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Abstract process mining and mobile networks. Moreover, this ap-
proach increases the expressiveness of Petri nets andallow
Reconfigurable place/transition systems are Petri nets a formal description of dynamic changes.
with initial markings and a set of rules which allow the mod- In [23], the concept of reconfigurable place/transition
ification of the net during runtime in order to adapt the net (P/T) systems was introduced for modeling changes of the
to new requirements. For the transformation of Petri nets, net structure while the system is kept running. In detail, a
adhesive high-level replacement systems have been rgcentlreconfigurable P/T system consists of a P/T system and a
introduced as a new categorical framework in the double set of rules, so that not only the follower marking can be
pushout approach. computed but also the net structure can be changed by rule
In this paper, we analyze concurrency in reconfigurable application. So, a new P/T system is obtained that is more
place/transition systems. We show that place/transition appropriate with respect to some requirements of the envi-
systems are a weak adhesive high-level replacement cateronment. In this paper, we give the formal foundation for
gory, which allows us to apply the developed theory also to transformations of P/T systems and show how to deal with
tranformations within reconfigurable place/transitionssy  conflict situations of transformation and token firing.
tems. Furthermore, we analyze under which conditions  For rule-based transformations of P/T systems we use
net transformations and token firing can be executed in ar- the framework of adhesive high-level replacement (HLR)
bitrary order. As an illustrating example, reconfigurable systems [18, 19] that is inspired by graph transformation
place/transition systems are applied in a mobile network systems [36]. Adhesive HLR systems have been recently
scenario. introduced as a new categorical framework for graph trans-
formation in the double pushout approach [18, 19]. They
combine the well-known framework of HLR systems with
1. Introduction the framework of adhesive categories introduced by Lack
and Sobocihski [26]. The main concept behind adhesive
categories are the so-called van Kampen squares. These en-
sure that pushouts along monomorphisms are stable under
o~ ) . pullbacks and, vice versa, that pullbacks are stable under
firing steps are well-suited for modeling the concurrent be- combined pushouts and pullbacks. In the case of adhesive

havior of such systems. _ _ HLR categories, the class of all monomorphisms s replaced
As the adaptation of a system to a changing environmenty,, 5 gypclassvi of monomorphisms closed under compo-
gets more and more important, Petri nets that can be trans;tin and decomposition.

formed during runtime havg become a significant topic in Within the framework of adhesive HLR systems, there
the recent years. Application areas cover e.g. computer,

d . K i q ~ are many interesting results concerning the applicatulity
supported cooperative work, multi agent systems, ynamiCyjes, the embedding and extension of transformations, par

*This work has been partly funded by the research projeMA ;NET allel and sequential d_epgndence and independence, and con-
(see http://tfs.cs.tu-berlin.de/formalnet/) of the GamResearch Council. ~ currency of rule applications.

Petri nets are an important modeling technique to de-
scribe discrete distributed systems. Their nondeteriignis




In this paper, we present the formal foundations for in- Moreover, for M, Ms € P® we haveM; < M, if
dependence of evaluation steps in P/T systems. The nexi/;(p) < Ms(p) for all p € P. A transitiont € T is
evolution step of such a system can be obtained either by to-M-enabled for a marking/ € P® if we havepre(t) <
ken firing or by the application of one of the available rules. M, and in this case the follower marking”’ is given by
Given two evaluation steps, the question arises whether oney;’ — ps & pre(t) @ post(t) and(PN, M) LN (PN, M’)
of these steps can be postponed after the realization of thes called a firing step. Note that is the inverse ofp, and
other one, yielding the same result. For two firing steps of )/, & A, is only defined if we havaZ, < M;.

P/T systems, the independence conditions are well-known. |n order to define rules and transformations of P/T sys-
Concerning the independence of transformations, we showems we introduce P/T morphisms which preserve firing
that the category of P/T systems is a weak adhesive HLRsteps by Condition (1) below. Additionally they require

category which allows the application of the developed the- that the initial marking at corresponding places is indregis
ory also to tranformations within reconfigurable P/T sys- (Condition (2)) or equal (Condition (3)).

tems. This theory comprises many results concerning local
confluence, parallelism and concurrency, and hence givedefinition 2 (P/T Morphism) Given P/T system$>S; =
precise notions for concurrent or conflicting situations of (PN;, M;) with PN; = (P;, T}, pre;, post;) fori = 1,2, a
transformations in reconfigurable P/T systems. Further-P/T morphismf : (PNy, My) — (PN2, M2) is given by
more, we analyze under which conditions a net transfor- f = (fp, fr) with functionsfp : P, — P> andfr : Ty —
mation step and a firing step are independent of each othet» satisfying
leading to the notions of parallel, coparallel and seqaénti
independence. Our work is illustrated by an example in the
area c_)f mobile_emerge_ncy scenarios. _ C(2) My(p) < Ma(fp(p)) forallp e Pp.

This paper is organized as follows. In Section 2, we in-
troduce reconfigurable P/T systems. The notion of weak Note that the extensiofis : P? — P of fp : P, —
adhesive HLR categories and adhesive HLR systems is pred is defined byf& (37" ki -pi) = Sy ki - fr(pi). (1)
sented in Section 3. In Section 4, we analyze the applica-means thay is compatible with pre and post domains, and
bility of rules to P/T systems and show that the category (2) that the initial marking of”N; at placep is smaller or
PTSys used for reconfigurable P/T systems is a weak ad- equal to that ofP N, at fp(p).
hesive HLR category. Our main theorems concerning the Moreover, the P/T morphisriis calledstrict if fp and
parallel and sequential independence of net transformatio fr are injective and
and token firing are achieved in Section 6. In Section 7,
we show how these concepts and results can be putinto the(3) 1(p) = Ma(fp(p)) forallp € Pr.

more general framework of algebraic higher-order nets. Fi-  p/ systems and P/T morphisms form the category

nally, we give a conclusion and outline related and future PTSys, where the composition of P/T morphisms is de-
work in Section 8. fined componentwise for places and transitions.

(1) f§ oprer =preso frandfy opost; = posts o fr,

2. Reconfigurable P/T Systems Remark For our morphisms we do not always have
(M) < M,. E.g., My = p1 & p2,My = p and
In this section, we formalize reconfigurable P/T systems /(1) = fr(p2) = pimplies f5 (M) = 2p > p = Mo,
as introduced in [23]. As net formalism we use P/T systems PUt My (p1) = Mi(p2) = 1 = Ma(p).

following the notation of “Petri nets are Monoids” in [28]. P’II‘DIGF Nets and morphisms satisfyifig form the category
Definition 1 (P/T system) A P/T netis given by PN = ot
(P, T, pre, post) with placesP, transitionsT’, and pre and Now we are able to define reconfigurable P/T systems,
post domain functiongre, post : T — P®. which allow the modification of the net structure using rules
A P[T systemPS = (PN, M) is a P/T netPN with and net transformations of P/T systems, which are instanti-
markingM € P®. ations of the corresponding categorical concepts defined in
Section 3.

P?® is the free commutative monoid ovét. The bi-

nary operation® leads to the monoid notation, e.g/ = Definition 3 (Reconfigurable P/T System)Given a P/T
2p1 © 3p2 means that we have two tokens on plageand  system(PN, M) and a setRU LES of rules, areconfig-
three tokens op,. Note that)! can also be considered as urable P/T systeris defined by((PN, M), RULES).
afunctionM : P — N, where only for a finite seP’ C P

we haveM (p) > 1 with p € P’. We can switch between Example 1 We will illustrate the main idea of reconfig-

these notations by defining, ., M(p) -p = M € P, urable P/T systems in the area of a mobile scenario. This
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Figure 1. Cooperative process of the team and firing stepkect BuildingandGo to Destination

work is part of a collaboration with some research projects ecuted by firing the transitio&o to Destinatiorleading to
where the main focus is on an adaptive workflow manage-the P/T systeniP Ny, M/’) etc.

ment system for mobile ad-hoc networks, specifically tar-

geted to emergency scenarios As a reaction to changing requirements, rules can be ap-

Our scenario takes place in an archaeological disas-plied to the net. A rulerod = ((L, My) L (K, Mg) =
ter/recovery mission: after an earthquake, a team (led by(R, Ary)) is given by three P/T systems and a span of two
ateam leader) is equipped with mobile devices (laptops andstrict P/T morphisms andr (see Def. 6). For the applica-
PDAs) and sent to the affected area to evaluate the state ofion of the rule to the P/T systefi N, M), we addition-
archaeological sites and the state of precarious buildings ally need a match morphism that identifies the relevant
The goal is to draw a situation map in order to schedule parts.
restructuring jobs. The team is considered as an overall
mobile ad-hoc network in which the team leader’s device The activity of taking a picture can be refined into
coordinates the other team members’ devices by providingsing|e steps by the rul@rod,..,, which is depicted

suitable information (e.g. maps, sensible objects, eted) 8 iy the top row of Fig. 2. The application of this

assig_ni_ng activities. For our exz_ample, we assume a teamyje to the net(PNy, M;) leads to the transformation
consisting of a team leader as picture store device and two Prodphote,m (PNa, Ms) sh in Fig. 2
2, Ms) shown in Fig. 2.

team members as camera device and bridge device, respeéPNl’ M)
tively. A typical cooperative process to be enacted by ateam

is shown in Fig. 1 as P/T systeff? Ny, M, ), where only the To predict a situation of disconnection, a movement ac-
team leader and one of the team members are yet involvedivity of the bridge device has to be introduced in our sys-
in activities. tem. In more detail, the workflow has to be extended by a

The work of the team is modeled by firing steps. So to task to follow the camera device. For this reason we pro-
start the activities of the camera device the follower mark- Vide the ruleprodyoue, depicted in the upper row in Fig.

ing of the P/T systen{PNy, M) is computed by firing 3. Then the transformation sté@’ N,, M>)
the transitionSelect Buildingleading to the P/T system (PNj, Mj) is shown in Fig. 3.
(PN1, M7) in Fig. 1. Afterwards, the next task can be ex-

prodotiew,m’
f—

Summarizing, our reconfigurable P/T system

IMAIS: http://ww. mai s- project.it, ((PNy, My), {pTOdphotmpTOdfollow}) consists of
IST FP6WORKPAD: htt p: / / www. wor kpad- proj ect . eu/, the PIT system (PN1 M1) and the set of rules
MOBIDIS:  http://ww. dis.uniromal.it/pub/necellal ’ .
proj ect s/ Mobi DI S {prodyhoto, pProdsonow } @s described above.
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Figure 2. Transformation stepP Ny, M) 7 “Z2°™ (PN, M)

Conflicts in Reconfigurable P/T Systems

The traditional concurrency situation in P/T systems
without capacities is that two transitions with overlagpin
pre domain are both enabled and together require more to-
kens than available in the current marking. As the P/T sys-
tem can evolve in two different ways, the notions of conflict
and concurrency become more complex. We illustrate the
situation in Fig. 4, where we have a P/T systefiVy, M)
and two transitions that are both enabled leading to firing
steps(P Ny, My) — (PNo, M}) and (PNy, M) —2

prodi,mi

(PNy, M), and two transformations® Ny, My) = —

prods,mo

order or in parallel yielding the same marking.

For squares(2) and (3), we require parallel indepen-

dence as introduced in Section 6. Parallel indepen-
dence allows the execution of the transformation step
and the firing step in arbitrary order leading to the same
P/T system. Parallel independence of a transition and
a transformation is given — roughly stated — if the cor-
responding transition is not deleted by the transforma-
tion and the follower marking is still sufficient for the
match of the transformation.

(PN, M) and (PNo, Mo) =~ ="~ (PN2,M>) viathe  Forsquare (4), we use results for adhesive HLR systems

corresponding rules and matches.
The squaresl) ...(4) can be obtained under the follow-
ing conditions:

For square (1), we have the usual condition thatandt,

that ensure parallel or sequential application of both
rules (see Section 3).

In [18], the following main results for adhesive HLR sys-

need to be conflict free, so that both can fire in arbitrary tems are shown for weak adhesive HLR categories:
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Figure 3. Transformation stepP Ny, M>) PNs, Ms)

1. Local Church-Rosser Theorem, (PNo, My") =t2— (P No, Mg) =prodi,mi £ (PN1, M)
. 4
2. Parallelism Theorem, i (1) i (2) t
3. Concurrency Theorem ‘ ‘ |
’ y ’ (PNQ,Ai(l)/)‘izf(PNQ,A40)=P7‘0d1,m1{>(PNl,All)
The Local Church-Rosser Theorem allows one to apply | |
two transformation§;’ — H; via prod, andG — Hs proda,mj (3) prodz,mg 4 prodz,my
via prod, in an arbitrary order leading to the same result V i? V

H, provided that they are parallel independent. In this (PN2, My) <t,— (P Na, Ma)=prod1,m{ > (PN3, M3)
case, both rules can also be applied in parallel, leading to
a parallel transformatiod: — H via the parallel rule
prod; + prods. This second main result is called the Par-
allelism Theorem and requires binary coproducts together
with compatibility with M (i.e. f,g € M = f 4+ g € M).

The Concurrency Theorem is concerned with the simultane- . .
ous execution of causally dependent transformations,avher 3- Adhesive HLR Categories and Systems

a concurrent rulerod; * prods, can be constructed leading

to a direct transformatio& = H via prod; * prods (see In this section, we give a short introduction to weak ad-
Ex. 2). hesive HLR categories and summarize some important re-

Figure 4. Concurrency in reconfigurable P/T sys-



sults for adhesive HLR systems (see [18]). Remark M-morphisms closed under pushouts means that
The intuitive idea of (weak) adhesive HLR categories are given a pushoutl) in Def. 4 withm € M it follows that
categories with suitable pushouts and pullbacks which aren € M. Analogouslyn € M impliesm € M for pull-
compatible with each other. More precisely the definition is backs.
based on so-called van Kampen squares.
The idea of a van Kampen (VK) square is that of a  The categorieSets of sets and functions ar@raphs
pushout which is stable under pullbacks, and vice versa©of graphs and graph morphisms are adhesive HLR cate-
that pullbacks are stable under combined pushouts and pullgories for the class\ of all monomorphisms. The cat-

backs. egoriesElemNets of elementary nets anf?TNet of
o . place/transition nets with the claggl of all correspond-
Definition 4 (van Kampen square) A pushout (1) is aan ing monomorphisms fail to be adhesive HLR categories, but

Kampen squaré for any commutative cube (2) with (1) in  they are weak adhesive HLR categories (see [35]).
the bottom and the back faces being pullbacks holds: the top  Now we are able to generalize graph transformation sys-
face is a pushoutif and only if the front faces are pullbacks. tems, grammars and languages in the sense of [17, 18].

, A ~ In general, an adhesive HLR system is based on rules (or
A m—=RB -7 ‘ ™ productions) that describe in an abstract way how objects
‘ ‘ . e " B’ in this system can be transformed. An application of a rule
f (1) 9 D=y ‘ is called a direct transformation and describes how an ob-
‘ ‘ ¢ f/‘/A\ b ject is actually changed by the rule. A sequence of these
C n—e D C\‘/' d m\é applications yields a transformation.
(2) n\j)/”/ Definition 6 (rule and transformation) Given a (weak)

adhesive HLR categoryC, M), arule prod = (L L

Not even in the categoiyets of sets and functions each K R) consists of three objects, K and R called left

Egzir\]/(;u;:_sRac\;?g Eﬁ?ﬁgzlsﬁﬁggzvﬁ] zreuf;)rreeé |(r)1f gv(;alz);ghand side, gluing object and right hand side, respectively,
9 Y . i and morphismé: K — L,r : K — Rwithl,r € M.

considered where: is in a classM of monomorphisms. A _ . N _
pushout (1) withn € M and arbitraryf is called a pushout Given a ruleprod = (L < K — R) and an object
along M. G with a morphismm : L — G, called match, ali-

The main difference between (weak) adhesive HLR cat- rect transformationGG PO I from G to an objectH
egories as described in [18, 19] and adhesive categoriess given by the following diagram, where (1) and (2) are
introduced in [26] is that a distinguished claggl of pushouts. A sequencey — G; = ... = G,, of direct
monomorphisms is considered instead of all monomor- transformations is calledteansformatiorand is denoted as
phisms, so that only pushouts along-morphisms haveto Gy = G,,.

be VK squares. In the weak case, only special cubes are ) —, K r— =R
considered for the VK square property. \ 0 \ @) \
Definition 5 ((weak) adhesive HLR category)A  cate- * Y *
gory C with a morphism class\ is a (weak) adhesive G=—/—D 9—=H
HLR categoryif An adhesive HLR systemiH S = (C, M, RULES) con-

. _ . sists of a (weak) adhesive HLR categ¢fy, M) and a set
1. M is a class of monomorphisms closed under iso- of rulesRULES.

morphisms, compositionf(: A — B € M,qg :
B—-CeM= € M) and decomposition )
(gofeMge Mngfe M),) P 4. PIT Systems as Weak Adhesive HLR

. Category
2. C has pushouts and pullbacks along-morphisms

andM-morphisms are closed under pushouts and pull-

In this section, we show that the cate TS
backs, gaRyI'Sys

used for reconfigurable P/T systems together with the class
3. pushouts inC along M-morphisms are (weak) VK — Matrice Of strict P/T morphisms is a weak adhesive HLR

squares. category. Therefore, we have to verify the properties of Def
5.
For a weak VK square, the VK square property holds forall  First we shall show that pushouts alont,ict-
commutative cubes witm € M and (f € M orb,c,d € morphisms exist and presenid ,,.;.;-morphisms.

M) (see Def. 4).



Theorem 1 Pushouts in PTSys PSy—m—»= PS; 1. Forps = g(p1) with p; € Py\m(P) we have

along Mg, €xist and preserve ‘0 | ) kEPTSys
Mirice-morphisms, i.e. given PIT 1 (PO) Ms(ps) = Ms(g(p1)) = Mi(p1) <
morphismsf and m with m strict, ¥ \ My(k(p1)) = Ma(z(g(p1))) = Ma(x(p3)).

then the pushout (PO) exists ands 52— "—= P53

also a strict P/T morphism. 2. Forps = n(pz) with p; € P, we haveMs(ps) =

) ) ) (2) or (3) hePTSys
Construction Given f,m € PTSys with m € M grict Ms(n(p2)) =" Ma(p2) <  Ma(h(p2)) =
we construct? N3 as pushout ilPTNet, i.e. component- My(x(n(p2))) = Ma(x(ps)). ]
wise inSets on places and transitions. The marking; is
defined by As next property, we shall show that pullbacks
along Mgici-morphisms exist and preserv®t g ,.ic.-

(1) Vp1 € Pi\m(Po): M3(g(p1)) = Mi(p1)

2) Vpy € P, Py): M. = M-
(2) ¥p2 2\/ (Po) 3(n(p2)) 2(p2) Theorem 2 Pullbacks in PTSys PSSy —m—= PS
() ¥po € Po: Mz(no f(po)) = Ma(f(po)) along M. exist and preserve | 0 | !

Remark Actually, we havells = ¢® (M, © m®(M)) @  Mstrie-morphisms, i.e.  given PIT ;s (PB) z

n®(Ms). (2) and(3) can be integrated, i.e. it is sufficient MOrphismgy andn with  strict, then
to definevpy € Po: Ms(n(p2)) = Ma(ps). the pullback (PB) exists and is also 1’52 —"—= P53

a strict P/T morphism.

morphisms.

PROOF Since PN3 is a pushout inPTNet with g,n

jointly surjective we construct a marking for all places Construction Giveng,n € PTSys with n € Mrict
p3 € Ps. (1) and (2) are well-defined becaugeand n we construct” Ny as pullback inPTNet, i.e. component-
are injective onP; \m(Fy) and P\ f(P,), respectively. (3)  wise inSets on places and transitions. The marking, is
is well-defined because for(f(po)) = n(f(pf)), n being  defined by

injective impliesf(po) = f(p}) and hencellz(f(po)) =

Ma(f(pp))- (¥) Vpo € Py : Mo(po) = Mi(m(po)).
First we shall show that, » are P/T morphisms andis _ ) ] .
strict. PrRoOOF Obviously,M is a well-defined marking. We have

to show thatf, m are P/T morphisms andg is strict.
1. Vp, € P, we have:

;. n Pl\zl(PQ)handMl(pl) O MB(g(ﬁ» or 1. ipo € Py we have:My(po) 2 My (m(po) <
. t = = ' . ' »
m € o ity = mipn) and Vo) — My(g(m(po)) = Ma(n(F(p0))) "= Ml (o))

Mi(m(po)) "™="" Mo(po) e Ms(f(po)) = This meang’ € PTSys.
Ms(n(f(po))) = Ms(g(m(po))) = Ms(g(p1))-

This meang € PTSys. 2. Vpo € P, we have: My(po) © My (m(pg)), this

2. Vpy € P, we have: meansn € PTSys andm is strict.
()
1. P Py) and M. = M. or
> gze 62\{3( 3\/)ith s QLPQ}(p ) ;5:3(1;\24)2)@2) _ It remains to show the pullback property.

F 0 (3)0 0 Given morphism&, k € PTSyswithnoh = gok, we
Ms(f(po)) = Ms(n(f(po))) = Ms(n(p2)). have a unique induced morphisnin PTNet with fox =
This means, ¢ PTSys andn is strict. h andm o x = k. We shall show that € PTSys, i.e.

It remains to show the pushout property. Ma(pa) < Mo(z(p4)) forall py € Py.
Given morphismé&, k € PTSys with ho f = kom, we
have a unique induced morphisnin PTNet with zon = PSy
handx o g = k. We shall show that € PTSys, i.e. \z\\k\
Mg(pg) §M4(17(p3)) fora”pg GPg. } PSQ*’WI‘»PSl
Py— = Py B i
\ v
J; (PO) i PSy—n—» PS3
PRI\ s
ys
h\i\ Forp, € Py We.haveM4(p4) < My (k(ps)) =
PS4 My (m(x(ps)) "= Mo(x(ps)). 0



It remains to show the weak VK property for P/T sys- It follows that M}(g'(p})) d strict Ms(d(g'(p}))) =
tems. We know thatP TNet, M) is a weak adhesive HLR sy (@) sy bstrict
category for the class of injective morphisms [18, 35], Ms(9(b(p1))) = Ma(b(ph)) " =" Mi(p1)-
hence pushouts iRTNet along injective morphisms are

/ /
van Kampen squares. But we have to give an explicit (2) and (3) Forp, € P we have to show that

proof for the markings inPTSys, because diagrams in Ms(n'(p2)) = My (p3)-
PTSys as in Thm. 1 withm,n € M, Which are With m being strict also: andn’ are strict, since the
componentwise pushouts in tife and7-component, are bottom face is a pushout and the left front face is a pull-
not necessarily pushouts IRTSys, since we may have back, andM,,.;.; is preserved by both pushouts and
Mj3(g(p1)) > Mi(p:) for somep, € Pr\m(F). pullbacks. This means that;(p) = M} (n/ (p})).
Theorem 3 Pushouts in PTSys along M gic- -
morphisms are van Kampen squares.
PrRoOF Given the following commutative cube (C) with We are now ready to show that the category of P/T sys-
m € Mgprice @nd (f € Mgprict OF by, d € Mgtrict), tems with the class\.;; Of strict P/T morphisms is a
where the bottom face is a pushout and the back faces areveak adhesive HLR category.
pullbacks, we have to show that the top face is a pushout if
and only if the front faces are pullbacks. Theorem 4 The categoryPTSys, Mt.ic:) iS a weak ad-
f,/P*%\ hesive HLR category.
PSé - ‘ m’ ~aL ,
‘ " a q,/Psl PROOF By Thm. 1 and Thm. 2, we have pushouts and pull-
PS; ‘T ‘ backs along\ s;,.;..-morphisms ilP TSys, andM g;-i¢¢ IS
‘ /‘/PSO b closed under pushouts and pullbacks. Morea¥ét,,.;.: IS
pSQA/f d \m\ # closed under composition and decomposition, because for
\"\ # q/PS1 strict morphismsf : PS; — PSs, g : PSy — PS3 we
N haved, (p) = Ma(f(p)) = Ms(g o f(p)) and M (p) =

"=" |f the top face is a pushout then the front faces {BWB(TQhOf(g)) impr:ielel(p) - MQ(‘/I;(/I_)I_)) - Nﬁ.(gof(p))' ‘
are pullbacks inPTNet, since all squares are pushouts y Thm. 3, pushouts along strict morpnisms are wea

or pullbacks inPTNet, respectively, where the weak vk Yan Kampen squares, hen@®@TSys, Mric:) is a weak
property holds. For pullbacks as in Thm. 2 with n € adhesive HLR category. H
Msirict, the markingVy of PNy is completely determined
by the fact thain € M .ic;. Hence a diagram ilPTSys Since (PTSys, Mrict) is a weak adhesive HLR cat-
with m, n € M grict is a pullback inPTSys if and only if egory, we can apply the results for adhesive HLR systems
itis a pullback inPTNet if and only if it is a component-  given in [18] to reconfigurable P/T systems. Especially, the
wise pullback inSets. This means, the front faces are also Local Church-Rosser, Parallelism and Concurrency Theo-
pullbacks inPTSys. rems as discussed in Section 3 are vali@®Pil'Sys, where
<" If the front faces are pullbacks we know that the only for the Parallelism Theorem we need as additional
top face is a pushout iRTNet. To show that it is also a  property binary coproducts compatible with ;;.;.., which
pushout inlPTSys we have to verify the conditions (1)-(3) can be easily verified.
from the construction in Thm. 1.
Example 2 If we analyze the two transformations from Ex.
(1) For py € P{\m'(I;)) we have to show that 1 gepicted in Figs. 2 and 3 we find out that they are sequen-
M;3(g'(p1)) = Mi(ph). tially dependent, sincgrod,;.., creates the transitioBend
If fis strict then alsg andg’ are strict, since the bot-  Photoswhich is used in the match of the transformation
tom face is a pushout and the right front face is a pull- (PN, M) prodyotigw,m (PNs, Ms). In this case, we can
back, andM .i.: is preserved by both pushouts and apply the Concurrency Theorem and construct a concurrent
pullbacks. This means that | (p}) = M3(g'(p})). rule prodeone = prodpnoto * prod e, that describes the
Otherwiseb andd are strict. Since the right back face concurrent changes of the net done by the transformations.
is a pullback we havé(p,) € P,\m(P,). With the This rule is depicted in the top row of Fig. 5 and leads to the

bottom face being a pushout we have direct transformatioiP Ny, M) prodeone,m (PN, Ms),
@ integrating the effects of the two single transformations i
(a) M3(g(b(p1))) = Mi(b(py)).- one direct one.
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Figure 5. Direct transformation of P N1, M;) via the concurrent rulgrodon.

5. Applicability of Rules to P/T Systems (PNy, M;) we have to construct a P/T systéii N, M)
such that (1) becomes a pushout. This construction requires
In this section, we analyze under which condition a rule the following gluing condition which has to be satisfied in

can be applied to a P/T system. order to apply a rule at a given match.

For the application of a rulerod = ((L, M) L

(K,Mg) = (R,Mg)) to a PIT systen{PN;, M;) we
need pushouts in the categd?T'Sys. Especially we are
interested in pushouts of the form (2), wherés a strict
andk is a general P/T morphism. The existence of these
pushouts has been shown in Thm. 1.

Definition 7 (Gluing Condition for P/T Systems) For a
rule prod = ((L, M) & (K,My) 5 (R,Mg)) and a
matchm : (L, M}) — (PNy, M), the gluing points7 P,

the dangling point® P and the identification point&P of

L are defined by

. GP = Z(PK U TK),
(L,]‘WL)<—Z (K, ‘]\41() — (R, fWR) DP = {pePp|3te(Ty\mp(TL)):
m™ (1) : (2) n mp(p) € prei(t) © post1(t)}
\ \ \ IP = {peP,|3p ePy:
(PN, My) =1 — (P No, Mg) —o—=(PNy, My) p# 0 Amp(p) = mp(p)},
U{tETL|3t/ETL:
Vice versa, for a given matchn: (L,M.) — t £t Amp(t) =mr(t')}.



A P/T morphismm : (L,Mp) — (PN, M;) and a (2) and (3)Vpy € Py we have M!(f(po)) (2)0r(3)

strict morphism : (K, M) — (L, M) satisfy the gluing M ) M

condition if all dangling and identification points are glgi o(po) = Mi(f(po))-

points, I.e. This meansM; = M and (P Ny, My) is the pushout
DPUIP C GP, complement ofn and!. o

andm is strict on places to be deleted, i.e. )
Remark The uniqueness of the pushout complement fol-

() Vp € P\ 1(Px) : Mp(p) = My (m(p)). lows from the fact thaPTSys is a weak adhesive HLR
category (see Thm. 4).
Example 3 In Figs. 2 and 3, two example transformations
of P/T systems are shown. In both cases, we have the danTheorem 6 A rule prod = ((L,Mp) L (K, Mg) =
gling pointsDP = Py, while the set of identification points (R, Mg)) is applicable at a matchn : (L,M;) —
IP is empty. So, the given matches satisfy the gluing con- (P Ny, M) if and only if the gluing condition is satisfied for
dition, because the gluing point&” are equal to the sets of [ andm. In this case, we obtain a P/T systéiN, M)

placesP, and all places are preserved. leading to a net transformation stePNy, M) "2

. - (PN2, M) consisting of the following pushout diagrams
Note that we have not yet considered the firing of the (1) and (2). The P/T morphisma : (R, Mp) —

rule nets(L, M), (K, M) and(R, Mp) as up to now no
relevant use could be found. Nevertheless, from a the-
oretical point of view the simultaneous firing of the nets

(PN2, Ms) is called comatch of the transformation.

(L, M), (K, Mg) and(R, Mp) is easy as the morphisms (L, ]‘WL) : (K, ]‘WK) ’ (R, ‘MR)
are marking strict. The firing of only one of these nets re- m (1) A (2) "
quires interesting extensions of the gluing condition. | \ v

Now we show that the gluing condition is a sufficientand ~ (PN1, M1) =—7——(PNo, Mo) —9—= (P N2, M>)
necessary condition for the application of a ruled via a
matchm. PROOF This follows directly from Thms. 1 and 5. O

Theorem 5 Given P/T morphismd : (K, Mg) —

(L, M) andm : (L, M) — (PNy,M,) with [ being  © Independence of Net Transformation and

strict, then the pushout complemei Ny, M) together Token Firing

with P/T morphisms: : (K, Mg) — (PNy, M) and

f : (PNo,My) — (PNy, M) exists inPTSys if and In this section we analyze under which conditions a net
only if the gluing condition is satisfied. transformation and a firing step of a reconfigurable P/T sys-

_ tem as introduced in Section 2 can be executed in arbitrary
PROOF If the pushout complement exists, then we have order. These conditions are called (co-)parallel and seque
DPUIP C GP as inPTNet, and the gluing condi-  tial independence.

tion for markings is satisfied by the pushout construction  We start with the situation where a transformation step

for markings (see Thm. 1). N and a firing step are applied to the same P/T system. This
Vice versa, given the gluing condition we constrégy leads to the notion of parallel independence.
as the pushout complementiil'Net, which is unique up
to isomorphism, and definkf, by Definition 8 (Parallel Independence) Given a production
prod = (L, M) & (K, M) 5 (R, Mg)), a transfor-
(4) Vpo € Py : Mo(po) = Mi(f(po)). mation ste PNy, M) "24™ (P Ny, Ms) of PIT systems
Now let M| be the marking ofPN, defined by the  and a firing ste PNy, M) L (PNy, M) for a tran-
pushout construction in Thm. 1, i.e. sition t; € T4, the transformation and the firing step are

called parallel independent if
(1) Vp € PL\I(Pk): Mi(m(p)) = ML(p)

(2) and (3)vpo € Po: M{(f(po)) = Mo(po)
We have to show thal/; = M.

(1) ¢, is not deleted by the transformation step and
(2) My(p) < Mj(m(p)) forallp € Py

@ o Parallel independence allows the execution of the trans-
(1) Vp € P \l(Pr) we haveMi(m(p)) = M(p) = formation step and the firing step in arbitrary order leading
My (m(p)). to the same P/T system.
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Theorem 7 Given parallel independent steps
(PNy, My) "™ (PN, M) and (PNy, Mp) -

(PNy, M{) with t; € Ty then there is a corresponding
ty € Ty with firing step(P No, Ms) l2, (PNy, M}) and a
transformation steg PNy, M!) "4 (PN, M) with
the same marking/.

(PNl,Ml)
d// \t
Yaod
(PNg, My) (PNy, M)
(PNao, My)

Remark In Def. 8, Cond. (1) is needed to firds in
(PN2, M), and Cond. (2) is needed to obtain a valid
matchm’ in (PNy, M7). Note thatm/(x) = m(x) for all
xe PLuUTry.

PrROOF Parallel independence implies that € 73 is

preserved by the transformation stepNy, M;) ” rodym
(PN2, Ms). Hence there is a uniqug € Ty with I*(tg) =
t1. Letts = r*(t9) € T in the following pushout$l) and
(2), wherel* andr* are strict.

(L,ML)kl (K,MK) T—»(R,MR)
i (1) l (2) i
(PNl,Ml)fl* (PNo,Mo) r*+(PN2,M2)

Now ¢; being enabled unded; in PN; implies
prei(t;) < M;. Moreover, [* and r* strict implies
preg(to) < My andpres(ta) < M,. Hencets is enabled
underM, in PN, and we definé\f, = My © pres(ta) @
posta(ta).

Now we consider the second transformation step, with
m/ defined bym/(z) = m(z) forxz € P, UTy,.

(LaML)kl (KvMK) Tg’(RvMR)
| |
v @
(PNy, M{) =y~ (PNy, M})—* = (PNy, M3)

m/ is a P/T morphism if for alp € P, we have
(@) Mr(p) < Mi(m'(p)),
and the matchn’ is applicable af\/] if
(b) IPUDP C GP and for allp € P \I(Px) we have
My, (p) = M{(m(p)) (see gluing condition in Def. 7).

11

Cond. (a) is given by Cond. (2) in Def. 8, be-
cause we assume th@P Ny, M) prodym (PN, My) and
(PNy, M) 25 (PNy, M]) with ¢; € T; are parallel in-
dependent. Moreover, the matehbeing applicable ab/;
impliesIP U DP C GP, and for allp € P \l(Px) we
have My, (p) = Mi(m(p)) = Mj(m(p)) by Lem. 1 be-
low using the fact that there is a firing SteBNy, M) -
(PNy, M7). The application oprod alongm’ leads to the
PIT system(PNo, M), wherel’™ (z) = I*(z), r"*(z) =

r*(z) for all z € Py U Ty, andn/(z) = n(x) for all
x € PRUTR.
Finally, it remains to show that/, = MJ. By con-

struction of the transformation stef® Ny, M;) "%

(PN, My) and(PNy, M{) "2 (PN,, MY) we have

(1) Vpo € Po: Ma(r*(po)) = Mo(po) = M (I (po)),

(2) Vp € Pr\r(Pk): Ma(n(p)) = Mr(p),

(3) Vpo € Po: My (r*(po)) = My(po) = Mi(I"(po)) and
(4) Vp € Pr\r(Pk): M3 (n'(p)) = Mg(p).

t1
—

By construction of the firing step§P Ny, M)
(PNy, M!) and(PNa, Ms) 25 (PNs, M}) we have

(5) Vp1 € Pii Mi(p1) = Mi(p1) © prei(t1)(p1) @
posty(t1)(p1) and

(6) Vp2 € Poi My(p2) = Ma(p2) © prea(ta)(p2) @
posta(t2)(p2).

Moreover,!* andr* strict implies the injectivity of*
andr* and we have

(7) Vpo € Po:
preo(to)(po) = pre1(t1)(I*(po)) = prez(t2)(r*(po))
and
posto(to)(po) = post1(t1)(I*(po)) =
posta(ta)(r*(po))-

To show that this implies
(8) Mj = My,

it is sufficient to show

(8a) Vp € Pr\r(Px): My (n'(p)) = Mj(n(p)) and

(8b) Vpo € Po: M3/ (r*(po)) = M3(r*(po))-

First we show that condition (8a) is satisfied. Forat
Pr\r(Pk) we have

@

2
= Mpg(p) @

2 4, (©)

M (n (p)) (n(p)) = My(n(p)),



because:(p) is neither in the pre domain nor in the post
domain ofts, which are inr* (P,) because; is not created
by the rule (see Lem. 1, applied to the inverse puled ).

Next we show that condition (8b) is satisfied. For all
po € Py we have

—~
w
=

M3 (r* (po))

—~
w
=

—~
ot
=

My (I*(po)) © prea(t1)(I* (po))
@posty (t1)(I* (po))

)
Ma(r*(po)) © prea(t2)(r*(po))
©posta(ta)(r*(po))

My (r* (po))

d

It remains to show Lemma 1 which is used in the proof
of Thm. 7.

Lemmal For all p € Pr\l(Px) we havem(p) ¢
dom(t1), wheredom(t;) is union of pre and post domain
of t1, andt; is not deleted.

PROOF Assumem(p) € dom(ty).

Case 1(t; = m(t) for ¢ € T1): t1 not being deleted im-
pliest € I(Tx). Hence there exists' € dom(t) C
l(Pk), such thatn(p’) = m(p); but this is a contra-
diction top € Pr\I(Px) and the fact thatn cannot
identify elements of(Px ) and P \I(Pk).

Case 2(t; ¢ m(TL)): m(p) € dom(t1) implies by the
gluing condition in Def. 7 thap € I(Px), but this is a
contradiction ta € Pr\I(Pxk).

|

Example 4 Analogously to Fig. 1, firing the transition
Select Buildingin (PN2, M) leads to the firing step

(PN2, M>) Sele@f"ding(PNg, MY}). Thisfiring step and the
transformation stefP Ny, My) © "™ (PN, Ms)

(see Fig. 3) are parallel independent because the transi-

tion Select Buildings not deleted by the transformation step
and the marking\/;, is empty. Thus, the firing step can be

postponed after the transformation step or, vice versa, the

rule prods.u.. Can be applied after token firing yielding
the same resu(tP N3, M3) in Fig. 6.

In contrast, the firing sted PN, MJ)

Go to Destination
—

(PNo, MY) and the transformation step
70d fo110w,m’" .
(PNy, Mj) 7o (PN, M}) (see Fig. 7)

are not parallel independent because the transfBonto
Destinationis deleted by the transformation step, i.e. it is
not included in the interfac&’. In fact, the new transition

12

(PNg, M%)

Matching

Figure 6. P/T-system P N3, M})

Go to Destinatiorin (P N3, M}) could be fired leading to
(PN3, M%) and vice versa we could apphy-odfoiiow tO
(PNo, MY) leading to the P/T systemiPNs, M3"), but
My # M.

In the first diagram in Thm. 7, we have required that
the upper pair of steps is parallel independent leadinggo th
lower pair of steps. Now we consider the situations that the
left, right or lower pairs of steps are given — with a suitable
notion of independence — such that the right, left and upper
pairs of steps can be constructed, respectively.

Definition 9 (Sequential and Coparallel Independence)
Given the following diagram wittprod = ((L, M) L
(K,Mg) = (R,Mg)), matchesm and m’ with
m(z) = m/(x) forx € Py, U Ty, and comatches andn’
with n(z) = n/(z) for x € Pr U TR, we say that

(PNy, M)
prod,m,n \tl
Yad T
(PNa, M>) (PNy, M7)
\ =

to prod,m’ ,n’

(PN2, Mj)
1. the left pair of steps, shof{prod,m,n),ts2), is se-
guentially independent if

(a) t2 is not created by the transformation step and
(b) Mg (p) < Mj(n(p)) forall p € Pr,



(L2, Mp,,) (Ko, Mg, )

(R1, Mp,)

Matching

O O
O O
l2 )
-— —
O O
O O
m///¢ nl/l
(PNg, M%) (PN, M (PN3, M3)
mmmmmmmmmm
- —

Matching

Figure 7. Transformation stepP Ny, M) V24 ™ " (PN, M)

2. the right pair of steps, shoft;, prod(m’,n’)), is se-
guentially independent if

(a) t1 is not deleted by the transformation step and
(b) My (p) < My(m/(p)) forall p € P,
3. the lower pair of steps, shdik, (prod, m’,n')), is co-
parallel independent if
(a) t2 is not created by the transformation step and
(b) Mgr(p) < My(n/(p)) forallp € Pg.

Example 5 The pair of steps (SelectBuilding
(prodsonow, m" ,n'")) depicted in Fig. 8 is sequen-
tially independent because the transitalect Buildings
not deleted by the transformation step and the markihg
is empty.

Analogously, the pair of step§(prodyoiow, m',n'),
Select Building depicted in Fig. 9 is sequentially indepen-

13

dent because the transiti@elect Buildings not created by
the transformation step and the markihg; is empty.

For the same reason the paifSelect Building
(prodsoniow, m"” ,n'"")) is coparallel independent.

l
Pl

Remark Note that for prod ((L,Mrp)
(K,Mg) = (R, Mg)) we haveprod—' = ((R, Mg) <
(K, Mk) 4 (L, My)) and each direct transformation

(PNy, M) prodym (PN,, My) with matchm, comatchn
and pushout diagram@ ) and (2) as given in Def. 6 leads

—1
to a direct transformatiof PNy, M) ¥ %" (PN, M;)
with matchn and comatchm by interchanging pushout
diagrams(1) and(2).
Given a firing step(PNy, M;) , (PNy, M7) with
M{ = My © prei(t1) @ post1(t1) we can formally de-

t7t

fine an inverse firing ste@P Ny, M{) — (P Ny, M;) with
My = Mj Sposty(t1) ® preq(t1) if posti(t1) < Mj, such



(PNo, Mo)

Select Building

Matching

Select
Building
_—

(PNg, Mg)

Select Building

Zoom on
damaged part
Capture Scene
Send Photos

Matching

(PNgy, M%)

Go to Destination

Zoom on
damaged part

prod¢ollow

Send Photos

Matching

prod¢ollow
-_—

Matching

>

Send Photos

Matching

Select
Building
e

Send Photos

Matching

Figure 9. Pair of stepg (prod foliow, m', n'), Select Building
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that firing and inverse firing are inverse to each other.

Formally, all the notions of independence in Def. 9
can be traced back to parallel independence using in-
verse transformation steps based @nod—!,n,m) and
(prod=*,n',m’) and inverse firing step§ * andt; " in the
following diagram.

Then we have:

1. ((prod,m,n),t2) is sequentially independent iff
((prod=*,n,m), t5) is parallel independent.

2. (t1,(prod,m’,n’)) is sequentially independent iff
((prod,m’,n’),t;*) is parallel independent.

3. (t2, (prod,m’,n’)) is coparallel independent iff
((prod=",n’,m’),t; ') is parallel independent.

Now we are able to extend Thm. 7 on parallel indepen-
dence showing that resulting steps in the first diagram of
Thm. 7 are sequentially and coparallel independent.

Theorem 8 In Thm. 7, where we start with parallel inde-
pendence of the upper steps in the following diagram with
matchm and comatch, we have in addition the following
sequential and coparallel independence in the followirg di
agram:

(PNy, M)
prod,m,n \tl
(PN, Ms) (PNy, M)
~_ =
to prod,m’,n’
(PNa, M3)

1. The left pair of steps, shot{prod, m,n),ts2), is se-
guentially independent.

2. The right pair of steps, shoft;, (prod,m’,n’)), is
sequentially independent.
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3. The lower pair of steps, shofts, (prod, m’,n’)), is
coparallel independent.

PROOF We use the proof of Thm. 7.

1. (a) to is not created because it corresponds; ta

T which is not deleted.

(b) We haveMpr(p) < M4(n(p)) for all p € Pg by
construction of the pusho(@®’) with M} = M.,

2. (a) ty is not deleted by the assumption of parallel in-

dependence.

(b) Mr(p) < Mi(m(p)) for all p € P, by pushout
(1).

(a) t2 is not created as shown in the proof of 1.(a).

(b) Mgr(p) < Ma(n(p)) for all p € Pr by pushout
(2)-

3.

O

In Thm. 8 we have shown that parallel independence
implies sequential and coparallel independence. Now we
show vice versa that sequential (coparallel) independence
implies parallel and coparallel (parallel and sequential)
dependence.

Theorem 9 1. Given the left sequentially independent
steps in diagranfl) then also the right steps exist such
that the upper (right, lower) pair is parallel (sequen-
tially, coparallel) independent.

2. Given the right sequentially independent steps in di-
agram (1) then also the left steps exist such that the
upper (left, lower) pair is parallel (sequentially, co-
parallel) independent.

3. Given the lower coparallel independent steps in dia-

gram (1) then also the upper steps exist such that the

upper (left,right) pair is parallel (sequentially, sequen
tially) independent.

(PN1, M)

™~

t1

\
(PNlaM{)
=

prod,m’,n’

prod,m,n

(1)
T

(PN2, M3)

PrRoOOF 1. Using Rem. 6, left sequential independencein
(1) corresponds to parallel independence in (2).



prod~ ' n,m \tl\
==
(PN2, M>) (2) (PN1, M7)
\tz\ prod—1.n' m’
(PNQ,MQ)

Applying Thms. 7 and 8 to the left pair in (2) we ob-
tain the right pair such that the upper and lower pairs
are sequentially and the right pair is coparallel inde-
pendent. This implies by Rem. 6 that the upper (right,
lower) pairsin (1) are parallel (sequentially, coparallel
independent.

trans form(r, m), respectively. The initial marking is the
reconfigurable P/T system given in Ex. 1, i.e. the P/T sys-
tem(PN;, My) givenin Fig. 1is on the plage,, while the
marking of the place; is given by the rulegrod,ot, and
prodfonew givenin Figs. 2 and 3, respectively. To compute
the follower marking of the P/T system we use the transi-
tion token gameof the AHO system. First, the variable
is assigned to the P/T-systeft N;, M) and the variable
to the transitiorSelect Building Because this transition is
enabled in the P/T system, the firing condition is fulfilled.
Finally, due to the evaluation of the terfiire(n, t), we ob-
tain the new P/T systerfP N1, M) (see Fig. 1).

For changing the structure of P/T systems, the transition
transformationis provided in Fig. 10. Again, we have to
give an assignment for the variables of the transition, i.e.

The proofs of items 2. and 3. are analogous to the proofvariablesn, m andr, wherev(n) = (PNy, M;), v(m) is

of item 1. O

7. General Framework of Net Transformations

In [23], we have introduced the paradigm "nets and rules
as tokens” using a high-level model with suitable data type
part. This model called algebraic higher-order (AHO) sys-
tem (instead of high-level net and replacement system as i
[23]) exploits some form of control not only on rule appli-
cation but also on token firing. In general, an AHO system

is defined by an algebraic high-level net with system places
and rule places as for example shown in Fig. 10, where the
marking is given by a suitable P/T system resp. rule on these

places. For a detailed description of the data type part, i.e
the AHO-SrsTEM signature and corresponding algebra
we refer to [23].

In the following, we review the behavior of AHO sys-
tems according to [23]. With the symbblar(t) we indi-
cate the set of variables of a transitigri.e. the set of all

a suitable match morphism andr) = prodpne.. The
firing conditioncod m = n ensures that the codomain
of the match morphism is equal {&N,, M), while the
second conditiompplicable(r,m) checks the gluing con-
dition, i.e. if the ruleprod,i.t. is applicable with match
Afterwards, the transformation step depicted in Fig.
2 is computed by the evaluation of the net inscription
transform(r,m) and the effect of firing the transition

"Yransformatioris the removal of the P/T systef® Ny, M)

from placep; and adding the P/T systef® N», M) to it.

The pair (or sequence) of firing and transformation steps
discussed in the last sections is reflected by firing of the
transitions one after the other in our AHO system. Thus,
the results presented in this paper are most important for
the analysis of AHO systems.

8. Conclusion

In this paper, we have shown that the categB)Sys

variables occurring in pre and post domains and in the firing of P/T systems, i.e. place/transition nets with markings,

condition oft. The marking)M determines the distribution

of P/T systems and rules in an AHO system, which are ele-

ments of a given higher-order algebta

Intuitively, P/T systems and rules can be moved along
AHO system arcs and can be modified during the firing
of transitions. The follower marking is computed by the
evaluation of net inscriptions in a variable assignment
Var(t) — A. The transitiort is enabled in a marking/
if and only if (¢,v) is consistent, that is if the evaluation
of the firing condition is fulfilled. Then the follower mark-
ing after firing of transitiort is defined by removing tokens
corresponding to the net inscription in the pre domaimn of

is a weak adhesive HLR category for the cladgg ;. Of

strict P/T morphisms. This allows the application of théaric
theory for adhesive HLR systems like the Local Church-
Rosser, Parallelismus and Concurrency Theorems to trans-
formations within reconfigurable P/T systems. Moreover,
we have transferred the results of the Local Church-Rosser
Theorem to the consecutive evolution of a P/T system by to-
ken firings and rule applications. We have presented neces-
sary and sulfficient conditions for (co-)parallel and sequen
tial independence and have shown, that provided that these
conditions are satisfied, firing and transformation steps ca
be performed in any order, yielding the same result. Also,

and adding tokens corresponding to the net inscription inwe have correlated these conditions, i.e. that parallel in-

the post domain of.
The transitions in the AHO system in Fig. 10 realize on

dependence implies sequential and coparallel indeperdenc
and, vice versa, sequential (coparallel) independence im-

the one hand firing steps and on the other hand transformaplies parallel and coparallel (parallel and sequentiadgin

tion steps as indicated by the net inscriptighise(n, t) and
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pq : System po : Rules

token game n n transformation
- ) v [ Prodpnot
t :Transitions L | (PN, M) ggd-Mo" - prote
) m=mn d
— . pro
enabledn, t) =tt |fire(n, t) transform(r, m) applicable(r, m) = tt follow

(AHO-SYSTEM-SIG,A)

Figure 10. Algebraic higher-order system

Related Work Kernel [24], a tool infrastructure for Petri nets of diffate
net classes.
Transformations of nets can be considered in various On the theoretical side, there are other relevant results

ways. Transformations of Petri nets to a different Petri net N the context of adhesive HLR systems which could be in-

class (e.g. in [8, 10, 37]), to another modeling technique teresting to apply within reconfigurable P/T systems. One
or vice versa (e.g in [3, 6, 15, 25, 34, 14]) are well exam- of them is the Embedding and Extension Theorem, which

ined and have yielded many important results. Transforma-deals with the embeddipg of a transformation into a larger
tion of one net into another without changing the net class CONtext. -Another one is the Local Confluence Theorem,
is often used for purposes of forming a hierarchy in terms also called Critical Pair Lemma, which gives a criterion
of reductions or abstraction (e.g. in [22, 16, 21, 12, 9]), or when two direct transformations are locally confluent. As
transformations are used to detect specific propertiestsf ne future vyork, it would be important to verify the additional
(e.g. in[4, 5, 7, 29]) properties necessary for these results.

Ne snsiormatons tha sim diecty at changng e 71 1€ TSI O cepies sens oen ooy
net in arbitrary ways as known from graph transformations | . . ) N9 P ' .

were developed as a special case of HLR systems e.g. inblne Petri nets W'th some data speC|f|cz_at|o_n [30]. In [35], it
[18]. The general approach can be restricted to transforma-> shown that different !<|nds of algebra|_c high-level (AHI‘.)
tions that preserve specific properties as safety or livenes nets fprm weak adhesive HLR categqnes. It would be n-
(see [31, 33]). Closely related are those approaches tha eresting to show that the corresponding AHL systems, i.e.

propose changing nets in specific ways in order to preserve Hr||_ netﬁhviwth m%rlsn%s,rﬁiredafls? Weikk?ggeilszLR ('Ea:r?-
specific semantic properties, as equivalent (I/O-) belmavio gories. 1 his could be verimed for eac 0 syste

(e.gin [2, 11]), invariants (e.g. in [13]) or liveness (eig directly, but a more elegant solution would be to find a cat-
[2(') 38]), ’ e ' egorical construction integrating the marking.
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