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Abstract 

The transformation of otherwise unused vibrational energy into electric energy 
through the use of piezoelectric energy harvesting devices has been the subject of 
numerous investigations. The mechanical part of such a device is often constructed 
as a cantilever beam with applied piezo patches. If the harvester is designed as a 
linear resonator the power output relies strongly on the matching of the natural 
frequency of the beam and the frequency of the harvested vibration which restricts 
the applicability since most vibrations which are found in built environments are 
broad-banded or stochastic in nature. A possible approach to overcome this 
restriction is the use of permanent magnets to impose a nonlinear restoring force on 
the beam that leads to a broader operating range due to large amplitude motions 
over a large range of excitation frequencies.  

In this paper such a system is considered introducing a refined modeling with a 
modal expansion that incorporates two modal functions and a refined modeling of the 
magnet beam interaction. The corresponding probability density function in case of 
random excitation is calculated by the solution of the corresponding Fokker-Planck 
equation and compared with results from Monte Carlo simulations. Finally some 
measurements of ambient excitations are discussed. 
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1. Introduction 

The generation of electrical energy from mechanical vibrations with ambient 
excitation by using a mechatronic system has found broad scientific consideration 
under the term “energy harvesting”. In this paper the authors will focus on piezo 
beam systems with base excitation. A broad review of such systems is e.g. given in 
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[Priya 2007]. The simplest case would be that of a monofrequent (harmonic) 
excitation which allows for adapting the natural frequency of the harvesting system to 
the excitation frequency in order to obtain large displacement amplitudes and 
therefore intensive energy harvesting. Unfortunately the nature of most ambient 
vibrations will not be harmonic but broad band in frequency and include (in the 
modeling) random parts. Therefore broad band excitation of energy harvesting 
systems has been taken considerable interest in the last years, see e.g. [Tang et al. 
2010] for an overview. The simplest case is the consideration of a linear system 
under white noise or colored noise (obtained by linear filters) excitation as considered 
e.g. in [Adhikari et al. 2009]. These problems can be investigated analytically as 
Gaussian excitation of a linear system produces also a Gaussian response. 
Nevertheless a refined modeling of either the excitation or the mechatronic system 
itself (or both of them) often results in a nonlinear model where this is not anymore 
possible. Also a possibility to adapt the harvesting systems to broad band excitation 
and to increase the level of harvested energy is the deliberate introduction of 
nonlinearities resulting in bi- or multistability, see e.g. [Harne 2013] for an overview. 
In this case frequent changes between the attractors of the multiple stable stationary 
solutions will result in a good energy harvesting result. If the restoring nonlinearity in 
a one degree of freedom system is described by a polynomial and excitation is by 
white noise, still an exact solution of the corresponding Fokker-Planck solution, i.e. 
an exact solution for the probability function (pdf) can be found. Systems of such a 
level are e.g. considered in [Gammaitoni et al. 2009], [Gammaitoni et al. 2010] or 
[Halvorsen 2008]. 

 

Figure 1: Bistable energy harvesting system with magnets as used in e.g. [Ertuk et al. 2009] 
or [Litak et al. 2010]. 

A typical bistable energy harvesting system as considered e.g. in [Ertuk et al. 2009] 
or [Litak et al. 2010] is sketched in Figure 1. A cantilever beam with base 
displacement excitation u becomes two stable stationary solutions by two applied 
magnets. The transfer from mechanical to electrical energy is performed by the 
piezoceramics applied on the beam. In [Litak et al. 2010] the base excitation is given 
by Gaussian white noise. A similar system is investigated in [Litak et al. 2012] under 
combined harmonic and white noise excitation. State of the art to perform such 
investigations is to use numerical integration in time, i.e. Monte Carlo simulation. As 
already mentioned an alternative way beside Monte Carlo simulations for the 
investigation of energy harvesting systems is the calculation of the pdf by solving the 



 

 

corresponding Fokker-Planck equation. This equation is in most cases very hard to 
solve and only for a very limited class of problems analytical solutions of the Fokker-
Planck equation are known. Typical approaches in literature for solving Fokker-
Planck equations are using Finite Differences (e.g. [Bergman 1992], Finite Elements 
(e.g. [Bergman 2005], [Kumar et al. 2009]) or the path integral method (e.g. [Naess 
2006]). Usually these methods are limited to the solution of problems with maximum 
dimensions between 4 and 6. A method capable for solving Fokker-Planck equations 
with higher dimensions is described in [Martens et al. 2012] which is based on earlier 
attempts e.g. [von Wagner 2000]. Herein the pdf is expanded in specially adapted 
orthogonal functions and the Galerkin method is applied. With this, problems up to 
dimension ten could be solved. In [Martens et al. 2013] this method is applied to a 
piezo beam energy harvester with random excitation, where the piezo beam system 
is discretized by just one modal ansatz function. In literature in almost all cases, the 
beam of such energy harvesters are discretized by just one ansatz function although 
using broad band excitation.  

The present paper investigates energy harvesting systems as sketched in Figure 1 
and intends to overcome the described limitations by using a spacial discretization by 
multiple ansatz functions. Additionally a refined modeling of the force between 
magnets and beam is introduced. The resulting Fokker-Planck equations of thereby 
refined models are solved and the results are compared with those from Monte Carlo 
simulations. Finally some results of measurements of ambient vibrations are 
presented which could be the base for future refined modeling of the excitation 
processes. 

2. Modeling of the energy harvester 

2.1 State of the art modeling 

The energy harvesting system in Fig.1 is in general (e.g. [Litak et. al 2010] )modeled 
by discretizing the beam in space by one modal ansatz function resulting in the two 
coupled system equations 

ሷ࢞ ൅ ૛ࣈ ሶ࢞ െ ࢞ࢻ ൅ ૜࢞ࢼ െ ࣑࢜ ൌ (1) ,ࢌ

ሶ࢜ ൅ ࢜ࣅ ൅ ࣄ ሶ࢞ ൌ ૙. (2)

The first equation describes the mechanical domain, where ࢞ is the modal coordinate, 
ࣈ  the modal damping ratio, ࢻ  the coefficient of the linear restoring forces, ࢼ  the 
coefficient of the cubic restoring forces and ࢌ an external force which is proportional 
to the second time-derivative of the base excitation u. The second equation 
describes the electrical circuit, where ࢜ is the voltage across the electric load, which 
is in this case a simple resistance, and ࣅ is proportional to the reciprocal of the 
product of the load resistance and the equivalent capacitance of the piezoceramic 
layers. The two equations are coupled via the dimensionless piezoceramic coupling 
coefficients ࣑ in the mechanical domain and ࣄ in the electrical domain, see [Ertuk et 
al. 2009] for further reference. Following the approach in [Erturk et al. 2009] all 
variables including time are normalized and scaled to be dimensionless and to avoid 
ill-conditioned problems in the following investigations. 



 

 

For a refinement of the modeling and understanding of its limitations it is important to 
investigate the assumptions that it is based on. For refining the beam model with 
respect to a larger number of modal ansatz functions it is mandatory to seperate the 
modeling of the magnetic effects from the modeling of the piezoceramic layers and 
the electrical circuit. The former was described quite early in [Moon 1979] where the 
system shown in Fig.1 without piezoceramic layers was analysed to investigate 
chaos in a deterministic mechanical system. The latter was described in [Erturk 2008] 
where a model for the system shown in Fig.1 without magnets was presented.  

In [Moon 1979] the effect of the magnets on the ferromagnetic beam is modeled as a 
single load acting on the tip of the beam in the direction of displacement. The 
influence of the load on the beam displacement is assumed to be cubic one with a 
vanishing quadratic term. The further discretization is done using the first 
eigenfunction of the system without magnets, resulting in a model with one degree of 
freedeom (dof). 

Although the model for the beam with piezoceramic layers which is presented in 
[Erturk 2008] is in principle not restricted in the number of modal ansatz functions 
which are used for the discretization, it is in general restricted to one dof for the 
combination of both models. 

2.2  Refined modeling 

To overcome the limitation of the one-dof model the effect of the magnets is now 
interpreted as distributed load in the direction of the beam displacement. According to 
the approach in [Moon 1979] the influence of the load on the beam displacement is 
as well assumed to be cubic with a vanishing quadratic term. The describing set of 
equations for the case of a two-discretization then reads 

࢞૚ሷ ൅ ૛ࣈ૚ ሶ࢞ ૚ െ ૚૚࢞૚ࢻ െ ૚૛࢞૛ࢻ ൅ ૚૚࢞૚ࢼ
૜ ൅ ૚૛࢞૚ࢼ

૛ ࢞૛ ൅ ૚૜࢞૚࢞૛ࢼ
૛ ൅ ૚૝࢞૛ࢼ

૜ െ ࣑૚࢜ ൌ ૚, (3)ࢌ

࢞૛ሷ ൅ ૛ࣈ૛ ሶ࢞ ૛ െ ૛૚࢞૚ࢻ െ ૛૛࢞૛ࢻ ൅ ૛૚࢞૚ࢼ
૜ ൅ ૛૛࢞૚ࢼ

૛ ࢞૛ ൅ ૛૜࢞૚࢞૛ࢼ
૛ ൅ ૛૝࢞૛ࢼ

૜ െ ࣑૛࢜ ൌ ૛, (4)ࢌ

ሶ࢜ ൅ ࢜ࣅ ൅ ૚ࣄ ሶ࢞ ૚ ൅ ૛ࣄ ሶ࢞ ૛ ൌ ૙. (5)

As it can be seen the equations of the mechanical domain are coupled in the linear 
and in the cubic terms. It shall be additionally mentioned, that the coefficients of the 
linear and cubic terms are not independent, but are calculated from an projection of 
the distributed load which resembles the magnetic effect on the eigenfunctions used 
in the discretization. The two external excitations ࢌ૚ and ࢌ૛	 are as well not 
independent from each other. 

3. Solution of the corresponding Fokker-Planck equation 

If the base excitation of the energy harvester is modeled as white Gaussian noise the 
describing set of differential equations is given in the general form of the stochastic 
differential equations (SDE) 

࢚ࢄࢊ ൌ ,࢚ࢄሺࢌ ࢚ሻ࢚ࢊ ൅ ,࢚ࢄሺࡳ ࢚ሻ(6) .࢚ࢃࢊ



 

 

The probability density function (pdf) ࢖  can be calculated as the solution of the 
corresponding Fokker-Planck equation (FPE) which reads 

∑ ࣔ

࢏࢞ࣔ
൫࢏ࢌሺ࢞ሻ࢖ሺ࢞ሻ൯ െ ∑ ࣔ૛

࢐࢞࢏࢞ࣔ
ቀ࢐࢏࢈ሺ࢞ሻ࢖ሺ࢞ሻቁ ൌ ૙࢔

࢐ୀ૚,࢏
࢔
ୀ૚࢏ . (7)

Since the exact solutions of the FPEs for the given systems are not known, an 
approximate solution is calculated with an Galerkin-type scheme which is intensely 
discussed e.g. in [von Wagner 2000] and [Martens et al. 2012].   

Herein, for the calculation of the approximate solution a starting solution ࢖૙  is 
multiplied with a polynomial correction term ࢑, i.e. ࢖ ൎ  ૙ where the polynomial is࢖	࢑
choosen from an ansatz-space which is orthonormal with respect to the weighted 
scalar product defined by ࢖૙. This ansatz is then inserted in the FPE yielding an error 
which is in the Galerkin sense supposed to vanish if projected on any of the members 
of the ansatz space. The unknown coefficients in the correction term ࢑ are then 
computed to meet the afore mentioned conditions. As it is shown e.g. in [Martens et 
al. 2012] this method works very well even for small orders of ࢑	if the starting solution 
 ૙ is properly choosen. For the discussed energy harvesting system it is possible to࢖
use the exact solution of the system without piezoelements in the one-dof case. 

 

3.1 One-dof discretization 

The one-dof discretization has already been solved and discussed in [Martens et al. 
2013]. In preparation for the following discussion of the 2-dof discretization the results 
are shortly recapitulated. In Figure 2, the marginal probability density function with 
respect to the modal coordinate ࢞૚	and the modal velocity ࢞૛	are presented.  

 

Figure 2: Marginal probability density function ࢖૚૛ for the one-dof model as an approximate 
solution oft the FPE (left) and from a Monte Carlo simulation (right). 

The parameters used in the analysis correspond to an experimental set-up which is 
actually built up at the TU Berlin and will  be used for experimental investigations of 
the energy harvesting system.  



 

 

They read ࣈ ൌ ૡ. ૝, ࢻ ൌ ࢼ ൌ ૝૝૜. ૡ, ࣑ ൌ ૚૛. ૜, ࣅ ൌ ૚૛૞૞૞. ૙  and ࣄ૚ ൌ െ૚૜. ૝  . The 
intensity of the white noise excitation is ࣌ ൌ ૞૙. ૞.The results on the left side are 
obtained as an approximate solution of the FPE and the results on the right side 
originate from a Monte Carlo simulation. As it can be seen, both results are in a very  

 

Figure 3: Marginal probability density function ࢜࢖	for the one-dof discretization: result of 
solution of FPE (solid line) and Monte Carlo simulation (dots). 

good agreement whereas the results on the left side are smoother due to their 
analytical nature. Both results show, that the system resides for the chosen 
parameters most probably in the vicinity of the two nontrivial equilibrium points. 

As proposed in [Martens et al. 2013] the variance ࣌࢜૛	 of the voltage ࢜  which is 
calculated from the marginal probability density function of the voltage is used for the 
assessment of the systems energy output. As it can be seen from Fig.3 the results 
from the approximate solution of FPE (solid line) and the results obtained from the 
Monte Carlo simulation (dots) are again in a very good agreement. 

 

3.2 Two-dof discretization 

The analysis of the two-dof discretization is conducted in the same manner as the 
analysis of the one-dof problem. To validate the approximate results of the FPE a 
Monte Carlo simulation is carried out and is used as a reference. The parameters 
used in the analysis correspond as well to the experimental apparatus at the TU 
Berlin and read for the first equation ࣈ૚ ൌ ૡ. ૝, ૚૚ࢻ ൌ ૝૝૜. ૡ, ૚૛ࢻ ൌ െ૜૜૟૞. ૜, ૚૚ࢼ ൌ
૝૟ૡ. ૜,			ࢼ૚૛ ൌ ૡૢૡ. ૢ, ૚૜ࢼ ൌ ૡ૟૙. ૙, ૚૝ࢼ ൌ ૛૚૚. ૛		࣑૚ ൌ ૚૛. ૙ for the second equation 
equation ࣈ૛ ൌ ૚૙૞. ૜, ૛૚ࢻ ൌ െ૜૙૙૝. ૚, ૛૛ࢻ ൌ ૛૟ૠ. ૞, ૛૚ࢼ ൌ െ૛૟ૠ. ૞,			ࢼ૛૛ ൌ
ૠ૟ૠ. ૛, ૛૜ࢼ ൌ െ૞૟૞. ૡ, ૛૝ࢼ ൌ ૛૜૛. ૠ		࣑૛ ൌ െ૜ૢ. ૜  and for the third equation ࣅ ൌ
૚૛૞૞૞. ૙, ૚ࣄ ൌ െ૚૜. ૝, ૛ࣄ ൌ ૝ૢ. ૚. 



 

 

 

Figure 4: Marginal probability density function ࢖૚૛ for the two-dof discretization as an 
approximate solution oft the FPE (left) and from a Monte Carlo simulation (right). 

 

Figure 5: Marginal probability density function ࢜࢖ for the two-dof discretization: solution of 
FPE (solid line) and Monte Carlo simulation (dots) 

As it can be seen from Fig. 4 the results for the marginal probability density function 
of the modal coordinate ࢞૚	and the modal velocity ࢞૛  are again in a very good 
agreement. 

Further it can be seen from Fig. 5 that the same is true for the marginal probability 
density function of the voltage ࢜࢖.However a comparison of Fig. 3 and Fig. 5 shows, 
that the calculated marginal probability density function of the voltage ࢜࢖ shows a 
broader characteristic in the second case. This leads also to a difference in the 
variance ࣌࢜૛  and therefore deviations in the predicted energy output. This clearly 
demonstrates the influence of the refined model. 

 

4. Properties of ambient vibrations 

So far, white noise has been used for the excitation of the examined systems. In this 
section more realistic excitation processes are considered with respect of future 
usage in the simulation of our energy harvesting system. 



 

 

In [Kracht 2011], vibrations of oil paintings under different ambient sources, such as 
transport situations, visitors or traffic during exposition, were considered. The 
measurement results were clustered in two spectral densities, which are shown in Fig. 
6. It can be seen that the stochastic excitations exihibit broad band property in these 
cases. 
 

 
 

Figure 6: Spectral densities clustered from excitation data [Kracht 2011]. 
 
In order to obtain some additional measurement results, experiments with a bicycle 
were performed as described in the following. 
 

  
 

Figure 7: Experimental setup for measurement of ambient vibrations. 
 
Two photos of the experimental setup are shown in Fig.7. A triaxial accelerometer 
was attached on a sheet of iron, which is fixed to the pannier rack of a bicycle. 
Acceleration signals were collected by an USB data acquisition device and recorded 
in a measuring computer. Accelerometer data were sampled at a frequency of 2560 
Hz. Both the data acquisition device and the computer worked with 220 V power 
source, which is supplied by a 12 V car battery via a power inverter. All these 
equipments were put in a bike trailer and carried together with the test bicycle. The 
experiments were performed with a variety of road surfaces, e.g. bicycle lane, asphalt 
street, cobbled street and sand path. Figure 8 (a) shows the frequency spectrum of 
the vertical acceleration at one point on the pannier rack of a bicycle that was ridden 
normally on a road with asphalt surface. The corresponding pdf is given in Fig. 9 (a). 
The results show, that there are two distinct frequencies peaks in the spectrum while 
the pdf has a non-Gaussian character. Compared to this, measurements performed 
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in planes in [Kracht 2011] show a somewhat different characteristic. One set of these 
measurements performed by Kracht were evaluated with respect to frequency 
spectrum and pdf as shown in Fig. 8 (b) and Fig. 9 (b).  
 

      
 

Figure 8: Acceleration spectra of ambient vibrations: Vibrations on the pannier rack of a 
bicycle (a) and in a plane (b). 

 

 
 

Figure 9: Pdf of ambient vibrations: Vibrations on the pannier rack of a bicycle (a) and in a 
plane (b). 

 
 
These results from the seat of a plane show a broad band characteristic with one 
distinct frequency peak in the spectrum (Fig. 8 (b)) and a Gaussian-like pdf (Fig. 9 
(b)). 
To include such ambient excitation characteristics in the analysis described in section 
3, corresponding linear or nonlinear filters are necessary to obtain the respective 
characterisitics. A nonlinear filter offering wide possibilities in shaping desired pdfs is 
given in [Wedig 2010] which produces also amplitude limited noise. This will be part 
of intended future work. 
 

5. Conclusions 

The transformation of otherwise unused vibrational energy into electric energy is 
studied in the present paper with respect to a piezo beam system with base 
excitation. To increase the energy output, a bistability is introduced by using magnets 
and random excitation by Gaussian white noise is considered. State of the art of 
modeling such systems is to discretize the beam vibrations using one modal ansatz 
function (despite the broad band excitation) and solving the corresponding system of 

(a) (b)

(a) (b)



 

 

stochastic differential equations by Monte Carlo simulation. In this paper, the 
modeling is refined by using two instead of just one modal ansatz function for the 
discretization of the beam and the pdf of the system is calculated by using a Galerkin 
method based solution of the Fokker-Planck equation. The results are compared with 
those obtained by Monte Carlo simulations and show a good coincidence. When the 
results from the refined model are compared to those of a state of the art model, it 
becomes obvious that there are some differences in the marginal pdf of the voltage ࢜. 
This difference shows the influence of the type of modeling used for the prediction of 
the energy output. 

For replacing in future steps the white noise excitation by a more realistic one, 
measurements of ambient excitations were also considered. Next intended steps are 
the usage of additional mode(s) in the discretization of the beam and the usage of 
more sophisticated excitation processes, based on measurements of ambient 
accelerations. 
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