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The continuous assessment of pedestrians’ cognitive load during a naturalistic

mobile map-assisted navigation task is challenging because of limited experimental

control over stimulus presentation, human-map-interactions, and other participant

responses. To overcome this challenge, the present study takes advantage of

navigators’ spontaneous eye blinks during navigation to serve as event markers

in continuously recorded electroencephalography (EEG) data to assess cognitive

load in a mobile map-assisted navigation task. We examined if and how displaying

different numbers of landmarks (3 vs. 5 vs. 7) on mobile maps along a given

route would influence navigators’ cognitive load during navigation in virtual urban

environments. Cognitive load was assessed by the peak amplitudes of the blink-

related fronto-central N2 and parieto-occipital P3. Our results show increased

parieto-occipital P3 amplitude indicating higher cognitive load in the 7-landmark

condition, compared to showing 3 or 5 landmarks. Our prior research already

demonstrated that participants acquire more spatial knowledge in the 5- and 7-

landmark conditions compared to the 3-landmark condition. Together with the

current study, we find that showing 5 landmarks, compared to 3 or 7 landmarks,

improved spatial learning without overtaxing cognitive load during navigation in

different urban environments. Our findings also indicate a possible cognitive load

spillover effect during map-assisted wayfinding whereby cognitive load during map

viewing might have affected cognitive load during goal-directed locomotion in the

environment or vice versa. Our research demonstrates that users’ cognitive load

and spatial learning should be considered together when designing the display of

future navigation aids and that navigators’ eye blinks can serve as useful event

makers to parse continuous human brain dynamics reflecting cognitive load in

naturalistic settings.
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1. Introduction

1.1. GPS-based navigation systems and
spatial learning

“I move, therefore I am” (Murakami, 2011). We move in
space to work, to shop, to travel, and more. Coordinated and
goal-oriented movement through an environment is defined as
“navigation” (Montello, 2005). Navigation is a fundamental human
activity in daily life and used to be an essential skill for our human
ancestors for survival. Navigation, especially in novel environments,
is a cognitively challenging task that involves numerous cognitive
processes, including perception, memorization, and reasoning of
places and orientation in space (Montello, 2005). These cognitive
processes are supported by multiple brain regions, such as the
occipital cortex, the hippocampus, the retrosplenial cortex, and the
entorhinal cortex (Ekstrom et al., 2014; Do et al., 2021), and are
important for not only navigation but also healthy aging (Coughlan
et al., 2018) and spatial reasoning in education (Uttal and Cohen,
2012).

In a digital era, cognitive tasks during navigation are increasingly
taken over by GPS-enabled mobile map displays as interfaces
to navigation systems that provide automatic self-localization,
route planning, and turn-by-turn instructions in real-time (Wenig
et al., 2017). Assisted with such mobile map displays at their
fingertips, navigators likely follow the route shown on their mobile
screens passively, which may limit their active exploration in the
environment (Clemenson et al., 2021). With their gazes fixated on
the mobile map, navigators tend to allocate less of their attention to
the traversed environment (Gardony et al., 2013, 2015; Brügger et al.,
2019) and are less likely to actively encode the navigation-relevant
environmental information (e.g., landmarks and routes) seen in
the traversed environment into their memory (Parush et al., 2007;
Clemenson et al., 2021; Sugimoto M. et al., 2022). As a consequence,
increased use of GPS-enabled mobile navigation devices has been
shown to negatively affect navigators’ spatial learning and their innate
spatial skills, as a large body of literature has demonstrated (e.g.,
Ishikawa, 2019, Ruginski et al., 2019, Dahmani and Bohbot, 2020).
Therefore, there is a need to develop GPS-enabled navigation systems
that alleviate these negative consequences on a population that is
increasingly reliant on mobile maps.

1.2. Cartographic design of mobile map
displays

Could the self-localization and route-planning options of GPS-
enabled navigation assistance be responsible for the abovementioned
negative effects or is it due to mobile map design? Cartographers
and psychologists approached the problem of spatial deskilling from
an interdisciplinary perspective by asking how GPS-enabled mobile
map design influences navigators’ wayfinding behavior and spatial
learning (Münzer et al., 2012, 2020; Liao et al., 2017; Brügger et al.,
2019; Stevens and Carlson, 2019; Keil et al., 2020; Kapaj et al.,
2021). Münzer et al. (2012, 2020) examined different mobile map
design choices, such as whether a mobile map should dynamically
align with the body orientation of the navigator during wayfinding
compared to the static north-up orientation of traditional paper

maps, and if the viewing perspective of a mobile map should
switch between a first-person view (i.e., egocentric perspective) as
encountered during navigation or remain in the commonly used
birds-eye view of traditional paper maps (i.e., allocentric perspective).
The authors concluded that the acquisition of different types of spatial
knowledge, such as egocentric and allocentric spatial knowledge, can
be facilitated by appropriate map visualization without impeding
wayfinding efficiency. Liao et al. (2017) investigated the level of
spatial detail or fidelity of depiction with the environment visualized
on mobile maps by comparing abstract 2D cartographic maps
with realistic-looking 3D satellite image maps. The authors found
that while depicted landmarks on both types of mobile map
displays supported navigators’ route direction memory at complex
intersections, satellite image maps impeded spatial memory building
due to visual information overload.

Cartographers have conducted decades of research to provide
map design solutions to efficiently and effectively communicate
spatial information to support human mobility (for an overview,
see Montello, 2002; Ricker and Roth, 2018). The emphasis of this
body of cartographic research is on map display design and user
interface and user experience (Ricker and Roth, 2018), and how
traditional cartographic design principles transfer to the interactive
and dynamically updating small mobile map screen (Muehlenhaus,
2013). Until very recently, the field did not directly consider the
background and training of the navigator, or the effects on spatial
learning (Thrash et al., 2019; Li, 2020). More recently, attention
has also been drawn to reduce the adverse effects of GPS-enabled
navigation aids on spatial learning, e.g., by geographic information
scientists (GIScientists) (Wenig et al., 2017), cognitive scientists
(Ruginski et al., 2019), and map user interface (UI/UX) designers
(Ricker and Roth, 2018; Thrash et al., 2019; Li, 2020; Fabrikant,
2022). Among the ideas proposed, the appropriate inclusion and
display of landmarks on GPS-enabled mobile maps has gained
particular traction among cartographers and navigation researchers
in GIScience (Raubal and Winter, 2002; Duckham et al., 2010; Credé
et al., 2020; Keil et al., 2020; Liu et al., 2022).

1.3. Landmark-based navigation and
cognitive load

Geographers refer to landmarks as distinctive geographic features
in an environment (Richter and Winter, 2014). Landmarks are
commonly used as cognitive anchors in space and to structure mental
representations of space (Richter and Winter, 2014). Landmarks help
navigators to determine their current position and heading (Michel
and Ariane, 2020; Yesiltepe et al., 2021), to remember decision points
along a path, directions taken on route intersections (Philbeck and
O’Leary, 2005; Ligonnière et al., 2021), and to navigate to destinations
by retrieving long-term spatial knowledge of landmark relations
across traversed environments (Chrastil and Warren, 2013; Epstein
and Vass, 2014). Despite the importance of landmarks for navigation
and wayfinding, existing mobile map interfaces on navigation systems
still provide turn-by-turn instructions that typically refer to metric
distance information (e.g., turn left in 200 m).

Although adding landmarks to mobile maps can ease navigation
and spatial learning, the visuo-spatial processing of shown landmarks
can also require additional cognitive resources and/or distract from

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1024583
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1024583 February 8, 2023 Time: 15:1 # 3

Cheng et al. 10.3389/fnins.2023.1024583

the wayfinding task, thereby increasing cognitive load. Cognitive load
refers to the total amount of cognitive resources that are used at
any given moment for cognitive processing (Sweller, 1988; Baddeley,
2003). With limited cognitive resources, learning performance
reaches a plateau (or even drops) when the number of items to
be learned exceeds individuals’ limited cognitive capacity. Cognitive
load increases as the number of items to be remembered approaches
individuals’ cognitive capacity (Sweller, 1988).

The cognitive capacity literature has suggested that humans’
ability of remembering simple visual items with one level of features
(e.g., color, shape, orientation, etc.) to be around four items (or
chunks; Luck and Vogel, 1997; Vogel et al., 2001; Baddeley, 2003).
However, cognitive capacity is not a fixed number, especially when it
relates to meaningful and complex real-world objects with multiple
visual and spatial features. Recent studies have found that learners
tend to remember a higher number of real-world objects (e.g., vases
embroidered with visual details on their surface), compared to simple
visual items, such as oriented lines and different sized stimuli (for a
review, see Endress and Potter, 2014; Brady et al., 2016, 2019; Sahar
et al., 2020). This is because learners can integrate features of one
object (i.e., ensemble processing) and ascribe meanings to them, and
not just memorize individual abstract items (Brady et al., 2019). In
an urban navigation context, for example, landmarks such as visually
salient buildings in a city typically contain multiple visual (e.g., color,
texture, etc.), spatial (e.g., size, shape, orientation at turning points,
etc.), and semantic features (e.g., the post office, the school, my home,
etc.). Individuals should therefore be able to encode and remember
more than 4 chunks (i.e., each landmark building being a chunk of
visual and spatial information) in their visuospatial memory.

To investigate how the number of landmarks shown on mobile
maps can affect cognitive load and spatial learning, we selected three,
five, and seven landmarks as a manipulation of low, medium, and
high cognitive load conditions, respectively. A prior study by Cheng
et al. (2022b) found that landmark recognition and route direction
memory improved when the number of presented landmarks increased
from three to five, while learning performance did not increase further
when seven landmarks were depicted on the mobile map. Moreover,
our prior study assessed cognitive load while participants consulted
maps across the three landmarks conditions (3 vs. 5 vs. 7 landmarks),
and found that cognitive load during map consulting increased in the
7-landmark condition compared to the 3- and 5-landmark conditions.

Previous research has also shown that cognitive load for one
attended task may spill over to another subsequent task (Bednar et al.,
2012; Liu et al., 2019; Felisberti and Fernandes, 2022). In the study by
Felisberti and Fernandes (2022), the cognitive load induced by a series
of cognitive tasks was spilled over into the subsequent simulated
driving task. In the assisted-navigation context, mobile maps with
a good design (e.g., supportive landmark and route information)
can assist navigation and spatial learning, and thus may reduce
navigators’ cognitive effort when they are navigating and learning
the environment. Therefore, the increased cognitive load related to
viewing and learning landmarks shown on a mobile map display
may also influence cognitive load during navigation through the
environment, even if the navigator is no longer attending to the
mobile map display.

Moreover, navigation contains both locomotion and wayfinding
components (Montello, 2005) and locomotion through the
environment occupies most of pedestrians’ time during during
navigation and wayfinding (Brügger et al., 2019). It is thus important
to disentangle the periods of cognitive load during locomotion

through the environment from those periods that relate to cognitive
load during map-viewing events.

1.4. Assessing cognitive load through brain
activity

To assess cognitive load during navigation, we employed
electroencephalography (EEG), which records electrical activity
originating from the human brain in real time with high temporal
resolution by placing electrodes on the head surface. EEG has the
advantage of assessing cognitive processing directly through brain
activity, compared to other psychophysiological measures (e.g., eye-
tracking or electrodermal activity). Moreover, EEG records brain
activity in the background without interfering with the primary task.
This is unlike behavioral assessments that add another task, as done
in dual-task paradigms [where participants complete a cognitive task
with different difficulty levels while performing a navigation task, e.g.,
(Credé et al., 2020)], which would require individuals to respond and
consequently interrupt the navigation task.

EEG recordings require event markers that indicate when notable
events such as stimulus presentation or participant responses occur.
These markers allow the segmentation of EEG data according to
these events for event-related analysis. However, visual inputs to
participants constantly change when they navigate in a naturalistic
environment. In such cases, there is little control over stimulus
presentation, and it is thus challenging to add notable event
markers based on stimulus presentation. Kalantari et al. (2022)
leveraged navigators’ gaze fixation on navigational signs indicating
the directions to an ambulatory care unit or to an information desk
in a virtual hospital as EEG event markers to study the effect of
different interior designs on wayfinding in a hospital facility. Such
kinds of event markers (gaze fixation) are meaningful for navigation
experiments in environments that contain navigation task-relevant
signage and respective feature labeling that navigators are intended
to read during navigation. In doing so, the markers will yield long
fixation durations (e.g., 1500 ms) compared to incidental glances
on unlabeled features. However, this approach might not be easily
applicable to outdoor environments that have no explicit labeling
and/or navigation-relevant signage such as in open spaces (i.e.,
residential areas, parks, etc.), where navigators tend to have shorter
fixation durations (∼290 ms; Enders et al., 2021). Other methods of
event generation, such as adding concurrent tasks to mark participant
responses might interrupt participants’ continuous navigation task
performance in naturalistic settings and add unwanted affect and
arousal interferences. Therefore, a different set of event markers
is needed when examining brain activity during navigation in
ecologically valid urban environments.

1.5. Eye blinks as event markers in
naturalistic settings

Previous research has found that spontaneous eye blinks are
associated with cognitive load, and especially during the processing
of complex visual scenes (Wascher et al., 2014; Valtchanov and Ellard,
2015). When individuals open their eyes after a blink, they receive
an influx of visual information, leading to brain activity related to
visual processing. Past studies have found that blinks are more likely
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to occur with higher frequency after a period of blink suppression
(e.g., during attentional focus) or when the processing mode changes
(e.g., attention re-allocation) (Wascher et al., 2014, 2022). Blinks
are thus considered to reflect attentional resource allocation (Stern
et al., 1984). Additionally, as eye blinks are generated naturally by
users and easily measured with EEG without additional equipment,
they could be particularly useful as event markers that indicate
cognitive load in naturalistic settings without disrupting continuous
task performance (Wascher et al., 2014). Studies investigating blink-
related brain activity are thus crucial to validate the use of blinks
as event markers to assess cognitive load. However, most research
linking eye blinks to cognitive load has focused on characteristics of
eye blinks such as the number of blinks and blink deflection while less
research has analyzed brain activity related to eye blinks (Orchard and
Stern, 1991; Pivik and Dykman, 2004; Valtchanov and Ellard, 2015).
Indeed, only a few studies have examined the neuronal processes
related to eye blink events (Wascher et al., 2014, 2022; Wunderlich
and Gramann, 2020). More research is thus needed that investigates
brain activity during eye blinks when individuals perform cognitive
tasks to validate the use of eye blinks as indicators of cognitive load
and identify the cognitive processes following spontaneous eye blinks.

1.6. Blink event-related potentials (bERPs)

Previous research found that event-related potentials (ERPs)
occur after eye blinks (Berg and Davies, 1988; Wascher et al., 2014,
2022; Wunderlich and Gramann, 2020). Importantly for the present
study, a previous study that used EEG to assess brain activity while
using eye blinks as event markers has identified blink event-related
potentials (bERPs) associated with the performance of a cognitive
task (Wascher et al., 2022). Specifically, the authors compared bERPs
during the performance of different tasks (i.e., standing vs. walking
on a meadow vs. walking while traversing an obstacle course in a
natural environment) while participants were processing auditory
information. They found a larger occipital N1, an early negative-
going component with a peak latency of about 160 ms in the visual
cortex (Näätänen, 1992), during walking compared to standing and
traversing an obstacle course, suggesting differences in bottom-up
visual perception.

The authors also found a significantly less pronounced amplitude
in the fronto-central N2 and parietal P3 with increasing walking
demands, indicating that fewer cognitive resources were available for
auditory information processing. The blink-related fronto-central N2
(measured at electrodes Fz and FCz) is a negative-going component
that occurs around 200 ms after blink maximum (i.e., when the
eyes are fully closed) and has been proposed to be associated with
cognitive control and an indicator of task demand (Wascher et al.,
2014, 2022). The blink-related posterior P3 (measured at electrodes
Pz, POz, Oz) is a positive-going component that occurs around
250 ms after blink maximum, and is an indicator of cognitive
resource allocation (Wascher et al., 2014, 2022). This is similar to
the stimulus-evoked posterior P3, which has been shown to be a
reliable indicator of resource allocation during cognitive processing
and a valid index of cognitive load (Kok, 2001; Scharinger et al.,
2017). Specifically, increased cognitive load requires more resources
for cognitive processing, leading to an increased P3 amplitude.
Increasing levels of cognitive load (i.e., low to medium to high)

may thus lead to increases in blink-related P3 amplitude in the
parieto-occipital regions.

1.7. The present study

In a previous conference short paper, Cheng et al. (2022a)
assessed blink-related brain potentials across the three landmarks
conditions over the entire map-assisted navigation task, including map
reading. Because Cheng et al. (2022a) did not separate eye blink
events during the locomotion portion of the navigation task from
the map-viewing events during the navigation task, it is not yet clear
whether depicting different numbers of landmarks on mobile maps
led to changes in cognitive load during goal-directed navigation or
vice versa. Additionally, in the present study, we were interested in
separating the locomotion phase in the environment from the map-
viewing events to better disentangle the potential overlap between
map-onset brain potentials and blink-related brain potentials.

In the present study, similar to the prior conference contribution
with preliminary results by Cheng et al. (2022a), we investigated
blink-related brain potentials to assess how the number of landmarks
displayed individually at specific intersections on a mobile map
would affect navigators’ cognitive load during navigation. In this
study, however, we assessed blink-related potentials during the
locomotion portion of the navigation task separately from the map
viewing periods. We also analyzed blink-related frequency changes
to investigate cognitive load indicated by the frequency domain of the
EEG data to assess their convergence with bERPs. Finally, to increase
statistical power of the within-subject analysis, the present study used
linear-mixed effect models to examine the identified differences in
brain activity between the landmark conditions.

We utilized a within-participant design with three different
numbers of landmarks (3 vs. 5 vs. 7). We selected visually salient
buildings at intersections along a route as landmarks. Participants
were asked to navigate to predetermined destinations in three
different virtual environments with the assistance of a mobile
map that provided turn-by-turn directions. Participants were also
instructed to remember landmarks from a first-person view that
were either seen in the traversed virtual urban environment or
on the mobile map during navigation. After each navigation
trial in each city, participants’ spatial knowledge of the traversed
environment was assessed.

We hypothesized no difference in the occipital blink-related
N1 amplitude between the landmark conditions, as the neural
processes underlying bottom-up visual perception in the identical
environments were not expected to change. This is because the
assessed landmarks differed on only the mobile map displays and not
in the traversed environments. We also hypothesized that displaying
more landmarks on a mobile map would increase cognitive load
during navigation, as indicated by bERPs—a more pronounced N2
amplitude in the fronto-central region, and a more pronounced
P3 amplitude in the parieto-occipital region. Because little work
has investigated blink-related frequency changes with respect to
changes in cognitive load (Wascher et al., 2016, 2022), we also
explored potential differences in frontal theta power changes and
parietal alpha power changes across the three landmark conditions.
We hypothesized that fronto-central theta power would increase
and parieto-occipital alpha power would decrease with increasing
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numbers of displayed landmarks (Wascher et al., 2016, 2022) due to
increased cognitive load.

2. Materials and methods

2.1. Participants

Forty-nine participants (29 females) with ages ranging from 18
to 35 years (M = 25.6 years, SD = 4.09) took part in the study.
Exclusion criteria consisted of having a history of a neurological or
mental disorder. One participant was excluded due to self-reported
mental illness during the experiment and requested to have their
data excluded. All participants were compensated with 30 CHF
for their participation. All participants gave informed consent in
compliance with the ethical standards of the University of Zurich
Ethics Board, the Swiss Psychological Society, and the American
Psychological Association.

The analyzed data in the current study were collected from the
same participants as reported in Cheng et al. (2022a,b). For all three
studies, we excluded the data of one participant because of the
presence of severe artifacts in their EEG data.

2.2. Experimental design

We adopted a within-participant design with three conditions,
showing either three, five, or seven landmarks on the mobile
map while participants navigated a predefined navigation route
(Figure 1). The three conditions were counterbalanced across three
different virtual cities. In the 3-landmark condition, a building at
the start location, at the destination, and a building at the third
intersection were displayed on the mobile map (see Figure 1A). In
the 5-landmark condition, the two additional buildings at the first
and fourth intersection were visualized on the map respectively,
compared to the 3-landmark condition (see Figure 1B). In the 7-
landmark condition, the two additional buildings at the second
and fifth intersections were displayed on the map respectively,
compared to the 5-landmark condition (see Figure 1C). The

building positions for each landmark condition were selected
to ensure that the landmarks were evenly spaced along the
route.

2.3. Experimental task

The navigation portion of the experiment consisted of three
blocks and a 2-min break between these blocks. All participants
completed all three blocks one after the other. Each block consisted
of a map-assisted navigation task in a virtual urban city and
spatial learning tests immediately after navigation in each city.
During the navigation phase, participants were instructed to follow
the route indicated on the mobile map as quickly as possible
to a specific destination and to learn the landmarks at the
intersections along the route that were displayed on the map
(Figure 2). Participants were also told that some of the landmarks
at the intersections that were not visualized on the mobile map
would also be tested after navigation. After navigating through
each city, participants’ spatial knowledge was tested. To assess
participants’ different levels of spatial knowledge acquisition (i.e.,
landmark knowledge, route knowledge, and survey knowledge;
Siegel and White, 1975; Chrastil, 2013), we employed a landmark
recognition test, a route memory test, and a judgment of relative
direction (JRD) test at the end of each navigation task in each
city.

The landmark recognition test assessed participants’ ability to
discriminate between landmarks seen at intersections (including the
starting building and the destination) along the route compared to
novel buildings that were not seen along the route (Huang et al.,
2012; Stites et al., 2020; Wunderlich and Gramann, 2020, 2021; Kim
and Bock, 2021). Participants were asked whether they had seen the
shown landmarks along the route and responded with either “yes” or
“no” (Figure 3A).

The route direction test assessed participants’ direction memory
in reference to the assessed landmarks seen at intersections to
prevent participants from simply guessing (Huang et al., 2012;
Wunderlich and Gramann, 2020, 2021; Kim and Bock, 2021). Hence,
for landmarks that participants answered “yes” in the prior landmark
recognition test, they were subsequently asked to indicate the route

FIGURE 1

The three different landmark conditions in a virtual city. The left, middle, and right panels depict the map condition with three, five, and seven landmarks
displayed on the mobile map, respectively. The figure is adapted from Cheng et al. (2022b).
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FIGURE 2

(A) Red dots along the black navigation route indicate the 17 map pop-up spots during navigation in the three different landmark conditions; (B) a mobile
map that rotates along with the participant’s head direction, as seen by the participant at the location of the green dot in panel (A). The blue dot in panel
(B) indicates the participant’s current location in the virtual city. The black line indicates the path the participant needs to follow. Depending on the
landmark condition, three, five, or seven 3D landmarks are shown on the map at a turning intersection. The figure is adapted from Cheng et al. (2022b).

FIGURE 3

The three panels depict how participants responded to the spatial learning tests in the CAVE using a 3D pointing device after navigation: (A) The
landmark recognition test, (B) the route direction test, and (C) the JRD test, respectively. The figure is adapted from Cheng et al. (2022b).

FIGURE 4

(A) Bird’s eye view of one of the virtual cities; (B) participants’ view of the environment during navigation; and (C) a participant seated on a chair approx.
30 cm away from the center of the VR system (CAVE), placed her feet on a foot-operated controller, and was equipped with an EEG device during the
navigation experiment. The figure is adapted from Cheng et al. (2022b).
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direction they took at the intersection with the associated landmark.
Response options included the forced choice of either “left,” “right,”
“straight,” or “destination” (Figure 3B).

The JRD test assessed participants’ knowledge of the relative
spatial (e.g., angular) directions of three given landmark locations
(Zhang et al., 2014; Huffman and Ekstrom, 2018). Participants were
asked to imagine standing at a first landmark while facing a second
landmark and to point to a third landmark (Figure 3C).

Further details about the procedure, including a training trial in
the virtual environments, and the spatial learning tests, can be found
in Cheng et al. (2022b).

While participants were performing the navigation task, their
brain activity was measured using a 64-channel EEG device
with active electrodes (LiveAmp, Brain Products GmbH, Gilching,
Germany). EEG was recorded at a 500 Hz sampling rate with input
impedance set at below 10 kOhm.

2.4. Experimental stimuli and apparatus

Three virtual cities were designed in ArcGIS City Engine
2018.0 and displayed on a three-sided, stereo cave automatic virtual
environment (CAVE) using Unity 2018.4 LTS (Figures 4A, B).
Participants moved by using a foot-operated controller (Figure 4C)
through the virtual environment displayed in the CAVE. Tilting
the foot controller toward the front and back resulted in forward
and backward movement in the urban environment, respectively
(Figures 5A, B). When tilting the foot controller toward the left
and the right, participants could turn to the left and to the right,
respectively (Figures 5C, D).

Each city contained a predefined route to be followed. The
current part of the route was shown on a mobile map projected
on the center screen of the CAVE during navigation. This map
provided navigators’ current location and turn-by-turn instructions
by displaying the route as a black line and rotated along with
the navigators’ heading direction. The map appeared 17 times and
each instance lasted for 5 s; during this time the city faded away
and participants’ movement was disabled (Figure 2A). The map
appeared shortly before the participants arrived at the intersections,
after they passed the intersections, and in the middle of the straight
segments where they first saw the next intersection. This simulated
navigators’ mobile map use during wayfinding in the real world.
While landmarks were always visible in the virtual environment,
depending on the landmark condition, the chosen landmark at the
intersection was shown in 3D on the mobile map, as seen in the
environment (Figure 3B).

2.5. EEG data preprocessing

We used the BeMoBIL pipeline (Klug et al., 2022) to
preprocess the raw EEG data in the MATLAB toolbox EEGLAB
(Delorme and Makeig, 2004). This pipeline is designed to
automatically preprocess EEG data, optimized for later independent
component analysis (ICA, Makeig et al., 1995). It also supports the
improvement of the signal-to-noise ratio, which is especially critical
in EEG datasets that are collected while participants are moving.
We first removed the non-experimental segments from the raw
EEG datasets, before submitting the raw data into the BeMoBIL

pipeline. We first downsampled the raw EEG data to 250 Hz.
Then, we applied the ZapLine Plus function to remove spectral
peaks at 50 Hz, corresponding to the power line frequency (Klug
and Kloosterman, 2022). We identified noisy channels using the
automated rejection function clean_artifacts from EEGLAB with
ten iterations. We removed the bad channels that were detected
more than four times out of the ten iterations and interpolated them
using a spherical spline function. We then re-referenced the data
to the averaged reference across the whole set of electrodes. On
this cleaned dataset, we conducted ICA using an adaptive mixture
independent component analysis (AMICA) algorithm (Palmer et al.,
2011) with the recommended parameter values from Klug and
Gramann (2021). The AMICA decomposition uses a log-likelihood
removal of samples that are not corresponding to the algorithm’s
estimate of the model fit. We applied five iterations in AMICA
cleaning with three standard deviations as removal criterion. Besides
this AMICA-inherent time-domain cleaning, high-pass filtering with
a 2-Hz cutoff and automatic time-domain rejections were performed
before AMICA computation, to improve the ICA decomposition.
For each resultant independent component (IC), we computed
an equivalent current dipole (ECD) model using DIPFIT routines
from EEGLAB (Oostenveld and Oostendorp, 2002). This computed
information including rejections and dipole fitting resulting from
AMICA is copied back to the preprocessed but unfiltered EEG
dataset with the BeMoBIL pipeline, considering that final EEG
measures (e.g., ERPs) may require a lower cutoff-filtering on the EEG
data (Klug and Gramann, 2021; Klug et al., 2022).

We applied a 0.5–30 Hz pass filter to suppress slow drifts and
high-frequency activity in the EEG signal. We then removed the EEG
recordings during the map presentation events (always a 5 s time
window), that is, when participants were shown the mobile map, the
virtual urban environment faded away, and their movements through
the environment were disabled.

2.6. Eye blink detection

To detect and extract brain activity related to eye blinks, we
followed the protocol established by Wunderlich and Gramann
(2020). First, the component representing vertical eye movements
was identified and filtered using a moving median with a window
size of 20 sample points (80 ms). Then, blinks were identified in the
vertical eye movement component using Matlab’s findpeaks function
[min. peak width = 5 time points (20 ms); max. peak width = 65 time
points (260 ms); min. peak height = peak heights ≥ 96 percentile;
min. peak prominence = peak prominence≥ 97 percentile; min. peak
distance = 25 time points (100 ms)]. Event markers were placed at
time points of maximum blink deflections. We then used the ICLabel
algorithm (Pion-Tonachini et al., 2019) with the default classifier to
classify the resultant ICs in classes representing, e.g., eye, brain, or
other components. Based on this classification, we removed ICs from
the data that were classified as unlikely to represent brain activity
(i.e., probability below 30%), following the approach suggested by
Wunderlich and Gramann (2020) for Mobile Brain/Body Imaging
(MoBI) EEG data, as ICLabel was mainly trained on stationary
datasets with only few mobile EEG or MOBI datasets for training
the IC classifiers. As such, movement-related activity stemming from
the neck musculature and other such sources are usually not well
classified. Moreover, increasing the number of movement-related
brain and non-brain sources, while having only a limited number

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1024583
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1024583 February 8, 2023 Time: 15:1 # 8

Cheng et al. 10.3389/fnins.2023.1024583

FIGURE 5

The participant is titling the foot controller with their feet to (A) move forward and (B) backward through the virtual environment, respectively. The
participant is titling the foot controller with their feet to (C) the left and (D) to the right to turn their heading direction in the urban virtual environment
toward the left and right, respectively.

of channels and thus only limited degrees of freedom for the
decomposition, can increase the likelihood of brain sources being
mixed with other sources. This in turn can result in non-standard
IC topographies and spectra. We therefore chose a conservative
threshold of 30% to avoid excluding any potentially useful brain
sources.

2.7. bERP extraction

To extract bERPs, we used the Unfold toolbox (Ehinger and
Dimigen, 2019) on blink events during the navigation phase only
(i.e., not during map reading). The unfolding technique allows for a
regression-based separation of overlaying event-based brain activity.
As blink rate is high in this naturalistic navigation setting in the open-
world virtual environments (Enders et al., 2021), this toolbox would
be useful for separating overlapping blink-related brain activity (i.e.,
two blinks happening very close to each other) in our study.

We first created a design matrix with blink events and 65
channels. Information on the different landmark conditions (3,
5, and 7 landmarks) was entered into the regression formula
y = 1+ cat(landmark). We also applied continuous artifact detection
and rejection with an amplitude threshold set at ± 80 microVolts
(µVs) during unfolding, to reject the segments with noisy artifacts
from our continuous EEG datasets. The design matrix was then time-
expanded according to the time limits of -500 to 2000 ms with respect
to blink events. A general linear model was then fitted to solve for the
intercept and beta values with a baseline correction at -500 to -200 ms
preceding the blink event (Wascher et al., 2014; Wunderlich and
Gramann, 2020).

We then recovered the modeled bERPs from the unfolded
intercept and beta values using matrix multiplication (Ehinger and

Dimigen, 2019) for the electrodes of interest (Fz, FCz, Pz, POz, and
Oz; Wascher et al., 2014, 2016) for statistical analysis using individual
peak detection. Based on visual inspection of the grand averaged
bERP plots (Figure 6: left panel), we selected the following time
windows for individual peak detection with the neighboring+3 and -
3 sample points around the detected peaks (i.e., seven data samples in
total; Takeda et al., 2014; Wunderlich and Gramann, 2020; Sugimoto
F. et al., 2022): the N1 amplitude was extracted 110–150 ms after blink
maximum and averaged across occipital (Oz). The N2 amplitude
was extracted 250–390 ms after blink maximum and averaged across
fronto-central leads (Fz and FCz). The P3 was extracted 250–340 ms
after blink maximum and averaged across parieto-occipital leads (Pz,
POz, and Oz).

2.8. Frequency-domain processing

We additionally conducted frequency-domain analyses for
exploratory purposes. After removing independent components
unlikely to represent brain activity following blink detection, we
also extracted segments of -500 to 2000 ms with respect to blink
events. We replicated the approach by Cheng et al. (2022b) to
calculate fronto-central (FC1, FCz, FC2) theta (4–7.9 Hz) ERS and
parieto-occipital (PO3, POz, and PO4) alpha (8–12.9 Hz) ERD during
navigation. To obtain baseline power, we calculated power indices
during the time before the navigation experiment started, that is,
when participants were sitting on a chair and viewing a dark blue
screen of the front CAVE wall in front of them. The baseline started
when participants put on the 3D stereo glasses and ended when
the urban environment was fully loaded and visible on all walls of
the CAVE. The baseline phase varied from 6 to 20 s, including a
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FIGURE 6

Left panel: Grand averaged amplitudes of blink-related ERPs for each experimental landmark condition at the (A) occipital lead (Oz), (B) fronto-central
leads (Fz and FCz), and (C) parieto-occipital leads (Pz, POz, and Oz). The blink-related ERP signals served as the basis for individual peak
detection—vertical bars shaded in gray indicate the time windows in which the respective minima or maxima of the bERPs were identified. Right panel:
Violin plots depicting the distribution of detected peak amplitudes together with mean and ±1.96 standard error (i.e., 95% CI) in each landmark condition
for occipital N1, fronto-central N2, and parieto-occipital P3. Line and mean plotted in purple in the bottom panel indicate statistical significance at
p < 0.05.

period when participants felt ready to start the navigation portion of
the experiment. We extracted the baseline epochs with a length of
1 s from this pre-navigation experiment phase. Baseline epochs had
200 ms overlap with subsequent epochs. We obtained ERS (positive
values) and ERD (negative values) by using the following formula
(Pfurtscheller and da Silva, 1999):

ERS or ERD = (relative power during navigation− relative

power during baseline)/relative power during

baseline.

2.9. Statistical analyses: Multilevel linear
regression

To assess the effect of the landmark conditions (3 vs. 5 vs.
7 landmarks) on cognitive load during navigation, we entered
the peak amplitudes of N1, N2, and P3 in R version 4.0 (Bates
et al., 2011) and ran for each bERP a linear regression model,
with the α level set at 0.05 for all analyses. Multilevel modeling
is a generalization of regression analysis and is able to separately
estimate the effects of an individual predictor and its group-level
mean (Gelman, 2006) while ignoring missing values in predictors
(Fitzmaurice and Molenberghs, 2008). This allows us to perform
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a within-participant analysis and include two participants with
incomplete data in the analysis.

We adopted the mixed-effects regression as a hypothesis-driven
confirmatory approach and modeled the effect of the number of
landmarks on cognitive load indicated by EEG measures (i.e., bERPs:
peak amplitudes of N1, N2, and P3; frequency band power: theta
ERS and alpha ERD) separately. We built and performed the
multilevel models using the lmer4 package in R version 4.0 (Bates
et al., 2011). Following the recommendations by Barr et al. (2013)
on multilevel models for confirmatory hypothesis testing, we first
identified the maximal random effects structure by including by-
participant intercepts and slopes in the random structure, based on
our within-participant experimental design. Next, we simplified the
maximal random-effects model by first excluding random slopes and
then random intercepts until the model converged. The first model
that converged included by-participant intercepts in the random-
effects structure. The following equation described our multilevel
model:

P3 amplitudepi = β0 + β∗1 Conditioni + P0p + epi

where P3 amplitudepi, for participant p and item i, is related to
a reference level via fixed-effect β0 (the intercept), a landmark
condition effect via fixed-effect β1 (the slope), the deviation from β0
for participant p, and the observation-level error epi. In this model,
parameters β0 and β1 represent fixed effects, and the parameter P0p
represents random effects.

3. Results

3.1. Behavioral results

Number of blinks
We normalized the number of blinks by condition for each

participant by dividing the number of blinks for that condition by the
mean number of blinks made by that participant across conditions,
to reduce inter-subject variability. The normalized number of blinks
is lowest in the 5-landmark condition [5 vs. 3: beta = -0.10, 95% CI
(-0.19, -0.01), p = 0.023; 5 vs. 7: beta = -0.12, 95% CI (-0.21, -0.03),
p = 0.008]. There is no significant difference in the number of blinks
between the 3- and 7-landmark conditions [7 vs. 3: beta = 0.02, 95%
CI (-0.07, 0.10), p = 0.69]. No significant difference between the three
landmark conditions on the absolute number of blinks is observed
(ps > 0.124). Table 1 presents the means and standard errors of the
normalized and absolute number of blinks in the three landmark
conditions.

Navigation time
Participants navigated from the starting position to the

destination in the three cities on average for 8.11 min (SD = 1.63 min).
No significant difference in navigation time is observed between the
three landmark conditions (ps > 0.507).

3.2. bERP results

No significant difference is found in N1 amplitude in the
occipital region between the three landmark conditions (ps > 0.256).

No significant difference is observed in the N2 amplitude
in the fronto-central region between the landmark conditions
(ps > 0.395).

The linear mixed-effect models reveal that P3 amplitude in the
parieto-occipital region in the 7-landmark condition is significantly
greater than in the 3- and 5-landmark conditions. P3 amplitude
increases by 40% on average from the 3-landmark to 7-landmark
condition [7 vs. 3: β = 0.40, 95% CI (0.01, 0.79), p = 0.046] and
by 41% on average from the 5-landmark to 7-landmark condition
[7 vs. 5: β = 0.41, 95% CI (0.02, 0.80), p = 0.040]. Contrary to
our hypothesis, there is no significant difference between the 3- and
5-landmark conditions [5 vs. 3: β = -0.01, 95% CI (-0.40, 0.38),
p = 0.959].

Figure 6 depicts the mean bERP amplitudes and the detected
peak amplitude for each landmark condition.Table 2 provides a more
comprehensive overview of the multilevel model coefficients. Table 3
provides a comprehensive overview of the means and standard errors
of the bERPs and the detected peak amplitude for each landmark
condition.

3.3. Exploratory analyses

Theta ERS/Alpha ERD
No difference in frontal theta ERS and parietal alpha ERD is

observed between the landmark conditions (ps > 0.144).

Correlation analysis
We additionally performed an exploratory correlation analysis

(Pearsons’ correlations coefficients, two-tailed) between the P3
amplitude and spatial learning performance (i.e., landmark
recognition, route direction memory, and JRD response errors)
and found no significant correlations between the P3 amplitude and
spatial learning performance (ps > 0.2).

4. Discussion

The present study examined cognitive load measured by EEG
during map-assisted navigation in virtual environments while
depicting either 3, 5, or 7 landmarks out of 7 chosen landmarks
from the environment on the mobile maps. Changes in cognitive load
during navigation were assessed with blink-related brain potentials
in the fronto-central and parieto-occipital regions. We found that
P3 amplitude was significantly higher in the 7-landmark condition
compared to the 3- and 5-landmark conditions.

TABLE 1 Means and standard errors of the normalized and absolute
number of blinks for each landmark condition.

Number of blinks LM condition Mean Std. error

Normalized 3 1.03 0.032

5 0.93 0.028

7 1.05 0.033

Absolute 3 106.0 13.0

5 97.8 10.8

7 111.0 10.0
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TABLE 2 Regression coefficients of peak amplitudes of the N1 at the occipital lead (Oz), N2 at fronto-central leads (Fz and FCz), and P3 at parieto-occipital
leads (Pz, POz, and Oz) across pairwise contrasts of the landmark conditions.

ROIs Peak type Time window (ms) LM condition contrast β 95% CI p

Occipital N1 110–150 5 vs. 3 −0.16 –0.82–0.51 0.649

7 vs. 5 −0.23 –0.90–0.43 0.494

7 vs. 3 −0.39 –1.06–0.28 0.256

Fronto-central N2 250–390 5 vs. 3 0.01 -0.35–0.37 0.969

7 vs. 5 0.15 –0.21–0.51 0.415

7 vs. 3 0.16 –0.20–0.52 0.395

Parieto-occipital P3 250–340 5 vs. 3 −0.01 –0.40–0.38 0.959

7 vs. 5 0.41 0.02–0.80 0.040

7 vs. 3 0.40 0.01–0.79 0.046

P-values in bold indicate significant differences at p < 0.05.

4.1. bERP characteristics during navigation

Our blink-related potential at fronto-central leads presented a
positive component (P1) and a subsequent negative component
(N2). The blink-related ERP at parieto-occipital leads presented
first a negative component (N1), followed by a positive peak (P2)
and a negative component (N2), and finally a P3-like component.
Lastly, the blink-related potential at the occipital lead presented
a clear N1 component followed by a P3-like component. The P2
component at the occipital lead was not clearly presented. The
general characteristics of our blink-related N1, N2, and P3 generally
are in line with stimulus-evoked N1, N2, and P3 in previous ERP
research (Luck, 2012), as well as those reported in previous studies
that examined bERPs (Wascher et al., 2014, 2022; Wunderlich and
Gramann, 2020). This suggests that using blinks to parse brain
activity might be a valid method to assess cognitive load in an
ecological setting.

4.2. bERPs—Cognitive processing

N1—Bottom up visual processing
The lack of significant difference in occipital N1 amplitude

between the landmark conditions suggests that visualizing different
numbers of landmarks on the mobile map does not influence
navigators’ bottom-up visual perception when they move through
the virtual environments. The variances of the detected peaks in
the N1 component are larger compared to those in the N2 and P3
components. This is also in line with the relatively larger variance of
the occipital N1 component in previous studies (Wascher et al., 2014,
2022).

N2 and P3—Cognitive load
We did not observe any difference between the experimental

conditions on the blink-related fronto-central N2 amplitude, which
is associated with top-down processing (Wascher et al., 2014,
2022). This might be because the fronto-central N2 component
is sensitive enough to distinguish cognitive load and no load
conditions (Wascher et al., 2014, 2022) but not sensitive enough
to distinguish between different levels of cognitive load. Another
interpretation might be because the stimulus-evoked N2 is usually
associated with cognitive control and mismatch (for a review,

Folstein and Van Petten, 2008), which might not be relevant to our
current experimental design. Future research should further examine
the relationship between blink-related N2 and cognitive load.

Previous literature on stimulus-evoked ERPs has established a
positive relationship between parieto-occipital P3 amplitude and
cognitive effort exertion (for a review: Kok, 2001). Similarly,
the blink-related posterior P3 component is proposed to reflect
attentional resource management in a recent study by Wascher
et al. (2022), whereby a decreased blink-related P3 amplitude
indicates fewer attentional resources being used on the task. Our
finding indicates that more attentional resources are expended
when navigating through the environment in the 7-landmark
condition, compared to the 3- and 5-landmark conditions. However,
participants’ spatial learning performance does not further improve
from seeing seven landmarks on the mobile map. These findings
together suggest that participants’ attentional resources might not be
effectively directed to relevant stimuli in the environment in the 7-
landmark condition, because the 7 landmarks depicted on mobile
maps lead to cognitive overload during map reading. To examine
this interpretation, future work should employ an eye-tracker to
analyze navigators’ fixations on relevant or irrelevant stimuli in the
environment (see section “Limitations and future work” for a more
detailed discussion).

TABLE 3 Means and standard errors of peak amplitudes of the N1 at the
occipital lead (Oz), N2 at fronto-central leads (Fz and FCz), and P3 at
parieto-occipital leads (Pz, POz, and Oz) for each landmark condition.

ROIs Peak
type

Time
window

(ms)

LM
condition

Mean Std.
error

Occipital N1 110–150 3 −3.57 0.56

5 −3.56 0.48

7 −3.80 0.50

Fronto-central N2 250–390 3 −1.82 0.18

5 −1.78 0.23

7 −1.64 0.16

Parieto-occipital P3 250–340 3 2.61 0.26

5 2.60 0.25

7 3.00 0.28
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Moreover, the current finding related to P3 amplitude is also
consistent with the finding of a related paper (Cheng et al., 2022b),
which analyzed cognitive load while participants viewed the mobile
map (i.e., not while they were moving through the environment).
Parieto-occipital P3 amplitude during map viewing was also more
pronounced in the 7-landmark condition compared to the 3- and
5-landmark conditions (Cheng et al., 2022b). Taken together, the
results suggest that cognitive load during map reading might have
spilled over into navigation or vice versa, as evidenced by greater
P3 amplitude during both navigation and map reading when seven
landmarks are visualized on the mobile map. This is consistent
with previous studies showing that cognitive load in one task can
affect cognitive load in another task (Bednar et al., 2012; Felisberti
and Fernandes, 2022). This pattern of increased P3 amplitude in
the 7-landmark condition is also consistent with blink-related P3
amplitude during the entire wayfinding phase, which comprised both
navigation and map-consultation (Cheng et al., 2022b). Based on
our findings, it seems that displaying five landmarks one by one
along a route provides the best design for mobile maps. In doing
so, it improves spatial learning without taxing additional cognitive
resources during map reading and goal-directed locomotion through
the virtual environment.

4.3. Blink behavior

In our study, we found the lowest numbers of blinks in the 5-
landmark condition, compared to the 3- and 7-landmark conditions.
Previous literature suggests that blink bursts are associated with
high cognitive load (Siegle et al., 2008), and possibly reflect more
cognitive resources being used in stimulus-related cognition (Ohira
et al., 1998). Valtchanov and Ellard (2015) also found that when
participants were viewing environmental scenes, fewer blinks were
associated with lower cognitive load. Our findings on the normalized
number of blinks suggest that participants might have the lowest
cognitive load while navigating in the environment when five
landmarks are depicted on the map. However, this pattern is
different from the pattern shown in parieto-occipital P3 amplitude,
as discussed in the above section. To further investigate and interpret
the relationship between blink behavior, such as the number of blinks,
and cognitive load, future studies should also include other blink-
related measures collected with eye tracking and/or pupillometer, to
detect blinks more accurately and assess other blink-based measures
(e.g., blink duration, blink intervals) more deeply.

4.4. Contributions to navigation system
development

The contributions of our current research to the field of
navigation system development are twofold. First, our current study
makes a methodological contribution to the field of human-computer
interaction (HCI), part of which investigates users’ interactions with
navigation systems (e.g., Savino et al., 2020, 2021). In this field,
user behavior and eye-tracking systems are commonly employed to
examine how users interact with navigation devices (Göbel et al.,
2019). Neuroscientific methods can be used to complement existing
methods used in HCI to obtain an in-depth insight into cognitive
states and cognitive processing during navigation. Furthermore, the
method of using blinks to parse brain activity makes it possible to

directly assess users’ cognitive states without interfering with their
primary task (i.e., navigation). Our current study thus provides
evidence in the HCI field that blink-related brain activity can be a
useful method to investigate users’ cognitive states when they are
interacting with mobile applications.

Second, our current research also extends the literature on
assisted navigation by showing that depicting different numbers
of landmarks on mobile maps influences users’ spatial learning,
cognitive load during device use, and during navigation. In recent
years, there is increasing attention on employing neurocognitive
methods to investigate map-assisted navigation (Cheng et al.,
2022b; Liu et al., 2022), although research thus far remains sparse.
Among these very few studies, users’ cognitive states were assessed
only during map reading and not while navigating through an
environment. Our current study suggests a cognitive load spillover
effect—cognitive states during map use during navigation outside
of map reading might influence each other. Examining both phases
helps us to better understand the factors that contribute to cognitive
load during map-assisted navigation as a whole and their impact on
spatial learning. Our results indicate that mobile map designers and
navigation system developers should consider how the processing
of presented map information could influence users’ cognitive load
during navigation and in turn affect spatial learning in the designs of
their mobile navigation applications.

4.5. Limitations and future work

The current study provides first evidence of a relationship
between the number of landmarks shown on a mobile map and
blink-related cognitive load during mobile map-assisted navigation.
A worthwhile follow-up question that arises from our findings is
whether this relationship is monotonic or discrete. At this stage
of the research, we do not know yet whether navigators’ cognitive
load increases further when the mobile map displays six landmarks
and then plateaus at the seventh landmark, or whether cognitive
load continuously increases with more than five shown landmarks.
Future studies could follow our paradigm and investigate mobile
map displays with six or more than seven landmarks to answer
this research question. This will allow a more comprehensive
understanding of the relationship between the number of landmarks
visualized on a mobile map and cognitive load of navigators and
enable the development of a neuroadaptive mobile map that gradually
adapts the number of landmarks based on navigators’ cognitive load.

Furthermore, our findings in the current study provide a
starting point to examine cognitive load changes during map-
aided navigation in virtual environments by analyzing blink-related
brain potentials. More future work on map-assisted navigation in
the real world with higher ecological validity is needed to apply
our findings to the real world. Indeed, although previous studies
(Armougum et al., 2019; Kalantari et al., 2021) found that cognitive
load level measured by electrodermal activity and self-reported
questionnaires during navigation in virtual reality is fairly similar
to cognitive load level in the real world, body-based cues (e.g.,
vestibular and proprioceptive information) in real-world navigation
could influence wayfinding and spatial learning (Gramann et al.,
2021). In addition, environmental factors (e.g., wind) may influence
blink rate. Therefore, future research should consider such factors
when designing real-world navigation studies with mobile EEG.

Future research should also combine eye-tracking and EEG to
further examine the reliability and validity of blink-related potentials
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as an assessment of cognitive load during navigation. Eye-trackers
provide more information on users’ ocular activity, such as whether
they fixate on stimuli in the environment or the navigation device
(Kapaj et al., 2021). Such information can help researchers to
categorize blinks according to the focal stimuli and contribute to the
interpretation of the results of blink-based brain activity.

5. Conclusion

The present empirical research on blink-related brain potentials
reveals that visualizing landmarks on mobile maps influences
navigators’ cognitive load during navigation in virtual environments.
Our findings synthesize the fields of cognitive neuroscience,
navigation information system design, and brain-computer interface.
Combined with findings of map-related cognitive load and spatial
learning, our findings suggest that a mobile map with a medium
number of landmarks (i.e., five landmarks) seems to be optimal to
support spatial learning without overtaxing navigators’ attentional
resources during navigation and map reading. Our findings also
suggest a cognitive load spillover effect during map-assisted
navigation and wayfinding whereby cognitive load during map
viewing might have affected cognitive load during navigation in
the environment or vice versa. By examining the effect of different
numbers of landmarks visualized on mobile maps on blink-related
brain activity, the current study demonstrates that blink-related
potential analysis is a valid method to assess cognitive load
during navigation.
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