:

(4:24)

This proves the lemma. �

The next result concerns the term T (c; b; 1) in (4.16).

Lemma 4.4: Let I(t) be the Cram�er Entropy as de�ned in (2.24). Suppose that there exist

c > 1, d > 0, such that

8t 2 [b; b0]; 2��2c
�
1� c

2(1 + tp)

�
� ��

2 + I(t)� d: (4:25)

Then, if

c < min
� 1
2�
�
0
p; 1 + b

p
�
; (4:26)

there exists �N 2 N such that for all N � �N ,

E T (c; b; b0) � e
��

2
N
e
�Nd

2 : (4:27)
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Proof: By de�nition,

E T (c; b; b0) = E�;�0 E

�
e
��(H(�)+H(�0))1IfjR(�;�0)j2[b;b0]g1If��(HN (�)+HN (�0))�2c��2Ng

�
: (4:28)

In a �rst step, we bound the expectation over the disorder. Chebyshev's inequality, applied to

the cut-o� of the Hamiltonian (let again q � ��
2
N), yields

E

�
1If��(HN (�)+HN (�0))�2cqge

��(HN (�)+HN (�0))

�
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e
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e
��(1�t)(HN (�)+HN (�0))

� (4:29)

To evaluate the expectation, we now use the the bound (4.1) from Lemma 4.1, with � replaced

by �(1� t). This gives, if �(1� t) < 1
2
�
0
p,

inf
t>0

e
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e
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q
:

(4:30)

The in�mum is attained for (1� t)(1+Rp) = c. The condition preceding (4.30) is then equivalent

to �c(1 + R
p)�1 < 1

2
�
0
p
, which is always satis�ed by the hypothesis (this is the �rst term on the

right-hand side in (4.26)). Moreover, the minimizing t has to be positive, which is assured by the

second term in (4.26). Inserting this value into (4.30), leads to

E
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e
��HN (�)��HN (�0)1If��HN (�)��HN (�0)�2c��Ng
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:

(4:31)

Finally, we integrate over all con�gurations �, �0 satisfying jR(�; �0)j 2 [b; b0]. We observe that

R(�; �0) has the same distribution as S(�) = N
�1PN

i=1 �i. Hence,
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h
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)
:

(4:32)

The second to last inequality follows from the hypothesis of the lemma, and the observation that

we sum over at most 2N values of S(�). The last one is valid for all N larger than a certain
�N 2 N. �
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From the preceding results, we now get a variance estimate for the truncated partition function.

Proposition 4.5: Suppose that � < ��p. Then there exist constants C > 0 and c > 1 such that

E [ ~ZN;� (c)
2] � C(E ~ZN;� (c))

2
: (4:33)

Furthermore,

P[ ~ZN;�(c) >
1

2
E ~ZN;� (c)] �

3

4C
: (4:34)

Proof: We �rst prove that the hypothesis implies that the assumptions of Lemmas 4.2{4.4 are

satis�ed. Consider therefore � < 1
2
�
0
p
such that

�
2
< inf

0�t�1
I(t)

1 + t
p

�tp
: (4:35)

Then it is immediate that

2��2
�
1� 1

2(1 + tp)

�
< ��

2 + I(t); (4:36)

for all t 2 [0; 1]. By continuity, there exist c� > 1 and d� > 0 such that 8c 2 (1; c�) and d 2 (0; d�)

2c��2
�
1� c

2(1 + tp)

�
< ��

2 + I(t) � d; 8t 2 [0; 1]: (4:37)

This implies the hypothesis of Lemma 4.4.

We now show that (E [ ~ZN ])2 is of the order of E [ ~ZN
2]. We start by �xing the free parameters

b, b0, and c. Choose �rst b such that (b) = 1
4
(or any other constant less than one half). Then

choose c such that

c < min

�
c
�
;
�
0
p

2�
; 1 + b

p

�
: (4:38)

Then the hypotheses of all preceding lemmas are ful�lled. Finally, choose b0 = 1. By Lemmas 4.3

and 4.4, we then have

E
�
~ZN

2
�
� E [S(b) + T (c; b; 1)] � (C1 + e

�Nd=2)e��
2
N
: (4:39)

The right-hand side is by Theorem 2.1 bounded by

(C1 + e
�Nd=2)e��

2
N � 2C2

�
E [ZN ]

�2
; (4:40)

which in turn is of the order of (E [ ~ZN ])2 by Lemma 4.2, so that

(C1 + e
�Nd=2)e��

2
N � C3

�
E [ ~ZN ]

�2
: (4:41)

Therefore,

E
�
~ZN

2
�
� C3

�
E [ ~ZN ]

�2
: (4:42)
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The second assertion of the proposition follows from the Paley-Zygmund inequality, which states

that for a positive random variable Y and any positive constant g,

P

h
Y � gE Y

i
� (1� g

2)
(E Y )2

E [Y 2]
: (4:43)

This relation gives us a lower bound on the probability that ~ZN � gE [ ~ZN ], which is strictly

greater than zero and uniform in N . Indeed, if we set g = 1
2
in (4.43), then, by (4.42), we get

P
�
~ZN � 1

2
E ~ZN

�
� 3

4C3

: (4:44)

This concludes the proof of the proposition. �

4.2 Proof of the Lower Bound

We use Proposition 4.5 together with a concentration of measure result to show that the mean

of FN cannot deviate too much from the logarithm of the mean of the partition function.

It follows from the de�nition, that ~ZN � ZN . Furthermore, Lemma 4.2 implies that for any

C1 2 (0; 1) there exists an N
0 such that for all N � N

0, E ~ZN � C1E ZN . Therefore, for any

C2 > 0, there exists an �N such that for all N � �N ,
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�
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With (2.16) from Theorem 2.1 and the de�nition of the free energy, we get

P
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Fix k > 1
2
, and suppose that E FN < ��

2
=2�N

k�1, in�nitely often in N . Then the right-hand

side of the last inequality is bounded by

P
�
~ZN � 1

2
E ~ZN

�
� P

�
FN � ��

2

2
� C2N

�1�
= P

�
FN � ��

2

2
+N

k�1 � N
k�1 � C2N

�1�
� P

�
FN � E FN � N

k�1 � C2N
�1�

:

(4:47)

We will deduce a contradiction to Proposition 4.5 by showing that this latter probability tends

to zero with N growing. We will use a deviation inequality, which is proved in the appendix as

Corollary A.4.

Let us generalize the space of the disorder. Namely, we consider f��
i
g�=1;:::M(N)

i=1;::: ;N as points

in the space RM(N)�N , equipped with the degenerate measure (1
2
Æ�1 +

1
2
Æ1)


M�N . The �nite

Hamiltonian and the free energy are then also functions on [�1; 1]M�N . With abuse of notation,

we denote by ! a point in this space, i.e. ! = f��
i
g�2M
i2N .
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Theorem 4.6: Suppose that GN : [�1; 1]L(N) ! R are smooth positive functions, separately

convex, and satisfy the following conditions: there exist constants c�; t�; �; � > 0 and a �N 2 N

such that for all N � �N ,

(i) for all c > c
�: P[kGNkLip > cN

�1=2] � e
�Æ(c)N , for some increasing function Æ;

(ii) for all t > t
�: P[jGN j > tN ] � e

��N(t��);

(iii) the Lipschitz constant as a function of N is uniformly bounded by some polynomial func-

tion p of N .

Then for all t > 0 and k 2 [1
2
; 1) there exists constants C > 0 and �N 2 N such that

P[NGN � N

Z
GNdP + tN

k] � e
�N2k�1t2

C ; (4:48)

for all N larger than �N .

Proof: The theorem is proved as Corollary A.4 in the appendix. �

All we have to do is to check that the hypotheses of Theorem 4.6 are satis�ed for GN = FN . It

is obvious, that the conclusion (4.48) is in contradiction with (4.44), and thus proves the lower

bound on the critical temperature.

Condition (iii) is easy to check (using simply that the supremum of H does not exceed a certain

power of N), as well as separate convexity in each of the variables �
�

i
. Positivity of the free energy

is assured by the following lemma.

Lemma 4.7: Consider FN;� as a function on [�1; 1]M(N)�N . Then FN;� is pair and convex

along each straight line passing through the origin. Moreover, FN;� [! = 0] = 0, as well as
d

d�
FN;� [!]j�=0 = 0, and hence FN;� is a non-negative function.

Proof: Let ! 2 [�1; 1]M(N)�N be �xed. Parametrize the line g through ! and the origin by � 2
R. Obviously, FN;� jg is symmetric with respect to the origin and continuous in !. Thus, without

restricting the generality, we may assume � > 0. It is easy to check that FN;� [�!] = FN;�p� [!].

Moreover FN;� is convex in �, since its second derivative with respect to � is the variance of HN

with respect to the Gibbs measure GN;� , and thus always non-negative. Finally, �p is a monotone,

non-negative function of � and hence FN;�p�[!] is convex in �. The same is true for all � < 0,

whence the �rst part of the lemma follows.

The proof that FN;� [! = 0] = 0 and d

d�
FN;� [!]j�=0 = 0 is obvious. From this and the fact

that FN;� is continuous in !, it follows that FN;� [!] � 0, for all ! 2 [�1; 1]M(N)�N . �

We now turn to the estimate on the Lipschitz norm of FN . Condition (iii) being checked, we now

show that (i) holds as well.

Lemma 4.8: There exist constants c�; C > 0, and �N 2 N such that for all c > c
� and all

N � �N there exist sets e
N � 
 such that FN
��e
N has Lipschitz constant less than cN

� 1
2 and

P[e
c] � Ce
�N(c�c�).

Proof: Suppose for the moment that there exists a set e
N such that the Hamiltonian restricted
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to this set has Lipschitz constant less than c1
p
N . Then it is straight- forward that the assertion

of the Lemma is true. Indeed, by de�nition of the free energy, it follows that (denote by �0 = �[!0])

1
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��FN [!]� FN [!
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uniformly in ! on e
N , which is the statement of the Lemma.

To prove that the Hamiltonian is indeed Lipschitz on a large set, we proceed as follows. De�ne

the overlap parameters by m
�

N
[o](�) � 1

N

PN
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i
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i
. Then one shows by induction over p that

the Hamiltonian can be expressed as
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where the numbers C 0
p;k;N

are almost constant in the sense that C 0
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(1+O(N�1)) (and

similarly for C 0
p;N

). Then it is immediate that
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for some constants Cp;k. It is not too diÆcult to bound the right-hand side. For every k,
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The �rst factor is easy to treat. Indeed, Cauchy-Schwarz yields
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It is now suÆcient to show that on a set of measure exponentially close to one, the second factor

in (4.52) (which is an upper bound for the Lipschitz constant of H) is bounded by some constant.

In order to symmetrize the terms, we apply the H�older inequality to each summand in this factor,

that is
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De�ne for each k the set 
k;c by
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On the complement of the union of these sets, i.e. on (
S
k

k;c)

c, the Lipschitz constant of the

Hamiltonian is bounded by a constant times
p
N . We now calculate the probability of the sets


k;c. By elementary arguments,
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To evaluate the latter probability, we use Chebyshev's exponential inequality and then expand

again the exponential function. We get

P

24N2k�p
M(N)X
�=1

m
�

N
[!](�)4k�2 > c

35 � inf
q>0

e
�qc

M(N)Y
�=1

E eqN
2k�p

m
�

N
(�)4k�2

: (4:57)
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The term on the left-hand side is easy to treat. With the obvious de�nition of s2
k;N

(which is

bounded, and converges to some constant sk as N " 1), we get
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The remainder (the term on the right-hand side) in (4.58) is also easy to bound. Since we

anticipate that q has to be proportional to N to counter the term 2N coming from the sum over

all con�gurations � in (4.56), we let q = N . Then, since jm�
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where the last line follows from the Gaussian tail behavior of the variable 1p
N

P
N

i=1 �
�

i
�i. Inserting

the previous two bounds in (4.58) gives
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As before, we use the bound ln(1 + x) � x, for all x � 0. This gives
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Using this result in (4.56), we get
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Since we want the right-hand side to vanish exponentially in N , we should choose c such that

c > 
�1 ln 2 + �s

2
k
� 2 ln 2 + �s

2
k
� c

� (4:64)

If this condition is satis�ed, then for any Æ > 0 there exists an �N 2 N such that
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for all N larger than �N .

De�ne therefore

~
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for all c > c
�. Then there exist constants C > 0, and �N 2 N such that

P
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for all N � �N .

On the set ~
N , the Lipschitz constant of the Hamiltonian is bounded by a constant times
p
N ,

and therefore, by the derivation at the beginning of this proof, the same bound holds for the free

energy. This concludes the proof of Lemma 4.8. �

We now check condition (i) of Theorem 4.6. This is a much simpler task, since we have already

calculated almost everything.

Lemma 4.9: The Hamiltonian satis�es
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Proof: We start with a crude bound to extract the supremum. Standard arguments and

Chebyshev's inequality in its exponential form yield
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We now use Theorem 2.1, respectively Corollary 3.2 to bound the two integrals and obtain
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(4:70)
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This proves the lemma. �

We are �nally able to prove the lower bound on the critical �.

Proof of Theorem 2.2, lower bound: By Proposition 4.5, if � < ��p,

P

�
~ZN � 1

2
E ~ZN

�
� C1: (4:71)

On the other hand, by (4.47), if for some k > 1
2

E FN � ��
2

2
�N

k�1 (4:72)

in�nitely often in N , then

P

�
~ZN � 1

2
E ~ZN ]

�
� P

�
FN � E FN � N

k�1 � C2N
�1�

: (4:73)

By Theorem 4.6, whose hypotheses are assured by Lemmata 4.7{4.9, this latter probability tends

to zero exponentially fast inN2k�1. This contradicts (4.71) and we therefore reject the assumption

(4.72). This proves (2.25). �

4.3 Upper Bound on the Critical �

The proof of the upper bound in Theorem 2.2 is considerably simpler than the lower bound. It

follows essentially from the following observation. The de�nitions imply that

N
@FN [!]

@�
= GN;�[!] [�HN [!](�)] ; (4:74)

from which we get immediately

NE
@FN

@�
� E sup

�

jHN (�)j: (4:75)

Suppose we knew a uniform upper bound for the last expression, and thus on lim sup
N
E @FN

@�
.

Then we only had to �nd the greatest value of �, for which the derivative of the annealed free

energy is still lower than this bound. Let us therefore estimate E sup� jHN (�)j.

Lemma 4.10: If � � 8 ln 2
p!

, the right-hand side of (4.75) satis�es

E sup
�

jHN (�)j � N

p
2� ln 2 + C1

p
N + C2; (4:76)

for some positive constant C. If � � 8 ln 2
p!

, then

E sup
�

jHN (�)j � N
�(p!)1=2

2
+ C: (4:77)
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Proof: Since jHN (�)j is a positive random variable, we have

E sup
�

jHN (�)j =
1Z
0

P[sup
�

jHN (�)j > u] du

= N

1Z
0

P[sup
�

jHN (�)j > tN ] dt

(4:78)

The integrand was already estimated in Lemma 4.9. We distinguish three di�erent intervals of t,

where we bound this probability by 1, by the Gaussian, and the exponential bound, respectively.

Thus,

E sup
�

jHN (�)j � N

t0Z
0

dt+ C1N

t1Z
t0

exp(�N(
t
2

2�
� ln 2)) dt

+ C1N

1Z
t1

exp(�N(
(p!)1=2

2
t� �p!

8
� ln 2)) dt;

(4:79)

where t0 =
p
2� ln 2 and t1 =

�(p!)1=2

2
. If � � 8 ln 2

p!
, then t0 � t1, and hence, by standard

arguments,

E sup
�

jHN (�)j � N

p
2� ln 2 + C2

p
N + C3: (4:80)

If � � 8 ln 2
p!

, then t1 � t0. In this case, the sum on the right-hand side of (4.79) consists of only

two terms, and hence

E sup
�

jHN (�)j � N
�(p!)1=2

2
+ C3: (4:81)

This proves the lemma. �

Proof of Theorem 2.2, upper bound: The proof of the upper bound for the critical � is

now straightforward. Suppose that � � 8 ln 2
p!

. Let

�1 =

r
2 ln 2

�
: (4:82)

Then for all � � 0, we have by the mean value theorem that

E FN (�) � E FN (�1) + (� � �1)
1

N
E sup

�

HN (�): (4:83)
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Suppose that � > �1. Then

lim sup
N"1

E FN (�) � lim sup
N"1

E FN (�1) + (� � �1)
p
2� ln 2

� ��
2
1

2
+ (� � �1)��1

= ���1 � ��
2
1

2

=
��

2

2
� 1

2
(� � �1)2

<
��

2

2
;

(4:84)

which by de�nition means that �p � �1.

If � � 8 ln 2
p!

, we proceed as above, but we de�ne

�1 =

r
p!

4
; (4:85)

and use the bound (4.77) for the supremum of the Hamiltonian. This concludes the proof of the

upper bound. �

4.4 Convergence to the REM: Proof of Theorem 2.3

Suppose that � < ��p. In this case, limN F
an

N
= f

REM

���1=2 . Thus, if E FN did not converge to

f
REM

���1=2 , then in particular it would satisfy the condition (4.72) in�nitely often in N . But this has

been shown to be false for all � < ��p. Thus the claim is valid for these values of �. Furthermore,

since

lim
p"1

��p = �̂ =

r
2 ln 2

�
(4:86)

the assertion is true for all � < �̂.

Assume that � � �̂. By convexity,

E FN;� � E FN;�p + ��p(� � �p); (4:87)

and thus
lim
p"1

lim inf
N"1

E FN;� � lim
p"1

lim inf
N"1

E FN;� + � lim
p"1

�p(� � �p)

=
��̂

2

2
+ ��̂(� � �̂)

=
p
2� ln 2� � ln 2 = E fREM

���1=2 :

(4:88)

On the other hand, the REM free energy is always an upper bound. Indeed, the third line of

(4.84) already gives the desired bound (note that the third line in (4.84) is also valid for � = �̂),

lim sup
N"1

E FN;� �
p
2� ln 2� � ln 2 (4:89):

This proves the assertion for � � �̂, and thus the theorem. �



5 Fluctuations of the Free Energy: Proof of Theorem 2.4

We �rst introduce some objects, which will be useful in the course of the proof. For q 2 N, let

V
q be a linear space of dimension

�
N

q

�
with an orthonormal basis f Ig indexed by the subsets

I � f1; : : : ; Ng of size q. Let T q = T
q

N
: V q ! V

q be a linear map, given by its matrix

representation with respect to f Ig by

T
q

I;J =

M(N)X
�=1

�
�

I �
�

J : (5:1)

The proof of the variance estimate (2.31) is based on Burkholder's inequality for discrete martin-

gales. De�ne a decreasing sequence of �-algebras fFkgk2N by

Fk = �

�
f��

i
g�2N
i�k

�
: (5:2)

This allows to introduce a martingale di�erence sequence

~F k � E [F jFk ]� E [F jFk+1 ]: (5:3)

Hence, F � E F =
PN

k=1
~F k and, by the well-known Burkholder inequality

E
�
(F � E F )2

�
= E

24 NX
k=1

~F k

!2
35 � NX

k=1

E

h�
~F k
�2i

: (5:4)

It therefore remains to bound the individual terms in the above sum. A conventional strategy

(see [PS], [B1]) is to introduce a family of Hamiltonians ~Hk(�; u), de�ned by

~Hk(�; u) = H(�) + (1� u)
(p!)

1
2

Np�1

M(N)X
�=1

X
I3k
jIj=p

�
�

I�I : (5:5)

This new Hamiltonian is equal to the original one for u = 1, and independent of f��
k
g�=1;::: ;M

for u = 0. Let
~Zk(u) = E� [e

�� ~Hk(�;u)]; (5:6)

and

G
k(u) =

1

N
ln ~Zk(u)� 1

N
ln ~Zk(0): (5:7)

This latter quantity relates to ~F k via

~F k = E [Gk(1)jFk]� E [Gk (1)jFk+1] (5:8)

Observe that Gk(u) is convex in u, Gk(0) = 0, and thus jGk(1)j � max(j(Gk)0(1)j; j(Gk)0(0)j),
where the prime denotes the derivative with respect to u. Moreover, since ~Hk(�; u = 0) does not
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depend on �k, it follows that (G
k)0(0) = 0, and hence we can use jGk(1)j � j(Gk)0(1)j. Explicitly,

this is

jGk(1)j � j(Gk)0(1)j =

�������
(p!)

1
2

Np
GN;�[!]

0B@M(N)X
�=1

X
I3k
jIj=p

�
�

I�I

1CA
������� : (5:9)

Let us now use this in (5.4). We observe that by (5.8), the properties of conditional expectations,

Jensen's inequality (see also [B1] and [BGP2]), and (5.9) (in the last line),

E [( ~F k )2] = E
�
(E [Gk(1)jFk]� E [Gk (1)jFk+1])2

�
= E

�
(E [Gk(1)� E [Gk(1)jFk+1]jFk])2

�
� E

�
E [(Gk(1)� E [Gk(1)jFk+1])2jFk]

�
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�
(Gk(1)� E [Gk(1)jFk+1])2

�
= E [(Gk (1))2]�

�
E [Gk(1)jFk+1]

�2
� E [(Gk (1))2] � E [(Gk (1))02]:

(5:10)

We now use the de�nition of Gk, which yields

E
�
(Gk(1))02

�
=
�
2
p!

N2p
E

264G
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I
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375
375 : (5:11)

We separate the integrand in two terms,0B@M(N)X
�=1

X
I3k
jIj=p

�
1
I�

�

I

1CA
0B@M(N)X

�=1

X
J3k
jJj=p

�
�

J �
2
J

1CA =
X
I;J3k

�
1
I
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J +

M(N)X
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X
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I�
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I �
�

J :

(5:12)

The �rst term on the right is treated uniformly by a result from Part II. Indeed, consider
P

�
�
�

I �
�

J

as an element of the matrix (TI;J )I;J representing a linear map from an
�
N�1
p�1

�
dimensional vector

space onto itself. By Theorem 8.3, this yields (k � kop denoting the operator norm of a matrix)

N
�2p

X
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e
�C4N

1=4
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� C4N
�2
:

(5:13)

To bound the second term, we use an approach which will be developed much further in the next

chapter. Namely, we expand the Boltzmann factors appearing in the Gibbs measures. We start

by writing

E

264G
2
264M(N)X

�;�=1
�6=�

X
I;J3k

�
1
I�

2
J �

�
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�

J
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M(N)X
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J

##
:

(5:14)
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We now treat the right-hand side term by term. The idea is to consider the part of H which is

independent of both �
�

I and ��J as the main object, and the rest as a perturbation. To this aim,

we introduce some notation. Let P = fX � N : jX j = pg, and de�ne for any K 2 P,

BK = fL � P : L \ K 6= ;g; (5:15)

and BcK = P n BK. Consider now

E�1 ;�2

"
e
��H(�1)��H(�2)

Z2
�
1
I�

2
J �

�

I �
�

J

#
(5:16)

as a function f of the variables f��KgK2BI and f��K0gK02BJ only. We now expand the this function

about 0, up to third order, with a remainder of forth order. Taylor's theorem implies that

f(f��KgK2BI ; f��K0gK02BJ ) � f(0) +
X
K2BI

�
�

K
@

@�
�

K
f(0) +

X
K2BJ

�
�

K
@

@��K
f(0)

+
1

2

X
K;K02BI

�
�

K�
�

K0
@
2

@�
�

K@�
�

K0
f(0) +

1

2

X
K;K02BJ

�
�

K�
�

K0
@
2

@��K@�
�

K0
f(0)

+
X
K2BI

X
K02BJ

�
�

K�
�

K0
@
2

@�
�

K@�
�

K0
f(0) +

1

6

X
K;K0;K002BI

�
�

K�
�

K0�
�

K00
@
3

@�
�

K@�
�

K0@�
�

K00
f(0)

+
1

6

X
K;K0;K002BI

�
�

K�
�

K0�
�

K00
@
3

@�
�

K@�
�

K0@�
�

K00
f(0)

+
1

2

X
K;K02BI

X
K002BJ

�
�

K�
�

K0�
�

K00
@
3

@�
�

K@�
�

K0@�
�

K00
f(0)

+
1

2

X
K2BI

X
K0;K002BJ

�
�

K�
�

K0�
�

K00
@
3

@�
�

K@�
�

K0@�
�

K00
f(0)
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(5:17)

where sup f (iv) stands for the supremum of the fourth derivatives of f . Straightforward calcu-

lations show that the only non-zero term are @
2

@�
�

I
@��
J

f(0) and @
3

@�
�

I
@��
J
@�

�

K

f(0) for any K 2 BI ,
respectively @

3

@�
�

I
@��
J
@��
K

f(0) for any K 2 BJ , as well as the error term.

Observe that the derivatives of f at 0 do not contain any of the variables �
�

i
, i 2 I, nor ��

j
,

j 2 J . Integrating (5.17) with respect to these variables thus only a�ects the monomials in �
�

K
and ��K0 . Thus, by the Bernoulli nature of the variables �
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i
,
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Furthermore, observe that since f is a function on a compact set (a hypercube) any derivative of

order q of f is bounded by a constant times Nq(1�p). Hence,

E f � C6N
2�2p + C7N

4�4p
N

2p�2 � C8N
2�2p (5:19)

Using the above in (5.14), and summing over all allowed � and �, respectively I and J , we obtain

N
�2pE
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2
264M(N)X

�;�=1
�6=�

X
I;J3k

�
1
I�

2
J �

�

I�
�

J

375
375 � C9N

�2 (5:20)

Inserting (5.20) and (5.13) in (5.10), and using this in (5.4), we �nally get

E
�
(F � E F )2

�
� C1

NX
k=1

E

h�
~F k
�2i � C10

NX
k=1

N
�2 = C10N

�1
: (5:21)

This proves the �rst part of Theorem 2.4. Inequality (2.32) then follows by Chebyshev-Markov

(with second moment). �



6 Condensation

6.1 Integration by Parts Formula: Proof of Theorem 2.5

Once again, a lengthy calculation will retrieve the Gaussian result, for which an integration by

parts yields the result (2.37) almost immediately (see (2.30) in [T4]).31 We start by evaluating

the left-hand side of (2.37). By de�nition,

�E
@FN

@�
= ��E GN;� [H] =

�(p!)
1
2

Np�1

X
�;I

E E �

�
e
��H(�)

ZN
�
�

I�I

�
: (6:1)

The idea is to isolate in the Hamiltonian the contribution from the term
Q

l2I �
�

l
�l, expand the

exponential of this quantity, and �nally integrate with respect to these variables. Let B � P =

fX � N : jX j = pg be de�ned by

B = BI = fJ 2 P : J \ I 6= ;g ; (6:2)

and let Bc = P n B. De�ne

H
0[!](�) = H

0
�;I [!](�) = � (p!)

1
2
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X
� 6=�

X
J2P

�
�

J �J �
(p!)

1
2

Np�1

X
J2Bc

�
�

J �J (6:3)

Let G0 = G0
�;I denote the Gibbs measure associated to the Hamiltonian H 0, and Z 0

�;I = E�e
��H0

I

the corresponding partition function.

Proposition 6.1: There exists a constant C > 0 such that���N1�pE G [�
�

I�I ]� �(p!)
1
2N

2�2p + �(p!)
1
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2�2pE G0
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�
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2
I
���� � CN

1�2p
: (6:4)

Proof: The key idea is to expand ad nauseam Boltzmann factors in the disorder variables (a

�rst glimpse of which we already had in Chapter 5). Let xJ = N
1�p

�
�

I , for J 2 B. De�ne the
function f : Rn ! R, with n =

�
N

p

�
�
�
N�p
p

�
through

f((xJ )J2B) = G [xI�I ] : (6:5)

This function is C1 and therefore, by Taylor's Theorem, there exists a C1 > 0 such that for any

x 2 [�1; 1]n,

f(x) � f(0) +

5X
k=1

X
p:jpj=k

x
p
D
p
f(0)

p!
+ C1

 X
J2B

xJ

!6

; (6:6)

where we have used the usual multi-index notation, that is, p is a multi-index (pJ )J2B , jpj is
the sum of its components, p! =

Q
J pJ , and x

p =
Q
J x

pJ

J , resp. Dp =
Q
J

d
p
J

dx
p
J

J

.

31This idea goes back to [ALR]



62 Chapter 6

Let us start with the error term in (6.6). The �
�

I are centered Bernoulli random variables, and

thus,

E

 X
J2B

xJ

!6

� C2N
6�6pE

 X
J2B
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� C3N
6�6p

N
3p�3 = C3N

3�3p
: (6:7)

We now turn to the lower order terms appearing in (6.6). The main part of the calculations will

be to reduce the number of terms appearing. Observe �rst that

E [xpDp
f(0)] = E [Dp

f(0)E�;I [x
p]] = 0; (6:8)

if there exists an i 2 I such that jfJ 2 B : J 3 i and pJ > 0gj is odd. Also,

D
p
f(0) = 0 (6:9)

whenever pI = 0 (since in this case, a factor xI is left over after taking derivatives). In particular,

f(0) = 0. This implies that the expectation of the left-hand side of (6.6) can be explicitly written

as (two or more indices Ji in a sum are understood to be di�erent)
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(6:10)

Let us treat term by term in the above expression. The �rst one is easy to calculate, and is
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which is exactly the term on the left-hand side of (6.4). This means that we have to show that the

remaining terms are small corrections (that is, we have mainly to worry about the powers of N).

From now on, we will use extensively the fact that the derivatives of f are bounded uniformly by

a constant.
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Most of the remaining terms in (6.10) can be bounded uniformly. The third term in this

expression satis�es ����E �x4ID4
If(0)

4!

����� � C4N
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: (6:12)
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since j(J1 [ J2 [ J3) n Ij � 3p� 4, andX
J1;J22B

E
�
x
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IxJ1

xJ2
D

3
IDJ1

DJ2
f(0)
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� C

0
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� C7N

5�4p
; (6:15)

since jJ1 [ J2 n Ij can be at most equal to p. Finally,X
J1;J2;J32B

E
�
xIx

2
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xJ2

xJ3
DID

2
J1
DJ2

DJ3
f(0)

�
� C8N

5�5p
N

2p�1

= C8N
4�3p

:

(6:16)

The remaining terms have to be treated with more care. In fact, we will apply again a Taylor

expansion.

Lemma 6.2: There exists a number C > 0 (depending only on p and �) such that������
X

J1;J22B

E [xIxJ1
xJ2

DIDJ1
DJ2

f(0)]

������ � CN
2�2p

N
�1
: (6:17)

Proof: From (6.8), we know that to get a non-zero value in the expectation, the sets J1 and

J2 have to ful�ll the following condition: each i 2 I has to be in exactly one of the sets Ji. This
leaves at most p elements in the set I 0 = (J1 [ J2) n I. We distinguish two subsets of I 0. The

set of i 2 I 0 which are in exactly one of the sets Ji, denoted by Jo and those that are in both

of them, denoted by Je. Obviously, jJoj + 2jJej = p, and both jJoj and jJej are even. We now

decompose the right-hand side of (6.17) asX
J1;J22B

E [xIxJ1
xJ2

DIDJ1
DJ2

f(0)]

=

pX
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375 :
(6:18)
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If k is small enough, we can use a uniform bound. Indeed, let k � p� 4. Then�������
X

K�NnI
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X
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� C1N
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N

2�2p
:

(6:19)

The only remaining cases are k = p and k = p� 2. To bound them, let

B0 = fX � N n I : jX j = p and X [ K 6= ;g [ K; (6:20)

and for all J 2 B0, let xJ = N
1�p

�
�

J . Furthermore, observe thatX
J1;J22B

Jo=K;Je=L

DIDJ1
DJ2

f(0) (6:21)

is independent of (xJ )J2B[I . De�ne therefore

gI;K(fxJ gJ2B0) � xK

X
J1;J22B

Jo=K;Je=L

DIDJ1
DJ2

f(0): (6:22)

Let k = p. Then, by Taylor's theorem, the fact that we consider a bounded domain, and the

same symmetry reasons as before,

E [gI;K(fxJ gJ2B0)] � E

h
gI;K(0) +

X
J2B0nK

xKxJDKDJ g(0) +
1

2
x
2
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+
X

J1;J22B0nK
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xJ2

DIDJ1
DJ2

gI;K(0) + C2(
X
J2B

xJ )
4
i
:

(6:23)

In the last expression, we bound every term uniformly. This yields,

E [gI;K(fxJ gJ2B0)] � 0 + 0 + C3N
2�2p + C4N

3�3p
N
p + C5N

4�4p
N

2p�2 � C6N
3�2p

: (6:24)

Summing over all allowed K, we get for the last summand in (6.18)
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2�2pE
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N
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N
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2�2p
N
�1
;

(6:25)

since p � 4.
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Let us turn to the case k = p� 2. By the same arguments as before, we get that (observe that

the quadratic part now includes more terms),
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L�Nn(I[K)
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+
X

J1;J22B0
xKxJ1

xJ2
DKDJ1

DJ2
g(0) + C8(
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xJ )
4
i
:

(6:26)

Suppose that p � 6 (the case p = 4 will be treated below). Using uniform bounds, we get
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(6:27)

In the case p = 4, one sees from (6.27) that the only term which is not of the desired order in

(6.26) is X
J1;J22B0

xKxJ1
xJ2

DKDJ1
DJ2

g(0) (6:28)

To get the desired bound, we have to expand it again.

Lemma 6.3: There exists a constant C > 0 such that

�������
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Proof: We proceed in exactly the same way. Note that in this case, k = 2 and l = 1. With the
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analogue de�nitions of Je and Jo, we get
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=
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(6:30)

with the de�nitions

B00 = fX � N n (I [ K) : jX j = p and X \ K 6= ;g ; (6:31)

and

hK0;L0((xJ )J2B00) = xK0
X

J1;J22B
0

Jo=K
0;Je=L

0

DKDJ1
DJ2

g(0): (6:32)

Suppose that k0 = 2 (the case k0 = 0 does not appear). Then a uniform bound will suÆce.

Indeed,
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and thus
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(6:34)
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On the other hand, if k0 = 4; 6, we expand the right-hand side of (6.30) up to third order. One

obtains
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264N3�3p
�
�

K0
X

J1;J22B
0

Jo=K
0;Je=L

0

DKDJ1
DJ2

g(0)

375
� N

2�2pE

h
h(0) +

X
J2B

0

J�K
0

xK0xJDK0DJ h(0)

+
X

J1;J22B
0

J1;J2�K
0

xK0xJ1
xJ2

DK0DJ1
DJ2

h(0)

+ C3(
X
J2B00

xJ )
4
i
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�
0 +N

2�2p+p�k0 +N
3�3p+2p�k0 +N
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�
:

(6:35)

Summing over all allowed K;L;K0;L0 yields (since k0 + l
0 � 3 + k

0

2
and k + l = 3)X
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X
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(6:36)

Finally, we sum over all allowed values for k0 and l
0, using respectively the bounds (6.34) and

(6.36). This yields the upper bound of (6.29). The lower bound follows by changing the sign of

the error term in (6.35). �

Using (6.19), (6.25), and (6.27) or Lemma 6.3 in (6.18), we getX
J1;J22B

E [xIxJ1
xJ2

DIDJ1
DJ2

f(0)] � CN
2�2p

N
�1
: (6:37)

This is the upper bound in (6.17). To get the lower bound, we proceed as above, but change the

sign of the quartic (error) term in (6.23), and (6.27) resp. This concludes the proof of Lemma 6.2.

�

The fourth order term in (6.10) is taken care of by the following, analogous result.

Lemma 6.4: There exists a constant C > 0 such that������
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Proof: The proof is almost identical to the previous one. De�ne

Jo = Jo(J1;J2;J3) =

8<:i 2[
j

Jj n I : i is in an odd number of the Ji's

9=; (6:39)

and

Jo = Jo(J1;J2;J3) =

8<:i 2[
j

Jj n I : i is in an even number of the Ji's

9=; : (6:40)

Obviously, jJoj+ 2jJej � 2p, since otherwise at least one i 2 I is not in any of the Ji, and thus

this term vanishes when integrated over �
�

I . Also, jJoj is even. Write the sum on the left-hand

side of (6.38) asX
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Suppose that k = jKj � 2p � 6. Then, since the derivatives of f at 0 are bounded by some

constant, and l � p� k

2
,�������
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(6:42)

This means that all these terms are already smaller than desired, and we are left with the cases

k = 2p, k = 2p�2, and k = 2p�4 (since K has to be even). We treat them in the usual way. Let

B0 = fX 2 N n I : jX j = p and X \ K 6= ;g [ K: (6:43)

and xJ = N
1�p

�
�

J , for J 2 B0. De�ne furthermore

g((xJ )J2B0) = gI;K;L((xJ )J2B0) = xK

X
J1;J2;J32B

Jo=K;Je=L

DIDJ1
DJ2

DJ3
f(0): (6:44)

We observe that unless p = 4 and k = p � 4, the term xK does not appear in the derivatives of

f at 0, and therefore Dn

Kg(0) = 0, for all n 6= 1. In this case (i.e., either k 6= p� 4 or p 6= 4), we
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have by Taylor's theorem, and the same arguments as before (that is, the conditions on the sets

Ji)
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Integrating with respect to �
�

K, and uniform bounds on the remaining terms yields
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(6:46)

Summing over all sets K of cardinality k, and all sets L of size l then gives (remember that

l � p� k

2
)
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(6:47)

since p � 4.

Finally, if p = 4 and k = 2p � 4 = 4, then there is an additional term in (6.45). Namely, we

have to add 1
2
x
2
KD

2
Kg(0). This term, however, is also bounded uniformly by��x2KD2

Kg(0)
�� � C6N

2�2p (6:48)

and is therefore of the same order as the error term in (6.45). The above bound (6.47) is therefore

also valid in this case.

Inserting the bounds (6.42) and (6.47) into the decomposition (6.41) proves the upper bound.

The corresponding lower bound is obtained by changing the sign of the error term in (6.45). This

concludes the proof of Lemma 6.4. �

Finally, the remaining term in (6.10) is treated in the same way by

Lemma 6.5: There exists a constant C > 0 such that������
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Proof: The proof is almost identical to the previous one. De�ne again Jo and Je (compare

(6.39) resp. (6.40)) by

Jo = Jo(J1;J2;J3;J4) =

8<:i 2[
j

Jj n I : i is in an odd number of the Ji's

9=; (6:50)

and

Jo = Jo(J1;J2;J3;J4) =

8<:i 2[
j

Jj n I : i is in an even number of the Ji's

9=; : (6:51)

Obviously, jJoj+ 2jJej � 3p, since otherwise at least one i 2 I is not in any of the Ji, and thus

this term vanishes when integrated over �
�

I . Also, jJoj is even. Write the sum on the left-hand

side of (6.49) asX
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Suppose that k � 3p� 8. Then�������
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This means that all these terms are at most of the desired order. We are left with the cases

k = 3p; 3p�2; 3p�4; 3p�6. Let again B0 be the set of J � N n (I [K) of size p plus the element

K, and also xJ = N
1�p

�
�

J , for J 2 B0. Then,
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(6:54)
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Again, we expand the last expression up to �fth order. Since k � 3p�6, we also have that k > p,

and thus Dn

Kg(0) = 0 for all n 6= 1. Hence,
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Taking expectation with respect to �
�

K yields
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Finally, we sum over all allowed sets K and L. Since l � 3 and k + l � 3p, we get
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Inserting the bounds (6.53) and (6.57) into the decomposition (6.52) yields the upper bound. To

get the lower bound, change the sign of the error term in (6.55). This proves Lemma 6.5. �

To �nish the proof of Proposition 6.1, insert the bounds from Lemmas 6.2{6.5, together with the

bounds (6.12){(6.16) into (6.10). This gives the upper bound in (6.4).

The corresponding lower bound is obtained by changing the sign of the error term in (6.10).

This concludes the proof of Proposition 6.1. �

Proposition 6.6: There exists a constant C > 0 such that���E G
2 [�1I�2I ]� E G0
2
�;I [�
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I ]
��� � CN

1�p
: (6:58)

Proof: For the last time, we expand the Boltzmann factors in the variables (xJ )J2B (with B
as in (6.2)). Let

g((xJ )J2B) = G
2[�1I�2I ]: (6:59)
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Then,
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X
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(6:60)

On the other hand,

E G
2 [�1I�2I] � E
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xJ )
2
i

= E G0
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2
I ] + 0� C2N

1�p
:

(6:61)

This proves the proposition. �

Proof of Theorem 2.5: By Proposition 6.1, resp. 6.6, there exist constants C1; C2 > 0 such

that ����� 1
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I sI ]�
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:

(6:62)

This implies that

N
1�p

������
X
�;I

E G[��I �I ]� ��(p!)
1
2

X
I

�
1� E G
2 [�1I�2I ]
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whence
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respectively

��E G[H] =
�(p!)

1
2

Np�1 E G[
X
�;I

�
�

I�I ]

�
X
I�N

jIj=p

��
2
p!

Np�1 �
��

2
p!

Np�1 E G

2
h X
I�N

jIj=p

�
1
I�

2
I

i
� C3

� ��
2
N � ��

2
NE G
2 [R(�1; �2)p]� C5:

(6:65)
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Hence, since �E @F

@�
= � �

N
E G[H],�����E @FN

@�
� ��

2 + ��
2E G
2 [R(�1; �2)p]

���� � C6N
�1
: (6:66)

This proves Theorem 2.5. �

6.2 Condensation: Proof of Theorem 2.6

Theorem 2.6 is now a consequence of the convexity of the free energy. Suppose that � < �p.

Then

lim sup
N"1

E FN =
��

2

2
(6:67)

by the de�nition of �p. As remarked after their de�nition in Chapter 2, E FN is convex for all N .

It then follows from a standard result in convex analysis ([Ro], Theorem 25.7) that

lim sup
N"1

E
@FN

@�
=

@

@�
lim sup
N"1

E FN = ��: (6:68)

Hence, from Theorem 2.5,

E G
2 [Rp] + E
@FN

@�
= �� +O(N�1); (6:69)

and thus, passing to the limit,

lim sup
N"1

E G
2 [Rp] + �� = ��; (6:70)

which in turn implies that

E G
2
N

[Rp] = 0: (6:71)

Suppose now that

lim sup
N"1

E
@FN

@�
< ��: (6:72)

Then it follows immediately from Theorem 2.5 that

lim inf
N"1

E G
2 [Rp] = �� � lim sup
N"1

E
@FN

@�
> �� � �� = 0: (6:73)

This proves (2.39). To see where the condition (6.72) actually holds, we observe �rst that by

Lemma 4.10, it is satis�ed for all

� > �̂p =

r
2 ln 2

�
: (6:74)

Furthermore, Theorem 5.5 in [Ro] implies that the function

f(�) = lim sup
N"1

E FN (6:75)
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is a convex, bounded function on U = [0; �0p). By Theorem 25.3 in [Ro] it is thus di�erentiable on

an open set D � U which contains all but perhaps countably many points of U , and its derivative

f
0 is bounded on D. Lebesgue's integrability criterion (see for instance [He], Theorem 199.3) then

implies that

f(�) = f(�p) +

�Z
�p

f
0(u)du; 8� > �p: (6:76)

Now it is immediate that for all � > �p there must exist a set I � (�p; �) with strictly positive

Lebesgue measure, on which f
0 is strictly less than ��. Indeed, were this not the case, then

f � ��
2

2
, which contradicts the de�nition of �p.

Since � was arbitrary, the relevant condition (6.72) is satis�ed on sets of positive Lebesgue

measure arbitrarily close to �p. �

6.3 Spin Glass Phase: Proof of Theorem 2.7

We �rst prove two auxiliary lemmas that estimate the value of the Hamiltonian in the vicinity of

each pattern.

Lemma 6.7: The Hamiltonian evaluated at the patterns satis�es
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(6:77)

Proof: The Hamiltonian at the pattern �� is given by

H(� = �
�) = � (p!)
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(6:78)

which implies that
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We estimate the stochastic part in (6.79) with the same method used in the proof of Theorem 2.1.

By Chebyshev's exponential inequality, independence of �� and �� (for � 6= �), and expansion of

the exponential, we get for z > 0
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The error term can be written as
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This latter term is exactly the same as in (3.2) (with � replaced by t). Hence, we get (compare

(3.3))
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Minimizing the exponent yields
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This proves the claim. �

The next result shows that the Hamiltonian does not uctuate much around a pattern. This is in

fact a result that was already proved by Newman [N1] for the Hamiltonian �H. Our case is even

simpler. De�ne BÆ(�) to be the (NÆ)-ball around the con�guration � in the Hamming distance.

Then we have the following

Lemma 6.8: If Æ < 1
p
, then there exists a constant C > 0 such that
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where
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Proof: By standard arguments (see also [N1], in particular inequality (2.3) and surrounding

comments),
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(6:86)

where
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q

i
=

� ���
i
; if i � q;

�
�

i
; if i � q + 1:

(6:87)
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We start by calculating the di�erence jH(�q)�H(��)j. Let J = Jq = f1; : : : ; qg. One obtains
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Explicitly, this is
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Let us treat the stochastic term in (6.89) �rst. By the usual procedure, we get
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The last line follows from the usual bound on the error term (see the proof of Theorem 2.1 in

Chapter 3; in fact, t can even be chosen somewhat larger than �
0
p, since the sum over sets I

contains fewer terms than we had there).

To treat products of binomial coeÆcients in last expression, observe that if q � bÆNc < N

2
,

then the following inequality holds,
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Using (6.91) in (6.90) yields
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The deterministic term in (6.89) is given by (again using (6.91))
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If Æ < 1
p
, then the last line is bounded by the term for the maximum q. That is
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Collecting (6.92) and (6.94), we get

P
�
jH(�q)�H(��)j � 2p�1

(p!)
1
2

ÆN + zN ]

� 2 inf
t2(0;�0p)

e
�tzN exp

�
�t

2

2Np�1 2
p�1(N � q)p�1qr + C1

�
:

(6:95)

Plugging this into (6.86) gives
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It is straightforward to check that under our assumptions on Æ and for �xed t, the ratio between

two consecutive terms in the above sum is larger than 2, and therefore the whole sum is at most

twice the maximum term,

P[9� 2 BÆ(�
�) : jHN (�)�HN (�

�)j >( 2
p�1

(p!)
1
2

Æ + z)N ]

� 4

�
N

bÆNc

�
inf

t2(0;�0p)
e
�tzN exp

�
2p�1�t2

2
NÆ + C1

�
:

(6:97)
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Minimizing with respect to t and using Stirling's formula for the binomial factor concludes the

proof of Lemma 6.8. �

Proof of Theorem 2.7: We observe the following elementary fact. By the de�nition of the

free energy

FN (�) �
�

N
sup
�

jHN (�)j: (6:98)

Hence, by Theorem 2.4, for any �; z > 0 there exists C > 0 such that

P[
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Suppose that ��p(�) >
1
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1
2

. Then there exists � > 0 such that
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which is equivalent to
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The second inequality follows from the convexity of FN (�) (see (4.87)) and the de�nition of �p.

But then we can �nd Æ 2 (0; 1
p
) and z > 0 such that (for all N suÆciently large)
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; (6:102)

and (with the de�nition of fÆ from Lemma 6.8)

fÆ(z) + Æ ln Æ + (1� Æ) ln(1� Æ) > 0: (6:103)

By Lemma 6.7, resp. 6.8, for any m > 0, we can �nd an �N 2 N such that for all N � �N
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(6:104)

On the other hand, the inequality (6.99) implies that

P[sup
�

jHN (�)j � N
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� zN ] � CN

�1
; (6:105)
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so that �nally, by standard arguments,
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(6:106)

for all N large enough.

To show the existence of an �sp, we observe that the bounds (2.25) and (2.26) on the critical �

imply that the quantity ��p(�) �
p
� and is thus eventually larger than any �xed number. This

concludes the proof of Theorem 2.7. �



7 Proofs of the Results for the Second Interaction

7.1 Annealed Free Energy

The proof of Theorem 2.1' is almost identical to the calculation of the annealed free energy for

the Hamiltonian H. In fact, since we deal with powers of sums of Bernoulli variables, we do not

have to prove an equivalent to Lemma 3.1, but can use directly the standard bounds on empirical

averages of Bernoulli variables.

Proof of Theorem 2.1': We �rst observe the following two facts. Since the �
�

i
are mutually

independent, the expectation of the exponential decouples into the product of the expectations.

Furthermore, the distribution of Y
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= ( 1p
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P
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can thus write
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(7:1)

where �XN = XN � E XN .

In each factor of the left-hand side of (7.1) we apply the usual bound for the exponential

function, and obtain���E h exp��N1� p
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�XN
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� 1� �N
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(7:2)

The linear term on the left-hand side is equal to zero, since �XN is centered. The quadratic term

is equal to the variance of XN ,

E [(XN � E XN )2] = (2p� 1)!!(1 +O(N�1)) = s
2
p(1 +O(N�1)): (7:3)

We bound the error term on the right-hand side of (7.2). Let us show that

E [j �XN j3 exp(
�N

1� p
2

sp
j �XN j)] � C (7:4)

uniformly in N . Since j �XN j � jXN j � N
p=2, we can write

j �XN j = j �XN j
2
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2 : (7:5)

Then we see that the powers of N cancel in the exponent of (7.4). Moreover, j �XN j
2
p behaves

\almost like" the square of a Gaussian variable. To make this precise, use (7.5) in the exponent

of (7.4), which leads to
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Proofs for the Second Interaction 81

To bound the last expectation uniformly in N , we cut it into two pieces with the help of a cut-o�

, which satis�es

 > (2p� 1)!! = lim sup
N

E XN > 0; (7:7)

and is independent of N . Thus,
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(7:8)

The �rst term is easily seen to be bounded by a constant uniformly in N . We therefore turn to the

second. We partition [;1) into pieces of length l. Clearly, since the function jxj3 exp(�jxj2=p)
is increasing in jxj,

E

h
j �XN j3 exp

�
�

sp
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2
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X
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2
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�
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�
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h
j �XN j �  + il

i
;

(7:9)

if the limit on the right exists. To show this, we bound the probability appearing in the last

expression by

P

h
j �XN j �  + il

i
= P

h
jXN � EXN j �  + il

i
= P

h
XN �  + il + EXN

i
+ P

h
XN � � � il + EXN

i
:

(7:10)

Since  > E XN for all N , the second probability is zero for all i � 0 (remember that XN � 0).

Then, by the usual exponential bound for sums of i.i.d. Bernoulli variables,

P

h
XN �  + il + EXN

i
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h 1p
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�
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> ( + il + EXN )

1
p

i
� exp

�
� 1

2
( + il + EXN )

2
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�
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(7:11)

Using (7.11) in (7.9), we obtain
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Choose l < EXN . If � <
sp

2
, then the second factor in the exponent is negative. The series is

thus summable, and its value is some constant C depending on , l, but not on N . Using (7.12)

in (7.8) shows that (7.4) holds indeed uniformly in N .

To �nish the proof, we use (7.3) and (7.4) in (7.2) and obtain����E h exp��N1� p
2

sp

�XN

�i
� 1� (�N1� p

2 )2

2

���� � �
3
N

3� 3p
2

3!
C: (7:13)

We now proceed as in (3.3) and (3.4) which concludes the proof of Theorem 2.1'. �

We also have the analogue of Corollary 3.2.

Corollary 7.1: Assume that � < ��0
p
=

sp

2
. Then following holds for all large enough N

E [exp(�HN [!](�))] = e
�N

�2

2
(1+O(N�1))

: (7:14)

Proof: Completely analogous to the proof of Theorem 2.1'. �

7.2 Critical Temperature

Here again, the proof is almost identical to the Hamiltonian H. We start by stating and proving

the analogues of the results in Chapter 4.1.

Lemma 7.2: If � <
sp

4
=

��0p
2
, then

E e��
�HN (�)�� �HN (�) = e

�N�
2(1+gp(R(�;�

0)))(1+O(N�1))
: (7:15)

Observe that again the variance and the covariance of the Hamiltonian appear in the exponent.

Proof: We start in the same way as in the proof of Theorem 2.1'. The expectation of the

exponential can be decomposed into a product over all patterns �. We can therefore restrict our

attention to one generic factor. Using the same bound for the exponential function as in equation

(7.2) , we get
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The linear term in the above expression is zero. For the quadratic term we get
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The �rst and second term on the right-hand side in the above inequality are given by the variance

of �HN , that is, they are each equal to one. The third term is equal to 2gp(R(�; �
0)).

Finally, the error term is treated as in the proof of Lemma 4.1. Namely, using Cauchy-Schwarz

to separate the terms containing respectively � and �0, we get
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The factors appearing on the right-hand side of (7.18) can now be bounded uniformly in � and

N by some constant C2, if 2� <
sp

2
= ��p (by exactly the same argument as used in the proof of

Theorem 2.1'). To conclude, we use the standard bounds for lnx as in the proof of Theorem 2.1

(see relation (4.5)). �

De�ne the truncated partition function ~Z by (the bar over ~Z will be omitted for typographic

reasons)
~ZN;�(c) � E�

�
e
�� �HN [!](�)1If�� �HN (�)�c��2Ng

�
: (7:19)

Again, this truncation has no inuence on the expected value by the following result whose proof

is completely similar to the proof of Lemma 4.2 is therefore omitted.

Lemma 7.3: For all � > 0, c > 1, such that �c < ��0
p
, there exist constants K;K 0

> 0 such

that

E ~ZN;� = E E �

�
e
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�(c�1)2K0
N )E E �
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�
� (1�Ke

�(c�1)2K0
N )E �ZN :

(7:20)

Proof: See the proof of Lemma 4.2. �

The square of the truncated partition function is decomposed as in (4.16). Let

S(b) � E�;�0

�
e
��( �HN (�)+ �HN (�0))1IfjR(�;�0)j<bg

�
; (7:21)

and

T (c; b; b0) � E�;�0

�
e
��( �HN (�)+ �HN (�0))1IfjR(�;�0)j2[b;b0]g1If�� �HN (�)�� �HN (�0)�2c��2Ng

�
; (7:22)
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where explicit reference to the system size N is omitted. Then,

~ZN;�(c)
2 � S(b) + T (c; b; 1); (7:23)

for all b 2 (0; 1). We now control each of these terms separately, starting with S(b). It is here that

we �rst encounter the diÆculties brought about by the 2-spin interactions which are contained

in �H . Namely, since the covariance gp(R) contains a quadratic term, we have to add an extra

condition on � in the analogue of Lemma 4.3. The result is then as follows.

Lemma 7.4: Suppose

� < min

 
��0
p

2
; sp

s
2

�p2(p� 1)2(p� 3)!!

!
; (7:24)

and b is such that

(b) = ��
2 gp(b)

b2
<

1

2
: (7:25)

Then for all " 2 (0; 1
2
� ) there exists N" 2 N such that for all N > N",

E S(b) � 1p
1� 2( + ")

e
��

2
N
: (7:26)

Remark: The second condition on � in (7.24) assures that there exists a b verifying (7.25). In

fact, since gp contains a quadratic term, for (7.25) to hold the coeÆcient of this term in gp has

to be strictly less than 1
2��2

. This is the second condition in (7.24). If this is the case, then one

can always choose b small enough, such that the higher order terms are less than any positive

number. We show the �rst steps of the proof, and will leave the rest, which is completely similar

to the proof of Lemma 4.3, to the reader.

Proof: If � satis�es the above condition, we can apply Lemma 7.1 to the integrand of the

right-hand side of (7.21). This gives

E
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Thus,
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If b is small enough such that the condition (7.25) is satis�ed (and by the preceding remark, this

exists always if � satis�es the second bound in (7.24)), then for all " > 0, there exists N" 2 N

such that

��
2
N
�
R(�; �0)2

gp(b)

b2
+ CN

�1�
< ((b) + ")NR(�; �0)2; (7:29)
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for all N � N".

We are now in the setting of (4.21). Since the rest of the proof of Lemma 4.3 did not depend

on H anymore (but only on the a priori measure P), we can simply follow the remaining steps

(4.22){(4.24). This proves Lemma 7.4. �

We now turn to the term T (c; b; 1) in (7.23).

Lemma 7.5: Let I(t) be the Cram�er Entropy as de�ned in (2.24). Suppose that there exist

c > 1, d > 0, such that

8t 2 [b; b0]; 2��2c
�
1� c

2(1 + gp(t))

�
� ��

2 + I(t)� d: (7:30)

Then, if

c < min
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2�
; 1 + gp(b)

�
; (7:31)

there exists �N 2 N such that for all N � �N ,

E T (c; b; b0) � e
��

2
N
e
�Nd

2 : (7:32)

Proof: Completely analogous to the proof of Lemma 4.4 (just change the covariance terms, that

is, replace every tp by gp(t)). �

The preceding lemmata imply the following result.

Proposition 7.6: Suppose that � < ��p. Then there exist constants C > 0 and c > 1 such that

E [ ~ZN;� (c)
2] � C(E ~ZN;� (c))

2
: (7:33)

Furthermore,

P[ ~ZN;�(c) >
1

2
E ~ZN;� (c)] �

3

4C
: (7:34)

Proof: The proof is exactly the same as the proof of Proposition 4.5. All we have to check is

that the additional condition on � in Lemma 7.4 is satis�ed. Indeed, it is easily veri�ed that

��p < sp

s
2

�p2(p� 1)2(p� 3)!!
; (7:35)

for all values of p � 4. In particular, for p � 6, the right-hand side is even greater than the upper

bound �̂ =

q
2 ln 2
�

. If p = 4, the right-hand side in (7.35) is equal to
q

4
3
. However,

I(t)
1 + gp(t)

gp(t)

���
t= 1

2

<
4

3
; (7:36)

which shows that the in�mum certainly satis�es the condition (7.35). �
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Finally, the proof of the lower bound on the critical � is easier than for the interaction H. This

is due to the fact that �H is a convex function of the disorder variables �, which allows us to use

a strong concentration of measure result due to Talagrand instead of Corollary A.4.

Proof of Theorem 2.2', lower bound: By Proposition 7.6, if � < ��p, then,

P [ ~ZN;�(c) >
1

2
E ~ZN;� (c)] � C1: (7:37)

On the other hand, by Theorem 2.1', if

E �FN < ��
2
=2�N

k�1 (7:38)

in�nitely often for some k > 1
2
, then (compare to (4.47))
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2
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�
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�FN � E �FN � N

k�1 � C2N
�1�

: (7:39)

We now apply the following concentration of measure result, which is proved as Theorem 6.6 in

[T1].

Theorem 7.7: (Talagrand) Consider a real-valued function f de�ned on [�1; 1]N . We assume

that, for each real number a, the set ff � ag is convex. Consider a convex set B � [�1; 1]N ,
consider � > 0 and assume that the restriction of f to B has a Lipschitz constant at most �, that

is

8x; y 2 B; jf(x)� f(y)j � �kx� yk; (7:40)

where k � k denotes the Euclidean norm. Consider independent random variables (Xi)i2N valued

in [�1;+1] and consider the random variable

h = f(X1; : : : ; XN ): (7:41)

Then, if M is a Median of h, we have, for all t > 0, that

P[jh�M j > t] � 4b+
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1� 2b
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2
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�
; (7:42)

where

b = P[(X1; : : : ; XN ) 2 Bc] <
1

2
: (7:43)

We show that �FN is indeed a convex function of the disorder variables. We start by proving

that � �HN is convex. With abuse of notation, we identify ! with �[!], and get for any �xed

con�guration �

�
�
� �HN [!](�) + (1� �) �HN [!

0](�)
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E m�(�)p +N
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�
:

(7:44)
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Since p is even, the pth power is convex function. Furthermore, m�[!](�) is a linear function of

!. Hence,
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(7:45)

By its de�nition, N �FN [!] = ln E� e
�� �HN [!](�). Applying (7.45) and H�older's inequality hence

yields

N �FN [�! + (1� �)!0] = ln E� e
�� �HN [�!+(1��)!0](�)

� ln E� e
��� �HN [!]��(1��) �HN [!0]
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(7:46)

This shows that �FN is indeed convex in !.

Moreover, the existence of a set B with the desired properties of the Lipschitz norm of �FN can

be easily deduced from Lemma 4.8. Indeed, in the proof of that result, we actually wrote HN as a

sum of Hamiltonians �HN for di�erent values of p and showed that for each of these contribution,

the desired bound on the Lipschitz norm holds.

It is also well known [MS, Le] that in the case where such a concentration of measure result

holds, median and expected value of a function are very close to each other (in our case, one

shows easily that their di�erence is at most of the order N�1=2).

Thus, Theorem 7.7 implies that that the right-hand side of (7.39) vanishes exponentially in

N . This contradicts (7.37), and we therefore reject the assumption (7.38). This proves the lower

bound (2.29). �

Proof of Theorem 2.2', upper bound: Inspection of the proof for the Hamiltonian HN

shows that only Theorem 2.1 and Corollary 3.2 enter. In the present case, we simply replace

them by Theorem 2.1' respectively Corollary 7.1. Since each of them contains exactly the same

conclusion as its counterpart for HN , we conclude directly that the upper bound is the same as

for the interaction HN . �

7.3 Fluctuations of the Free Energy

Before we start with two preparatory lemmas, we de�ne the following random matrices. For

j = 1; : : : ; p� 1, let

Aj � Aj[!] �
�
A
��

j
[!]
�
�;�=1;::: ;M(N)

; (7:47)
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with matrix elements
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Lemma 7.8: For any !; !0 2 
,
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for some C > 0.
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. The decomposition (7.49) is nothing more than some elementary
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De�ne therefore the quantities wi1;::: ;ip by
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which yields (7.49).

We now prove the bound (7.50). Applying Cauchy-Schwarz yields immediately (C �
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Expanding the square gives (using the de�nition (7.48) of Aj)
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Consider now ��
�

ij+1
� : : : � ���

ip
as the �th component of a vector in RM(N) . Then, by de�nition of

the operator norm of a matrix, (7.53) and (7.54) imply
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Finally,
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since the summands
P

i
��
�

i

2 are positive quantities. This proves the lemma. �

The second lemma will be used together with Lemma 7.8.

Lemma 7.9: For all ! 2 
, and fwi1;::: ;ipgi1;::: ;ip=1;::: ;N de�ned as in Lemma 7.8, the

following lower bound holds:
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p
2R(�; �0)p)

� 1
2

�
:

(7:57)

Proof: By Jensen's inequality,

�[!]
�
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X
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��
� exp

�
�

X
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wi1;::: ;ip �[!](�i1 � : : : � �ip)
�
: (7:58)
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Applying Cauchy-Schwarz then yields

�[!]
�
exp

�
�

X
i1;::: ;ip

�i1 � : : : � �ip wi1;::: ;ip
��

� exp
�
� �

� X
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w
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i1;::: ;ip

� 1
2
� X
i1;::: ;ip

f�[!](�i1 � : : : � �ip)g2
� 1
2

�
:

(7:59)

We now apply what might be called the replica trick, namely, to write the square of a measure

as the product measure over two copies of the system, that is,X
i1;::: ;ip

f�[!](�i1 � : : : � �ip)g2 =
X

i1;::: ;ip

�[!]
 �[!](�i1 � : : : � �ip�0i1 � : : : � �0ip): (7:60)

To �nish, we observe that

X
i1;::: ;ip

�[!]
 �[!](�i1�
0
i1
� : : : � �ip�0ip) = �[!]
 �[!]

�� NX
i=1

�i�
0
i

�p�
= �[!]
 �[!]

�
N
p
R(�; �0)p

�
;

(7:61)

from which the statement of the lemma follows immediately. �

We are now ready to prove the \lower uctuations" of Theorem 2.4'.

Proof of Theorem 2.4': The main idea of the proof is to �nd a set B � 
 on which FN is

near its annealed valued (and which has additional nice properties) such that it has probability

greater than some constant (i.e. its probability is bounded from below uniformly in N). We then

use general results due to Talagrand ([T1], Section 6) to show that32 if �FN [!
0] is less than some

small enough constant, then there exists ! 2 B such that k�[!]� �[!0]k2 � (� lnP[B])1=2. This

is used together with the preceding lemmas and a bound on the operator norm of the matrices

Aj to extract the claimed statement.

Let

C(u) � f! 2 
 : �ZN;� [!] � e
�uE �ZN;�g (7:62)

be the set we are interested in. De�ne also the following auxiliary subsets of 
N (whose depen-

dence on N is omitted).

B1 � f! 2 
 : �ZN;� [!] �
1

4
E �ZN;�g

B2 = B2(K1) � f! 2 
 : �[!]
 �[!](Np=2
R(�; �0)p) < K1g

B
0
j
= B

0
j
(K2) �

(
f! 2 
 : kAj[!]kop � K2N

j�1
2 g; if j is odd

f! 2 
 : kAj[!]kop � K2N
j
2 g; if j is even

B = B(K1;K2) � B1 \B2(K2) \

0@p�1\
j=0

B
0
j
(K2)

1A :

(7:63)

32This strategy was used by Talagrand to deduce the same result in the p = 2 Hop�eld model. See [T3],

Section 2.
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In a �rst step, we bound P[B] from below.

Proposition 7.10: There exist constants K�
1 ;K

�
2 ; C

�
> 0, and N� 2 N, such that

P[B(K1;K2)] > C
�
> 0; (7:64)

for all K1 > K
�
1 , K2 > K

�
2 and N > N

�.

Proof: By the de�nitions of the sets,

P[B] � P[B1]� P[B1 \Bc

2]�
p�1X
j=0

P[B0j(K2)] (7:65)

The �rst term can be bounded by (using the de�nition (7.19) for ~ZN , with an appropriate cut-o�

c),

P[B1] = P[ �ZN [!] �
1

4
E �ZN;� ] � P[ ~ZN;� [!] �

1

4
E �ZN;� ] (7:66)

From Lemma 7.3, we know that there exists an �N 2 N, such that E ~ZN;� � 1
2
E �ZN;� for all

N � �N . This, and the result (7.37) imply that

P[B1] � P[ ~ZN;� [!] �
1

4
E �ZN;� ] � P[ ~ZN;� [!] �

1

2
E ~ZN;� ] � C

�
> 0; (7:67)

for all N > �N .

We now show that the second term (P[B1 \Bc
2]) is less than half of C� if � is less than lower

bound of the critical temperature (2.29).

Lemma 7.11: Suppose � < ��p (as in (2.29)). Then there exists a constant K�
1 , such that for

all K1 > K
�
1 ,

P[B1 \Bc

2(K1)] �
C
�

2
� 1

2
P[B1]: (7:68)

Proof: The main idea is that we can control the Laplace transform of the quantity NR(�; �0)2

in a way similar to the proof of Lemma 4.3.

Using the de�nition, Chebyshev's inequality and the inequality xq � q! ex for positive x,

P[B1 \Bc

2] = E [1IB1
1If�[!]
�[!](Np=2R(�;�0)p)�K1g]

� E [1IB1
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1 �[!]
 �[!](Np=2
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1 E [1IB1

�[!]
 �[!]((K
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�
p

2

�
! E
h
1IB1

�[!]
 �[!](eK
�1=p

1
NR(�;�0)2)

i
:

(7:69)

Let Æ � K
�1=p
1 for the rest of this proof. We rewrite the inner term (i.e. the integral with respect

to the Gibbs measure) in the following way,

�[!]
 �[!](eK
�1=p

1
NR(�;�0)p) = �Z�2

N;�
E�;�0 [e

�� �H(�)�� �H(�0)+NÆR(�;�0)2 ]

� �Z�2
N;�

E�;�0 [1If�� �H(�)�cqg1If�� �H(�)�cqge
�� �H(�)�� �H(�0)+NÆR(�;�0)2 ]

+ �Z�2
N;�

E�;�0 [(1If�� �H(�)>cqg + 1If�� �H(�)>cqg)e
�� �H(�)�� �H(�0)+NÆR(�;�0)2 ]

� �Z�2
N;�

(U1 + U2);

(7:70)
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where q = ��
2
N , and c is a cut-o� parameter chosen as in Lemma 7.5. Thus,

E [1IB1
�[!]
 �[!](eÆNR(�;�0)2)] � E [1IB1

�Z�2
N;�

U1] + E [1IB1
�Z�2
N;�

U2]: (7:71)

Let us treat the second term �rst. Using the obvious bound jRj � 1, we get

U2 � 2eÆN �ZN;�E� [1If�� �H(�)>cqge
�� �H(�)]: (7:72)

Hence, by de�nition of B1 and the proof of Lemma 7.3 (that is, from the estimate on the analogue

of the quantity (4.9)), there exist C1; C2 > 0 such that

E [1IB1
�Z�2
N;�

U2] � 2eÆNE E � [1IB1
1If�� �H(�)>cqg

�Z�1
N;�

e
�� �H(�)]

� 8eÆN (E �ZN;� )
�1E E � [1If�� �H(�)>cqge

�� �H(�)]

� C1e
ÆN (E �ZN;� )

�1
e
�NC2(c�1)2E �ZN;� :

(7:73)

This implies that for all Æ < C2(c� 1)2, there exists C3 > 0 such that

E [1IB1
�Z�2
N;�

U2] � C1e
�NC2(c�1)2�Æ � C1e

�C3N : (7:74)

This means that this term will be completely irrelevant, if we choose Æ suÆciently small, or

equivalently, K1 suÆciently large.

We now turn to the �rst term in (7.71). This is in fact by far the main part. Nevertheless, it

will turn out that it is bounded by some constant. The presence of the indicator function 1IB1

implies readily that

E [1IB1
�Z�2
N;�

U1]

� 16(E �ZN;� )
�2E E �;�0 [1f�� �H(�)�cqg1If�� �H(�0)�cqge

�� �H(�)�� �H(�0)+ÆNR(�;�0)2 ]:
(7:75)

As in the proof of the lower bound on the critical �, we split the integrand into two parts, namely

one where jRj is small, respectively large. We write

E E �;�0 [1If�� �H(�)�cqg1If�� �H(�0)�cqge
�� �H(�)�� �H(�0)+ÆNR(�;�0)2 ]
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+ E E �;�0 [1IfjRj�bg1If�� �H(�)�cqg1If�� �H(�0)�cqge
�� �H(�)�� �H(�0)+ÆNR(�;�0)2 ];

(7:76)

for some b to be chosen later. Then, by Lemma 7.2, the �rst summand is bounded by (using also

that there exists a C4 > 0 such that t2 � C4gp(t) for all t 2 [0; 1])

E E �;�0 [1fjRj<bge
�� �H(�)�� �H(�0)+ÆNR(�;�0)2 ]
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�1)]
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0))+��2N(1+gp(R(�;�
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�1)]

= e
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2
N+C5E�;�0 [1IfjRj<bge

�gp(R(�;�
0))(�2+ÆC4=�)]:

(7:77)
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We now want b such that it satis�es the hypothesis of Lemma 7.4 with �02 = �
2 + ÆC4

�
, that is,

�
2 +

ÆC4

�
< min

 
��0
p

2

4
;

2s2
p

�p2(p� 1)2(p� 3)!!

!
; (7:78)

and

(b) = �

�
�
2 +

ÆC4

�

�
gp(b)

b2
<

1

2
: (7:79)

If � < ��p, we can always �nd a Æ� such that the �rst inequality is satis�ed for all Æ < Æ
�. Then

we can choose b according to the second inequality. In a similar way to the proof of Lemma 7.4,

it is then straightforward to see to that for " small enough, there exists an N" 2 N such that

E E �;�0
�
1fjRj<bge

�� �H(�)�� �H(�0)+ÆNR(�;�0)2
�
� e

��
2
N

C6p
1� 2( + ")

; 8N > N": (7:80)

The second term in (7.76) is treated analogously to E T (c; b; b0) in the proof of Lemma 7.5,

respectively Lemma 4.4. Indeed, Fubini's theorem, the obvious inequality jRj � 1, and (7.32)

yield (it is here that we actually use that we are in the low � region)

E E �;�0 [1IfjRj2[b;1]g1If�� �H(�)�cqg1f�� �H(�0)�cqge
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2
N�dN=2

;

(7:81)

whenever Æ � d

2
and N larger than some N2.

Relations (7.80) and (7.81) then bound the right-hand side of (7.75) by (choose " small enough)

E [1IB1
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U1] � 16(E �ZN;� )
�2(
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�dN=2)

� C7; 8N > N":

(7:82)

To �nish the proof of Lemma 7.11, insert (7.82) and (7.74) in (7.71), and use the latter in (7.69).

Thus,
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(7:83)

whenever K
�1=p
1 < minf(c� 1)2; d

2
; 2�( 1
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� �

2)g. De�ne therefore

K
�
1 �

�
max

�
(c� 1)�2�1;
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d
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16
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;

9

(C�)2
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p

2

�
! (4e�C2N + C7)

�2��p
: (7:84)
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Then for all K1 > K
�
1 and all N large enough,

P[B1 \Bc

2] �
C
�

3
: (7:85)

This proves Lemma 7.11. �

The terms for j � 2 in the remaining sum on the right-hand side of inequality (7.65) are bounded

by the following result which is proved in Part II as Theorem 8.1.

Theorem 8.1: Let M = M(N) = �N
q
0

with � > 0 and q0 � q. Then, for each q � 2, there

exist constants Cq;K > 0, l 2 (0; 1
2
), and ~N 2 N, and subsets 
N � 
, such that for all N � ~N ,

the measure of 
N is at least 1� e
�KN

l

, and

kAqkq �
(
CqN

q�1
2 ; if q is odd;

CqN
q
2 ; if q is even:

(7:86)

for all ! 2 
N .

The case j = 1 corresponds to the matrix appearing in the p = 2 Hop�eld model (see e.g. [BG1],

Section 4). Although the size of the matrix is much larger (�Np�1 instead of �N), this is

compensated by the factor M in the de�nition. The matrix can thus be bounded by the same

methods as in [BG1]. This gives also an exponential bound on the probability of the set B1(K2)

(for K2 large enough). The case j = 0 is trivial since this is just the identity matrix, whose norm

is always equal to one.

Finally, the estimates (7.67), and (7.86) from the previous theorem, as well as the preceding

lemma imply that

P[B(K1;K2)] � C
� � C

�

3
� (p� 1)e�CN

l � C
�

2
; (7:87)

if K1 > K
�
1 , K2 > K

�
2 and N is large enough. This �nishes the proof of Proposition 7.10. �

It follows from general results in [T1] that there exists ! 2 B and !0 2 C(u) such that

k��k2 = k�[!]� k�[!0]k2 � C1(� ln(P[C(u)]))1=2; (7:88)

where C1 is independent of N . Indeed, we know that �FN is a convex function (Section 7.2,

(7.44){(7.46)), which implies that the level set C(u) is convex. Hence, for any ! 2 B,

d(C(u); !) � 2f(C(u); !); (7:89)

where d denotes the Euclidean distance and f is the function de�ned in Chapter 6 of [T1]. Suppose

that for all ! 2 B,
2t � d(C(u); !) � 2f(C(u); !): (7:90)

Then B � f!0 2 
 : f(C(u); !0) > tg, and by Theorem 6.1 in [T1] and Proposition 7.10,

C2 � P[B] � P[f(C(u); �) > t] � P[C(u)]�1e�
t2

4 ; (7:91)
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which yields immediately,

t � 2(� lnP[C(u)])
1
2 + 2(� lnC2)

1
2 : (7:92)

However, C(u) � B
c and hence P[C(u)] � 1� C2. This implies

t � C1(� lnP[C(u)])
1
2 : (7:93)

This shows the claim (7.88). Now
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(7:94)

Since ! 2 B,

�ZN;� [!
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1A : (7:95)

Apply now Lemma 7.8 and Lemma 7.9 to the integrand. This yields
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4
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(7:96)

On the other hand, !0 2 C(u), and thus by (7.88)�
u� 2 ln 2

�C3

�2

�
X
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N
j+1�p

2 k��k2(p�j)2 +
X
j even
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X
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(7:97)

From this one concludes that

P[C(u)] � exp

�
�max

�
max
j odd

��
u� 2 ln 2

�C4

� 2
p�j

N
p�1�j

2

�
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j even

��
u� 2 ln 2

�C3

� 2
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N
p�2�j

2

���
:

(7:98)

The only terms that can achieve the maximum (for large N) are those whose exponents of N are

equal to zero. Thus

P[C(u)] � C5 exp

�
�max

�
(
u� 2 ln 2

�C3

)2;
u� 2 ln 2

�C3

��
: (7:99)

This shows (2.33).
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The bound on the uctuations above the annealed free energy follow immediately from Cheby-

shev's inequality with �rst mean. Indeed

P

�
�FN � 1

N
ln E �ZN � u

N

�
= P

�
�ZN � e

uE �ZN
�

� e
�u
:

(7:100)

This concludes the proof of Theorem 2.4'. �

7.4 Replica Overlap: Proof of Theorem 2.6'

Apply Jensen's inequality, and split the integrand in the same way as in the proof of Lemma 7.11

(inequality (7.70)). We obtain (let Æ = 2)

�
 �[eÆNR(�;�0)2 ] � (�
 �[eNR(�;�0)2 ])1=2

� ( �Z�2
N;�

U1 + �Z�2
N;�

U2)
1=2

� �Z�1
N;�

U
1=2
1 + �Z�1

N;�
U
1=2
2 ;

(7:101)

where U1; U2 are as in (7.70). Hence, using Cauchy-Schwarz,

E [� 
 �[eÆNR(�;�0)2 ]] � E [ �Z�1
N;�

U
1=2
1 ] + E [ �Z�1

N;�
U
1=2
2 ]

� (E [ �Z�2
N;�

])1=2(E U1)
1=2 + (E [ �Z�1

N;�
])1=2(E [ �Z�1

N;�
U2])

1=2
:

(7:102)

The �rst summand is bounded by splitting U1 into the two terms S(b) and T (c; b; 1) from Sec-

tion 7.2 and treating them exactly as in (7.75) and following, implying the bounds (7.80), resp.

(7.81). For the second term, we use (7.72) and Lemma 7.3. This yields (for , resp. Æ small

enough)

E [� 
 �[eÆNR(�;�0)2 ]] � (E [ �Z�2
N;�

])1=2C1 E �ZN;� + C2(E [ �Z
�1
N;�

])1=2e�C3NE �ZN;� : (7:103)

Theorem 2.4' implies that E [ �Z�2
N;�

] � C4(E �ZN;� )
�2. Indeed,

E [ �Z�2
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1Z
0

P[ �Z�2
N;�

> x] dx

�
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�2Z
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1 dx+
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(E �ZN;�)�2
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> x] dx
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(E �ZN;�)�2
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2
ln x] dx:

(7:104)
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Substituting y = ln E �ZN;� + 1
2
lnx yields (with f from Theorem 2.4')

E [ �Z�2
N;�

] � (E �ZN;� )
�2
�
1 + 2

1Z
0

P[FN < ln E �ZN;� � y]e2y dy
�

� (E �ZN;� )
�2
�
1 + 2

1Z
0

e
�f(y)

e
2y
dy

�
:

(7:105)

Since f(y) grows as y2 for large y, this shows that

E [ �Z�2
N;�

] � (E �ZN;� )
�2
C4: (7:106)

Also, by Jensen's inequality

E [ �Z�1
N;�

] � (E [ �Z�2
N;�

])1=2: (7:107)

Using (7.106) and (7.107) in (7.103) gives

E [� 
 �[eÆNR(�;�0)2 ]] � C8 + C9e
�C3N � K: (7:108)

This proves Theorem 2.6'. �





Part II

Random Matrices





8 Bounds on the Norm

In this second part we prove estimates on the norms of certain random matrices. These results

were used in previous proofs on the uctuations of the free energies in Chapter 5 and Section 7.3..

We de�ne the sets of random matrices we will consider. Let f��
i
gi;�2N be a family of i.i.d.

Bernoulli random variables on some probability space (
;F ;P), taking values +1 and �1 with

equal probability. Construct the M �M random matrix AN;q = (A
��

N;q
)�;�=1;::: ;M according to

(we omit the explicit reference to N and M for clarity of presentation)

A
��

q
�M

�1

 
NX
i=1

�
�

i
�
�

i

!q

=M
�1

X
(il)l=1;::: ;q

qY
l=1

�
�

il
�
�

il
: (8:1)

The matrix Aq is symmetric by de�nition, and its diagonal elements are constant and equal to

one. However, the o�-diagonal elements are not independent. Let k � k denote the operator norm
for linear maps from an M dimensional vector space into itself, that is, the maximum of the

absolute values of its eigenvalues. Then we have the following estimate on kAqk.

Theorem 8.1: Let M = M(N) = �N
q
0

with � > 0 and q0 � q. Then, for each q � 2, there

exist constants Cq;K > 0, l 2 (0; 1
2
), and ~N 2 N, and subsets 
N � 
, such that for all N � ~N ,

the measure of 
N is at least 1� e
�KN

l

, and

kAqk � Cq

(
N

q�1
2 ; if q is odd;

N
q
2 ; if q is even:

(8:2)

for all ! 2 
N .

Let us consider two variants of the above matrix. As before, M is the size of the matrix. De�ne

BN;q = (B
��

N;q
)�;�=1;::: ;M by (we omit again the indication of N)

B
��

q �M
�1

X
1�i1<:::<iq�N

�
�

i1
� : : : � ��

iq
�
�

i1
� : : : � ��iq

=M
�1(q!)�1

X
filgl=1;::: ;q

all di�erent

qY
l=1

�
�

il
�
�

il
;

(8:3)

representing a linear map from an M dimensional vector space into itself.

Finally, we consider two closely related matrices, whose de�nitions require some more detail.

Let V be a
�
N

q

�
dimensional space with an orthonormal basis f Ig, indexed by the sets I �

f1; : : : ; Ng, jIj = q. De�ne the map B : V ! V by its matrix representation in the basis f Ig.
That is, by the

�
N

q

�
�
�
N

q

�
matrix with elements

B
0I;J = B

0
N;q

I;J �M
�1

MX
�=1

Y
l2I

l02J

�
�

l
�
�

l0
: (8:4)
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Then we have the following estimates.

Theorem 8.2: Suppose that M(N) = �N
q
0

, and q0 > q � 2. Then, for all " > 0, and C1 > 1,

there exist C2 > 0 and �N 2 N, such that for all N � �N ,

P [kBqk � C1] � e
�C2N

1
2
�"

; (8:5)

and

P
�
kB0

q
k � C1

�
� e

�C2N
1
2
�"

; (8:6)

where k � k is the operator norm.

Motivated by the application we have in mind (see Chapter 5), we also look at the following

restriction of B0. For all i 2 f1; : : : ; Ng, let Vi be the linear space spanned by the basis elements

f IgI3i. Consider the map Ti : Vi ! Vi given by the restriction of B0 to Vi, that is

(Ti)I;J =

�
(B0)I;J ; if I;J 3 i;
0; otherwise:

(8:7)

Then the following bound holds for kTik.

Theorem 8.3: Suppose that M(N) = �N
q
0

, and q0 � q � 2. Then, for all " > 0, and C1 > 1,

there exist C2 > 0 and �N 2 N, such that for all N � �N ,

P [kTik > C1] � e
�C2N

1
2
�"

: (8:8)

The proofs of our results are based as usual on bounds on the expectation of traces of high powers

of our matrices [FK] from which the estimates follow by Chebyshev's inequality. The hard work

consists in the solution of the ensuing combinatorial problems which are rather di�erent from

those encountered in the classical cases.

The remainder of this part is organized as follows. In Section 9.1, we present a graphical

representation of the expectation of powers of our matrices. In Section 9.2, we prove Theorem 8.1,

while in Section 9.3 Theorem 8.2 respectively 8.3 are shown.



9 Proof of the Estimates

9.1 Graph Representation of the Trace

We start with a representation of the trace. As pointed out above, the main step of the proof is to

bound the expectation of a high even power of A (q being a �xed parameter, we will in the sequel

omit it where this is possible and no confusion arises). Let thus k be an even integer. Then, using

the de�nition and elementary algebra to rearrange the sums, respectively the products, the trace

of Ak can be written as (addition in the indices is understood to be modulo the largest allowed

value)

trAk =
X

�1;::: ;�k

kY
t=1

A
�t�t+1 =M

�k
X

�1;::: ;�k

kY
t=1

� X
(il)l=1;::: ;q

qY
l=1

�
�t

il
�
�t+1

il

�

=M
�k

X
�1;::: ;�k

X
(it
l
)
t=1;:::k

l=1;::: ;q

qY
l=1

kY
t=1

�
�t

it
l

�
�t+1

it
l

(9:1)

For the matrix Bq, the corresponding expression is

trBk =M
�k(q!)�k

X
�1;::: ;�k

X
(it
l
)
t=1;:::k

l=1;::: ;q

di�erent

qY
l=1

kY
t=1

�
�t

it
l

�
�t+1

it
l

; (9:2)

where di�erent indicates that the sum runs only over those sets fit
l
gt=1;:::k
l=1;::: ;q such that for all t,

the set fit
l
gl=1;::: ;q has size q (that is, or each t, and all l 6= l

0, it
l
6= i

t

l0
).

We want to rearrange the sums on the right-hand side of (9.1), resp. (9.2) in a more transparent

form. This is done in the following way. Sum �rst over all possible sequences �1; : : : ; �k which

have a given range R. Then sum over all R � f1; : : : ;Mg such that jRj = r, and �nally sum

over all possible cardinalities for sets R, i.e. r = 1; : : : ; k. Split then the sum over all it
l
in the

corresponding way.

In the sequel, denote by (�1; : : : ; �k) the sequence of indices, and by f�1; : : : ; �kg the corre-

sponding range. Similarly, (it
l
) denotes the sequence of elements in N , whereas fit

l
g is its range.

Then the above splitting of the sums reads

trAk =M
�k

kX
r=1

X
R�M

jRj=r

X
(�1;::: ;�k):

f�1;::: ;�kg=R

kqX
s=1

X
S�N

jSj=s

X
(it
l
):fit

l
g=S

qY
l=1

kY
t=1

�
�t

it
l

�
�t+1

it
l

: (9:3)

The analogue decomposition for the matrix B is

trBk =M
�k(q!)�k

kX
r=1

X
R�M

jRj=r

X
(�1;::: ;�k):

f�1;::: ;�kg=R

kqX
s=1

X
S�N

jSj=s

X
(it
l
):fit

l
g=S

di�erent

qY
l=1

kY
t=1

�
�t

it
l

�
�t+1

it
l

; (9:4)

di�erent having the same meaning as before.
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In the spirit of [FK], we construct a graph representation of the product
Q

q

l=1

Q
k

t=1 �
�t

it
l

�
�t+1

it
l

in

(9.3), respectively (9.4). Let K be the complete bipartite graph with vertex sets R and S. Then
each �

�

i
corresponds to the edge (�; i) of K. Each product in (9.3), resp. (9.4) corresponds to a

walk on K in the obvious way. Conversely, given K and the sequence (�1; : : : ; �k), any walk on

K which visits the �'s in the correct order corresponds to possible product. It will from now on

be implicitly understood that a walk on K visits the �'s in the given order.

However, we are interested in the expectation of the product. By the i.i.d. Bernoulli nature

of the random variables, it is clear that the only way to get a non-zero contribution is for each

variable �
�

i
to appear an even number of times, or, in the graph picture, the associated walk has

to use every edge of K an even number of times (including zero). Given K, we de�ne therefore a
walk w on it admissible for A, if it uses each edge of K an even number of times. Our problem

of calculating the expectation of the trace is therefore transformed into the task of counting the

admissible walks for given k and q. That is, taking expectation of (9.3),

E trAk =M
�k

kX
r=1

X
R�M

jRj=r

X
(�1;::: ;�k):

f�1;::: ;�kg=R

kqX
s=1

X
S�N

jSj=s

X
(is
l
)

fis
l
g=S

Æ�1;::: ;�k;i
1
1
;::: ;ikq

; (9:5)

where

Æ�1;::: ;�k;i
1
1
;::: ;ikq

=

�
+1; if there is an admissible walk;

�1; if there is none:
It will turn out that for a given sequence (�1; : : : ; �k), this quantity depends only on S, and not

on the exact order of its elements. We will therefore denote by

W�1;::: ;�k;i
1
1
;S =

X
(is
l
)

fis
l
g=S

Æ�1 ;::: ;�k;i11;::: ;i
k
q
: (9:6)

The main task will be to obtain a good bound on W�1;::: ;�k;S and to show that the sum over s

does in general not extend up to kq, but merely to some s0 = s
0(�1; : : : ; �k).

In the case of the matrix B, there is an additional restriction, namely the constraint that

i
t

l
6= i

t

l0
, for all t and all l 6= l

0. For a given graph K, we call a walk w admissible for B if it uses

each edge of K an even number of times, and for all t and l; l0, the points it
l
and it

l0
are di�erent.

We now de�ne two additional graphs. De�ne �rst the following (undirected) graph G. The

vertex set V(G) is R, and for each t, put an edge between �t and �t+1 (�k+1 being identi�ed

with �1) and label it by et. From this (multi)graph, we can reconstruct the sequence (�1; : : : ; �k)

through the labels t. Construct a second graph Gq by replacing each edge et of G by q edges

fel;tgl=1;::: ;q. Now, the projection onto the graph Gq of any walk corresponding to a product

obeys the lexicographic order of the labels of the edges.

We would like to have a characterization of admissible walks in terms of their projections onto

G, resp. Gq. This is provided by the following results. We �rst de�ne some useful notions. De�ne

�A to be the function which maps any walk (respecting the order in which the set R is visited)

w = (�1; : : : ; �k; i
1
1; : : : ; i

k

q
) on K onto the set of partitions of E(Gq) via

�A : w 7! C(w) = fCi(w)gi2S ; (9:7)
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where Ci = fel;t 2 E(Gq) : itl = ig. Similarly, de�ne �B to be the function which maps any walk

(respecting the order in which the set R is visited) w on K onto the family of subsets of E(G) via

�B : w 7! C(w) = fCigi2S ; (9:8)

where Ci = fet 2 E(G) : 9l : itl = ig.
We denote by � the mapping from the partitions of E(Gq) onto the set P(G) of subgraphs of

G, induced by the projection el;t 7! et.

We also de�ne the following concepts. A circuit is a graph in which every vertex has an even

number of incident edges (observe that contrary to custom, we do not suppose that the graph

is connected). A cycle is a connected graph whose vertices have all exactly two incident edges.

A circuit cover of a graph G is a partition of its edge set into disjoint circuits. A q-circuit cover

of a graph G is a collection of subgraphs of G such that each of these subgraphs is a circuit, and

every edge of G is in exactly q of these subgraphs. Cycle covers and q-cycle covers are de�ned

analogously. A loop is an edge whose endpoints coincide. The size of a circuit, resp. cycle C is

the number of edges it contains. A cycle of size n is called an n-cycle.

We then have the following characterization of admissible walks.

Lemma 9.1: A walk w on K is admissible for A if and only if �A(w) is a circuit cover of

Gq.

Proof: It is clear that �A(w) is a disjoint cover of Gq by construction. Suppose now that for

some walk, there exists an element Ci of the partition which is not a circuit. Then Ci contains

at least one vertex v that has an odd number of incident edges belonging to Ci. But this means

that the edge (i; s) 2 E(K) is used an odd number of times, and thus the walk w is not admissible

for A.

Conversely, we have to show that for any circuit decomposition C of Gq, the walk w(C) = �
�1
A
(C)

is admissible for A. Consider an arbitrary i 2 S, its associated circuit Ci 2 C, and any vertex

v 2 V(Ci). The incident edges of Ci at v have other endpoints fv1; : : : ; vhg. Since Ci is a circuit,
h is even, regardless of whether Ci contains a loop based at v or not. This implies that the edge

(v; i) 2 K is indeed used an even number of times by the walk w(C). Since i and v are arbitraty,
this proves the lemma. �

Lemma 9.2: A walk w on K is admissible for B, if and only if �B(w) is a q-circuit cover of

G.

Proof: If w is admissible for B, it is also admissible for A, and thus �A(w) is a circuit cover

of Gq by the same argument as in the above proof. Moreover, �B(w) = � Æ �A(w), and since by

construction, for all i 2 S, all edges el;t 2 Ci have di�erent indices t, this implies that Ci is also

a circuit of G. Also, every edge has to be covered by exactly q circuits. This proves the only if

part.

Conversely, every q-circuit cover of G has at least one preimage under � which is a circuit cover

of Gq (in fact, there are at most (q!)k). Their preimages under �A are admissible walks for A by

the second part of the proof of Lemma 9.1, and by construction, they also satisfy the condition

di�erent. Thus, they are admissible for B. This proves the lemma. �
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9.2 Proof of Theorem 8.1

In this section, we calculate the number of admissible walks for A. Since the mapping �A is

bijective, we obtain readily the following corollary to Lemma 9.1.

Corollary 9.3: The number of admissible walks for A, given sequence a (�1; : : : ; �k) and a

set S, is bounded by the sum over all circuit covers of Gq of the number of surjective maps from

this circuit cover to S.

The key ingredient in the proofs is an optimal bound on the size of S for a given sequence

(�1; : : : ; �k). This bound is expressed in terms of the following quantities. For any � 2 R, and
any sequence (�1; : : : ; �k), let n� = #ft : �t = �g be the number of appearances of � in the

sequence. Similarly, n0� = #ft : �t = �t+1 = �g.

Lemma 9.4: If q is odd, then for any given sequence (�1; : : : ; �k), a necessary condition on

S for the existence of an admissible walk is that

jSj � s
0(�1; : : : ; �k) �

X
�2R

(n� � n
0
�
)
q � 1

2
+
X
�2R

(n� � n
0
�
� 1) +

X
�2R

qn
0
�
+ 1: (9:9)

Remark: If jRj = k, that is, if all �i are distinct, then the above condition is also suÆcient and

simpli�es to

jSj � k(q � 1)

2
+ 1 � sk: (9:10)

Observe also that for given jRj = r, s0(�1; : : : ; �k) is maximum if and only if for all � 2 R, the
identity n� � n

0
� = 1 holds. In this case, (9.9) simpli�es similarly to (9.10). Namely,

max
jRj=r

s
0(�1; : : : ; �k) =

r(q � 1)

2
+ (k � r)q + 1 � sr: (9:11)

Proof: Observe �rst the trivial fact that the maximum of jSj is achieved for cycle covers, each

cycle being associated to a di�erent site i in S. It is also clear that each loop is a cycle, and thus

contained in any cycle cover. They contribute
P

�2R qn
0
� to the maximum number of cycles. We

may therefore assume the graph G to be free of loops.

Claim: There exist walks for which the bound (9.9) is assumed.

Indeed, consider the associated graph Gq and cover it in the following way. For each t = 1; : : : ; k,

cover q� 1 edges of (el;t)l with 2-cycles. Without restricting the generality, we may assume that

these are the edges (el;t)l=1;::: ;q�1. This yields
P

�2R(n� � n
0
�
)(q � 1)=2 cycles (since loops have

been removed). The remaining uncovered edges are isomorphic to the graph G (with all loops

removed). Since a cycle is closed, G can be covered by at most 1 +
P

�2R(n� � n
0
�
� 1) cycles.

This proves the claim.

We now prove that no cycle cover can have more cycles than the one constructed above.

Indeed, suppose that C = fC1; : : : ; Cng is not of the form described above. Then there exists a
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t 2 f1; : : : ; kg and an odd number p � 3 such that there are p edges labeled (without restricting

the generality) fel;tgl=1;::: ;p with di�erent endpoints (�; �0) such that for each l, the cycle ~Cl
containing el;t contains only edges with a di�erent label t0 6= t.

Construct a new cover C0 as follows. Leave all cycles C 2 C n (Sp

l=2
~Cl) unchanged. For each

j = 1; : : : ; p�1
2
, let

C
0
2j = fet;2j; et;2j+1g; (9:12)

and

C
0
2j+1 = fe 2 ( ~C2j [ ~C2j+1) n C 02jg: (9:13)

The new cover C0 contains now all cycles in C n (Sp

l=2
~Cl), the 2-cycles fC 02jg, and all cycles

obtained from decomposing the circuits fC 02j+1g. This operation covers the edges e1;t : : : ; eq;t

with the maximum number of 2-cycles, namely q�1
2
. Moreover, the number of cycles does not

decrease.

Repeating this procedure for each t = 1; : : : ; k yields a cycle cover of the type constructed in

the �rst step of the proof, for which the bound (9.9) holds. This proves the lemma. �

Lemma 9.4': If q is even, then for any given sequence (�1; : : : ; �k), a necessary condition on

S for the existence of an admissible walk is that

jSj � s
0(�1; : : : ; �k) �

X
�2R

(n� + n
0
�
)
q

2
(9:14)

Proof: The proof is immediate as soon as one recognizes that the graph Gq can be covered with

2-cycles only. �

For the rest of the calculations, we concentrate on the case of odd q. The following lemmas are

just bounds on the di�erent sums in (9.3). We now know how big S can be. That is, the sum

over s in (9.5) does in general not extend to kq, but only to some smaller value s0. As shown

in Lemma 9.4, respectively Lemma 9.4', s0 is a function of the sequence (�1; : : : ; �k), that is,

s
0 = s

0((�1; : : : ; �k)). Let us thus count the number of admissible walks for a given sequence

(�1; : : : ; �k) and a �xed S, with jSj = s � s
0. From Lemma 9.1 we know that this means that

we have to decompose the graph G into s+ j elementary cycles (with j � 0), and assign to each

of them an element of S. To estimate the number of circuit covers, we will use a uniform bound.

Lemma 9.5: The number W�1;::: ;�k;S of admissible walks for a given sequence (�1; : : : ; �k)

and a given set S, with s = jSj � s
0 is bounded by

W�1;::: ;�k;S � �(Gq)
s
0�sX
j=0

s!

�
s+ j

s

�
s
j � �(Gq)

(
2s!
�
s
0

s

�
s
s
0�s

; if s � 2;

s
0(s0+1)

2
; if s = 1;

(9:15)

where

�(Gq) = 2
�q
P

�2R
(n��n0�)

Y
�2R

(2q(n� � n
0
�
))!

(q(n� � n0
�
))!

: (9:16)
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Proof: It is clear from the above discussion that

W�1;::: ;�k;S =

s
0�sX
j=0

#farrangements of s+ j elements in s cells, each being occupiedg

�#fnumber of elementary partitions of G into s+ j cyclesg:
(9:17)

The �rst number is bounded from above by s!
�
s+j
s

�
s
j. The �rst factor counts the arrangements

of the cells. Then we choose s elements amongst s + j and put each of them in a cell. Finally,

the remaining j elements are distributed on the cells, but with no restriction.

We still have to estimate the number of elementary partitions. We do this uniformly, by using

the following lemma. First, observe that since each loop is an elementary cycle, and thus appears

in any elementary partition, we only have to consider the graph G0, which is obtained from Gq by
removing all loops.

Lemma 9.6: The graph G0 is an even Euler graph. The number �(G0) of partitions into (not

necessarily elementary cycles) is given by

�(G0) = 2
�q
P

�2R
(n��n0�)

Y
�2R

(2q(n� � n
0
�))!

(q(n� � n0�))!
: (9:18)

Proof: The property of G0 is obvious by construction. The formula (9.18) has been obtained

by [K] and [Be] (see also [F]). In fact, it follows easily from the observation that each partition

determines uniquely a pairing of the edges incident at each vertex. Since there are 2q(n� � n�0)

incident edges at each vertex, the number of pairings at each � 2 R = V(G0) is given by (2q(n� �
n
0
�
)� 1)!! = 2�q

(2q(n��n0�))!
(p(n��n0�))!

. Equation (9.18) follows. �

This gives us the prefactor �(G) in (9.15). We now sum over all allowed s. Suppose that s � 2.

Then, the ratio r(s; j) between two consecutive terms on the right-hand side of (9.15) is bounded

by

r(s; j) =
(s+ j + 1)! j!

(s+ j)! (j + 1)!
s =

s+ j + 1

j + 1
s � 2; 8s � 2: (9:19)

Hence, the whole sum is less than twice the maximum term, which is the last one. If s = 1, then

s
0�sX
j=0

�
s+ j

s

�
s
j =

s
0�1X
j=0

�
j + 1

1

�
=

s
0�1X
j=0

j =
s
0(s0 + 1)

2
: (9:20)

This proves Lemma 9.5. �

From the preceding lemma, we immediately get an estimate of the number of admissible walks

for a given sequence (�1; : : : ; �k). Indeed, this number is bounded by

s
0X

s=1

X
S�N

jSj=s

W�1;::: ;�k;S �
s
0X

s=2

2s!

�
N

s

�
�(Gq)

�
s
0

s

�
s
s
0�s +N�(Gq)s

0(s0 + 1)

2
: (9:21)
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Lemma 9.7: If k � N
1
2
�", for some " > 0 and all N large enough, then for a �xed sequence

(�1; : : : ; �k) and arbitrary S, the number ~W�1;::: ;�k
of admissible walks is bounded by

~W�1;::: ;�k
=

s
0X

s=1

X
S�N

jSj=s

W�1;::: ;�k;S � 4�(Gq)s0!
�
N

s0

�
: (9:22)

Proof: Let us calculate the ration between two consecutive terms in the sum in (9.21). We get

(for 2 � s � s
0), �

N

s+1

��
s
0

s+1

�
(s+ 1)! (s+ 1)s

0�s�1�
N

s

��
s0

s

�
s! ss

0�s
� (N � s)

s(s+ 1)
: (9:23)

If s0 � N
1
2
�", for some " > 0 and all N large enough, then the right-hand side is greater than

(say) 3 for all N large enough, uniformly in all allowed s. This means that the sum over all s � 2

is less than three halves of the largest summand, since this sum is dominated by

�
N

s0

�
s
0!

s
0X

s=2

2s�s
0 � 3

2

�
N

s0

�
s
0!: (9:24)

Finally, the term with s = 1 is bounded by

s
0(s0 + 1)

2
s
0!N � 1

2

�
N

s0

�
s
0!; (9:25)

for all N large enough (and under the hypothesis on s0). Adding (9.24) and (9.25) thus gives

s
0X

s=1

s!

�
N

s

��
s
0

s

�
s
s
0�s � 2

�
N

s0

�
s
0!; (9:26)

that is, the whole sum is less than twice the maximum term.

We observe that since s0 � kq, the above hypothesis on s0 is always satis�ed if k � N
1
2
�"0 , for

some "0 > 0 and N large enough. This proves the lemma. �

We now check that given a set R and multiplicities n� , the above estimate is maximum for those

sequences for which n� � n
0
�
� 1 = 0, for all � 2 R, that is, for sequences in which all multiple

appearances are sub-sequential. This means that the additional number of partitions of Gq we

get never wins against the loss of s0.

Lemma 9.8: Suppose that k � N
1
2
�", for some " > 0. Then, given a sequence (�1; : : : ; �k)

with jf�1; : : : ; �kgj = r, there exists an �N 2 N such that the number of admissible walks is always

less than

W
0
k;r

� 22�qr
Y
�2R

2q!

q!

�
N

~s

�
~s!; (9:27)

for all N � �N .
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Proof: What the lemma says is that for given set R and multiplicities fn�g�2R, the number

of admissible walks is increasing in all n0
�
. Since they can be chosen independently once R and

the multiplicities are �xed, this means that the number of admissible walks is maximized for

maximum n
0
�
. More precisely, if (�1; : : : ; �k) is a sequence such that n� � n

0
�
� 1 = 0, for all

� 2 R, then for any permutation of the indices 1; : : : ; k, the number of admissible walks cannot

be greater, i.e.
~W�1;::: ;�k

� ~W��(1);::: ;��(k)
; (9:28)

where � is any element of the permutation group of k elements.

This is what one would expect, of course. Indeed, the factor s0!
�
N

s0

�
is approximately (i.e. with

correction terms of lower order in N) equal to Ns
0

. From (9.9) and the remark following that

lemma, we see that s0 is increasing in each n0
�
, that is , each time n0

�
is increased by one, we win

some power of N . On the other hand, the combinatorial factor �(Gq) does not depend on N .

Increasing n0
�
by one, we loose at most a power of k, which is not comparable to the gain if k is

of order o(N).

Let us make this arument rigorous. We compare the number of admissible walks ~W�1;::: ;�k

and ~W~�1;::: ;~�k for two sequences (�1; : : : ; �k) and (~�1; : : : ; ~�k) with same range R and same

multiplicities fn�g�2R, and same numbers n0
�
except for one. That is, there exists � 2 R, such

that n0
�
= ~n0

�
for all � 2 R n �, and ~n0

�
= n

0
�
+ 1.

Then the ratio of the associated combinatorial factors �( ~Gq) and �(Gq) is given by

�( ~G0)
�(Gq) = 2

�q
P

�2R
(~n��~n0�)+q

P
�2R

(n��n0�)
Y
�2R

(2q(~n� � ~n0
�
))!

(q(~n� � ~n0
�
))!

(q(n� � n
0
�
))!

(2q(n� � n0
�
))!

=

q�1Y
j=0

(2q(n� � n
0
�
) + 2j + 1)�1:

(9:29)

On the other hand, the di�erence of maximum sizes of the sets S are given by (9.9), and are equal

to

~s0 � s
0 = (~n0

�
� n

0
�
)
q � 1

2
=
q � 1

2
; (9:30)

so that
~s0!
�
N

~s0

�
s0!
�
N

s0

� = (N � s
0)!

(N � ~s0)!
� (N � ~s0)~s

0�s0 � N
q�1
2 (1�O(kq

2

N
)): (9:31)

If k is at most of order o(N), then this shows that increasing each n0
�
to its maximum value n��1

maximizes the number of admissible walks. Clearly, our hypothesis k � N
1
3
�", for some " > 0

and N large enough, is more than enough for this to be true. �

Lemma 9.9: Suppose that k � N
1
2
�", for some " > 0 and all N � �N . Then the number of

all admissible walks for given k and q is bounded by

Wk �
kX

r=1

X
R�M

jRj=r

X
(�1;::: ;�k):

f�1;::: ;�kg=R

~W�1;::: ;�k

� 8((2q � 1)!!)k
�
M

k

�
k!

�
N

k(q�1)
2

+ 1

�
(
k(q � 1)

2
+ 1)!;

(9:32)
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for all N larger than �N .

Proof: For �xed r � 2, the number of sets R with cardinality r is clearly
�
M

r

�
. The number of

possible sequences (�1; : : : ; �k) with given range R is less than
�
k

r

�
r
k�r

r!, by the same argument

we used already in the proof of Lemma 9.7. Thus, using Lemma 9.8,X
R�M

jRj=r

X
(�1;::: ;�k):

f�1;::: ;�kg=R

~W�1;::: ;�k
�
X
R�M

jRj=r

�
k

r

�
r
k�r

r!W 0
k;r =

�
M

r

��
k

r

�
r
k�r

r!W 0
k;r

� 4

�
M

r

��
k

r

�
r
k�r

r! 2�qr
�
(2p)!

p!

�r �
N

~sr

�
;

(9:33)

where sr de�ned in (9.11) is the maximum value of s0 for a given r.

If one shows that the ratio between two consecutive terms (as functions of r) is greater than

e, then the sum over all terms is less than e

e�1 times the last term (i.e. the one for which r = k).

For 2 � r � k � 1, we prove this by bounding the derivative of the logarithm from below by 1.

Indeed, if

Q(r) � ln

��
M

r

��
k

r

�
r
k�r

r! 2�qr
�
(2p)!

p!

�r �
N

sr

��
; (9:34)

then

Q
0(r) = ln(M � r)� 2 ln r + ln(k � r) +

k � r

r
� q + 1

2
ln(N � sr) + c1(q): (9:35)

Using the hypothesis on k and the fact that q0 � q � 2, this can be bounded from below by

Q
0(r) � ln(M � k)� 2 ln k � q + 1

2
lnN + c1(q)

� lnM � 2 ln k � q + 1

2
lnN + ln(1� k

M
) + c1(q)

� " lnN + ln(1� k

M
) + c1(q)

> c2 > 1; N � �N:

(9:36)

The ratio between the terms with r = k and r = k � 1 is easily shown to be larger than e for all

N large enough (this is due to the growth of M). This shows that when summing the terms in

(9.33) over 2 � r � k, each summand is at least e times as large as its predecessor. Thus,

kX
r=2

X
R�M

jRj=r

W
0
k;r � 4W 0

k;r

kX
r=2

e
r�k � 4

e

e� 1
W
0
k;r

= 4
e

e� 1

�
M

k

�
k! ((2q � 1)!!)k

�
N

sk

�
sk!:

(9:37)

Finally, we consider the term for r = 1. In this case, G is composed of only one vertex and kq

loops attached to it. Thus there are Nkq
M walks (one N for each loop times the number of sets

R, with jRj = 1). A comparison with the right-hand side of (9.37) shows that for N large enough,

N
qk
M � 4

e� 2

e� 1

�
M

k

�
k! ((2q � 1)!!)k

�
N

sk

�
sk!; (9:38)
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and hence,
kX

r=1

X
R�M

jRj=r

W
0
k;r

� 8((2q � 1)!!)k
�
M

k

�
k!

�
N

sk

�
sk! (9:39)

This proves the lemma. �

Lemma 9.9 expresses that fact that the overwhelming contribution comes from the terms with

r = k. We collect the preceding lemmas in a proposition.

Proposition 9.10: Suppose that q is odd and k � N
1
2
�" and even. Then

E trAk � 8((2q � 1)!!)k
�
M

k

�
k!

�
N

sk

�
sk! : (9:40)

Proof: The proof for odd q follows from (9.5), Lemma 9.1 and Lemma 9.9. For even q, one

shows with exactly the same calculations that (9.40) still holds, with sk now given by (9.14) in

Lemma 9.4'. �

Proof of Theorem 8.1: As mentioned in the previous chapter, we use the fact that the trace of

the kth power of Aq is an upper bound for the kth power of the norm, and Chebyshev's inequality,

which yield

P[kAqk � cN
(q�1)=2] � P[trAq

k � c
k
N
k(q�1)=2]

� 1

ckNk(q�1)=2 E trA
k

q :

(9:41)

Suppose that q is odd, and that c satis�es

cQ(q�3)=2
j=0 (q � 2j)

� C > 1: (9:42)

Then, using the Proposition 9.10, we bound the latter by

1

ckN
k(q�1)

2

E trAk

q
� 8

ckN
k(q�1)

2 Mk

M !

(M � k)!

N !

(N � k(q�1)
2

� 1)!

q�3
2Y

j=0

(q � 2j)k

� 8

ckN
k(q�1)

2

N
k(q�1)

2
+1

q�3
2Y

j=0

(q � 2j)k

= 8N

q�3
2Y

j=0

(q � 2j)k

c
k

< 8C�kN:

(9:43)

Choose k = N
l
0

, with l0 < 1
2
. Then,

P[kAqk � cqN
(q�1)=2] � e

�k lnC+lnN+"

e
�N l lnC

;

(9:44)



Proof of the Estimates 113

for all l < l
0 and N large enough. This proves the bound for odd q.

For even q, the result follows by exactly the same argument. The additional powers of N are

needed to compensate for the greater maximum size sk of the sets S. �

9.3 Proofs of Theorem 8.2 and Theorem 8.3

The proof of Theorem 8.2 is similar, but simpler than the previous one. We �rst prove the

statement for the matrix Bq. It is intuitively clear that the norm of the matrix Bq must be much

smaller than the norm of Aq, since the main contribution to E trAk came from walks which are

obviously not allowed in the present case.

Lemma 9.11: The maximum number of circuits forming a q-circuit cover of G is equal to q

times the maximum number of cycles in a simple cycle cover of G. This latter number is bounded
by 1 +

P
�2R(n� � 1).

Proof: It is obvious that the maximum is achieved for a cycle decomposition (otherwise, decom-

pose all remaining circuits into cycles, thereby increasing the number).

Next, we show that each q-fold cycle cover C can be arranged into q simple covers. The claim

is trivial for q = 1 and for the case that G is itself a cycle. Assume it to be true for q� 1. Choose

an arbitrary edge e0 2 E(G) and a cycle C0 � G containing e0. Since C0 6= G, there exists an edge

e1 2 E(G) n E(C0). There is also a cycle C1 containing e1 such that E(C0) \ E(C1) = ;. Indeed,
if this were not true, there would exist an edge f 2 E(C0) that is covered at least q + 1 times.

Repeat this procedure until G is simply covered by the edge disjoint collection fC1; : : : ; Cng.
The remaining cycles C n fC0; : : : ; Cng form a q � 1 cycle cover G, for which the assertion is

true by the induction hypothesis. This proves that the maximum number of circuits forming a

q-fold cover of G is equal to q times the maximum number in a simple cycle cover. This number

is now easily calculated. Each cycle is closed by de�nition. Therefore, to form a cycle, there must

be a � appearing twice in the sequence (�1; : : : ; �k). Thus, we get at most
P

�
(n� � 1) cycles,

plus one which accounts for the fact that the walk returns from �k to �1. This proves the lemma.

�

Corollary 9.12: For given r = jRj, the maximum number of circuits forming a q-fold cover

of any associated G is given by s0 = s
0(k; q) = q(k � r + 1).

Proof: By the previous lemma, we want to maximize
P

�
(n��1) under the constraint

P
�
n� = k.

But
P

�
(n� � 1) = k �P

�
1 = k � r �

Lemma 9.13: The number W�1;::: ;�k;S of B-admissible walks, given a sequence (�1; : : : ; �k)

and a set S, with s = jSj � q(k � r + 1), is bounded by

W�1;::: ;�k;S � (�(G))q
s
0�sX
j=0

s!

�
s+ j

s

�
s
j(q!)k

� (q!)k�(G)q
(

2s!
�
s
0

s

�
s
s
0�s

; if s � 2;

s
0(s0+1)

2
; if s = 1;

(9:45)
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where

�(G) = 2
�
P

�2R
(n��n0�)

Y
�2R

(2(n� � n
0
�))!

(n� � n0�)!
=
Y
�2R

((2(n� � n
0
�
)� 1)!!): (9:46)

Proof: The proof is almost identical to the proof of Lemma 9.5. To obtain the number of

admissible walks, we count the number of q-cycle covers with s+ j � s
0 cycles, and assign to each

an element of S. As remarked in the proof of Lemma 9.2, there are at most (q!)k preimages of this

circuit cover under the map ��1. We thus get the second part on the right-hand side of (9.45).

The number of simple circuit covers of G is again bounded as in Lemma 9.6 (inequality (9.18)),

applied this time, however, to the graph G (which means removing the factor q everywhere). The

�nal bound is again the same calculation as in the proof of Lemma 9.5. �

Corollary 9.14: If k � N
1
2
�", for some " > 0 and all N large enough, then for a �xed

sequence (�1; : : : ; �k) the number ~W�1;::: ;�k
of admissible walks is bounded by

~W�1;::: ;�k
=

s
0X

s=1

X
S�N

jSj=s

W�1;::: ;�k;S � 4 (�(G))q (q!)ks0!
�
N

s0

�
; (9:47)

where s0 = q(k � r + 1). Moreover, for all sequences (�1; : : : ; �k) with the same range R, the
number of admissible walks Wk;r is bounded by

Wk;r � 4((2(k � r)� 1)!!)q(q!)kNs
0(k;r)

: (9:48)

Proof: The proof of (9.47) is the same as the proof of Lemma 9.7. The second bound is implied

by the fact that �(G) is bounded by (2(k � r)� 1)!! �

The proof of Theorem 8.2 is similar to the proof of Theorem 8.1.

Proof of Theorem 8.2: As in the case of the matrix A (compare (9.33)), we have

E trBk =M
�k(q!)�k

kX
r=1

X
R�M

jRj=r

X
(�1;::: ;�k):

f�1;::: ;�kg=R

~W�1;::: ;�k

�M
�k(q!)�k

kX
r=1

X
R�M

jRj=r

�
k

r

�
r
k�r

r!Wk;r:

(9:49)

Inserting the bound (9.48) yields,

E trBk �M
�k(q!)�k

kX
r=1

�
M

r

�
N
s
0(k;r)

�
k

r

�
r!rk�r(q!)k((2(k � r)� 1)!!)q

�
kX

r=1

M
r�k

N
q(k�r)+q

�
k

r

�
r
k�r((2(k � r)� 1)!!)q:

(9:50)
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Since q0 > q, the ratio between two consecutive terms is always greater than one for N large

enough, if k � N
1
2
�". Thus, the whole sum is less than a constant times the largest term,

E trBk � C1N
s
0(k;k) = C1N

q
: (9:51)

As in the proof of Theorem 8.1, we conclude with the Chebyshev's inequality, that is, for all

c > 1,

P

h
kBk � c] � P

h
trBk � c] � c

�kE trBk
: (9:52)

Use (9.51) and choose k = N
1
2
�", for some " > 0. Hence, for all C3 > 0, there exists an �N 2 N

such that for all N � �N ,

P[kBk � c] � C1N
q

ck
= e

�k ln c+q lnN+lnC1

� e
�C2N

1
2
�"

:

(9:53)

This proves (8.5). To establish the result for the matrix B0q, observe that

trBq
k = trB0

q

k
; (9:54)

which follows at once from the explicit formula for the two expressions. The bound on the largest

eigenvalue of B0
q
then follows immediately. �

Proof of Theorem 8.3: The proof of this result follows easily from the above bound. As

before, the key to the result is an upper bound for the size of S. Since each edge of G has to be

covered by Ci (this is the circuit associated to the site i), Ci itself is a 1-cover of G. This implies

that jS n figj is bounded by (q � 1)(k � r + 1).

The combinatorial calculations that follow are exactly the same as in the previous proof. We

therefore obtain the following analogue to (9.50),

E trBk �
kX

r=1

M
r�k

N
(q�1)(k�r)+q

�
k

r

�
r
k�r((2(k � r)� 1)!!)q: (9:55)

Since q0 � q, the ratio between two consecutive terms is always greater than one if N is large

enough and k � N
1
2
�". Thus,

E trBk � C1N
q�1

: (9:56)

The assertion of the theorem now follows by Chebyshev's inequality and the identity (9.52). �
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10 Main Results

In the last part of this thesis, we turn to the Gaussian variant of the Hop�eld model, introduced

in section 1.4. Let us recall its de�nition.

The con�guration space is �N = f�1;+1gN (resp. �1 = f�1;+1g1 for the in�nite system),

equipped with the product topology. Let (
;F ;P) be an abstract probability space and let �
�

i
[!],

i 2 N, � = 1; 2, denote a family of i.i.d. standard Gaussian variables. We will write ��[!] for the

N -dimensional vector whose ith component is given by �
�

i
[!]; such a vector is called a pattern.

On the other hand, we will write �i[!] for the two dimensional vector with components (�1
i
; �

2
i
).

When we write �[!] without indices, we consider it as a 2 � N matrix, whose transpose will be

denoted by �T .

Throughout the remaining chapters, (�; �) denotes the scalar product, without indication of the

space where its arguments lie. We de�ne randommapsm
�

N
[!](�) : �N ! [�1;+1] (conventionally

called overlap parameters) through

m
�

N
[!](�) � 1

N

NX
i=1

�
�

i
[!]�i: (10:1)

The Hamiltonian is now de�ned as

HN [!](�) � �N
2

X
�=1;2

�
m
�

N
[!](�)

�2
= �N

2
kmN [!](�)k22;

(10:2)

where k � k2 denotes the l2-norm in R2 .

As already remarked in the introduction (Section 1.5), the distribution of the disorder variables

is invariant under the map �01
i
= �

�1
i
= �

1
i
cos(�)+�2

i
sin(�) and �02

i
= �

0�
i
= �

1
i
sin(�)��2

i
cos(�).

Moreover, the Hamiltonian has the same form in the original and the primed variables. However,

this transformation is a statistical symmetry, as opposed to the spin-ip symmetry which is an

exact symmetry for any given realization of the disorder.

Through this Hamiltonian, the �nite volume Gibbs measures on �N are de�ned by

GN;�[!](�) � 2�N
e
��HN [!](�)

ZN;� [!]
; (10:3)

and the induced distribution of the overlap parameters by

QN;�[!] � GN;�[!] ÆmN [!]
�1
: (10:4)

The normalizing factor in (10.3), called the partition function, is explicitly given by

ZN;� [!] � 2�N
X
�2�N

e
��HN [!](�) � E� e

��HN [!](�)
: (10:5)



120 Chapter 10

We are mainly interested in the concentration behavior of QN;� as N ! 1. It will be conve-

nient to do this by considering the auxiliary measure eQN;� � QN;� ?N2(0;
1
�N

1I) obtained by a

convolution with a Gaussian measure, its so-called Hubbard-Stratonovich transform. Since, for N

large, N2(0;
1
�N

1I) converges in the weak sense rapidly to the Dirac measure at zero, the two mea-

sures have asymptotically the same properties. For details see e.g. [BGP1]. eQN;� is absolutely

continuous with respect to Lebesgue measure on R2 and has the density

e
��N�N;� [!](z)

ZN;� [!]
; (10:6)

where �N;� is given by

�N;� [!](z) =
1

2
kzk22 �

1

�N

NX
i=1

ln cosh�(�i[!]; z): (10:7)

As usual in mean-�eld models, we construct the extremal Gibbs measures by tilting the Hamil-

tonian (10.2) with an external magnetic �eld.33 That is, we de�ne a more general Hamiltonian

H
h

N
[!](�) � �N

2
kmN [!](�)k22 �N(h;mN [!](�)); (10:8)

where h = (b cos(#); b sin(#)) 2 R2 . The corresponding measures on the spins and on R2 are

denoted by Gh
N;�

[!] and Qh

N;�
[!], respectively. We then take the limits limb!0 limN!1, for all

values of # 2 [0; 2�).

We are now able to give a precise formulation of our main results.

Theorem 10.1: Let h = (b cos#; b sin#). Then

lim
b!0

lim
N!1

Qh

N;�
= Æ(r� cos#;r� sin#); (10:9)

where r� is the largest solution of the equation

r
� =

1p
2�

Z
dx e

�x2

2 x tanh(�xr�): (10:10)

From the form of (10.10), it is easy to see that r� = 0 is always a solution. It is also straightforward

to check that there exists a ��, 0 < �
�
<1, such that the largest solution r� is non-zero whenever

� > �
�.

Theorem 10.1 shows that there is an uncountable number of extremal limiting induced mea-

sures, indexed by the circle. The following Corollary shows that to each of them corresponds a

distinct limiting Gibbs measure on the spins.

Corollary 10.2: For any �nite set I � N, and P-almost all !,

Gh1;�
[!]
�
f�I = sIg

�
� lim

b!0
lim
N!1

Gh
N;�

[!]
�
f�I = sIg

�
=
Y
i2I

e
�si(�i[!];m)

2 cosh(�(�i[!];m))
; (10:11)

33For a general discussion on the issue of limiting Gibbs states in mean-�eld models, see [BG1], Sect. 2.4 or

[BG3], Sect. 2.
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where m = (r� cos(#); r� sin(#)), and r� is as in (10.10).

In Theorem 10.1 and Corollary 10.2 convergence is almost sure due to the presence of the tilting

�eld. The situation changes if we set b = 0 �rst and take the in�nite volume limit later. The

result for the induced measures is given in

Theorem 10.3: Let QN;� be as in (10.4) and m = m(#) = (r� cos#; r� sin#), where # 2 [0; �)

is a uniformly distributed random variable. Then

QN;�

D�! 1

2
Æm(#) +

1

2
Æ�m(#) � Q1;�[m]: (10:12)

Furthermore, the (induced) AW-metastate is the image of the uniform distribution of # on [0; 2�)

under the measure-valued map # 7! Q1;� [m(#)].

From this, we get the description on the level of the Gibbs measures:

Corollary 10.4: Let I � N be �nite. Then the following holds:

(i) Let fgigi2I be a family of i.i.d. random variables, distributed as N (0; r�). Then

lim
N"1

GN;�(f�I = sIg) D�! 1

2

Y
i2I

e
�sigi

2 cosh�gi
+

1

2

Y
i2I

e
��sigi

2 cosh�gi
: (10:13)

(ii) The AW-metastate is the image of the uniform distribution on # under the measure-valued

map # 7! G1;�;m(#)[!] where

G1;�;m[!](f�I = sIg) =
1

2

Y
i2I

e
�si(�i[!];m)

2 cosh�(�i[!];m)
+

1

2

Y
i2I

e
��si(�i[!];m)

2 cosh�(�i[!];m)
: (10:14)

Statement (ii) of Corollary 10.4 motivates the notion of metastates. Whereas on the level of the

induced measures QN;� one cannot see any inuence by the conditioning, this is clearly the case

on the level of the Gibbs measures on the spins.

The remaining chapters are mainly devoted to the proofs of the two theorems (the corollaries

are standard consequences (see e.g. [BGP1] or [BG3] for proofs of analogous statements in more

complicated situation). They are organized as follows. In Chapter 11 we prove the necessary

concentration estimates on the measures QN;�, respectively Qh

N;�
. This will yield immediately

Theorem 10.1. In the case h = 0 we will show that the measure concentrates near the absolute

minima of some random process, and in Section 12 we will analyze the properties of these minima.

In particular we will prove that these converge in distribution to one-point sets. This will allow

us to prove Theorem 10.3. In Section 13 we discuss some further consequences on the chaotic

volume dependence, the empirical metastate and the superstate.



11 Concentration of the Induced Measures

In this chapter we show the concentration properties of the measures eQN for large �. These

imply the same concentration results for the measures QN by standard arguments that have been

developed in much more complicated situations, see e.g. [BG2]. The estimates presented here are

mostly similar, and often much simpler, to those that can be found e.g. in [BG2], but we decided

to present some parts in detail where some care is required.

We start with the more delicate case h = 0 that will be relevant for the proof of Theorem 10.3

(which will be given at the end of chapter 13). We are interested in the concentration behavior of

the measures eQN;� . The following two lemmata each give a partial answer. The �rst one asserts

that eQN;� is concentrated exponentially about a circle around the origin, whereas the second one

tells us that even on this circle, only a small part really contributes to the total mass.

Lemma 11.1: Let f��
i
gi2N;�=1;2 be i.i.d. standard Gaussian variables, and de�ne �N;�(z) as

�N (z) �
1

2
kzk22 �

1

�N

NX
i=1

ln cosh�(�i; z): (11:1)

Let furthermore ÆN = N
� 1

10 . Then there exist strictly positive constants K;K 0, l; l0 such that (r�

is the largest solution in (10.10)) R
j kzk�r�j�ÆN

e
��N�N (z)

dzR
j kzk�r�j<ÆN

e��N�N (z) dz
� Ke

�KN
l

; (11:2)

on a set of P-measure at least 1�K
0
e
�K0

N
l0

.

The second result needs an additional de�nition. Let

gN (#) �
1p
N

NX
i=1

ln cosh(�r��i cos(#� 'i)); (11:3)

where (�i; 'i) are the polar coordinates of the two dimensional vector �i.

Lemma 11.2: Assume the hypotheses of Lemma 11.1. Let aN = N
� 1

25 . Then there exist

strictly positive constants K1;K2; C1; C2 such that on a set of P-measure at least 1 �K1e
�N

1
25 ,

the following bound holds, R
A0
N

e
��N�N (z)

dzR
AN

e��N�N (z) dz
� C1e

�N
2
5
; (11:4)

where

AN =
n
(r; #) 2 R+0 � [0; 2�)

��jr � r
�j < ÆN ; gN (#)�min

#

gN (#) < aN

o
;

A0N =
n
(r; #) 2 R+0 � [0; 2�)

��jr � r
�j < ÆN ; gN (#)�min

#

gN (#) � aN

o
:

(11:5)
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Combining these two lemmata and using the Borel-Cantelli lemma, we get immediately the

following result.

Proposition 11.3: Assume the hypotheses of Lemma 11.1. Then there exist strictly positive

constants K;K 0
; l, such that

P

2664
R
Ac
N

e
��N�N (z)

dzR
AN

e��N�N (z) dz
> Ke

�K0
N
l

; i:o: in N

3775 = 0; (11:6)

where AN is as in Lemma 11.2.

To see why the preceding results should be expected, we must consider the function �N;� . Note

that the expectation of this function,

E �N (z) =
1

2
kzk22 �

1

�
E ln cosh�(�1; z): (11:7)

depends only on the modulus of its argument. It is useful to observe that if z = (r cos �; r sin �),

we can represent E �N (z) as

E �N (z) =
1

2
r
2 � E'E � ln cosh(�r� cos(')) (11:8)

where �; � are the representation of the polar decomposition of a two dimensional normal vector,

i.e. � is distributed with density xe�x
2
=2 on R+ , and ' uniformly on [0; 2�).

From (11.8), choosing � = 0, it follows that E �N (z) takes its minimum on the circle with radius

r
�(�), where r� is de�ned in Theorem 10.1. As remarked after the statement of Theorem 10.1,

there exists 0 < �
�
<1, such that r�(�) > 0 if and only if � > �

�.

It is also straightforward to check that E � is suÆciently smooth to guarantee that it is bounded

from above by a quadratic function (of kzk) in some neighborhood containing r�.

Proof of Lemma 11.1: We start with the numerator. We decompose the domain of integration

into an \inner" part I, and an \outer" part O:�
z 2 R2 : jkzk � r

�j � Æ
	
=
�
z 2 R2 : kzk � r

� � Æ
	
[
�
z 2 R2 : kzk � r

� � �Æ
	

� O [ I:
(11:9)

Consider the integral on O. We write it asZ
O

e
�N�N (z)

dz =

Z
O

e
��NE �N (z)

e
��N(�N (z)�E �N (z))

dz; (11:10)

and observe that E �N can also be bounded below by a quadratic function C(kzk� r�)2. We are

left with the task of estimating the term �N (z)� E �N (z). This is accomplished by the following

lemma.
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Lemma 11.4: Let fN (z) =
1
�N

P
N

i=1 ln cosh�(�i; z) and

O =
�
z 2 R2 : kzk > r

� + Æ
	
: (11:11)

Then, for Æ small enough, such that Æ2=16 � Æ=2
p
2, there exist strictly positive constants C1,

C2, K1, K2 such that

P

�
sup
z2O

jfN (z) � EfN (z)j � C

2
(kzk � r

�)2
�
� K1e

�K2N + C1Æ
�2
e
�C2Æ

4
N
N
� 1

2 : (11:12)

Proof: De�ne �fN (z) = fN (z)� E fN (z). The left-hand side of (11.12) is bounded from above by

P

�
sup
z2O

jfN (z)� EfN (z)j � C

2
(kzk � r

�)2
�

� P

�
sup

z02Wr\O

�� �fN (z0)�� � C

4
(kz0k � r

�)
2

�
+ P

"
sup

z02Wr\A
sup

z2Br(z0)

�� �fN (z)� �fN (z
0)
�� � C

4
(kz0k � r

�)
2

#
;

(11:13)

whereWr is the grid with spacing r in R2 , and z0 2 Wr is chosen such that 0 � kzk�kz0k <
p
2 r.

The argument of the second term can be uniformly bounded. Using e.g. Lemma 6.10 of [BG1],

we get that

jfN(z)� fN (z
0)j � kz � z

0k2kAk
1
2 ; (11:14)

where A is the matrix 1
N
�
T
�. Similarly,

jE fN (z)� E fN (z0)j � kz � z
0k2(EkAk)

1
2 : (11:15)

A trivial computation shows that

E kAk � 1 + C=

p
N (11:16)

and using (for instance) the same argument as in Section 4 of [BG1], but replacing Talagrand's

concentration estimate for bounded r.v.'s by the standard Gaussian concentration inequality (see

e.g. [LT], Chapter 1), one shows easily that

P [jkAk � 1j � x] � Ce
�Nx

2
=C
: (11:17)

Therefore,

P

"
sup

z02Wr\A
sup

z2Br(z0)

j �fN (z)� �fN (z
0)j � C

4
(kz0k � r

�)2]

#

� P

�
r(kAk 1

2 + (E kAk) 12 ) � C

4
(kz0k � r

�)2
�

� P

�
(kAk 1

2 + 2) � CÆ
2

4r

�
;

(11:18)
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Choosing the grid parameter r such that r � CÆ
2
=16, the right-hand side of (11.18) is bounded

by P [kAk > 4] � Ce
�9N=C This takes care of the second term in (11.13). Let us now treat the

�rst term. The probability that the supremum over all lattice points of some function exceeds

some given value is transformed into a summable series of probabilities that at each lattice point

the function is greater than this value. More precisely, we have

P

�
sup

z02Wr\O

�� �fN (z0)�� � C

4
(kz0k � r

�)
2

�
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X
z02Wr\O
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��� �fN (z0)�� � C

4
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�)
2

�
�

X
z02Wr\O

e
�KC

2(kz0k�r�)
4
N
;

(11:19)

by Chebyshev's inequality. ThenX
z02Wr\O

e
�KC

2(kz0k�r�)
4
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2
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Æ
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e
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Æ
4
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� 1

2 ;

(11:20)

where K 0 stands for an upper bound for the integral, which is independent of N (assuming

Æ > 2
p
2r). Combining this and (11.18), and choosing Æ small enough such that CÆ2=16 � Æ=(2

p
2)

concludes the proof of Lemma 11.4. �

Therefore, on a set of measure at least 1� C1e
�C2NÆ

4

, the integral (11.10) can be bounded byZ
O

e
��NE �N (z)

e
��N(�N (z)�E �N (z))

dz �
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� 2�

1Z
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��NC(r�r�)2
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4
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2
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4
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2
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= 2�
2

�NC
e
��N C

4
Æ
2

:

(11:21)

We now turn to the integral on the \inner" part I. Again, we have to control the term

�N (z)� E �N (z): (11:22)
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Since I is compact, we can do this uniformly by using the following lemma.

Lemma 11.5: Let fN (z) = 1=(�N)
P

N

i=1 ln cosh�(�i; z) and D � R2 a bounded set. Then

there exist strictly positive constants K1;K2; C1; C2 such that

P

�
sup
z2D

jfN (z)� E fN (z)j > "

�
� K1e

�K2N + C1"
�2
e
�C2"

2
N
: (11:23)

Proof: The proof is similar (if not simpler) to the proof of Lemma 11.4. De�ne again �fN (z) �
fN (z)� E fN (z). Let Wr be collection of grid points with spacing r. Then

P

�
sup
z2D

j �fN (z)j > "

�
� P

"
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z02Wr\D
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z2Br(z0)

j �fN (z)� �fN (z
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j �fN (z0)j >

"

2

�
:

(11:24)

The �rst term is treated similarly to the second summand in inequality (11.13) in the proof of

Lemma 11.2. Thus, with the same de�nition of the matrix A as in the proof of Lemma 11.4,

P

"
sup

z02Wr\D
sup

z2Br(z0)

j : : : j
#
� P

h
�r(kAk 1

2 + (E kAk) 12 ) > "

2

i
� P

h
�r(kAk 1

2 + 10) >
"

2

i
:

(11:25)

Choosing the grid parameter r = "

40�
, this gives

P

h
�r(kAk 1

2 + 10) >
"

2

i
� P

h
kAk 1

2 > 10
i

� K1e
�K2N ;

(11:26)

again by the standard result concerning random matrices (see [Ge]).

We now turn to the second term in (11.24). Using the \trick" to transform the supremum into

a sum, as well as Chebyshev's exponential inequality, we get

P

�
sup

z02Wr\D
jfN(z0)� E fN (z0)j > "

2

�
�

X
z02Wr\D

P

h
jfN (z0)� E fN (z0)j > "

2
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z02Wr\D

C
0
e
�CN "2

4

= jWr \ DjC 0e�CN
"2

4 :

(11:27)

Since D is bounded, there exists R > 0 such that D is contained in the ball BR(0). Thus (see

[BG2]),

jWr \ Dj � jWr \BR(0)j �
�
R

r

�2�
9�e

2

� 1
2

: (11:28)
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We �nally get from (11.26), (11.27) and (11.28)

P

�
sup
z2D

jfN (z)� E fN (z)j > "

�
� K1e

�K2N + C1"
2
e
�C2N"

2

; (11:29)

which is the statement of Lemma 11.5. �

Lemma 11.5 implies thatZ
I

e
��N�N (z)

dz � e
"N
e
��NE �(r�)

Z
I

e
��NE �N (z)

dz

� e
" bN

e
�Æ2C�N

�r
�2
;

(11:30)

using the fact that E �N (kzk) � E �(r�) can be bounded uniformly on I by its value for kzk =
r
� � Æ.

Finally, the denominator in (11.2) can be bounded from below, using the second order Taylor

expansion of E �N (kzk)Z
j kzk�r�j<Æ

e
��N�N (z)

dz � e
��NE �(r�)

Z
j kzk�r�j<Æ
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(11:31)

on a set of measure at least 1 � Ke
�KN � C"

�2
e
�CN"

2

(this error term can be estimated by

Lemma 11.5). Collecting (11.21), (11.30) and (11.31), we get that on a set of measure exponen-

tially close to one,R
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(11:32)

Now let us choose ÆN = N
� 1

10 , "N = N
� 1

4 . Then (11.32) implies thatR
j kzk�r�j�ÆN
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��N�N (z)
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on a set which is exponentially close (in N) to 1. This concludes the proof of Lemma 11.1. �

We now turn to the proof of Lemma 11.2 which is a little more delicate than the previous one.

Proof of Lemma 11.2: Let us write I(B) for the integral
R
B

e
��N�N (z)

dz. We will prove the

concentration behavior by a strategy similar to the one used in Lemma 11.1. Namely we replace

the function �N by its expectation E �N and control the error.

Write the uctuation term �N � E �N as

�N (z)� E �N (z) =
1

�N

NX
i=1

fln cosh�(�i; z)� E ln cosh�(�i; z)g

=
1

�N

NX
i=1

fln cosh�(�i; z)� ln cosh�(�i; z
0)

� E ln cosh�(�i; z) + E ln cosh�(�i; z
0)g

+
1

�N

NX
i=1

fln cosh�(�i; z
0)� E ln cosh�(�i; z

0)g:

(11:34)

Let z0 = z
0(z) = r

� z

kzk , that is, z0 is the radial projection of z onto S1(r�). De�ne the two

functions

hN (z) �
1p
N

NX
i=1

fln cosh�(�i; z)� ln cosh�(�i; z
0)

� E ln cosh�(�i; z) + E ln cosh�(�i; z
0)g;

(11:35)

with z0 de�ned as above, and

gN (z) �
1p
N

NX
i=1

fln cosh�(�i; z)� E ln cosh�(�i; z)g: (11:36)

Then the uctuation term takes the form

N(�N (z) � E �N (z)) =

p
N

�
(hN (z)� gN (z

0)): (11:37)

It is the term gN that determines the concentration behavior of the measure. To see this we �rst

bound the term hN uniformly on the \annulus of concentration" AN [A0N . We have the following

result.

Lemma 11.6: Let f�igi2N be i.i.d. Gaussian variables with mean zero and variance one. Let

hN be as in (11.35), and AN ;A0N as in (11.5). Then for any " > 0,

P

"
sup

z2AN[A0N

jhN (z)j � "

#
� KN

2
e
�N

1
10 ("�KN

�1=10)
: (11:38)

Proof: Let us write

fi(z) � ln cosh�(�i; z); (11:39)
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and
�fi � ln cosh�(�i; z)� E ln cosh�(�i; z): (11:40)

We also keep the notation z
0 = z

0(z) de�ned above. Introduce a polar grid WN in R2 , i.e. a

discrete set of points xi;j whose polar coordinates are given by (�i; �j) 2 R+ � [0; 2�), such that

�N� � j�i � �jj = CN
� 1

2 and �N� � j�i � �j j = CN
� 1

2 , for some appropriate constant C.

Note that for any point z in a bounded domain U � R2 , the distance to the closest grid point is

less than KN� 1
2 .

For any z 2 R2 , de�ne x = x(z) 2 WN to be the grid point closest to z, and y = y(z) 2 WN

the grid point closest to z0 = z
0(z). One can easily convince oneself, that x0 = y

0, i.e. the two

points x and y lie on the same ray starting at the origin. Then we can decompose the function

hN (z) as

hN (z) =
1p
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NX
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0)g

=
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+
1p
N

NX
i=1

f �fi(y)� �fi(z
0)g:

(11:41)

Denote by I1(z; x), I2(x; y), I3(y; z
0) respectively the �rst, second and third sum on the right-hand

side of (11.41). We can then write (let AN = AN [ A0
N
, the \annulus of concentration")
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(11:42)

The �rst and the third term (they are equal) can be uniformly bounded by an estimate analogous

to the proof of Lemma 11.5. In fact, for any u; v, we have����� 1p
N

NX
i=1

f �fi(u)� �fi(v)g
����� � p

N�(kAk 1
2 + (E kAk) 12 )ku� vk2: (11:43)

If ku� vk2 � 4"0N� 1
2 =�, we have the following exponential bound.
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Thus we get for the �rst term in (11.42),
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(11:45)

since we know that kx� zk = KN
� 1

2 by the remark preceding (11.41), and the number of grid

points in AN is bounded by NÆ�1
N

times some constant. The same estimate is valid for the term

containing I3 (since they are equal).

Let us now consider the term containing I2. We know that kx � yk � 2ÆN , since those two

points are supposed to lie on the same \ray". Again, we can turn the supremum into a sum,

P
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x2WN\AN
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jI3(x; y)j �
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3

35 �X
x;y

P

h
jI3(y; z0)j �

"

3

i
; (11:46)

where x; y on the right-hand side satisfy the same conditions as on the left-hand side. By Cheby-

shev's inequality, we get that for any u, v

P
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p
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E esf
�fi (u)� �fi(v)g:

(11:47)

Now we use the series expansion of the exponential function, the fact that the exponent in the

right-hand side of (11.47) is a centered random variable, and some obvious inequalities for each

term of the expansion, to get

E esf
�fi (u)� �fi(v)g �

�
1 +

s
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h
( �fi(u)� �fi(v))
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e
sj �fi(u)� �fi(v)j

i�
: (11:48)

To evaluate the expectation term, we use the inequality

jfi(u)� fi(v)j � �j(�i; u� v)j: (11:49)

Then the expectation term in (11.48) is bounded by

E
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(11:50)
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where the �rst inequality follows by Cauchy-Schwarz, and the second one is a consequence of the

inequality (a + b)2 � 2(a2 + b
2) (applied twice to the �rst factor), respectively the trivial fact

that ja � bj � jaj + jbj. All quantities in (11.50) can be bounded easily using (11.49). One gets

(by calculating explicit Gaussian integrals)

E
�
(fi(u)� fi(v))

4
�
= 3ku� vk42; (11:51)

E e2sjfi (u)�fi(v)j � 2e2s
2ku�vk22 ; (11:52)

e
sE jfi(u)�fi(v)j � e

s

p
2=�ku�vk2 : (11:53)

Inserting (11.51){(11.53) into (11.50), gives

s
2

2
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h
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p
2=�ku�vk2 : (11:54)

We use the above bound (11.54) in (11.48). Together with the inequality 1 + x � e
x, and the

fact that kx� yk2 � ÆN = KN
�1=10, we thus get the following estimate for the right-hand side

of (11.47)
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Choosing s = N
�2=5, this gives
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The same bound applies to
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Inserting (11.56) and (11.57) into the left-hand side of (11.46) gives
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since the number of terms in the sum does not exceed a constant times N
1
2 (the number of allowed

x) times N
1
10 (the number of allowed y). Using (11.45) and (11.58), (11.42) gives

P
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This concludes the proof of Lemma 11.6. �
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Note that we can choose " as a function of N , and still get an exponential bound. For example,

choose " = "N � (lnN)2N� 1
20 . Lemma 11.6 then reads

Lemma 11.7: Let f�igi2N be i.i.d. Gaussian variables with mean zero and variance one. Let

hN be as in (11.35), and AN ;A0N as in (11.5). Then,
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Furthermore,
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Proof: The �rst statement is a straightforward consequence of Lemma 11.6. Equation (11.61)

then follows by the �rst Borel-Cantelli Lemma. �

Let us now estimate the integral I(A0N ). Using the bound for hN from Lemma 11.6, we get
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The last line follows from the crude estimate
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Thus, Z
A0N

e
��N�N (z)

dz � Ke
��NE �N (r�)

e

p
N"
ÆN r

�
e
�
p
NaN : (11:64)



Concentration 133

We now turn to the integral I(AN ). Using standard estimates for Gaussian integrals, a quadratic

upper bound of gN about its minima, and the fact that E �(kzk) can be bounded from above by

a quadratic function in some neighborhood containing r�, we getZ
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We get �nally for the ratio I(A0N )=I(AN )
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N
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� K
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Lemma 11.7 allows us to choose " = "(N) = N
� 1

20 (lnN)2. Inserting this choice, together with

aN = N
�1=25, into (11.66), gives
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This statement is true for all ! 2 
, for which Lemma 11.6 respectively 11.7 holds, that is on a

set of P-measure at least KN2
e
�N

1
20 ((lnN)2�K0

N
�

1
20 ). This proves Lemma 11.2. �

Let us now turn to the proof of Theorem 10.1. We again state �rst a result about the concentration

of the induced measure eQh

N;�
.

Proposition 11.8: Let f��
i
gi2N;�=1;2 be i.i.d. standard Gaussian variables, and de�ne
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Let furthermore ÆN = N
�1=5. Then there exist strictly positive constants K;K 0

; l such that
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where ~rh is the unique minimum of the function
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Proof: Let us decompose �h

N;�
in the usual way
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(z)� E �h
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(z): (11:71)

We �rst treat the denominator appearing in (11.69). E �h

N;�
can be bounded from below by some

quadratic function Ckz � ~rhk22 on the set kz � ~rhk � ÆN > 0. The uctuation term can be

controlled by the following analogue of Lemma 11.4.

Lemma 11.9: Let fN = 1
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Proof: The proof is completely analogous to the proof of Lemma 11.4, and is left to the reader.

�

Therefore, with probability greater than 1 � pN , the quantity sup(�h
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� E�h
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exceed one half of the lower bound of the deterministic part, which implies thatZ
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We now turn to the denominator in (11.69). The probability that the uctuation term exceeds

an " > 0 is bounded by Lemma 11.5:
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Using the Taylor expansion of E �h

N;�
(z) about ~rh up to order 2, with an error term of order 3,

we get that with probability higher than 1� qN ,Z
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Combining (11.73) and (11.75) givesR
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with probability greater than 1 � (qN + pN ). Choosing ÆN = N
�1=5, " = N

�1=5, implies thatP
N
(pN + qN ) <1. The statement of Proposition 11.8 then follows by Borel-Cantelli. �

Theorem 10.1 is now obvious:

Proof of Theorem 10.1: Let f be a bounded continuous function. Then

Qh
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(f1Ifkz�~rhk>ÆNg):

(11:77)

Taking the limit N " 1, we can replace Qh

N;�
by eQh

N;�
and use Proposition 11.8. Since f is

bounded, the third term on the right-hand side of (11.77) converges to zero, and since it is

continuous, the second term also vanishes too. These statements are true P-a.s. Finally we let

b = khk2 ! 0. Again by continuity of f , f(~rh) ! f(r�(cos#; sin#)). This proves the Theorem.

�



12 Uniqueness of Extrema of Certain Gaussian Processes

In the previous chapter we have seen that the measures eQN;� concentrate on a circle of radius r�

at the places where the random function gN (#) takes its minimum. Here we will show that these

sets degenerate to a single point, a.s. in the limit N " 1. To do so we �rst prove a uniqueness

theorem for the absolute minimum of a certain class of strongly correlated Gaussian processes.

Then we show convergence in distribution of gN (#) to such a process and �nally we show that this

implies also the desired convergence in distribution of our measures. We begin with the following

general result.

Proposition 12.1: Suppose �(t) is a real stationary Gaussian process which is periodic with

period T . Suppose furthermore that its covariance function r(s; t) = r(s� t) is even, 2 C1[0; T ],

and r(�) is less than r(0) for all � 2 (0; T ). Then there exists an equivalent process �(t) having

almost surely in�nitely di�erentiable sample paths. Moreover, the probability that there exist two

or more maxima with equal height in [0; T ) is zero.

Proof: Without restricting the generality, we can assume that E [�(t)] = 0 and � = E [�(t)2 ] = 1.

By its continuity properties, r(�) can be expanded about the origin as

r(�) = 1� �2

2!
�
2 +O(�4): (12:1)

The �rst assertion then follows from the following result due to Cram�er and Leadbetter (see [CL],

Chapter 9.2).

Lemma 12.2: Suppose that for some a > 3,

r(�) = 1� �2

2
�
2 +O

�
�
2

j ln j� jja
�
; (12:2)

where �2 is a constant. Then there exists a process �(t) equivalent to �(t) and possessing, with

probability one, a continuous derivative �0(t).

Proof: See Cram�er/Leadbetter [CL]. �

It is easily checked that by (12.1), r(�) satis�es the condition (12.2) in Lemma 12.2, which proves

the statements about continuity and existence of a continuous derivative.

Consider now the process �0(t). Its covariance function ~r(�) is given by ~r(�) = �r00(�) (see
for example Leadbetter et al. [LLR], p. 161, Chapter 7.6). Then it can be expanded about the

origin as

~r(�) = �2 �
�4

2
�
2 +O(�4): (12:3)

Then ~r(�) also veri�es condition (12.2) in Lemma 12.2. Repeating this argument implies, to-

gether with the Borel-Cantelli Lemma, that there exists an equivalent process �(t) having, with

probability one, in�nitely di�erentiable sample paths.

From now on, we assume that �(t) itself has the above continuity properties. We want to �nd

the probability that there are not two maxima with equal height in [0; T ), i.e.

P [9s; t 2 T � T : js� tj 6= kT; j�(t)� �(s)j = 0; j�0(t)j = j�0(s)j = 0] = 0: (12:4)



Extrema of Gaussian Processes 137

We �rst show that for any # > 0,

P

h
9s; t 2 T � T :

���kT � js� tj
��� � #; j�(t)� �(s)j = 0; j�0(t)j = j�0(s)j = 0

i
= 0 (12:5)

Let us choose a collection of grid points ti 2 T , separated by some distance " > 0. By the con-

tinuity properties, � and �0 are Lipschitz-continuous with a.s.-�nite constants C0, C1. Consider

the set ~
C�
 such that C0 and C1 are bounded by some number C > 0. Then, by Lipschitz-

continuity, �0(t) = 0, t 2 [ti; ti+1) implies that (for some x 2 [ti; t])

j�0(ti)j � C": (12:6)

Similarly, j�(t)� �(s)j = 0 implies

j�(ti)� �(tj)j � 2C" (12:7)

where t � ti < ", s� tj < ". Then we can estimate the probability of the event in (12.5) (on ~
)

by

P

h
9s; t 2 T � T :

���kT � js� tj
��� � #; j�(t)� �(s)j = 0; j�0(t)j = j�0(s)j = 0

i
� P

h
9ti; tj :

��kT � js� tj
�� � #; j�(ti)� �(tj)j � 2C"; j�0(ti)j � C";

j�0(tj)j � C"

i
:

(12:8)

Let us denote the event appearing on the left-hand side of (12.8) by A#, and the event appearing

on the right-hand side by B#;". The probability P[B#;"] can be estimated by the standard bound

P [B#;"] �
X

jkT�jti�tj jj�#

P [j�(ti)� �(tj)j � 2C"; j�0(ti)j � C"; j�0(tj)j � C"] : (12:9)

Now, for any �xed i; j,

(�(ti)� �(tj); �
0(ti); �

0(tj)) (12:10)

is a Gaussian vector, and due to the condition on jti� tj j and the assumption concerning r(�), its

distribution is non-degenerate. Therefore, each term in the sum on the right-hand side of (12.9)

can be bounded by

P [j�(ti)� �(tj)j � 2C"; j�0(ti)j � C"; j�0(tj)j � C"] � K"
3
C
3(2��i;j)

�1
; (12:11)

where �i;j is the determinant of the non-degenerate covariance matrix of the random vector

(12.10). Since the ti; tj are chosen in a compact set, this quantity can be bounded uniformly in

i; j. We thus get

P [j�(ti)� �(tj)j � 2C"; j�0(ti)j � C"; j�0(tj)j � C"] � K(#)"3C3
: (12:12)
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Finally, the number of allowed pairs (i; j) in the sum in equation (12.9) does not exceed T 2
"
�2,

which implies that

P [A#] �P [B#;"] + P

h
~
c

C

i
�K(#)T 2

"
�2
"
3 + P

h
~
c

C

i
;

(12:13)

keeping track of the set ~
c

C
on which the above estimates are not valid. Now choose C = C(") =

o("�1=3), and observe that due to the continuity properties

lim
"!0

P

h
~
c

C(")

i
= P

"\
n2N

fC � ng
#

= 0:

(12:14)

Finally, letting " tend to zero in (12.13) gives that the probability (12.5) is zero. This holds for

any # > 0 and thus shows that local maxima are separated with probability one. In particular,

there are no constant pieces and no accumulation points of maxima. This concludes its proof. �

Corollary 12.3: Suppose �(t) satis�es the conditions in Proposition 12.1. Then �(t) has a.s.

only one global maximum in any interval [s; s+ t], t < T .

To see that Proposition 12.1 is relevant for our problem, we will next show that the process gN (#)

converges to a process of the type covered by this proposition. In fact we have

Proposition 12.4: Let g : R ! R+ , g 2 C1 be an aperiodic even function. Suppose also that

�i(#), # 2 [0; 2�] is the stochastic process given by

�i(#) = g (r�i cos(#� �i)) ; (12:15)

where r is a positive constant, f�igi2N, f�igi2N are two mutually independent families of i.i.d.

random variables, distributed as cxe�x
2

(�i), and uniformly (�i). Then the process �N given by

�N (#) �
1p
N

NX
i=1

f�i(#)� E �i(#)g (12:16)

converges in distribution to a strictly stationary Gaussian process �(#) having a.s. continuously

di�erentiable sample paths. Furthermore, �(#) has a.s. only one global maximum on any interval

[s; s+ t], t < �.

Remark: We will use this proposition of course with g(�) = ln cosh(��). Then the proposi-

tion implies that the process gN (#) � E gN (#) converges to a Gaussian process with the above

properties.

Proof: As �i(#) are i.i.d. stationary processes on the circle which are in�nitely di�erentiable, the

convergence of the process to a stationary Gaussian process on the circle is a simple application
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of the central limit theorem in Banach spaces (see e.g. [LT]). A computation shows that the

covariance of the limiting process is given by

f(s; t) = E [(�1(s)� E �1(s)) (�1(t)� E �1(t))]

= E [g (r�1 cos('1)) g (r�1 cos(t� s� '1))]� (E [g (r�1 cos('1))])
2

(12:17)

We see that this function is even, and is in C
1 as a function of � = t � s. Moreover, it is

easily checked that the covariance function f(�) is strictly smaller than f(0), whenever � 6= k�.

Proposition 12.1 and Corollary 12.3 then imply the assertions about continuity and non-existence

of more than one global maximum. This concludes the proof of Proposition 12.4. �

We now check some intuitive properties of the position of the minimum of the Gaussian process

from Proposition 12.1 (for those ! such that the minimum exists and is unique).

Proposition 12.5: Suppose that the conditions of Proposition 12.1 are satis�ed. De�ne the

space (
0;F 0;P0) to be the restriction of (
;F ;P) to all ! such that the conclusions of Proposi-

tion 12.1 are true. Then the position of the minimum

#
�[!] � arg min

#2[0;�)
�[!](#) (12:18)

of the sample path �[!] is a random variable with uniform distribution on [0; �).

Proof: To prove that #�[!] is a random variable, it is enough to show that for all intervals

U = (a; b) � [0; �), the set #��1(U) is in F 0. We note that by the continuity of � on [0; �) for all

! 2 
0,

#
��1(U) � f! 2 
 : �[!](�) assumes its minimum in Ug

= f! 2 
0 : 9t 2 U \ Q such that 8s 2 Uc \ Q ; �(t) < �(s)g:
(12:19)

The second line can be written as[
t2U\Q

\
s2Uc\Q

f! 2 
0 : �(t) < �(s)g; (12:20)

which clearly is in F 0.
Equation (12.20), together with the strict stationarity (since it is a real stationary process) of

the process �, implies the uniformity of the distribution. This proves Proposition 12.5. �

Finally, to get some information about the convergence of functions of the position of the mini-

mum, we use the following two results.

Lemma 12.6: Let P([0; �)) be the space of �-periodic, continuous functions, having only

one minimum, together with the supremum norm. Suppose we have a sequence of �-periodic,

continuous functions (fn) converging uniformly to f 2 P([0; �)). Then the positions of the global

minima of fN converge to the position of the global minimum of f .
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Proof: Suppose that there exists a sequence (fn) of periodic, continuous functions, converging

uniformly to f 2 P([0; �)), but such that in�nitely many of the fn have global minima whose

positions do not converge to the position of the unique global minimum #
� of f . Then we can

choose a subsequence (fnk) with global minima #�
nk

such that j#�
nk
� #

�j > Æ > 0, 8k.
Since by assumption, #�

nk
is a global minimum of fnk , we have that

fnk(#
�
nk
)� fnk(#

�) � 0; (12:21)

On the other hand, for any " > 0,

fnk(#
�
nk
)� fnk(#

�) = fnk(#
�
nk
)� f(#�nk) + f(#�nk)� f(#�) + f(#�)� fnk(#

�)

� �"+ f(#�
nk
)� f(#�)� ";

(12:22)

for all k large enough, since fnk is assumed to converge uniformly to f . Choosing " small enough,

the right hand side of (12.22) can be made positive if indeed j�� � �
�
nk
j > Æ > 0, contradicting

(12.21). This implies the lemma. �

The following result is crucial to link the weak convergence of the process gN (#) to the weak

convergence of the measures QN;� .

Proposition 12.7: De�ne the random sets

LN [!] =
�
# 2 [0; �) : �N [!](#)�min

#0
�N [!](#

0) � "N

	
(12:23)

with "N some sequence converging to zero. Then

LN
D�! #

� (12:24)

Proof: The random processes �n, � lie a.s. in the space of �-periodic C1 functions. This space,

together with the sup-norm topology, is separable due to Weierstrass' approximation theorem. In

this situation the method of a single probability space (see [Shi], Chapter 3, Section 8, Theorem 1)

ensures the existence of a probability space (
�;F�;P�) and random processes ��
N
, ��, such that

�
�
N ! �

�
; P� � a:s:; (12:25)

and

�
� D
= �; �

�
N

D
= �N : (12:26)

Introduce the random level sets

L
�
N
[!�] =

�
# 2 [0; �) : ��

N
[!�](#)�min

#0
�
�
N
[!�](#0) � "N

	
;

Then LN and L�
N
have the same distribution. But since ��

N
[!] converges almost surely to ��[!] 2

P([0; �)), one sees that due to Lemma 12.6, L�
N
[!] converges P�-a.s. to the position of the unique

absolute minimum of ��[!�]. This minimum has the same distribution as that of �, which is the
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uniform distribution by Proposition 12.5. Therefore, LN converges in distribution to a uniformly

distributed point on [0; �). �

We have �nally all tools available to prove Theorem 10.3.

Proof of Theorem 10.3: We have to check convergence of measures � on the following type

of functions F :M(R2)! R

F (�) = eF (�(f1); : : : ; �(fk)); (12:27)

where eF is a polynomial function, and f1; : : : ; fk are bounded continuous functions from R2 ! R.

Convergence in law then means that

lim
N"1

E

�
F (QN;� [!])

�
=

1

�

�Z
0

F (
1

2
Æ(m� cos#;m� sin#) +

1

2
Æ(m� cos#+�;m� sin #+�)) d#: (12:28)

The left-hand side of (12.28) is explicitly written as

lim
N"1

E

� eF (QN;�[!](f1); : : : ;QN;�[!](fk))

�
: (12:29)

We now treat the individual arguments of eF in (12.29). Let AN [!] (the level sets in the previ-

ous lemmata) be decomposed into its 2l0 connected components AN;j[!]. As a consequence of

Lemma 12.7, there exists N [!] which is �nite a.s. such that for all N � N(!), l = 1, and the

two corresponding connected components are symmetric with respect to the origin. Now choose

arbitrary points xN;j[!] 2 AN;j[!]. Then we can decompose

eQN;� [!](fi) =
X
j

fi(xN;j) eQN;�[!](1IAN;j
) +

X
j

eQN;�(1IAN;j
(fi(xN;j)� fi))

+ eQN;�(1IAc
N
fi):

(12:30)

Expanding eF using the decomposition (12.30), we get a sum consisting of two di�erent types of

terms: (i), summands that are products of the �rst sum on the right-hand side of (12.30) only,

and (ii), summands where at least one of the second and third term from the right-hand side of

(12.30) enter. Proposition 11.3 and Proposition 12.7, and the continuity and boundedness of the

fi's imply that the terms of type (ii) vanish P-a.s., as N " 1. In the limit, the only terms left

are of type (i), which together sum up to

eF
0@X

j

f1(xN;j) eQN;� [!](1IAN;j
); : : : ;

X
j

fk(xN;j) eQN;� [!](1IAN;j
)) (12:31)

All arguments of eF in (12.31) converge in distribution to

1

2
fi((m

� cos#;m� sin#)) +
1

2
fi((m

� cos#+ �;m
� sin#+ �)); 8i = 1; : : : ; k (12:32)
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where # is a uniformly distributed r.v. on [0; �), by Proposition 12.7. But convergence in distri-

bution means by de�nition that

lim
N"1

E

� eF (X
jN

f1(xN;jN )
eQN;� [!](AN;jN

); : : : ;
X
jN

f2(xN;jN )
eQN;� [!](AN;jN

))

�

=
1

�

�Z
0

eF (1
2
fi((m

� cos#;m� sin#)) +
1

2
fi((m

� cos#+ �;m
� sin#+ �)) d#;

(12:33)

which in turn is by de�nition equal to

1

�

�Z
0

F (
1

2
Æ(m� cos #;m� sin#) +

1

2
Æ(m� cos #+�;m� sin#+�)) d#: (12:34)

This proves the convergence in law (10.12) in Theorem 10.3. To obtain the identi�cation of the

metastate, just note that the process �N (#)[!] actually converges to the same Gaussian process

under any of the conditional laws P[�jFn], where Fn is the sigma-algebra generated by the random

variables �i; i � n. �



13 Volume Dependence, Empirical Metastates, Superstates

We conclude this paper with the discussion of some more sophisticated concepts that have been

proposed by Newman and Stein [NS2] and Bovier and Gayrard [BG3] and that should capture

in more detail the actual asymptotic volume dependence of the Gibbs measures. In fact, the �rst

question one may ask is whether for a �xed realization as the volume grows the �nite volume

Gibbs states really explore all the possibilities in the support of the metastate. One way of stating

that this is the case is the following

Theorem 13.1: There exist (deterministic) sequences Nk " 1 such that the empirical metas-

tate

1

k

kX
`=1

ÆQNk;�
; (13:1)

converges almost surely to the law of Q1;�.

Proof: We have seen that the measure QNk;�
is sharply concentrated on the circle of radius r�

and at the angle where the process gNk
(#) (de�ned in (11.3) takes its absolute minimum. The

idea is to choose Nk in such a way that these angles will be virtually independent for di�erent k.

Now note that we can write

gNk
(#) = egk(#) + Rk(#); (13:2)

where

egk(#) = 1

Nk

NkX
i=Nk�1+1

ln cosh(�(r��i cos(#� 'i))); (13:3)

are independent for di�erent k by construction and

Rk(#) =
1

Nk

Nk�1X
i=1

ln cosh(�(r��i cos(#� 'i))): (13:4)

Now by standard estimates identical to those presented in Chapter 12, one shows easily that there

is a constant C <1 such that

P

"
sup

#2[0;�)
jRk(#)� E Rk (#)j � x

Nk�1

Nk

#
� C exp

�
�x2=C

�
: (13:5)

Thus we can always choose Nk growing suÆciently rapidly (e.g. Nk = k!) such that Rk is totally

negligible compared to egk for large k, and the position of the absolute minimum of gNk
(#) is

asymptotically equal to that of egk(#). This allows us to approximate for large k the random

measures ÆQNk;�
by independent measures and from this the asserted result follows from the law

of large numbers. �

Remark: Theorem 13.1 says that that the empirical metastate constructed with sparse subse-

quences converges to the Aizenman-Wehr metastate, a.s.. This is a special example of a general
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theorem due to Newman and Stein [NS2] (where however they require possibly subsequences `i
in the de�nition (13.1)).

Rather than considering the empirical metastate with sparse subsequences one may be interested

in the volume dependence as the volume grows at its natural pace. To capture this, the idea put

forward in [BG3] is to construct a measure valued stochastic process

�
t

�
� lim

N"1
��;[tN ]; (13:6)

with t 2 (0; 1] and to consider either the (conditional) probability distribution of this process

(the \superstate" [BG3]) or the (conditional) empirical distribution of the process (the \empirical

metastate" [NS2]). Let us see what this entails in our context. The reader who has been following

the exposition of the last two chapters will easily be convinced that this problem amounts to study

the quantity

#
�
t
� arg min

#2[0;�)
(�t(#)) ; (13:7)

where �t(#) is the distributional limit of the process

�
t

N
(#) � g[tN ](#)� E g[tN ](#): (13:8)

where gN (#) is de�ned in (11.3). By completely standard arguments one shows that the following

invariance principle holds:

Lemma 13.2: The process �t
N
(#) converges in distribution, as N " 1 to the Gaussian process

�t(#), t 2 (0; 1]; # 2 [0; �) with mean zero and covariance

C(#; #0; t; t0) � t ^ t0p
tt0
f(#; #0); (13:9)

where

f(#; #0) = E [ln cosh (�r�1 cos(')) ln cosh (�r�1 cos ('� (#� #
0)))] : (13:10)

�t(#) is a rather curious Gaussian process: as a function of t, for �xed # it is (normalized)

Brownian motion, while for �xed t as a function of # it is the C1 process discussed in the

previous section. The question is then: what can be said about the process #�
t
, de�ned by (13.7)?

Some facts follow easily. For instance, the process is almost surely single valued for all t 2 (0; 1]

except possibly on some Cantor set of zero Lebesgue measure. On the other hand, it seems natural

that such an exceptional set will exist and that a typical realization will have continuous pieces and

\jumps". Also, for t going to zero, the process \circles" around rapidly since �t and �s become

uncorrelated as s # 0. But otherwise we do not see any immediate more speci�c characterization

of the process or its path-properties.



Appendix: A Deviation Inequality

The aim of this appendix is to prove a deviation inequality due to Ledoux [Le] under slightly

weaker conditions, and which is used in the course of the proof of Theorem 2.2. Ledoux starts

by proving the following Log-Sobolev inequality (his Theorem 1.2, resp. inequality (1.6) with the

optimal constant).34

Theorem A.1: Let g be smooth function on Rn such that ln g2 is separately convex (g2 > 0).

Then, for any product probability P on [�1; 1]n,

E
�
g
2 ln g2

�
� E

�
g
2
�
ln E

�
g
2
�
� 8 E

�
jrgj2

�
: (A:1)

From this the deviation inequality follows as a corollary (compare [Le] and references therein).

Theorem A.2: Let f be a separately convex Lipschitz function on Rn with Lipschitz constant

kfkLip � 1. Then, for every t � 0,

P [f � E f + t] � e
� t2

2 : (A:2)

Unfortunately, in the application we have in mind, the uniform bound on the Lipschitz constant

is not uniformly satis�ed. However, it is violated only on a set of exponentially small probability.

In this situation, we would like to have a tool similar to Theorem 6.6 in [T1], which handles

this inconvenience in the case of convex functions. It is clear that one needs some additional

integrability conditions on f , to make up for its weaker Lipschitz properties. The conditions we

present are adapted to what we can prove about the free energy of the p-spin Hop�eld model in

chapter 4. The proof is not very original and follows essentially the lines of Ledoux [Le].

Theorem A.3: Suppose that GN : [�1; 1]L(N) ! R are smooth positive functions, separately

convex, and satisfy the following conditions: there exist constants c�; t�; �; � > 0, and �N 2 N

such that for all N � �N ,

(i) for all c > c
�: P[kGNkLip > cN

� 1
2 ] � e

�Æ(c1)N , for some increasing function Æ;

(ii) for all t > t
�: P[jGN j > tN ] � e

��N(t��);

(iii) the Lipschitz constant as a function of N is uniformly bounded by some polynomial func-

tion p of N .

Then there exist constants K1; : : : ;K5 > 0 such that

P[NGN � N

Z
GNdP + tN ] �

(
e
�Nt2

K1 ; if t < K2;

K3e
�K4N(t�K5) otherwise.

(A:3)

Thus, uctuations above the mean are of the order of the square root of N . This is stated more

elegantly in the following immediate corollary, which is used in Chapter 4 as Theorem 4.6.

34Note that we adapt the results to functions de�ned on [�1;1], respectively [�1;1]n.
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Corollary A.4: Under the conditions of Theorem A.3, there exists for each t > 0 and

k 2 [1
2
; 1) constants C > 0 and �N 2 N such that

P[NGN � N

Z
GNdP + tN

k] � e
�N2k�1t2

C ; (A:4)

for all N � �N .

Proof of Theorem A.3: Suppose �rst that P is absolutely continuous with respect to Lebesgue

measure on 
N = [�1; 1]N . We observe that under our conditions, the Log-Sobolev inequality

(A.1) holds for g2 = e
�NGN ,Z

g
2 log g2dP �

Z
g
2
dP log

Z
g
2
dP � 8

Z
jrg2jdP: (A:5)

This is equivalent to the following di�erential inequality for the function ~G(�) =
R
e
�NGN dP,

�
d

d�

~G(�)� ~G(�) ln ~G(�) � 2�2N2

Z
jrGN j2e�NGN ]dP: (A:6)

To integrate this inequality, we seek a good upper bound for its right-hand side. We �rst observe

that since P is absolutely continuous with respect to Lebesgue measure, the set where jrGN j > c

has the same measure as the set in hypothesis (i). We now decompose the integral asZ
jrGN j2e�NGN dP =

Z
jrGN j�c1N

�
1
2

jrGN j2e�NGN dP+

Z
jrGN j>c1N

�
1
2

jGN j�c2

jrGN j2e�NGN dP

+

Z
jrGN j>c1N

�
1
2

jGN j>c2

jrGN j2e�NGN dP;

(A:7)

where c1 > c
� and c2 > t

� (and will be determined later). The �rst term is bounded byZ
jrGN j�c1N

�
1
2

jrGN j2e�NGN dP � c
2
1N

�1
Z
e
�NGN dP = c

2
1N

�1 ~G(�): (A:8)

In the second term, we use a uniform bound on jrGN j, resp. GN , and observe that since GN is

positive, ~G(�) is greater than one. Hence,Z
jrGN j>c1N

�
1
2

jGN j�c2

jrGN j2e�NGN dP � p(N)2e�c2NP[jrGN j > c1N
� 1

2 ]

� p(N)2e�c2Ne�Æ(c1)N � p(N)2e�c2Ne�Æ(c1)N ~G(�)

(A:9)
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by hypothesis (i), resp. (iii). This means that if �c2 � Æ(c1), this term vanishes exponentially.

To treat the remaining term in the decomposition (A.7), we write it as follows,Z
jrGN j>c1N

�
1
2

jGN j>c2

jrGN j2e�NGN dP � p(N)2
Z

jrGN j>c1N
�

1
2

jGN j>c2

e
�NGN dP

= p(N)2
X
ti

Z
jrGN j>c1N

�
1
2

jGN j2(ti;ti+1]

e
�NGN dP

� p(N)2
X
ti

e
�Nti+1 minfP[jrGN j > c1N

� 1
2 ];P[GN > ti]g;

(A:10)

where ftigi2N is the decomposition of (c2;1) into unit intervals. By condition (ii),

P[GN > ti] � Ke
�N�(ti��); (A:11)

which is less than P[jrGN j > c1N
� 1

2 ] whenever ti > �+c2=�. We therefore choose c3 > �+c2=�.

Thus, (again using the fact that ~G > 1)Z
jrGN j>c1N

�
1
2

jGN j>c2

jrGN j2e�NGN dP � Kp(N)2
X
ti

e
�ti+1N�N�(ti��)

� Kp(N)2eN���N�
X
ti

e
�Nti(���)

� Kp(N)2eN���N�+Nc2(���)
�
1� e

�N(���)
��1

~G(�):

(A:12)

Therefore, if

c2 >
��+ �

�� �
; (A:13)

the coeÆcient of ~G(�) on the right-hand side of (A.12) will tend to zero exponentially fast.

Collecting the bounds for the three parts in the decomposition (A.7), we get that there exist

constants c�1; c3; c4; �
�
> 0 such thatZ

jrGN j2e�NGN dP �
�
c
2
1N

�1 + c3e
�c4N

�
~G(�) (A:14)

for all c1 > c
�
1, and � 2 (0; ��).

We are now ready to integrate the di�erential inequality (A.6) for ~G(�). Inserting (A.14) yields

�
d

d�

~G(�)� ~G(�) ln ~G(�) �
�
2�2N1

c
2
1 + 2c3�

2
N

2
e
�c4N

�
~G(�): (A:15)

Let H(�) � 1
�
log ~G(�). Then (A.15) reduces to

H
0(�) � 2c21N + 2c21N

2
e
�c4N : (A:16)
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Moreover,

H(0) = lim
�#0

1

�

~G(�) =
~G0(0)

~G(0)
= N

Z
GNdP: (A:17)

Thus, for all � 2 (0; ��),

H(�) � N

Z
GNdP+ 2c21N�+ 2c21N

2
e
�c4N�; (A:18)

which in turn implies that

~G(�) � exp

�
�N

Z
GNdP+ �

2(2Nc21 + 2c3N
2
e
�c4N )

�
: (A:19)

Let now P be arbitrary. Then any smooth convolution of P will satisfy the above inequality. Since

GN is supposed to be continuous, the same is true for P itself.

To �nish the proof of the Theorem, we use the exponential Chebyshev inequality, i.e.

P[NGN > N

Z
GNdP+Nt] � e

��tN��N
R
GNdP

Z
e
N�GN dP

= e
��tN��N

R
GNdP ~G(�);

(A:20)

for all � > 0. Using (A.19), we get

P[NGN > N

Z
GNdP+Nt] � exp

�
��tN + �

2(2Nc21 + 2c3N
2
e
�c4N )

�
: (A:21)

Optimizing with respect to � then yields (uniformly over all N � �N)

P[NGN > N

Z
GNdP+Nt] � C

8<: e
�Nt2

8c2
1 , if t � 4c21�

�
;

e
���tN�2��2Nc

2
1 ; otherwise,

(A:22)

which is the statement of Theorem A.3. �
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