

MEMTRACE:
A Memory, Performance and Energy Profiler

Targeting RISC-Based Embedded Systems
for Data-Intensive Applications

von
Diplom-Ingenieur

Heiko Hübert

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzende: Frau Prof. Dr. rer. nat. Sabine Glesner
Berichter: Herr Prof. Dr.-Ing. Hans-Ulrich Post
Berichter: Herr Prof. Dr.-Ing. Holger Blume

Tag der wissenschaftlichen Aussprache: 19. Mai 2009

Berlin 2009
D83

 II

Acknowledgements
The research described in this thesis has been carried out at the Fraunhofer Institute for Tele-
communications, Heinrich Hertz Institute (HHI) in Berlin. My work within the Embedded
System Group (ESG) of the Image Processing Department laid the foundations and provided
inspiration for this dissertation.

First of all I would like to thank Professor Hans-Ulrich Post, who immediately agreed to su-
pervise this thesis. He provided me with valuable comments on scientific and structural con-
cerns. I am also very grateful to Professor Holger Blume for being the co-referee and for all
our discussions, which were inspiring and valuable to me.

A very special and extended thank you goes to my supervisor at HHI, Dr. Benno Stabernack,
who conducted me through all these years. I appreciate his advice on so many matters and the
countless hours he invested in discussions and just chatting. I am also grateful to Dr. Ralf
Schäfer, the head of the Image Processing Department, for giving me the opportunity to ac-
complish this work. My gratitude also goes to my colleagues at HHI for all the fruitful discus-
sions and for helping me to expand my knowledge in many ways.

Special thanks go to Ella Ornstein, who helped this work to lose a bit of its German accent
and make it nicer for the native speaker’s ears. Also, Joshua Becker and my colleagues at HHI
spent many hours of their spare time proof-reading. Many thanks.

Finally, I want to express my deepest appreciation to my family and friends. They provided
moral support and always managed to encourage me whenever the goal seemed out of reach.

 III

 IV

Abstract
The design of embedded hardware/software systems is often subject to strict requirements
concerning various aspects, including real time performance, energy consumption and die
area. Especially for data-intensive applications, such as multimedia systems, the number of
memory accesses is a dominant factor for these aspects. In order to meet the requirements and
design a well-adapted system, it is necessary both to optimize the software and to design an
adequate hardware architecture. For complex applications, this design space exploration can
be difficult and requires in-depth analysis of the application and its implementation alterna-
tives. This calls for profiling tools, which aid the designer in the design, optimization and
scheduling of hardware and software.

Numerous tools exist for this purpose, and performance profiling solutions especially have
been available for decades. Memory and energy profiling for embedded systems have become
major issues within the last 10 years. However, the existing tools either cover only parts of the
required profiling results or the statistics are not at the required level of detail. Some of the
tools provide results only for the entire application and not at a source-code function level.
This restricts the optimization potential, as the cause of a performance loss cannot be local-
ized. Other tools suffer from a restricted level of accuracy. Results are based on generic proc-
essor architectures or taken with a low sample rate, or the tools apply source code instrumen-
tation. Available profiling mechanisms with high accuracy suffer from long simulation times.
This makes a comprehensive system analysis unfeasible.

This work presents a novel profiling methodology, which combines fast, accurate and com-
prehensive profiling in order to overcome the restrictions of the aforementioned techniques.
The work describes the developed technique and its implementation as the MEMTRACE pro-
filing tool. The trade-off between a decent simulation time and a sufficient level of accuracy is
reached by using a tracing-based profiling approach that applies cycle-accurate simulators. In
order to target a broad range of processors, a well-defined interface is established for inter-
connection with the processor simulator. Thus any cycle-accurate model can be used, as long
as it provides access to basic runtime information such as the program counter, cycle counter
and memory busses. The profiler is independent of the application’s source code, which leads
to higher accuracy as compared to instrumentation-based tools.

METRACE delivers cycle-accurate profiling results on a C function or even source code line
level. The results include clock cycles, various memory access statistics and energy consump-
tion estimates for embedded RISC-based processors. In addition to these results, the tool gen-
erates numerous statistics tailored to the specific optimization techniques that have been de-
veloped in this work. A focus is placed on memory access optimization, since for data-
intensive applications, this aspect offers a high potential for increasing system efficiency.

Additionally to software analysis, the profiler supports an examination of bus-based systems,
for example those composed of a processor, memory devices and coprocessors. For this pur-
pose the coprocessors are represented by abstract but cycle-accurate models and
MEMTRACE has been extended by detailed bus analysis features.

An instruction-accurate power consumption model has been developed for a sample processor
and incorporated into the profiler for energy estimation. Two case studies are presented,
which show how the applicability of the profiler and the optimization techniques has been
proven in the design of hardware/software systems for data-intensive applications.

 V

 VI

Zusammenfassung
Der Entwurf eingebetteter Hardware/Software-Systeme unterliegt häufig strengen Anforde-
rungen hinsichtlich verschiedener Kriterien wie z.B. Echtzeitfähigkeit, Energieverbrauch und
Chipfläche. Insbesondere bei datenintensiven Anwendungen, beispielsweise in Multimedia-
systemen, spielt die Anzahl von Speicherzugriffen eine dominierende Rolle. Um diesen Krite-
rien beim Entwurf gerecht zu werden, muss sowohl die Software optimiert als auch eine adä-
quate Hardwarearchitektur entwickelt werden. Für komplexe Anwendungen kann diese
Entwurfsraum-Exploration aufwändig sein und setzt eine detaillierte Analyse der Anwendung
und ihrer Implementierungsalternativen voraus. Um den Entwickler bei Entwurf, Optimierung
und Scheduling zu unterstützen, werden deshalb Analysewerkzeuge (Profiler) benötigt.

Zahlreiche Programme wurden bereits zu diesem Zweck entwickelt, insbesondere Leistungs-
analysewerkzeuge existieren seit langem. Die Speicherzugriffs- und Verlustleistungsanalyse
gewannen gerade in den letzten zehn Jahren an Relevanz. Die gegenwärtigen Profiler decken
jedoch entweder nur einen Teil dieser Analysen ab oder sie können nicht den benötigten De-
taillierungsgrad liefern. Beispielsweise können einige der Werkzeuge die Ergebnisse nicht den
Quellcodefunktionen zuordnen. Dies verringert das Optimierungspotential, da die Ursache
einer Leistungseinbuße nicht genau lokalisiert werden kann. Andere Profiler liefern hingegen
eine eingeschränkte Genauigkeit aufgrund generischer Prozessormodelle, niedriger Abtastfre-
quenz oder Quellcodemodifikationen (Instrumentation). Analysemethoden mit hoher Genau-
igkeit benötigen oft lange Simulationszeiten, die eine umfassende Systemanalyse verhindern.

In dieser Arbeit wird eine neue Profilingmethode vorgestellt, die sowohl eine genaue, schnelle
als auch umfangreiche Analyse ermöglicht und damit die Schwächen der erwähnten Metho-
den überwindet. Die Arbeit beschreibt die Methodik und deren Umsetzung als MEMTRACE
Profiler. Durch einen tracingbasierten Ansatz, der einen zyklengenauen Simulator verwendet,
können sowohl eine adäquate Simulationszeit als auch eine ausreichende Genauigkeit erreicht
werden. Um einen breiten Bereich an Prozessoren abdecken zu können, wurde eine wohldefi-
nierte Schnittstelle zwischen Profiler und Simulator geschaffen. Dadurch kann jedes zyklen-
genaue Modell verwendet werden, das einen Zugang zu grundlegenden Prozessorressourcen
erlaubt, wie z.B. dem Befehlszähler, Zyklenzähler und den Speicherbussen. Außerdem ist der
Profiler vom Quellcode der zu untersuchenden Applikation unabhängig, was zu einer höheren
Genauigkeit gegenüber den Ergebnissen instrumentationsbasierter Ansätze führt.

MEMTRACE liefert zyklengenaue Analyseergebnisse auf Funktions- bzw. Zeilenebene des
C-Quellcodes. Die Ergebnisse umfassen Taktzyklen, zahlreiche Speicherzugriffsstatistiken
und Energieverbrauchsabschätzungen für eingebettete RISC Prozessoren. Neben diesen Er-
gebnissen werden zahlreiche weitere Analyseergebnisse generiert, die auf spezielle Optimie-
rungen zugeschnitten sind, welche im Rahmen dieser Arbeit entwickelt wurden. Dabei wird
ein Fokus auf Speicherzugriffe gelegt, da deren Optimierung bei datenintensiven Anwendun-
gen ein hohes Potential zur Steigerung der Systemeffizienz mit sich bringt.

Zusätzlich zur Softwareanalyse wird durch den Profiler auch eine Untersuchung bus-basierter
Systeme ermöglicht, z.B. bestehend aus einem Prozessor, Speichern und Coprozessoren. Dazu
werden die Coprozessoren durch abstrakte, aber zyklengenaue Modelle abgebildet sowie
MEMTRACE um detaillierte Busanalysefunktionen erweitert.

Um eine Abschätzung der Verlustleistung zu unterstützen, wurde exemplarisch ein instrukti-
onsgenaues Verlustleistungsmodell entwickelt und in den Profiler integriert. Anhand zweier
Fallstudien wird gezeigt, wie der Profiler erfolgreich innerhalb des Entwurfs von Hard-
ware/Software Systemen für datenintensive Applikationen Anwendung finden konnte.

 VII

 VIII

Table of Contents
ACKNOWLEDGEMENTS..III

ABSTRACT...V

ZUSAMMENFASSUNG... VII

TABLE OF CONTENTS.. IX

ABBREVIATIONS ..XIII

1 INTRODUCTION ... 1
1.1 BACKGROUND .. 1
1.2 CONTRIBUTIONS ... 2
1.3 OUTLINE ... 2

2 STATE OF THE ART.. 3
2.1 EMBEDDED SYSTEMS.. 3

2.1.1 Design Flow .. 4
2.1.2 Processors ... 5
2.1.3 The ARM Architecture ... 5
2.1.4 The AMBA Architecture... 8

2.2 PROCESSOR SIMULATORS.. 9
2.2.1 ARMulator – The ARM Instruction Set Simulator... 10
2.2.2 Automatic Simulator Generation – The Verilator.. 14

2.3 TOOLS... 15
2.3.1 ARM Software Development Toolchain... 15
2.3.2 Cycle Profiling Tools ... 16
2.3.3 The ATOMIUM Memory Profiler .. 21
2.3.4 Power Estimation Tools... 22

3 THEORETICAL BACKGROUND ... 27
3.1 EMBEDDED SYSTEM COMPONENTS... 27

3.1.1 Processor Architectures... 27
3.1.2 Memory Architectures ... 29
3.1.3 Interconnection Architectures.. 35

3.2 SIMULATION MODELS... 37
3.2.1 Processor Models .. 37
3.2.2 Memory Models... 39

3.3 PROFILING .. 40
3.3.1 Profiling Results .. 41
3.3.2 Profiling Methods.. 41

3.4 DATA-INTENSIVE APPLICATIONS AND THEIR IMPLEMENTATION FOR RISC PROCESSORS..................... 43
3.4.1 The H.264/AVC Video Coding Standard.. 43

4 COMPREHENSIVE PROFILING OF EMBEDDED PROCESSORS .. 48
4.1 EXTENSIVE PROFILING METHODOLOGY ... 48

4.1.1 Program Information Acquisition ... 52
4.1.2 Runtime Data Acquisition ... 52
4.1.3 Representation of the Statistical Analysis Data... 53

4.2 MEMORY PROFILING WITHIN THE DESIGN FLOW .. 54
4.2.1 Hardware/Software Partitioning and Design Space Exploration ... 54
4.2.2 Software Profiling and Optimization... 55
4.2.3 Hardware/Software Profiling and Scheduling... 55
4.2.4 Coprocessors... 56
4.2.5 Scheduling... 56
4.2.6 HDL Simulation... 57

 IX

4.3 PROFILING-BASED SOFTWARE OPTIMIZATIONS... 57
4.3.1 Pinpointing Code Locations with Inefficient Memory Accesses.. 58
4.3.2 Using Caches and Non-Cacheable Areas.. 61
4.3.3 Page Miss Reduction in DRAMs ... 61
4.3.4 Speedup Estimation before Implementation .. 61
4.3.5 Data Access Visualization ... 62
4.3.6 Efficient Register Usage.. 62

4.4 PROFILING-BASED HARDWARE OPTIMIZATION... 63
4.4.1 Instruction Set ... 64
4.4.2 Address Modes .. 64
4.4.3 Data Partitioning between Fast and Slow Memory .. 66

4.5 POWER MODEL OF AN EMBEDDED PROCESSOR... 68
4.5.1 CMOS Power Consumption .. 69
4.5.2 Power Measurement Methods ... 70
4.5.3 Instruction Sequences for Power Evaluation .. 73
4.5.4 Power Model of an SoC .. 74

5 IMPLEMENTATION.. 80
5.1 WORKFLOW.. 80

5.1.1 Initialization .. 81
5.1.2 Analysis ... 81
5.1.3 Postprocessing of the Analysis Results.. 82

5.2 TOOL ARCHITECTURE ... 83
5.2.1 MEMTRACE Base... 84
5.2.2 MEMTRACE Dynamic Link Library (Backend).. 85

5.3 GRAPHICAL USER INTERFACE... 86
5.4 SPREADSHEET FORMAT DESCRIPTION... 87
5.5 THE CONFIGURATION FILE.. 89

5.5.1 File Format ... 89
5.5.2 List of Functions.. 89
5.5.3 List of Variables... 90
5.5.4 Global Settings .. 91

5.6 INFRASTRUCTURE FOR SYSTEM ARCHITECTURE PROFILING ... 91
5.6.1 Hardware/Software Cosimulation Interface.. 91
5.6.2 DMA Controller .. 92

5.7 RETARGETING TO OTHER EMBEDDED PROCESSORS.. 92
5.7.1 Toolflow for Profiling LISA and Verilog Processor Models .. 94

5.8 POWER MEASUREMENT SETUP ... 97
5.8.1 Calibration of the Measurement Setup.. 98
5.8.2 Software Test Suite .. 99

6 APPLICATION OF THE PROFILER .. 101
6.1 H.264/AVC DECODER PROFILING .. 101

6.1.1 Description of the Test Scenario.. 101
6.1.2 Profiling Results .. 103
6.1.3 Profiling-Based Software Optimization Potential ... 108
6.1.4 Summary of Profiling and Software Implementation Results ...114
6.1.5 Hardware/Software System Architecture ..116

6.2 GESTAVATAR – GESTURE DETECTION FOR AVATAR CONTROL ..118
6.2.1 Results ..119

7 SUMMARY & PROSPECTS ... 122
7.1 COMPARISON WITH EXISTING TOOLS .. 122
7.2 PROSPECTS ... 123

8 APPENDIX .. 124
8.1 DETAILED AND COMPREHENSIVE PROFILING RESULTS ... 124

8.1.1 H.264/AVC Encoder/Decoder ... 124
8.1.2 Function Group Analysis for I- and P-Frames.. 127
8.1.3 Cycles per Frame Analysis.. 133

 X

8.1.4 Usage of ARM11 SIMD Instructions ... 135
8.2 MEMTRACE IMPLEMENTATION DETAILS.. 138

8.2.1 Block Diagrams of MEMTRACE Internals ... 138
8.2.2 Screenshots of the Graphical User Interface... 142
8.2.3 Detailed Power Measurement Results... 145
8.2.4 The Configuration File.. 146
8.2.5 List of Source Code Files .. 148
8.2.6 Full Description of the Command-line Syntax .. 150

REFERENCES.. 151

 XI

 XII

Abbreviations
AHB Advanced High-performance Bus

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

AXF ARM Executable Format

AXI Advanced eXtensible Interface

CIF Common Intermediate Format

CISC Complex Instruction Set Computer

CLI Command-line Interface

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DDR Double-Data-Rate

DLL Dynamic Link Library

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DVB-H Digital Video Broadcasting – Handheld

EBC External Bus Cycles

ELF Executable and Linking Format

FPGA Field-Programmable Gate Arrays

FIFO First In – First Out

FLI Foreign Language Interface

FLPA Functional-Level Power Analysis

GUI Graphical User Interface

HDL Hardware Description Language

ILPA Instruction-Level Power Analysis

IO Input/Output

IP Intellectual Property

IPC Instruction Per Cycle

ISO International Organization for Standardization

ISA Instruction Set Architecture

 XIII

 XIV

ISS Instruction Set Simulator

ISSM Instruction Set System Model

ITU International Telecommunication Union

MMU Memory Management Unit

MPEG Moving Pictures Experts Group

NoC Networks-on-Chip

OS Operating System

PCB Printed Circuit Board

PDA Personal Digital Assistant

Pel Picture Element (Pixel)

PLI Programming Language Interface

QVGA Quarter Video Graphics Array

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

RTSM Real Time System Model

RW Read-Write

SIMD Single Instruction Multiple Data

SPICE Simulation Program with Integrated Circuit Emphasis

SoC System-on-Chip

SDRAM Synchronous Dynamic Random Access Memory

SI International System of Units

SRAM Static Random Access Memory

TCM Tightly Coupled Memory

TLB Translation Lookaside Buffer

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLC Variable Length Coding

VLIW Very Long Instruction Word

ZI Zero Initialized

1.1 Background

1 Introduction
1.1 Background

The design of an embedded system often starts from a software description of the system in
the C language. For example, the designer writes an executable specification based on a refer-
ence implementation of the application, e.g. from standardization organizations or the open-
source community. This software code is often not optimized in any way, because it mainly
serves the purpose of functional and conformance testing. Therefore it has to be transformed
into an efficient system, including hardware and software components. The design of the sys-
tem requires the following steps:

• system architecture design
• hardware/software partitioning
• software optimization
• design of hardware accelerators
• system scheduling

All these steps require detailed information about the performance of the different parts of the
application. Besides the arithmetical demands of the application, memory accesses can have a
huge influence on performance and power consumption. This is especially the case for data-
intensive applications such as multimedia systems, due to the huge amount of data being
transferred in these applications. This problem increases if the given data bandwidth is not
used efficiently.

In order to reduce overall data traffic, those parts of the code which require a high amount of
data transfer have to be identified and optimized. The above-mentioned applications contain
up to 100,000 lines of source code. Therefore tools are required that help the designer to iden-
tify the critical parts of the software. Several analysis tools exist, for example gprof [42] or
VTune [57] provide timing analysis. Memory access analysis is part of the ATOMIUM [25]
tool suite. However, all these tools provide only approximate results for either timing or
memory accesses. A highly accurate memory analysis can be done with a hardware (HDL)
simulator, if an HDL model of the processor is available. However, such an analysis requires a
long simulation time.

This thesis targets these issues and covers the performance, memory and power consumption
profiling of embedded systems, as well as the usability of the profiling results within the de-
sign flow. In order to achieve a fast and accurate solution, a specialized profiler has been de-
veloped, called MEMTRACE, for obtaining performance, memory access and power con-
sumption statistics. The profiling is tailored to embedded system architectures containing a
single RISC processor, a single memory bus with memory-mapped components – such as
memory or coprocessors – and a direct memory access (DMA) controller. This thesis will
show how the provided profiling results can be used during the design and optimization of
embedded hardware/software systems. Among other case studies, MEMTRACE has been
applied during the efficient design of a mixed hardware/software system for H.264/AVC
video decoding. Starting from a software implementation, this thesis shows how the software
is optimized, an efficient hardware architecture developed and the system tasks scheduled
based on the profiling results.

 1

1 Introduction

1.2 Contributions
The contributions of this work can be summarized as:

• presentation of an overview of existing profiling tools
• overview of embedded system architecture components
• design and implementation of a profiling tool suite
• development of several profiling analysis methods for memory-centric software and

hardware optimization
• design and implementation of a hardware/software co-profiling environment
• creation of a simple processor power model for energy profiling
• integration of the profiler in an embedded system design flow
• application of the profiler for analysis of several software projects
• application of the profiler during the design of a system architecture for a multimedia SoC

This profiling and optimization methodology has been applied within several industrial and
research projects. The profiling tool developed in this work has been used for evaluating and
optimizing the performance of software targeting embedded devices. In-depth profiling has
been performed, combined with system architecture exploration of memory and coprocessors.

The profiling methodology and the tool implementation have been presented to the research
community in several publications and presentations at workshops and symposiums as well as
in a book chapter [46, 47, 48, 92, 49]. Furthermore, the application of the tool within the de-
sign of embedded systems is described in technical journals and proceedings of international
conferences [88, 89, 91, 87, 86]

1.3 Outline
Chapter 2 gives an overview of the state of the art in profiling and related subjects. A general
overview of current embedded system design flows and existing tools for CPU, memory and
power profiling is presented.

In Chapter 3 the theoretical background of the different aspects is surveyed. The components
of processor-centric embedded systems and the corresponding simulation models are pre-
sented. Since the focus of this work is data-intensive applications, an example of such appli-
cations and implementation issues for embedded systems are given. The different aspects of
profiling are highlighted and existing methods for hardware/software optimizations are pre-
sented.

Chapter 4 shows the contribution of this work to the field of profiling embedded processor
systems. The profiling method and a variety of analysis results are presented. There is also a
focus on power measurement and model creation for a sample processor. Furthermore, this
thesis presents the application of the profiling results within the design flow for hardware- and
software-centric optimizations.

The implementation and the workflow of the profiling tool as well as its integration with an
existing instruction set simulator are described in Chapter 5. The profiling tool has been used
within a number of projects for software analysis and optimization as well as for hardware
architecture design. Some examples are presented in Chapter 6. Chapter 7 summarizes the
work and points out unresolved issues and areas for future work.

 2

2.1 Embedded Systems

2 State of the Art
This chapter presents the state of the art of profiling of embedded systems. As the term “em-
bedded systems” is quite fuzzy, a review of the different definitions found in literature is pro-
vided and summarized. The major component of an embedded system is the processor, which
controls the system and executes the software part of the application. An overview of the most
common embedded processors is given. For profiling the software a simulation model of the
processor is required, therefore Section 2.2 describes a processor simulator and a simulator
generator. The following section gives an overview of the tools required in profiling process,
including an example development toolchain and existing tools for performance, memory and
power analysis.

2.1 Embedded Systems
Many definitions can be found for the term “Embedded System”. Marvedel gives a pragmatic
definition in his book of “Embedded System Design” [66], which covers a wide range of ap-
plication fields:

“Embedded systems can be defined as information processing systems embedded into
enclosing products, such as cars, telecommunication or fabrications equipments”

Most definitions slightly differ from each other, but a statement which can be found very of-
ten is that there is no fixed definition for this term. This fact was stated already a decade ago
[39] and a fuzziness within the definition is still common today [66]. The most plausible rea-
son is the enormous growth of the application field for embedded systems. Whereas an early
application for embedded system could be found in banking transaction systems [100] and
was implemented on mainframes. Over the decades their application field has grown to cover
industrial control systems, networking devices, household appliances, automotive and con-
sumer and many other products. Such systems can be found in portable as well as stationary
devices. The following attributes can be found in most descriptions of embedded systems, e.g.
in [66, 39, 72]:

• embedded in an enclosing device
• tailored to a specific application
• subject to real-time constraints and efficiency requirements
• interaction with external devices, such as sensors, regulators, input and output devices
• programmability is a common feature
• consists of hardware and software components
• often used in consumer products, control applications

Another way of identifying and defining embedded systems can be done by distinguishing the
term from related devices or systems. ASICs, which are also tailored to a specific application,
define devices usually composed of fixed hardware components. ASIPs come closer to em-
bedded systems, or can be part of such, as they also offer programmability besides their re-
stricted application area. However, ASIP only refer to the programmable part of a system. The
definition of SoC comes closest to the one of embedded systems, as system-on-chips combine
different components to form an entire system. An inherent characteristic of SoCs is that the
parts are combined on a single chip, whereas embedded systems might be (and often are) con-
structed of multiple devices.

 3

2 State of the Art

For clarifying the term, many people distinguish between embedded systems and general-
purpose computer, such as a PC. The difference can be stated by a PC not being dedicated to a
specific application and as such it can be programmed freely [21, 72]. On the other hand, the
computing task of the embedded systems is invisible to the user [66]. Edwards et al. [32] state
in 1997:

“Such systems, which use a computer to perform a specific function, but are neither
used nor perceived as a computer, are generically known as embedded systems”

The program code controlling the programmable parts of an embedded system is often stored
in ROM, such as a flash memory and is usually referred to as firmware, contrary to the term
software used in PCs.

Considering the two parts of the term, “embedded” indicates that the unit is part of a larger
device and not stand-alone. And the word “system” reflects that it consists of several units,
most often a processor, coprocessors and input/output units for interacting with the device.

2.1.1 Design Flow
The implementation of embedded hardware/software systems incorporates many design and
optimization steps. The targeted application and requirements have to be mapped on a combi-
nation of hardware and software components. The mapping decision is influenced by several
factors, mainly by the application requirements and the available hardware and software re-
sources. For finding a suitable system architecture, usually a design space exploration is per-
formed based on more or less detailed profiling [22].

Figure 1: Typical embedded system design flow

Figure 1 shows a typical design flow for embedded hardware/software systems. Initially a
system is defined in a textual form describing its functionality, requirements and constraints.
The description of the functionality is then transferred to an executable form in order to prove
its correctness. After functionally verifying this executable system description, often in C or

 4

2.1 Embedded Systems

C++, a performance evaluation needs to be made in order to find an appropriate hard-
ware/software architecture. Starting with a pure software implementation and an initial archi-
tecture specification, profiling can be used to measure the performance and reveal if the (real-
time) requirements are met. If not, an iterative cycle of software and hardware partitioning,
optimization and scheduling starts. During this process a continuous co-verification of the
system is required. This includes on one hand a cosimulation [50] for ensuring the functional
correctness of the system. On the other hand detailed profiling results are crucial for monitor-
ing the influence of design steps on the performance.

2.1.2 Processors
Table 1 gives an overview of the most popular embedded RISC processors. Most processors
feature a five- to seven-stage pipeline, as it offers a reasonable trade-off between maximum
clock-frequency and instruction delay. A common number of registers is 32, with a major ex-
ception being the ARM processors, which only feature 16 registers. Section 2.1.3 describes
the ARM processor family in more detail.

Most RISC processors are built as Harvard architecture with separated instruction and data
caches. Typically, these caches are two- to four-way set associative and have a size of 32 to 64
kB. Since caches are very area and energy consuming, second-level caches are not very com-
mon in embedded system design and can only be found in high performance architectures,
such as the ARM Cortex-A9 [8] SoCs. Some of the processors are extensible in their execu-
tion unit. The LEON [38] and the ARM processors use a coprocessor interface for this pur-
pose. Before the calculation can be executed data needs to be transferred from the register file
to the coprocessors by special instructions. Tensilica [94] and ARC [6] allow a customization
of the instructions set. The execution unit can be placed beside the main ALU and incorpo-
rated in the pipeline path, which allows direct access to the register file. Besides the presented
processors, numerous embedded architectures exist, which combine a RISC-Core with a DSP,
e.g. Blackfin [5] from Analog Devices or TriCore [52] from Infineon. Such architectures have
proven to be a good choice for combining control-flow and data processing needs of multi-
media applications.

2.1.3 The ARM Architecture
The ARM processor architecture [37] has evolved over the years from a simple 3-stage pipe-
lined RISC core to a 13-stage-pipelined multi-core SoC architecture. Initially, it had been de-
veloped only as a processor for personal computers, but the architecture has been found to be
very efficient in terms of performance and power consumption. This makes the ARM proces-
sors a good candidate for embedded systems, e.g. for controlling tasks and the newer architec-
ture types also for data processing. The ARM core architecture is a typical RISC processor
however with a small register file of only 16 registers, which can lead to performance restric-
tions for data-intensive applications. Data transfer between register file and memory is only
possible with load and store instructions. Newer core types also support more CISC-like load
and store instructions for transferring multiple registers with a single instruction. These, in-
struction are often used for saving registers to the stack or for copying data from one memory
location to another. Besides decreasing the instruction count it speeds up transfers by using
the burst mode of the AHB.

 5

2 State of the Art

 6

Table 1: Embedded RISC processors

Pr
oc

es
so

r

Pi
pe

lin
e

C
us

to
m

 in
st

r.

R
eg

is
te

rs

In
st

r./
da

ta

ca
ch

e
(in

 b
yt

es
)

In
st

r./
da

ta

T
C

M

(in
 b

yt
es

)

Sp
ec

ia
l f

ea
-

tu
re

s

ARM7TDMI 3 - 16 8k unified -/- Von Neumann architecture

ARM9E 5 - 16 128k/128k +/+ Coprocessor interface

StrongARM
SA-1110 5 - 16 16k/8k -/512 32 set-associative caches,

coprocessor interface

XScale PXA27x 7-8 - 16 32k/32k -/2k SIMD, coprocessor interface,
256kB SRAM

ARM11 8 - 16 64k/64k +/+ SIMD, branch prediction, 64-bit
bus, coprocessor interface

ARC600 5 + 32(-60) 32k/32k 512k/16k Branch prediction,
register file extendable

ARC700 7 + 32(-60) 64k/64k 512k/256k Branch prediction, 64-bit bus,
register file extendable

Tensilica
Xtensa7 5 + >=64 32k/32k 256k/256k Up to 128-bit bus,

windowed registers

Tensilica
Diamond232L 5 - 32 16k/16k -/- Windowed registers

LatticeMicro32 6 - 32 32k/32k -/-

Altera NIOS II 5-6 + 32 64k/64k +/+ Direct-mapped cache

Xilinx
MicroBlaze v5 5 - 32 64k/64k +/+ Direct-mapped cache,

coprocessor interface

MIPS 4KE 5 - 32 64k/64k +/+ Coprocessor interface

openRISC
OR1200 5 + 32 64k/64k -/- Direct-mapped cache,

open source

LEON3 7 - 520 1M/1M +/+ Coprocessor interface,
windowed registers, open
source
16-bit fixed length based,
superscalar SuperH SH-4/5 5 - 16 yes/yes -/-

An exceptional feature of the ARM architecture is a barrel-shifter within the execution stage
of the pipeline. The shifter is placed between the register file and the ALU. It can be used
within data processing and also for extending the range of immediate value as well as for
address offset manipulation.

Two major versions of the ARM instruction set exist, a full 32-bit version and a reduced 16-
bit, also called Thumb instruction set. The 32-bit instructions support conditional execution,
i.e. each instruction can be coded so that it only executes at a specific status of the CPU flags.
The instruction set has grown with every new architecture version and has become very dense
and irregular. Custom instructions are not allowed but custom functionality can be provided

2.1 Embedded Systems

 7

via the coprocessor interface. Up to 15 coprocessors can be attached to a core where one co-
processor is already defined as system control coprocessor, e.g. for controlling the MMU and
the caches. Specific instructions are available, which allow data transfer between coprocessor,
external memory and core register file and furthermore for initiating data processing opera-
tions on the coprocessor. For most of the ARM processors support both, little and big endian
data arrangement, thus depending on the application field the appropriate setup can be chosen.

ARM Ltd. licenses the processors as intellectual property and it comes in many different
flavors. The oldest architecture available is the ARM7 family. These processors have a simple
3-stage pipeline and a von-Neumann architecture, i.e. using a shared data and instruction bus.
The simplest version, the ARM7TDMI, only contains the core without a cache or MMU. This
is a very small implementation of a RISC core with a low power implementation. Starting
with the ARM9 family, a Harvard architecture is used, with separate caches for instructions
and data. The pipeline is extended to five stages and an optional floating point unit is
available. A write buffer is introduced for accelerating store operations to external memory
and a memory management unit (MMU) for operating system support. The ARM9E family
makes the caches customizable and adds tightly coupled memory (TCM) devices, which can
be used for fast data and instruction access. The instruction set is extended with DSP
instructions, such as a single-cycle multiply-accumulate instruction and saturating arithmetic.
The processor used in most studies of this work, the ARM946E-S, is a member of this
processor family.
The ARM 11 family, which was introduced in 2002, extends the pipeline to eight stages and
splits it into a data execution and load/store pipeline. Branch prediction is used to decrease the
need for flushes of the long pipeline. The instruction set is supplemented by SIMD instruc-
tions for use in data-intensive applications, e.g. video or data coding, and a built-in coproces-
sor for floating point arithmetic. Data transfers have been accelerated by a DMA controller for
the TCMs, a wider memory interface of 64-bit and unaligned memory accesses.

The latest processor family is called Cortex and offers several core types targeting different
application fields. The most powerful is the Cortex-A family, which provides a dual-issue 13-
stage pipeline, extends the SIMD instruction set and width (128-bit) and adds a second-level
cache. This family is not covered in this work, because a cycle-accurate instruction set simu-
lator is not available within the software design suite (Real View Development Suite [14]).

Two further families based on the ARM architecture are the StrongARM [53] and the XScale
[56] processors. In cooperation with Digital Equipment Corporation (DEC) ARM developed
the StrongARM processors in 1995. This core is a predecessor of the ARM9 architecture and
offers comparable hardware features, a 5-stage pipeline combined with a Harvard architecture
with separate caches and MMUs. Remarkably, the caches, which had an initial size of 16 kB
each (in later processor version the D-cache was reduced to 8 kB) are 32-way set-associative.
From the programmers perspective it is more similar to the ARM7, the instructions set
(ARMv4) provides only 32-bit instructions, without the Thumb or DSP extensions. When
Intel took over the processor development from DEC, the StrongARM was improved and
became the XScale processor. The XScale is compatible to the ARMv5TE instruction set,
which is also supported by the ARM9E family. The pipeline is extended to 7-8 stages and the
caches have a size of 32 kB each. Furthermore branch prediction is available and starting with
the PXA270, the Wireless MMX extension provides SIMD instructions and an on-chip
SRAM of 256 kB is incorporated.

Both, the StrongARM and the XScale are system-on-chip architectures, which provide power
management features and numerous auxiliary components, such as DMA controller and inter-

2 State of the Art

 8

faces to LC displays and serial data communication. They became very popular as processors
for portable devices, e.g. PDAs or navigation systems.

2.1.4 The AMBA Architecture
Many system-on-chip architectures use busses that are compliant to the Advanced Microcon-
troller Bus Architecture (AMBA) [10] standard. AMBA is a royalty-free standard developed
by ARM Ltd. and was first released in 1995. The standard defines a range of busses for differ-
ent needs, starting from simple low-bandwidth busses for I/O purposes up to multi-channel
pipelined busses for multi-core architectures. All AMBA busses are synchronous and have
separate data and address busses.

The Advanced Peripheral Bus (APB) of the AMBA specification is optimized for low-
bandwidth requirements, easy implementation and low power consumption and especially
suitable for slow I/O components, such as timers and serial interfaces. The only master device
allowed on the bus is the bridge to a higher order bus and the bus protocol is simple. Ad-
vanced features such as pipeline or burst transfer are not supported, and the bus width is re-
stricted to 32 bit. In order to reduce the required chip area, a tristate implementation of the
data bus is allowed. For faster system components such as the CPU, memory and DMA con-
troller, the AMBA specification defines the Advanced High-performance Bus (AHB) archi-
tecture. The AHB interface is the standard bus connection for all ARM processors up to the
ARM10 family, and is also the bus interface simulated in the ARMulator, and therefore used
within this work. It is a multi-master compatible bus system and features separate read and
write busses. An example system is shown in Figure 2, containing two bus masters and two
slaves, the bus arbiter and the decoder.

S
la

ve

M
as

te
r

M
as

te
r

S
la

ve

A
rb

ite
r

D
ec

od
er

Figure 2: AHB-based system with two masters and two slaves

2.2 Processor Simulators

 9

Any transaction is initiated by a master, which need to request access to the bus from the
arbiter. According to a prioritization scheme, which is not specified in the standard, the arbiter
grants access to the bus master with the highest priority. Once the access is granted, the arbiter
sets the multiplexers giving the master access to all control, address and data busses, enabling
it to reach the slaves. Although all slaves receive the signals, the actual addressed slave is
selected by the decoder, which evaluates the address bus according to a specified memory
map. In addition the multiplexers in charge of connecting the slave output signals, i.e. reading
data and response signals, are set according to the memory map. The address and data signals
are driven in a pipelined fashion, i.e. for one clock cycle the master provides the address and
control signals, and in the next cycle the data values are expected on the bus. During the data
phase of one access the master can issue the address for the next transaction. If the slave
cannot serve the data signal in the next cycle, it prolongs the data phase by issuing a wait
signal. If the slave expects the waiting time to be long, it can indicate this to arbiter, which
may grant bus access to other masters, until the slave can serve the request. This so-called
split transaction is especially useful when accessing slow-response slaves, such as an
SDRAM controller during a page miss, in order to reduce idle time of the bus.

Besides single data transfer, the AHB protocol specifies burst transfer, which allows the trans-
fer of multiple data values at consecutive addresses within one transaction. Similar to the sin-
gle data transfer, it starts with an address phase, but features a multi-cycle data phase, where
within each clock cycle (if not extended with wait states) one data transfer is issued. Burst
transfers are very suitable for burst-oriented components, such as SDRAM, which require a
long initialization (addressing) time for each access, but once addressed, can serve data very
fast, in order to overcome a long delay time of single transfers.

The AHB protocol allows bursts of fixed sizes or undefined lengths. If another master is re-
questing the bus during a long burst operation, this leads to a long latency time for this master,
and may reduce the system speed significantly. Therefore, a feature called early burst termina-
tion is available, which allows the arbiter to decide to interrupt the burst and grant the bus to
other waiting masters. For performance increase of the AHB, the simple multiplexer structure
shown in Figure 2 can be replaced by a more complex interconnect matrix, which creates a
multi-layered bus architecture for parallel data transfer.

The new bus standard within the AMBA specification is the Advanced eXtensible Interface
(AXI) Protocol [11]. It targets even higher bandwidth requirements, especially by separating
address and data busses and allow multiple data busses to exist in the system. Thus, multiple
transactions can be issued on the address bus and served independently on the data busses.
Furthermore, separate read and write data and address busses are defined, which allows con-
current read and write transactions. Each transaction can be labeled with a transfer ID for al-
lowing out-of-order completion. If some transactions have higher latency responses than oth-
ers, the out-of-order handling leads to less idle time on the busses. The AXI-based busses are
the standard interface of never ARM processors and are used in ARM11 and Cortex cores.

2.2 Processor Simulators
For testing and analyzing software for a specific processor, the processor needs to be available
as a hardware device or simulator, whereas simulators usually offer a more elaborate view of
the processor internals. Simulators exist for most processors, differing in their accuracy,
sometimes even multiple models on different accuracy levels exist for a processor [81]. As an
example of a typical model, an instruction set simulator (ISS) for the ARM architecture is
described in more detail. Usually processors, as any digital hardware component, are de-

2 State of the Art

scribed in a hardware description language. If no other processor model on a higher abstrac-
tion level is available, these models can be used for simulation. Being very fine grained they
lead to long simulation times. In Section 2.2.2 a tool is presented, allowing a transformation
of such models to a higher level of abstraction for faster simulation.

2.2.1 ARMulator – The ARM Instruction Set Simulator
The ARMulator [15] is the ISS for processors based on the ARM architecture. In conjunction
with a debugger it can be used for code evaluation and performance analysis. Besides the
processor core including the pipeline and the register file, the ARMulator simulates other ar-
chitectural features such as caches, a memory management unit (MMU) and a memory sub
system and peripheral devices. The ARMulator is implemented as DLL and works together
with the RealView Debugger, the AXF debugger and the command-line debugger armsd,
which are all part of the RealView Development Suite, see Section 2.3.1.

The ARMulator simulates the processors in a nearly cycle-accurate manner. Restrictions on
the accuracy apply concerning the cache simulation and advanced memory bus (AHB) archi-
tectures. The simulator supports a wide range of processors based on the ARM architecture,
including a basic support for StrongARM and XScale processors from Intel. See Section 2.1.3
for more details on the ARM processor architecture. As the ARM cores are available as hard-
ware IPs, many features of the cores are adjustable. The simulator allows adjusting these fea-
tures, which include:

• cache sizes and organization
• tightly coupled memory size
• processor speed
• divider between processor and bus cycle length

The external memory bus architecture is an abstract model of the AMBA AHB standard,
which defines a multiplexer-based on-chip bus. The multi-master capable bus has separate
address and data busses and a typical data bus width of 32-bit. The simulator can be extended
by modules, which can be used for gathering inside information of the simulator or for the
simulation of hardware components surrounding the processor. Such hardware extensions can
either be memory-mapped devices or connected via the coprocessor interface, thus creating an
entire system architecture. Some examples for extension modules are already provided with
the ARMulator, such as a profiler and a tracer module for analysis purposes as well as mem-
ory module for simulation of a memory sub system. Figure 3 shows an example connection of
modules to the ARMulator.

The ARMulator is extended with the tracer module, tracing all accesses to the caches and
from the caches to the external bus. The Mapfile models the timing behavior of each address
region defined by a memory map file. Every bus access is then passed to a bus model (Flat-
mem), which performs the address decoding, and parses the access either to a simple memory
model or to memory-mapped peripherals, such as a timer component or an interrupt control-
ler.

 10

2.2 Processor Simulators

 11

Figure 3: ARMulator extended with modules [15]

Modules need to be written in C or C++ and are connected to the ARMulator as DLLs. An
API is defined for the interconnection and the ARMulator extension kit provides the required
header files, libraries and makefiles. The API consists of numerous functions to access inside
variables of the simulator. This includes:

• read or write of a register or coprocessor value
• assert or read signals, e.g. interrupt signal
• set or get events, e.g. from the CPU/MMU or other modules, such as cache miss or

address undefined instruction
• access any memory location (without interfering the actual bus simulation)
• control and access to the simulator internals, such as reading the cycle counter or adding

other counters
• accessing the debugger, e.g. for printing messages on the debugger screen

The API also defines a number of auxiliary functions, helpful during the design of modules.
For example, for every instruction set a disassembly API function exists, providing the
disassembled line for a binary instruction code word. For actively including modules into the
simulation process, callback functions can be registered in the simulator. The functions can be
called at any of the following occasion:

• each instruction: for instruction tracing
• bus cycle: for inspecting bus behavior
• event: with installing event handler, this event can be caught within a module and perform

a particular action in the module
• after a specific time (from now): e.g. to imitate delay behavior of real hardware

Bus modules can be considered as leafs of the memory architecture tree generated by the
Flatmem module. They are called as soon as a memory access to their address range occurs.

2 State of the Art

The address range needs to be registered by the API function ARMulif_ReadBusRange()
and the module function, which serves the memory access within the module is registered
with the API function bus_registerPeripFunc(). Section 2.2.1.2 describes the definition
of a generic bus module for memory-mapped devices.

Memory modules, such as the tracer module, are instanced by being linked into the memory
chain. Starting from the core, every memory access is passed from one link in the memory
chain to the next. Two memory busses are accessible to modules, the core memory bus and
the external memory bus. The former is the connection between the core and the caches. The
latter connects the caches with the memory subsystem if caches are available, otherwise
memory and core bus are identical. Memory modules can link to both busses. The API func-
tions ARMulif_QueryMemInterface() provides a handle to a bus, which is required for
connecting to the bus and for retrieving information about the bus type. The function AR-
Mul_InsertMemInterface() is then applied to insert the module into the memory chain
and provided the simulator with the appropriate callback functions. The following section
about the Tracer module gives an example of a memory module.

The ARMulator, as well as the modules, can be controlled by configuration files. These files
specify module parameters or allow disabling a module, which might be required for speed-
ing-up the simulation. Alternatively these parameters can be overwritten with values passed
from the debugger, e.g. with command-line parameters of the debugger in order to modify the
behavior of a module for the current simulation run.

For new processors, starting with the Cortex family, the ARMulator has been replaced with
the Instruction Set System Models (ISSMs) [8], which no longer provide cycle-accuracy. In-
stead, in 2007 ARM presented the SOC Designer tool suite, which provides cycle-accurate
processor and system models. In 2008 ARM discontinued the SOC Designer development and
the tool was acquired by Carbon Design Systems. Thereafter ARM focuses on hardware-
based profiling instead, which is supported by ARM RealView Profiler, see Section 2.3.2.3.

2.2.1.1 The Tracer Module

The Tracer module is an extension for tracing numerous processor activities, such as instruc-
tions, memory accesses, register changes, and events, such as cache misses, and writes them
to file. An example trace file is given in Listing 1.

MSW4____ 0001A190 23C06023
BNR4O___ 000080C0 28B00030
MNR4O___ 000080C0 28B00030
IT______ 000080B8 8afffffb BHI 0x80ac
R_______ r1=0001a194
BNR4O___ 000080AC E2522010
MNR4O___ 000080AC E2522010
BSR4O___ 000080B0 28B01070
MSR4O___ 000080B0 28B01070
BSR4O___ 000080B4 28A11070
MSR4O___ 000080B4 28A11070
IT______ 000080AC e2522010 SUBS r2,r2,#0x10
BSR4O___ 000080B8 8AFFFFFB
MSR4O___ 000080B8 8AFFFFFB
IT______ 000080B0 28b01070 LDMCSIA r0!,{r4-r6,r12}
R_______ r2=00000018
BNR4____ 00019FA0 C023C184

Listing 1: Example tracer file

 12

2.2 Processor Simulators

The first letter of each line indicates the information type; the “M” stands for memory access
on the core memory bus, “B” lines indicate an access on the external memory bus. The ac-
cessed address and data are supplied. Lines starting with an “I” indicate the executed instruc-
tion including the disassembly, the suffix “T” indicates that the instruction was taken. “R”
shows changes in registers. Usually, for more complex software millions of cycles need to
simulated, thus the trace files can become enormously large, in the range of gigabytes. There-
fore, tracing a whole software execution with full trace information is not feasible. The tracer
allows disabling specific trace information, limiting the address range for memory tracing and
sub-sampling the tracing, i.e. only every n-th tracing sample will be written to the trace file.
The trace file source code is part of the RealView environment.

The tracer module connects to the ARMulator with four interfaces. It installs itself as bus
module on the core bus, for tracing every access to the instruction and the data cache. Fur-
thermore it links into the external bus chain, for tracing cache and write buffer accesses to the
external memory and other bus components, as shown in Figure 3. Instruction usage is ana-
lyzed by installing a so-called hourglass callback function, which is called each time a new
instruction is decoded. The disassembly functions are used to produce the disassembly string
depending on the current instruction mode. And finally, a callback function tracing various
events is installed.

2.2.1.2 The Mapfile Module

The Mapfile module defines a timing behavior for bus devices. The timing is provided in wait
states in terms of bus clock cycles. The Mapfile differentiates between read and write access
times as well as between sequential and non-sequential accesses. The specific timing for se-
quential accesses can be used to emulate for example burst modes on the bus or page hits in
DRAMs. Although this timing does not reflect the real behavior, at least it allows an approxi-
mation. For more detailed timing a DRAM timing module would be required. The Mapfile
imitates the AMBA bus behavior in a simple manner.

;; start size name width access read-times write-times
00000000 00010000 ROM 2 r 8/8 0/0
00010000 000F0000 NOMEM 4 - 0/0 0/0
00100000 00100000 SRAM 4 rw 16/16 16/16
00200000 00800000 DRAM 4 rw 208/8 200/8
00A00000 FF600000 NOMEM 4 - 0/0 0/0

Listing 2: Timing definition for the Mapfile module

The timing parameters are defined in a file, a typical example of an embedded system archi-
tecture is given in Listing 2. The mapping defines a ROM with a size of 16 kB (0x10000
bytes) starting at address 0x0. The data width of the ROM is 16 bits (2 bytes) and the sequen-
tial and non-sequential read access times are 8 ns each. An SRAM resides at address 0x10000
with a size of 1 MB and read and write times of 16 ns.

The non-sequential access times (208 ns and 200 ns) of the DRAM component are much
slower than the sequential times. This reflects the page architecture of DRAMs [45]. DRAMs
are organized in pages of memory cells, which are activated at the same time. Pages have a
size of typically 0.5 to 4 kB, and accesses within a page are served very fast. An access to
another page results in a page miss. For accessing this new page a pre-charge is required,
leading to a longer access time. Furthermore, if sequential accesses within a page occur, a
burst mode can be used, decreasing the access time even further. This results in the short ac-
cess times (8 ns) for sequential accesses to the DRAM.

 13

2 State of the Art

Depending on memory bus speed the Mapfile calculates the resulting wait states. For example
the 208 ns for a non-sequential read access to the DRAM lead to 25 wait states on a bus run-
ning at 125 MHz. Every access to a memory location from the processor simulator passes
through the Mapfile module. The Mapfile evaluates the timing behavior for this access, and
either passes the access to the memory, if no wait states occur, or triggers the wait signal on
the bus.

2.2.2 Automatic Simulator Generation – The Verilator
If simulators are not available for an existing processor or if the processor is a self-developed
design, a model of the processor needs to be created. One choice is writing a model of the
processor in software, for example in C. It is tricky to guarantee the consistency of the real
hardware processor and the software model, as they are developed independently. This task
becomes even more complicated if the processor design changes during development, for ex-
ample the pipeline structure is rearranged or new instructions are added. One solution is to use
the hardware description of the processor, if available, which is usually written in a hardware
description language, such as Verilog or VHDL. Simulation tools exist for executing the
hardware model, and a connection to the profiler can be established via specific external inter-
faces, for example via the so-called foreign or programming language interface (FLI, PLI).
However, hardware simulation is usually performed on a nanosecond-accurate level. This
implies long simulation time and delivers an accuracy, which is not required for the profiling.
Another choice is to convert the HDL model to a faster and more abstract cycle-accurate
model. Different tools exists to convert HDL models to SystemC or C, e.g. V2SC [68], Verila-
tor [85], or VHDL-to-SystemC [98]. Within this work the Verilator tool is applied for auto-
matic generation of a processor model. The tool takes a set of synthesizable Verilog code files
and creates a C++ model of this code including a simulator environment. The result is a C++
class containing the top level module of the Verilog design and all lower level modules. The
input and output ports of the top level module are converted to variables with the same name.
In addition ports and signals of lower level modules are still visible.

The Verilator environment allows an easy testbench creation for the generated processor.
Listing 3 shows the testbench for a C++ processor model called “Vtop”. Similar to the HDL
model the processor is operated with the reset signal and a toggling clock signal. The simula-
tor is instructed to evaluate the input signal and generate the internal and output signals by
calling the eval() function. Furthermore a tracing module is provided, which can be used to
generate waveform of signals.

#include <verilated.h> // Defines common routines
#include "Vtop.h" // From Verilating "top.v"
Vtop *top; // Instantiation of module
...
int main() {
 top = new Vtop; // Create instance
 top->reset_l = 0; // Set some inputs
 while (!Verilated::gotFinish()) {
 if (main_time > 10) {
 top->reset_l = 1; // Deassert reset
 }
 if ((main_time % 10) == 1) {
 top->clk = 1; // Toggle clock
 }
 if ((main_time % 10) == 6) {
 top->clk = 0;

 14

2.3 Tools

 }
 top->eval(); // Evaluate model
 cout << top->out << endl; // Read a output
 main_time++; // Time passes...
 }
 top->final(); // Done simulating
}

Listing 3: Example code of a C++ testbench for a Verilator processor simulator [85]

2.3 Tools
This section presents tools for the design and profiling of embedded software. As an example
of a software development suite, the RealView Developer Suite [14] for ARM processors is
presented. It contains tools for compiling and building applications from source or assembly
code targeted to a specific processor architecture. Development suites for other processors
provide similar features and tools, for example the GNU Compiler Collection [36]. In the fol-
lowing sections a survey of existing profiling tools is given, which cover the analysis of per-
formance, memory accesses and power consumption.

2.3.1 ARM Software Development Toolchain
ARM provides a toolchain for software development targeted to their processors, which is
called RealView Developer Suite [14]. The development suite includes all tools required for
software development, including compiler, linker, debugger and ISS.

Armcc [13] and armasm are the compiler and assembler for creating object files from soft-
ware source code files. The tools support the compilation of ISO C, ISO C++ or ARM assem-
bly code, respectively and are equipped with the standard library sets for C and C++ including
file input/output and the Standard Template Library (STL). The code generation of the tools
can be controlled with command-line options for creating code optimized for specific proces-
sor types and instruction sets, floating-point implementations and different optimizations tar-
gets, i.e. small code size or fast execution. Floating-Point operations can be either coded as
assembly instructions or as calls to library functions. The former requires that the processor is
equipped with a floating-point unit or an emulator. The tools can be instructed to include de-
bug information, e.g. for use in a debugger, in order to map assembly code lines to C source
code lines.

The object files created by armcc or armasm can either be first combined to a library with the
armar achiever tool, or directly linked to an executable file with the linker utility (armlink).
The linker creates an executable files from object and library files in the ARM Executable and
Linking Format (ARM ELF). The linker defines the placement of the code and data segments
of the input files in memory. Normally, code and data are partitioned in three regions:

• ER_RO: read-only region for program code and constant data
• ER_RW: read-write region for global variables
• ER_ZI: zero-initialized region for data, which need to initialized with a zero value

The regions are usually placed consecutively in memory followed by the heap. As stack and
heap grow toward each other, the stack is usually placed at a high address, in order to avoid a
stack-heap collision. The placement of the regions can be controlled by command-line options
of the linker, e.g. the start address and the grouping of regions. For a more comprehensive

 15

2 State of the Art

definition of the memory map a so-called scatter-loading can be applied. Within a scatter file,
the exact placement can be specified, see Listing 4.

ROM_LOAD 0x0 {
 ROM_EXEC 0x0 {
 vectors.o (Vect, +First)
 * (+RO)
 }
 DRAM_RW +0 {
 .ANY (+RW)
 }
 DRAM_ZI +0 {
 .ANY (+ZI)
 }
 HEAP +0 UNINIT {
 heap.o (+ZI)
 }
 TCM 0x04000000 0x2F40 {
 tcm_vars.o (+RO,+RW,+ZI)
 }
 STACKS 0x28080000 UNINIT {
 stack.o (+ZI)
 }
}

Listing 4: Example scatter file

The interrupt vectors and the startup code, defined in the file vectors.o are placed in at address
0x0 followed by the RW and ZI region and the heap. A number of variables, defined in
tcm_vars.o, are placed in a fast tightly coupled memory (TCM), which is memory-mapped at
location 0x04000000 with a size of 0x2F40. Finally, the stack is placed at address
0x28080000.

The executable files created by the linker can be preprocesses and examined by any ELF
compatible tool. The RealView suite includes a tool called fromelf, which can be used for
converting the executable into another format, e.g. binary format. Additionally it displays the
content of an ELF file, including code disassembly, debug information, and symbol tables. In
Section 4.1.1 it is shown, how the tool can be used for extracting function and variable names
of the executable.

The tool suite provides two GUI-based debuggers and a command-line-based debugger called
armsd for evaluating and debugging the code. The debuggers can either be used for observing
code execution on real processor hardware or on a simulator. The connection to the execution
unit is established via a DLL interface. For simulation the debugger connect to the ARMula-
tor, which is described in Section 2.2.1 The ARMulator can be extended for simulating the
behavior of surrounding memory-mapped hardware, e.g. memory, coprocessors or DMA con-
trollers.

2.3.2 Cycle Profiling Tools
Profiling is a part of the software development process and describes the procedure of analyz-
ing the execution behavior of software concerning different metrics. Table 2 gives an over-
view of existing profiling tools. They differ in the delivered analysis results, accuracy and
supported processor architectures. The tools are explained in more detail in the following sec-
tions.

 16

2.3 Tools

Table 2: Profiling tools

 C
yc

le
s

M
em

or
y

ac
ce

ss
es

Po
w

er

Pe
r

fu
nc

tio
n

Pe
r

lin
e

C
al

lg
ra

ph
 r

es
ul

ts

In
st

ru
m

en
ta

tio
n/

so

ur
ce

 c
od

e
re

qu
ir

ed

Accuracy Embedded
processors

Gprof + - - + + + + Sampling (10 ms)

Armprof + - - + - + - ARM CPUs

ARM RealView
Profiler + + - + + + - Sampling (μs/ns)

& estimation ARM CPUs

ATOMIUM + + - + - + + Abstract model

PowerEscape1 + + + + - + + Abstract model

VTune + + - + + +2 - Sampling Xscale, Intel x86

HDL Profiling3 + + + - - - - Ns If HDL model available

Valgrind /
Callgrind + + - + + + - Simulated CPU Only x86/PPC

SimpleScalar + + + - +4 - - Simulated CPU Synthetic model

MEMTRACE + + + + + - - Cycle if ISS available
1no longer available
2not for embedded processors
3very slow
4per assembly address

2.3.2.1 Gprof

Gprof [42] is a callgraph profiler, which was developed in the early 1980’s at the University
of Berkeley. It is based on the UNIX profiling tool prof [19] and became part of the BSD-
UNIX system. With some enhancements gprof also became part of the binutils package [35]
and is therefore available on all GNU/Linux systems. Thus, gprof became a widely-used pro-
filing tool for software analysis and optimization.

Gprof is based on instrumentation of the source code. This process is performed by the com-
piler and needs to be enabled by designer manually, i.e. the gcc compiler provides the “-pg”
option for this purpose. During instrumentation, see Section 3.3.2.1 for more details, the
source code is enhanced with code fragments, which are responsible for generating profiling
data during execution of the program. After finishing the program execution, the collected
profiling information is written to a file, which can be further processed by the profiler. Gprof
basically provides two different profiles, a flat profile as depicted in Listing 5 and a callgraph
profiling shown in Listing 6.

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 65.84 15.60 15.60 20000 780.22 883.96 b

 17

2 State of the Art

 18

 17.51 19.75 4.15 40000 103.74 103.74 c
 17.13 23.81 4.06 20000 202.97 306.71 a

Listing 5: Gprof flat profile

The flat profile is similar to the results that the simple prof tool delivers, including the total
time spent in a function, the number of calls, and the average time per call. An enhancement is
the total time per call including the called functions. This information is based on the
callgraph profiling.

granularity: each sample hit covers 2 byte(s) for 0.04% of 23.81
seconds

index % time self children called name

[1] 100.0 0.00 23.81 main [1]
 15.60 2.07 20000/20000 b [2]
 4.06 2.07 20000/20000 a [3]

 15.60 2.07 20000/20000 main [1]
[2] 74.2 15.60 2.07 20000 b [2]
 2.07 0.00 20000/40000 c [4]

 4.06 2.07 20000/20000 main [1]
[3] 25.8 4.06 2.07 20000 a [3]
 2.07 0.00 20000/40000 c [4]

 2.07 0.00 20000/40000 a [3]
 2.07 0.00 20000/40000 b [2]
[4] 17.4 4.15 0.00 40000 c [4]

Listing 6: Gprof callgraph profile

The detailed results for the callgraph profile provide a section for each node in the callgraph,
see Figure 4 for the example graph. Starting from the main function, the total time in percent
including all called functions is provided and how much of this time (in seconds) is spent in
the function itself and in its called functions (children), respectively. In the following lines
this timing information is provided for each child. For each parent of a function it is stated
how much time a function contributes to it. Furthermore, gprof allows a line-by-line profiling
for obtaining detailed results on a C source code line accuracy.

Figure 4: Callgraph

Gprof is a very useful tool for initial profiling. The drawback of the source code instrumenta-
tion is an inaccuracy, especially for small functions. The sampling method also leads to inac-
curacy especially for short functions and only provides estimated values.

2.3 Tools

2.3.2.2 Armprof

Armprof [14] is the profiler provided by with the ARM development environment. It provides
results similar to gprof, namely a flat profile as well as a callgraph profile. However the re-
sults are restricted to percentage values of the overall execution time; see Listing 7 for an ex-
ample result file.

Name cum% self% desc% calls
main 99.98% 0.00% 99.98% 1
 _printf 0.00% 0.00% 2
 b 66.10% 8.66% 20
 a 16.54% 8.66% 20
--
b 74.77% 66.10% 8.66% 20
 c 8.66% 0.00% 20
--
a 25.20% 16.54% 8.66% 20
 c 8.66% 0.00% 20
--
c 17.33% 17.33% 0.00% 40
--

Listing 7: Armprof callgraph profile

The operating mode of armprof differs from gprof. Profiling is not based on executing the
program on real hardware, but running it on a simulator. The profiler is a built-in feature of
the debugger armsd and applies the ARMulator, which is described in more detail in Section
2.2.1. Therefore, the code does not need to be instrumented. Only symbols need to present in
the executable for identifying the function names.

Additionally to the basic cycle profiling, event-based profiling is provided by the ARMulator,
i.e. the number of a specific event is counted for each functions. A wide range of events is
supported including cache misses, interrupts and branch prediction failures. The results can be
visualized with armprof in the same manner as the cycle profiling.

Similar to gprof armprof also applies a sampling-based mechanism and therefore encounters
the same inaccuracy.

2.3.2.3 ARM RealView Profiler

In 2007 ARM launched the RealView Profiler [8], a tool for profiling of ARM-based systems.
It provides a graphical user interface (see Figure 5) and very detailed profiling results and is
targeted to the optimization of software.

For this purpose it provides the following information besides the clock cycles:

• code coverage, including branch and statement coverage
• average cycle per instructions (CPI) and interlock information
• memory read and write accesses
• detailed graphical callgraph view and number of calls, callers and callees
• detailed information on function, class and source code line level including hot spots

For acquiring the runtime information for the profiling the RealView Profiler provides two
options, either a high-level simulation or a hardware tracing. The simulation is implemented
by means of the so-called Real Time System Model (RTSM), which are instruction-accurate

 19

2 State of the Art

simulation models. They don’t provide memory delay information, but allow an estimation of
the execution time. A few RTSMs for ARM9- and ARM11-based systems are enclosed with
the profiler, and further models can be built with a tool called System Generator.

Figure 5: Result GUI elements of the RealView Profiler

The hardware tracing method is a sampling-based method, which employs on-chip tracing
methods of the ARM processors, which is captured by an external device, namely RealView
Trace. The tracing information is then parsed and analyzed by the profiler. Currently, the
hardware tracing is restricted to the following three processors, ARM926EJ-S, ARM1136JF-S
and ARM1176JZF-S.

The profiling results are very comprehensive; however when using RTSMs they lack timing
accuracy of the processor and memory delay is neglected as well. Accurate timing can be ac-
complished with hardware tracing. This requires the appropriate hardware to be available,
which hinders a broader design space exploration. Additionally, the sampling method lowers
the accuracy. Memory profiling is only available in the sense of load/store operation tracing;
the target memory (cache, internal or external memory) is not visible to the profiler.

2.3.2.4 VTune Performance Analyzer

The VTune Performance Analzyer [57], similar to the RealView Profiler, is a GUI-based pro-
filing tool. The tool is provided by Intel and supports their processor families, which includes
for embedded systems only the XScale (PXA2xx) architecture respectively its successors
from Marvell Technologies. VTune is a sampling-based profiler analyzing the program run-
ning on real hardware, usually the same machine as the profiler. The sampling is interrupt-
based and can be triggered either by a specific event or by the timer. For PC processors a large
set of events is supported and callgraph profiling is possible as well. For embedded processors
the profiling is restricted to time-based sampling and a limited set of events, namely data
buffer and dependency and branch-specific events. Embedded systems are profiled remotely
by incorporating a data collector into the embedded operating system and visualizing the data

 20

2.3 Tools

on the GUI running on a PC. The PXA processors have two to four hardware counters, the so-
called performance monitor units (PMU), and the clock cycle counter for collecting the profil-
ing information.

The interrupt-based sampling of VTune leads to a slight inaccuracy and the sampling of an
application is executed while running on an operating system (OS), either Linux or Windows.
This has the advantage of also reflecting the influence of the OS, however this is not always
intended. Especially memory access optimizations are complicated, because of modified
cache statistics due to task switches.

2.3.2.5 Other Profilers

OProfile [64] is profiler for the Linux OS, which supports numerous processor architectures,
including the XScale, MIPS and PowerPC embedded processors. Similar to VTune, it uses the
hardware counters of the processor for data collection. Valgrind [71], also a linux-based pro-
filer, provides very detailed profiling information, but only supports PC processors and the
PowerPC embedded processor. Furthermore, most of processor development suites, such as
ARC [6], CoWare Processor Designer [29] and Tensilica [41] deliver their own profilers,
which are more or less comprehensive. For example the CoWare Processor Designer profiler
delivers very detailed results including memory access statistics. However, all these profilers
are restricted to the specific processor architectures.

2.3.3 The ATOMIUM Memory Profiler
The Belgian research institute IMEC developed a tool suite for optimizing data-intensive ap-
plications called ATOMIUM [25]. The tool suite consists of five tools, which focus on differ-
ent aspects of memory-centric optimizations, including data reuse within a memory hierarchy,
reducing the amount of data storage, memory architecture modifications and code pruning.
The optimizations can be applied automatically by the tools and are based on an initial evalua-
tion of the application. This first step within the optimization flow is carried out by the
ATOMIUM/Analysis tool, which provides detailed profiling information of an application on
C function level. For each function and for each variable within the C source code, read and
write memory access statistics are generated. Additionally, a hot spot analysis identifying the
most memory demanding code areas is carried out. The results are made available in different
formats, for example as HTML pages. The profiling is based on instrumentation of the C
source code, see Figure 6.

ATOMIUM/Analysis is a pure memory profiler, any timing information is omitted. It applies
only a flat memory architecture during analysis. Both points restrict the usage of the tool for
hardware tailored optimizations. The ATOMIUM/Memory Architect tool extends the memory
architecture with parameterizable memory, which also supports timing information. Due to
the instrumentation, the tool is dependent on source code availability, which prohibits profil-
ing of 3-party libraries or applications. ATOMIUM is based on an abstract architecture model,
thus the results are only an estimation of the real hardware results. This makes the tool well-
suited for optimizations in an early design stage, where hardware independent optimizations
take place.

 21

2 State of the Art

Figure 6: ATOMIUM/Analysis toolflow [25]

Besides ATOMIUM the most well-know memory profiling tool is Callgrind (an extension to
Cachegrind), which is part of the Valgrind [71] tool suite. It provides very detailed analysis
results, but is not available for embedded processors. At the Technical University of Munich a
tool called iprof [62] was developed, which extends gprof profiling with instruction usage
information. The tool performs a static analysis of the instruction usage of the program code
on a basic block level, and correlates this information with the gprof sampling results. Thus an
instruction profiling per basic block is accomplished. Memory access statistics can be gener-
ated by observing the usage of load and store instructions. Iprof is available only for the Intel-
IA32 architecture and for SPARC processors.

2.3.4 Power Estimation Tools
Several tools exist for the estimation of power consumption of processors and embedded sys-
tems. Generally, they can be separated in measurement-based models and analytical models.
JouleTrack [84] is a measurement-based tool, which provides several models on different lev-
els of abstraction for two different processors. Numerous analytical models have been built on
top of the processor simulator suite SimpleScalar [27]. PowerEscape [40] is a commercial tool
which uses a parameterizable generic processor and memory architecture for estimation of
power consumption, performance and memory accesses for a given application.

2.3.4.1 JouleTrack

In 2001 a power estimation tool called JouleTrack [84] was developed at the Massachusetts
Institute of Technology. It is implemented as a web-based application, which delivers energy
consumption values for C source code that is uploaded to the web page. Two processor archi-
tectures are supported, the StrongARM SA-1100 and the Hitachi SH-4 RISC processor, two
widely used embedded processors during that time.

 22

2.3 Tools

 23

Two distinct energy models are presented. Measurement of the current drawn while executing
different instructions show a variation of up to 38 %, Figure 7 shows the result for the Strong-
ARM processor. Contrarily, the average current for different benchmark programs varies only
within a small range. The average current mainly depends on the supply voltage and core
clock frequency. A simple first order model for energy estimation can be established as:

tfVIVE ddddtot Δ⋅⋅=),(0 (1)

In this model the required energy only depends on the time required to execute the program,
not on the actual program. The model estimates the energy within 8 % accuracy compared to
the measurements of the tested programs.

As shown in Figure 7, the largest current deviation exists for the data transfer instructions
load (LDxxx) and store (STxxx) and for the test (TST) and multiply-accumulate (MLA) in-
structions. Thus, especially for memory-intensive software, the first order model accuracy
decreases.

Figure 7: Current values for instruction execution on a StrongARM SA-1100 [84]

A second-order model incorporates the differences between the instructions and the states of
the processor, especially for memory accesses. The instructions are grouped in several classes
with similar power consumption and an average power value is then assigned to each group.
Their influence is specified by weighting factors and the resulting current model is described
as:

k

K

k

kdddd cwfVIfVI ⋅⋅= ∑
−

=

1

0

0),(),((2)

2 State of the Art

 24

The consumed current is defined by a base current I0, which is the average current of all
measurements and dependent on the supply voltage and the frequency. It is weighted depend-
ing on the weighting factors wk for the different instruction classes and on ck, the portion of
overall cycles consumed within this instruction class. The ck value for each class is
determined based on instruction traces, which are created by running the program on a
simulator.
For the StrongARM processor four instruction classes exist, instructions, sequential and non-
sequential memory accesses and internal cycles, where the internal cycles and the sequential
cycles lead to lower and the other two classes to higher current then I0. The second-order
model shows an accuracy of 2 %. The model has been further extended by the separation of
dynamic and static power consumption, where the static part is due to the leakage current of
the CMOS components.

JouleTrack give a good an accurate estimation for the energy consumption of the two proces-
sors. The results are restricted to the two processors presented and are only given for the en-
tire program, not for every function. The tool is discontinued and no longer publicly available.

2.3.4.2 PowerEscape

PowerEscape [40] is a power and performance profiling tool based on the ATOMIUM tool
suite. It applies the techniques of ATOMIUM/Analysis and ATOMIUM/MemoryArchitect and
is extended with power estimation capabilities. The simulated CPU architecture is parame-
terizable in terms of register count, bus width, CPU speed and further parameters and thus can
be adapted to existing processors. The memory architecture can be customized including
cache size, timing and replacement policy. Similar to the ATOMIUM tools the memory ac-
cesses are shown for each function and cache miss in hit reports. Additionally, timing and
power information for memory accesses is provided. The tool can be used in batch mode, for
example for finding an optimal cache size, and the results for accesses, time and required en-
ergy are presented as a Pareto curve.

PowerEscape was presented in 2004 by a newly founded company with the same name. The
current status of the tool is unclear, as the company was acquired by ARM Ltd. in 2006 [16].
So far, the PowerEscape is not available as a single product from ARM.

2.3.4.3 Analytical Models for Power Estimation

Several cycle-accurate analytical power models were built on top of the SimpleScalar [27]
processor simulator suite. SimplePower [102] creates an analytical energy model of the proc-
essor. A register transfer (RT) level model of the processor is used for this purpose, which is
built of basic hardware blocks, such as multiplexers, latches, adders and shifters. These blocks
are accompanied by power values depending on the Hamming distance of their input pattern.
The RT level model is triggered by the processor simulator and thus the switching activity of
the basic blocks is simulated and the energy consumption can be estimated. As an analytical
model it can be adapted to different technology feature size by exchanging the basic block
power value library. The RT-level model of the processor core covers the entire pipeline and
the register file, but neglects the control logic and clock distribution tree. For cache simulation
SimplePower applies the DineroIII [31] cache simulator enhanced with analytical energy
models. Other internal or external memory is not modeled.

A similar approach was taken by the developers of SimpleScalar themselves. The Sim-
Panalyzer extends the SimpleScalar simulator with a highly elaborated power model simulat-
ing the processor architecture on gate-level with a cycle-accurate timing. Similar as in Sim-

2.3 Tools

plePower, the processor is divided into basic blocks. However, a special emphasis is put on
the clock distribution tree, which can have a huge influence on the overall performance. Be-
side the input switching activity the internal structure of these blocks is considered, including
gate and interconnect capacitance and resistance. These values are calculated based on tech-
nology parameters and user defined parameters about the architecture of the basic blocks. The
clock tree, for example, is specified by die area, the clock skew and the clock node capaci-
tance. For cache power simulation either CACTI [96] models can be applied or the more ac-
curate models provided by the tool, which are based on detailed SRAM and address decoding
models. These SRAM models are also used for other memory components of the processor,
such as a register file or a table look-aside buffer. The models are calibrated against SPICE
(HSPICE) simulations of the components and show an average estimation error of 7 %. The
tool provides models of the StrongARM and ALPHA processors.

The Wattch [26] extension to the SimpleScalar simulator also implements a similar power
model. Wattch also uses CACTI and performs a detailed clock tree modeling. However, other
parts of the model are not as detailed, for example the power consumption model of the com-
binational logic in the data path is based on scaled power values of similar structures in dif-
ferent technology. Models are provided for an Alpha, Pentium Pro and a MIPS processor.

2.3.4.4 Functional-Level Power Analysis

Qu et al. [77] present a higher (function)-level approach for power estimation of processors.
Based on the assumption that many programs spend most of their execution time in a few
functions, power modeling of these functions allows a decent estimation of overall power
consumption. As an example, they name floating point library functions. The power models
for these functions can be stored in a data bank. The power consumption of a user application
is estimated by tracing its execution on a simulator and counting the number of library func-
tion calls. The number of calls of each function can then be multiplied with the associated
power value in the data bank and then each of these sums is added together to achieve the
overall power consumption. This approach is restricted in numerous ways. First of all, the
approach is unfeasible for applications that are not implemented based on library functions.
For example, the implementation of a video decoder, as presented in Chapter 6.1, uses only
optimized hand-written C code. Additionally, only static power values are stored for each
function in the data base. This can not reflect real-time behavior influences, e.g. cache misses
or conditional code execution.

Julien et al. [61] apply functional-level power analysis (FLPA) to model power estimation of
a complex DSP processor. Contrary to the instruction-level power analysis (ILPA) proposed
by Tiwari, FLPA models the power consumption on a higher level of abstraction. The model
is based on the condition that processors can be divided into functional units and the power
consumption of each unit can be described by a few parameters. Contrary to the analytical
models presented in the previous section the units are on a higher level of abstraction. Instead
of using units on an RT level, such as registers or multiplexers, functional blocks are used,
such as a processing unit or DMA controller. This has the major advantage that a detailed
knowledge of the internal processor architecture is not required. The activity of each unit can
be described by a few parameters. In the approach of Julien et al., two sets of parameters are
defined. One set of parameters (algorithmic parameters) is defined for describing the depend-
ency of the model on the software activity– e.g. cache misses and degree of parallelism. The
second set includes system-specific dependencies (architectural parameters), which include
the memory setup and the core clock frequency. Instead of incorporating all profiling details

 25

2 State of the Art

of the instruction trace of an application, only a few parameters need to extracted and fed to
the model.

The coarse-grain nature of the approach makes it very suitable for complex processor archi-
tectures, such as VLIW processors. Applying ILPA models would require a huge number of
measurements, as every combination of instructions as VLIWs would need to be modeled, as
well as any sequence of VLIWs, to cover all inter-instruction dependencies. The advantage of
the FLPA methodology is the lower complexity of the modeling and estimation, but this
comes at the cost of lower accuracy.

Blume et al. [23] note that the FLPA approach delivers an appropriate accuracy for only a
specific set of applications with small power dynamics. Therefore they extended it with an
instruction-level model to form a hybrid FLPA/ILPA model. The methodology has been
proven to work on an ARM940T processor as well as on a heterogeneous SoC architecture
incorporating an ARM926EJ-S and a Texas Instruments C55x DSP core. The FLPA model
for the ARM940T is comprised of three functional blocks: the processor core, the data and the
instruction cache. For the ARM926EJ-S, additionally the on-chip SRAM and the external
SDRAM are incorporated into the model. During the FLPA model creation it was found that
the power consumption is fairly dependent on the executed instruction, which leads to the
necessity of incorporating instruction-level analysis to increase the accuracy. For power esti-
mation based on this model, this in turn means that a profiling of the user application is re-
quired to reveal the dynamic instruction distribution. For the ARM940T, the instructions can
be clustered in six groups with similar power consumption, which reduces the complexity of
the model. Similar models were built for the ARM926EJ-S and the C55x DSP. With these
models Blume et al. were able to provide a high estimation accuracy of the models for a wide
range of applications. Especially for the heterogeneous SoC they achieved high accuracy with
a maximum error of 3.6 %.

 26

3.1 Embedded System Components

 27

3 Theoretical Background
This chapter gives an overview of the underlying theory and techniques of profiling for
embedded systems. At first, the different components of such systems are examined, including
the processor, memory and bus architectures. Subsequently simulation models for these
components are surveyed, which are typically used for testing their functionality, and more
important for profiling, their timing behavior. Different techniques exist for profiling the
execution of applications on a processor. They differ for example in their level of accuracy,
speed and level of details. Some established software optimizations and hardware architecture
decisions are presented, which typically benefit from the knowledge gained during profiling,
for example by finding the right positions in the source code for applying the code
modifications. Finally an example of a demanding data-intensive application, the H.264/AVC
video coding standard is presented.

3.1 Embedded System Components
Embedded Systems are usually composed of multiple functional units, which overtake differ-
ent tasks within the data processing system, such as data retrieval, transport, processing and
storage as well as control purposes. Usually the central processing and control unit of an em-
bedded system is a microprocessor or a microcontroller. Program code and data are stored in a
hierarchy of memory units, which cover the different storage needs concerning live time, ac-
cess time and size. Data transfer between processing, storage and I/O units is often provided
by bus systems, as they allow an efficient manner of interconnectedness. If high speed data
transfers are required, the bandwidth of busses might not be sufficient and dedicated transfer
channels are used instead, such as FIFO buffers. If the processing power of a single processor
is not sufficient, the system is extended by further processing units. Either the same processor
is instantiated multiple times leading to a homogeneous multi-processor system, or special-
ized processing units, such as DSPs or coprocessors based on dedicated logic are added to the
system.

3.1.1 Processor Architectures
In order to work within the constraints of embedded systems, processors with a small and
simple architecture are employed. In the 80s the Reduced Instruction Set Computer (RISC)
architecture was developed, which allows the design of fast and small processors and has be-
come the primary choice for microprocessors in embedded systems. Depending on the appli-
cation field and the required performance processors with a data path width between 4 and
128 bits are used and clock rates from a few MHz up to 1 GHz are available. In the field of
data-intensive applications, the focus of this work, usually processors are applied, which are
at least 16-bit wide and run with more than 100 MHz. Section 2.1.2 gives an overview of the
most common processor architectures for this application area.

RISC processors feature a simple instruction set as compared to the Complex Instruction Set
Computer (CISC) architectures, which is preferred in personal computers. The major goal of
the RISC architecture is to execute each instruction within the same amount of time, e.g. one
clock cycle, and have a simple, equal-length, instruction format. Memory accesses usually
require much more time than data processing functions, therefore memory accesses are only
allowed by special load and store instructions, which also leads to the name load/store archi-
tecture. Other instructions can only be applied on data, which resides in the local register file
and can thus be executed very fast.

3 Theoretical Background

This simplicity is the basis for applying pipelining mechanisms, which allows a speedup by
parallel processing of several instructions at the same time. With pipelining the processing of
each instruction is divided into several steps, so-called pipeline stages, with a similar length
required for their execution. Figure 8 shows a pipeline with five stages, in the first stage an
instruction is fetched from memory, or if available, from the instruction cache and stored in
the instruction register (IR). The instruction is fetched from the address given in the program
counter (PC). The PC is then either automatically incremented to the next instruction address
or updated with a new value, e.g. if a previous branch instruction requests it. The instruction
decoder evaluates the instruction in the next state and generates the signals required for con-
trolling the other processor components, e.g. within this stage source register values are trans-
ferred from the register file to the ALU source registers (S1 and S2). Then the actual instruc-
tion execution takes place, for example a SUB operation the ALU subtracts S1 from S2 and
stores the result in the result register (RES). For load and store operations the address calcula-
tion is performed in this stage, and the actual data access to the memory (or data cache) is
performed in the next stage. In the final stage, the ALU result or the data from memory is
written back to the register file.

The pipelining allows the parallel execution of multiple instructions by starting the processing
of a new instruction while other instructions are still in the pipeline. Usually the pipeline ad-
vances by one stage each clock cycle, which leads to an instruction per cycle (IPC) count of
one, i.e. each clock cycle one instruction leaves the pipeline. The IPC decreases if a pipeline
stall is required, which occurs if data dependencies between instructions in the pipeline are
present or if the execution on an instruction or a memory access requires more than one cycle.
The IPC also decreases by branch instruction, which requires a flush of the pipeline.

The pipeline length of current embedded processors ranges between three and nine stages.
The longer pipelines allow a higher clock frequency and thus lead to an increased instruction
throughput. At the same time the negative influence of pipeline flushes on the performance
also increases. Branch prediction mechanisms are introduced to such architectures in order to
reduce the need of flushes by filling the pipeline corresponding to the expected program flow.
In the following sections some examples for different pipelines are given.

Figure 8: Typical data path of a RISC processor with a 5-stage pipeline

 28

3.1 Embedded System Components

The fact that data processing is restricted to data available in the register file is a huge burden
especially for data-intensive applications. For every load or store to memory an extra instruc-
tion needs to be issued. In order to reduce the number of these instructions RISC processor
usually come with a large set of registers, thus values can be kept in registers as long as re-
quired for processing. If more data are required than can be stored in the register, a so-called
register spill is required, in order to make place for new data. Advanced memory architec-
tures, as described in Section 3.1.2, are applied to reduce the time required for register spill
and fill. The drawback of a huge amount of registers is the large die area required by the reg-
ister file and the addressing size required in the instruction format, e.g. with 64 registers and a
3-address format 18 bits of the instruction word are taken already for register addressing. Fur-
thermore, when a function call occurs, a larger number of registers need to be saved on the
stack. To overcome this problem register windowing has been introduced, as used for example
in the Tensilica [41] or SPARC [38] architectures.

In many data processing algorithms the width of the data is lower than data path width avail-
able in the processor, for example when processing 8-bit video data on a 32-bit processor.
Furthermore quite often the same operation needs to be performed many times to adjacent
pixels. This observation leads to the Single Instruction Multiple Data (SIMD) architecture
[34], where the data path is separated in multiple data paths, e.g. the 32 bits are split into four
times 8 bits, and on each of these paths the same operation is applied. In best case this leads to
a four times increase performance, however data may need to be rearranged by special in-
structions in order to fit into SIMD format, which reduces the speed- up factor. SIMD is espe-
cially used in multimedia instruction set extensions for embedded processors, e.g. the Wire-
less MMX in XScale, or in Digital Signal Processors (DSPs). As SIMD is basically an
organizational feature it has a low impact on the hardware requirements. It mainly requires
some additions in the control unit for separating the data path and for extending the instruc-
tion decoding.

3.1.2 Memory Architectures
The instructions and data to be processed by the processor are stored in memory. The most
important characteristics of memory devices are their size and speed, which are influenced by
the applied technologies and architectures. Processor-based systems are typically connected to
a hierarchically structured memory architecture, see Figure 9, starting with a fast and small
memory and ending with large and slow storage devices. Memory has an enormous influence
on the overall system architecture, in terms of power consumption, die area and performance.

Permanent storage of program code and data is usually provided by disk memory, such as
hard disk or DVDs. In embedded systems flash memory is often used for this purpose. Disk
memory is slow; the access time is in the region of milliseconds and the transfer rates below
100 MB/s. Therefore intermediate storage is provided in volatile memory devices, such as
dynamic RAMs (DRAM), with access times in the range of nanoseconds and transfer rates up
to a few gigabytes per second.

Until the early 1980’s DRAM devices and processors achieved about the same speed. Since
then the processor speed has increased every year by a factor between 1.35 and 1.55, whereas
DRAM only showed about 7 % improvement in latency per year [45]. This expanding gap
leads to the necessity of intermediate storage between memory and processor, in order to
bridge the speed difference between them. Over the years, a hierarchy of memory units was
developed to close the gap, namely multiple levels of caches and tightly coupled memory
(TCM). The fastest storage element in the memory hierarchy is the register file.

 29

3 Theoretical Background

 30

The underlying principle of the memory hierarchy is to have those parts of the data and pro-
gram code available in faster intermediate memory, which are expected to be used during the
following program steps. The basic idea is to take advantage of the spatial and temporal local-
ity within data processing and program execution. The fact that most of the program code is
executed in sequential manner and stored in the same way in memory, leads to spatial locality.
Temporal locality occurs in loop execution, where the same sequence of code is executed
many times. From the data processing perspective spatial locality occurs, when neighboring
data in memory is accessed consecutively, e.g. when filtering each pixel of a frame. Temporal
locality can also be found frequently in data processing; variables are often used multiple
times during a calculation. Besides locality, prediction mechanism can be used for optimizing
memory accesses, as for example used in branch prediction and data pre-fetching. The princi-
ple of locality and prediction can either be used during compile-time or run-time.

3.1.2.1 Register File

The register file is directly connected to the ALU and provided the fastest access to data. It
contains numerous registers, and is either implemented as fast SRAM cell or assembled of
flip-flips and allows access within a single CPU clock cycle. Registers can be directly ac-
cessed by numbers or are arranged in sets (windows), with one set of registers visible at a
time. Registers are assembled of flip-flops and are expensive in terms of die area and power
consumption and also the allocation process. The allocation of registers with data values is
determined by the compiler, and thus is static during run-time. The register allocation is per-
formed with regards to the temporal locality of the data values. The counterpart to the register
file for fast program code access is the instruction register.

Register
file

I-cache

D-cache

external
SDRAM

Flash
memoryTCMs

I-TCMs

Embedded
DRAM

Embedded
SRAM SDRAM

controller

Slower
memory,

disk
(HDD,CD,
DVD), tape

Slower
memory,
network
storage

Core
memory

DMA
controller

Processing
unit

On-Chip
memory

Off-Chip
memory

Local
memory

2nd / 3rd
level

caches

Global
memory

I-MMU

D-MMU

ROM

Figure 9: Typical memory hierarchy in computing devices

3.1.2.2 On-Chip Memory

A cache is a fast memory, which stores recently used data and program code. When a data
value is requested by the CPU at first a cache lookup is performed. If data can not be found in
the cache it is loaded from memory to the CPU and also stored in the cache, usually including
some data at neighboring addresses. Access times for caches are within a range of one to a
few CPU clock cycles.

Caches are organized in sets and lines, see Figure 10. Each set consist of a tag RAM and a
data RAM, which in turn contains a number of lines, e.g. 256 lines. The tag RAM contains a
part of the memory address (the tag) of the data values in the corresponding data RAM line. A

3.1 Embedded System Components

line in the data RAM is used to store a data value and its neighbors and has a size of a few
words, for example eight words. If the CPU requests a data value from the cache, the data
address is spilt into a tag, index, word and byte part. The index part corresponds to a specific
line, the word part identifies the word within a line and the byte part selects the byte. The rest
of the data address is the tag. The tag is compared with the value stored in the tag RAM, and
if they are equal the requested data can be read from the data RAM. Otherwise the requested
data value needs to be read from memory and is together with its seven neighbors in the line.
Caches with only one set of tag and data RAM are called direct-mapped caches. Such cache
architectures are simple, however they show a significant drawback. Due to the index and
word parts of the address, each data address can only be mapped to one specific location in
the cache. If this location is already in use when loading data from memory into the cache, the
entire line containing this location is overwritten with the new line. This decreases the per-
formance significantly, when two data values from different memory addresses, which are
mapped to the same line, are required alternating. In order to overcome this drawback caches
with multiple sets, so-called set-associative caches, have been introduced. In the example four
sets, and thus four location candidates are available for each data item. The decision, which
set is used to place new data, is taken upon more or less advanced mechanisms; a very com-
mon policy replaces the least recently used (LRU) line. Set-Associative caches require more
die area, because for each set a comparator and additional control logic and multiplexers are
required.

Caches are very efficient hardware structures for taking advantage of locality in data and pro-
gram code during runtime. Loading an entire line to memory, instead of only the requested
memory address, severs the principle of spatial locality, whereas the associativity increases
the temporal locality advantage.

Figure 10: Architecture of a four-way set associative cache (eight words per lines,
255 lines per set)

 31

3 Theoretical Background

Caches keep copies of data, which actually resides in memory. If the memory content is
changed, cache coherency problems occur. This happens if other system components, e.g.
other processors, DMA controller or hardware components have write access to the memory.
In such cases the cache content needs to be refreshed (invalidated) in order to synchronize the
memory and the cache content. Furthermore, especially in real-time critical embedded envi-
ronments, the unpredictable timing behavior that caches introduce to the system can be prob-
lematic. The concept of caches has been extended to multiple levels of caches, which are con-
nected in a hierarchical manner, from smaller and fast, usually multi-set associative, to larger
and slower direct-mapped caches. Caches contribute highly to power consumption and die
area. For example, depending on the technology, the two 8 kB caches of the ARM946E-S
processor require between 40 % and 60 % of the die area and are responsible for 30 % of the
power consumption [8].

Write buffers are intermediate storage devices between the CPU core and the bus/cache.
They are used for avoiding the wait states required when storing data from the CPU to the
main memory. Instead of writing directly to the memory the data values are stored together
with their address in the write buffer, which only requires one CPU clock cycles. The write
buffer then performs the actual store operation independently and the CPU continues without
a pipeline stall. Write buffers usually have a size of a few words, e.g. 16 for the ARM9E fam-
ily of processors, and data does not reside in the cache or if the write-through mode is used.

Memory management units (MMU) are used to control the memory access of the processor.
Among other tasks, the MMU typically performs address translations, i.e. the MMU translates
every (virtual) memory address from the CPU to physical addresses on the memory bus. Op-
erating systems utilize address translation in order to provide a consistent memory space to all
running processes, e.g. all processes use a virtual address space starting at address 0x0,
whereas the physical addresses are mapped to distinct locations. Furthermore, the access be-
havior for each memory area can be specified, this includes access restrictions, such as read-
or write only access and if caches are used for this area. If a forbidden memory access occurs
the MMU triggers an interrupt, which simplifies the debugging process. Non-cacheable mem-
ory areas are used for memory locations, which can be modified by other components than the
CPU, for example status registers or output memory of hardware components. Otherwise,
cache inconsistency may occur if the cache holds an old copy of the memory data. If tightly
coupled memory is available in the system, the mapping of this memory to the address space
is also provided by the MMU. For the address translation the memory space is divided into
pages, e.g. 4 kB per page, and page tables provide the physical base address of a page that
corresponds to a specific virtual address. The page tables are stored in a fast memory called
translation lookaside buffer (TLB) and can be modified by the operating system.

Tightly coupled memory (TCM) is on-chip memory, which allows fast data or program code
access. It is located close to the processor and is usually built of SRAM cells, which run with
the same speed as the processor. Its main purpose is intermediate storage of frequently ac-
cessed data and program code. A typical example would be a data array, which is accessed in
a loop. During loop execution this array should be stored in the TCM. Instruction TCMs
might be used to store interrupt routines, in order to allow a fast serving. The major advantage
over caches is that the behavior of TCMs is predictable, as the content is controlled by the
software. Data replacement in caches can lead to a cache trashing, i.e. two consecutively ac-
cessed memory addresses share the same line in cache, such lead to a cache miss, which in-
curs a write back and new data fetch. Considering the loop execution example, often multiple
data arrays are accessed, as for example in the following code [74]:

int a[N], b[N], c[N];

 32

3.1 Embedded System Components

…
for i in 0 to N-1
c[i] = a[i] + b[i];
end for;

Listing 8: Simple loop showing the risk of cache trashing

If the size of these arrays is a multiple of the set size of the cache, and the arrays are arranged
consecutively in memory, than a[i], b[i] and c[i] map to the same cache line. Loading one of
them replaces the former one in the cache; this behavior is called cache trashing and leads to
an enormous performance decrease. Furthermore caches require more chip area and energy
than TCMs due to the TAG-RAMs and comparators. On the other hand TCMs need to be con-
trolled by the software, which may leads to overhead during filling or writing back from the
TCMs. If a DMA controller is available in the system, it can overtake the burden of the data
transfers. The size of TCMs is similar to cache sizes, usually between a few to some hundreds
of kilobytes. Some processors implement fast memory by assigning a fraction of the cache to
the purpose of TCMs [3]. If both exist, TCMs are placed parallel to the cache, and the MMU
controls the access depending on the memory mapping.

In embedded systems the previously mentioned core memory components are extended with
on-chip and off-chip memory and controllers. These memory units are larger than the core
memory units, but require access times of multiple processor cycles. On-chip SRAMs are
built of cells that a composed of six transistors. These transistors form a flip-flop with two
stable states for storing one bit. The cells are connected via the word-lines to the address de-
coder and the two differential bit-lines allow data write or read. The SRAM is organized in
rows and columns, all cells of the same row share a word-line, and all cells in one column are
connected to the same bit line. Before a read operation occurs, the bit lines are precharged to a
voltage level in the middle between the “0” and “1” level. Especially for large SRAMs the
long bit lines with a high capacitive load lead to high power consumption due to the precharg-
ing. On-chip SRAMs are operated with processor speed or a small divider of the processor
speed, depending on the internal bus architecture. SRAMs may also be replaced by embed-
ded DRAM cells [58], which are built of regular one-transistor DRAM cell, but provide an
SRAM-like interface. Embedded DRAMs offer a drastically decreased die size and lower
power consumption, but provided a lower access speed. Furthermore, due to the different
technologies, integrating embedded DRAM with logic circuits on one die requires higher de-
sign effort.

Especially application-specific systems provide on-chip ROMs. They are used for storing
program code, e.g. the boot-up sequence of code, or constant data values, such as look-up
tables for encoding or filtering.

3.1.2.3 DMA Controller

For data-intensive applications, a large portion of the processing time is spent with data ac-
cesses. This can be either for moving data within memory or for waiting for data transfer from
slower memory. In order to allow concurrent data transfer to data processing, a specialized
data transfer unit, a direct memory access (DMA) controller can be used. DMA controllers
are bus master components, which can transfer data from one memory location to another.
The transfer is initiated by the CPU (or another component) but takes place autonomously
from the initiator. In order to use the DMA controller efficiently it should be controllable in a
“fire-and-forget” manner, i.e. the initiator should be able to continue work as usual after fill-
ing the transfer task to the DMA controller, and only be informed when the transfer is accom-
plished. This is either done with an interrupt signal or with status information in the DMA

 33

3 Theoretical Background

controller. In order to allow this, DMA controllers have multiple slots, so-called channels.
Each channel carries the information of one data transfer, which consists of the source and
destination address and the amount of data to be transferred. The number of channels it either
fixed, e.g. 16, or it can be extended by channel chaining, i.e. the channel information is stored
in form of a linked list in memory. The channel initialization and the transfer initiation can be
performed separately. This is especially helpful if a specific transfer need to take place regu-
larly, for example for copying the video frame buffer from main memory to the video output
device. Also some DMA controllers allow auto-increment of source or destination addresses
after a transfer has finished. Especially for video processing two-dimensional DMA transfers
are very helpful. For such transfers the channel information is extended with width, height,
and a stride dimensions. Figure 11 shows a typical two-dimensional DMA transfer operation.

Figure 11: Two-dimensional DMA transfer

3.1.2.4 Off-Chip Memory

External memory is used for storing program code and data, such as heap and stack. As non-
permanent memory either SRAMs or DRAMs are used, whereas DRAMs are much cheaper.
Typical DRAM components are synchronous DRAM (SDRAMs) [54], which have a clocked
input/output behavior.

SDRAMs are organized in banks, for example two or four banks, where each bank can be
controlled separately. Many SDRAM commands, such as active, pre-charge or read, need
multiple cycles to be executed. The bank layout allows multiple commands to be executed
concurrently, and effectively increases the performance. Each bank is organized in rows (also
called pages) and columns, similar to SRAMs. The access of a specific memory cell requires
multiple steps. At first a page has to be activated during the row-address strobe (RAS) phase.
In the following column address strobe (CAS) phase the cell within the activated page is se-
lected, and the read/write signal indicates the operation. For read accesses the memory re-
quires two to three cycles (CAS latency) before the value is available on the bit lines. During
this time the bank can accept new commands, for example the next read command. In order to
decrease the required commands burst modes can be used, which automatically read or write a
number of consecutive memory cells. Before the next page can be opened the current page
needs to be closed, which implies a pre-charge of the bit-lines.

All of these features, namely the parallel bank access, the pipelining within each bank, and the
burst modes lead to a higher throughput. They help to cover the slow access time of DRAM
cells, which is about 60 ns, and allow data transfers on every clock cycles even for 6 ns cycle

 34

3.1 Embedded System Components

times (167 MHz) and thus reach the performance of SRAM. The SDRAM performance has
been enhanced with the double-data-rate (DDR) concept. DDR SDRAMs have a data I/O
buffer extended with a small buffer for storing multiple data values. In the so-called pre-
fetching multiple consecutive data words are read in one clock cycle from the memory bank
to the buffer, and transferred in two half-cycles sequentially to the data output pins. In burst
transfer mode this can increase the actual data rate up to factor equal to the number of concur-
rently read words.

The disadvantage of SDRAMs as compared to SRAMs is that they are far more complex to
operate. SDRAM controllers are required which contain large state-machines to reflect the
internal and pipelined behavior of the memory. Furthermore as the capacitors loose their
charge over time, a periodical refresh every 50 - 100 ms is required. During this phase the
memory is not accessible. In case of random access to the memory, many page misses occur,
and the required activation and deactivation time decrease the performance.

Due to their complex structure, SDRAMs are also more difficult to model in a simulation en-
vironment. The ARMulator, see Section 2.2.1 uses a simplified model instead, which only
differentiates between sequential and non-sequential accesses.

Contrary to desktop PCs, embedded systems often use flash memory for permanent (non-
volatile) data storage instead of hard disks. This is due to the fact that embedded systems have
lower demands on the storage space and that they are used in an environment, where hard
drives might be too sensitive. Flash memory has a simple interface similar to the SRAM inter-
face. The access time for read and write operations differs in two orders of magnitude,
whereas read operations are in the range of DRAM access times, about 120 ns for single ac-
cess, write accesses are much slower.

The power consumption of SDRAM and flash memory are very different. Flash memory has a
much lower power consumption especially when put into standby mode. The Intel flash de-
vice used in this work [55] is specified with 120uA current during standby, whereas an
SDRAM [79] memory requires about 30 times more (4 mA). For active memory accesses the
difference is not as drastic, a read operation requires on the flash memory 30-50mA, a write
access 80mA, the SDRAM dissipates 150 - 180 mA for both, read or write.

3.1.3 Interconnection Architectures
The interconnection of components in an embedded system has a crucial impact on the per-
formance. The most important interconnect in processor-based systems is between the proces-
sor and the memory. Processors require instructions and data for operation, whereas fast in-
struction transfer is the most dominant performance factor, because whenever instruction
transfer stops the processor must be halted. From the processor view one can differentiate
between von Neumann and Harvard architectures, since the former combines data and in-
struction transfers on one bus, while the latter utilizes separate busses. If separate memory
devices are available for instruction and data, such as instruction and data cache, the Harvard
architecture increases the performance of data-intensive applications significantly. Besides the
basic data interface (load/store interface) some processors offer further choices for data sup-
ply. Some processors [6] offer multiple load/store interfaces, which allow for example the X
and Y memory interfaces for DSP operations. User-defined register file extensions [6] can
also be used as a secondary data interface or specific FIFO ports [94] that allow direct connect
to other system components. Usually the usage of these architectural features requires hand-
optimized assembly programming, as they are not automatically utilized by compiler for code
generation.

 35

3 Theoretical Background

The processor, respectively the cache, is connected to the other system components, which
includes memory, I/O components and further (co-) processors. The interconnection is charac-
terized by two major aspects, bandwidth and latency. The simplest, and in embedded systems
most used interconnection architecture, is the bus, which connects several components to a
collection of shared physical wires (shared-medium network). The communication on the bus
is initiated by one component, the bus master, and is directed to one or more other compo-
nents, the bus slaves. At any time only one transaction can take place on the bus. This makes
it very suitable if only one master and an arbitrary number of slaves exist on the bus. Multi-
Master busses require an arbitration unit, which assigns the bus with a given prioritization
scheme to the masters. If many masters compete for the bus, long waiting periods can occur
and reduce the overall performance. Also if slaves have long latencies, if a read page miss on
an SDRAM occurs, the bus is occupied until the slave can serve the required access. Thus the
available bus bandwidth can not be used efficiently. Different mechanism try to overcome this
problem, for example split transactions, pipelining, multi-channel busses, see Section 2.1.4
for detailed description. Busses have the advantage that they can be implemented and ex-
tended easily and are very area efficient due to the shared medium concept. In large chip de-
signs, with many components and long wires, single bus architectures are energy inefficient
and slow due to their broadcast behavior and the high capacitance and cross-talk between the
wires. Advanced interconnect architectures have been developed for these so-called network-
on-chips (NoCs) [63].

If multiple masters and many slaves are present in the system, such as in network-on-chip
(NoC) [63] architectures, more advanced interconnections are useful, in order to allow paral-
lel transfers. Crossbar, mesh or ring interconnection [43, 75] are used for such purposes.
These networks reflect the architectural features of computer communication networks, such
as dividing the network in sub-networks for fast local transfers, connecting these sub-
networks with switches and routers and sending data in packages. An example of such large-
scale switch-based networks is an FPGA. This programmable device features a large array of
processing elements, which are connected by a hierarchical network of busses.

Due to their reduced feature set and application field, SoC in embedded systems usually only
use simple interconnection schemes, such as single- or multi-bus architectures. Multiple bus-
ses are used to either separate the slow from the fast components or to enlarge the available
bandwidth in multi-master arrangements. Slow components, such as serial I/O interfaces, can
be arranged on simple busses, i.e. with a smaller bit-width and single master concept, in order
to reduce the area requirements. Typical examples for on-chip busses are AMBA [10],
wishbone [73], CoreConnect [51] and STBus [80]. Some of the busses have different specifi-
cations for slow and high-speed busses, such as the widely used AMBA busses, which are
described in Section 2.1.4 in more detail. Off-chip interconnection in embedded systems is
often not standardized, and instead designed for the needs of the system, contrary to PC
motherboards, where several bus standards are defined, such as HyperTransport, QuickPath or
PCI-Express. External components, such as SDRAM, flash memory, network or video con-
troller chips are either connected to special purpose I/O pins of the chip or connected to a bus.
In order to reduce the complexity, the bus protocol is often simple and asynchronous, using
hand-shaking for synchronization. Furthermore the required wires are reduced by using a sin-
gle tristate bus for read and write data and by multiplexing address and data bus on the same
wires. Depending on the size of the PCB, the off-chip wires can have a high capacitance,
which needs to be driven by the I/O drivers and thus influence the power consumption.

 36

3.2 Simulation Models

3.2 Simulation Models
The profiling of an embedded system can either be performed on the real hardware or on a
model of the system. The advantage of the real hardware is that the results are highly accu-
rate. However it also requires that hardware is already available, and does not allow variations
of the system. Therefore if the profiling should be in an earlier design phase, for example for
design space exploration, models for all parts of the embedded system are required. Depend-
ing on the type of profiling that is requested the models may vary in their reflected accuracy
and features. The processor models for simulating the software execution is the most vital
element during the profiling and is sufficient for simple systems. For more complex and
memory-centric systems a memory model should also be used. Besides the modeling of the
timing behavior, the energy consumption can also be considered during the simulation. Addi-
tionally to the processor and the memory subsystem other hardware components, such as co-
processors or I/O components might influence the system behavior significantly. In this case a
cosimulation system [50, 44] is required in order to allow a realistic profiling scenario.

Beside the timing and memory access behavior an estimation of the energy or power require-
ments is helpful within the embedded system design flow. Whereas the power consumption is
more interesting for the thermal design and the peak current drawn from the battery, the con-
sumed energy is relevant for software optimization and battery run time, as it also considers
the execution time. The energy estimation can be done by means of power models for each
component of the system. In research and industrial products different solutions for generating
power models can be found. An excerpt of the wide range of tools is given in Section 2.3.4. In
[99] power models are distinguished in three categories:

• datasheet-based power models
• measurement-based power models
• analytical models

Datasheet models are based on the information provided by the manufacturer of the device.
Such models are often used for memory devices, as they have a defined set of operation
modes. For SRAM they are simple, DRAM models are more complex, because the power
consumption is access-dependent, i.e. it depends on previous accesses to the device. Meas-
urement-based models rely on the measurement of the power consumption on real hardware
devices. These models are very accurate, but the measurement might be difficult, since the
supply voltage pins are often not easily accessible. The models are valid only for the meas-
ured device and cannot be transferred to other device. Analytical models are much more ver-
satile, as they regard the inner structure of a component. If the component behavior is well
modeled, the model is parameterizable and can be used for an entire device family. For exam-
ple, analytical power models for memory devices can be configured in size and organization
of data array. Such models might even be portable to other technology feature sizes, as for
example the CACTI cache models. Analytical models are very complex and the accuracy
might vary largely within the parameter range.

3.2.1 Processor Models
Processor models exist on different level of abstraction [78]:

• bus functional model
• instruction-level model
• cycle-accurate model

 37

3 Theoretical Background

• nanosecond-accurate model

The bus functional model is the most basic description of a processor, which acts as black box
and reflects only the interface behavior of the processor. Bus functional models (BFM) are
often applied for testing hardware components in a hardware simulator, and serve the
processors interaction with the hardware. This model is very fast, because only the interface
to the hardware, usually a bus interface, is modeled. The models execution is controlled by a
sequence of bus transactions, which are initiated or answered by processor. The simulation of
software is not possible, because the processor internal structure, such as instruction decoding
and execution is not simulated. Therefore the model is not feasible for profiling purposes.

Instruction-level modeling of processor allows the execution of software on the model. The
executable implementation of such models, the instruction-level instruction set simulator
(ISS), is the most widely spread model of processors. They are used for testing, profiling, co-
simulating processors. For testing software the ISS is connected to a debugger, which controls
the software execution. The GNU debugger gdb comes already with numerous built-in ISSes.
The level of detail of the model can vary. At least the register file, the program counter and
the status register are required for the model and the decoding and execution of the full in-
struction set must be ensured. More detailed models also model the pipeline, which ensures
that pipeline stalls, data dependencies and branch delay slots are simulated correctly. The in-
struction-level ISS does not include timing information and therefore does not require detailed
modeling of the memory subsystem, therefore access latencies and cache behavior is mod-
eled. The correctness of memory accesses is often tested, including address validity and ac-
cess alignment. Using instruction-level model a fast (almost real time) simulation can be ac-
complished and if the influence of the memory subsystem on the performance is low, this
model can be used for efficient profiling. The gprof tool allows such profiling based on the
results collected by gdb.

In order to increase the accuracy of the instruction-level models, it can be refined to resemble
the real hardware behavior closer and annotated with timing information. Such models are
used to build cycle-accurate ISSes, for example the ARMulator, which is described in Section
2.2.1 in more detail. The ISS must be accompanied by a timing model of the memory subsys-
tem in order to allow realistic simulations. Cycle-accurate models are a good choice for profil-
ing, as they reflect the timing behavior fairly accurate and provide a decent simulation speed.

The highest level of detail is implemented in nanosecond-accurate processor models. These
models are described in hardware description languages, such as VHDL, Verilog or SystemC,
and simulated in a hardware simulator. The simulation speed is extremely slow and only per-
mits the profiling of short instruction sequences.

3.2.1.1 Processor Power Models

Simulating the power of a processor can be based on datasheets, which leads to low complex-
ity models. Datasheets only provide current or power consumption values for a few states,
usually active, idle and a few types of standby modes. Simunic et al. [83] build a model that
differentiates only between idle and busy states based on an instruction trace produced by an
ISS. Tiwari et al. [97] present a more complex power model, which considers different power
consumption for each instruction. The observation that similar instructions, i.e. instructions
which use similar processor components, consume a comparable amount of power leads to a
grouping of instructions, which simplifies the model. Additionally to the intra-instruction cost
an inter-instruction cost is defined, based on the observation that the power consumption is
dependent on the previously executed instruction.

 38

3.2 Simulation Models

Generally the following levels of accuracy can be defined, which reflect different influences:

• modeling only the processor state active/idle/standby (datasheet models)
• modeling of instruction groups, which activate similar functional units
• modeling each instruction separately
• modeling additionally each addressing mode separately
• modeling additionally the Hamming distance of coded instruction and data accesses
• modeling the influence of intra and inter-instruction cost ([97])

Besides these measurement-based models, analytical models exist, which reflect the processor
architecture, which is based on simple building blocks, such as registers, adders and multi-
plexers. The power model summarizes the influence of these blocks depending on the activity
of each block due to the processor behavior during a software simulation run. In Section
2.3.4.3 some models are presented, which are based on the analytical processor model Sim-
pleScalar.

3.2.2 Memory Models
Memory has an enormous influence on both, the performance and the energy consumption of
a system and should therefore be considered during the profiling. A high percent of the energy
is consumed in caches, e.g. analysis of the StrongARM processor have shown that 43 % of the
power is consumed in the caches [70], other studies [17] even state a percentage above 60.

Caches can be characterized by several parameters:

• size (in bytes) and line length
• associativity (direct-mapped, 2, 4, 8…, 64 sets or full-associative)
• replacement strategy (LRU, LFU, FIFO,…) and write strategy (write-through/write-back)
• special features, such as line-locking or pre-fetching

Cache timing simulators, such as Dinero IV [31] and Cheetah [93] apply these parameters for
calculating the number of cache hits and misses. The simulation is trace driven, which means
that the software is first executed on the target processor and the occurring memory accesses
are traced and written to a file. This trace file acts as input to the cache simulator, which cal-
culates the resulting number of misses and hits. The ARMulator comes with a built-in cache
simulator, which besides the hit and miss calculation also allows a functional simulation, i.e.
the full behavior of the caches is simulated including the data storage and transfer from the
processor through the caches to the memory bus.

This information can then be used for determining the overall performance and energy con-
sumption. The time and energy consumed by each cache miss and hit can be achieved with
CACTI models [96]. CACTI takes the above-mentioned cache parameters and the technology
feature size as an input, and calculates the timing, area and energy requirements for all cache
components.

On-Chip memory components based on SRAM technology are usually running with the full
processor speed and have single cycle access times. Therefore their timing behavior can be
modeled easily by a static model for read or write accesses. Also the energy models are quite
simple as the energy is not access dependent. [18] suggests using CACTI for SRAM models.

 39

3 Theoretical Background

 40

SDRAM, as described in Section 3.1.2.4, is far more complex than SRAM, which also leads
to elaborated timing and power models of this memory. In order to have an accurate timing
model, the entire control flow of the SDRAM controller needs to be reflected, which includes
refresh, burst, page activation and standby modes. Some of these modes can be neglected
without a major influence on the accuracy, such as the refresh cycles. The most influencing
characteristic can also be described by a simpler timing model, which differentiates only be-
tween read and write operations and sequential and non-sequential access. The later is used to
reflect the faster accesses in burst mode and in case of a page hit.

The simplest model for the power consumption assumes a constant value, which only depends
on the clock frequency and the supply voltage. Thus the consumed energy only depends on
execution time. A model which can be found quite often in literature is a datasheet-based
model provided by a memory device manufacturer [59]. The model comes as a spreadsheet,
which contains formulas that calculate based on a parameter set the power consumption for
each SDRAM mode. The parameter set includes the clock frequency and supply voltage, and
technology dependent timing and current parameters from the datasheet of the specific mem-
ory device. Furthermore some user-defined estimates for the memory activity are incorpo-
rated.

3.3 Profiling
This section gives an overview of profiling techniques and results. The software-centric
profiling can take place on different levels of abstraction:

re required.

el.

• source-code level (source-code analysis)
• instruction level (instruction-accurate ISS)
• cycle level (cycle-accurate ISS)
• exact timing (nanosecond-) level (HDL)
• hardware implementation level (FPGA, ASIC)

The level of abstraction also determines the accuracy of the results and mostly also the
simulation time. During an early stage of the design, when only a software model of the
system is available, an abstract source code analysis can take place, in order to get a first idea
of the code complexity. If the decision for a specific processor is made, an ISS for the
processor can provide instruction-accurate profiling results. If the ISS models the pipeline and
the other processor components in detail, even cycle-accurate results are possible. For
nanosecond-accurate profiling, hardware simulators a

Many profiling tools focus on performance measurements, as it is often the most important
design goal, and provide cycle or execution time results. Besides this timing information,
further profiling results may be very helpful during the design and optimization process. This
includes memory profiling, such as read/write accesses, cache misses and bus utilization and
also power profiling.

The profiling data can be assigned to the program code on different levels of abstraction.
Besides the overall profiling for the entire software, the most common way is assigning the
results to the functions in the code. More detailed results are assigned to each basic block, i.e.
a sequential code segment without jump instructions. The highest accuracy is on assembly
line lev

3.3 Profiling

Besides the above described dynamic profiling, which is based on the code execution, a static
profiling can be performed. Static profiling analyzes the program code and can be used for
statistics on instruction usage, code size and performance estimation. The advantage is that
the profiling is very fast and does not require any simulator or real hardware. However results
about the actual behavior of the software can be only considered as a rough estimation.

3.3.1 Profiling Results
The most common result provided by profiling tools is the timing information about the soft-
ware under test. Especially for software, which needs to fulfill strict real time constraints, this
is the most important information. The timing is usually expressed in an SI time unit, e.g.
milli- or nanoseconds, or in units of cycles corresponding to the processor clock frequency,
such as core or external bus cycles. The chosen unit depends on the underlying hardware and
software structure of the profiling environment. If the software is tested for a fixed hardware
architecture with a specific clock frequency and timing of the hardware component, the tim-
ing can be given in the SI unit, which can be easily compared to the real time constraints of
the system. If the software under test is running within a multi-tasking operating system, the
timing results need to be separated in overall execution time and the actual time spent for the
software, as some of the execution time is spent for other tasks or the operating system itself.
Using multi-tasking in a system always carries the risk of producing erroneous profiling re-
sults, as the task switching has an influence in multiple unpredictable ways on the perform-
ance, for example the task switching may lead to cache trashing.

Additionally other statistical information can be of interest. The data access and transfer
analysis is a crucial feature of profiling tools. This includes the register usage, cache, bus and
memory activity. The cache profiling includes the number of cache hits, misses and fills and
the bus activity provides an overview of bus cycles (e.g. read, write, burst, wait) and the peak
and average transfer rates. The accesses to the memory can be split into memory areas, e.g.
variables, heap or stack) and provide statistics on the kind of access and the required wait
states. Besides real memory devices other peripheral components, such as memory-mapped
I/O ports might be profiled. All these events have an influence on power consumption and
performance, especially for data-intensive applications.

The profiler may also provide statistics on instruction execution. This includes an analysis of
code coverage, i.e. which parts of the software are actually used during execution. The in-
structions set usage gives an overview of the assembly instruction, which are used during the
execution of the code, and can be used to eliminate unused instructions from the ISA and for
special functional units, such as floating point or SIMD instructions. The internal behavior of
the processor might also be of interest, such as the success of branch prediction mechanism or
number of stalls of the pipeline for studying their efficiency.

Besides the profiling of execution time, data accesses and processor states more and more
tools arise [40, 17], which also consider the power or energy consumption, respectively. This
knowledge support optimizations for energy efficiency, which is especially important for bat-
tery-powered devices.

3.3.2 Profiling Methods
Dynamic profiling is based on data collected during the execution of the software. The acqui-
sition of runtime information about the program execution can be accomplished by different
methods. The usage of these methods is also depended on the underlying software execution
model.

 41

3 Theoretical Background

3.3.2.1 Code Instrumentation

This method inserts small code pieces into the source code of the program, which are used to
create profiling information during the runtime. For example the gprof profiler inserts in each
function code, to count how often the function was called, how much time was spent in the
function, and which was the calling function for creating the callgraph. All this profiling in-
formation is written to a file and can be viewed with gprof. The advantage of code instrumen-
tation is that no simulators are required, and that the execution speed is only decreased
slightly; this leads to fast profiling results. Drawbacks are that this method is intrusive, i.e. the
execution of the application is modified. This can lead to inaccuracy in the profiling results;
especially for small functions the execution time of the instrumentation code can exceed the
actual task performed in the function. Furthermore the instrumentation code is inserted at
compile time, i.e. the source code is required for such profiling. Especially this inhibits profil-
ing of third-party library, which are note provided with source-code. Also code instrumenta-
tion sometimes conflicts with compiler optimizations, which leads to profiling non-optimized
code and lead to inaccuracy. The profiling results of this method are fairly restricted, as no
hardware related information, such as cache misses or pipeline stalls, can be collected.

3.3.2.2 Sampling

Sampling is a very widely used method for non-intrusive profiling. With this method, the exe-
cution of the program under test is accompanied by a profiling tool, which probes the program
status at specific sample times. By probing the program counter at the sample point, the pro-
filer can determine the current position in the code and update the profiling data of the current
function or building block. Thus the number of times each function is called can be evaluated
and the time spent in the function can be estimated. The sampling period is either timing or
event-based, the former is triggered by an internal clock, usually in the range of milliseconds
whereas the latter is triggered by processor events, such as cache misses. Since the probing
only takes places at specific times, the profiler might “overlook” small functions, which are
called between two sampling points. Especially for programs with a short execution time this
leads to inaccurate and non-deterministic results. To overcome this problem, the program can
be called in a loop, however this might lead to incorrect results, as the cache performance
might be to optimistic, because code and data of the previously executed run are still in the
caches. Usually the program code and the profiler are running on the real processor, such as
with VTune. If the sampling point occurs, the profiler interrupts the processor, and collects the
profiling data. The hardware needs specific features, in order to allow the interrupt and to
provide the data. For example, if a cache miss occurs, the hardware needs to inform the profil-
ing software about this event. Therefore the amount of profiling information differs for differ-
ent processor types. The sampling-based profiling on real hardware allows fast and accurate
profiling

3.3.2.3 Profiling with Instruction Set Simulator

If an ISS, see Section 3.2.1, is available for the desired processor, it can be used for detailed
and non-intrusive profiling. The software execution on the ISS is a few orders of magnitude
slower than on real hardware, typically in the range a few hundreds of thousands to millions
of cycles per seconds can be simulated. An internal view into the processor states is possible,
such as register or cache accesses or pipeline stalls. By monitoring these events a detailed
profile of the software execution can be created. This profiling is non-intrusive, because the
software execution on the simulator is not effected by the monitoring. Many ISSes provide at
least basic profiling abilities [9, 7, 30], for example the accumulated and self execution time

 42

3.4 Data-Intensive Applications and their Implementation for RISC Processors

 43

of each function or the pipeline or register usage. The profiler presented in this thesis is based
on an ISS. Depending on the accuracy of the processor core model, usually either cycle- or
instruction-accurate, the ISS provides more or less detailed information about the execution.
The accuracy of the results is also influenced by the accuracy of the models of peripherals
modules, such as cache, bus and memory components.

Some ISSes (e.g. the ARMulator) can be extended with hardware models of peripheral com-
ponents of the system, such as coprocessors or IO devices. Such a hardware/software cosimu-
lation environment allows a system profiling, which can be helpful during the partitioning and
scheduling process of hardware/software systems.

3.3.2.4 Hardware Simulator based Profiling

The most detailed profiling can be achieved with a hardware simulation of the processor. If a
hardware description model of the processor, for example in VHDL or Verilog, exists, hard-
ware simulators, such as Modelsim [69] allow a nanosecond-accurate simulation of the proc-
essor. The accuracy of the simulation depends on the granularity of the model, which is de-
scribed on high-, register-transfer- or gate-level. Gate-level descriptions allow a 100 %
accurate simulation of the processor and thus allow the highest accuracy for profiling of the
software execution. Such profiling is however extremely slow, only a few to a few hundreds
of cycles can be simulated per second, therefore it is not feasible for analyzing complex soft-
ware. The processor can be extended with other hardware components and therefore also al-
lows hardware/software cosimulation and profiling. The profiling with hardware simulators
requires a monitoring extension in order to probe the internal states of the processor, for ex-
ample by using the foreign language interface (FLI), as described here [90].

3.4 Data-Intensive Applications and their Implementation for
RISC Processors

This work focuses on the analysis and optimization of data-intensive applications on
embedded systems. Such applications, for example video players and recorders on mobile
phones, have become very popular and make high demands on embedded systems. First of
all, they are often very computationally intensive. Additionally, the huge amount of data
transfers highly influences the performance and power dissipation and thus also the design of
the system architecture. On the example of a highly complex application, an H.264/AVC
video decoder will be used to show how the different algorithmic parts of the application are
influencing the computational and data transfer requirements. Also the influence of the
different types of memory access, sequential or random, its width, and access pattern should
be considered.
This problem is even higher in RISC processor based embedded systems as compared to stan-
dard PC architectures, as their load/store architecture acts as the major bottleneck to the per-
formance. Also the small register file, for example 16 registers for the ARM architecture and
the small caches size increase this problem. The rising clock frequency used in embedded
systems also increases the speed gap between CPU and memory. A problem, which until a few
years ago was only apparent in PC architectures, now leads to the same high influence of the
data transfers and memory architecture on the performance.

3.4.1 The H.264/AVC Video Coding Standard
H.264/AVC is the most recent video compression standard developed by the Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEG [60]. Like its predecessors H.264/AVC uses a

3 Theoretical Background

 44

block-based hybrid coding approach, which takes advantage of (motion compensated tempo-
ral and spatial) prediction and transformation of residual data. H.264/AVC adds various new
coding features and refinements of existing mechanisms, which lead to a two to three times
increased coding efficiency compared to MPEG-2. However, the computational demands and
required data accesses have also increased significantly. Figure 12 shows the block diagram of
an H.264/AVC decoder.

H
.2

64
 in

pu
t

bi
t s

tre
am

ge
 o

ut
pu

t
Im

a

Figure 12: Block diagram of an H.264/AVC decoder

The decoder consists of five sequential computation steps, which are bitstream parsing,
entropy decoding, prediction, coefficient transformation and deblocking. The bitstream
processing unit parses the bitstream for symbols, which are then entropy decoded. H.264/AVC
allows two different entropy coding modes, variable length coding (CAVLC) and binary
arithmetic coding (CABAC). Both methods are context adaptive (CA-prefix), i.e. the coding
parameters are adapted according to previous data in order to achieve a high compression.
The decoded symbols contain control information, prediction data and transformed residual
data. H.264/AVC provides inter and intra frame prediction modes to predict image data from
previous frames or from neighboring blocks, respectively. Inter prediction can be performed
on sub-macroblock level (down to 4x4 blocks) and the motion vector resolution goes down to
quarter-pel precision requiring interpolation of pixel data. For intra prediction several modes
are defined, e.g. horizontal prediction from the left neighboring macroblock or vertical
prediction from left and upper neighbors. Intra prediction can either be performed on 16x16 or
4x4 blocks.

The residuals of the prediction are received as transformed and quantized coefficients. After
inverse quantization and transformation of the coefficients the residuals are added to the pre-
dicted data, which leads to a reconstructed image. The transformation is performed on 4x4
blocks (in high profile 8x8 is also supported) and is based on integer arithmetic, contrary to
the residual transformation in previous video compression standards applying a discrete co-
sine transformation (DCT). The reconstructed image is postprocessed by a deblocking filter
for reducing blocking artifacts at block edges. The deblocked image is used for performing
inter prediction whereas intra prediction is based on the reconstructed image.

3.4 Data-Intensive Applications and their Implementation for RISC Processors

 45

For example, in H.264/AVC video decoding, half of the decoding time is spent with memory
accesses. Figure 13 shows how the required memory accesses have risen from decoding
MPEG-4 to decoding H.264/AVC.

0
All load store Load Store

Type of memory access

50
100
150
200
250
300
350
400
450
500
550

M
illi

on
M

em
or

y
ac

ce
ss

es

H.264 Baseline
MPEG-4 Simple Profile

Figure 13: Comparison of memory accesses required in MPEG-4 Simple Profile and
H.264/AVC decoding

A closer look to the algorithms of the functional parts should reveal which computational and
data transfer demands occur. Figure 14 illustrates the mechanism behind the different parts. A
simple inter prediction (grey box in Figure 14.a) implies only a copy operation of the block
from the previous frame. This includes some address calculation and the two-dimensional
byte copy. Almost the same applies if a motion vector is used with an integer number of pixels
(“mv1”). If the motion vectors point to a non-integer position (“mv2”) these sub-pixels need
to be calculated by an interpolation mechanism. At first half-pixel (circles) are calculated as a
weighted sum of neighboring full-pixels (crosses) and then in a second step quarter-pixel po-
sition (filled cycles) are linear interpolated from the neighboring full- and half-pixels. This is
a demanding computational process. SIMD instructions might be applicable for the parallel
filtering of adjacent pixels. The efficiency of caches is restricted due to the random manner of
the motion vectors. Two-dimensional DMA transfers could be applied for integer motion vec-
tors, however depending on the memory architecture they might be restricted due to address
miss-alignment.

3 Theoretical Background

 46

Figure 14: Algorithmic parts of H.264/AVC video coding

Intra prediction is a similar approach of reusing pixels, but here pixels are taken from the spa-
tial neighborhood. Figure 14.b) illustrates three of the nine available modes, where left and
upper neighboring pixels are used for prediction. In simple modes the pixels are just copied,
more advanced modes interpolate between several neighbors. Again for simple modes DMA
modes might be applied, here in a one- to two-dimensional manner, and SIMD instruction
might be suitable for parallel processing of multiple rows or columns. Depending on the proc-
essing order, caches should increase the performance, because neighboring blocks are usually
processed sequential order, and therefore the pixels should be still available in the cache.

The deblocking filter, shown in Figure 14.c) applies filters with various tap-lengths to the
borders of each 4x4 pixels block. This makes the deblocking very computationally demand-
ing. The processing is performed on a macroblock basis, first for vertical than for horizontal
borders. Thus the processing is very local and data transfer can be accomplished efficiently
with two-dimensional DMA transfers for the entire macroblock. Due to this data locality,
caches should also work efficiently. SIMD instructions might be used on a 4x4 block basis.

The inverse integer transformation is applied on 4x4 or 8x8 block basis. Again accesses are
spatially restricted and should benefit from caches. The usage of DMA transfers is highly de-
pendent on the arrangement of the incoming coefficient data, as they are usually ordered in a
sequential, one-dimensional manner when they are read from the bit-stream. SIMD instruc-
tions should be suitable, as the transformation applies similar calculations for each row and
column.

The two entropy coding mechanisms, CABAC and VLC, are more control than
computationally intensive. The entropy coding is based on the mechanism to adapt the binary
representation of information to the probability of the symbols to be transmitted, i.e. short
code words are used for often used symbols. VLC uses tables for the mapping of the symbols
to the code words. These tables can be either implemented as look-up tables or arithmetically
described. The access to these tables is random, therefore caches might not work efficiently
and these tables can be stored in fast memory. An arithmetical implementation is more
computationally demanding but has the advantage of less memory requirements and accesses.

a) Inter prediction b) Intra prediction

c) Deblocking filter

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

Horizontal Vertical

Diagonal down right

mv1

mv2

3.4 Data-Intensive Applications and their Implementation for RISC Processors

CABAC is a more complex coding technique based on arithmetic coding. Contrary to VLC
CABAC performs a continuous coding of the information instead of coding each symbol
separately. This allows a higher compression ratio, however it is computationally intensive
and the dependency between the coding steps inhibit parallelization or pipelining.

 47

4 Comprehensive Profiling of Embedded Processors

4 Comprehensive Profiling of Embedded
Processors

This chapter describes a methodology developed for extensive profiling and demonstrates its
application for software optimization and architecture design of embedded systems. The work
focuses on analyzing memory accesses and power consumption of processors and their
accompanying memory architectures. The first section gives an overview of the requirements
for such analysis and describes the method applied to achieve the desired results.

The following sections present numerous techniques that have been developed in order to
optimize the memory-related issues of the software and hardware parts of embedded systems.
The sections also show how the profiling results can be utilized for this purpose.

In order to incorporate power consumption estimation in the profiling process, a power model
has been developed, which reflects the processor and the surrounding on-chip components.
Section 4.5 describes the measurement techniques and the development of a model based on
measurement of an SoC. A software test suite is shown, which has been generated for extract-
ing the different influences that contribute to the power model.

4.1 Extensive Profiling Methodology
The most common result delivered by profilers is the instruction cycle count information. In
the case of data-intensive and complex applications this information is not sufficient, as the
influence of the memory and system architecture needs to be taken into account. Therefore,
for these applications an analysis method is required, which needs to address the following
aspects:

• fast simulation time, as complex applications require the analysis of a long instructions
sequence to achieve significant results

• detailed and accurate results for finding the hot spots in the software und revealing the
reason for a performance or power consumption issue

• accuracy concerning the hardware architecture, as the memory and bus timing influences
the overall performance significantly

• gather memory access statistics, in order to pinpoint the influence of the memory accesses
within the software

For many decisions in embedded system design, more detailed information about memory
accesses is required, as these accesses have an enormous influence on performance and power
consumption. The following list shows a selection of useful parameters:

• clock cycles budget
• details for memory accesses, with access direction (load or store) and size (bit-width)
• cache activity, such as hit and miss ratio
• bus activity, such as workload and bus master assignment
• access statistics for variables and specific memory areas
• distribution of executed instructions
• power consumption

 48

4.1 Extensive Profiling Methodology

These profiling results can be very useful for both hardware and software optimizations.
However, especially for software modification, the place within the software which produces
the specific event needs to be identified. Therefore the results need to be on a fine-grained
level, for example function or basic block level. On the other hand, if the application, or parts
of it, are only available as libraries or object code, an analysis should be still possible. Thus
the profiling should not be dependent on the source code.

Each of the tools presented in Section 2.3 fulfills only a sub-set of these requirements. There-
fore a profiling method has been developed and implemented that provides the required
analysis results.

Considering the requirements described above, an ISS-based profiling as described in Section
3.3.2.3, has been found to be the most appropriate choice for this purpose. It allows a fast
simulation and a comprehensive view inside the processor hardware and often provides mul-
tiple options for architecture adjustments. The accuracy of the ISS should be on a cycle level,
in order to be sufficient for the optimization and architecture decisions to be made.

The performance analysis developed in this work is carried out in three steps: the acquisition
of program information, the acquisition of profiling data during the runtime of the program
and the representation and postprocessing of the results. This toolflow is described in more
detail in the following sections. It has been implemented as the MEMTRACE profiling tool,
shown in Figure 15.

The acquisition of profiling data is performed by connecting the tool to an ISS and gathering
the information provided. A tracing-based method is used for this purpose, which traces the
following basic information:

• program counter
• cycle counter
• data and instruction busses including their address busses
• optional further information, such as cache misses or external bus usage

In Figure 16 the interconnection with the ISS is shown, including the tracing probes on the
instruction and data bus and the external system bus. The program counter defines the current
position within the program code. In conjunction with the cycles counter, the distribution of
the total execution time over the executed assembly code can be determined.

 49

4 Comprehensive Profiling of Embedded Processors

Cycle-accurate
instruction set

simulator

MEMTRACE
backend

MEMTRACE
init

Results of
function analysis

0
20
40
60

1 2 3 4 5 6

C
ac

he
 M

is
se

s

var1
var2

Results of
memory analysis

Processor: ARM9
Caches: 16K
MemTiming: ..
DRAM page size

User defined
system specification

Generated
analysis

specification
List of functions
Variable location
Data areas (R,RW)
...

0

20
40

60

1 2 3 4 5 6

C
lo

ck
 C

yc
le

s

func1
func2

MEMTRACE
analysis

User defined
analysis specification

Stack location
User data areas
...

010101
101101

MEMTRACE
postprocessing

Object files of the application

Executable of the
application

C
al

ls

C
yc

le
s

Lo
ad

/S
to

re

Lo
ad

Lo
ad

 8
/1

6
S

to
re

C
ac

he
 M

is
s

…

Func1 8 215 75 23 7 52 3 …
Func2 2 295 49 35 3 14 9 …
Func3 2 432 78 68 4 10 2 …

St
ar

t

En
d

Si
ze

Lo
ad

/S
to

re
Lo

ad
Lo

ad
 8

/1
6

…

GlobVar1 0x0A000 0x0A003 4 13 5 0 …
GlobVar2 0x0A004 0x0A0CB 200 31 10 3 …
MemArea1 0x00020 0x00029 10 4 1 0 …
MemArea2 0x00030 0x00033 4 2 1 1 …

Instruction Executed
LDR 41458397
ADD 35844633
STR 16698445
MOV 15562089
CMP 7171197
… …

Results of
instruction analysis

Further
analysis results

User defined table specification
Create „Cache Miss of variables“
Create „Clock cycles of functions“
...

010101
101101

010101
101101

010101
101101

010101
101101

010101
101101

Executable of
the application

Executable of
the application

Figure 15: The MEMTRACE toolflow: 1) The init step extracts the function and data area
names of the application to be analyzed. 2) The analysis step takes this list of names and a
number of user-defined parameters for controlling the actual analysis. An ISS is used for
running the application and the MEMTRACE backend performs the runtime data acquisi-
tion. The outcomes of this step are the different profiling data results. 3) The postprocess-
ing step extracts user-defined data from the profiling data and creates spreadsheet tables
for further statistical analysis.

 50

4.1 Extensive Profiling Methodology

 51

Figure 16: Backend connection to the instruction set simulator

In order to support an evaluation on a C source code function granularity, the assembly lines
need to be mapped to the corresponding functions. The C compiler creates labels in the
assembly code, which identify the beginning of a function. The label addresses are stored in
the symbol table of the executable code. These labels can be applied for the mapping of the
functions. The address range of a function is defined as:

 start address = label address

 end address = next label address - one word

Figure 17 shows an example of address mapping for three functions, which are located at con-
secutive addresses in the instruction memory.

PUSH {r4-r6,r14}

MOV r6,r2

MOV r5,r0

B 0x8f98

LDR r2,[r5,#0x1c]

LDRB r0,[r4],#1

LDR r1,[r5,#0x24]

MOV r14,pc

LDR r1,[r0,#0]

ADD r2,r1,#1

STR r2,[r0,#0]

LDRB r0,[r1,#0]

MOV pc,r14

PUSH {r5-r8,r14}

MOVS r5,r1

 PUSH {r4}

MOV r4,r0

 ADD r7,r0,#0x3c

...

...

func1 0x8f70

func2 0x8f90

func3 0x8FA4

Label Address...
...

func1:

 Start address = 0x8f70

 End address = 9x8f8C

func2:

 Start address = 0x8f90

 End address = 9x8fA0

func3:

 Start address = 0x8FA4

 End address = …

Figure 17: Mapping the instruction memory address range to C source code functions

4 Comprehensive Profiling of Embedded Processors

Similarly, the address of global variables can be extracted, as their addresses and size are also
given in the table. As the location of local and heap variables are generated during the run
time, they can not be extracted from the code. However, instead the stack and heap can be
monitored, if their location and size is known. If the source code is written in C, the labels
usually correspond to the function name. C++ function names are encoded differently; the
symbol for a function combines the namespace, class, member function name and parameter
types. The mangling is compiler dependent. In order to extract the function names tools such
as c++filt [35] can be used.

To achieve a more detailed level of profiling than the function level, the source code lines can
be mapped to the assembly code addresses. A table for such a mapping is available in the ex-
ecutable, if the compiler is instructed to enclose debug information. With gcc, the option -g is
used for this purpose.

4.1.1 Program Information Acquisition
During initialization, the names of all functions and variables of the application are extracted.
During this process, user variables and functions are separated from standard library func-
tions, such as printf() or malloc(). This is achieved by comparing the symbol table of the ex-
ecutable with the ones belonging to the user library and object files. The results are gathered
as the analysis specification. This specification can be modified, e.g. for adding memory ar-
eas, such as the stack and heap variables, for additional analysis. In order to generate interme-
diate results, for example to generate separate profiling results each time a specific function is
called, this function is tagged with “split”. The profiler is instructed to produce snapshot re-
sults, each time the "split function" is called and to reset the profiling counters. Additionally,
the analysis specification controls whether the results, e.g. clock cycles, of a function should
include the results of a called function (accumulated) or if it should only reflect the function’s
own results (self). Typically, auxiliary functions, e.g. C standard library or simple arithmetic
functions, are added to the calling functions. The system specification provides information
on the processor type and the memory architecture, including cache size, page size and mem-
ory timing.

4.1.2 Runtime Data Acquisition
In the second step the performance analysis is carried out, based on the analysis specification
and the system specification, as shown in Figure 15. The system specification includes the
processor, cache and memory type definitions. The ISS is applied to simulate the user applica-
tion and the profiler gathers the analysis results of the functions and variables. Section 5.2.2
describes this process in more detail. Table 3 shows example results for function profiling.
The output files serve as a database for the third step, in which user-defined data are extracted
from these tables.

MEMTRACE communicates with the ISS via its backend, as depicted in Figure 16. Initially,
the backend creates a list of all functions and marks the user and split functions as defined in
the analysis specification. For each function a data structure is created, which contains the
function’s start address and variables for collecting the analysis results. To accumulate results
of called functions to the calling function, the analysis uses two tags, currentFunction and
evaluatedFunction, to identify these functions. The former indicates the function cur-
rently being executed. The second tag is used when this function should not be evaluated.
Then the second tag indicates the calling function, to which the result of the current function
should be added.

 52

4.1 Extensive Profiling Methodology

 53

Each time the program counter changes, MEMTRACE checks if the program execution has
changed from one function to another. If so, the cycle count of the evaluatedFunction is
recalculated and the call count of the currentFunction is incremented. Finally, the pointers
to the currentFunction and evaluatedFunction are updated. If the currentFunc-
tion is a split function, then the differential results from the last call of this function up to the
current call are printed to the result files.

For each access that occurs on the data bus (to the data cache or TCM), the memory access
counters of the evaluatedFunction are incremented. Depending on the information
provided by the ISS, it is decided if a load or store access was performed, and which bit-width
(8/16 or 32 bit) was used. Furthermore, the ISS indicates if a cache miss occurred. Page hits
and misses are calculated by comparing the address of the current memory access with the
previous one and incorporating the page structure of the memory.

For each bus cycle (on the external memory bus) MEMTRACE checks if it was an idle cycle,
a core access or DMA access, and increments the appropriate counter of the
evaluatedFunction.

At the end of the simulation, the results of the last evaluatedFunction are updated and the
results of the last call of the split function as well as the accumulated results are printed to the
result files.

4.1.3 Representation of the Statistical Analysis Data
Table 3 shows that for each function, numerous profiling results are provided. In the first col-
umn the number of calls of the function is given, followed by the exact number of clock cy-
cles spent in this function. The cycle count refers to the system bus speed, which might differ
by a specific factor from the processor core cycles. To achieve the core cycles, the given cy-
cles need to be multiplied by the factor. Furthermore, memory access statistics are given. All
load and store operations are summed up, data as well as instruction accesses. These are ac-
cesses initiated from the load/store interface of the processor core, see Figure 16. Thus if the
core is equipped with caches or MMUs, the load and store operations are accesses to those
components; otherwise they reflect the accesses as visible on the memory bus. The accesses
are also provided separately as load and store accesses, as well as according to their data
width. The number of short (8/16 bit) accesses is also given.

Table 3: Example table of function analysis results

Fu
nc

tio
n

C
al

ls

C
yc

le
s

L
oa

d/
st

or
e

L
oa

d

L
oa

d

8/
16

 b
it

St
or

e

St
or

e

8/
16

 b
it

Pa
ge

 m
is

s

C
ac

he
 m

is
s

B
us

 C
PU

B
us

 D
M

A

B
us

 il
le

Func1 8 215 75 23 7 52 3 42 5 123 92 0

Func2 2 295 49 35 3 14 9 17 9 55 153 87

Func3 2 432 78 68 4 10 2 31 17 143 289 0

To reflect the influence of the page structure of dynamic memory, the profiler performs simple
page emulation. The results for page misses and hits are given. If the processor is equipped
with caches, the number of data cache misses is also given. To inspect the bus activity, the
(system bus) clock cycles are separated into CPU, DMA and idle cycles, with the cycle type

4 Comprehensive Profiling of Embedded Processors

reflecting the initiator of a transfer (or busy) bus cycle. The profiling results for memory areas
and variables (Table 4) are similar to the function result. Additionally, for each memory area
the start and end address and the size are given.

Table 4: Example table of memory analysis results

 St
ar

t
ad

dr
es

s

E
nd

ad

dr
es

s

Si
ze

L
oa

d
/s

to
re

L
oa

d

L
oa

d
8/

16
 b

it

St
or

e

St
or

e
8/

16
 b

it

Pa
ge

hi

t
Pa

ge

m
is

s
C

ac
he

m

is
s

GlobVar1 0x0A000 0x0A003 4 13 5 0 7 2 2 11 2

GlobVar2 0x0A004 0x0A0CB 200 31 10 3 21 6 4 27 8

GlobVar3 0x0A0CC 0x0A0D8 12 16 16 0 0 0 12 4 4

MemArea1 0x00020 0x00029 10 4 1 0 0 3 2 2 2

MemArea2 0x00030 0x00033 4 2 1 1 1 1 1 1 1

These comprehensive profiling results may lead to a huge amount of data, which can be hard
to review. In order to allow the extraction of meaningful information from these statistics, a
postprocessing of the data is required. This is performed in the third step, as depicted in
Figure 15. MEMTRACE allows the generation of user-defined result tables from the perform-
ance results. Results of several functions can be accumulated into user-defined groups and are
sorted by different criteria, e.g. for comparing the results of one group or for comparing one
specific result for all groups. The tables can be further processed by spreadsheet programs,
such as Microsoft Excel, e.g. for creating diagrams of the results.

Besides this profiling data, the tool provides further statistics, which are discussed in Sections
4.3 and 4.4. This includes an overview of successive accesses to neighboring pixels, which
can be used to optimize memory accesses. To optimize the register usage, the memory loca-
tions and corresponding source code line are given for locations which are frequently ac-
cessed. The results for instruction and address mode profiling give an overview of usage of
these architectural features, which is useful in cases where the instruction set of the RISC core
should be adapted.

4.2 Memory Profiling within the Design Flow
This section describes how profiling can be applied during the design of embedded systems.
As surveyed in Section 2.1.1, throughout the entire design flow, system analysis has a crucial
influence on the performance and efficiency of the design. The following sections cover
methods for optimization and exploration for all steps of the design process.

4.2.1 Hardware/Software Partitioning and Design Space Exploration
In order to define a starting point of a system architecture, an initial design space exploration
should be performed. These steps include a variation of the following parameters:

• processor type
• cache size and organization
• tightly coupled memory
• bus timing

 54

4.2 Memory Profiling within the Design Flow

• external memory system and timing (DRAM, SRAM)
• hardware accelerators, DMA controller

The ability to configure these parameters easily between several profiling runs is crucial for
testing the influence of the system architecture on the performance. These initial profiling
runs also reveal the hot spots of the software. The most time-consuming functions are good
candidates for either software optimization or hardware acceleration. Computationally inten-
sive functions are especially well-suited for hardware acceleration in a coprocessor. With the
support of a DMA controller, even the burden of data transfers can be taken from the proces-
sor. Control-intensive functions are better suited for software implementation, as a hardware
implementation would lead to a complex state machine, which requires long design time and
often doesn’t allow parallelization. In order to get an initial sense of the influence of hardware
acceleration, a factor (based on a well-educated guess) can be defined for each hardware can-
didate function. MEMTRACE uses this factor to manipulate the original profiling results.

4.2.2 Software Profiling and Optimization
After a partitioning in hardware and software is found, the software part can be optimized.
Numerous techniques exist for optimizing software, such as loop unrolling, loop invariant
code motion, common sub-expression elimination or constant folding and propagation. For
computationally intensive parts, arithmetic optimizations or SIMD instructions can be ap-
plied, if such instructions are available in the processor. If the performance of the code is sig-
nificantly influenced by memory accesses, as is generally the case for video applications, the
number of accesses has to be either reduced or accelerated. The profiler gives a detailed over-
view of the memory accesses and thus allows identification of their influence. Based on this
information, the optimization technique described in Section 4.3 can be applied.

4.2.3 Hardware/Software Profiling and Scheduling
Besides the software profiling and optimization, a system simulation including the hardware
accelerators needs to be carried out in order to evaluate the overall performance. Usually
hardware components are developed in a hardware description language (HDL) and tested
with an HDL simulator. This task requires long development and simulation times. Therefore
HDL modeling is not suitable for the early design cycles, where exhaustive testing of different
design alternatives is important. Furthermore, if the system performance is data-dependent, a
large set of input data should also be tested to get reliable profiling results. Therefore, a simu-
lation and profiling environment is required, which allows short modification and simulation
time.

For this purpose, an ISS can be extended with simulators for the hardware components of the
system. For example the ARMulator ISS, see Section 2.2.1, provides an extension interface,
which allows the definition of a system bus and peripheral bus components. It comes with a
bus simulator, which reflects the industry standard AMBA bus. The simulator incorporates a
timing model for access times to memory-mapped bus components, such as memory devices
and peripheral modules. Figure 18 shows an example simulator setup for an embedded system
containing a processor with a DMA controller, coprocessor and two memory components.

 55

4 Comprehensive Profiling of Embedded Processors

 56

ISS

Extensions
(DLL-based)

AMBA
Bus

Memory & bus
timing model

Instr.
memory
(TCM)

Instr.
cache

Data
cache

DMA
controller

Co-
processors

DRAM
memory

SRAM
memory

Data
memory
(TCM)

Processor
core

Figure 18: Environment for hardware/software cosimulation and profiling

4.2.4 Coprocessors
The system has been supplemented with a simple template for coprocessors, including local
registers, memory and a cycle-accurate timing. The functionality of the coprocessor can be
defined as C source code, thus the software function can be simulated as a hardware accelera-
tor by copying the software code to the coprocessor template. The timing parameter can be
used to define the delay of the coprocessor between activation and result availability, i.e. the
execution time of the task as it would be in real hardware. This value can be achieved either
from reference implementation found in literature or by an educated guess by a hardware en-
gineer. Furthermore, often multiple hardware implementations of a task with different execu-
tion time (and hardware cost) are possible. In the proposed profiling environment, simply by
varying the timing parameter and viewing its influence on the overall performance, a good
trade-off between hardware cost and speedup can be found quickly. The bus interface of the
coprocessors is described in more detail in Section 5.6.1.

4.2.5 Scheduling
After the software and hardware tasks have been defined, a scheduling of these tasks is re-
quired. To increase the overall performance, a high degree of parallelization should be ac-
complished between hardware and software tasks. In order to find an appropriate scheduling
for parallel tasks, the following information is required:

• dependencies between tasks
• the execution time of each task

4.3 Profiling-Based Software Optimizations

 57

• data transfer overhead

Especially for data-intensive applications, the overhead for data transfers can have an enor-
mous influence on performance. The speedup of a hardware accelerator might even be can-
celled out by the overhead for transferring data to and from the accelerator.

The overhead for data transfers to the coprocessors is dependent on the bus usage. Further-
more, side effects on other functions may occur if bus congestion occurs or when cache flush-
ing is required in order to ensure cache coherency. In order to find these side-effects, detailed
profiling of the system performance and the bus usage is necessary. MEMTRACE provides
these results; for example Figure 19 shows the bus usage for each function depending on the
access time of the memory.

0

1

2

3

4

5

6

7

8

9

DRAM SRAM DRAM SRAM DRAM SRAM DRAM SRAM DRAM SRAM DRAM SRAM

motionPrChr edgeLoopY_N WriteFrame itrans getQpelBl31 edgeLoopC_N

M
illi

on
s

Functions

B
us

 c
yc

le
s

Bus accesses (SRAM)
Bus idle (SRAM)
Bus accesses (DRAM)
Bus idle (DRAM)

Figure 19: Bus usage for each function, depending on the memory type

4.2.6 HDL Simulation
In a later design phase, when the hardware/software partitioning is fixed and an appropriate
system architecture has been found, the hardware component needs to be developed in a
hardware description language and tested using an HDL simulator, such as Modelsim. Finally,
the entire system needs to be verified, including hardware and software components. For this
purpose, the ISS and the HDL simulator have to be connected. The codesign environment
PeaCE [44] allows the connection of the Modelsim simulator and the ARMulator.

4.3 Profiling-Based Software Optimizations
Optimizing the hardware and software of an embedded system includes not only generic
software optimizations [12], but also custom-tailored solutions for the specific application and
the system architecture. Profiling supports the identification of hot spots in the application,
which require optimization. The comprehensiveness of the profiling results also facilitates the
decision as to what kind of optimization is appropriate, and thus the designer is aided during
the optimization process. The optimization steps presented here are very much dependent on

4 Comprehensive Profiling of Embedded Processors

 58

the underlying system architecture. Therefore, the analysis results can be helpful especially
when reusing software that has been written for other processor architectures or without a
focus on speed optimization. Thus, this optimization methodology increases the portability
and reusability of source code. The most important profiling results for optimization are cycle
counts. They allow identification of the most demanding part of the software. General obser-
vations of the execution time of software have shown that 80 % to 90 % of the execution time
is spent in 10 % to 20 % of the code. This rule, which follows the Pareto principle, leads to
the dictum “make the common case fast“. Amdahl’s law [2]

S
PP

speedupoverall
+−

=
)1(

1 (3)

S: Speedup of code that is optimized

P: Portion of executed code that is optimized

describes the speedup that can be achieved by optimizing these parts. For example, if a part of
the software can be found where 50 % of the computations take place (P = 0.5) and the speed
of this part can be increased by a factor of 2, than this would lead to an overall speedup of
33 %:

33.1

2
5.0)5.01(

1
=

+−
=speedupoverall (4)

Contrary to this result, if the speed of a part of the software with 20 % of the computations is
increased by a factor of 10, this only leads to a 22 % performance increase. This shows that if
a hot spot can be found, this is the most promising candidate for high optimization potential.
In the first step, the general software and hardware optimizations can be considered, e.g. loop
unrolling, the usage of SIMD instructions or adjusting the cache size or memory architecture.
After each optimization step, a new profiling run can be used to evaluate its influence. This is
important, as the supposed optimization might interfere with other parts of the system and
lead to reduced performance. Whereas shallower profiling would only show the overall influ-
ence, the detailed results help to find the cause of such interference. Besides these optimiza-
tions, in the following sections some mechanisms are shown which especially benefit from
the memory access statistics provided by the profiler.

The following optimizations are often very specific to the actual compilation run and software
version; therefore they should be applied in a very late step of the design. A recompilation
might lead to data and program code placement in memory being changed, and thus to modi-
fied cache and bus usage and page miss behavior. Thus previous optimization steps, for ex-
ample for data placement, might lead to worse results than without the optimization. The
compiler needs to be instructed to take these modifications into account. Section 2.3.1 shows
an example of how to create fixed memory maps.

4.3.1 Pinpointing Code Locations with Inefficient Memory Accesses
Many multimedia applications work on data with a size of a byte or a half-word. However, the
memory bus width in many embedded systems is larger, e.g. 32 bits. Thus the available
bandwidth is not used efficiently. To increase system performance, the entire bus width should
be used and therefore byte or half-word accesses should be combined to word accesses. This
is possible if adjacent address positions are accessed within a short time period. Figure 20

4.3 Profiling-Based Software Optimizations

shows an example of memory accesses to nine adjacent bytes. The different offsets show the
four different possible positions of the accesses in relation to word-aligned addresses.

 word0 word1 word2
byte address 0 1 2 3 4 5 6 7 8 9 A B

word offset = 0
word offset = 1
word offset = 2
word offset = 3

 Figure 20: Merging nine adjacent byte accesses to three 32-bit word accesses starting at
any word offset position

The figures shows that for any word offset position, it is sufficient to read three 32-bit words
(word0 to word2) from the main memory. This corresponds to a three times reduction in the
number of accesses. However, when reading multiple bytes at once, processing each byte re-
quires shifting and masking operations, which leads to a computational overhead.

Listing 9 shows a code example for reading four adjacent bytes, the one at the current address
(R0), the two on the left side (L0, L1) and the one on the right (R1). The if case shows how
the byte-to-word conversion is implemented for a word offset of three. Cases for the other
offsets are similar.

unsigned int w1,w2;
unsigned char L1,L0,R0,R1;
if (((unsigned int)SrcPtr&0x3)==0) {
 w1 = *((unsigned int*)((unsigned int)SrcPtr)-4); // left word
 w2 = *((unsigned int*)((unsigned int)SrcPtr)); // right word
 L1 = (w1>>16)&0xFF ; // extract 2nd left byte from left word
 L0 = (w1>>24)&0xFF ; // extract 1st left byte from left word
 R0 = w2&0xFF ; // extract 1st right byte from right word
 R1 = (w2>>8)&0xFF ; // extract 2nd right byte from right word
}
else { // fallback case for any access with word offset != 3
 L1 = SrcPtr[-inc2] ;
 L0 = SrcPtr[-inc] ;
 R0 = SrcPtr[0] ;
 R1 = SrcPtr[inc] ;
}

Listing 9: Word access for adjacent bytes for a pixel address with word offset = 3

Converting byte accesses to word accesses only speeds up the design if the overhead for shift-
ing and masking is less than the time saved due to the reduced number of memory accesses.
Furthermore, a processor with a data cache generally does not benefit from the byte-to-word
conversion, as data of adjacent pixels is available in the cache due to the arrangement of cache
lines.

Applying this optimization step requires the knowledge of the location in the code where such
accesses occur. Finding these locations manually can be difficult or even impossible, espe-
cially if an advanced multi-step address calculation is performed. For example, in nested
loops where multiple loop-parameters are incorporated in the address generation, the resulting
address is not obvious. In this case, profiling the memory access pattern helps to find these
locations. MEMTRACE provides memory access results for each function and differentiates
between the bit-width of the access, as shown in the row “before optimization” in Table 5. As
can be seen, about 30 % of the overall load operations are byte and half-word accesses. This

 59

4 Comprehensive Profiling of Embedded Processors

high fraction of non-word accesses provides a hint that this function might offer potential for
byte-to-word conversion in memory accesses. However, the tool does not provide the infor-
mation necessary to meet the second condition, which is that the accesses need to be to adja-
cent addresses. Nonetheless, it supports the designer by highlighting potential candidate func-
tions for optimization. In this case, the function allows such as conversion, reducing the
overall memory accesses by about one third and the execution of the function by more than
28 %.

Table 5: Analysis results for a function (motCompChroma()) of the H.264/AVC decoder

 Clock cycles All load Load 8/16

Before optimization 13149109 309368 104784

After optimization 9355709 196746 34584

For more advanced information, MEMTRACE also provides a detailed list of source code
line locations where such sequential accesses occur. Successive memory accesses are traced
for this purpose and the distance between their addresses is calculated, thus neighboring ad-
dresses can be identified. The results are provided in a table, as in Table 6.

Table 6: Location information about successive load and store operations to neighboring
addresses

Number
of loads

Number
of stores Function File Line Assembly

address

0 52 getNextVidAUH264 testvidec.c 347.2 8888

0 52 getNextVidAUH264 testvidec.c 348.2 888C

0 1371 getNextVidAUH264 testvidec.c 349.2 8894

0 106 getNextVidAUH264 testvidec.c 359.11 88C0

0 404 DecodeH264 decodeH264.c 144.2 9474

0 4 edgeLoopY_S deblocking.c 1125.14 FA2C

0 40 edgeLoopY_S deblocking.c 1130.14 FA64

0 1473 edgeLoopY_S deblocking.c 1131.7 FA7C

0 34 edgeLoopY_S deblocking.c 1132.14 FAA4

102 0 edgeLoopC_N deblocking.c 1184.3 FB50

1176 0 edgeLoopC_N deblocking.c 1197.8 FBB4

10510 0 edgeLoopC_N deblocking.c 1198.8 FBBC

10498 0 edgeLoopC_N deblocking.c 1199.8 FBC0

This shows that for example in the function getNextVidAUH264() at source code lines 347 to
349 (Listing 10), store accesses occur with addresses adjacent to the accesses before. The
program code at this location shows that the four accesses can be easily combined to one
word accesses:

345 : /* write start code to data buffer */
346 : *p8_data++ = 0;

 60

4.3 Profiling-Based Software Optimizations

 61

347 : *p8_data++ = 0;
348 : *p8_data++ = 0;
349 : *p8_data++ = 1;

Listing 10: Code example with successive byte accesses

4.3.2 Using Caches and Non-Cacheable Areas
Especially for systems with slow memory, caches are mandatory for achieving a reasonable
performance. The spatial and temporal locality of memory accesses found in most applica-
tions can be used efficiently with caches. On the other hand, if data areas are accessed ran-
domly, for example in look-up tables, these accesses lead to cache trashing, i.e. a one-time
accessed data value replaces a frequently accessed data value, which subsequently needs to be
reloaded. The cache control unit usually allows the definition of non-cacheable areas in order
to prevent data from these areas from being stored in the cache.

Obviously, achieving information about the access patterns to specific memory areas requires
a dynamic analysis of the memory accesses. In such an analysis, the ratio between accesses to
a data area and the resulting cache misses needs to be evaluated.

ssesMemoryAcce
scacheMisseatiocacheMissR = (5)

4.3.3 Page Miss Reduction in DRAMs
The external memory of an embedded system is often dynamic RAM (DRAM), which is or-
ganized as pages, see Section 3.1.2. If a specific page is active, memory accesses to this page
(page hits) are fast, whereas accesses to other pages (page misses) require several initializa-
tion steps, which results in wait states. Therefore data should be arranged such that the num-
ber of page misses can be reduced. A typical case where page misses occur is when two data
areas are accessed alternatingly, for example when calculating the sum of two arrays. Each
data access leads to a page miss or, if a cache is used, each line fill leads to a page miss. If
possible, both data areas should be placed in one page.

As data placement is performed during compile time (or even runtime for heap variables),
identifying page misses requires dynamic profiling of the running code. The MEMTRACE
profiler provides page miss results for each function and for global or user defined data area
and thus allows an identification of the code segments and data areas that should be rear-
ranged.

4.3.4 Speedup Estimation before Implementation
Optimizing the software, e.g. by using SIMD instructions, assembler inlines or general re-
coding, can be very time-consuming and prone to error. Therefore it is helpful to estimate the
speedup that can be achieved by re-coding a specific function, and its influence on the overall
performance, before performing the re-coding. MEMTRACE allows the specification of a
speedup factor for each function in the application. Thus the influence of optimizing a specific
function on the overall performance can be estimated.

4 Comprehensive Profiling of Embedded Processors

4.3.5 Data Access Visualization
Beside the statistical representation of the profiling data, a visualization of the memory ac-
cesses gives the designer a good overview of the access pattern of the software over time. The
information can be used to gain a better understanding of the memory accesses of the software
and allows the finding of patterns within the accesses in order to optimize the data transfers,
e.g. by prefetching subsequently used data to the cache or fast memory. Additionally, unnec-
essary data accesses are much easier to track. Figure 21 shows a set of screenshots of such
access pattern images. Each image shows a snapshot of the accesses to an area in the memory
(176x16 bytes) between a timing interval, e.g. between each call of a specific function. The
number of accesses are then normalized to a 256-step wide gray-scale range and written con-
tinuously to a datastream. This datastream can then be interpreted as a luminance video
stream and rendered by a video player.

Figure 21: Visualization of access pattern to user-defined memory area over time

4.3.6 Efficient Register Usage
As memory accesses are very time-consuming, frequently accessed variables should be kept
in registers if possible, as described in [12]. Register allocation for C source code is automati-
cally performed by the compiler. However, the compiler may allocate registers inefficiently if
global variables, pointers or pointer chains are used, as the accessed variables may be modi-
fied between multiple accesses. If the programmer knows that a variable is not modified, the
compiler can be directed to use a register to store the variable by various methods, e.g. by
defining it as a “register” type or by working with a local copy of a global variable.

An indicator of inefficient register usage is if a function accesses the same memory address
multiple times. To localize such functions, the memory accesses in each function need to be
analyzed. For each memory address accessed from the function, the number of accesses is
counted. If a large number of accesses occurs to the same address, the above-mentioned
methods might be applicable. Table 7 shows an excerpt of such results as provided by the pro-
filing tool.

 62

4.4 Profiling-Based Hardware Optimization

Table 7: Access statistics for each function

E
va

lu
at

ed

fu
nc

tio
ns

C
al

ls

A
cc

es
se

d
ad

dr
es

se
s

A
dd

re
ss

 #
1

So
ur

ce
 fi

le

L
in

e
in

so

ur
ce

 fi
le

A
cc

es
se

s *

ca
lls

M
ax

. n
o.

 o
f

ac
ce

ss
es

A
dd

re
ss

 #
2

Itrans 144 68 F2D74 block.c 108.5 4752 33 …

ReadCoeffBlockCAVLC 202 25 stack cavlc.c 840.4 2828 14 …

PredictNnz 176 4 F25EB cavlc.c 609.3 9152 52 …

ReadLevelVLCN 65 17 stack cavlc.c 557.5 520 8 …

ReadTotalZeros 90 6 stack cavlc.c 232.1 720 8 …

DecodeH264 1 16 stack decodeH264.c 388.1 11 11 …

GetVLCSymbol 430 7 stack egvlc.c 151.1 4730 11 …

GetVLCSymbol_Slow 20 4 stack egvlc.c 121.1 40 2 …

For each function, the table gives the number of calls and the total number of accessed ad-
dresses. For the ten most accessed addresses, more details are provided. Table 7 shows only
the results for the first address as an example. The results include the actual address (or loca-
tion name), the number of accesses per function and the number of accesses multiplied by the
number of calls. For this last, the call of the function with the highest number of accesses is
used. This number can be used to compare the overall influence of accessing this address, as
compared to accesses in the other functions. If source code information is available, the pro-
filer also provides one source code line location, where an access to the memory address oc-
curred. This helps in identifying the actual source code variable which corresponds to the ad-
dress, and is a candidate for the manual register allocation.

For example, the function “itrans” in the first line of the table is called 144 times. The func-
tion accesses up to 68 different memory addresses during each call. The most frequently
called memory location is at address 0xF2D74. The call (or at least one of the calls) to this
address takes place at line 108 in the source code file “block.c”. The maximum number of
accesses to this address within one call of the function is 33 times. The overall influence of
the accesses to this address is assessed by multiplying the maximum number of accesses by
the number of calls, i.e. 33 times 144, which results in 4752. The higher this number is, the
larger the influence on the overall performance when the data value of this address is stored in
a register. This fact becomes clearer when comparing the two functions “DecodeH264” and
“getVLCSymbol”. Both functions access a specific address on the stack 11 times. However as
the “getVLCSymbol” function is called 430 times, optimizing the register allocation there
yields a higher speedup than optimizing “DecodeH264”, which is only called once.

4.4 Profiling-Based Hardware Optimization
Beside the software optimizations presented in the previous section, profiling can also be ap-
plied to adjust the processor and memory architecture of embedded systems. The following
sections show how the instruction set and the address generation modes of a processor can be
adjusted to the needs of the application. In Section 4.4.3 a method is described for configuring
and using fast on-chip memory efficiently.

 63

4 Comprehensive Profiling of Embedded Processors

 64

4.4.1 Instruction Set
As their name states, RISC processors come with a reduced instruction set as compared to
CISC processors. However, some of the current RISC instruction sets provide more than 100
instructions. If the instruction set of the processor is customizable, such as with the CoWare
Processor Designer, Tensilica or ARC, it can be helpful for the processor designer to obtain
information about the actual usage of the instruction set. A statistical analysis can be per-
formed by parsing the compiler-generated assembly code. However, this static analysis ne-
glects the real instruction usage during program execution, since not every assembly code line
is executed equally often. As many instructions can be replaced by a series of other instruc-
tions, it can be helpful to see how often a specific instruction is really used. This is important
as the replacement with other instructions often comes with an overhead, and therefore the
influence of the overhead can be estimated by this dynamic profiling.

Table 8 shows the instruction profiling results as provided by the profiler for the execution of
an H.264/AVC decoder. The source code, which includes more than 20,000 lines of code, is
translated to a usage of only 21 assembly instructions. Thus, a processor design with only
these instructions would be sufficient to execute the code. Furthermore, it can be seen that
four instructions (LDR, ADD, STR, MOV) are responsible for almost 75 % of the decoded
instructions. So, the processor architecture, including the instruction set and decoder, pipeline
and memory interface should be designed such that these instructions require a very low la-
tency. The fact that these instructions are mainly data movement related shows how data-
intensive this application example is.

4.4.2 Address Modes
Besides the actual instructions, the instruction set of a processor is also defined by the address
modes which are implemented. The addresses are either calculated in a separate address gen-
eration unit or within the general ALU including the shifter unit. Depending on the processor,
a more or less wide range of address modes is available. Taking the ARM architecture as an
example, the following modes are supported. The simplest is a zero offset address, where the
address is taken from a register without any offset. This address can be modified by an imme-
diate value, which is hard-coded in the instruction. The register values can be further proc-
essed by a shift operation within the same instruction.

Supporting all these address modes has two major impacts on the processor architecture. On
one hand, the coding of the address modes in the instruction set requires a portion of the
instruction bit-width for encoding the mode (3 bits), the offset register (4 bits), shift
information (7 bits) and the immediate value (12 bits). On the other, the hardware support
required for calculating the addresses leads to an overhead in die area and power
consumption. This is especially true if a separate address generation unit is used. If a
processor is targeted to a specific application, the architecture should be adapted to the
application’s needs. A profiling of the applied address modes can be used to build an
optimized and reduced instruction set and address generation unit.

4.4 Profiling-Based Hardware Optimization

Table 8: Instruction profiling results

Instruction Executed Percent Accumulated

SWI 734 0 100

ADC 19859 0.01 100

BIC 28336 0.02 99.99

CMN 35269 0.02 99.97

MVN 422525 0.29 99.95

TST 514008 0.35 99.66

RSB 872541 0.59 99.31

ORR 938291 0.64 98.72

LDM 1655893 1.13 98.08

MUL 1698881 1.16 96.95

STM 1709378 1.16 95.79

AND 2742492 1.87 94.63

MLA 2945366 2.01 92.76

SMU 3494211 2.38 90.75

SUB 6097076 4.15 88.37

B 6974355 4.75 84.22

CMP 7171197 4.88 79.47

MOV 15562089 10.59 74.59

STR 16698445 11.37 64

ADD 35844633 24.4 52.63

LDR 41458397 28.23 28.23

Sum 146883976 100 % 0

Table 9 shows the example results of a profiling run for a gesture recognition system, see Sec-
tion 6.2. For each of the load and store operations one of the address types is used, with either
no offset at all, a program counter relative offset or a pre- or post-indexed offset. These offsets
can be either an immediate value or taken from a register value. Furthermore, the register
value can be shifted by a given value and a specific shift operation. As can be seen, here most
of the memory accesses are to pre-indexed addresses with an immediate offset value. Register
offsets are used for less than 12 % of the memory accesses and shift operations for only 2 %.
For optimization purposes, abandoning these address modes could be an option.

 65

4 Comprehensive Profiling of Embedded Processors

 66

Table 9: Address mode profiling results

Details on load and store operations

Loads 2751552

Stores 740142

Address type

Zero-offset 663579

Program counter-relative 58324

Pre-indexed 2188188

Post-indexed 581603

Detail on all indexed modes

Immediate offset 2352885

Register offset 416906

Detail on register offset (optional shift operation)

Shift-offset ASR 0

Shift-offset LSL 75361

Shift-offset LSR 746

Shift-offset ROR 0

Shift-offset RRX 0

4.4.3 Data Partitioning between Fast and Slow Memory
Many embedded system architectures provide a fast but small internal memory (SRAM) as an
addition to the much slower external memory (DRAM). This internal memory can be used to
store frequently used data for fast access. As SRAM is very costly in die area and power con-
sumption, the internal memory is usually small. Therefore in order to use it efficiently, the
frequently accessed memory areas need to be identified, these being valuable candidates for
internal storage.

Processor
core

I-cache
32 kB

D-cache
32 kB

External
memory
(DRAM)

Internal
memory
(SRAM)

TCM
(SRAM)

Figure 22: Embedded system with caches and fast internal and slow external memory

4.4 Profiling-Based Hardware Optimization

 67

If caches are available in a system, as depicted in Figure 22, the situation changes slightly, as
not every load/store access is passed to the slow external memory. Instead, this occurs only if
the required data/instructions are not available in their caches, i.e. cache misses occur. The
caches then load new cache lines (e.g. eight words) from the external memory (DRAM).
These loads lead to a halt of the processor and thus increase the execution time. The time re-
quired for a cache load depends on the speed (wait states) of the external memory. Thus the
overall number of cache misses must be reduced in order to speed up the application.

This can be accomplished by using one of the fast internal memory devices. In cases where a
TCM is used, the number of cache accesses (and misses) is reduced directly. In the case of
other internal memory, the address range of this memory should be marked as “non-
cacheable”, in order to bypass the cache during accesses to this memory. The choice of
data/instructions to be stored in the TCM is quantified by the number of cache misses which
occur when accessing these data/instructions. Therefore an analysis of cache misses per data
segment (e.g. variable) or instruction segment (e.g. function) is required. The resulting cost
ratio, given in Equation 6, expresses the ratio between the cache misses that occur when ac-
cessing a data segment and the size of the segment.

sizedata
missescacheratiocost =

∑
=

⋅
n

j
jj xp

1

=

<⋅
n

j
jj cxw

1

 (6)

The areas with the highest cost value should be stored in fast memory in order to reduce the
overall number of misses.

The example shown in Table 10 is used to describe the mapping method. The table shows an
example list of variables with the results for size and cache misses, sorted by the cache misses
per byte. The accumulated size and number of cache misses is also given, with the results of
data structures accumulating from the top to the bottom of the list. With a given TCM size, for
example 4096 bytes, all data structures from “incVlc” down to “predictIntra4_table” could fit
into the TCM. However, this leads to using only 2568 bytes of the 4 kB available. A more
efficient method would be to leave “predictIntra4_table” out and thus have space for
“expgolombtab”, which would increase the number of saved cache misses from 96,849 to
142,807.

The process of finding an optimal partitioning of the data segments to the fast and slow mem-
ory, while reducing the overall cache misses, can be described with the knapsack problem
[65]. This can be described as follows: having a container with a capacity c and a number n of
objects that can be either taken or not (x=0 or x=1), with each object having a weight w and a
profit p, the objective is to

maximize

subject to ∑

Here the data size is equivalent to the weight and the cache misses are the profit. Although
solving this problem can be complex, especially when dealing with a large number of objects,
efficient algorithms exist to reduce the complexity.

4 Comprehensive Profiling of Embedded Processors

Table 10: Decoder data areas sorted according to their number of cache misses per byte

Data structure Size Load, store
accesses

Cache
misses

Accum.
size

Accum.
cache

misses

Cache
misses per

byte

IncVlc 28 116142 1187 28 1187 42.39

Getqpel8_table 64 32608 2638 92 3825 41.22

Run0_short 128 52206 5195 220 9020 40.59

NumCoeffTrailOnes0 1024 242918 39531 1244 48551 38.6

Run1_short 128 34840 4870 1372 53421 38.05

Bs 4 3213784 150 1376 53571 37.50

ALPHA_TABLE 52 402619 1933 1428 55504 37.17

TotalZeros0_short 1024 102493 37300 2452 92804 36.43

TotalZeros 60 216663 2100 2512 94904 35.00

PredictIntra4_table 56 146961 1945 2568 96849 34.73

Expgolombtab 1540 656242 47903 4108 144752 31.11

… … … … … … …

The resulting partitioning of the data segments can be used for automatic placement if a feed-
back path from the profiler to the compiler or linker, respectively, can be established. For ex-
ample, by means of a linker script or scatter loading files, the placement of each object file
can be achieved. To place each variable of the code individually, a compiler directive
(pragma) can be inserted in the code. This forces the creation of special sections for each vari-
able, which can then be accessed for placement within the scatter file.

The method described above leads to a static placement of the data segments. However, the
profiling can also be used for dynamic placement to the fast local memory, which corresponds
to the actual purpose of TCMs. If the profiler is instructed to produce intermediate results,
these results can be used to analyze the changes in data usage and cache miss behavior over
time. As described in Section 4.1, the “split function” behavior can be used to produce profil-
ing snapshots at each call of a specific or even of multiple functions.

The following is an example of dynamic placement. If an array or look-up table is used heav-
ily only within one function but not required during other functions, it can be loaded to the
TCM dynamically only for the time it is used, leaving the memory space for other variables at
other times. A DMA controller should be used in order to perform the relocation of the array
efficiently and the programming of the controller can be based on the profiling results.

4.5 Power Model of an Embedded Processor
Besides providing performance and memory analysis, the profiling method has been extended
with power estimation. For this purpose a measurement-based model has been created. Com-
pared to analytical models, measurement-based models have the disadvantage of being re-
stricted to a specific processor. On the other hand, measurement leads to real power numbers
and thus is proven to be valid. Processor cores are not usually manufactured as stand-alone
devices, but are incorporated onto a device along with additional components such as on-chip

 68

4.5 Power Model of an Embedded Processor

memory, control units and input/output modules. The influence of these components on power
consumption needs to be considered too.

Within this study, the Altera Excalibur [1] platform has been used for measuring the power
consumption of a sample embedded RISC processor core. It is an SoC based on an ARM922T
processor with separate instruction and data caches, each 8 kB, see Figure 23. Besides the
processor, single and dual port on-chip SRAMs are available and memory controllers for ac-
cessing external SDRAM and a field-programmable gate array (FPGA) are contained on the
chip.

Figure 23: Block diagram of the Excalibur processor unit including caches and MMUs [1]

The Excalibur device is built in a 0.18 μm TSMC process with seven metal layers. The PLD
array is similar to the arrays used in APEX 20KE devices. The Excalibur series features three
devices, which differ in their size of on-chip SRAM and gate array. For the power evaluation
of the processor, the smallest device, called EPXA1, has been chosen, in order to keep the
influence of the other on-chip components low.

4.5.1 CMOS Power Consumption
Most embedded systems are built of semiconductor devices, which use the complementary
MOS (CMOS) technology. The power consumption of CMOS circuits is a sum of static and
dynamic components. The dynamic component describes the switching activity of the circuit,
which is mainly due to the charging and discharging of load capacitances. These capacitances
include the interconnecting wires and the internal capacitances of the transistors, therefore the
power consumption increases with the wire length and the number of connected gates. The
dynamic power consumption is defined as:

 69

4 Comprehensive Profiling of Embedded Processors

 70

2
DDkkdynamic VfCP ⋅⋅=

)()()(tItVtP ⋅=

 to

)()(tIVtP ⋅=

ed as:

 (7)

where Ck is the load capacitance, fk the clock frequency of the circuit and VDD the supply
voltage.

When the CMOS technology was introduced, one of its major advantages was the very low
static power consumption, which is due to the fact that either the pull-up (PMOS network) or
pull-down (NMOS network) of a gate is turned off when the circuit is in a stable state. The
continuous shrinking of the feature size of the transistors and the accompanying reduction of
the threshold voltage leads to an increased leakage current, the subthreshold leakage, because
the gate’s transistors are not fully turned off in this state. Therefore in current CMOS tech-
nologies, the static power consumption can no longer be neglected, and in the future it will
become comparable to the dynamic power consumption [103]. Therefore the power model
created within this work reflects both, dynamic and static power consumption.

4.5.2 Power Measurement Methods
The electrical power consumed by a device is defined as:

 (8)

where V is the supply voltage and I is the electric current flowing into the device. For
semiconductor devices, the supply voltage is provided in DC mode and can be considered
constant. This leads

 (9)

Thus the power consumption of the device can be determined by measuring the current
flowing through the device. The current changes depending on the chip activity and the
energy consumed within a time Δt is express

∫∫∫ ⋅⋅Δ=⋅⋅Δ=⋅Δ=)()()(tIVttIVttPtE (10)

The electrical current can only be measured indirectly by one of the following three methods,
which are described in more detail below:

• voltage drop over a shunt resistor
• magnetic field produced by current flowing through a conductor
• voltage drop due to discharging of switching capacitors [28]

The shunt resistor setup shown in Figure 24 is the most common current measurement
method. It has a small resistance, usually in the range of a few milliohms to 1 ohm. The resis-
tor is installed in series with the system to take measurements on the power supply line. It can
be installed either on the supply voltage side (high-side) or on the ground side (low-side) of
the power supply. The low-side arrangement has the advantage that no common mode voltage
exists, however it might be difficult to measure all ground paths, for example ground path
might also appear through the measurement equipment or other connected devices. The cur-
rent mode voltage of high-side measurements can be eliminated by means of a differential
measurement setup. This can be either a differential probe or a differential amplifier, which
can also be used to amplify the signal.

4.5 Power Model of an Embedded Processor

 71

DC
source

Device

Shunt

OscilloscopeAmplifier

Figure 24: Measurement setup with high-side shunt resistor and amplifier

The problem with the shunt setup is that it is an intrusive method. The dynamic voltage drop
over the shunt (due to the changing supply current) leads to a changing supply voltage to the
actual device. If the supply voltage is too low, this can lead to malfunction of the device. Usu-
ally CMOS devices have a specific supply voltage range which is allowed, and this is the
maximum range for the actual measurement. As this range is usually about a few millivolt,
e.g. 10 - 100 mV, the actual measurement device must be fairly accurate. Therefore it is help-
ful to amplify the signal, although this in turn leads to a reduced frequency range due to the
frequency and gain relationship of the operation amplifier. This relationship is given in the
gain bandwidth product. A trade-off has to be found between bandwidth and amplification,
which corresponds to a trade-off between temporal and signal range accuracy. Simple opera-
tional amplifiers can be used as differential amplifiers, if they are setup as shown in Figure
25.

Figure 25: Schematic of a differential amplifier [20]

The drawback of this setting is that it has only medium input impedance. As the amplifier
needs to be connected in parallel to the shunt resistors, this can lead to errors in the measure-
ment results. Instrumentation amplifiers overcome this problem by extending the circuit with
two input operational amplifiers, see Figure 26. This leads to a high input impedance, in the
range of gigaohm, and a high common mode rejection.

Instrumentation amplifiers are available as integrated circuits, which offer a higher accuracy
than discrete circuits, for example the Analog Devices AD623 [4] used in this work. The
AD623 integrates the entire circuit given in Figure 26 except for the resistor controlling the
gain, which can be externally connected to the device. The gain bandwidth product is 800
kHz.

4 Comprehensive Profiling of Embedded Processors

 72

Figure 26: Schematic of an instrumentation amplifier [20]

Especially for the measurement of electric current, so-called current-sense amplifiers are
available which provide a higher gain-bandwidth product. For example, the Maxim
MAX4376TASA offers 40 MHz and has a bandwidth of 2 MHz at a gain of 20. The operation
mode is different from the instrumentation amplifier, see Figure 27.

CURRENT
MIRROR

A1

TO LOAD BATTERY
ILOAD

RSENSEVSOURCE

RG2RG1

RS-RS+
IRG1

VCC
+3V TO +28V

0 TO +28V

MAX4376

OUT VOUT

IRGD

RGD

GND

OUTAV = 2, 5,
OR 10

Figure 27: Block diagram of the current-sense amplifier MAX 4376 [67]

The current to be measured, Iload, leads to a voltage drop over RSense. The open-loop setup of
the operational amplifier leads to the same voltage drop over RG1 and results in current IRG1.

LoadSense
G

RG IR
R

I ⋅⋅=
1

1
1

 (11)

This current is “copied” and amplified by a factor β with a current mirror, which leads to the
current IRGD. The voltage drop over the resistor RGD is then amplified by factor Av of 2. The
output voltage is then:

4.5 Power Model of an Embedded Processor

 73

VLoadSense
G

GD
Out AIR

R
R

V ⋅⋅⋅⋅=
1

β (12)

The combined gain factor is given in Equation 13 and is adjusted to a value of 20 for the
MAX4376TASA device.

V
G

GD A
R
R

gain ⋅⋅=
1

β

.

 (13)

The instrumentation amplifiers mentioned above and the current-sense amplifier are used in a
high-side setup for the current measurement. The measurement setup is described in more
detail in Section 5.7.

4.5.3 Instruction Sequences for Power Evaluation
The power model of the processor should be triggered by information which is delivered by
the profiler or by the ISS. This includes, for example, the executed instruction, register usage,
pipeline stalls, data values and addresses and cache misses. In order to create the power
model, the influence of these parameters on the power consumption needs to be extracted.
Based on existing power models, as described in Section 3.2.1, the following typical influ-
ences on the dynamic power consumption have been identified:

• intra-instruction energy
• inter-instruction energy
• data and instruction cache
• data path
• register address decoder
• idle cycle

The intra-instruction energy corresponds to the intrinsic energy for each instruction without
any influence of other instructions. This energy corresponds to the activity in the functional
units of the processor, when they are utilized by an instruction. This is covered by running a
program which consists of a sequence of only this instruction. Interdependencies between
instructions are reflected by the inter-instruction energy. This energy is due to the activation
and deactivation of specific functional units. A test program should cover each combination of
instructions by executing them alternatingly. The energy as compared to the single instruction
sequence is the inter-instruction offset.

Besides the actual instructions, the influence of the processed data streaming through the data
path should also be considered. For abstracting the data dependencies two different models
are examined: the Hamming distance and the number of ones. The Hamming distance
describes the difference between two successive data values, expressed as the number of bit
positions which have changed from one to the next. This behavior corresponds very well to
the charging and discharging process of the data bus wires and therefore should correlate with
the energy consumption. Depending on the charging behavior of the wires, the number of
ones within a data word can be considered as an additional criterion for an energy model. In
order to profile the influence of the data path, the data read from the source registers and the
final data written to the destination register need to be profiled

These aspects apply similarly for the binary representation of the instruction and the addresses
for accessing data, instruction and registers.

4 Comprehensive Profiling of Embedded Processors

 74

Since the register file tends to have a high influence on the data path energy, the influence of
the address decoder of the register file should be considered along with the actual data flow.
This is done by using a sequence of instructions with changing source and destination regis-
ters.

Instead of examining each cache separately, the cache energy estimation can be combined
with that of the processor by profiling the cache access behavior. This simplification is feasi-
ble for a simple processor, where every activity of the cache is initiated by the processor. The
data cache is activated if a load or store operation is executed and the instruction cache is ac-
tivated during an instruction fetch. For the data cache, the data and addresses transferred dur-
ing each load or store operation need to be considered. For the instruction cache, an instruc-
tion sequence needs to be executed, which leads to a specified Hamming distance between the
instructions and a defined number of ones. However, the instructions within the sequence
should activate similar functional units in order to separate this influence from the cache
model. Furthermore, the cache hit and miss behavior needs to be taken into account. For more
complex architectures, the cache should be modeled separately, for example by using the
CACTI cache power model, as mentioned in Section 2.3.4.3.

Finally, the different idle modes need to be examined. Processors can be idle either during a
NOP operation or when a pipeline stall occurs due to a cache miss. Additionally, many proc-
essors support special low power modes such as standby, where most of the functional units
are turned off by clock gating.

Since the energy model needs to be incorporated into the profiler, it should rely on the data
provided by the profiler or by the cycle-accurate ISS. Considering the aspects described
above, the following profiling data are required:

• executed instruction
• accessed, processed and written back data from the register
• instruction word and address read from the instruction cache
• data word and its address accessed during load and store operations
• cache behavior, including cache misses and hits as well as write back stalls
• timing behavior, i.e. the delay and throughput of instructions, pipeline stalls and delay

time for cache hits and misses
• accessed registers and register addresses

A set of assembly code sequences needs to be developed which reflect the different energy
contribution. These code sequences can then be run on the processor to evaluate the dynamic
behavior of the processor. Section 5.8.2 describes this process in more detail.

4.5.4 Power Model of an SoC
The results show that the instructions can be grouped in classes of instructions with similar
power consumption. For example, all simple arithmetical instructions, such as ADD, SUB and
CMP have the same power consumption. The measurements performed result in the following
model creation. For the chosen SoC design, the overall energy consumption on core supply
voltage can be expressed as:

SRAMChipOnControllerSDRAMFPGACachesCPUCore PPPPPP −−− ++++= (14)

4.5 Power Model of an Embedded Processor

 75

The FPGA array is disabled and can be assumed to have constant power consumption. The
same applies for the on-chip memory devices, as they are not used during the measurement.
The SDRAM controller is active if a cache miss occurs. It is also active for some maintenance
tasks, such as refresh, although these are assumed to have a negligible effect. The power
consumption of the CPU and of the caches is separated into a constant part and a dynamic
part, depending on the activity. Furthermore, the cache activity is separated into cache miss
and cache hit. Thus the power consumption of the SDRAM controller is directly dependent on
the cache misses.

constmissCacheDmissCacheIhitCacheDhitCacheIdynamicCPUCore PPPPPPP +++++= −−−−,

IdleCachesIdleCPUFPGASRAMChipOnconst PPPPP ,, +++= −−

:

∑=
strExecutedIn

InstrInstrDDdynamicCPU tIVE **,

∑ ++=
strExecutedIn

Reg1sHammBaseInstrDDdynamicCPU Reg1sIHammIItVE)**(**,

HitCacheHitCacheHitCacheDD

MissCacheMissCacheMissCacheDDCacheI

NtIV
NtIVE

−−−

−−−−

+
=

HitCacheDHitCacheDHitCacheDDD

MissCacheDMissCacheDMissCacheDDDCacheD

NtIV
NtIVE

−−−−−−

−−−−−−−

⋅⋅⋅+
⋅⋅⋅=

 (15)

and

 (16)

The cache miss power consumption includes the cache and the SDRAM controller activity,
as it is directly dependent on the cache misses. The dynamic part of the power consumed by
the CPU is dependent on the executed instruction.

Taking the current measurement into account for the different dynamic influences, the
following energy consumption models are established

 (17)

Taking into consideration the data dependencies, the CPU portion can be calculated with

 (18)

The energy consumption of the cache and the SDRAM-controller is modeled depending on
number of cache hits and misses as given in Equation 19 and 20.

 (19)

 (20)

The power model has been incorporated into the profiler. This allows dynamic energy estima-
tion for an application. Table 11 shows sample results provided by the profiler after analyzing
an application run on the ISS. A list of all instruction types executed is given along with their
contribution to the energy consumption. For example, the add (“ADD”) instruction in the sec-
ond row was decoded 14,641,240 times. 13,988,435 of these add instructions were executed,
while the remaining 652,805 were skipped. The skipping of instructions is due to the condi-
tional execution features of the ARM processors, i.e. an instruction is only executed if the
conditional flags are met. The energy required for processing all ADD instructions (executed
and skipped) is estimated to be 42.035 mJ. This corresponds to an average current value of
319 mA on the core voltage supply line.

4 Comprehensive Profiling of Embedded Processors

Table 11: Energy estimation based on the instruction and data transfer profiling results

Instruction Decoded Executed Skipped Energy
(mJ)

Current
(mA)

ADC 38343 38343 0 0.110083 319
ADD 14641240 13988435 652805 42.035 319
AND 2393132 2271771 121361 6.87068 319
B 7350494 5079545 2270949 52.3186 332
BIC 14077 14032 45 0.0404151 319
BL 1455186 1453595 1591 13.0348 332
BX 461190 439665 21525 4.00547 332
CMN 8532 8532 0 0.0244954 319
CMP 7728864 7644032 84832 22.1896 319
EOR 4 0 4 1.15E-05 319
LDM 1412459 1297982 114477 4.51281 355
LDR 18382820 17930740 452080 59.2294 358
MLA 622894 622830 64 10.5945 315
MOV 11324464 10025492 1298972 32.5125 319
MUL 324356 324356 0 5.5173 315
MVN 481301 111801 369500 1.38182 319
NOP 430 430 0 0.00123453 319
ORR 1306312 987059 319253 3.75042 319
RSB 2596264 1670553 925711 7.45387 319
STM 1245727 1240185 5542 3.87919 346
STR 9196038 9001769 194269 59.1247 361
SUB 7532152 7418239 113913 21.6248 319
SWI 63 63 0 1.81E-04 319
TST 165372 165358 14 0.474783 319
Sum 88681714 81734807 6946907 350.68666

Others Value Per instruction/
per mem. access

Instructions/
mem. access

Energy
(mJ)

Current
(mA)

Idle cycles 31870309 75.7239 264
HammingI 891757368 10.056/instruction 88681714 3.00968
HammingD 258309413 6.35/mem. access 40675944 0.87179
ALU_Trans 52426137 0.59/instruction 88681714 5.662
MEM_Trans 24859105 0.61/mem. access 40675944 0.6712
#1s_SrcReg 1894856992 21.367/instruction 88681714 6.3951
Overall sum 443.02033 332

Additional influences, such as Hamming distance of cache accesses and inter-instruction de-
pendencies, are shown at the bottom of Table 11, along with the overall estimation result. The
result value (891,757,368) given in the “HammingI” row is the accumulated Hamming dis-
tance of all decoded instructions. This results in an average of 10.056 bits that have changed

 76

4.5 Power Model of an Embedded Processor

in each of the 88,681,714 decoded instructions. These toggling bit lines on the instruction
fetch and decoding units add 3.00968 mJ to the overall energy consumption. Similarly, the
influence of the data memory accesses is provided in the row “HammingD”.

The inter-instruction influence on the energy consumption is given in rows “ALU_Trans” and
“MEM_Trans”. The first corresponds to the transition from any instruction to an ALU instruc-
tion, whereas the latter describes the transition to a memory access instruction. These two
types of inter-instruction transitions have been separated, as they lead to different energy con-
sumptions. Transitions between two identical instructions are not counted, as they don’t add
any extra energy consumption. For example the “ALU_Trans” row indicates that 52,426,137
of the 88,681,714 decoded instructions were transitions to ALU instructions, which corre-
sponds to 59 % of the instruction. This inter-instruction effect adds 5.662 mJ to the consumed
energy. The “#1s_SrcReg” row reflects the effect of the data flowing through the data path of
the pipeline. The measurements have shown that the numbers of ones in the source register
values are the indicators for this influence. Thus the data values of the accessed source regis-
ters are profiled and the numbers of ones in these values are accumulated. The “#1s_SrcReg”
row shows that 1,894,856,992 ones were found in these values, which corresponds to an aver-
age value of 21.367 per instruction and adds 6.3951 mJ. The overall energy consumption of
the entire application is estimated to be 443.02033 mJ, which incorporates the intra-
instruction energy of each instruction and all the additional influences described above.

These results can be used to optimize the instruction set in cases where a customizable proc-
essor architecture is available. For example, infrequently used instructions might be replaced
by a sequence of other instructions, in order to minimize the complexity of the instruction
decoder. And instructions that dissipate a large portion of the overall energy should be consid-
ered as targets for optimization during the processor architecture development.

Besides the overall results for the entire application, MEMTRACE also delivers the energy
estimation results on a function-accurate level. Table 12 shows an excerpt of the profiling
results for a software implementation of the H.264/AVC decoder, described in Section 3.4.1.
It lists the results for the C source code functions of the decoder, which are sorted in a de-
scending order regarding energy consumption.

Table 12: Profiling results of an H.264 video decoder (for one QVGA-sized frame), in de-
scending order of energy consumption

Function Calls Cycles Load/
store

Cache
miss

Instruct-
ions

Energy
(uJ)

EdgeLoopY_N 1364 896930 511808 2592 1493388 5601

H264_bzero 2003 437933 142216 0 582885 3178,7

MotionPredChroma 157 506157 238848 2639 418345 3032,2

Itrans 1707 351600 228305 3015 430164 2094,1

EdgeLoopC_N 565 287382 180949 1334 447759 1771,5

… … … … … … …

The most energy is consumed in the function “edgeLoopY_N”, which is part of the de-
blocking filter. Thus this is a good candidate for power consumption optimization. When the
energy is compared with the cycles count, it can be seen that they correlate in most cases, thus
the energy is often dependent on the execution time. This fact has also been observed by the

 77

4 Comprehensive Profiling of Embedded Processors

developers of JouleTrack, as described in Section 2.3.4.1. In some cases, for example when
comparing the functions “h264_bzero” and “motionPredictionChroma”, the behavior is dif-
ferent. This is due to the fact that the latter function accesses the memory very randomly,
which leads to the high amount of cache misses. Thus, a higher amount of the cycles required
in “motionPredictionChroma” are idle wait cycles, which require less energy. Therefore, es-
pecially for data-intensive applications, energy optimization can not only be based on the
clock cycles counts, but also on the influence of memory accesses.

Additionally to the overall energy consumption results, the dynamic behavior of the power
consumption is of interest, for example to find peak values. Figure 28 depicts the estimation
of the power consumption during the decoding of one video frame of an H.264/AVC video
stream. It starts with the reading of the bitstream from hard disk to memory, followed by the
actual decoding. The decoding is executed as a loop over all macroblocks. After the decoding,
the deblocking takes place, which also loops over all macroblocks. As can be seen, during
deblocking the power consumption rises significantly. The major functions of the deblocking
are the “edgeLoop” functions found in Table 12. In these functions the ratio of cache misses
(and with that also idle cycles) to the overall cycle count is significantly lower than in other
functions of the decoder. Thus during the deblocking, most of the time the processor is busy
and requires more power.
As a comparison, Figure 29 depicts the results during the measurement of the power con-
sumption on the processor. The figure shows the screenshot of the oscilloscope during the
decoding of an H.264 video stream, and the processing of approximately one video frame can
be seen. A difference between estimated results and measured results is the bitstream reading
at the beginning of each frame. This is due to the fact that in the hardware setup the bitstream
already resides in memory before the decoding starts.

 78

4.5 Power Model of an Embedded Processor

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Time (ms)

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

decoding of one frame

read bitstream
from harddisk

perform main decoding loop over all macroblocks
(bit stream processing,entropy decoding,

prediction, dequantization, transformation)
deblocking
loop for all

macroblocks

Figure 28: Power consumption estimation results for the core supply voltage over time
while decoding one video frame of an H.264 video stream

Figure 29: Screenshot of the oscilloscope during current measurement while decoding one
frame on an H.264 video stream

 79

5 Implementation

 80

5 Implementation
This chapter describes the implementation of the profiling tool developed within this work. As
a target CPU the ARM processor family has been chosen. On one hand because embedded
systems are often based on these processors; therefore profiling results for these processors
covers a broad range of systems. On the other hand the ARMulator, as described in Section
2.2.1, allows access to inside information, such as cycle counter and memory bus activity and
can thus been extended for profiling purposes. The details about the profiling mechanism are
described in Section 4.1. This mechanism is not restricted to the ARMulator and has also been
applied to other processors, as shown in Section 5.7.

The current implementation is written for the Microsoft Windows operating systems. It re-
quires the ARM Developer Suite or its successor RealView Development Suite, which are
described in Section 2.3.1. Within the MEMTRACE source code, operating system specific
parts have been separated carefully from the rest of the code. Therefore, porting the com-
mand-line implementation of the profiler to other operation systems, e.g. Linux, is possible
with modest coding effort.

The simulation speed of ARMulator is approximately 20-50 times slower than the execution
on a real processor. The profiler reduces the speed even more, depending on number of profil-
ing features enabled, to a factor of 100-150 times. This is mainly due to the amount of list
look-ups required by the profiler. In order to speed up the profiling, specific profiling features
can be turned off, for example the bus or instruction profiling. The memory requirements of
the MEMTRACE backend go up to 300 MB, depending on the number of traced functions
and memory areas found in the program code.

The profiler provides two user interfaces, a graphical user interface (GUI) and a command-
line interface (CLI). Both allow access to all features of the profiler and can be controlled by a
configuration file. The configuration file is used for storing the lists of functions and variables
and for profiling-specific settings, such as page and stack size. The GUI is targeted to quick
and easy profiling, whereas the CLI can be used within batch scripts for starting multiple
profiling runs, e.g. for achieving results of different cache configurations. The CLI is
implemented as a 32-bit command-line application and the GUI uses the Microsoft
Foundation Class (MFC) library to create a dialog-based Microsoft Windows 32-bit
application.

5.1 Workflow
Profiling with MEMTRACE is carried out in three steps. In the first step MEMTRACE
analyzes the compiled executable file (axf-image) of the source code and extracts all user-
functions. In the second step, the executable file is executed on the ARMulator, in order to
perform the profiling. In the third step, the spreadsheet output file is created. The workflow is
described in the following by the usage of the CLI. Command-line flags are used for choosing
the processing step (initialization, analysis, postprocessing) and the filenames for executable,
configuration file, analysis and spreadsheet output file are provided as parameters. The object
files for symbol parsing can be specified by the full filenames or by means of wildcards or
directory paths for comprising multiple files. Furthermore arguments can be passed to the
debugger, e.g. for choosing a processor type or activating the tracer facilities.

5.1 Workflow

The full command-line syntax is:
memtrace [-i] [-r] [-x] [-y] [-c configuration-file]
 [-a executable-file] [-p executable-file-parameters]
 [-m output-file] [-e spreadsheet-file]
 [-f spreadsheet-output-format] [-d debugger-options]
 [-t][-?] [-V] [-o object-files]

A full description of the command-line parameters is given in Section 8.2.6.

5.1.1 Initialization
In the first step MEMTRACE is initialized. It is started by calling:

memtrace -i -a executable-file [-c configuration-file]
 [-o object-files]

MEMTRACE extracts the functions, global variables and sections from the executable file by
comparing the symbols found in the executable with the symbols found in the object files.
This step is illustrated in Figure 30. Therefore, all user object-files, libraries and archives of
interest should be supplied. The extracted user-functions, variables and sections are written to
a configuration file.

Figure 30: MEMTRACE initialization step

This file serves as configuration file for the next processing steps. During the analysis step,
this file is used, in order to decide, which functions and memory regions should be traced.
Section 4.1.1 describes the process of data acquisition in more detail.

The file can be edited by the user, e.g. for adding or removing functions or defining additional
memory areas, such as stack and heap variables, to be traced. The user can define so-called
“split functions” by adding “= split” to a specific function in the configuration file. See Sec-
tion 4.1.1 for the usage of the split mechanism. Additionally the user can control whether the
analysis results, e.g. clock cycles, of a function should include the results of a called function
(accumulated) or if it should only reflect the function’s own results (self). Typically auxiliary
functions, e.g. C standard library functions or simple arithmetic functions are accumulated to
the calling functions. For more information on editing the configuration file, see Section 5.5.

5.1.2 Analysis
In the second step the performance analysis is carried out, as shown in Figure 31. It is started
by executing the following command:

memtrace -r -a executable-file [-p exe-file-parameters]
 [-c configuration-file] [-m output-file]
 [-d debugger-options] [-t]

The previously generated configuration file defines the functions and variables to be analyzed.
Additionally the system parameters, such as the processor type and memory architecture and

 81

5 Implementation

timing, can be specified. MEMTRACE connects to the ARMulator via its module interface
for the simulation of the user application, as described in Section 4.1. During the simulation
the ARMulator provides MEMTRACE with all information required for the analysis.
MEMTRACE writes the analysis results for the functions and variables in two separate files.
Example results are given in Section 4.1.3. If a “split function” has been specified, these files
include separate tables for each call of the "split function". The output files serve as a data-
base for the third step, where user-defined data are extracted from these tables.

Figure 31: MEMTRACE analysis step

5.1.3 Postprocessing of the Analysis Results
In the third step user-defined result tables are generated based on the output data produced
during the second processing step described above. This step is started by calling:

memtrace -x [-f spreadsheet-output-format]
 [-c configuration-file]
 [-m output-file] [-e spreadsheet-output-file]

or
memtrace -y [-f spreadsheet-output-format]
 [-c configuration-file] [-m output-file]
 [-e spreadsheet-output-file]

This step creates a tab-separated file, which includes the user-defined tables, see Figure 32.
Before this step can be started, the user-functions and the global variables can be grouped in
the configuration-file, which has been created in the first step. See Section 5.5 for in-
formation on how to group functions and variables. Each group receives the accumulated re-
sults of all functions/variables of its members. The grouping can be used to examine the pro-
filing results of a specific software module containing multiple functions. The defined groups
are used in the spreadsheet-output-format for specifying the format of the output ta-
bles. The tables are placed vertically in the output file in the order they are defined in
spreadsheet-output-format, see Section 5.4.

If no intermediate modification of the configuration file is required, the execution of multiple
steps can be combined in one MEMTRACE call.

 82

5.2 Tool Architecture

 83

0

20
40

60

1 2 3 4 5 6

C
ac

he
 M

is
se

s

var1
var2

0
20

40
60

1 2 3 4 5 6

C
lo

ck
 C

yc
le

s

func1
func2

Figure 32: MEMTRACE postprocessing step

For example, for running the ARMulator with an executable-file and creating a spreadsheet-
output for the function results use:

memtrace -r -x -a executable-file [-f spreadsheet-output-format]
 [-m output-file] [-e spreadsheet-output-file]

5.2 Tool Architecture
The tool is composed of two parts, a frontend and a backend. The frontend acts as an interface
to the user, whereas the backend interconnects with the embedded software development
suite. The two frontends, GUI and CLI, are based on the same functions library. The backend
utilized various tools of the development suite for program information acquisition, e.g.
names of all functions in the code, and runtime data acquisition, i.e. profiling data. This
structure makes it possible to retarget the tool, on one hand to other processor platforms by
exchanging the backend, and on the other to other OS platforms by exchanging the frontend.
The entire software is written in C++ and compiled with the Microsoft Visual Studio
development environment.

The entire MEMTRACE suite combines the following parts:

• MEMTRACE Base is the base project and provides the command-line interface as well as
the backend features for the initialization phase.

• MEMTRACE GUI is the graphical user interface is built on top of MEMTRACE Base.
• MEMTRACE DLL is the backend part for data acquisition during the analysis phase. It is

implemented as dynamic link library, which is compiled against the interfaces of the ISS.
• MEMTRACE Coprocessor Interface is a template for coprocessor descriptions within the

hardware/software co-profiling environment, as described in Section 4.2.3.
• MEMTRACE Mapfile is the bus interface that extends the basic bus interface of the AR-

Mulator to a multi-master bus and adds a DMA controller for data transfer between mem-
ory and the coprocessors.

• MEMTRACE Debugger features a minimal debugger for connecting and controlling the
MEMTRACE backend with arbitrary ISSes, as described in Section 5.7.

In the following sections the software architecture is shown by describing the most important
functions of the MEMTRACE source code. Callgraphs for the different parts of the
MEMTRACE suite can be found in Section 8.2.1.

5 Implementation

 84

5.2.1 MEMTRACE Base
The main() function of the MEMTRACE executable performs the following two tasks:

• processing the command-line parameters (getopt())
• starting the functions required for the processing step (init, analysis, postprocessing)
Figure 71 in Section 8.2.1 shows the callgraph of the MEMTRACE executable starting from
main(). Depending on the processing step, different functions are called, which are de-
scribed in more detail in the following.

5.2.1.1 Init Step

In the init step, see Section 5.1.1, the MEMTRACE configuration file with the list of project
functions is created. The list of project functions is generated by comparing the list of func-
tions found in the executable file (axf-image) with the functions found in the project object
files and project libraries. Thus unused functions and non-project library functions can be
eliminated. The init step is divided in four steps:

1. expand_list_of_object_files() processes the list of object files and paths
(provided by the command-line parameter -o), which may contain wildcards and rela-
tive paths, and returns a list containing all object files with absolute paths.

2. create_list_of_project_functions() creates a list of all project functions
(list_of_project_functions). For each object file from the list of step 1 a
symbol table is created and the function names are extracted from these symbol tables
and written to the list_of_project_functions.

3. create_list_of_axf_functions() creates a list of all functions found in the
executable file (list_of_axf_functions). This includes project functions and
additional library functions.

ptions.

4. create_memtrace_ini_file() creates the configuration file with the list of pro-
ject functions. The (real) project functions are found by comparing the
list_of_project_functions with the list_of_axf_functions. At first un-
used functions are eliminated and then local function names, which occur multiple
times, are renamed.

5.2.1.2 Analysis Step

In the analysis step, see Section 5.1.2, the actual memory profiling is performed. For this pur-
pose the debugger armsd is started with a specific script file and various options, e.g. for pass-
ing parameters to the MEMTRACE DLL. The following three steps are performed:

1. create_armsd_ini_file() creates a script file for armsd, which activates addi-
tionally the internal ARMulator profiler.

2. run_memtrace() initiates the profiling process. It starts armsd with the script file
armsd_run and the armsd_options. The ARMulator, which is called by armsd,
executes the executable file axf_filename with the command-line parameters
axf_parameters. Depending on TracerOn additionally the internal ARMulator
tracer module is turned on. The axf_filename, ini_filename and the
output_filename are required in the memtrace_dll and are passed to it via
TARGETO

3. delete_armsd_ini_files() deletes the script file generated in step 1.

5.2 Tool Architecture

 85

5.2.1.3 Postprocessing Step

In the postprocessing step, see Section 5.1.3, a tab-separated output file XLS_FILE with user-
defined tables is generated from the memory profiling results stored in OUTPUT_FILE. The
table contents are arranged according to the table definitions in settings (axf-output-
format) and the function grouping in the INI_FILE. The processing is divided in five steps:

1. parse_ini_file() parses the configuration file in order to create a tree containing
all sections (ini_file_section).

2. extract_groups()extracts all groups of functions defined in the “FunctionList”
section and writes them to the list group_list_template.

3. extract_settings()creates the list of the table definitions (table_list) by
parsing the settings (axf-output-format).

4. read_memtrace_results() reads the results of the MEMTRACE profiling from
OUTPUT_FILE and sorts them into the list of calls (c_list) of the split function.
After that for each call a c_list entry exists, which contains a group list
(group_list_template) with the results for each group.

5. print_to_xls_file() generates the user-defined tables, according to the ta-
ble_list, from data in the c_list and write them to the XLS_FILE.

5.2.2 MEMTRACE Dynamic Link Library (Backend)
The MEMTRACE backend performs the actual memory profiling and is implemented as
DLL. It provides six entry functions, which are called from the ARMulator. However, the
functions are not directly called from the ARMulator, but via the interface functions defined
in tracer_for_memtrace_dll.c. This interface is derived from the original tracer module
(tracer.dll). Additionally the Mapfile module (mapfile.dll) is modified for bus tracing, the
modules are described in 2.2.1.1 and 2.2.1.2. In Figure 33 the software structure of the
MEMTRACE backend is given.

Debugger (armsd.exe)

Instruction set simulator (ARMulator.dll)

Memtrace profiler backend
memoryAccess()finish() nextInstruction()init() busActivity()cacheMiss()

Modifed Tracer module
(Tracer.dll)

DMA
controller

Modifed
memory & bus

model
(Mapfile.dll)

Figure 33: Software structure of the interface between MEMTRACE backend and ISS

The Mapfile is extended by a mechanism, which tags each bus cycle with the information,
how the bus is currently used. This tag can be either CORE, DMA or IDLE and is identified
by the tracer module. The MEMTRACE profiler backend defines a number of entry points,
which provide the interconnection between the profiler and the ISS. The Tracer module has
been extended by calls to these functions.

5 Implementation

 86

The function init() is called once when the ARMulator is started and initializes the
MEMTRACE profiling. It creates a list of all functions from the symbol table out of the
executable file, as described in the initialization step, and marks the user and split functions
found in the configuration file. For each function a data structure is created, which contains
the function’s start address and variables for collecting the analysis results. Similar to the list
of functions a list of the variables and other memory areas is created, including the analysis
data areas. Finally two pointers, called currentFunction and evaluatedFunction, are
initialized. The first pointer indicates the currently executed function and, if this function
should not be evaluated, the second pointer indicates the calling function, to which the result
of the current function should be added. If the executable was created in debug mode, i.e.
source code information is available, a table for mapping assembly code line to source code
line is created.

The function nextInstruction() is called by the Tracer module each time the program
counter changes. It checks if the program execution has changed from one function to another.
If so, the cycle count of the evaluatedFunction is recalculated and the call count of the
currentFunction is incremented. Finally the pointers to the currentFunction and
evaluatedFunction are updated. If currentFunction is a split function, the differential
results from the last call of the split function up to the current call are printed to the result
files. The function is also provided with the disassembly of the instructions. This is used for
instruction counting. The disassembly string is parsed in order to identify the instruction and
for load/store instructions also the address mode.

memoryAccess() is called each time a memory access occurs and increments the memory
access counters of the evaluatedFunction. Depending on the information provided by the
ARMulator, it is decided if a load or store access was performed, and which bit-width (8/16 or
32 bit) was used. Furthermore the ARMulator indicates if a cache miss occurred. Page hits
and misses are calculated by comparing the address of the current with the previous memory
access and incorporating the page structure of the memory.

If a data cache is available in the processor each time a cache miss occurs the function
cacheMiss() is called. It accounts the number of data cache misses for the current function
and also for the corresponding memory area or variable, which has been accessed.

The function busActivity() is called for each bus cycle and provides the MEMTRACE
backend with the current bus status tag. Thus, every bus cycle consumed by the
currentFunction can be classified as CORE or DMA access or IDLE state.

The entry function finish() is called when the ARMulator has terminated the simulation. It
updates the results of the last evaluatedFunction and prints the results of the last call of
the split function and the accumulated results to the result file.

5.3 Graphical User Interface
The graphical user interface of MEMTRACE allows an easy usage of the tool. It is very use-
ful for the postprocessing task and for novice users of the tool, as most options are provided
within a list. The tool is created as dialog-based window with three tabs reflecting the three
workflow steps defined in Section 5.1. The GUI is based on the MFC library and built with
the Microsoft Visual Studio development environment. It is implemented as a dialog-based
32-bit application. The three processing steps (initialization, analysis, postprocessing) are im-
plemented as three separate tabs in the dialog window. The configurations can be stored in a

5.4 Spreadsheet Format Description

 87

configuration file, which is compliant to the CLI configuration file. Thus the user can switch
between the two versions of the tool. See Section 8.2.2 for screenshots of the GUI.

5.4 Spreadsheet Format Description
The output data to be printed in tables can be specified by the command-line parameter:

-f spreadsheet-output-format

MEMTRACE creates one output file, which is tab-separated and can be imported by
spreadsheet programs. The file may contain multiple result tables. The content of each table is
specified in the following format:

spreadsheet-output-format: "{<table1>}{<table2>}{<table3>}..."

where {<tableX>} is the specification of one output table.

Each table specification {<tableX>} has the following format:
{<tableX>}: {table_type;row_column_specifier;row_column_specifier}

table_type specifies the data to be displayed in the table. For printing overall results the
“ov” type exists and for printing the results of a specific group the “group” identifier is used.
The desired group is provided, e.g. “group=myGroup1”. If a table should be created only for
one data type, the data type is given together with the table type “data”. The
row_column_specifier is supplied for restricting the printed rows or columns. If the
row_column_specifier is not given, all results for row and column are printed.

In case of a data table, the groups to be shown can be specified, e.g. “group = MyGroup1,
MyGroup2”. Vise versa for group tables the data types are given as a parameter.

Furthermore the row_column_specifier is applied to define a range of results. If the split
flag was used, intermediate results have been produced for each call of the split function. Two
possible range types are provided for selecting a subset of these results. The simple triple
range definition is (<begin>, <end>, <step>). In this step, only the results from "be-
gin" to "end" are printed to the results table, and from these results taking only each "step"
intermediate result. The advanced range definition is (<begin>, <end>, <step>, <pe-
riod>, <period_end>). Here the results from "begin" to "end" taking each "step" call are
taken. This is periodically repeated in a distance of "period". The repetition is finished when
"period_end" is reached. For example, for printing results of the calls: 3, 4, 5, 9, 10, 11, 15,
16, 17 specify (3, 5, 1, 6, 17).

The available data types are listed in Table 13. If these types are used in <table_type>, the
<data_type> can be extended by a "+" (such as CY+) for printing an extra row with the ac-
cumulated result. The accumulated results are only the sum of the visible groups, not of all
groups.

5 Implementation

Table 13: Data types for table results

Flag Function

LS Add "all load store" column to table

LD Add "all load" column to table

L8 Add "load_8_16" column to table

ST Add "store" column to table

S8 Add "store_8_16" column to table

PH Add "page hit" column to table

PM Add "page miss" column to table

CM Add "cache miss" column to table

LS Add "all load store" column to table

A typical spreadsheet-output-format may look like:
"{data=CY+;group=control,inverse
scan;(2,10,4)}{group=control;data=LS,PH,PM;(30,50,10)}{OV}"

This would print the following three tables. The first table (Table 14) represents the cycle
counts for the groups “control” and “inverse scan” for call 2, 6 and 10 next to an extra column
for the accumulated results. The second table (Table 15) for the group “control” shows load,
store, and page hit and miss for calls 30, 40 and 50. The last table contains the overall results
(Table 16).

Table 14: Data types for table results (cycle results)

Frame Control Inverse scan Sum

2 419 0 419

6 2492718 56471 2549189

10 3672817 82832 3755649

Table 15: Data types for table results (group results)

Frame All load store Page hit Page miss

30 279096 79693 199403

40 378873 107272 271601

50 406627 116077 290550

 88

5.5 The Configuration File

Table 16: Data types for table results (overall results)

Group Cycles All load store Load Load
8/16 Store Store

8/16 Page hit …

Control 3182569 423001 230185 275 192816 96597 122280 …

Inverse scan 70627 14642 8946 880 5696 0 9260 …

Inverse
transformation 373421 62966 37407 0 25559 9488 38455 …

Entropy
decoding 1398896 277109 188338 822 88771 956 176510 …

… … … … … … … … …

5.5 The Configuration File
The MEMTRACE configuration file contains the list of functions, the list of variables and
some further settings. The file is generated in the first step, the initialization step, see Section
5.1.1. It can be edited by the user, in order to control the second (analysis step) and the third
step (postprocessing step). The most common changes made on this file, is the setting of a
“split function” and the grouping of functions and variables.

5.5.1 File Format
The file format of the configuration file is similar to the ARM configuration file format as
used and defined within the RealView Development Suite [14]. Table 17 shows a list of the
syntax elements.

Table 17: Syntax elements of the configuration file

Syntax Description

MyTag Defines a tag

MyTag2 = Value1 Defines a tag and sets it to a value

MyTag2 = Value1 Value2 Defines a tag and sets two values for it

;; comment line Comment line for description

; commented-out line Comment line used for commenting out

{ MySection = SectionName Beginning of a section of type MySection named SectionName

SectionTag1 Definition of a tag inside a section

} End of a section

5.5.2 List of Functions
All functions and groups of functions are defined as tags inside the section of type and name
"FunctionList". One specific function can be a split function, see Section 5.1.1. This is indi-
cated by adding “ = split” after the function name. Functions can be grouped in sections of
type “group” supplied with a user-defined name. This name is later used in the spread-

 89

5 Implementation

sheet-output-format, see Section 5.4. The groups are placed inside the group “Func-
tionList”. An example of this format is:

{ FunctionList = FunctionList
 { group = MyGroup1
 function1
 function2
 }
 { group = MyGroup2
 function3 = split
 function4
 }
}

Listing 11: Definition of functions in the configuration file

5.5.3 List of Variables
A list of global variables and user-defined memory areas is defined similar to the list of func-
tions. The list is divided into three parts, the list of global variables the list of sections and the
list of fixed memory areas. The first two lists are automatically created in the initialization
step of MEMTRACE. The third one is defined by the user. An example of this format is:

{ MemoryMap = MemoryMap
 { FixedAreaList = FixedAreaList
 myStack = 0x7FFE000 8192
 HeapVariable1 = 0x000AB95C 25344
 HeapVariable2 = 0x000B1C5C 4
 }
 { SectionList = SectionList
 'ER_RO'
 'ER_RW'
 'ER_ZI'
 }
 { GlobalVariableList = GlobalVariableList
 GlobalVariable1
 GlobalVariable2
 }
}

Listing 12: Definition of variables in the configuration file

The GlobalVariableList includes all global variables, which are defined in the user ap-
plication. The SectionList includes the memory regions (sections) of the user application.
This sections where either automatically defined by the linker (ER_RO, ER_RW, ER_ZI) or
by the user in a scatter-loading file. The address and size of the global variables and the sec-
tions are retrieved from the compiled executable file of the source code during the analysis
step. In the FixedAreaList additional memory areas are defined for profiling. These areas
must be specified with its start address and size:

 <name> = <startaddress> <size>

Typical memory areas include the internal or external memory space, stack, heap or heap
variable. However, as the start address and size of some areas might change after a recompila-
tion of the application, they need to be refreshed. This problem may occur with the heap or
heap variables. Therefore the start address and sizes need to be verified during program exe-
cution, e.g. with printf() of the malloc addresses.

 90

5.6 Infrastructure for System Architecture Profiling

5.5.4 Global Settings
By including the additional section Global, various settings can be given to control
MEMTRACE. For example, the tags BaseAddr and PageSize of data memory can be ap-
plied for page hit/miss calculation. The BaseAddr specifies the base addr of the first page in
memory. It needs to be expressed as hexadecimal value (with leading 0x). The PageSize tag
defines the size of each page in bytes. PageSize need to be expressed as integer value. The
base address (StackBaseAddr) and size (StackSize) of the stack are defined similarly.

The global sections format is:
{ Global = Global
 BaseAddr = 0x0
 PageSize = 128
 StackBaseAddr = 0x08000000
 StackSize = 8192
}

Listing 13: Definition of global settings in the configuration file

5.6 Infrastructure for System Architecture Profiling
Beside the previously described software related profiling MEMTRACE also supports a high-
level hardware/software co-profiling. For this purpose the bus model of the ISS has been ex-
tended to multi-master bus. Additionally to the memory devices, coprocessor models can be
connected via memory-mapped interface and a DMA controller.

5.6.1 Hardware/Software Cosimulation Interface
The coprocessor interface, shown in Figure 34, supplies the interconnection of a coprocessor
to the AHB.

Figure 34: Connecting coprocessors to the AHB of the ISS

 91

5 Implementation

The interface supports the following features:

• bus slave controller for the AHB including local address decode
• set of predefined 32-bit status and control registers
• separate byte-addressable input and output memory units
• control logic for starting and stopping the coprocessor model
• simple timing emulation for simulating the computation delay of the coprocessor
• easy setting of parameters, such the memory map register file size and timing parameters
The parameters can be set in a text file and modified after compiling the coprocessor model,
which supports the design space exploration by evaluating different hardware setups and tim-
ing. Coprocessor models are written in the C language and connected to the interface by a call
of the entry point function. More details of the coprocessors can be found in Section 4.2.4.

5.6.2 DMA Controller
The data transfers into hardware accelerators or other bus components have a tremendous
influence on the overall performance. For efficiently outsourcing this data transfer task DMA
controllers are applied. The MEMTRACE hardware profiling environment includes a highly
efficient DMA-Controller with the following features:

• multi-channel (parameterizable number of channels)
• 1D- and 2D- transfers
• activation FIFO (non-blocking transfer, autonomous)
• internal memory for temporary storage between read and write
• burst transfer mode
Thus the designer is enabled to determine the influence of different DMA modes in order to
find an appropriate trade-off between DMA Controller complexity and required CPU activity.
The DMA controller is embedded in the memory architectures as additional bus master com-
ponent, see Section 4.2. A software API allows configuration and activation of the DMA con-
troller and returns information on the current status of the data transfers.

5.7 Retargeting to Other Embedded Processors
The previous sections describe the implementation of the profiling tool in conjunction with
the ARMulator for profiling ARM processors. The simple interface of the MEMTRACE
backend, as described in Section 5.2.2, allows an easy retargeting of the basic profiling fea-
tures to other processor simulators or emulators. In order to allow the profiling of other proc-
essors, the profiler needs access to the tracing information of these processors, which includes
the following basic parameters:

• cycle counter
• program counter
• activity on the data and instruction bus including transferred data and addresses
Optionally, information about cache miss counts and instruction disassembly can be evaluated
for further profiling details. This information needs to be on a cycle-accurate basis and can be
provided either by the trace buffer of a hardware emulator, such as an in-circuit emulator or

 92

5.7 Retargeting to Other Embedded Processors

an FPGA implementation, or by an ISS. The actual retargeting process is implemented by
connecting the MEMTRACE backend interfaces, described in Section 5.2.2, to the simulator
or debugger. The debugger needs to call the interface functions listed in Table 18 at the ap-
propriate events and provide them with the required information.

Table 18: Interface callback functions of the MEMTRACE backend and their activation
events and input parameters

Callback function Activation event Input parameters

Init() * Start of program execution Current simulation time*
Current program counter*

Finish()* End of program execution Current simulation time*

NextInstruction()* Every instruction

Current simulation time*
Current program counter*
Disassembly string of the instruction
A flag, if the instruction is executed
Instruction binary format (only for energy)

MemoryAccess() Every memory access

Accessed memory address*
Load/store flag
Size flag
Transferred data word (only for energy)

CacheMiss() Every cache miss Accessed memory address*

BusActivity() Every bus clock cycle Bus master id

For a basic retargeting, only the init(), finish() and nextInstruction() interfaces need to be con-
nected to the simulator. These functions should be instantiated as callback functions of the
debugger/simulator. This means the debugger should call these functions each time the speci-
fied event occurs and provide them with the mandatory parameters (marked with a star), as
well as with the optional information given in the table above if available. These three inter-
faces allow a clock cycle profiling of the processor on a function-accurate level. For addi-
tional coverage of memory access within the analysis, the memoryAccess() interface needs to
be connected to the simulator. If the processor has a cache infrastructure, the debugger can be
connected to the cacheMiss() interface in order to provide cache miss profiling. Similarly, the
bus activity can be analyzed with the appropriate interface function.

A full retargeting of MEMTRACE also includes the profiling of instruction usage and energy
consumption. Changes in the MEMTRACE source code are required to support these fea-
tures. The changes for the instruction set mainly include the code for parsing and interpreting
the disassembly format of the processor, e.g. extracting the instruction name, used registers
and address mode. The processor-specific parts of the energy model are covered by the equa-
tions for energy calculation and the power consumption tables for each instruction class, as
described in Section 4.5.4. The existing implementation of both features for the ARM proces-
sor is comprised of 500 lines of code, which can be taken as a template for the retargeting.
The complexity of this process depends on processor architecture; for a simple RISC architec-
ture the effort can be estimated as low, as the ARM processors use a typical RISC instruction
set.

Besides the connection to the ISS, the MEMTRACE backend also needs to extract the symbol
table from the file in order to map the functions to the program memory address space. In the

 93

5 Implementation

 94

current implementation, MEMTRACE applies a tool called fromelf (see Section 2.3.1), which
allows the symbol table of any ELF compatible object or executable file, a widely used linker
file format, to be extracted. If a different format is used, the MEMTRACE symbol table
parser needs to be adapted. In the current implementation it consists of less than 150 line of
source code.

The ISSes are usually provided either by the processor vendor or by third parties. If simula-
tors are not available for given processor, they can be created either manually or automatically
from a higher-level description. Verilator, as described in Section 2.2.2, creates C++ simula-
tion models from a Verilog description of a processor. If the processor is not available as Ver-
ilog HDL model, it can be described in an even higher abstraction level, for example with the
LISA language [76]. The CoWare Processor Designer [29] can be used to create HDL models
and compiler tools for processors described in LISA.

In order to prove the feasibility of the retargeting procedure, a toolflow incorporating CoWare
Processor Designer, the Verilator and the MEMTRACE backend has been created. Thus
MEMTRACE can profile processors available either as Verilog HDL or as LISA descriptions.
The section below describes the retargeting process and depicts the minimal effort it requires.

5.7.1 Toolflow for Profiling LISA and Verilog Processor Models
The toolchain given in Figure 35 has been developed to use MEMTRACE to profile processor
described in a high-level description language.

CoWare
Processor Designer

LISA
description

of the
processor

Software development
toolsuite

(linker, assembler)

Verilator
C++

simulation
model of the
processor

Compiler

MEMTRACE
simulator &

profiler

C++
wrapper
for the

processor signals

Keep
coherent

Profiling
report

Simulation
report

Executable binary
of the application

Source code
of the

application

Verilog
description

of the processor

MEMTRACE
miniDebugger

MEMTRACE
backend

Figure 35: Profiling toolflow incorporating CoWare Processor Designer, Verilator and
MEMTRACE

The design procedure starts with a processor description in the LISA language. This descrip-
tion is processed by the CoWare Processor Designer to generate a Verilog description of the
processor and the required software development tools, such as an assembler and a linker. The
Verilog description generated is further processed by the Verilator to generate a C++ simula-
tion model. This model is then compiled with the MEMTRACE backend and the miniDebug-
ger libraries to form the combined simulator, debugger and profiler. In order to ease the retar-
geting process, a generic interface between the simulation model and the debugger is defined.
Therefore, the simulation model needs to be enclosed by a wrapper mapping the processor
signals to the MEMTRACE backend interfaces functions. Figure 36 illustrates this intercon-
nection in more detail.

5.7 Retargeting to Other Embedded Processors

 95

C++
Simulation model
of the processor

MEMTRACE miniDebugger

 Processor
 terminal
 board
 (C++
 wrapper)

MEMTRACE
backend

Instruction bus
Data bus

 Register file

Progr. counter

Status register

Instruction bus

 Data bus

RegFile

Clk,reset,irq

S
im

ul
at

or

co
nt

ro
l c

al
ls

Reg
file

PC

StatReg

PC

C
ycle

counter

P
rofiler

control
calls

DMA
controller

Hardware
accelerator

models

C++
Instruction

memory model

C++
Data memory

Model

Further processor models

Processor
model

Debugger

Profiler

Figure 36: Interconnection of the C++ processor model with the MEMTRACE backend
and miniDebugger and with further system components by means of a terminal board

The right side shows the C++ simulation model generated by the Verilator. The model con-
sists of a C++ source and a header file containing a class definition that corresponds to the
Verilog description. The input and output ports of the top level module are converted to
member variables with the same name. Ports and signals of lower level modules are visible, in
the format:

lowLevelModuleName __DOT__lowLevelModuleName__DOT__signalName

Such names are dependent on the signal and port naming within the Verilog processor model,
so the wrapper, which acts a terminal board, is used to provide a generic interface to other
system and simulation modules.

The interface provides access to the most common and important parts of the processor, in-
cluding the instruction and data busses, register file, program counter and status register, as
well as the control signals for clock, reset and interrupts. Thus when replacing the processor
model with a different model, only the following needs to be configured:

• connection between the terminal board and the processor model
• bit-width and timing of the busses
• number of registers
Listing 14 shows a sample implementation of the terminal board as it needs to be configured
by the designer in order to suit the specific processor. The initial for-loop connects all regis-
ters from the processor model (found in the signal array “REG_R” in low-level module
“RFile”) to the generic register array “Reg”. Similarly the program counter (“PC”) and the
control (“CPSR”) and status (“SPSR”) registers are connected. The interrupt (“fiq”,”irq”) and
wait (“wait”) signals are not used in this processor, therefore they are set to a constant zero
value. The clock (“clk”) and reset (“reset”) signals are connected to the corresponding top-
level signals of the processor model, similar to the data and instruction busses. All these con-
nections between the generic and processor-specific variables are established as pointers, and

5 Implementation

therefore allow bi-directional access, i.e. the generic variables can be used for reading and
writing the processor-specific variables.

void setSignals(Vtop *top) {
 for (int i=0;i<NUMREGS;i++)
 {
 Reg[i] = top->v__DOT__RFile__DOT__REG_R[i]);
 }
 PC = top->v__DOT__pipe__DOT__DC_EX__DOT__DC_EX_p_pc_internal;
 CPSR = top->v__DOT__RegFile__DOT__REG_PSR;
 SPSR = top->v__DOT__RegFile__DOT__REG_PSR;
 fiq = &constBit0;
 irq = &constBit0;
 wait = &constBit0;
 clk = top->clk_main;
 reset = top->rst_main;
 DataWriteBus = top->data_mem_data_in_wp0;
 DataWriteBusAddr = top->data_mem_wr_addr_wp0;
 DataReadBus = top->data_mem_data_out_rp0;
 DataReadBusAddr = top->data_mem_rd_addr_rp0;
 InstrBus = top->prog_mem_data_out_rp0;
 InstrBusAddr = top->prog_mem_rd_addr_rp0;
 WriteEnable = top->data_mem_ew_wp0;
 ReadEnable = top->data_mem_rd_enab;
 Byte1Word0 = &dummyBit0;
 MemoryAccess1 = &dummyBit0;
 data_ready = top->data_mem_ready;
}

Listing 14: Implementation of the processor terminal board (C++ wrapper)

The mandatory system extension is a model of the data and instruction memory connected to
the system bus. The technique and components for hardware/software cosimulation described
in Section 4.2.3 can also be applied here. Multi-processor systems can be generated by adding
further processor models including their debuggers and profilers, as shown in Figure 40 on
the left side. Even hierarchical bus systems can be created within this environment.

The processor simulation is controlled by a debugger. The rudimentary MEMTRACE
miniDebugger allows running and stepping through the assembly code and viewing of register
and memory values. The debugger also controls the MEMTRACE profiler backend. The re-
quired interconnection to the processor internals is provided by the terminal board. The de-
bugger could also be replaced by a full-featured debugger, for example by means of a debug-
ger plugin to the Eclipse software development platform [101].

The simulation environment described here allows a simple retargeting of the profiler to any
processor that is available as a C source code model. The Verilator extends the supported
processor range to Verilog models. The profiling speed has been measured as 50,000 simu-
lated processor cycles per second running on a 3.6 GHz Intel Xeon PC.

The design flow was tested by the example of a simple RISC processor, similar to the SPARC
architecture, developed by the Embedded System Group at the Fraunhofer Heinrich-Hertz-
Institut (HHI). The LISA description contains about 5500 lines of simple and well-structured
code. Equivalent HDL descriptions are far more complex. The description generated by the
Verilator, for example, contains 25,000 lines of code. Thus the LISA language allows an easy

 96

5.8 Power Measurement Setup

description and modification of a processor model, and the results delivered by MEMTRACE
support a profiling-based exploration of these design alternatives.

Table 19 shows some example results from profiling the simple RISC core. This retargeting
has been performed for instructions and memory functions. Thus the results include the calls
and cycle counts, access statistics for the memory and the stack, as well as page hit and miss
counts for each function.

Table 19: Example results for profiling a program running on a simple RISC processor

Group Calls Cycles All
load/store Load Store Page

hit
Page
miss

Stack
read

Stack
write

Main 1 36 30 0 30 29 1 90 90

Func1 1 37 30 0 30 30 0 0 30

Func2 1 437 386 179 207 385 1 0 30

Sum 510 446 179 267 444 2 90 150

5.8 Power Measurement Setup
For the generation of the power consumption model a setup has been created for measuring
the dynamic current flowing through the embedded system under test. As described in Section
4.5, an Altera Excalibur device, namely the EXPA1, has been chosen for this purpose. Altera
provides a development board for the device, which uses the Texas Instruments PT 6983C
[95] as power supply. The PT 6983C is a switching regulator for dual output voltage. From a
12 V input voltage it generates 1.8 V and 3.3 V output. It is manufactured on a separate PCB,
which is connected by 23-pins to the development boards. This layout makes the power
measurement easier, as the pins can be cut, to infer a current meter. For the current measure-
ment a shunt resistor has been used, as described in Section 4.5.2. The voltage drop over the
shunt resistor is amplified by an instrumentation amplifier and measured by a digital oscillo-
scope. A picture of the entire measurement setup is given in Figure 37.

Figure 37: left: Setup with FPGA board, measurement board, power supply and oscillo-
scope probe; right: measurement board with shunt resistor and the two amplifier

 97

5 Implementation

 98

5.8.1 Calibration of the Measurement Setup
All components of the measurement setup need to be calibrated; respectively their error
ranges need to be considered. The accuracy of the sense resistor is of high importance, as it
has a linear influence on the measurement accuracy. As a resistor either a discrete device or a
resistor wire with the correct length can be chosen. In both cases, the setup needs to be cali-
brated by measuring the resulting value. For the measurement of a very low resistor value, the
voltage-correct measurement of the resistor needs to be chosen, as voltage meters have an
input impedance in the range of megaohm whereas for current meters it is only a few ohm.
For this measurement the accuracy of the voltage meter also needs be considered. Table 20
shows accuracy for the applied measuring instrument, a METEX MXD-4660A for current
measurement and a FLUKE 27 for voltage measurement.

Table 20: Accuracy of the measurement instruments

Measuring instrument Range Accuracy Minimum value

Metex MXD 466A 0 - 200 mA ±(0.5 % + 3 digits) 10 μA

Fluke 27 0 - 320 mV ±(0.1 % + 1digit) 100 μV

A shunt resistor with 100 mΩ has been chosen, the accuracy is given with 5 %. For achieving
a high accuracy during the resistor measurement, a current value close to the available maxi-
mum range of 200 mA is chosen. The following values have been measured:

I = 193.82 mA

V = 19.5 mV

The resistor value can be calculated by:

I
R =

V (21)

Considering the accuracy of the instruments this becomes:

)3005.0(
)1001.0(

lastDigitmeasuredmeasured

lastDigitmeasuredmeasured

errmeasured

errmeasured

III
VVV

II
VVR

⋅+⋅±

⋅+⋅±
=

±
±

= (22)

Thus the range for the resistor value is Rmin to Rmax:

)3005.0(
)1001.0(

lastDigitmeasuredmeasured

lastDigitmeasuredmeasured

errmeasured

errmeasured
max III

VVV
II
VV

R
⋅+⋅−

⋅+⋅+
=

±
±

= (23)

)3005.0(
)1001.0(

lastDigitmeasuredmeasured

lastDigitmeasuredmeasured

errmeasured

errmeasured
min III

VVV
II
VV

R
⋅+⋅−

⋅+⋅+
=

±
±

= (24)

which becomes

mΩ
AmAmA

VmVmVRmax 101.74986
192.8209
19.6195

)103005.082.193(82.193
)1001001.05.19(5.19

==
⋅+⋅−

⋅+⋅+
=

μ
μ (25)

mΩ
AmAmA

VmVmVRmin 99.47947
194.8191
19.3805

)103005.082.193(82.193
)1001001.05.19(5.19

==
⋅+⋅+

⋅+⋅−
=

μ
μ (26)

The estimated value for the resistor is then:

5.8 Power Measurement Setup

 99

mΩ
RR

R minmax
mean 100,61

2
=

+
= (27)

with an error of:

1,13%100100
2/)(

±=⋅
+
−

±=⋅
−

±=
minmax

minmax

mean

minmax
error RR

RR
R

RR
R (28)

With this measurement the initial 5 % tolerance of the resistance value can be reduced to
1.13 %. When calibrating a resistor wire to a specific the same method can be applied. Fur-
thermore the wire also allows to adjust the resistor value exactly to a required value, by either
reducing the length of the wire (reduction of the resistance) or by using a rasp to decreasing
the diameter at a specific position (increase the resistance).

Furthermore it is also important to consider the temperature dependency of the resistance,
either caused by a change of the environmental temperature or due to the power dissipation of
the resistor itself. Usually the latter is the more frequent reason, especially when for higher
power dissipation, which comes close to the maximum specified value for the resistor. Also
parasitic inductance and capacitance need to be considered.

Especially wire-wound resistors, which have a similar design as coils, show a high inductance
(> 100 nH), and therefore significantly influence the impedance of the resistor already for
frequencies in the range of hundreds of kilohertz.

The accuracy of the oscilloscope, a Yokogawa DL9710L, is given as

1.5 % of 8 div + offset voltage accuracy
with an offset voltage accuracy of:

1 % of offset setting + x mV.
For the voltage range expected during the measurement, which is below 400 mV, the offset
component x is set to 0.2 mV.

5.8.2 Software Test Suite
A set of 90 assembly code sequences has been developed, which reflect the different energy
contribution described in Section 4.5.3. For achieving a constant current value, the instruc-
tions have been executed in a loop. In order to decrease the influence of the loop overhead,
i.e. counter update and check, jump instruction and pipeline stalls, loop unrolling to a long
instructions sequence should be performed. On the other hand, the sequence length should not
exceed the instructions cache size for omitting cache misses during the measurement. A loop
body of around 1000 instructions has been chosen that leads to 4 kB of code and 10 cycles for
loop handling, which in turn leads to a loop handling influence of around 1 %. The power
consumption respectively the current has been measured for each for each code sequence. As
the power consumption can be considered as stable during the execution of a specific instruc-
tion sequence, a DC measurement setup can be used. Thus, during the test scenario, the cur-
rent can be evaluated directly with a current meter, which leads to an increased accuracy as
compared to the measurement methods described above, which is important for this basic
model features.

In a first test suite the intra energy consumption for different instructions has been measured.
The results, see Section 8.2.3, show that the instructions can be grouped in classes of instruc-
tions with similar power consumption, for example all simple arithmetical instructions, such

5 Implementation

as ADD, SUB and CMP have the same power consumption. The instruction following instruc-
tion classes have been identified:

• arithmetic instructions (ADD, SUB, CMP,…)
• logical instructions (AND, EOR, …)
• move instructions (MOV, MVN, NOP,…)
• multiply instructions (MUL, MLA,..)
• branch instructions (B, BL, BLX)
• load/store instructions (LDR, STR)
• multiple load/store instructions (LDM, STM)

The NOP instruction is a pseudo-instruction, which actually is transformed to “mov r0, r0”.
For these classes a detailed model has been created. Not covered by this model are instruc-
tions, which are specific to the processor implementation and are not available within every
processor, such as:

• coprocessor instructions
• floating point instructions
• Thumb instruction set
• other miscellaneous instructions (SWI, BKPT)

The modeling of floating point instructions depends on their implementation, either as an
emulator or as a coprocessor. If a coprocessor is used, the coprocessor should be modeled
separately in order to achieve an accurate model. This is generally the case with coprocessor
instructions, as their power consumption is highly dependent on the coprocessor. Blume et al.
[24] create such a separated model for the floating point coprocessor of an ARM processor.
This model is part of a power model based on their hybrid FLPA/ILPA technique described in
Section 2.3.4.4. Similar to the approach for the CPU taken in this work, the instructions of the
coprocessor are combined into groups. As the processor used in this work does not provide
any arithmetic coprocessors, there is no need to create such a coprocessor power model here.

The influence of the MMU, which is part of the coprocessor CP15, during load, store and in-
struction fetch operations, is modeled as part of the appropriate operations. Other accesses to
the coprocessor CP15 occur very seldom, thus their influence can often be ignored. The same
is true for miscellaneous other instructions, such as software interrupts (SWI) or breakpoints
(BKPT). The Thumb instruction set is a specific feature of the ARM architecture. This is con-
sidered to be out of the scope of this work, as the methodology presented here should cover
only generic features of RISC architectures.

 100

6.1 H.264/AVC Decoder Profiling

6 Application of the Profiler
The profiling tool has been applied during the design of several software applications as well
as an embedded system architecture. The tool has proven its applicability for information
gathering and software optimization as well as for developing a complex system architecture
with a RISC processor, multiple memory devices, busses and hardware accelerators. The fol-
lowing sections describe two examples for usage of the profiler within the analysis and design
of embedded hardware/software systems.

6.1 H.264/AVC Decoder Profiling
In this study the MEMTRACE profiler is used for evaluating the feasibility of reaching the
performance requirements for processor-based DVB-H [33] system. DVB-H is a standard for
broadcasting of digital audio and video content to mobile devices. The content is encoded
using highly efficient compression methods, namely AAC-HE for audio data and the
H.264/AVC codec (see Section 3.4.1 provides more detailed information about the
H.264/AVC video coding standard) for video content. DVB-H focuses on high mobility and
low power consumption of the receivers. The most demanding part of the receiver in terms of
computational requirements is the H.264/AVC video decoder. Therefore a detailed profiling of
the H.264/AVC video decoder is performed. DVB-H defines different so-called capability
classes, which determine the image resolution and framerate. Here, the capability class B has
been chosen, which defines that the decoder need to compliant to level 1.2 of the H.264/AVC
standard, with a maximum a resolution of 352x288 pixels (CIF) and a framerate of 15 fps.

The target device is an SoC based on an ARM11 processor. By using the advanced instruction
set of the ARM11 and by the use of on-chip resources it is potentially possible to optimize the
software. The aim of the optimization is to meet the relevant performance targets for the sys-
tem with the minimum level of utilization of CPU bandwidth. The H.264/AVC decoding
software is analyzed to establish what optimizations would be beneficial and to quantify the
potential improvements. The techniques analyzed are:

• algorithmic optimizations
• assembly coding of critical code segments
• usage of ARM11 SIMD instructions
• usage of ARM11 TCMs and DMA

6.1.1 Description of the Test Scenario
The H.264/AVC decoder software has been optimized (using only compiler optimizations) for
the ARM processor architecture. Three system specifications were evaluated. The systems
consist of a processor with separate instruction and data caches and memory, see Figure 38.
As can be seen, instead of the ARM11 core, an ARM9E model has been used for the profiling,
due to the fact that when the case study was carried out, an ARM11 simulator was not avail-
able. From the available processor models, the ARM9E was the most similar core and its
similarities to the ARM11 core were considered to be sufficient for the requirements of this
case study. The influence of the SIMD instructions additionally available in the ARM11 core
is estimated in Section 6.1.3.1.

The first system uses a fast SRAM, whereas the second and the third system use slower
DRAM. In all systems all data and instructions are stored in the memory.

 101

6 Application of the Profiler

 102

The test systems have been specified with processor parameters defined in Table 21 and the
three different memory models listed in Table 22. For the SRAM configuration a very fast
memory model with zero wait states has been defined and for the DRAM configurations two
distinct models are used.

Processor
core

ARM9E

I-cache
32 kB

D-cache
32 kB

Memory
(SRAM or
DRAM)

Figure 38: Architecture of the evaluated test system

The DRAM16 model is a medium fast memory model, which in comparison to the SDRAM
model has a higher number of wait states for non-sequential accesses. These wait states reflect
the time required for e.g. precharge and row activation if a non sequential access occurs. Ad-
ditionally one wait state has been defined for sequential read. Although DRAM in general do
not produce wait state in sequential access, this wait state has been defined for reflecting the
influence of the delay time (time between applying the address and the data to be valid) dur-
ing sequential accesses. The memory model of the ARMulator only supports wait states, but
no delay times. Therefore the influence of delay time is approximated by setting the wait
states to one.

Table 21: Processor specification

Processor type ARM946E-S

Core frequency 250 MHz

Bus frequency 125 MHz (½ core frequency)

I-cache 32 kB, 4-way set-associative

D-cache 32 kB, 4-way set-associative, write-back, write buffer

MMU/PU Memory management/protection unit

The DRAM24 model is the slowest memory model. The number of wait states for non-
sequential accesses is higher as compared to DRAM16. However, in the model DRAM24 the
approximation of the delay time for sequential accesses is not applied. Thus the influence of
the different memory modeling can also be determined. An example of the influence can be
seen in results presented below (Figure 41), where the DRAM24 in some cases is faster than
the DRAM16.

To achieve a broad range of profiling results for the given H.264/AVC profile and level com-
bination a set of different H.264/AVC test streams is generated using H.264/AVC video en-
coding software. The used encoder features a rate control mechanism and is using all tools for
the targeted profile and level combination. Due to the different coding characteristics of video

6.1 H.264/AVC Decoder Profiling

 103

sequences, five different sequences have been chosen (namely “Coastguard”, “Container”,
“Stefan”, “StockholmPan”, “Tempete”). The sequences have a length of 125 to 150 frames
with an I-framerate of 15 and are encoded with 352x288 pixels at a framerate of 15 frames per
second. Each sequence is encoded with 256 and 384 kb/s, in order to analyze the influence of
the compression rate.

Table 22: Timing specification of the different memory architectures

Size SRAM DRAM16 DRAM24

Non-sequential read time 8 ns (0 WS1) 136 ns (16 WS1) 208 ns (25 WS1)

Sequential read time 8 ns (0 WS1) 16 ns (1 WS1) 8 ns (0 WS1)

Non-sequential write time 8 ns (0 WS1) 120 ns (14 WS1) 200 ns (24 WS1)

Sequential write time 8 ns (0 WS1) 8 ns (0 WS1) 8 ns (0 WS1)
1 Number of wait states in terms of memory bus cycles (bus frequency = ½ processor frequency)

6.1.2 Profiling Results
The generated profiling data is analyzed in three different ways, for entire bitstreams, for each
function group and for each processed frame.

6.1.2.1 Overall Analysis

The overall analysis given in Figure 39 shows the averaged processor clock frequency needed
for real time decoding of the corresponding bitstream. The processor clock frequency is de-
rived from the number of external bus cycles (EBC). The EBC is ½ of the core clock fre-
quency needed for the decoding of a complete sequence divided by the number of decoded
pictures.

0

50

100

150

200

250

300

350

P
ro

ce
ss

or
 c

lo
ck

 (M
H

z)

SRAM
DRAM16
DRAM24

SRAM 154,7086 178,9159 104,8536 134,7393 154,2127 178,2985 122,2628 145,8359 155,0371 180,7786

DRAM16 212,0183 237,8373 158,5298 191,2608 210,7413 236,4282 181,5022 206,7864 213,8247 241,7735

DRAM24 256,4842 282,1895 195,1987 230,2991 252,644 278,1794 227,3193 253,0266 258,7276 286,5564

coastguar
d_256kb

coastguar
d_384kb

container
_256kb

container
_384kb

stefan_25
6kb

stefan_38
4kb

Stockhol
mPan_25

6kb

Stockhol
mPan_38

4kb

tempete_
256kb

tempete_
384kb

Figure 39: Average core clock frequencies for ARM9 implementation for different se-
quences and different memory architectures

6 Application of the Profiler

 104

6.1.2.2 Function Group Analysis for I- and P-Frames with Different Memory Types

Function group analysis is based on the grouping of all incorporated functions of the
H.264/AVC decoder, as given in Table 23.

Table 23: Functional grouping of the H.264/AVC decoder

Functional group Description

Itrans Inverse H.264/AVC transformation

IntraPrediction H.264/AVC intra prediction algorithms

LoopFilter Deblocking filter

MotionCompensation Motion compensation for P-frames

BitstreamProcessing Low-level bitstream access functions

EntropyDecoding CAVLC decoding

ParsingDecoding High level parsing and control of bitstreams

Memory Memory transfer functions like memcpy, memset

Misc Other control helper functions and testbench

The results are generated for I- and P-frames. In the following diagram the comparison of the
required external bus cycles for the different function groups and the used memory architec-
ture according to their picture coding type is depicted. The data is generated using the worst
case pictures of the corresponding bitstream. Execution time is measured in number of exter-
nal bus cycles (EBC). Figure 40 shows the results for the “Coastguard 256kb” sequence.

Coastguard 256k

0

1

2

3

4

5

6

Itra
ns

IntraPrediction

LoopFilter

MotionCompensation

BitstreamProcessing

EntropyDecoding

Parsing_Decoding
misc

memory

M
illi

on
E

xe
cu

tio
n

tim
e

(E
B

C
) p

er
 I-

fra
m

e

I - SRAM
I - DRAM16ws
I - DRAM24ws

P - SRAM
P - DRAM16ws
P - DRAM24ws

Figure 40: Function group analysis for worst case I-frame (I) and P-frame (P) with differ-
ent memory types for sequence “Coastguard 256kb”

As can be seen, a big difference exists between the different frame types (I- and P-frames) and
the different memory types. The memory type has a strong influence in the MotionCompensa-
tion and the Memory group. Both groups are highly memory access dominated, and in the
MotionCompensation functions these accesses are random. Therefore the caches can not work

6.1 H.264/AVC Decoder Profiling

 105

efficiently. Contrary to the LoopFilter group, which is also very memory-intensive, however
as the filtering is applied to adjacent pixels, these accesses benefit from cache.

6.1.2.3 Cycles per Frame Analysis

The following analysis is generated to analyze the number of used external bus cycles needed
for each frame of a sequence of coded pictures. All three memory architectures are used for
the profiling runs.

The number of external bus cycles is generated as a sum of all function groups of the decoder
and reflects the overall needed real time performance for the according picture number. Exe-
cution time is measured in number of external bus cycles. Due to the different memory con-
figurations concerning the parameters for sequential reads for DRAM16 and DRAM24 mem-
ory architectures in some cases the peak performance for DRAM24 can be higher than for
DRAM16. This is the case if the number of sequential read accesses dominates the overall
number of accesses, since the DRAM16 is slower in sequential read accesses than the
DRAM24. That special case can be observed in Figure 41. The decoding of the frames (I-
frames), where the DRAM16 is slower than the DRAM24 configuration, includes mostly se-
quential reads accesses.

Coastguard 384kb @ 15fps

0

2

4

6

8

10

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145

M
illi

on

Frame number

E
xe

cu
tio

n
tim

e
(E

B
C

) p
er

 fr
am

e

12

dram
sram
dram24ws

Figure 41: Cycles per frame analysis for different memory types (“Coastguard 384kb”)

6.1.2.4 Memory Access Statistics

The following analysis is generated for analyzing the number of data memory accesses and
data cache read misses. Separate results are created for different H.264/AVC decoder memory
sections. As shown in Table 24, the decoder memory is split up in the read-only section
(ER_RO), read-write section (ER_RW), zero-initialized section (ER_ZI), the stack and the
heap variables. The results of this analysis allow an estimation of which data sections uses the
data cache efficiently.

6 Application of the Profiler

 106

Table 24: H.264/AVC decoder memory sections and heap variables

Memory
section Description Size

ER_RO Program code and constant global variables 103460 bytes

ER_ZI Global variables which are initialized to zero 612 bytes

ER_WR All other global variables (not constant and not initialized to zero) 126920 bytes

Stack0 Stack 8192 bytes

Dec_struct Main memory structure for the decoder (including the current
frame, the five reference frames and additional decoding data) 967796 bytes

AUBuf Buffer for the current access unit 16384 bytes

Bs_struct Structure containing status information about input bitstream buffer 36 bytes

Others Mainly a 4 kB input bitstream buffer (bs->pi32_buffer) ~ 4096 bytes

Sum ~ 1.17 MB

This analysis distinguishes between memory access and cache misses, as illustrated in Figure
42. Memory accesses are caused by load and store operations executed by the processor. If a
data value is not available in the cache a load or store operation leads to a cache miss. In case
of a read operation a cache miss leads to a cache fill of a cache line. In case of a store opera-
tion a cache miss leads to write to the memory via the write buffer.

In the following, memory accesses are counted for both, load and store operations, whereas
cache misses are only counted for read operations (cache fills). This restriction is caused by
the profiling tool.

Processor
core

ARM9E

I-cache
32 kB

D-cache
32 kB

Memory
(SRAM or

DRAM)

Memory
accesses

Cache
misses

Figure 42: Locating data transfers caused by memory accesses and cache misses

Figure 43 shows the memory accesses to the sections and heap variables for decoding the se-
quence “Stefan 384kb”. Memory accesses are the number of read or write operations caused
by load or store operations. Regardless, if the load or store operation is a byte, half-word or
word access, each one of them is counted as one access. The cache misses, which are caused
by load operations to the specific memory sections and heap variables, correspond to the right
ordinate in Figure 43.

6.1 H.264/AVC Decoder Profiling

 107

Stefan 384 kB / memory access statistic

0

50

100

150

200

250

300

350

bs_struct 'ER_ZI' others stack0 ER_RO' 'ER_RW' dec_struct

M
ill

io
n

Memory sections and heap variables

M
em

or
y

ac
ce

ss
es

0

0,5

1

1,5

2

2,5

3

3,5

M
ill

io
n

D
-c

ac
he

 m
is

se
s

all load store
load
store
cache miss

Figure 43: Memory accesses and D-cache misses for the sections and heap variables for
decoding the sequence “Stefan 384kb”

As can be seen, most load operations access the stack. However, these load operations only
cause a few read cache misses. This shows that the stack uses the cache very efficiently.

Further the diagrams show that for reading the dec_struct the cache can not be used as effi-
ciently as for reading the stack. The reason for this is that the dec_struct is large and the loca-
tions (addresses) of accesses to the dec_struct are very random. However, comparing the total
number of accesses to the dec_struct (200 million) with the number of read cache misses (3
million) shows that using the cache still has a significant positive influence on access time to
the dec_struct. Therefore the dec_struct should not be marked as non-cacheable.

In the following an overview of the accesses to the main memory (data transfer between
caches and DRAM/SRAM) is given. Read accesses to the main memory are caused by read
data cache misses and instruction cache misses. Each cache miss leads to a data cache fill of a
cache line. When decoding the “Stefan 384kb” sequence the memory accesses provided in
Table 25 occur.

Table 25: Accesses to the main memory

Read access type Accesses Sum

Instruction cache misses 1548764

Data cache read misses 3887992
(1548764*8) + (3887992*8) =

43 494 048

Write access type Accesses Sum

Non-sequential write accesses 23695488

Sequential write accesses 11168236
23695488+11168236 =

34863724

For each of this cache misses a cache line with a length of eight words (4 bytes each) is read
from the main memory, this leads to about 43 million read accesses to the main memory. The
write accesses to the main memory are calculated from the results of the memory model simu-
lator. The simulator provides the number of sequential and non-sequential accesses to the
memory. This leads to a total number of about 34 million write accesses to the main memory.

6 Application of the Profiler

 108

6.1.3 Profiling-Based Software Optimization Potential

6.1.3.1 Algorithmic Optimizations

Assembly coding and the usage of SIMD instructions are optimization techniques that can be
considered to increase the decoder’s performance. Code analysis shows that in most cases the
resulting assembly code generated by the compiler is nearly optimal if the C source code is
written according to the recommendation given by ARM. Besides the usage of hand opti-
mized code using SIMD-instructions there is no significant performance gain to expect. If the
amount of work is taken into account and the fact the maintainability of the code is getting
worse it is not recommended to use assemble code for the optimization of the research
H.264/AVC decoder.

An estimation of optimization gains due to the usage of the SIMD-instructions of the ARM11
architecture is performed. Due to the fact that an ARM11 profiler is not available, the
achieved performance gain by using the SIMD instructions is estimated. The approximately
used instructions for an unoptimized function are counted and compared those numbers to the
numbers expected by using SIMD instructions. In the following the resulting optimization
factor are given for each function. The optimization factors are calculated as:

)(
)(

odeoptimizedCimeexecutionT
dCodeunoptimizeimeexecutionTonFactoroptimizati = (29)

where the execution times are estimated values due to the number of instructions.
In Figure 44 the expected optimization gain in terms of real time performance is depicted us-
ing all before mentioned optimizations. The estimated performance gains, as given in Section
8.1.4, are included in the simulation result, as described in Section 4.3.4. In detail, the cycle
count of each function in each frame is multiplied by the performance gain factor. Then the
overall results are recalculated. The new results (with performance gain) are compared to the
old results (without the performance gain) with Equation 30:

)(
)()(100

dCodeunoptimizeimeexecutionT
odeoptimizedCimeexecutionTdCodeunoptimizeimeexecutionTonGainoptimizati −

⋅= (30)

0

5

10

15

20

25

30

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145
Frame number

R
ea

l t
im

e
op

tim
iz

at
io

n
ga

in
 in

 %

Figure 44: Optimization gain per frame using proposed ARM11 SIMD optimizations for
sequence “Stefan 384kb”

6.1 H.264/AVC Decoder Profiling

 109

In most cases of the optimized functions the SIMD implementation of the add instruction e.g.
add8to16 can be used. Due to the large overhead in terms of load/store operations and refor-
matting operations the usage of other ARM11 SIMD instructions is very limited. Those SIMD
instructions require lots of data access instructions and other instructions in order to organize
the data in a manner that the special SIMD instructions can be used. In most cases the over-
head of needed instructions to organize the data into the corresponding registers costs more
instructions cycles than the ones saved due to the SIMD usage.

The usage of the MAC instruction is limited to very few cases, since in most functions the
basic operation consists of add instructions followed by shift instructions.

6.1.3.2 Cache Optimizations

An analysis of the influence of cache size on performance is performed. For this purpose the
“Stefan 384kb” sequence is decoded on the ARMulator for the ARM946E-S processor with
different cache sizes, see Figure 45.

132,2
118,5

107,4
100

157,2

127,5

107,6
100

60

80

100

120

140

160

180

er
na

l B
us

 C
yc

le
s

(E
BC

)
 to

 s
et

up
 w

ith
 3

2k
/3

2k
 c

ac
he

0

20

40

4 8 16 32
Cache size (in kB)

%
 o

f E
xt

co
m

pa
re

d

Variable I-cache, 32kB D-cache
Variable D-cache, 32kB I-cache

Figure 45: Influence of I- and D-cache size on performance

In the first test run the D-cache size is set to a fixed value of 32 kB, and the size of the I-cache
is varied from 4 to 32 kB. In the second test run the I-cache size is set to a fixed value of 32
kB, and the D-cache size is varied. The results of the first (blue) and the second (red) test run
are depicted in the figure. The figure shows the increase of external bus cycles in percent as
compared to a system with 32 kB I-cache and 32 kB D-cache.

The result shows that if either the I-cache or the D-cache size is decreased from 32 kB to 16
kB this leads to the same increase of external bus cycles of approx. 7.5 %. However, if further
decreased, the size of the D-cache has a larger impact on the performance than the I-cache
size.

6.1.3.3 Speedup Estimation due to TCMs

A speedup is expected due to a reduction of the accesses to the external memory. This reduc-
tion should be achieved by adding a tightly coupled memory (TCM) to the system. The map-
ping of the data areas to the TCM and the slow external memory is performed as described in
Section 4.4.3.

6 Application of the Profiler

The profiling of the H.264/AVC decoder shows that the overall number of data cache misses
is more than 2.5 times higher than the instruction cache misses, see Section 6.1.2.4. Therefore
in the following only data access optimization is considered. The H.264/AVC decoder con-
tains about 200 data areas (global and heap variables) which are potential candidates for the
storage in the TCM. These data areas include e.g. reference frames, temporary decoding data
(e.g. motion vectors) and constant lookup tables (e.g. for VLC). MEMTRACE is applied for
tracing the memory accesses to each data area and the cache misses which occurred during
read accesses to these data areas. This information is used for choosing the data areas to be
stored in the TCM. The results for the “Stefan 384kb” sequence are partly shown in Table 26.

Table 26: Decoder data areas sorted according to their number of cache misses

Data area Size All load store Load Store Cache miss

Dec_struct.Y_plane5 101376 16509308 11836357 4672951 332720

Dec_struct.Y_plane3 101376 14061611 10048336 4013275 313515

Dec_struct.Y_plane4 101376 14123674 10135951 3987723 311135

Dec_struct.Y_plane2 101376 12352958 8215325 4137633 281123

Dec_struct.Y_plane1 101376 9760766 6916857 2843909 211234

Dec_struct.Y_plane0 101376 9451125 6647755 2803370 206220

Dec_struct.mvd 25344 4861092 2732449 2128643 193300

Dec_struct.mb_data 12672 2820493 1925502 894991 165202

...

They are sorted by the overall number of cache misses they produce. The data area with the
most cache misses (and therefore with most influence on performance) are the Y planes of the
reference frame buffers. However, these are not potential candidates for the TCM, since they
are to large (approx. 100 kB each) for the TCM. Therefore the data areas are resorted as
shown in Table 27. The data areas are sorted by the cache misses per byte.

The table also shows the accumulated size and cache misses of the variables. The accumu-
lated cache misses indicate the speedup if these variables were to be stored in the TCM. The
accumulated size shows how much memory space in the TCM would be required for storing
the specific data and all data areas above it.

 110

6.1 H.264/AVC Decoder Profiling

Table 27: Decoder data areas sorted according to their number of cache misses per byte

Data area Size Cache
miss

Accum.
 size

Accum.
cache miss

Cache miss
/ byte

Clip_table_global 4 3275 4 3275 818.75

Clip_zero 4 3133 8 6408 783.25

St 4 2859 12 9267 714.75

NumCoeffTrailingOnes0 16 4069 28 13336 254.31

TotalZeros0 16 3444 44 16780 215.25

TotalZeros2 16 2817 60 19597 176.06

Run6 16 2466 76 22063 154.12

TotalZeros4 16 2092 92 24155 130.75

Scanpattern 64 8046 156 32201 125.71

Dec_struct.stream 36 4101 192 36302 113.91

NumCoeffTrailingOnes2 16 1808 208 38110 113.00

NumCoeffTrailingOnesChromaDC 16 1718 224 39828 107.37

TotalZeros1 16 1697 240 41525 106.06

Run2 16 1690 256 43215 105.62

Intra4_blockavailtable00 16 1688 272 44903 105.50

Ijpos 16 1664 288 46567 104.00

NumCoeffTrailingOnes1 16 1640 304 48207 102.50

Run1 16 1546 320 49753 96.62

...

Figure 46 shows how this information can be used for choosing the optimal candidates for a
TCM of a specific size. The left most data area is the one with the highest cache miss density
(cache miss per byte). Therefore this data area has the highest priority to be stored in the
TCM. For choosing all data areas to be stored in a TCM with a specific size, one can continue
to the right until the accumulated size reaches the TCM size.

 111

6 Application of the Profiler

 112

Cache misses per byte evaluation

0
100
200
300
400
500
600
700
800
900

Data areas

C
ac

he
 m

is
se

s/
by

te

cache misses/byte 818,8 783,3 714,8 254,3 215,3 176,1 154,1 130,8 35 34,7 31,8 30,7 30,2 16,1 15,8 15,3 14,6 14,5 13,7 13 11,5 10,9

accumulated size 4 8 12 28 44 60 76 92 5117 5173 9269 9357 9613 13957 15541 16565 18613 18629 18789 31461 31845 36493

accum. c.-misses 3275 6408 9267 13336 16780 19597 22063 24155 288633 290578 420856 423555 431294 533767 558728 574350 604225 604457 606743 771945 776347 826799

clip_ta
ble_glo

bal
clip_ze

ro st NumC
oeffTra
ilingOn

TotalZ
eros0 TotalZ

eros2 Run6 TotalZ
eros4

TotalZ
eros

predict
Intra4_
table

expgol
ombta

b

dec_str
uct.Slic

e

TotalZ
eros1_
short

TotalZ
erosCh
romaD

dec_str
uct.ref
FrArr

NumC
oeffTra
ilingOn

LevelV
LC1tab

intra4_
blocka
vailtabl

NumC
oeffTra
ilingOn

dec_str
uct.mb
_data

dequa
nt_coef

dec_str
uct.Pict

ure

8 kB TCM

32 kB TCM

16 kB TCM

...

Figure 46: Data areas sorted by cache misses per byte and indication of chosen data areas
for specific TCM sizes

Table 28 shows the result if a TCM with the size of 4, 8, 16 and 32 kB would be filled opti-
mally with the data areas. For an ARM946E-S processor with 32 kB of data TCM a simula-
tion is performed in order to achieve an estimation for the speedup, which can be expected.
The simulation with the memory DRAM24 shows that an overall speedup of 5 % could be
achieved.

Table 28: Cache miss reduction due to data TCMs with the size of 4, 8, 16 and 32 kB

TCM size Cache miss reduction Cache miss reduction in %
(3834465 misses overall) Estimated speedup

4 kB 249233 6.5 % 2.4 %

8 kB 381611 10 % 3.7 %

16 kB 558728 14.6 % 5.4 %

32 kB 776347 20.2 % 7.5 %

The speedup is expected to be dependent on the processor architecture. Therefore, an upper
limit for a potential speedup is estimated, which might be possible with the ARM11 architec-
ture. An upper limit for the expected speedup due to TMCs is calculated based on the cache
miss reduction. As shown in Table 28, due to 32 kB of data TCM the number of data read
cache misses is reduced by 20 %. This 20 % cache miss reduction could lead, in an optimal
system architecture, to a reduction of 20 % of the time spent on memory accesses. Since the
simulation showed us that about 50 % of the execution time is spent on memory accesses, this
could lead to a 10 % speedup of overall execution time in the best case.

This leads to the assumption that the potential speedup due to 32 kB of data TCM with the
ARM11 architecture will be between 5 % and 10 %. In the following a mean value of 7.5 % is
assumed. Starting with this mean value and the assumption of a linear relationship between
cache miss reduction and speedup due to TCM, the speedup for the other TCM sizes is calcu-
lated as follows:

6.1 H.264/AVC Decoder Profiling

 113

)32(Re
)(Re

*)32()(
TCMkByteductioncacheMiss
TCMkBytexductioncacheMiss

TCMkBytespeedupTCMkBytexspeedup = (31)

This leads to the estimated speedups given in Table 28.

6.1.3.4 Using DMA

The ARM11 processor family supports TCMs with direct memory access (DMA). DMA
strategies can be applied for an efficient dynamic usage of the TCM. Thus data, which is ac-
cessed frequently only at a specific point of time, can be stored in the TCM only during this
time. After the processing the data can be written back to the DRAM and other data can be
stored in the TCM.

This dynamic usage of the TCM is examined on a frame basis. If I-frames and P-frames have
a different cache miss statistics, different data could be stored in the TCM during an I-frame
and a P-frame. This would lead to an optimized TCM usage and an increased performance.
Therefore the cache miss statistics is analyzed for I-frames and P-frames separately and ex-
tracted the variables to be stored in TCM for both frame-types. The lists of variables is com-
pared to the previous list of variables for all frames given in Table 27. This comparison shows
that the optimal TCM memory map for I-frames differs from the one for all frames in a few
variables, as given in Table 29. For the P-frames, as expected, the optimal memory map is
same as the one for all frames. The term “all frames” determines the entire sequence of I- and
P-frames in the H.264/AVC sequence.

Table 29: Difference of optimal TCM memory map for I-frames and for all frames

Variable name Size Cache
miss

Accumulated
size

Accumulated
cache miss

Cache miss
per byte

Intra4_blockavailtable01 16 16 16 16 1

NumCoeffTrailingOnes2_short 1024 2711 1040 2727 2.65

TotalZeros10 16 37 1056 2764 2.31

TotalZeros5_short 256 302 1312 3066 1.18

TotalZeros6_short 256 258 1568 3324 1.00

TotalZeros9 16 25 1584 3349 1.56

As can be seen, the optimal memory map differs in about 1.5 kB of TCM memory. It shows
that the number of overall cache misses with an optimal TCM mapping for I-frames could be
reduced by 3349. Table 30 shows the influence on the cache miss count for I-frames.

Table 30: Influence of optimal TCM memory map for I-frames

 Cache misses Reduction in %

Overall number of cache misses in I-frames 231483

Cache miss reduction with I-frame TCM map 57407 25.8 %

Cache miss reduction with all-frame TCM map 54058 23.4 %

Difference between I-frame and all-frame TCM map 3349 1.4 %

This shows that using an optimized TCM map for I-frames would decrease the number of
cache misses in I-frames only by 1.5 %. This in turn would only lead to minimal performance

6 Application of the Profiler

 114

increase. As a consequence it can be stated that DMA strategies on a frame-basis would not
lead to a performance gain. However, more fine-grain DMA strategies, e.g. on a macroblock-
basis for storing adjacent macroblocks of the current frame in the TCM, would required an
immense software recoding.

6.1.4 Summary of Profiling and Software Implementation Results
This section summarizes the performance analysis and the results of the different optimization
strategies applied. Additionally, the memory map for the usage of a data TCM is shown.

6.1.4.1 Performance Estimation

Table 31 shows the performance gain, which can be expected with the different optimizations.
These performance gains are compared to the system with external memory DRAM24 and
32 kB of I-cache and D-cache but without TCM. The table shows that the usage of SIMD in-
structions has a significant influence on the performance whereas DMA strategies (applied on
a frame-basis) have only a marginal influence.

Table 31: Average performance gain due to optimizations

Optimization Average performance gain

SIMD instructions +14 %

I-cache 32 kB / 16 kB / 8 kB / 4 kB 0 % / -7 % / -19 % / -32 %

D-cache 32 kB / 16 kB / 8 kB / 4 kB 0 % / -8 % / -28 % / -57 %

D-TCM 32 kB / 16 kB / 8 kB / 4 kB +7.5 % / +5.4 % / +3.7 % / 2.4 %

DMA < 1 %

In Figure 47 the influence of the SIMD and TCM optimizations on the required processor
frequency is shown for the “Stefan 384kb” sequence. The results for the reference system (32
kB I-/D-cache + DRAM24) are based on the results presented in Figure 41. The required av-
erage and peak processor frequency is given in Figure 48.

Stefan 384 kb

0

50

100

150

200

250

300

350

400

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

frame

Pr
oc

es
so

r f
re

qu
en

cy
 (

M
H

z)

32k I-/D-Cache+DRAM24
32k I-/D-Cache+DRAM24+SIMD
32k I-/D-Cache+DRAM24+SIMD+32kTCM

Figure 47: Performance comparison for different system configurations

6.1 H.264/AVC Decoder Profiling

 115

273
240

222

361

312
288

0

50

100

150

200

250

300

350

400

32 kB I-/D-cache +
DRAM24

32 kB I-/D-cache +
DRAM24 + SIMD

32 kB I-/D-cache +
DRAM24 + SIMD + 32kB

TCM
System configuration

P
ro

ce
ss

or
 fr

eq
ue

nc
y

in
 M

H
z

average
peak

Figure 48: Comparison of the required average and peak processor frequency for different
system configurations

6.1.4.2 Memory Requirements

The overall memory requirements for the H.264/AVC decoder are approximately 1.2 MB,
consisting of about 1.1 MB of data memory and 90 kB of program code. For a system con-
figuration with a 32 kB TCM a memory map as shown in Table 32 would be applied.

Table 32: Memory map for a system configurations with 32 kB of TCM

Section DRAM TCM

Boot code / stdIO-Lib / testappl. 224+13404+3348=16976 bytes

H.264/AVC decoder library code 73344 bytes

Global variables 134988 bytes 12092 bytes

Decode structure (heap) 947232 bytes 20564 bytes

AUBuffer (heap) ~ 16384 bytes

Heap (without decode structure
and AUBuffer) 4096 bytes 36 bytes

Stack 8192 bytes

Sum 1201212 bytes ≈ 1.15 MB 32692 bytes = 32 kB

6.1.4.3 Conclusion

Taking into account that these values rely on simulations on an ARM946E-S processor and
estimations, the results can be summarized as follows. Using ARMv6 SIMD and memory

6 Application of the Profiler

 116

footprint optimizations the H.264/AVC decoder will be capable of real time decoding on a
processor system with approx.

• 200-250 Mhz core clock frequency (average performance)
• 250-300 Mhz core clock frequency (peak performance)
• external bus clock with ½ core clock
• 32 kB I-cache and 32 kB D-cache32 kB TCM
• 1.2 MB external DRAM

A meaningful system variation can be the reduction of the I-cache size in order to reduce the
die area. However, a reduced I-cache size of either 16 kB or 8 kB would increase the required
processor frequency by approx. 8 % or 18 %.

6.1.5 Hardware/Software System Architecture
Considering the dynamic power consumption of CMOS-circuits, given in Equation 32, the
high system frequency leads to high power consumption.

2
DDkkdynamic VfCP ⋅⋅= (32)

For achieving lower power consumption, methods need to be applied, which allow the reduc-
tion of the system frequency, which in turn also allows a lower supply voltage (voltage scal-
ing). Hardware accelerators can be used for this purpose. However, their influence on the ca-
pacitance has to be considered and reduced by mechanism like clock gating. Furthermore the
memory architecture needs to be adapted (reduced) to the specific application requirements.

The profiling results presented in the previous sections show that a few hot spots can be iden-
tified in the software. Considering the results presented in Section 6.1.2.2 the following hot
spots can be identified:

• motion compensation
• deblocking (loop-) filter
• memory transfers
• integer transform (itrans)

These functional units are candidates for hardware acceleration, which leads to the system
architecture as depicted in Figure 49.

6.1 H.264/AVC Decoder Profiling

Figure 49: System layout of the H.264/AVC decoder chip based on the profiling results
with a system bus and a separate video bus

The application processor running the software parts is extended with a companion chip for
acceleration of the video decoding. The companion chip [89] contains the above-mentioned
hardware accelerators: for H.264/AVC decoding. Table 33 shows a comparison of the required
cycle times of the accelerators with their software counterparts.

The coprocessors use the interfaces described in Section 5.6.1, including the memory-mapped
status and control registers and the input and output memory areas. The cosimulation of the
processors and the coprocessor is performed as described in Section 4.2.3. Furthermore a so-
called SIMD engine is available on the chip, which is a 32-bit RISC processor enhanced with
special SIMD instructions. The 32-bit system bus connecting the processor core with the main
memory and coprocessor components is augmented with a DMA-controller which supports
the main processor by performing the memory transfers to the coprocessor units. A video out-
put unit is implemented directly driving a connected display or video DAC. To avoid a heavy
bus load on the mentioned system bus due to transfers from a frame buffer to the video output
interface, an extra frame buffer memory and the video output unit are provided by a separate
video bus system. The data transfers between these bus systems are also performed by the
DMA controller. The main control functionality of the decoder can either be run on the appli-
cation processor or on the RISC core on the companion chip.

 117

6 Application of the Profiler

Table 33: Comparison of the Execution time in hardware and software

Implementation Deblocking Pixel interpolation Inverse transform

Software 3000-7000 cycles 100-700 cycles 320 cycles

Hardware 232 cycles 16-34 cycles 30 cycles

To fully evaluate the proposed concept the complete SoC architecture the Embedded System
Group at the Fraunhofer Heinrich-Hertz-Institut (HHI) developed and implemented an ASIC
design using UMC’s L180 1P6M GII logic technology, see Figure 50. The maximum clock
frequency of the design is 120 MHz, whereas 50 MHz should be sufficient for the DVB-H
scenario. The evaluation board for the chip allows the fully functional verification and fur-
thermore exhaustive performance testing and power measurements, separately for memory,
core and IO supply voltages.

Figure 50: An H.264/AVC decoder companion chip based on the profiling results
(die and chip layout)

6.2 GestAvatar – Gesture Detection for Avatar Control
Within another project a gesture recognition and head tracking system [82] is profiled. The
system should be run on a PDA with the following specification:

• ARM9 processor (ARM946E-S)
• processor speed: 250 MHz
• caches: 32 kB of instruction cache and 32 kB of data cache
• memory bus running with ½ processor speed
• external SDRAM (25 wait states for non-sequential accesses)

The software contains three major components of the application are:

• Hand head tracking
• Facial feature tracking
• Gesture recognition

The goal of the profiling is an estimation of the real time requirements of the application.
Figure 51 shows the distribution of the clock cycle requirements over the different compo-
nents and Figure 52 the instruction cycle time requirement per frame.

 118

6.2 GestAvatar – Gesture Detection for Avatar Control

 119

6.2.1 Results
The processing is highly influenced by the floating point convolution required in the feature-
tracker unit. Horizontal and vertical convolution require about 60 % of the overall processing
time. Although the profiling results on the PC also identify the feature tracker as the most de-
manding part of the software, the results are not as drastically. This is due to the fact that the
PDA does not provide any hardware acceleration for floating point arithmetic, which is heav-
ily used within the convolution. Therefore either emulation or a library implementation is
used for floating point operations. Within this profiling the faster choice, a library implemen-
tation is used. Floating point emulation may decrease the performance significantly. If the
floating-point arithmetic could be replaced by integer arithmetic, the required processing time
for these operations may decrease by a factor of 5.

Misc
4%

HandHeadTracking
12%

GestureRecognition
4%

FeatureTracker
80%

Figure 51: Overall distribution of the clock cycle requirement per functional block
(resolution: 320x240 pixels, sub-sampling: 2)

Current PDAs have a higher processor speed (up to 624 MHz) than the one used in this profil-
ing, therefore the performance results on real hardware may be a superior. However, since the
simulated SDRAM access times, which highly influence the performance, correspond well to
today’s devices, only a speedup factor of up to 1.5 is expected.

6 Application of the Profiler

 120

0

20

40

60

80

100

120

140

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401

M
ill

io
ns

Frame

C
yc

le
s

160
Main
HandHeadTracking
FeatureTracking2
GestureRecognition
FeatureTracker

Figure 52: Per frame analysis of the clock cycle requirement per functional block
(resolution: 320x240 pixels, sub-sampling: 2)

A solution for reducing the cycle requirement on the PDA is to outsource the FeatureTracker
component to an external server, e.g. a PC. The video data should be transmitted as
H.264/AVC encoded video. Table 34 and Table 35 show the resulting overall performance,
comparing three different scenarios:

• full processing on the PDA
• shared processing on PDA and server with H.264/AVC encoded video transfer of the re-

gion of interest
• full processing on the server with H.264/AVC encoded video transfer of the entire image

6.2 GestAvatar – Gesture Detection for Avatar Control

Table 34: Processing times of the most demanding functional blocks for different cli-
ent/server setups

 Processing time for
full PDA processing

Processing time for
shared processing

Processing time for
external processing

Hand head tracking

640x480 111 ms

320x240,
subsampling=2 34 ms

320x240,
subsampling=4 31 ms

Facial feature tracking H.264/AVC intra-only
encoding of head-box

H.264/AVC intra-only
encoding of full image

640x480 915 ms 114 ms (1400 kb/s) 816 ms (8000 kb/s)

320x240,
subsampling=2 232 ms 33 ms (350 kb/s) 204 ms (2000 kb/s)

320x240,
subsampling=4 256 ms 33 ms (350 kb/s) 204 ms (2000 kb/s)

Gesture recognition

640x480 33 ms

320x240,
subsampling=2 10 ms

320x240,
subsampling=4 9 ms

Table 35: Overall processing times and framerates for different client/server setups

 Processing time for
full PDA processing

Processing time for
shared processing

Processing time for
external processing

Ms/frame

640x480 1101 ms 301 ms 816 ms

320x240,
subsampling=2 288 ms 89 ms 204 ms

320x240,
subsampling=4 307 ms 84 ms 204 ms

Frames/s

640x480 0.91 3.32 1.23

320x240,
subsampling=2 3.48 11.27 4.9

320x240,
subsampling=4 3.26 11.93 4.9

 121

7 Summary & Prospects

7 Summary & Prospects
The design of an efficient system for applications with high demands for real-time perform-
ance requires the selection of an appropriate system architecture and incorporated hardware
and software components. In order to make such choices, it is imperative to have a detailed
knowledge of the application’s computational demands. Furthermore, for data-intensive appli-
cations the influence of memory accesses has to be taken into account. This work presents a
profiling methodology that provides this information. This information includes clock cycles,
numerous memory access statistics and several special results providing memory access opti-
mization and data placement in memory. The results are delivered on a detailed level for
source code functions and data areas, such as global variables. This work shows how profiling
can be integrated into the design flow. The tool aids the designer in making the right decision
at each step of the design, including hardware/software partitioning, optimization of compo-
nents and system scheduling. The profiling methodology has been applied in the development
of a software solution and a hardware/software system for real-time video decoding.

Besides performance and memory profiling, the profiler has been extended with energy esti-
mation on a function-accurate level. The development of the underlying power model of a
processor is described in detail and can be used as a general approach for model generation.
Energy profiling can be used to identify hot-spots in an application. These hot-spots are the
most promising candidates for energy consumption reduction. Furthermore, the results can be
used to inspect the instruction set of a processor and the influence of each instruction on the
energy consumption. This information aids the designer in developing an energy-efficient
instruction set for customizable processor architectures.

7.1 Comparison with Existing Tools
Existing profiling tools can not deliver the broad profiling results required for the comprehen-
sive optimization and exploration tasks necessary during the design of embedded systems.
Gprof is a very useful tool for initial software analysis, but the results are inaccurate due the
source code instrumentation and the sampling-based profiling method. Similarly, armprof can
also be used only for a rough estimation of the cycle distribution across different parts of the
software, and the tool is restricted to the ARM architecture. The same applies for VTune,
which is restricted to Intel processors, although the profiling results are very detailed. In addi-
tion to the performance results, VTune also provides some information about cache activity,
such as cache misses and hits. A far more detailed memory analysis can be performed with the
ATOMIUM tool suite. This provides information on memory accesses for each function and
variable in the code. The tool is a pure memory profiler and does not deliver any timing in-
formation. For the profiling, a generic processor and a flat memory architecture are used,
therefore the results are usable only in an early design phase, as the tool cannot reflect the
influence of the target architecture. Power consumption estimation is targeted by the Joule-
Track tool. Here, measurement-based power models were created for two specific processors.
This tool provides results only for the entire program, not for every function.

PowerEscape, which is based on the ATOMIUM tools, offers the most comprehensive profil-
ing. It extends the system architecture model with parameterizable components, such as cus-
tomizable register files and user-defined memory architecture. In addition to memory analy-
sis, the tool also incorporates timing and power consumption models. However, the system
architecture is still a generic architecture, which restricts the accuracy of the profiling. Fur-
thermore, as of 2006 PowerEscape is no longer available.

 122

7.2 Prospects

In contrast to the aforementioned techniques and to overcome their restrictions, the approach
presented in this work combines fast, accurate and comprehensive profiling. The trade-off
between a decent simulation time and a sufficient level of accuracy is reached by using a trac-
ing-based profiling approach that applies cycle-accurate simulators. In order to target a broad
range of processors, a well-defined and simple interface is established for interconnection
with the processor simulator. Thus any cycle-accurate processor model can be used, as long as
it provides access to basic runtime information such as the program counter, cycle counter and
memory busses. The profiler is independent of the application’s source code, which leads to
higher accuracy as compared to instrumentation-based tools. This additionally allows the pro-
filing of applications that are only available as binaries.

The instruction-level power model presented in this work allows a detailed and measurement-
based profiling. However, the current implementation of the energy model is restricted to
simple RISC processor architectures with a single pipeline. Complex architecture concepts,
such as VLIW or superscalar execution units, are not considered in this work and would re-
quire major extensions to the proposed modeling, for example by incorporating FLPA meth-
odologies. However, these architectures are currently not wide-spread on the embedded RISC
processor market. This is due to the large overhead they involve; for example, features such as
out-of-order execution increase the required die area significantly.

7.2 Prospects
The profiling tool described here is still missing some features. Callgraph-based profiling, an
essential feature of gprof, is not included in the profiler. Instead, a straightforward approach
for accumulating the results of called functions is applied, which allows only a restricted view
of the clock cycle distribution from a hierarchical view. This restriction is acceptable only for
optimization purposes, as hot spots are still visible.

The optimization steps presented in this work need to be applied manually by the software
developer. For complex applications especially, this can be a cumbersome task. Therefore, the
profiler should be integrated into the compiler suites. The compiler can then be instructed to
perform the code modifications automatically based on the profiling results.

Areas for future development also include the extension of the power model to other proces-
sor architectures and applying the methodology to other application fields in order to show its
versatility. Furthermore, power models for the memory architecture could be included in order
to reflect their influence on overall energy consumption. The retargeting of the power model
can be simplified by separating the CPU core power model from the cache modeling. Caches
could be modeled by means of the CACTI [96] cache model, which offers very detailed re-
sults and can be used for a wide range of technology feature sizes. On-chip SRAM can be
incorporated into the model by adapting the CACTI tool, and external DRAM devices can be
modeled with datasheet based models [59].

 123

8 Appendix

8 Appendix
8.1 Detailed and Comprehensive Profiling Results

8.1.1 H.264/AVC Encoder/Decoder
Figure 53 shows the callgraph of the software implementation of an H.264/AVC Baseline
decoder. This implementation has been used within the case study described in Section 6.1.

 124

8.1 Detailed and Comprehensive Profiling Results

 125

de
co

de
H

26
4

ch
ec

kS
ta

rtC
od

e
...

re
ad

S
lic

eH
ea

de
rC

on
fig

ch
ec

kS
ta

rtC
od

e

in
itF

ra
m

e

re
ad

S
lic

eH
ea

de
r

de
co

de
M

ac
ro

bl
oc

k

de
co

de
S

lic
e

de
co

de
M

B
In

tra
4x

4

re
ad

8x
8M

od
e

de
co

de
M

B
In

te
r

de
co

de
M

B
In

tra
16

x1
6

ge
tD

qu
an

t

ge
tC

oe
ffL

um
aB

lo
ck

ge
tIn

tra
4x

4I
pr

ed
m

od
es

ex
itF

ra
m

e

m
ot

io
nC

om
pS

ki
pM

od
e

de
co

de
C

hr
om

a

itr
an

s

ge
tC

oe
ffL

um
aB

lo
ck

ge
tC

oe
ffC

hr
om

aB
lo

ck
D

C
2x

2

pr
ed

ic
tIn

tra
4x

4

m
ot

io
nP

re
di

ct
io

nC
hr

om
a

ge
tC

oe
ffC

hr
om

aB
lo

ck

itr
an

sD
C

C
hr

om
a

pr
ed

ic
tC

hr
om

a

itr
an

s
...

ge
tC

oe
ffL

um
aB

lo
ck

ge
tM

ot
io

nV
ec

to
rs

A
nd

R
ef

Fr
am

es
se

tM
ot

io
n

V
ec

to
rP

re
di

ct
or

ge
tQ

ua
rte

rp
el

B
lo

ck

m
ot

io
nP

re
di

ct
io

nL
um

a

ge
tD

qu
an

t

ge
tC

oe
ffL

um
aB

lo
ck

D
C

pr
ed

ic
tIn

tra
16

x1
6

de
co

de
C

hr
om

a

itr
an

s

ge
tC

oe
ffL

um
aB

lo
ck

itr
an

sD
C

Lu
m

a

ge
tC

oe
ffC

hr
om

aB
lo

ck

ge
tC

oe
ffL

um
aB

lo
ck

ge
tD

qu
an

t

ge
tC

oe
ffL

um
aB

lo
ck

de
co

de
C

hr
om

a

itr
an

s

pr
ed

ic
tIn

tra
4x

4

m
ot

io
nP

re
di

ct
io

nC
hr

om
a

...

ge
tQ

ua
rte

rp
el

B
lo

ck
 ..

.

se
tM

ot
io

nV
ec

to
rP

re
di

ct
or

de
bl

oc
kF

ra
m

e

de
bl

oc
kM

b

ge
tS

tre
ng

th

ed
ge

Lo
opm
b_

ty
pe

?
un

d
pi

c_
ty

pe
?

m
b_

ty
pe

 =
 3

 o
de

r 4
?

ru
n?

In
iti

al
is

ie
ru

ng
?

ge
tC

oe
ffL

um
aB

lo
ck

Figure 53: Callgraph of an H.264/AVC baseline decoder

8 Appendix

 126

Stefan 384kb I-Frame

0

0,5

1

1,5

2

2,5

3

M
illi

on

Ex
ec

ut
io

n
tim

e
(E

BC
) /

 F
ra

m
e

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

DRAM16ws
SRAM
DRAM24ws

Figure 54: Function group analysis for worst case I-frame with different memory types for
sequence “Stefan 384kb”

Stefan 384kb P-frame

1,5
2

2,5
3

3,5
4

4,5
5

M
illi

on

ut
io

n
tim

e
(E

BC
) /

 F
ra

m
e

0
0,5

1

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

Ex
ec

DRAM16ws
SRAM
DRAM24ws

Figure 55: Function group analysis for worst case P-frame with different memory types for
sequence “Stefan 384kb”

8.1 Detailed and Comprehensive Profiling Results

 127

8.1.2 Function Group Analysis for I- and P-Frames
Function group analysis is based on the grouping of all incorporated functions into the follow-
ing groups:

• Itrans inverse H.264/AVC transformation
• Intraprediction H.264/AVC intra prediction algorithms
• Loopfilter frame deblocking filter including all filters
• Motioncompensation motion compensation for P-frames
• Bistreamprocessing getbits, showbits, flushbits
• Entropy Decoding CAVLC decoding
• Parsing / Decoding high level parsing of bitstreams
• Memory memory transfer functions like memcpy, memset
• Misc miscellaneous functions

The results were generated for I- and P-frames.

In the following diagrams a side by side comparison of I- and P-picture coding types with
their needed external bus cycles for the different function groups and the used memory archi-
tecture is depicted. The data has been generated using the worst case pictures of the corre-
sponding bitstream. Execution time is measured in number of external bus cycles as provided
by MEMTRACE in conjunction with the ARMulator.

Coastguard 256kB @ 15fps DRAM

3
3,5

4
4,5

M
illi

on

) /
 F

ra
m

e

0
0,5

1
1,5

2
2,5

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

E
xe

cu
tio

n
tim

e
(E

B
C

I-frame
P-frame

Figure 56: Function group analysis for worst case I- and P-frame with DRAM16 memory
types for sequence “Coastguard 256kb”

8 Appendix

 128

Coastguard 384kb @ 15fps SRAM

0
0,5

1
1,5

2
2,5

3
3,5

an
s ion ter

ati
on ng ng ing isc ry

M
illi

on

Ex
ec

ut
io

n
tim

e
(E

BC
) /

 F
ra

m
e

Itr

Int
raP

red
ict

Lo
op

Fil

Moti
on

Com
pe

ns

Bits
tre

am
Proc

es
si

Entr
op

yD
ec

od
i

Pars
ing

_D
ec

od m
mem

o

I-frame
P-frame

Figure 57: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Coastguard 384kb”

Coastguard 384kb @ 15fps DRAM

1
1,5

2
2,5

3
3,5

4
4,5

ec
ut

io
n

tim
e

(E
BC

) /
 F

ra
m

e

0
0,5

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

Ex

I-frame
P-frame

Million

Figure 58: Function group analysis for worst case I- and P-frame with DRAM16 memory
types for sequence “Coastguard 384kb”

8.1 Detailed and Comprehensive Profiling Results

 129

Container 256kb @ 15fps SRAM

0

0,5

1

1,5

2

2,5

3

ns ion lte
r

ion ng ng ng sc ry

Ex
ec

ut
io

n
tim

e
(E

BC
)

Itra

Int
raP

red
ict

Lo
op

Fi

Moti
on

Com
pe

ns
at

Bits
tre

am
Proc

es
si

Entr
op

yD
ec

od
i

Pars
ing

_D
ec

od
i mi

mem
o

I-frame
P-frame

Million

Figure 59: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Container 256kb”

Container 256kb @ 15fps DRAM

0,5

1

1,5

2

2,5

3

3,5

M
illi

on
Ex

ec
ut

io
n

tim
e

(E
BC

)

0

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

I-frame
P-frame

Figure 60: Function group analysis for worst case I- and P-frame with DRAM16 memory
types for sequence “Container 256kb”

8 Appendix

 130

Container 384 kb @ 15fps

0,5

1

1,5

2

2,5

3
Ex

ec
ut

io
n

tim
e

(E
BC

)

0

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

I-frame
P-frame

Million

Figure 61: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Container 384kb”

Container 384 kb @ 15fps

1,5

2

2,5

3

3,5

M
illi

on
ut

io
n

tim
e

(E
BC

)

0

0,5

1

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

Ex
ec

I-frame
P-frame

Figure 62: Function group analysis for worst case I- and P-frame with DRAM16 memory
types for sequence “Container 384kb”

8.1 Detailed and Comprehensive Profiling Results

 131

Stefan 256 kb @ 15fps SRAM

0,5

1

1,5

2

2,5

3

M
illi

on

Ex
ec

ut
io

n
tim

e
(E

BC
)

0

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

I-frame
P-frame

Figure 63: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Stefan 256kb”

Stefan 256 kb @ 15fps DRAM

1,5
2

2,5
3

3,5
4

M
ill

io
n

io
n

tim
e

(E
B

C
)

0
0,5

1

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

E
xe

cu
t

I-frame
P-frame

Figure 64: Function group analysis for worst case I- and P-frame with DRAM16 memory
types for sequence “Stefan 256kb”

8 Appendix

 132

Stefan 384 kb @ 15fps SRAM

0,5

1

1,5

2

2,5

3
M

illi
on

Ex
ec

ut
io

n
tim

e
(E

BC
)

0

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

I-frame
P-frame

Figure 65: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Stefan 384kb”

Stefan 384kb @ 15fps DRAM

1,5

2

2,5

3

3,5

4

M
illi

on
ut

io
n

tim
e

(E
BC

)

0

0,5

1

Itra
ns

Int
raP

red
ict

ion

Lo
op

Filte
r

Moti
on

Com
pe

ns
ati

on

Bits
tre

am
Proc

es
sin

g

Entr
op

yD
ec

od
ing

Pars
ing

_D
ec

od
ing misc

mem
ory

Ex
ec

I-Frames
P-Frame

Figure 66: Function group analysis for worst case I- and P-frame with DRAM16 memory
types for sequence “Stefan 384kb”

8.1 Detailed and Comprehensive Profiling Results

 133

8.1.3 Cycles per Frame Analysis

Container 256 kb @ 15fps

8

10

12

14

M
illi

on
EB

C
) /

 F
ra

m
e

0

2

4

6

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145
Frame #

Ex
ec

ut
io

n
tim

e
(

dram
sram
dram24ws

Figure 67: Cycles per frame analysis for different memory types for sequence
“Container 256 kb”

Container 384 kb @ 15fps

10

12

14

M
illi

on
am

e

0

2

4

6

8

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145

Frame #

Ex
ec

ut
io

n
tim

e
(E

BC
) /

 F
r

dram
sram
dram24ws

Figure 68: Cycles per frame analysis for different memory types for sequence
“Container 384 kb”

8 Appendix

 134

Stefan 256 kb @ 15fps

4

6

8

10

12

M
illi

on
ut

io
n

tim
e

(E
BC

) /
 fr

am
e

0

2

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145
Frame #

Ex
ec

dram
sram
dram24ws

Figure 69: Cycles per frame analysis for different memory types for sequence
“Stefan 256 kb”

Stefan 384 kb @ 15fps

8

10

12

14

M
illi

on
EB

C
) /

 fr
am

e

0

2

4

6

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145

Frame #

Ex
ec

ut
io

n
tim

e
(

dram
sram
dram24ws

Figure 70: Cycles per frame analysis for different memory types for sequence
“Stefan 384 kb”

8.1 Detailed and Comprehensive Profiling Results

8.1.4 Usage of ARM11 SIMD Instructions

8.1.4.1 I-Trans

The function group I-trans combines all modules needed for the inverse transformation in-
cluding inverse quantization. The following table gives an overview over the implemented
functions and their potential for optimization using ARM11 SIMD instructions. For the fol-
lowing functions the reorganization overhead for data formatting is too high to make an
SIMD implementation feasible:

GetCoeffChromaBlockDC2x2, GetCoeffLumaBlock, GetCoeffLumaBlockDC,
ItransDCChroma

Table 36: Functions of the I-trans group

Function name Benefit /
used instructions

Optimization
factor

Implementation
difficulty

GetCoeffChromaBlock Run / level decoding 1

Itrans First function part: 2
Second function part:1 1.5 Low - medium

ItransDCLuma First function part :2
Second function part : 1 1.5 Low - medium

8.1.4.2 Intraprediction

The function group Intraprediction combines all modules needed for the prediction of pixels
of intra coded blocks . The following table gives an overview over the implemented functions
and their potential for optimization using ARM11 SIMD instructions. For the following func-
tions the reorganization overhead for data formatting is too high:

PredictIntra4x4_DIAGDOWNLEFTUR, PredictIntra4x4_DIAGDOWNRIGHT, PredictIn-
tra4x4_HOR, PredictIntra4x4_HORDOWN, PredictIntra4x4_HORUP, PredictIntra4x4_VER,
PredictIntra4x4_VERTLEFT, PredictIntra4x4_VERTRIGHT PredictIn-
tra4x4_VERTRIGHTUR, PredictIntra4x4_DC128, PredictIntra4x4_DCL

 135

8 Appendix

Table 37: Functions of the intraprediction group

Function name Benefit /
used instructions

Optimization
Factor

Implemen-
tation
difficulty

PredictIntra4x4_DC Using UADD8to16 1.1 Low

PredictIntra4x4_DCU Using UADD8to16 1.1 Low

PredictIntra4x4_DIAGDOWNLEFT reg. width not sufficient 1

PredictChroma LD/ST overhead too big 1

GetIntra4x4Ipredmodes LD/ST overhead too big 1

PredictIntra16x16 LD/ST overhead too big 1

8.1.4.3 Loopfilter

The function group Loopfilter combines all modules needed for the deblocking of a picture
after the decoding process. The following table gives an overview over the implemented func-
tions and their potential for optimization using ARM11 SIMD instructions.

Table 38: Functions of the loop-filter group

Function name Benefit /
used instructions

Optimization
factor

Implementation
difficulty

DeblockFrame Wrapper function 1

DeblockMB Wrapper function 1

DeblockMB_Intra Wrapper function 1

EdgeLoopC_N Using UADD8to16 2 Complex

EdgeLoopC_S Using UADD8to16 2 Complex

EdgeLoopY_N Using UADD8to16 2 Complex

EdgeLoopY_S Using UADD8to16 2 Complex

GetStrength_QP_MB Vectorization, algorithm optimiza-
tion without SIMD instructions 1.2 Complex

8.1.4.4 Motion Compensation

The function group MotionCompensation combines all modules needed for the reconstruction
and filtering of a predictive coded picture. The following table gives an overview over the
implemented functions and their potential for optimization using ARM11 SIMD instructions.
For the following functions the reorganization overhead for data formatting is too high:

SetMotionVectorPredictorP, GetMotionVectorsAndRefFrames, GetMotionVectorsAndRef-
Frames16x16, GetMotionVectorsAndRefFrames16x8, GetQuarterpelBlock8_xy

 136

8.1 Detailed and Comprehensive Profiling Results

Table 39: Functions of the motion compensation group

Function name Benefit /
used instructions

Optimization
factor

Implementation
difficulty

Copypadblock8 LD/ST overhead too high 1

Copypadblock LD/ST overhead too high 1

GetQuarterpelBlock_xy Algorithm optimization on C
source code level 1.2 Complex

ProcessInterP16x16 Function caller 1

ProcessInterP16x8 Function caller 1

ProcessInterP4x4 Function caller 1

ProcessInterP8x16 Function caller 1

MotionCompSkipMode LD/ST oriented, parallelization 1

MotionPredictionChroma Parallelization of 2 x 2x2 pre-
dictions 1.2 Complex

8.1.4.5 BitstreamProcessing

The function group BitstreamProcessing combines all modules needed for the bitwise stream
processing an H.264/AVC access unit. Due to the nature of the functions it makes nearly no
sense to use any SIMD instruction for optimization purposes. The following table is provided
to give an overview of the used functions in the according function group. The following list
provides an overview of the used functions in this function group:

BitsLeft, ByteAligned, FlushBits, GetBits, GetOneBit, ShowBits, ShowBitsN, Get-
Strength_QP_MB

8.1.4.6 EntropyDecoding

The function group EntropyDecoding combines all modules needed for the VLC stream proc-
essing an H.264/AVC access unit. Due to the nature of the functions it makes nearly no sense
to use any SIMD instruction for optimization purposes. The following list provides an over-
view of the used functions in this function group:

GetVLCSymbol, GetVLCSymbol_Slow, CodeFromBitstream2d, PredictNnz, ReadCoeff-
BlockCAVLC, ReadLevelVLC0, ReadLevelVLCN, ReadLongRuns, ReadNumCoeffTrailin-
gOnes, ReadNumCoeffTrailingOnesChromaDC, ReadShortRuns, ReadTotalZeros, ReadTo-
talZerosChromaDC

8.1.4.7 Parsing_Decoding

The function group Parsing_Decoding combines all modules needed for the high level stream
processing of an H.264/AVC access unit. Due to the nature of the functions it makes nearly no
sense to use any SIMD instruction for optimization purposes. The following list provides an
overview of the used functions in this function group:

ParsePictureParameterSet, DecodeChroma, DecodeMBInter, DecodeMBIntra16x16, Deco-
deMBIntra4x4, DecodeMacroblock, GetDquant, Predblock4, Read8x8Mode

 137

8 Appendix

 138

8.2 MEMTRACE Implementation Details

8.2.1 Block Diagrams of MEMTRACE Internals
The following block diagrams show excerpts of the function callgraphs of the MEMTRACE
source code. Figure 71 depicts the callgraph of the MEMTRACE CLI applications. It com-
bines the CLI frontend with parts of the backend, e.g. for program information acquisition.

main

create_armsd_ini_file

create_axf_info

create_project_info

create_rvdebug_ini_file

create_xls_file

delete_armsd_ini_files

delete_temp_files

DisplayUsage

expand_list_of_object_files

extract_used_functions

extract_used_variables

getopt_long_only

run_memtrace

run_rvdebug

set_ARM_program_names

tolower

write_ini_file

create_symbols_table

extract_functionnames_and_datamemorymap_axf

executeShell

executeTask

extract_functionnames_and_datamemorymap

group_list::extract_groups

extract_settings

section::get_child_section

parse_ini_file

print_to_xls_file

read_memtrace_results

expand_filename

expand_wildcarded_filenames

all_unique

eliminate_unused_function

unify_functions

eliminate_unused_variable

delete_rvdebug_ini_files

getenv

Figure 71: Callgraph of the main function of the MEMTRACE

8.2 MEMTRACE Implementation Details

 139

memtrace_init

all_unique

create_assembly_to_code_table

executeShell

create_memory_map

create_symbols_table

extract_dll_config_file_settings

extract_functionnames_and_datamemorymap_axf

extract_global_settings_and_functions

functionList::incValueCurrent

functionList::insert

OpenDocumentSpreadSheetFile::open

parse_ini_file

set_ARM_program_names

functionList::setCurrentFunction

functionList::setEvaluateAll

unify_functions

extract_assembly_to_code_table

get_debug_info
executeTask

section::get_child_section

tolower

evaluate_symbol_table_line

evaluate_symbol_table_line_memory_map

section::get_current_child

section::increment_current_child_pointer

section::reset_current_child_pointer

functionList::setEvaluate

functionList::search

timestring

section::end_section

getValues

section::start_section

getenv

rename_function

Figure 72: Callgraph of backend function memtrace_init

8 Appendix

 140

instrProfiling::addMemAccess

functionList::incValueEvaluated

memtrace_trace_memory_access

memAccess::neighbor

memAccess::set

memtrace_trace_memory_access

Figure 73: Callgraph of backend function memtrace_trace_memory_access

memtrace_update_current_function

instrProfiling::add

functionList::addValueEvaluated

functionList::incValueCurrent

functionList::outsideCurrFunction

functionList::printFunctionList

instrProfiling::printIntermediaEnergy

functionList::printMemAccessOSD

functionList::printMemoryMap

functionList::reset

functionList::resetEvaluatedMemAccess

functionList::setTempFunction

WriteInLogFile

instrProfiling::addAddrType

instrProfiling::getAccessedRegisters

instrProfiling::getInstrID

instrProfiling::getInstrMnemonic

instrProfiling::getInstrType

powerModel::Energy2Current

powerModel::getCycles

powerModel::getEnergy

getMemLocName

functionList::printFunctionListOSD

functionList::search

dateString

Figure 74: Callgraph of backend function memtrace_update_current_function

8.2 MEMTRACE Implementation Details

 141

memtrace_finish

functionList::addValueEvaluated

OpenDocumentSpreadSheetFile::close

OpenDocumentSpreadSheetFile::open

instrProfiling::print

functionList::printFunctionList

functionList::printMemAccessOSD

functionList::printMemoryMap

functionList::printMissing

printPerLineEvaluation

executeShell

timestring

powerModel::Energy2Current

powerModel::getCurrent

powerModel::getCycles

powerModel::getEnergy

instrProfiling::getInstrMnemonic

instrProfiling::getInstrType

getMemLocName

functionList::printFunctionListOSD

functionList::search

Figure 75: Callgraph of backend function memtrace_finish

8 Appendix

 142

main

Debugger::close

Debugger::init

Core::profiler_finish

Verilated::debug

memory::init

Core::profiler_init

Core::setSignals

Verilated::traceEverOn

Debugger::displayHelp

Debugger::getCommand

memory::print

Core::printRegs

memtrace_init

Core::printRes

Core::profiler_FunctionCheck

Core::profiler_MemoryCheck

memory::readData

memory::readProg

memory::writeData

memtrace_update_current_function

memtrace_trace_memory_access

memtrace_finish

Debugger::run

Debugger::start

Figure 76: Callgraph of the MEMTRACE debugger

8.2.2 Screenshots of the Graphical User Interface
Figure 77 shows a screenshot of the main window of the GUI. The upper part of the window
provides the files settings for the MEMTRACE project respectively configuration file, the
executable (axf) file and analysis and the postprocessing output files. The tab area shows the
initializations tab, where on the left side the object files or directories can be specified and the
symbol extraction can be started (“extract program info”). The right side shows the program
information, which includes the functions, variables and other memory areas found the object
files and the setting area for the memory layout. Furthermore the split step can be enabled and
a split function be chosen.

8.2 MEMTRACE Implementation Details

Figure 77: Graphical user interface to the MEMTRACE tool (initialization tab)

The lists of function and memory areas can be modified by pressing “edit program info” but-
ton activating the window shown in Figure 78. It allows combining functions to functional
groups in order to sum their results. Furthermore the results for each function can be manipu-
lated by incorporating a multiplication factor as described in Section 4.3.4.

Figure 78: GUI dialog for viewing and setting function details

Figure 79 shows the analysis tab where all settings for the simulation run are applied. The
system specification includes the processor type and its clock frequency and the divider be-
tween bus and processor core speed. Additionally, command-line parameters for the executa-
ble (axf) file can be provided.

 143

8 Appendix

Figure 79: Graphical user interface to the MEMTRACE tool (analysis tab)

A memory map is defined by specifying the timing and access information of the different
memory regions. A settings dialog shown in Figure 80 is used for this purpose. The memory
model allows differentiating between sequential and non-sequential read and write accesses
and to specify the width and access type of the according device.

Figure 80: Memory settings dialog window

The postprocessing step is controlled with the third tab shown in Figure 81. It allows choosing
between creating spreadsheet tables for function and variable analysis results. A table is de-
fined by the table type, the row/column type and the range definitions. These are described in
more detail in Section 5.4. Additionally to the command-line interface, the GUI also allows to
specify a mathematical function to be applied to the results. For example, a “bandwidth” func-
tion transforms the memory access results into bus bandwidth values, depending on the bus
speed.

Figure 81: Graphical user interface to the MEMTRACE tool (postprocessing tab)

 144

8.2 MEMTRACE Implementation Details

8.2.3 Detailed Power Measurement Results
Table 40 shows the current values, which were measured for the core voltage of the Excalibur
device during the execution of the test sequences.

Table 40: Current values measured for the different instruction sequences

Prog current (mA) Difference to idle value (mA)

Idle 262 0
Nop 317 55
Mov4 323 61
Mov3 323 61
Mov2 325 63
Mov 328 66
Add 329 67
Add1a 336 74
Add1b 317 55
Add1c 329 67
Add2 334 72
Ld3 373 111
Ld3a 366 104
Ld4 359 97
Ld4a 359 97
Ld4b 360 98
Ld4c 356 94
Mov5 317 55
Mov_mod1 327 65
Ld2_mov (1.5*exectime) 348 86
Ld3_mov 363 101
Ld4_mov 355 93
Ld5_mov 339 77
Ld6_mov 343 81
Mov4a 323 61
Mov4b 317 55
Mov4c 329 67
Tst (like mov.c) 334 72
Tst4b (1reg like mov4b.c) 317 55
Tst4c (1reg like mov4c.c) 337 75
Tst4c_2reg 337 75
Tst4c_2reg_F_0 328 66
Tst4b_2reg 317 55

 145

8 Appendix

8.2.4 The Configuration File
The profiler is controlled by a configuration file. This file is automatically created during the
initialization step. It can be edited by, for example by removing or grouping functions, set-
tings the split flag or adding new memory areas. An example configuration file is given in the
following. The comment lines in the beginning of the file describe the syntax.

;; This is a generated ini-file for memtrace.
;; Edit this file according to your needs.
;; The file format is similar to the ARM configuration file format
;; as used e.g. in the *.ami and *.dsc files. It is described in
;; the "Debug Target Guide" in Section 4.15.2
;; Currently the following parts are supported:
;;
;; Tag = Value
;; Tag = Value1 Value2
;; Othertag
;; ;; comment line
;; ; commented-out line
;; { MySection = SectionName
;; SectionTag1
;; SectionTag2
;; }
;;
;; IMPORTANT: * All Tag values and Names should only contain al-
pha-numerical symbols and "_"
;; (and currently no whitespaces)
;; * each section has to be ended by a line only con-
taining "}"
;;
;;
;; All functions and groups need to be defined as simple tags
INSIDE the section "FunctionList".
;; Function can be grouped (especially for printing grouped re-
sults to Spreadsheet-Files)
;; by the following syntax
;; { group = MyGroup1
;; function1
;; function2
;; function3
;; function4
;; }

;; In the section "Global" various settings can be given to con-
trol memtrace.
;; Currently only BaseAddr and PageSize of data memory can be ap-
plied for page hit/miss calculation
;; You can un-comment the following lines in order to apply these
settings:

; { Global = Global
; BaseAddr = 0x0 ; Base address must be expressed as
; hexadecimal number (default is 0x0)
; PageSize = 128 ; Page Size must be represented as
; integer value > 0 (default is 128)
; }

 146

8.2 MEMTRACE Implementation Details

{ Global = Global
 BaseAddr = 0x0
 PageSize = 128
 StackBaseAddr = 0x80000000
 StackSize = 8192
 AdditionalArmsdParameters = ""
 AxfFileParameters = ""
 BusDivisor = 2
 EnableTracer = 0
 ProcessorType = "ARM946E-S"
 AxfFileName = "D:\h264enc\bin\arm\testappl.axf"
 AnalysisResultFileName = "D:\h264enc\memtrace_out_Func.txt"
 XlsFileName = "D:\h264enc\memtrace_out_Funct.xls"
 ObjectFile = "D:\h264enc\objects*.o"
 TraceType = 0
 TableType = 2
 TableTypeVar = ""
 RangeBegin = 0
 RangeEnd = 0
 RangeStep = 0
 RangePeriod = 0
 RangePeriodEnd = 0
 EnablePeriod = 0
 EnableRange = 0
 ClockSpeed = 200
 ClockSpeedUnit = M
 Memory = "0 100000000 DRAM 4 rw 230/10 230/10"
}

{ FunctionList = FunctionList
 ; * for creating intermediate results set the
 ; value of a function to "split" (functionName = split)
 ; * for weighting the cycle count results of a
 ; function when creating spreadsheet tables
 ; set the value of a function to the weighting factor
 ; with a leading "*" (functionName = *0.4578

 CalcSNRFrame = ":D:\h264enc\objects\testvidenc.r.o"
 CloseYUVFile = ":D:\h264enc\objects\testvidenc.r.o"
 OpenYUVFile = ":D:\h264enc\objects\testvidenc.r.o"
 ReadYUVFrame = ":D:\h264enc\objects\testvidenc.r.o"
 WriteRecFrame = ":D:\h264enc\objects\testvidenc.r.o"
 main = ":D:\h264enc\objects\testvidenc.r.o"
…
{ group = BitStreamEncoding
 writeCoeffBlockCAVLC = ":D:\h264enc\objects\cavlc.r.o"
 writeLevelVLC0 = ":D:\h264enc\objects\cavlc.r.o"
 writeLevelVLCN = ":D:\h264enc\objects\cavlc.r.o"
 writeNumCoeffTrailingOnes = ":D:\h264enc\objects\cavlc.r.o"
 writeNumCoeffTrailingOnesChromaDC
 = ":D:\h264enc\objects\cavlc.r.o"
 writeRun = ":D:\h264enc\objects\cavlc.r.o"
 PutBits = ":D:\h264enc\objects\bitstream.r.o"
 putCoeffChromaBlock = ":D:\h264enc\objects\scancoeff.r.o"
 putCoeffChromaBlockDC = ":D:\h264enc\objects\scancoeff.r.o"

 147

8 Appendix

 putCoeffLumaBlockAC = ":D:\h264enc\objects\scancoeff.r.o"
 putCoeffLumaBlockDC = ":D:\h264enc\objects\scancoeff.r.o"
}
{ group = ChromaPrediction
 TransQuantChroma8 = ":D:\h264enc\objects\transquantchroma8.r.o"
 enc_predictChroma = ":D:\h264enc\objects\predict.r.o"
 IntraPredChroma_noRD = ":D:\h264enc\objects\intrapred8.r.o"
}
}

{ MemoryMap = MemoryMap

 { FixedAreaList = FixedAreaList
 ; add abitrary memory regions here
 ; format: <name> = <startaddress> <size>
 ; (startaddress and size can be
 ; decimal, hex (leading '0x') or octal (leading '0')
 ; e.g.: stack = 0x4E001 8192

 }

 { SectionList = SectionList
 'ER_RO'
 'ER_RW'
 'ER_ZI'
 }

 { GlobalVariableList = GlobalVariableList
 yuvfile
 yuvfile
 tz_chromadc_lentab
 tz_chromadc_codtab
 totalzeros_lentab
 enc_predictIntra4_table
 dequantcoef
 dequant_coef
 clip_zero
 clip_lut
 block_intra4x4mode_slicetable
 block_indexes
 QP_SCALE_CR
 NumCoeffTrailingOnes_Lengths_3
 NumCoeffTrailingOnes_Lengths_2
 NumCoeffTrailingOnes_Lengths_1
...
 NCBP_ENC
 COEFF_COSTC
 }
}

Listing 15: MEMTRACE configuration file

8.2.5 List of Source Code Files
Table 41 shows a list of the source code files of the MEMTRACE profiling suite, including
the common frontend parts of GUI and CLI and the backend of the tool.

 148

8.2 MEMTRACE Implementation Details

Table 41: Source code files

File Purpose

./Src:

Getopt.c Functions for command-line parameter reading

Getopt1.c Additional functions for long command-line parameters

Memtrace.cpp Main program for executable

Initmode.cpp Functions and classes for init mode in memtrace.cpp

Runmode.cpp Functions and classes for run mode in memtrace.cpp

Spreadsheetmode.cpp Functions and classes for spreadsheet mode in memtrace.cpp

Memtrace_common.cpp Shared functions and classes of executable and dll

Memtrace_dll.cpp Functions and classes for dll

Tracer_for_memtrace_dll.c Modified tracer.c, which acts as interface between ARMulator and
the memtrace dll functions

Copro_basics.c Functions for coprocessor template

Bus_controller.cpp Functions for memory bus profiling and DMA controller

Mapfile_for_memtrace.c Modified mapfile.c, which includes calls to bus controller functions

Sordi.def Definition file required for the creation of an ARMulator DLL

./Include:

Getopt.h Header file

Memtrace_common.h Header file

Memtrace_dll.h Header file

Memtrace_global.h Header file

Initmode.h Header file

Runmode.h Header file

Spreadsheetmode.h Header file

Copro_basics.h Header file

Mapfile.h Header file

./

Memtrace_dll.dsp Project file for dll

Memtrace_copro.dsp Project file for coprocessor template

Memtrace_mapfile.dsp Project file for extended bus model

Memtrace.dsp Project file for executable

Memtrace.dsw Workspace file, including dll and exe projects

 149

8 Appendix

 150

8.2.6 Full Description of the Command-line Syntax
memtrace [-i] [-r] [-x] [-y] [-c configuration-file]
 [-a executable-file] [-p exe-file-parameters]
 [-m output-file]
 [-e spreadsheet-file] [-f spreadsheet-output-format]
 [-d debugger-options] [-t][-?] [-V] [-o object-files]

-i Init mode: creates memtrace.ini file with list of local functions
from the object-files

-r Run mode: starts the profiling run in conjunction with the ISS

-x Postprocessing mode: creates tab-separated spreadsheet file
from MEMTRACE function profiling output

-y Postprocessing mode: Creates tab-separated spreadsheet file
from MEMTRACE variable profiling output

-c configuration-file Defines the name of the configuration file as either created in
init mode or used in run and spreadsheet mode.

-o object-files Defines the object files, libraries and archives. Multiple space-
separated paths/files can be supplied. IMPORTANT: It must be
the last option on the command-line

-d debugger-options Defines options to be passed over to the debugger/ISS. Useful
options are for example setting the processor type, speed or
cache parameters. The availability of the options is dependent
on the debugger/ISS. When using the ARMulator, see armsd
help ("armsd -h") for more options. IMPORTANT: enclose
debugger options in " "

-a executable-file Specifies executable (axf-) input file for profiling
-p exe-file-parameters Specifies command-line parameters for the executable
-m output-file Defines the name of the MEMTRACE output file. Default

output file is memtrace_out.txt.

-e spreadsheet-output-
 file

Defines the name of the tab-separated spreadsheet output file.
Default spreadsheet output file: memtrace_out.xls.

-f spreadsheet-output-
 format

Output format of the spreadsheet file, see Section 5.4. The de-
fault format is “{ov}” creating a table with overall results.

-t Turn on tracer module for tracing instructions, memory ac-
cesses and events and writes them to a file. The availability is
dependent on the ISS. For the ARMulator, see Section 2.2.1.1.

-? or -h Display usage information and exit.
-V Display version number of MEMTRACE.

References

References
[1] Altera, Hardware Reference Manual: Excalibur - ARM-Based Embedded Processor

PLDs, 2002.

[2] G.M. Amdahl, “Validity of the single processor approach to achieving large scale com-
puting capabilities”, Proceedings of the AFIPS Spring Joint Computer Conference,
1967, pp. 483-485.

[3] Analog Devices Inc., ADSP-BF531/ADSP-BF532/ADSP-BF533: Blackfin Embedded
Processor Data Sheet, 2007.

[4] Analog Devices Inc., AD623 - Single Supply, Rail-to-Rail, Low Cost Instrumentation
Amplifier, 1999.

[5] Analog Devices Inc., ADSP-BF533 Blackfin Processor Hardware Reference, 2003.

[6] ARC International, ARC Website, http://www.arc.com.

[7] ARC International, Integrated Profiler User’s Guide, 2004.

[8] ARM Ltd., ARM Website, http://www.arm.com.

[9] ARM Ltd., Application Note 26: Benchmarking, Performance Analysis and Profiling,
1995.

[10] ARM Ltd., AMBA Specification (Rev 2.0), 1999.

[11] ARM Ltd., AMBA AXI Protocol v1.0, 2004.

[12] ARM Ltd., Writing Efficient C for ARM (DAI 0034A), 1998.

[13] ARM Ltd., RealView Compilation Tools Version 2.1: Compiler and Libraries Guide
(DUI 0205D), 2004.

[14] ARM Ltd., RealView Developer Suite Version 2.1: Getting Started Guide (DUI 0255B),
2004.

[15] ARM Ltd., RealView ARMulator ISS Version 1.4 User Guide (DUI 0207C), 2004.

[16] ARM Ltd., “ARM holdings PLC reports second quarter and half year 2006 results”,
http://www.arm.com/news/14087.html, 2006.

[17] T. Austin, T. Mudge and D. Grunwald, “PowerAnalyzer for pocket computers”,
http://www.eecs.umich.edu/lpanalyzer/pdfs/contractorsFall01.pdf, 2001.

[18] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel, “Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems”, Pro-
ceedings of the 10th International Symposium on Hardware/Software Codesign
(CODES), 2002, pp. 73-78.

[19] Bell Laboratories, Unix Programmer's Manual, Section 1, “Prof Command”, 1979.

[20] J.P. Bentley, Principles of Measurement Systems, 4th edition, Pearson Prentice Hall,
Upper Saddle River, NJ, 2005.

[21] Berkeley Design Technology, Inc. (BDTI), “Embedded system”, BDTI's DSP Diction-
ary, http://www.bdti.com/articles/dspdictionary.html.

 151

References

[22] H. Blume, H. Hübert, H. T. Feldkämper and T. G. Noll, “Model-based exploration of
the design space for heterogeneous systems on chip”, Proceedings of the IEEE Interna-
tional Conference on Application-Specific Systems, Architectures, and Processors
(ASAP), 2002, pp. 29-40.

[23] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek and T. G. Noll, “Hybrid
functional- and instruction-level power modeling for embedded and heterogeneous
processor architectures”, Journal of Systems Architecture, vol. 53, no. 10, pp. 689-702,
Oct. 2007.

[24] H. Blume, J. von Livonius, L. Rotenberg, T. G. Noll, H. Bothe and J. Brakensiek,
“OpenMP-based parallelization on an MPCore multiprocessor platform - A perform-
ance and power analysis”, Journal of Systems Architecture, vol. 54, no. 11, pp. 1019-
1029, Nov. 2008.

[25] J. Bormans, K. Denolf, S. Wuytack, L. Nachtergaele and I. Bolsens, “Integrating sys-
tem-level low power methodologies into a real-life design flow”, Proceedings of the
the Ninth International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), 1999, pp. 19-28.

[26] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A framework for architectural-level
power analysis and optimizations”, Proceedings of the 27th Annual International Sym-
posium on Computer Architecture (ISCA), 2000, pp. 83 - 94.

[27] D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0”, ACM SIGARCH
Computer Architecture News, vol. 25, no. 3, pp. 13-25, Jun. 1997.

[28] N. Chang and K. Kim, “Real-time per-cycle energy consumption measurement of digi-
tal systems”, IEE Electronics Letters, vol. 36, no. 13, pp. 1169-1171, Jun. 2000.

[29] CoWare Inc., “Processor designer“,
http://www.coware.com/products/processordesigner.php.

[30] CoWare Inc., LISATek Processor Debugger Manual, 2006.

[31] J. Edler and M. D. Hill, “Dinero IV : Trace-driven uniprocessor cache simulator”,
http://pages.cs.wisc.edu/~markhill/DineroIV/.

[32] S. Edwards, L. Lavagno, E.A. Lee and A. Sangiovanni-Vincentelli, “Design of embed-
ded systems: formal models, validation, and synthesis”, Proceedings of the IEEE, vol.
85, no. 3, pp. 366-390, Mar. 1997.

[33] European Telecommunications Standards Institute (ETSI), Digital video broadcasting
(DVB); Transmission System for Handheld Terminals (DVB-H), ETSI EN 302 304
V1.1.1 (2004-11), 2004.

[34] M.J. Flynn, “Some computer organizations and their effectiveness”, IEEE Transactions
on Computers, vol. 21, no. 9, pp. 948-960, Sept. 1972.

[35] Free Software Foundation, “GNU binutils”, http://www.gnu.org/software/binutils/.

[36] Free Software Foundation, “GCC, the GNU Compiler Collection”, http://gcc.gnu.org/.

[37] S. Furber, ARM System-on-Chip Architecture, 2nd edition, Addison-Wesley Longman,
Amsterdam, The Netherlands, 2000.

 152

References

[38] J. Gaisler, “A portable and fault-tolerant microprocessor based on the SPARC v8 archi-
tecture”, Proceedings of the International Conference on Dependable Systems and
Networks (DSN), 2002, pp. 409-415.

[39] D.D. Gajski and F. Vahid, “Specification and design of embedded hardware-software
systems”, IEEE Design & Test of Computers, vol. 12, no. 1, pp. 53-67, 1995.

[40] R. Goering, “Startup analyzes algorithms for power consumption”, EE Times,
http://www.eetimes.com/news/design/showArticle.jhtml?articleID=17500869, 2004.

[41] R.E. Gonzalez, “Xtensa: a configurable and extensible processor”, IEEE Micro, vol.
20, no. 2, pp. 60-70, Mar.-Apr. 2000.

[42] S.L. Graham, P.B. Kessler and M.K. McKusick, “Gprof: A call graph execution pro-
filer”, Proceedings of the SIGPLAN Symposium on Compiler Construction, 1982, pp.
120-126.

[43] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched inter-
connections”, Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, 2000, pp. 250-256.

[44] S. Ha, C. Lee, Y. Yi, S. Kwon and Y.-P. Joo, “Hardware-software codesign of multime-
dia embedded systems: The PeaCE”, Proceedings of the 12th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications, 2006, pp.
207-214.

[45] J. L. Hennessy and D. A. Patterson, Computer Architecture : A Quantitative Approach,
4th edition, Morgan Kaufmann Publishers, San Francisco, CA, 2006.

[46] H. Hübert, B. Stabernack and H. Richter, “Tool-aided performance analysis and opti-
mization of an H.264 decoder for embedded systems”, Proceedings of the Second IEEE
International Symposium on Consumer Electronics (ISCE), 2004, pp. 400-405.

[47] H. Hübert, B. Stabernack and H. Richter, “Tool-aided performance analysis and opti-
mization of multimedia applications”, Proceedings of the Second Workshop on Embed-
ded Systems for Real-Time Multimedia (ESTImedia), 2004, pp. 99-104.

[48] H. Hübert, B. Stabernack and K.-I. Wels, “Performance and memory profiling for em-
bedded system design”, Proceedings of the 10th International Symposium on Industrial
Embedded Systems (SIES), 2007, pp. 94-101.

[49] H. Hübert and B. Stabernack, “Power modeling of an embedded RISC core for func-
tion-accurate energy profiling”, Proceedings of the 12th Workshop Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Sys-
teme, 2009, pp. 147-156.

[50] H. Hübert, “A survey of HW/SW cosimulation techniques and tools”, Stockholm, Swe-
den, Thesis work, Royal Institute of Technology (KTH), 1998.

[51] IBM Inc., Whitepaper: CoreConnect™ Bus Architecture, 1999.

[52] Infineon Technologies, Architecture Overview Handbook: TriCore 1.3 - 32-bit Unified
Processor Core, 2002.

[53] Intel Inc., Application Note: StrongARM SA-110 Microprocessor Instruction Timing,
1998.

[54] Intel Inc., PC SDRAM Specification (Revison 1.7), 1999.

 153

References

[55] Intel Inc., 3 Volt Intel StrataFlash Memory 28F128J3A, 28F640J3A, 28F320J3A
(x8/x16), 2001.

[56] Intel Inc., Intel PXA27x Processor Family Developer’s Manual, 2004.

[57] Intel Inc., “Intel VTune performance analyzers”,
http://www.intel.com/software/products/vtune/.

[58] S.S. Iyer and H.L. Kalter, “Embedded DRAM technology: opportunities and chal-
lenges”, IEEE Spectrum, vol. 36, no. 4, pp. 56-64, Apr. 1999.

[59] J. Janzen, Calculating Memory System Power for DDR SDRAM [J/OL] . Micron
Design Line, Micron Technology Inc., 2001.

[60] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T, VCEG, International Standard
of Joint Video Specification (ITU-T Rec. H.264— ISO/IEC 14496-10 AVC), JVT-G050,
Mar. 2003.

[61] N. Julien, J. Laurent, E. Senn and E. Martin, “Power Consumption Modeling and Char-
acterization of the TI C6201”, IEEE Micro, vol. 23, no. 5, pp. 40-49, Sept. 2003.

[62] P. M. Kuhn and W. Stechele, “Complexity analysis of the emerging MPEG-4 standard
as a basis for VLSI implementation”, Proceedings of the SPIE Visual Communications
and Image Processing (VCIP), 1998, pp. 498-509.

[63] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja
and A. Hemani, “A network on chip architecture and design methodology”, Proceed-
ings of the IEEE Computer Society Annual Symposium on VLSI, 2002, pp. 105-112.

[64] J. Levon and P. Elie, “Oprofile: A system profiler for Linux”,
http://oprofile.sourceforge.net/, 2005.

[65] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementa-
tions, revised edition, John Wiley & Sons Inc, Hoboken, NJ, 1990.

[66] P. Marwedel, Embedded System Design, Springer, Dordrecht, The Netherlands, 2003.

[67] Maxim Integrated Products Inc., Maxim 4376 - Single/Dual/Quad, High-Side Current-
Sense Amplifiers with Internal Gain, 2004.

[68] Mazdak & Alborz Design Automation, “Reusing Verilog IP cores in SystemC Envi-
ronment by V2SC”, http://www.mazdak-alborz.com/download/v2sc-IPSOC2005.pdf,
2005.

[69] Mentor Graphics Corporation, ModelSim User’s Manual Software Version 6.2g, 2007.

[70] V.G. Moshnyaga and H. Tsuji, “Cache energy reduction by dual voltage supply”, Pro-
ceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), 2001,
pp. 922-925.

[71] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary
instrumentation”, Proceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2007, pp. 89-100.

[72] Netrino and The Embedded Systems Experts, “Embedded system”, Embedded Systems
Glossary, http://www.netrino.com/Embedded-Systems/Glossary-E.

[73] OpenCores Project, “Wishbone version B3”,
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf.

 154

References

[74] P. R. Panda, N.D. Dutt, A. Nicolau, F. Catthoor, A. Vandecappelle, E. Brockmeyer, C.
Kulkarni and E. De Greef, “Data memory organization and optimizations in applica-
tion-specific systems”, IEEE Design & Test of Computers, vol. 18, no. 3, pp. 56-68,
May-Jun. 2001.

[75] P. P. Pande, C. Grecu, M. Jones, A. Ivanov and R. Saleh, “Performance evaluation and
design trade-offs for network-on-chip interconnect architectures”, IEEE Transactions
on Computers, vol. 54, no. 8, pp. 1025-1040, Aug. 2005.

[76] S. Pees, A. Hoffmann, V. Zivojnovic and H. Meyr, “LISA - machine description lan-
guage for cycle-accurate models of programmable DSP architectures”, Proceedings of
the 36th ACM/IEEE Design Automation Conference (DAC) , 1999, pp. 933-938.

[77] G. Qu, N. Kawabe, K. Usami and M. Potkonjak, “Function-level power estimation
methodology for microprocessors”, Proceedings of the 37th ACM/IEEE Design Auto-
mation Conference (DAC), 2000, pp. 810-813.

[78] J.A. Rowson, “Hardware/software co-simulation”, Proceedings of the 31st ACM/IEEE
Design Automation Conference (DAC), 1994, pp. 439-440.

[79] Samsung Electronics, 128Mbit SDRAM 2M x 16Bit x 4 Banks Synchronous DRAM
LVTTL (K4S281632C CMOS SDRAM), 2000.

[80] A. Scandurra, G. Falconeri and B. Jego, STBus Communication System: Concepts and
Definitions, 2002.

[81] G. Schirner, G. Sachdeva, A. Gerstlauer and R. Dömer, “Modeling, simulation and syn-
thesis in an embedded software design flow for an ARM processor” , Technical Report
06-06, Center for Embedded Computer Systems, University of California Irvine, 2006.

[82] O. Schreer and S. Ngongang, “Real-time gesture recognition in advanced videocom-
munication services”, Proceedings of the 14th International Conference on Image
Analysis and Processing (ICIAP), 2007, 253-258.

[83] T. Simunic, L. Benini and G. De Micheli, “Cycle-accurate simulation of energy con-
sumption in embedded systems”, Proceedings of the 36th ACM/IEEE Design Automa-
tion Conference (DAC), 1999, pp.867-872.

[84] A. Sinha and A. P. Chandrakasan, “JouleTrack: A web based tool for software energy
profiling”, Proceedings of the 38th ACM/IEEE Design Automation Conference (DAC),
2001, pp. 220-225.

[85] W. Snyder, P. Wasson and D. Galbi, “Introduction to Verilator”,
http://www.veripool.com/verilator.html, 2008.

[86] B. Stabernack, H. Hübert and K.-I. Wels, “A Companion chip for H.264/AVC video
Processing”, Proceedings of the Global Signal Processing Conference and Expo
(GSPx), Oct. 2006.

[87] B. Stabernack, H. Hübert and K.-I. Wels, “Terminal architectures for DVB-H”, Pro-
ceedings of the Global Signal Processing Conference and Expo (GSPx-TV to Mobile),
Mar. 2006.

[88] B. Stabernack, H. Hübert and K.-I. Wels, “A H.264 video coprocessor for mobile DVB-
H terminals”, Proceedings of the IEEE International Conference on Consumer Elec-
tronics(ICCE), 2006, pp. 89-90.

 155

References

 156

[89] B. Stabernack, K.-I. Wels and H. Hübert, “A video coprocessor for mobile multi media
signal processing”, Proceedings of the 11th IEEE International Symposium on Con-
sumer Electronics (ISCE), 2007, 1-6.

[90] B. Stabernack, “Architekturkonzepte für prozessorbasierte MPEG Videodecoder mit
Schwerpunkt für mobile Anwendungen“, Ph. D. thesis, Technical University Berlin,
Germany, 2004.

[91] B. Stabernack, K.-I. Wels and H. Hübert, “A system on a chip architecture of an
H.264/AVC coprocessor for DVB-H and DMB applications”, IEEE Transactions on
Consumer Electronics, vol. 53, no. 4, pp. 1529-1536, Nov. 2007.

[92] B. Stabernack, K.-I. Wels and H. Hübert, “Hardware and software architectures for
mobile multimedia signal processing”, B. Furht (editor) and S. A. Ahson (editor),
Handbook of Mobile Broadcasting: DVB-H, DMB, ISDB-T, AND MEDIAFLO, Auer-
bach Publications Inc., Boca Raton, FL, pp. 95-132, 2008.

[93] R.A. Sugumar and S.G. Abraham, “Efficient simulation of caches under optimal re-
placement with applications to miss characterization”, Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 1993,
pp. 24-35.

[94] Tensilica Inc., Tensilica Website, http://www.tensilica.com/.

[95] Texas Instruments Inc., PT6980: 10-A 12V-Input Dual Output Series Integrated
Switching Regulator, 2001.

[96] S. Thoziyoor, N. Muralimanohar and N. P. Jouppi, “CACTI 5.0”Technical Report HPL-
2007-167, Advanced Architecture Laboratory, HP Laboratories, Palo Alto, CA, 2007.

[97] V. Tiwari, S. Malik, A. Wolfe and M. T.-C. Lee, “Instruction level power analysis and
optimization of software”, The Journal of VLSI Signal Processing, vol. 13, no. 2-3, pp.
1-18, Aug. 1996.

[98] Department of Computer Engineering, University of Tübingen, “VHDL-to-SystemC-
converter”, European SystemC Users Group, http://www-ti.informatik.uni-
tuebingen.de/~systemc/.

[99] L. Wehmeyer and P. Marwedel, Fast, Efficient and Predictable Memory Accesses: Op-
timization Algorithms for Memory Architecture Aware Compilation, Springer,
Dordrecht, The Netherlands, 2006.

[100] W.H. Wolf, “Hardware-software co-design of embedded systems”, Proceedings of the
IEEE, vol. 82, no. 7, 967-989, Jul. 1994.

[101] D. Wright and B. Freeman-Benson, “How to write an eclipse debugger”,
http://www.eclipse.org/articles/Article-Debugger/how-to.html, Aug. 2004.

[102] W. Ye, N. Vijaykrishnan, M. Kandemir and M.J. Irwin, “The design and use of Simple-
Power: a cycle-accurate energy estimation tool”, Proceedings of the 37th ACM/IEEE
Design Automation Conference (DAC), 2000, pp. 340-345.

[103] K.-S. Yeo and K. Roy, Low Voltage, Low Power VLSI Subsystems, McGraw-Hill Edu-
cation, New York, NY, 2004.

	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Outline

	2 State of the Art
	2.1 Embedded Systems
	2.1.1 Design Flow
	2.1.2 Processors
	2.1.3 The ARM Architecture
	2.1.4 The AMBA Architecture

	2.2 Processor Simulators
	2.2.1 ARMulator – The ARM Instruction Set Simulator
	2.2.1.1 The Tracer Module
	2.2.1.2 The Mapfile Module

	2.2.2 Automatic Simulator Generation – The Verilator

	2.3 Tools
	2.3.1 ARM Software Development Toolchain
	2.3.2 Cycle Profiling Tools
	2.3.2.1 Gprof
	2.3.2.2 Armprof
	2.3.2.3 ARM RealView Profiler
	2.3.2.4 VTune Performance Analyzer
	2.3.2.5 Other Profilers

	2.3.3 The ATOMIUM Memory Profiler
	2.3.4 Power Estimation Tools
	2.3.4.1 JouleTrack
	2.3.4.2 PowerEscape
	2.3.4.3 Analytical Models for Power Estimation
	2.3.4.4 Functional-Level Power Analysis

	3 Theoretical Background
	3.1 Embedded System Components
	3.1.1 Processor Architectures
	3.1.2 Memory Architectures
	3.1.2.1 Register File
	3.1.2.2 On-Chip Memory
	3.1.2.3 DMA Controller
	3.1.2.4 Off-Chip Memory

	3.1.3 Interconnection Architectures

	3.2 Simulation Models
	3.2.1 Processor Models
	3.2.1.1 Processor Power Models

	3.2.2 Memory Models

	3.3 Profiling
	3.3.1 Profiling Results
	3.3.2 Profiling Methods
	3.3.2.1 Code Instrumentation
	3.3.2.2 Sampling
	3.3.2.3 Profiling with Instruction Set Simulator
	3.3.2.4 Hardware Simulator based Profiling

	3.4 Data-Intensive Applications and their Implementation for RISC Processors
	3.4.1 The H.264/AVC Video Coding Standard

	4 Comprehensive Profiling of Embedded Processors
	4.1 Extensive Profiling Methodology
	4.1.1 Program Information Acquisition
	4.1.2 Runtime Data Acquisition
	4.1.3 Representation of the Statistical Analysis Data

	4.2 Memory Profiling within the Design Flow
	4.2.1 Hardware/Software Partitioning and Design Space Exploration
	4.2.2 Software Profiling and Optimization
	4.2.3 Hardware/Software Profiling and Scheduling
	4.2.4 Coprocessors
	4.2.5 Scheduling
	4.2.6 HDL Simulation

	4.3 Profiling-Based Software Optimizations
	4.3.1 Pinpointing Code Locations with Inefficient Memory Accesses
	4.3.2 Using Caches and Non-Cacheable Areas
	4.3.3 Page Miss Reduction in DRAMs
	4.3.4 Speedup Estimation before Implementation
	4.3.5 Data Access Visualization
	4.3.6 Efficient Register Usage

	4.4 Profiling-Based Hardware Optimization
	4.4.1 Instruction Set
	4.4.2 Address Modes
	4.4.3 Data Partitioning between Fast and Slow Memory

	4.5 Power Model of an Embedded Processor
	4.5.1 CMOS Power Consumption
	4.5.2 Power Measurement Methods
	4.5.3 Instruction Sequences for Power Evaluation
	4.5.4 Power Model of an SoC

	5 Implementation
	5.1 Workflow
	5.1.1 Initialization
	5.1.2 Analysis
	5.1.3 Postprocessing of the Analysis Results

	5.2 Tool Architecture
	5.2.1 MEMTRACE Base
	5.2.1.1 Init Step
	5.2.1.2 Analysis Step
	5.2.1.3 Postprocessing Step

	5.2.2 MEMTRACE Dynamic Link Library (Backend)

	5.3 Graphical User Interface
	5.4 Spreadsheet Format Description
	5.5 The Configuration File
	5.5.1 File Format
	5.5.2 List of Functions
	5.5.3 List of Variables
	5.5.4 Global Settings

	5.6 Infrastructure for System Architecture Profiling
	5.6.1 Hardware/Software Cosimulation Interface
	5.6.2 DMA Controller

	5.7 Retargeting to Other Embedded Processors
	5.7.1 Toolflow for Profiling LISA and Verilog Processor Models

	5.8 Power Measurement Setup
	5.8.1 Calibration of the Measurement Setup
	5.8.2 Software Test Suite

	6 Application of the Profiler
	6.1 H.264/AVC Decoder Profiling
	6.1.1 Description of the Test Scenario
	6.1.2 Profiling Results
	6.1.2.1 Overall Analysis
	6.1.2.2 Function Group Analysis for I- and P-Frames with Different Memory Types
	6.1.2.3 Cycles per Frame Analysis
	6.1.2.4 Memory Access Statistics

	6.1.3 Profiling-Based Software Optimization Potential
	6.1.3.1 Algorithmic Optimizations
	6.1.3.2 Cache Optimizations
	6.1.3.3 Speedup Estimation due to TCMs
	6.1.3.4 Using DMA

	6.1.4 Summary of Profiling and Software Implementation Results
	6.1.4.1 Performance Estimation
	6.1.4.2 Memory Requirements
	6.1.4.3 Conclusion

	6.1.5 Hardware/Software System Architecture

	6.2 GestAvatar – Gesture Detection for Avatar Control
	6.2.1 Results

	7 Summary & Prospects
	7.1 Comparison with Existing Tools
	7.2 Prospects

	8 Appendix
	8.1 Detailed and Comprehensive Profiling Results
	8.1.1 H.264/AVC Encoder/Decoder
	8.1.2 Function Group Analysis for I- and P-Frames
	8.1.3 Cycles per Frame Analysis
	8.1.4 Usage of ARM11 SIMD Instructions
	8.1.4.1 I-Trans
	8.1.4.2 Intraprediction
	8.1.4.3 Loopfilter
	8.1.4.4 Motion Compensation
	8.1.4.5 BitstreamProcessing
	8.1.4.6 EntropyDecoding
	8.1.4.7 Parsing_Decoding

	8.2 MEMTRACE Implementation Details
	8.2.1 Block Diagrams of MEMTRACE Internals
	8.2.2 Screenshots of the Graphical User Interface
	8.2.3 Detailed Power Measurement Results
	8.2.4 The Configuration File
	8.2.5 List of Source Code Files
	8.2.6 Full Description of the Command-line Syntax

