
 

MEMTRACE:  
A Memory, Performance and Energy Profiler  

Targeting RISC-Based Embedded Systems  
for Data-Intensive Applications 

 

von 
Diplom-Ingenieur  

Heiko Hübert 
 
 
 

Von der Fakultät IV – Elektrotechnik und Informatik 
der Technischen Universität Berlin 

zur Erlangung des akademischen Grades 
 
 

Doktor der Ingenieurwissenschaften 
– Dr.-Ing. – 

 
 

genehmigte Dissertation 
 
 
 
Promotionsausschuss: 
 
Vorsitzende: Frau Prof. Dr. rer. nat. Sabine Glesner 
Berichter:  Herr Prof. Dr.-Ing. Hans-Ulrich Post 
Berichter:  Herr Prof. Dr.-Ing. Holger Blume 
 
Tag der wissenschaftlichen Aussprache: 19. Mai 2009 
 

Berlin 2009 
D83 



 

 II 



  

Acknowledgements 
The research described in this thesis has been carried out at the Fraunhofer Institute for Tele-
communications, Heinrich Hertz Institute (HHI) in Berlin. My work within the Embedded 
System Group (ESG) of the Image Processing Department laid the foundations and provided 
inspiration for this dissertation. 

First of all I would like to thank Professor Hans-Ulrich Post, who immediately agreed to su-
pervise this thesis. He provided me with valuable comments on scientific and structural con-
cerns. I am also very grateful to Professor Holger Blume for being the co-referee and for all 
our discussions, which were inspiring and valuable to me. 

A very special and extended thank you goes to my supervisor at HHI, Dr. Benno Stabernack, 
who conducted me through all these years. I appreciate his advice on so many matters and the 
countless hours he invested in discussions and just chatting. I am also grateful to Dr. Ralf 
Schäfer, the head of the Image Processing Department, for giving me the opportunity to ac-
complish this work. My gratitude also goes to my colleagues at HHI for all the fruitful discus-
sions and for helping me to expand my knowledge in many ways.  

Special thanks go to Ella Ornstein, who helped this work to lose a bit of its German accent 
and make it nicer for the native speaker’s ears. Also, Joshua Becker and my colleagues at HHI 
spent many hours of their spare time proof-reading. Many thanks. 

Finally, I want to express my deepest appreciation to my family and friends. They provided 
moral support and always managed to encourage me whenever the goal seemed out of reach. 

 

 

 III



 

 

 IV 



  

Abstract 
The design of embedded hardware/software systems is often subject to strict requirements 
concerning various aspects, including real time performance, energy consumption and die 
area. Especially for data-intensive applications, such as multimedia systems, the number of 
memory accesses is a dominant factor for these aspects. In order to meet the requirements and 
design a well-adapted system, it is necessary both to optimize the software and to design an 
adequate hardware architecture. For complex applications, this design space exploration can 
be difficult and requires in-depth analysis of the application and its implementation alterna-
tives. This calls for profiling tools, which aid the designer in the design, optimization and 
scheduling of hardware and software.  

Numerous tools exist for this purpose, and performance profiling solutions especially have 
been available for decades. Memory and energy profiling for embedded systems have become 
major issues within the last 10 years. However, the existing tools either cover only parts of the 
required profiling results or the statistics are not at the required level of detail. Some of the 
tools provide results only for the entire application and not at a source-code function level. 
This restricts the optimization potential, as the cause of a performance loss cannot be local-
ized. Other tools suffer from a restricted level of accuracy. Results are based on generic proc-
essor architectures or taken with a low sample rate, or the tools apply source code instrumen-
tation. Available profiling mechanisms with high accuracy suffer from long simulation times. 
This makes a comprehensive system analysis unfeasible. 

This work presents a novel profiling methodology, which combines fast, accurate and com-
prehensive profiling in order to overcome the restrictions of the aforementioned techniques. 
The work describes the developed technique and its implementation as the MEMTRACE pro-
filing tool. The trade-off between a decent simulation time and a sufficient level of accuracy is 
reached by using a tracing-based profiling approach that applies cycle-accurate simulators. In 
order to target a broad range of processors, a well-defined interface is established for inter-
connection with the processor simulator. Thus any cycle-accurate model can be used, as long 
as it provides access to basic runtime information such as the program counter, cycle counter 
and memory busses. The profiler is independent of the application’s source code, which leads 
to higher accuracy as compared to instrumentation-based tools.  

METRACE delivers cycle-accurate profiling results on a C function or even source code line 
level. The results include clock cycles, various memory access statistics and energy consump-
tion estimates for embedded RISC-based processors. In addition to these results, the tool gen-
erates numerous statistics tailored to the specific optimization techniques that have been de-
veloped in this work. A focus is placed on memory access optimization, since for data-
intensive applications, this aspect offers a high potential for increasing system efficiency.  

Additionally to software analysis, the profiler supports an examination of bus-based systems, 
for example those composed of a processor, memory devices and coprocessors. For this pur-
pose the coprocessors are represented by abstract but cycle-accurate models and 
MEMTRACE has been extended by detailed bus analysis features. 

An instruction-accurate power consumption model has been developed for a sample processor 
and incorporated into the profiler for energy estimation. Two case studies are presented, 
which show how the applicability of the profiler and the optimization techniques has been 
proven in the design of hardware/software systems for data-intensive applications. 
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Zusammenfassung 
Der Entwurf eingebetteter Hardware/Software-Systeme unterliegt häufig strengen Anforde-
rungen hinsichtlich verschiedener Kriterien wie z.B. Echtzeitfähigkeit, Energieverbrauch und 
Chipfläche. Insbesondere bei datenintensiven Anwendungen, beispielsweise in Multimedia-
systemen, spielt die Anzahl von Speicherzugriffen eine dominierende Rolle. Um diesen Krite-
rien beim Entwurf gerecht zu werden, muss sowohl die Software optimiert als auch eine adä-
quate Hardwarearchitektur entwickelt werden. Für komplexe Anwendungen kann diese 
Entwurfsraum-Exploration aufwändig sein und setzt eine detaillierte Analyse der Anwendung 
und ihrer Implementierungsalternativen voraus. Um den Entwickler bei Entwurf, Optimierung 
und Scheduling zu unterstützen, werden deshalb Analysewerkzeuge (Profiler) benötigt. 

Zahlreiche Programme wurden bereits zu diesem Zweck entwickelt, insbesondere Leistungs-
analysewerkzeuge existieren seit langem. Die Speicherzugriffs- und Verlustleistungsanalyse 
gewannen gerade in den letzten zehn Jahren an Relevanz. Die gegenwärtigen Profiler decken 
jedoch entweder nur einen Teil dieser Analysen ab oder sie können nicht den benötigten De-
taillierungsgrad liefern. Beispielsweise können einige der Werkzeuge die Ergebnisse nicht den 
Quellcodefunktionen zuordnen. Dies verringert das Optimierungspotential, da die Ursache 
einer Leistungseinbuße nicht genau lokalisiert werden kann. Andere Profiler liefern hingegen 
eine eingeschränkte Genauigkeit aufgrund generischer Prozessormodelle, niedriger Abtastfre-
quenz oder Quellcodemodifikationen (Instrumentation). Analysemethoden mit hoher Genau-
igkeit benötigen oft lange Simulationszeiten, die eine umfassende Systemanalyse verhindern. 

In dieser Arbeit wird eine neue Profilingmethode vorgestellt, die sowohl eine genaue, schnelle 
als auch umfangreiche Analyse ermöglicht und damit die Schwächen der erwähnten Metho-
den überwindet. Die Arbeit beschreibt die Methodik und deren Umsetzung als MEMTRACE 
Profiler. Durch einen tracingbasierten Ansatz, der einen zyklengenauen Simulator verwendet, 
können sowohl eine adäquate Simulationszeit als auch eine ausreichende Genauigkeit erreicht 
werden. Um einen breiten Bereich an Prozessoren abdecken zu können, wurde eine wohldefi-
nierte Schnittstelle zwischen Profiler und Simulator geschaffen. Dadurch kann jedes zyklen-
genaue Modell verwendet werden, das einen Zugang zu grundlegenden Prozessorressourcen 
erlaubt, wie z.B. dem Befehlszähler, Zyklenzähler und den Speicherbussen. Außerdem ist der 
Profiler vom Quellcode der zu untersuchenden Applikation unabhängig, was zu einer höheren 
Genauigkeit gegenüber den Ergebnissen instrumentationsbasierter Ansätze führt. 

MEMTRACE liefert zyklengenaue Analyseergebnisse auf Funktions- bzw. Zeilenebene des 
C-Quellcodes. Die Ergebnisse umfassen Taktzyklen, zahlreiche Speicherzugriffsstatistiken 
und Energieverbrauchsabschätzungen für eingebettete RISC Prozessoren. Neben diesen Er-
gebnissen werden zahlreiche weitere Analyseergebnisse generiert, die auf spezielle Optimie-
rungen zugeschnitten sind, welche im Rahmen dieser Arbeit entwickelt wurden. Dabei wird 
ein Fokus auf Speicherzugriffe gelegt, da deren Optimierung bei datenintensiven Anwendun-
gen ein hohes Potential zur Steigerung der Systemeffizienz mit sich bringt. 

Zusätzlich zur Softwareanalyse wird durch den Profiler auch eine Untersuchung bus-basierter 
Systeme ermöglicht, z.B. bestehend aus einem Prozessor, Speichern und Coprozessoren. Dazu 
werden die Coprozessoren durch abstrakte, aber zyklengenaue Modelle abgebildet sowie 
MEMTRACE um detaillierte Busanalysefunktionen erweitert. 

Um eine Abschätzung der Verlustleistung zu unterstützen, wurde exemplarisch ein instrukti-
onsgenaues Verlustleistungsmodell entwickelt und in den Profiler integriert. Anhand zweier 
Fallstudien wird gezeigt, wie der Profiler erfolgreich innerhalb des Entwurfs von Hard-
ware/Software Systemen für datenintensive Applikationen Anwendung finden konnte. 
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1.1  Background 

1 Introduction 
1.1 Background 

The design of an embedded system often starts from a software description of the system in 
the C language. For example, the designer writes an executable specification based on a refer-
ence implementation of the application, e.g. from standardization organizations or the open-
source community. This software code is often not optimized in any way, because it mainly 
serves the purpose of functional and conformance testing. Therefore it has to be transformed 
into an efficient system, including hardware and software components. The design of the sys-
tem requires the following steps: 

• system architecture design 
• hardware/software partitioning 
• software optimization 
• design of hardware accelerators 
• system scheduling 

All these steps require detailed information about the performance of the different parts of the 
application. Besides the arithmetical demands of the application, memory accesses can have a 
huge influence on performance and power consumption. This is especially the case for data-
intensive applications such as multimedia systems, due to the huge amount of data being 
transferred in these applications. This problem increases if the given data bandwidth is not 
used efficiently. 

In order to reduce overall data traffic, those parts of the code which require a high amount of 
data transfer have to be identified and optimized. The above-mentioned applications contain 
up to 100,000 lines of source code. Therefore tools are required that help the designer to iden-
tify the critical parts of the software. Several analysis tools exist, for example gprof [42] or 
VTune [57] provide timing analysis. Memory access analysis is part of the ATOMIUM [25] 
tool suite. However, all these tools provide only approximate results for either timing or 
memory accesses. A highly accurate memory analysis can be done with a hardware (HDL) 
simulator, if an HDL model of the processor is available. However, such an analysis requires a 
long simulation time. 

This thesis targets these issues and covers the performance, memory and power consumption 
profiling of embedded systems, as well as the usability of the profiling results within the de-
sign flow. In order to achieve a fast and accurate solution, a specialized profiler has been de-
veloped, called MEMTRACE, for obtaining performance, memory access and power con-
sumption statistics. The profiling is tailored to embedded system architectures containing a 
single RISC processor, a single memory bus with memory-mapped components – such as 
memory or coprocessors – and a direct memory access (DMA) controller. This thesis will 
show how the provided profiling results can be used during the design and optimization of 
embedded hardware/software systems. Among other case studies, MEMTRACE has been 
applied during the efficient design of a mixed hardware/software system for H.264/AVC 
video decoding. Starting from a software implementation, this thesis shows how the software 
is optimized, an efficient hardware architecture developed and the system tasks scheduled 
based on the profiling results. 
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1  Introduction 

1.2 Contributions 
The contributions of this work can be summarized as: 

• presentation of an overview of existing profiling tools 
• overview of embedded system architecture components 
• design and implementation of a profiling tool suite 
• development of several profiling analysis methods for memory-centric software and 

hardware optimization 
• design and implementation of a hardware/software co-profiling environment 
• creation of a simple processor power model for energy profiling 
• integration of the profiler in an embedded system design flow 
• application of the profiler for analysis of several software projects 
• application of the profiler during the design of a system architecture for a multimedia SoC 

This profiling and optimization methodology has been applied within several industrial and 
research projects. The profiling tool developed in this work has been used for evaluating and 
optimizing the performance of software targeting embedded devices. In-depth profiling has 
been performed, combined with system architecture exploration of memory and coprocessors. 

The profiling methodology and the tool implementation have been presented to the research 
community in several publications and presentations at workshops and symposiums as well as 
in a book chapter [46, 47, 48, 92, 49]. Furthermore, the application of the tool within the de-
sign of embedded systems is described in technical journals and proceedings of international 
conferences [88, 89, 91, 87, 86] 

1.3 Outline 
Chapter 2 gives an overview of the state of the art in profiling and related subjects. A general 
overview of current embedded system design flows and existing tools for CPU, memory and 
power profiling is presented. 

In Chapter 3 the theoretical background of the different aspects is surveyed. The components 
of processor-centric embedded systems and the corresponding simulation models are pre-
sented. Since the focus of this work is data-intensive applications, an example of such appli-
cations and implementation issues for embedded systems are given. The different aspects of 
profiling are highlighted and existing methods for hardware/software optimizations are pre-
sented. 

Chapter 4 shows the contribution of this work to the field of profiling embedded processor 
systems. The profiling method and a variety of analysis results are presented. There is also a 
focus on power measurement and model creation for a sample processor. Furthermore, this 
thesis presents the application of the profiling results within the design flow for hardware- and 
software-centric optimizations. 

The implementation and the workflow of the profiling tool as well as its integration with an 
existing instruction set simulator are described in Chapter 5. The profiling tool has been used 
within a number of projects for software analysis and optimization as well as for hardware 
architecture design. Some examples are presented in Chapter 6. Chapter 7 summarizes the 
work and points out unresolved issues and areas for future work. 
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2.1  Embedded Systems 

2 State of the Art 
This chapter presents the state of the art of profiling of embedded systems. As the term “em-
bedded systems” is quite fuzzy, a review of the different definitions found in literature is pro-
vided and summarized. The major component of an embedded system is the processor, which 
controls the system and executes the software part of the application. An overview of the most 
common embedded processors is given. For profiling the software a simulation model of the 
processor is required, therefore Section 2.2 describes a processor simulator and a simulator 
generator. The following section gives an overview of the tools required in profiling process, 
including an example development toolchain and existing tools for performance, memory and 
power analysis. 

2.1 Embedded Systems 
Many definitions can be found for the term “Embedded System”. Marvedel gives a pragmatic 
definition in his book of “Embedded System Design” [66], which covers a wide range of ap-
plication fields: 

“Embedded systems can be defined as information processing systems embedded into 
enclosing products, such as cars, telecommunication or fabrications equipments” 

Most definitions slightly differ from each other, but a statement which can be found very of-
ten is that there is no fixed definition for this term. This fact was stated already a decade ago 
[39] and a fuzziness within the definition is still common today [66]. The most plausible rea-
son is the enormous growth of the application field for embedded systems. Whereas an early 
application for embedded system could be found in banking transaction systems [100] and 
was implemented on mainframes. Over the decades their application field has grown to cover 
industrial control systems, networking devices, household appliances, automotive and con-
sumer and many other products. Such systems can be found in portable as well as stationary 
devices. The following attributes can be found in most descriptions of embedded systems, e.g. 
in [66, 39, 72]: 

• embedded in an enclosing device 
• tailored to a specific application 
• subject to real-time constraints and efficiency requirements 
• interaction with external devices, such as sensors, regulators, input and output devices 
• programmability is a common feature 
• consists of hardware and software components 
• often used in consumer products, control applications 

Another way of identifying and defining embedded systems can be done by distinguishing the 
term from related devices or systems. ASICs, which are also tailored to a specific application, 
define devices usually composed of fixed hardware components. ASIPs come closer to em-
bedded systems, or can be part of such, as they also offer programmability besides their re-
stricted application area. However, ASIP only refer to the programmable part of a system. The 
definition of SoC comes closest to the one of embedded systems, as system-on-chips combine 
different components to form an entire system. An inherent characteristic of SoCs is that the 
parts are combined on a single chip, whereas embedded systems might be (and often are) con-
structed of multiple devices. 
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2  State of the Art 

For clarifying the term, many people distinguish between embedded systems and general-
purpose computer, such as a PC. The difference can be stated by a PC not being dedicated to a 
specific application and as such it can be programmed freely [21, 72]. On the other hand, the 
computing task of the embedded systems is invisible to the user [66]. Edwards et al. [32] state 
in 1997: 

“Such systems, which use a computer to perform a specific function, but are neither 
used nor perceived as a computer, are generically known as embedded systems” 

The program code controlling the programmable parts of an embedded system is often stored 
in ROM, such as a flash memory and is usually referred to as firmware, contrary to the term 
software used in PCs. 

Considering the two parts of the term, “embedded” indicates that the unit is part of a larger 
device and not stand-alone. And the word “system” reflects that it consists of several units, 
most often a processor, coprocessors and input/output units for interacting with the device. 

2.1.1 Design Flow 
The implementation of embedded hardware/software systems incorporates many design and 
optimization steps. The targeted application and requirements have to be mapped on a combi-
nation of hardware and software components. The mapping decision is influenced by several 
factors, mainly by the application requirements and the available hardware and software re-
sources. For finding a suitable system architecture, usually a design space exploration is per-
formed based on more or less detailed profiling [22]. 

 

Figure 1: Typical embedded system design flow 

Figure 1 shows a typical design flow for embedded hardware/software systems. Initially a 
system is defined in a textual form describing its functionality, requirements and constraints. 
The description of the functionality is then transferred to an executable form in order to prove 
its correctness. After functionally verifying this executable system description, often in C or 
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2.1  Embedded Systems 

C++, a performance evaluation needs to be made in order to find an appropriate hard-
ware/software architecture. Starting with a pure software implementation and an initial archi-
tecture specification, profiling can be used to measure the performance and reveal if the (real-
time) requirements are met. If not, an iterative cycle of software and hardware partitioning, 
optimization and scheduling starts. During this process a continuous co-verification of the 
system is required. This includes on one hand a cosimulation [50] for ensuring the functional 
correctness of the system. On the other hand detailed profiling results are crucial for monitor-
ing the influence of design steps on the performance. 

2.1.2 Processors 
Table 1 gives an overview of the most popular embedded RISC processors. Most processors 
feature a five- to seven-stage pipeline, as it offers a reasonable trade-off between maximum 
clock-frequency and instruction delay. A common number of registers is 32, with a major ex-
ception being the ARM processors, which only feature 16 registers. Section 2.1.3 describes 
the ARM processor family in more detail.  

Most RISC processors are built as Harvard architecture with separated instruction and data 
caches. Typically, these caches are two- to four-way set associative and have a size of 32 to 64 
kB. Since caches are very area and energy consuming, second-level caches are not very com-
mon in embedded system design and can only be found in high performance architectures, 
such as the ARM Cortex-A9 [8] SoCs. Some of the processors are extensible in their execu-
tion unit. The LEON [38] and the ARM processors use a coprocessor interface for this pur-
pose. Before the calculation can be executed data needs to be transferred from the register file 
to the coprocessors by special instructions. Tensilica [94] and ARC [6] allow a customization 
of the instructions set. The execution unit can be placed beside the main ALU and incorpo-
rated in the pipeline path, which allows direct access to the register file. Besides the presented 
processors, numerous embedded architectures exist, which combine a RISC-Core with a DSP, 
e.g. Blackfin [5] from Analog Devices or TriCore [52] from Infineon. Such architectures have 
proven to be a good choice for combining control-flow and data processing needs of multi-
media applications. 

2.1.3 The ARM Architecture 
The ARM processor architecture [37] has evolved over the years from a simple 3-stage pipe-
lined RISC core to a 13-stage-pipelined multi-core SoC architecture. Initially, it had been de-
veloped only as a processor for personal computers, but the architecture has been found to be 
very efficient in terms of performance and power consumption. This makes the ARM proces-
sors a good candidate for embedded systems, e.g. for controlling tasks and the newer architec-
ture types also for data processing. The ARM core architecture is a typical RISC processor 
however with a small register file of only 16 registers, which can lead to performance restric-
tions for data-intensive applications. Data transfer between register file and memory is only 
possible with load and store instructions. Newer core types also support more CISC-like load 
and store instructions for transferring multiple registers with a single instruction. These, in-
struction are often used for saving registers to the stack or for copying data from one memory 
location to another. Besides decreasing the instruction count it speeds up transfers by using 
the burst mode of the AHB. 
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Table 1: Embedded RISC processors 
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ARM7TDMI 3 - 16 8k unified -/- Von Neumann architecture 

ARM9E 5 - 16 128k/128k +/+ Coprocessor interface 

StrongARM  
SA-1110 5 - 16 16k/8k -/512 32 set-associative caches,  

coprocessor interface 

XScale PXA27x 7-8 - 16 32k/32k -/2k SIMD, coprocessor interface, 
256kB SRAM 

ARM11 8 - 16 64k/64k +/+ SIMD, branch prediction, 64-bit 
bus, coprocessor interface 

ARC600 5 + 32(-60) 32k/32k 512k/16k Branch prediction,  
register file extendable 

ARC700 7 + 32(-60) 64k/64k 512k/256k Branch prediction, 64-bit bus, 
register file extendable 

Tensilica  
Xtensa7 5 + >=64 32k/32k 256k/256k Up to 128-bit bus,  

windowed registers 

Tensilica  
Diamond232L 5 - 32 16k/16k -/- Windowed registers 

LatticeMicro32 6 - 32 32k/32k -/-  

Altera NIOS II 5-6 + 32 64k/64k +/+ Direct-mapped cache 

Xilinx  
MicroBlaze v5 5 - 32 64k/64k +/+ Direct-mapped cache,  

coprocessor interface 

MIPS 4KE 5 - 32 64k/64k +/+ Coprocessor interface 

openRISC  
OR1200 5 + 32 64k/64k -/- Direct-mapped cache,  

open source 

LEON3 7 - 520 1M/1M +/+ Coprocessor interface, 
windowed registers, open 
source 
16-bit fixed length based,  
superscalar SuperH SH-4/5 5 - 16 yes/yes -/- 

An exceptional feature of the ARM architecture is a barrel-shifter within the execution stage 
of the pipeline. The shifter is placed between the register file and the ALU. It can be used 
within data processing and also for extending the range of immediate value as well as for 
address offset manipulation. 

Two major versions of the ARM instruction set exist, a full 32-bit version and a reduced 16-
bit, also called Thumb instruction set. The 32-bit instructions support conditional execution, 
i.e. each instruction can be coded so that it only executes at a specific status of the CPU flags. 
The instruction set has grown with every new architecture version and has become very dense 
and irregular. Custom instructions are not allowed but custom functionality can be provided 
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via the coprocessor interface. Up to 15 coprocessors can be attached to a core where one co-
processor is already defined as system control coprocessor, e.g. for controlling the MMU and 
the caches. Specific instructions are available, which allow data transfer between coprocessor, 
external memory and core register file and furthermore for initiating data processing opera-
tions on the coprocessor. For most of the ARM processors support both, little and big endian 
data arrangement, thus depending on the application field the appropriate setup can be chosen. 

ARM Ltd. licenses the processors as intellectual property and it comes in many different 
flavors. The oldest architecture available is the ARM7 family. These processors have a simple 
3-stage pipeline and a von-Neumann architecture, i.e. using a shared data and instruction bus. 
The simplest version, the ARM7TDMI, only contains the core without a cache or MMU. This 
is a very small implementation of a RISC core with a low power implementation. Starting 
with the ARM9 family, a Harvard architecture is used, with separate caches for instructions 
and data. The pipeline is extended to five stages and an optional floating point unit is 
available. A write buffer is introduced for accelerating store operations to external memory 
and a memory management unit (MMU) for operating system support. The ARM9E family 
makes the caches customizable and adds tightly coupled memory (TCM) devices, which can 
be used for fast data and instruction access. The instruction set is extended with DSP 
instructions, such as a single-cycle multiply-accumulate instruction and saturating arithmetic. 
The processor used in most studies of this work, the ARM946E-S, is a member of this 
processor family. 
The ARM 11 family, which was introduced in 2002, extends the pipeline to eight stages and 
splits it into a data execution and load/store pipeline. Branch prediction is used to decrease the 
need for flushes of the long pipeline. The instruction set is supplemented by SIMD instruc-
tions for use in data-intensive applications, e.g. video or data coding, and a built-in coproces-
sor for floating point arithmetic. Data transfers have been accelerated by a DMA controller for 
the TCMs, a wider memory interface of 64-bit and unaligned memory accesses. 

The latest processor family is called Cortex and offers several core types targeting different 
application fields. The most powerful is the Cortex-A family, which provides a dual-issue 13-
stage pipeline, extends the SIMD instruction set and width (128-bit) and adds a second-level 
cache. This family is not covered in this work, because a cycle-accurate instruction set simu-
lator is not available within the software design suite (Real View Development Suite [14]). 

Two further families based on the ARM architecture are the StrongARM [53] and the XScale 
[56] processors. In cooperation with Digital Equipment Corporation (DEC) ARM developed 
the StrongARM processors in 1995. This core is a predecessor of the ARM9 architecture and 
offers comparable hardware features, a 5-stage pipeline combined with a Harvard architecture 
with separate caches and MMUs. Remarkably, the caches, which had an initial size of 16 kB 
each (in later processor version the D-cache was reduced to 8 kB) are 32-way set-associative. 
From the programmers perspective it is more similar to the ARM7, the instructions set 
(ARMv4) provides only 32-bit instructions, without the Thumb or DSP extensions. When 
Intel took over the processor development from DEC, the StrongARM was improved and 
became the XScale processor. The XScale is compatible to the ARMv5TE instruction set, 
which is also supported by the ARM9E family. The pipeline is extended to 7-8 stages and the 
caches have a size of 32 kB each. Furthermore branch prediction is available and starting with 
the PXA270, the Wireless MMX extension provides SIMD instructions and an on-chip 
SRAM of 256 kB is incorporated. 

Both, the StrongARM and the XScale are system-on-chip architectures, which provide power 
management features and numerous auxiliary components, such as DMA controller and inter-
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faces to LC displays and serial data communication. They became very popular as processors 
for portable devices, e.g. PDAs or navigation systems. 

2.1.4 The AMBA Architecture 
Many system-on-chip architectures use busses that are compliant to the Advanced Microcon-
troller Bus Architecture (AMBA) [10] standard. AMBA is a royalty-free standard developed 
by ARM Ltd. and was first released in 1995. The standard defines a range of busses for differ-
ent needs, starting from simple low-bandwidth busses for I/O purposes up to multi-channel 
pipelined busses for multi-core architectures. All AMBA busses are synchronous and have 
separate data and address busses. 

The Advanced Peripheral Bus (APB) of the AMBA specification is optimized for low-
bandwidth requirements, easy implementation and low power consumption and especially 
suitable for slow I/O components, such as timers and serial interfaces. The only master device 
allowed on the bus is the bridge to a higher order bus and the bus protocol is simple. Ad-
vanced features such as pipeline or burst transfer are not supported, and the bus width is re-
stricted to 32 bit. In order to reduce the required chip area, a tristate implementation of the 
data bus is allowed. For faster system components such as the CPU, memory and DMA con-
troller, the AMBA specification defines the Advanced High-performance Bus (AHB) archi-
tecture. The AHB interface is the standard bus connection for all ARM processors up to the 
ARM10 family, and is also the bus interface simulated in the ARMulator, and therefore used 
within this work. It is a multi-master compatible bus system and features separate read and 
write busses. An example system is shown in Figure 2, containing two bus masters and two 
slaves, the bus arbiter and the decoder. 

S
la

ve

M
as

te
r

M
as

te
r

S
la

ve

A
rb

ite
r

D
ec

od
er

 

Figure 2: AHB-based system with two masters and two slaves 
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Any transaction is initiated by a master, which need to request access to the bus from the 
arbiter. According to a prioritization scheme, which is not specified in the standard, the arbiter 
grants access to the bus master with the highest priority. Once the access is granted, the arbiter 
sets the multiplexers giving the master access to all control, address and data busses, enabling 
it to reach the slaves. Although all slaves receive the signals, the actual addressed slave is 
selected by the decoder, which evaluates the address bus according to a specified memory 
map. In addition the multiplexers in charge of connecting the slave output signals, i.e. reading 
data and response signals, are set according to the memory map. The address and data signals 
are driven in a pipelined fashion, i.e. for one clock cycle the master provides the address and 
control signals, and in the next cycle the data values are expected on the bus. During the data 
phase of one access the master can issue the address for the next transaction. If the slave 
cannot serve the data signal in the next cycle, it prolongs the data phase by issuing a wait 
signal. If the slave expects the waiting time to be long, it can indicate this to arbiter, which 
may grant bus access to other masters, until the slave can serve the request. This so-called 
split transaction is especially useful when accessing slow-response slaves, such as an 
SDRAM controller during a page miss, in order to reduce idle time of the bus. 

Besides single data transfer, the AHB protocol specifies burst transfer, which allows the trans-
fer of multiple data values at consecutive addresses within one transaction. Similar to the sin-
gle data transfer, it starts with an address phase, but features a multi-cycle data phase, where 
within each clock cycle (if not extended with wait states) one data transfer is issued. Burst 
transfers are very suitable for burst-oriented components, such as SDRAM, which require a 
long initialization (addressing) time for each access, but once addressed, can serve data very 
fast, in order to overcome a long delay time of single transfers. 

The AHB protocol allows bursts of fixed sizes or undefined lengths. If another master is re-
questing the bus during a long burst operation, this leads to a long latency time for this master, 
and may reduce the system speed significantly. Therefore, a feature called early burst termina-
tion is available, which allows the arbiter to decide to interrupt the burst and grant the bus to 
other waiting masters. For performance increase of the AHB, the simple multiplexer structure 
shown in Figure 2 can be replaced by a more complex interconnect matrix, which creates a 
multi-layered bus architecture for parallel data transfer. 

The new bus standard within the AMBA specification is the Advanced eXtensible Interface 
(AXI) Protocol [11]. It targets even higher bandwidth requirements, especially by separating 
address and data busses and allow multiple data busses to exist in the system. Thus, multiple 
transactions can be issued on the address bus and served independently on the data busses. 
Furthermore, separate read and write data and address busses are defined, which allows con-
current read and write transactions. Each transaction can be labeled with a transfer ID for al-
lowing out-of-order completion. If some transactions have higher latency responses than oth-
ers, the out-of-order handling leads to less idle time on the busses. The AXI-based busses are 
the standard interface of never ARM processors and are used in ARM11 and Cortex cores. 

2.2 Processor Simulators 
For testing and analyzing software for a specific processor, the processor needs to be available 
as a hardware device or simulator, whereas simulators usually offer a more elaborate view of 
the processor internals. Simulators exist for most processors, differing in their accuracy, 
sometimes even multiple models on different accuracy levels exist for a processor [81]. As an 
example of a typical model, an instruction set simulator (ISS) for the ARM architecture is 
described in more detail. Usually processors, as any digital hardware component, are de-
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scribed in a hardware description language. If no other processor model on a higher abstrac-
tion level is available, these models can be used for simulation. Being very fine grained they 
lead to long simulation times. In Section 2.2.2 a tool is presented, allowing a transformation 
of such models to a higher level of abstraction for faster simulation. 

2.2.1 ARMulator – The ARM Instruction Set Simulator 
The ARMulator [15] is the ISS for processors based on the ARM architecture. In conjunction 
with a debugger it can be used for code evaluation and performance analysis. Besides the 
processor core including the pipeline and the register file, the ARMulator simulates other ar-
chitectural features such as caches, a memory management unit (MMU) and a memory sub 
system and peripheral devices. The ARMulator is implemented as DLL and works together 
with the RealView Debugger, the AXF debugger and the command-line debugger armsd, 
which are all part of the RealView Development Suite, see Section 2.3.1. 

The ARMulator simulates the processors in a nearly cycle-accurate manner. Restrictions on 
the accuracy apply concerning the cache simulation and advanced memory bus (AHB) archi-
tectures. The simulator supports a wide range of processors based on the ARM architecture, 
including a basic support for StrongARM and XScale processors from Intel. See Section 2.1.3 
for more details on the ARM processor architecture. As the ARM cores are available as hard-
ware IPs, many features of the cores are adjustable. The simulator allows adjusting these fea-
tures, which include: 

• cache sizes and organization 
• tightly coupled memory size 
• processor speed 
• divider between processor and bus cycle length 

The external memory bus architecture is an abstract model of the AMBA AHB standard, 
which defines a multiplexer-based on-chip bus. The multi-master capable bus has separate 
address and data busses and a typical data bus width of 32-bit. The simulator can be extended 
by modules, which can be used for gathering inside information of the simulator or for the 
simulation of hardware components surrounding the processor. Such hardware extensions can 
either be memory-mapped devices or connected via the coprocessor interface, thus creating an 
entire system architecture. Some examples for extension modules are already provided with 
the ARMulator, such as a profiler and a tracer module for analysis purposes as well as mem-
ory module for simulation of a memory sub system. Figure 3 shows an example connection of 
modules to the ARMulator. 

The ARMulator is extended with the tracer module, tracing all accesses to the caches and 
from the caches to the external bus. The Mapfile models the timing behavior of each address 
region defined by a memory map file. Every bus access is then passed to a bus model (Flat-
mem), which performs the address decoding, and parses the access either to a simple memory 
model or to memory-mapped peripherals, such as a timer component or an interrupt control-
ler. 
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Figure 3: ARMulator extended with modules [15] 

Modules need to be written in C or C++ and are connected to the ARMulator as DLLs. An 
API is defined for the interconnection and the ARMulator extension kit provides the required 
header files, libraries and makefiles. The API consists of numerous functions to access inside 
variables of the simulator. This includes: 

• read or write of a register or coprocessor value 
• assert or read signals, e.g. interrupt signal 
• set or get events, e.g. from the CPU/MMU or other modules, such as cache miss or 

address undefined instruction 
• access any memory location (without interfering the actual bus simulation) 
• control and access to the simulator internals, such as reading the cycle counter or adding 

other counters 
• accessing the debugger, e.g. for printing messages on the debugger screen 

The API also defines a number of auxiliary functions, helpful during the design of modules. 
For example, for every instruction set a disassembly API function exists, providing the 
disassembled line for a binary instruction code word. For actively including modules into the 
simulation process, callback functions can be registered in the simulator. The functions can be 
called at any of the following occasion: 

• each instruction: for instruction tracing 
• bus cycle: for inspecting bus behavior 
• event: with installing event handler, this event can be caught within a module and perform 

a particular action in the module 
• after a specific time (from now): e.g. to imitate delay behavior of real hardware 

Bus modules can be considered as leafs of the memory architecture tree generated by the 
Flatmem module. They are called as soon as a memory access to their address range occurs. 
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The address range needs to be registered by the API function ARMulif_ReadBusRange() 
and the module function, which serves the memory access within the module is registered 
with the API function bus_registerPeripFunc(). Section 2.2.1.2 describes the definition 
of a generic bus module for memory-mapped devices. 

Memory modules, such as the tracer module, are instanced by being linked into the memory 
chain. Starting from the core, every memory access is passed from one link in the memory 
chain to the next. Two memory busses are accessible to modules, the core memory bus and 
the external memory bus. The former is the connection between the core and the caches. The 
latter connects the caches with the memory subsystem if caches are available, otherwise 
memory and core bus are identical. Memory modules can link to both busses. The API func-
tions ARMulif_QueryMemInterface() provides a handle to a bus, which is required for 
connecting to the bus and for retrieving information about the bus type. The function AR-
Mul_InsertMemInterface() is then applied to insert the module into the memory chain 
and provided the simulator with the appropriate callback functions. The following section 
about the Tracer module gives an example of a memory module. 

The ARMulator, as well as the modules, can be controlled by configuration files. These files 
specify module parameters or allow disabling a module, which might be required for speed-
ing-up the simulation. Alternatively these parameters can be overwritten with values passed 
from the debugger, e.g. with command-line parameters of the debugger in order to modify the 
behavior of a module for the current simulation run. 

For new processors, starting with the Cortex family, the ARMulator has been replaced with 
the Instruction Set System Models (ISSMs) [8], which no longer provide cycle-accuracy. In-
stead, in 2007 ARM presented the SOC Designer tool suite, which provides cycle-accurate 
processor and system models. In 2008 ARM discontinued the SOC Designer development and 
the tool was acquired by Carbon Design Systems. Thereafter ARM focuses on hardware-
based profiling instead, which is supported by ARM RealView Profiler, see Section 2.3.2.3. 

2.2.1.1 The Tracer Module 

The Tracer module is an extension for tracing numerous processor activities, such as instruc-
tions, memory accesses, register changes, and events, such as cache misses, and writes them 
to file. An example trace file is given in Listing 1. 

MSW4____ 0001A190 23C06023 
BNR4O___ 000080C0 28B00030 
MNR4O___ 000080C0 28B00030 
IT______ 000080B8 8afffffb BHI      0x80ac 
R_______ r1=0001a194 
BNR4O___ 000080AC E2522010 
MNR4O___ 000080AC E2522010 
BSR4O___ 000080B0 28B01070 
MSR4O___ 000080B0 28B01070 
BSR4O___ 000080B4 28A11070 
MSR4O___ 000080B4 28A11070 
IT______ 000080AC e2522010 SUBS     r2,r2,#0x10 
BSR4O___ 000080B8 8AFFFFFB 
MSR4O___ 000080B8 8AFFFFFB 
IT______ 000080B0 28b01070 LDMCSIA  r0!,{r4-r6,r12} 
R_______ r2=00000018 
BNR4____ 00019FA0 C023C184 

Listing 1: Example tracer file 
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The first letter of each line indicates the information type; the “M” stands for memory access 
on the core memory bus, “B” lines indicate an access on the external memory bus. The ac-
cessed address and data are supplied. Lines starting with an “I” indicate the executed instruc-
tion including the disassembly, the suffix “T” indicates that the instruction was taken. “R” 
shows changes in registers. Usually, for more complex software millions of cycles need to 
simulated, thus the trace files can become enormously large, in the range of gigabytes. There-
fore, tracing a whole software execution with full trace information is not feasible. The tracer 
allows disabling specific trace information, limiting the address range for memory tracing and 
sub-sampling the tracing, i.e. only every n-th tracing sample will be written to the trace file. 
The trace file source code is part of the RealView environment. 

The tracer module connects to the ARMulator with four interfaces. It installs itself as bus 
module on the core bus, for tracing every access to the instruction and the data cache. Fur-
thermore it links into the external bus chain, for tracing cache and write buffer accesses to the 
external memory and other bus components, as shown in Figure 3. Instruction usage is ana-
lyzed by installing a so-called hourglass callback function, which is called each time a new 
instruction is decoded. The disassembly functions are used to produce the disassembly string 
depending on the current instruction mode. And finally, a callback function tracing various 
events is installed. 

2.2.1.2 The Mapfile Module 

The Mapfile module defines a timing behavior for bus devices. The timing is provided in wait 
states in terms of bus clock cycles. The Mapfile differentiates between read and write access 
times as well as between sequential and non-sequential accesses. The specific timing for se-
quential accesses can be used to emulate for example burst modes on the bus or page hits in 
DRAMs. Although this timing does not reflect the real behavior, at least it allows an approxi-
mation. For more detailed timing a DRAM timing module would be required. The Mapfile 
imitates the AMBA bus behavior in a simple manner. 

;; start     size  name width access read-times write-times 
00000000 00010000   ROM     2      r        8/8         0/0 
00010000 000F0000 NOMEM     4      -        0/0         0/0 
00100000 00100000  SRAM     4     rw      16/16       16/16 
00200000 00800000  DRAM     4     rw      208/8       200/8 
00A00000 FF600000 NOMEM     4      -        0/0         0/0 

Listing 2: Timing definition for the Mapfile module 

The timing parameters are defined in a file, a typical example of an embedded system archi-
tecture is given in Listing 2. The mapping defines a ROM with a size of 16 kB (0x10000 
bytes) starting at address 0x0. The data width of the ROM is 16 bits (2 bytes) and the sequen-
tial and non-sequential read access times are 8 ns each. An SRAM resides at address 0x10000 
with a size of 1 MB and read and write times of 16 ns. 

The non-sequential access times (208 ns and 200 ns) of the DRAM component are much 
slower than the sequential times. This reflects the page architecture of DRAMs [45]. DRAMs 
are organized in pages of memory cells, which are activated at the same time. Pages have a 
size of typically 0.5 to 4 kB, and accesses within a page are served very fast. An access to 
another page results in a page miss. For accessing this new page a pre-charge is required, 
leading to a longer access time. Furthermore, if sequential accesses within a page occur, a 
burst mode can be used, decreasing the access time even further. This results in the short ac-
cess times (8 ns) for sequential accesses to the DRAM. 

 13



2  State of the Art 

Depending on memory bus speed the Mapfile calculates the resulting wait states. For example 
the 208 ns for a non-sequential read access to the DRAM lead to 25 wait states on a bus run-
ning at 125 MHz. Every access to a memory location from the processor simulator passes 
through the Mapfile module. The Mapfile evaluates the timing behavior for this access, and 
either passes the access to the memory, if no wait states occur, or triggers the wait signal on 
the bus. 

2.2.2 Automatic Simulator Generation – The Verilator 
If simulators are not available for an existing processor or if the processor is a self-developed 
design, a model of the processor needs to be created. One choice is writing a model of the 
processor in software, for example in C. It is tricky to guarantee the consistency of the real 
hardware processor and the software model, as they are developed independently. This task 
becomes even more complicated if the processor design changes during development, for ex-
ample the pipeline structure is rearranged or new instructions are added. One solution is to use 
the hardware description of the processor, if available, which is usually written in a hardware 
description language, such as Verilog or VHDL. Simulation tools exist for executing the 
hardware model, and a connection to the profiler can be established via specific external inter-
faces, for example via the so-called foreign or programming language interface (FLI, PLI). 
However, hardware simulation is usually performed on a nanosecond-accurate level. This 
implies long simulation time and delivers an accuracy, which is not required for the profiling. 
Another choice is to convert the HDL model to a faster and more abstract cycle-accurate 
model. Different tools exists to convert HDL models to SystemC or C, e.g. V2SC [68], Verila-
tor [85], or VHDL-to-SystemC [98]. Within this work the Verilator tool is applied for auto-
matic generation of a processor model. The tool takes a set of synthesizable Verilog code files 
and creates a C++ model of this code including a simulator environment. The result is a C++ 
class containing the top level module of the Verilog design and all lower level modules. The 
input and output ports of the top level module are converted to variables with the same name. 
In addition ports and signals of lower level modules are still visible. 

The Verilator environment allows an easy testbench creation for the generated processor. 
Listing 3 shows the testbench for a C++ processor model called “Vtop”. Similar to the HDL 
model the processor is operated with the reset signal and a toggling clock signal. The simula-
tor is instructed to evaluate the input signal and generate the internal and output signals by 
calling the eval() function. Furthermore a tracing module is provided, which can be used to 
generate waveform of signals. 

#include <verilated.h>   // Defines common routines 
#include "Vtop.h"    // From Verilating "top.v" 
Vtop *top;     // Instantiation of module 
... 
int main() { 
 top = new Vtop;  // Create instance 
 top->reset_l = 0; // Set some inputs 
 while (!Verilated::gotFinish()) { 
  if (main_time > 10) { 
   top->reset_l = 1; // Deassert reset 
  } 
  if ((main_time % 10) == 1) { 
   top->clk = 1; // Toggle clock 
  } 
  if ((main_time % 10) == 6) { 
   top->clk = 0; 
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  } 
  top->eval(); // Evaluate model 
  cout << top->out << endl; // Read a output 
  main_time++; // Time passes... 
 } 
 top->final(); // Done simulating 
} 

Listing 3: Example code of a C++ testbench for a Verilator processor simulator [85] 

2.3 Tools 
This section presents tools for the design and profiling of embedded software. As an example 
of a software development suite, the RealView Developer Suite [14] for ARM processors is 
presented. It contains tools for compiling and building applications from source or assembly 
code targeted to a specific processor architecture. Development suites for other processors 
provide similar features and tools, for example the GNU Compiler Collection [36]. In the fol-
lowing sections a survey of existing profiling tools is given, which cover the analysis of per-
formance, memory accesses and power consumption. 

2.3.1 ARM Software Development Toolchain 
ARM provides a toolchain for software development targeted to their processors, which is 
called RealView Developer Suite [14]. The development suite includes all tools required for 
software development, including compiler, linker, debugger and ISS. 

Armcc [13] and armasm are the compiler and assembler for creating object files from soft-
ware source code files. The tools support the compilation of ISO C, ISO C++ or ARM assem-
bly code, respectively and are equipped with the standard library sets for C and C++ including 
file input/output and the Standard Template Library (STL). The code generation of the tools 
can be controlled with command-line options for creating code optimized for specific proces-
sor types and instruction sets, floating-point implementations and different optimizations tar-
gets, i.e. small code size or fast execution. Floating-Point operations can be either coded as 
assembly instructions or as calls to library functions. The former requires that the processor is 
equipped with a floating-point unit or an emulator. The tools can be instructed to include de-
bug information, e.g. for use in a debugger, in order to map assembly code lines to C source 
code lines. 

The object files created by armcc or armasm can either be first combined to a library with the 
armar achiever tool, or directly linked to an executable file with the linker utility (armlink). 
The linker creates an executable files from object and library files in the ARM Executable and 
Linking Format (ARM ELF). The linker defines the placement of the code and data segments 
of the input files in memory. Normally, code and data are partitioned in three regions: 

• ER_RO: read-only region for program code and constant data 
• ER_RW: read-write region for global variables 
• ER_ZI: zero-initialized region for data, which need to initialized with a zero value 

The regions are usually placed consecutively in memory followed by the heap. As stack and 
heap grow toward each other, the stack is usually placed at a high address, in order to avoid a 
stack-heap collision. The placement of the regions can be controlled by command-line options 
of the linker, e.g. the start address and the grouping of regions. For a more comprehensive 
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definition of the memory map a so-called scatter-loading can be applied. Within a scatter file, 
the exact placement can be specified, see Listing 4. 

ROM_LOAD 0x0 { 
    ROM_EXEC 0x0 { 
        vectors.o (Vect, +First) 
        * (+RO) 
       } 
    DRAM_RW +0 { 
        .ANY (+RW) 
    } 
    DRAM_ZI +0 { 
        .ANY (+ZI) 
    } 
    HEAP +0 UNINIT { 
        heap.o (+ZI) 
    } 
    TCM 0x04000000 0x2F40 { 
        tcm_vars.o (+RO,+RW,+ZI) 
    } 
    STACKS 0x28080000 UNINIT { 
        stack.o (+ZI) 
    } 
} 

Listing 4: Example scatter file 

The interrupt vectors and the startup code, defined in the file vectors.o are placed in at address 
0x0 followed by the RW and ZI region and the heap. A number of variables, defined in 
tcm_vars.o, are placed in a fast tightly coupled memory (TCM), which is memory-mapped at 
location 0x04000000 with a size of 0x2F40. Finally, the stack is placed at address 
0x28080000. 

The executable files created by the linker can be preprocesses and examined by any ELF 
compatible tool. The RealView suite includes a tool called fromelf, which can be used for 
converting the executable into another format, e.g. binary format. Additionally it displays the 
content of an ELF file, including code disassembly, debug information, and symbol tables. In 
Section 4.1.1 it is shown, how the tool can be used for extracting function and variable names 
of the executable. 

The tool suite provides two GUI-based debuggers and a command-line-based debugger called 
armsd for evaluating and debugging the code. The debuggers can either be used for observing 
code execution on real processor hardware or on a simulator. The connection to the execution 
unit is established via a DLL interface. For simulation the debugger connect to the ARMula-
tor, which is described in Section 2.2.1 The ARMulator can be extended for simulating the 
behavior of surrounding memory-mapped hardware, e.g. memory, coprocessors or DMA con-
trollers. 

2.3.2 Cycle Profiling Tools 
Profiling is a part of the software development process and describes the procedure of analyz-
ing the execution behavior of software concerning different metrics. Table 2 gives an over-
view of existing profiling tools. They differ in the delivered analysis results, accuracy and 
supported processor architectures. The tools are explained in more detail in the following sec-
tions. 
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Table 2: Profiling tools 
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Accuracy Embedded 
processors 

Gprof + - - + + + + Sampling (10 ms)  

Armprof + - - + - + -  ARM CPUs 

ARM RealView 
Profiler + + - + + + - Sampling (μs/ns) 

& estimation ARM CPUs 

ATOMIUM + + - + - + +  Abstract model 

PowerEscape1 + + + + - + +  Abstract model 

VTune + + - + + +2 - Sampling Xscale, Intel x86 

HDL Profiling3 + + + - - - - Ns If HDL model available 

Valgrind / 
Callgrind + + - + + + - Simulated CPU Only x86/PPC 

SimpleScalar + + + - +4 - - Simulated CPU Synthetic model 

MEMTRACE + + + + + - - Cycle if ISS available 
1no longer available 
2not for embedded processors 
3very slow 
4per assembly address 

2.3.2.1 Gprof 

Gprof [42] is a callgraph profiler, which was developed in the early 1980’s at the University 
of Berkeley. It is based on the UNIX profiling tool prof [19] and became part of the BSD-
UNIX system. With some enhancements gprof also became part of the binutils package [35] 
and is therefore available on all GNU/Linux systems. Thus, gprof became a widely-used pro-
filing tool for software analysis and optimization. 

Gprof is based on instrumentation of the source code. This process is performed by the com-
piler and needs to be enabled by designer manually, i.e. the gcc compiler provides the “-pg” 
option for this purpose. During instrumentation, see Section 3.3.2.1 for more details, the 
source code is enhanced with code fragments, which are responsible for generating profiling 
data during execution of the program. After finishing the program execution, the collected 
profiling information is written to a file, which can be further processed by the profiler. Gprof 
basically provides two different profiles, a flat profile as depicted in Listing 5 and a callgraph 
profiling shown in Listing 6. 

Each sample counts as 0.01 seconds. 
  %   cumulative   self              self     total            
 time   seconds   seconds    calls  us/call  us/call  name     
 65.84     15.60    15.60    20000   780.22   883.96  b 
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 17.51     19.75     4.15    40000   103.74   103.74  c 
 17.13     23.81     4.06    20000   202.97   306.71  a 

Listing 5: Gprof flat profile 

The flat profile is similar to the results that the simple prof tool delivers, including the total 
time spent in a function, the number of calls, and the average time per call. An enhancement is 
the total time per call including the called functions. This information is based on the 
callgraph profiling. 

granularity: each sample hit covers 2 byte(s) for 0.04% of 23.81 
seconds 
 
index % time    self  children    called     name 
 
[1]    100.0    0.00   23.81                 main [1] 
               15.60    2.07   20000/20000       b [2] 
                4.06    2.07   20000/20000       a [3] 
----------------------------------------------- 
               15.60    2.07   20000/20000       main [1] 
[2]     74.2   15.60    2.07   20000         b [2] 
                2.07    0.00   20000/40000       c [4] 
----------------------------------------------- 
                4.06    2.07   20000/20000       main [1] 
[3]     25.8    4.06    2.07   20000         a [3] 
                2.07    0.00   20000/40000       c [4] 
----------------------------------------------- 
                2.07    0.00   20000/40000       a [3] 
                2.07    0.00   20000/40000       b [2] 
[4]     17.4    4.15    0.00   40000         c [4] 

Listing 6: Gprof callgraph profile 

The detailed results for the callgraph profile provide a section for each node in the callgraph, 
see Figure 4 for the example graph. Starting from the main function, the total time in percent 
including all called functions is provided and how much of this time (in seconds) is spent in 
the function itself and in its called functions (children), respectively. In the following lines 
this timing information is provided for each child. For each parent of a function it is stated 
how much time a function contributes to it. Furthermore, gprof allows a line-by-line profiling 
for obtaining detailed results on a C source code line accuracy. 

 

Figure 4: Callgraph 

Gprof is a very useful tool for initial profiling. The drawback of the source code instrumenta-
tion is an inaccuracy, especially for small functions. The sampling method also leads to inac-
curacy especially for short functions and only provides estimated values. 
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2.3.2.2 Armprof 

Armprof [14] is the profiler provided by with the ARM development environment. It provides 
results similar to gprof, namely a flat profile as well as a callgraph profile. However the re-
sults are restricted to percentage values of the overall execution time; see Listing 7 for an ex-
ample result file. 

Name                       cum%     self%    desc%    calls 
main                      99.98%    0.00%   99.98%        1 
  _printf                           0.00%    0.00%        2 
  b                                66.10%    8.66%       20 
  a                                16.54%    8.66%       20 
------------------------------------------------------------ 
b                         74.77%   66.10%    8.66%       20 
  c                                 8.66%    0.00%       20 
------------------------------------------------------------ 
a                         25.20%   16.54%    8.66%       20 
  c                                 8.66%    0.00%       20 
------------------------------------------------------------ 
c                         17.33%   17.33%    0.00%       40 
------------------------------------------------------------ 

Listing 7: Armprof callgraph profile 

The operating mode of armprof differs from gprof. Profiling is not based on executing the 
program on real hardware, but running it on a simulator. The profiler is a built-in feature of 
the debugger armsd and applies the ARMulator, which is described in more detail in Section 
2.2.1. Therefore, the code does not need to be instrumented. Only symbols need to present in 
the executable for identifying the function names. 

Additionally to the basic cycle profiling, event-based profiling is provided by the ARMulator, 
i.e. the number of a specific event is counted for each functions. A wide range of events is 
supported including cache misses, interrupts and branch prediction failures. The results can be 
visualized with armprof in the same manner as the cycle profiling. 

Similar to gprof armprof also applies a sampling-based mechanism and therefore encounters 
the same inaccuracy. 

2.3.2.3 ARM RealView Profiler 

In 2007 ARM launched the RealView Profiler [8], a tool for profiling of ARM-based systems. 
It provides a graphical user interface (see Figure 5) and very detailed profiling results and is 
targeted to the optimization of software. 

For this purpose it provides the following information besides the clock cycles: 

• code coverage, including branch and statement coverage 
• average cycle per instructions (CPI) and interlock information 
• memory read and write accesses 
• detailed graphical callgraph view and number of calls, callers and callees 
• detailed information on function, class and source code line level including hot spots 

For acquiring the runtime information for the profiling the RealView Profiler provides two 
options, either a high-level simulation or a hardware tracing. The simulation is implemented 
by means of the so-called Real Time System Model (RTSM), which are instruction-accurate 
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simulation models. They don’t provide memory delay information, but allow an estimation of 
the execution time. A few RTSMs for ARM9- and ARM11-based systems are enclosed with 
the profiler, and further models can be built with a tool called System Generator. 

 

Figure 5: Result GUI elements of the RealView Profiler 

The hardware tracing method is a sampling-based method, which employs on-chip tracing 
methods of the ARM processors, which is captured by an external device, namely RealView 
Trace. The tracing information is then parsed and analyzed by the profiler. Currently, the 
hardware tracing is restricted to the following three processors, ARM926EJ-S, ARM1136JF-S 
and ARM1176JZF-S. 

The profiling results are very comprehensive; however when using RTSMs they lack timing 
accuracy of the processor and memory delay is neglected as well. Accurate timing can be ac-
complished with hardware tracing. This requires the appropriate hardware to be available, 
which hinders a broader design space exploration. Additionally, the sampling method lowers 
the accuracy. Memory profiling is only available in the sense of load/store operation tracing; 
the target memory (cache, internal or external memory) is not visible to the profiler. 

2.3.2.4 VTune Performance Analyzer 

The VTune Performance Analzyer [57], similar to the RealView Profiler, is a GUI-based pro-
filing tool. The tool is provided by Intel and supports their processor families, which includes 
for embedded systems only the XScale (PXA2xx) architecture respectively its successors 
from Marvell Technologies. VTune is a sampling-based profiler analyzing the program run-
ning on real hardware, usually the same machine as the profiler. The sampling is interrupt-
based and can be triggered either by a specific event or by the timer. For PC processors a large 
set of events is supported and callgraph profiling is possible as well. For embedded processors 
the profiling is restricted to time-based sampling and a limited set of events, namely data 
buffer and dependency and branch-specific events. Embedded systems are profiled remotely 
by incorporating a data collector into the embedded operating system and visualizing the data 
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on the GUI running on a PC. The PXA processors have two to four hardware counters, the so-
called performance monitor units (PMU), and the clock cycle counter for collecting the profil-
ing information. 

The interrupt-based sampling of VTune leads to a slight inaccuracy and the sampling of an 
application is executed while running on an operating system (OS), either Linux or Windows. 
This has the advantage of also reflecting the influence of the OS, however this is not always 
intended. Especially memory access optimizations are complicated, because of modified 
cache statistics due to task switches. 

2.3.2.5 Other Profilers 

OProfile [64] is profiler for the Linux OS, which supports numerous processor architectures, 
including the XScale, MIPS and PowerPC embedded processors. Similar to VTune, it uses the 
hardware counters of the processor for data collection. Valgrind [71], also a linux-based pro-
filer, provides very detailed profiling information, but only supports PC processors and the 
PowerPC embedded processor. Furthermore, most of processor development suites, such as 
ARC [6], CoWare Processor Designer [29] and Tensilica [41] deliver their own profilers, 
which are more or less comprehensive. For example the CoWare Processor Designer profiler 
delivers very detailed results including memory access statistics. However, all these profilers 
are restricted to the specific processor architectures. 

2.3.3 The ATOMIUM Memory Profiler 
The Belgian research institute IMEC developed a tool suite for optimizing data-intensive ap-
plications called ATOMIUM [25]. The tool suite consists of five tools, which focus on differ-
ent aspects of memory-centric optimizations, including data reuse within a memory hierarchy, 
reducing the amount of data storage, memory architecture modifications and code pruning. 
The optimizations can be applied automatically by the tools and are based on an initial evalua-
tion of the application. This first step within the optimization flow is carried out by the 
ATOMIUM/Analysis tool, which provides detailed profiling information of an application on 
C function level. For each function and for each variable within the C source code, read and 
write memory access statistics are generated. Additionally, a hot spot analysis identifying the 
most memory demanding code areas is carried out. The results are made available in different 
formats, for example as HTML pages. The profiling is based on instrumentation of the C 
source code, see Figure 6. 

ATOMIUM/Analysis is a pure memory profiler, any timing information is omitted. It applies 
only a flat memory architecture during analysis. Both points restrict the usage of the tool for 
hardware tailored optimizations. The ATOMIUM/Memory Architect tool extends the memory 
architecture with parameterizable memory, which also supports timing information. Due to 
the instrumentation, the tool is dependent on source code availability, which prohibits profil-
ing of 3-party libraries or applications. ATOMIUM is based on an abstract architecture model, 
thus the results are only an estimation of the real hardware results. This makes the tool well-
suited for optimizations in an early design stage, where hardware independent optimizations 
take place. 
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Figure 6: ATOMIUM/Analysis toolflow [25] 

Besides ATOMIUM the most well-know memory profiling tool is Callgrind (an extension to 
Cachegrind), which is part of the Valgrind [71] tool suite. It provides very detailed analysis 
results, but is not available for embedded processors. At the Technical University of Munich a 
tool called iprof [62] was developed, which extends gprof profiling with instruction usage 
information. The tool performs a static analysis of the instruction usage of the program code 
on a basic block level, and correlates this information with the gprof sampling results. Thus an 
instruction profiling per basic block is accomplished. Memory access statistics can be gener-
ated by observing the usage of load and store instructions. Iprof is available only for the Intel-
IA32 architecture and for SPARC processors. 

2.3.4 Power Estimation Tools 
Several tools exist for the estimation of power consumption of processors and embedded sys-
tems. Generally, they can be separated in measurement-based models and analytical models. 
JouleTrack [84] is a measurement-based tool, which provides several models on different lev-
els of abstraction for two different processors. Numerous analytical models have been built on 
top of the processor simulator suite SimpleScalar [27]. PowerEscape [40] is a commercial tool 
which uses a parameterizable generic processor and memory architecture for estimation of 
power consumption, performance and memory accesses for a given application. 

2.3.4.1 JouleTrack 

In 2001 a power estimation tool called JouleTrack [84] was developed at the Massachusetts 
Institute of Technology. It is implemented as a web-based application, which delivers energy 
consumption values for C source code that is uploaded to the web page. Two processor archi-
tectures are supported, the StrongARM SA-1100 and the Hitachi SH-4 RISC processor, two 
widely used embedded processors during that time. 
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Two distinct energy models are presented. Measurement of the current drawn while executing 
different instructions show a variation of up to 38 %, Figure 7 shows the result for the Strong-
ARM processor. Contrarily, the average current for different benchmark programs varies only 
within a small range. The average current mainly depends on the supply voltage and core 
clock frequency. A simple first order model for energy estimation can be established as: 

tfVIVE ddddtot Δ⋅⋅= ),(0    (1) 

In this model the required energy only depends on the time required to execute the program, 
not on the actual program. The model estimates the energy within 8 % accuracy compared to 
the measurements of the tested programs. 

As shown in Figure 7, the largest current deviation exists for the data transfer instructions 
load (LDxxx) and store (STxxx) and for the test (TST) and multiply-accumulate (MLA) in-
structions. Thus, especially for memory-intensive software, the first order model accuracy 
decreases. 

 

Figure 7: Current values for instruction execution on a StrongARM SA-1100 [84] 

A second-order model incorporates the differences between the instructions and the states of 
the processor, especially for memory accesses. The instructions are grouped in several classes 
with similar power consumption and an average power value is then assigned to each group. 
Their influence is specified by weighting factors and the resulting current model is described 
as: 
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The consumed current is defined by a base current I0, which is the average current of all 
measurements and dependent on the supply voltage and the frequency. It is weighted depend-
ing on the weighting factors wk for the different instruction classes and on ck, the portion of 
overall cycles consumed within this instruction class. The ck value for each class is 
determined based on instruction traces, which are created by running the program on a 
simulator. 
For the StrongARM processor four instruction classes exist, instructions, sequential and non-
sequential memory accesses and internal cycles, where the internal cycles and the sequential 
cycles lead to lower and the other two classes to higher current then I0. The second-order 
model shows an accuracy of 2 %. The model has been further extended by the separation of 
dynamic and static power consumption, where the static part is due to the leakage current of 
the CMOS components. 

JouleTrack give a good an accurate estimation for the energy consumption of the two proces-
sors. The results are restricted to the two processors presented and are only given for the en-
tire program, not for every function. The tool is discontinued and no longer publicly available. 

2.3.4.2 PowerEscape 

PowerEscape [40] is a power and performance profiling tool based on the ATOMIUM tool 
suite. It applies the techniques of ATOMIUM/Analysis and ATOMIUM/MemoryArchitect and 
is extended with power estimation capabilities. The simulated CPU architecture is parame-
terizable in terms of register count, bus width, CPU speed and further parameters and thus can 
be adapted to existing processors. The memory architecture can be customized including 
cache size, timing and replacement policy. Similar to the ATOMIUM tools the memory ac-
cesses are shown for each function and cache miss in hit reports. Additionally, timing and 
power information for memory accesses is provided. The tool can be used in batch mode, for 
example for finding an optimal cache size, and the results for accesses, time and required en-
ergy are presented as a Pareto curve. 

PowerEscape was presented in 2004 by a newly founded company with the same name. The 
current status of the tool is unclear, as the company was acquired by ARM Ltd. in 2006 [16]. 
So far, the PowerEscape is not available as a single product from ARM. 

2.3.4.3 Analytical Models for Power Estimation 

Several cycle-accurate analytical power models were built on top of the SimpleScalar [27] 
processor simulator suite. SimplePower [102] creates an analytical energy model of the proc-
essor. A register transfer (RT) level model of the processor is used for this purpose, which is 
built of basic hardware blocks, such as multiplexers, latches, adders and shifters. These blocks 
are accompanied by power values depending on the Hamming distance of their input pattern. 
The RT level model is triggered by the processor simulator and thus the switching activity of 
the basic blocks is simulated and the energy consumption can be estimated. As an analytical 
model it can be adapted to different technology feature size by exchanging the basic block 
power value library. The RT-level model of the processor core covers the entire pipeline and 
the register file, but neglects the control logic and clock distribution tree. For cache simulation 
SimplePower applies the DineroIII [31] cache simulator enhanced with analytical energy 
models. Other internal or external memory is not modeled. 

A similar approach was taken by the developers of SimpleScalar themselves. The Sim-
Panalyzer extends the SimpleScalar simulator with a highly elaborated power model simulat-
ing the processor architecture on gate-level with a cycle-accurate timing. Similar as in Sim-
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plePower, the processor is divided into basic blocks. However, a special emphasis is put on 
the clock distribution tree, which can have a huge influence on the overall performance. Be-
side the input switching activity the internal structure of these blocks is considered, including 
gate and interconnect capacitance and resistance. These values are calculated based on tech-
nology parameters and user defined parameters about the architecture of the basic blocks. The 
clock tree, for example, is specified by die area, the clock skew and the clock node capaci-
tance. For cache power simulation either CACTI [96] models can be applied or the more ac-
curate models provided by the tool, which are based on detailed SRAM and address decoding 
models. These SRAM models are also used for other memory components of the processor, 
such as a register file or a table look-aside buffer. The models are calibrated against SPICE 
(HSPICE) simulations of the components and show an average estimation error of 7 %. The 
tool provides models of the StrongARM and ALPHA processors. 

The Wattch [26] extension to the SimpleScalar simulator also implements a similar power 
model. Wattch also uses CACTI and performs a detailed clock tree modeling. However, other 
parts of the model are not as detailed, for example the power consumption model of the com-
binational logic in the data path is based on scaled power values of similar structures in dif-
ferent technology. Models are provided for an Alpha, Pentium Pro and a MIPS processor. 

2.3.4.4 Functional-Level Power Analysis 

Qu et al. [77] present a higher (function)-level approach for power estimation of processors. 
Based on the assumption that many programs spend most of their execution time in a few 
functions, power modeling of these functions allows a decent estimation of overall power 
consumption. As an example, they name floating point library functions. The power models 
for these functions can be stored in a data bank. The power consumption of a user application 
is estimated by tracing its execution on a simulator and counting the number of library func-
tion calls. The number of calls of each function can then be multiplied with the associated 
power value in the data bank and then each of these sums is added together to achieve the 
overall power consumption. This approach is restricted in numerous ways. First of all, the 
approach is unfeasible for applications that are not implemented based on library functions. 
For example, the implementation of a video decoder, as presented in Chapter 6.1, uses only 
optimized hand-written C code. Additionally, only static power values are stored for each 
function in the data base. This can not reflect real-time behavior influences, e.g. cache misses 
or conditional code execution. 

Julien et al. [61] apply functional-level power analysis (FLPA) to model power estimation of 
a complex DSP processor. Contrary to the instruction-level power analysis (ILPA) proposed 
by Tiwari, FLPA models the power consumption on a higher level of abstraction. The model 
is based on the condition that processors can be divided into functional units and the power 
consumption of each unit can be described by a few parameters. Contrary to the analytical 
models presented in the previous section the units are on a higher level of abstraction. Instead 
of using units on an RT level, such as registers or multiplexers, functional blocks are used, 
such as a processing unit or DMA controller. This has the major advantage that a detailed 
knowledge of the internal processor architecture is not required. The activity of each unit can 
be described by a few parameters. In the approach of Julien et al., two sets of parameters are 
defined. One set of parameters (algorithmic parameters) is defined for describing the depend-
ency of the model on the software activity– e.g. cache misses and degree of parallelism. The 
second set includes system-specific dependencies (architectural parameters), which include 
the memory setup and the core clock frequency. Instead of incorporating all profiling details 
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of the instruction trace of an application, only a few parameters need to extracted and fed to 
the model. 

The coarse-grain nature of the approach makes it very suitable for complex processor archi-
tectures, such as VLIW processors. Applying ILPA models would require a huge number of 
measurements, as every combination of instructions as VLIWs would need to be modeled, as 
well as any sequence of VLIWs, to cover all inter-instruction dependencies. The advantage of 
the FLPA methodology is the lower complexity of the modeling and estimation, but this 
comes at the cost of lower accuracy.  

Blume et al. [23] note that the FLPA approach delivers an appropriate accuracy for only a 
specific set of applications with small power dynamics. Therefore they extended it with an 
instruction-level model to form a hybrid FLPA/ILPA model. The methodology has been 
proven to work on an ARM940T processor as well as on a heterogeneous SoC architecture 
incorporating an ARM926EJ-S and a Texas Instruments C55x DSP core. The FLPA model 
for the ARM940T is comprised of three functional blocks: the processor core, the data and the 
instruction cache. For the ARM926EJ-S, additionally the on-chip SRAM and the external 
SDRAM are incorporated into the model. During the FLPA model creation it was found that 
the power consumption is fairly dependent on the executed instruction, which leads to the 
necessity of incorporating instruction-level analysis to increase the accuracy. For power esti-
mation based on this model, this in turn means that a profiling of the user application is re-
quired to reveal the dynamic instruction distribution. For the ARM940T, the instructions can 
be clustered in six groups with similar power consumption, which reduces the complexity of 
the model. Similar models were built for the ARM926EJ-S and the C55x DSP. With these 
models Blume et al. were able to provide a high estimation accuracy of the models for a wide 
range of applications. Especially for the heterogeneous SoC they achieved high accuracy with 
a maximum error of 3.6 %. 
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3 Theoretical Background 
This chapter gives an overview of the underlying theory and techniques of profiling for 
embedded systems. At first, the different components of such systems are examined, including 
the processor, memory and bus architectures. Subsequently simulation models for these 
components are surveyed, which are typically used for testing their functionality, and more 
important for profiling, their timing behavior. Different techniques exist for profiling the 
execution of applications on a processor. They differ for example in their level of accuracy, 
speed and level of details. Some established software optimizations and hardware architecture 
decisions are presented, which typically benefit from the knowledge gained during profiling, 
for example by finding the right positions in the source code for applying the code 
modifications. Finally an example of a demanding data-intensive application, the H.264/AVC 
video coding standard is presented. 

3.1 Embedded System Components 
Embedded Systems are usually composed of multiple functional units, which overtake differ-
ent tasks within the data processing system, such as data retrieval, transport, processing and 
storage as well as control purposes. Usually the central processing and control unit of an em-
bedded system is a microprocessor or a microcontroller. Program code and data are stored in a 
hierarchy of memory units, which cover the different storage needs concerning live time, ac-
cess time and size. Data transfer between processing, storage and I/O units is often provided 
by bus systems, as they allow an efficient manner of interconnectedness. If high speed data 
transfers are required, the bandwidth of busses might not be sufficient and dedicated transfer 
channels are used instead, such as FIFO buffers. If the processing power of a single processor 
is not sufficient, the system is extended by further processing units. Either the same processor 
is instantiated multiple times leading to a homogeneous multi-processor system, or special-
ized processing units, such as DSPs or coprocessors based on dedicated logic are added to the 
system. 

3.1.1 Processor Architectures 
In order to work within the constraints of embedded systems, processors with a small and 
simple architecture are employed. In the 80s the Reduced Instruction Set Computer (RISC) 
architecture was developed, which allows the design of fast and small processors and has be-
come the primary choice for microprocessors in embedded systems. Depending on the appli-
cation field and the required performance processors with a data path width between 4 and 
128 bits are used and clock rates from a few MHz up to 1 GHz are available. In the field of 
data-intensive applications, the focus of this work, usually processors are applied, which are 
at least 16-bit wide and run with more than 100 MHz. Section 2.1.2 gives an overview of the 
most common processor architectures for this application area. 

RISC processors feature a simple instruction set as compared to the Complex Instruction Set 
Computer (CISC) architectures, which is preferred in personal computers. The major goal of 
the RISC architecture is to execute each instruction within the same amount of time, e.g. one 
clock cycle, and have a simple, equal-length, instruction format. Memory accesses usually 
require much more time than data processing functions, therefore memory accesses are only 
allowed by special load and store instructions, which also leads to the name load/store archi-
tecture. Other instructions can only be applied on data, which resides in the local register file 
and can thus be executed very fast. 
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This simplicity is the basis for applying pipelining mechanisms, which allows a speedup by 
parallel processing of several instructions at the same time. With pipelining the processing of 
each instruction is divided into several steps, so-called pipeline stages, with a similar length 
required for their execution. Figure 8 shows a pipeline with five stages, in the first stage an 
instruction is fetched from memory, or if available, from the instruction cache and stored in 
the instruction register (IR). The instruction is fetched from the address given in the program 
counter (PC). The PC is then either automatically incremented to the next instruction address 
or updated with a new value, e.g. if a previous branch instruction requests it. The instruction 
decoder evaluates the instruction in the next state and generates the signals required for con-
trolling the other processor components, e.g. within this stage source register values are trans-
ferred from the register file to the ALU source registers (S1 and S2). Then the actual instruc-
tion execution takes place, for example a SUB operation the ALU subtracts S1 from S2 and 
stores the result in the result register (RES). For load and store operations the address calcula-
tion is performed in this stage, and the actual data access to the memory (or data cache) is 
performed in the next stage. In the final stage, the ALU result or the data from memory is 
written back to the register file. 

The pipelining allows the parallel execution of multiple instructions by starting the processing 
of a new instruction while other instructions are still in the pipeline. Usually the pipeline ad-
vances by one stage each clock cycle, which leads to an instruction per cycle (IPC) count of 
one, i.e. each clock cycle one instruction leaves the pipeline. The IPC decreases if a pipeline 
stall is required, which occurs if data dependencies between instructions in the pipeline are 
present or if the execution on an instruction or a memory access requires more than one cycle. 
The IPC also decreases by branch instruction, which requires a flush of the pipeline. 

The pipeline length of current embedded processors ranges between three and nine stages. 
The longer pipelines allow a higher clock frequency and thus lead to an increased instruction 
throughput. At the same time the negative influence of pipeline flushes on the performance 
also increases. Branch prediction mechanisms are introduced to such architectures in order to 
reduce the need of flushes by filling the pipeline corresponding to the expected program flow. 
In the following sections some examples for different pipelines are given. 

 

Figure 8: Typical data path of a RISC processor with a 5-stage pipeline 
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The fact that data processing is restricted to data available in the register file is a huge burden 
especially for data-intensive applications. For every load or store to memory an extra instruc-
tion needs to be issued. In order to reduce the number of these instructions RISC processor 
usually come with a large set of registers, thus values can be kept in registers as long as re-
quired for processing. If more data are required than can be stored in the register, a so-called 
register spill is required, in order to make place for new data. Advanced memory architec-
tures, as described in Section 3.1.2, are applied to reduce the time required for register spill 
and fill. The drawback of a huge amount of registers is the large die area required by the reg-
ister file and the addressing size required in the instruction format, e.g. with 64 registers and a 
3-address format 18 bits of the instruction word are taken already for register addressing. Fur-
thermore, when a function call occurs, a larger number of registers need to be saved on the 
stack. To overcome this problem register windowing has been introduced, as used for example 
in the Tensilica [41] or SPARC [38] architectures. 

In many data processing algorithms the width of the data is lower than data path width avail-
able in the processor, for example when processing 8-bit video data on a 32-bit processor. 
Furthermore quite often the same operation needs to be performed many times to adjacent 
pixels. This observation leads to the Single Instruction Multiple Data (SIMD) architecture 
[34], where the data path is separated in multiple data paths, e.g. the 32 bits are split into four 
times 8 bits, and on each of these paths the same operation is applied. In best case this leads to 
a four times increase performance, however data may need to be rearranged by special in-
structions in order to fit into SIMD format, which reduces the speed- up factor. SIMD is espe-
cially used in multimedia instruction set extensions for embedded processors, e.g. the Wire-
less MMX in XScale, or in Digital Signal Processors (DSPs). As SIMD is basically an 
organizational feature it has a low impact on the hardware requirements. It mainly requires 
some additions in the control unit for separating the data path and for extending the instruc-
tion decoding. 

3.1.2 Memory Architectures 
The instructions and data to be processed by the processor are stored in memory. The most 
important characteristics of memory devices are their size and speed, which are influenced by 
the applied technologies and architectures. Processor-based systems are typically connected to 
a hierarchically structured memory architecture, see Figure 9, starting with a fast and small 
memory and ending with large and slow storage devices. Memory has an enormous influence 
on the overall system architecture, in terms of power consumption, die area and performance. 

Permanent storage of program code and data is usually provided by disk memory, such as 
hard disk or DVDs. In embedded systems flash memory is often used for this purpose. Disk 
memory is slow; the access time is in the region of milliseconds and the transfer rates below 
100 MB/s. Therefore intermediate storage is provided in volatile memory devices, such as 
dynamic RAMs (DRAM), with access times in the range of nanoseconds and transfer rates up 
to a few gigabytes per second. 

Until the early 1980’s DRAM devices and processors achieved about the same speed. Since 
then the processor speed has increased every year by a factor between 1.35 and 1.55, whereas 
DRAM only showed about 7 % improvement in latency per year [45]. This expanding gap 
leads to the necessity of intermediate storage between memory and processor, in order to 
bridge the speed difference between them. Over the years, a hierarchy of memory units was 
developed to close the gap, namely multiple levels of caches and tightly coupled memory 
(TCM). The fastest storage element in the memory hierarchy is the register file. 
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The underlying principle of the memory hierarchy is to have those parts of the data and pro-
gram code available in faster intermediate memory, which are expected to be used during the 
following program steps. The basic idea is to take advantage of the spatial and temporal local-
ity within data processing and program execution. The fact that most of the program code is 
executed in sequential manner and stored in the same way in memory, leads to spatial locality. 
Temporal locality occurs in loop execution, where the same sequence of code is executed 
many times. From the data processing perspective spatial locality occurs, when neighboring 
data in memory is accessed consecutively, e.g. when filtering each pixel of a frame. Temporal 
locality can also be found frequently in data processing; variables are often used multiple 
times during a calculation. Besides locality, prediction mechanism can be used for optimizing 
memory accesses, as for example used in branch prediction and data pre-fetching. The princi-
ple of locality and prediction can either be used during compile-time or run-time. 

3.1.2.1 Register File 

The register file is directly connected to the ALU and provided the fastest access to data. It 
contains numerous registers, and is either implemented as fast SRAM cell or assembled of 
flip-flips and allows access within a single CPU clock cycle. Registers can be directly ac-
cessed by numbers or are arranged in sets (windows), with one set of registers visible at a 
time. Registers are assembled of flip-flops and are expensive in terms of die area and power 
consumption and also the allocation process. The allocation of registers with data values is 
determined by the compiler, and thus is static during run-time. The register allocation is per-
formed with regards to the temporal locality of the data values. The counterpart to the register 
file for fast program code access is the instruction register. 
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Figure 9: Typical memory hierarchy in computing devices 

3.1.2.2 On-Chip Memory 

A cache is a fast memory, which stores recently used data and program code. When a data 
value is requested by the CPU at first a cache lookup is performed. If data can not be found in 
the cache it is loaded from memory to the CPU and also stored in the cache, usually including 
some data at neighboring addresses. Access times for caches are within a range of one to a 
few CPU clock cycles. 

Caches are organized in sets and lines, see Figure 10. Each set consist of a tag RAM and a 
data RAM, which in turn contains a number of lines, e.g. 256 lines. The tag RAM contains a 
part of the memory address (the tag) of the data values in the corresponding data RAM line. A 
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line in the data RAM is used to store a data value and its neighbors and has a size of a few 
words, for example eight words. If the CPU requests a data value from the cache, the data 
address is spilt into a tag, index, word and byte part. The index part corresponds to a specific 
line, the word part identifies the word within a line and the byte part selects the byte. The rest 
of the data address is the tag. The tag is compared with the value stored in the tag RAM, and 
if they are equal the requested data can be read from the data RAM. Otherwise the requested 
data value needs to be read from memory and is together with its seven neighbors in the line. 
Caches with only one set of tag and data RAM are called direct-mapped caches. Such cache 
architectures are simple, however they show a significant drawback. Due to the index and 
word parts of the address, each data address can only be mapped to one specific location in 
the cache. If this location is already in use when loading data from memory into the cache, the 
entire line containing this location is overwritten with the new line. This decreases the per-
formance significantly, when two data values from different memory addresses, which are 
mapped to the same line, are required alternating. In order to overcome this drawback caches 
with multiple sets, so-called set-associative caches, have been introduced. In the example four 
sets, and thus four location candidates are available for each data item. The decision, which 
set is used to place new data, is taken upon more or less advanced mechanisms; a very com-
mon policy replaces the least recently used (LRU) line. Set-Associative caches require more 
die area, because for each set a comparator and additional control logic and multiplexers are 
required. 

Caches are very efficient hardware structures for taking advantage of locality in data and pro-
gram code during runtime. Loading an entire line to memory, instead of only the requested 
memory address, severs the principle of spatial locality, whereas the associativity increases 
the temporal locality advantage. 

 

Figure 10: Architecture of a four-way set associative cache (eight words per lines,  
255 lines per set) 
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Caches keep copies of data, which actually resides in memory. If the memory content is 
changed, cache coherency problems occur. This happens if other system components, e.g. 
other processors, DMA controller or hardware components have write access to the memory. 
In such cases the cache content needs to be refreshed (invalidated) in order to synchronize the 
memory and the cache content. Furthermore, especially in real-time critical embedded envi-
ronments, the unpredictable timing behavior that caches introduce to the system can be prob-
lematic. The concept of caches has been extended to multiple levels of caches, which are con-
nected in a hierarchical manner, from smaller and fast, usually multi-set associative, to larger 
and slower direct-mapped caches. Caches contribute highly to power consumption and die 
area. For example, depending on the technology, the two 8 kB caches of the ARM946E-S 
processor require between 40 % and 60 % of the die area and are responsible for 30 % of the 
power consumption [8]. 

Write buffers are intermediate storage devices between the CPU core and the bus/cache. 
They are used for avoiding the wait states required when storing data from the CPU to the 
main memory. Instead of writing directly to the memory the data values are stored together 
with their address in the write buffer, which only requires one CPU clock cycles. The write 
buffer then performs the actual store operation independently and the CPU continues without 
a pipeline stall. Write buffers usually have a size of a few words, e.g. 16 for the ARM9E fam-
ily of processors, and data does not reside in the cache or if the write-through mode is used. 

Memory management units (MMU) are used to control the memory access of the processor. 
Among other tasks, the MMU typically performs address translations, i.e. the MMU translates 
every (virtual) memory address from the CPU to physical addresses on the memory bus. Op-
erating systems utilize address translation in order to provide a consistent memory space to all 
running processes, e.g. all processes use a virtual address space starting at address 0x0, 
whereas the physical addresses are mapped to distinct locations. Furthermore, the access be-
havior for each memory area can be specified, this includes access restrictions, such as read- 
or write only access and if caches are used for this area. If a forbidden memory access occurs 
the MMU triggers an interrupt, which simplifies the debugging process. Non-cacheable mem-
ory areas are used for memory locations, which can be modified by other components than the 
CPU, for example status registers or output memory of hardware components. Otherwise, 
cache inconsistency may occur if the cache holds an old copy of the memory data. If tightly 
coupled memory is available in the system, the mapping of this memory to the address space 
is also provided by the MMU. For the address translation the memory space is divided into 
pages, e.g. 4 kB per page, and page tables provide the physical base address of a page that 
corresponds to a specific virtual address. The page tables are stored in a fast memory called 
translation lookaside buffer (TLB) and can be modified by the operating system. 

Tightly coupled memory (TCM) is on-chip memory, which allows fast data or program code 
access. It is located close to the processor and is usually built of SRAM cells, which run with 
the same speed as the processor. Its main purpose is intermediate storage of frequently ac-
cessed data and program code. A typical example would be a data array, which is accessed in 
a loop. During loop execution this array should be stored in the TCM. Instruction TCMs 
might be used to store interrupt routines, in order to allow a fast serving. The major advantage 
over caches is that the behavior of TCMs is predictable, as the content is controlled by the 
software. Data replacement in caches can lead to a cache trashing, i.e. two consecutively ac-
cessed memory addresses share the same line in cache, such lead to a cache miss, which in-
curs a write back and new data fetch. Considering the loop execution example, often multiple 
data arrays are accessed, as for example in the following code [74]: 

int a[N], b[N], c[N]; 
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… 
for i in 0 to N-1 
c[i] = a[i] + b[i]; 
end for; 

Listing 8: Simple loop showing the risk of cache trashing 

If the size of these arrays is a multiple of the set size of the cache, and the arrays are arranged 
consecutively in memory, than a[i], b[i] and c[i] map to the same cache line. Loading one of 
them replaces the former one in the cache; this behavior is called cache trashing and leads to 
an enormous performance decrease. Furthermore caches require more chip area and energy 
than TCMs due to the TAG-RAMs and comparators. On the other hand TCMs need to be con-
trolled by the software, which may leads to overhead during filling or writing back from the 
TCMs. If a DMA controller is available in the system, it can overtake the burden of the data 
transfers. The size of TCMs is similar to cache sizes, usually between a few to some hundreds 
of kilobytes. Some processors implement fast memory by assigning a fraction of the cache to 
the purpose of TCMs [3]. If both exist, TCMs are placed parallel to the cache, and the MMU 
controls the access depending on the memory mapping. 

In embedded systems the previously mentioned core memory components are extended with 
on-chip and off-chip memory and controllers. These memory units are larger than the core 
memory units, but require access times of multiple processor cycles. On-chip SRAMs are 
built of cells that a composed of six transistors. These transistors form a flip-flop with two 
stable states for storing one bit. The cells are connected via the word-lines to the address de-
coder and the two differential bit-lines allow data write or read. The SRAM is organized in 
rows and columns, all cells of the same row share a word-line, and all cells in one column are 
connected to the same bit line. Before a read operation occurs, the bit lines are precharged to a 
voltage level in the middle between the “0” and “1” level. Especially for large SRAMs the 
long bit lines with a high capacitive load lead to high power consumption due to the precharg-
ing. On-chip SRAMs are operated with processor speed or a small divider of the processor 
speed, depending on the internal bus architecture. SRAMs may also be replaced by embed-
ded DRAM cells [58], which are built of regular one-transistor DRAM cell, but provide an 
SRAM-like interface. Embedded DRAMs offer a drastically decreased die size and lower 
power consumption, but provided a lower access speed. Furthermore, due to the different 
technologies, integrating embedded DRAM with logic circuits on one die requires higher de-
sign effort. 

Especially application-specific systems provide on-chip ROMs. They are used for storing 
program code, e.g. the boot-up sequence of code, or constant data values, such as look-up 
tables for encoding or filtering. 

3.1.2.3 DMA Controller 

For data-intensive applications, a large portion of the processing time is spent with data ac-
cesses. This can be either for moving data within memory or for waiting for data transfer from 
slower memory. In order to allow concurrent data transfer to data processing, a specialized 
data transfer unit, a direct memory access (DMA) controller can be used. DMA controllers 
are bus master components, which can transfer data from one memory location to another. 
The transfer is initiated by the CPU (or another component) but takes place autonomously 
from the initiator. In order to use the DMA controller efficiently it should be controllable in a 
“fire-and-forget” manner, i.e. the initiator should be able to continue work as usual after fill-
ing the transfer task to the DMA controller, and only be informed when the transfer is accom-
plished. This is either done with an interrupt signal or with status information in the DMA 
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controller. In order to allow this, DMA controllers have multiple slots, so-called channels. 
Each channel carries the information of one data transfer, which consists of the source and 
destination address and the amount of data to be transferred. The number of channels it either 
fixed, e.g. 16, or it can be extended by channel chaining, i.e. the channel information is stored 
in form of a linked list in memory. The channel initialization and the transfer initiation can be 
performed separately. This is especially helpful if a specific transfer need to take place regu-
larly, for example for copying the video frame buffer from main memory to the video output 
device. Also some DMA controllers allow auto-increment of source or destination addresses 
after a transfer has finished. Especially for video processing two-dimensional DMA transfers 
are very helpful. For such transfers the channel information is extended with width, height, 
and a stride dimensions. Figure 11 shows a typical two-dimensional DMA transfer operation. 

 

Figure 11: Two-dimensional DMA transfer 

3.1.2.4 Off-Chip Memory 

External memory is used for storing program code and data, such as heap and stack. As non-
permanent memory either SRAMs or DRAMs are used, whereas DRAMs are much cheaper. 
Typical DRAM components are synchronous DRAM (SDRAMs) [54], which have a clocked 
input/output behavior. 

SDRAMs are organized in banks, for example two or four banks, where each bank can be 
controlled separately. Many SDRAM commands, such as active, pre-charge or read, need 
multiple cycles to be executed. The bank layout allows multiple commands to be executed 
concurrently, and effectively increases the performance. Each bank is organized in rows (also 
called pages) and columns, similar to SRAMs. The access of a specific memory cell requires 
multiple steps. At first a page has to be activated during the row-address strobe (RAS) phase. 
In the following column address strobe (CAS) phase the cell within the activated page is se-
lected, and the read/write signal indicates the operation. For read accesses the memory re-
quires two to three cycles (CAS latency) before the value is available on the bit lines. During 
this time the bank can accept new commands, for example the next read command. In order to 
decrease the required commands burst modes can be used, which automatically read or write a 
number of consecutive memory cells. Before the next page can be opened the current page 
needs to be closed, which implies a pre-charge of the bit-lines. 

All of these features, namely the parallel bank access, the pipelining within each bank, and the 
burst modes lead to a higher throughput. They help to cover the slow access time of DRAM 
cells, which is about 60 ns, and allow data transfers on every clock cycles even for 6 ns cycle 
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times (167 MHz) and thus reach the performance of SRAM. The SDRAM performance has 
been enhanced with the double-data-rate (DDR) concept. DDR SDRAMs have a data I/O 
buffer extended with a small buffer for storing multiple data values. In the so-called pre-
fetching multiple consecutive data words are read in one clock cycle from the memory bank 
to the buffer, and transferred in two half-cycles sequentially to the data output pins. In burst 
transfer mode this can increase the actual data rate up to factor equal to the number of concur-
rently read words. 

The disadvantage of SDRAMs as compared to SRAMs is that they are far more complex to 
operate. SDRAM controllers are required which contain large state-machines to reflect the 
internal and pipelined behavior of the memory. Furthermore as the capacitors loose their 
charge over time, a periodical refresh every 50 - 100 ms is required. During this phase the 
memory is not accessible. In case of random access to the memory, many page misses occur, 
and the required activation and deactivation time decrease the performance. 

Due to their complex structure, SDRAMs are also more difficult to model in a simulation en-
vironment. The ARMulator, see Section 2.2.1 uses a simplified model instead, which only 
differentiates between sequential and non-sequential accesses. 

Contrary to desktop PCs, embedded systems often use flash memory for permanent (non-
volatile) data storage instead of hard disks. This is due to the fact that embedded systems have 
lower demands on the storage space and that they are used in an environment, where hard 
drives might be too sensitive. Flash memory has a simple interface similar to the SRAM inter-
face. The access time for read and write operations differs in two orders of magnitude, 
whereas read operations are in the range of DRAM access times, about 120 ns for single ac-
cess, write accesses are much slower. 

The power consumption of SDRAM and flash memory are very different. Flash memory has a 
much lower power consumption especially when put into standby mode. The Intel flash de-
vice used in this work [55] is specified with 120uA current during standby, whereas an 
SDRAM [79] memory requires about 30 times more (4 mA). For active memory accesses the 
difference is not as drastic, a read operation requires on the flash memory 30-50mA, a write 
access 80mA, the SDRAM dissipates 150 - 180 mA for both, read or write. 

3.1.3 Interconnection Architectures 
The interconnection of components in an embedded system has a crucial impact on the per-
formance. The most important interconnect in processor-based systems is between the proces-
sor and the memory. Processors require instructions and data for operation, whereas fast in-
struction transfer is the most dominant performance factor, because whenever instruction 
transfer stops the processor must be halted. From the processor view one can differentiate 
between von Neumann and Harvard architectures, since the former combines data and in-
struction transfers on one bus, while the latter utilizes separate busses. If separate memory 
devices are available for instruction and data, such as instruction and data cache, the Harvard 
architecture increases the performance of data-intensive applications significantly. Besides the 
basic data interface (load/store interface) some processors offer further choices for data sup-
ply. Some processors [6] offer multiple load/store interfaces, which allow for example the X 
and Y memory interfaces for DSP operations. User-defined register file extensions [6] can 
also be used as a secondary data interface or specific FIFO ports [94] that allow direct connect 
to other system components. Usually the usage of these architectural features requires hand-
optimized assembly programming, as they are not automatically utilized by compiler for code 
generation. 
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The processor, respectively the cache, is connected to the other system components, which 
includes memory, I/O components and further (co-) processors. The interconnection is charac-
terized by two major aspects, bandwidth and latency. The simplest, and in embedded systems 
most used interconnection architecture, is the bus, which connects several components to a 
collection of shared physical wires (shared-medium network). The communication on the bus 
is initiated by one component, the bus master, and is directed to one or more other compo-
nents, the bus slaves. At any time only one transaction can take place on the bus. This makes 
it very suitable if only one master and an arbitrary number of slaves exist on the bus. Multi-
Master busses require an arbitration unit, which assigns the bus with a given prioritization 
scheme to the masters. If many masters compete for the bus, long waiting periods can occur 
and reduce the overall performance. Also if slaves have long latencies, if a read page miss on 
an SDRAM occurs, the bus is occupied until the slave can serve the required access. Thus the 
available bus bandwidth can not be used efficiently. Different mechanism try to overcome this 
problem, for example split transactions, pipelining, multi-channel busses, see Section 2.1.4 
for detailed description. Busses have the advantage that they can be implemented and ex-
tended easily and are very area efficient due to the shared medium concept. In large chip de-
signs, with many components and long wires, single bus architectures are energy inefficient 
and slow due to their broadcast behavior and the high capacitance and cross-talk between the 
wires. Advanced interconnect architectures have been developed for these so-called network-
on-chips (NoCs) [63]. 

If multiple masters and many slaves are present in the system, such as in network-on-chip 
(NoC) [63] architectures, more advanced interconnections are useful, in order to allow paral-
lel transfers. Crossbar, mesh or ring interconnection [43, 75] are used for such purposes. 
These networks reflect the architectural features of computer communication networks, such 
as dividing the network in sub-networks for fast local transfers, connecting these sub-
networks with switches and routers and sending data in packages. An example of such large-
scale switch-based networks is an FPGA. This programmable device features a large array of 
processing elements, which are connected by a hierarchical network of busses. 

Due to their reduced feature set and application field, SoC in embedded systems usually only 
use simple interconnection schemes, such as single- or multi-bus architectures. Multiple bus-
ses are used to either separate the slow from the fast components or to enlarge the available 
bandwidth in multi-master arrangements. Slow components, such as serial I/O interfaces, can 
be arranged on simple busses, i.e. with a smaller bit-width and single master concept, in order 
to reduce the area requirements. Typical examples for on-chip busses are AMBA [10], 
wishbone [73], CoreConnect [51] and STBus [80]. Some of the busses have different specifi-
cations for slow and high-speed busses, such as the widely used AMBA busses, which are 
described in Section 2.1.4 in more detail. Off-chip interconnection in embedded systems is 
often not standardized, and instead designed for the needs of the system, contrary to PC 
motherboards, where several bus standards are defined, such as HyperTransport, QuickPath or 
PCI-Express. External components, such as SDRAM, flash memory, network or video con-
troller chips are either connected to special purpose I/O pins of the chip or connected to a bus. 
In order to reduce the complexity, the bus protocol is often simple and asynchronous, using 
hand-shaking for synchronization. Furthermore the required wires are reduced by using a sin-
gle tristate bus for read and write data and by multiplexing address and data bus on the same 
wires. Depending on the size of the PCB, the off-chip wires can have a high capacitance, 
which needs to be driven by the I/O drivers and thus influence the power consumption. 
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3.2 Simulation Models 
The profiling of an embedded system can either be performed on the real hardware or on a 
model of the system. The advantage of the real hardware is that the results are highly accu-
rate. However it also requires that hardware is already available, and does not allow variations 
of the system. Therefore if the profiling should be in an earlier design phase, for example for 
design space exploration, models for all parts of the embedded system are required. Depend-
ing on the type of profiling that is requested the models may vary in their reflected accuracy 
and features. The processor models for simulating the software execution is the most vital 
element during the profiling and is sufficient for simple systems. For more complex and 
memory-centric systems a memory model should also be used. Besides the modeling of the 
timing behavior, the energy consumption can also be considered during the simulation. Addi-
tionally to the processor and the memory subsystem other hardware components, such as co-
processors or I/O components might influence the system behavior significantly. In this case a 
cosimulation system [50, 44] is required in order to allow a realistic profiling scenario. 

Beside the timing and memory access behavior an estimation of the energy or power require-
ments is helpful within the embedded system design flow. Whereas the power consumption is 
more interesting for the thermal design and the peak current drawn from the battery, the con-
sumed energy is relevant for software optimization and battery run time, as it also considers 
the execution time. The energy estimation can be done by means of power models for each 
component of the system. In research and industrial products different solutions for generating 
power models can be found. An excerpt of the wide range of tools is given in Section 2.3.4. In 
[99] power models are distinguished in three categories: 

• datasheet-based power models 
• measurement-based power models 
• analytical models 

Datasheet models are based on the information provided by the manufacturer of the device. 
Such models are often used for memory devices, as they have a defined set of operation 
modes. For SRAM they are simple, DRAM models are more complex, because the power 
consumption is access-dependent, i.e. it depends on previous accesses to the device. Meas-
urement-based models rely on the measurement of the power consumption on real hardware 
devices. These models are very accurate, but the measurement might be difficult, since the 
supply voltage pins are often not easily accessible. The models are valid only for the meas-
ured device and cannot be transferred to other device. Analytical models are much more ver-
satile, as they regard the inner structure of a component. If the component behavior is well 
modeled, the model is parameterizable and can be used for an entire device family. For exam-
ple, analytical power models for memory devices can be configured in size and organization 
of data array. Such models might even be portable to other technology feature sizes, as for 
example the CACTI cache models. Analytical models are very complex and the accuracy 
might vary largely within the parameter range. 

3.2.1 Processor Models 
Processor models exist on different level of abstraction [78]: 

• bus functional model 
• instruction-level model 
• cycle-accurate model 
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• nanosecond-accurate model 

The bus functional model is the most basic description of a processor, which acts as black box 
and reflects only the interface behavior of the processor. Bus functional models (BFM) are 
often applied for testing hardware components in a hardware simulator, and serve the 
processors interaction with the hardware. This model is very fast, because only the interface 
to the hardware, usually a bus interface, is modeled. The models execution is controlled by a 
sequence of bus transactions, which are initiated or answered by processor. The simulation of 
software is not possible, because the processor internal structure, such as instruction decoding 
and execution is not simulated. Therefore the model is not feasible for profiling purposes. 

Instruction-level modeling of processor allows the execution of software on the model. The 
executable implementation of such models, the instruction-level instruction set simulator 
(ISS), is the most widely spread model of processors. They are used for testing, profiling, co-
simulating processors. For testing software the ISS is connected to a debugger, which controls 
the software execution. The GNU debugger gdb comes already with numerous built-in ISSes. 
The level of detail of the model can vary. At least the register file, the program counter and 
the status register are required for the model and the decoding and execution of the full in-
struction set must be ensured. More detailed models also model the pipeline, which ensures 
that pipeline stalls, data dependencies and branch delay slots are simulated correctly. The in-
struction-level ISS does not include timing information and therefore does not require detailed 
modeling of the memory subsystem, therefore access latencies and cache behavior is mod-
eled. The correctness of memory accesses is often tested, including address validity and ac-
cess alignment. Using instruction-level model a fast (almost real time) simulation can be ac-
complished and if the influence of the memory subsystem on the performance is low, this 
model can be used for efficient profiling. The gprof tool allows such profiling based on the 
results collected by gdb. 

In order to increase the accuracy of the instruction-level models, it can be refined to resemble 
the real hardware behavior closer and annotated with timing information. Such models are 
used to build cycle-accurate ISSes, for example the ARMulator, which is described in Section 
2.2.1 in more detail. The ISS must be accompanied by a timing model of the memory subsys-
tem in order to allow realistic simulations. Cycle-accurate models are a good choice for profil-
ing, as they reflect the timing behavior fairly accurate and provide a decent simulation speed. 

The highest level of detail is implemented in nanosecond-accurate processor models. These 
models are described in hardware description languages, such as VHDL, Verilog or SystemC, 
and simulated in a hardware simulator. The simulation speed is extremely slow and only per-
mits the profiling of short instruction sequences. 

3.2.1.1 Processor Power Models 

Simulating the power of a processor can be based on datasheets, which leads to low complex-
ity models. Datasheets only provide current or power consumption values for a few states, 
usually active, idle and a few types of standby modes. Simunic et al. [83] build a model that 
differentiates only between idle and busy states based on an instruction trace produced by an 
ISS. Tiwari et al. [97] present a more complex power model, which considers different power 
consumption for each instruction. The observation that similar instructions, i.e. instructions 
which use similar processor components, consume a comparable amount of power leads to a 
grouping of instructions, which simplifies the model. Additionally to the intra-instruction cost 
an inter-instruction cost is defined, based on the observation that the power consumption is 
dependent on the previously executed instruction. 
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Generally the following levels of accuracy can be defined, which reflect different influences: 

• modeling only the processor state active/idle/standby (datasheet models) 
• modeling of instruction groups, which activate similar functional units 
• modeling each instruction separately 
• modeling additionally each addressing mode separately 
• modeling additionally the Hamming distance of coded instruction and data accesses 
• modeling the influence of intra and inter-instruction cost ([97]) 

Besides these measurement-based models, analytical models exist, which reflect the processor 
architecture, which is based on simple building blocks, such as registers, adders and multi-
plexers. The power model summarizes the influence of these blocks depending on the activity 
of each block due to the processor behavior during a software simulation run. In Section 
2.3.4.3 some models are presented, which are based on the analytical processor model Sim-
pleScalar. 

3.2.2 Memory Models 
Memory has an enormous influence on both, the performance and the energy consumption of 
a system and should therefore be considered during the profiling. A high percent of the energy 
is consumed in caches, e.g. analysis of the StrongARM processor have shown that 43 % of the 
power is consumed in the caches [70], other studies [17] even state a percentage above 60. 

Caches can be characterized by several parameters: 

• size (in bytes) and line length 
• associativity (direct-mapped, 2, 4, 8…, 64 sets or full-associative) 
• replacement strategy (LRU, LFU, FIFO,…) and write strategy (write-through/write-back) 
• special features, such as line-locking or pre-fetching 

Cache timing simulators, such as Dinero IV [31] and Cheetah [93] apply these parameters for 
calculating the number of cache hits and misses. The simulation is trace driven, which means 
that the software is first executed on the target processor and the occurring memory accesses 
are traced and written to a file. This trace file acts as input to the cache simulator, which cal-
culates the resulting number of misses and hits. The ARMulator comes with a built-in cache 
simulator, which besides the hit and miss calculation also allows a functional simulation, i.e. 
the full behavior of the caches is simulated including the data storage and transfer from the 
processor through the caches to the memory bus. 

This information can then be used for determining the overall performance and energy con-
sumption. The time and energy consumed by each cache miss and hit can be achieved with 
CACTI models [96]. CACTI takes the above-mentioned cache parameters and the technology 
feature size as an input, and calculates the timing, area and energy requirements for all cache 
components. 

On-Chip memory components based on SRAM technology are usually running with the full 
processor speed and have single cycle access times. Therefore their timing behavior can be 
modeled easily by a static model for read or write accesses. Also the energy models are quite 
simple as the energy is not access dependent. [18] suggests using CACTI for SRAM models. 
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SDRAM, as described in Section 3.1.2.4, is far more complex than SRAM, which also leads 
to elaborated timing and power models of this memory. In order to have an accurate timing 
model, the entire control flow of the SDRAM controller needs to be reflected, which includes 
refresh, burst, page activation and standby modes. Some of these modes can be neglected 
without a major influence on the accuracy, such as the refresh cycles. The most influencing 
characteristic can also be described by a simpler timing model, which differentiates only be-
tween read and write operations and sequential and non-sequential access. The later is used to 
reflect the faster accesses in burst mode and in case of a page hit. 

The simplest model for the power consumption assumes a constant value, which only depends 
on the clock frequency and the supply voltage. Thus the consumed energy only depends on 
execution time. A model which can be found quite often in literature is a datasheet-based 
model provided by a memory device manufacturer [59]. The model comes as a spreadsheet, 
which contains formulas that calculate based on a parameter set the power consumption for 
each SDRAM mode. The parameter set includes the clock frequency and supply voltage, and 
technology dependent timing and current parameters from the datasheet of the specific mem-
ory device. Furthermore some user-defined estimates for the memory activity are incorpo-
rated. 

3.3 Profiling 
This section gives an overview of profiling techniques and results. The software-centric 
profiling can take place on different levels of abstraction: 

re required. 

el. 

• source-code level (source-code analysis) 
• instruction level (instruction-accurate ISS) 
• cycle level (cycle-accurate ISS) 
• exact timing (nanosecond-) level (HDL) 
• hardware implementation level (FPGA, ASIC) 

The level of abstraction also determines the accuracy of the results and mostly also the 
simulation time. During an early stage of the design, when only a software model of the 
system is available, an abstract source code analysis can take place, in order to get a first idea 
of the code complexity. If the decision for a specific processor is made, an ISS for the 
processor can provide instruction-accurate profiling results. If the ISS models the pipeline and 
the other processor components in detail, even cycle-accurate results are possible. For 
nanosecond-accurate profiling, hardware simulators a

Many profiling tools focus on performance measurements, as it is often the most important 
design goal, and provide cycle or execution time results. Besides this timing information, 
further profiling results may be very helpful during the design and optimization process. This 
includes memory profiling, such as read/write accesses, cache misses and bus utilization and 
also power profiling. 

The profiling data can be assigned to the program code on different levels of abstraction. 
Besides the overall profiling for the entire software, the most common way is assigning the 
results to the functions in the code. More detailed results are assigned to each basic block, i.e. 
a sequential code segment without jump instructions. The highest accuracy is on assembly 
line lev
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Besides the above described dynamic profiling, which is based on the code execution, a static 
profiling can be performed. Static profiling analyzes the program code and can be used for 
statistics on instruction usage, code size and performance estimation. The advantage is that 
the profiling is very fast and does not require any simulator or real hardware. However results 
about the actual behavior of the software can be only considered as a rough estimation. 

3.3.1 Profiling Results 
The most common result provided by profiling tools is the timing information about the soft-
ware under test. Especially for software, which needs to fulfill strict real time constraints, this 
is the most important information. The timing is usually expressed in an SI time unit, e.g. 
milli- or nanoseconds, or in units of cycles corresponding to the processor clock frequency, 
such as core or external bus cycles. The chosen unit depends on the underlying hardware and 
software structure of the profiling environment. If the software is tested for a fixed hardware 
architecture with a specific clock frequency and timing of the hardware component, the tim-
ing can be given in the SI unit, which can be easily compared to the real time constraints of 
the system. If the software under test is running within a multi-tasking operating system, the 
timing results need to be separated in overall execution time and the actual time spent for the 
software, as some of the execution time is spent for other tasks or the operating system itself. 
Using multi-tasking in a system always carries the risk of producing erroneous profiling re-
sults, as the task switching has an influence in multiple unpredictable ways on the perform-
ance, for example the task switching may lead to cache trashing. 

Additionally other statistical information can be of interest. The data access and transfer 
analysis is a crucial feature of profiling tools. This includes the register usage, cache, bus and 
memory activity. The cache profiling includes the number of cache hits, misses and fills and 
the bus activity provides an overview of bus cycles (e.g. read, write, burst, wait) and the peak 
and average transfer rates. The accesses to the memory can be split into memory areas, e.g. 
variables, heap or stack) and provide statistics on the kind of access and the required wait 
states. Besides real memory devices other peripheral components, such as memory-mapped 
I/O ports might be profiled. All these events have an influence on power consumption and 
performance, especially for data-intensive applications. 

The profiler may also provide statistics on instruction execution. This includes an analysis of 
code coverage, i.e. which parts of the software are actually used during execution. The in-
structions set usage gives an overview of the assembly instruction, which are used during the 
execution of the code, and can be used to eliminate unused instructions from the ISA and for 
special functional units, such as floating point or SIMD instructions. The internal behavior of 
the processor might also be of interest, such as the success of branch prediction mechanism or 
number of stalls of the pipeline for studying their efficiency. 

Besides the profiling of execution time, data accesses and processor states more and more 
tools arise [40, 17], which also consider the power or energy consumption, respectively. This 
knowledge support optimizations for energy efficiency, which is especially important for bat-
tery-powered devices. 

3.3.2 Profiling Methods 
Dynamic profiling is based on data collected during the execution of the software. The acqui-
sition of runtime information about the program execution can be accomplished by different 
methods. The usage of these methods is also depended on the underlying software execution 
model. 
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3.3.2.1 Code Instrumentation 

This method inserts small code pieces into the source code of the program, which are used to 
create profiling information during the runtime. For example the gprof profiler inserts in each 
function code, to count how often the function was called, how much time was spent in the 
function, and which was the calling function for creating the callgraph. All this profiling in-
formation is written to a file and can be viewed with gprof. The advantage of code instrumen-
tation is that no simulators are required, and that the execution speed is only decreased 
slightly; this leads to fast profiling results. Drawbacks are that this method is intrusive, i.e. the 
execution of the application is modified. This can lead to inaccuracy in the profiling results; 
especially for small functions the execution time of the instrumentation code can exceed the 
actual task performed in the function. Furthermore the instrumentation code is inserted at 
compile time, i.e. the source code is required for such profiling. Especially this inhibits profil-
ing of third-party library, which are note provided with source-code. Also code instrumenta-
tion sometimes conflicts with compiler optimizations, which leads to profiling non-optimized 
code and lead to inaccuracy. The profiling results of this method are fairly restricted, as no 
hardware related information, such as cache misses or pipeline stalls, can be collected. 

3.3.2.2 Sampling 

Sampling is a very widely used method for non-intrusive profiling. With this method, the exe-
cution of the program under test is accompanied by a profiling tool, which probes the program 
status at specific sample times. By probing the program counter at the sample point, the pro-
filer can determine the current position in the code and update the profiling data of the current 
function or building block. Thus the number of times each function is called can be evaluated 
and the time spent in the function can be estimated. The sampling period is either timing or 
event-based, the former is triggered by an internal clock, usually in the range of milliseconds 
whereas the latter is triggered by processor events, such as cache misses. Since the probing 
only takes places at specific times, the profiler might “overlook” small functions, which are 
called between two sampling points. Especially for programs with a short execution time this 
leads to inaccurate and non-deterministic results. To overcome this problem, the program can 
be called in a loop, however this might lead to incorrect results, as the cache performance 
might be to optimistic, because code and data of the previously executed run are still in the 
caches. Usually the program code and the profiler are running on the real processor, such as 
with VTune. If the sampling point occurs, the profiler interrupts the processor, and collects the 
profiling data. The hardware needs specific features, in order to allow the interrupt and to 
provide the data. For example, if a cache miss occurs, the hardware needs to inform the profil-
ing software about this event. Therefore the amount of profiling information differs for differ-
ent processor types. The sampling-based profiling on real hardware allows fast and accurate 
profiling 

3.3.2.3 Profiling with Instruction Set Simulator 

If an ISS, see Section 3.2.1, is available for the desired processor, it can be used for detailed 
and non-intrusive profiling. The software execution on the ISS is a few orders of magnitude 
slower than on real hardware, typically in the range a few hundreds of thousands to millions 
of cycles per seconds can be simulated. An internal view into the processor states is possible, 
such as register or cache accesses or pipeline stalls. By monitoring these events a detailed 
profile of the software execution can be created. This profiling is non-intrusive, because the 
software execution on the simulator is not effected by the monitoring. Many ISSes provide at 
least basic profiling abilities [9, 7, 30], for example the accumulated and self execution time 
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of each function or the pipeline or register usage. The profiler presented in this thesis is based 
on an ISS. Depending on the accuracy of the processor core model, usually either cycle- or 
instruction-accurate, the ISS provides more or less detailed information about the execution. 
The accuracy of the results is also influenced by the accuracy of the models of peripherals 
modules, such as cache, bus and memory components. 

Some ISSes (e.g. the ARMulator) can be extended with hardware models of peripheral com-
ponents of the system, such as coprocessors or IO devices. Such a hardware/software cosimu-
lation environment allows a system profiling, which can be helpful during the partitioning and 
scheduling process of hardware/software systems. 

3.3.2.4 Hardware Simulator based Profiling 

The most detailed profiling can be achieved with a hardware simulation of the processor. If a 
hardware description model of the processor, for example in VHDL or Verilog, exists, hard-
ware simulators, such as Modelsim [69] allow a nanosecond-accurate simulation of the proc-
essor. The accuracy of the simulation depends on the granularity of the model, which is de-
scribed on high-, register-transfer- or gate-level. Gate-level descriptions allow a 100 % 
accurate simulation of the processor and thus allow the highest accuracy for profiling of the 
software execution. Such profiling is however extremely slow, only a few to a few hundreds 
of cycles can be simulated per second, therefore it is not feasible for analyzing complex soft-
ware. The processor can be extended with other hardware components and therefore also al-
lows hardware/software cosimulation and profiling. The profiling with hardware simulators 
requires a monitoring extension in order to probe the internal states of the processor, for ex-
ample by using the foreign language interface (FLI), as described here [90]. 

3.4 Data-Intensive Applications and their Implementation for 
RISC Processors 

This work focuses on the analysis and optimization of data-intensive applications on 
embedded systems. Such applications, for example video players and recorders on mobile 
phones, have become very popular and make high demands on embedded systems. First of 
all, they are often very computationally intensive. Additionally, the huge amount of data 
transfers highly influences the performance and power dissipation and thus also the design of 
the system architecture. On the example of a highly complex application, an H.264/AVC 
video decoder will be used to show how the different algorithmic parts of the application are 
influencing the computational and data transfer requirements. Also the influence of the 
different types of memory access, sequential or random, its width, and access pattern should 
be considered. 
This problem is even higher in RISC processor based embedded systems as compared to stan-
dard PC architectures, as their load/store architecture acts as the major bottleneck to the per-
formance. Also the small register file, for example 16 registers for the ARM architecture and 
the small caches size increase this problem. The rising clock frequency used in embedded 
systems also increases the speed gap between CPU and memory. A problem, which until a few 
years ago was only apparent in PC architectures, now leads to the same high influence of the 
data transfers and memory architecture on the performance. 

3.4.1 The H.264/AVC Video Coding Standard 
H.264/AVC is the most recent video compression standard developed by the Joint Video Team 
(JVT) of ISO/IEC MPEG and ITU-T VCEG [60]. Like its predecessors H.264/AVC uses a 
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block-based hybrid coding approach, which takes advantage of (motion compensated tempo-
ral and spatial) prediction and transformation of residual data. H.264/AVC adds various new 
coding features and refinements of existing mechanisms, which lead to a two to three times 
increased coding efficiency compared to MPEG-2. However, the computational demands and 
required data accesses have also increased significantly. Figure 12 shows the block diagram of 
an H.264/AVC decoder. 
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Figure 12: Block diagram of an H.264/AVC decoder 

The decoder consists of five sequential computation steps, which are bitstream parsing, 
entropy decoding, prediction, coefficient transformation and deblocking. The bitstream 
processing unit parses the bitstream for symbols, which are then entropy decoded. H.264/AVC 
allows two different entropy coding modes, variable length coding (CAVLC) and binary 
arithmetic coding (CABAC). Both methods are context adaptive (CA-prefix), i.e. the coding 
parameters are adapted according to previous data in order to achieve a high compression. 
The decoded symbols contain control information, prediction data and transformed residual 
data. H.264/AVC provides inter and intra frame prediction modes to predict image data from 
previous frames or from neighboring blocks, respectively. Inter prediction can be performed 
on sub-macroblock level (down to 4x4 blocks) and the motion vector resolution goes down to 
quarter-pel precision requiring interpolation of pixel data. For intra prediction several modes 
are defined, e.g. horizontal prediction from the left neighboring macroblock or vertical 
prediction from left and upper neighbors. Intra prediction can either be performed on 16x16 or 
4x4 blocks. 

The residuals of the prediction are received as transformed and quantized coefficients. After 
inverse quantization and transformation of the coefficients the residuals are added to the pre-
dicted data, which leads to a reconstructed image. The transformation is performed on 4x4 
blocks (in high profile 8x8 is also supported) and is based on integer arithmetic, contrary to 
the residual transformation in previous video compression standards applying a discrete co-
sine transformation (DCT). The reconstructed image is postprocessed by a deblocking filter 
for reducing blocking artifacts at block edges. The deblocked image is used for performing 
inter prediction whereas intra prediction is based on the reconstructed image. 



3.4  Data-Intensive Applications and their Implementation for RISC Processors 

 45

For example, in H.264/AVC video decoding, half of the decoding time is spent with memory 
accesses. Figure 13 shows how the required memory accesses have risen from decoding 
MPEG-4 to decoding H.264/AVC. 
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Figure 13: Comparison of memory accesses required in MPEG-4 Simple Profile and 
H.264/AVC decoding 

A closer look to the algorithms of the functional parts should reveal which computational and 
data transfer demands occur. Figure 14 illustrates the mechanism behind the different parts. A 
simple inter prediction (grey box in Figure 14.a) implies only a copy operation of the block 
from the previous frame. This includes some address calculation and the two-dimensional 
byte copy. Almost the same applies if a motion vector is used with an integer number of pixels 
(“mv1”). If the motion vectors point to a non-integer position (“mv2”) these sub-pixels need 
to be calculated by an interpolation mechanism. At first half-pixel (circles) are calculated as a 
weighted sum of neighboring full-pixels (crosses) and then in a second step quarter-pixel po-
sition (filled cycles) are linear interpolated from the neighboring full- and half-pixels. This is 
a demanding computational process. SIMD instructions might be applicable for the parallel 
filtering of adjacent pixels. The efficiency of caches is restricted due to the random manner of 
the motion vectors. Two-dimensional DMA transfers could be applied for integer motion vec-
tors, however depending on the memory architecture they might be restricted due to address 
miss-alignment. 
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Figure 14: Algorithmic parts of H.264/AVC video coding 

Intra prediction is a similar approach of reusing pixels, but here pixels are taken from the spa-
tial neighborhood. Figure 14.b) illustrates three of the nine available modes, where left and 
upper neighboring pixels are used for prediction. In simple modes the pixels are just copied, 
more advanced modes interpolate between several neighbors. Again for simple modes DMA 
modes might be applied, here in a one- to two-dimensional manner, and SIMD instruction 
might be suitable for parallel processing of multiple rows or columns. Depending on the proc-
essing order, caches should increase the performance, because neighboring blocks are usually 
processed sequential order, and therefore the pixels should be still available in the cache. 

The deblocking filter, shown in Figure 14.c) applies filters with various tap-lengths to the 
borders of each 4x4 pixels block. This makes the deblocking very computationally demand-
ing. The processing is performed on a macroblock basis, first for vertical than for horizontal 
borders. Thus the processing is very local and data transfer can be accomplished efficiently 
with two-dimensional DMA transfers for the entire macroblock. Due to this data locality, 
caches should also work efficiently. SIMD instructions might be used on a 4x4 block basis. 

The inverse integer transformation is applied on 4x4 or 8x8 block basis. Again accesses are 
spatially restricted and should benefit from caches. The usage of DMA transfers is highly de-
pendent on the arrangement of the incoming coefficient data, as they are usually ordered in a 
sequential, one-dimensional manner when they are read from the bit-stream. SIMD instruc-
tions should be suitable, as the transformation applies similar calculations for each row and 
column. 

The two entropy coding mechanisms, CABAC and VLC, are more control than 
computationally intensive. The entropy coding is based on the mechanism to adapt the binary 
representation of information to the probability of the symbols to be transmitted, i.e. short 
code words are used for often used symbols. VLC uses tables for the mapping of the symbols 
to the code words. These tables can be either implemented as look-up tables or arithmetically 
described. The access to these tables is random, therefore caches might not work efficiently 
and these tables can be stored in fast memory. An arithmetical implementation is more 
computationally demanding but has the advantage of less memory requirements and accesses. 
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CABAC is a more complex coding technique based on arithmetic coding. Contrary to VLC 
CABAC performs a continuous coding of the information instead of coding each symbol 
separately. This allows a higher compression ratio, however it is computationally intensive 
and the dependency between the coding steps inhibit parallelization or pipelining. 
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4 Comprehensive Profiling of Embedded 
Processors 

This chapter describes a methodology developed for extensive profiling and demonstrates its 
application for software optimization and architecture design of embedded systems. The work 
focuses on analyzing memory accesses and power consumption of processors and their 
accompanying memory architectures. The first section gives an overview of the requirements 
for such analysis and describes the method applied to achieve the desired results. 

The following sections present numerous techniques that have been developed in order to 
optimize the memory-related issues of the software and hardware parts of embedded systems. 
The sections also show how the profiling results can be utilized for this purpose. 

In order to incorporate power consumption estimation in the profiling process, a power model 
has been developed, which reflects the processor and the surrounding on-chip components. 
Section 4.5 describes the measurement techniques and the development of a model based on 
measurement of an SoC. A software test suite is shown, which has been generated for extract-
ing the different influences that contribute to the power model. 

4.1 Extensive Profiling Methodology 
The most common result delivered by profilers is the instruction cycle count information. In 
the case of data-intensive and complex applications this information is not sufficient, as the 
influence of the memory and system architecture needs to be taken into account. Therefore, 
for these applications an analysis method is required, which needs to address the following 
aspects: 

• fast simulation time, as complex applications require the analysis of a long instructions 
sequence to achieve significant results 

• detailed and accurate results for finding the hot spots in the software und revealing the 
reason for a performance or power consumption issue 

• accuracy concerning the hardware architecture, as the memory and bus timing influences 
the overall performance significantly 

• gather memory access statistics, in order to pinpoint the influence of the memory accesses 
within the software 

For many decisions in embedded system design, more detailed information about memory 
accesses is required, as these accesses have an enormous influence on performance and power 
consumption. The following list shows a selection of useful parameters: 

• clock cycles budget 
• details for memory accesses, with access direction (load or store) and size (bit-width) 
• cache activity, such as hit and miss ratio 
• bus activity, such as workload and bus master assignment 
• access statistics for variables and specific memory areas 
• distribution of executed instructions 
• power consumption 
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These profiling results can be very useful for both hardware and software optimizations. 
However, especially for software modification, the place within the software which produces 
the specific event needs to be identified. Therefore the results need to be on a fine-grained 
level, for example function or basic block level. On the other hand, if the application, or parts 
of it, are only available as libraries or object code, an analysis should be still possible. Thus 
the profiling should not be dependent on the source code. 

Each of the tools presented in Section 2.3 fulfills only a sub-set of these requirements. There-
fore a profiling method has been developed and implemented that provides the required 
analysis results. 

Considering the requirements described above, an ISS-based profiling as described in Section 
3.3.2.3, has been found to be the most appropriate choice for this purpose. It allows a fast 
simulation and a comprehensive view inside the processor hardware and often provides mul-
tiple options for architecture adjustments. The accuracy of the ISS should be on a cycle level, 
in order to be sufficient for the optimization and architecture decisions to be made. 

The performance analysis developed in this work is carried out in three steps: the acquisition 
of program information, the acquisition of profiling data during the runtime of the program 
and the representation and postprocessing of the results. This toolflow is described in more 
detail in the following sections. It has been implemented as the MEMTRACE profiling tool, 
shown in Figure 15. 

The acquisition of profiling data is performed by connecting the tool to an ISS and gathering 
the information provided. A tracing-based method is used for this purpose, which traces the 
following basic information: 

• program counter 
• cycle counter 
• data and instruction busses including their address busses 
• optional further information, such as cache misses or external bus usage 

In Figure 16 the interconnection with the ISS is shown, including the tracing probes on the 
instruction and data bus and the external system bus. The program counter defines the current 
position within the program code. In conjunction with the cycles counter, the distribution of 
the total execution time over the executed assembly code can be determined. 
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Figure 15: The MEMTRACE toolflow: 1) The init step extracts the function and data area 
names of the application to be analyzed. 2) The analysis step takes this list of names and a 
number of user-defined parameters for controlling the actual analysis. An ISS is used for 
running the application and the MEMTRACE backend performs the runtime data acquisi-
tion. The outcomes of this step are the different profiling data results. 3) The postprocess-
ing step extracts user-defined data from the profiling data and creates spreadsheet tables 
for further statistical analysis. 
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Figure 16: Backend connection to the instruction set simulator 

In order to support an evaluation on a C source code function granularity, the assembly lines 
need to be mapped to the corresponding functions. The C compiler creates labels in the 
assembly code, which identify the beginning of a function. The label addresses are stored in 
the symbol table of the executable code. These labels can be applied for the mapping of the 
functions. The address range of a function is defined as: 

 start address = label address 

 end address = next label address - one word 

Figure 17 shows an example of address mapping for three functions, which are located at con-
secutive addresses in the instruction memory.  

PUSH     {r4-r6,r14}

MOV      r6,r2

MOV      r5,r0

B        0x8f98

LDR      r2,[r5,#0x1c]

LDRB     r0,[r4],#1

LDR      r1,[r5,#0x24]

MOV      r14,pc

LDR      r1,[r0,#0]

ADD      r2,r1,#1

STR      r2,[r0,#0]

LDRB     r0,[r1,#0]

MOV      pc,r14

PUSH     {r5-r8,r14}

MOVS     r5,r1

 PUSH     {r4}

MOV      r4,r0

 ADD      r7,r0,#0x3c

...

...

func1 0x8f70

func2 0x8f90

func3 0x8FA4

Label Address...
...

 

 

func1: 

 Start address = 0x8f70 

 End address = 9x8f8C 

func2: 

 Start address = 0x8f90 

 End address = 9x8fA0 

func3: 

 Start address = 0x8FA4 

 End address = … 

Figure 17: Mapping the instruction memory address range to C source code functions 
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Similarly, the address of global variables can be extracted, as their addresses and size are also 
given in the table. As the location of local and heap variables are generated during the run 
time, they can not be extracted from the code. However, instead the stack and heap can be 
monitored, if their location and size is known. If the source code is written in C, the labels 
usually correspond to the function name. C++ function names are encoded differently; the 
symbol for a function combines the namespace, class, member function name and parameter 
types. The mangling is compiler dependent. In order to extract the function names tools such 
as c++filt [35] can be used. 

To achieve a more detailed level of profiling than the function level, the source code lines can 
be mapped to the assembly code addresses. A table for such a mapping is available in the ex-
ecutable, if the compiler is instructed to enclose debug information. With gcc, the option -g is 
used for this purpose. 

4.1.1 Program Information Acquisition 
During initialization, the names of all functions and variables of the application are extracted. 
During this process, user variables and functions are separated from standard library func-
tions, such as printf() or malloc(). This is achieved by comparing the symbol table of the ex-
ecutable with the ones belonging to the user library and object files. The results are gathered 
as the analysis specification. This specification can be modified, e.g. for adding memory ar-
eas, such as the stack and heap variables, for additional analysis. In order to generate interme-
diate results, for example to generate separate profiling results each time a specific function is 
called, this function is tagged with “split”. The profiler is instructed to produce snapshot re-
sults, each time the "split function" is called and to reset the profiling counters. Additionally, 
the analysis specification controls whether the results, e.g. clock cycles, of a function should 
include the results of a called function (accumulated) or if it should only reflect the function’s 
own results (self). Typically, auxiliary functions, e.g. C standard library or simple arithmetic 
functions, are added to the calling functions. The system specification provides information 
on the processor type and the memory architecture, including cache size, page size and mem-
ory timing. 

4.1.2 Runtime Data Acquisition 
In the second step the performance analysis is carried out, based on the analysis specification 
and the system specification, as shown in Figure 15. The system specification includes the 
processor, cache and memory type definitions. The ISS is applied to simulate the user applica-
tion and the profiler gathers the analysis results of the functions and variables. Section 5.2.2 
describes this process in more detail. Table 3 shows example results for function profiling. 
The output files serve as a database for the third step, in which user-defined data are extracted 
from these tables. 

MEMTRACE communicates with the ISS via its backend, as depicted in Figure 16. Initially, 
the backend creates a list of all functions and marks the user and split functions as defined in 
the analysis specification. For each function a data structure is created, which contains the 
function’s start address and variables for collecting the analysis results. To accumulate results 
of called functions to the calling function, the analysis uses two tags, currentFunction and 
evaluatedFunction, to identify these functions. The former indicates the function cur-
rently being executed. The second tag is used when this function should not be evaluated. 
Then the second tag indicates the calling function, to which the result of the current function 
should be added. 
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Each time the program counter changes, MEMTRACE checks if the program execution has 
changed from one function to another. If so, the cycle count of the evaluatedFunction is 
recalculated and the call count of the currentFunction is incremented. Finally, the pointers 
to the currentFunction and evaluatedFunction are updated. If the currentFunc-
tion is a split function, then the differential results from the last call of this function up to the 
current call are printed to the result files. 

For each access that occurs on the data bus (to the data cache or TCM), the memory access 
counters of the evaluatedFunction are incremented. Depending on the information 
provided by the ISS, it is decided if a load or store access was performed, and which bit-width 
(8/16 or 32 bit) was used. Furthermore, the ISS indicates if a cache miss occurred. Page hits 
and misses are calculated by comparing the address of the current memory access with the 
previous one and incorporating the page structure of the memory. 

For each bus cycle (on the external memory bus) MEMTRACE checks if it was an idle cycle, 
a core access or DMA access, and increments the appropriate counter of the 
evaluatedFunction. 

At the end of the simulation, the results of the last evaluatedFunction are updated and the 
results of the last call of the split function as well as the accumulated results are printed to the 
result files. 

4.1.3 Representation of the Statistical Analysis Data 
Table 3 shows that for each function, numerous profiling results are provided. In the first col-
umn the number of calls of the function is given, followed by the exact number of clock cy-
cles spent in this function. The cycle count refers to the system bus speed, which might differ 
by a specific factor from the processor core cycles. To achieve the core cycles, the given cy-
cles need to be multiplied by the factor. Furthermore, memory access statistics are given. All 
load and store operations are summed up, data as well as instruction accesses. These are ac-
cesses initiated from the load/store interface of the processor core, see Figure 16. Thus if the 
core is equipped with caches or MMUs, the load and store operations are accesses to those 
components; otherwise they reflect the accesses as visible on the memory bus. The accesses 
are also provided separately as load and store accesses, as well as according to their data 
width. The number of short (8/16 bit) accesses is also given. 

Table 3: Example table of function analysis results 
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Func1 8 215 75 23 7 52 3 42 5 123 92 0

Func2 2 295 49 35 3 14 9 17 9 55 153 87

Func3 2 432 78 68 4 10 2 31 17 143 289 0

To reflect the influence of the page structure of dynamic memory, the profiler performs simple 
page emulation. The results for page misses and hits are given. If the processor is equipped 
with caches, the number of data cache misses is also given. To inspect the bus activity, the 
(system bus) clock cycles are separated into CPU, DMA and idle cycles, with the cycle type 
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reflecting the initiator of a transfer (or busy) bus cycle. The profiling results for memory areas 
and variables (Table 4) are similar to the function result. Additionally, for each memory area 
the start and end address and the size are given. 

Table 4: Example table of memory analysis results 
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GlobVar1      0x0A000 0x0A003 4 13 5 0 7 2 2 11 2

GlobVar2      0x0A004 0x0A0CB 200 31 10 3 21 6 4 27 8

GlobVar3   0x0A0CC 0x0A0D8 12 16 16 0 0 0 12 4 4

MemArea1    0x00020 0x00029 10 4 1 0 0 3 2 2 2

MemArea2    0x00030 0x00033 4 2 1 1 1 1 1 1 1

These comprehensive profiling results may lead to a huge amount of data, which can be hard 
to review. In order to allow the extraction of meaningful information from these statistics, a 
postprocessing of the data is required. This is performed in the third step, as depicted in 
Figure 15. MEMTRACE allows the generation of user-defined result tables from the perform-
ance results. Results of several functions can be accumulated into user-defined groups and are 
sorted by different criteria, e.g. for comparing the results of one group or for comparing one 
specific result for all groups. The tables can be further processed by spreadsheet programs, 
such as Microsoft Excel, e.g. for creating diagrams of the results. 

Besides this profiling data, the tool provides further statistics, which are discussed in Sections 
4.3 and 4.4. This includes an overview of successive accesses to neighboring pixels, which 
can be used to optimize memory accesses. To optimize the register usage, the memory loca-
tions and corresponding source code line are given for locations which are frequently ac-
cessed. The results for instruction and address mode profiling give an overview of usage of 
these architectural features, which is useful in cases where the instruction set of the RISC core 
should be adapted. 

4.2 Memory Profiling within the Design Flow 
This section describes how profiling can be applied during the design of embedded systems. 
As surveyed in Section 2.1.1, throughout the entire design flow, system analysis has a crucial 
influence on the performance and efficiency of the design. The following sections cover 
methods for optimization and exploration for all steps of the design process. 

4.2.1 Hardware/Software Partitioning and Design Space Exploration 
In order to define a starting point of a system architecture, an initial design space exploration 
should be performed. These steps include a variation of the following parameters: 

• processor type 
• cache size and organization 
• tightly coupled memory 
• bus timing 
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• external memory system and timing (DRAM, SRAM) 
• hardware accelerators, DMA controller 

The ability to configure these parameters easily between several profiling runs is crucial for 
testing the influence of the system architecture on the performance. These initial profiling 
runs also reveal the hot spots of the software. The most time-consuming functions are good 
candidates for either software optimization or hardware acceleration. Computationally inten-
sive functions are especially well-suited for hardware acceleration in a coprocessor. With the 
support of a DMA controller, even the burden of data transfers can be taken from the proces-
sor. Control-intensive functions are better suited for software implementation, as a hardware 
implementation would lead to a complex state machine, which requires long design time and 
often doesn’t allow parallelization. In order to get an initial sense of the influence of hardware 
acceleration, a factor (based on a well-educated guess) can be defined for each hardware can-
didate function. MEMTRACE uses this factor to manipulate the original profiling results. 

4.2.2 Software Profiling and Optimization 
After a partitioning in hardware and software is found, the software part can be optimized. 
Numerous techniques exist for optimizing software, such as loop unrolling, loop invariant 
code motion, common sub-expression elimination or constant folding and propagation. For 
computationally intensive parts, arithmetic optimizations or SIMD instructions can be ap-
plied, if such instructions are available in the processor. If the performance of the code is sig-
nificantly influenced by memory accesses, as is generally the case for video applications, the 
number of accesses has to be either reduced or accelerated. The profiler gives a detailed over-
view of the memory accesses and thus allows identification of their influence. Based on this 
information, the optimization technique described in Section 4.3 can be applied. 

4.2.3 Hardware/Software Profiling and Scheduling 
Besides the software profiling and optimization, a system simulation including the hardware 
accelerators needs to be carried out in order to evaluate the overall performance. Usually 
hardware components are developed in a hardware description language (HDL) and tested 
with an HDL simulator. This task requires long development and simulation times. Therefore 
HDL modeling is not suitable for the early design cycles, where exhaustive testing of different 
design alternatives is important. Furthermore, if the system performance is data-dependent, a 
large set of input data should also be tested to get reliable profiling results. Therefore, a simu-
lation and profiling environment is required, which allows short modification and simulation 
time. 

For this purpose, an ISS can be extended with simulators for the hardware components of the 
system. For example the ARMulator ISS, see Section 2.2.1, provides an extension interface, 
which allows the definition of a system bus and peripheral bus components. It comes with a 
bus simulator, which reflects the industry standard AMBA bus. The simulator incorporates a 
timing model for access times to memory-mapped bus components, such as memory devices 
and peripheral modules. Figure 18 shows an example simulator setup for an embedded system 
containing a processor with a DMA controller, coprocessor and two memory components. 
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Figure 18: Environment for hardware/software cosimulation and profiling 

4.2.4 Coprocessors 
The system has been supplemented with a simple template for coprocessors, including local 
registers, memory and a cycle-accurate timing. The functionality of the coprocessor can be 
defined as C source code, thus the software function can be simulated as a hardware accelera-
tor by copying the software code to the coprocessor template. The timing parameter can be 
used to define the delay of the coprocessor between activation and result availability, i.e. the 
execution time of the task as it would be in real hardware. This value can be achieved either 
from reference implementation found in literature or by an educated guess by a hardware en-
gineer. Furthermore, often multiple hardware implementations of a task with different execu-
tion time (and hardware cost) are possible. In the proposed profiling environment, simply by 
varying the timing parameter and viewing its influence on the overall performance, a good 
trade-off between hardware cost and speedup can be found quickly. The bus interface of the 
coprocessors is described in more detail in Section 5.6.1. 

4.2.5 Scheduling 
After the software and hardware tasks have been defined, a scheduling of these tasks is re-
quired. To increase the overall performance, a high degree of parallelization should be ac-
complished between hardware and software tasks. In order to find an appropriate scheduling 
for parallel tasks, the following information is required: 

• dependencies between tasks 
• the execution time of each task 
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• data transfer overhead 

Especially for data-intensive applications, the overhead for data transfers can have an enor-
mous influence on performance. The speedup of a hardware accelerator might even be can-
celled out by the overhead for transferring data to and from the accelerator. 

The overhead for data transfers to the coprocessors is dependent on the bus usage. Further-
more, side effects on other functions may occur if bus congestion occurs or when cache flush-
ing is required in order to ensure cache coherency. In order to find these side-effects, detailed 
profiling of the system performance and the bus usage is necessary. MEMTRACE provides 
these results; for example Figure 19 shows the bus usage for each function depending on the 
access time of the memory. 
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Figure 19: Bus usage for each function, depending on the memory type 

4.2.6 HDL Simulation 
In a later design phase, when the hardware/software partitioning is fixed and an appropriate 
system architecture has been found, the hardware component needs to be developed in a 
hardware description language and tested using an HDL simulator, such as Modelsim. Finally, 
the entire system needs to be verified, including hardware and software components. For this 
purpose, the ISS and the HDL simulator have to be connected. The codesign environment 
PeaCE [44] allows the connection of the Modelsim simulator and the ARMulator. 

4.3 Profiling-Based Software Optimizations 
Optimizing the hardware and software of an embedded system includes not only generic 
software optimizations [12], but also custom-tailored solutions for the specific application and 
the system architecture. Profiling supports the identification of hot spots in the application, 
which require optimization. The comprehensiveness of the profiling results also facilitates the 
decision as to what kind of optimization is appropriate, and thus the designer is aided during 
the optimization process. The optimization steps presented here are very much dependent on 
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the underlying system architecture. Therefore, the analysis results can be helpful especially 
when reusing software that has been written for other processor architectures or without a 
focus on speed optimization. Thus, this optimization methodology increases the portability 
and reusability of source code. The most important profiling results for optimization are cycle 
counts. They allow identification of the most demanding part of the software. General obser-
vations of the execution time of software have shown that 80 % to 90 % of the execution time 
is spent in 10 % to 20 % of the code. This rule, which follows the Pareto principle, leads to 
the dictum “make the common case fast“. Amdahl’s law [2] 
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S: Speedup of code that is optimized 

P: Portion of executed code that is optimized 

describes the speedup that can be achieved by optimizing these parts. For example, if a part of 
the software can be found where 50 % of the computations take place (P = 0.5) and the speed 
of this part can be increased by a factor of 2, than this would lead to an overall speedup of 
33 %: 
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Contrary to this result, if the speed of a part of the software with 20 % of the computations is 
increased by a factor of 10, this only leads to a 22 % performance increase. This shows that if 
a hot spot can be found, this is the most promising candidate for high optimization potential. 
In the first step, the general software and hardware optimizations can be considered, e.g. loop 
unrolling, the usage of SIMD instructions or adjusting the cache size or memory architecture. 
After each optimization step, a new profiling run can be used to evaluate its influence. This is 
important, as the supposed optimization might interfere with other parts of the system and 
lead to reduced performance. Whereas shallower profiling would only show the overall influ-
ence, the detailed results help to find the cause of such interference. Besides these optimiza-
tions, in the following sections some mechanisms are shown which especially benefit from 
the memory access statistics provided by the profiler. 

The following optimizations are often very specific to the actual compilation run and software 
version; therefore they should be applied in a very late step of the design. A recompilation 
might lead to data and program code placement in memory being changed, and thus to modi-
fied cache and bus usage and page miss behavior. Thus previous optimization steps, for ex-
ample for data placement, might lead to worse results than without the optimization. The 
compiler needs to be instructed to take these modifications into account. Section 2.3.1 shows 
an example of how to create fixed memory maps. 

4.3.1 Pinpointing Code Locations with Inefficient Memory Accesses 
Many multimedia applications work on data with a size of a byte or a half-word. However, the 
memory bus width in many embedded systems is larger, e.g. 32 bits. Thus the available 
bandwidth is not used efficiently. To increase system performance, the entire bus width should 
be used and therefore byte or half-word accesses should be combined to word accesses. This 
is possible if adjacent address positions are accessed within a short time period. Figure 20 
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shows an example of memory accesses to nine adjacent bytes. The different offsets show the 
four different possible positions of the accesses in relation to word-aligned addresses. 

 word0 word1 word2
byte address 0 1 2 3 4 5 6 7 8 9 A B 

word offset = 0   
word offset = 1   
word offset = 2   
word offset = 3   

 Figure 20: Merging nine adjacent byte accesses to three 32-bit word accesses starting at 
any word offset position 

The figures shows that for any word offset position, it is sufficient to read three 32-bit words 
(word0 to word2) from the main memory. This corresponds to a three times reduction in the 
number of accesses. However, when reading multiple bytes at once, processing each byte re-
quires shifting and masking operations, which leads to a computational overhead. 

Listing 9 shows a code example for reading four adjacent bytes, the one at the current address 
(R0), the two on the left side (L0, L1) and the one on the right (R1). The if case shows how 
the byte-to-word conversion is implemented for a word offset of three. Cases for the other 
offsets are similar. 

unsigned int w1,w2; 
unsigned char L1,L0,R0,R1; 
if (((unsigned int)SrcPtr&0x3)==0) { 
 w1 = *((unsigned int*)((unsigned int)SrcPtr)-4); // left word 
 w2 = *((unsigned int*)((unsigned int)SrcPtr));   // right word 
 L1  = (w1>>16)&0xFF ; // extract 2nd left byte from left word 
 L0  = (w1>>24)&0xFF ; // extract 1st left byte from left word 
 R0  = w2&0xFF ;       // extract 1st right byte from right word 
 R1  = (w2>>8)&0xFF ;  // extract 2nd right byte from right word 
} 
else { // fallback case for any access with word offset != 3 
 L1  = SrcPtr[-inc2] ; 
 L0  = SrcPtr[-inc ] ; 
 R0  = SrcPtr[    0] ; 
 R1  = SrcPtr[ inc ] ; 
} 

Listing 9: Word access for adjacent bytes for a pixel address with word offset = 3 

Converting byte accesses to word accesses only speeds up the design if the overhead for shift-
ing and masking is less than the time saved due to the reduced number of memory accesses. 
Furthermore, a processor with a data cache generally does not benefit from the byte-to-word 
conversion, as data of adjacent pixels is available in the cache due to the arrangement of cache 
lines. 

Applying this optimization step requires the knowledge of the location in the code where such 
accesses occur. Finding these locations manually can be difficult or even impossible, espe-
cially if an advanced multi-step address calculation is performed. For example, in nested 
loops where multiple loop-parameters are incorporated in the address generation, the resulting 
address is not obvious. In this case, profiling the memory access pattern helps to find these 
locations. MEMTRACE provides memory access results for each function and differentiates 
between the bit-width of the access, as shown in the row “before optimization” in Table 5. As 
can be seen, about 30 % of the overall load operations are byte and half-word accesses. This 
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high fraction of non-word accesses provides a hint that this function might offer potential for 
byte-to-word conversion in memory accesses. However, the tool does not provide the infor-
mation necessary to meet the second condition, which is that the accesses need to be to adja-
cent addresses. Nonetheless, it supports the designer by highlighting potential candidate func-
tions for optimization. In this case, the function allows such as conversion, reducing the 
overall memory accesses by about one third and the execution of the function by more than 
28 %. 

Table 5: Analysis results for a function (motCompChroma()) of the H.264/AVC decoder 

  Clock cycles All load Load 8/16 

Before optimization 13149109 309368 104784 

After optimization 9355709 196746 34584 

For more advanced information, MEMTRACE also provides a detailed list of source code 
line locations where such sequential accesses occur. Successive memory accesses are traced 
for this purpose and the distance between their addresses is calculated, thus neighboring ad-
dresses can be identified. The results are provided in a table, as in Table 6. 

Table 6: Location information about successive load and store operations to neighboring 
addresses 

Number 
of loads 

Number 
of stores Function File Line Assembly 

address 

0 52 getNextVidAUH264 testvidec.c 347.2 8888 

0 52 getNextVidAUH264 testvidec.c 348.2 888C 

0 1371 getNextVidAUH264 testvidec.c 349.2 8894 

0 106 getNextVidAUH264 testvidec.c 359.11 88C0 

0 404 DecodeH264 decodeH264.c 144.2 9474 

0 4 edgeLoopY_S deblocking.c 1125.14 FA2C 

0 40 edgeLoopY_S deblocking.c 1130.14 FA64 

0 1473 edgeLoopY_S deblocking.c 1131.7 FA7C 

0 34 edgeLoopY_S deblocking.c 1132.14 FAA4 

102 0 edgeLoopC_N deblocking.c 1184.3 FB50 

1176 0 edgeLoopC_N deblocking.c 1197.8 FBB4 

10510 0 edgeLoopC_N deblocking.c 1198.8 FBBC 

10498 0 edgeLoopC_N deblocking.c 1199.8 FBC0 

This shows that for example in the function getNextVidAUH264() at source code lines 347 to 
349 (Listing 10), store accesses occur with addresses adjacent to the accesses before. The 
program code at this location shows that the four accesses can be easily combined to one 
word accesses: 

345 :  /* write start code to data buffer */ 
346 :  *p8_data++ = 0; 
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347 :  *p8_data++ = 0; 
348 :  *p8_data++ = 0; 
349 :  *p8_data++ = 1; 

Listing 10: Code example with successive byte accesses 

4.3.2 Using Caches and Non-Cacheable Areas 
Especially for systems with slow memory, caches are mandatory for achieving a reasonable 
performance. The spatial and temporal locality of memory accesses found in most applica-
tions can be used efficiently with caches. On the other hand, if data areas are accessed ran-
domly, for example in look-up tables, these accesses lead to cache trashing, i.e. a one-time 
accessed data value replaces a frequently accessed data value, which subsequently needs to be 
reloaded. The cache control unit usually allows the definition of non-cacheable areas in order 
to prevent data from these areas from being stored in the cache. 

Obviously, achieving information about the access patterns to specific memory areas requires 
a dynamic analysis of the memory accesses. In such an analysis, the ratio between accesses to 
a data area and the resulting cache misses needs to be evaluated. 

ssesMemoryAcce
scacheMisseatiocacheMissR =  (5) 

4.3.3 Page Miss Reduction in DRAMs 
The external memory of an embedded system is often dynamic RAM (DRAM), which is or-
ganized as pages, see Section 3.1.2. If a specific page is active, memory accesses to this page 
(page hits) are fast, whereas accesses to other pages (page misses) require several initializa-
tion steps, which results in wait states. Therefore data should be arranged such that the num-
ber of page misses can be reduced. A typical case where page misses occur is when two data 
areas are accessed alternatingly, for example when calculating the sum of two arrays. Each 
data access leads to a page miss or, if a cache is used, each line fill leads to a page miss. If 
possible, both data areas should be placed in one page. 

As data placement is performed during compile time (or even runtime for heap variables), 
identifying page misses requires dynamic profiling of the running code. The MEMTRACE 
profiler provides page miss results for each function and for global or user defined data area 
and thus allows an identification of the code segments and data areas that should be rear-
ranged. 

4.3.4 Speedup Estimation before Implementation 
Optimizing the software, e.g. by using SIMD instructions, assembler inlines or general re-
coding, can be very time-consuming and prone to error. Therefore it is helpful to estimate the 
speedup that can be achieved by re-coding a specific function, and its influence on the overall 
performance, before performing the re-coding. MEMTRACE allows the specification of a 
speedup factor for each function in the application. Thus the influence of optimizing a specific 
function on the overall performance can be estimated. 



4  Comprehensive Profiling of Embedded Processors 

4.3.5 Data Access Visualization 
Beside the statistical representation of the profiling data, a visualization of the memory ac-
cesses gives the designer a good overview of the access pattern of the software over time. The 
information can be used to gain a better understanding of the memory accesses of the software 
and allows the finding of patterns within the accesses in order to optimize the data transfers, 
e.g. by prefetching subsequently used data to the cache or fast memory. Additionally, unnec-
essary data accesses are much easier to track. Figure 21 shows a set of screenshots of such 
access pattern images. Each image shows a snapshot of the accesses to an area in the memory 
(176x16 bytes) between a timing interval, e.g. between each call of a specific function. The 
number of accesses are then normalized to a 256-step wide gray-scale range and written con-
tinuously to a datastream. This datastream can then be interpreted as a luminance video 
stream and rendered by a video player. 

 

 

 

 

Figure 21: Visualization of access pattern to user-defined memory area over time 

4.3.6 Efficient Register Usage 
As memory accesses are very time-consuming, frequently accessed variables should be kept 
in registers if possible, as described in [12]. Register allocation for C source code is automati-
cally performed by the compiler. However, the compiler may allocate registers inefficiently if 
global variables, pointers or pointer chains are used, as the accessed variables may be modi-
fied between multiple accesses. If the programmer knows that a variable is not modified, the 
compiler can be directed to use a register to store the variable by various methods, e.g. by 
defining it as a “register” type or by working with a local copy of a global variable. 

An indicator of inefficient register usage is if a function accesses the same memory address 
multiple times. To localize such functions, the memory accesses in each function need to be 
analyzed. For each memory address accessed from the function, the number of accesses is 
counted. If a large number of accesses occurs to the same address, the above-mentioned 
methods might be applicable. Table 7 shows an excerpt of such results as provided by the pro-
filing tool. 
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Table 7: Access statistics for each function 
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Itrans 144 68 F2D74 block.c 108.5 4752 33 … 

ReadCoeffBlockCAVLC 202 25 stack cavlc.c 840.4 2828 14 … 

PredictNnz 176 4 F25EB cavlc.c 609.3 9152 52 … 

ReadLevelVLCN 65 17 stack cavlc.c 557.5 520 8 … 

ReadTotalZeros 90 6 stack cavlc.c 232.1 720 8 … 

DecodeH264 1 16 stack decodeH264.c 388.1 11 11 … 

GetVLCSymbol 430 7 stack egvlc.c 151.1 4730 11 … 

GetVLCSymbol_Slow 20 4 stack egvlc.c 121.1 40 2 … 

For each function, the table gives the number of calls and the total number of accessed ad-
dresses. For the ten most accessed addresses, more details are provided. Table 7 shows only 
the results for the first address as an example. The results include the actual address (or loca-
tion name), the number of accesses per function and the number of accesses multiplied by the 
number of calls. For this last, the call of the function with the highest number of accesses is 
used. This number can be used to compare the overall influence of accessing this address, as 
compared to accesses in the other functions. If source code information is available, the pro-
filer also provides one source code line location, where an access to the memory address oc-
curred. This helps in identifying the actual source code variable which corresponds to the ad-
dress, and is a candidate for the manual register allocation. 

For example, the function “itrans” in the first line of the table is called 144 times. The func-
tion accesses up to 68 different memory addresses during each call. The most frequently 
called memory location is at address 0xF2D74. The call (or at least one of the calls) to this 
address takes place at line 108 in the source code file “block.c”. The maximum number of 
accesses to this address within one call of the function is 33 times. The overall influence of 
the accesses to this address is assessed by multiplying the maximum number of accesses by 
the number of calls, i.e. 33 times 144, which results in 4752. The higher this number is, the 
larger the influence on the overall performance when the data value of this address is stored in 
a register. This fact becomes clearer when comparing the two functions “DecodeH264” and 
“getVLCSymbol”. Both functions access a specific address on the stack 11 times. However as 
the “getVLCSymbol” function is called 430 times, optimizing the register allocation there 
yields a higher speedup than optimizing “DecodeH264”, which is only called once. 

4.4 Profiling-Based Hardware Optimization 
Beside the software optimizations presented in the previous section, profiling can also be ap-
plied to adjust the processor and memory architecture of embedded systems. The following 
sections show how the instruction set and the address generation modes of a processor can be 
adjusted to the needs of the application. In Section 4.4.3 a method is described for configuring 
and using fast on-chip memory efficiently. 
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4.4.1 Instruction Set 
As their name states, RISC processors come with a reduced instruction set as compared to 
CISC processors. However, some of the current RISC instruction sets provide more than 100 
instructions. If the instruction set of the processor is customizable, such as with the CoWare 
Processor Designer, Tensilica or ARC, it can be helpful for the processor designer to obtain 
information about the actual usage of the instruction set. A statistical analysis can be per-
formed by parsing the compiler-generated assembly code. However, this static analysis ne-
glects the real instruction usage during program execution, since not every assembly code line 
is executed equally often. As many instructions can be replaced by a series of other instruc-
tions, it can be helpful to see how often a specific instruction is really used. This is important 
as the replacement with other instructions often comes with an overhead, and therefore the 
influence of the overhead can be estimated by this dynamic profiling. 

Table 8 shows the instruction profiling results as provided by the profiler for the execution of 
an H.264/AVC decoder. The source code, which includes more than 20,000 lines of code, is 
translated to a usage of only 21 assembly instructions. Thus, a processor design with only 
these instructions would be sufficient to execute the code. Furthermore, it can be seen that 
four instructions (LDR, ADD, STR, MOV) are responsible for almost 75 % of the decoded 
instructions. So, the processor architecture, including the instruction set and decoder, pipeline 
and memory interface should be designed such that these instructions require a very low la-
tency. The fact that these instructions are mainly data movement related shows how data-
intensive this application example is. 

4.4.2 Address Modes 
Besides the actual instructions, the instruction set of a processor is also defined by the address 
modes which are implemented. The addresses are either calculated in a separate address gen-
eration unit or within the general ALU including the shifter unit. Depending on the processor, 
a more or less wide range of address modes is available. Taking the ARM architecture as an 
example, the following modes are supported. The simplest is a zero offset address, where the 
address is taken from a register without any offset. This address can be modified by an imme-
diate value, which is hard-coded in the instruction. The register values can be further proc-
essed by a shift operation within the same instruction. 

Supporting all these address modes has two major impacts on the processor architecture. On 
one hand, the coding of the address modes in the instruction set requires a portion of the 
instruction bit-width for encoding the mode (3 bits), the offset register (4 bits), shift 
information (7 bits) and the immediate value (12 bits). On the other, the hardware support 
required for calculating the addresses leads to an overhead in die area and power 
consumption. This is especially true if a separate address generation unit is used. If a 
processor is targeted to a specific application, the architecture should be adapted to the 
application’s needs. A profiling of the applied address modes can be used to build an 
optimized and reduced instruction set and address generation unit. 
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Table 8: Instruction profiling results 

Instruction Executed Percent Accumulated 

SWI  734 0 100 

ADC  19859 0.01 100 

BIC  28336 0.02 99.99 

CMN  35269 0.02 99.97 

MVN  422525 0.29 99.95 

TST  514008 0.35 99.66 

RSB  872541 0.59 99.31 

ORR  938291 0.64 98.72 

LDM  1655893 1.13 98.08 

MUL  1698881 1.16 96.95 

STM  1709378 1.16 95.79 

AND  2742492 1.87 94.63 

MLA  2945366 2.01 92.76 

SMU  3494211 2.38 90.75 

SUB  6097076 4.15 88.37 

B  6974355 4.75 84.22 

CMP  7171197 4.88 79.47 

MOV  15562089 10.59 74.59 

STR  16698445 11.37 64 

ADD  35844633 24.4 52.63 

LDR  41458397 28.23 28.23 

Sum 146883976 100 % 0 

Table 9 shows the example results of a profiling run for a gesture recognition system, see Sec-
tion 6.2. For each of the load and store operations one of the address types is used, with either 
no offset at all, a program counter relative offset or a pre- or post-indexed offset. These offsets 
can be either an immediate value or taken from a register value. Furthermore, the register 
value can be shifted by a given value and a specific shift operation. As can be seen, here most 
of the memory accesses are to pre-indexed addresses with an immediate offset value. Register 
offsets are used for less than 12 % of the memory accesses and shift operations for only 2 %. 
For optimization purposes, abandoning these address modes could be an option. 

 65



4  Comprehensive Profiling of Embedded Processors 

 66 

Table 9: Address mode profiling results 

Details on load and store operations 

Loads 2751552

Stores 740142

Address type 

Zero-offset 663579

Program counter-relative 58324

Pre-indexed  2188188

Post-indexed  581603

Detail on all indexed modes 

Immediate offset 2352885

Register offset 416906

Detail on register offset (optional shift operation)

Shift-offset ASR 0

Shift-offset LSL 75361

Shift-offset LSR 746

Shift-offset ROR 0

Shift-offset RRX 0

4.4.3 Data Partitioning between Fast and Slow Memory 
Many embedded system architectures provide a fast but small internal memory (SRAM) as an 
addition to the much slower external memory (DRAM). This internal memory can be used to 
store frequently used data for fast access. As SRAM is very costly in die area and power con-
sumption, the internal memory is usually small. Therefore in order to use it efficiently, the 
frequently accessed memory areas need to be identified, these being valuable candidates for 
internal storage. 

Processor
core

I-cache
32 kB

D-cache
32 kB

External
memory
(DRAM)

Internal
memory
(SRAM)

TCM
(SRAM)

 

Figure 22: Embedded system with caches and fast internal and slow external memory 
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If caches are available in a system, as depicted in Figure 22, the situation changes slightly, as 
not every load/store access is passed to the slow external memory. Instead, this occurs only if 
the required data/instructions are not available in their caches, i.e. cache misses occur. The 
caches then load new cache lines (e.g. eight words) from the external memory (DRAM). 
These loads lead to a halt of the processor and thus increase the execution time. The time re-
quired for a cache load depends on the speed (wait states) of the external memory. Thus the 
overall number of cache misses must be reduced in order to speed up the application. 

This can be accomplished by using one of the fast internal memory devices. In cases where a 
TCM is used, the number of cache accesses (and misses) is reduced directly. In the case of 
other internal memory, the address range of this memory should be marked as “non-
cacheable”, in order to bypass the cache during accesses to this memory. The choice of 
data/instructions to be stored in the TCM is quantified by the number of cache misses which 
occur when accessing these data/instructions. Therefore an analysis of cache misses per data 
segment (e.g. variable) or instruction segment (e.g. function) is required. The resulting cost 
ratio, given in Equation 6, expresses the ratio between the cache misses that occur when ac-
cessing a data segment and the size of the segment. 
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The areas with the highest cost value should be stored in fast memory in order to reduce the 
overall number of misses. 

The example shown in Table 10 is used to describe the mapping method. The table shows an 
example list of variables with the results for size and cache misses, sorted by the cache misses 
per byte. The accumulated size and number of cache misses is also given, with the results of 
data structures accumulating from the top to the bottom of the list. With a given TCM size, for 
example 4096 bytes, all data structures from “incVlc” down to “predictIntra4_table” could fit 
into the TCM. However, this leads to using only 2568 bytes of the 4 kB available. A more 
efficient method would be to leave “predictIntra4_table” out and thus have space for 
“expgolombtab”, which would increase the number of saved cache misses from 96,849 to 
142,807. 

The process of finding an optimal partitioning of the data segments to the fast and slow mem-
ory, while reducing the overall cache misses, can be described with the knapsack problem 
[65]. This can be described as follows: having a container with a capacity c and a number n of 
objects that can be either taken or not (x=0 or x=1), with each object having a weight w and a 
profit p, the objective is to 

maximize  

subject to ∑  

Here the data size is equivalent to the weight and the cache misses are the profit. Although 
solving this problem can be complex, especially when dealing with a large number of objects, 
efficient algorithms exist to reduce the complexity. 
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Table 10: Decoder data areas sorted according to their number of cache misses per byte 

Data structure Size Load, store
accesses

Cache
misses

Accum.
size

Accum. 
cache 

misses 

Cache 
misses per 

byte

IncVlc 28 116142 1187 28 1187 42.39

Getqpel8_table 64 32608 2638 92 3825 41.22

Run0_short 128 52206 5195 220 9020 40.59

NumCoeffTrailOnes0 1024 242918 39531 1244 48551 38.6

Run1_short 128 34840 4870 1372 53421 38.05

Bs 4 3213784 150 1376 53571 37.50

ALPHA_TABLE 52 402619 1933 1428 55504 37.17

TotalZeros0_short 1024 102493 37300 2452 92804 36.43

TotalZeros 60 216663 2100 2512 94904 35.00

PredictIntra4_table 56 146961 1945 2568 96849 34.73

Expgolombtab 1540 656242 47903 4108 144752 31.11

… … … … … … …

The resulting partitioning of the data segments can be used for automatic placement if a feed-
back path from the profiler to the compiler or linker, respectively, can be established. For ex-
ample, by means of a linker script or scatter loading files, the placement of each object file 
can be achieved. To place each variable of the code individually, a compiler directive 
(pragma) can be inserted in the code. This forces the creation of special sections for each vari-
able, which can then be accessed for placement within the scatter file. 

The method described above leads to a static placement of the data segments. However, the 
profiling can also be used for dynamic placement to the fast local memory, which corresponds 
to the actual purpose of TCMs. If the profiler is instructed to produce intermediate results, 
these results can be used to analyze the changes in data usage and cache miss behavior over 
time. As described in Section 4.1, the “split function” behavior can be used to produce profil-
ing snapshots at each call of a specific or even of multiple functions. 

The following is an example of dynamic placement. If an array or look-up table is used heav-
ily only within one function but not required during other functions, it can be loaded to the 
TCM dynamically only for the time it is used, leaving the memory space for other variables at 
other times. A DMA controller should be used in order to perform the relocation of the array 
efficiently and the programming of the controller can be based on the profiling results. 

4.5 Power Model of an Embedded Processor 
Besides providing performance and memory analysis, the profiling method has been extended 
with power estimation. For this purpose a measurement-based model has been created. Com-
pared to analytical models, measurement-based models have the disadvantage of being re-
stricted to a specific processor. On the other hand, measurement leads to real power numbers 
and thus is proven to be valid. Processor cores are not usually manufactured as stand-alone 
devices, but are incorporated onto a device along with additional components such as on-chip 
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memory, control units and input/output modules. The influence of these components on power 
consumption needs to be considered too. 

Within this study, the Altera Excalibur [1] platform has been used for measuring the power 
consumption of a sample embedded RISC processor core. It is an SoC based on an ARM922T 
processor with separate instruction and data caches, each 8 kB, see Figure 23. Besides the 
processor, single and dual port on-chip SRAMs are available and memory controllers for ac-
cessing external SDRAM and a field-programmable gate array (FPGA) are contained on the 
chip. 

 

Figure 23: Block diagram of the Excalibur processor unit including caches and MMUs [1] 

The Excalibur device is built in a 0.18 μm TSMC process with seven metal layers. The PLD 
array is similar to the arrays used in APEX 20KE devices. The Excalibur series features three 
devices, which differ in their size of on-chip SRAM and gate array. For the power evaluation 
of the processor, the smallest device, called EPXA1, has been chosen, in order to keep the 
influence of the other on-chip components low. 

4.5.1 CMOS Power Consumption 
Most embedded systems are built of semiconductor devices, which use the complementary 
MOS (CMOS) technology. The power consumption of CMOS circuits is a sum of static and 
dynamic components. The dynamic component describes the switching activity of the circuit, 
which is mainly due to the charging and discharging of load capacitances. These capacitances 
include the interconnecting wires and the internal capacitances of the transistors, therefore the 
power consumption increases with the wire length and the number of connected gates. The 
dynamic power consumption is defined as: 
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where Ck is the load capacitance, fk the clock frequency of the circuit and VDD the supply 
voltage. 

When the CMOS technology was introduced, one of its major advantages was the very low 
static power consumption, which is due to the fact that either the pull-up (PMOS network) or 
pull-down (NMOS network) of a gate is turned off when the circuit is in a stable state. The 
continuous shrinking of the feature size of the transistors and the accompanying reduction of 
the threshold voltage leads to an increased leakage current, the subthreshold leakage, because 
the gate’s transistors are not fully turned off in this state. Therefore in current CMOS tech-
nologies, the static power consumption can no longer be neglected, and in the future it will 
become comparable to the dynamic power consumption [103]. Therefore the power model 
created within this work reflects both, dynamic and static power consumption. 

4.5.2 Power Measurement Methods 
The electrical power consumed by a device is defined as: 

 (8) 

where V is the supply voltage and I is the electric current flowing into the device. For 
semiconductor devices, the supply voltage is provided in DC mode and can be considered 
constant. This leads

 (9) 

Thus the power consumption of the device can be determined by measuring the current 
flowing through the device. The current changes depending on the chip activity and the 
energy consumed within a time Δt is express

∫∫∫ ⋅⋅Δ=⋅⋅Δ=⋅Δ= )()()( tIVttIVttPtE  (10) 

The electrical current can only be measured indirectly by one of the following three methods, 
which are described in more detail below: 

• voltage drop over a shunt resistor 
• magnetic field produced by current flowing through a conductor 
• voltage drop due to discharging of switching capacitors [28] 

The shunt resistor setup shown in Figure 24 is the most common current measurement 
method. It has a small resistance, usually in the range of a few milliohms to 1 ohm. The resis-
tor is installed in series with the system to take measurements on the power supply line. It can 
be installed either on the supply voltage side (high-side) or on the ground side (low-side) of 
the power supply. The low-side arrangement has the advantage that no common mode voltage 
exists, however it might be difficult to measure all ground paths, for example ground path 
might also appear through the measurement equipment or other connected devices. The cur-
rent mode voltage of high-side measurements can be eliminated by means of a differential 
measurement setup. This can be either a differential probe or a differential amplifier, which 
can also be used to amplify the signal. 
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Figure 24: Measurement setup with high-side shunt resistor and amplifier 

The problem with the shunt setup is that it is an intrusive method. The dynamic voltage drop 
over the shunt (due to the changing supply current) leads to a changing supply voltage to the 
actual device. If the supply voltage is too low, this can lead to malfunction of the device. Usu-
ally CMOS devices have a specific supply voltage range which is allowed, and this is the 
maximum range for the actual measurement. As this range is usually about a few millivolt, 
e.g. 10 - 100 mV, the actual measurement device must be fairly accurate. Therefore it is help-
ful to amplify the signal, although this in turn leads to a reduced frequency range due to the 
frequency and gain relationship of the operation amplifier. This relationship is given in the 
gain bandwidth product. A trade-off has to be found between bandwidth and amplification, 
which corresponds to a trade-off between temporal and signal range accuracy. Simple opera-
tional amplifiers can be used as differential amplifiers, if they are setup as shown in Figure 
25. 

 

Figure 25: Schematic of a differential amplifier [20] 

The drawback of this setting is that it has only medium input impedance. As the amplifier 
needs to be connected in parallel to the shunt resistors, this can lead to errors in the measure-
ment results. Instrumentation amplifiers overcome this problem by extending the circuit with 
two input operational amplifiers, see Figure 26. This leads to a high input impedance, in the 
range of gigaohm, and a high common mode rejection. 

Instrumentation amplifiers are available as integrated circuits, which offer a higher accuracy 
than discrete circuits, for example the Analog Devices AD623 [4] used in this work. The 
AD623 integrates the entire circuit given in Figure 26 except for the resistor controlling the 
gain, which can be externally connected to the device. The gain bandwidth product is 800 
kHz. 
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Figure 26: Schematic of an instrumentation amplifier [20] 

Especially for the measurement of electric current, so-called current-sense amplifiers are 
available which provide a higher gain-bandwidth product. For example, the Maxim 
MAX4376TASA offers 40 MHz and has a bandwidth of 2 MHz at a gain of 20. The operation 
mode is different from the instrumentation amplifier, see Figure 27. 
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Figure 27: Block diagram of the current-sense amplifier MAX 4376 [67] 

The current to be measured, Iload, leads to a voltage drop over RSense. The open-loop setup of 
the operational amplifier leads to the same voltage drop over RG1 and results in current IRG1. 

LoadSense
G

RG IR
R

I ⋅⋅=
1

1
1

 (11) 

This current is “copied” and amplified by a factor β with a current mirror, which leads to the 
current IRGD. The voltage drop over the resistor RGD is then amplified by factor Av of 2. The 
output voltage is then: 
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The combined gain factor is given in Equation 13 and is adjusted to a value of 20 for the 
MAX4376TASA device. 
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The instrumentation amplifiers mentioned above and the current-sense amplifier are used in a 
high-side setup for the current measurement. The measurement setup is described in more 
detail in Section 5.7. 

4.5.3 Instruction Sequences for Power Evaluation 
The power model of the processor should be triggered by information which is delivered by 
the profiler or by the ISS. This includes, for example, the executed instruction, register usage, 
pipeline stalls, data values and addresses and cache misses. In order to create the power 
model, the influence of these parameters on the power consumption needs to be extracted. 
Based on existing power models, as described in Section 3.2.1, the following typical influ-
ences on the dynamic power consumption have been identified: 

• intra-instruction energy 
• inter-instruction energy 
• data and instruction cache 
• data path 
• register address decoder 
• idle cycle 

The intra-instruction energy corresponds to the intrinsic energy for each instruction without 
any influence of other instructions. This energy corresponds to the activity in the functional 
units of the processor, when they are utilized by an instruction. This is covered by running a 
program which consists of a sequence of only this instruction. Interdependencies between 
instructions are reflected by the inter-instruction energy. This energy is due to the activation 
and deactivation of specific functional units. A test program should cover each combination of 
instructions by executing them alternatingly. The energy as compared to the single instruction 
sequence is the inter-instruction offset. 

Besides the actual instructions, the influence of the processed data streaming through the data 
path should also be considered. For abstracting the data dependencies two different models 
are examined: the Hamming distance and the number of ones. The Hamming distance 
describes the difference between two successive data values, expressed as the number of bit 
positions which have changed from one to the next. This behavior corresponds very well to 
the charging and discharging process of the data bus wires and therefore should correlate with 
the energy consumption. Depending on the charging behavior of the wires, the number of 
ones within a data word can be considered as an additional criterion for an energy model. In 
order to profile the influence of the data path, the data read from the source registers and the 
final data written to the destination register need to be profiled

These aspects apply similarly for the binary representation of the instruction and the addresses 
for accessing data, instruction and registers. 
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Since the register file tends to have a high influence on the data path energy, the influence of 
the address decoder of the register file should be considered along with the actual data flow. 
This is done by using a sequence of instructions with changing source and destination regis-
ters. 

Instead of examining each cache separately, the cache energy estimation can be combined 
with that of the processor by profiling the cache access behavior. This simplification is feasi-
ble for a simple processor, where every activity of the cache is initiated by the processor. The 
data cache is activated if a load or store operation is executed and the instruction cache is ac-
tivated during an instruction fetch. For the data cache, the data and addresses transferred dur-
ing each load or store operation need to be considered. For the instruction cache, an instruc-
tion sequence needs to be executed, which leads to a specified Hamming distance between the 
instructions and a defined number of ones. However, the instructions within the sequence 
should activate similar functional units in order to separate this influence from the cache 
model. Furthermore, the cache hit and miss behavior needs to be taken into account. For more 
complex architectures, the cache should be modeled separately, for example by using the 
CACTI cache power model, as mentioned in Section 2.3.4.3. 

Finally, the different idle modes need to be examined. Processors can be idle either during a 
NOP operation or when a pipeline stall occurs due to a cache miss. Additionally, many proc-
essors support special low power modes such as standby, where most of the functional units 
are turned off by clock gating. 

Since the energy model needs to be incorporated into the profiler, it should rely on the data 
provided by the profiler or by the cycle-accurate ISS. Considering the aspects described 
above, the following profiling data are required: 

• executed instruction 
• accessed, processed and written back data from the register 
• instruction word and address read from the instruction cache 
• data word and its address accessed during load and store operations 
• cache behavior, including cache misses and hits as well as write back stalls 
• timing behavior, i.e. the delay and throughput of instructions, pipeline stalls and delay 

time for cache hits and misses 
• accessed registers and register addresses 

A set of assembly code sequences needs to be developed which reflect the different energy 
contribution. These code sequences can then be run on the processor to evaluate the dynamic 
behavior of the processor. Section 5.8.2 describes this process in more detail. 

4.5.4 Power Model of an SoC 
The results show that the instructions can be grouped in classes of instructions with similar 
power consumption. For example, all simple arithmetical instructions, such as ADD, SUB and 
CMP have the same power consumption. The measurements performed result in the following 
model creation. For the chosen SoC design, the overall energy consumption on core supply 
voltage can be expressed as: 

SRAMChipOnControllerSDRAMFPGACachesCPUCore PPPPPP −−− ++++=  (14) 
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The FPGA array is disabled and can be assumed to have constant power consumption. The 
same applies for the on-chip memory devices, as they are not used during the measurement. 
The SDRAM controller is active if a cache miss occurs. It is also active for some maintenance 
tasks, such as refresh, although these are assumed to have a negligible effect. The power 
consumption of the CPU and of the caches is separated into a constant part and a dynamic 
part, depending on the activity. Furthermore, the cache activity is separated into cache miss 
and cache hit. Thus the power consumption of the SDRAM controller is directly dependent on 
the cache misses. 

constmissCacheDmissCacheIhitCacheDhitCacheIdynamicCPUCore PPPPPPP +++++= −−−−,

IdleCachesIdleCPUFPGASRAMChipOnconst PPPPP ,, +++= −−
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and 

 (16) 

The cache miss power consumption includes the cache and the SDRAM controller activity, 
as it is directly dependent on the cache misses. The dynamic part of the power consumed by 
the CPU is dependent on the executed instruction. 

Taking the current measurement into account for the different dynamic influences, the 
following energy consumption models are established

 (17) 

Taking into consideration the data dependencies, the CPU portion can be calculated with 

  (18) 

The energy consumption of the cache and the SDRAM-controller is modeled depending on 
number of cache hits and misses as given in Equation 19 and 20. 

 (19) 

 (20) 

The power model has been incorporated into the profiler. This allows dynamic energy estima-
tion for an application. Table 11 shows sample results provided by the profiler after analyzing 
an application run on the ISS. A list of all instruction types executed is given along with their 
contribution to the energy consumption. For example, the add (“ADD”) instruction in the sec-
ond row was decoded 14,641,240 times. 13,988,435 of these add instructions were executed, 
while the remaining 652,805 were skipped. The skipping of instructions is due to the condi-
tional execution features of the ARM processors, i.e. an instruction is only executed if the 
conditional flags are met. The energy required for processing all ADD instructions (executed 
and skipped) is estimated to be 42.035 mJ. This corresponds to an average current value of 
319 mA on the core voltage supply line. 
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Table 11: Energy estimation based on the instruction and data transfer profiling results 

Instruction Decoded Executed Skipped Energy 
(mJ) 

Current
(mA)

ADC 38343 38343 0 0.110083 319
ADD 14641240 13988435 652805 42.035 319
AND 2393132 2271771 121361 6.87068 319
B 7350494 5079545 2270949 52.3186 332
BIC 14077 14032 45 0.0404151 319
BL  1455186 1453595 1591 13.0348 332
BX  461190 439665 21525 4.00547 332
CMN 8532 8532 0 0.0244954 319
CMP 7728864 7644032 84832 22.1896 319
EOR 4 0 4 1.15E-05 319
LDM 1412459 1297982 114477 4.51281 355
LDR 18382820 17930740 452080 59.2294 358
MLA 622894 622830 64 10.5945 315
MOV 11324464 10025492 1298972 32.5125 319
MUL 324356 324356 0 5.5173 315
MVN 481301 111801 369500 1.38182 319
NOP 430 430 0 0.00123453 319
ORR 1306312 987059 319253 3.75042 319
RSB 2596264 1670553 925711 7.45387 319
STM 1245727 1240185 5542 3.87919 346
STR 9196038 9001769 194269 59.1247 361
SUB 7532152 7418239 113913 21.6248 319
SWI 63 63 0 1.81E-04 319
TST 165372 165358 14 0.474783 319
Sum 88681714 81734807 6946907 350.68666 

Others Value Per instruction/ 
per mem. access 

Instructions/
mem. access 

Energy 
(mJ) 

Current 
(mA) 

Idle cycles  31870309 75.7239 264
HammingI 891757368 10.056/instruction 88681714 3.00968 
HammingD 258309413 6.35/mem. access 40675944 0.87179 
ALU_Trans 52426137 0.59/instruction 88681714 5.662 
MEM_Trans  24859105 0.61/mem. access 40675944 0.6712 
#1s_SrcReg 1894856992 21.367/instruction 88681714 6.3951 
Overall sum  443.02033 332

Additional influences, such as Hamming distance of cache accesses and inter-instruction de-
pendencies, are shown at the bottom of Table 11, along with the overall estimation result. The 
result value (891,757,368) given in the “HammingI” row is the accumulated Hamming dis-
tance of all decoded instructions. This results in an average of 10.056 bits that have changed 
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in each of the 88,681,714 decoded instructions. These toggling bit lines on the instruction 
fetch and decoding units add 3.00968 mJ to the overall energy consumption. Similarly, the 
influence of the data memory accesses is provided in the row “HammingD”. 

The inter-instruction influence on the energy consumption is given in rows “ALU_Trans” and 
“MEM_Trans”. The first corresponds to the transition from any instruction to an ALU instruc-
tion, whereas the latter describes the transition to a memory access instruction. These two 
types of inter-instruction transitions have been separated, as they lead to different energy con-
sumptions. Transitions between two identical instructions are not counted, as they don’t add 
any extra energy consumption. For example the “ALU_Trans” row indicates that 52,426,137 
of the 88,681,714 decoded instructions were transitions to ALU instructions, which corre-
sponds to 59 % of the instruction. This inter-instruction effect adds 5.662 mJ to the consumed 
energy. The “#1s_SrcReg” row reflects the effect of the data flowing through the data path of 
the pipeline. The measurements have shown that the numbers of ones in the source register 
values are the indicators for this influence. Thus the data values of the accessed source regis-
ters are profiled and the numbers of ones in these values are accumulated. The “#1s_SrcReg” 
row shows that 1,894,856,992 ones were found in these values, which corresponds to an aver-
age value of 21.367 per instruction and adds 6.3951 mJ. The overall energy consumption of 
the entire application is estimated to be 443.02033 mJ, which incorporates the intra-
instruction energy of each instruction and all the additional influences described above. 

These results can be used to optimize the instruction set in cases where a customizable proc-
essor architecture is available. For example, infrequently used instructions might be replaced 
by a sequence of other instructions, in order to minimize the complexity of the instruction 
decoder. And instructions that dissipate a large portion of the overall energy should be consid-
ered as targets for optimization during the processor architecture development. 

Besides the overall results for the entire application, MEMTRACE also delivers the energy 
estimation results on a function-accurate level. Table 12 shows an excerpt of the profiling 
results for a software implementation of the H.264/AVC decoder, described in Section 3.4.1. 
It lists the results for the C source code functions of the decoder, which are sorted in a de-
scending order regarding energy consumption. 

Table 12: Profiling results of an H.264 video decoder (for one QVGA-sized frame), in de-
scending order of energy consumption 

Function Calls Cycles Load/
store

Cache 
miss

Instruct- 
ions 

Energy
(uJ)

EdgeLoopY_N 1364 896930 511808 2592 1493388 5601

H264_bzero 2003 437933 142216 0 582885 3178,7

MotionPredChroma 157 506157 238848 2639 418345 3032,2

Itrans 1707 351600 228305 3015 430164 2094,1

EdgeLoopC_N 565 287382 180949 1334 447759 1771,5

… … … … … … …

The most energy is consumed in the function “edgeLoopY_N”, which is part of the de-
blocking filter. Thus this is a good candidate for power consumption optimization. When the 
energy is compared with the cycles count, it can be seen that they correlate in most cases, thus 
the energy is often dependent on the execution time. This fact has also been observed by the 
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developers of JouleTrack, as described in Section 2.3.4.1. In some cases, for example when 
comparing the functions “h264_bzero” and “motionPredictionChroma”, the behavior is dif-
ferent. This is due to the fact that the latter function accesses the memory very randomly, 
which leads to the high amount of cache misses. Thus, a higher amount of the cycles required 
in “motionPredictionChroma” are idle wait cycles, which require less energy. Therefore, es-
pecially for data-intensive applications, energy optimization can not only be based on the 
clock cycles counts, but also on the influence of memory accesses. 

Additionally to the overall energy consumption results, the dynamic behavior of the power 
consumption is of interest, for example to find peak values. Figure 28 depicts the estimation 
of the power consumption during the decoding of one video frame of an H.264/AVC video 
stream. It starts with the reading of the bitstream from hard disk to memory, followed by the 
actual decoding. The decoding is executed as a loop over all macroblocks. After the decoding, 
the deblocking takes place, which also loops over all macroblocks. As can be seen, during 
deblocking the power consumption rises significantly. The major functions of the deblocking 
are the “edgeLoop” functions found in Table 12. In these functions the ratio of cache misses 
(and with that also idle cycles) to the overall cycle count is significantly lower than in other 
functions of the decoder. Thus during the deblocking, most of the time the processor is busy 
and requires more power. 
As a comparison, Figure 29 depicts the results during the measurement of the power con-
sumption on the processor. The figure shows the screenshot of the oscilloscope during the 
decoding of an H.264 video stream, and the processing of approximately one video frame can 
be seen. A difference between estimated results and measured results is the bitstream reading 
at the beginning of each frame. This is due to the fact that in the hardware setup the bitstream 
already resides in memory before the decoding starts. 
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Figure 28: Power consumption estimation results for the core supply voltage over time 
while decoding one video frame of an H.264 video stream 

 

 

Figure 29: Screenshot of the oscilloscope during current measurement while decoding one 
frame on an H.264 video stream 
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5 Implementation 
This chapter describes the implementation of the profiling tool developed within this work. As 
a target CPU the ARM processor family has been chosen. On one hand because embedded 
systems are often based on these processors; therefore profiling results for these processors 
covers a broad range of systems. On the other hand the ARMulator, as described in Section 
2.2.1, allows access to inside information, such as cycle counter and memory bus activity and 
can thus been extended for profiling purposes. The details about the profiling mechanism are 
described in Section 4.1. This mechanism is not restricted to the ARMulator and has also been 
applied to other processors, as shown in Section 5.7. 

The current implementation is written for the Microsoft Windows operating systems. It re-
quires the ARM Developer Suite or its successor RealView Development Suite, which are 
described in Section 2.3.1. Within the MEMTRACE source code, operating system specific 
parts have been separated carefully from the rest of the code. Therefore, porting the com-
mand-line implementation of the profiler to other operation systems, e.g. Linux, is possible 
with modest coding effort. 

The simulation speed of ARMulator is approximately 20-50 times slower than the execution 
on a real processor. The profiler reduces the speed even more, depending on number of profil-
ing features enabled, to a factor of 100-150 times. This is mainly due to the amount of list 
look-ups required by the profiler. In order to speed up the profiling, specific profiling features 
can be turned off, for example the bus or instruction profiling. The memory requirements of 
the MEMTRACE backend go up to 300 MB, depending on the number of traced functions 
and memory areas found in the program code. 

The profiler provides two user interfaces, a graphical user interface (GUI) and a command-
line interface (CLI). Both allow access to all features of the profiler and can be controlled by a 
configuration file. The configuration file is used for storing the lists of functions and variables 
and for profiling-specific settings, such as page and stack size. The GUI is targeted to quick 
and easy profiling, whereas the CLI can be used within batch scripts for starting multiple 
profiling runs, e.g. for achieving results of different cache configurations. The CLI is 
implemented as a 32-bit command-line application and the GUI uses the Microsoft 
Foundation Class (MFC) library to create a dialog-based Microsoft Windows 32-bit 
application. 

5.1 Workflow 
Profiling with MEMTRACE is carried out in three steps. In the first step MEMTRACE 
analyzes the compiled executable file (axf-image) of the source code and extracts all user-
functions. In the second step, the executable file is executed on the ARMulator, in order to 
perform the profiling. In the third step, the spreadsheet output file is created. The workflow is 
described in the following by the usage of the CLI. Command-line flags are used for choosing 
the processing step (initialization, analysis, postprocessing) and the filenames for executable, 
configuration file, analysis and spreadsheet output file are provided as parameters. The object 
files for symbol parsing can be specified by the full filenames or by means of wildcards or 
directory paths for comprising multiple files. Furthermore arguments can be passed to the 
debugger, e.g. for choosing a processor type or activating the tracer facilities. 
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The full command-line syntax is: 
memtrace [-i] [-r] [-x] [-y] [-c configuration-file]  
         [-a executable-file] [-p executable-file-parameters]  
         [-m output-file] [-e spreadsheet-file]  
         [-f spreadsheet-output-format] [-d debugger-options]  
         [-t][-?] [-V] [-o object-files] 

A full description of the command-line parameters is given in Section 8.2.6. 

5.1.1 Initialization 
In the first step MEMTRACE is initialized. It is started by calling: 

memtrace -i -a executable-file [-c configuration-file]  
        [-o object-files] 

MEMTRACE extracts the functions, global variables and sections from the executable file by 
comparing the symbols found in the executable with the symbols found in the object files. 
This step is illustrated in Figure 30. Therefore, all user object-files, libraries and archives of 
interest should be supplied. The extracted user-functions, variables and sections are written to 
a configuration file. 

 

Figure 30: MEMTRACE initialization step 

This file serves as configuration file for the next processing steps. During the analysis step, 
this file is used, in order to decide, which functions and memory regions should be traced. 
Section 4.1.1 describes the process of data acquisition in more detail. 

The file can be edited by the user, e.g. for adding or removing functions or defining additional 
memory areas, such as stack and heap variables, to be traced. The user can define so-called 
“split functions” by adding “= split” to a specific function in the configuration file. See Sec-
tion 4.1.1 for the usage of the split mechanism. Additionally the user can control whether the 
analysis results, e.g. clock cycles, of a function should include the results of a called function 
(accumulated) or if it should only reflect the function’s own results (self). Typically auxiliary 
functions, e.g. C standard library functions or simple arithmetic functions are accumulated to 
the calling functions. For more information on editing the configuration file, see Section 5.5. 

5.1.2 Analysis 
In the second step the performance analysis is carried out, as shown in Figure 31. It is started 
by executing the following command: 

memtrace -r -a executable-file [-p exe-file-parameters]  
        [-c configuration-file] [-m output-file]  
        [-d debugger-options] [-t] 

The previously generated configuration file defines the functions and variables to be analyzed. 
Additionally the system parameters, such as the processor type and memory architecture and 
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timing, can be specified. MEMTRACE connects to the ARMulator via its module interface 
for the simulation of the user application, as described in Section 4.1. During the simulation 
the ARMulator provides MEMTRACE with all information required for the analysis. 
MEMTRACE writes the analysis results for the functions and variables in two separate files. 
Example results are given in Section 4.1.3. If a “split function” has been specified, these files 
include separate tables for each call of the "split function". The output files serve as a data-
base for the third step, where user-defined data are extracted from these tables. 

 

Figure 31: MEMTRACE analysis step 

5.1.3 Postprocessing of the Analysis Results 
In the third step user-defined result tables are generated based on the output data produced 
during the second processing step described above. This step is started by calling: 

memtrace -x [-f spreadsheet-output-format]  
        [-c configuration-file]  
        [-m output-file] [-e spreadsheet-output-file] 

or 
memtrace -y [-f spreadsheet-output-format]  
        [-c configuration-file] [-m output-file]  
        [-e spreadsheet-output-file] 

This step creates a tab-separated file, which includes the user-defined tables, see Figure 32. 
Before this step can be started, the user-functions and the global variables can be grouped in 
the configuration-file, which has been created in the first step. See Section 5.5 for in-
formation on how to group functions and variables. Each group receives the accumulated re-
sults of all functions/variables of its members. The grouping can be used to examine the pro-
filing results of a specific software module containing multiple functions. The defined groups 
are used in the spreadsheet-output-format for specifying the format of the output ta-
bles. The tables are placed vertically in the output file in the order they are defined in 
spreadsheet-output-format, see Section 5.4. 

If no intermediate modification of the configuration file is required, the execution of multiple 
steps can be combined in one MEMTRACE call.  
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Figure 32: MEMTRACE postprocessing step 

For example, for running the ARMulator with an executable-file and creating a spreadsheet-
output for the function results use: 

memtrace -r -x -a executable-file [-f spreadsheet-output-format]  
        [-m output-file] [-e spreadsheet-output-file] 

5.2 Tool Architecture 
The tool is composed of two parts, a frontend and a backend. The frontend acts as an interface 
to the user, whereas the backend interconnects with the embedded software development 
suite. The two frontends, GUI and CLI, are based on the same functions library. The backend 
utilized various tools of the development suite for program information acquisition, e.g. 
names of all functions in the code, and runtime data acquisition, i.e. profiling data. This 
structure makes it possible to retarget the tool, on one hand to other processor platforms by 
exchanging the backend, and on the other to other OS platforms by exchanging the frontend. 
The entire software is written in C++ and compiled with the Microsoft Visual Studio 
development environment. 

The entire MEMTRACE suite combines the following parts: 

• MEMTRACE Base is the base project and provides the command-line interface as well as 
the backend features for the initialization phase. 

• MEMTRACE GUI is the graphical user interface is built on top of MEMTRACE Base. 
• MEMTRACE DLL is the backend part for data acquisition during the analysis phase. It is 

implemented as dynamic link library, which is compiled against the interfaces of the ISS. 
• MEMTRACE Coprocessor Interface is a template for coprocessor descriptions within the 

hardware/software co-profiling environment, as described in Section 4.2.3. 
• MEMTRACE Mapfile is the bus interface that extends the basic bus interface of the AR-

Mulator to a multi-master bus and adds a DMA controller for data transfer between mem-
ory and the coprocessors. 

• MEMTRACE Debugger features a minimal debugger for connecting and controlling the 
MEMTRACE backend with arbitrary ISSes, as described in Section 5.7. 

In the following sections the software architecture is shown by describing the most important 
functions of the MEMTRACE source code. Callgraphs for the different parts of the 
MEMTRACE suite can be found in Section 8.2.1. 
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5.2.1 MEMTRACE Base 
The main() function of the MEMTRACE executable performs the following two tasks: 

• processing the command-line parameters (getopt()) 
• starting the functions required for the processing step (init, analysis, postprocessing) 
Figure 71 in Section 8.2.1 shows the callgraph of the MEMTRACE executable starting from 
main(). Depending on the processing step, different functions are called, which are de-
scribed in more detail in the following. 

5.2.1.1 Init Step 

In the init step, see Section 5.1.1, the MEMTRACE configuration file with the list of project 
functions is created. The list of project functions is generated by comparing the list of func-
tions found in the executable file (axf-image) with the functions found in the project object 
files and project libraries. Thus unused functions and non-project library functions can be 
eliminated. The init step is divided in four steps: 

1. expand_list_of_object_files() processes the list of object files and paths 
(provided by the command-line parameter -o), which may contain wildcards and rela-
tive paths, and returns a list containing all object files with absolute paths. 

2. create_list_of_project_functions() creates a list of all project functions 
(list_of_project_functions). For each object file from the list of step 1 a 
symbol table is created and the function names are extracted from these symbol tables 
and written to the list_of_project_functions. 

3. create_list_of_axf_functions() creates a list of all functions found in the 
executable file (list_of_axf_functions). This includes project functions and 
additional library functions. 

ptions. 

4. create_memtrace_ini_file() creates the configuration file with the list of pro-
ject functions. The (real) project functions are found by comparing the 
list_of_project_functions with the list_of_axf_functions. At first un-
used functions are eliminated and then local function names, which occur multiple 
times, are renamed. 

5.2.1.2 Analysis Step 

In the analysis step, see Section 5.1.2, the actual memory profiling is performed. For this pur-
pose the debugger armsd is started with a specific script file and various options, e.g. for pass-
ing parameters to the MEMTRACE DLL. The following three steps are performed: 

1. create_armsd_ini_file() creates a script file for armsd, which activates addi-
tionally the internal ARMulator profiler. 

2. run_memtrace() initiates the profiling process. It starts armsd with the script file 
armsd_run and the armsd_options. The ARMulator, which is called by armsd, 
executes the executable file axf_filename with the command-line parameters 
axf_parameters. Depending on TracerOn additionally the internal ARMulator 
tracer module is turned on. The axf_filename, ini_filename and the 
output_filename are required in the memtrace_dll and are passed to it via 
TARGETO

3. delete_armsd_ini_files() deletes the script file generated in step 1. 
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5.2.1.3 Postprocessing Step 

In the postprocessing step, see Section 5.1.3, a tab-separated output file XLS_FILE with user-
defined tables is generated from the memory profiling results stored in OUTPUT_FILE. The 
table contents are arranged according to the table definitions in settings (axf-output-
format) and the function grouping in the INI_FILE. The processing is divided in five steps: 

1. parse_ini_file() parses the configuration file in order to create a tree containing 
all sections (ini_file_section). 

2. extract_groups()extracts all groups of functions defined in the “FunctionList” 
section and writes them to the list group_list_template. 

3. extract_settings()creates the list of the table definitions (table_list) by 
parsing the settings (axf-output-format). 

4. read_memtrace_results() reads the results of the MEMTRACE profiling from 
OUTPUT_FILE and sorts them into the list of calls (c_list) of the split function. 
After that for each call a c_list entry exists, which contains a group list 
(group_list_template) with the results for each group. 

5. print_to_xls_file() generates the user-defined tables, according to the ta-
ble_list, from data in the c_list and write them to the XLS_FILE. 

5.2.2 MEMTRACE Dynamic Link Library (Backend) 
The MEMTRACE backend performs the actual memory profiling and is implemented as 
DLL. It provides six entry functions, which are called from the ARMulator. However, the 
functions are not directly called from the ARMulator, but via the interface functions defined 
in tracer_for_memtrace_dll.c. This interface is derived from the original tracer module 
(tracer.dll). Additionally the Mapfile module (mapfile.dll) is modified for bus tracing, the 
modules are described in 2.2.1.1 and 2.2.1.2. In Figure 33 the software structure of the 
MEMTRACE backend is given. 

Debugger (armsd.exe)

Instruction set simulator (ARMulator.dll)

Memtrace profiler backend
memoryAccess()finish() nextInstruction()init() busActivity()cacheMiss()

Modifed Tracer module
(Tracer.dll)

DMA 
controller

Modifed 
memory & bus 

model
(Mapfile.dll)

 

Figure 33: Software structure of the interface between MEMTRACE backend and ISS 

The Mapfile is extended by a mechanism, which tags each bus cycle with the information, 
how the bus is currently used. This tag can be either CORE, DMA or IDLE and is identified 
by the tracer module. The MEMTRACE profiler backend defines a number of entry points, 
which provide the interconnection between the profiler and the ISS. The Tracer module has 
been extended by calls to these functions. 
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The function init() is called once when the ARMulator is started and initializes the 
MEMTRACE profiling. It creates a list of all functions from the symbol table out of the 
executable file, as described in the initialization step, and marks the user and split functions 
found in the configuration file. For each function a data structure is created, which contains 
the function’s start address and variables for collecting the analysis results. Similar to the list 
of functions a list of the variables and other memory areas is created, including the analysis 
data areas. Finally two pointers, called currentFunction and evaluatedFunction, are 
initialized. The first pointer indicates the currently executed function and, if this function 
should not be evaluated, the second pointer indicates the calling function, to which the result 
of the current function should be added. If the executable was created in debug mode, i.e. 
source code information is available, a table for mapping assembly code line to source code 
line is created. 

The function nextInstruction() is called by the Tracer module each time the program 
counter changes. It checks if the program execution has changed from one function to another. 
If so, the cycle count of the evaluatedFunction is recalculated and the call count of the 
currentFunction is incremented. Finally the pointers to the currentFunction and 
evaluatedFunction are updated. If currentFunction is a split function, the differential 
results from the last call of the split function up to the current call are printed to the result 
files. The function is also provided with the disassembly of the instructions. This is used for 
instruction counting. The disassembly string is parsed in order to identify the instruction and 
for load/store instructions also the address mode. 

memoryAccess() is called each time a memory access occurs and increments the memory 
access counters of the evaluatedFunction. Depending on the information provided by the 
ARMulator, it is decided if a load or store access was performed, and which bit-width (8/16 or 
32 bit) was used. Furthermore the ARMulator indicates if a cache miss occurred. Page hits 
and misses are calculated by comparing the address of the current with the previous memory 
access and incorporating the page structure of the memory. 

If a data cache is available in the processor each time a cache miss occurs the function 
cacheMiss() is called. It accounts the number of data cache misses for the current function 
and also for the corresponding memory area or variable, which has been accessed. 

The function busActivity() is called for each bus cycle and provides the MEMTRACE 
backend with the current bus status tag. Thus, every bus cycle consumed by the 
currentFunction can be classified as CORE or DMA access or IDLE state. 

The entry function finish() is called when the ARMulator has terminated the simulation. It 
updates the results of the last evaluatedFunction and prints the results of the last call of 
the split function and the accumulated results to the result file. 

5.3 Graphical User Interface 
The graphical user interface of MEMTRACE allows an easy usage of the tool. It is very use-
ful for the postprocessing task and for novice users of the tool, as most options are provided 
within a list. The tool is created as dialog-based window with three tabs reflecting the three 
workflow steps defined in Section 5.1. The GUI is based on the MFC library and built with 
the Microsoft Visual Studio development environment. It is implemented as a dialog-based 
32-bit application. The three processing steps (initialization, analysis, postprocessing) are im-
plemented as three separate tabs in the dialog window. The configurations can be stored in a 
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configuration file, which is compliant to the CLI configuration file. Thus the user can switch 
between the two versions of the tool. See Section 8.2.2 for screenshots of the GUI. 

5.4 Spreadsheet Format Description 
The output data to be printed in tables can be specified by the command-line parameter: 

-f spreadsheet-output-format 

MEMTRACE creates one output file, which is tab-separated and can be imported by 
spreadsheet programs. The file may contain multiple result tables. The content of each table is 
specified in the following format: 

spreadsheet-output-format: "{<table1>}{<table2>}{<table3>}..." 

where {<tableX>} is the specification of one output table. 

Each table specification {<tableX>} has the following format: 
{<tableX>}: {table_type;row_column_specifier;row_column_specifier} 

table_type specifies the data to be displayed in the table. For printing overall results the 
“ov” type exists and for printing the results of a specific group the “group” identifier is used. 
The desired group is provided, e.g. “group=myGroup1”. If a table should be created only for 
one data type, the data type is given together with the table type “data”. The 
row_column_specifier is supplied for restricting the printed rows or columns. If the 
row_column_specifier is not given, all results for row and column are printed. 

In case of a data table, the groups to be shown can be specified, e.g. “group = MyGroup1, 
MyGroup2”. Vise versa for group tables the data types are given as a parameter. 

Furthermore the row_column_specifier is applied to define a range of results. If the split 
flag was used, intermediate results have been produced for each call of the split function. Two 
possible range types are provided for selecting a subset of these results. The simple triple 
range definition is (<begin>, <end>, <step>). In this step, only the results from "be-
gin" to "end" are printed to the results table, and from these results taking only each "step" 
intermediate result. The advanced range definition is (<begin>, <end>, <step>, <pe-
riod>, <period_end>). Here the results from "begin" to "end" taking each "step" call are 
taken. This is periodically repeated in a distance of "period". The repetition is finished when 
"period_end" is reached. For example, for printing results of the calls: 3, 4, 5, 9, 10, 11, 15, 
16, 17 specify (3, 5, 1, 6, 17). 

The available data types are listed in Table 13. If these types are used in <table_type>, the 
<data_type> can be extended by a "+" (such as CY+) for printing an extra row with the ac-
cumulated result. The accumulated results are only the sum of the visible groups, not of all 
groups. 



5  Implementation 

Table 13: Data types for table results 

Flag Function 

LS Add "all load store" column to table 

LD Add "all load" column to table 

L8 Add "load_8_16" column to table 

ST Add "store" column to table 

S8 Add "store_8_16" column to table 

PH Add "page hit" column to table 

PM Add "page miss" column to table 

CM Add "cache miss" column to table 

LS Add "all load store" column to table 

 

A typical spreadsheet-output-format may look like: 
"{data=CY+;group=control,inverse 
scan;(2,10,4)}{group=control;data=LS,PH,PM;(30,50,10)}{OV}" 

This would print the following three tables. The first table (Table 14) represents the cycle 
counts for the groups “control” and “inverse scan” for call 2, 6 and 10 next to an extra column 
for the accumulated results. The second table (Table 15) for the group “control” shows load, 
store, and page hit and miss for calls 30, 40 and 50. The last table contains the overall results 
(Table 16). 

Table 14: Data types for table results (cycle results) 

Frame Control Inverse scan Sum

2 419 0 419

6 2492718 56471 2549189

10 3672817 82832 3755649

 

Table 15: Data types for table results (group results) 

Frame All load store Page hit Page miss

30 279096 79693 199403

40 378873 107272 271601

50 406627 116077 290550
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Table 16: Data types for table results (overall results) 

Group Cycles All load store Load Load
8/16 Store Store 

8/16 Page hit …

Control 3182569 423001 230185 275 192816 96597 122280 …

Inverse scan 70627 14642 8946 880 5696 0 9260 …

Inverse  
transformation 373421 62966 37407 0 25559 9488 38455 …

Entropy  
decoding 1398896 277109 188338 822 88771 956 176510 …

… … … … … … … … …

5.5 The Configuration File 
The MEMTRACE configuration file contains the list of functions, the list of variables and 
some further settings. The file is generated in the first step, the initialization step, see Section 
5.1.1. It can be edited by the user, in order to control the second (analysis step) and the third 
step (postprocessing step). The most common changes made on this file, is the setting of a 
“split function” and the grouping of functions and variables. 

5.5.1 File Format 
The file format of the configuration file is similar to the ARM configuration file format as 
used and defined within the RealView Development Suite [14]. Table 17 shows a list of the 
syntax elements. 

Table 17: Syntax elements of the configuration file 

Syntax Description 

MyTag Defines a tag 

MyTag2 = Value1  Defines a tag and sets it to a value 

MyTag2 = Value1 Value2 Defines a tag and sets two values for it 

;; comment line Comment line for description 

; commented-out line Comment line used for commenting out 

{ MySection = SectionName Beginning of a section of type MySection named SectionName 

SectionTag1 Definition of a tag inside a section 

} End of a section 

5.5.2 List of Functions 
All functions and groups of functions are defined as tags inside the section of type and name 
"FunctionList". One specific function can be a split function, see Section 5.1.1. This is indi-
cated by adding “ = split” after the function name. Functions can be grouped in sections of 
type “group” supplied with a user-defined name. This name is later used in the spread-
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sheet-output-format, see Section 5.4. The groups are placed inside the group “Func-
tionList”. An example of this format is: 

{ FunctionList = FunctionList 
  { group = MyGroup1 
    function1 
    function2 
  } 
  { group = MyGroup2 
    function3 = split 
    function4 
  } 
} 

Listing 11: Definition of functions in the configuration file 

5.5.3 List of Variables 
A list of global variables and user-defined memory areas is defined similar to the list of func-
tions. The list is divided into three parts, the list of global variables the list of sections and the 
list of fixed memory areas. The first two lists are automatically created in the initialization 
step of MEMTRACE. The third one is defined by the user. An example of this format is: 

{ MemoryMap = MemoryMap 
  { FixedAreaList = FixedAreaList 
    myStack = 0x7FFE000 8192 
    HeapVariable1 = 0x000AB95C 25344 
    HeapVariable2 = 0x000B1C5C 4 
  } 
  { SectionList = SectionList 
   'ER_RO' 
   'ER_RW' 
   'ER_ZI' 
  } 
  { GlobalVariableList = GlobalVariableList 
    GlobalVariable1 
    GlobalVariable2 
  } 
} 

Listing 12: Definition of variables in the configuration file 

The GlobalVariableList includes all global variables, which are defined in the user ap-
plication. The SectionList includes the memory regions (sections) of the user application. 
This sections where either automatically defined by the linker (ER_RO, ER_RW, ER_ZI) or 
by the user in a scatter-loading file. The address and size of the global variables and the sec-
tions are retrieved from the compiled executable file of the source code during the analysis 
step. In the FixedAreaList additional memory areas are defined for profiling. These areas 
must be specified with its start address and size: 

 <name> = <startaddress> <size> 

Typical memory areas include the internal or external memory space, stack, heap or heap 
variable. However, as the start address and size of some areas might change after a recompila-
tion of the application, they need to be refreshed. This problem may occur with the heap or 
heap variables. Therefore the start address and sizes need to be verified during program exe-
cution, e.g. with printf() of the malloc addresses. 
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5.5.4 Global Settings 
By including the additional section Global, various settings can be given to control 
MEMTRACE. For example, the tags BaseAddr and PageSize of data memory can be ap-
plied for page hit/miss calculation. The BaseAddr specifies the base addr of the first page in 
memory. It needs to be expressed as hexadecimal value (with leading 0x). The PageSize tag 
defines the size of each page in bytes. PageSize need to be expressed as integer value. The 
base address (StackBaseAddr) and size (StackSize) of the stack are defined similarly. 

The global sections format is: 
{ Global = Global 
  BaseAddr      = 0x0 
  PageSize      = 128 
  StackBaseAddr = 0x08000000 
  StackSize     = 8192 
} 

Listing 13: Definition of global settings in the configuration file 

5.6 Infrastructure for System Architecture Profiling 
Beside the previously described software related profiling MEMTRACE also supports a high-
level hardware/software co-profiling. For this purpose the bus model of the ISS has been ex-
tended to multi-master bus. Additionally to the memory devices, coprocessor models can be 
connected via memory-mapped interface and a DMA controller. 

5.6.1 Hardware/Software Cosimulation Interface 
The coprocessor interface, shown in Figure 34, supplies the interconnection of a coprocessor 
to the AHB.  

 

Figure 34: Connecting coprocessors to the AHB of the ISS 
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The interface supports the following features: 

• bus slave controller for the AHB including local address decode 
• set of predefined 32-bit status and control registers 
• separate byte-addressable input and output memory units 
• control logic for starting and stopping the coprocessor model 
• simple timing emulation for simulating the computation delay of the coprocessor 
• easy setting of parameters, such the memory map register file size and timing parameters 
The parameters can be set in a text file and modified after compiling the coprocessor model, 
which supports the design space exploration by evaluating different hardware setups and tim-
ing. Coprocessor models are written in the C language and connected to the interface by a call 
of the entry point function. More details of the coprocessors can be found in Section 4.2.4. 

5.6.2 DMA Controller 
The data transfers into hardware accelerators or other bus components have a tremendous 
influence on the overall performance. For efficiently outsourcing this data transfer task DMA 
controllers are applied. The MEMTRACE hardware profiling environment includes a highly 
efficient DMA-Controller with the following features: 

• multi-channel (parameterizable number of channels) 
• 1D- and 2D- transfers 
• activation FIFO (non-blocking transfer, autonomous) 
• internal memory for temporary storage between read and write 
• burst transfer mode 
Thus the designer is enabled to determine the influence of different DMA modes in order to 
find an appropriate trade-off between DMA Controller complexity and required CPU activity. 
The DMA controller is embedded in the memory architectures as additional bus master com-
ponent, see Section 4.2. A software API allows configuration and activation of the DMA con-
troller and returns information on the current status of the data transfers. 

5.7 Retargeting to Other Embedded Processors 
The previous sections describe the implementation of the profiling tool in conjunction with 
the ARMulator for profiling ARM processors. The simple interface of the MEMTRACE 
backend, as described in Section 5.2.2, allows an easy retargeting of the basic profiling fea-
tures to other processor simulators or emulators. In order to allow the profiling of other proc-
essors, the profiler needs access to the tracing information of these processors, which includes 
the following basic parameters: 

• cycle counter 
• program counter 
• activity on the data and instruction bus including transferred data and addresses 
Optionally, information about cache miss counts and instruction disassembly can be evaluated 
for further profiling details. This information needs to be on a cycle-accurate basis and can be 
provided either by the trace buffer of a hardware emulator, such as an in-circuit emulator or 
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an FPGA implementation, or by an ISS. The actual retargeting process is implemented by 
connecting the MEMTRACE backend interfaces, described in Section 5.2.2, to the simulator 
or debugger. The debugger needs to call the interface functions listed in Table 18 at the ap-
propriate events and provide them with the required information. 

Table 18: Interface callback functions of the MEMTRACE backend and their activation 
events and input parameters 

Callback function Activation event Input parameters 

Init() * Start of program execution Current simulation time* 
Current program counter* 

Finish()* End of program execution Current simulation time* 

NextInstruction()* Every instruction 

Current simulation time* 
Current program counter* 
Disassembly string of the instruction 
A flag, if the instruction is executed  
Instruction binary format (only for energy) 

MemoryAccess() Every memory access 

Accessed memory address* 
Load/store flag 
Size flag 
Transferred data word (only for energy) 

CacheMiss() Every cache miss  Accessed memory address* 

BusActivity() Every bus clock cycle Bus master id 

For a basic retargeting, only the init(), finish() and nextInstruction() interfaces need to be con-
nected to the simulator. These functions should be instantiated as callback functions of the 
debugger/simulator. This means the debugger should call these functions each time the speci-
fied event occurs and provide them with the mandatory parameters (marked with a star), as 
well as with the optional information given in the table above if available. These three inter-
faces allow a clock cycle profiling of the processor on a function-accurate level. For addi-
tional coverage of memory access within the analysis, the memoryAccess() interface needs to 
be connected to the simulator. If the processor has a cache infrastructure, the debugger can be 
connected to the cacheMiss() interface in order to provide cache miss profiling. Similarly, the 
bus activity can be analyzed with the appropriate interface function. 

A full retargeting of MEMTRACE also includes the profiling of instruction usage and energy 
consumption. Changes in the MEMTRACE source code are required to support these fea-
tures. The changes for the instruction set mainly include the code for parsing and interpreting 
the disassembly format of the processor, e.g. extracting the instruction name, used registers 
and address mode. The processor-specific parts of the energy model are covered by the equa-
tions for energy calculation and the power consumption tables for each instruction class, as 
described in Section 4.5.4. The existing implementation of both features for the ARM proces-
sor is comprised of 500 lines of code, which can be taken as a template for the retargeting. 
The complexity of this process depends on processor architecture; for a simple RISC architec-
ture the effort can be estimated as low, as the ARM processors use a typical RISC instruction 
set. 

Besides the connection to the ISS, the MEMTRACE backend also needs to extract the symbol 
table from the file in order to map the functions to the program memory address space. In the 
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current implementation, MEMTRACE applies a tool called fromelf (see Section 2.3.1), which 
allows the symbol table of any ELF compatible object or executable file, a widely used linker 
file format, to be extracted. If a different format is used, the MEMTRACE symbol table 
parser needs to be adapted. In the current implementation it consists of less than 150 line of 
source code. 

The ISSes are usually provided either by the processor vendor or by third parties. If simula-
tors are not available for given processor, they can be created either manually or automatically 
from a higher-level description. Verilator, as described in Section 2.2.2, creates C++ simula-
tion models from a Verilog description of a processor. If the processor is not available as Ver-
ilog HDL model, it can be described in an even higher abstraction level, for example with the 
LISA language [76]. The CoWare Processor Designer [29] can be used to create HDL models 
and compiler tools for processors described in LISA. 

In order to prove the feasibility of the retargeting procedure, a toolflow incorporating CoWare 
Processor Designer, the Verilator and the MEMTRACE backend has been created. Thus 
MEMTRACE can profile processors available either as Verilog HDL or as LISA descriptions. 
The section below describes the retargeting process and depicts the minimal effort it requires. 

5.7.1 Toolflow for Profiling LISA and Verilog Processor Models 
The toolchain given in Figure 35 has been developed to use MEMTRACE to profile processor 
described in a high-level description language. 
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Figure 35: Profiling toolflow incorporating CoWare Processor Designer, Verilator and 
MEMTRACE 

The design procedure starts with a processor description in the LISA language. This descrip-
tion is processed by the CoWare Processor Designer to generate a Verilog description of the 
processor and the required software development tools, such as an assembler and a linker. The 
Verilog description generated is further processed by the Verilator to generate a C++ simula-
tion model. This model is then compiled with the MEMTRACE backend and the miniDebug-
ger libraries to form the combined simulator, debugger and profiler. In order to ease the retar-
geting process, a generic interface between the simulation model and the debugger is defined. 
Therefore, the simulation model needs to be enclosed by a wrapper mapping the processor 
signals to the MEMTRACE backend interfaces functions. Figure 36 illustrates this intercon-
nection in more detail. 



5.7  Retargeting to Other Embedded Processors 

 95

C++
Simulation model 
of the processor

MEMTRACE miniDebugger

 Processor
  terminal
    board
    (C++ 
   wrapper)

MEMTRACE
backend

Instruction bus
Data bus

         Register file

Progr. counter

Status register

Instruction    bus

                                                         Data bus

RegFile

Clk,reset,irq

S
im

ul
at

or
 

co
nt

ro
l c

al
ls

Reg
file

PC

StatReg

PC

C
ycle

counter

P
rofiler

control
calls

DMA
controller

Hardware
accelerator

models

C++
Instruction 

memory model

C++
Data memory 

Model

Further processor models

Processor 
model

Debugger

Profiler

 

Figure 36: Interconnection of the C++ processor model with the MEMTRACE backend 
and miniDebugger and with further system components by means of a terminal board 

The right side shows the C++ simulation model generated by the Verilator. The model con-
sists of a C++ source and a header file containing a class definition that corresponds to the 
Verilog description. The input and output ports of the top level module are converted to 
member variables with the same name. Ports and signals of lower level modules are visible, in 
the format: 

lowLevelModuleName __DOT__lowLevelModuleName__DOT__signalName 

Such names are dependent on the signal and port naming within the Verilog processor model, 
so the wrapper, which acts a terminal board, is used to provide a generic interface to other 
system and simulation modules. 

The interface provides access to the most common and important parts of the processor, in-
cluding the instruction and data busses, register file, program counter and status register, as 
well as the control signals for clock, reset and interrupts. Thus when replacing the processor 
model with a different model, only the following needs to be configured: 

• connection between the terminal board and the processor model 
• bit-width and timing of the busses 
• number of registers 
Listing 14 shows a sample implementation of the terminal board as it needs to be configured 
by the designer in order to suit the specific processor. The initial for-loop connects all regis-
ters from the processor model (found in the signal array “REG_R” in low-level module 
“RFile”) to the generic register array “Reg”. Similarly the program counter (“PC”) and the 
control (“CPSR”) and status (“SPSR”) registers are connected. The interrupt (“fiq”,”irq”) and 
wait (“wait”) signals are not used in this processor, therefore they are set to a constant zero 
value. The clock (“clk”) and reset (“reset”) signals are connected to the corresponding top-
level signals of the processor model, similar to the data and instruction busses. All these con-
nections between the generic and processor-specific variables are established as pointers, and 
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therefore allow bi-directional access, i.e. the generic variables can be used for reading and 
writing the processor-specific variables. 

void setSignals(Vtop *top) { 
 for (int i=0;i<NUMREGS;i++) 
 { 
   Reg[i] = top->v__DOT__RFile__DOT__REG_R[i]); 
 } 
 PC  = top->v__DOT__pipe__DOT__DC_EX__DOT__DC_EX_p_pc_internal; 
 CPSR  = top->v__DOT__RegFile__DOT__REG_PSR; 
 SPSR  = top->v__DOT__RegFile__DOT__REG_PSR; 
 fiq  = &constBit0; 
 irq  = &constBit0; 
 wait  = &constBit0; 
 clk   = top->clk_main; 
 reset = top->rst_main; 
 DataWriteBus   = top->data_mem_data_in_wp0; 
 DataWriteBusAddr  = top->data_mem_wr_addr_wp0; 
 DataReadBus   = top->data_mem_data_out_rp0; 
 DataReadBusAddr  = top->data_mem_rd_addr_rp0; 
 InstrBus    = top->prog_mem_data_out_rp0; 
 InstrBusAddr   = top->prog_mem_rd_addr_rp0; 
 WriteEnable  = top->data_mem_ew_wp0; 
 ReadEnable  = top->data_mem_rd_enab; 
 Byte1Word0  = &dummyBit0; 
 MemoryAccess1  = &dummyBit0; 
 data_ready  = top->data_mem_ready; 
} 

Listing 14: Implementation of the processor terminal board (C++ wrapper) 

The mandatory system extension is a model of the data and instruction memory connected to 
the system bus. The technique and components for hardware/software cosimulation described 
in Section 4.2.3 can also be applied here. Multi-processor systems can be generated by adding 
further processor models including their debuggers and profilers, as shown in Figure 40 on 
the left side. Even hierarchical bus systems can be created within this environment. 

The processor simulation is controlled by a debugger. The rudimentary MEMTRACE 
miniDebugger allows running and stepping through the assembly code and viewing of register 
and memory values. The debugger also controls the MEMTRACE profiler backend. The re-
quired interconnection to the processor internals is provided by the terminal board. The de-
bugger could also be replaced by a full-featured debugger, for example by means of a debug-
ger plugin to the Eclipse software development platform [101]. 

The simulation environment described here allows a simple retargeting of the profiler to any 
processor that is available as a C source code model. The Verilator extends the supported 
processor range to Verilog models. The profiling speed has been measured as 50,000 simu-
lated processor cycles per second running on a 3.6 GHz Intel Xeon PC. 

The design flow was tested by the example of a simple RISC processor, similar to the SPARC 
architecture, developed by the Embedded System Group at the Fraunhofer Heinrich-Hertz-
Institut (HHI). The LISA description contains about 5500 lines of simple and well-structured 
code. Equivalent HDL descriptions are far more complex. The description generated by the 
Verilator, for example, contains 25,000 lines of code. Thus the LISA language allows an easy 
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description and modification of a processor model, and the results delivered by MEMTRACE 
support a profiling-based exploration of these design alternatives. 

Table 19 shows some example results from profiling the simple RISC core. This retargeting 
has been performed for instructions and memory functions. Thus the results include the calls 
and cycle counts, access statistics for the memory and the stack, as well as page hit and miss 
counts for each function. 

Table 19: Example results for profiling a program running on a simple RISC processor 

Group Calls Cycles All
load/store Load Store Page 

hit
Page 
miss 

Stack 
read 

Stack 
write

Main 1 36 30 0 30 29 1 90 90

Func1 1 37 30 0 30 30 0 0 30

Func2 1 437 386 179 207 385 1 0 30

Sum 510 446 179 267 444 2 90 150

5.8 Power Measurement Setup 
For the generation of the power consumption model a setup has been created for measuring 
the dynamic current flowing through the embedded system under test. As described in Section 
4.5, an Altera Excalibur device, namely the EXPA1, has been chosen for this purpose. Altera 
provides a development board for the device, which uses the Texas Instruments PT 6983C 
[95] as power supply. The PT 6983C is a switching regulator for dual output voltage. From a 
12 V input voltage it generates 1.8 V and 3.3 V output. It is manufactured on a separate PCB, 
which is connected by 23-pins to the development boards. This layout makes the power 
measurement easier, as the pins can be cut, to infer a current meter. For the current measure-
ment a shunt resistor has been used, as described in Section 4.5.2. The voltage drop over the 
shunt resistor is amplified by an instrumentation amplifier and measured by a digital oscillo-
scope. A picture of the entire measurement setup is given in Figure 37. 

 

Figure 37: left: Setup with FPGA board, measurement board, power supply and oscillo-
scope probe; right: measurement board with shunt resistor and the two amplifier 
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5.8.1 Calibration of the Measurement Setup 
All components of the measurement setup need to be calibrated; respectively their error 
ranges need to be considered. The accuracy of the sense resistor is of high importance, as it 
has a linear influence on the measurement accuracy. As a resistor either a discrete device or a 
resistor wire with the correct length can be chosen. In both cases, the setup needs to be cali-
brated by measuring the resulting value. For the measurement of a very low resistor value, the 
voltage-correct measurement of the resistor needs to be chosen, as voltage meters have an 
input impedance in the range of megaohm whereas for current meters it is only a few ohm. 
For this measurement the accuracy of the voltage meter also needs be considered. Table 20 
shows accuracy for the applied measuring instrument, a METEX MXD-4660A for current 
measurement and a FLUKE 27 for voltage measurement. 

Table 20: Accuracy of the measurement instruments 

Measuring instrument Range Accuracy Minimum value 

Metex MXD 466A 0 - 200 mA ±(0.5 % + 3 digits) 10 μA 

Fluke 27 0 - 320 mV ±(0.1 % + 1digit) 100 μV 

A shunt resistor with 100 mΩ has been chosen, the accuracy is given with 5 %. For achieving 
a high accuracy during the resistor measurement, a current value close to the available maxi-
mum range of 200 mA is chosen. The following values have been measured: 

I = 193.82 mA 

V = 19.5 mV 

The resistor value can be calculated by: 

I
R =

V  (21) 

Considering the accuracy of the instruments this becomes: 
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Thus the range for the resistor value is Rmin to Rmax: 
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which becomes 
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The estimated value for the resistor is then: 
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with an error of: 
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With this measurement the initial 5 % tolerance of the resistance value can be reduced to 
1.13 %. When calibrating a resistor wire to a specific the same method can be applied. Fur-
thermore the wire also allows to adjust the resistor value exactly to a required value, by either 
reducing the length of the wire (reduction of the resistance) or by using a rasp to decreasing 
the diameter at a specific position (increase the resistance). 

Furthermore it is also important to consider the temperature dependency of the resistance, 
either caused by a change of the environmental temperature or due to the power dissipation of 
the resistor itself. Usually the latter is the more frequent reason, especially when for higher 
power dissipation, which comes close to the maximum specified value for the resistor. Also 
parasitic inductance and capacitance need to be considered. 

Especially wire-wound resistors, which have a similar design as coils, show a high inductance 
(> 100 nH), and therefore significantly influence the impedance of the resistor already for 
frequencies in the range of hundreds of kilohertz. 

The accuracy of the oscilloscope, a Yokogawa DL9710L, is given as 

1.5 % of 8 div + offset voltage accuracy 
with an offset voltage accuracy of: 

1 % of offset setting + x mV. 
For the voltage range expected during the measurement, which is below 400 mV, the offset 
component x is set to 0.2 mV. 

5.8.2 Software Test Suite 
A set of 90 assembly code sequences has been developed, which reflect the different energy 
contribution described in Section 4.5.3. For achieving a constant current value, the instruc-
tions have been executed in a loop. In order to decrease the influence of the loop overhead, 
i.e. counter update and check, jump instruction and pipeline stalls, loop unrolling to a long 
instructions sequence should be performed. On the other hand, the sequence length should not 
exceed the instructions cache size for omitting cache misses during the measurement. A loop 
body of around 1000 instructions has been chosen that leads to 4 kB of code and 10 cycles for 
loop handling, which in turn leads to a loop handling influence of around 1 %. The power 
consumption respectively the current has been measured for each for each code sequence. As 
the power consumption can be considered as stable during the execution of a specific instruc-
tion sequence, a DC measurement setup can be used. Thus, during the test scenario, the cur-
rent can be evaluated directly with a current meter, which leads to an increased accuracy as 
compared to the measurement methods described above, which is important for this basic 
model features. 

In a first test suite the intra energy consumption for different instructions has been measured. 
The results, see Section 8.2.3, show that the instructions can be grouped in classes of instruc-
tions with similar power consumption, for example all simple arithmetical instructions, such 
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as ADD, SUB and CMP have the same power consumption. The instruction following instruc-
tion classes have been identified: 

• arithmetic instructions (ADD, SUB, CMP,…) 
• logical instructions (AND, EOR, …) 
• move instructions (MOV, MVN, NOP,…) 
• multiply instructions (MUL, MLA,..) 
• branch instructions (B, BL, BLX) 
• load/store instructions (LDR, STR) 
• multiple load/store instructions (LDM, STM) 

The NOP instruction is a pseudo-instruction, which actually is transformed to “mov r0, r0”. 
For these classes a detailed model has been created. Not covered by this model are instruc-
tions, which are specific to the processor implementation and are not available within every 
processor, such as: 

• coprocessor instructions 
• floating point instructions 
• Thumb instruction set 
• other miscellaneous instructions (SWI, BKPT) 

The modeling of floating point instructions depends on their implementation, either as an 
emulator or as a coprocessor. If a coprocessor is used, the coprocessor should be modeled 
separately in order to achieve an accurate model. This is generally the case with coprocessor 
instructions, as their power consumption is highly dependent on the coprocessor. Blume et al. 
[24] create such a separated model for the floating point coprocessor of an ARM processor. 
This model is part of a power model based on their hybrid FLPA/ILPA technique described in 
Section 2.3.4.4. Similar to the approach for the CPU taken in this work, the instructions of the 
coprocessor are combined into groups. As the processor used in this work does not provide 
any arithmetic coprocessors, there is no need to create such a coprocessor power model here. 

The influence of the MMU, which is part of the coprocessor CP15, during load, store and in-
struction fetch operations, is modeled as part of the appropriate operations. Other accesses to 
the coprocessor CP15 occur very seldom, thus their influence can often be ignored. The same 
is true for miscellaneous other instructions, such as software interrupts (SWI) or breakpoints 
(BKPT). The Thumb instruction set is a specific feature of the ARM architecture. This is con-
sidered to be out of the scope of this work, as the methodology presented here should cover 
only generic features of RISC architectures. 
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6 Application of the Profiler 
The profiling tool has been applied during the design of several software applications as well 
as an embedded system architecture. The tool has proven its applicability for information 
gathering and software optimization as well as for developing a complex system architecture 
with a RISC processor, multiple memory devices, busses and hardware accelerators. The fol-
lowing sections describe two examples for usage of the profiler within the analysis and design 
of embedded hardware/software systems. 

6.1 H.264/AVC Decoder Profiling 
In this study the MEMTRACE profiler is used for evaluating the feasibility of reaching the 
performance requirements for processor-based DVB-H [33] system. DVB-H is a standard for 
broadcasting of digital audio and video content to mobile devices. The content is encoded 
using highly efficient compression methods, namely AAC-HE for audio data and the 
H.264/AVC codec (see Section 3.4.1 provides more detailed information about the 
H.264/AVC video coding standard) for video content. DVB-H focuses on high mobility and 
low power consumption of the receivers. The most demanding part of the receiver in terms of 
computational requirements is the H.264/AVC video decoder. Therefore a detailed profiling of 
the H.264/AVC video decoder is performed. DVB-H defines different so-called capability 
classes, which determine the image resolution and framerate. Here, the capability class B has 
been chosen, which defines that the decoder need to compliant to level 1.2 of the H.264/AVC 
standard, with a maximum a resolution of 352x288 pixels (CIF) and a framerate of 15 fps. 

The target device is an SoC based on an ARM11 processor. By using the advanced instruction 
set of the ARM11 and by the use of on-chip resources it is potentially possible to optimize the 
software. The aim of the optimization is to meet the relevant performance targets for the sys-
tem with the minimum level of utilization of CPU bandwidth. The H.264/AVC decoding 
software is analyzed to establish what optimizations would be beneficial and to quantify the 
potential improvements. The techniques analyzed are: 

• algorithmic optimizations 
• assembly coding of critical code segments 
• usage of ARM11 SIMD instructions 
• usage of ARM11 TCMs and DMA 

6.1.1 Description of the Test Scenario 
The H.264/AVC decoder software has been optimized (using only compiler optimizations) for 
the ARM processor architecture. Three system specifications were evaluated. The systems 
consist of a processor with separate instruction and data caches and memory, see Figure 38. 
As can be seen, instead of the ARM11 core, an ARM9E model has been used for the profiling, 
due to the fact that when the case study was carried out, an ARM11 simulator was not avail-
able. From the available processor models, the ARM9E was the most similar core and its 
similarities to the ARM11 core were considered to be sufficient for the requirements of this 
case study. The influence of the SIMD instructions additionally available in the ARM11 core 
is estimated in Section 6.1.3.1. 

The first system uses a fast SRAM, whereas the second and the third system use slower 
DRAM. In all systems all data and instructions are stored in the memory. 
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The test systems have been specified with processor parameters defined in Table 21 and the 
three different memory models listed in Table 22. For the SRAM configuration a very fast 
memory model with zero wait states has been defined and for the DRAM configurations two 
distinct models are used. 

Processor
core

ARM9E

I-cache
32 kB

D-cache
32 kB

Memory
(SRAM or
DRAM)

 

Figure 38: Architecture of the evaluated test system 

The DRAM16 model is a medium fast memory model, which in comparison to the SDRAM 
model has a higher number of wait states for non-sequential accesses. These wait states reflect 
the time required for e.g. precharge and row activation if a non sequential access occurs. Ad-
ditionally one wait state has been defined for sequential read. Although DRAM in general do 
not produce wait state in sequential access, this wait state has been defined for reflecting the 
influence of the delay time (time between applying the address and the data to be valid) dur-
ing sequential accesses. The memory model of the ARMulator only supports wait states, but 
no delay times. Therefore the influence of delay time is approximated by setting the wait 
states to one. 

Table 21: Processor specification 

Processor type ARM946E-S 

Core frequency 250 MHz 

Bus frequency 125 MHz (½ core frequency) 

I-cache 32 kB, 4-way set-associative 

D-cache 32 kB, 4-way set-associative, write-back, write buffer 

MMU/PU Memory management/protection unit 

The DRAM24 model is the slowest memory model. The number of wait states for non-
sequential accesses is higher as compared to DRAM16. However, in the model DRAM24 the 
approximation of the delay time for sequential accesses is not applied. Thus the influence of 
the different memory modeling can also be determined. An example of the influence can be 
seen in results presented below (Figure 41), where the DRAM24 in some cases is faster than 
the DRAM16. 

To achieve a broad range of profiling results for the given H.264/AVC profile and level com-
bination a set of different H.264/AVC test streams is generated using H.264/AVC video en-
coding software. The used encoder features a rate control mechanism and is using all tools for 
the targeted profile and level combination. Due to the different coding characteristics of video 
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sequences, five different sequences have been chosen (namely “Coastguard”, “Container”, 
“Stefan”, “StockholmPan”, “Tempete”). The sequences have a length of 125 to 150 frames 
with an I-framerate of 15 and are encoded with 352x288 pixels at a framerate of 15 frames per 
second. Each sequence is encoded with 256 and 384 kb/s, in order to analyze the influence of 
the compression rate. 

Table 22: Timing specification of the different memory architectures 

Size SRAM DRAM16 DRAM24 

Non-sequential read time 8 ns (0 WS1) 136 ns (16 WS1) 208 ns (25 WS1) 

Sequential read time 8 ns (0 WS1) 16 ns (1 WS1) 8 ns (0 WS1) 

Non-sequential write time 8 ns (0 WS1) 120 ns (14 WS1) 200 ns (24 WS1) 

Sequential write time 8 ns (0 WS1) 8 ns (0 WS1) 8 ns (0 WS1) 
1 Number of wait states in terms of memory bus cycles (bus frequency = ½ processor frequency) 

6.1.2 Profiling Results 
The generated profiling data is analyzed in three different ways, for entire bitstreams, for each 
function group and for each processed frame. 

6.1.2.1 Overall Analysis 

The overall analysis given in Figure 39 shows the averaged processor clock frequency needed 
for real time decoding of the corresponding bitstream. The processor clock frequency is de-
rived from the number of external bus cycles (EBC). The EBC is ½ of the core clock fre-
quency needed for the decoding of a complete sequence divided by the number of decoded 
pictures. 
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Figure 39: Average core clock frequencies for ARM9 implementation for different se-
quences and different memory architectures 
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6.1.2.2 Function Group Analysis for I- and P-Frames with Different Memory Types 

Function group analysis is based on the grouping of all incorporated functions of the 
H.264/AVC decoder, as given in Table 23. 

Table 23: Functional grouping of the H.264/AVC decoder 

Functional group Description 

Itrans Inverse H.264/AVC transformation 

IntraPrediction H.264/AVC intra prediction algorithms 

LoopFilter Deblocking filter 

MotionCompensation Motion compensation for P-frames 

BitstreamProcessing Low-level bitstream access functions 

EntropyDecoding CAVLC decoding 

ParsingDecoding High level parsing and control of bitstreams 

Memory Memory transfer functions like memcpy, memset 

Misc Other control helper functions and testbench 

The results are generated for I- and P-frames. In the following diagram the comparison of the 
required external bus cycles for the different function groups and the used memory architec-
ture according to their picture coding type is depicted. The data is generated using the worst 
case pictures of the corresponding bitstream. Execution time is measured in number of exter-
nal bus cycles (EBC). Figure 40 shows the results for the “Coastguard 256kb” sequence.  
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Figure 40: Function group analysis for worst case I-frame (I) and P-frame (P) with differ-
ent memory types for sequence “Coastguard 256kb” 

As can be seen, a big difference exists between the different frame types (I- and P-frames) and 
the different memory types. The memory type has a strong influence in the MotionCompensa-
tion and the Memory group. Both groups are highly memory access dominated, and in the 
MotionCompensation functions these accesses are random. Therefore the caches can not work 
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efficiently. Contrary to the LoopFilter group, which is also very memory-intensive, however 
as the filtering is applied to adjacent pixels, these accesses benefit from cache. 

6.1.2.3 Cycles per Frame Analysis 

The following analysis is generated to analyze the number of used external bus cycles needed 
for each frame of a sequence of coded pictures. All three memory architectures are used for 
the profiling runs. 

The number of external bus cycles is generated as a sum of all function groups of the decoder 
and reflects the overall needed real time performance for the according picture number. Exe-
cution time is measured in number of external bus cycles. Due to the different memory con-
figurations concerning the parameters for sequential reads for DRAM16 and DRAM24 mem-
ory architectures in some cases the peak performance for DRAM24 can be higher than for 
DRAM16. This is the case if the number of sequential read accesses dominates the overall 
number of accesses, since the DRAM16 is slower in sequential read accesses than the 
DRAM24. That special case can be observed in Figure 41. The decoding of the frames (I-
frames), where the DRAM16 is slower than the DRAM24 configuration, includes mostly se-
quential reads accesses. 
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Figure 41: Cycles per frame analysis for different memory types (“Coastguard 384kb”) 

6.1.2.4 Memory Access Statistics 

The following analysis is generated for analyzing the number of data memory accesses and 
data cache read misses. Separate results are created for different H.264/AVC decoder memory 
sections. As shown in Table 24, the decoder memory is split up in the read-only section 
(ER_RO), read-write section (ER_RW), zero-initialized section (ER_ZI), the stack and the 
heap variables. The results of this analysis allow an estimation of which data sections uses the 
data cache efficiently. 
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Table 24: H.264/AVC decoder memory sections and heap variables 

Memory 
section Description Size

ER_RO Program code and constant global variables 103460 bytes

ER_ZI Global variables which are initialized to zero 612 bytes

ER_WR All other global variables (not constant and not initialized to zero) 126920 bytes

Stack0 Stack 8192 bytes

Dec_struct Main memory structure for the decoder (including the current 
frame, the five reference frames and additional decoding data) 967796 bytes

AUBuf Buffer for the current access unit 16384 bytes

Bs_struct Structure containing status information about input bitstream buffer 36 bytes

Others Mainly a 4 kB input bitstream buffer (bs->pi32_buffer) ~ 4096 bytes

Sum  ~ 1.17 MB

This analysis distinguishes between memory access and cache misses, as illustrated in Figure 
42. Memory accesses are caused by load and store operations executed by the processor. If a 
data value is not available in the cache a load or store operation leads to a cache miss. In case 
of a read operation a cache miss leads to a cache fill of a cache line. In case of a store opera-
tion a cache miss leads to write to the memory via the write buffer. 

In the following, memory accesses are counted for both, load and store operations, whereas 
cache misses are only counted for read operations (cache fills). This restriction is caused by 
the profiling tool. 
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Figure 42: Locating data transfers caused by memory accesses and cache misses 

Figure 43 shows the memory accesses to the sections and heap variables for decoding the se-
quence “Stefan 384kb”. Memory accesses are the number of read or write operations caused 
by load or store operations. Regardless, if the load or store operation is a byte, half-word or 
word access, each one of them is counted as one access. The cache misses, which are caused 
by load operations to the specific memory sections and heap variables, correspond to the right 
ordinate in Figure 43. 
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Figure 43: Memory accesses and D-cache misses for the sections and heap variables for 
decoding the sequence “Stefan 384kb” 

As can be seen, most load operations access the stack. However, these load operations only 
cause a few read cache misses. This shows that the stack uses the cache very efficiently. 

Further the diagrams show that for reading the dec_struct the cache can not be used as effi-
ciently as for reading the stack. The reason for this is that the dec_struct is large and the loca-
tions (addresses) of accesses to the dec_struct are very random. However, comparing the total 
number of accesses to the dec_struct (200 million) with the number of read cache misses (3 
million) shows that using the cache still has a significant positive influence on access time to 
the dec_struct. Therefore the dec_struct should not be marked as non-cacheable. 

In the following an overview of the accesses to the main memory (data transfer between 
caches and DRAM/SRAM) is given. Read accesses to the main memory are caused by read 
data cache misses and instruction cache misses. Each cache miss leads to a data cache fill of a 
cache line. When decoding the “Stefan 384kb” sequence the memory accesses provided in 
Table 25 occur. 

Table 25: Accesses to the main memory 

Read access type Accesses Sum 

Instruction cache misses 1548764

Data cache read misses 3887992
(1548764*8) + (3887992*8) =  

43 494 048 

Write access type Accesses Sum 

Non-sequential write accesses 23695488

Sequential write accesses 11168236
23695488+11168236 = 

34863724 

For each of this cache misses a cache line with a length of eight words (4 bytes each) is read 
from the main memory, this leads to about 43 million read accesses to the main memory. The 
write accesses to the main memory are calculated from the results of the memory model simu-
lator. The simulator provides the number of sequential and non-sequential accesses to the 
memory. This leads to a total number of about 34 million write accesses to the main memory. 
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6.1.3 Profiling-Based Software Optimization Potential 

6.1.3.1 Algorithmic Optimizations 

Assembly coding and the usage of SIMD instructions are optimization techniques that can be 
considered to increase the decoder’s performance. Code analysis shows that in most cases the 
resulting assembly code generated by the compiler is nearly optimal if the C source code is 
written according to the recommendation given by ARM. Besides the usage of hand opti-
mized code using SIMD-instructions there is no significant performance gain to expect. If the 
amount of work is taken into account and the fact the maintainability of the code is getting 
worse it is not recommended to use assemble code for the optimization of the research 
H.264/AVC decoder. 

An estimation of optimization gains due to the usage of the SIMD-instructions of the ARM11 
architecture is performed. Due to the fact that an ARM11 profiler is not available, the 
achieved performance gain by using the SIMD instructions is estimated. The approximately 
used instructions for an unoptimized function are counted and compared those numbers to the 
numbers expected by using SIMD instructions. In the following the resulting optimization 
factor are given for each function. The optimization factors are calculated as: 

)(
)(

odeoptimizedCimeexecutionT
dCodeunoptimizeimeexecutionTonFactoroptimizati =  (29) 

where the execution times are estimated values due to the number of instructions. 
In Figure 44 the expected optimization gain in terms of real time performance is depicted us-
ing all before mentioned optimizations. The estimated performance gains, as given in Section 
8.1.4, are included in the simulation result, as described in Section 4.3.4. In detail, the cycle 
count of each function in each frame is multiplied by the performance gain factor. Then the 
overall results are recalculated. The new results (with performance gain) are compared to the 
old results (without the performance gain) with Equation 30: 

)(
)()(100

dCodeunoptimizeimeexecutionT
odeoptimizedCimeexecutionTdCodeunoptimizeimeexecutionTonGainoptimizati −

⋅=  (30) 

0

5

10

15

20

25

30

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145
Frame number

R
ea

l t
im

e 
op

tim
iz

at
io

n 
ga

in
 in

 %

 

Figure 44: Optimization gain per frame using proposed ARM11 SIMD optimizations for 
sequence “Stefan 384kb” 
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In most cases of the optimized functions the SIMD implementation of the add instruction e.g. 
add8to16 can be used. Due to the large overhead in terms of load/store operations and refor-
matting operations the usage of other ARM11 SIMD instructions is very limited. Those SIMD 
instructions require lots of data access instructions and other instructions in order to organize 
the data in a manner that the special SIMD instructions can be used. In most cases the over-
head of needed instructions to organize the data into the corresponding registers costs more 
instructions cycles than the ones saved due to the SIMD usage. 

The usage of the MAC instruction is limited to very few cases, since in most functions the 
basic operation consists of add instructions followed by shift instructions. 

6.1.3.2 Cache Optimizations 

An analysis of the influence of cache size on performance is performed. For this purpose the 
“Stefan 384kb” sequence is decoded on the ARMulator for the ARM946E-S processor with 
different cache sizes, see Figure 45. 
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Figure 45: Influence of I- and D-cache size on performance 

In the first test run the D-cache size is set to a fixed value of 32 kB, and the size of the I-cache 
is varied from 4 to 32 kB. In the second test run the I-cache size is set to a fixed value of 32 
kB, and the D-cache size is varied. The results of the first (blue) and the second (red) test run 
are depicted in the figure. The figure shows the increase of external bus cycles in percent as 
compared to a system with 32 kB I-cache and 32 kB D-cache. 

The result shows that if either the I-cache or the D-cache size is decreased from 32 kB to 16 
kB this leads to the same increase of external bus cycles of approx. 7.5 %. However, if further 
decreased, the size of the D-cache has a larger impact on the performance than the I-cache 
size. 

6.1.3.3 Speedup Estimation due to TCMs 

A speedup is expected due to a reduction of the accesses to the external memory. This reduc-
tion should be achieved by adding a tightly coupled memory (TCM) to the system. The map-
ping of the data areas to the TCM and the slow external memory is performed as described in 
Section 4.4.3. 
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The profiling of the H.264/AVC decoder shows that the overall number of data cache misses 
is more than 2.5 times higher than the instruction cache misses, see Section 6.1.2.4. Therefore 
in the following only data access optimization is considered. The H.264/AVC decoder con-
tains about 200 data areas (global and heap variables) which are potential candidates for the 
storage in the TCM. These data areas include e.g. reference frames, temporary decoding data 
(e.g. motion vectors) and constant lookup tables (e.g. for VLC). MEMTRACE is applied for 
tracing the memory accesses to each data area and the cache misses which occurred during 
read accesses to these data areas. This information is used for choosing the data areas to be 
stored in the TCM. The results for the “Stefan 384kb” sequence are partly shown in Table 26.  

Table 26: Decoder data areas sorted according to their number of cache misses 

Data area Size All load store Load Store Cache miss

Dec_struct.Y_plane5 101376 16509308 11836357 4672951 332720

Dec_struct.Y_plane3 101376 14061611 10048336 4013275 313515

Dec_struct.Y_plane4 101376 14123674 10135951 3987723 311135

Dec_struct.Y_plane2 101376 12352958 8215325 4137633 281123

Dec_struct.Y_plane1 101376 9760766 6916857 2843909 211234

Dec_struct.Y_plane0 101376 9451125 6647755 2803370 206220

Dec_struct.mvd 25344 4861092 2732449 2128643 193300

Dec_struct.mb_data 12672 2820493 1925502 894991 165202

... ... ... ... ... ...

They are sorted by the overall number of cache misses they produce. The data area with the 
most cache misses (and therefore with most influence on performance) are the Y planes of the 
reference frame buffers. However, these are not potential candidates for the TCM, since they 
are to large (approx. 100 kB each) for the TCM. Therefore the data areas are resorted as 
shown in Table 27. The data areas are sorted by the cache misses per byte. 

The table also shows the accumulated size and cache misses of the variables. The accumu-
lated cache misses indicate the speedup if these variables were to be stored in the TCM. The 
accumulated size shows how much memory space in the TCM would be required for storing 
the specific data and all data areas above it. 
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Table 27: Decoder data areas sorted according to their number of cache misses per byte 

Data area Size Cache 
miss

Accum.
 size

Accum. 
cache miss 

Cache miss 
/ byte

Clip_table_global 4 3275 4 3275 818.75

Clip_zero 4 3133 8 6408 783.25

St 4 2859 12 9267 714.75

NumCoeffTrailingOnes0 16 4069 28 13336 254.31

TotalZeros0 16 3444 44 16780 215.25

TotalZeros2 16 2817 60 19597 176.06

Run6 16 2466 76 22063 154.12

TotalZeros4 16 2092 92 24155 130.75

Scanpattern 64 8046 156 32201 125.71

Dec_struct.stream 36 4101 192 36302 113.91

NumCoeffTrailingOnes2 16 1808 208 38110 113.00

NumCoeffTrailingOnesChromaDC 16 1718 224 39828 107.37

TotalZeros1 16 1697 240 41525 106.06

Run2 16 1690 256 43215 105.62

Intra4_blockavailtable00 16 1688 272 44903 105.50

Ijpos 16 1664 288 46567 104.00

NumCoeffTrailingOnes1 16 1640 304 48207 102.50

Run1 16 1546 320 49753 96.62

... ... ... ... ... ...

 

Figure 46 shows how this information can be used for choosing the optimal candidates for a 
TCM of a specific size. The left most data area is the one with the highest cache miss density 
(cache miss per byte). Therefore this data area has the highest priority to be stored in the 
TCM. For choosing all data areas to be stored in a TCM with a specific size, one can continue 
to the right until the accumulated size reaches the TCM size. 

 

 111



6  Application of the Profiler 

 112 

 
Cache misses per byte evaluation

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

Data areas

C
ac

he
 m

is
se

s/
by

te
 

cache misses/byte 818,8 783,3 714,8 254,3 215,3 176,1 154,1 130,8 35 34,7 31,8 30,7 30,2 16,1 15,8 15,3 14,6 14,5 13,7 13 11,5 10,9

accumulated size 4 8 12 28 44 60 76 92 5117 5173 9269 9357 9613 13957 15541 16565 18613 18629 18789 31461 31845 36493

accum. c.-misses 3275 6408 9267 13336 16780 19597 22063 24155 288633 290578 420856 423555 431294 533767 558728 574350 604225 604457 606743 771945 776347 826799

clip_ta 
ble_glo 

bal 
clip_ze 

ro st NumC
oeffTra
ilingOn 

TotalZ 
eros0 TotalZ 

eros2 Run6 TotalZ
eros4

TotalZ
eros

predict
Intra4_
table

expgol
ombta

b

dec_str
uct.Slic

e

TotalZ
eros1_
short

TotalZ
erosCh
romaD

dec_str
uct.ref
FrArr

NumC
oeffTra
ilingOn

LevelV 
LC1tab 

intra4_ 
blocka 
vailtabl 

NumC
oeffTra
ilingOn 

dec_str 
uct.mb 
_data 

dequa
nt_coef

dec_str
uct.Pict

ure

8 kB TCM

32 kB TCM 

16 kB TCM

... ... ... 

 

Figure 46: Data areas sorted by cache misses per byte and indication of chosen data areas 
for specific TCM sizes 

Table 28 shows the result if a TCM with the size of 4, 8, 16 and 32 kB would be filled opti-
mally with the data areas. For an ARM946E-S processor with 32 kB of data TCM a simula-
tion is performed in order to achieve an estimation for the speedup, which can be expected. 
The simulation with the memory DRAM24 shows that an overall speedup of 5 % could be 
achieved. 

Table 28: Cache miss reduction due to data TCMs with the size of 4, 8, 16 and 32 kB 

TCM size Cache miss reduction Cache miss reduction in %
( 3834465 misses overall) Estimated speedup

4 kB 249233 6.5 % 2.4 %

8 kB 381611 10 % 3.7 %

16 kB 558728 14.6 % 5.4 %

32 kB 776347 20.2 % 7.5 %

The speedup is expected to be dependent on the processor architecture. Therefore, an upper 
limit for a potential speedup is estimated, which might be possible with the ARM11 architec-
ture. An upper limit for the expected speedup due to TMCs is calculated based on the cache 
miss reduction. As shown in Table 28, due to 32 kB of data TCM the number of data read 
cache misses is reduced by 20 %. This 20 % cache miss reduction could lead, in an optimal 
system architecture, to a reduction of 20 % of the time spent on memory accesses. Since the 
simulation showed us that about 50 % of the execution time is spent on memory accesses, this 
could lead to a 10 % speedup of overall execution time in the best case. 

This leads to the assumption that the potential speedup due to 32 kB of data TCM with the 
ARM11 architecture will be between 5 % and 10 %. In the following a mean value of 7.5 % is 
assumed. Starting with this mean value and the assumption of a linear relationship between 
cache miss reduction and speedup due to TCM, the speedup for the other TCM sizes is calcu-
lated as follows: 
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This leads to the estimated speedups given in Table 28. 

6.1.3.4 Using DMA 

The ARM11 processor family supports TCMs with direct memory access (DMA). DMA 
strategies can be applied for an efficient dynamic usage of the TCM. Thus data, which is ac-
cessed frequently only at a specific point of time, can be stored in the TCM only during this 
time. After the processing the data can be written back to the DRAM and other data can be 
stored in the TCM. 

This dynamic usage of the TCM is examined on a frame basis. If I-frames and P-frames have 
a different cache miss statistics, different data could be stored in the TCM during an I-frame 
and a P-frame. This would lead to an optimized TCM usage and an increased performance. 
Therefore the cache miss statistics is analyzed for I-frames and P-frames separately and ex-
tracted the variables to be stored in TCM for both frame-types. The lists of variables is com-
pared to the previous list of variables for all frames given in Table 27. This comparison shows 
that the optimal TCM memory map for I-frames differs from the one for all frames in a few 
variables, as given in Table 29. For the P-frames, as expected, the optimal memory map is 
same as the one for all frames. The term “all frames” determines the entire sequence of I- and 
P-frames in the H.264/AVC sequence. 

Table 29: Difference of optimal TCM memory map for I-frames and for all frames 

Variable name Size Cache 
miss

Accumulated 
size

Accumulated 
cache miss 

Cache miss
per byte

Intra4_blockavailtable01 16 16 16 16 1

NumCoeffTrailingOnes2_short 1024 2711 1040 2727 2.65

TotalZeros10 16 37 1056 2764 2.31

TotalZeros5_short 256 302 1312 3066 1.18

TotalZeros6_short 256 258 1568 3324 1.00

TotalZeros9 16 25 1584 3349 1.56

As can be seen, the optimal memory map differs in about 1.5 kB of TCM memory. It shows 
that the number of overall cache misses with an optimal TCM mapping for I-frames could be 
reduced by 3349. Table 30 shows the influence on the cache miss count for I-frames. 

Table 30: Influence of optimal TCM memory map for I-frames 

 Cache misses Reduction in %

Overall number of cache misses in I-frames 231483

Cache miss reduction with I-frame TCM map 57407 25.8 %

Cache miss reduction with all-frame TCM map 54058 23.4 %

Difference between I-frame and all-frame TCM map 3349 1.4 %

This shows that using an optimized TCM map for I-frames would decrease the number of 
cache misses in I-frames only by 1.5 %. This in turn would only lead to minimal performance 
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increase. As a consequence it can be stated that DMA strategies on a frame-basis would not 
lead to a performance gain. However, more fine-grain DMA strategies, e.g. on a macroblock-
basis for storing adjacent macroblocks of the current frame in the TCM, would required an 
immense software recoding. 

6.1.4 Summary of Profiling and Software Implementation Results 
This section summarizes the performance analysis and the results of the different optimization 
strategies applied. Additionally, the memory map for the usage of a data TCM is shown. 

6.1.4.1 Performance Estimation 

Table 31 shows the performance gain, which can be expected with the different optimizations. 
These performance gains are compared to the system with external memory DRAM24 and 
32 kB of I-cache and D-cache but without TCM. The table shows that the usage of SIMD in-
structions has a significant influence on the performance whereas DMA strategies (applied on 
a frame-basis) have only a marginal influence. 

Table 31: Average performance gain due to optimizations 

Optimization Average performance gain 

SIMD instructions +14 % 

I-cache 32 kB / 16 kB / 8 kB / 4 kB 0 % / -7 % / -19 % / -32 % 

D-cache 32 kB / 16 kB / 8 kB / 4 kB 0 % / -8 % / -28 % / -57 % 

D-TCM 32 kB / 16 kB / 8 kB / 4 kB +7.5 % / +5.4 % / +3.7 % / 2.4 % 

DMA < 1 % 

In Figure 47 the influence of the SIMD and TCM optimizations on the required processor 
frequency is shown for the “Stefan 384kb” sequence. The results for the reference system (32 
kB I-/D-cache + DRAM24) are based on the results presented in Figure 41. The required av-
erage and peak processor frequency is given in Figure 48. 
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Figure 47: Performance comparison for different system configurations 
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Figure 48: Comparison of the required average and peak processor frequency for different 
system configurations 

6.1.4.2 Memory Requirements 

The overall memory requirements for the H.264/AVC decoder are approximately 1.2 MB, 
consisting of about 1.1 MB of data memory and 90 kB of program code. For a system con-
figuration with a 32 kB TCM a memory map as shown in Table 32 would be applied. 

Table 32: Memory map for a system configurations with 32 kB of TCM 

Section DRAM TCM

Boot code / stdIO-Lib / testappl. 224+13404+3348=16976 bytes

H.264/AVC decoder library code 73344 bytes

Global variables 134988 bytes 12092 bytes

Decode structure (heap) 947232 bytes 20564 bytes

AUBuffer (heap) ~ 16384 bytes

Heap (without decode structure  
and AUBuffer) 4096 bytes 36 bytes

Stack 8192 bytes

Sum 1201212 bytes ≈ 1.15 MB 32692 bytes = 32 kB

6.1.4.3 Conclusion 

Taking into account that these values rely on simulations on an ARM946E-S processor and 
estimations, the results can be summarized as follows. Using ARMv6 SIMD and memory 
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footprint optimizations the H.264/AVC decoder will be capable of real time decoding on a 
processor system with approx. 

• 200-250 Mhz core clock frequency (average performance) 
• 250-300 Mhz core clock frequency (peak performance) 
• external bus clock with ½ core clock 
• 32 kB I-cache and 32 kB D-cache32 kB TCM 
• 1.2 MB external DRAM 

A meaningful system variation can be the reduction of the I-cache size in order to reduce the 
die area. However, a reduced I-cache size of either 16 kB or 8 kB would increase the required 
processor frequency by approx. 8 % or 18 %. 

6.1.5 Hardware/Software System Architecture 
Considering the dynamic power consumption of CMOS-circuits, given in Equation 32, the 
high system frequency leads to high power consumption.  

2
DDkkdynamic VfCP ⋅⋅=   (32) 

For achieving lower power consumption, methods need to be applied, which allow the reduc-
tion of the system frequency, which in turn also allows a lower supply voltage (voltage scal-
ing). Hardware accelerators can be used for this purpose. However, their influence on the ca-
pacitance has to be considered and reduced by mechanism like clock gating. Furthermore the 
memory architecture needs to be adapted (reduced) to the specific application requirements. 

The profiling results presented in the previous sections show that a few hot spots can be iden-
tified in the software. Considering the results presented in Section 6.1.2.2 the following hot 
spots can be identified: 

• motion compensation 
• deblocking (loop-) filter 
• memory transfers 
• integer transform (itrans) 

These functional units are candidates for hardware acceleration, which leads to the system 
architecture as depicted in Figure 49. 
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Figure 49: System layout of the H.264/AVC decoder chip based on the profiling results 
with a system bus and a separate video bus 

The application processor running the software parts is extended with a companion chip for 
acceleration of the video decoding. The companion chip [89] contains the above-mentioned 
hardware accelerators: for H.264/AVC decoding. Table 33 shows a comparison of the required 
cycle times of the accelerators with their software counterparts. 

The coprocessors use the interfaces described in Section 5.6.1, including the memory-mapped 
status and control registers and the input and output memory areas. The cosimulation of the 
processors and the coprocessor is performed as described in Section 4.2.3. Furthermore a so-
called SIMD engine is available on the chip, which is a 32-bit RISC processor enhanced with 
special SIMD instructions. The 32-bit system bus connecting the processor core with the main 
memory and coprocessor components is augmented with a DMA-controller which supports 
the main processor by performing the memory transfers to the coprocessor units. A video out-
put unit is implemented directly driving a connected display or video DAC. To avoid a heavy 
bus load on the mentioned system bus due to transfers from a frame buffer to the video output 
interface, an extra frame buffer memory and the video output unit are provided by a separate 
video bus system. The data transfers between these bus systems are also performed by the 
DMA controller. The main control functionality of the decoder can either be run on the appli-
cation processor or on the RISC core on the companion chip. 
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Table 33: Comparison of the Execution time in hardware and software 

Implementation Deblocking Pixel interpolation Inverse transform 

Software 3000-7000 cycles 100-700 cycles 320 cycles 

Hardware 232 cycles 16-34 cycles 30 cycles 

To fully evaluate the proposed concept the complete SoC architecture the Embedded System 
Group at the Fraunhofer Heinrich-Hertz-Institut (HHI) developed and implemented an ASIC 
design using UMC’s L180 1P6M GII logic technology, see Figure 50. The maximum clock 
frequency of the design is 120 MHz, whereas 50 MHz should be sufficient for the DVB-H 
scenario. The evaluation board for the chip allows the fully functional verification and fur-
thermore exhaustive performance testing and power measurements, separately for memory, 
core and IO supply voltages. 

                        

Figure 50: An H.264/AVC decoder companion chip based on the profiling results  
(die and chip layout) 

6.2 GestAvatar – Gesture Detection for Avatar Control 
Within another project a gesture recognition and head tracking system [82] is profiled. The 
system should be run on a PDA with the following specification: 

• ARM9 processor (ARM946E-S) 
• processor speed: 250 MHz 
• caches: 32 kB of instruction cache and 32 kB of data cache 
• memory bus running with ½ processor speed 
• external SDRAM (25 wait states for non-sequential accesses) 

The software contains three major components of the application are: 

• Hand head tracking 
• Facial feature tracking 
• Gesture recognition 

The goal of the profiling is an estimation of the real time requirements of the application. 
Figure 51 shows the distribution of the clock cycle requirements over the different compo-
nents and Figure 52 the instruction cycle time requirement per frame. 
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6.2.1 Results 
The processing is highly influenced by the floating point convolution required in the feature-
tracker unit. Horizontal and vertical convolution require about 60 % of the overall processing 
time. Although the profiling results on the PC also identify the feature tracker as the most de-
manding part of the software, the results are not as drastically. This is due to the fact that the 
PDA does not provide any hardware acceleration for floating point arithmetic, which is heav-
ily used within the convolution. Therefore either emulation or a library implementation is 
used for floating point operations. Within this profiling the faster choice, a library implemen-
tation is used. Floating point emulation may decrease the performance significantly. If the 
floating-point arithmetic could be replaced by integer arithmetic, the required processing time 
for these operations may decrease by a factor of 5. 

Misc
4%

HandHeadTracking
12%

GestureRecognition
4%

FeatureTracker
80%

 

Figure 51: Overall distribution of the clock cycle requirement per functional block  
(resolution: 320x240 pixels, sub-sampling: 2) 

Current PDAs have a higher processor speed (up to 624 MHz) than the one used in this profil-
ing, therefore the performance results on real hardware may be a superior. However, since the 
simulated SDRAM access times, which highly influence the performance, correspond well to 
today’s devices, only a speedup factor of up to 1.5 is expected. 
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Figure 52: Per frame analysis of the clock cycle requirement per functional block 
(resolution: 320x240 pixels, sub-sampling: 2) 

A solution for reducing the cycle requirement on the PDA is to outsource the FeatureTracker 
component to an external server, e.g. a PC. The video data should be transmitted as 
H.264/AVC encoded video. Table 34 and Table 35 show the resulting overall performance, 
comparing three different scenarios: 

• full processing on the PDA 
• shared processing on PDA and server with H.264/AVC encoded video transfer of the re-

gion of interest 
• full processing on the server with H.264/AVC encoded video transfer of the entire image 
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Table 34: Processing times of the most demanding functional blocks for different cli-
ent/server setups 

 Processing time for 
full PDA processing

Processing time for 
shared processing

Processing time for 
external processing

Hand head tracking    

640x480 111 ms     

320x240,  
subsampling=2 34 ms     

320x240,  
subsampling=4 31 ms     

Facial feature tracking   H.264/AVC intra-only 
encoding of head-box 

H.264/AVC intra-only 
encoding of full image

640x480 915 ms 114 ms (1400 kb/s) 816 ms (8000 kb/s) 

320x240, 
subsampling=2 232 ms 33 ms (350 kb/s) 204 ms (2000 kb/s) 

320x240, 
subsampling=4 256 ms 33 ms (350 kb/s) 204 ms (2000 kb/s) 

Gesture recognition       

640x480 33 ms     

320x240,  
subsampling=2 10 ms     

320x240,  
subsampling=4 9 ms     

Table 35: Overall processing times and framerates for different client/server setups 

 Processing time for 
full PDA processing

Processing time for 
shared processing

Processing time for 
external processing

Ms/frame    

640x480 1101 ms 301 ms 816 ms

320x240, 
subsampling=2 288 ms 89 ms 204 ms

320x240, 
subsampling=4 307 ms 84 ms 204 ms

Frames/s    

640x480 0.91 3.32 1.23

320x240, 
subsampling=2 3.48 11.27 4.9

320x240, 
subsampling=4 3.26 11.93 4.9
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7 Summary & Prospects 
The design of an efficient system for applications with high demands for real-time perform-
ance requires the selection of an appropriate system architecture and incorporated hardware 
and software components. In order to make such choices, it is imperative to have a detailed 
knowledge of the application’s computational demands. Furthermore, for data-intensive appli-
cations the influence of memory accesses has to be taken into account. This work presents a 
profiling methodology that provides this information. This information includes clock cycles, 
numerous memory access statistics and several special results providing memory access opti-
mization and data placement in memory. The results are delivered on a detailed level for 
source code functions and data areas, such as global variables. This work shows how profiling 
can be integrated into the design flow. The tool aids the designer in making the right decision 
at each step of the design, including hardware/software partitioning, optimization of compo-
nents and system scheduling. The profiling methodology has been applied in the development 
of a software solution and a hardware/software system for real-time video decoding. 

Besides performance and memory profiling, the profiler has been extended with energy esti-
mation on a function-accurate level. The development of the underlying power model of a 
processor is described in detail and can be used as a general approach for model generation. 
Energy profiling can be used to identify hot-spots in an application. These hot-spots are the 
most promising candidates for energy consumption reduction. Furthermore, the results can be 
used to inspect the instruction set of a processor and the influence of each instruction on the 
energy consumption. This information aids the designer in developing an energy-efficient 
instruction set for customizable processor architectures. 

7.1 Comparison with Existing Tools 
Existing profiling tools can not deliver the broad profiling results required for the comprehen-
sive optimization and exploration tasks necessary during the design of embedded systems. 
Gprof is a very useful tool for initial software analysis, but the results are inaccurate due the 
source code instrumentation and the sampling-based profiling method. Similarly, armprof can 
also be used only for a rough estimation of the cycle distribution across different parts of the 
software, and the tool is restricted to the ARM architecture. The same applies for VTune, 
which is restricted to Intel processors, although the profiling results are very detailed. In addi-
tion to the performance results, VTune also provides some information about cache activity, 
such as cache misses and hits. A far more detailed memory analysis can be performed with the 
ATOMIUM tool suite. This provides information on memory accesses for each function and 
variable in the code. The tool is a pure memory profiler and does not deliver any timing in-
formation. For the profiling, a generic processor and a flat memory architecture are used, 
therefore the results are usable only in an early design phase, as the tool cannot reflect the 
influence of the target architecture. Power consumption estimation is targeted by the Joule-
Track tool. Here, measurement-based power models were created for two specific processors. 
This tool provides results only for the entire program, not for every function. 

PowerEscape, which is based on the ATOMIUM tools, offers the most comprehensive profil-
ing. It extends the system architecture model with parameterizable components, such as cus-
tomizable register files and user-defined memory architecture. In addition to memory analy-
sis, the tool also incorporates timing and power consumption models. However, the system 
architecture is still a generic architecture, which restricts the accuracy of the profiling. Fur-
thermore, as of 2006 PowerEscape is no longer available. 
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In contrast to the aforementioned techniques and to overcome their restrictions, the approach 
presented in this work combines fast, accurate and comprehensive profiling. The trade-off 
between a decent simulation time and a sufficient level of accuracy is reached by using a trac-
ing-based profiling approach that applies cycle-accurate simulators. In order to target a broad 
range of processors, a well-defined and simple interface is established for interconnection 
with the processor simulator. Thus any cycle-accurate processor model can be used, as long as 
it provides access to basic runtime information such as the program counter, cycle counter and 
memory busses. The profiler is independent of the application’s source code, which leads to 
higher accuracy as compared to instrumentation-based tools. This additionally allows the pro-
filing of applications that are only available as binaries.  

The instruction-level power model presented in this work allows a detailed and measurement-
based profiling. However, the current implementation of the energy model is restricted to 
simple RISC processor architectures with a single pipeline. Complex architecture concepts, 
such as VLIW or superscalar execution units, are not considered in this work and would re-
quire major extensions to the proposed modeling, for example by incorporating FLPA meth-
odologies. However, these architectures are currently not wide-spread on the embedded RISC 
processor market. This is due to the large overhead they involve; for example, features such as 
out-of-order execution increase the required die area significantly. 

7.2 Prospects 
The profiling tool described here is still missing some features. Callgraph-based profiling, an 
essential feature of gprof, is not included in the profiler. Instead, a straightforward approach 
for accumulating the results of called functions is applied, which allows only a restricted view 
of the clock cycle distribution from a hierarchical view. This restriction is acceptable only for 
optimization purposes, as hot spots are still visible. 

The optimization steps presented in this work need to be applied manually by the software 
developer. For complex applications especially, this can be a cumbersome task. Therefore, the 
profiler should be integrated into the compiler suites. The compiler can then be instructed to 
perform the code modifications automatically based on the profiling results. 

Areas for future development also include the extension of the power model to other proces-
sor architectures and applying the methodology to other application fields in order to show its 
versatility. Furthermore, power models for the memory architecture could be included in order 
to reflect their influence on overall energy consumption. The retargeting of the power model 
can be simplified by separating the CPU core power model from the cache modeling. Caches 
could be modeled by means of the CACTI [96] cache model, which offers very detailed re-
sults and can be used for a wide range of technology feature sizes. On-chip SRAM can be 
incorporated into the model by adapting the CACTI tool, and external DRAM devices can be 
modeled with datasheet based models [59]. 

 

 

 

 

 123



8  Appendix 

8 Appendix 
8.1 Detailed and Comprehensive Profiling Results 

8.1.1 H.264/AVC Encoder/Decoder 
Figure 53 shows the callgraph of the software implementation of an H.264/AVC Baseline 
decoder. This implementation has been used within the case study described in Section 6.1. 
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Figure 53: Callgraph of an H.264/AVC baseline decoder 
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Stefan 384kb I-Frame
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Figure 54: Function group analysis for worst case I-frame with different memory types for 
sequence “Stefan 384kb” 
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Figure 55: Function group analysis for worst case P-frame with different memory types for 
sequence “Stefan 384kb” 
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8.1.2 Function Group Analysis for I- and P-Frames 
Function group analysis is based on the grouping of all incorporated functions into the follow-
ing groups: 

• Itrans    inverse H.264/AVC transformation 
• Intraprediction  H.264/AVC intra prediction algorithms 
• Loopfilter   frame deblocking filter including all filters 
• Motioncompensation motion compensation for P-frames 
• Bistreamprocessing  getbits, showbits, flushbits 
• Entropy Decoding  CAVLC decoding 
• Parsing / Decoding  high level parsing of bitstreams 
• Memory    memory transfer functions like memcpy, memset 
• Misc    miscellaneous functions 

The results were generated for I- and P-frames. 

In the following diagrams a side by side comparison of I- and P-picture coding types with 
their needed external bus cycles for the different function groups and the used memory archi-
tecture is depicted. The data has been generated using the worst case pictures of the corre-
sponding bitstream. Execution time is measured in number of external bus cycles as provided 
by MEMTRACE in conjunction with the ARMulator. 
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Figure 56: Function group analysis for worst case I- and P-frame with DRAM16 memory 
types for sequence “Coastguard 256kb” 
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Coastguard 384kb @ 15fps SRAM
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Figure 57: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Coastguard 384kb” 
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Figure 58: Function group analysis for worst case I- and P-frame with DRAM16 memory 
types for sequence “Coastguard 384kb” 
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Container 256kb @ 15fps SRAM
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Figure 59: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Container 256kb” 
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Figure 60: Function group analysis for worst case I- and P-frame with DRAM16 memory 
types for sequence “Container 256kb” 
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Container 384 kb @ 15fps
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Figure 61: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Container 384kb” 
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Figure 62: Function group analysis for worst case I- and P-frame with DRAM16 memory 
types for sequence “Container 384kb” 
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Figure 63: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Stefan 256kb” 
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Figure 64: Function group analysis for worst case I- and P-frame with DRAM16 memory 
types for sequence “Stefan 256kb” 
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Stefan 384 kb @ 15fps SRAM
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Figure 65: Function group analysis for worst case I- and P-frame with SRAM types for se-
quence “Stefan 384kb” 
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Figure 66: Function group analysis for worst case I- and P-frame with DRAM16 memory 
types for sequence “Stefan 384kb” 
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8.1.3 Cycles per Frame Analysis 
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Figure 67: Cycles per frame analysis for different memory types for sequence  
“Container 256 kb” 
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Figure 68: Cycles per frame analysis for different memory types for sequence  
“Container 384 kb” 
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Stefan 256 kb @ 15fps
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Figure 69: Cycles per frame analysis for different memory types for sequence  
“Stefan 256 kb” 
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Figure 70: Cycles per frame analysis for different memory types for sequence  
“Stefan 384 kb” 
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8.1.4 Usage of ARM11 SIMD Instructions 

8.1.4.1 I-Trans 

The function group I-trans combines all modules needed for the inverse transformation in-
cluding inverse quantization. The following table gives an overview over the implemented 
functions and their potential for optimization using ARM11 SIMD instructions. For the fol-
lowing functions the reorganization overhead for data formatting is too high to make an 
SIMD implementation feasible:  

GetCoeffChromaBlockDC2x2, GetCoeffLumaBlock, GetCoeffLumaBlockDC, 
ItransDCChroma 

Table 36: Functions of the I-trans group 

Function name Benefit /  
used instructions 

Optimization 
factor

Implementation 
difficulty 

GetCoeffChromaBlock Run / level decoding 1  

Itrans First function part: 2 
Second function part:1 1.5 Low - medium 

ItransDCLuma First function part :2 
Second function part : 1 1.5 Low - medium 

8.1.4.2 Intraprediction 

The function group Intraprediction combines all modules needed for the prediction of pixels 
of intra coded blocks . The following table gives an overview over the implemented functions 
and their potential for optimization using ARM11 SIMD instructions. For the following func-
tions the reorganization overhead for data formatting is too high: 

PredictIntra4x4_DIAGDOWNLEFTUR, PredictIntra4x4_DIAGDOWNRIGHT, PredictIn-
tra4x4_HOR, PredictIntra4x4_HORDOWN, PredictIntra4x4_HORUP, PredictIntra4x4_VER, 
PredictIntra4x4_VERTLEFT, PredictIntra4x4_VERTRIGHT PredictIn-
tra4x4_VERTRIGHTUR, PredictIntra4x4_DC128, PredictIntra4x4_DCL  
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Table 37: Functions of the intraprediction group 

Function name Benefit /  
used instructions 

Optimization  
Factor 

Implemen-
tation  
difficulty 

PredictIntra4x4_DC Using UADD8to16 1.1 Low 

PredictIntra4x4_DCU Using UADD8to16 1.1 Low 

PredictIntra4x4_DIAGDOWNLEFT reg. width not sufficient  1  

PredictChroma LD/ST overhead too big 1  

GetIntra4x4Ipredmodes LD/ST overhead too big 1  

PredictIntra16x16 LD/ST overhead too big 1  

8.1.4.3 Loopfilter 

The function group Loopfilter combines all modules needed for the deblocking of a picture 
after the decoding process. The following table gives an overview over the implemented func-
tions and their potential for optimization using ARM11 SIMD instructions. 

Table 38: Functions of the loop-filter group 

Function name Benefit /  
used instructions 

Optimization 
factor 

Implementation 
difficulty 

DeblockFrame Wrapper function 1  

DeblockMB Wrapper function 1  

DeblockMB_Intra Wrapper function 1  

EdgeLoopC_N Using UADD8to16  2 Complex 

EdgeLoopC_S Using UADD8to16 2 Complex 

EdgeLoopY_N Using UADD8to16 2 Complex 

EdgeLoopY_S Using UADD8to16 2 Complex 

GetStrength_QP_MB Vectorization, algorithm optimiza-
tion without SIMD instructions 1.2 Complex 

8.1.4.4 Motion Compensation 

The function group MotionCompensation combines all modules needed for the reconstruction 
and filtering of a predictive coded picture. The following table gives an overview over the 
implemented functions and their potential for optimization using ARM11 SIMD instructions. 
For the following functions the reorganization overhead for data formatting is too high: 

SetMotionVectorPredictorP, GetMotionVectorsAndRefFrames, GetMotionVectorsAndRef-
Frames16x16, GetMotionVectorsAndRefFrames16x8, GetQuarterpelBlock8_xy 
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Table 39: Functions of the motion compensation group 

Function name Benefit / 
used instructions 

Optimization 
factor 

Implementation 
difficulty 

Copypadblock8 LD/ST overhead too high 1  

Copypadblock LD/ST overhead too high 1  

GetQuarterpelBlock_xy Algorithm optimization on C 
source code level 1.2 Complex 

ProcessInterP16x16 Function caller 1  

ProcessInterP16x8 Function caller 1  

ProcessInterP4x4 Function caller 1  

ProcessInterP8x16 Function caller 1  

MotionCompSkipMode LD/ST oriented, parallelization 1  

MotionPredictionChroma Parallelization of 2 x 2x2 pre-
dictions 1.2 Complex 

8.1.4.5 BitstreamProcessing 

The function group BitstreamProcessing combines all modules needed for the bitwise stream 
processing an H.264/AVC access unit. Due to the nature of the functions it makes nearly no 
sense to use any SIMD instruction for optimization purposes. The following table is provided 
to give an overview of the used functions in the according function group. The following list 
provides an overview of the used functions in this function group: 

BitsLeft, ByteAligned, FlushBits, GetBits, GetOneBit, ShowBits, ShowBitsN, Get-
Strength_QP_MB 

8.1.4.6 EntropyDecoding 

The function group EntropyDecoding combines all modules needed for the VLC stream proc-
essing an H.264/AVC access unit. Due to the nature of the functions it makes nearly no sense 
to use any SIMD instruction for optimization purposes. The following list provides an over-
view of the used functions in this function group:  

GetVLCSymbol, GetVLCSymbol_Slow, CodeFromBitstream2d, PredictNnz, ReadCoeff-
BlockCAVLC, ReadLevelVLC0, ReadLevelVLCN, ReadLongRuns, ReadNumCoeffTrailin-
gOnes, ReadNumCoeffTrailingOnesChromaDC, ReadShortRuns, ReadTotalZeros, ReadTo-
talZerosChromaDC 

8.1.4.7 Parsing_Decoding 

The function group Parsing_Decoding combines all modules needed for the high level stream 
processing of an H.264/AVC access unit. Due to the nature of the functions it makes nearly no 
sense to use any SIMD instruction for optimization purposes. The following list provides an 
overview of the used functions in this function group: 

ParsePictureParameterSet, DecodeChroma, DecodeMBInter, DecodeMBIntra16x16, Deco-
deMBIntra4x4, DecodeMacroblock, GetDquant, Predblock4, Read8x8Mode 
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8.2 MEMTRACE Implementation Details 

8.2.1 Block Diagrams of MEMTRACE Internals 
The following block diagrams show excerpts of the function callgraphs of the MEMTRACE 
source code. Figure 71 depicts the callgraph of the MEMTRACE CLI applications. It com-
bines the CLI frontend with parts of the backend, e.g. for program information acquisition. 

main
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expand_list_of_object_files

extract_used_functions
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Figure 71: Callgraph of the main function of the MEMTRACE  
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memtrace_init
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Figure 72: Callgraph of backend function memtrace_init 
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instrProfiling::addMemAccess
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memAccess::set

memtrace_trace_memory_access

 

Figure 73: Callgraph of backend function memtrace_trace_memory_access 
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Figure 74: Callgraph of backend function memtrace_update_current_function 
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memtrace_finish
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Figure 75: Callgraph of backend function memtrace_finish 
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main

Debugger::close

Debugger::init

Core::profiler_finish

Verilated::debug

memory::init

Core::profiler_init

Core::setSignals

Verilated::traceEverOn

Debugger::displayHelp

Debugger::getCommand

memory::print

Core::printRegs

memtrace_init

Core::printRes

Core::profiler_FunctionCheck

Core::profiler_MemoryCheck

memory::readData

memory::readProg

memory::writeData

memtrace_update_current_function

memtrace_trace_memory_access

memtrace_finish

Debugger::run

Debugger::start

 

Figure 76: Callgraph of the MEMTRACE debugger 

8.2.2 Screenshots of the Graphical User Interface 
Figure 77 shows a screenshot of the main window of the GUI. The upper part of the window 
provides the files settings for the MEMTRACE project respectively configuration file, the 
executable (axf) file and analysis and the postprocessing output files. The tab area shows the 
initializations tab, where on the left side the object files or directories can be specified and the 
symbol extraction can be started (“extract program info”). The right side shows the program 
information, which includes the functions, variables and other memory areas found the object 
files and the setting area for the memory layout. Furthermore the split step can be enabled and 
a split function be chosen. 
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Figure 77: Graphical user interface to the MEMTRACE tool (initialization tab) 

The lists of function and memory areas can be modified by pressing “edit program info” but-
ton activating the window shown in Figure 78. It allows combining functions to functional 
groups in order to sum their results. Furthermore the results for each function can be manipu-
lated by incorporating a multiplication factor as described in Section 4.3.4. 

 

Figure 78: GUI dialog for viewing and setting function details 

Figure 79 shows the analysis tab where all settings for the simulation run are applied. The 
system specification includes the processor type and its clock frequency and the divider be-
tween bus and processor core speed. Additionally, command-line parameters for the executa-
ble (axf) file can be provided. 
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Figure 79: Graphical user interface to the MEMTRACE tool (analysis tab) 

A memory map is defined by specifying the timing and access information of the different 
memory regions. A settings dialog shown in Figure 80 is used for this purpose. The memory 
model allows differentiating between sequential and non-sequential read and write accesses 
and to specify the width and access type of the according device. 

 

Figure 80: Memory settings dialog window 

The postprocessing step is controlled with the third tab shown in Figure 81. It allows choosing 
between creating spreadsheet tables for function and variable analysis results. A table is de-
fined by the table type, the row/column type and the range definitions. These are described in 
more detail in Section 5.4. Additionally to the command-line interface, the GUI also allows to 
specify a mathematical function to be applied to the results. For example, a “bandwidth” func-
tion transforms the memory access results into bus bandwidth values, depending on the bus 
speed. 

 
Figure 81: Graphical user interface to the MEMTRACE tool (postprocessing tab) 
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8.2.3 Detailed Power Measurement Results 
Table 40 shows the current values, which were measured for the core voltage of the Excalibur 
device during the execution of the test sequences. 

Table 40: Current values measured for the different instruction sequences 

Prog current (mA) Difference to idle value (mA) 

Idle 262 0 
Nop 317 55 
Mov4 323 61 
Mov3 323 61 
Mov2 325 63 
Mov 328 66 
Add 329 67 
Add1a 336 74 
Add1b 317 55 
Add1c 329 67 
Add2 334 72 
Ld3 373 111 
Ld3a 366 104 
Ld4 359 97 
Ld4a 359 97 
Ld4b 360 98 
Ld4c 356 94 
Mov5 317 55 
Mov_mod1 327 65 
Ld2_mov (1.5*exectime) 348 86 
Ld3_mov 363 101 
Ld4_mov 355 93 
Ld5_mov 339 77 
Ld6_mov 343 81 
Mov4a 323 61 
Mov4b 317 55 
Mov4c 329 67 
Tst (like mov.c) 334 72 
Tst4b (1reg like mov4b.c) 317 55 
Tst4c (1reg like mov4c.c) 337 75 
Tst4c_2reg 337 75 
Tst4c_2reg_F_0 328 66 
Tst4b_2reg 317 55 
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8.2.4 The Configuration File 
The profiler is controlled by a configuration file. This file is automatically created during the 
initialization step. It can be edited by, for example by removing or grouping functions, set-
tings the split flag or adding new memory areas. An example configuration file is given in the 
following. The comment lines in the beginning of the file describe the syntax. 

;; This is a generated ini-file for memtrace. 
;; Edit this file according to your needs. 
;; The file format is similar to the ARM configuration file format 
;; as used e.g. in the *.ami and *.dsc files. It is described in 
;; the "Debug Target Guide" in Section 4.15.2 
;; Currently the following parts are supported: 
;; 
;; Tag = Value 
;; Tag = Value1 Value2 
;; Othertag 
;; ;; comment line 
;; ; commented-out line 
;; { MySection = SectionName 
;; SectionTag1 
;; SectionTag2 
;; } 
;; 
;; IMPORTANT: * All Tag values and Names should only contain al-
pha-numerical symbols and "_" 
;;               (and currently no whitespaces) 
;;             * each section has to be ended by a line only con-
taining "}" 
;; 
;; 
;; All functions and groups need to be defined as simple tags 
INSIDE the section "FunctionList". 
;; Function can be grouped (especially for printing grouped re-
sults to Spreadsheet-Files) 
;; by the following syntax 
;; { group = MyGroup1 
;; function1 
;; function2 
;; function3 
;; function4 
;; } 
 
;; In the section "Global" various settings can be given to con-
trol memtrace. 
;; Currently only BaseAddr and PageSize of data memory can be ap-
plied for page hit/miss calculation 
;; You can un-comment the following lines in order to apply these 
settings: 
 
; { Global = Global 
;   BaseAddr = 0x0  ; Base address must be expressed as 
;                     hexadecimal number (default is 0x0) 
;   PageSize = 128  ; Page Size must be represented as  
;                     integer value > 0 (default is 128) 
; } 
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{ Global = Global 
   BaseAddr                  = 0x0 
   PageSize                  = 128 
   StackBaseAddr             = 0x80000000 
   StackSize                 = 8192 
   AdditionalArmsdParameters = "" 
   AxfFileParameters         = "" 
   BusDivisor                = 2 
   EnableTracer              = 0 
   ProcessorType             = "ARM946E-S" 
   AxfFileName               = "D:\h264enc\bin\arm\testappl.axf" 
   AnalysisResultFileName    = "D:\h264enc\memtrace_out_Func.txt" 
   XlsFileName               = "D:\h264enc\memtrace_out_Funct.xls" 
   ObjectFile                = "D:\h264enc\objects\*.o" 
   TraceType                 = 0 
   TableType                 = 2 
   TableTypeVar              = "" 
   RangeBegin                = 0 
   RangeEnd                  = 0 
   RangeStep                 = 0 
   RangePeriod               = 0 
   RangePeriodEnd            = 0 
   EnablePeriod              = 0 
   EnableRange               = 0 
   ClockSpeed                = 200 
   ClockSpeedUnit            = M 
   Memory = "0 100000000 DRAM 4 rw 230/10 230/10" 
} 
 
{ FunctionList = FunctionList 
      ; * for creating intermediate results set the 
      ;   value of a function to "split" (functionName = split) 
      ; * for weighting the cycle count results of a  
      ;   function when creating spreadsheet tables 
      ;   set the value of a function to the weighting factor 
      ;   with a leading "*" (functionName = *0.4578 
 
  CalcSNRFrame     = ":D:\h264enc\objects\testvidenc.r.o"  
  CloseYUVFile     = ":D:\h264enc\objects\testvidenc.r.o"  
  OpenYUVFile      = ":D:\h264enc\objects\testvidenc.r.o"  
  ReadYUVFrame     = ":D:\h264enc\objects\testvidenc.r.o"  
  WriteRecFrame    = ":D:\h264enc\objects\testvidenc.r.o"  
  main             = ":D:\h264enc\objects\testvidenc.r.o"  
… 
{ group = BitStreamEncoding 
  writeCoeffBlockCAVLC       = ":D:\h264enc\objects\cavlc.r.o"  
  writeLevelVLC0             = ":D:\h264enc\objects\cavlc.r.o"  
  writeLevelVLCN             = ":D:\h264enc\objects\cavlc.r.o"  
  writeNumCoeffTrailingOnes  = ":D:\h264enc\objects\cavlc.r.o"  
  writeNumCoeffTrailingOnesChromaDC 
                             =  ":D:\h264enc\objects\cavlc.r.o"  
  writeRun                   = ":D:\h264enc\objects\cavlc.r.o"  
  PutBits                    = ":D:\h264enc\objects\bitstream.r.o"  
  putCoeffChromaBlock        = ":D:\h264enc\objects\scancoeff.r.o"  
  putCoeffChromaBlockDC      = ":D:\h264enc\objects\scancoeff.r.o"  
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  putCoeffLumaBlockAC        = ":D:\h264enc\objects\scancoeff.r.o"  
  putCoeffLumaBlockDC        = ":D:\h264enc\objects\scancoeff.r.o"  
} 
{ group = ChromaPrediction 
  TransQuantChroma8  = ":D:\h264enc\objects\transquantchroma8.r.o"  
  enc_predictChroma         = ":D:\h264enc\objects\predict.r.o"  
  IntraPredChroma_noRD      = ":D:\h264enc\objects\intrapred8.r.o"  
} 
} 
 
{ MemoryMap = MemoryMap 
 
  { FixedAreaList = FixedAreaList 
 ; add abitrary memory regions here 
 ; format: <name> = <startaddress> <size> 
 ; (startaddress and size can be  
  ;  decimal, hex (leading '0x') or octal (leading '0') 
 ; e.g.: stack = 0x4E001 8192 
 
  } 
 
  { SectionList = SectionList 
  'ER_RO'    
  'ER_RW'    
  'ER_ZI'    
  } 
 
  { GlobalVariableList = GlobalVariableList 
  yuvfile                           
  yuvfile                           
  tz_chromadc_lentab                
  tz_chromadc_codtab                
  totalzeros_lentab                 
  enc_predictIntra4_table           
  dequantcoef                       
  dequant_coef                      
  clip_zero                         
  clip_lut                          
  block_intra4x4mode_slicetable     
  block_indexes                     
  QP_SCALE_CR                       
  NumCoeffTrailingOnes_Lengths_3    
  NumCoeffTrailingOnes_Lengths_2    
  NumCoeffTrailingOnes_Lengths_1    
... 
  NCBP_ENC                          
  COEFF_COSTC                       
  } 
} 

Listing 15: MEMTRACE configuration file 

8.2.5 List of Source Code Files 
Table 41 shows a list of the source code files of the MEMTRACE profiling suite, including 
the common frontend parts of GUI and CLI and the backend of the tool. 
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Table 41: Source code files 

File Purpose 

./Src: 

Getopt.c Functions for command-line parameter reading 

Getopt1.c Additional functions for long command-line parameters 

Memtrace.cpp Main program for executable 

Initmode.cpp Functions and classes for init mode in memtrace.cpp 

Runmode.cpp Functions and classes for run mode in memtrace.cpp 

Spreadsheetmode.cpp Functions and classes for spreadsheet mode in memtrace.cpp 

Memtrace_common.cpp Shared functions and classes of executable and dll 

Memtrace_dll.cpp Functions and classes for dll 

Tracer_for_memtrace_dll.c Modified tracer.c, which acts as interface between ARMulator and 
the memtrace dll functions 

Copro_basics.c Functions for coprocessor template 

Bus_controller.cpp Functions for memory bus profiling and DMA controller 

Mapfile_for_memtrace.c Modified mapfile.c, which includes calls to bus controller functions 

Sordi.def Definition file required for the creation of an ARMulator DLL 

./Include: 

Getopt.h Header file 

Memtrace_common.h Header file 

Memtrace_dll.h Header file 

Memtrace_global.h Header file 

Initmode.h Header file 

Runmode.h Header file 

Spreadsheetmode.h Header file 

Copro_basics.h Header file 

Mapfile.h Header file 

./  

Memtrace_dll.dsp Project file for dll 

Memtrace_copro.dsp Project file for coprocessor template 

Memtrace_mapfile.dsp Project file for extended bus model 

Memtrace.dsp Project file for executable 

Memtrace.dsw Workspace file, including dll and exe projects 
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8.2.6 Full Description of the Command-line Syntax 
memtrace [-i] [-r] [-x] [-y] [-c configuration-file]  
         [-a executable-file]  [-p exe-file-parameters]  
         [-m output-file] 
         [-e spreadsheet-file]  [-f  spreadsheet-output-format]  
         [-d debugger-options] [-t][-?] [-V]  [-o object-files] 

-i                      Init mode: creates memtrace.ini file with list of local functions 
from the object-files 

-r                      Run mode: starts the profiling run in conjunction with the ISS  

-x                      Postprocessing mode: creates tab-separated spreadsheet file 
from MEMTRACE function profiling output 

-y                      Postprocessing mode: Creates tab-separated spreadsheet file 
from MEMTRACE variable profiling output 

-c configuration-file Defines the name of the configuration file as either created in 
init mode or used in run and spreadsheet mode.  

-o object-files      Defines the object files, libraries and archives. Multiple space-
separated paths/files can be supplied. IMPORTANT: It must be 
the last option on the command-line 

-d debugger-options     Defines options to be passed over to the debugger/ISS. Useful 
options are for example setting the processor type, speed or 
cache parameters. The availability of the options is dependent 
on the debugger/ISS. When using the ARMulator, see armsd 
help ("armsd -h") for more options. IMPORTANT: enclose 
debugger options in " " 

-a executable-file      Specifies executable (axf-) input file for profiling 
-p exe-file-parameters  Specifies command-line parameters for the executable 
-m output-file   Defines the name of the MEMTRACE output file. Default 

output file is memtrace_out.txt. 

-e spreadsheet-output- 
   file 

Defines the name of the tab-separated spreadsheet output file. 
Default spreadsheet output file: memtrace_out.xls. 

-f spreadsheet-output- 
   format 

Output format of the spreadsheet file, see Section 5.4. The de-
fault format is “{ov}” creating a table with overall results. 

-t  Turn on tracer module for tracing instructions, memory ac-
cesses and events and writes them to a file. The availability is 
dependent on the ISS. For the ARMulator, see Section 2.2.1.1. 

-? or -h                Display usage information and exit.  
-V Display version number of MEMTRACE. 
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