
Representations and Optimizations for
Embedded Parallel Dataflow Languages

vorgelegt von
M.Sc.

Alexander Alexandrov
geb. in Sofia, Bulgarien

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. Volker Markl
Gutachterin: Prof. Dr. Mira Mezini
Gutachter: Prof. Dr. Torsten Grust

Tag der wissenschaftlichen Aussprache: 31. Oktober 2018

Berlin 2019





In memory of my grandfather,
who taught me how to count when I was very young

and Prof. Hartmut Ehrig,
who taught me how to comprehend counting twenty years later.









Acknowledgments
I would like to express my gratitude to the people who made this dissertation possible.

First and foremost, I would like to thank my advisor Prof. Dr. Volker Markl. He offered
me the chance to work in the area of data management and encouraged me to search for a
motivating topic. Throughout my time at the Database and Information Systems Group
at TU Berlin, his constant engagement and valuable advice allowed me to substantially
improve the quality of my research.

I am also deeply indebted to everybody who contributed to the Emma project. Asterios
Katsifodimos and Andreas Kunft showed tremendous dedication and work ethic and
played an essential role in bringing the original SIGMOD 2015 submission to an accept-
able shape under a very tight deadline. Georgi Krastev was instrumental in shaping the
design and implementation of the compiler internals. Without his passion for functional
programming and sharp eye for elegant API design, the software artifact accompanying
this thesis would undoubtedly have ended up in a much more rudimentary form. Gábor
Gévay influenced the story presented in this thesis with a number of incisive comments.
Most notably, he rigorously pointed out that state-of-the-art solutions fall into the cate-
gory of deeply embedded DSLs, which forced me to pinpoint quotation-based embedding
as the crux to the proposed solution. Andreas Salzmann developed the GUI for the
demonstrator, and Felix Schüler and Bernd Louis contributed a number of algorithms to
the Emma library.

This work represents a natural fusion between two distinct lines of research. Stephan
Ewen and Fabian Hüske developed the original PACT programming model, and I was
lucky enough to work with both of them during my time at DIMA. The adopted categor-
ical approach highlights the timeless relevance of the foundational research conducted
by Phil Wadler, Peter Buneman and Val Tannen, and Torsten Grust in the 1990s. The
intimate connection between the two areas was pointed out by Alin Deutsch during a
visit at UC San Diego in the autumn of 2012.

Last but not least, I am also grateful to my family and friends for their continuous love
and support, to all past and future teachers of mine for their shared knowledge, and to
Katya Tasheva, Emma Greenfield, and Petra Nachtmanova for the music.

i





Declaration of Authorship
I, Alexander Alexandrov, declare that this thesis, titled “Representations and Optimiza-
tions for Embedded Parallel Dataflow Languages”, and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.
• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly
stated.
• Where I have consulted the published work of others, this is always clearly at-
tributed.
• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.
• I have acknowledged all main sources of help.
• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Berlin, February 12, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . .

iii





Abstract
Parallel dataflow engines such as Apache Hadoop, Apache Spark, and Apache Flink have
emerged as an alternative to relational databases more suitable for the needs of modern
data analysis applications. One of the main characteristics of these systems is their
scalable programming model, based on distributed collections and parallel transformations.
Notable examples are Flink’s DataSet and Spark’s RDD programming abstractions.
The programming model is typically realized as an eDSL – a domain specific language
embedded in a general-purpose host language such as Java, Scala, or Python. This
approach has several advantages over traditional stand-alone DSLs such as SQL or
XQuery. First, it allows for reuse of linguistic constructs from the host language – for
example, anonymous functions syntax, value definitions, or fluent syntax via method
chaining. This eases the learning curve for developers already familiar with the host
language syntax. Second, it allows for seamless integration of library methods written in
the host language via the function parameters passed to the parallel dataflow operators.
This reduces the development effort for dataflows that go beyond pure SQL and require
domain-specific logic, for example for text or image pre-processing.
At the same time, state-of-the-art parallel dataflow eDSLs exhibit a number of shortcom-
ings. First, one of the main advantages of a stand-alone DSL such as SQL – the high-level,
declarative Select-From-Where syntax – is either lost or mimicked in a non-standard
way. Second, execution aspects such as caching, join order, and partial aggregation need
to be decided by the programmer. Automatic optimization is not possible due to the
limited program context reflected in the eDSL intermediate representation (IR).
In this thesis, we argue that these limitations are a side effect of the adopted type-based
embedding approach. As a solution, we propose an alternative eDSL design based on
quasi-quotations. We present a DSL embedded in Scala and discuss its compiler pipeline,
IR, and some of the enabled optimizations. We promote the algebraic type of bags in
union representation as a model for distributed collections, and its associated structural
recursion scheme and monad as a model for parallel collection processing. At the
source code level, Scala’s for-comprehensions can be used to encode Select-From-Where
expressions in a standard way. At the IR level, maintaining comprehensions as a first-
class citizen can be used to simplify the analysis and implementation of holistic dataflow
optimizations that accommodate for nesting and control flow. The proposed DSL design
therefore reconciles the benefits of embedded parallel dataflow DSLs with the declarativity
and optimization potential of external DSLs such as SQL.

v





Zusammenfassung
Parallele Datenflusssysteme wie Apache Hadoop, Apache Spark und Apache Flink haben
sich als Alternative von relationalen Datenbanken etabliert, die für die Anforderungen
moderner Datenanalyseanwendungen besser geeignet ist. Zu den Hauptmerkmalen dieser
Systeme gehört ein auf verteilten Datenkollektionen und parallelen Transformationen
basierendes Programmiermodell. Beispiele dafür sind die DataSet und RDD Programmier-
schnittstellen von Flink und Spark.
Diese Schnittstellen werden in der Regel als eDSLs realisiert, d.h. als domänenspezifische
Sprachen, die in einer Hostsprache wie Java, Scala oder Python eingebettet sind. Dieser
Ansatz bietet mehrere Vorteile gegenüber herkömmlichen externen DSLs wie SQL oder
XQuery. Zum einen kann man bei einer eDSL syntaktische Konstrukte aus der Host-
Sprache wiederverwenden. Dies verringert die Lernkurve für Entwickler, die bereits mit
der Syntax der Hostsprache vertraut sind. Zum anderen ermöglicht der Ansatz eine
nahtlose Integration von Bibliotheksmethoden, die in der Hostsprache verfügbar sind,
und reduziert somit den Entwicklungsaufwand für Datenflüsse, die über reines SQL
hinausgehen und domänenspezifische Logik erfordern.
Gleichzeitig weisen eDSLs wie DataSet und RDD eine Reihe von Nachteilen auf. Erstens ist
einer der Hauptvorteile von externen DSLs wie SQL - die deklarative Select-From-Where-
Syntax - entweder verloren oder auf eine nicht-standardisierte Weise nachgeahmt. Zweitens
werden Ausführungsaspekte wie Caching, Join-Reihenfolge und verteilte Aggregate vom
Programmierer manuell festgelegt. Eine automatische Optimierung ist aufgrund des
begrenzten Programmkontexts in der eDSL-Zwischenrepräsentation nicht möglich.
Wir zeigen, dass diese Einschränkungen als Nebeneffekt des auf Typen basierenden Ein-
bettungsansatzes verursacht werden. Als Lösung schlagen wir ein alternatives Design vor,
das auf Quasi-Quotations basiert. Wir präsentieren eine Scala eDSL und diskutieren deren
Compiler, Zwischenrepräsentation, sowie einigen von den ermöglichten Optimierungen.
Als Grundlage für das verteilte Datenmodell benutzen wir den algebraischen Typ von Kol-
lektionen in Union-Repräsentation, und für die parallele Datenverarbeitung – die damit
verbundenen strukturelle Rekursion und Monade. Auf der Quellcode-Ebene kann man
Comprehensions über die Monade verwenden, um Select-From-Where Ausdrücke in einer
Standardform zu kodieren. In der Zwischenrepräsentation bieten Comprehensions eine
Basis, auf der man Datenflussoptimierungen einfacher gestalten kann. Das vorgeschlagene
Design vereinigt somit die Vorteile von eingebetteten parallelen Datenfluss-DSLs mit der
deklarativen Natur und Optimierungspotenzial von externen DSLs wie SQL.

vii





Contents
Acknowledgments i

Declaration of Authorship iii

Abstract (English/Deutsch) v

List of Figures xiii

1 Introduction 1

2 State of the Art and Problems 5
2.1 DSL Implementation Approaches . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 eDSL Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Parallel Dataflow DSLs – Evolution and Problems . . . . . . . . . . . . . 7

2.3.1 Origins: MapReduce & Pregel . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Spark RDD and Flink DataSet . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Current Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Solution Approach 15

4 Background 17
4.1 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Basic Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 F-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 Polymorphic Collection Types as Functors . . . . . . . . . . . . . . 27
4.1.5 Collection Types in Union Representation . . . . . . . . . . . . . . 32
4.1.6 Monads and Monad Comprehensions . . . . . . . . . . . . . . . . . 35
4.1.7 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Static Single Assignment Form . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Source Language 49
5.1 Linguistic Features and Restrictions . . . . . . . . . . . . . . . . . . . . . 49
5.2 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Programming Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



Contents

5.3.1 Sources and Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Select-From-Where-like Syntax . . . . . . . . . . . . . . . . . . . . 52
5.3.3 Aggregation and Grouping . . . . . . . . . . . . . . . . . . . . . . 53
5.3.4 Caching and Native Iterations . . . . . . . . . . . . . . . . . . . . . 54
5.3.5 API Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Core Language 55
6.1 Administrative Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 First-Class Monad Comprehensions . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Comprehension Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Binding Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Compiler Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Optimizations 67
7.1 Comprehension Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Naïve Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.2 Qualifier Combination . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.3 Structured API Specialization in Spark . . . . . . . . . . . . . . . 71

7.2 Fold Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.1 Fold-Forest Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.2 Fold-Group Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Native Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Implementation 83
8.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2.1 LMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2.2 Scala Macros and Scala Reflection . . . . . . . . . . . . . . . . . . 87
8.2.3 Current Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.3 Object Language Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.4 Tree Manipulation API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.4.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.5 Code Modularity and Testing Infrastructure . . . . . . . . . . . . . . . . . 96

9 Evaluation 101
9.1 Effects of Fold-Group Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2 Effects of Cache-Call Insertion . . . . . . . . . . . . . . . . . . . . . . . . 103
9.3 Effects of Relational Algebra Specialization . . . . . . . . . . . . . . . . . 103
9.4 Effects of Native Iteration Specialization . . . . . . . . . . . . . . . . . . . 104
9.5 Cumulative Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



Contents

10 Related Work 107
10.1 Formal Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.2 Related DSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.2.1 sDSL Targeting Parallel Dataflow Engines . . . . . . . . . . . . . . 109
10.2.2 eDSLs Targeting RDBMS Engines . . . . . . . . . . . . . . . . . . 109
10.2.3 eDSLs Targeting Parallel Dataflow Engines . . . . . . . . . . . . . 110
10.2.4 eDSLs with Custom Runtimes . . . . . . . . . . . . . . . . . . . . 111

11 Conclusions and Future Work 113

Bibliography 124

List of Acronyms 126

xi





List of Figures
2.1 Classification of DSLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Example program in source, SSA, and ANF form. . . . . . . . . . . . . . 48

5.1 Abstract syntax of Emma Source . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 BagA and BagCompanion API in Emma. . . . . . . . . . . . . . . . . . . . 53

6.1 Abstract syntax of Emma CoreANF . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Inference rules for the anf transformation. . . . . . . . . . . . . . . . . . 57
6.3 Inference rules for the dscf transformation. . . . . . . . . . . . . . . . . . 58
6.4 Abstract syntax of Emma Core . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 Inference rules for the resugarM transformation. . . . . . . . . . . . . . . 60
6.6 Inference rules for the normalizeM transformation. . . . . . . . . . . . . 62
6.7 Binding context example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 Inference rules for the combine transformation. . . . . . . . . . . . . . . . 69
7.2 Flink iterate specialization example. . . . . . . . . . . . . . . . . . . . . 81

8.1 Emma transversal API example. . . . . . . . . . . . . . . . . . . . . . . . 99

9.1 Effects of fold-group fusion (FGF) in Flink and Spark. . . . . . . . . . . . 102
9.2 Effects of cache-call insertion (CCI) in Flink and Spark. . . . . . . . . . . 103
9.3 Effects of relational algebra specialization (RAS) in Spark. . . . . . . . . . 104
9.4 Effects of native iterations specialization (NIS) in Flink. . . . . . . . . . . 105
9.5 Cumulative optimization effects for the NOMAD use case. . . . . . . . . . 105

xiii





1 Introduction

One of the key principles behind the pervasive success of data management technology
and the emergence of a multi-billion dollar market in the past 40+ years is the idea of
declarative data processing. The notion of data in this context has been traditionally
associated with the relational model proposed in [Cod70]. The notion of processing has
been traditionally associated with relational engines – specialized runtimes for efficient
evaluation of relational algebra programs. Finally, the notion of declarativity has two
aspects: piq the existence of high-level syntactic forms, and piiq the ability to automatically
optimize such syntactic forms by compiling them into efficient execution plans based on
the relational algebra. Traditionally, piq has been associated with the Select-From-Where
syntax [CB74] used in the Structured Query Language (SQL), and piiq with data-driven
query compilation techniques [SAC`79]. Data management solutions based the declarative
data processing paradigm therefore traditionally interface with their clients through a
stand-alone Domain Specific Language (DSL), most commonly SQL.

While SQL is easy to teach and straight-forward to use for simple descriptive analytics,
it is not so well-suited for more advanced pipelines. The limitations of SQL manifest
themselves most notably in domains like data integration or predictive data analysis.
Programs in these domains are characterized by dataflow features not directly supported
by SQL, such as dataflows with iterative or nested structure or application-specific
element-wise transformations. To illustrate this, imagine a text processing pipeline which
clusters text documents using an algorithm such as k-means. Conceptually, the input
of such pipeline is a collection (document corpus) of nested collections (the words in a
specific document). The first part of the pipeline therefore has to operate on this nested
collection structure in order to reduce each document into a suitable data point – for
example, a feature vector representing the tf-idf values of the words appearing in the
document. The second part performs the actual clustering as a loop of repeated cluster
re-assignment and centroid re-computation steps. Depending on the specific engine
and SQL dialect, implementing this pipeline entirely in SQL ranges from impossible to
cumbersome. If possible, an efficient encoding requires expert knowledge in advanced SQL

1



Chapter 1. Introduction

features (usually offered as non-standard extensions) such as User-Defined Types (UDTs),
User-Defined Functions (UDFs), and control-flow primitives such as the ones provided by
PL/SQL. Language-integrated SQL technologies such as Microsoft’s Language-Integrated
Query (LINQ) mitigate some of these issues, but do not deal well with the iterative
dataflows characteristic for most data analysis pipelines.

In contrast, systems such as Apache Hadoop, Apache Spark, and Apache Flink offer more
flexibility for programming data analysis pipelines. The notion of processing thereby
corresponds to parallel dataflow engines designed to operate on very large shared-nothing
clusters of commodity hardware. The notion of data corresponds to homogeneous
distributed collections with user-defined element types. The notion of declarativity,
however, is not mirrored at the language level.

Instead, dataflow engines adopt a functional programming model where the programmer
assembles dataflows by composing terms of higher-order functions such as map f and
reduce g. The semantics of these higher-order functions guarantee certain degrees of
data-parallelism that are unconstrained by the concrete function parameters (f and g).
Rather than using a stand-alone syntax, the programming model is realized as a domain
specific language embedded in a general-purpose host language such as Java, Scala, or
Python. This approach is more flexible, as it allows for seamless integration of data types
and data processing functions available in the host language.

Despite this advantage, state-of-the-art Embedded Domain Specific Languages (eDSLs)
offered by Spark and Flink also exhibit some common problems. First, one of the
main benefits of a Stand-alone Domain Specific Language (sDSL) such as SQL – the
standardized declarative Select-From-Where syntax – is either replaced in favor of a
functional join-tree assembly or mimicked through function chaining in a non-standard
way. Second, execution aspects such as caching, join order, and partial aggregation need
to be controlled and manually hard-coded by the programmer. Automatic optimization
is either restricted or not possible due to the limited program context available in
the Intermediate Representation (IR) constructed by the eDSL. As a consequence, the
construction of efficient pipelines requires programmers with deep understanding of
the underlying dataflow engine. Further, mixing in physical execution aspects in the
application code increases its long-term maintenance cost.

In this thesis, we argue that the problems listed above are a symptom of the type-based
embedding approach adopted these eDSLs. As a solution, we propose an alternative DSL
design based on quasi-quotations. Our contributions are as follows.

(C1) We analyze state-of-the-art eDSLs for parallel collection processing and identify
type-based embedding as the root cause for a set of commonly exhibited deficiencies.

(C2) We promote the algebraic type of bags in union representation as a model for

2



distributed collections, and the associated structural recursion scheme (fold) and
monad extension as a model for parallel collection processing.

(C3) As a solution to the problems highlighted in (C1), we propose a Scala DSL for
parallel collection processing based on quasi-quotations1. We discuss the eDSL
concrete syntax and Application Programming Interface (API), its abstract syntax
IR, and a compiler frontend that mediates between the two.

(C4) Building on top of the IR from (C3), we develop optimizations that cannot be
attained by parallel dataflow eDSLs with type-based embedding (e.g., fold-based
fusion, operator specialization, and auto-caching) and highlight their relation to
traditional optimizations from the compiler or data management domains.

(C5) We implement backends that offload data-parallel computation on Apache Spark
and Apache Flink, and demonstrate that the performance of code produced by
these backends is on par with that of hand-optimized Spark and Flink dataflows.
The automatic optimizations from (C4) thereby lower the requirements on the
programmer. At the same time, separating the user-facing source language, the IR,
and the backend parallel dataflow co-processor ensures performance portability.

(C6) We argue about the utility of monad comprehensions as first-class citizen. At the
source level, native comprehension syntax can be used to encode Select-From-Where
expressions in a standard, host-language specific way, e.g., with for-comprehensions
in Scala. At the IR level, treating comprehensions as a primitive building block
simplifies the definition and analysis of holistic dataflow optimizations in the
presence of nesting and control flow.

The proposed design can therefore be seen as a step towards reconciling the flexibility
of modern eDSLs for parallel collection processing with the declarative nature and
optimization potential traditionally associated with sDSLs such as xQuery and SQL.

The thesis is structured as follows. Chapter 2 reviews state-of-the-art technology and the
research problem, while Chapter 3 outlines the proposed solution. Chapter 4 provides the
background necessary for the methodology we employ towards our solution. Chapter 5
presents the abstract syntax and core API of Emma – a quotation-based DSL for parallel
collection processing embedded in Scala. Chapter 6 presents Emma Core – an IR
suitable for optimization, and a transformation from Emma Source to Emma Core .
Chapter 7 develops optimizations on top of Emma Core . Chapter 8 discusses possible
implementation infrastructures and some aspects of our prototype implementation.

1 In quotation-based DSLs, terms are delimited not by their type, but by an enclosing function which
can access and transform the Abstract Syntax Tree of its arguments. For example, in the Scala expression

onSpark t . . . code . . . u

the onSpark quasi-quote delimits a Scala code snippet that will be automatically optimized and evaluated
on Spark by the eDSL compiler presented in this thesis.

3



Chapter 1. Introduction

Chapter 9 highlights the impact and importance of the proposed optimizations through
an experimental evaluation. Chapter 10 reviews related work. Finally, Chapter 11
concludes and discusses future research directions.

The material presented in this thesis is based on the following publications. The Bag
API from Section 5.3, the comprehension compilation scheme from Section 7.1.2, and the
fold-group-fusion optimizing transformation from Section 7.2.2 were first published
at the SIGMOD 2015 conference [AKK`15]. A revised version of this work appeared in
the SIGMOD Record journal in 2016 [AKKM16], and a demonstrator was showcased
at the SIGMOD 2016 and BTW 2017 conferences [AKL`17, ASK`16]. Notably, the
publications listed above no not rely on the Emma Core IR discussed in Chapter 6.
Instead, the suggested implementation methodology is based on vanilla Scala Abstract
Syntax Trees (ASTs) and an auxiliary “comprehension layer” developed on top of the
Scala AST representation. Using Emma Core as a basis for the optimizations discussed
in Chapter 7 represents a more general approach, as it decouples the eDSL IR from the
IR of host language IR. For example, the fold-group-fusion optimization discussed
in [AKK`15, AKKM16] is presented only in conjunction with the Banana-Split law.
The variant presented here, on the other hand, combines the Banana-Split and the
Cata-Map-Fusion laws as a dedicated, fold-forest-fusion transformation based on
the Emma Core IR. The metaprogramming API discussed in Section 8.4 was developed
jointly with Georgi Krastev in 2016-2017 and is has not been published before. A
shortened version of the material presented in this thesis (excluding Section 4.1 and
Chapter 8) has been reworked as a journal paper and is currently under submission.

4



2 State of the Art and Problems

In this section we review open problems with state-of-the-art technology. We begin by
introducing common notions related to the implementation (Section 2.1) and design
(Section 2.2) of DSLs which are relevant for the subsequent discussion. We then provide
a historical perspective of the evolution of embedded DSLs for scalable data analysis
(Section 2.3), highlighting the benefits and problems of the various implementation
approaches by example.

2.1 DSL Implementation Approaches

The DSL classes discussed below are depicted on Figure 2.1, with definitions adapted
from [GW14]. With regard to their implementation approach and relation to General-
purpose Programming Languages (GPLs), DSLs can be divided in two classes – stand-
alone and embedded.

Stand-alone Domain Specific Languages (sDSLs) define their own syntax and semantics.
The main benefit of this approach is the ability to define suitable language constructs
and optimizations in order to maximize the convenience and productivity of the pro-
grammer. The downside is that, by necessity, a stand-alone DSL requires piq building a
dedicated parser, type-checker, and a compiler or interpreter, piiq additional tools for
IDE integration, debugging, and documentation, and piiiq off-the-shelf functionality in
the form of a standard or third-party libraries. Examples of widely adopted stand-alone
DSLs are Verilog and SQL.

Embedded Domain Specific Languages (eDSLs) are embedded into a GPL usually referred
to as host language. This approach can be seen as more pragmatic compared do sDSLs
for at least two reasons. First, it allows to reuse the concrete syntax of the host language.
Second, it also allows to reuse existing host-language infrastructure such as Integrated
Development Environments (IDEs), debugging tools, and dependency management.

5



Chapter 2. State of the Art and Problems

DSL

stand-alone (sDSL)
SQL, xQuery

embedded (eDSL)

shallow
Scala Collections

deep

type-based
Flink DataSet, Spark RDD

quotation-based
Emma

Figure 2.1: Classification of DSLs. Examples in each class are given in italic.

Based on the embedding strategy, eDSLs can be further differentiated into two sub-
classes. With shallow embedding, DSL terms are implemented directly by defining their
semantics in host language constructs. With deep embedding, DSL terms are implemented
reflectively by constructing an IR of themselves. The IR is subsequently optimized and
either interpreted or compiled.

Finally, the method used for IR construction in deeply embedded DSLs yields two more
sub-classes. With the type-based approach, the eDSL consists of dedicated types, and
operations on these types incrementally construct its IR. Host language terms that belong
to the eDSL are thereby delimited by their type. With the quotation-based approach, the
eDSL derives its IR from a host-language AST using some form of metaprogramming
facilities offered by the host language. Host language terms that belong to the eDSL are
thereby delimited by the surrounding quasi-quotes.

2.2 eDSL Design Objectives

Sharing its concrete syntax with host language is an important property of eDSLs that
can be utilized to improve their learning curve and adoption. In that regard, eDSL
design should be guided by two principles. The first is to maximize linguistic reuse –
that is, to exploit the programmer’s familiarity with syntactic conventions and tools of
the host language in carrying those over to the eDSL as much as possible. The second is
to minimize linguistic noise – that is, to reduce the amount of idiosyncratic constructs
specific to the eDSL as much as possible. At the same time, the eDSL should aim to
improve developer productivity and at the same time maximize the runtime performance
through advanced, domain-specific optimizations.

6



2.3. Parallel Dataflow DSLs – Evolution and Problems

2.3 Parallel Dataflow DSLs – Evolution and Problems

Based on the discussion above, we can review the evolution of parallel dataflow DSLs,
outline limitations of state-of-the-art solutions, and discuss current solution strategies.

2.3.1 Origins: MapReduce & Pregel

In its early days, Google faced problems with two integral parts of its data engineering
pipeline – (i) computing an inverted index and (ii) ranking the pages in a crawled Web
corpus. Conceptually, the input for the first task is a collection of documents identified
by an URL, and the goal is to tokenize the text content of each document into distinct
words, pairing each word with the URLs of the documents where this word occurs. The
input and output can therefore be seen as collections with the following element types1.

Document “ purl : URLq ˆ pcontent : Stringq input element type
Index “ pword : Stringq ˆ purls : URL˚q output element type

The input for the second task is a collection of URLs with adjacent URLs induced by
their outbound hyperlinks, and the output – an assignment of ranks to each URL –
is computed by iteratively re-distributing the current rank across adjacent links until
convergence. The input and output element types look as follows.

Page “ purl : URLq ˆ plinks : URL˚q input element type
Rank “ purl : URLq ˆ prank : Doubleq output element type

Initially, Google attempted to implement both tasks in a relational database. This
approach, however, had two major problems. First, handling the extreme input size
required a distributed setup with thousands of nodes, which significantly increased the
risk of a node failure during job execution. However, distributed database technology
was not designed to resiliently execute long-running queries at such scale in the presence
of frequent failures, and the pipeline was breaking too often. Second, the relational
data model and query language were not the best fit for the tasks at hand. Due to
their nested structure, neither Index nor Rank could be encoded natively as SQL tables.
Additionally, expressing the two tasks as queries required non-standard SQL extensions,
e.g., a tokenize UDF and an unnest operator for the inverted index task, and support
for iterative dataflows for the page ranking task.

To overcome these problems, Google implemented purpose-built systems – MapRe-
duce [DG04] for task (i) and Pregel [MAB`10] for task (ii). To address the first problem,

1Slightly varying from standard mathematical notation, we write the projection functions associated
with the product type components (such as creditType) inlined in the product type definition.

7



Chapter 2. State of the Art and Problems

these systems were designed to scale out to thousands of commodity hardware nodes in
the presence of frequent failures. To address the second problem, each system adopted a
parallel dataflow graph with a fixed shape that was suitable for the targeted task. Instead
of SQL, the dataflows were constructed in a general-purpose programming environment
such as C++, using UDFs and UDTs.

The impact of these systems was twofold. On the one hand, they triggered the development
of open-source projects that re-implemented the proposed designs and programming
models – Apache Hadoop (for MapReduce), and Apache Giraph (for Pregel). On the
other, they spurred the interest of the data management and distributed systems research
communities, where much of the ideas presented below originated.

2.3.2 Spark RDD and Flink DataSet

MapReduce and Pregel allowed users to process data flexibly and at a scale that was
not possible with traditional data management solutions. At the same time, encoding
arbitrary dataflows in the fixed shapes offered by those systems was cumbersome to
program, hard to optimize, and inefficient to execute. Next-generation dataflow engines
and programming models such as Spark [ZCF`10] and Nephele/PACTs [BEH`10] (which
became Stratosphere and then Flink) were designed to overcome these limitations.

Generalizing MapReduce, these systems were able to execute dataflow graphs freely
composed from a base set of second-order operators. Going beyond map and reduce, this
set was extended with binary operators such as join, coGroup and cross. To construct
a dataflow graph in a convenient way, the systems offered type-based DSLs deeply
embedded in JVM-based GPLs like Scala or Java. This technique was used from the
onset by Spark, and later also adopted by Stratosphere/Flink [Har13]. Both eDSLs are
based on a generic type representing a distributed, unordered collection of homogeneous
elements with duplicates. In Spark, the type is called RDD (short for Resilient Distributed
Dataset), while in Flink the type is called DataSet.

The RDD and DataSet eDSLs represent a significant improvement over the imperative
style of dataflow assembly employed by Hadoop’s MapReduce or Stratosphere’s PACTs
APIs. Nevertheless, a closer look reveals a number of important limitations shared
between both eDSLs. To illustrate those, we use a series of examples using a simplified
film database schema2.

Person “ pid : Longq ˆ pname : Stringq
Credit “ ppersonID : Longq ˆ pmovieID : Stringq ˆ pcreditType : Stringq
Movie “ pid : Longq ˆ ptitle : Stringq ˆ pyear : Shortq ˆ ptitleType : Stringq

2 Product (or struct) types can be encoded as case classes in Scala and used as data model in both
eDSLs.

8



2.3. Parallel Dataflow DSLs – Evolution and Problems

Example 2.1 (Operator Chains). To demonstrate the similarity between the two eDSLs,
consider the following Scala code snippet, which filters movies from the 1990s and projects
their year and name. Modulo the collection type, the code is identical (the color-coding
will be explained later).
val titles = movies // either RDD[Movie] or DataSet[Movie]
.filter( m => m.year >= 1900 ) // (1)
.map( m => (m.year, m.title) ) // (2)
.filter( m => m._1 < 2000 ) // (3)

Executing the above code in Scala will append a chain of a filter p1q, a map p2q, and
a filter p3q operator to the dataflow graph associated with movies and wrap the
result in a new RDD/DataSet instance bound to titles. While this functional (or
algebraic) style of dataflow assembly is concise and elegant, it is not really declarative and
optimizable. To see why, compare the above code with the equivalent SQL statement.
CREATE VIEW titles AS
SELECT m.year, m.title
FROM movies AS m
WHERE m.year >= 1900
AND m.year < 2000

A SQL optimizer will push both selection predicates behind the projection. For the
dataflow graph discussed above, however, swapping p2q with p3q also implies adapting
the function passed to p3q, as the element type changes from pShort, Stringq to Movie.
Since both eDSLs treat functions bound to second-order operators as “black-box” objects,
the same rewrite cannot be realized directly in their IRs. To implement those, one has
to resort to bytecode-level analysis and manipulation [HPS`12].

Example 2.2 (Join Cascades). For the next example, consider a code fragment that
joins movies with people over credits.

// RDD (Spark)
val xs = movies.keyBy(_.id)
.join(credits.keyBy(_.movieID))
.values

val ys = xs.keyBy(_._2.personID)
.join(people.keyBy(_.id))
.values

// DataSet (Flink)
val xs = (movies join credits)
.where(_.id)
.equalTo(_.movieID)

val ys = (xs join people)
.where(_._2.personID)
.equalTo(_.id)

Two problems become evident from these code snippets. First, a standard, declarative
syntax like Select-From-Where in SQL is not available. Instead, n-ary joins must be
specified as a DSL-specific cascade of binary join operators. Consequently, the element
type in the result is a tuple of nested pairs whose shape reflects the shape of the join
tree. For example, the type of ys is ppMovie, Creditq, Personq. Field access therefore
requires projection chains that traverse the nested tuple tree to its leafs. For example,

9



Chapter 2. State of the Art and Problems

projecting (movie title, person name) pairs from ys can be done in one of two ways.

// total function
// with explicit projections
ys.map(y => {
val m = y._1._1; val p = y._2
(m.title, p.name)

})

// partial function
// with pattern matching
ys.map {
case ((m, c), p) =>
(m.title, p.name)

}

The second problem again is related to the ability to optimize constructed IR terms.
Consider a situation where the code listed above represents the entire dataflow. Since
not all base data fields are actually used, performance can be improved through insertion
of early projections. In addition to that, changing the join order might also be beneficial.
Due to the same reason stated in Example 2.1 (black-box function parameters), neither
of these optimizations is possible in the discussed eDSLs. Solutions proposed in the
past [GFC`12, HPS`12] indicate the potential benefits of such optimizations, but rely
on an auxiliary bytecode inspection or bytecode de-compilation step.

Example 2.3 (Reducers). Computing global or per-group aggregates is an integral
operation in most data analysis pipelines. MapReduce is a powerful model for computing
User-Defined Aggregates (UDAs) in parallel. Here is how one can count the total number
of movies using map and reduce in Spark’s RDD and Flink’s DataSet APIs.
movies // either RDD[Movie] or DataSet[Movie]
.map(_ => 1L)
.reduce((u, v) => u + v)

And here is how one can to count the number of movies per decade.

// RDD (Spark)
movies
.map(m => (decade(m.year), 1L))
.reduceByKey((u, v) =>
u + v)

// DataSet (Flink)
movies
.map(m => (decade(m.year), 1L))
.groupBy(_._1).reduce((u, v) =>
(u._1, u._2 + v._2))

The reduce and reduceByKey operators enforce a specific parallel execution strategy.
The input values (or the values of each group) are thereby reduced to a single aggregate
value (or one aggregate per group) in parallel by means of repeated application of an
associative and commutative binary function specified by the programmer. Aggressive use
of reducers can therefore improve performance and scalability of the evaluated dataflows.

Optimal usage patterns, however, can be hard to identify, especially without a good
background in functional programming. For example, in order to check whether Alfred
Hitchcock or Woody Allen has directed more movies, one might build upon the ys
collection of ppMovie, Creditq, Personq triples defined in Example 2.2.

10



2.3. Parallel Dataflow DSLs – Evolution and Problems

// count movies directed by Alfred Hitchcock
val c1 = ys
.filter(_._1._2.creditType == "director")
.map(y => if (y._2.name == "Hitchcock, Alfred") 1L else 0L)
.reduce((u, v) => u + v)

// count movies directed by Woody Allen
val c2 = ys
.filter(_._1._2.creditType == "director")
.map(y => if (y._2.name == "Allen, Woody") 1L else 0L)
.reduce((u, v) => u + v)

// compare the two counts
c1 < c2

One problem with this specification is that it requires two passes over ys. A skilled
programmer will write code that achieves the same result in a single pass.
// pair-count movies directed by (Alfred Hitchcock, Woody Allen)
val (c1, c2) = ys
.filter(_._1._2.creditType == "director")
.map(y => (
if (y._2.name == "Hitchcock, Alfred") 1L else 0L,
if (y._2.name == "Allen, Woody") 1L else 0L

)).reduce((u, v) => (u._1 + v._1, u._2 + v._2))
// compare the two counts
c1 < c2

Another pitfall arises when handling groups. As group values cannot always be processed
by an associative and commutative function, the discussed eDSLs offer alternative
operators for “holistic” group processing. These operators apply the function parameter
once per group, exposing all group values as a Scala Iterator (Flink) or Iterable
(Spark). For example, the number of movies per decade can also be counted as follows.

// RDD (Spark)
movies
.groupBy(m => decade(m.year))
.map { case (k, vs) => {

val v = vs.size
(k, v)

}}

// DataSet (Flink)
movies
.groupBy(m => decade(m.year))
.reduceGroup(vs => {
val k = decade(vs.next().year)
val v = 1 + vs.size
(k, v)

})

Understanding group processing in terms of a groupBy and a map over each group is
more convenient than in terms of a map followed by a reduce or reduceByKey. However,
a common mistake is to encode dataflows in the former style even if they can be defined
in the latter. Grouping requires data re-partitioning, and in the case of a subsequent
reduce the amount of shuffled data can be significantly reduced by pushing partial
reduce computations before the shuffle step. Flink fuses a groupBy followed by a reduce
implicitly, while Spark requires a dedicated operator called reduceByKey.

11



Chapter 2. State of the Art and Problems

As with the previous two examples, optimizing these cases by means of automatic term
rewriting is not possible in the presented eDSLs. Constructing efficient dataflows is
predicated on the programmer’s understanding of the operational semantics of operators
like reduce and reduceByKey.

Example 2.4 (Caching). Dataflow graphs constructed by RDD and DataSet terms might
be related by the enclosing data- and control-flow structure3. For example, the ys
collection from Example 2.2 is referenced twice in the naïve “compare movie-counts”
implementation from Example 2.3 – once when counting the movies of Hitchcock (c1)
and once when counting the movies of Allen (c2). Since a global reduce implicitly
triggers evaluation, the dataflow graph associated with ys is expanded and evaluated
twice. To amortize the evaluation cost of the shared sub-graph, the RDD eDSL offers a
dedicated cache operator.
// cache shared sub-graph
val us = ys
.filter(_._1._2.creditType == "director")
.cache()

// count movies directed by Alfred Hitchcock
val c1 = us
.map(y => if (y._2.name == "Hitchcock, Alfred") 1L else 0L)
.reduce((u, v) => u + v)

// count movies directed by Woody Allen
val c2 = us
.map(y => if (y._2.name == "Allen, Woody") 1L else 0L)
.reduce((u, v) => u + v)

// compare the two counts
c1 < c2

Although Flink currently lacks first-class support for caching, a cache operator can be
defined in terms of a pair of write and read operators and used with similar effect.

Data caching can also significantly improve performance in the presence of control-flow,
which is often the case in data analysis applications. To demonstrate this, consider a
scenario where a collection w representing the parameters of some Machine Learning
(ML) model is initialized and subsequently updated N times with the help of a static
collection S.

// RDD (Spark)
val S = static().cache()
var w = init()
for (i <- 0 until N) {
w = update(S, w).cache()

}

// DataSet (Flink)
val S = static()
var w = init()
w.iterate(N) ( w =>
update(S, w)

)

3We use the spelling dataflow to denote bulk collection processing programs, and data-flow to denote
the def-use relation between value bindings in the sense used in the language compilation literature.

12



2.3. Parallel Dataflow DSLs – Evolution and Problems

The Spark version requires two explicit cache calls. If we do not call cache on the
static result, the static dataflow graph will be evaluated N times. If we do not call
cache on the update result, the loop body will be replicated N times without enforcing
evaluation. As in the previous case, the Flink optimizer can automatically decide which
dataflow graphs are loop-invariant and can be cached. However, in order to do this,
the DataSet eDSL enforces the use of a dedicated iterate operator which models a
restricted class of control-flow structures.

To summarize, Spark reuses Scala control-flow constructs, but delegates decisions about
caching to the programmer. Flink, on the other hand, can often optimize some of
these decisions automatically, but to achieve this it requires dedicated (and restricted)
control-flow primitives and thereby violates the “linguistic reuse” design principle.

2.3.3 Current Solutions

To address the problems outlined above, two solution approaches are currently pursued.
The first approach is to fall back to stand-alone DSLs. Notable sDSLs in this category
are Pig Latin [ORS`08], Hive [TSJ`09], and SparkSQL [AXL`15]. This approach allows
for both declarative syntax and advanced optimizations, as the entire AST of the input
program can be considered in the compiler pipeline. Unfortunately, it also brings back
the original problems associated with SQL – lack of flexibility and treatment of UDFs
and UDTs as second-class constructs.

The second approach is to “lift” lambda expressions passed to second-order from “black-
box” host-language constructs to first-class eDSL citizens. Notable examples in this
category are DataFrame and Dataset eDSLs in Spark [AXL`15] and the Table eDSL
in Flink [Kre15]. The benefit of this approach is that filter, selection, and grouping
expressions are represented in the IR. This enables logical optimizations such as join
reordering, filter and selection push-down, and automatic use of partial aggregates. The
problem is that by “lifting” the expression language one loses the ability to reuse host-
language syntax for anonymous function declaration, field projections, and arithmetic
operators and types. The embedding strategy of state-of-the-art solutions is based either
on plain strings or on a dedicated type (Expression in Flink, Column in Spark). The
linguistic reuse principle is violated in both cases. The following examples illustrate the
result with a simple select-and-project dataflow.

13



Chapter 2. State of the Art and Problems

// string-based embedding
credits.toDF()
.select("creditType", "personID")
.filter("creditType == ’director")

// type-based (Column) embedding
credits.toDF()
.select($"creditType", $"personID")
.filter($"credytType" === "director")

// string-based embedding
credits.toTable(tenv)
.select("creditType, personID")
.where("creditType == ’director")

// type-based (Expression) embedding
credits.toTable(tenv)
.select(‘creditType, ‘personID)
.where(‘credytType === "director")

Neither of these approaches benefits from the type-safety or syntax checking capabilities
of the host language. For example, the filter expression in the string-based approach
is syntactically incorrect, as it lacks the closing quote after director, and the type-
based versions have creditType misspelled. However, the enclosing Scala programs will
compile silently, and the errors will be caught only at runtime, once the eDSL attempts
to evaluate the resulting dataflows. In situations where long-running, possibly iterative
computations are aborted at the very end due to a typing error, these issues can be
particularly frustrating to the programmer. As an additional source of confusion, filter
is overloaded to accept (black-box) regular Scala lambdas next to the reflected, but more
idiosyncratic DSL-specific expressions, and, similarly, one can use map instead of select.
Why and when should we prefer one variant over the other? Which expressions can be
specified in the embedded language and which cannot? As with the eDSLs discussed
in Section 2.3.2, the burden of understanding and navigating these trade-offs is on the
programmer.

14



3 Solution Approach

Section 2.3 outlined a number of limitations shared between state-of-the-art DSLs for
parallel dataflow systems such as DataSet and RDD as well as problems with existing
solutions. To identify the root cause of these problems, we have to position these DSLs in
the design space from Figure 2.1. Observe that the embedding strategy is based on types.
Because of this, the IR lifted by DSL terms can only reflect method calls on these types
as well as their def-use relation. In Section 2.3, the source code fragments reflected in the
IR were highlighted in a different color. The remaining syntax (printed in black) is not
reflected at the IR level. This includes the “glue code” connecting dataflow definitions,
as well as lambdas passed as operator arguments.

The implications of this design decision for the optimizability, linguistic reuse, and
declarativity are severe. In Example 2.1, it prohibits automatic operator reordering. In
Example 2.2, it prohibits automatic join-order optimization as well as the use of for-
comprehensions – a standard, declarative syntax for Select-From-Where-style expressions
available in Scala. In Example 2.3, it prohibits automatic use of partial aggregates. In
Example 2.4, it either prohibits automatic selection of optimal caching strategies or
violates the linguistic reuse principle.

The net effect are eDSLs which on the surface seem straightforward to use, yet for most
applications require some degree of expert knowledge in data management and distributed
systems in order to produce fast and scalable programs. The appeal of declarative, yet
performant bulk dataflow languages such as SQL is lost.

As a solution to these problems, we propose a design for a quotation-based DSL for parallel
collection processing embedded in Scala. Utilizing Scala’s reflection capabilities, this
approach allows for deeper integration with the host language. In line with the objectives
from Section 2.2, this leads to improved linguistic reuse and reduced linguistic noise.
At the same time, a more principled collection processing API allows for optimizing
transformations targeting the type-based eDSLs presented above. This results in a
language for scalable data analysis where notions of data-parallel computation no longer

15



Chapter 3. Solution Approach

leak through the core programming abstractions. Instead, parallelism becomes implicit
for the programmer without incurring significant performance penalty.

To illustrate the main difference between the proposed quotation-based approach against
and state-of-the-art type-based embedding, compare the RDD-based movies-per-decade
example from Example 2.3 against a code snippet expressed in the Emma API wrapped
in an onSpark quote.

// RDD (Spark)

movies
.map(m => (decade(m.year), 1L))
.reduceByKey((u, v) => u + v)

// Our solution (with Spark backend)
onSpark {
for {
g <- movies.groupBy(decade(_.year))

} yield (g.key, g.values.size)
}

Observe how with the quotation-based approach, we use the more intuitive groupBy
followed by a map over each group using a Scala for-comprehension. The quoted code
snippet is highlighted, indicating that we can reflect everything in the IR of our eDSL.
This allows us to piq inspect all uses of g.values (in this case, only g.values.size),
piiq determine that size can be expressed in terms of partial aggregates, and piiiq
automatically generate code which executes the program on Spark using the reduceByKey
primitive from the RDD-based snippet.

16



4 Background

This section gives methodological background relevant to our solution approach. Sec-
tion 4.1 outlines a category-theoretic foundation for distributed collections and parallel
collection processing based on Algebraic Data Types (ADTs), structural recursion, and
monads, introducing these concepts from first principles. Section 4.2 reviews IRs common
in the compiler community – Static Single Assignment (SSA) form and a functional
encoding of SSA called Administrative Normal Form (ANF).

4.1 Category Theory

Category theory can be used as a framework for modeling various subjects of study in a
concise mathematical way. We use category theory to set up a constructive model for
distributed collections and parallel collection processing, highlighting the connection be-
tween some theorems associated with the categorical constructions and the corresponding
optimizations for parallel collection processing workloads.

The development in this section is restricted to definitions and constructions relevant to
the subject of this thesis. Pierce gives a general introduction to category theory with
focus on computer science applications [Pie91]. Bird and de Moor offer a more detailed
treatment with focus on calculational program reasoning [BdM97]. Ehrig and Mahr
outline a categorical view of algebraic specifications based on initial semantics [EM85].
Wadler [Wad92] gives a detailed introduction to monads and monad comprehensions.
Chapter 2 in [Gru99] uses categorical collection types and monads as a basis for the
development of a functional IR for database queries. Here, we essentially recast a subset of
the theory presented in [Gru99] as a formalism which explains the optimizations outlined
in Section 2.3 and therefore guides the design of the user-facing API (in Chapter 5) and
IR (in Chapter 6) of the proposed embedded DSL. The equational rewrites in this thesis
are carried out using the so-called Bird-Meertens formalism [Bac88, Gib94] also adopted
in [BdM97, Gru99].

17



Chapter 4. Background

4.1.1 Basic Constructions

Category. A category C “ pObC,MorC, ˝, idq is a mathematical structure consisting of
the following components.

• A class of objects A,B,C , . . . P ObC.
• A set of morphisms MorCpA,Bq for each pair of objects A,B P ObC. Each
morphism can be seen as a unique C-arrow f : A ÑC B connecting the source
src f “ A and target tgt f “ B objects of the underlying set MorCpA,Bq. We omit
the subscript C and write f : A Ñ B when the underlying category C is clear from
the context.

• A composition operator

˝ : MorCpA,Bq ˆMorCpB,C q Ñ MorCpA,C q

which maps pairs of morphisms with a matching “apex” object to their composition

pf , gq ÞÑ g ˝ f .

• A family of identity morphisms idA P MorCpA,Aq for all A P ObC.

In addition, a category C satisfies the following associativity and identity axioms for all
A,B,C ,D P ObC, f P MorCpA,Bq, g P MorCpB,C q, and h P MorCpC ,Dq.

ph ˝ gq ˝ f “ h ˝ pg ˝ f q
f ˝ idA “ f & idB ˝ f “ f

(Category)

Categories can be represented visually as directed multi-graphs whose nodes correspond to
objects and whose edges correspond to morphisms. Note that not all directed multi-graphs
constitute a valid category. For example, from the following two graphs

A

B

C

idA

idB

idC

f g

h “ g ˝ f
A

B

C

idA

idB

idC

f g

the left one corresponds to a category with three nodes and six morphisms, while the
right one does not, as it lacks an A Ñ C edge corresponding to the g ˝ f morphism.

Similarly, the Category axioms can be represented as commutative diagrams. Stating
that the left- and right-hand sides of the Category equations must be equal is the
same as stating that the square (on the left) and the two triangles (on the right) of the

18



4.1. Category Theory

following two diagrams must commute.

A B

C D

f

h ˝ gg ˝ f

h

A A

B B

idA

idA

f
f f

For the purposes of this thesis, our focus lies primarily in the category Set. Objects like
A,B P ObSet denote types, while morphisms like f P MorSetpA,Bq and g P MorSetpB,C q
denote total functions with corresponding domain and codomain types given respectively
by src ¨ and tgt ¨. The identity morphisms idA P MorSetpA,Aq denote identity functions
@a P A. a ÞÑ a and the composition operator denotes function composition @a P
A. pf ˝ hq a “ f ph aq. The validity of the Category axioms follows immediately from
these definitions and the associativity of function application.

While conceptually thrifty, the language of category theory is surprisingly expressive.
For example, a concept that can be generalized from Set to an arbitrary category C and
defined in pure categorical terms is the notion of isomorphism.

Isomorphism. An isomorphism is a morphism f P MorCpA,Bq with a corresponding
inverse morphism. That is, there exists some g P MorCpB,Aq, sometimes denoted f´1,
such that the following equations hold.

f ˝ g “ idB and g ˝ f “ idA (Isomorphism)

Two objects A and B related by an isomorphism are said to be isomorph, written A – B.

The simplest kind of categorical constructions relate objects and morphisms within the
same category. Each construction is defined as the solution of an associated family of
equations (sometimes also called universal properties). The solution can be shown to
be unique up to isomorphism. An interesting property of most constructions is that by
reversing the direction of all morphisms one can obtain an associated dual construction.
We now introduce two pairs of dual constructions and discuss their interpretation in Set.

Initial Object. An object 0 P ObC is called initial in C if, for every object A P ObC,
the set MorCp0 ,Aq consists of exactly one morphism, denoted !A.

Final Object. An object 1 P ObC is called final in C if, for every object A P ObC, the
set MorCp1 ,Fq consists of exactly one morphism, denoted ¡A.

The diagrams corresponding to these definitions look as follows (dashed lines indicate
that the associated morphism is unique).

19



Chapter 4. Background

0 A
!A

A 1
¡A

To illustrate the flavor of categorical proofs, we show that, if they exist, all initial objects
in a category are unique up to isomorphism. Suppose that two objects A and B are both
initial in C. Then, from Initial Object applied to A, it follows that MorCpA,Bq “ t !B u
and MorCpA,Aq “ t idA u. Similarly, from Initial Object applied to B, it follows that
MorCpB,Aq “ t !A u and MorCpB,Bq “ t idB u. Since C is a category, the compositions
!A ˝ !B P MorCpA,Aq and !B ˝ !A P MorCpB,Bq must also exist, and the only options we
have are !A ˝ !B “ idA and !A ˝ !B “ idB , asserting that A and B are indeed isomorph. A
similar proof for terminal objects follows along the same line of reasoning.

The initial object in Set is the empty set H, and the initial morphisms are the empty
functions H Ñ A. Dually, the final object in Set is the singleton set t pq u (that is,
the set of one element), and the final morphisms AÑ t pq u are the constant functions
@a P A. a ÞÑ pq. If Set is viewed from a type-theoretic perspective, the initial object
corresponds to the bottom type (called Nothing in Scala), and the terminal object to
the unit type (called Unit in Scala). Note also that in Set we have A – MorSetp1 ,Aq –
elements a P A are in one-to-one correspondence with the constant functions pq ÞÑ a.

The next definitions allow us to construct objects and morphisms out of existing ones.

Product. Given a pair of objects A and B in C, their product, denoted AˆB, is an object
in C with associated projection morphisms outA : A ˆ B Ñ A and outB : A ˆ B Ñ B
which satisfies the following universal property. For every object C P C with morphisms
f : C Ñ A and g : C Ñ B there exists a unique morphism, denoted f Ÿ g, such that the
following equations hold.

outA ˝ pf Ÿ gq “ f and outB ˝ pf Ÿ gq “ g (Product)

Coproduct. Given a pair of objects A and B in C, their coproduct, denoted A`B, is an
object in C with associated injection morphisms inA : A Ñ Aˆ B and inB : B Ñ Aˆ B
which satisfies the following universal property. For every object C P C with morphisms
f : A Ñ C and g : B Ñ C there exists a unique morphism, denoted f Ź g, such that the
following equations hold.

pf Ź gq ˝ inA “ f and pf Ź gq ˝ inB “ g (Coproduct)

Again, if they exist, the product and coproduct objects can be shown to be unique up to
isomorphism. The diagrams associated with these two definitions look as follows.

20



4.1. Category Theory

A BA ˆ B

C

outA outB

f gf Ÿ g

A BA ` B

C

inA inB

f gf Ź g

As a corollary, we obtain two laws which allow us to fuse a morphism h with a subsequent
product morphism or preceding coproduct morphism.

pf Ÿ gq ˝ h “ pf ˝ hq Ÿ pg ˝ hq (Product-Fusion)
h ˝ pf Ź gq “ ph ˝ f q Ź ph ˝ gq (Coproduct-Fusion)

In Set, the product A ˆ B corresponds to the cartesian product of the sets A and B,
and the corpoduct A` B to their tagged union. From a type-theoretic perspective the
constructions in Set can be interpreted as product and sum types, and the corresponding
universal morphisms as the following functions.

@c P C . pf Ÿ gq c “ pf c, g cq

@x P A` B. pf Ź gqx “
#

f x if x P A
g x if x P B

Conceptually, products offer a categorical notion of delineation – we describe an action
(morphism) into a product object A ˆ B component-wise, by individually describing
the actions for each possible part (A and B). Dually, coproducts offer a categorical
notion of lineage – we describe an action (morphism) out of a coproduct object A` B
component-wise, by individually describing the actions for each possible case (A or B).

Binary products and coproducts are commutative and associative up to isomorphism.
The Coproduct and Product definitions therefore can be generalized to n-ary products
and coproducts, denoted respectively

śn
i“1 Ai and

šn
i“1 Ai.

Finally, we introduce the notion of a product category which is needed for the generaliza-
tion of products and coproducts as functors in the next section.

Product Category. For any pair of categories C and D, the product category CˆD
has as objects pairs pA,Bq where A P ObC and B P ObD, and as morphisms pairs pf , gq
where f P MorpCq and g P MorpDq. Morphism composition and identity are defined
pairwise: pg, f q ˝ pi, hq “ pg ˝ i, f ˝ hq and idpA,Bq “ pidA, idBq.

21



Chapter 4. Background

4.1.2 Functors

So far, our categorical vocabulary has been restricted to constructions within a single
category. As a next step, we focus on constructions between categories. The most basic
case is a mapping between categories that preserves the structure of the source category.

Functor. Given two categories, C and D, a functor F “ pFOb,FMorq is a mapping from
C to D consisting of a component

FOb : ObC Ñ ObD

that operates on objects, and a component

FMor : MorCpA,Bq Ñ MorCpFObpAq,FObpBqq

that operates on morphisms, preserving identity and composition:

FidA “ idFA and Fpg ˝ f q “ Fg ˝ Ff . (Functor)

To simplify notation, we omit the component subscript and write FA instead of FObpAq
and Ff instead of FMorpf q.

An endofunctor is a functor whose source and target categories coincide. From a type-
theoretic perspective, Set endofunctors encode the notion of universal polymorphism.
For example, the type of lists with elements of type A, usually written @A. ListA, can
also be seen as a Set Ñ Set functor A ÞÑ ListA that maps an element type A to its
corresponding list type ListA. In a similar way, collection types such as Bag and Set can
also be understood as functors. With the definitions so far, however, the internals of
these functors are “black-box”. For a “white-box” view, we have to formalize the notion
of an Algebraic Data Type (ADT) in a categorical setting. Do achieve this, we start by
introducing a number of base functors.

Identity Functor. The identity functor Id : C Ñ C maps objects and morphisms to
themselves: IdA “ A and Idf “ f .

Constant Functor. The constant functor KA : C Ñ D maps C-objects to a fixed
D-object A and morphisms to idA, i.e. KAB “ A and KAf “ idA.

Assuming that products and coproducts exist for arbitrary A and B in ObC, we can
define corresponding CˆC Ñ C functors.

Product Functor. Let C be a category with products. Then the product functor ¨ ˆ ¨
is a CˆC Ñ C functor defined as follows. For any two C-objects A and B, the functor
mapping is their product construction pA,Bq ÞÑ AˆB. Similarly, for any two morphisms
f : A Ñ B and g : C Ñ D, the functor mapping f ˆ g : A ˆ C Ñ B ˆ D is defined as

22



4.1. Category Theory

f ˆ g “ pf ˝ outAq Ÿ pg ˝ outBq.

Coproduct Functor. Let C be a category with coproducts. Then the coproduct functor
¨ ` ¨ is a C ˆC Ñ C functor defined as follows. For any two C-objects A and B, the
functor mapping is their coproduct construction pA,Bq ÞÑ A` B. Similarly, for any two
morphisms f : A Ñ B and g : C Ñ D, the functor mapping f ` g : A` C Ñ B `D is
defined as f ` g “ pinB ˝ f q Ź pinD ˝ gq.

As a corollary, we obtain laws which enable fusing a functor mapping of a pair of
morphisms ph, iq with a preceding product morphism or subsequent coproduct morphism.

ph ˆ iq ˝ pf Ÿ gq “ ph ˝ f q Ÿ pi ˝ gq (Product-Functor-Fusion)
pf Ź gq ˝ ph ` iq “ pf ˝ hq Ź pg ˝ iq (Coproduct-Functor-Fusion)

Functors are closed under composition – if F and G are functors, so is GF¨ “ GpF¨q.
Functors composed from Id, KA, ˆ, and ` are called polynomial functors. Polynomial
functors are closely related to the concept of F-algebras.

4.1.3 F-Algebras

F-algebra. Let F denote an endofunctor in a category C. An F-algebra α : FA Ñ A is a
morphism in C. The functor F is called signature or base functor, and the object A is
called carrier of α.

F-algebras provide a compact framework for modeling terms of type A. If F is polynomial,
its general form FA “ šn

i“1 Xi implies that α factors into a family of morphisms
αi : Xi Ñ A. For Set-valued functors, this factorization can be seen as an encoding of a
polymorphic interface consisting of n functions αi with shared, generic return type A.

As an example, consider F-algebras for the Set endofunctor F “ K1 ` Id which maps A
to 1 `A. In this case, F-algebras are functions α : 1 `A Ñ A with carrier type A. From
the Coproduct universal property, we know that α can be factored as zero Ź succ, where
zero “ α ˝ in1 : 1 Ñ A and succ “ α ˝ inA : A Ñ A. For a fixed type A, every possible
combination of suitable zero and succ functions gives rise to a different F-algebra. The
following lines list three F-algebras.

α “ zeroα Ź succα : FZÑ Z zeroα pq “ 0 succα x “ x` 1
β “ zeroβ Ź succβ : FZÑ Z zeroβ pq “ 0 succβ x “ x´ 1
γ “ zeroγ Ź succγ : FCÑ C zeroγ pq “ 0 succγ x “ x2 ´ 1

For each χ P tα, β, γu, we can then compose zeroχ and succχ in order to build terms of
the corresponding carrier type. Terms with the general form succαn ˝ zeroα for n ą 0

23



Chapter 4. Background

correspond to positive integers, succβn ˝ zeroβ terms correspond to negative integers, and
succγn˝zeroγ terms correspond to members of the sequence Pnc p0q of iterated applications
of the complex polynomial1 Pc : x ÞÑ x2 ` c for c “ ´1.

As a next step, consider carrier morphisms preserving the structure of F-algebra terms.

F-homomorphism. Fix two F-algebras α : FA Ñ A and β : FB Ñ B. An F-
homomorphism is a C-morphism h : A Ñ B satisfying the equation

h ˝ α “ β ˝ Fh (F-Hom)

which is also represented by the following commutative diagram.

FA FB

A B

Fh

βα

h

As before, if F is a polynomial functor in Set, the above definition has a more specific
interpretation. Informally, in this case F-Hom is states that applying h on the result of
αi is the same as applying h on the A-arguments of αi and then applying βi instead.

In our running example where F “ K1 ` Id, F-Hom states that h : A Ñ B is an
F-homomorphism between any two F-algebras pA, αq and pB, βq if and only if

h zeroα “ zeroβ and h psuccα aq “ succβ ph aq

for all a P A. For example, h : ZÑ Z with h z “ ´z is an F-homomorphism between α
and β, verified as follows.

h zeroα “ 0 “ zeroβ
h psuccα aq “ h pa` 1q “ ´pa` 1q “ ´a´ 1 “ h a´ 1 “ succβ ph aq

F-homomorphisms preserve identity morphisms and are closed under composition. F-
algebras (as objects) and F-homomorphisms (as morphisms) thereby form a category
denoted AlgpFq. To understand the connection between F-algebras and ADTs, we fix
F and consider initial objects in AlgpFq. An initial object in AlgpFq is an F-algebra
τ : FT Ñ T such that each F-algebra α : FA Ñ A induces a unique F-homomorphism
between τ and α, denoted LαM : T Ñ A. If τ is an isomorphism in C, we can define LαM

1The sequence P n
c p0q is used in the definition of the Mandelbrot set.

24



4.1. Category Theory

using the so-called catamorphism construction

LαM “ α ˝ FLαM ˝ τ´1 (Cata)

as illustrated by the modified F-Hom diagram depicted below.

FA FB

A B

FLαM

ατ τ´1

LαM “ α ˝ FLαM ˝ τ´1

Verifying that Cata satisfies F-Hom (in other words, that the above diagram commutes)
is a straight-forward consequence of the Isomorphism property of τ .

LαM “ α ˝ FLαM ˝ τ´1

ô t apply ¨ ˝ τ on both sides u
LαM ˝ τ “ α ˝ FLαM ˝ τ´1 ˝ τ

ô t Isomorphism property of τ u
LαM ˝ τ “ α ˝ FLαM

Lambek’s lemma [Lam93] asserts that the initial algebra τ exists, the induced unique
homomorphisms always have the structure defined by Cata.

Lambek’s Lemma. Let F be a C-endofunctor such that AlgpFq has an initial object τ .
Then the carrier T of τ and FT are isomorphic via τ .

Proof. To prove the above statement, we apply F to the initial F-algebra τ : FT Ñ T .
The resulting C-morphism Fτ : FpFT q Ñ FT is also an F-algebra and, since τ is initial,
there is a unique catamorphism LFτM : T Ñ FT . At the same time, τ can also be seen as
an F-homomorphism between the F-algebras Fτ and τ . The above two observations are
depicted by the following pair of commutative squares.

FT FpFT q FT

T FT T

FLFτM

Fτ

Fτ

τ

LFτM τ

τ

Since both LFτM and τ are F-homomorphisms, their composition τ ˝ LFτM must also be one.

25



Chapter 4. Background

But so is idT and from the uniqueness of initial morphisms it follows that τ ˝ LFτM “ idT .
In the other direction, to show that LFτM ˝ τ “ idFT , we argue as follows.

τ ˝ LFτM “ idT

ô t apply F on both sides u
Fpτ ˝ LFτMq “ FidT

ô t Functor properties u
Fτ ˝ FLFτM “ idFT

ô t F-Hom property of LFτM u
LFτM ˝ τ “ idFT

The existence of an initial algebra in AlgpFq is ensured if F is a polynomial functor [MA86].
Furthermore, if the underlying category is Set, Lambek’s Lemma is tantamount to saying
that τ must be a bijective function. The carrier set of an initial algebra T in Set
therefore has the following properties. First, T has no junk: for all t P T there exists
some x P FT such that τ x “ t (because τ is surjective). Second, T has no confusion:
for all x, y P FT , τ x “ τ y implies x “ y (because τ is injective). In this case, we can
interpret the components τi : Xi Ñ T of τ as data constructors, and the action of τ as
a specific data constructor application. In the reverse direction, τ´1 acts like a parser,
returning the constructor application term associated with a specific data point.

To illustrate these concepts, let us revisit the three F-algebras listed for the example
functor F “ K1 ` Id. In the case of α (β), the carrier Z has piq junk because negative
(positive) integers cannot be expressed in terms of applications of the algebra functions,
and piiq confusion since, for example, succα´1 “ 0 “ zeroα (succβ 1 “ 0 “ zeroβ). In the
case of γ, the carrier has confusion because, for example, succγ ´1 “ 0 “ succγ 1. We can
make the carrier sets of α and β initial by restricting them to N and Zď0. Since initial
objects are unique up to isomorphism, we can then assert that the F-homomorphism
h : NÑ Zď0, h n “ ´n is a bijection.

As a straight-forward consequence of Cata and F-Hom, we obtain two useful properties.

LτM “ idT (Cata-Reflect)
h ˝ α “ β ˝ Fh ñ h ˝ LαM “ LβM (Cata-Fusion)

We will make extensive use of those in calculational proofs carried out in the next sections.

The theory developed so far suffices to devise a constructive model for lists with fixed
element type. To do that, consider the Set-endofunctor F “ K1 ` KInt ˆ Id. The carrier

26



4.1. Category Theory

of the initial algebra in AlgpFq is the type ListInt of lists with integer elements. The
initial algebra itself decomposes into a pair of list constructors

emp : 1 Ñ ListInt and cons : Int ˆ ListInt Ñ ListInt (ListInt-Ctor)

where emppq denotes the empty list and cons x xs the list constructed by inserting x in
an existing list xs. Lists modeled by the above functor are therefore also called lists
in insert representation. Each list instance is represented by a right-deep binary tree
of cons applications terminating with a emp application. Catamorphisms in AlgpFq
correspond to the functional fold. More specifically, for α “ zeroα Ź plusα : FA Ñ A the
catamorphism LαM corresponds to the function fold α which reduces ListInt values to a
result of type A by means of structural recursion over its input.

LαM pemppqq “ zeroαpq
LαM pcons a asq “ plusα a pLαM asq (ListInt-Fold)

To illustrate how Lambek’s Lemma allows us to interpret structural recursion schemes
such as ListInt-Fold in terms of their Cata components, consider applying the
catamorphism

L0 Ź`M “ p0 Ź`q ˝ FL0 Ź`M ˝ pemp Ź consq´1

to a ListInt value r2, 49s. The pemp Ź consq´1 action deconstructs the input value, one
layer at a time. The FL0 Ź`M action substitutes emp with 0 and cons with ` in the
resulting parse tree, recursively calling L0 Ź`M on all arguments of type ListInt. Finally,
0 Ź` evaluates the p0 Ź`q-algebra on the resulting tree, producing the final result 49.
Expanding the recursive calls, these steps can be represented as follows.

cons

cons

emp
2

42

`
`

0

7

42

r7, 42s 49

FL0 Ź`M

0 Ź`pemp Ź consq´1

L0 Ź`M

4.1.4 Polymorphic Collection Types as Functors

In the previous section, we demonstrated how F-algebras for polynomial Set-endofunctors
can be used to model collection types such as ListInt. The functor F encodes the signature
of a family of base functions. The objects in AlgpFq represent all possible implementations
(i.e., models) of this signature – a concept known as classical semantics. Finally, the
carrier of the initial object and the associated catamorphisms in AlgpFq represent the

27



Chapter 4. Background

unique inductive (i.e., least fixpoint) type defined by F and its associated structural
recursion scheme – a concept known as initial semantics.

The approach developed so far has two important limitations. First, the ListInt type is
monomorphic (that is, with a fixed element type). Our goal, however, is to develop a
polymorphic model where collection type constructors are understood as functors such
as List : A ÞÑ ListA. Second, with the theory presented so far we can only model lists.
This is at odds with the collection types exposed by systems such as Spark and Flink,
where element order is not guaranteed. Formally, we want to model collections T where

cons a1 pcons a asq “ cons a pcons a1 asq

for all a, a1 P A, as P TA. This implies that the associated carrier cannot be initial in the
category AlgpK1 ` KA ˆ Idq due to the introduced confusion. Consequently, we cannot
define collection processing operations in terms of catamorphisms or derive optimizing
program transformations from the catamorphism properties.

To overcome the first limitation, we generalize F-algebras to polymorphic F-algebras and
use those to define the type functor List : A ÞÑ ListA. To overcome the second limitation,
we extend signature functors F to specifications Spec and F-algebra categories AlgpFq to
model categories ModpSpecq. Based on that, we define a hierarchy of collection type
constructors List, Bag and Set in the so-called insert representation. In Section 4.1.5, we
show how these type constructors can be defined in the so-called union representation
using another signature functor G. Further, we discuss why G is a better fit for the
distributed collections and dataflow frameworks presented in Section 2.3.

To simplify presentation, we restrict the definitions of an Algebraic Specification and
Quotient F-Algebra to Set-endofunctors. This is sufficient for the goals of this thesis and
allows for writing datatype equations in the the more familiar and readable point-wise
form. A purely categorical, point-free development of datatype equations is proposed by
Fokkinga [Fok92, Fok96] and adopted by Grust [GS99].

Polymorphic F-algebra. Let F : CˆC Ñ C be a functor and FA : C Ñ C be defined
by FA B “ FpA,Bq and FA g “ FpidA, gq. A polymorphic F-algebra is a collection of
FA-algebras αA : FA B Ñ B indexed by a type parameter A P ObC. The FA-algebras and
FA-homomorphisms for a fixed A form the category AlgpFAq.

Polymorphic F-algebras allow us to abstract over the element type A in the collection
types we want to model. For example, we can parameterize the signature functor for the
ListInt algebra from FA “ 1 ` Int ˆA to the following polymorphic signature.

FpA,Bq “ 1 `Aˆ B (Ins-Sign)

Type Former. Let FA : C Ñ C be a family of signature functors (or more generally

28



4.1. Category Theory

a family of specifications SpecA) such that the associated family of model categories
AlgpFAq (or more generally ModpSpecAq) has initial algebras τA for all A P C. The type
former T associates each object A P C with the carrier TA of τA.

Ultimately, we want to establish T P tList,Bag, Setu as type formers. To do so, we need
to define specifications SpecT

A based on Ins-Sign, and construct the associated model
categories ModpSpecT

Aq. Assuming for the moment that this can be done, let

@A P Set. τT
A “ empT

A Ź consT
A : FApTAq Ñ TA (Ins-Ctor)

denote the polymorphic initial algebra associated with T. The structural recursion scheme
ListInt-Fold generalizes to a family of definitions L¨MT

A indexed by A. The catamorphism
LαMT

A is the unique FA-homomorphism in ModpSpecT
Aq between the FA-algebras τT

A and
some α “ zeroα Ź plusα : FA B Ñ B, and is defined component-wise as follows.

LαMT
A pempT

Apqq “ zeroαpq
LαMT

A pconsT
A a asq “ plusα a pLαMT

A asq (Ins-Fold)

We have already established that for T “ List we can just use SpecT
A “ FA and

ModpSpecT
Aq “ AlgpFAq. Before discussing the corresponding choices when T P

tBag, Setu, we establish T as functors.

Type Functor. Let T be a type former for a polymorphic signature functor F. Then T
can be extended to a type functor with object mapping inherited from the Type Former
definition and morphism mapping defined as Tf “ LτT

B ˝ Fpf , idTBqMT
A for all f : AÑB.

The formal proof that T is indeed a functor can be found in [BdM97]. Here, we give an
intuitive interpretation of Tf when C “ Set and F is a polynomial functor.

First, observe that we can extend the FB-algebra τT
B : FpB,TBq Ñ TB to an FA-algebra

αT
A : FpA,TBq Ñ TB using composition in C: αT

A “ τT
B ˝ Fpf , idTBq. In Set, prepending

Fpf , idTBq effectively adapts the type of all B-parameters to A. The adapted algebra
converts arguments a P A to f a P B before passing them to the original τT

B -constructors.

For collection type functors T, the adapted algebra factors into α “ empα Ź consα, and
the above statement can be formalized in terms of the Ins-Ctor definition of τT

B .

empα : 1 Ñ TB defined as empαpq “ empT
Bpq

consα : Aˆ TB Ñ TB defined as consα a bs “ consT
B pf aq bs

We now have two FA-algebras τT
A and α with carriers corresponding to the source and

target objects of the morphism f : A Ñ B. Since τT
A is initial in ModpSpecT

Aq, we can
just set Tf to be the catamorphism LαMT

A : TA Ñ TB, which is also a C-morphism.

29



Chapter 4. Background

If T is a collection type functor, we can plug-in the definitions of empα and consα into
Ins-Fold, resulting in a definition of Tf based on structural recursion.

Tf pempT
Apqq “ empT

Bpq
Tf pconsT

A a asq “ consT
B pf aq pTf asq (Ins-Map)

Ins-Map reveals that the morphism mapping component of T corresponds to the higher-
order function mapT, allowing us to use both notations interchangeably. The resulting
TA Ñ TB function maps input collection elements a to f a and returns the collection
of mapped results. For example, mapListstrlen : List String Ñ List Int emits the string
length of each element in a list of strings, producing a list of integers.

mapListstrlen rShow,me,what, you, gots “ r4, 2, 4, 3, 3s

Having established the polymorphic type List categorically as a Set-endofunctor, we
consider the collection types Bag and Set. As with List, our goal is show that the two are
Set-endofunctors. As a first attempt, we stick to the insert representation and continue
using the polymorphic signature functor associated with List.

Obviously, for a fixed A both τBag
A and τSet

A belong to AlgpFAq. However, the two algebras
are constrained by additional axioms that capture the semantics of the corresponding
type. First, the order of element insertion is not relevant for the constructed values,
captured by the so-called commutativity axiom

consT
A a

1 pconsT
A a asq “ consT

A a pconsT
A a

1 asq (Ins-Comm)

for all A P Set and T P tBag, Setu. Second, for all A P Set and T “ Set, inserting an
element twice does not affect the value, captured by the so-called idempotence axiom.

consT
A a pconsT

A a asq “ consT
A a as (Ins-Idem)

The controlled form of confusion introduced by these axioms means that the carriers
BagA and SetA are not initial in AlgpFAq. This prohibits us from using the Type Former
and Type Functor definitions in order to establish Bag and Set as functors. To overcome
this limitation, we generalize signature functors to specifications, rendering both BagA
and SetA initial in the category of models satisfying the corresponding specification.

Algebraic Specification. Let F be a polynomial signature endofunctor in Set, with
F-algebras α : FA Ñ A factoring into a family of functions αi : Xi Ñ A. Let E denote a
set of equations relating expressions defined solely in terms of αi and variables universally
qualified over their type. Then the pair pF,Eq is called an algebraic specification.

We can now define algebraic specifications for various collection types by pairing the

30



4.1. Category Theory

partially applied signature functor Ins-Sign with subsets of tIns-Comm, Ins-Idemu.

SpecList
A “ pFA,Hq

SpecBag
A “ pFA, tIns-Commuq

SpecSet
A “ pFA, tIns-Comm, Ins-Idemuq

The containment relation between the equation sets in the above specifications induces
the so-called Boom hierarchy of types [Bir87].

Now, given a specification Spec “ pF,Eq, consider all F-algebras satisfying the equations
in E and all F-homomorphisms between them. This subset of AlgpFq constitutes a
subcategory, denoted ModpSpecq, sometimes also called the classical semantics of Spec.
The objects in ModpSpecq are called models for Spec, and morphisms in ModpSpecq
are called Spec-homomorphisms.

To illustrate, consider the FInt-algebras sum “ 0 Ź ` and min “ 8 Ź min2 . Both are
contained in ModpSpecBag

Int q, because both satisfy Ins-Comm. However, since ` is not
idempotent, sum does not satisfy Ins-Idem and only min is a model for SpecSet

Int .

As a final step, the following fact allows for constructing initial objects in ModpSpecq
from initial objects in the underlying category AlgpFq.

Quotient F-Algebra. Let F be an endofunctor in Set such that AlgpFq has an initial
object τ : FT Ñ T and Spec “ pF,Eq be an associated algebraic specification. Relate
with t „ t1 elements of T identified (via τ´1) with terms rendered equal by some equation
in E . Complete „ to an equivalence relation – by taking its transitive closure. Let
T 1 “ T{– denote the quotient set of T w.r.t. –, that is the set of equivalence classes
rts of t P T . Construct the quotient algebra τ 1 : FT 1 Ñ T 1 component-wise, defining
τ 1i : X 1

i Ñ T 1 in terms of its corresponding τ -component τi : Xi Ñ T using the general
scheme τ 1i rtsx “ rτi t xs. Basically, the scheme adapts all equivalence class parameters
rts P T 1 as regular parameters t P T , calls τi , and finally maps the result of the τi call
r P T to its equivalence class rrs P T 1. The quotient algebra is then an isomorphism in
Set, and consequently τ 1 is an initial object in ModpSpecq.

For a proof of this statement, see Theorem 3.7 in [EM85]. For a fixed A P Set and T P
tBag, Setu we can use Quotient F-Algebra to define the initial object τT

A P ModpSpecT
Aq in

terms of τList
A P AlgpFAq and the equivalence classes r¨s induced by the SpecT

A equations.

empT
A : 1 Ñ TA defined as empT

Apq “ rempList
A pqs

consT
A : Aˆ TA Ñ TA defined as consT

A ras bs “ rconsList
A a bss

Further, properties of catamorphisms transfer from AlgpFAq to ModpSpecT
Aq. This

allows to establish Bag and Set as type functors, reusing Type Former and Type Functor.

31



Chapter 4. Background

Note that the model-theoretic perspective also characterizes situations where a catamor-
phic definition of a function does not exist. To illustrate one such scenario, consider again
the FInt-algebra sum “ 0 Ź`. Specializing Ins-Fold yields a family of catamorphisms
LsumMT

Int : TInt Ñ Int for T P tList,Bag, Setu with the following definitions.

LsumMT
Int pempT

Intpqq “ 0
LsumMT

Int pconsT
Int a asq “ a` pLsumMT

Int asq

Since sum R ModpSpecSet
Intq, the catamorphism LsumMSet

Int does not exist. In other words,
in this case the above definition does not constitute a well-defined function, as witnessed
by the following derivation of 1 “ 2.

1` 0
“ t definition of LsumMSet

Int , backwards u
LsumMSet

Int pconsSet
Int 1 empSet

Int q
“ t Ins-Idem axiom for Set u

LsumMSet
Int pconsSet

Int 1 pconsSet
Int 1 empSet

Int qq
“ t definition of LsumMSet

Int , forwards u
1` 1` 0

4.1.5 Collection Types in Union Representation

Using the constructions from Section 4.1.4, we can define an alternative view of the List,
Bag, and Set types known as union representation. It is based on the signature functor

GpA,Bq “ 1 `A` B ˆ B (Uni-Sign)

and the polymorphic initial G-algebra

@A P Set. τT
A “ empT

A Ź sngT
A Ź uniT

A : GApTAq Ñ TA (Uni-Ctor)

where empT
Apq denotes the empty collection of type TA (as before), sngT

A a denotes the
TA collection containing a single element a P A, and uniT

A xs ys denotes the union of two
TA collections xs and ys. Type constructors are constrained by the following axioms (we
omit the superscript T and subscript A for readability)

uni xs emppq “ xs & uni emppq xs “ xs (Uni-Unit)
uni xs puni ys zsq “ uni puni xs ysq zs (Uni-Asso)

uni xs ys “ uni ys xs (Uni-Comm)

32



4.1. Category Theory

uni xs puni xs ysq “ uni xs ys (Uni-Idem)

and the associated type functors are induced over the following specifications.

SpecList
A “ pGA, tUni-Unit,Uni-Assouq

SpecBag
A “ pGA, tUni-Unit,Uni-Asso,Uni-Commuq

SpecSet
A “ pGA, tUni-Unit,Uni-Asso,Uni-Comm,Uni-Idemuq

As with Ins-Map, the morphism mapping Tf “ LempT
B Ź psngT

B ˝ f q Ź uniT
B MT

A follows
from Type Functor and encodes the a structural recursion scheme.

Tf pempT
Apqq “ empT

Bpq
Tf psngT

A aq “ sngT
B pfaq

Tf puniT
A xs ysq “ uniT

B pTf xsq pTf ysq
(Uni-Map)

Collection types in Spark and Flink do not guarantee element order and allow for
duplicates, so they are most accurately modeled by the Bag type constructor. Furthermore,
these collections are partitioned across multiple nodes in a shared-nothing cluster, and
their value is defined as the disjoint union of all its partitions: xs “ Ť̈n

i xsi. The union
representation supports this view directly, which is why for the purposes of this thesis
we prefer Uni-Sign over Ins-Sign. The utility Uni-Sign becomes more evident when
we consider the associated structural recursion scheme. Let α “ zeroα Ź initα Ź plusα :
GA B Ñ B be an arbitrary algebra in union representation. Then for T P tList,Bag, Setu
the catamorphism LαMT

A is recursively defined in terms of the GA structure as follows.

LαMT
A pempT

Apqq “ zeroαpq
LαMT

A psngT
A aq “ initα a

LαMT
A puniT

A as1 as2 q “ plusα pLαMT
A as1 q pLαMT

A as2 q
(Uni-Fold)

The key insight is that the properties of algebras in union representation ensure a parallel
execution scheme regardless of the concrete choice of zero, init, and plus. For a distributed
collection as “ Ť̈n

i asi, a generalized version of the homomorphism property of uni

LαMT
A

´ nď
¨
i

asi
¯
“ LαMT

A

´ nď
¨
i

LαMT
A asi

¯
(Uni-Fold-Dist)

implies that we can evaluate LαMT
A independently on each partition asi using function

shipping, and then fold the Bag of partial results on a single machine in order to
compute the final result. In the functional programming community, this idea was
highlighted by Steele [Jr.09]. In the Flink and Spark communities, the underlying
mathematical principles seem to go largely unnoticed, although their utility has been

33



Chapter 4. Background

recently demonstrated by projects like Summmingbird [BROL14] and MRQL [FLG12].
The relevance of the Uni-Fold recursion scheme is also indicated by the fact that
variations of it (under different names), as well as derived operators such as reduce and
count are an integral part in the Flink and Spark APIs.

To conclude, we compare the expressiveness of the two representations. For the rest of this
section, let objects, morphisms, and categories associated with the insert representation
be color-coded in red, and those associated with the union representation in blue. The fact
that we can define the type former T P tList,Bag, Setu using either Ins-Sign or Uni-Sign
implies that the carries of the initial F- and G-algebras in the respective model categories
are isomorphic. The isomorphism is established by a pair of catamorphisms Li2uMTF

A P
ModpSpecTF

A q and Lu2iMTG
A P ModpSpecTG

A q. The components of the polymorphic algebras
i2u “ e Ź c and u2i “ e Ź s Ź u are defined in terms of constructors in the respective
target representation (we omit f T

A from algebra components f for clarity).

epq “ emppq epq “ emppq
s a “ cons a emp c a as “ uni psng aq as

u as1 as2 “ Las2 Ź cons MTF
A as1

A natural follow-up question is whether the above correspondence generalizes to non-initial
algebras in the F-based model category ModpSpecTF

A q and the G-based ModpSpecTG
A q.

The G-to-F part can be derived from the initial case depicted above – given a G-algebra
Lz Ź i Ź‘ MTG

A P ModpSpecTG
A q, we can construct the corresponding F-algebra Lz ŹbMTF

A P
ModpSpecTF

A q component-wise as follows.

zpq “ zpq
ab b “ pi aq‘ b

Similarly, one might think that the same generalization applies in the F-to-G direction.

zpq “ zpq
i a “ ab z

b1‘ b2 “ Lb2 Ź p MTF
A b1

Unfortunately, the above construction is not valid. The reason for this is that z does
not have to be a unit of b. As a counter-example, consider the G-representation derived
for the F-algebra α “ 3 Ź `. For TF P tListF,BagFu the F-catamorphism LαMTF

Int is the
well-defined function adding 3 to the sum of the elements in the input collection. The
following examples illustrate this – the result of LαM does not depend on the representation
of its argument (we use infix notation a : as instead of cons a as).

LαM tt1, 2uu “ LαM p1 : 2 : empq “ 1` 2` 3 “ 6

34



4.1. Category Theory

LαM tt1, 2uu “ LαM p2 : 1 : empq “ 2` 1` 3 “ 6

However, the derived G-catamorphism LβMTF
Int is not a well-defined function – the value of

LαM as depends on the number of emp and sng calls in the as representation. The following
examples illustrate this (using the infix notation as1 Ÿ as2 instead of uni as1 as2 ).

LαM tt1, 2uu “ LαM ppsng 1q Ÿ psng 2qq “ p1` 3q ` p2` 3q “ 9
LαM tt1, 2uu “ LαM ppsng 1q Ÿ psng 2q Ÿ empq “ p1` 3q ` p2` 3q ` 3 “ 12

A well-defined F-to-G translation for catamorphisms does not come for free. Tannen and
Subrahmanyam give a solution which adds complexity in requiring function types (Ñ)
as an additional type constructor [TS91]. Suciu and Wong [SW95] give another solution
which adds complexity in mapping F-catamorphisms that compute in polynomial time
to G-catamorphisms that require exponential space. In general, these solutions support a
well-known conjecture – there is no “silver bullet” for automatic program parallelization.
Conversely, there is a simple way to translate a parallel program (like a catamorphism in
SpecTG

A ) into an equivalent sequential program (a catamorphism in SpecTF
A ).

4.1.6 Monads and Monad Comprehensions

The type constructors introduced in the Section 4.1.4 and Section 4.1.5 can be used to
formalize collection-based data models. In addition to distributed collections managed
by dataflow engines such as Flink and Spark, relations managed by Relational Database
Management Systems (RDBMSs) can be also understood in terms of bags of database
records. As a formalism for the associated processing model, Bag catamorphisms can
be used to define primitives for parallel collection processing such as map and reduce.
However, so far we have not seen how catamorphisms relate to declarative languages
such as SQL. To make this connection, we show that collection type constructors can be
extended to a structure known as monad with zero.

A monad with zero allows for declarative syntax known as monad comprehensions. In
the Bag monad, the syntax and semantics of Bag comprehensions correspond to the
syntax and semantics of Select-From-Where expressions in SQL. To illustrate this at the
syntactic level, compare the SQL expression

SELECT x.b, y.d FROM xs as x, ys as y WHERE x.a “ y.c

with the abstract syntax of the corresponding Bag comprehension

r px.b, y.dq | x Ð xs, y Ð ys, x.a “ y.c sBag .

Formally, a comprehension r e | qs sT over a collection monad T consists of a head

35



Chapter 4. Background

expression e and a qualifier sequence qs. A qualifier is either piq a generator x Ð xs
binding the elements of xs : TA to x : A, or piiq a boolean guard p (such as x.a “ y.c)
restricting the combinations of generator bindings that contribute to the final result.

As a programming language construct, comprehensions were first adopted by Haskell.
Nowadays, comprehension syntax is also natively supported by some GPLs. Python
supports List comprehensions, written

r px.b, y.dq for x in xs for y in ys if x.a “ y.c s .

Similarly, Scala supports for-comprehensions, written

for t xÐ xs; y Ð ys; if x.a “ y.c u yield px.b, y.dq

for arbitrary generic types TA implementing an interface consisting of the functions map,
flatMap, and withFilter . We make extensive use of Scala’s for-comprehensions when
designing the source language of our embedded DSL in Chapter 5.

In the remainder of this section, we formally introduce the notions of monad and monad
with zero, show how the union-style collection type constructors List, Bag, and Set can be
extended to the latter, and define the denotational semantics of monad comprehensions.
As a prerequisite, we need to define the notion of a natural transformation.

Natural Transformation. Let C and D be two categories and F and G two functors
from C to D. A natural transformation µ : F Ñ G is a family of D-morphisms µA :
FA Ñ GA indexed by A P C, which satisfies the following property for all C-morphisms
f : A Ñ B.

µB ˝ Ff “ Gf ˝ µA (Naturality)

The associated commutative diagram is also known as naturality square.

FA FB

GA GB

Ff

µA µB

Gf

If F and G represent polymorphic data containers such as List, Bag, and Set, a natural
transformation can be interpreted as container conversion. The Naturality property
states that the operation commutes with map f applications over the source and target
containers – we can either first map over the source container F and then apply the
conversion, or convert first and then map over the target container G.

36



4.1. Category Theory

A simple natural transformation was already encountered in Section 4.1.4 – the family of
T-constructors sngA : A Ñ TA defines a natural transformation sng : Id Ñ T between
Id (which represents the trivial container for an element of type A) and the collection
container T. As a second example, consider the List-to-Set conversion defined by the
family of List catamorphisms list2setA “ LempSet

A Ź sngSet
A Ź uniSet

A MList
A for all A P Set.

The definition satisfies Naturality – we can either first convert a List to a Set and
then apply f to all a P SetA or swap the order of these actions with the same net result.
Natural transformations and endofunctors are all we need in order to define monads.

Monad. Let T : C Ñ C be an endofunctor in C. A monad is a triple pT, unit,flattenq
consisting of T and two natural transformations – unit : Id Ñ T and flatten : T2 Ñ T –
such that the following properties are satisfied for all A P C.

flattenA ˝ unitTA “ idTA & flattenA ˝ TunitA “ idTA (Monad-Unit)
flattenA ˝ flattenTA “ flattenA ˝ TflattenA (Monad-Asso)

The above properties are also represented by the following pair of commutative diagrams.

TA T2A

T2A TA

unitTA

TunitA

flattenA

flattenA

T3A T2A

T2A TA

TflattenA

flattenTA flattenA

flattenA

The use of monads in the domain of programming languages semantics can be traced back
to Moggi [Mog91]. Conceptually, the type TA denotes a value of type A attached to some
kind of computational context (or, in Moggi’s parlance, some notion of computation) that
is modeled by T. Various notions of computation such as optionality, non-determinism,
and exceptions can be modeled using a suitable Set-endofunctor T. For the purposes of
this thesis, however, we are only interested in situations where T is one of the collection
type constructors introduced in Section 4.1.5, and most commonly where T “ Bag.
In these cases, the computational context associated with TA is the context of the
constructor application tree where the element values a P A are inserted in the enclosing
collection of type TA. Alternatively, one can say that T represents the computational
notion of the state of a collection traversal procedure with cursor pointing at some a P A.

The natural transformation unit defines a family of constructors which inject a pure value
of type A into a context of type T. If T represents one of the collection type functors
encountered in the previous section, we can define unit as follows.

unitT
A “ sngT

A (Uni-Monad-Unit)

37



Chapter 4. Background

The TA-value unitT
A a then denotes the trivial context of a collection containing only a.

Now consider a situation where we have obtained an instance of a computational context
ta P TA. The morphism component of T allows for transforming the A-values of ta into B-
values using some function f : A Ñ B. Crucially, the type of f asserts that f cannot access
or modify the enclosing T-context. If T is a collection type functor, then Tf “ mapT f
(as defined in Uni-Map) denotes the function wrapping all ta elements in an f call. The
catamorphic interpretation of mapT f ta is consistent with the monadic perspective – the
trees denoted by ta and mapT f ta have identical shape. To illustrate this, consider the
input and output of the application mapT strlen tt Don’t, fear, the,monad uu.

uni

uni

sng

Don’t

sng

fear

uni

sng

the

sng

monad

ÞÑ
uni

uni

sng

5

sng

4

uni

sng

3

sng

5

While the input type of f is determined by the ta value type A, its output type can be
any object B P ObC. In particular, f might be a value of type TB P C, i.e. a value
within the same monad. Consequently, Tf ta is of type TTB, shortened as T2B. In such
cases, the natural transformation flatten can be used to reduce the structural nesting of
the Tf ta result. As its name implies, flatten transforms a nested context of type T2A
into a flat context of type TA. If T is a collection type functor, T2 denotes the context
of a tree (representing an inner collection) nested within the context of another tree
(representing an outer collection). To illustrate this, consider combining the concrete
Bag values xs “ tta, buu and ys “ tt1, 2uu with the following expression.

map px ÞÑ map py ÞÑ px, yqq ysq xs “ ttttpa, 1q, pa, 2quu, ttpb, 1q, pb, 2quuuu (4.1)

Expanding Uni-Map at the representation level, the above expression yields an outer
collection structurally identical to xs whose values are inner collections identical to ys.

uni

sng

a

sng

b

uni

sng

1

sng

2

˜
,

¸
ÞÑ

uni

sng

uni

sng

pa, 1q
sng

pa, 2q

sng

uni

sng

pb, 1q
sng

pb, 2q

Applying flatten on the above result effectively inlines the inner collections in their outer
context, resulting in a flat collection of px, yq values.

38



4.1. Category Theory

uni

sng

uni

sng

pa, 1q
sng

pa, 2q

sng

uni

sng

pb, 1q
sng

pb, 2q

uni

sng

sng

pa, 1q
sng

pa, 2q

sng

sng

pb, 1q
sng

pb, 2q

ÞÑ

The above picture also illustrates the catamorphic nature of flattenT. To flatten a nested
T-collection, all we have to do is traverse the (outer) TTA tree, inline all (inner) TA trees
passed as arguments of sngT

TA calls, and change the element type of all empT and uniT

constructors from TA to A. This yields the following definition of flattenT, overloaded
for collection type functors T “ tList,Bag, Setu.

flattenT
A “ LempT

A Ź idTA Ź uniT
AMT

TA (Uni-Monad-Flatten)

We can now interpret the meaning of the Monad-Unit and Monad-Asso properties
from the Monad definition.

As we saw above, nesting a Tg tb call within the lambda f passed to an outer Tf ta call
yields a nested monadic type TTA. Pushing this pattern further, we can imagine nesting
of Tf calls of depth n with corresponding results of type TnA. For simplicity, let us
assume that n “ 3. To transform a value of type TTTA into its flat version of type
TA, we need to apply flatten twice. The morphism mapping component of the functor
T and the polymorphic component A in flattenA give us two options to achieve this.
The first option corresponds to the bracketing pTpTTqq – we first flatten the middle and
inner T using TflattenA (i.e., we map flattenA over the outer T instance), and then apply
flattenA on the intermediate result. The second option corresponds to the bracketing
ppTTqTq – we start with a flattenTA call which merges the outer and middle T, and then
apply flattenA as in the previous case. The Monad-Asso property states that these two
options are equivalent. In other words, flatten is associative – a nested type TnA can be
transformed into a flat type TA by an arbitrary bracketing of flatten applications.

Similarly, the polymorphic component A in unitA and the morphism mapping of T allow
for introducing a level of nesting both from the left and from the right of an existing
type TA. An application of TunitA results in a type-level transformation TA ÞÑ TTA.
Conversely, an application of unitTA results in a type-level transformation TA ÞÑ TTA.
The Monad-Asso property states if we apply flatten after introducing a level of nesting
on either side as shown above, we end up with the original TA value. In other words,
flattenA has TunitA as a left unit and unitTA as a right unit.

As illustrated above, the Monad-Unit and Monad-Asso properties of a monad corre-
spond to the unit and associativity laws of monoidal structures in abstract algebra. This

39



Chapter 4. Background

observation motivates the widely cited explanation that “monads are just monoids in the
category of endofunctors”.

Extending a type functor T to a monad is sufficient in order to define the semantics of
comprehension syntax expressions without guards. Adding a zero element to the monad
then allows for extending these semantics with support for guard qualifiers.

Monad with Zero. Let zeroA : 1 Ñ TA be a natural transformation, and zero1A :
X Ñ TA denote the composition zeroA ˝ ¡X for arbitrary X . A monad with zero is a
tuple pT, unit,flatten, zeroq where pT, unit,flattenq forms a monad and zero satisfies the
following properties.

flattenA ˝ zeroTA “ zeroA & flattenA ˝ Tzero1A “ zero1A (Monad-Zero)

The above equations can be represented by the following pair of commutative triangles.

T2A1 TA

TA

flattenA

zeroTA

zeroA

Tzero1
A

zero1
A

The Monad-Zero property can be interpreted similarly to Monad-Unit. Given a
computational context of type TA, an application of Tzero1A operates from the inside,
replacing arbitrary A-values with an empty TA-context in order to construct a context
of type TTA. Conversely, an application of zero1TA operates from the outside, replacing
the entire TA-context with a empty context of type TTA. In both cases, a subsequent
flatten reduces the resulting nested empty context to its flat form. If T is a collection
type functor based on Uni-Sign, the obvious choice is to identify zero with emp.

zeroT
A “ empT

A (Uni-Monad-Zero)

Note how Monad-Zero states that zero annihilates flatten, similar to the way a zero
element acts under multiplication in a ring structure. Bringing this similarity further, we
can extend a monad with zero with a natural transformation mplusA : TAˆ TA Ñ TA,
requiring that piq zero and mplus form a monoid and that piiq flatten distributes over
mplus. As before, if T is a type functor derived from Uni-Sign, using mplus “ uni is
the obvious choice. The resulting structure pT, unit,flatten, zero,mplusq is also known as
a ringad. Ringads were first proposed by Trinder and Wadler [TW89, Tri91] as a formal
foundation for comprehensions in database programming languages, and their utility
as a formal foundation when reasoning about database optimizations has been recently
highlighted by Gibbons [Gib16].

40



4.1. Category Theory

To define the semantics of comprehensions, however, we only need a monad with zero.
Here, we use a restricted version of theMC translation scheme proposed by Grust [GS99],
requiring that all qualifiers and the enclosing comprehension are in the same monad T.

MC r e | sT “ unitTpMC eq
MC r e | q, qs sT “ flattenTpMC rMC r e | qs sT | q sTq

MC r e | x Ð xs sT “ mappx ÞÑMC eqpMC xsq
MC r e | p sT “ ifMC p then unitTpMC eq else zeroT

MC e “ e

(MC)

As an example of theMC scheme at work, observe how the Bag comprehension

r px, yq | x Ð xs, y Ð ys sBag

translates to the left-hand side of Equation 4.1 followed by flattenBag.

MC r px, yq | x Ð xs, y Ð ys sBag

“ t apply MC r e | q, qs sT u
flattenBagpMC rMC r px, yq | y Ð ys sBag | x Ð xs sBagq

“ t apply MC r e | x Ð xs sT u
flattenBagpmap px ÞÑMC r px, yq | y Ð ys sBagq xsq

“ t apply MC r e | x Ð xs sT u
flattenBagpmap px ÞÑ map py ÞÑ px, yqq ysq xsq

To conclude the section, we prove the following fact. The proof uses the Cata-Map-
Fusion law, which is listed in Section 4.1.7.

T-Monads with Zero. A type functor T P tList,Bag, Setu equipped with unitT,
flattenT, and zeroT as defined in Uni-Monad-Unit, Uni-Monad-Flatten, and Uni-
Monad-Zero forms a monad with zero.

Proof. We first verify that unitT, flattenT, and zeroT are natural transformations. Natu-
rality follows immediately from the free theorems of Wadler [Wad89] and the parametric
function types associated with the three functions. For the sake of completeness, we list
categorical proofs based on calculational reasoning.

To show that sngT : Id Ñ T is a natural transformation, verify Naturality as follows.

Tf ˝ sngT
A

“ t Uni-Map u

41



Chapter 4. Background

sngT
B ˝ f

“ t Identity Functor u
sngT

B ˝ Idf

To show that empT : K1 Ñ T is a natural transformation, verify Naturality as follows.

Tf ˝ empT
A

“ t Uni-Map u
empT

B

“ t Category u
empT

B ˝ id1

“ t Constant Functor u
empT

B ˝ K1 f

To show that flattenT : TT Ñ T is a natural transformation, use the fact that Tf is a
SpecT

TA-homomorphism between the following two GTA-algebras.

empT
A Ź idTA Ź uniT

A : GTApTAq Ñ TB
empT

B Ź Tf Ź uniT
B : GTApTBq Ñ TB

This is verified as follows.

Tf ˝ pempT
A Ź idTA Ź uniT

A q
“ t Coproduct-Fusion u

pTf ˝ empT
Aq Ź pTf ˝ idTAq Ź pTf ˝ uniT

Aq
“ t Uni-Map u

empT
B Ź Tf Ź puniT

B ˝ Tf ˆ Tf q
“ t Category u

pempT
B ˝ id1 q Ź pTf ˝ idTAq Ź puniT

B ˝ Tf ˆ Tf q
“ t Coproduct-Functor-Fusion u

pempT
B Ź Tf Ź uniT

B q ˝ pid1 ` idTA ` Tf ˆ Tf q
“ t Uni-Sign u

pempT
B Ź Tf Ź uniT

B q ˝ GTApTf q

42



4.1. Category Theory

Naturality of flattenT : TT Ñ T is then established by the following calculation.

Tf ˝ flattenT
A

“ t Uni-Monad-Flatten u
Tf ˝ LempT

A Ź idTA Ź uniT
A MT

TA

“ t Cata-Fusion (because Tf is a SpecT
TA-homomorphism) u

LempT
B Ź Tf Ź uniT

B MT
TA

“ t Category, Product Functor u
LpempT

B ˝ id1 q Ź pidTB ˝ Tf q Ź puniT
B ˝ idTB ˆ idTBq MT

TA

“ t Coproduct-Functor-Fusion u
LpempT

B Ź idTB Ź uniT
B q ˝ pid1 ` Tf ` idTB ˆ idTBqMT

TA

“ t Uni-Sign u
LpempT

B Ź idTB Ź uniT
B q ˝ GpTf , idTBqMT

TA

“ t Cata-Map-Fusion u
LempT

B Ź idTB Ź uniT
B MT

TB ˝ TpTf q
“ t Uni-Monad-Flatten, functor composition u

flattenT
B ˝ TTf

The proof that pT, unitT,flattenTq constitutes a Monad is completed in two steps. First,
we show that Uni-Monad-Unit satisfies the two Monad-Unit equations.

Right unit:

flattenT
A ˝ TunitT

A

“ t Uni-Monad-Flatten, Uni-Monad-Unit u
LempT

A Ź idTA Ź uniT
A MT

TA ˝ TsngT
A

“ t Cata-Map-Fusion u
LpempT

A Ź idTA Ź uniT
A q ˝ GpsngT

A, idTAqMT
A

“ t Uni-Sign u
LpempT

A Ź idTA Ź uniT
A q ˝ pid1 ` sngT

A ` idTA ˆ idTAqMT
A

“ t Coproduct-Functor-Fusion u
LempT

A Ź sngT
A Ź uniT

A MT
A

“ t Cata-Reflect u
idTA

43



Chapter 4. Background

Left unit:

flattenT
A ˝ unitT

TA

“ t Uni-Monad-Flatten, Uni-Monad-Unit u
LempT

A Ź idTA Ź uniT
A MT

TA ˝ sngT
TA

“ t Uni-Fold u
idTA

Second, show that Uni-Monad-Unit and Uni-Monad-Flatten satisfy Monad-Asso.
Again, the proof relies on the auxiliary fact that flattenT

A is a SpecT
TTA-homomorphism

between the following two GTTA-algebras

empT
TA Ź idTTA Ź uniT

TA : GTTApTTAq Ñ TA
empT

A Ź flattenT
A Ź uniT

A : GTTApTAq Ñ TA

which is verified as follows.

pempT
A Ź flattenT

A Ź uniT
A q ˝ GTTA flattenT

A

“ t Uni-Sign u
pempT

A Ź flattenT
A Ź uniT

A q ˝ pid1 ` idTTA ` flattenT
A ˆ flattenT

Aq
“ t Coproduct-Functor-Fusion u

pempT
A Ź flattenT

A Ź puniT
A ˝ flattenT

A ˆ flattenT
Aq q

“ t Uni-Monad-Zero, free theorem for uniT u
ppflattenT

A ˝ empT
TAq Ź pflattenT

A ˝ idTTAq Ź pflattenT
A ˝ uniT

TAq q
“ t Coproduct-Fusion u

flattenT
A ˝ pempT

TA Ź idTTA Ź uniT
TA q

Monad-Asso is then verified by the following calculation.

flattenT
A ˝ flattenT

TA

“ t Uni-Monad-Flatten u
flattenT

A ˝ LempT
TA Ź idTTA Ź uniT

TA MT
TTA

“ t Cata-Fusion (because flattenT
A is a SpecT

TTA-homomorphism) u
LempT

A Ź flattenT
A Ź uniT

A MT
TTA

“ t Coproduct-Functor-Fusion u
LpempT

A Ź idTA Ź uniT
A q ˝ pid1 ` flattenT

A ` idTA ˆ idTAqMT
TTA

“ t Uni-Sign u

44



4.1. Category Theory

LpempT
A Ź idTA Ź uniT

A q ˝ GpflattenT
A, idTAqMT

TTA

“ t Cata-Map-Fusion u
LempT

A Ź idTA Ź uniT
A MT

TA ˝ TflattenT
A

“ t Uni-Monad-Flatten u
flattenT

A ˝ TflattenT
A

Finally, to show that pT, unitT,flattenT, zeroTq constitutes a Monad with Zero, we show
that Uni-Monad-Zero satisfies the two Monad-Zero equations.

Outer:

flattenT
A ˝ zeroT

TA

“ t Uni-Monad-Flatten, Uni-Monad-Zero u
LempT

A Ź idTA Ź uniT
A MT

TA ˝ empT
TA

“ t Uni-Fold, Uni-Monad-Zero u
zeroT

A

Inner:

flattenT
A ˝ TpzeroT

A ˝ ¡Aq
“ t Uni-Monad-Flatten, Uni-Monad-Zero u

LempT
A Ź idTA Ź uniT

A MT
TA ˝ TpempT

A ˝ ¡Aq
“ t Cata-Map-Fusion, Uni-Sign u

LpempT
A Ź idTA Ź uniT

A q ˝ pid1 ` pempT
A ˝ ¡Aq ` idTA ˆ idTAqMT

A

“ t Coproduct-Functor-Fusion u
LempT

A Ź pempT
A ˝ ¡Aq Ź uniT

A MT
A

“ t Uni-Unit applied in step piiiq of the catamorphism u
empT

A ˝ ¡A
“ t Uni-Monad-Zero u

zeroT
A ˝ ¡A

45



Chapter 4. Background

4.1.7 Fusion

A number of useful laws can be established from the properties of the collection type
functors T and the model categories SpecT

A. Three of those are of special interest for us,
as they explain the optimizing program transformations from Example 2.3. The first law
fuses a SpecT

B-catamorphism LβMT
B with a preceding functor application Tf : TA Ñ TB.

LβMT
B ˝ Tf “ Lβ ˝ Gpf , idTBqMT

A (Cata-Map-Fusion)

To understand how Cata-Map-Fusion relates to the code snippets listed for Example 2.3,
observe that reduce can be defined as the following catamorphism, where error : 1 Ñ 0
is a function indicating a runtime error.

reduceT
A p “ Lerror Ź idA Ź p MT

A

Substituting the above definition in Cata-Map-Fusion yields the following equation.

reduceT
B p ˝mapTf “ Lerror Ź f Ź p MT

B

A chain of map and reduce applications thereby can be fused into a single catamorphism
– i.e., they can be evaluated with a single pass over the data. This fact is well known in
the area of dataflow engines – systems like Flink and Spark automatically execute chains
of map and reduce operators in a pipelined manner.

The second law fuses a pair of SpecT
A-catamorphisms with result types B and C into a

single SpecT
A-catamorphism with result type B ˆ C .

LβMT
A ˆ LγMT

A “ Lpβ ˝ GA πBq ˆ pγ ˝ GA πC qMT
A (Banana-Split)

Together with Cata-Map-Fusion, the law explains the optimizing program transfor-
mation applied to the “movies by Hitchcock and Allen” code in Example 2.3. We first
apply Cata-Map-Fusion, fusing the two map applications (which return either 1 or
0 depending on the director’s name) with the subsequent reduce applications (which
sum the resulting bag of numbers). Then, we apply Banana-Split and obtain a single
catamorphism which accumulates movies by Alfred Hitchcock and Woody Allen simulta-
neously as a pair of counts. Finally, we apply Cata-Map-Fusion in the reverse direction,
resulting in a version of the fused catamorphism expressed as a reduceTg˝mapTf dataflow.
In Section 7.2.1, we describe how these optimizing rewrites can be performed as part of
the Emma compiler pipeline.

The third law makes use of the following monadic definition of groupBy

groupBy k xs “ r pkx, r x | xÐ xs; k x “ kx sTq | kx Ð distinct r k x | xÐ xs sT sT

46



4.2. Static Single Assignment Form

and fuses a groupBy k xs with a catamorphism applied to the values of each group.

TpidK ˆ Lz Ź i Ź p MT
Aq pgroupBy k xsq

“
r pkx, Lz Ź ī Ź p MT

A xsq | kx Ð distinct r k x | xÐ xs sT sT
(Fold-Group-Fusion)

The function ī used in the above equation is defined as follows.

ī x “
#

i x if k x “ kx

z otherwise

The insights of Fold-Group-Fusion and Uni-Fold-Dist explain why Spark dataflows
should be specified in the shape given by (4.2) and not in the more intuitive shape given
by (4.3), as illustrated by he “movies per decade” code snippet from Example 2.3.

reduceByKey p ˝mapValues i ˝ keyBy k (4.2)
mapValues pvs ñ Lerror Ź i Ź p M vsq ˝ groupBy k (4.3)

The (4.2) shape facilitates an execution strategy where the catamorphism Lz Ź ī Ź p MT
A

is applied twice in parallel – once on each partition xsi , and once more after partial
results are repartitioned based on their kx value. This strategy is more efficient because
it reduces the amount of shuffled data. On the other side, as we already indicated in
Chapter 3, dataflows shaped like (4.3) do not permit the same execution strategy because
the vs ñ Lerror Ź i Ź p M vs function cannot be inspected or modified using the embedding
methodology adopted by Spark. An analogous argument holds for Flink. In Section 7.2.2,
we propose an automatic optimization which builds on Fold-Group-Fusion and
translates Emma dataflows with (4.3) shape into dataflows with (4.2) shape.

4.2 Static Single Assignment Form

Language compilers typically perform a number of program optimizations. These are
usually conditioned on analysis information derived from the data- and control-flow
structure of the underlying program. An IR facilitating this kind of analysis therefore is a
necessary prerequisite for any optimizing compiler. Since the beginning of the 1990s, SSA
form and its functional encoding – ANF – have been successfully used in a number of
programming language compilers. As the IR of the DSL proposed in this thesis depends
on ANF, this section introduces the main ideas behind SSA and ANF based on a simple
example (Figure 4.1). For a more thorough primer of these concepts, we refer the reader
to the overview paper by Appel [App98].

The source code formulation of the example program (Figure 4.1a) offers various degrees
of syntactic freedom. For instance, we could have inlined y in its call sites or defined

47



Chapter 4. Background

// ... (prefix)
val y = h(x) / N
var z = 0
if (y < 0)
y * A

else
y * B

g(z)

(a) Source code

// ... (prefix)
x1 = h(x)
y = x1 / N
x2 = y < 0

z1 = y * A z2 = y * B

z = phi(z1, z2)
g(z)

b0:

b1: b2:

b3:

(b) SSA graph

// ... (prefix)
val x1 = h(x)
var y = x1 / N
val x2 = y < 0
def k1() = {
val z1 = y * A
k3(z1) }

def k2() = {
val z2 = y * B
k3(z2) }

def k3(z: Int) = {
g(z) }

if (x2) k1() else k2()

(c) ANF code

Figure 4.1: Example program in source, SSA, and ANF forms.

z as a variable assigned in the two branches. Therefore, it is hard to define program
analysis on top of a source-code-like syntax tree – we have to accommodate for all forms
of variability and their (possibly non-orthogonal) interactions. In contrast, the derived
SSA graph (Figure 4.1b) offers a normalized representation of the source code where
data- and control-flow information is encoded directly.

The defining properties of the SSA form are that piq every value is assigned only once,
and piiq every assignment abstracts over exactly one function application. In the SSA
version of our example, the sub-expression fpxq is assigned to a fresh variable x1 and
referenced in the division application bound to y. Values with control-flow dependent
data dependencies are encoded as phi nodes. In our example, z “ phipz1, z2q indicates
that the value of z corresponds to either z1 or z2, depending on the input edge along
which we have arrived at the b4 block at runtime.

The SSA graph can be also represented as a functional program in ANF (Figure 4.1c). In
this representation, control-flow blocks are encoded as continuation functions such as k1
– k3, and control-flow edges are encoded as continuation calls such as k3pz1q or k3pz2q.
Values bound to the same continuation parameter correspond to phi nodes. For example,
z1 and z2 are bound to the z parameter of k3, which corresponds to the z “ phipz1, z2q
definition in Figure 4.1b.

48



5 Source Language

To address the problems with state-of-the-art parallel dataflow eDSLs outlined in Chap-
ter 2 we propose Emma – a quotation-based DSL embedded in Scala. Section 5.1 outlines
linguistic features and restrictions driving our design. Based on those, in Section 5.2
we derive a formal definition of Emma Source – a subset of Scala accepted by our
quotation-based compiler. Finally, Section 5.3 presents and illustrates the programming
abstractions that form the core Emma API.

5.1 Linguistic Features and Restrictions

As outlined in Chapter 3, we claim that problems with state-of-the-art eDSLs for parallel
collection processing are a consequence of the adopted type-based embedding strategy.
The difficulties stem from the fact that program structure critical for optimization is
either not represented or treated as a black box in the IR lifted by these eDSLs. To
tackle these problems, we analyzed a wide range of algorithms implemented in the Spark
RDD and Flink DataSet eDSLs and identified a set of host language features needed to
express these algorithms in a direct and concise way. The ability to freely compose these
features at the Scala (source) level and reflect them at the IR level is crucial for any eDSL
that wants to attain maximal linguistic reuse without sacrificing optimization potential.
The features are:

(F1) control-flow primitives such as if-else, while, and do-while;
(F2) var and val definitions as well as var assignments;
(F3) lambda function definitions;
(F4) def method calls and new object instantiations;
(F5) statement blocks.

In addition to those, the following Scala features are either defined as syntactic sugar

49



Chapter 5. Source Language

that desugars in terms of (F1-F5) in the Scala ASTs, or they can be eliminated with a
simple transformation:

(F6) for-comprehensions – those are represented as chains of nested flatMap, withFilter,
and map calls using a desugar scheme similar to theMC transformation from in
Section 4.1;

(F7) irrefutable patterns (that is, patterns that are statically guaranteed to always
match) – those can be transformed in terms of val definitions and def calls;

(F8) for loops – those are represented as foreach calls in the Scala AST and can be
subsequently rewritten as while loops.

Some restrictions are also made in order to simplify the definition and development of
the compiler frontend and the optimizing program transformations presented in the rest
of this thesis.

(R1) def definitions;
(R2) lazy and implicit val definitions;
(R3) refutable patterns;
(R4) call-by-name parameters;
(R5) try-catch blocks;
(R6) calls of referentially opaque (that is, effectful) def methods;
(R7) var assignments outside of their defining scope (i.e., inside a lambda).

We proceed by formalizing a user-facing language called Emma Source . The abstract
syntax of Emma Source models a subset of Scala covering (F1-F5) and therefore can be
easily derived from the ASTs of quoted Scala code snippets.

5.2 Abstract Syntax

The Emma Source specification presented below relies on the following terminology
and notational conventions. The approach is based on metaprogramming – the ability
of computer programs to treat other programs as data. The language in which the
metaprogram is written is called metalanguage. The language being manipulated is called
object language. The ability of a programming language to be its own metalanguage is
called reflection. Emma Source represents a subset of Scala, and (since it is an embedded
DSL) the metalanguage is also Scala. The compiler infrastructure presented in the next
sections is based on Scala’s compile- and runtime reflection capabilities.

We denote metalanguage expressions in italic and object language expressions in a

50



5.2. Abstract Syntax

t :“ term
t.mrTjsptsqi method call
new X rTjsptsqi new instance
pdefs ñ t lambda
t.module mod. access
t : T ascription
if pt1 q t2 else t3 conditional
t stats; t u stats block
a atomic

a :“ atomic
lit literal
this this ref
module module ref
x binding ref

stat :“ statement
x “ t assignment
loop loop
bdef binding def

loop :“ loop
while ptq block while

do block while ptq do-while

bdef :“ binding def
val x : T “ t val def
var x : T “ t var def

ppdef q x : T param. def

Figure 5.1: Abstract syntax of Emma Source .

teletype font family. The following example illustrates the difference.

(metalanguage) xs.takep10 q ô xs.takep10q (object language)

Syntactic forms in the object language may be parameterized over metalanguage variables
standing for other syntactic forms. For example, t.takep10q represents an object language
expression where t ranges over object language terms like xs or ys.tail.

A name suffixed with s denotes a sequence, and an indexed subexpression a repetition.
For example ptsqi denotes repeated term sequences enclosed in parentheses.

The abstract syntax of Emma Source is specified in Figure 5.1. The language consists of
two mutually recursive definitions – terms, which always return a value, and statements,
which modify the computation state. Some of the more critical aspects of the syntax are
discussed below.

First, we assume that Source expressions are piq typed – that is, every term is related
to a unique type t : T , and piiq named – that is, every definition is related to a
unique symbol with an enclosing scope. Both assumptions are already met when using
compile-time reflection (i.e, Scala macros), and can be enforced at runtime with an extra
typeCheckpexprq call. This implies that m in method call, X in new instance, and x in
binding refs denote unique symbols rather than ambiguous names.

51



Chapter 5. Source Language

Second, the language offers mechanisms for piq abstraction – via lambda terms, and for piiq
control-flow – via conditional terms and loop constructs. Crucially, the abstract syntax
ensures piiq is stratified with respect to piq. Were recursive functions (def definitions in
Scala) included in Source, this assumption would have been violated. This restriction
is simplifies the definition of a decision procedure for the concept of binding context in
Section 6.4.

5.3 Programming Abstractions

The core programming abstraction is a trait Bag A which represents a distributed collec-
tion with elements of type A and a matching BagCompanion trait defining various Bag
constructors. The API is listed in Figure 5.2. To illustrate and outline key differences
between the Bag and RDD/DataSet APIs, in the remainder of this section we re-cast some
examples from Section 2.3.

5.3.1 Sources and Sinks

The data source operators in the BagCompanion trait define various Bag constructors.
For each source there is a corresponding sink which operates in the reverse direction.
val movies = Bag.readCSV[Person]("hdfs://.../movies.csv", ...) // from file
val credits = Bag.from(creditsRDD) // from a Spark RDD / Flink DataSet
val people = Bag.apply(peopleSeq) // from a local Scala Seq

5.3.2 Select-From-Where-like Syntax

The operators in the right column in Figure 5.2 define a Scala-native interface for parallel
collection processing similar to SQL. Binary operators like join and cross are omitted
from the API. Instead, the Bag type implements the monad operations discussed in
Section 4.1. This allows for declarative Select-From-Where-like expressions using Scala’s
for-comprehension syntax. The joins from Example 2.2 can be expressed as follows.
// join movies, credits, and people and build intermediate (m, c, p) triples
val ys = for {
m <- movies
c <- credits
p <- people
if m.id == c.movieID
if p.id == c.personID

} yield (m, c, p)
// pattern-match (m, c, p) triples and project final result
for {
(m, c, p) <- ys
} yield (m.title, p.name)

52



5.3. Programming Abstractions

Data sinks (in BagA)
fetchpq : SeqA

asrDCollr_ss : DCollA

writeParquetppath : String, . . .q : Unit

writeCSVppath : String, . . .q : Unit

Data sources (in BagCompanion)
emptyrAs : BagA

applyrAspvalues : SeqAq : BagA

fromrDCollr_s, Aspcoll : DCollAq : BagA

readParquetrAsppath : String, . . .q : BagA

readCSVrAsppath : String, . . .q : BagA

SQL-like (in BagA)
maprBspf : A ñ Bq : BagB

flatMaprBspf : A ñ BagB : BagB

withFilterpp : A ñ Booleanq : BagA

unionpthat : BagAq : BagA

groupByrKspk : A ñ Kq : BagGrouprK, BagAs
distinct : BagA

Folds (in BagA)
foldrBspalg : AlgrA, Bsq : B

size : Long “ foldp0Lqp_ñ 1L,_`_q
nonEmpty, min, max, . . .

Figure 5.2: BagA and BagCompanion API.

Moreover, maintaining comprehension syntax at the IR level allows us to employ query
compilation techniques such as projection- and filter-pushdown (see Section 7.1).

5.3.3 Aggregation and Grouping

Aggregating the values of a Bag is based on a single primitive – fold – which represents
structural recursion over Union-style bags. The method accepts a Union-algebra
instance that encapsulates substitution functions for the three basic Union-style bag
constructors. The algebra trait Alg and an example Size algebra that counts the number
of elements in the input collection are defined as follows.

trait Alg[-A, B] {
val zero: B
val init: A => B
val plus: (B, B) => B

}

object Size extends Alg[Any, Long] {
val zero: Long = 0
val init: Any => Long = const(1)
val plus: (Long, Long) => Long = _ + _

}

Various common folds are aliased as dedicated methods. For example, xs.size is defined
as follows.

def size: Long = this.fold(Size) // using the ’Size’ algebra from above

Per-group aggregations are defined in a straight-forward way using groupBy and for-
comprehensions. Example 2.3 can be written as follows.
for {
Group(d, ms) <- movies.groupBy(decade(_.year))

53



Chapter 5. Source Language

} yield (d, ms.size)

Rewriting this definition in terms of primitives such as reduceByKey is enabled by piq
the insight that structural recursion (i.e, folds) over Union-style collections models
data-parallel computation, and piiq the ability to represent nested Bag computations in
the IR. Details are discussed in Section 7.2.

5.3.4 Caching and Native Iterations

The API does not require explicit caching. Bag terms referenced more than once or inside
a loop are implicitly cached (Section 7.3). For example, in
val S = static()
var w = init() // outer ‘w‘
for (i <- 0 until N) {
w = update(S, w) // inner ‘w‘

}

both S and the inner w will be implicitly cached. In addition, we propose API extensions
and transformations that rewrite loop structures to Flink’s iterate operator whenever
possible (Section 7.4).

5.3.5 API Implementations

The Bag and BagCompanion traits are implemented once per backend. At the moment,
we implement FlinkBag (backed by a Flink DataSet) and a SparkBag (backed by a
Spark Dataset). The backend implementation is introduced transparently as part of the
compilation pipeline as sketched in Section 6.5. This design allows for introducing other
backends in the future. A ScalaBag (backed by a Scala Seq) is used per default – the
Bag object just delegates to the ScalaBag companion. Unquoted Emma code snippets
therefore can be executed and debugged as regular Scala programs. Consequently,
programmers can first focus on writing correct code without thinking about distributed
execution, and quote the code in order to parallelize it later.

54



6 Core Language

In line with the envisioned optimizations, we propose a functional intermediate language
called Emma Core . To simplify program analysis, we build on the A-normal form (ANF)
of Flanagan et al. [FSDF93] presented in Section 4.2. To that end, in Section 6.1 we define
Emma CoreANF and present a translation scheme from Emma Source to Emma CoreANF .
To accommodate for SQL-like program rewrites such as join-order enumeration, in Sec-
tion 6.2 we add first-class support for monad comprehensions, extending Emma CoreANF
to Emma Core, and in Section 6.3 we sketch a comprehension normalization scheme.
Section 6.4 introduces the notion of binding context. Finally, Section 6.5 gives an overview
of the Emma compiler pipeline.

6.1 Administrative Normal Form

The abstract syntax of the Emma CoreANF language is specified in Figure 6.1. Below,
we outline the main differences between the terms and statements in Emma CoreANF
and Emma Source .

The sub-language of atomic terms (denoted by a) is shared between the two languages.
Imperative statement blocks are replaced by functional let blocks. Terms that may
appear on the right-hand side of val definitions are restricted from t to b, ensuring
that all sub-terms (except lambda) are atomic. Loops are replaced by continuation
functions in the so-called direct-style, and var definitions and assignments are replaced
by continuation parameters. Continuation definitions appear after the vdefs sequence in
let blocks and are called only at the return position c. As noted by Appel [App98] and
illustrated in Section 4.2, the resulting functional representation corresponds to the SSA
form commonly used in modern compilers. In particular:

• Value assignments are static – every value x is associated with a unique binding
definition.

55



Chapter 6. Core Language

a :“ . . . (as in Figure 5.1) atomic
b :“ binding

a.mrTjspasqi method call
new X rTjspasqi new instance
pdefs ñ let lambda
a.module mod. access
a : T ascription
a atomic

c :“ cont. call
if paq kpasq else kpasq branching
kpasq simple
a atomic

let :“ t vdefs; kdefs; c u let block

stat :“ statement
pkdef q def kppdefsq “ let cont. def

bdef binding def
bdef :“ binding def
pvdef q val x “ b val def
ppdef q x : T param. def

Figure 6.1: Abstract syntax of Emma CoreANF .

• Control-flow blocks are in 1:1 correspondence with let blocks. Every block is
uniquely identified by its nearest enclosing lambda or continuation definition. If
this does not exist, then the block is the (unique) root of the control-flow graph.

• Control-flow edges are in 1:1 correspondence with continuation calls. Calling a
continuation k2 from the let-block enclosed in k1 implies a control-flow edge from
k1 to k2 .
• SSA φ nodes are in 1:1 correspondence with arguments bound to continuation
parameters. A continuation def kpx : X, y : Yq “ . . . called twice with kpv, wq and
kpv1, w1q implies two φ calls x “ φpv, v1q and y “ φpw, w1q.

• The dominance tree associated with the control-flow graph is in 1:1 correspondence
with the hierarchy induced by nested continuation definitions.

The translation from Source to CoreANF is defined as the composition of two distinct
transformations. The anf transformation (Figure 6.2) destructs compound t terms as
statement blocks with restricted structure. Each sub-term becomes a named b-term in
a val definition. The return expression of the resulting block is always atomic. The
anf-var and anf-asgn rules ensure that terms appearing on the right-hand-side of
var definitions and assignments are always atomic. The range of the transformation is
denoted as SourceANF . To illustrate anf in action, consider the following expression.

anfJ t z “ x ˚ x` y ˚ y; Math.sqrtpzq u K

The resulting block directly encodes the data-flow dependencies of the original program.

t val u1 “ x ˚ x; val u2 “ y ˚ y; val u3 “ u1 ` u2; z “ u3; val u4 “ Math.sqrtpzq ; u4 u

56



6.1. Administrative Normal Form

anf-atom
a ÞÑ t a u

t ÞÑ t ss; a u
t t u ÞÑ t ss; a u anf-blck

anf-ascr
t ÞÑ t ss; a u

t : T ÞÑ t ss; val x “ a : T ; x u

anf-fun
t ÞÑ t 1

pdefs ñ t ÞÑ pdefs ñ t 1

anf-if
t1 ÞÑ t ss; a u t2 ÞÑ t 12 t3 ÞÑ t 13

if pt1 q t2 else t3 ÞÑ t ss; val x “ if paq t 12 else t 13 ; x u

anf-mod
t ÞÑ t ss; a u

t.module ÞÑ t ss; val x “ a.module; x u

anf-call
t ÞÑ t ss; a u @tjk. tjk ÞÑ t ssjk ; ajk u

t.mrTisptjkqj ÞÑ t ss; ssjk ; val x “ a.mrTispajkqj ; x u

anf-new
@tjk. tjk ÞÑ t ssjk ; ajk u

new C rTisptjkqj ÞÑ t ssjk ; val x “ new C rTispajkqj ; x u

anf-val
t1 ÞÑ t ss1 ; a1 u t ss; t2 u ÞÑ t ss2 ; a2 u

t val x “ t1 ; ss; t2 u ÞÑ t ss1 ; rx :“ a1 sss2 ; rx :“ a1 sa2 u

anf-var
t1 ÞÑ t ss1 ; a1 u t ss; t2 u ÞÑ t ss2 ; a2 u

t var x “ t1 ; ss; t2 u ÞÑ t ss1 ; var x “ a1 ; ss2 ; a2 u

anf-asgn
t1 ÞÑ t ss1 ; a1 u t ss; t2 u ÞÑ t ss2 ; a2 u
t x “ t1 ; ss; t2 u ÞÑ t ss1 ; x “ a1 ; ss2 ; a2 u

anf-loop
loop ÞÑ loop1 t ss; t u ÞÑ t ss1; a u
t loop; ss; t u ÞÑ t loop1; ss1; a u

anf-wdo
t ÞÑ t 1 block ÞÑ block 1

while ptq block ÞÑ while pt 1q block 1

anf-dow
t ÞÑ t 1 block ÞÑ block 1

do block while ptq ÞÑ do block 1 while pt 1q

Figure 6.2: Inference rules for the anf transformation.

57



Chapter 6. Core Language

dscf-ref1
x R V

V $ x ÞÑ x

dscf-ref2
Vx “ a

V $ x ÞÑ a

dscf-ascr
V $ a ÞÑ a1

V $ a : T ÞÑ a1 : T

dscf-mod
V $ a ÞÑ a1

V $ a.module ÞÑ a1.module

dscf-fun
V $ block ÞÑ let

V $ pdefs ñ block ÞÑ pdefs ñ let
V $ a ÞÑ a1 V $ @ajk . ajk ÞÑ a1jk
V $ a.mrTispajkqj ÞÑ a1.mrTispa1jkqj

dscf-call

dscf-new
V $ @ajk . ajk ÞÑ a1jk

V $ new C rTispajkqj ÞÑ new C rTispa1jkqj V $ t kdefs; c u ÞÑ t kdefs; c u dscf-let

dscf-val
V $ b ÞÑ b1 V $ t ss; c u ÞÑ t vdefs; kdefs; c1 u

V $ t val x “ b; ss; c u ÞÑ t val x “ b1; vdefs; kdefs; c1 u

dscf-var
V $ a ÞÑ a1 V, x Ð a1 $ t ss; c u ÞÑ let

V $ t var x “ a; ss; c u ÞÑ let V $ lit ÞÑ lit
dscf-lit

dscf-asgn
V $ a ÞÑ a1 V, x Ð a1 $ t ss; c u ÞÑ let

V $ t x “ a; ss; c u ÞÑ let V $ this ÞÑ this
dscf-this

dscf-if1

xi P pAJt ss1 ; a1 uKYAJt ss2 ; a2 uKq XRJt ss3 ; c3 uK
Vxi “ a1i x P RJt ss3 ; c3 uK V, x Ð p, xi Ð pi $ t ss3 ; c3 u ÞÑ let3

V $ t ss1 ; k3 pa1 , xiq u ÞÑ let1 V $ t ss2 ; k3 pa2 , xiq u ÞÑ let2

V$ t valx “ if paq t ss1; a1 u else t ss2; a2 u; ss3; c3 u
ÞÑ t def k1pq “ let1; def k2pq “ let2; def k3pp, piq “ let3; if paq k1pq else k2pq u

dscf-if2

xi P pAJt ss1 ; a1 uKYAJt ss2 ; a2 uKq XRJt ss3 ; c3 uK
Vxi “ a1i x R RJt ss3 ; c3 uK V, xi Ð pi $ t ss3 ; c3 u ÞÑ let3

V $ t ss1 ; k3 pxiq u ÞÑ let1 V $ t ss2 ; k3 pxiq u ÞÑ let2

V$ t valx “ if paq t ss1; a1 u else t ss2; a2 u; ss3; c3 u
ÞÑ t def k1pq “ let1; def k2pq “ let2; def k3ppiq “ let3; if paq k1pq else k2pq u

dscf-wdo

xi P AJwhile pt ss1 ; a1 uq t ss2 ; a2 uK
Vxi “ a1i V, xi Ð pi $ t ss3 ; c3 u ÞÑ let3 V, xi Ð pi $ t ss2 ; k1 pxiq u ÞÑ let2
V, xi Ð pi $ t ss1 ; def k2 pq “ let2 ; def k3 pq “ let3 ; if pa1 q k2 pq else k3 pq u ÞÑ let1

V $ t while pt ss1 ; a1 uq t ss2 ; a2 u; ss3 ; c3 u ÞÑ t def k1 ppiq “ let1 ; k1 pa1iq u

dscf-dow

xi P AJdo t ss2 ; a2 u while pt ss1 ; a1 uqK
Vxi “ a1i V, xi Ð pi $ t ss3 ; c3 u ÞÑ let3

V, xi Ð pi $ t ss1 ; ss2 ; def k3 pq “ let3 ; if pa2 q k1 pxiq else k3 pq u ÞÑ let1

V $ t do t ss2 ; a2 u while pt ss1 ; a1 uq; ss3 ; c3 u ÞÑ t def k1 ppiq “ let1 ; k1 pa1iq u

Figure 6.3: Inference rules for the dscf transformation.

58



6.2. First-Class Monad Comprehensions

The subsequent translation from SourceANF to CoreANF is handled by the dscf trans-
formation (Figure 6.3). For Source terms t without var definitions, assignments, and
control-flow, dscf will simply map the stats blocks in anfJtK to CoreANF let blocks.
To eliminate variables, the transformation relies on an environment V that keeps track
of the most recent atomic term a associated with each variable x. The environment
is updated in rules dscf-var and dscf-asgn and accessed in rule dscf-ref2. Loop
constructs and conditional terms are translated by rules dscf-if1, dscf-if2, dscf-wdo,
and dscf-dow. The antecedents of these rules rely on two auxiliary functions: RJtK
computes the set of binding symbols referenced in t, while AJtK computes the set of
variable symbols assigned in t. Variables xi assigned in the matched control-flow struc-
ture are converted to parameters pi in the corresponding continuation definitions. Rules
dscf-if1 and dscf-if2 handle a conditional term of the form

t valx “ if paq t ss1; a1 u else t ss2; a2 u; ss3; c3 u

and diverge depending on whether x P RJt ss3 ; c3 uK or not. If x is referenced in the
suffix, the signature and the calls of the corresponding continuation k3 have to be adapted
accordingly.

The dscf rewrite also ensures certain properties of the resulting trees. First, the
dominator tree of the control-flow graph is encoded by the parent-child relationship of the
nested continuation function definitions. Second, lexical scope is preserved – continuation
functions do not have parameters that always bind to the same argument. As these
properties are commonly assumed by compiler optimizations, this alleviates the need of
a dedicated lambda dropping rewrite [DS00]. Third, excluding terms in nested lambda
bodies, the resulting term has exactly one let block of the form { vals ; a } which we
denote as suffixJtK.

6.2 First-Class Monad Comprehensions

An IR for Emma should accommodate common optimizations from both the language
and the query compilation domains. Emma CoreANF is good fit for the first, but too

b :“ . . . binding term
for t qs u yield let comprehension

stat :“ . . . statement
q qualifier

q :“ qualifier
x Ð let generator
if let guard

Figure 6.4: Extending the abstract syntax of Emma CoreANF to Emma Core .

59



Chapter 6. Core Language

res-map
X f “ x : A ñ let a : MA

X $ a.mappf q ÞÑ for t x Ð a u yield let

res-fmap
X f “ x1 : A ñ let a : MA

X $ a.flatMappf q ÞÑ for t x1 Ð a; x1 Ð let u yield t x2 u

res-filter
X f “ x : A ñ let a : MA

X $ a.withFilterpf q ÞÑ for t x Ð a; if let u yield t x u

Figure 6.5: Inference rules for the resugarM transformation. The type former M should
be a monad, i.e., it should implement map, flatMap, and withFilter obeying the “monad
with zero” laws.

low level for the second. Query compilation usually starts with queries expressed in a
Select-From-Where-like concrete syntax and translates to a relational algebra expression.
To that end, most commonly one uses a join graph extracted from the Select-From-Where
expression as a basis for join-order enumeration based on dynamic programming [SAC`79,
GLSW93, MN06]. In line of the similarities between Select-From-Where expressions and
for-comprehensions outlined in Section 5.3.2, our goal is to enable similar techniques
on Emma Bag comprehensions. Unfortunately, traditional ANF forms such as CoreANF
encode for-comprehensions in their desugared form, i.e., as chains of nested flatMap,
withFilter, and map operators. To overcome this limitation, we extend CoreANF with
support for first-class monad comprehension syntax.

The resulting extended language, called Emma Core , is depicted on Figure 6.4. Observe
that, similar to lambdas, sub-terms in the new syntactic forms – comprehension head,
generator right-hand-side, and guard expression – are restricted to be let blocks. This
constraint simplifies definitions on top of Emma without loss of expressive power – a
terms expand to { a } and b terms to { val x = b ; x }.

The translation from Emma CoreANF to Emma Core proceeds in two steps. First, we
apply the resugarBag transformation, which converts flatMap, withFilter, and map
calls on Bag targets to simple monad comprehensions. Figure 6.5 lists the main inference
rules of resugar. Application of these rules depends on a context X of available lambda
definitions. Due to space considerations, the rules that accumulate X and eliminate the
monad operator applications if f is not in X are omitted from the figure. Informally, the
transformation operates as if X is defined as follows.

60



6.3. Comprehension Normalization

X f “
#

x : A ñ let if val f “ x : Añ let is available in scope
x : A ñ t val x 1 “ f pxq; x 1 u otherwise

In other words, if f is not available in the current scope, X associates f with an eta-
expansion of itself – that is, with a function that just applies f . This allows to resugar
not only terms representing desugared for-comprehensions, but also Emma Source
terms defined directly in desugared form, as for example xs.withFilterpisPrimeq where
isPrime is not defined in the quoted code fragment.

6.3 Comprehension Normalization

Upon applying the resugarBag transformation, we proceed with a normalization step
that repeatedly constructs bigger comprehensions by merging def-use chains of smaller
ones. The benefits of this process are motivated by the targeted query compilation
techniques – optimizing bigger comprehensions improves the chances of producing better
execution plans.

The normalizing transformation normalizeM consists of a single rule – unnest-head,
which is applied repeatedly until convergence. The rule is depicted on Figure 6.6. The
consequent matches an enclosing let block which contains an MA comprehension definition
identified by x1 with a generator symbol x3 that binds values from x2 . The rule triggers
if x2 identifies a comprehension which is defined in vdefs1 or vdefs2 and is referenced
only once (in the x1 definition). The rewrite depends on the auxiliary functions split, fix
and remove which operate as follows. First,

removepx , vdefsq

removes a value definition val x = b from vdefs. Second,

splitpvdefs, qsq

partitions vdefs into two subsequences – vdefsD and vdefsI , which respectively (transi-
tively) depend and do not depend on generator symbols defined in qs. Finally,

fixpeq

where e “ x Ð let | if let | let adapts let “ t vals; defs; c u in two steps. First, it
obtains let 1 by inlining let2 which defines x3 in let. If x3 R RJletK, we have let 1 “ let,
otherwise let 1 is derived from let2 by extending the suffix suffixJlet2 K “ t valsS ; aS u
as rx3 :“ aS st valsS ; vals; defs; c u. Second, copies of the dependent values vdefsD

2 that

61



Chapter 6. Core Language

UnnestHead
x1 : MA val x2 “ for t qs2 u yield let2 P vdefs1 `̀ vdefs2 usespx2 q “ 1

pvdefsI
2 , vdefsD

2 q :“ splitpremovepx2 , vdefs2 q, qs1 q
qs1 :“ qs1 `̀ qs2 .mappfixq `̀ qs3 .mappfixq

let 11 :“ fixplet1 q vdefs11 :“ removepx2 , vdefs1 q
t vdefs1 ; val x1 “ for t qs1 ; x3 Ð t vdefs2 ; x2 u; qs3 u yield let1 ; vdefs3 ; ddefs; c u

ÞÑ t vdefs11 ; vdefsI
2 ; val x1 “ for t qs1 u yield let 11 ; vdefs3 ; ddefs; c u

Figure 6.6: The unnest-head rule used in the normalizeM transformation. As in
Figure 6.5, M can be any type former which is also a monad.

are referenced in let are prepended to let 1.

6.4 Binding Context

The Bag abstraction presented in Section 5.3 allows for nesting. A nested Bag can be
constructed either as a result of a groupBy application or directly, e.g. by the following
expression.

val xs : BagrBagrStringss “ for t d Ð docs u yield tokenizepdq

While this leads to a more unified programming model, it poses some challenges at
compile-time. The goal of the Emma compiler is to execute Bag expressions on a parallel
dataflow engine by implementing them in an engine-specific API such as Spark’s RDD or
Flink’s DataSet. Due to the limitations identified in Chapter 3, however, the target APIs
lack the nesting support of our Bag abstraction. To write the above expression in Spark’s
RDD API, for example, one has to change the return type of tokenize to SeqrStrings
instead of RDDrStrings.

val xs : BagrSeqrStringss “ for t d Ð docs u yield tokenizepdq

A naïve type-directed translation scheme which implements all Bag terms in the target
API therefore is not a feasible compilation strategy as it might lead to runtime errors.
Instead, we want to translate only those Bag expressions that occur at the top level –
that is, those that are not nested within other Bag expressions. To achieve that, we have
to estimate the binding context of all symbols.

Definition 6.1 (Binding Context). The binding context of a binding symbol x , denoted
Cpxq, is a value from the tDriver ,Engine,Ambiguousu domain that identifies the context
in which that symbol might be bound to a value (i.e., evaluated) at runtime.

62



6.5. Compiler Pipelines

val f = (doc: Document) => {
// ... extract ‘brands‘ from ‘doc‘
brands

}
val bs = f(d0)
val rs = for {
d <- docs
b <- f(d)
if bs contains b

} yield d

(a) Emma Source snippet

Cpxq “

$
’&
’%

Driver if x P t f, bs, rs u
Engine if x P t d, b u
Ambiguous if x P t doc, brands u

(b) computed binding context values

Figure 6.7: Binding context example.

To determine Cpxq for all binding symbols x defined in an Emma Core term t we use a
procedure called contextJtK. To illustrate how context works, consider the example
from Figure 6.7a. We first define a function f which extracts brands mentioned in a
document doc. Upon that, we use f to compute the Bag of brands bs mentioned in a seed
document d0. Finally, from the Bag of documents docs we select only those documents
d which mention a brand b also contained in bs.

Figure 6.7b depicts the result of context procedure for this example snippet. The
binding context of symbols defined in the outer-most scope (such as f, bs, and rs) is
always Driver . The binding context of symbols representing comprehension generators
(such as d and b) is always Engine. The binding context of symbols nested in lambdas,
however, depends on the lambda uses. In our running example, f is used both in a Driver
context (in the bs definition), as well as in an Engine context (in the rs definition).
Consequently, the binding context of all symbols defined in the f lambda (such as doc
and brands) is Ambiguous. The context of nested lambdas can be computed recursively.

We want to specialize all definitions of terms which denote a Bag constructor application
and are evaluated in the driver. As a conservative approach, we therefore prohibit
programs where such terms have Ambiguous binding context. In our running example,
compilation will fail because Cpbrandsq “ Ambiguous. To alleviate this restriction, one
can employ a more elaborate strategy that duplicates lambdas with ambiguous use (such
as f) and disambiguates their use sites. In practice, however, the data analysis programs
we analyzed and implemented so far did not suffer from this issue, so we opted for the
more restrictive, but simpler approach.

6.5 Compiler Pipelines

Putting the pieces together, we can now sketch the high-level layout of all compilation
pipelines realized on top of the Emma compiler infrastructure. The transformations

63



Chapter 6. Core Language

presented so far form the basis of a generic compiler frontend which is defined as follows.

lift “ normalizeBag ˝ resugarBag ˝ dscf ˝ anf

Quoted Emma Source terms are first lifted from Emma Source to Emma Core by the lift
pipeline. The resulting term is then iteratively transformed by a chain of Core ñ Core
optimizing transformations such as the ones discussed in Section 7.1 through Section 7.4.

optimize “ optimizen ˝ . . . ˝ optimize1

The specific optimizing transformations might be defined either in a backend-agnostic
or a backend-specific way. The concrete optimize chain is backend-dependent, as it
contains at least one backend-specific transformation (e.g., native iteration specialization
for Flink or structured API specialization in Spark). Nevertheless, the optimize chain
always ends with a transformation that specializes the backend. This transformation
identifies vdef terms of the form val x “ Bag.mr. . .sp. . .q , where Cpxq “ Driver and m
matches one of the source methods listed in Figure 5.2. The Bag companion object is
then substituted either with SparkBag or FlinkBag, depending on the desired backend.

Finally, we apply an inverse dscf transformation that “lowers” the resulting code to an
executable form. Continuation definitions are thereby converted back to control-flow
statements (such as while loops), and continuation parameters are converted back to
variable definitions and variable assignments. This is necessary in order to avoid stack
overflow errors at runtime, as in contrast to other functional programming languages,
Scala eliminates tail calls only in self-recursive methods.

We end up with two different basic pipelines defined as Scala macros – one for Spark
and one for Flink. Scala code that is “quoted” (that is, enclosed) in one of these
macros is transformed by the corresponding pipeline. Optimizing transformations in the
pipeline can be switched off and on with an optional configuration. The following snippet
illustrates the use of Emma macros.

onSpark("noCache.conf") {
val ds = Bag.readCSV[Doc](...)
val ps = tfidf(d)
...

}

onFlink {
val ds = Bag.readCSV[Doc](...)
val ps = tfidf(d)
...

}

The snippet on the left compiles the enclosed code for Spark with a customized optimize
pipeline that excludes automatic cache insertion. The snippet on the right compiles
the same code for Flink using the default Flink pipeline. The ds vdef is specialized
accordingly in each case.

In order to facilitate modularity, we also add a lib macro-annotation which can be

64



6.5. Compiler Pipelines

used to annotate objects containing library functions. Quoted calls to such functions
are (recursively) inlined before applying the lift frontend, and lambdas used only once
in a direct application are β-reduced before the optimize step. In the above example,
the tfidf is a library method that calls another library method called tokenize, so
both methods are first inlined in the enclosing code snippet. This mechanism enables
authors to write modular and composable libraries based on Emma without impeding
the optimization potential of quoted code fragments in which these libraries are used.

65





7 Optimizations

Having established Emma Core as an IR for our embedded DSL, we can now demonstrate
its utility for on a variety of enabled optimizations. Section 7.1 discusses a compilation
scheme that translates comprehension syntax terms into parallel dataflows comprised of
binary combinators such as equiJoin and cross. Section 7.2 discusses an optimization
which reduces the data-shuffle footprint of an application through automatic insertion of
primitives for partial aggregates. Section 7.3 outlines a strategy for automatic insertion of
cache calls. Finally, Section 7.4 presents a Flink-specific optimization which introduces
specialized iterate calls for certain types of while loops.

7.1 Comprehension Compilation

The Emma Core language presented in Chapter 6 resugars applications of Bag monad
operators as Bag comprehensions, normalizes those, and integrates the result as first-class
syntax in the Emma Core IR. The Emma compiler then has to rewrite the normalized
Bag comprehensions as dataflow expressions based on the operators supported by the
targeted parallel dataflow engines.

7.1.1 Naïve Approach

A naïve approach is to adopt Scala’s desugarBag scheme (see F6 from Section 5.1).
Unfortunately, this strategy can easily produce suboptimal dataflows. To illustrate why,
let e denote a comprehension defining an equi-join between two Bag terms xs and ys.

for t x Ð xs ; y Ð ys ; if kxpxq “ kypyq u yield px, yq

Then desugarBagJeK denotes the following dataflow expression.

xs.flatMappx ñ ys.withFilterpy ñ kxpxq “ kypyqq.mappy ñ px, yqqq

67



Chapter 7. Optimizations

A subsequent specialization of xs to a FlinkBag or SparkBag will parallelize the applica-
tion of the flatMap operator. However, the withFilter and map calls on ys are nested
inside the already parallelized flatMap lambda. The resulting dataflow therefore acts
like a broadcast nested-loop join where ys corresponds to the inner (broadcast) and xs
to the outer (partitioned) relation.

7.1.2 Qualifier Combination

As we saw in the Flink and Spark examples listed in Section 2.3, the parallel dataflow
engines we target support efficient distributed equi-joins via dedicated operators. To
utilize those, we adopt the approach of Grust [GS99, Gru99] and abstract over equi-join
and cross comprehensions with corresponding comprehension combinator definitions.
def equiJoin[A,B,K](
kx: A => K, ky: B => K)(xs: Bag[A], ys: Bag[B]

): Bag[(A,B)] = for { x <- xs; y <- ys; if kx(x) == ky(y) } yield (x, y)

def cross[A,B](
xs: Bag[A], ys: Bag[B]

): Bag[(A, B)] = for { x <- xs; y <- ys } yield (x, y)

Combinator signatures are bundled in a ComprehensionCombinators trait and imple-
mented three times. The LocalOps implementation uses the above naïve definitions,
whereas FlinkOps and SparkOps directly apply the corresponding native operator on the
backing distributed collection. For example, assuming that the backing Flink DataSet of
a FlinkBag xs can be extracted with an asDataSetpxsq call, equiJoin can be defined
in FlinkOps as follows.
def equiJoin[A,B,K](
kx: A => K, ky: B => K

)(
xs: Bag[A], ys: Bag[B]

): Bag[(A,B)] = FlinkBag(
(asDataSet(xs).rep join asDataSet(ys).rep) where kx equalTo ky)

)

Based on these combinators, we design a rule-based comprehension compilation strategy
called combine (the rules are depicted on Figure 7.1). In addition to rules com-join
and com-cross, we add rules for each of the three monad operators – map, flatMap, and
withFilter. Each rule eliminates at least one qualifier in the matched comprehension
and introduces a binary combinator or a monad operator. The withFilter rule comes in
two flavors – com-fmap2 is applied if the eliminated generator variable x is referenced
in subsequent terms, while com-fmap1 is applied otherwise.

The rules rely on the following auxiliary functions. RJtK denotes the set of symbols
referenced by t (as in Figure 6.3), and R˚JtK the ones upon which t transitively depends.

68



7.1. Comprehension Compilation

com-filter
x P RJpK RJpKX GJqs1 `̀ qs2 K “ H

for t qs1 ; x Ð xs; qs2 ; if p; qs3 u yield let ÞÑ
for t qs1 ; x Ð xs.withFilterpx ñ pq; qs2 ; qs3 u yield let

com-fmap1
x P RJysK RJysKX GJqs2 K “ H x R RJqs2 `̀ qs3 K x R RJhK

for t qs1 ; x Ð xs; qs2 ; y Ð ys; qs3 u yield let ÞÑ
for t qs1 ; qs2 ; y Ð xs.flatMappx ñ ysq; qs3 u yield let

com-fmap2
x P RJysK RJysKX GJqs2 K “ H t 1 “ rx :“ z ._1 sry :“ z ._2 st

for t qs1 ; x Ð xs; qs2 ; y Ð ys; qs3 u yield let ÞÑ
for t qs1 ; z Ð xs.flatMappx ñ ys.mappy ñ px , yqqq; qs12 ; qs13 u yield let 1

com-join
x R R˚JysK x P RJkxK x P RJkuK t 1 “ rx :“ z ._1 sry :“ z ._2 st

RJkyKX GJqs1 `̀ qs2 K “ H RJkxKX GJqs1 `̀ qs2 K “ H
for t qs1 ; x Ð xs; qs2 ; y Ð ys; qs3 ; if kx “ ky; qs4 u yield let ÞÑ

for t qs1 ; z Ð equiJoinpx ñ kx , y ñ kyqpxs, ysq; qs12 ; qs13 u yield let 1

com-cross
x R R˚JysK x P RJkxK x P RJkuK t 1 “ rx :“ z ._1 sry :“ z ._2 st

RJkyKX GJqs1 `̀ qs2 K “ H RJkxKX GJqs1 `̀ qs2 K “ H
for t qs1 ; x Ð xs; qs2 ; y Ð ys; qs3 u yield let ÞÑ
for t qs1 ; z Ð crosspxs, ysq; qs12 ; qs13 u yield let 1

com-map

for t x Ð xs u yield let ÞÑ xs.mappx ñ letq

Figure 7.1: Rules introducing comprehension combinators as part of the combine
transformation.

69



Chapter 7. Optimizations

GJqsK denotes the set of generator symbols bound by the qualifier sequence qs. For
example, the premises of com-filter state that p should reference x, but should not
reference any symbols bound by generators in qs1 or qs2 .

Note that the presentation in Figure 7.1 is simplified, as the actual implementations
maintain Emma Core form. For example, instead of xs, com-filter actually matches a
letxs term with

suffixJletxsK “ t vals; defs; x u
and rewrites suffixJletxsK using fresh symbols f and y as follows.

t vals; val f “ x ñ p; val y “ x .withFilterpfq; defs; y u

The combine scheme iteratively applies the first matching rule. The specific rule order
indicated on Figure 7.1 ensures that piq filters are pushed down as much as possible, piiq
flattening occurs as early as possible, and piiiq the join-tree has left-deep structure. The
resulting dataflow graph thereby aligns with common heuristics exploited by rule-based
query optimizers [Fre87]. To illustrate the rewrite, consider the normalized comprehension
from Section 5.3.2.
for {
m <- movies; c <- credits; p <- people
if m.id == c.movieID; if p.id == c.personID

} yield (m.title, p.name)

Normalization proceeds in three steps. In the first two, the comb-join rule combines m
and c (introducing u), and then u and p (introducing v). The intermediate results look
as follows.

for {
u <- LocalOps.equiJoin(

m => m.id, c => c.movieID
)(movies, credits)

p <- people
if p.id == u._2.personID

} yield (u._1.title, p.name)

for {
v <- LocalOps.equiJoin(

u => u._2.personID, p => p.id
)(LocalOps.equiJoin(

m => m.id, c => c.movieID
)(movies, credits), people)

} yield (v._1._1.title, v._2.name)

Finally, the comb-map rule rewrites the resulting single-generator comprehension as a
map call.

LocalOps.equiJoin(u => u._2.personID, p => p.id)(
LocalOps.equiJoin(m => m.id, c => c.movieID)(
movies,
credits),

people).map(v => (v._1._1.title, v._2.name))

70



7.1. Comprehension Compilation

The combine translation scheme is complemented by an extension of the Bag special-
ization procedure outlined in Section 6.5. In addition to Bag companion constructors,
we also specialize combinator applications, replacing LocalOps with either FlinkOps or
SparkOps depending on the selected backend.

7.1.3 Structured API Specialization in Spark

The combine transformation uses established query processing heuristics in order to
translate Bag comprehensions as parallel dataflows targeting Flink or Spark. The
resulting dataflow graphs are then further optimized by the target engine. Both engines
automatically fuse operators that can be executed in a single pass (e.g., a chain of map and
withFilter applications). In addition, Flink’s built-in optimizer automatically selects
optimal data distribution and local execution strategies for operators such as cross and
equiJoin. To enable similar functionality in Spark, however, one has to express the
target dataflows in Spark’s structured Dataset API. To achieve this automatically, we
extend Spark’s optimize pipeline with a corresponding specializing transformation.

The transformation proceeds in two steps. First, we identify lambdas used in dataflow
operators backed by Spark, and for each lambda, we check whether its definition can be
specialized as a corresponding Spark Column expression. In the second step, we specialize
dataflow operators whose lambdas can be specialized. Below, we sketch these steps based
on our running example.

We model the set of supported Spark Column expressions as an Expr ADT equipped
with an evaluator function eval : Expr ñ Column. Lambda specialization is restricted
to lambdas without control-flow and preserves the ANF structure of the lambda body.
More specifically, for each vdef in the let block constituting the lambda body, we check
whether its right-hand-side can be mapped to a corresponding Expr. If this is true for
all vdefs, we can specialize the lambda, changing its type from A ñ B to Expr ñ Expr.
To illustrate this process, consider the top-level join of the dataflow depicted at the end
of Section 7.1.2. The u ñ u._2.personID lambda is specialized as follows (showing the
Emma Core version on the left and the specialized result on the right).

val kuOrig = (u: (Movie, Credit)) => {
val x1 = u._2
val x2 = x1.personID
x2

}

val kuSpec = (u: Expr) => {
val x1 = Proj(u, "_2")
val x2 = Proj(x1, "personID")
x2

}

All other lambdas in the example dataflow can be specialized in a similar way. Con-
sequently, the equiJoin and map applications using these lambdas can be specialized
as well. To that end we define an object SparkNtv with specialized dataflow operators
equiJoin, select, and project corresponding to equiJoin, map, and withFilter. For

71



Chapter 7. Optimizations

example, equiJoin is defined as follows.
def equiJoin[A, B, K](
kx: Expr => Expr, ky: Expr => Expr)(xs: Bag[A], ys: Bag[B]

): Bag[(A, B)] = {
val (us, vs) = (asDataset(xs), asDataset(ys))
val cx = eval(kx(Root(us)))
val cy = eval(ky(Root(vs)))
SparkBag(us.joinWith(vs, cx === cy))

}

The implementation accepts the original bags xs and ys next to the specialized lambdas
kx and ky. We first extract the Dataset representations of the two input bags. We then
use those to evaluate the specialized lambdas and obtain Column expressions for the
corresponding join keys. Finally, we construct a Spark Dataset equi-join and wrap the
result in a new SparkBag.

The presented approach ensures that we implement Emma dataflows on Spark in terms
of the more efficient, optimizable Dataset API whenever possible, and in terms of the
more general RDD API otherwise. The strategy is also more future-proof than writing
hard-coded Spark dataflows. When a new Spark version rolls out, we only need to add
support for the new Column expressions to the lambda specialization logic. Clients can
then re-compile their Emma Source code without client-side code modifications, and
benefit from the larger dataflow fragments compiled to the Spark Dataset API.

7.2 Fold Fusion

The fold-fusion optimization presented in this section resolves the issues outlined in
Example 2.3 and is facilitated by the following Emma design aspects. First, the Bag
API is derived from a solid algebraic foundation, using Union-representation as a model
for distributed data and its associated structural recursion operator (fold) as a model
for parallel collection processing (see Section 4.1). Second, the API allows for nested
computations – the groupBy method transforms a BagA into a Bag of Group instances
where each group contains a values member of type BagA (see Section 5.3.3). Third, the
quotation-based compilation approach allows for representing such nested computations
in Emma Core and designing algebraic rewrites based on this holistic IR.

Internally, the fold-fusion optimization is defined as the composition of two rewrites

fold-group-fusion ˝ fold-forest-fusion .

We discuss each rewrite in detail. As a running example, consider a code snippet which
computes min and avg values per group from a Bag of data points grouped by their label.

72



7.2. Fold Fusion

val stats = for (Group(label, pnts) <- points.groupBy(_.label)) yield {
val poss = for (p <- pnts) yield p.pos
val min = stat.min(D)(poss)
val avg = stat.avg(D)(poss)
(label, min, avg)

}

7.2.1 Fold-Forest Fusion

The goal of fold-forest-fusion is to rewrite a tree of folds over different Union-
algebras as a single fold over a corresponding tree of Union-algebras. The rewrite
proceeds in three steps.

Fold Inlining and Fold-Forest Construction

As a first step, we inline all aliased folds and extract a forest of of fold applications. Each
tree in the forest is rooted in a different Bag instance. Leaf nodes in the tree represent
fold applications. Inner nodes represent linear Bag comprehensions, i.e. comprehensions
of the general form (omitting possibly occurring guards)

for t x1 Ð let1 ; . . . ; xn Ð letn u yield leth

where each generator references the symbol bound from the previous one, i.e. @1 ď i ă
n : xi P RJleti`1K. In our running example, the definitions of the stat.min and stat.avg
folds are expanded (depicted on the left). The forest consists of a single tree rooted at
pnts with one inner node – poss – and three leave nodes – min, sum, and siz (depicted
on the right).

for (Group(label, pnts) <- ...) yield {
val poss = for (p <- pnts) yield p.pos
val aMin = stat.Min(D)
val min = poss.fold(aMin)
val aSum = stat.Sum(D)
val sum = poss.fold(aSum)
val siz = poss.fold(Size)
val avg = sum / siz
(label, min, avg)

}

pnts

poss

min sum siz aMin aSum Size

Trees are then collapsed in a bottom-up way by a fold-forest-fusion rewrite, realized
as an interleaved application of two rewrite rules. The banana-fusion rewrite merges
leaf siblings into a single leaf, whereas cata-fusion merges an inner node which has a
single leaf as a child.

73



Chapter 7. Optimizations

Banana-Fusion

The rewrite is enabled by the Banana-Split law from Section 4.1.7, which states that
any pair of folds can be fused into a single fold over a pair of algebras, i.e.

pxs.foldpalg1 q, xs.foldpalg2 qq “ xs.foldpAlg2palg1 , alg2 qq

where Alg2 represents the fusion of two algebras and is defined as follows.

class Alg2[A,B1,B2](a1: Alg[A,B1], a2: Alg[A,B2]) extends Alg[A,(B1,B2)] {
val zero = (a1.zero, a2.zero)
val init = (x) => (a1.init(x), a2.init(x))
val plus = (x, y) => (a1.plus(x._1, y._1), a2.plus(x._2, y._2))

}

The law generalizes to n-ary tuples, which means that with a single application from
left to right of the above equation we can “fuse” leafs sharing a common parent. In our
running example, we first fuse the aMin, aSum, and Size algebras as alg1, and then
fuse the corresponding min, sum and siz folds as fld1. The three leafs of the original
fold tree thereby collapse into a single leaf (on the left). The original structure is now
mirrored in the tree of Union-style algebras (on the right).

val poss = for (p <- pnts) yield p.pos
...
val alg1 = Alg3(aMin, aSum, Size)
val fld1 = poss.fold(alg1)
val min = fld1._1
val sum = fld1._2
val siz = fld1._3
...

pnts

poss

fld1

alg1

aMin aSum Size

Cata-Fusion

The rewrite is inspired by the Cata-Map-Fusion law from Section 4.1.7, which states
that a fold over a recursive datatype can be fused with a preceding mapf application.

xs.mappf q.foldpaq “ xs.foldpAlgMappf , aqq

The AlgMap algebra fuses the per-element application of f with a child algebra a.

class AlgMap[A,B,C](f: A => B, a: Alg[B,C]) extends Alg[A,C] {
val zero = a.zero
val init = f andThen a.init
val plus = a.plus

}

74



7.2. Fold Fusion

In our running example, poss is defined as a Bag comprehension with a single generator
and no guards, so due to the desugarBag scheme it is equivalent to a map call. We can
therefore apply the cata-fusion law directly in order to fuse poss with fld1. The final
result looks as follows.

...
val alg1 = Alg3(aMin, aSum, Size)
val alg2 = AlgMap(p => p.pos, alg1)
val fld2 = pnts.fold(alg2)
val min = fld2._1
val sum = fld2._2
val siz = fld2._3
...

pnts

fld2

alg2

alg1

aMin aSum Size

Observe the symmetry between the original tree of folds the the resulting three of
algebras.

Based on the insight that all Bag comprehensions admit a catamorphic interpreta-
tion [Gru99], we extend the cata-fusion rewrite with two more algebras which allow for
fusing arbitrary linear comprehensions. Folds ys.foldpaq where ys is a comprehension of
the form

val ys “ for t x Ð xs ; if let1 ; ...; if letn u yield t x u
are thereby fused as xs.foldpAlgFilterpp, aqq, where AlgFilter is defined as

class AlgFilter[A,B](p: A => Boolean, a: Alg[A,B]) extends Alg[A,B] {
val zero = a.zero
val init = x => if (p(x)) a.init(x) else a.zero
val plus = a.plus

}

and the predicate p is constructed as follows.

val p “ x ñ let1 && . . .&& letn

Similarly, folds ys.foldpaq where ys is a linear comprehension of the general form defined
in Section 7.2.1 are fused as xs.foldpAlgFlatMappf , aqq, where AlgFlatMap is defined as

class AlgFlatMap[A,B,C](f: A => Bag[B], a: Alg[B,C]) extends Alg[A,C] {
val zero = a.zero
val init = f andThen (_.fold(a))
val plus = a.plus

}

75



Chapter 7. Optimizations

and the argument f is constructed as follows.

val f “ x1 ñ for t x2 Ð let2 ; . . . ; xn Ð letn u yield leth

The outlined fusion approach therefore works on fold trees with arbitrary shape. For
example, consider a variation of our running example where the siz aggregate is defined
not as poss.foldpSizeq but as pnts.foldpSizeq. The original fold and algebra trees (on
the left) and the resulting tree (on the right) change their shape in the following way.

pnts

poss siz

min sum aMin aSum Size

pnts

fld3

alg3

alg2 Size

aMin aSum

Compared to the original example, we fuse only two leafs (aMin and aSum) in the first step,
and apply an additional banana-fusion between alg2 and Siz in order to construct
the root of the resulting tree of algebras alg3.

7.2.2 Fold-Group Fusion

While the fold-forest fusion optimization ensures that multiple aggregates derived from
the same Bag instance can be computed in a single pass, the fold-group fusion optimization
discussed in this section fuses group values consumed by a single fold with a preceding
groupBy operation which constructs the groups. Note that fold-forest fusion therefore
enables a subsequent fold-group fusion in situations where the group values is consumed
by multiple folds. In our running example, in Section 7.2.1 we managed to rewrite the
tree of folds consuming pnts as a single fold consuming a mirrored tree of algebras.

val ptgrs = points.groupBy(_.label)
val stats = for (Group(label, pnts) <- ptgrs) yield {
... // constructs the tree of algebras rooted at alg2
val fld2 = pnts.fold(alg2)
... // projects min, max, siz aggregates from fld2 and computes avg
(label, min, avg)

}

The fold-group fusion rewrite matches groupBy applications (such as ptgrs) that are used
only once and the use occurs in the right-hand-side of a Bag comprehension generator (as
in stats). The rewrite is subject to two conditions. First, the values field bound from
each group (pnts) must be used only once as a target of a fold application. Second, the
algebra passed to the fold application (alg2) should not depend on any other values

76



7.3. Caching

bound by the enclosing comprehension (such as label). If these conditions are met, we
can pull the vdefs which construct the algebra out of the enclosing comprehension and
replace the groupBy with a foldGroup call. Our running example is rewritten as follows.

... // constructs the tree of algebras rooted at alg2
val ptgrs = LocalOps.foldGroup(_.label, alg2)
val stats = for (Group(label, fld2) <- ptgrs) yield {
... // projects min, max, siz aggregates from fld2 and computes avg
(label, min, avg)

}

Similar to the comprehension combinators introduced in Section 7.1, the foldGroup
operator is defined in a RuntimeOps trait and mixed into LocalOps, SparkOps, and
FlinkOps. The subsequent specializing transformation replacing LocalOps with one of
the other two implementations (as described in Section 7.1.2) enables targeting the right
parallel dataflow primitives. For example, SparkOps can define foldGroup in terms of
the RDD API us as follows.

def foldGroup[A,B,K](xs: Bag[A], k: A => K, a: Alg[A,B]): Bag[Group[K,B]] =
xs match {
case SparkBag(us) => SparkBag(us
.map(x => k(x) -> a.init(x)) // prepare partial aggregates
.reduceByKey(a.plus) // reduce by key
.map(x => Group(x._1, x._2))) // wrap the result (k,v) pair in a group

}

7.3 Caching

The next optimization we consider is automatic cache call insertion. Recall that due
to the type-based deep embedding strategy, the distributed collection types exposed by
Spark and Flink are lazy. Consequently, the same applies for Emma-based FlinkBag
and SparkBag terms which are backed by Flink and Spark distributed collections. To
illustrate the issues arising from this observation, consider a more specific, Emma-based
variation of the second code snippet from Example 2.4.

val points = for (d <- Bag.readCSV(/* read text corpus */)) yield
LPoint(d.id, langs(d.lang), encode.freq(N)(tokenize(d.content)))

val kfolds = kfold.split(K)(points)
var models = Array.ofDim[DVector](K)
var scores = Array.ofDim[Double](K)
for (k <- 0 until K) { // run k-fold cross-validation
models(i) = linreg.train(logistic, kfold.except(k)(kfolds))
scores(i) = eval.f1score(models(i), kfold.select(k)(kfolds))

}
...

77



Chapter 7. Optimizations

The code reads a text corpus and converts it into a Bag of labeled points. Feature
extraction is done by tokenizing the document contents into a “bag of words” and feature
hashing the resulting representation with the help of the encode.freq Emma library
function. The constructed points are then randomly assigned to one of K folds and
used for k-fold cross-validation with a logistic regression model. The cross-validation
for-loop thereby accesses the kfolds Bag in each iteration. If the code is enclosed in an
onSpark or onFlink quote, kfolds will be respectively specialized either as a SparkBag
or a FlinkBag. The uses of kfolds in the train and f1score calls will consequently
re-evaluate the backing distributed collection in each of the K iterations.

The code snippets below provide two more examples where Bag instances have to be
cached.

val docs = /* read corpus */
val size = docs.size
val tags =
if (lang == "de")
docs.map(posTagger1)

else if(lang == "fr")
docs.map(posTagger2)

else
docs.map(posTagger3)

val rslts = tags.withFilter(p)

val edges = Bag.readCSV(/* ... */)
var paths = edges.map(edge2path)
for (i <- 1 until N) {
paths = for {
p <- paths
e <- edges
if p.head == e.dst

} yield e.src +: p
}
...

In the left example, we read a text corpus docs, compute its size, and depending on
the variable lang apply one of three part-of-speech taggers in order to compute tags.
Since docs is referenced more than once, it makes sense to cache it. Note that cache
call insertion should not be too aggressive. For example, even if we exclude size from
the snippet, docs is still referenced more than once. However, in this case it is actually
beneficial to avoid caching in order to pipeline the execution of docs, tags and rslts
in a single operator chain. To capture these situations, we have to ensure that docs
references in mutually exclusive control-flow blocks are counted only once.

The right example computes all paths of length N from a Bag of edges. In this scenario,
caching the loop-invariant edges Bag is not too beneficial, as it will only amortize the
cost of a single readCSV execution per loop. On the other side, the loop-dependent Bag
paths represents a dataflow with depth proportional to the value of the loop variable i.
After the loop, paths wraps a dataflow with N joins and N maps. In order to ensure that
the size of iteratively constructed dataflows does not depend on the loop variable, we
should conservatively cache loop-dependent Bag instances such as paths.

To cover the three cases outlined above, we define an optimization add-cache-calls
based on the Emma Core IR. The rewrite caches Bag instances x if one of the following
three conditions is met:

78



7.3. Caching

(C1) x is referenced inside a subsequent loop;
(C2) x is referenced more than once in a subsequent acyclic code path;
(C3) x is updated inside a loop.

All three cases can be identified based on analysis of the control- and data-flow graphs
and the dominance tree derived from the Emma Core representation. C1 corresponds
to situations where

• x is a value referenced in a continuation k;
• k is part of a cycle k1 , . . . , kn embedded in the derived control-flow graph;
• x is not defined in any of the ki contained in the cycle.

Further, let useskpxq denote the number of uses for a symbol x in the continuation k
(excluding uses in continuation calls), and let dompkq denote the set of continuations
dominated by k (i.e., all continuation definitions nested in k). Then, C2 corresponds to
situations where

• x is a value defined in a continuation k;
• the control-flow graph restricted to dompkq contains at least two strongly connected
components S such that ΣkiPSuseski pxq ą 0;
• at least two of the above components are also weakly connected between each
other.

Finally, C3 corresponds to situations where

• x is a parameter of a continuation definition k,
• the closure of the control-flow graph restricted to dompkq contains the edge pk, kq.

The following control-flow graphs illustrate the three types of checks presented above.

k0 k1

k2

k3

k`
0

k`
1

k2

k3k`
4

k`
5

k6

The left graph corresponds to the snippets associated with C11 and C3. In both cases,
the for loop is desugared as a while loop. The loop is represented by k1 and its body
by k3 . C1 applies to the first snippet, as

• kfolds is referenced in the k3 continuation;

1For simplicity of presentation, we assume that the train and f1score calls inside the loop are not
inlined.

79



Chapter 7. Optimizations

• k3 is part of the k1 , k3 cycle;
• kfolds is defined in k0 R tk1 , k3 u.

In the third snippet, C3 applies as

• the dscf-wdo rule converts the variable paths as parameter of the k1 continuation;
• the closure of the graph restricted to dompk1q “ tk1 , k3 u contains pk1 , k1 q as an
edge.

The right graph corresponds to the code snippet illustrating C2. The superscript notation
k` indicates that the value docs is referenced in the continuation k. C2 applies to the
third snippet, as

• docs is defined in k0 ;
• the graph (without restrictions, because dompk0q “ tk0 , . . . , k6 u) has no cycles, so
each continuation ki represents a trivial strongly connected component Si , and
from those only S0 , S1 , S4 and S5 reference docs;
• from these candidate components, S0 is connected with S1 , S4 and S5 .

If we omit the size from k0 , the last condition is not met, as no pair from tS1 ,S4 ,S5 u
is connected.

The add-cache-calls optimization is backend-agnostic. The cache method is defined
in the RuntimeOps trait and inserted as LocalOps.cache calls. These are then specialized
in the same way as comprehension combinator and fold-fusion calls (see Section 7.1.2
and Section 7.2): depending on the enclosing quote, LocalOps is replaced either by
FlinkOps or SparkOps.

7.4 Native Iterations

As final optimization, we discuss a specializing transformation called specialize-loops,
which maps Emma Core loops to Flink iterate operator calls. As discussed in Ex-
ample 2.4, in contrast to Spark, Flink lacks full-fledged support for multi-dataflow
applications. If the driver application has control flow and wants to execute multiple
dataflows, the client should manually simulate caching of intermediate results by writing
them to disc. Flink, however, has a dedicated iterate operator that can be used to
express certain classes of iterative dataflows.

As a running example, consider again the edges and paths code snippet from Section 7.3.
The Emma Source and Emma Core representations are depicted in Figure 7.2. The
Emma Core expression matches the following criteria:

80



7.4. Native Iterations

val edges = Bag.readCSV(/* ... */)
var paths = edges.map(edge2path)
val it = (0 to 5).toIterator
var i = null.asInstanceOf[Int]
while(it.hasNext) {

i = it.next()
paths = for {
p <- paths
e <- edges
if p.head == e.dst

} yield e.src +: p

}
... // suffix

val edges = ANF{ Bag.readCSV(/*...*/)] }
val p$1 = ANF{ edges.map(edge2path) }
val it = ANF{ (0 to 5).toIterator }
val i$1 = null.asInstanceOf[Int]
def k1(i: Int, paths: Bag[Path]) = {
val hasNext = it.hasNext
def k3() = { // loop body
val i$2 = it.next()
val p$2 = for {
p <- { paths }
e <- { edges }
if ANF{ p.head == e.dst }

} yield ANF{ e.src +: p }
k1(i$2, p$2)

}
def k2() = ... // suffix
if (hasNext) k3() else k2()

}
k1(i$1, p$1)

Figure 7.2: Emma Source (left) and Emma Core (right) versions of a code snippet that
can be specialized to Flink’s iterate operator. For readability, not all code fragments in
the Emma Core representation are translated to ANF form (indicated with a surrounding
ANFt...u call).

• k1´ k3 form a control-flow graph corresponding to a simple while loop;
• k1 has two parameters – an induction variable i of type Int and a Bag instance

paths;
• the induction variable i binds to values in the r0, Nq range (in the example we
have N “ 5);

• except the induction variable update i$2, all value definitions in the loop body
continuation k3 form a dataflow graph rooted at p$2;

• p$2 binds to the Bag parameter paths in the recursive k1 call.

Because of that, we can replace the k1 ´ k3 loop with a Flink iterate call. To that
end, we eliminate the k1 subtree as well as preceding values contributing only to the
induction variable i (e.g., it and i$1). The rewrite

• wraps the original body (minus the induction update term) in a fresh lambda
function f$1;
• re-defines paths as a value definition that binds to the result of a FlinkNtv.iterate
call;
• appends the body of the original suffix k2 to the enclosing root continuation.

In our running example, the resulting expression looks as follows.
val edges = ANF{ Bag.readCSV(/*...*/)] }

81



Chapter 7. Optimizations

val p$1 = ANF{ edges.map(edge2path) }
val f$1 = (paths: Bag[Path]) => {
val p$2 = for {
p <- { paths }
e <- { edges }
if ANF{ p.head == e.dst }

} yield ANF{ e.src +: p }
p$2

}
val paths = FlinkNtv.iterate(5)(f)(p$1)
... // suffix

The iterate primitive is defined in a FlinkNtv module and delegates to Flink’s native
iterate operator. From our discussion in Example 2.4, recall that because Flink’s
iterate virtualizes the notion of an iterative dataflow, Flink’s optimizer can analyze
the body and automatically cache loop-invariant data. In order to avoid naïve caching
of loop-invariant Bag instances, specialize-loops precedes add-cache-calls in the
Flink-specific optimize chain.

82



8 Implementation

The translation from Emma Source to Emma Core presented in Chapter 6 and the
optimizations discussed in Chapter 7 were prototyped in Scala. In this section, we
discuss some critical decisions and techniques employed in our prototype implementation.
Section 8.1 outlines the core set of design principles guiding our decisions. Based on those,
in Section 8.2 we discuss the trade-offs of possible metaprogramming infrastructures and
explain the choice of Scala’s macro and reflection-based APIs as the underlying foundation
for our prototype. Finally, in Section 8.3 through Section 8.5 we discuss a number of
implementation strategies used to overcome the challenges outlined in Section 8.2.

8.1 Design Principles

The main design principles guiding our implementation align with the general eDSL
design objectives outlined in Section 2.2 – reuse as much Scala syntax as possible and at
the same time minimize the number of idiosyncratic patterns required to encode DSL
terms in Scala. In addition, to position Emma as a lightweight alternative to Spark’s
RDD and Flink’s DataSet APIs, we aimed for an implementation that integrates well
with off-the-shelf versions of Spark and Flink and does not require custom builds of
Flink, Spark, or Scala. Finally, while the optimizing rewrites presented in Chapter 7
are data-independent, data-dependent optimizations were anticipated as part of future
research. To facilitate both kinds of optimizations, we wanted our Emma compiler
capable of staging, transforming, and compiling DSL terms both at compile- and at
run-time.

8.2 Design Space

Development of the Emma prototype commenced in early 2014. At that time, the Scala
ecosystem offered two different platforms for implementing optimizing DSLs – Scala

83



Chapter 8. Implementation

Macros and Lightweight Modular Staging (LMS). In Section 8.2.1 and Section 8.2.2, we
discuss the benefits and drawbacks of these platforms, motivating the choice of Scala
Macros in view of the design objectives outlined above. In Section 8.2.3, we mention
other platforms and tools that have recently emerged, discussing their suitability for
eDSL designs similar to the one proposed in this thesis.

8.2.1 LMS

LMS [RO10, RO12] is a framework for rapid development of embedded DSLs based on
the concepts of staging [JS86, TS00] and partial evaluation [JGS93]. DSL programs are
staged to an intermediate representation and optimized by means of partial evaluation
in a series of successive stages. Each stage evaluates a staged program into a new
program representation to be consumed by the next stage. Finally, the resulting program
representation is translated into executable code. To illustrate the idea of modular
staging advocated by LMS, we use the power function example from [RO10]. The power
definition can be made available in objects and classes inheriting from the Power trait1.

trait Power {
def power(b: Double, x: Int): Double =
if (x == 0) 1.0 else b * power(b, x - 1)

}

In LMS, staged terms are delimited via type-based annotations – the type ReprTs denotes
a staged computation whose unstaged variant will yield a value of type T. Unstaged
expressions are partially evaluated in the current stage. In the above code snippet, we
want to stage the parameter b and the return type of the power function. To achieve that
we simply change their type from Double to ReprDoubles. The resulting version partially
evaluates the exponent x – that is, the resulting ReprDoubles program represents a power
computation specialized for a specific value of x.

trait Power {
def power(b: Rep[Double], x: Int): Rep[Double] =
if (x == 0) 1.0 else b * power(b, x - 1)

}

This modified Scala code snippet will not compile initially because the compiler will
not be able to find piq an implicit staging of the Double literal 1.0 to a ReprDoubles
value, and piiq a staged variant of the ˚ method which operates on ReprDoubles instead
of on plain Double types. The approach advocated by LMS is to bundle and install such
operations in a modular manner, using the so-called cake pattern [Hun13]. To make the
example above compile, we must constrain the this type of the enclosing Power trait.

1In Scala, objects and classes can inherit from multiple traits.

84



8.2. Design Space

trait Power { this: Arith =>
def power(b: Rep[Double], x: Int): Rep[Double] =
if (x == 0) 1.0 else b * power(b, x - 1)

}

The this : Arith type constraint asserts that objects and classes inheriting from Power
also inherit from Arith, which provides the staged versions of ˚ and 1.0. Other modules
of staged functions are provided by different traits in a similar manner. For example, if a
staged program relies both on arithmetic operations and on trigonometric functions such
as sin and cos, the enclosing trait needs to be constrained with Arith and Trig.

trait SomeTrait { this: Arith with Trig =>
... // access to staged versions of *, +, cos, and sin

}

The LMS package provides default implementations for all modules. The method definitions
in these implementations simply construct an ANF representation of the staged program
term. For example, a powerpb, 3q call in the first stage will partially evaluate the recursive
calls power based on the (unstaged) x parameter. The result, consumed by the second
stage, will be a ReprDoubles value representing the following ANF program.

val x0 = 1.0
val x1 = b * x1
val x2 = b * x2
val x3 = b * x3
x3

As part of the staging process, the framework also implicitly performs Common Subex-
pression Elimination (CSE), ensuring that the resulting ANF representation does not
contain duplicated code.

Code generation in LMS is done explicitly with a dedicated compile call provided by
a Compile trait. Depending on the used Compile implementation, the framework can
generate code for different backends, e.g. Scala or C. For example, the following definition
allows for instantiating specialized powerp¨, xq implementations via fastpowerpxq calls.

object fastpower extends Power with CompileScala {
def apply(x: Int): Double => Double = compile {
(b: Rep[Double]) => power(b, x)

}
}

An optimizing DSL for parallel collection processing which follows the design outlined in
Chapter 5 through Chapter 7 of this thesis can be realized on top of the LMS framework
using the following implementation guidelines.

85



Chapter 8. Implementation

(G1) Define a BagOps trait which provides staged versions of the BagA and BagCompanion
API from Figure 5.2.

(G2) Implement the lift transformation from Chapter 6. Since the anf and dscf
conversion is already handled by the staging facilities provided by LMS, we only
have to implement normalizeBag and resugarBag.

(G3) Implement the optimizing transformations from Chapter 7.
(G4) Implement backends specializing staged Bag operators to either SparkBag or

FlinkBag operators and use them in conjunction with the CompileScala backend.
(G5) Define onSpark and onFlink compilation pipelines using chains of the above stages.

Realizing Emma on top of LMS, however, is problematic with respect to some of the
objectives identified in Section 8.1. In the following, we discuss some of these problems.

First, while staging based on type annotations offers fine-grained control over which
paths of the original program are staged, it also imposes a higher technical barrier for
the eDSL users. In our running example, understanding the concepts of staging and
partial evaluation was required in order to decide which types of the original power
function should be adapted from T to ReprTs. One simple way to eliminate this complexity
dimension is to always stage the entire program. In type-based staging, this means
changing the type of all terms from T to ReprTs. However, this approach introduces some
level of linguistic noise and violates the linguistic reuse principle from Section 2.2. With
quotation-based embedding, the same effect is achieved by a single quotation and thereby
requires fewer changes to the concrete syntax of the original program.

Second, the Emma Source language defined in Figure 5.1 assumes an open universe of
methods and modules. This assumption is important for predictive analytics applications,
as those typically use logic provided by third-party libraries. In the data integration
and preprocessing phase, the elements of the input datasets are often normalized and
vectorized using domain-specific methods such as Gaussian curve fitting or Radial
Distribution Function (RDF) conversion. Data practitioners often rely on libraries
that provide trusted implementations of these methods. In the Flink and Spark APIs,
vectorization and normalization methods provided by third-party libraries can be easily
called in lambdas passed to higher-order functions such as map or reduce. The LMS
staging scheme outlined above, however, does not offer a mechanism to stage an open
universe of methods and symbols. Therefore, in an LMS-based implementation of Emma,
DSL users would have to extend the compilation infrastructure in an ad-hoc manner in
order to add staging and code generation support for all library methods used in Emma
pipelines. As before, we would like to remove compiler and code generation aspects from
the user-facing API. An implementation based on Scala macros and quotations offers
a straight-forward solution to the problem, as an open universe of methods is directly
supported in the AST of the quoted terms.

86



8.2. Design Space

Third, the LMS framework requires a modified version of the Scala runtime called
Scala-Virtualized [RAM`12]. This requirement is dictated by the need to employ the
method-based staging strategy outlined above to language features such as variable
declarations and assignments, control-flow and pattern matching statements, and record
types. To achieve that, the Scala runtime is modified in order to represent these features
as virtual method calls. The semantics of these methods then can be overloaded by
hosted DSLs or DSL frameworks such as LMS. Unfortunately, this modification is at odds
with the requirement to integrate Emma with off-the-shelf versions of Flink and Spark.
As both frameworks depend on Scala, an LMS-based implementation of Emma will only
work with modified versions of Flink and Spark which are based on Scala-Virtualized.
Again, a macro-based implementation is not affected by this problem – Scala macros ship
as experimental feature with vanilla Scala since version 2.10 and are therefore compatible
with any vanilla Flink or Spark distribution.

8.2.2 Scala Macros and Scala Reflection

Starting from version 2.10, Scala ships with experimental metaprogramming support
consisting of two separate libraries. Scala macros [Bur13] offer facilities for compile-time
metaprogramming, while Scala reflection [COD08] provides runtime reflection support.
An important aspect is that the two libraries are based on the same API and share a
substantial amount of code.

A Scala def method can be declared as a macro as follows2.

def assert(cond: Boolean, msg: Any): Unit = macro Asserts.assertImpl

The signature of the macro implementation method Asserts.assertImpl mirrors the
signature of assert.

def assertImpl(cond: c.Expr[Boolean], msg: c.Expr[Any]): c.Expr[Unit] = ...

In the above definition, c is a variable containing the enclosing macro Context, and
the path-dependent type c.ExprrTs wraps an AST of type T. Client calls of the assert
method are delegated to the assertImpl macro at compile-time using the ASTs of the
passed arguments. The macro returns the AST of a program of type Unit wrapped in a
container of type c.ExprrUnits. The resulting expressions are inlined at the assert call
sites. For example, the call

assert(x < 10, "limit exceeded")

2The example is adapted from the official Scala documentation

87



Chapter 8. Implementation

will result in an assertImpl call where the c.Expr parameters wrap the following ASTs.

// AST for the ‘cond‘ argument (x < 10)
Apply(
Select(Ident(TermName("x")), TermName("$less"),
List(Literal(Constant(10)))))

// AST for the ‘msg‘ argument ("limit exceeded")
Literal(Constant("limit exceeded"))

The assertImpl implementation can inspect the structure of these ASTs and use it to
generate its output. For example, if the cond argument is an AST corresponding ot the
false literal, it can return an expression node that simply wraps the Unit value.

// AST for the ‘cond‘ argument
Literal(Constant(false))

// AST for the result expression
Literal(Constant(Unit))

As outlined in Section 8.2.1, Scala macros and Scala reflection do not suffer from the
problems associated with the LMS-based approach. First, a quotation-based design
based on Scala macros allows for deep reuse of native Scala syntax with minimum
amount of linguistic noise. To achieve that, we simply define onSpark and onFlink as
polymorphic macros that can access the AST of their enclosing expression. Second, the
metaprogramming API can access Scala’s internal symbol table. In the above example,
the Select node of the cond parameter has a symbol field which points to the unique
‘ă’ method symbol, and the Ident node has a symbol field which points to the unique
term symbol associated with x. An implementation based on Scala macros therefore
can easily incorporate an open universe of methods and types. Third, Scala macros and
runtime reflection can be used out of the box with the latest versions of Flink and Spark.
In addition, similar to LMS, Scala’s reflection API ships with a lot of useful tooling and
infrastructure, e.g. for tree traversal and transformation, manipulation of symbols and
types, and AST inspection. Again, an implementation of Emma based on Scala macros
can reuse this functionality.

Despite the benefits stated above, Scala macros and Scala reflection also exhibit a
number of deficiencies when considered as foundation for the Emma DSL. First, there is
a mismatch between the tree structure of Scala AST terms and the abstract syntax of
Emma Source (Figure 5.1) and Emma Core (Figure 6.1 and Figure 6.4). To illustrate this,
consider again the AST for the x ă 10 code fragment depicted above. An Emma Core
tree depicting this term would consist of a single DefCall node.

DefCall(

88



8.2. Design Space

Some(TermRef(x)),
/* method symbol for ‘<‘ */,
Seq.empty[Type], /* no type arguments */
Seq(Seq(Literal(10)))) /* A single singleton parameter list */

A solution to the AST mismatch problem is outlined in Section 8.3.

Second, the tree traversal and manipulation logic provided by Scala’s metaprogramming
API is too rudimentary and lacks support for commonly used high-level code manipulation
and inspection patterns. As an example, consider a utility method that associates each
subtree with its set of referenced binding symbols (i.e., the R function used in the dscf
and combine transformations from Figure 6.3 and Figure 7.1). A high-level compiler
API overcoming these limitations is presented in Section 8.4.

Third, Scala macros and Scala reflection share structurally identical, yet incompati-
ble metaprogramming APIs. This is a consequence of the fact that the API types,
operations and fields are imported in a path-dependent way through a dedicated
Universe instance. At compile time, the enclosing universe can be accessed through
the macro Context (c.universe), while at runtime it is available statically through
scala.reflect.runtime.universe. Because of this, it is challenging to ensure that DSL
compiler code paq can be shared between compile-time and runtime components and pbq
is organized in a modular manner. Section 8.5 discusses how our prototype compiler
code is organized in view of this objective.

8.2.3 Current Solutions

Various solutions proposing different improvements over state-of-the-art tooling for
staged compilation and metaprogramming in the Scala ecosystem have emerged after the
inception Emma. Here, we briefly discuss those that might be a useful foundation for
future implementations of the ideas presented in this work.

Scalamacros

Scalamacros3 is a metaprogramming library which has been influenced by experiences and
lessons learned in developing the scala.reflect-based macro system and its successor
Scalameta4. The development roadmap for Scalamacros positions them as the long-term,
production-ready successor of the experimental scala.reflect-based macros currently
shipped with Scala. The main benefit of Scalamacros is a novel design approach where
macros operate on a portable syntax abstraction decoupled from the AST of the underlying
Scala compiler [LB17]. This leads to better tooling support, deeper IDE integration,

3http://github.com/scalacenter/macros
4http://scalameta.org

89

http://github.com/scalacenter/macros
http://scalameta.org


Chapter 8. Implementation

and painless migration of existing macros to new versions of Scala. Although it was
developed independently from the Scalamacros effort, the encoding technique presented
in Section 8.3 is quite similar to the approach proposed by Liu and Burmako [LB17]. An
implementation of Emma on top of Scalamacros is likely to benefit from this similarity.

Squid

Another metaprogramming framework that has been recently proposed is Squid [PVSK18].
Squid combines the flexibility of dynamic quasi-quotes (in the style pioneered by Lisp)
with the typing and scoping guarantees of static quasi-quotes (in the style pioneered by
MetaML [TS00]). Squid can be used as an LMS alternative using a technique called
quoted staged rewriting [PSK17]. A Squid-based implementation of Emma therefore will
reconcile the simplicity of quotation-based delimiting of DSL terms with the elegance
and power of staging as a principle method for program optimization.

Fusion-Enabling Transformation API

Matryoshka is a library that provides generalized folds, unfolds, and traversals for
fixed-point data structures in Scala. The functionality offered by Matryoshka overlaps
with recent work in structured recursion schemes by Hinze and Wu [HWG13, HW16].
Because the supported recursion schemes satisfy algebraic properties such as the Banana-
Split and Cata-Fusion laws from Chapter 4, Matryoshka-based tree manipulation
APIs automatically support a number of fusion-based optimizations, leveraging the
construction of nanopass compilers. This allows to reconcile the software engineering
benefits of structuring code around semantically isolated tree transformers with the
performance benefits of executing a fused version of the chain of transformers constituting
the DSL compiler.

The formal approach adopted by Matryoshka, however, also imposes a higher technical
barrier for compiler developers, as they need to understand concepts such as catamorphism,
anamorphism, zygomorphism, etc in order to use the Matryoshka API. Mapping tree
traversals conceptualized as a set of inference rules to the right recursion scheme could be
a challenging task, especially for people with no prior experience. To that end, Petrashko
et al. [PLO17] offer a more pragmatic approach called miniphases. While Matryoshka
advocates fusion based on soundness criteria inherent from the mathematical theory
behind the underlying recursion schemes, the miniphases approach advocates for fusion
based on high-level criteria decided by the developer. Compiler developers provide a list
of tree invariants that each tree transformation is guaranteed to satisfy, and the compiler
automatically checks these invariants during execution. Extensive testing is identified as
a principle method to identify and mitigate errors in fused transformations.

Either of these two approaches will allow to encode the transformations presented

90



8.3. Object Language Encoding

in Chapter 5 through Chapter 7 in a modular way and at the same time construct
fast versions of the onFlink and onSpark compilation pipelines due to the applied
transformation fusion.

8.3 Object Language Encoding

A practical problem that occurred when we implemented Emma on top of the Scala
macros infrastructure was the mismatch between the AST representation of macro-based
Scala terms and the abstract syntax of the object languages defined in Figure 5.1,
Figure 6.1 and Figure 6.4. The main cause for this mismatch was our desire to decouple
the abstract syntax forms used by Emma from the specifics of Scala’s AST encoding in
order to simplify the definitions of Emma Core and Emma Source . In the following, we
give a couple of examples that illustrate why this simplification was desirable.

As discussed in Section 8.2.2, the Scala macros API exposes the same AST data structure
as the one used internally by the Scala compiler. Consequently, the shape of the ASTs
reflects some of the inner workings of the Scala compiler. To illustrate this, consider the
following two code snippets.

var i = 0
var r = 0
do {
i = i + 1
r = r * i

} while (i < x)

var r = 0
var i = 0
while (i < x) {
i = i + 1
r = r * i

}

Internally, the loops in the above code snippets are represented by a LabelDef node and
a nested If node. The condition and branches of the If node as well as the body of the
LabelDef node are derived from the original loop condition and body. The shape of the
actual ASTs is represented by the following Scala-like code.

doWhile$1() { // label definition
{ // loop body
i = i + 1
r = r * i
()

}
if (i < x) // loop condition
doWhile$1() // label call

else ()
}

while$1() { // label definition
if (i < x) { // loop condition
{ // loop body
i = i + 1
r = r * i
()

}
while$1() // label call

} else ()
}

As part of the code generation phase, the Scala compiler converts label calls to Java Virtual
Machine (JVM) jump bytecode instructions. The Emma Source language depicted on
Figure 5.1, however, is based on first-class while and do´ while syntax.

91



Chapter 8. Implementation

Another source of syntactic diversity in macro ASTs stems from the variety of supported
method calls, as illustrated by the following lines.

bar(1, 2) // monomorphic, unqualified
Foo.bar(1, 2) // monomorphic, qualified
baz[Int](1, 2) // polymorphic, unqualified
Foo.baz[Int](1, 2) // polymorphic, qualified

The corresponding ASTs of these method calls look as follows.

Apply(Ident(/*bar*/), /*(1,2)*/)
Apply(Select(Ident(/*Foo*/), /*bar*/), /*(1,2)*/)
Apply(TypeApply(Ident(/*baz*/), /*Int*/), /*(1,2)*/)
Apply(TypeApply(Select(Ident(/*Foo*/), /*baz*/), /*Int*/), /*(1,2)*/)

In each of the above examples, the top-level AST node is Apply and the argument list
used as its second child is identical. The child representing the applied method, however,
differs based on the method type and the shape of the application. For monomorphic
methods, this can be either an Ident node denoting an unqualified method declared
on an enclosing instance, or a Select node denoting the selection path of a qualified
method. Orthogonally, the method denotation of polymorphic methods is wrapped in a
TypeApply node which denotes application of type arguments.

In order to simplify the definition and reasoning of program transformations, our goal was
to remove syntactic diversity illustrated above in the abstract syntax of the developed
eDSL. At the same time, we wanted to remain compatible with the macro AST in order
to reuse the macro API whenever possible. As a pragmatic solution, the syntactic forms
outlined in Figure 5.1, Figure 6.1 and Figure 6.4 are encoded as virtual nodes. A virtual
node is an object which defines a pair of apply and unapply methods which respectively
construct and deconstruct a macro AST. For example, the virtual node corresponding to
the while syntax in Figure 5.1 has the following form.

object While extends Node {
def apply(cond: Tree, body: Tree): LabelDef = ...
def unapply(loop: LabelDef): Option[(Tree, Tree)] = ...

}

This enables convenient Scala syntax for construction and deconstruction of While loops.

val loop = While(cond, body) // construct a While loop
loop match { case While(cond, body) => ... } // deconstruct a While loop

Note that the arguments and the return types of the apply and unapply functions in
the While object are of type Tree, ensuring that we operate on macro AST values. This

92



8.4. Tree Manipulation API

allows to seamlessly integrate the Scala macro API in the Emma compiler. For example,
we can retrieve the Type of the cond AST (which should be Boolean) using cond.tpe.

An important aspect of this implementation strategy is the ability to encode DSL syntax
which does not have a natural mapping to macro AST fragments. A good example is the
first-class comprehension syntax of Emma Core (see Figure 6.4). Since Scala desugars
for-expressions as part of the parsing phase, the corresponding syntax is not available
in the macro AST representation. To define a virtual node, in such situations we rely
on auxiliary dummy methods. In the case of for-comprehensions, the dummy interface
looks as follows.

object ComprehensionSyntax {
def generator[A, M[_]](in: M[A]): A = ???
def comprehension[A, M[_]](block: A): M[A] = ???
def guard(expr: Boolean): Nothing = ???
def head[A](expr: A): A = ???

}

Emma Core syntax can be mapped to Scala source code fragments utilizing the dummy
methods listed above. For example, the Emma Core for-comprehension

for t x Ð t xs u ; y Ð t ys u u yield t val z “ px, yq; z u

is encoded by the following Scala source code fragment.

comprehension[(Int, Int), Bag] {
val x = generator[(Int, Int), Bag] { xs }
val y = generator[(Int, Int), Bag] { xs }
head {
val z = (x, y)
z

}
}

The encoding allows to define the apply and unapply methods of the virtual nodes
corresponding to the syntactic forms of Emma Core for-comprehensions. For example,
the Generator node for the xÐ t xs u generator will construct and match the macro
AST corresponding to the second line of the above Scala encoding.

8.4 Tree Manipulation API

We provide a fluid functional API for transforming and traversing (shortened as transvers-
ing) Scala ASTs inspired by the Traversal Query Language (TQL) which has been recently
proposed for Scalameta [BB15]. The API was designed with the following goals. First,

93



Chapter 8. Implementation

avoid explicit recursion by decoupling the matching rules from the transversal strategy.
While the rules are always specific to the concrete transversal, transversal strategies can
be abstracted as a finite set of available options supported by the API. Second, avoid use
of mutable state. Instead, provide infrastructure for deriving tree attributes and an API
to expose those to the matching rules during transversal.

8.4.1 Strategies

The core of the transversal API is built on top of the strategies described in [vdBKV03].
A transversal strategy is uniquely determined as a point in a two-dimensional space.

The first dimension determines the order in which nodes are visited. With a top-down
strategy parents are visited before their children. Conversely, with a bottom-up strategy
children are visited before their parents.

When a node is visited, the transversal strategy attempts to match it against one of the
available rules. The second dimension determines the continuation criteria in the case
of a match. The continue strategy continues with the next node in the selected order.
The break strategy stops the transversal process after the first rule match. Finally, the
exhaust strategy recursively applies all matching rules at a given node and then continues
to the next node in the selected order.

For example, the strategy for the anf transformation from Figure 6.2 is (bottom-up,
continue), the dscf transformation from Figure 6.3 uses (top-down, continue), and the
normalizeM transformation from Figure 6.6 uses (bottom-up, exhaust).

The API offers fluent syntax for transversal construction. For example, the definition
of the anf transformation has the following shape (code snippets for attribute and rule
declarations are given in the next sections).

val anf = api
.TopDown.continue
// zero or more attribute declarations
// rule declaration

8.4.2 Attributes

All transversal strategies can operate on attributed trees. Declared attributes are
attached to each node in the tree and can be made available to the matching rules
during transversal. Depending on the derivation strategy, attributes can be synthesized,
inherited, or accumulated. In each of these cases, the attribute is defined in terms of a
partial function a : Tree Ñ A and a monoid M “ pA,d, 1q with carrier coinciding with
the attribute type A.

94



8.4. Tree Manipulation API

Inherited attributes are derived in a top-down manner along the recursion path of the
transversed tree. Let ti, 1 ď i ď n be the current path from the root of the tree t1 to the
currently visited node tn. Set xi “ aptiq if a is defined at ti or xi “ 1 otherwise. The
value of the inherited attribute at node tn is defined by the following equation.

inhM
a JtnK “ x1 d . . .d xn´1 (Attr-Inh)

For example, consider a : Tree Ñ OptionrTrees to be the (total) function t ÞÑ Someptq.
If 1 “ None and the d rule selects the left-most element of the evaluated term, inhM

a JtnK
wraps the root of the traversed tree and is None if and only if tn is the root. Conversely,
if the d rule selects the right-most element, inhM

a JtnK denotes the parent of tn and is
None if and only if tn is the root. To illustrate the associated API, consider the following
code which declares an inherited attribute collecting all ancestors of the current node
(the vector concatenation monoid is passed as implicit argument and is not shown).

.inherit(Attr.collect[Vector, Tree] {
case ancestor => ancestor

})

Synthesized attributes are derived in a bottom-up manner from the current subtree. A
synthesized attribute is conceptually similar to a catamorphism. Let tn be the current
node and ti, 1 ď i ă n be its children. As before, set xi “ aptiq if a is defined at ti or
xi “ 1 otherwise. The value of the synthesized attribute at node tn is defined by the
following equation.

synM
a JtnK “ x1 d . . .d xn (Attr-Syn)

Synthesized attributes are often maps of key-value pairs. The associated monoid operation
merges two maps in a suitable way, e.g. by summing up values with the same key. For
example, the following code snippet declares a synthesized attribute which counts the
number of assignments for each variable in the associated subtree (as above, the monoid
is passed implicitly to the synthesize function call).

.synthesize(Attr.group {
case VarMut(sym, _) => sym -> 1

})

Finally, accumulated attributes are derived along the visiting trace determined by the
selected transversal strategy. Let ti, 1 ď i ă n be the trace of nodes visited so far and tn
be the current node. Set xi “ aptiq if a is defined at ti or xi “ 1 otherwise. The value of
the accumulated attribute at node tn is defined by the following equation.

accM
a JtnK “ x1 d . . .d xn (Attr-Acc)

95



Chapter 8. Implementation

For example, in conjunction with a top-down strategy the following code snippet will
keep track of all method parameters seen so far.

.accumulate { case DefDef(_, _, paramss, _) =>
for (ParDef(sym, _) <- paramss.flatten) yield sym

}

The lists of parameter symbols emitted by the supplied partial function are concatenated
by the default list monoid (passed implicitly to accumulate as with the examples above).

The attribute API is typed. The type of the transversal strategy is parametric, with
type parameters A, I , and S denoting heterogenous lists of its accumulated, inherited,
and synthesized attributes. This allows to expose declared attributes to the transversal
rules in a type-safe manner.

8.4.3 Rules

Transversal rules are defined as a partial callback function and attached to a transversal
declaration using a suitable method call. The canonical forms traverse and transform
accept a callback function of type Tree Ñ Unit and Tree Ñ Tree. Alternatively, the API
also offers the forms traverseWith and transformWith. The argument type in these
variants is changed from Tree to AttrrA, I ,Ss, where Attr is defined as follows.

case class Attr[A, I, S](tree: Tree, acc: A, inh: I, syn: S)

Callbacks used with traverseWith and transformWith therefore have access to the
attributes associated with the matched tree nodes. In addition, the Attr object provides
projections such as Attr.inh that select only one type of attributes along with the
matched tree node. A syntactically complete example of a transformation based on the
transversal API is shown in Figure 8.1.

8.5 Code Modularity and Testing Infrastructure

One of the key challenges of the macro-based implementation of Emma was to ensure
that piq code is organized in a modular manner and piiq individual modules could be
tested and integrated with off-the-shelf libraries and tools.

To achieve that, we made use of the fact that the macro-based and the reflection-based
APIs implement the Universe trait and differ only in the path from which the Universe
methods and types are imported (see Section 8.2.2). To abstract from the concrete API
implementation, the Emma compiler structure is based on the cake pattern [Hun13]. At
the top of the hierarchy is a trait which defines an abstract Universe member.

96



8.5. Code Modularity and Testing Infrastructure

trait Common {
val u: Universe
...

}

Emma compiler modules are defined as traits inheriting from Common. Smaller modules can
be aggregated into bigger ones using intermediate traits. For example, the Comprehension
trait aggregates the logic for re- and desugaring, normalization, and combination of
comprehensions, and is therefore defined as follows.

private[compiler] trait Comprehension extends Common
with Combination
with Normalize
with ReDeSugar {
this: Core =>
...

}

The this : Core type constraint indicates that the Comprehension implementation de-
pends on methods and types provided by Core module. At the top level, the modules are
aggregated by a Compiler trait which has two implementations. The MacroCompiler is
used as a base for the onFlink and onSpark macro definitions outlined in Section 6.5.
The RuntimeCompiler is used for testing, as discussed below.

The RuntimeCompiler facilitates writing tests for specific transformations against snip-
pets of code which are directly defined in the source code of the enclosing test class.
The general layout of a test class looks as follows. First, construct a test pipeline and
a reference pipeline using the API exposed by the RuntimeCompiler instance. Second,
reify a code snippet representing the test input and pass the resulting Scala AST to the
test pipeline. Third, reify a code snippet representing the expected output and pass the
resulting Scala AST to the reference pipeline. Third, ensure that the results of the two
pipelines are equal up to a renaming of the val and var definitions. As an example,
consider the following case from the anf test.

// actual AST
val act = anfPipeline(reify {
15 * t._1

})

// expected AST
val exp = idPipeline(reify {
val x$1: this.t.type = t
val x$2 = x$1._1
val x$3 = 15 * x$2
x$3

})

97



Chapter 8. Implementation

// check for equality
act shouldBe alphaEqTo(exp)

This design provides a flexible foundation for future research based on the DSL repre-
sentations discussed in this thesis. For example, the RuntimeCompiler can be used in
conjunction with the MacroCompiler in order to explore data-dependent optimizations
such as cost-based join-order estimation in the comprehension combination phase.

98



8.5. Code Modularity and Testing Infrastructure

val anf = api.BottomUp
// Prepend owner symbol to inherited attributes
.withOwner
// Prepend a Boolean flag which marks type trees
// to inherited attributes
.inherit { case tree => tree.isType }
// Transform the attributed tree
.transformWith {
// Bypass type trees
case Attr.inh(tree, true :: _) =>
tree

// Simplify receiver & arguments
case Attr.inh(
call @ src.DefCall(rcv, m, tps, argss), _ :: owner :: Nil) =>

// Unnest subexpressions from receiver
val (init, rcv1) = rcv match {
case Some(src.Block(stats, expr)) =>
(stats, Some(expr))

case Some(_) =>
(Seq.empty, rcv)

case None =>
(Seq.empty, None)

}

// Unnest subexpressions from arguments
val stats = init ++ argss flatten flatMap {
case src.Block(stats, _) => stats
case _ => Seq.empty

}

val argss1 = argss map (_ map {
case src.Block(_, arg) => arg
case arg => arg

})

// Assign the final result to a fresh val
val nme = api.TermName.fresh(m.name)
val lhs = api.ValSym(owner, nme, call.tpe)
val rhs = core.DefCall(rcv1, m, tps, argss1)
val dfn = core.ValDef(lhs, rhs)
val ref = core.ValRef(lhs)

// Wrap modified code in a block and return
src.Block(stats :+ dfn)(ref)

}

Figure 8.1: A simplified transformation example that brings method calls to ANF form –
subexpressions in the method receiver rcv and the argument terms argss are assigned
to fresh vals.

99





9 Evaluation

To assess the benefits of the optimizations from Chapter 7 we designed and conducted a
set of experiments which we present and discuss in this chapter.

We ran the experiments on a local cluster consisting of a dedicated master and 8 worker
nodes. Each worker was equipped with two AMD Opteron 6128 CPUs (a total of 16
cores running at 2.0 GHz), 32 GiB of RAM, and an Intel 82576 gigabit Ethernet adapter.
The machines were connected with a Cisco 2960S switch. As dataflow backends we used
Spark 2.2.0 and Flink 1.4.0 – the latest versions to the date of execution. Each backend
was configured to allocate 18 GiB of heap memory per worker and reserve 50% of this
memory for its managed runtime. Input and output data were stored in an HDFS 2.7.1
instance running on the same set of nodes.

Each of the experiments discussed in Section 9.1 through Section 9.4 was executed five
times. The associated bar charts in Figure 9.1 through Figure 9.4 indicate the median run
and the error bars denote the second fastest and second slowest runs. The experiments
discussed in Section 9.5 were executed three times and the bars in Figure 9.5 indicate
the median run.

9.1 Effects of Fold-Group Fusion

The first experiment demonstrates the effects of the fold-group fusion (FGF) optimization
presented in Section 7.2. To asses those, we executed one iteration of the k-means
clustering algorithm [For65]. As input data, we used synthetic datasets consisting of
points sampled from one of k multivariate Gaussian distributions. The data generator
was parameterizable in the centroid distribution function and in the dimensionality of
the generated points. In total, we ran four experiments, using both uniform and Zipf
distribution on each of the two backends. In each experiment, we scaled the dimensionality
of the data points from 10 to 40 in a geometric progression. For every dataset, we
compared the runtime of two Emma-based implementations with fold-group-fusion

101



Chapter 9. Evaluation

10 20 40
0

100

200

300

400

500

Sp
ar

k 
ru

nt
im

e 
(s

)

Uniform distribution

10 20 40
0

100

200

300

400

500
Zipf distribution

API
Emma (-FGF)
Emma (+FGF)
RDD
Dataset

10 20 40
number of dimensions

0

100

200

300

Fl
in

k 
ru

nt
im

e 
(s

)

10 20 40
number of dimensions

0

100

200

300

API
Emma (-FGF)
Emma (+FGF)
DataSet

Figure 9.1: Effects of fold-group fusion (FGF) in Flink and Spark.

turned off (-FGF) and on (+FGF). As a baseline, we used a DataSet implementation for
Flink and Dataset and RDD implementations for Spark.

The experiment results are presented in Figure 9.1. In the Emma (-FGF) version, the k
means are computed naïvely with a reduceByKey ˝ groupBy operator chain in Flink and
a map ˝ groupBy chain in Spark. Consequently, all points associated with a same centroid
must be shuffled to a single machine where their mean is then computed. The total
runtime therefore is determined by the size of the largest group. In contrast, when FGF
is enabled, the sum and the count of all points associated with the same centroid are
computed in parallel, using a reduceByKey operator in Spark and a reduce ˝ groupBy
operator chain in Flink. In the associated shuffle step we only need to transfer one
partial result per group and per worker. The total runtime therefore does not depend
on the group size. This effect is demonstrated by the experiment results. In both
backends, the runtime of the Emma (-FGF) implementation grows as we increase the
dimensionality of the data. For the Emma (+FGF) and the baseline variants, on the
other hand, the runtime is not affected by the underlying centroid distribution and is
only marginally influenced by changes in data dimensionality. The code generated Emma
(+FGF) therefore performs on par with the code written directly against the Flink and
the Spark APIs. The speedup of Emma (+FGF) with respect to Emma (-FGF) varies.
In Flink, it ranges from 37% to 65% (Uniform) and from 72% to 88% (Zipf). In Spark,
the ranges are from 14% to 26% (Uniform) and from 44% to 70% (Zipf). The effect
grows stronger if the underlying centroid distribution is skewed, as this skew is reflected
in the cardinality of the aggregated groups.

102



9.2. Effects of Cache-Call Insertion

Flink
0

20

40

60

80

100
ru

nt
im

e 
(s

) API
Emma (-CCI)
Emma (+CCI)
DataSet

Spark
0

20

40

60

ru
nt

im
e 

(s
) API

Emma (-CCI)
Emma (+CCI)
RDD
Dataset

Figure 9.2: Effects of cache-call insertion (CCI) in Flink and Spark.

9.2 Effects of Cache-Call Insertion

The second experiment demonstrates the benefits of the cache-call insertion (CCI)
optimization proposed in Section 7.3.

As input data, we used a snapshot of the Internet Movie Database (IMDb)1 which was
subsequently parsed and saved as structured collections of JSON objects. The workload
for performs the following computations. In the first step, we perform a three-way
join between movies, countries, and technical information, and select information about
German titles categorized as “motion picture” which were released in the 1990s. In the
second step, we filter six subsets of these titles based on different criteria (e.g., titles with
aspect ratio 16:9 or titles shot on an Arri film camera) and collect the qualifying entries
on the workload driver. In the Emma (+CCI) and the baseline variants, the collection
obtained after the first step is cached, and in the Emma (-CCI) variant it is not.

The results are depicted on Figure 9.2. As in the previous experiment, the optimized
Emma version is comparable with the baseline versions implemented directly on top of the
backend APIs. Compared to the naïve version, the optimized variants achieve a speedup
of 26% for Flink and 45% for Spark. The difference is due to the underlying caching
mechanism. Spark has first-class support for caching and keeps cached collections directly
in memory. Flink, on the other hand, does not support first-class caching. Consequently,
the FlinkOps.cache primitive inserted by the Emma compiler is implemented naïvely by
simply writing the cached distributed collection to HDFS. Subsequent reads of cached
collections are therefore more expensive in Flink than in Spark. Nevertheless, the CCI
optimization results in a significant improvement for both backends.

9.3 Effects of Relational Algebra Specialization

The next experiment investigates the benefits of relational algebra specialization (RAS) –
specializing map, withFilter, and join calls in terms of the relational algebra operators
select, project, and join provided by the Spark Dataset API (see Section 7.1.3).

1ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/

103

ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/


Chapter 9. Evaluation

json parquet
0

25

50

75

100

ru
nt

im
e 

(s
)

gender-year-credits workload

json parquet
0

100

200

300

400

sharing-roles workload

API
Emma (-RAS)
Emma (+RAS)
RDD
Dataset
SparkSQL

Figure 9.3: Effects of relational algebra specialization (RAS) in Spark.

As before, the experiments are based on the IMDb shapshot. To quantify the performance
improvement of RAS we use two different workloads. The ‘gender-year-credits’ workload
represents a simple three-way join where people and movies are connected via credits
with credit type ‘actor’. We emit pairs of (person-gender, movie-year) values. The
‘sharing-roles’ workload looks for pairs of actors who have played the same character
in two different movies and co-starred in a third movie. For example, Michael Caine
(in “Sherlock Holmes, Without a Clue”) and Roger Moore (in “Sherlock Holmes in New
York”) have both played Sherlock Holmes and acted together in “New York, Bullseye!”.
We include Spark SQL next to the RDD and Dataset baseline implementations as well as
a more efficient columnar format (Parquet) next to the string-based JSON representation.

The results for the two workloads are depicted on Figure 9.3. In all four experiments, the
Emma (-RAS) variant performs on par with the RDD implementation, and the optimized
Emma (+RAS) variant is comparable with the Dataset implementation. Notably, the
speedup for Parquet files (32% and 48%) is higher than the one for JSON (16% and 19%).
The difference is explained by the more aggressive optimizations performed by Spark in
the first case. Dataset dataflows which read data from Parquet can utilize Parquet’s
columnar format and push adjacent select and project operators directly to the Parquet
reader. In Emma, as a result of the combine translation scheme from Figure 7.1, local
predicates are pushed directly on top of the base collections. A subsequent RAS therefore
enables selection push-down performed by Spark. However, the current combine scheme
does not automatically insert projections. Consequently, in the Parquet experiments
the compiled for-comprehensions in the Emma (+RAS) variants are respectively 15%
and 20% slower than the Spark SQL implementation, which enables both selection and
projection push-down. No narrow this gap the combine translation scheme has to be
augmented with a suitable projection rule.

9.4 Effects of Native Iteration Specialization

The last optimization which we investigate in isolation is the Flink-specific native
iterations specialization (NIS) proposed in Section 7.4.

Like the CCI and RAS experiments, the NIS experiment is also based on the IMDb

104



9.5. Cumulative Effects

Flink
0

50

100

150
ru

nt
im

e 
(s

)

API
Emma (-NIS)
Emma (+NIS)
DataSet

Figure 9.4: Effects of native iterations spe-
cialization (NIS) in Flink.

Flink Spark
0

1000

2000

3000

ru
nt

im
e 

(s
)

variant
+ALL
-RAS
-FGF
-CCI
-NIS
-ALL

Figure 9.5: Cumulative optimization effects
for the NOMAD use case.

snapshot. The workload first selects pairs of IDs identifying directors billed for the same
movie for titles released between 1990 and 2010. The resulting relation is treated as
a set of edges, and a subsequent iterative dataflow computes the first five steps of the
connected components algorithm proposed by Ewen et al. in [ETKM12] (the variant
we use is Fixpoint-CC from Table 1). The algorithm initializes each vertex with its
own component ID. In every iteration, each vertex first sends a message with its current
component ID to all its neighbors, and then updates its own component ID to the
minimum value of all received messages.

The Emma (-NIS) variant does not specialize the connected components loop as a Flink
native iteration, but still performs the CCI optimization. The loop-independent collection
of edges and the component assignments at the end of each iteration are consequently
saved to HDFS by the inserted FlinkOps.cache calls. In the Emma (+NIS) variant,
CCI is not needed as the Flink runtime manages the iteration state and loop-invariant
dataflows in memory. Consequently, the Emma (+NIS) variant and the baseline DataSet
implementation are 75% faster than the Emma (-NIS) variant.

9.5 Cumulative Effects

Finally, we investigate the cumulative effects of all optimizations using an end-to-end
data analytics pipeline from a real-world use case.

The workload for this experiment is based on data obtained from the NOMAD repository2.
The NOMAD repository contains a large archive of output data from computer simulations
for material science in a common hierarchical format [GCL`16]. For the purposes of our
experiment, we downloaded the complete NOMAD archive and normalized the original
hierarchical structure as a set of CSV files. The normalized files contain data about p1q
the simulated physical systems and p2q the positions of the simulated atoms, as well as
meta-information about p3q periodic dimensions and p4q simulation cells.

The workload pipeline looks as follows. In the first step, we join information from the four

2https://nomad-repository.eu/

105

https://nomad-repository.eu/


Chapter 9. Evaluation

CSV sources listed above and apply a Radial Distribution Function (RDF) conversion
which yields a collection of dense vectors characterizing the result of each simulation.
In the second step, we execute n runs of the first m iterations of a k-means clustering
algorithm. We keep track of the optimal solution obtained at the end of each run and
save it to HDFS at the end of the pipeline. To obtain sufficiently small numbers for a
single experiment run, for the purposes of the presented experiment we choose n “ 2,
m “ 2 and k “ 3. In practice however, the values for n and m will likely be higher.

The workload is encoded as an Emma program and compiled in 5 different variants for
each of the two supported backends. The +ALL (-ALL) variant denotes a compilation
where all optimizations are enabled (disabled). The -OPT variant denotes a compilation
where only the OPT optimization is disabled.

The results of the experiment are depicted on Figure 9.5. The Spark runtimes vary
between 346s for the +ALL variant and 3421s for -ALL. In Flink, +ALL achieves 413s,
while -CCI is slowest with 1186s (the -ALL variant did not finish successfully). For both
scenarios, the largest penalty comes for a missing CCI optimization – 88% for Spark
and 66% for Flink. With disabled FGF, the slowdown is 21% for Spark and 40% for
Flink. Finally, omitting RAS results in 18% slowdown for Spark, and omitting NIS in
9% slowdown for Flink.

The results suggest that in terms of performance gain the most important optimization
is CCI. We believe that this is characteristic for all data analytics pipelines where feature
conversion and vectorization is performed by a CPU-intensive computation in a map
operator. In such scenarios, feature conversion usually is the last step before an iterative
part of the program which performs cross-validation, grid-search, an iterative ML method,
or a nested combination of those. If the resulting collection of feature vectors is not
cached, feature conversion is re-computed for each inner iteration. In the NOMAD
pipeline, for example, this results to n ˚m “ 4 repeated computations.

106



10 Related Work

This chapter reviews work related to the concepts and ideas presented in this thesis. Sec-
tion 10.1 discusses work related to the mathematical foundations presented in Chapter 4.
Section 10.2 discusses related DSLs.

10.1 Formal Foundations

The use of monads to structure and reason about computer programs dates back to
Moggi [Mog91], who suggests them as a referentially transparent framework for modeling
computations with effects. Comprehensions – a convenient, declarative syntax that can
be defined in terms of a monad (essentially the MC scheme from Section 4.1.6) were
introduced byWadler [Wad92, Wad95]. Using comprehensions as a unifying foundation for
database query languages for different bulk types (i.e. the types discussed in Section 4.1.4)
can be traced back to the work of Trinder [TW89, DAW91, Tri91]. Notably, following
unpublished work by Wadler [Wad90], Trinder suggests extending the monad with
functions zero and combine to a structure called ringad. While the definition of Trinder
requires only that zero is a unit of combine, adding associativity and commutativity
yields the structure used as formal foundation for the API presented in Section 5.3.

Buneman and Tannen start from the basic notion of catamorphisms (i.e. structural
recursion). They advocate that query languages should be constructed from the primitive
notion of set catamorphisms [TBN91] and show that existing set-valued query languages
can be formalized based on that notion and generalized to other collection types such
as lists and bags [BNTW95]. These ideas are demonstrated by the Comprehension
Language (CL) – a functional programming language for collection types based on
comprehensions [BLS`94]. Notably, the IR proposed for CL does not make explicit use
of a collection type monad – comprehension syntax in CL is defined directly in terms of
catamorphisms on collections in union representation.

Similarly, Fegaras starts with the basic notion of monoids and proposes a core calculus

107



Chapter 10. Related Work

which defines comprehension syntax directly in terms of monoid catamorphisms [Feg94].
Fegaras and Mayer then show that the monoid calculus can be used to define the Object
Query Language (OQL) – a standardized language for object-oriented DBMSs [FM95].

Despite some naming and notational differences, the formal development suggested in
these two lines of work is quite similar. For example, the collection types associated
with the sr_comb structural recursion scheme in [BNTW95] and the free monoids
used in [Feg94] coincide. In addition, the catamorphic definitions of ext (Section 2.3
in [BNTW95]) and hom (Definition 5 in [Feg94]) both correspond to the higher-order
function flatmap. Using the notation from Chapter 4, for a collection type T in union
representation and a function f : A Ñ B this definition looks as follows.

flatmapTpf q “ LempT
B Ź f Ź uniT

BMT
A (Uni-Flatmap)

The development closest to the exposition in Chapter 4 of this thesis is given by
Grust [GS99, Gru99]. Similar to both Buneman and Fegaras, he starts from the basic
notion of catamorphisms. Compared to the work discussed above, however, the work of
Grust differs in the following aspects. First, he relies on collections in insert represen-
tation (although the union representation is discussed briefly in [Gru99]). Second, he
explicitly derives a monad with zero from the associated algebra and uses it to define
comprehension syntax using a translation scheme similar to the one suggested by Wadler.
However, in contrast to the monad comprehension scheme from [Wad92], the one given
by Grust supports generators ranging over multiple collection types, employing an im-
plicit type coercion approach similar to the one proposed by Fegaras in [Feg94]. Third,
Grust argues that comprehensions are a useful representation for defining and reasoning
about optimizing program transformations. As such, he suggests that comprehensions
should be part of the abstract syntax of an optimizing query compiler. Finally, he also
suggests a compilation strategy based on rule-based translation of comprehensions using
comprehension combinators.

The formal foundations used in this thesis follow Grust in all but the first aspect, where we
opt for the union representation similar to Buneman and Fegaras. Our choice is motivated
by the parallel nature of the underlying execution architectures. The intricate connection
between Uni-Sign and its associated recursion scheme Uni-Fold for structuring parallel
programs has already been highlighted by Skillicorn [Ski93a, Ski93b] and Steele [Jr.09].
Our contribution is in identifying the relevance of this methodology for the design of APIs
and DSLs targeting parallel dataflow engines. In addition, extending a comprehension-
based IR such as Emma Core with support for control-flow fills the semantic gap between
previous work and typical use-cases for engines such as Spark or Flink.

Recently, Gibbons brought back attention to [Wad90] in a survey article [Gib16]. He
argues that ringads and ringad comprehensions represent a better foundation and query

108



10.2. Related DSLs

notation language than monads. Although we don’t follow the ringad nomenclature, the
work in this thesis obviously supports this claim. In addition, we highlight the connection
between Uni-Asso and Uni-Comm in the ringad definition and data-parallel execution.

10.2 Related DSLs

DSLs related to Emma can be categorized in a two-dimensional space. The first dimension
denotes the implementation strategy according to the classification scheme from Figure 2.1.
The second dimension classifies DSLs based to their execution backend – a parallel dataflow
engine, an RDBMS, or a custom runtime. In this section, we review related DSLs with
Manhattan distance at most one – that is, stand-alone DSLs with a parallel dataflow
backend and embedded DSLs with arbitrary backend. To the best of our knowledge,
Emma is the first quotation-based eDSL that targets parallel dataflow engines.

10.2.1 sDSL Targeting Parallel Dataflow Engines

Pig [ORS`08] and Jaql [BEG`11] are stand-alone scripting DSLs that compile to a
cascade of Hadoop MapReduce jobs. Hive [TSJ`09] provides warehousing capabilities on
top of Hadoop or Spark using a SQL-like DSL, and SparkSQL [AXL`15] is a SQL layer on
top of Spark developed as part of the Spark project. SCOPE [ZBW`12] is another SQL-
like DSL developed by Microsoft which runs on a modified version of the Dryad dataflow
engine [IBY`07]. Stand-alone DSLs such as the ones listed above provide automatic
optimization (such as join order optimization and algorithm selection) at the cost of
more limited expressive power. In particular, they lack first-class support for control flow
and do not treat UDFs as first-class citizens. Optimizations related to these syntactic
elements therefore are designed in an ad-hoc manner. For example, PeriSCOPE [GFC`12]
optimizes SCOPE UDFs, but relies on ILSpy1 for bytecode decompilation and Cecil2

for code inspection and code synthesis. In contrast, the Emma Core IR presented in
this thesis integrates both control flow and UDFs as first-class citizens. This enables
definition and reasoning about optimizations related to these constructs in a unified
methodological framework. At the same time, SQL-like optimizations can be integrated
on top of the first-class comprehension syntax used in Emma Core .

10.2.2 eDSLs Targeting RDBMS Engines

The most popular example of an eDSL targeting RDBMS engines is Microsoft’s LINQ
[MBB06]. Database-Supported Haskell (DSH) [GGSW10] is an eDSL that facilitates
database-supported execution of Haskell programs through the Ferry programming
language [GMRS09]. As with stand-alone DSLs, the main difference between those

1http://wiki.sharpdevelop.net/ilspy.ashx
2http://www.mono-project.com/Cecil

109

http://wiki.sharpdevelop.net/ilspy.ashx
http://www.mono-project.com/Cecil


Chapter 10. Related Work

languages and Emma is the scope of their syntax and IR. LINQ’s syntax and IR are based
on chaining of methods defined by an IQueryable interface. DSH is based on Haskell
list comprehensions desugared by the method suggested by Jones and Wadler [JW07].
In particular, neither LINQ nor DSH lift control-flow constructs from the host language
in their respective IRs. In addition, because they target RDBMS engines, these eDSLs
restrict the set of host language expressions that can be used in selection and projection
clauses to a subset that can be mapped to SQL. In contrast, Emma does not enforce
such restriction, as host-language UDFs are natively supported by the targeted parallel
dataflow engines. Nevertheless, the similarity between SQL-based eDSLs and Emma
deserves further investigation. In particular, transferring avalanche-safety [GRS10, UG15]
and normalization [CLW13] results obtained in this space to Emma Core is likely to
further improve the runtime performance of compiled Emma programs.

10.2.3 eDSLs Targeting Parallel Dataflow Engines

The eDSLs exposed by the Spark and Flink systems and their problems are discussed
in detail in Section 2.3. A number of similar system-independent eDSLs have been
also proposed. FlumeJava [CRP`10] and Cascading3 provide an abstraction API for
dataflow graph assembly with pluggable dataflow engines and dedicated execution planner.
Similarly, Summingbird [BROL14] and Apache Beam4 (an open-source descendant of
the Dataflow Model proposed by Google [ABC`15]) provide a unified API for stream
and batch data processing which as well is decoupled from the execution backend. In
all of the above examples, DSL terms are delimited based on their type. Consequently,
they suffer from the deficiencies associated with the Flink and Spark eDSLs illustrated
in Section 2.3.

Jet [AJRO12] is an LMS-based eDSL which supports multiple backends (e.g. Spark,
Hadoop) and performs optimizations such as operator fusion and projection insertion.
However, the Jet API is based on a distributed collection (DColl) which resembles more
Spark’s RDD than Emma’s Bag interface. In particular, the DColl relies on explicit join
and cache operators and lacks optimizations which introduce those automatically.

The Data Intensive Query Language (DIQL) [FI17] is a SQL-like Scala eDSL. DIQL
is based on monoids and monoid homomorphisms and therefore seems closest to the
ideas presented in this thesis. A notable difference between DIQL and Emma is in their
control-flow model. DIQL relies on a custom repeat construct, while Emma supports
general-purpose while and do´ while loops. In addition, DIQL’s frontend is based on
a custom string interpolator. Consequently, DIQL programs are specified as strings and
therefore do not enjoy the linguistic reuse and tooling benefits of the quotation-based
delimiting advocated by Emma.

3https://www.cascading.org/
4https://beam.apache.org/

110

https://www.cascading.org/
https://beam.apache.org/


10.2. Related DSLs

10.2.4 eDSLs with Custom Runtimes

Delite [SBL`14] is a compiler framework for the development of data analytics eDSLs
targeting parallel heterogeneous hardware. Delite’s IR is based on functional primitives
such as zipWith, map and reduce, and Delite eDSLs are defined in terms of these primitives.
The framework compiles eDSLs programs to executable kernels using an LMS-like staging
approach, and schedules these kernels with a purpose-built runtime. Implementing Emma
on top of Delite requires paq defining Emma Core in terms of Delite’s IR and pbq adding
support for Flink and Spark kernels to the Delite runtime. Since Delite is based on LMS,
however, such an implementation will suffer from the issues outlined in Section 8.2.1.

Another Scala-based eDSL for unified data analytics is the AL language proposed by
Luong et al. [LHL17]. AL programs are translated to a comprehensions-based IR and
executed by a dedicated runtime employing just-in-time (JIT) compilation and parallel
for-loop generation for the comprehensions found in the IR. Similar to AL, the Emma
IR uses monad comprehensions as a starting point for compiler optimizations. However,
Emma Core also emphasizes the importance of control-flow primitives that cannot be
translated to comprehensions. In addition, similar to DIQL, ALs frontend is also based
on a custom string interpolator and suffers from the same limitations.

111





11 Conclusions and Future Work

State-of-the-art parallel dataflow engines such as Flink and Spark expose various eDSLs
for distributed collection processing, e.g. the DataSet DSL in Flink and RDD DSL in
Spark. We identified and showcased a number of limitations shared between these eDSLs.
A critical look of their design revealed that the common cause of these limitations is that
DSL terms are delimited in the enclosing host language program based on their type.
Consequently, IRs constructed from type-delimited eDSLs can only reflect host language
method calls on these types. The declarativity and the optimization potential attained
by type-delimited eDSLs are thereby heavily restricted.

As a solution, we proposed an eDSLs design where DSL terms are delimited using
quasi-quotation. DSLs embedded in this manner can reuse more host language constructs
in their concrete syntax and reflect those in their IR. As a result, quotation-based eDSLs
can realize declarative syntax and optimizations traditionally associated with sDSLs such
as SQL.

To support our claim, we proposed Emma – a quotation-based DSL embedded in Scala
which targets Flink or Spark as co-processors for its distributed collection abstraction.
We presented and discussed different aspects of the design and implementation of
Emma. As a formal foundation, reflecting the operational semantics of the targeted
parallel dataflow engines, we promoted bags in union representation and their associated
structural recursion scheme and monad. As a syntactic construct, we promoted bag
comprehensions and their realization using Scala’s native for-comprehension syntax.
As a basis for compilation, we proposed Emma Core – an IR which extends ANF with
first-class comprehensions. To showcase the utility of Emma Core we developed a series
of optimizations which solve the issues identified with state-of-the-art eDSLs in the
beginning of the thesis. The performance impact of these optimizations for both backends
was demonstrated with a range of optimization-specific experiments and an end-to-end
data analytics pipeline.

The proposed design can be therefore seen as a first step towards reconciling the utility

113



Chapter 11. Conclusions and Future Work

of state-of-the-art eDSLs with the declarativity and optimization potential of sDSLs
such as SQL. Nevertheless, in addition to collections, modern data analytics applications
increasingly rely on data streams and tensors. In current and future work, we plan to
extend the Emma API with types and APIs reflecting these abstractions. The primary
goals thereby are twofold. First, ensure that different APIs can be composed and nested in
an orthogonal manner. For example, a bag can be converted into a tensor (composition),
or we can process a stream of tensors (nesting). Second, ensure that the degrees of
freedom resulting from this orthogonality do not affect the performance of the compiled
program. In particular, this entails designing and implementing optimizing program
transformations that target DSL terms representing a mix of the available APIs.

114



Bibliography

[ABC`15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances
Perry, Eric Schmidt, and Sam Whittle. The dataflow model: A practi-
cal approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. PVLDB, 8(12):1792–1803, 2015.

[AJRO12] Stefan Ackermann, Vojin Jovanovic, Tiark Rompf, and Martin Odersky. Jet:
An embedded dsl for high performance big data processing. In International
Workshop on End-to-end Management of Big Data (BigData 2012), number
EPFL-CONF-181673, 2012.

[AKK`15] Alexander Alexandrov, Andreas Kunft, Asterios Katsifodimos, Felix Schüler,
Lauritz Thamsen, Odej Kao, Tobias Herb, and Volker Markl. Implicit
parallelism through deep language embedding. In SIGMOD Conference,
pages 47–61, 2015.

[AKKM16] Alexander Alexandrov, Asterios Katsifodimos, Georgi Krastev, and Volker
Markl. Implicit parallelism through deep language embedding. SIGMOD
Record, 45(1):51–58, 2016.

[AKL`17] Alexander Alexandrov, Georgi Krastev, Bernd Louis, Andreas Salzmann,
and Volker Markl. Emma in action: Deklarative datenflüsse für skalierbare
datenanalyse. In Bernhard Mitschang, Daniela Nicklas, Frank Leymann,
Harald Schöning, Melanie Herschel, Jens Teubner, Theo Härder, Oliver Kopp,
and Matthias Wieland, editors, Datenbanksysteme für Business, Technologie
und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken
und Informationssysteme" (DBIS), 6.-10. März 2017, Stuttgart, Germany,
Proceedings, volume P-265 of LNI, page 609, 2017.

[App98] Andrew W. Appel. SSA is functional programming. SIGPLAN Notices,
33(4):17–20, 1998.

[ASK`16] Alexander Alexandrov, Andreas Salzmann, Georgi Krastev, Asterios Kat-
sifodimos, and Volker Markl. Emma in action: Declarative dataflows for

115



Bibliography

scalable data analysis. In Fatma Özcan, Georgia Koutrika, and Sam Madden,
editors, Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 2073–2076, 2016.

[AXL`15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. Spark SQL: relational data processing
in spark. In Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives,
editors, Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 1383–1394, 2015.

[Bac88] Roland C Backhouse. An exploration of the Bird-Meertens formalism. 1988.

[BB15] Eric Béguet and Eugene Burmako. Traversal query language for scala. meta.
Technical report, EPFL, 2015.

[BdM97] Richard S. Bird and Oege de Moor. Algebra of programming. Prentice Hall
International series in computer science. 1997.

[BEG`11] Kevin Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed
Eltabakh Carl-Christian Kanne, Fatma Ozcan, and Eugene J. Shekita. Jaql:
A scripting language for large scale semistructured data analysis. PVLDB,
2011.

[BEH`10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl,
and Daniel Warneke. Nephele/pacts: a programming model and execution
framework for web-scale analytical processing. In Joseph M. Hellerstein,
Surajit Chaudhuri, and Mendel Rosenblum, editors, Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010, pages 119–130, 2010.

[Bir87] Richard S et al. Bird. An introduction to the theory of lists. Logic of
programming and calculi of discrete design, 36:5–42, 1987.

[BLS`94] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong.
Comprehension Syntax. SIGMOD Record, 1994.

[BNTW95] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Prin-
ciples of programming with complex objects and collection types. Theor.
Comput. Sci., 149(1):3–48, 1995.

[BROL14] P. Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. Summingbird:
A framework for integrating batch and online mapreduce computations.
PVLDB, 7(13):1441–1451, 2014.

116



Bibliography

[Bur13] Eugene Burmako. Scala macros: let our powers combine!: on how rich
syntax and static types work with metaprogramming. In Proceedings of the
4th Workshop on Scala, SCALA@ECOOP 2013, Montpellier, France, July 2,
2013, pages 3:1–3:10, 2013.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A structured
english query language. In Randall Rustin, editor, Proceedings of 1974
ACM-SIGMOD Workshop on Data Description, Access and Control, Ann
Arbor, Michigan, May 1-3, 1974, 2 Volumes, pages 249–264, 1974.

[CLW13] James Cheney, Sam Lindley, and Philip Wadler. A practical theory of
language-integrated query. In Greg Morrisett and Tarmo Uustalu, edi-
tors, ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 403–416, 2013.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[COD08] Yohann Coppel, Martin Odersky, and Gilles Dubochet. Reflecting scala.
Semester project report, Laboratory for Programming Methods. Ecole Poly-
technique Federale de Lausanne, Lausanne, Switzerland, 2008.

[CRP`10] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. Flumejava: easy, ef-
ficient data-parallel pipelines. In Benjamin G. Zorn and Alexander Aiken,
editors, Proceedings of the 2010 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2010, Toronto, Ontario,
Canada, June 5-10, 2010, pages 363–375, 2010.

[DAW91] Phil Trinder David A. Watt. Towards a theory of bulk types, 1991.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In OSDI, pages 137–150, 2004.

[DS00] Olivier Danvy and Ulrik Pagh Schultz. Lambda-dropping: transforming
recursive equations into programs with block structure. Theor. Comput. Sci.,
248(1-2):243–287, 2000.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification
1: Equations und Initial Semantics, volume 6 of EATCS Monographs on
Theoretical Computer Science. 1985.

[ETKM12] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl.
Spinning fast iterative data flows. PVLDB, 5(11):1268–1279, 2012.

[Feg94] Leonidas Fegaras. A uniform calculus for collection types. Technical report,
Oregon Graduate Institute, 1994.

117



Bibliography

[FI17] Leonidas Fegaras and Ashiq Imran. Compile-time code generation for
embedded data-intensive query languages. Under submission, July 2017.

[FLG12] Leonidas Fegaras, Chengkai Li, and Upa Gupta. An optimization framework
for map-reduce queries. In Elke A. Rundensteiner, Volker Markl, Ioana
Manolescu, Sihem Amer-Yahia, Felix Naumann, and Ismail Ari, editors, 15th
International Conference on Extending Database Technology, EDBT ’12,
Berlin, Germany, March 27-30, 2012, Proceedings, pages 26–37, 2012.

[FM95] Leonidas Fegaras and David Maier. Towards an effective calculus for object
query languages. In Michael J. Carey and Donovan A. Schneider, editors,
Proceedings of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, San Jose, California, May 22-25, 1995., pages 47–58,
1995.

[Fok92] Maarten M. Fokkinga. Law and order in algorithmics. 1992.

[Fok96] Maarten M. Fokkinga. Datatype laws without signatures. Mathematical
Structures in Computer Science, 6(1):1–32, 1996.

[For65] E. Forgy. Cluster analysis of multivariate data: Efficiency versus inter-
pretability of classification. Biometrics, 21(3):768–769, 1965.

[Fre87] Johann Christoph Freytag. A rule-based view of query optimization. In
Umeshwar Dayal and Irving L. Traiger, editors, Proceedings of the Association
for Computing Machinery Special Interest Group on Management of Data
1987 Annual Conference, San Francisco, California, May 27-29, 1987, pages
173–180, 1987.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Robert Cartwright, editor,
Proceedings of the ACM SIGPLAN’93 Conference on Programming Language
Design and Implementation (PLDI), Albuquerque, New Mexico, USA, June
23-25, 1993, pages 237–247, 1993.

[GCL`16] Luca M Ghiringhelli, Christian Carbogno, Sergey Levchenko, Fawzi Mo-
hamed, Georg Huhs, Martin Lüders, Micael Oliveira, and Matthias Scheffler.
Towards a common format for computational material science data. arXiv
preprint arXiv:1607.04738, 2016.

[GFC`12] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou,
Sean McDirmid, Chang Liu, Wei Lin, Jingren Zhou, and Lidong Zhou.
Spotting code optimizations in data-parallel pipelines through periscope. In
Chandu Thekkath and Amin Vahdat, editors, 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2012, Hollywood, CA,
USA, October 8-10, 2012, pages 121–133, 2012.

118



Bibliography

[GGSW10] George Giorgidze, Torsten Grust, Tom Schreiber, and Jeroen Weijers. Haskell
boards the ferry - database-supported program execution for haskell. In
Jurriaan Hage and Marco T. Morazán, editors, Implementation and Ap-
plication of Functional Languages - 22nd International Symposium, IFL
2010, Alphen aan den Rijn, The Netherlands, September 1-3, 2010, Revised
Selected Papers, volume 6647 of Lecture Notes in Computer Science, pages
1–18, 2010.

[Gib94] Jeremy Gibbons. An introduction to the Bird-Meertens Formalism. Presented
at ‘New Zealand Formal Program Development Colloquium’, Hamilton,
November 1994, November 1994.

[Gib16] Jeremy Gibbons. Comprehending ringads - for phil wadler, on the occasion
of his 60th birthday. In Sam Lindley, Conor McBride, Philip W. Trinder, and
Donald Sannella, editors, A List of Successes That Can Change the World
- Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
volume 9600 of Lecture Notes in Computer Science, pages 132–151, 2016.

[GLSW93] Peter Gassner, Guy M. Lohman, K. Bernhard Schiefer, and Yun Wang. Query
optimization in the IBM DB2 family. IEEE Data Eng. Bull., 16(4):4–18,
1993.

[GMRS09] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. FERRY:
database-supported program execution. In Ugur Çetintemel, Stanley B.
Zdonik, Donald Kossmann, and Nesime Tatbul, editors, Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 1063–
1066, 2009.

[GRS10] Torsten Grust, Jan Rittinger, and Tom Schreiber. Avalanche-safe LINQ
compilation. PVLDB, 3(1):162–172, 2010.

[Gru99] Torsten Grust. Comprehending Queries. PhD thesis, Universität Konstanz,
1999.

[GS99] Torsten Grust and Marc H. Scholl. How to comprehend queries functionally.
J. Intell. Inf. Syst., 12(2-3):191–218, 1999.

[GW14] Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: deep
and shallow embeddings (functional pearl). In ICFP, pages 339–347, 2014.

[Har13] Joseph J. Harjung. Reducing formal noise in pact programs. Master’s thesis,
TU Berlin, 2013.

[HPS`12] Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinländer, Rico
Bergmann, Aljoscha Krettek, and Kostas Tzoumas. Opening the black boxes
in data flow optimization. PVLDB, 5(11):1256–1267, 2012.

119



Bibliography

[Hun13] John Hunt. Cake pattern. In Scala Design Patterns, pages 115–119. 2013.

[HW16] Ralf Hinze and Nicolas Wu. Unifying structured recursion schemes - an
extended study. J. Funct. Program., 26:e1, 2016.

[HWG13] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Unifying structured recursion
schemes. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston,
MA, USA - September 25 - 27, 2013, pages 209–220, 2013.

[IBY`07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: distributed data-parallel programs from sequential building blocks.
In Paulo Ferreira, Thomas R. Gross, and Luís Veiga, editors, Proceedings of
the 2007 EuroSys Conference, Lisbon, Portugal, March 21-23, 2007, pages
59–72, 2007.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and
automatic program generation. Prentice Hall international series in computer
science. 1993.

[Jr.09] Guy L. Steele Jr. Organizing functional code for parallel execution or, foldl
and foldr considered slightly harmful. In Graham Hutton and Andrew P.
Tolmach, editors, Proceeding of the 14th ACM SIGPLAN international
conference on Functional programming, ICFP 2009, Edinburgh, Scotland,
UK, August 31 - September 2, 2009, pages 1–2, 2009.

[JS86] Ulrik Jørring and William L. Scherlis. Compilers and staging transforma-
tions. In Conference Record of the Thirteenth Annual ACM Symposium on
Principles of Programming Languages, St. Petersburg Beach, Florida, USA,
January 1986, pages 86–96, 1986.

[JW07] Simon L. Peyton Jones and Philip Wadler. Comprehensive comprehensions.
In Gabriele Keller, editor, Proceedings of the ACM SIGPLAN Workshop on
Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007, pages 61–72,
2007.

[Kre15] Aljoscha Krettek. Using meta-programming to analyze and rewrite domain-
specific program code. Master’s thesis, TU Berlin, 2015.

[Lam93] Joachim Lambek. Least fixpoints of endofunctors of cartesian closed cate-
gories. Mathematical Structures in Computer Science, 3(2):229–257, 1993.

[LB17] Fengyun Liu and Eugene Burmako. Two approaches to portable macros.
Technical report, EPFL, 2017.

[LHL17] Johannes Luong, Dirk Habich, and Wolfgang Lehner. AL: unified analytics
in domain specific terms. In Tiark Rompf and Alexander Alexandrov, editors,

120



Bibliography

Proceedings of The 16th International Symposium on Database Programming
Languages, DBPL 2017, Munich, Germany, September 1, 2017, pages 7:1–7:9,
2017.

[MA86] Ernest G. Manes and Michael A. Arbib. Algebraic Approaches to Program
Ssemantics. Texts and Monographs in Computer Science. 1986.

[MAB`10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-
scale graph processing. In Ahmed K. Elmagarmid and Divyakant Agrawal,
editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June
6-10, 2010, pages 135–146, 2010.

[MBB06] Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconciling ob-
ject, relations and XML in the .net framework. In Surajit Chaudhuri, Vagelis
Hristidis, and Neoklis Polyzotis, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Chicago, Illinois, USA,
June 27-29, 2006, page 706, 2006.

[MN06] Guido Moerkotte and Thomas Neumann. Analysis of two existing and
one new dynamic programming algorithm for the generation of optimal
bushy join trees without cross products. In Umeshwar Dayal, Kyu-Young
Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L.
Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, Proceedings of the
32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, pages 930–941, 2006.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–
92, 1991.

[ORS`08] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data processing.
In SIGMOD Conference, pages 1099–1110, 2008.

[Pie91] Benjamin C. Pierce. Basic category theory for computer scientists. Founda-
tions of computing. 1991.

[PLO17] Dmitry Petrashko, Ondrej Lhoták, and Martin Odersky. Miniphases: com-
pilation using modular and efficient tree transformations. In Albert Cohen
and Martin T. Vechev, editors, Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 201–216, 2017.

[PSK17] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. Quoted staged
rewriting: a practical approach to library-defined optimizations. In Matthew

121



Bibliography

Flatt and Sebastian Erdweg, editors, Proceedings of the 16th ACM SIG-
PLAN International Conference on Generative Programming: Concepts and
Experiences, GPCE 2017, Vancouver, BC, Canada, October 23-24, 2017,
pages 131–145, 2017.

[PVSK18] Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch.
Unifying analytic and statically-typed quasiquotes. PACMPL, 2(POPL):13:1–
13:33, 2018.

[RAM`12] Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin
Odersky. Scala-virtualized: linguistic reuse for deep embeddings. Higher-
Order and Symbolic Computation, 25(1):165–207, 2012.

[RO10] Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. In Eelco Visser
and Jaakko Järvi, editors, Generative Programming And Component Engi-
neering, Proceedings of the Ninth International Conference on Generative
Programming and Component Engineering, GPCE 2010, Eindhoven, The
Netherlands, October 10-13, 2010, pages 127–136, 2010.

[RO12] Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. Commun. ACM,
55(6):121–130, 2012.

[SAC`79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. Access path selection in a relational
database management system. In Philip A. Bernstein, editor, Proceedings of
the 1979 ACM SIGMOD International Conference on Management of Data,
Boston, Massachusetts, May 30 - June 1., pages 23–34, 1979.

[SBL`14] Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture
for performance-oriented embedded domain-specific languages. ACM Trans.
Embedded Comput. Syst., 13(4s):134:1–134:25, 2014.

[Ski93a] D. B. Skillicorn. Structuring data parallelism using categorical data types.
In Proc. Workshop Programming Models for Massively Parallel Computers,
pages 110–115, September 1993.

[Ski93b] David B Skillicorn. The bird-meertens formalism as a parallel model. In
Software for Parallel Computation, pages 120–133. 1993.

[SW95] Dan Suciu and Limsoon Wong. On two forms of structural recursion. In
Georg Gottlob and Moshe Y. Vardi, editors, Database Theory - ICDT’95,
5th International Conference, Prague, Czech Republic, January 11-13, 1995,
Proceedings, volume 893 of Lecture Notes in Computer Science, pages 111–
124, 1995.

122



Bibliography

[TBN91] Val Tannen, Peter Buneman, and Shamim A. Naqvi. Structural recursion as
a query language. In Paris C. Kanellakis and Joachim W. Schmidt, editors,
Database Programming Languages: Bulk Types and Persistent Data. 3rd
International Workshop, August 27-30, 1991, Nafplion, Greece, Proceedings,
pages 9–19, 1991.

[Tri91] Philip W. Trinder. Comprehensions, a query notation for dbpls. In Paris C.
Kanellakis and Joachim W. Schmidt, editors, Database Programming Lan-
guages: Bulk Types and Persistent Data. 3rd International Workshop, August
27-30, 1991, Nafplion, Greece, Proceedings, pages 55–68, 1991.

[TS91] Val Tannen and Ramesh Subrahmanyam. Logical and computational aspects
of programming with sets/bags/lists. In Javier Leach Albert, Burkhard
Monien, and Mario Rodríguez-Artalejo, editors, Automata, Languages and
Programming, 18th International Colloquium, ICALP91, Madrid, Spain,
July 8-12, 1991, Proceedings, volume 510 of Lecture Notes in Computer
Science, pages 60–75, 1991.

[TS00] Walid Taha and Tim Sheard. Metaml and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

[TSJ`09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive - A
Warehousing Solution Over a Map-Reduce Framework. PVLDB, 2(2):1626–
1629, 2009.

[TW89] Phil Trinder and Philip Wadler. Improving list comprehension database
queries. In TENCON’89. Fourth IEEE Region 10 International Conference,
pages 186–192. IEEE, 1989.

[UG15] Alexander Ulrich and Torsten Grust. The flatter, the better: Query compi-
lation based on the flattening transformation. In Timos K. Sellis, Susan B.
Davidson, and Zachary G. Ives, editors, Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 1421–1426, 2015.

[vdBKV03] Mark van den Brand, Paul Klint, and Jurgen J. Vinju. Term rewriting with
traversal functions. ACM Trans. Softw. Eng. Methodol., 12(2):152–190, 2003.

[Wad89] Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of
the fourth international conference on Functional programming languages
and computer architecture, FPCA 1989, London, UK, September 11-13, 1989,
pages 347–359, 1989.

[Wad90] Philip Wadler. Notes on monads and ringads. Internal document, Computing
Science Dept. Glasgow University, September 1990.

123



Bibliography

[Wad92] Philip Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 1992.

[Wad95] Philip Wadler. How to declare an imperative. In John W. Lloyd, editor, Logic
Programming, Proceedings of the 1995 International Symposium, Portland,
Oregon, USA, December 4-7, 1995, pages 18–32, 1995.

[ZBW`12] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie
Chaiken, and Darren Shakib. SCOPE: parallel databases meet mapreduce.
VLDB J., 21(5):611–636, 2012.

[ZCF`10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. In HotCloud,
2010.

124



List of Acronyms

ADT Algebraic Data Type.
ANF Administrative Normal Form.
API Application Programming Interface.
AST Abstract Syntax Tree.

CCI cache-call insertion.
CL Comprehension Language.

CSE Common Subexpression Elimination.

DBMS Database Management System.
DIQL Data Intensive Query Language.
DSH Database-Supported Haskell.
DSL Domain Specific Language.

eDSL Embedded Domain Specific Language.

FGF fold-group fusion.

GPL General-purpose Programming Language.

IDE Integrated Development Environment.
IMDb Internet Movie Database.

IR Intermediate Representation.

JIT just-in-time.
JVM Java Virtual Machine.

LINQ Language-Integrated Query.
LMS Lightweight Modular Staging.

125



List of Acronyms

ML Machine Learning.

NIS native iterations specialization.

OQL Object Query Language.

RAS relational algebra specialization.
RDBMS Relational Database Management System.

RDF Radial Distribution Function.

sDSL Stand-alone Domain Specific Language.
SQL Structured Query Language.
SSA Static Single Assignment.

TQL Traversal Query Language.

UDA User-Defined Aggregate.
UDF User-Defined Function.
UDT User-Defined Type.

126


	Title Page
	Acknowledgments
	Declaration of Authorship
	Abstract (English/Deutsch)
	List of Figures
	1 Introduction
	2 State of the Art and Problems
	2.1 DSL Implementation Approaches
	2.2 eDSL Design Objectives
	2.3 Parallel Dataflow DSLs – Evolution and Problems
	2.3.1 Origins: MapReduce & Pregel
	2.3.2 Spark RDD and Flink DataSet
	2.3.3 Current Solutions


	3 Solution Approach
	4 Background
	4.1 Category Theory
	4.1.1 Basic Constructions
	4.1.2 Functors
	4.1.3 F-Algebras
	4.1.4 Polymorphic Collection Types as Functors
	4.1.5 Collection Types in Union Representation
	4.1.6 Monads and Monad Comprehensions
	4.1.7 Fusion

	4.2 Static Single Assignment Form

	5 Source Language
	5.1 Linguistic Features and Restrictions
	5.2 Abstract Syntax
	5.3 Programming Abstractions
	5.3.1 Sources and Sinks
	5.3.2 Select-From-Where-like Syntax
	5.3.3 Aggregation and Grouping
	5.3.4 Caching and Native Iterations
	5.3.5 API Implementations


	6 Core Language
	6.1 Administrative Normal Form
	6.2 First-Class Monad Comprehensions
	6.3 Comprehension Normalization
	6.4 Binding Context
	6.5 Compiler Pipelines

	7 Optimizations
	7.1 Comprehension Compilation
	7.1.1 Naïve Approach
	7.1.2 Qualifier Combination
	7.1.3 Structured API Specialization in Spark

	7.2 Fold Fusion
	7.2.1 Fold-Forest Fusion
	7.2.2 Fold-Group Fusion

	7.3 Caching
	7.4 Native Iterations

	8 Implementation
	8.1 Design Principles
	8.2 Design Space
	8.2.1 LMS
	8.2.2 Scala Macros and Scala Reflection
	8.2.3 Current Solutions

	8.3 Object Language Encoding
	8.4 Tree Manipulation API
	8.4.1 Strategies
	8.4.2 Attributes
	8.4.3 Rules

	8.5 Code Modularity and Testing Infrastructure

	9 Evaluation
	9.1 Effects of Fold-Group Fusion
	9.2 Effects of Cache-Call Insertion
	9.3 Effects of Relational Algebra Specialization
	9.4 Effects of Native Iteration Specialization
	9.5 Cumulative Effects

	10 Related Work
	10.1 Formal Foundations
	10.2 Related DSLs
	10.2.1 sDSL Targeting Parallel Dataflow Engines
	10.2.2 eDSLs Targeting RDBMS Engines
	10.2.3 eDSLs Targeting Parallel Dataflow Engines
	10.2.4 eDSLs with Custom Runtimes


	11 Conclusions and Future Work
	Bibliography
	List of Acronyms



