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Abstract: As has been pointed out recently, a possible solution strategy to the wear–fatigue dilemma
in fretting, operating on the level of contact mechanics and profile geometries, can be the introduction
of “soft” sharp edges to the contact profiles, for example, by truncating an originally smooth profile.
In that regard, analysis of possible mechanical failure of a structure, due to the contact interaction,
requires the knowledge of the full subsurface stress state resulting from the contact loading. In
the present manuscript, a closed-form exact solution for the subsurface stress state is given for the
frictional contact of elastically similar truncated cylinders or wedges, within the framework of the
half-plane approximation and a local-global Amontons–Coulomb friction law. Moreover, a fast and
robust semi-analytical method, based on the appropriate superposition of solutions for parabolic
contact, is proposed for the determination of the subsurface stress fields in frictional plane contacts
with more complex profile geometries, and compared with the exact solution. Based on the analytical
solution, periodic tangential loading of a truncated cylinder is considered in detail, and important
scalar characteristics of the stress state, like the von-Mises equivalent stress, maximum shear stress,
and the largest principal stress, are determined. Positive (i.e., tensile) principal stresses only exist in
the vicinity of the contact edge, away from the pressure singularity at the edge of the profile, and
away from the maxima of the von-Mises equivalent stress, or the maximum shear stress. Therefore,
the fretting contact should not be prone to fatigue crack initiation.

Keywords: plane contacts; subsurface stresses; truncated indentors; Muskhelishvili potential;
Ciavarella–Jäger principle; flat punch superposition

1. Introduction

The components of engineering structures, which are subject to the highest stresses and
which are therefore most prone to mechanical failure (in terms of yield or cracking), often
are the mechanical contacts between different parts of the structure. While the solution of a
given contact mechanical problem—may it be in a closed analytical form [1] or based on the
Boundary Element Method (BEM) [2]—is in many cases only concerned with the stresses
in the contact interface, an analysis of possible mechanical failure requires the knowledge
about the stress state due to the contact loading in the whole subsurface material.

For elastic bodies obeying the restrictions of the half-space approximation, the subsur-
face stress state can, in theory, be determined from the contact tractions via superposition of
the respective fundamental solutions for point loading by Boussinesq [3] and Cerruti [4] or
via methods of potential theory [5]. However, for general contact problems, both procedures
are mathematically and numerically quite cumbersome, and plane contact problems allow
for a straight-forward determination of subsurface stresses based on the complex stress
potential by Muskhelishvili [6]. Several comprehensive analytical solutions for elastically
decoupled single plane contacts have been derived with this method, most notably for the
contact with a rounded flat punch, which has been analyzed in a series of publications by
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various authors [7–9] due to its importance in the context of fretting fatigue [10] (“fretting”
is the damaging of contact interfaces by small-amplitude oscillations).

In fretting, there are often two competing damage phenomena, depending on the
fretting regime [11], fatigue, and wear: in the partial slip regime, the nucleation and
propagation of fatigue cracks in the vicinity of the contact is the dominating damage
mechanism, while, in the sliding regime, the dominant phenomenon seems to be wear [11].
This leads to the dilemma that inhibiting one of the two phenomena often facilitates the
other one. For example, it is long-known that fretting wear can be hindered by introducing
sharp edges in the contact profiles to suppress local slipping of the contacting surfaces.
However, if the sharp edge constitutes the contact boundary, the resulting oscillating stress
singularity will result in fatigue. A possible solution strategy for this dilemma on the level
of the profile geometry was recently suggested by the author [12]: If the sharp edge is “soft”
enough, so that contact is still established behind the edge—e.g., by truncating an originally
smooth profile, like a cylinder—it can be possible to avoid (positive) tensile stresses in the
vicinity of the weak stress singularity at the sharp edge, and thus avoid the formation of
fatigue cracks.

On the other hand, although the truncated cylinder and truncated wedge are standard
profile geometries in plane contact mechanics, exact closed-form solutions for the corre-
sponding subsurface stress fields are still missing in the literature. Hence, these shall be
provided in the present manuscript, and applied to a very simple fretting contact problem.
Moreover, a numerically extremely fast and very robust semi-analytical method is proposed
for the determination of the subsurface stress fields in plane contacts with more complex
profile geometries, which defy an exact, closed-form solution, and compared with the
analytical solution for the truncated geometries of interest.

The remaining parts of the manuscript are structured as follows: first, the research
problem of interest will be stated rigorously. After that, the complex Muskhelishvili
potential (which provides the subsurface stresses via elementary linear filtering of its real
and imaginary parts) will be calculated in closed form for normal loading—based on the
appropriate superposition of flat punch solutions, as first suggested by Jäger [13]—and
for tangential loading—based on the reduction of the tangential contact problem to the
respective normal contact via the principle of Jäger [14] and Ciavarella [15]. In the last
section of the methodological part of the manuscript, an alternative procedure for the
determination of the subsurface stress field via the direct superposition of stress fields for
the flat punch and parabolic contact, thus avoiding the statement of any complex potentials,
is laid out and proven numerically to give exactly the same results as the potential solution.
After that, as a numerical example, periodic tangential loading of a truncated cylinder is
considered in detail and some conclusive remarks finish the manuscript.

2. Problem Formulation

Let us examine the single contact of two infinite-length truncated bodies made of
linearly elastic, isotropic, and homogeneous materials, with Young’s moduli E1, E2 and Pois-
son’s ratios ν1, ν2, under plane strain conditions. The normal axis to the contact plane shall
be y, the tangential axis x, and the lateral axis z, i.e., for the strains εij, εxz = εyz = εzz ≡ 0.
As always, the plane stress solution can be retrieved from the plane strain solution via
the substitutions

E = Ê
1 + 2ν̂

(1 + ν̂)2 , ν =
ν̂

1 + ν̂
, (1)

where the hat denotes the respective material constants for the plane stress problem.
The contacting bodies shall obey the restrictions of the half-plane approximation, i.e.,

their surface gradients in the vicinity of the contact and the characteristic contact width
compared to the macroscopic dimensions of the bodies are supposed to be small. The
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bodies’ materials are assumed to be elastically similar, so that the normal and tangential
contact problems are elastically decoupled, i.e., Dundur’s second constant [16],

β = E∗
[
(1− 2ν1)(1 + ν1)

2E1
− (1− 2ν2)(1 + ν2)

2E2

]
, (2)

with the effective Young’s modulus

E∗ =

(
1− ν2

1
E1

+
1− ν2

2
E2

)−1

, (3)

shall be zero. In the contact, there shall be friction according to a local Amontons–Coulomb
law with a constant coefficient of friction µ. Effects of adhesion or surface tension are
neglected. The contact is subject to a normal line load P and an in-plane tangential line
load Q. The form of the gap between the two contacting surfaces y1, y2 in the moment of
first contact constitutes the profile function f ,

f (x) = y2(x)− y1(x). (4)

Within the framework of these assumptions, the contact is equivalent to the one
between a rigid indentor with the profile f (x) and an elastic half-plane with the effective
Young’s modulus E∗. As profile functions, let us consider the truncated shallow wedge,

fTW(x) = α(|x| − b)H(|x| − b), (5)

with the small inclination angle α, the half-width of the flat end face b, and Heaviside’s step
function H(·), as well as the truncated cylinder,

fTC(x) =
x2 − b2

2R
H(|x| − b), (6)

with the radius R of the cylinder. Note that the profile function for the truncated cylinder
can be written as a superposition of the function for a flat punch with rounded corners,

fRP(x) =
(|x| − b)2

2R
H(|x| − b), (7)

where R denotes the radius of curvature for the rounded corners, with an appropriate
truncated wedge profile,

fTC(x) = fRP(x) + fTW(x; α =
b
R
). (8)

A sketch of the considered contact problems is shown in Figure 1.
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Figure 1. Tangential contact with an elastic half-plane for a rigid truncated shallow wedge (left) and a
rigid truncated cylinder (right); a is the half-width of the contact, c is the half-width of the stick zone.
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We aim to determine explicit analytic expressions for the subsurface stress field σij
under normal and tangential loading.

3. Normal Contact Loading

In this section, the stress fields arising from the pure normal loading P are derived—
first, the contact solution—including the stress potential function—and, after that, the
resulting stress fields are given.

3.1. Normal Contact Solution

Within the framework of the assumptions stated above, the general solution for the
normal line load P as a function of the contact half-width a is given by [5]

P(a) = E∗
∫ a

0

ξ f ′(ξ)√
a2 − ξ2

dξ, (9)

where the prime denotes the derivative with respect to the given function argument. Hence,
for the truncated shallow wedge [17],

PTW(a) = E∗α
√

a2 − b2 H(a− b), (10)

and the truncated cylinder,

PTC(a) =
E∗

2R

[
a2 arccos

(
b
a

)
+ b
√

a2 − b2
]

H(a− b). (11)

The standard procedure to determine the subsurface stress field in plane contact
problems is via Muskhelishvili’s complex potential φ, which for pure normal loading
reads [6]

φP(w) = − 1
2πi

∫ ∞

−∞

p(ξ)
ξ − w

dξ , w = x + iy , i =
√
−1, (12)

with the contact pressure distribution p(x) = −σyy(x, y = 0). If the pressure distribution is
known, the potential can be determined by brute-force evaluation of that complex-valued
singular integral, or by an appropriate Chebyshev expansion of the pressure distribu-
tion [18]. A yet more elegant way to calculate the potential stems from Jäger [13]: As the
normal contact can be thought of as the result of a series of incremental indentations by
rigid flat punches with increasing half-widths ã and infinitesimal line loads dP(ã), due to
the linearity of all governing equations, the final potential will be given by an appropriate
superposition of the potential for a rigid flat punch with half-width a [6],

φP,FP(w; P) = − P
2π
√

a2 − w2
, (13)

i.e.,

φP(w; a) = − 1
2π

∫ a

0

P′(ã)√
ã2 − w2

dã. (14)

Hence, with some algebra, we obtain for the truncated shallow wedge,

φP,TW(w; a) = −E∗α
2π

∫ a

b

ãdã√
ã2 − b2

√
ã2 − w2

= − iE∗α
2π

arcsin

( √
a2 − b2
√

w2 − b2

)
, (15)

which for b = 0, of course, simplifies to the known result for the perfect shallow wedge [19].
To determine the potential for the truncated cylinder, we facilitate the profile superpo-

sition in Equation (8), and the fact that the potential for the rounded punch is known to
be [9]
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φP,RP(w; a) = − E∗

2πR

[√
a2 − w2 arccos

(
b
a

)
+ iw arcsin

(
w
a

√
a2 − b2
√

w2 − b2

)
− ib arcsin

( √
a2 − b2
√

w2 − b2

)]
. (16)

Hence, for the truncated cylinder,

φP,TC(w; a) = − E∗

2πR

[√
a2 − w2 arccos

(
b
a

)
+ iw arcsin

(
w
a

√
a2 − b2
√

w2 − b2

)]
, (17)

which, for b = 0, of course, simplifies to the known result for the plane Hertzian contact
problem [6],

φP,H(w; a) = − E∗

4R

(√
a2 − w2 + iw

)
. (18)

Note that the given potentials are strictly correct only for x ≥ 0. The stress fields for x < 0
can, however, be determined easily from symmetry considerations (see below).

3.2. Stress Fields from Normal Loading

Once Muskhelishvili’s potential has been determined, the stress fields resulting
only from the normal loading , σij,P, can be written immediately based on the standard
relations [6]

σxx,P(x, y; a) = 2 Re φP(w; a)− 2y Im φ′P(w; a),

σyy,P(x, y; a) = 2 Re φP(w; a) + 2y Im φ′P(w; a), (19)

σxy,P(x, y; a) = −2y Re φ′P(w; a),

where Re and Im denote the real and imaginary parts of a complex-valued quantity. More-
over, as for all plane strain elasticity problems,

σzz = ν
(
σxx + σyy

)
. (20)

As was mentioned, the given potentials are only valid for non-negative values of x.
However, the stresses for x < 0 can be easily calculated from simple considerations of
symmetry. For symmetric normal loading (as is the case because the profiles are symmetric,
and no tilting moment is applied), it is clear that normal stresses are symmetric, and shear
stresses anti-symmetric in x. Hence,

σxx,P(−x, y) = σxx,P(x, y),

σyy,P(−x, y) = σyy,P(x, y), (21)

σxy,P(−x, y) = −σxy,P(x, y).

4. Tangential Contact Loading

In this section, the stress fields arising only from the tangential loading Q are derived
for the simplest loading history of a constant normal load and a subsequently applied
increasing tangential load. Without loss of generality, we will assume that Q > 0. Again,
first the contact solution is detailed, and after that, the resulting stress fields are given. As
the tangential contact problem under the given assumptions can be reduced easily to the
pure normal contact problem, no complicated calculations are necessary.

4.1. Tangential Contact Solution

Under tangential loading and within the framework of the assumptions stated in the
second section, the contact area will generally consist of an inner area of stick, |x| ≤ c, and
an outer region of local slip, c < |x| ≤ a. For the simplest loading history described above,
the contact solution immediately follows from the principle of Jäger [14] and Ciavarella [15].



Appl. Mech. 2022, 3 1342

The relation between the half-width c of the stick zone and the tangential line load Q is
given by

Q(a, c) = µ[P(a)− P(c)] (22)

and the shear tractions q(x) = −σxy(x, y = 0) are

q(x; a, c) = µ[p(x; a)− p(x; c)]. (23)

In the latter two equations, on the right-hand side, the parameter c corresponds to a
fictional normal contact problem with the contact half-width c.

Accordingly, Muskhelishvili’s potential for the tangential loading [6],

φQ(w) =
1

2π

∫ ∞

−∞

q(ξ)
ξ − w

dξ, (24)

can be reduced to the respective potential for the normal loading,

φQ(w; a, c) = −iµ[φP(w; a)− φP(w; c)]. (25)

4.2. Stress Fields from Tangential Loading

Again, once Muskhelishvili’s potential has been determined, the stress fields resulting
only from the tangential loading, σij,Q, can be written immediately based on the standard
relations [6]

σxx,Q(x, y; a, c) = 4 Re φQ(w; a, c)− 2y Im φ′Q(w; a, c)

= 2µ
[
2 Im φP(w; a)− 2 Im φP(w; c) + y

{
Re φ′P(w; a)− Re φ′P(w; c)

}]
,

σyy,Q(x, y; a, c) = 2y Im φ′Q(w; a, c) (26)

= −2µy
{

Re φ′P(w; a)− Re φ′P(w; c)
}

,

σxy,Q(x, y; a, c) = −2 Im φQ(w; a, c)− 2y Re φ′Q(w; a, c)

= 2µ
[
Re φP(w; a)− Re φP(w; c)− y

{
Im φ′P(w; a)− Im φ′P(w; c)

}]
.

As was mentioned, the given potentials are only valid for non-negative values of x. How-
ever, the stresses for x < 0 can be easily calculated from simple considerations of symmetry.
For pure tangential loading (i.e., without tilting), it is clear that normal stresses are anti-
symmetric, and shear stresses symmetric in x. Hence,

σxx,Q(−x, y) = −σxx,Q(x, y),

σyy,Q(−x, y) = −σyy,Q(x, y), (27)

σxy,Q(−x, y) = σxy,Q(x, y).

5. Direct Superposition of Stress Fields for Flat Punch and Parabolic Contact

While for closed-form analytical calculations (if they are possible), the flat punch
superposition of Muskhelishvili’s potential, as expressed in Equation (14), is obviously
perfectly suited, its numerical evaluation for profiles that do not allow for a closed-form
solution can be slightly problematic due to the complex-valued nature of the superposition
integral. In these cases, a direct superposition of the stress fields under a rigid flat punch
with normal and tangential loading is preferable. This procedure has already been applied
successfully to axisymmetric contact problems [20] and will be laid out briefly below for
plane tangential contact problems under the usual assumptions.

5.1. Normal Loading

The idea that the incomplete normal contact with a general symmetric plane profile
f (|x|) can be understood as the result of a series of incremental flat punch indentations
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with increasing half-width ã, obviously also applies to the components of the stress tensor.
Therefore, we can immediately write

σij,P(x, y; a) =
∫ a

0

σFP
ij,P(x, y; PFP)

PFP
P′(ã) dã, (28)

with the respective relation P(a) given in Equation (9). Explicit expressions for the stress
field under the flat punch are given in the Appendix A.

Now, as is known, the stress field for the indentation by a rigid flat punch is singular
at the contact edges, which might pose some difficulties in the numerical evaluation of
the above integral. For an even more robust formulation, we can notice that the contact
pressure distributions in plane flat punch and parabolic contacts satisfy

pFP(x; PFP) =
4PFPR
πE∗

∂

∂(a2)
[pH(x; a)], (29)

where the index “FP” denotes the solution for a flat punch and the index “H” the parabolic
(Hertzian) case. Due to linearity, the same rule applies to all stress components. Hence,
introducing the substitutions

u = ã2 , σ̂ij(x, y; u) = σij(x, y; ã) , P̂(u) = P(ã), (30)

we write

σij,P(x, y; a) =
4R

πE∗

∫ a2

0

∂

∂u

[
σ̂H

ij,P(x, y, ; u)
]

P̂′(u) du, (31)

which, after partial integration, results in

σij,P(x, y; a) =
4R

πE∗

{
σ̂H

ij,P

(
x, y, ; a2

)
P̂′
(

a2
)
−
∫ a2

0
σ̂H

ij,P(x, y, ; u)P̂′′(u) du

}
. (32)

Thus, the determination of the stress field due to normal loading has been reduced to
a simple superposition of stress fields for parabolic contacts under normal loading. Explicit
expressions for the latter are given in Appendix A.

5.2. Tangential Loading

The same idea can be used to tackle the stress field arising from tangential loading,
which can be thought of as the result of a series of incremental tangential loadings dQ(ã)
of flat punches with increasing half-width ã. Hence,

σij,Q(x, y; a) =
∫ a

0

σFP
ij,Q(x, y; QFP)

QFP
Q′(ã) dã. (33)

Now, what is the tangential loading procedure Q(ã)? If we speak about the sim-
plest loading history of a constant normal load and a subsequently applied increasing
tangential load, is the contact half-width not constant during the tangential loading? Yes,
but Q(ã) is meant in the “flat punch picture”; consider the following loading procedure:
Flat punches with increasing half-width are pressed into the elastic half-plane according
to the relation P = P(ã) up to a contact half-width ã = c; after that, any incremental
flat punch normal loading dP(ã) is accompanied by an incremental flat punch tangen-
tial loading dQ(ã) = µdP(ã) until the final contact half-width ã = a is reached. The
resulting contact configuration will satisfy the Ciavarella–Jäger principle in the form of
Equations (22) and (23), that is to say, it produces the correct contact configuration for the
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simplest loading history of a constant normal load and a subsequently applied increasing
tangential load. Hence,

σij,Q(x, y; a, c) = µ
∫ a

c

σFP
ij,Q(x, y; QFP)

QFP
P′(ã) dã, (34)

with the usual relation (9) for the normal load. Alternatively, completely analogous to the
previous subsection, we can write the stresses as a superposition of stresses due to the
tangential load under a sliding parabolic contact,

σij,Q(x, y; a, c) =
4R

πE∗

{
σ̂H

ij,Q

(
x, y, ; a2

)
P̂′
(

a2
)
− σ̂H

ij,Q

(
x, y, ; c2

)
P̂′
(

c2
)
−
∫ a2

c2
σ̂H

ij,P(x, y, ; u)P̂′′(u) du

}
. (35)

Explicit expressions for the subsurface stress fields due to the tangential loading of flat
punch or sliding parabolic contacts are given in the Appendix A.

Figure 2 shows a comparison between the fully analytical solution based on the
Muskhelishvili potential and a solution based on the superposition of parabolic contacts,
where the integrals in Equations (32) and (35) are evaluated with the trapezoidal rule, for
the contour line diagram of the equivalent von-Mises stress, normalized for the average
contact pressure P/(2a), in the tangential contact with a truncated cylinder, as a function of
x/a and y/a, for b = 0.5a, c = 0.7a, µ = 0.5 and ν = 0.3. As aspected, there are no notable
differences between both solutions.
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Figure 2. Contour line diagram of the equivalent von-Mises stress, normalized for the average contact
pressure P/(2a), in the tangential contact with a truncated cylinder, as a function of x/a and y/a, for
b = 0.5a, c = 0.7a, µ = 0.5 and ν = 0.3; fully analytic solution based on the complex Muskhelishvili
potential (left) and solution via the numerical superposition of stress fields in the plane Hertzian
contact (right).

Figure 3 shows the corresponding distributions of the largest principal stress and
maximum shear stress. One distinguishes the region of positive largest principle stress at
the trailing contact edge, and large negative values of largest principal stress at the edges
|x| = b of the flat face of the truncated cylinder. The maximum shear stress distribution
highly correlates with the von-Mises equivalent stress distribution shown in Figure 2.
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Figure 3. Contour line diagram of the largest principal stress, normalized for the average contact
pressure P/(2a) (left), and the maximum shear stress, normalized for the average contact pressure
(right), in the tangential contact with a truncated cylinder, as a function of x/a and y/a, for b = 0.5a,
c = 0.7a, µ = 0.5 and ν = 0.3.

6. Periodic Tangential Loading of a Truncated Cylinder

As is known, for tangential contacts, the solution to the contact problem—and there-
fore naturally also the subsurface stress state—generally depends on the history of the
loading procedure. This is in contrast to, for example, the frictionless normal contact
problem, whose solution only depends on the instantaneous contact configuration—in
plane, symmetric problems expressed by either the line load P, or the contact half-width
a. The tangential contact solutions presented above are, as has been stated before, only
valid for the simplest loading history of a constant normal load and a subsequently applied,
monotonously increasing tangential load. The shown solutions can, however, serve as a
basis for the analysis of more complex loading histories, as it has been shown, how the so-
lution for general loading histories can often be constructed by appropriately superposing
these basic solutions for the simplest loading history [5,13].

To illustrate this idea, in the following, the problem of periodic tangential loading with
a constant amplitude, which is relevant in fretting contacts, is considered for the truncated
cylinder. The time-dependence of the tangential loading is shown schematically in Figure 4.
Note that the precise temporal function (sinusoidal, “saw-tooth”, etc.) is not relevant (as
long, as it is periodic) because the contact configuration during unloading or reloading
only depends on the instantaneous value of Q and its maximum value, i.e., the amplitude.
The normal load is supposed to be constant.

Q / (μP)

t

A

B

C

D

E

0.6

0.3

–0.3

–0.6

Figure 4. Scheme of the tangential loading history for the exemplary calculation; A, B, C, D and E
denote instants of the loading protocol, for which the stress state will be evaluated.

For the determination of the subsurface stress state, we only require the general
structure of the tangential contact solution for the considered type of loading. To obtain
that, we will use yet another superposition idea, which was first used by Jäger [21] for the
tangential contact of elastic spheres under arbitrary 2D oblique loading. Up to point A in the
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loading diagram, the tangential load is increasing monotonously and the tangential contact
solution is therefore given by the classical Ciavarella–Jäger result in Equations (22) and (23),

Q∗(a, c) = µ[P(a)− P(c)],

q∗(x; a, c) = µ[p(x; a)− p(x; c)], (36)

where the star denotes that this is the basic solution for the elementary loading history.
Accordingly, the contributions of the tangential load to the subsurface stress state are given
by Equation (27) or (35).

Then, the sign of the change in Q is reversed. At the “reversal point” A, there is a
spontaneous state of complete sticking of the contact area, since every point of the sliding
area is—according to the law of friction—in the “limit state” of sticking, |q| = µp. After that,
a new slip area propagates from the edge of the contact. Since in the slip area the direction
of the frictional stresses has been reversed, but their value is still determined by the law of
friction, a simple Ciavarella–Jäger solution can be linearly superposed. The distribution
of the frictional stresses on the “path” from A to E is therefore due to the Ciavarella–Jäger
principle given by

q(x; a, c, cmin) = q∗(x; a, cmin)− 2q∗(x; a, c), (37)

where the minimum half-width of the stick area, cmin, follows from the maximum
tangential load,

Qmax = Q∗(a, cmin), (38)

and the current value of the half-width of the stick area, c, can be determined from the
superposition relation for the tangential load,

Q(a, c, cmin) = Q∗(a, cmin)− 2Q∗(a, c). (39)

Due to the linearity of all governing equations, the same superposition can be applied
for the determination of the tangential loading contributions to the subsurface stress state,
based on the basic solutions given in Equation (27) or (35).

During reloading, i.e., after point E in the loading diagram, the same happens with the
tangential loading directions reversed. Hence, the superpositions in Equations (37) and (39)
can be used, with all signs reversed on the right-hand side of the equations.

If all stresses are normalized for the average contact pressure P/(2a), the resulting
non-dimensional stresses will only depend on the non-dimensional half-width of the flat
face b/a, the friction coefficient µ, the loading ratio Qmax/(µP), and the Poisson ratio ν.

Figure 5 shows the distribution of the equivalent von-Mises stress in the loading plane
in normalized variables, for b = 0.5a, Qmax = 0.6µP, µ = 0.5 and ν = 0.3, at the points A,
B, C, and D of the loading diagram; the respective plot in the point E will be just the plot
for the point A with the direction of the x-axis reversed, and is therefore not shown.

In Figures 6 and 7, the corresponding subsurface distributions of the maximum shear
stress and largest principal stress in the loading plane are shown in normalized variables, at
the points A, B, C, and D of the loading diagram. The maximum shear stress distributions
correlate well with the ones for the von-Mises equivalent stress given in Figure 5; as
expected, positive (i.e., tensile) principal stresses only exist in the vicinity of the contact
edge, away from the pressure singularity at the edge of the profile, and away from the
maxima of the von-Mises equivalent stress, or the maximum shear stress. Therefore, the
fretting contact should not be prone to fatigue crack initiation.
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Figure 5. Contour line diagram of the equivalent von-Mises stress, normalized for the average contact
pressure P/(2a), in the oscillating tangential contact with a truncated cylinder, as a function of x/a and
y/a, for b = 0.5a, Qmax = 0.6µP, µ = 0.5 and ν = 0.3; for the points (A), (B), (C), and (D) of the loading
diagram in Figure 4 (each subfigure corresponds to the respective point in the loading diagram).
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Figure 6. Contour line diagram of the maximum shear stress, normalized for the average contact
pressure P/(2a), in the oscillating tangential contact with a truncated cylinder, as a function of
x/a and y/a, for b = 0.5a, Qmax = 0.6µP, µ = 0.5 and ν = 0.3; for the points (A), (B), (C), and
(D) of the loading diagram in Figure 4 (each subfigure corresponds to the respective point in the
loading diagram).
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Figure 7. Contour line diagram of the largest principal stress, normalized for the average contact
pressure P/(2a), in the oscillating tangential contact with a truncated cylinder, as a function of
x/a and y/a, for b = 0.5a, Qmax = 0.6µP, µ = 0.5 and ν = 0.3; for the points (A), (B), (C), and
(D) of the loading diagram in Figure 4 (each subfigure corresponds to the respective point in the
loading diagram).

7. Discussion

Analytic solutions for the subsurface stress fields in tangential contacts of elastically
similar truncated wedges and cylinders have been provided. Two solution methods have
been utilized: the determination of Muskhelishvili’s complex stress potential and the direct
superposition of stress fields under a rigid flat punch or in the plane Hertzian contact. Both
methods have been proven numerically to give exactly the same results (they are, in fact,
mathematically equivalent for the contact problems studied in the present manuscript).
The determination of the subsurface stress state via an appropriate superposition of the
respective known exact solutions for parabolic contact is an extremely fast, easily imple-
mented, and very robust method, which can also be used for more complicated profile
geometries, for example arising from the effects of wear.

While Muskhelishvili’s potential corresponds to a specific integral equation, and
therefore to a specific class of problems (namely, plane contacts of homogeneous materials),
the superposition of incremental flat punch contacts (or parabolic contacts, if one wishes
to avoid the edge singularity of the flat punch problem) is a more general idea, whose
applicability has been discussed before [20].

As for most analytical contact solutions, the underlying assumptions may pose more
or less severe restrictions that have to be kept in mind when applying the obtained results
to real engineering contacts. In the present case, the severest limitations stem from the
assumptions of linear elasticity and of a local Amontons–Coulomb friction law with a con-
stant coefficient of friction. In real engineering contacts, the contacting materials, depending
on their “class”, will exhibit different degrees of, e.g., viscoelasticity, hyperelasticity, or
plasticity. In addition, the Amontons law is, of course, a rather blunt simplification of
frictional interaction. Both of these shortcomings of the present study could be tackled in
future work without severe methodological alterations, if the problem retains constitutive
linearity, e.g., incorporating linear viscoelasticity [22] or slip-weakening laws [23].
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On the other hand, the advantage of analytic solutions lies in their exactness; they
are not bound to discretization or other numerical approximations, and can thus serve
as benchmark solutions for numerical solvers—e.g., based on the Finite-Elements (FE) or
Boundary Elements Methods—which, in turn, are far more flexible with respect to the
physical modelling.

In that regard, one should also note that recently very powerful numerical methods
have been developed for the determination of subsurface stress fields in complex two- and
three-dimensional problems, namely the differential quadrature finite element method—
which proved to require significantly less degrees of freedom than a “regular” FE-based
model in the simulation of free vibrations of laminated beams and plates [24]—and the 2D
Bézier method, which is able to solve two-dimensional problems for arbitrary complexity
of geometry [25].

In addition, note that, for elastically dissimilar bodies, there is elastic coupling between
the normal and tangential contact problems, i.e., the presence of tangential tractions alters
the normal contact problem, and vice versa. This severely complicates the rigorous problem
treatment; in fact, closed-form analytical contact solutions for dissimilar materials are only
possible for few special cases. Correspondingly, the manuscript’s analysis is only valid for
similar materials.

The concept of introducing “soft” sharp edges to avoid wear and fatigue is similar to
the already widely used idea of using rounded flat punches in fretting: the flat face shall
reduce local slipping and thus wear, and the rounded corners aspire to soften the stress
singularity at the edge of the punch. However, a detailed contact mechanical comparison
of both types of profile geometries in fretting configurations still remains for future work.

Finally, in the future, the fretting behaviour of truncated contact profiles shall be
investigated experimentally, with respect to energy dissipation, wear, and fatigue.
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Appendix A. Stress Fields from the Plane Flat Punch and Parabolic Contact

Inserting the flat punch potential from Equation (13) into Equation (19) gives the stress
field due to normal loading of a rigid flat punch with half-width a,

σFP
xx,P(x, y; P) = − P

π

[
A−1/2 cos

( ϕ

2

)
+ yA−3/2

{
x sin

(
3ϕ

2

)
− y cos

(
3ϕ

2

)}]
,

σFP
yy,P(x, y; P) = − P

π

[
A−1/2 cos

( ϕ

2

)
− yA−3/2

{
x sin

(
3ϕ

2

)
− y cos

(
3ϕ

2

)}]
, (A1)

σFP
xy,P(x, y; P) =

P
π

[
yA−3/2

{
x cos

(
3ϕ

2

)
+ y sin

(
3ϕ

2

)}]
,

with A and ϕ (here and in the following) being the absolute value and complex argument of

A exp(iϕ) = a2 − x2 + y2 − 2ixy. (A2)

Note that, for y = 0 and x > a, the complex argument, which has to be used, is ϕ = −π; for
y = 0 und x < −a, the standard application of Equation (A2) will readily give the correct
argument ϕ = π.
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Inserting the potential for the plane Hertzian contact problem from Equation (18)
into Equation (19) gives the stress field under a plane Hertzian contact with the radius of
curvature R, as a function of the contact half-width a,

σH
xx,P(x, y; a) = − E∗

2R

[
A1/2 cos

( ϕ

2

)
− 2y− yA−1/2

{
x sin

( ϕ
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)
− y cos

( ϕ

2

)}]
,

σH
yy,P(x, y; a) = − E∗

2R
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A1/2 cos

( ϕ
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x sin
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)}]
, (A3)

σH
xy,P(x, y; a) = − E∗

2R

[
yA−1/2

{
x cos

( ϕ

2

)
+ y sin

( ϕ

2

)}]
.

Inserting the flat punch potential into Equation (27) (c must be zero because there are no
partial slip configurations in the flat punch contact) gives the stress field due to tangential
loading of a rigid flat punch,

σFP
xx,Q(x, y; Q) =

Q
π

[
2A−1/2 sin

( ϕ

2

)
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{
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)
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,

σFP
yy,Q(x, y; Q) =

Q
π
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{
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)
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)}]
, (A4)

σFP
xy,Q(x, y; Q) = −Q

π

[
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)
+ yA−3/2

{
x sin

(
3ϕ

2

)
− y cos

(
3ϕ

2

)}]
.

Inserting the potential for the plane Hertzian contact into Equation (27) and setting c = 0
gives the stress field due to the tangential loading under a sliding plane Hertzian contact,

σH
xx,Q(x, y; a) = −µE∗

2R

[
2A1/2 sin

( ϕ
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)
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{
x cos
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)
+ y sin
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,

σH
yy,Q(x, y; a) = −µE∗

2R

[
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{
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)
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, (A5)

σH
xy,Q(x, y; a) = −µE∗

2R

[
A1/2 cos

( ϕ
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)
− 2y− yA−1/2

{
x sin
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2

)
− y cos

( ϕ

2

)}]
.

Note that all stress fields given in this Appendix A satisfy the necessary symmetry relations;
that is to say, they are valid for all values of x.
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