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Abstract

Developments in survey technology such as light detection rang-
ing and laser-scanning are able to provide high-resolution topogra-
phy data sets. In shallow water equations based modeling, the use of
high-resolution topography data is generally desirable, because it is
considered to be a more accurate representation of the “real world”.
Indeed, high-resolution discretization of topography leads to more
accurate representation of preferential flow paths and obstructions
which influence the global flow behaviour inside the domain.

However, the integration of these data into the numerical model
is often challenging because of finite computer resources. The chal-
lenge comes from the scale difference between the computational
domain and the topographical features. If each topographical fea-
ture was discretized explicitly, the cell number of the resulting mesh
and consequently the simulation wall-time would be unfeasibly high.
Instead of explicitly discretizing the small-scale topography, its influ-
ence can be conceptually accounted for on coarser meshes to reduce
the computational cost. These approaches are commonly referred to
as “coarse grid approaches” or “scaling approaches”.

Aim of this doctoral thesis is the development of coarse grid
approaches for the shallow water model. Hereby, two approaches
will be investigated: (1) friction-law based coarse grid approach, (2)
porosity-based coarse grid approach. The approaches allow simula-
tions on a coarser resolution while still maintaining an acceptable
accuracy. The development of such approaches is of interest in engi-
neering applications, such as the fast prediction of flood inundation
areas in case of a fast flood wave or the relatively new field of physical
modeling based catchment hydrology.

The friction-law based coarse grid approach uses an artificially in-
creased roughness coefficient, two additional calibration parameters
that describe the geometry of the topographical features and the so-
called “inundation ratio”, which is the ratio between water depth and
roughness height. Using automated calibration, good agreement be-
tween the scaled shallow water model and high-resolution reference
solutions and measurement data was achieved.

Further, in this thesis a porosity-based coarse grid approach was
developed, which enables full inundation of unresolved features by
means of water depth-dependent porosity terms. A Godunov-type
method for the solution of the equations was developed, whereby
the reconstruction of cell values at the cell interfaces was identified
as a source of spurious oscillation. A monotonicity treatment was
suggested to address this issue.
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The friction-law based as well as the porosity-based coarse grid
approach yield results with comparable accuracy to high-resolution
classical shallow water models for water depths and flood areas.
However, flow velocities can not be reproduced with the same ac-
curacy. Further, processes at subgrid-scale can not be reproduced.

The benefit of the developed approaches was demonstrated in
this work. In the investigated cases, utilizing coarse grid approaches
reduced the wall-time of the simulation 2 up to 3 orders of magnitude.
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Zusammenfassung

Aktuelle Entwicklungen in der Fernerkundung wie LIDAR (light
detection and ranging) und Laserscanning sind in der Lage, hoch-
aufgelöste topographische Datensätze zu erzeugen. Für die Modellie-
rung von Fließprozessen anhand der Flachwassergleichung ist es von
Vorteil, Gebrauch von diesen Datensätzen zu machen. Das hochauf-
gelöste Diskretisieren der Topographie ermöglicht eine bessere Abbil-
dung der Fließwege und Hindernisse, welche Einfluss auf das gesamte
Fließverhalten im Gebiet haben.

Aufgrund begrenzter Computerkapazitäten ist die Einbindung
hochaufgelöster Datensätze in einem numerischen Modell oft eine
große Herausforderung, da die Bandbreite der in einem Untersu-
chungsgebiet zu berücksichtigenden Skalen topographischer Struk-
turen in der Regel sehr groß ist. Eine explizite Diskretisierung dieser
Strukturen führt zu Netzen mit extrem hoher Zellanzahl und nicht
vertretbaren Rechenzeiten. Anstatt die kleinskaligen topographische
Strukturen explizit zu diskretisieren, kann deren Einfluss konzep-
tionell in das Modell integriert werden. Dies hat den Vorteil, dass
Simulationen auf gröberen Netzen durchgeführt werden können, was
zu einer erheblich verminderten Rechenzeit führt. Ansätze dieser Art
werden als Grobgitterverfahren oder Skalierungsansätze bezeichnet.

Im Rahmen dieser Arbeit werden zwei neue Grobgitteransätze für
die Flachwassergleichungen entwickelt: (1) ein auf einem Reibungs-
gesetz basierender Ansatz und (2) ein auf der Porosität basierender
Ansatz. Die entwickelnden Ansätze ermöglichen Simulationen auf
gröberen Gittern mit vertretbaren Genauigkeiten. Die Entwicklung
solcher Ansätze ist zum Beispiel für Ingenieuranwendungen im Be-
reich der Hochwasservorhersage sowie im relativ neuen Bereich der
physikalisch basierten Niederschlag-Abfluss-Simulation höchst inter-
essant.

Der hier entwickelte, auf einem Reibungsgesetz basierende An-
satz benutzt einen erhöhten Reibungskoeffizienten, zwei weitere Ka-
librierungsparameter, welche die geometrischen Eigenschaften der
topographischen Struktur beschreiben, sowie den sogenannten “Ü-
berflutungsanteil”, der das Verhältnis zwischen Wassertiefe und cha-
rakteristischer Rauheitshöhe angibt. Mit Hilfe einer automatisier-
ten Kalibrierung wurde eine gute Übereinstimmung zwischen dem
Grobgitter-Flachwassermodell und hochaufgelösten Referenzlösung-
en und Messdaten erzielt.

In dieser Arbeit wurde auch ein Porositäts-basierter Grobgitter-
ansatz entwickelt, welcher eine Überflutung der unaufgelösten Struk-
turen ermöglicht, indem die Porositäten in Abhängigkeit der Was-
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sertiefe in jedem Zeitschritt neu berechnet werden. Ein Godunov-
Verfahren zur Lösung der Gleichungen wurde entwickelt, wobei die
Rekonstruktion der Zellvariablen an den Kanten als eine mögliche
Quelle von Oszillationen identifiziert wurde. Daher wurde auch ein
Ansatz zur Erhaltung der Monotonie des Verfahrens entwickelt.

Sowohl der Reibungsgesetz-basierte als auch der Porositäts-ba-
sierte Ansatz liefern vergleichbare Genauigkeiten mit hochaufgelös-
ten Rechnungen für die Wasserstände und Überflutungsflächen im
Gebiet. Fließgeschwindigkeiten können jedoch nicht mit der gleichen
Genauigkeit berechnet werden. Des Weiteren werden Prozesse unter-
halb der Netzauflösung nicht abgebildet.

Die Vorteile der entwickelten Verfahren konnten im Rahmen die-
ser Arbeit deutlich herausgestellt werden. In den untersuchten Fällen
wurde die Rechenzeit durch Grobgitterverfahren um 2 bis 3 Größen-
ordnungen vermindert.
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Chapter 1

Introduction

“... surface water and subsurface are multiscale systems. In
surface water systems, the space scales range from one hundred
kilometers and more via meters to micrometers, while the time
scales range from more than days via minutes to milliseconds,
depending on whether currents, waves or turbulences are of ma-
jor interest.”

– Hinkelmann (2005) [56]

1.1 Motivation

On the global scale, 54% of the world’s population is living in urban areas
and by 2050, the value is projected to be 66% [145, 146]. At the same
time, the globally averaged combined land and ocean surface temparature
data show a warming of 0.85 ◦C, mostly caused by human influence [68]. A
major impact of the global warming is an increase in the number of heavy
precipitation events in a number of regions, whereby the number of these
extreme weather events is very likely to further increase in many regions in
the future (projection for 2081-2100) [68].

Climate change and rapid urbanization has increased the number of ur-
ban flood events in the past two decades [147], leading to an estimated
number of 539811 casualties and 361974 injuries (most likely underesti-
mated) worldwide [30]. A definition of floods is given by the European

1
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Union Floods Directive [34] as “the temporary covering by water of land
not normally covered by water”. In urban environment, several reasons
may lead to flooding, i.e. high tides and tsunamies in coastal areas, dam-
breaks, backwater caused by ice, heavy rainfall (pluvial urban flooding) in
combination with overflow of the sewer system or flooding of rivers and flow
over breaking dikes (fluvial urban flooding). The focus of this work is on
the latter two, i.e. pluvial and fluvial urban flooding.

Pluvial urban flooding is a consequence of urbanization as buildings,
roads, infrastructure and paved areas prevent rainfall from infiltrating into
the soil and lead to an increase in surface runoff. Usually, surface runoff
in urban environment is collected in a drainage system which aims to dis-
charge the stormwater as quickly as possible, however the drainage system
might be overwhelmed by extreme rainfall events [147]. A recent exam-
ple of pluvial flooding is the flooding of Gleim tunnel on July 27, 2016,
in Berlin, Germany, where heavy rainfall caused the drainage system to
fail, resulting in significant damage in property and the closing of the tun-
nel until January 13, 2017. In the same time period, on July 30, 2016,
heavy rainfall after a preceding heat wave caused an overflow of the sewer
system and flooded several basements in the district Wilmersdorf, Berlin,
Germany. Worldwide, many other examples with much more devastating
consequences can be found. In contrast to the other reasons of floods, which
only pose a threat to cities at certain locations, all urban areas are at risk
of pluvial urban flooding [147]. The European Union Floods Directive [34]
does not directly address pluvial flooding, e.g. standard reoccurence periods
for precipitation events to be used in the design of urban flood protection
structures is not defined in the directive.

Fluvial urban flood events are divided in flooding of bigger rivers and lo-
cal flash flood events. Flood events at bigger rivers usually cause extensive
damage in property but due to the long reaction time (time between fore-
casting and arrival of the flood wave) result in less casualties compared to
flash floods. An example for a large river flood event is the Elbe river flood
of 2002, which resulted in 21 casualties, and a total damage of 11 billion
Euro. Heavy rainfalls in the catchment of the Elbe river with durations of
several hours caused a high groundwater table and excess runoff which con-
centrated in the river. Meanwhile, the sewer system in Dresden, Germany,
failed due to heavy rainfall. The flood wave propagating in the Elbe river
caused flooding of smaller rivers connected to the Elbe river and flooded
the city Dresden, Germany. The forecast of this event happened on August
9, 2002. Dresden was flooded two days later, on August 11, 2002. Flash
flood events are usually caused by short, localized heavy rainfall events and
are characterized by a short reaction time (usually below 6 hours) and high
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flow velocities [9]. An example for this type of fluvial flood is the Brauns-
bach flash flood of May 29, 2016 in Baden-Württemberg, Germany. Heavy
rainfall saturated the soil in the catchment of Braunsbach, produced excess
runoff and due to the high flow velocities resulted in erosion and bedload
transport in the river (Orlacher Bach) as well as in the natural areas in
the catchment. The flood wave, consisting of a mixture of water and rocks,
arrived in Braunsbach with a high flow velocity and water depths up to
3 m, causing high damage in the city [8]. The duration of the whole flood
event was about 2 hours [8]. Another example is the Panke flood of August
22, 2012, where after a heavy rainfall, tree branches and grass (that had
been mowned in a nearby park) blocked a screen inside the heavily modi-
fied Panke river, Berlin, resulting in the river bursting its banks. Several
basements of houses near to the blocked area were flooded and cars were
damaged. As before, more devastating examples of fluvial flooding can be
found worldwide.

Numerical models are an important tool for flood protection measures,
which the European Floods Directive [34] defines as comprising three pil-
lars: precautionary measures, technical flood protection and water reten-
tion in the catchment. As precautionary measures, numerical models can
be applied for fast predictions, forecasting and nowcasting of flood events
for early warning systems. Numerical models can further be used to assess
the effect of technical flood protection measures as well as measures for
water retention in the catchment, e.g. the effect of restoration of streams
and rivers [82], serving as an additional tool in decision making processes.
In recent years, the shallow water model has been widely used for these
purposes.

1.2 The shallow water model

The flow of Newtonian fluids can be described by combining the continuity
equation and the Navier-Stokes equations, which express balance laws for
mass and momentum in three dimensions, respectively.

For applications that are dominated by horizontal processes (i.e. long
waves), the two-dimensional shallow water equations can be derived as a
special case of the continuity and Navier-Stokes equations for incompress-
ible flow with a free surface over generally slow bottom inclinations. If the
flow is dominated by long waves, i.e. the ratio of water depth to wave length
is smaller than 1/20, the vertical pressure function can safely be approxi-
mated with a hydrostatic pressure distribution. Then, neglecting vertical
acceleration, vertical velocities and vertical viscous forces and assuming a
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logarithmic vertical flow velocity profile, the continuity and Navier-Stokes
equations can be integrated over the water depth, resulting in the depth-
averaged two dimensional shallow water equations that can be written in
conservative form as
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where Eq. 1.1 is the mass balance and Eq. 1.2 and Eq. 1.3 are the mo-
mentum balance in x- and y-direction of the Cartesian coordinate system,
respectively. Further, t denotes the time axis. The conserved variables of
the shallow water equations are the water depth h and the unit discharges
in x- and y-direction, qx and qy, respectively. ν is the sum of the molecular
and turbulent viscosity of water. For most shallow water flow applications,
the turbulent viscosity is orders of magnitude larger than the molecular
one. sh is the mass source term and sq,x and sq,y are the momentum source
terms in x- and y-direction, respectively. The mass source term accounts
for sources and sinks in the mass balance. For example, it may be written
as

sh = r − i, (1.4)

where r is the rainfall intensity and i is the infiltration rate of water into the
subsurface. The momentum source terms sq,x and sq,y contain terms that
result from the depth-integration and external momentum sources. Most
commonly, they are written as

sq,x = −g ∂
∂x

(h+ z)− g

C2
h−2qx||q||+ fx, (1.5)

sq,y = −g ∂
∂y

(h+ z)− g

C2
h−2ρqy||q||+ fy, (1.6)

with g being the gravity, z being the bottom elevation, C being the Chézy-
friction coefficient, ρ being the fluid density and ||q|| being the Euclidian
norm of the unit discharge vector q = [qx, qy]

T . The first term of sq,x is
the bottom slope source term that describes the gravity effect on the water
and the second term is the friction source term that describes momentum
losses due to the effect of roughness. fx is the external source term. The
definitions apply analogously to the terms of sq,y. Depending on the scale
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and the nature of the investigated problem, the external source term may
contain wind shear stress, air-pressure gradient and Coriolis force [56].

The shallow water equations in this present form (Eqs. 1.1–1.3) are
a mixed-type hyperbolic-parabolic system of partial differential equations.
The first term of the space derivative at the left hand-side in Eq. 1.2, i.e.
q2
x/h, is the convection term and is the hyperbolic part of the equation.

The second term of the space derivative, i.e. ∂(νq2
x/h)/∂x, is the diffu-

sion term and is the parabolic part of the equation. The same definition
applies in y-direction for Eq. 1.3. Depending on whether the convection
terms or the diffusion terms are dominant, the equations behave hyperbolic
or parabolic. The important implication of this classification is that for
parabolic problems, the solution at one point in the domain depends on all
other points while for hyperbolic problems the solution at one point in the
domain depends on a limited number of points in the domain [96].

Other formulations of the shallow water equations exist. For example,
velocities are sometimes used instead of unit discharges, or the free water
elevation is used instead of the water depth. A special form of the shallow
water equations usually found in ocean or atmosphere modeling is obtained
by using vorticities as primary variables.

Following a common simplification found in literature, e.g. [86, 142, 47],
the diffusive terms, i.e. the terms associated with molecular or turbulent
viscosity, and external forces fx and fy are neglected in this work. This
yields a hyperbolic system of equations that can be written in conservative
vector form as

∂q

∂t
+

∂

∂x
f(q) +

∂

∂y
g(q) = s, (1.7)

q =

hqx
qy

 , f(q) =

 qx
q2
x/h+ gh2/2
qxqy/h

 ,
g(q) =

 qy
qxqy/h

q2
y/h+ gh2/2

 , s =

 sh
−gh∂z/∂x + sf,x
−gh∂z/∂y + sf,y

 , (1.8)

which is the preferred way to express the equations in this work and will
be referred to as the classical shallow water equations. With sf,x and sf,y
being the friction source terms, in x- and y-direction, respectively, it is
easy to verify that the rows of the vectors in Eq. 1.8 evaluated in Eq.
1.7 correspond to Eqs. 1.1, 1.2 and 1.3, respectively, if the aforementioned
simplifications are made and simple algebraic manipulation is carried out.

In hyperbolic problems, the solution travels in wave form through the
domain. The wave speed at which the information travels can be determined
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with an eigenvalue analysis which is usually conducted for the homogeneous
system, i.e. by neglecting the source term s. The Jacobian matrices in x-
and y-direction of system 1.7, i.e. matrices Jx and Jy that allow rewriting
system 1.7 as

∂q

∂t
+ Jx

∂q

∂x
+ Jy

∂q

∂y
= s, (1.9)

can be written as

Jx =

 0 1 0
c2 − q2

x/h
2 2qx/h 0

−qxqy/h2 qy/h qx/h

 ,
Jy =

 0 0 1
−qxqy/h2 qy/h qx/h
c2 − q2

y/h
2 0 2qy/h

 , (1.10)

where c is the celerity c =
√
gh. Due to hyperbolicity, the eigenvalues of Jx

are distinct and real, and can be calculated as

λ(1)
x =

qx
h
− c, λ(2)

x =
qx
h
, λ(3)

x =
qx
h

+ c, (1.11)

and the same applies to Jy, where the eigenvalues are

λ(1)
y =

qy
h
− c, λ(2)

y =
qy
h
, λ(3)

y =
qy
h

+ c. (1.12)

This means, that for the shallow water equations, for each direction, the
solution can be decomposed in three invariants that travel as waves with
the speed of λ(1), λ(2) and λ(3) through the domain. At any time and at any
point, the solution in terms of conserved variables can be reconstructed by
linear superposition of these three waves.

Some problems are faced during the numerical solution of hyperbolic sys-
tems. A major problem is the computation of discontinuous solutions, which
requires sophisticated methods. In addition, first order accurate methods
lead to smeared results in regions near discontinuities, yet higher order ac-
curate methods tend to produce spurious oscillations in the results. These
challenges are related to the occurance of shock waves in the solution, which
is a wave-type that propagates a discontinuity. In literature, e.g. [85], two
ways have been proposed to approach the problem: (1) shock tracking and
(2) shock capturing. Shock tracking methods aim to track the location of
discontinuities and apply special treatment at these locations. This ap-
proach becomes very complicated and is not very present in literature. On
the other hand, shock capturing methods aim to produce sharp approxi-
mations of discontinuities automatically, without additional treatment and



CHAPTER 1. INTRODUCTION 7

location tracking. Currently, shock capturing methods are considered state
of the art.

Given the numerical challenges, the preferred method in current litera-
ture for spatial discretization of the shallow water equations is the finite-
volume method [14], which has the advantages of being locally conservative
and allowing discontinuous solutions. Here, the Godunov-type finite-volume
method [44] is favored because of its shock capturing property. The essence
of Godunov-type methods is to solve the Riemann problem [124] across cell
edges. Because the solution of the Riemann problem depends on the eigen-
values of the equation, Godunov-type methods naturally include the physics
of the problem in the flux calculation. In recent years, the Discontinuous
Galerkin method, which can be considered a mixture of the finite-element
and the finite-volume method, has reemerged in literature, cf. [75] and cited
references within. The advantage of the Discontinuous Galerkin method is
that the order of accuracy can be increased arbitrarily by increasing the
order of the shape functions. In contrast to the conventional finite-element
method, these shape functions are defined locally at each cell and are dis-
continuous at the edges. Across cell edges, the Riemann problem is solved.

Other numerical challenges that are specific to the shallow water model
are wetting and drying of cells, the occurence of transcritical flow condi-
tions and very small water depths, preservation of a quiescent state and
maintaining a steady state in the presence of source terms and the time in-
tegration of source terms. In recent years, significant development on these
issues has been made, cf. e.g. [59, 61, 60] and cited references within.

1.3 Integration of the work into research

field

The Godunov-type shallow water model with explicit time integration has
been applied to a wide range of hydraulic and environmental flows that
range from river hydraulics [82, 111], flood modeling caused by dam- or
dike-break [165, 156, 153], urban flood modeling [98, 91, 127, 126, 16, 119]
and rainfall-runoff processes in natural catchments [128, 114, 14], among
many others, cf. [63] and cited references within. The focus of this work is
rainfall-runoff and flood modeling with an emphasis on urban systems.

The graph in Fig. 1.1 lists some application fields of shallow water mod-
els, namely the classical application field of river hydraulics, flood modeling
and the new application field of rainfall-runoff modeling. River hydraulics
and other applications are not emphasized in this work and thus are ex-
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Figure 1.1: Motivation for coarse grid methods

cluded from the discussion. Flood modeling and rainfall-runoff modeling
end in engineering applications, e.g. predictions and nowcasting of flood
events for early warning systems. Hydraulic and environmental systems are
multiscale systems, which means that relevant processes have different spa-
tial scales [56]. The existence of small natural and man-made features may
significantly influence the flow field [14]. For example in natural catchments
that span up to several hundred kilometers, local depressions with horizon-
tal scales smaller than a meter may act as surface storage and significantly
reduce the hydrograph at the outlet of the catchment. Similarly, in urban
catchments the scale of buildings is exceeded by the scale of the city by sev-
eral orders of magnitude. Current developments in survey technology such
as airborne and terrestrial LIDAR enable the collection of high-resolution
topography data sets with a resolution of centimeters down to millimeters.
Because of the aforementioned effect of small scale features, the incorpo-
ration of these data sets into shallow water models is desirable. This is
indicated in Fig. 1.1, where the path from the flood or rainfall-runoff sim-
ulation passes through the high-resolution data set. However, due to finite
computer resources, running simulations at the resolution of these data sets
is currently hardly feasible, except of simulations running on supercomput-
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ers [129]. The challenging question then becomes, whether and how the
whole bandwidth of scales ranging from millimeters to kilometers can be
properly taken into account.

One of the possible paths in Fig. 1.1 that connects the high-resolution
data set with engineering applications is high-performance scientific com-
puting, which is mainly based on parallelization of algorithms. Here, dif-
ferent parallelization strategies exist. Most parallel programs follow the
single program multiple data strategy, which executes the same program
with different data on each processor. Here, two different programming
models are distinguished; the data parallel model and the message-passing
model. In the data parallel model the exchange of data is steered by the
compiler. This model is suitable for shared-memory machines, i.e. data is
stored globally and can be accessed by every processor at the same time.
The message-passing model is developed for distributed-memory machines,
i.e. data is stored locally and local data can only be accessed by the pro-
cessor it is stored on. Processors exchange data by means of communica-
tion routines. Generally speaking, the message-passing model scales over
a much larger number of processors than the data parallel model. A more
in-depth discussion of parallelization techniques is found in [56]. Recently,
high performance computing has been carried out on graphical processor
units (GPUs), e.g. [129, 80, 81]. Finally, it has to be mentioned that the
speedup, i.e. the reduction of computational time, of the simulation due to
parallelization, is limited by Amdahl’s law.

Another path in Fig. 1.1 is using adaptive methods. The most com-
mon adaptivity in shallow water models is the h-adaptivity, which adjusts
the mesh resolution depending on the solution. The adjustment is usu-
ally steered by an error-estimator [56], which in shallow water models is
related to the gradients of the flow field. Recent development in adap-
tive methods has replaced the error-estimator with multiresolution analysis
[103, 40, 52, 73, 15].

The third and final path in Fig. 1.1 is reduced modeling, which aims to
reduce the number of floating point operations by either reducing the num-
ber of equations or reducing the cell number while conceptually accounting
for subgrid-scale information. The first approach is referred to as reduced
complexity approach and the latter approach is referred to as coarse grid
approach.

Reduced complexity approaches are usually based on a simplified version
of the shallow water equations. Common reduced complexity approaches
are the diffusive wave approximation, e.g. [69], which neglects the inertia
terms in the shallow water model and the kinematic wave approximation,
e.g. [22], which neglects the inertia terms and the pressure terms. Because
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the calculation of the inertia terms is the most computationally expensive
part of the equation, neglecting these terms results in significant decrease of
computational cost. Yet, these simplified models have limitations for appli-
cations in cases of flow over flat slopes, flow into large reservoirs, flow rever-
sals and strong backwater conditions [79, 78]. It should also be mentioned
that neglecting the convection terms in the shallow water model changes
the property of the system of partial differential equations, which becomes
parabolic. A more in-depth discussion of the diffusive and kinematic wave
approximations is found in [157]. The reduced complexity approach is some-
times applied in combination with an adaptive method, using m-adaptivity,
which switches between model concepts during the simulation. In [157], the
fully dynamic shallow water model is reduced to the kinematic wave approx-
imation, depending on the kinematic wave number. A similar approach is
adopted in [159], where the switch between fully dynamic shallow water
model and kinematic wave approximation depends on the water depth. An-
other reduced complexity approach is the cellular automata, which solves
the continuity equation in combination with very simple rules that replace
the momentum balance to mimic the behaviour of water flow to some ex-
tent [97]. A very well-known cellular automata is being developed at the
University of Exeter, UK, e.g. [4, 43, 19, 20]. A discussion of this branch
of research is omitted, and the reader is referred to [97, 31].

Coarse grid approaches reduce the cell number of the computational
mesh by using a coarse mesh resolution. Subgrid-scale information is re-
covered by means of conceptual approaches. In literature, methods based
on a friction-law, e.g. [106, 88, 114], methods based on the definition of a
porosity term, e.g. [26, 55, 51], and subgrid methods, [138, 155, 121], are
found. An overview of the state of the art is given in the next section.

Aim of this work is to study and develop coarse grid methods (also re-
ferred to as scaling methods) for the shallow water model to enable efficient
computation of rainfall-runoff and flood events with application to fast pre-
dictions and nowcasting (cf. Fig. 1.1). Two approaches are considered:
(1) friction law-based coarse grid approach, (2) porosity-based coarse grid
approach.

Following steps had been identified to achieve the main objective: the
development and verification of a friction-law based coarse grid approach,
then the development and verification of a porosity-based coarse grid ap-
proach and finally application of both model concepts to rainfall-runoff and
flood prediction as a proof of concept.
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1.4 A review of relevant literature

Classical shallow water models

The shallow water equations are usually solved using an Eulerian approach
within the framework of a finite-difference, finite-volume or finite-element
method.

The finite-difference method is one of the oldest methods for solving par-
tial differential equations and is based on Taylor-series approximation of the
differentials [56]. It is usually restricted to structured, rectangular meshes
and is not necessarily conservative. While the classical finite-difference
method fails in the presence of shocks, sophisticated shock-capturing finite-
difference schemes such as the TVD MacCormack method [95] have been
derived.

The finite-element method uses shape functions to interpolate discrete
variables at nodes inside the element and an error due to this approxima-
tion with discrete variables is calculated. In a second step, the errors are
multiplied with weighting functions, whereby the choice of the weighting
functions gives different finite-element schemes. The essential idea is to in-
tegrate the weighted error over the domain and force the integral to zero,
i.e. the integral approximation error vanishes globally. The finite-element
method is suitable for unstructured meshes, and is globally but not locally
conservative [56]. In shallow water modeling, weighting functions that in-
corporate more upstream information, e.g. the Petrov-Galerkin and the
Streamline-Upwind/Petrov-Galerkin finite-element method, are preferred,
cf. [56].

The finite-volume method, sometimes referred to as integral-finite-diffe-
rence method, can be formulated in a cell-centered or node-centered way. In
the finite-volume method, each computational cell is considered a Eulerian
control volume and the conservation law is solved locally in each cell. The
method is applicable to unstructured meshes and is both locally and globally
conservative [56]. The main difficulty of the finite-volume method is the
calculation of the numerical flux over the edge. Classical approaches for
the numerical flux calculation are the central method, the upwind method
and the QUICK method, which may fail in the presence of a strong shock
wave. A better way to calculate the numerical flux is to solve a local
Riemann problem over the edge, which results in a shock-capturing finite-
volume scheme, which is referred to as Godunov-type finite-volume scheme
[44].

Some well-known shallow water codes are the open TELEMAC-MAS-
CARET suite (finite-element) [54], [108], the DHI-Mike models (finite-
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difference) [24], the Delft models by Deltares (finite-difference). Many of
these models face instabilities or even fail in cases with complex hydraulic
conditions, i.e. wetting and drying, small water depths, transcritical flow.

Shallow water models that overcome these numerical difficulties are re-
ferred to as robust shallow water models, and usually use a Godunov-type
finite volume scheme to solve the equations, e.g. a well-known commercial
robust shallow water model is Hydro AS-2D [108]. Some lesser-known aca-
demic Godunov-type shallow water models are the FullSWOF model [29],
the HiPIMS model by the Newcastle University [129] and the Hydroinfor-
matics Modeling System by the Chair of Water Resources Management
and Modeling of Hydrosystems, Technische Universität Berlin [128]. An-
other academic robust shallow water model is DIVAST [35], which uses a
TVD MacCormack finite-difference method [95].

Friction law-based coarse grid approaches

The friction coefficient in shallow water models expresses a parameteriza-
tion of subgrid topography [130], more specifically it represents the shear
stress at the bottom of the water column but is often used to account
for all unresolved processes, e.g. turbulence and depth-averaging effects
[101]. Therefore, the idea of calibrating the friction coefficient to account
for subgrid-scale effects is very straight-forward.

Néelz & Pender [106] and Liang et al. [88] investigated the possibility
of using an increased friction coefficient to account for unresolved build-
ings. Néelz & Pender [106] report that while the high-resolution model
solution can be recovered to some extent, preferential flow paths inside the
city could not be reproduced. Liang et al. [88] point out the difficulty of
interpreting the calibrated friction coefficient. Instead of calibrating exist-
ing friction laws, specialized friction laws have been presented in literature.
Jain et al. [70] present a variable Manning law that accounts for vegetation.
Another specialized friction law is reported by Razafison et al. [123] that
conceptually accounts for furrows. Özgen et al. [114] presented a general-
ized friction law that accounts for subgrid-scale obstacles of any kind, e.g.
microtopography, pavement structure, buildings.

It can be concluded that there is no systematic development in this
methodology, and research is reported in single publications without conti-
nuity.
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Porosity-based coarse grid approaches

In coarse grid approaches, the porosity term is adopted from porous media
flow modeling and describes the fraction of a cell that is available for water
flow. The first porous shallow water equations were derived in 1994 by De-
fina et al. [27] with application to rainfall-runoff in natural catchments. Six
years later, in 2000, an improved version of the first porous shallow water
equations was presented by Defina [26] and solved using a finite-element
method. The porosity is calculated by means of an error function that
depends on the water depth and accounts for the subgrid-scale microtopog-
raphy. In the same year, Hervouet et al. [55] applied the porous shallow
water equations to urban flood modeling using a finite-element method.
Here, the porosity terms account for unresolved buildings and are constant
values assigned to each cell based on the geometry of the urban catchment.

Another six years later, in 2006, Guinot & Soares-Frazão [51] published a
Godunov-type finite-volume scheme to solve the porous shallow water equa-
tions for urban flood modeling. The equations were rederived using a repre-
sentative elementary volume (REV) assumption, again assigning each cell a
single porosity that accounted for the subgrid-scale buildings. Lhomme [87]
developed porous Riemann solvers for these equations and in [132], some
contributions to the momentum-loss formulation were reported. A limi-
tation of this isotropic porosity shallow water model is its incapability of
representing directionality of buildings and street networks. Thus, in 2008,
Sanders et al. [125] removed the REV assumption by deriving the porous
shallow water equations in integral differential form. This allowed defining
conveyance porosities at the edges, which introduced directionality to the
flow. As the porosity in these equations is not isotropic anymore, these
equations are referred to as anisotropic porosity shallow water equations.
Meanwhile, further studies of the isotropic porosity shallow water equations
using the numerical scheme of [51] were carried out between 2009 and 2012
in [18, 39, 152, 151].

In 2012, Le [84] presented a finite-volume shallow water model with
porosity for overland flow, similar to the one proposed in Defina [26]. In
the same year, Guinot [48] proposed the multiple porosity shallow water
model to address the issue of directionality. Here, multiple porosities repre-
senting different storage effects are defined in each cell. For each porosity,
conservation of mass and momentum is solved and mass is exchanged via
source terms. Meanwhile, Chen et al. [19, 20] presented a diffusive wave
model that defined storage reduction factors (SRF) in the cell and con-
veyance reduction factors at the cell edges (CRF). These factors can be
viewed as the opposite of the porosity terms, as they represent the fraction
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of the cell or edge that is blocked by obstacles.
More recently, in 2014, Mohamed [100] presented a Rusanov scheme to

solve the isotropic porosity shallow water equations of Guinot & Soares-
Frazão [51]. Kim et al. [77] carried out numerical studies of the anisotropic
porosity shallow water equations using the same numerical method as San-
ders et al. [125]. The anisotropic porosity shallow water model was reported
to be mesh-dependent and suitable meshing techniques were investigated.
Viero et al. [154] applied the equations of Defina [26] to long term simula-
tions in large natural catchments, using an implicit finite-element method.

In 2015, Kim et al. [76] carried out a case study to quantify the model er-
rors in the presence of porosity, comparing the anisotropic porosity shallow
water model with the isotropic porosity shallow water model in a labora-
tory experiment. The anisotropic porosity model was found to be more
accurate. Henonin et al. [53] presented an isotropic porosity model with
variable porosity that allowed full inundation of unresolved obstacles.

In 2016, Özgen et al. [110] derived an anisotropic porosity shallow water
model that allowed full inundation of subgrid-scale obstacles. In contrast to
the model of Sanders et al. [125], the porosities were defined as functions of
the water depth. In the same year, Özgen et al. [116] published a Godunov-
type finite-volume method to solve these equations.

In 2017, Özgen et al. [115] introduced a dual conveyance porosity con-
cept to the anisotropic porosity shallow water model to enhance the model
accuracy. At about the same time, Guinot et al. addressed similar issues
in [50].

In addition, there is ongoing research on the anisotropic porosity shal-
low water model at the Université de Liège, Belgium, that has not been
published yet (M. Bruwier, private communication, 14 Oct 2016).

It can be concluded that the research of this methodology is carried out
more systematically than the friction law-based approach and that contin-
uous developments are reported.

1.5 Document structure

This document is structured in eight chapters, comprising an introduction,
four peer-reviewed journal articles (three published, one submitted), one
supplementary peer-reviewed conference contribution, further related work
and a synthesis.

The first chapter gives a short introduction to the topic of coarse grid
methods for the shallow water model. The second chapter presents a
friction-law based coarse grid approach suitable for rainfall-runoff simula-
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tions in natural catchments. The third chapter presents the mathematical
model of a porosity-based coarse grid approach that allows full inundation of
subgrid-scale obstacles. The fourth chapter discusses the numerical meth-
ods used to solve the mathematical model of the third chapter. The fifth
chapter presents improvements of the numerical model that enhance the sta-
bility and accuracy of the model. The sixth chapter shows an application
case, where the friction-law based model is coupled with the porosity-based
model to simulate rainfall-runoff concentration in a natural catchment that
leads to a flood in urban environment. The seventh chapter presents sup-
plementary work of the author that is related to the presented research.
The eighth chapter draws conclusions, points out open research questions
and gives an outlook.



Chapter 2

Friction law-based coarse grid
approach

Published as:
[114] Özgen, I., Teuber, K., Simons, F., Liang, D., and Hinkelmann, R.

(2015) Upscaling the shallow water model with a novel roughness formula-
tion. Environmental Earth Sciences 74, pp. 7371–7386.
doi: 10.1007/s12665-015-4726-7

This is the postprint version of the publication. The final publication is
available at Springer via https://doi.org/10.1007/s12665-015-4726-7.

2.1 Abstract

This study presents a novel roughness formulation to conceptually account
for microtopography and compares it to four existing roughness models
from literature. The aim is to increase the grid size for computational effi-
ciency, while capturing subgrid scale effects with the roughness formulation
to prevent the loss in accuracy associated with coarse grids. All roughness
approaches are implemented in the Hydroinformatics Modeling System and
compared with results of a high resolution shallow water model in three
test cases: rainfall-runoff on an inclined plane with sine-wave shaped mi-
crotopography, flow over an inclined plane with random microtopography
and rainfall-runoff in a small natural catchment. Although the high res-
olution results can not be reproduced exactly by the coarse grid model,
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e.g. local details of flow processes can not be resolved, overall good agree-
ment between the upscaled models and the high resolution model has been
achieved. It is concluded that the accuracy increases with the number of
calibration parameters available, however the calibration process becomes
more difficult. Using coarser grids results in significant speedup in compar-
ison with the high resolution simulation. In the presented test cases the
speedup varies from 20 up to 2520, depending on the size and complexity
of the test case and the difference in cell sizes. The proposed roughness for-
mulation generally shows the best agreement with the reference solution,
compared to the other models investigated in this study.

2.2 Introduction

Recent developments in survey technology such as light detection and rang-
ing (LIDAR) and laser scanning are able to provide high-resolution eleva-
tion data sets, e.g. in [38, 163, 122], yet the integration of these data
into numerical models is often challenging because of finite computer re-
sources [46, 97, 31]. The use of high-resolution elevation data is generally
desirable, because it allows a better representation of spatial heterogene-
ity and localized flow processes. However, high-resolution simulations of
practical interest, e.g. across catchment or city scales, are often unfeasible
without supercomputers because they are computationally very demanding
[129, 62, 81]. Therefore, high-resolution elevation data is usually averaged
over relatively coarse grid cells [71] which results in loss of model accuracy
[160].

The accuracy of coarse grid models can be improved by conceptually
accounting for subgrid-scale effects by calibrating the roughness coefficient
[106]. This is a valid natural approach because by definition, a roughness
coefficient expresses a parameterization of subgrid topography [130]. In
principle, the roughness coefficient in shallow water models represents the
shear stress at the bottom of a water column but it is often used to account
for all unresolved processes, e.g. turbulence, depth-averaging effects, and
therefore may lose its physical meaning [101]. The value of the calibrated
roughness coefficient is usually heavily dependent on the calibration con-
ditions, e.g. water depth, grid size, and can not be transferred easily to
different conditions [67, 158].

Upscaling is the approximation of a system of partial differential equa-
tions by another system of partial differential equations that can be solved
with fewer computing resources [36]. The upscaling process usually requires
the determination of a set of coefficients, which conceptually account for
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properties of the original system. The main advantage of using roughness
formulations instead of more sophisticated upscaling approaches for shal-
low water models, e.g. [51, 155, 67, 97, 88], is their easy implementation
into existing models without the need to modifiy the governing equations
or numerical methods.

This study presents a novel roughness formulation to account for the
effects of microtopography and investigates limits and capabilities of up-
scaling shallow water equations based overland flow models using rough-
ness formulations. The proposed new formulation uses the experimental
studies in [83, 136, 144] as theoretical basis and is to some extent inspired
by the roughness models in [123, 70]. The distribution function of the
subgrid-scale bottom elevation and the water depth are used to calculate
a dimensionless inundation ratio, which is then used to calculate a rough-
ness coefficient. Further, the bottom slope is taken into account. The
formulation is compared with four different roughness models: Manning’s
model with constant roughness coefficient; Lawrence’s model [83]; Man-
ning’s model with a waterdepth dependent roughness coefficient [102] and
Razafison’s furrow roughness model [123]. All approaches are implemented
in the Hydroinformatics Modeling System (hms), which is an in-house cell-
centered finite-volume code developed at the Chair of Water Resources and
Modeling of Hydrosystems, Technische Universität Berlin [128]. Three test
cases are presented to evaluate the proposed approach: rainfall-runoff on an
inclined plane with sine-wave shaped microtopography; surface flow over an
inclined plane with random microtopography; and rainfall-runoff in a small
Alpine catchment.

2.3 Governing equations

Shallow water equations

The depth-averaged shallow water equations can be written in a conserva-
tive form as

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= s, (2.1)

where t is time, x and y are the Cartesian coordinates, q, f and g denote
the vectors of conserved flow variables, fluxes in the x- and y-directions,
respectively. S is the source vector including bed slope source sb and friction
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source term sf . q, f and g are usually expressed as

q =

hqx
qy

 , f =

 qx
uqx + 0.5gh2

uqy

 , g =

 qy
vqx

vqy + 0.5gh2

 . (2.2)

Here, h, u, v are the water depth and depth-averaged velocity in x- and
y-directions, respectively; qx and qy are the unit-width discharges in x- and
y-directions, and qx = uh, qy = vh; g represents the gravity acceleration.
The source vector s can be splitted into

s = sb + sf + so. (2.3)

Here So accounts for additional source terms, e.g. rainfall, wind shear on
the free surface, Coriolis-force. It is noted that the first entry of the vector s
is the mass source, the second entry and third entry are momentum source
terms in x- and y-direction, respectively. Writing out the vectors leads to

s =

 0
sb,x
sb,y

+

 0
sf,x
sf,y

+

i0
0

 , (2.4)

s =

 0
−gh∂zb/∂x
−gh∂zb/∂y

+

 0
−gu|v|/C2

−gv|v|/C2

+

i0
0

 . (2.5)

zb stands for bottom elevation; v = {u, v} is the vector of velocity; | · |
denotes the vector norm and C is the so-called Chézy coefficient accounting
for flow resistance and i is the rainfall intensity. As shown in, e.g. [128, 131],
every friction law coefficient can be transformed into the Chézy coefficient
and therefore can be incorporated in Equation 2.1. Viscosity of the fluid,
turbulence, wind shear stress on the free surface and Coriolis-force are ne-
glected in this study. The incorporation of these effects into the shallow
water equations can be found in, e.g. [56].

Existing roughness formulations

Friction laws can be written in a generalized form as

sf = −Khα|v|βv (2.6)

where α and β are positive real numbers and K is the proportionality
constant. Well known friction laws such as, e.g. Manning’s law and the
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Darcy-Weisbach law, can be obtained by a certain choice for α and β.
When formulating a friction law, the choice of α and β is arbitrary [123],
however the choice is usually related to experimental data sets.

Manning’s law with constant roughness can be obtained by choosing
α = −1/3 and β = 1 in Equation 2.6:

sf = − g n2 h−1/3|v|v (2.7)

Here, n is the Manning roughness coefficient, which relates to the Chézy
coefficient as

C =
h1/6

n
. (2.8)

In Lawrence’s roughness model [83], different flow regimes associated
with different roughness formulations are identified for different inundation
ratios. The inundation ratio Λ is calculated as

Λ =
h

k
(2.9)

by using a characteristic roughness length k, which is identified as the mean
grain size of the river bed. For increasing Λ, the influence of the subgrid-
scale topography decreases. The frictional resistance f is calculated for
Λ < 1 with a drag force approach

f =
8φCd
π

min
(π

4
,Λ
)
, (2.10)

where Cd stands for the drag coefficient for roughness elements, and φ is
the fraction of the surface covered by roughness elements. For the drag
coefficient, Cd = 1 is assumed [83]. The operator min (·) is the minimum
function, which outputs the smallest value of all input values. For 1 ≤ Λ ≤
10, a power law in the form of

f =
10

Λ2
(2.11)

is suggested. For Λ > 10, f is calculated with

f =
1

(1.64 + 0.803 lnΛ)2 . (2.12)

The suggested calibration parameters of this model are φ (cf. Equation
2.10) and k (cf. Equation 2.9) [102]. f can be transformed into the Chézy
coefficient by using

C =

√
8 g

f
. (2.13)
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The depth-dependent variable Manning’s coefficient has been developed
for rainfall-runoff models in [70] and is calculated as follows:

n (h) =

n0

(
h
h0

)−ε
for h < h0,

n0 for h ≥ h0

(2.14)

In this model, n0 is defined as the Manning’s roughness occuring at flow
depth h0 beyond which n is assumed constant and ε is a parameter account-
ing for vegetation. The transformation into the Chézy coefficient is done
according to Equation 2.8. The variable Manning’s coefficient model has
three calibration parameters: n0, h0 and ε.

Finally, a roughness formulation to account for unresolved furrows is
derived by Razafison et al. in [123]. Here, Equation 2.6 is rewritten as

sf = − g n2 h−1/3|v|v −KRhv (2.15)

where the first term is the classical Manning’s equation and the second term
is an additional friction term accounting for the furrows. The coefficient
KR in this model is calculated as follows:

KR = K0,R exp

(
−h+ 〈hF 〉
C · 〈hF 〉

)
(2.16)

Here, K0,R and C are unitless model parameters; and 〈hF 〉 is the average
height of water trapped in furrows which may be calculated with

〈hF 〉 =
V

LF · L
, (2.17)

whereby V is the volume of trapped water in a furrow, LF is its wavelength
and L is the length of the domain. Razafison suggests to approximate
〈hF 〉 numerically (personal communication, August 4, 2014). The model is
calibrated with C and K0,R.

In summary, common roughness formulations usually express a relation-
ship between water depth and roughness, often in the form of a power law,
e.g. [102, 144, 70, 123]. In the authors’ opinion, a more general approach
can be obtained for free surface flows by using the inundation ratio instead
of the water depth and by including the unitless bottom slope into the
formulation.
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Novel roughness formulation

α = 0 and β = 1 are chosen in Equation 2.6, which allows to rewrite the
friction source term in Equation 2.5 as

sf = −
(
g

C2
0

+K

)
|v|v. (2.18)

Here, subgrid-scale topography is accounted for with the parameter K from
Equation 2.6 which is here interpreted as a variable dimensionless roughness
value, which increases the roughness of the model in dependency of the
inundation ratio, and the Chézy coefficient C0. The index 0 implies that
the value of C0 differs from the value of the Chézy coefficient in the classical
formulation of Equation 2.5. C0 is a model calibration parameter. In this
study, a constant Manning formulation (Equation 2.8) is used to calculate
C0.

Experimental results reported in [136] show that the bottom slope I
reduces the influence of tillage significantly. This findings certainly can be
extended to microtopography in general, as increasing the slope is associ-
ated with a loss of surface storage [141].

Equation 2.18 is required to satisfy the following requirements:

1. If Λ increases, the influence of the subgrid-scale topography decreases
significantly, hence K should converge to 0.

2. If I increases, the influence of the subgrid-scale topography should
decrease, hence K should decrease.

3. For large Λ, only C0 should account for subgrid-scale effects.

Based on preliminary numerical studies by the authors [140], the following
formulation for K is proposed, which satisfies these requirements:

K = α0 exp (−α1 (Λ− 1)) (2.19)

Here, exp (·) stands for the natural exponential function. The inundation
ratio is calculated by a modified expression of Equation 2.9 to take the
effect of bottom slope into account:

Λ =
h

(1− I) k
(2.20)

The inundation ratio has been used before in literature to derive friction
laws, e.g. [83]. It stands for the ratio of the water depth h to the character-
istic roughness length k. If the inundation ratio is smaller than 1, the water
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depth is smaller than the characteristic roughness length, which indicates
a partially dry area. in this case the flow will be influenced significantly by
the subgrid-scale topography. Consequently, a high inundation ratio states
that the water depth is relatively high when related to the characteristic
roughness length and the flow will not be influenced strongly by the subgrid-
scale topography. Both cases are illustrated in Figure 2.1. The choice which
value should be used as characteristic roughness is not trivial. Suggestions
in literature range from standard deviation of elevations to grain size per-
centiles [129]. In this study, the standard deviation of microtopography,
hereinafter referred to as σ, is used as the characteristic roughness length
k. σ represents a summary of topographic irregularity and is often used as
a roughness indicating parameter [131, 130], hence it is reasonable to use it
as the characteristic roughness length. The relationship between σ and the
maximum value of the distribution ar can be approximated by ar = 2 σ [26],
which means that Λ = 1 does not indicate full inundation but marks the
point, where the majority of the subgrid-scale topography has been inun-
dated. For the derivation of the depth-averaged shallow water equations, I
is required to be very small. In shallow water flow simulations, I is usually
in the range of 0 to 0.1.

Equations 2.18, 2.19 and 2.20 together represent the proposed roughness
formulation. To provide some physical interpretation on the calibration
parameters, α0 can be regarded as a dimensionless friction coefficient. α1

can be interpreted as a geometric conveyance parameter. It accounts for
the influence of the spatial distribution of the subgrid-scale elevations, e.g.
blockade effects due to clustering mentioned in [160]. A large α1 indicates
that the conveyance of the spatial distribution is high, so K decreases faster.
In the applications presented in this work, α0 and α1 are model calibration
parameters. Thus, in total three parameters are used for model calibration;
C0, α0, and α1. However, as C0 is calculated via Equation 2.8, the model
is actually calibrated using a Manning’s coefficient n.

2.4 Numerical implementation

The shallow water equations, shown in Equation 2.1, are discretized with
cell-centered finite volumes. The discretized equations are solved numeri-
cally with a second order monotonic-upstream-centered scheme for conser-
vation laws (MUSCL). The implementation can be applied to both struc-
tured and triangular meshes, however in this work structured grids with
square-shaped cells were used. A brief overview of the implementation is
given below. For more detailed information, the reader is referred to [128].
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Figure 2.1: Illustration of the concept of the inundation ratio Λ.

Interface flux calculation

The fluxes at cell interfaces, given by the vectors f and g in Equation 2.2,
are functions of the state variables h and v. Appropriate values for the state
variables are calculated by solving the Riemann problem on the interface via
a Harten, Lax and van Leer approximate Riemann solver with the contact
wave restored (HLLC) [143]. The Riemann states at the left and right side
of the interface, namely hL, hR and vL, vR where L and R stand for the
left and right side of the interface, respectively, are extrapolated from the
cell center with a three-point-stencil with slope limiters, shown in [64, 65].
In this study, the min-mod limiter is used to suppress spurious oscillations.

To well preserve the C-property, non-negative hydrostatic reconstruc-
tion of the bottom elevation at the interface by [2] is used. The water
depth and bottom elevation are modified prior to the Riemann solution
[60]. Discussion of the non-negative hydrostatic reconstruction method is
given in [66, 28].

Slope and friction source term treatment

The bottom slope source term sb of a cell (cf. Equation 2.3) is transformed
into fluxes through the cell faces [60].

The friction source term is discretized with the splitting point-implicit
method derived in [93], which allows a fully implicit integration of the fric-
tion source term.

In order to avoid numerical instabilites caused by too high friction source
terms, the entries sf,x and sf,y of the vector sf (cf. Equation 2.5) are limited
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as shown in [93]:

sf,i

{
≥ −qni ∆t if qni ≥ 0

≤ −qni ∆t if qni < 0
(2.21)

Here, the subscript i stands for either x or y, denoting the direction in
cartesian coordinates. With this limitation, friction no longer changes the
direction of the flow [60].

2.5 Computational examples

All simulations were carried out with the Hydroinformatics Modeling Sys-
tem (hms). The proposed roughness approach is compared with different
roughness models. Results of high-resolution simulations with explicitly dis-
cretized microtopography (HR) are used as reference solutions. All models
use the same numerical scheme. The parameters of all models are opti-
mized with the SciPy library [149] by minimizing the root mean square
deviation (RMSD) of the model results in regard to the HR model, using
either Brent’s method [7] for one free parameter or the Limited-memory
Broyden, Fletcher, Goldfarb and Shanno algorithm (L-BFGS-B) [12, 164]
for more parameters.

The RMSD is calculated as:

RMSD =

√∑n
t=1 (q̂t − qt)2

n
(2.22)

Here, q̂t is the unit discharge obtained by the roughness model, qt stands
for the unit discharge of the reference solution of a HR model; t is a sample
index and n is the number of samples. The normalized root mean square
deviation NRMSD is calculated as

NRMSD =
RMSD

qmax − qmin

, (2.23)

where qmax and qmin are the maximum and minimum values of the reference
solution calculated by the HR model, respectively.

The computational benefit gained by the coarse grids is quantified with
the speedup, which is calculated as

SPEEDUP =
T

T̂
, (2.24)

whereby T is the walltime duration of the HR model and T̂ is the walltime
duration of the upscaled model.
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Figure 2.2: Rainfall-runoff over an inclined plane with sine-wave shaped
microtopography: Computational domain of different models: HR (black),
all other models (blue).

Rainfall-runoff over an inclined plane with sine-wave
shaped microtopography

Rainfall-runoff over a one-dimensional inclined plane with sine-wave shaped
microtopography is simulated. Although synthetic, this test case is suitable
to study the capability of roughness models because in the limit, any theory
for complex microtopography has to converge to the solution of this ideal-
ized set up [141]. The domain is 4 m long and its topography is described
by

zb = −0.05 x+ 0.01 sin
(
20π x+

π

2

)
(2.25)

for a high-resolution model with explicitly discretized microtopography
(HR) on a 0.01m grid. The standard deviation of the microtopography
is σ = 0.01m. If the microtopography is not explicitly discretized, which is
the case in the upscaled models, the bottom elevation is described by

zb = −0.05 x. (2.26)

The side-view of the domain with microtopography (HR) and without
(other) is plotted in Figure 2.2. Simulation parameters, initial and bound-
ary conditions for this simulation are summarized in Table 2.1.

Results for the proposed roughness model (RM), Lawrence’s model (L-
AW), constant Manning’s coefficient model (CM), variable Manning’s co-
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Table 2.1: Rainfall-runoff over an inclined plane with sine-wave shaped
microtopography: Simulation parameters, initial and boundary conditions.

Symbol Meaning Value

σ Standard deviation 0.01 m
I Slope 0.05
n Manning’s coefficient (HR) 0.04 sm−1/3

i Rainfall intensity 8 · 10−4 m/s
T Simulation time 22.5 s
BC0 Boundary condition at x = 0 closed boundary
BC4 Boundary condition at x = 4 m open boundary
h0 Initial water depth 0

Table 2.2: Rainfall-runoff over an inclined plane with sine-wave shaped
microtopography: Calibrated parameter values and corresponding RMSD
for each model (CM: Constant Manning, VM: Variable Manning, LAW:
Lawrence, RA: Razafison, RM: proposed approach).

Model Calibrated parameter(s) RMSD

CM n = 0.22 sm−1/3 0.081
VM n0 = 0.018sm−1/3;h0 = 0.04m;ε = 2.4 0.014
LAW φ = 5.6 %; k = 0.06 m 0.040
RA C = 0.4; K0,R = 0.02 0.058
RM n = 0.15 sm−1/3;α0 = 28.57;α1 = 7.26 0.007

efficient model (VM) and Razafison’s furrow roughness model (RA) using
a grid size of 0.1 m are calculated.

Optimization was carried out regarding the discharge at the outlet of
the domain. The optimized parameters for each model together with the
resulting RMSDs are given in Table 2.2. The optimal parameters of the RA
model for this test case were taken from the literature [123].

The unit discharges at the outlet of the domain divided by the total unit
discharge of the rain qrain = 3.2 · 10−3 m2/s are plotted in Figure 2.3. The
CM model poorly reproduces the HR model result by overshooting it in the
early stage of the simulation and undershooting it in the later stage. The
VM model with three free parameters shows very good agreement. The RM
model shows the best agreement. At the beginning, the RM model slightly
overshoots the solution of the HR model, however in the later stages the
curves show very good agreement. The LAW model with two calibration



CHAPTER 2. FRICTION LAW 28

Figure 2.3: Rainfall-runoff over an inclined plane with sine-wave shaped
microtopography: Unit discharges compared at the outlet (HR: High-
resolution, CM: Constant Manning, VM: Variable Manning, LAW:
Lawrence, RA: Razafison, RM: proposed approach).

parameters shows good agreement with the HR model. The discharge in the
early stages of the simulation is overshot by the LAW model, however the
later stages are captured well. The discharge calculated by the RA model
rises later than all other models and keeps undershooting the HR model
results. A discontinuity occurs at about t = 20 s, which marks the time for
〈hF 〉 < h. At the end of the simulation, the RA model catches up with the
HR model.

All models can be calibrated to match the HR results to some extent.
However, it could be argued that the VM model parameter h0 and the LAW
model parameter k are geometric parameters and should not be used for
calibration. From their conceptual point of view, h0 and k should either be
set to the standard deviation of microtopography, i.e. 0.01m, or the ampli-
tude of the microtopography, i.e. 0.02m. It was found out that using these
values for h0 and k significantly reduces these models accuracy. Especially
the LAW model can not be calibrated to satisfactory accuracy using only
φ, because φ represents a fraction and therefore is bounded between 0 and
1 and is not very sensitive. The simulation of the coarse models runs on a
mesh with 40 cells in average 50 times faster than the HR model simulation,
which runs on a mesh with 400 cells.
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Figure 2.4: Flow over an inclined plane with random microtopography:
Global topography for I = 0.05 (top); microtopography (bottom).

Flow over an inclined plane with random
microtopography

Study area

The following example is inspired by similar simulation runs carried out
in [89] and simulates a run-dry process of an inclined surface with random
microtopography. The study area is a 4m× 1m inclined plane (cf. Figure
2.4 (top)). Random microtopography is generated as square blocks with a
horizontal length of 0.05 m and a vertical elevation according to a Gaußian
distribution with a standard deviation of σ = 0.02 m (cf. Figure 2.4 (bot-
tom)). The maximum value of the microtopography is about 0.07 m and
the minimum value about −0.08 m. The domain is initially ponded with
water which is then discharged during the simulation at the outlet of the
domain. Several simulations with different slope and initial water depth are
carried out.



CHAPTER 2. FRICTION LAW 30

Table 2.3: Flow over an inclined plane with random microtopography: Sim-
ulation parameters, initial and boundary conditions.

Symbol Meaning Value

σ Standard deviation 0.02 m
I Slope 0.01− 0.14
n Manning’s coefficient (HR) 0.04 sm−1/3

i Rainfall intensity 0
T Simulation time 60 s
BC0 Boundary condition at x = 0 closed
BC4 Boundary condition at x = 4 m open
BC‖ Boundary conditions at y = 0; 1m closed
h0 Initial water depth 0.005− 0.08 m

The slope I and the initial water depth h0 are varied for different sim-
ulation runs. For each different slope, different simulation runs. The slope
is increased in steps of 0.01 and the water depth is increased in steps of
0.005 m. For example, for I = −0.01, simulation runs with h0 = 0.005 m,
h0 = 0.01 m, h0 = 0.015 m until h0 = 0.08 m are carried out, and after
that the slope is set to I = −0.02 and again simulation runs with varying
h0 are carried out. Table 2.3 shows the simulation parameters, initial and
boundary conditions for this simulation.

Four different roughness models are compared for every possible com-
bination of I and h0 with results of a high-resolution model explicitly dis-
cretizing the microtopography (HR): a model using a calibrated constant
Manning’s coefficient (CM); a model using a variable Manning’s coefficient
(VM), Lawrence’s model (LAW); and the proposed roughness approach
(RM). The HR model uses quadratic grid cells with an edge length of 0.01 m,
all other models use grids with coarser cells.

Uncalibrated model on coarse grid

First, an uncalibrated simulation on a coarse grid is carried out to show the
effects of increasing the grid size without using an upscaling approach. The
simulation is run on a 0.05 m× 0.05 m grid using the same roughness coef-
ficient as the HR model (n = 0.02 sm−1/3) for I = −0.02, h0 = 0.04 m. Re-
sults for the unit discharge at the outlet for the uncalibrated model (UCM)
are plotted in Figure 2.5 (top). The peak of the discharge curve of the
UCM model is about 20 times higher than the HR model. After the peak
is reached, the UCM model discharge decreases too quickly which indicates
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Figure 2.5: Flow over an inclined plane with random microtopography,
0.05m grid size: Unit discharges of the uncalibrated model (UCM) and
HR models (top) and model comparison at the outlet for h0 = 0.04 m
and I = 0.02 (bottom) (HR: High-resolution, CM: Constant Manning, VM:
Variable Manning, LAW: Lawrence, RM: proposed approach).

that the roughness is overall underestimated. A NRMSD of 1.0 is calcu-
lated.

Application to different hydraulic conditions

In this section, the applicability of the roughness models to different hy-
draulic conditions is tested. In a first step, the models are calibrated for
a fixed I-Λ0 combination and in a second step these calibrated models are
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Table 2.4: Flow over an inclined plane with random microtopography,
0.05 m grid size: Calibrated parameter values and corresponding NRMSD
for h0 = 0.04 m and I = 0.02 for each model (CM: Constant Manning, VM:
Variable Manning, LAW: Lawrence, RM: proposed approach).

Model Calibrated parameter(s) NRMSD

CM n = 0.18 sm−1/3 0.120
VM n0 = 0.14sm−1/3;h0 = 0.045m;ε = 1.4 0.026
LAW φ = 50 %; k = 0.023 m 0.173
RM n = 0.112sm−1/3;α0 = 5.52;α1 = 2.61 0.030

applied to different I-Λ0 combination.
All models were calibrated on a 0.05 m× 0.05 m-grid with regard to the

unit discharge calculated by the HR model at the outlet of the domain for
a slope of I = −0.02 and an initial water depth of h0 = 0.04 m, i.e. an
initial inundation ratio of Λ0 = h0/σ = 2. The calibrated parameters of
all models with the corresponding NRMSDs are given in Table 2.4. The
unit discharges at the outlet are plotted in Figure 2.5 (bottom). While the
LAW model is showing the worst agreement with the HR model, the VM
model agrees the best, followed by the RM model. Although the first peak
of the HR model can not be captured by any of the models, overall the VM
and RM models capture the HR model results very well. The CM model
undershoots the HR solution significantly at the beginning of the simulation
and starts to overshoot it after about t = 12 s. The overall agreement is not
satisfactory. Additional calibrations which were carried out with different
initial conditions suggest that all models except the LAW model should
be calibrated for Λ0 ≥ 2, because for Λ0 < 2 the calibration may fail to
deliver good results. One reason for this may be, that for Λ0 < 2 the
blockade effects of the microtopgraphy outweigh its roughness effects, i.e.
the flow depends on the spatial configuration and geometric properties of
single microtopography elements. Then, spatial heterogeneity significantly
influences the flow and therefore the roughness effects can not be averaged
over the domain. For h0 = 0.04 m, the LAW model uses Equation 2.11 to
calculate the roughness and therefore has no calibration parameters. The
calibrated values in Table 2.4 effect only the stage of the simulation when the
inundation ratio becomes smaller than 1. Calibrating the LAW model for
smaller Λ0 might deliver better results, however the calibration difficulties
regarding the LAW model mentioned in the test case before still remain.

To study the transferability of the calibrated parameters to different
hydraulic conditions, the calibrated parameters in Table 2.4 are used to
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simulate the unit discharge for every I-Λ0 combination. The grid cell size
used by the models is 0.05 m. Results are compared with HR model re-
sults. Figure 2.6 shows the NRMSD of all models in dependency of I and
Λ0, where each cell is the result of a simulation run of a certain I-Λ0 com-
bination. The main focus of Figure 2.6 is the change of the NRMSD in
dependency of I and Λ0 within one model. Because of this reason and the
significant differences in the NRMSDs of different models, the range of the
legends are not set equal. The I-Λ0 combination used for the calibration
is denoted with a black rectangle. High NRMSD in the CM model results
occur for small Λ0 combined with small I. As Λ0 or I increase, the NRMSD
decreases as the influence of the microtopography decreases. The minimum
NRMSD occurs for the calibration conditions, i.e. Λ0 = 2 and I = −0.02.
Except for the region around Λ0 = 0.75 and I = −0.01, which is the loca-
tion of the maximum NRMSD, the transfer of the calibrated parameters to
different I and Λ0 does not significantly alter the NRMSD. It stays almost
constant around the mean value of 0.133. The NRMSD distributions of the
VM model and the RM model are qualitatively very similar. High NRMSD
occurs for small Λ0 combined with large I. For the VM model, the mini-
mum NRMSD occurs for the calibration conditions, but for the RM model
smaller NRMSD is calculated for other simulation runs. For both models,
transfering the calibrated parameters to hydraulic conditions with Λ0 > 1.5
leads to increased NRMSDs, but transfering the parameters to conditions
with higher Λ0 has not a significant influence on the NRMSD. The LAW
model has the highest NRMSD of all considered models. The NRMSD
increases significantly for Λ0 < 1, for Λ0 > 1 the NRMSD is about 0.15
and remains constant. With increasing Λ0, the NRMSD decreases. The
maximum NRMSD, the minimum NRMSD and the mean NRMSD of all
simulations for each model are given in Table 2.5. Here it is seen that the
RM model calculates a smaller minimum, maximum, and mean NRMSD
than the VM model, but the VM model can be locally calibrated to show
better agreement (cf. Figure 2.5 (bottom)).

Application to different cell size

Grid size is increased from 0.05 m to 0.1 m and to 0.2 m to study the trans-
ferability of the calibrated parameters to different mesh resolutions. It is
desirable, that the RMSD decreases with decreasing cell size (also called
grid convergence) because this allows to efficiently calibrate the model on
coarser cells and then transfer the calibrated parameters to a model with
the desired spatial resolution [58]. If this can not be achieved, it is desir-
able that at least the RMSD stays the same for different cell sizes. Table
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Figure 2.6: Flow over an inclined plane with random microtopography,
0.05 m grid size: Normalized root mean square deviation in relation to
initial inundation ratio Λ0 and slope I.

Table 2.5: Flow over an inclined plane with random microtopography,
0.05 m grid size: Minimum (min), maximum (max) and mean NRMSD val-
ues of all I-Λ0-combinations for different models (CM: Constant Manning,
VM: Variable Manning, LAW: Lawrence, RM: proposed approach).

Model min max mean

CM 0.095 0.468 0.133
VM 0.026 0.347 0.105
LAW 0.093 1.688 0.335
RM 0.022 0.304 0.091
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Table 2.6: Flow over an inclined plane with random microtopography:
Computational benefit for different grid sizes ∆x (HR: high-resolution,
other: all upscaled roughness models).

Model ∆x cell number SPEEDUP

HR 0.01 m 40000 1
other 0.05 m 1600 20
other 0.1 m 400 40
other 0.2 m 100 70

Table 2.7: Flow over an inclined plane with random microtopography:
Mean NRMSD in dependency of grid cell length averaged over all I-
Λ0-combinations (CM: Constant Manning, VM: Variable Manning, LAW:
Lawrence, RM: proposed approach).

Model 0.05 m 0.1 m 0.2 m

CM 0.133 0.133 0.133
VM 0.105 0.105 0.105
LAW 0.336 0.336 0.335
RM 0.092 0.092 0.091

2.7 shows the NRMSD in dependency of grid cell length averaged over all
I-Λ0-combinations. For all models, the calibrated parameters were trans-
ferred between the investigated scales with negligibly small change in the
NRMSD. Oddly, coarsening the grid size to 0.2 m improves the NRMSD.
The reason for this negligibly small improvement may be due to numerical
round-off somehow benefiting the accuracy of the solution, yet this has not
been further investigated. The inclined plane as a study area is not very
sensitive to grid size, because the geometry is captured perfectly accurate
by the second order discretization in combination with the non-negative
hydrostatic reconstruction (cf. [128]). The plane has no other spatial het-
erogeneities than the subgrid-scale microtopography, which is accounted for
by the roughness formulation, i.e. the model domain is a smooth inclined
plane. Therefore, increasing grid size is not associated with further loss
of geometric information and only reduces accuracy because of numerical
diffusion. The HR model simulation runs on a mesh with 40000 cells. The
speedup (Equation 2.24) in relation to the cell number is shown in Table
2.6. As the cell number decreases, the speedup increases. The speedup of
the different upscaled roughness models did not differ significantly.
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Rainfall-runoff in a small alpine catchment

Study area and preliminary studies

Hortonian overland flow in a natural catchment, the Heumöser slope, Vo-
rarlberg Alps, Austria, is simulated. The study area is a 100 000 m2 large
subcatchment of the Heumöser slope. Bottom elevation of the area is pro-
vided in 1 m × 1 m resolution by a digital elevation model of the Austrian
department Torrent and Avalanche Control. This bottom elevation is used
for the high-resolution model. Figure 2.7 (top) shows the topography of the
domain and the location of the outlet, where discharge was measured. Rain-
fall is imposed according to a time series measured in July 2008 with a res-
olution of 10 min (Figure 2.7 (middle)). The simulation runs for t = 120 h,
i.e. 5 days.

Extensive numerical simulations of the surface and subsurface runoff for
this domain were carried out in [128, 137] within Research Unit ’Coupling
of flow and deformation processes for modelling the movement of natural
slopes’ funded by the German Research Foundation [57]. During these sim-
ulations, the model was calibrated with a runoff coefficient Ψ = 0.3 in com-
bination with a linear reservoir model to account for the slower discharge
component in the subsurface, which was identified as a crucial contribu-
tor to the discharge at the outlet of the domain. The linear reservoir is
described by the following equations:

dS (t)

dt
= I (t)−Q (t) (2.27)

S (t) = KQ (t) (2.28)

Here, S (t) stands for the storage at time t; I (t) for the inflow; and Q (t)
for the outflow of the reservoir. K is the constant of proportionality which
can be obtained by calibration. A calibration in [128] resulted in a constant
of proportionality K = 6 h and a Manning coefficient of n = 0.067 sm−1/3.
Because the same numerical model (hms) as in [128] is used in this study,
the same values for Ψ and K are used in all models. For reference, the
results of a high-resolution simulation with these parameters on a 1 m×1 m
grid (HR) is plotted in Figure 2.7 (bottom).

In the simulations grids with cell sizes of 5 m, 10 m and 20 m are used.
The bottom elevation inside a cell is set to the arithmetic average of all
DEM points located inside the cell. The discretized bottom elevation for
the studied cases is given in Figure 2.8. As expected, the discretization with
a cell size of 5 m (Figure 2.8 (top)) has the most information about local
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Figure 2.7: Rainfall-runoff in a small alpine catchment: Bottom elevation,
watershed (blue) and location of the outlet (top); intensity of the rainfall
event plotted over time (middle); HR model results with parameters from
[128] (bottom)
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Table 2.8: Rainfall-runoff in a small alpine catchment: Simulation param-
eters, initial and boundary conditions.

Parameter Meaning Value

σ Standard deviation 0.19m− 0.21m
I Slope locally varying
n Manning’s coefficient (HR) 0.067 sm−1/3

i Rainfall intensity time series
T Simulation time 120 h
BC Boundary condition open boundary
h0 Initial water depth 0

details in the topography. It also can be seen that the discretization with a
cell size of 10 m (Figure 2.8 (middle)) still represents an acceptable amount
of local heterogeneities and even the discretization with a cell size of 20 m
(Figure 2.8 (bottom)) is able to capture the main topologic characteristics of
the catchment. However, in the latter case the watershed boundaries start
to blur and the location of the measurement weir is captured in a single
cell. Small scale preferential flow paths in the domain as observed in [128]
can not be represented by the coarse resolution. Additionally, numerical
diffusion increases due to the mesh resolution effects [160]. All these effects
have to be captured to some extent by the roughness formulations.

In order to calculate its standard deviation, the microtopography is
isolated by calculating the deviations of each DEM point in a cell from the
bottom elevation of the cell. The standard deviation of the microtopography
is then calculated as σ = 0.19 m for a grid cell size of 5 m and σ = 0.21 m
for a grid cell size of 10 m and 20 m.

Table 2.8 shows the simulation parameters, initial and boundary condi-
tions for this simulation.

The proposed roughness formulation (RM) and three other roughness
approaches are compared in this test case: calibrated constant Manning’s
coefficient (CM), variable Manning’s coefficient (VM) and the model of
Lawrence (LAW). Model discharges at the outlet are superposed with the
interflow computed by the linear reservoir (cf. Equations 2.27 and 2.28)
and are compared with measurement data.

Upscaling with roughness formulations

Models are calibrated for a quadratic grid with a cell size of 10 m. Table
2.9 shows the calibrated model parameters and the corresponding RMSD
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Figure 2.8: Rainfall-runoff in a small alpine catchment: Bottom elevation
discretization in dependency of mesh resolution
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with regard to measurement data for each model. All models have almost
the same RMSD, however the RM model and the CM model give the lowest
RMSD. The HR model results in a similar RMSD as the coarse models.
The reason is that due to computational restraints, the HR model was cal-
ibrated manually with fewer trials than an optimization algorithm would
require [128]. The usage of numerical optimization algorithms to calibrate
the HR model would demand unfeasibly high computational effort. The hy-
drograph calculated by the HR model is compared with measurement data
in Figure 2.7 (bottom). In the early stages of the rainfall event, specif-
ically for t < 20 h, the interflow is overestimated by the linear reservoir
model and thus, the HR model results overshoot the measured data sig-
nificantly. Reason for this deviation might be previous hydrological events
in the catchment, which can not be taken into account. This can be seen
in Figure 2.7 (bottom), where at the beginning of the simulation the in-
terflow overshoots the measured time series. Most likely, in the real event
the rainfall infiltrated into the groundwater instead of becoming part of the
interflow. Better results might be obtained by using a more sophisticated
approach than a constant runoff coefficient to estimate the effective rainfall.
At around t = 20 h the deviation between model and measurement begins
to decrease. After t = 30 h, the hydrograph is captured quite accurately by
the models. The hydrographs of the CM, VM, LAW and RM model are
plotted in Figure 2.9 (blue triangles). As the HR model, these models also
overshoot the measurement data for t < 20 h. The CM model shows good
agreement for the calibrated cell size. Both peaks are captured well. The
VM model captures both occuring peaks (at about t = 35 h and t = 65 h)
the best. The LAW model and the RM model tend to undershoot both
peaks. However, the RM model captures the tails of both curves more
accurately.

Application to different cell size

In order to investigate the transferability of calibrated parameters to dif-
ferent resolutions, cell size is varied to 5 m and 20 m. Table 2.10 shows
the RMSD for each model in dependency of cell size. In Figure 2.9, the
hydrographs for a cell edge length of 5 m (red circle) and a cell edge length
of 20 m (black square) are plotted. For the CM model, varying the cell size
decreases both peaks and decreases the arrival time of the first wave. In
Table 2.10 it can be seen that the RMSD increases with varying cell size.
For the VM model, increasing or decreasing the cell size lowers both peaks
(Figure 2.9). For the LAW model, mesh refinement leads to an overall in-
crease in discharge and increasing the cell size leads to an overall decrease
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Figure 2.9: Rainfall-runoff in a small alpine catchment: Discharges of dif-
ferent models
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Table 2.9: Rainfall-runoff in a small alpine catchment, 10 m grid size: Cal-
ibrated parameter values and corresponding RMSD for each model (HR:
High-resolution, CM: Constant Manning, VM: Variable Manning, LAW:
Lawrence, RM: proposed approach).

Model Calibrated parameter(s) RMSD

HR n = 0.067 sm−1/3 0.011
CM n = 0.115 sm−1/3 0.010
VM n0 = 0.01sm−1/3;h0 = 0.058m;ε = 0.11 0.012
LAW φ = 10 %; k = 0.21 m 0.012
RM n = 0.035sm−1/3;α0 = 0.3;α1 = 0.87 0.010

in the discharge. Varying the cell size for the RM model leads to a signif-
icant decrease in both peaks. The arrival time of both waves is captured
accurately in all cases. In Table 2.10 it can be seen that the VM model
shows good transferability, while the calibration of the CM, LAW and RM
model results show higher RMSDs if the cell size is changed.

A manual calibration of the RM model was carried out to further in-
vestigate this models parameters transferability. It was found out that
the transferability of the parameters of the RM model can be increased
if accuracy is sacrificed. For the parameter combination n = 0.07 sm−1/3,
α0 = 0.51 and α1 = 0.54, which result in a RMSD = 0.012, the RM model
showed good transferability of its parameters across the investigated cell
sizes.

The speedup, as calculated according to Equation 2.24, in dependency
of grid cell size is shown in Table 2.11. As expected, increasing the cell
size reduces the cell number and thus the computational effort significantly.
The speedup of the different roughness models is about the same. Of course
the computational time depends on the hardware and the numerical code,
however the speedup certainly can be transferred with little variance to
different hardware and codes.

2.6 Discussion

The speedup in the presented examples varied in a wide range between 20 to
2520 (cf. Tables 2.6, 2.11). The width of the range can be explained with the
way the cell size influences the speedup. In fact, the two major influences
on the speedup are the number of cells and the Courant-Friedrichs-Lewy
stability criterion (CFL), which limits the time step size [77]. Both the
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Table 2.10: Rainfall-runoff in a small alpine catchment: RMSD for each
model in dependency of cell size (CM: Constant Manning, VM: Variable
Manning, LAW: Lawrence, RM: proposed approach).

Model 5 m 10 m 20 m

CM 0.015 0.010 0.013
VM 0.012 0.012 0.012
LAW 0.013 0.012 0.014
RM 0.016 0.010 0.013

Table 2.11: Rainfall-runoff in a small alpine catchment: Computational
benefit for different grid sizes ∆x (HR: high-resolution, other: all upscaled
roughness models).

Model ∆x cell number SPEEDUP

HR 1 m 147400 1
other 5 m 5896 56
other 10 m 1474 336
other 20 m 374 2520

number of cells and the CFL criterion are dependent on the cell size. In
[77], these effects have been taken into account to express a relationship
between computational cost C with cell size ∆x as

C ∼ k∆x−3, (2.29)

where k is a factor which depends on the computational scheme. The
additional operations performed for the calculation of the source terms have
been found insignificant, which is the reason why all models get the same
speedup for the same cell size, i.e. same number of cells. However, in
Table 2.6 the coarse grid has 400 times less cells than the high-resolution
grid causing a speedup of 70. In contrast, the coarse grid of Table 2.11 has
roughly the same factor of decrease in cell numbers with respect to its high-
resolution grid, however the speedup is 2520. The variation in the speedup
might be related to the total duration of the simulation. As the decrease
in cell numbers decreases the number of floating point operations per time
step, the longer the simulation runs the higher the deviation between the
walltime durations of both models becomes.

Another issue to be discussed is the calibration effort. While in gen-
eral it can be assumed that the calibration effort increases with increasing



CHAPTER 2. FRICTION LAW 44

number of calibration parameters, the calibration effort is very dependent
on the initial guess. The authors have shown in [113], that due to this
dependency, sometimes models with three calibration parameters require
less calibration steps than models with two parameters. However, in this
work, the calibration of the constant Manning model with one parameter
required significantly less calibration steps. This is also related to the opti-
mization methods, because scalar functions can be optimized very efficiently
while functions of higher dimension require more sophisticated and compu-
tationally demanding optimization methods. In the authors’ opinion, the
additional accuracy of the variable Manning or the proposed roughness ap-
proach outweighs the higher calibration effort. It should also be mentioned,
that even if the calibration step is taken into account, the coarse grid sim-
ulations are faster than the high-resolution simulation in the investigated
cases. Further, as seen in the last example, the high-resolution simulation
itself needs to be calibrated for real case applications.

2.7 Conclusions

A novel conceptual roughness formulation for shallow water simulations on
coarse grids was developed. The formulation is dependent on the inunda-
tion ratio, which is calculated using the standard deviation of the micro-
topography with regard to its mean value. A physical interpretation of
the free parameters was given: the parameter C0 is an increased Chézy
coefficient, α0 is an additional dimensionless roughness coefficient account-
ing for the microtopography and α1 is a geometric conveyance parameter.
The presented roughness formulation was then compared to several existing
roughness formulations from literature. It was demonstrated in three com-
putational examples, that high-resolution results can be approximated with
satisfactory accuracy by calibrating the roughness formulation parameters.
The exact values of the calibration parameters may vary in dependency of
the numerical methods used to solve the equations, hence the optimized
parameters reported in this study should be taken with caution.

The first example studied one-dimensional rainfall-runoff over a sine-
wave shaped microtopography. The presented roughness approach returned
the lowest root mean square deviation from the high-resolution model re-
sults. In the second example, calibrated parameters were transferred to
different hydraulic conditions with some success. Varying the slope or the
initial inundation increased the error for all models. The presented rough-
ness formulation, together with the variable Manning’s coefficient, resulted
in the lowest root mean square deviations. It was shown that the proposed
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roughness formulation can be calibrated more accurately than the variable
Manning’s coefficient formulation, however the latter showed a better cal-
ibration stability. In the last example, the proposed roughness approach
was tested for a real case application. Here, again the presented roughness
formulation and the variable Manning’s coefficient approach were shown to
be good trade-offs between accuracy and computational efficiency. It was
shown that it is possible to upscale shallow water models using suitable
roughness formulations. Due to mesh resolution effects [58, 160], the coarse
grid models are not able to reproduce the high-resolution solutions exactly.
In general, it can be concluded that accuracy increases with the number
of free calibration parameters. However, as the number of parameters in-
creases, the calibration process becomes more difficult. Using coarser grids
resulted in a speedup between 20 and 2520. The reasons for the wide range
of the speedup have been discussed. Overall, the proposed roughness ap-
proach is superior when compared to the other roughness approaches with
respect to accuracy.
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3.1 Abstract

This paper derives a novel formulation of the depth-averaged shallow wa-
ter equations with anisotropic porosity for computational efficiency reasons.
The aim is to run simulations on coarser grids while maintaining an accept-
able accuracy through the introduction of porosity terms, which account
for subgrid-scale effects. The porosity is divided into volumetric and areal
porosities, which are assigned to the cell volume and the cell edges, respec-
tively. The former represents the volume in the cell available to flow and
the latter represents the area available to flow over an edge, hence intro-
ducing anisotropy. The porosity terms are variable in time in dependence
of the water elevation in the cell and the cumulative distribution function
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of the unresolved bottom elevation. The main novelty of the equations is
the formulation of the porosities which enables full inundation of the cell.
The applicability of the equations is verified in five computational exam-
ples, dealing with dam break and rainfall-runoff simulations. Overall, good
agreement between the model results and a high-resolution reference simu-
lation has been achieved. The computational time decreased significantly:
on average three orders of magnitude.

3.2 Introduction

Shallow water models are applied in a broad range of areas such as river hy-
draulics [111, 74, 82, 118], dam break simulations [165, 94], urban flooding
[88, 90, 91, 119] and recently also for overland flow in natural catchments
[26, 102, 23, 128, 154, 114] and urban runoff [16, 89], among many others (cf.
e.g. [63]). In overland flow simulations, usually there is a large difference
between the scales of the features significantly influencing the flow and the
scale of the simulation domain. For example, in a natural catchment with a
scale around a square kilometer, local depressions and microtopograpy with
horizontal scales smaller than a square meter influence the flow field signif-
icantly [32, 6, 141]. Similar observations are made for urban flood models
where the scale of buildings is exceeded by the scale of the city in several
orders of magnitude, e.g. a building has a scale of around 100 m2 while the
city may span up to 100 km2. Recent developments in survey technology
such as light detection and ranging (LIDAR) and laser scanning are able to
provide high accuracy high-resolution elevation data sets at relatively low
cost [46]. However, the integration of these data into numerical models is
often challenging because of finite computer resources [31, 97]. In order to
capture the impact of the smallest relevant scale on the flow, the microto-
pography has to be explicitly discretized. This leads to meshes with small
cell size and therefore high cell number which in return leads to an increased
computational effort. Despite developments in CPU power, high-resolution
simulations across large catchments are in practice often unfeasible without
supercomputers [129].

Instead of explicitly discretizing the small-scale topography, its influence
on the flow can be conceptually accounted for on coarser meshes to reduce
the computational effort [33]. One such approach introduces a porosity term
into the shallow water equations, which refers to the fraction of a compu-
tational cell available for flow and is a concept borrowed from groundwater
flow modeling. The porosity then conceptually accounts for subgrid-scale
topography. In literature, the extended shallow water equations incorporat-
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ing this porosity are called shallow water equations with porosity or porous
shallow water equations. The initial porous shallow water equations have
been derived by Defina [26] to account for microtopography in overland flow.
Later, the concept has been applied in urban flood modeling as a building
treatment method [55, 51, 132, 18, 19, 20, 126]. These porous urban flood
models use a single isotropic porosity to account for the buildings in the cell,
assuming isotropic behaviour. The reason for this assumption is that the
shallow water equations with single porosity are derived from the differential
form of the classical shallow water equations using a representative elemen-
tary volume (REV) similar to the derivation of the Darcy flow equation in
groundwater flow modeling, e.g. [3]. The REV is by definition isotropic
and therefore only a single isotropic porosity can be derived for each cell
(cf. [51]), which leads to the loss of directionality and hence may falsify the
preferential flow paths. To the authors’ knowledge, two approaches have
been developed to overcome the loss of directionality and both have been
developed for building treatment in urban flood models. The first approach
has been developed by Guinot [48] and introduces multiple porosities in
each cell, which account for different directions and storages. These porosi-
ties can be derived from the differential form of the shallow water equations
without violating the continuum model and REV assumption. The second
approach has been introduced by Sanders et al. [125]. This approach ad-
ditionally assigns so-called areal or conveyance porosities to the cell edges,
which introduce directionality to the equations. If the differential form of
shallow water equations is used, these areal porosities can not be introduced
without violating the REV assumption. Therefore, the integral form of the
shallow water equations is used, as it does not require the assumption of an
REV for the derivation. Yet, using the integral form of the shallow water
equations means that only a finite volume method can be utilized for the
numerical solution [48, 125]. Because these types of models are not isotropic
anymore, they are referred to as anisotropic porosity shallow water models.

While there is ongoing research at the University of Liege to incorpo-
rate depth-dependent porosities into an urban flood model [10], the porous
shallow water models for building treatment generally do not allow full in-
undation of the buildings. This is a valid assumption for urban flood mod-
eling, however a porous shallow water model for generalized flow requires
partial as well as full inundation of unresolved topography. Therefore, this
paper examines the possibility of extending the equations derived in [125] to
enable full inundation of the subgrid-scale unresolved topography to apply
it to general surface flow modeling. This leads to a novel formulation of
the porosities and the interfacial pressure terms and a mutual dependency
between water elevation and porosity.
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Finally, it should be noted that the shallow water equations with poros-
ity can not reproduce a high-resolution solution exactly, because they can
not resolve local details of the flow. However, the anisotropic porosity
model has been found to be able to reproduce overall flow characteristics
with satisfactory accuracy.

This paper is organized as follows: first the integral shallow water equa-
tions with anisotropic porosity are presented; then the numerical methods
are discussed briefly; five computational examples are shown to demon-
strate model capabilities; finally conclusions are given. In the following,
the unresolved subgrid-scale topography features such as microtopography
in overland flow modelling or buildings in urban flood modelling are referred
to as unresolved solid structures or unresolved topography.

3.3 Governing equations

In this section, the integral shallow water equations with anisotropic poros-
ity are derived for an arbitrary control volume. As aforementioned, the
numerical solution of the shallow water equations in integral form is only
possible with the finite volume method.

Anisotropic porosities

For the derivation of porosity, the phase function i inside a given control
volume is introduced as

i (x, y) =

{
1, if η (x, y) > zb (x, y)

0, else
(3.1)

where η is the water elevation, zb is the bottom elevation and x, y are the
horizontal Cartesian coordinates. Figure 3.1 illustrates the water elevation
η and bottom elevation in a vertical section through a control volume. For
illustration purposes, i is evaluated in two points. If the bottom elevation
exceeds the water elevation, i.e. dry case, the phase function is 0. If the
water elevation exceeds the bottom elevation, i.e. wet case, the phase func-
tion equals 1. Therefore, the phase function indicates whether a certain
point (x, y) in the control volume is wet or dry. Porosity is defined as the
ratio of volume or area of fluid to the whole volume or area of the control
volume. Then, the volumetric porosity φ is defined as

φ =

∫
Ω
i (η − zb) dΩ∫

Ω
(η − z0) dΩ

(3.2)
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Figure 3.1: Definition of phase function i, water elevation η (blue), bottom
elevation zb (black) and zero datum z0 (dashed) in a vertical section through
a control volume

and the areal porosity ψ of the boundary of the control volume is defined
as

ψ =

∮
∂Ω

i (η − zb) dr∮
∂Ω

(η − z0) dr
(3.3)

where Ω stands for the area of the control volume, ∂Ω stands for the bound-
ary of the control volume, z0 is the zero datum of the control volume (cf.
Figure 3.1, dashed line) and r is the path along the boundary ∂Ω. The
values of the porosities depend on the zero datum z0. Here, the lowest bed
elevation inside the control volume (denoted as minimum in Figure 3.1) is
chosen as the zero datum. This means, that in the finite-volume method
the zero datum will vary for each cell.

Figure 3.2 shows an exemplary control volume with the definition of
Ω and ∂Ω. Figure 3.2 (left) shows a three-dimensional view of a partially
inundated control volume, where blue colour indicates the water column
and grey colour indicates bottom topography. Figure 3.2 (right) shows
the top view of the control volume (top) and a vertical section through
the boundary of the control volume denoted with (A-A’) (bottom). Here,
darker shades of grey indicate higher bottom elevation. Again, in each point
where the water inundates the bottom topography the phase function i = 1
and at the points where the bottom topography elevation exceeds the water
elevation i = 0. Both elevations are calculated with the minimum bottom
elevation inside the control volume as the zero datum, which is marked in
Figure 3.2 (left). The volumetric porosity φ is calculated with Equation
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Figure 3.2: Definition of control volume area Ω, control volume boundary
∂Ω and path r in three dimensional view (left) top view and vertical section
through the cell edge marked with A-A’ (right)

3.2, and is the ratio of the volume of the fluid (blue columns) to the volume
of the control volume. The volume of the control volume is calculated by
multiplying the elevation of the water column, i.e. the distance (A’-B’)
in Figure 3.2 (right, bottom) with the total horizontal area of the cell Ω,
shown in Figure 3.2 (right, top). For example, in the case illustrated in
Figure 3.2, Ω = (A-A’)2. Similarly, the areal porosity ψ is calculated as the
ratio of the vertical area of the fluid at the boundary edge (coloured blue in
Figure 3.2 (right, bottom)) to the vertical area of the boundary, described
by the path (A-A’-B’-B) in Figure 3.2 (right, bottom).

It can be shown that the constant porosities derived in [125] can be
obtained by simplifying Equations 3.2 and 3.3 (cf. 3.7). In contrast to
these constant porosities, the porosities derived in this work are variable in
time.

Integral-differential form of the shallow water
equations with anisotropic porosity

The integral formulation of the shallow water equations can be obtained by
applying the balance equation for mass and momentum to a fixed Eulerian
control volume under the assumption of hydrostatic pressure distribution
[56] (pp. 47 ff.). Prior to the integration, the conserved variables h, qx
and qy are multiplied with the phase function i (Equation 3.1) to account
for the unresolved topography. Then, the temporal change of the vector of
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conserved variables q can be expressed as:

∂

∂t

∫
Ω

iqdΩ +

∮
∂Ω

iFndr =

∫
Ω

sdΩ +

∮
∂Ω∗

s∗dr (3.4)

Here, t is the time and s is the source vector. q and s are usually expressed
as:

q =

hqx
qy

 , s =

 ir
sb,x + sf,x
sb,y + sf,y

 (3.5)

where h = η − zb stands for water depth. qx and qy are the unit discharges
in x- and y-direction, respectively. ir is a mass source term, e.g. rainfall
intensity; sb,x, sb,y, sf,x, sf,y are the bed slope and the friction source terms
in x- and y-direction, respectively, and are calculated as:

sb,x = −gh∂zb
∂x

, sb,y = −gh∂zb
∂y

(3.6)

sf,x = −cfqx
√
q2
x + q2

y

h2
, sf,y = −cfqy

√
q2
x + q2

y

h2
(3.7)

The slope source terms account for variations in bottom and the friction
source terms account for the bottom roughness. cf stands for the friction
coefficient. F is the flux vector and can be expressed via f and g as

Fn = fnx + gny (3.8)

where n is the unit normal vector to the boundary; nx and ny are its
components and f and g are the flux vectors in x- and y-direction defined
as

f =

 qx
uqx + 0.5gh2

uqy

 , g =

 qy
vqx

vqy + 0.5gh2

 . (3.9)

Here, u and v are the depth-averaged velocity in x- and y-direction, respec-
tively. g is the gravitational acceleration. s∗ is the source vector accounting
for fluid pressure along the interface between the fluid and solid ∂Ω∗. It re-
sults from the macroscopic description, which does not differentiate between
fluid and solid (cf. [5], pp. 200-201).

In the limit of no structures to account for, the phase function i returns
1, the integral along ∂Ω∗ vanishes and therefore Equation 3.4 converges to
the classical two-dimensional shallow water equations, which can be found
in, e.g. [56] (p. 47). In [26], while properties of the differential form
of the equations are discussed, it is argued that the equations may fail



CHAPTER 3. POROSITY – MATHEMATICAL MODEL 53

to give a good approximation for very shallow flow, because some of the
assumptions made for the derivation, e.g. a smooth free surface, do not
hold. Although the assumptions made in deriving the integral form are not
violated during very shallow flow, other statements made in [26] still apply
and may lead to an inaccurate approximation. Namely, very shallow flow
with partially dry area is dominated by the effects of bottom irregularities
which direct most of water laterally which increases the flow path and the
amount of dissipated energy [26]. If these bottom irregularities are only
conceptually taken into account by using the porosity and the interfacial
pressure terms, the model will not be able to reproduce the correct flow
paths and may underestimate the dissipated energy. Unresolved topography
which lies inside the computational cell can only be accounted for with the
volumetric porosity. This is a limitation of the model, because directionality
is introduced in the model in form of the areal porosities, to which the
unresolved topography inside the cell can not contribute. Hence, structures
which would have influenced the flow direction, e.g. roads and curbs, but
lie completely inside the cell, will not effect the flow direction. As a result,
their impact on the flow may be underestimated by the model.

Storage and flux terms

The porosity terms in Equation 3.2 and 3.3 are used to express discrete
forms of the integral terms containing the phase function i.

The evaluation of the integral of iq in Equation 3.4 is considered. In
the following, volume-averaged variables will be used to find a suitable
approximation for this integral. The volume-averaged water elevation is
calculated as:

η̄ =

∫
Ω
iηdΩ∫

Ω
idΩ

(3.10)

The volume-averaged velocity is calculated as:

v̄ =

∫
Ω
ihvdΩ∫

Ω
ihdΩ

(3.11)

The volume-averaged variables are constant within the control volume Ω.
Applying Equation 3.10 to Equation 3.2 and using η − zb = h leads to:

φ =

∫
Ω
i (η − zb) dΩ∫

Ω
(η − z0) dΩ

=

∫
Ω
ihdΩ∫

Ω
(η̄ − z0) dΩ

(3.12)

As established above, η̄ is constant inside the control volume. Hence, the
expression (η̄ − z0) is also constant inside the control volume and can be
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taken outside of the integration:

φ =

∫
Ω
ihdΩ

(η̄ − z0)
∫

Ω
dΩ

=

∫
Ω
ihdΩ

(η̄ − z0) Ω
(3.13)

Then, Equation 3.13 can be rearranged to∫
Ω

ihdΩ = φ (η̄ − z0) Ω, (3.14)

which corresponds to the evaluation of the integral of the mass storage (first
entry of q) in Equation 3.4. The momentum storage in x-direction (second
entry of q) can be written by using qx = uh as:∫

Ω

iqxdΩ =

∫
Ω

iuhdΩ (3.15)

If the velocity u is approximated by the volume-averaged velocity, the equa-
tion becomes: ∫

Ω

iuhdΩ ≈
∫

Ω

iūhdΩ = ū

∫
Ω

ihdΩ (3.16)

Then, Equation 3.13 can be used to write:

ū

∫
Ω

ihdΩ = φū (η̄ − z0) Ω (3.17)

The same derivation can be applied in y-direction (third entry of q in Equa-
tion 3.4) to get:∫

Ω

iqydΩ =

∫
Ω

ivhdΩ ≈
∫

Ω

iv̄hdΩ = v̄

∫
Ω

ihdΩ = φv̄ (η̄ − z0) Ω (3.18)

The integral of q in Equation 3.4 can be replaced using Equations 3.13,
3.17 and 3.18 to write

∂

∂t
φΩq̄ +

∮
∂Ω

iFndr =

∫
Ω

sdΩ +

∮
∂Ω∗

s∗dr, (3.19)

where q̄ is the vector of volume-averaged variables:

q̄ =

 (η̄ − z0)
ū (η̄ − z0)
v̄ (η̄ − z0)

 (3.20)

The integral of iFn in Equation 3.4 can be evaluated by defining the
area-averaged variables. Here, the area under consideration (∂Ω) is the
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boundary of the control volume. The closed curve integral of an arbitrary
variable q can be splitted into integrals along n segments:∮

∂Ω

qdr =

∫ j+1

j

qdr +

∫ j+2

j+1

qdr + ...+

∫ j

j+n

qdr (3.21)

This is illustrated in Figure 3.3, where the black line denotes ∂Ω and the
blue line denotes a piecewise linear approximation of it. The approximation
is intentionally crude for a better illustration. In theory, the integration can
be carried out on the splitted parts of ∂Ω (Figure 3.3, black line), however
in a finite volume method context the integration is carried out on piecewise
linear approximations of the boundary (Figure 3.3, blue line). The area-
averaged variables are calculated as:

ĥ =

∫
r
ihdr∫
r
idr

(3.22)

η̂ =

∫
r
iηdr∫
r
idr

(3.23)

v̂ =

∫
r
ihvdr∫
r
ihdr

(3.24)

r is the path between two points on ∂Ω, measured counter clockwise around
∂Ω, e.g. the path between point j and j+ 1 in Figure 3.3 (marked with the
index k+1). The relationship between ∂Ω and r is that ∂Ω is the sum of all
paths r. ĥ is the area-averaged water depth, η̂ is the area-averaged water
elevation and v̂ = (û, v̂) is the area-averaged velocity vector. In a finite
volume method, variables would be averaged per cell edge, thus the area
would be the edge under consideration. Therefore, the term edge-averaged
value is used interchangeably. To differentiate the area-averaged values from
the volume-averaged values, the area-averaged values are denoted with a
circumflex (hat), e.g. ĥ, and the volume averaged values are denoted with
a bar, e.g. h̄.

The flux term Fn in Equation 3.4 is:

Fn =

 qxnx + qyny
(uqx + 0.5gh2)nx + vqxny
uqynx + (vqy + 0.5gh2)ny

 (3.25)

Equation 3.3 can be rearranged to:∫
r

i (η − zb) dr = ψ

∫
r

(η − z0) dr (3.26)
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Figure 3.3: Definition of path index k and vertex index j: top view of an
arbitrary control volume; black color indicates the exact boundary, blue
color indicates the approximated boundary

Further, applying the relation h = η − zb and Equation 3.23 leads to:∫

r

ihdr = ψ

∫

r

(η̂ − z0) dr = ψ (η̂ − z0) r (3.27)

Equation 3.24 in combination with Equation 3.27 can be rearranged to:∫

Ω

ihvdr = v̂

∫

Ω

ihdr = ψv̂ (η̂ − z0) r (3.28)

This can be written in x- and y-direction as∫

r

ihudr = ψû (η̂ − z0) r (3.29)

and ∫

r

ihvdr = ψv̂ (η̂ − z0) r, (3.30)

respectively. Using qx = hu and qy = hv, the integral of the mass flux (first
entry of Fn) is approximated as:

∫

r

(qxnx + qyny) dr = ψû (η̂ − z0) rnx + ψv̂ (η̂ − z0) rny (3.31)

The momentum fluxes (second and third entries of Fn) are approximated
by using the area-averaged values ĥ, û and v̂. In x-direction this results in:

∫

r

(
ihûûnx + 0.5igh2nx + ihv̂ûny

)
dr (3.32)
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The area-averaged values are taken outside of the integral:

ûûnx

∫
r

ihdr +

∫
r

0.5igĥhnxdr + v̂ûny

∫
r

ihdr (3.33)

Equation 3.27 can be used to rewrite Equation 3.32:

ûûnxψ (η̂ − z0) r + 0.5gĥnxψ (η̂ − z0) r + v̂ûnyψ (η̂ − z0) r (3.34)

The approximation of the momentum flux in y-direction is straight forward.
Using Equation 3.21 to replace the closed curve integral, Equation 3.19 is
rewritten as

∂

∂t
φΩq̄ +

∑
k

ψkrkF̂knk =

∫
Ω

sdΩ +

∮
∂Ω∗

s∗dr, (3.35)

where k is the index of the path integral. The vector F̂n is written as:

F̂n =

 û (η̂ − z0)nx + v̂ (η̂ − z0)ny
ûû (η̂ − z0)nx + 0.5gĥ (η̂ − z0)nx + ûv̂ (η̂ − z0)ny
v̂û (η̂ − z0)nx + v̂v̂ (η̂ − z0)ny + 0.5gĥ (η̂ − z0)ny

 (3.36)

Solid-fluid interfacial pressure source term

∂Ω∗ is the interface between fluid and solid, denoted with blue lines in Figure
3.4, where the top view of a square-shaped control volume is given. The
dashed black line shows the boundary of the control volume (∂Ω) and the
grey blocks represent single elements of simplified structures, e.g. buildings.
Representing the unresolved fluid pressure at the interface ∂Ω∗, s∗ consists
of two components; the stationary component s∗st which can be calculated
if hydrostatic pressure distribution at the interface is assumed and the non-
stationary component s∗ns which accounts for drag effects of the unresolved
structures [125]: ∮

∂Ω∗
s∗dr =

∮
∂Ω∗

s∗stdr +

∫
Ω

s∗nsdΩ (3.37)

While the stationary component s∗st acts along the interface ∂Ω∗, the non-
stationary component acts on the whole control volume Ω.

In theory, the calculation of the stationary component s∗st is straight-
forward. Figure 3.5 shows a vertical section through a control volume and
the two possible cases of submergence: partially submerged (left) and fully
submerged (right). If these cases are considered separately and hydrostatic
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Figure 3.4: Definition of the interface ∂Ω∗ (blue); grey blocks represent
elements of microtopography

pressure is assumed, the pressure of the fluid on the solid p∗ can be written
as

p∗ (x, y) =

{
0.5 g (η − zb)

2 if η (x, y) ≤ z∗b
0.5 g ((η − z∗b ) + (η − zb)) (z

∗
b − zb) else

(3.38)

where z∗b is the bottom elevation of the microtopgraphy that the fluid pres-
sure is acting on (cf. Figure 3.5). If m = (mx,my) is the unit normal vector
along ∂Ω∗, which points inside the solid structure as illustrated in Figure
3.4, the stationary component of the interfacial pressure source term can
be written as:

s∗st =




0
p∗mx

p∗my


 (3.39)

The difficulty in the calculation of s∗st is that the interface between solid and
fluid ∂Ω∗ is unknown because it is not resolved. Therefore, the stationary
term can not be solved exactly and has to be approximated. One approach
to estimate s∗st can be found in [125].

The non-stationary component of Equation 3.37 essentially accounts
for drag which occurs during the flow through the unresolved structures,
e.g. buildings or microtopography, as the fluid moves between the single
elements of the structure. Because it occurs at unresolved scales, the drag
force can not be calculated. In [125], a generalized drag law is suggested to
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Figure 3.5: Definition of p∗ and z∗b ; partially submerged control volume
(left), fully submerged control volume (right): blue color indicates the water
column

approximate this term as:

s∗ns =




0
cDu|v|
cDv|v|


 (3.40)

Here, |v| is the Euclidian norm of the vector of velocities v = (u, v) and
cD is a dimensionless drag coefficient. The determination of cD is challeng-
ing, often requires a calibration process and has not been fully understood
yet. Several approaches have been suggested to overcome this difficulty.
In [125], it is acknowledged that the drag effect may be estimated by an
increased roughness coefficient as demonstrated in [88]. In [26], momentum
correction terms are calculated which depend on the volumetric porosity
and a so-called effective water depth, which is the water volume per unit
area. Also, different methods with varying complexity for estimating cD
have been presented in [55, 51, 132, 125]. In [125], a vegetative resistance
model as proposed in [107] is used to estimate cD. In this study, the drag
force approach is used, because it is commonly used and studied in litera-
ture, e.g. [55, 51, 132, 125]. Here, the drag force approach of [107] is slightly
modified to allow the full submergence of the control volume. Then, cD is
calculated as:

cD = 0.5 c0D a ·min (h, z∗b − zb) (3.41)

Here, a is the horizontally projected area of the elements of the solid struc-
ture per unit volume in one cell and c0D is a bulk drag coefficient accounting
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for the whole solid structure (cf. [107]) and min is the minimum function.
A similar approach is given in [55] to account for inundated subgrid-scale
structures. Both a and c0

D are not fully understood yet [125], they depend
on the configuration of the solid structures as well as the shape of single
elements, flow direction and several other factors which have yet to be iden-
tified. Therefore, in this work the model is calibrated with the product c0

D ·a
as a whole. Hence, both a and c0

D lose their strict physical interpretations
and become calibration parameters.

3.4 Numerical method and computational

examples

The numerical solution of Equation 3.35 can only be achieved with the fi-
nite volume method, as the equation does not contain spatial differential
expressions. Numerical studies of the authors have shown that a second or-
der reconstruction of the bottom elevation is necessary to obtain accurate
results, especially in sloped domains (cf. [128]). Further, a second-order
accurate scheme allows to compensate to some degree the loss of accuracy
in the approximation due to coarse cells in the anisotropic porosity model.
Thus, for the following computational examples, the presented equations are
solved with a second-order monotonic upstream-centered scheme for conser-
vation laws (MUSCL) presented in [60] being used for both the anisotropic
porosity model and the high-resolution model. It is acknowledged that the
high-resolution model is suffering more from the additional calculations per
cell associated with the second order reconstruction process in comparison
to the anisotropic porosity model. A two-step explicit Runge-Kutta method
is used to advance in time [99]. The numerical scheme is implemented in
the Hydroinformatics Modeling System (hms), an in-house scientific pro-
gramming framework [128].

Calculation of porosities

Similar to [26], it is suggested to calculate the porosities φ and ψ with statis-
tical properties of the unresolved subgrid-scale features of the topography.

In a preprocessing step, the bottom elevation in each computational cell
is sampled on a finer scale such that the discrete cummulative distribution
function (CDF) can be calculated individually in each cell. The CDF can
then be used at the beginning of each time step to evaluate how many of
the samples are submerged by the water depth inside the cell. Basically, the
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CDF is used as a structure to store the different bottom elevations mapped
to the number of their occurences.

For example, let the computational cell have a CDF based on 25 sam-
ples of bottom elevation inside the cell. It is assumed that each sample
corresponds to an equal area inside the cell. For sake of simplicity, let 10
of the samples have a bottom elevation of 0, let 10 of the samples have a
bottom elevation of 0.2 m and let 5 of the samples have a bottom elevation
of 0.4 m. Then, the zero datum in the cell is defined as 0 and the water
depth h in the cell corresponds to the water elevation η as h = η − 0 = η.
Further, assume the water depth is h = 0.1 m. The volume of the water
inside the cell corresponds to Vw = 10 · 0.1 · c, where c is the area of one
sample. The total volume is Vt = 25 · 0.1 · c. Then, the volumetric porosity
is calculated as φ(h = 0.1) = Vw/Vt = 10/25.

If the water depth rises to h = 0.3 m, the volume of water becomes
Vw = 10·0.3·c+10·(0.3−0.2)·c, and the total volume becomes Vt = 25·0.3·c.
Hence, the volumetric porosity is calculated as φ(h = 0.2) = Vw/Vt = 40/75.

The same approach is applied to calculate areal porosities.

Error and speedup calculation

In the following, computational examples are presented to evaluate the ca-
pability of the equations. To the authors’ knowledge, no analytical solutions
for the shallow water equations with anisotropic porosity have been reported
in literature. The shallow water equations with isotropic porosity in [26]
are compared with large-scale real case applications. The analytical and
semi-analytical solutions presented in [51] are valid for isotropic porosity
only. In [125], the anisotropic porosity model results are compared with
measurement data.

Therefore, in this work four examples are presented where the high-
resolution shallow water model (HR) results are considered to be the ref-
erence solution. In a final example, the anisotropic porosity model (AP)
results are compared with measurement data. The resolution of the HR
model is always chosen such that further refinement does not change the
result. Turbulence and fluid viscosity are neglected in all test cases.

In order to assess the quality of the model results, the L1-norm, defined
as

L1 =
1

N

N∑
i

|xi − ẋi| (3.42)

is used, where N stands for the total number of solutions, xi is the reference
solution, ẋi is the model solution and i is the sample index.
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The computational benefit of the anisotropic porosity model is quanti-
fied using the speedup, defined as

ζ =
tHR

tAP

(3.43)

whereby tHR and tAP are the wall-times of the HR model and the AP model,
respectively.

One-dimensional dam break on dry bed with
sine-wave shaped microtopography

In this computational example, a one-dimensional dambreak on dry bed
is simulated. The domain is 6 m long, 0.5 m wide and the initial water
elevation is defined as:

η (x) =

{
η0, x ≤ 3 m

zb (x) , x > 3 m
(3.44)

η0 stands for the initial water elevation and is varied from 0.025 m to 0.06 m
for different simulation runs. The bottom elevation of the domain is de-
scribed with a sine-wave as:

zb (x) = A sin

(
2π

λ
x+

π

2

)
+ 0.01 (3.45)

Here, λ is the wavelength and A is the amplitude of the sine-wave. In
this example they are set to λ = 0.05 m and A = 0.01 m. Figure 3.6
(left) shows the initial conditions for η0 = 0.03 m. Only the section from
2.5 m < x < 3.5 m is plotted because the small wavelength of the sine-
wave makes it difficult to illustrate the bottom elevation over the whole
domain. At the outlet of the domain at x = 6 m, an open boundary forcing
the water elevation gradient to zero is set. All other boundaries are closed
boundaries. Bottom roughness is accounted for with a Manning’s coefficient
of n = 0.016 sm−1/3.

The reference solution is obtained by using a classical shallow water
model with an element size of ∆x = 0.01 m (HR model). As shown in
Figure 3.6 (right), this resolution is sufficient to explicitly discretize the
bottom elevation (Equation 3.45). In contrast, the model with anisotropic
porosities (AP model) uses a mesh with element size of ∆x = 0.1 m. Figure
3.6 (right) shows exactly one computational cell of the AP model and the
bottom topography inside it. The resolution of the AP model’s mesh is
not sufficient to explicitly discretize the sine-wave, therefore the bottom
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Figure 3.6: Dam break on dry bed with sine-wave shaped microtopography:
Initial conditions for η0 = 0.03m (left); bottom elevation distribution inside
one AP model cell and the HR model discretization (dashed lines) (right)

elevation is described by zb (x) = 0m. A classical shallow water model
(SWE model) with the same resolution as the AP model is used to illustrate
the effect of the AP model. Good agreement between the HR model and the
AP model is achieved for c0D · a = 10m2 as shown in Figure 3.7 and 3.8. In
[125], c0D = 2 is recommended but values up to c0D = 6 have been reported
(M. Bruwer, personal communication, 24 March 2015) which shows that
this value has an uncertainty. The results for water elevation, velocity and
unit discharge are plotted on the left side in Figure 3.7 (top, middle and
bottom, respectively). The fluctuations in the HR model solution are due
to the sine-wave shaped microtopography as the water accelerates when
flowing down the sine-wave and decelerates when climbing up the crests of
the sine-wave. The SWE model shows poor agreement in all cases. The
AP model captures the advance of the front correctly and the obstructive
effects of the microtopography could be reproduced well (Figure 3.7 (top
left)). The velocity is underestimated between 0 < x < 1m and slightly
overestimated between 1m < x < 4m (Figure 3.7 (middle left)). The
unit discharge behaves similar as the velocity (Figure 3.7 (bottom left)).
Water elevation, velocity and unit discharge are all captured well. On the
right side in Figure 3.7, the sensitivity of c0D · a is illustrated. The product
c0D · a is varied from 0 to 500m2. As c0D · a increases, the roughness of the
model increases. The AP model is sensitive with regard to c0D · a until a
critical value of about c0D · a = 500m2 is reached. It was observed that
for c0D · a > 500m2 this parameter is not very sensitive. This is because
after reaching a certain value, friction is artificially limited in the numerical
scheme to avoid velocities to change direction. For details on this friction
treatment, the reader is referred to [93].
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Figure 3.7: Dam break on dry bed with sine-wave shaped microtopography:
Comparison of model results at t = 4 s with η0 = 0.06m (the anisotropic
porosity model (AP), the high-resolution reference solution (HR) and a
coarse grid classical shallow water model (SWE)) (left), sensitivity study of
c0D · a (denoted as c) (right)
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Figure 3.8: Dam break on dry bed with sine-wave shaped microtopography:
Comparison of model results at t = 4 s with η0 = 0.03m (left) and η0 =
0.025m (right) (the anisotropic porosity model (AP), the high-resolution
reference solution (HR) and a coarse grid classical shallow water model
(SWE))
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η (m) L1,AP (η) (m) L1,SWE(η) (m)
0.025 3.8 · 10−4 28 · 10−4

0.03 6.4 · 10−4 34 · 10−4

0.06 15 · 10−4 76 · 10−4

Table 3.1: Dam break on dry bed with sine-wave shaped microtopography:
L1-error for water elevation as calculated by the anisotropic porosity model
(AP) and the coarse shallow water model (SWE)

η (m) L1,AP (v) (m/s) L1,SWE(v) (m/s)
0.025 0.8 · 10−2 5.7 · 10−2

0.03 1.6 · 10−2 7 · 10−2

0.06 1.2 · 10−2 13.8 · 10−2

Table 3.2: Dam break on dry bed with sine-wave shaped microtopography:
L1-error for velocity as calculated by the anisotropic porosity model (AP)
and the coarse shallow water model (SWE)

η (m) L1,AP (q) (m2/s) L1,SWE(q) (m2/s)
0.025 1.0 · 10−4 8.6 · 10−4

0.03 2.6 · 10−4 12 · 10−4

0.06 4.9 · 10−4 44 · 10−4

Table 3.3: Dam break on dry bed with sine-wave shaped microtopography:
L1-error for unit discharge as calculated by the anisotropic porosity model
(AP) and the coarse shallow water model (SWE)

The initial water elevation η0 is varied to 0.025 m and 0.03 m to study
the influence of the water elevation. Figure 3.8 (left) and Figure 3.8 (right)
show that the solution is enhanced by the AP model for different initial
water elevations. In both cases, the overestimation of the velocity and the
discharge is higher than for η0 = 0.06 m. It is noted, that the drag coefficient
c0
D·a = 10 m2 is kept constant for these simulations. Case specific calibration

might further enhance the solution. The L1-error for the presented cases
is summarised in Table 3.1, 3.2 and 3.3 for water elevation, velocity and
discharge. For all variables, the L1-error of the SWE model is about one
order of magnitude higher than the AP model error. The computation with
the AP model was carried out approximately 1000 times faster than with
the HR model.
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Two-dimensional dam break across a porosity
discontinuity

The following example simulates a two-dimensional dam break across a
porosity discontinuity on a 100 m × 10 m domain. This example was ini-
tially introduced in [51] as a one-dimensional benchmark for the shallow
water model with isotropic porosity and a quasi-analytical solution for the
one-dimensional case was derived. This solution is not valid for the two-
dimensional case, therefore the results of the anisotropic porosity model
(AP) is compared with a high-resolution shallow water model (HR). The
computational domain is illustrated in Figure 3.9 (left). The discontinuity
of the porosity as well as the discontinuity of the water elevation is located
at x = 50 m:

η0 (x, y) =

{
2 m, x ≤ 50 m

1 m, x > 50 m
φ0 (x, y) =

{
1, x ≤ 50 m

0.8, x > 50 m
(3.46)

At the outlet x = 100 m, an open boundary forcing the water elevation
gradient to zero is set. All other boundaries are closed wall boundary con-
ditions. The porosity jump is constructed via randomly generated obstacles
which are explicitly discretized in the HR model and are taken into account
by the porosities in the AP model. All obstacles are square shaped with
an edge length of 0.1 m and with infinitive vertical height and are spatially
distributed according to a random uniform distribution such that each cell
of the AP model has a volumetric porosity of φ = 0.8 for x > 50 m as
illustrated in Figure 3.9 (right) for one exemplary cell. During the whole
simulation, the obstacles are never fully inundated, which means that the
volumetric porosity stays constant in each cell. The simulation is run for
t = 4 s. The HR model is calculated on a grid with square-shaped elements
with an edge length of 0.02 m. The AP model uses a computational grid
with square-shaped elements with an edge length of 0.5 m. c0

D ·a = 10 m2 is
chosen for the AP model. Bottom roughness in both models is taken into
account by a Manning’s coefficient of n = 0.016 sm−1/3.

Results for water elevation and unit discharge at different longitudinal
sections at t = 4 s are plotted in Figure 3.10 (left) and Figure 3.10 (right),
respectively. L1-errors for water elevation and unit discharge at the sections
are given in Table 3.4. The AP model results show good agreement with
the reference solution calculated by the HR model. After the dam break at
x = 50 m, the rarefaction wave traveling in upstream direction as well as
the shock wave travelling in flow direction are captured well, although at
about x = 30 m the water elevation is underestimated in all sections. The
fluctuation of the water elevation, which results from the superposition
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Figure 3.9: Dam break across a porosity discontinuity: Top view on the
computational domain (left); top view on an exemplary computational cell
of the AP model (right), black color indicates the location of obstacles

y (m) L1(η) (m) L1(q) (m2/s)
0.525 8.1 · 10−3 5.3 · 10−2

1.455 7 · 10−3 3.9 · 10−2

2.25 7.4 · 10−3 5.3 · 10−2

Table 3.4: Dam break on dry bed across a porosity discontinuity: L1-error
for water elevation and unit discharge

of waves due to the obstacles, calculated by the HR model can not be
reproduced by the AP model. The unit discharge is captured very well
by the AP model (Figure 3.10 (right)). The discretized obstacles in the
HR model narrow the cross section available to flow and lead to a high
localized flow velocity and therefore a high unit discharge. This can not be
reproduced by the AP model. As pointed out in [51], this is not a failure
of the AP model, but is a consequence of the macroscopic modeling using
the porosity concept. The AP model results were computed roughly 3000
times faster than the HR model results.

Two-dimensional dam break on dry bed with random
microtopography

This example considers a two-dimensional dam break on dry bed with ran-
dom microtopography. The domain spans 6 m in x-direction and 3 m in
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Figure 3.10: Dam break across a porosity discontinuity: Water elevation
(left) and unit discharge (right) at t = 4 s for different longitudinal sections
for the anisotropic porosity model (AP) and the high-resolution reference
solution (HR)
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Figure 3.11: Dam break on bed with random microtopography: Initial
conditions (left); microtopography in the domain (right)

y-direction. The water elevation is defined as:

η (x) =

{
0.03m, x ≤ 3m

zb (x, y) , x > 3m
(3.47)

The microtopography is generated as square-shaped deviations with an edge
length of 0.05m, and their amplitudes zb,mic are distributed between 0 and
0.02m according to a Gaußian distribution function as illustrated in Figure
3.11 (right). All boundaries are closed except at the right side of the domain
(x = 6m), where an open boundary condition as in previous the example is
applied. A reference solution is computed with a shallow water model on a
0.01m× 0.01m grid (HR). The anisotropic porosity model uses square grid
cells with an edge length of 0.1m (AP). The bottom friction is expressed via
a Manning coefficient n = 0.016 sm−1/3. The drag force of the AP model is
estimated with the product c0D · a = 10m2. The simulation runs for t = 2 s.

Results for water depth at different sections through different y-values
are plotted in Figure 3.12. Here, dry cells are not plotted for the HR model.
The L1-errors for water elevation and velocity at different times are given
in Table 3.5 and 3.6. The AP model shows very good agreement with the
HR model. The shock is captured with satisfactory accuracy at all times,
however local details of the water elevation variation such as small scale
fluctuations due to the microtopography can not be captured.

Velocity profiles through the same sections as in Figure 3.12 are plotted
in Figure 3.13. Although the maximum values of the velocity profiles are
not reproduced by the AP model, overall good agreement between the HR
model and the AP model is observed.

Figure 3.14 shows a topview on the water elevation distribution in the
domain at the same time steps as in Figure 3.12 for the HR model (left)
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Figure 3.12: Dam break on bed with random microtopography: Water
elevations at y = 0.525m (left) and y = 2.245m (right) at different times
for the anisotropic porosity model (AP) and the high-resolution reference
solution (HR); the high-resolution bottom topography is plotted at the very
top of each column for illustration purposes
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Figure 3.13: Dam break on bed with random microtopography: Flow veloc-
ities at y = 0.525m (left) and y = 2.245m (right) at different times for the
anisotropic porosity model (AP) and the high-resolution reference solution
(HR)
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t (s) L1(η) (m) L1(v) (m/s)
0.4 1.8 · 10−4 2 · 10−3

1 2.5 · 10−4 3.6 · 10−3

1.8 6 · 10−4 9.1 · 10−3

Table 3.5: Dam break with random microtopography: L1-error for water
elevation and velocity for y = 0.525 m

t (s) L1(η) (m) L1(v) (m/s)
0.4 2.7 · 10−4 4 · 10−3

1 2.5 · 10−4 5 · 10−3

1.8 2 · 10−4 6 · 10−3

Table 3.6: Dam break with random microtopography: L1-error for water
elevation and velocity for y = 0.525 m

and the AP model (right). The HR model resolves the microtopography
explicitly and as the water elevation is calculated as η = h + zb, in the
dry part of the domain, the water elevation equals the bottom elevation.
It is observed that the overall characteristics of the advancing front and
the rarefaction wave moving upstream are captured well by the AP model.
However, the spatial distribution of the AP model results have low accuracy,
as they suffer from numerical diffusion due to coarse grids as well as the
lack of information on small scale bottom elevation variations. The results
of the AP model are calculated approximately 1000 times faster than the
HR model.

Rainfall-runoff on an inclined plane with random
microtopography

Rainfall-runoff is heavily influenced by the microtopography of the domain
[162]. In this example, the surface runoff on a 6 m×3 m inclined plane with
a slope of 0.02 and a Manning’s coefficient of n = 0.016 sm−1/3 is simulated.
The bottom elevation for the high-resolution model (HR) is calculated as:

zb (x, y) = 1− 0.02 · x+ zb,mic (x, y) (3.48)

Here, zb,mic is the amplitude of the microtopography, which is generated as
square blocks with an edge length of 0.02 m and a vertical amplitude varying
between 0 and 0.003 m according to a Gaußian distribution function. The
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Figure 3.14: Dam break on bed with random microtopography: Water
elevations at different time steps for the high-resolution reference solution
(HR) (left) and the anisotropic porosity model (AP) (right)

microtopography is applied only inside a rectangular area spanning from
(2.25 m, 0.75 m) to (3.75 m, 2.25 m) whereby the first pair of coordinates de-
notes the bottom left corner and the latter pair denotes the top right corner
of the rectangle as illustrated in Figure 3.15 (right top). For the anisotropic
porosity model (AP), the microtopography is not explicitly discretized and
the bottom elevation is calculated as:

zb (x, y) = 1− 0.02 · x (3.49)

The domain without microtopography is illustrated in Figure 3.15 (left).
Rainfall is imposed for 100 s with the intensity being varied from ir =
1 ·10−5 m/s to ir = 1 ·10−3 m/s for different simulation runs. The boundary
at the outlet is an open boundary, all other boundaries are closed. The
HR model uses a square grid with an element size ∆x = 0.02 m, the AP
model uses a square grid with an element size of ∆x = 0.1 m. A calibration
resulted in c0

D · a = 0, i.e. no drag force influence.
The normalised discharges at the outlet of the domain (x = 6 m) are

compared for the different rainfall intensities in Figure 3.16. The normalized
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Figure 3.15: Rainfall-runoff on an inclined plane with random microtopog-
raphy: Side view of the computational domain without microtopography
(left); top view of the position and spatial distribution of microtopography
(right top); top view of the positions of evaluation points (right bottom)

discharge is calculated as the ratio of the model discharge (Qmodel) to the
rainfall discharge, whereby the rainfall discharge for a l × w rectangular
domain is calculated as [123]:

Qrain = l · w · ir (3.50)

The comparison shows that the influence of the microtopography is over-
estimated by the AP model. In the early time of the simulation, both
hydrographs agree well but when the wave which is influenced by the mi-
crotopography reaches the outlet the hydrographs start to deviate.

For ir = 1 ·10−5 m/s the AP model does not reach its concentration time
in 100 s. The agreement at the late stages of the simulation (after t = 80 s)
is less good. This suggests that in the AP model, the influence of the
microtopography is overestimated in these test cases and thus the water
is artificially held back and does not reach the outlet. This argument is
supported by the fact that the agreement gets better for increasing rainfall
intensity, cf. e.g. the hydrograph of ir = 1 · 10−3 m/s. As the intensity
increases, the influence of the microtopography on the flow decreases. For
ir = 1 · 10−4 m/s the hydrograph of the AP model rises a little bit too slow
and for ir = 1 · 10−3 m/s both hydrographs agree well. The water depths
behave similarly. The results of the AP model are on average computed
550 times faster than the reference solution.

The L1-errors for different intensities are given in Table 3.7. Here, the
L1-error is divided by the corresponding intensity for better comparison of
the cases.
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Figure 3.16: Rainfall-runoff on an inclined plane with random microtopog-
raphy: Comparison of normalized discharges (left) and water depths (right)
at the outlet computed by the HR model and the AP model for different
rainfall intensities

i (m/s) L1(q) ((m
2/s)/(m/s)) L1(h) (m/(m/s))

10−3 1.4 · 10−2 3.8 · 10−2

10−4 10 · 10−2 40 · 10−2

10−5 28 · 10−2 280 · 10−2

Table 3.7: Rainfall-runoff on an inclined plane with random microtopogra-
phy: scaled L1-error for unit discharge and water elevation at the outlet,
errors are scaled by division by the corresponding rainfall intensity
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point L1(q) ((m2/s)/(m/s))
1 2 · 10−1

2 1.6 · 10−1

3 10 · 10−1

4 3.1 · 10−1

5 0.13 · 10−1

Table 3.8: Rainfall-runoff on an inclined plane with random microtopog-
raphy: scaled L1-error for unit discharge at the gauges for i = 10−4 m/s,
errors are scaled by division by the rainfall intensity

For ir = 1 · 10−4 m/s, model results at different points are compared
(cf. Figure 3.17, right bottom). Figure 3.17 also shows a comparison of
normalized discharges at these evaluation points. Good agreement between
the discharges is observed at the points 1, 2 and 5. However, especially at
points 1 and 2 is a temporal delay in the hydrograph of the AP model which
again comes from the overestimation of the influence of microtopography.
Point 3, which is located inside the area with microtopography, shows the
worst agreement which might result from the aforementioned overestimation
as well as the macroscopic approach of the AP model which is not expected
to reproduce local flow processes. At point 4 the discharge is overshot by
the AP model.

Model results for the same points are compared in Figure 3.18 for ir =
1 · 10−5 m/s. Here, it is seen that the agreement at the points where the
flow is influenced by the microtopography, namely points 2, 3 and 4, gets
worse for lower intensities. Especially at point 3, which is located inside
the area with microtopography, the AP model returns a discharge which is
3 times higher than the HR model discharge and is temporally delayed.

The L1-errors at the different points are given in Table 3.8 and 3.9 for
i = 10−4 m/s and i = 10−3 m/s, respectively. Again, the L1-errors are
divided by the corresponding intensity.

Figure 3.19 shows temporal snapshots of the discharge distribution in
the domain at t = 15 s, t = 20 s and t = 50 s for both the HR model
(left) and the AP model (right). The resolution of the AP model is much
coarser than the HR model and therefore local details can not be resolved
as good as in the HR model but general properties of the flow field are
reproduced. At t = 20 s the overestimation of microtopography can be
seen very clearly, as the flow calculated by the HR model (Figure 3.19, left
middle) has already reached the right border of the microtopography area
while the flow calculated by the AP model (Figure 3.19, right middle) has



CHAPTER 3. POROSITY – MATHEMATICAL MODEL 78

Figure 3.17: Rainfall-runoff on an inclined plane with random microtopog-
raphy: Comparison of normalized discharges computed by the HR model
and the AP model for ir = 1·10−4 m/s at different evaluation points (plotted
in the right bottom)
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Figure 3.18: Rainfall-runoff on an inclined plane with random microtopog-
raphy: Comparison of normalized discharges computed by the HR model
and the AP model for ir = 1·10−5 m/s at different evaluation points (plotted
in the right bottom of Figure 3.17)
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point L1(q) ((m2/s)/(m/s))
1 5.1 · 10−1

2 7.2 · 10−1

3 30 · 10−1

4 4 · 10−1

5 1.2 · 10−1

Table 3.9: Rainfall-runoff on an inclined plane with random microtopog-
raphy: scaled L1-error for unit discharge at the gauges for i = 10−5 m/s,
errors are scaled by division by the rainfall intensity

only reached the middle of the microtopography area. The discharge of the
AP model is higher than of the HR model, however the porosity slows down
the front of the AP model flow. This can also be observed in Figure 3.17
(left middle), where the discharge at point 3 is delayed and overestimated
by the AP model. At t = 50 s the flow fields reasonably resemble (Figure
3.19, bottom).

Dam-break flow through an idealised city

In this computational example, results of a dam-break experiment con-
ducted at the Université catholique de Louvain, Belgium, [133] are numer-
ically reproduced.

Domain description, initial and boundary conditions

The domain is a 35.8 m long and 3.6 m wide channel with horizontal bed.
The idealised city consists of 5 × 5 buildings, each of them being a square
block with an edge length of 0.30 m. The distance between the blocks is
0.10 m. The dam-break is constructed by opening a 1 m wide gate, which
initially seperates part of the channel with water ponding at 0.40 m from
the rest of the channel (reservoir), where a very thin layer of 0.011 m water
due to imperfect tightness of the gate is reported. For further details on
the experimental setup and employed measurement techniques, the reader
is referred to [133]. The domain is illustrated in Figure 3.20, where the
reservoir is coloured in grey.

For the numerical model, only the reservoir and the first 16 m of the
channel is discretised for computational efficiency. In preliminary studies
it had been observed that for the duration of the simulations, t = 15.5 s,
the shock wave does not travel further than this length. The downstream
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Figure 3.19: Rainfall-runoff on an inclined plane with random microtopog-
raphy: Comparison of snap shots of unit discharges computed by the HR
model (left) and the AP model (right) at different time steps
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Figure 3.20: Dam break flow through an idealised city: Computational
domain and initial conditions

boundary is an open boundary and all other boundaries are closed bound-
aries.

The HR model uses a triangular mesh with three different cell sizes: the
inside of the reservoir is discretised with cells with a characteristic length of
lc,1 = 0.3m. The area inside the channel which is sufficiently far away from
the building blocks is discretised with a characteristic length of lc,2 = 0.1m.
The space between the buildings is discretised with a characteristic length
of lc,3 = 0.01m. The buildings are represented as holes in the mesh, which
is a method commonly used in urban flood modeling [127]. With the value
chosen for lc,3, the space between two buildings is discretised with about 10
cells and the total cell number is 95975. The AP model uses square-shaped
cells with an edge length of 0.25m in the whole domain, which results in
1272 cells in total.

Experimental data is available at 64 measurement gauges distributed
inside the channel [133]. The positions of these gauges are given in Figure
3.21. Errors are calculated for all gauges. In the discussion, results are
plotted only for 4 gauges, namely gauges 1, 18, 44 and 55, to avoid too
many figures. These gauges are pointed out in Figure 3.21.

The roughness of the channel has been estimated in [133] with a Man-
ning’s coefficient of n = 0.01 sm1/3. This value is used for both the HR and
the AP model.
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Figure 3.21: Dam break flow through an idealised city: Location of the
gauges, area of building array is marked with dashed line

Model calibration and run time

The AP model is calibrated with the value a · c0
D. The best results in this

specific case were obtained by completely neglecting the drag force, i.e.
a · c0

D = 0. No calibration is carried out for the HR model. The HR model
simulation takes about 3000 s wall-clock time to finish. The AP model
requires about 4 s wall-clock time. Consequently, the speedup is calculated
as 750 (cf. 3.10).

Discussion

The HR model makes overall a good prediction of the water depth at the
evaluated gauges. In Figure 3.22, the water depth calculated by the HR
model at the aforementioned gauges is plotted together with the measured
water depth. Overall, the numerical results approximate the experimental
results very well. The arrival time of the wave is predicted correctly at all
gauges. Larger deviations between the results occur at the later stages of
the simulation. At gauge 18, which is located between the buildings, the
wave reflections from the walls of the buildings superpose and create several
peaks between t = 3.5 s and t = 6.5 s in the HR model results which were
not observed during the experiment. Further, at gauge 1, which is at the
upper right corner of the building block, the water depth is underestimated
by the HR model. This might be because of the hydraulic jump observed
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Figure 3.22: Dam break flow through an idealised city: Discharges calcu-
lated by the anisotropic porosity model (AP), high-resolution model (HR)
and the measurement data at gauges 1, 18, 44 and 55

at the impact section which leads to increased local water levels which are
not reproduced by the HR model. These points might raise the question,
whether a turbulence model should be used, however Soares-Frazão and
Zech [133] report that adding turbulence to the numerical model leads to a
worse agreement between numerical and experimental results.

The anisotropic porosity model (AP) shows good agreement with the
HR model results, although the results of the AP model are smoother and
more diffused than the HR model results. In Figure 3.22, AP model results
for water depth are plotted for the four gauges as well. Gauge 1 and gauge
18 show very good agreement, while the arrival time of the wave at gauge 44
is delayed. Gauge 55, located in the front of the building block, shows the
worst agreement of the four. Here, the AP model overshoots the HR model.
The peak at around t = 4s is not reproduced. Overall, the general properties
of the AP model results, i.e. the lack of local and spatial fluctutations, agree
with the observations in [76]. In general, the AP model error manifests itself
in excessive damping of the results.

L1-errors of both models in regard to the experimental data are calcu-
lated as the average L1-error of all 64 gauges. The HR model has a L1-error
of 0.02 m, the AP model has a L1-error of 0.07 m.
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3.5 Conclusions

An integral formulation of the two-dimensional shallow water equations
with anisotropic porosity for flow over partially and fully inundated topog-
raphy was derived. A novel formulation for the porosities was proposed and
an approximation for the storage and flux terms was presented. The porosi-
ties are dependant on the water elevation in the cell. This relationship can
be approximated by calculating a cummulative distribution function for the
unresolved bottom elevation and evaluating it at the water elevation. Due
to the macroscopic point of view, additional terms appear in the governing
equations. Suitable approximations for these terms have been referred to.
The non-stationary term was approximated with a drag force approach.
The integral formulation of the equations can only be solved by the finite
volume method. A second order MUSCL scheme was used to solve the
equations with a two-step explicit Runge-Kutta method for time stepping.

Five computational examples, ranging from simple academic bench-
marks to nearly ’real case’ laboratory experiments were shown to demon-
strate the capabilities and limitations of the new approach. Due to the lack
of analytical solutions a high-resolution shallow water model was used to
calculate reference solutions. In the last test case, experimental data was
used for model evaluation. The shallow water model with porosity showed
overall good agreement with the reference solutions. The aforomentioned
drag term was used to calibrate the model and a sensitivity study regard-
ing this term was carried out. Except in the last test case, good results are
obtained with c0

D · a = 10. However, further studies to investigate the drag
force coefficient values and the possibility to represent the drag effect with
increased friction are required.

As bottom slope increases, the accuracy of the anisotropic shallow wa-
ter model decreases. Experimental studies show that a large bed slope
reduces the effect of microtopography [136] and the presented model seems
to underestimate the reduction.

A challenge in practical applications is the isolation of the part of topog-
raphy modeled as porosity from the global topography. Usually, the global
topography is defined as the roughness of the surface of the earth and rep-
resented by the cell value. The unresolved topography is thought about as
subgrid-scale deviations from this value which creates heterogeneity inside
the cell. The issue of identifying these deviations has been researched in
the context of isolating microtopography and different methods have been
proposed in the literature, e.g. [120]. However, finding suitable methods
to correctly isolate the part of topography to be modeled as porosity re-
mains an open issue, which seems to be the main limitation of applying the
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Case ∆xHR nHR ∆xAP nHR nHR/nAP speedup
3.3 0.01 m 30000 0.1 m 300 100 1000
3.4 0.02 m 2500000 0.5 m 4000 625 3000
3.5 0.01 m 180000 0.1 m 1800 100 1000
3.6 0.02 m 45000 0.1 m 1800 25 550
3.7 0.01− 0.3 m 95975 0.25 m 1272 75.4 750

Table 3.10: Summary of speedups obtained in all simulations, n: Number of
cells, ∆x: edge length, HR: high-resolution model, AP: anisotropic porosity
model

proposed model to ’real world cases’.
Local details of the flow could not be exactly reproduced by the an-

isotropic porosity model, because the concept of porosity as a statistical
property of the topography is not expected to reproduce processes at this
scale [51].

The novel anisotropic porosity was found to be a good balance between
computational time and accuracy. Table 3.10 gives an overview of the
speedups in the simulations in dependency of cell size ∆x and cell number
n. The ratio of cell numbers (nHR/nAP) is identified as the main factor
of the speedup. In the presented computational examples, the anisotropic
porosity model provided a computational benefit around three orders of
magnitude, depending on the ratio of the cell numbers, i.e. the difference
in cell size.
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3.7 Appendix: Derivation of porosities by

Sanders et al. [125]

It can be shown that the definitions of porosity in [125] can be considered as
a special case of Equations 3.2 and 3.3, where submergence of microtopog-
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raphy is not allowed. If microtopography is not allowed to be submerged,
the wet fraction of the control volume will remain constant. Further, if the
wet fraction of the control volume is considered to have the same constant
bed elevation zb = z0, Equation 3.2 can be simplified to

φ =

∫
Ω
i (η − z0) dΩ∫

Ω
(η − z0) dΩ

=
(η − z0)

∫
Ω
idΩ

(η − z0)
∫

Ω
dΩ

=
1

Ω

∫
Ω

idΩ. (3.51)

If the same assumptions are made for the boundary of the control volume,
Equation 3.3 simplifies to

ψ =

∮
∂Ω
i (η − z0) dr∮

∂Ω
(η − z0) dr

=
1

∂Ω

∮
∂Ω

idr. (3.52)

Equations 3.51 and 3.52 are the porosities introduced in [125] for building
treatment. The assumptions made are valid for describing the effects of
buildings, which are unlikely to become submerged by the flood wave. If the
porosities are used to describe the effects of microtopography, Equations 3.2
and 3.3 have to be used. A significant difference between Equations 3.2 and
3.3 (with inundation) and Equations 3.51 and 3.52 (without inundation)
is that the porosities that allow inundation are dependent on the water
elevation η, which is variable in time. If the water elevation increases, the
porosities increase. Therefore, the porosities are functions of time if the
terrain variation within a control volume is considered and inundation is
allowed, while without inundation the wet fraction of the control volume
remains constant and thus, the porosities are constant in time.
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4.1 Abstract

The shallow water model with anisotropic porosity conceptually takes into
account the unresolved subgrid-scale features, e.g. microtopography or
buildings. This enables computationally efficient simulations that can be
run on coarser grids, whereas reasonable accuracy is maintained via the
introduction of porosity. This article presents a novel numerical model
for the depth-averaged equations with anisotropic porosity. The porosity
is calculated using the probability mass function of the subgrid-scale fea-
tures in each cell and updated in each time step. The model is tested
in a one-dimensional theoretical benchmark before being evaluated against
measurements and high-resolution predictions in three case studies: a dam-
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break over a triangular bottom sill, a dam-break through an idealized city
and a rainfall-runoff event in an idealized urban catchment. The physi-
cal processes could be approximated relatively well with the anisotropic
porosity shallow water model. The computational resolution influences the
porosities calculated at the cell edges and therefore has a large influence
on the quality of the solution. The computational time decreased signifi-
cantly, on average three orders of magnitude, in comparison to the classical
high-resolution shallow water model simulation.

4.2 Introduction

In shallow water modeling of river hydraulics [111, 74], urban flooding [91,
98], urban runoff [16, 88, 89] and rainfall-runoff on natural environments
[102, 113, 128, 154], the topographical features have a large influence on the
numerical results. The availability of digital elevation data has increased
significantly due to recent improvements in surveying technology, notably
laser scanning and light detection and ranging (LIDAR) technologies, which
provide high-resolution data sets at relatively low cost [41, 46]. However,
mainly due to computational constraints, incorporating these data sets into
shallow water models is challenging [97, 31]. The difficulty arises from
multiple scales in the physical processes. For example, in a small natural
catchment with a scale of around a square kilometer, local depressions and
microtopography with horizontal scales less than a square meter influence
the flow field significantly [6, 32, 141]. Similarly, in urban flood models
the city may spread up to several hundred square kilometers but the flood
flow can be diverted, slowed down or completely blocked by man-made
structures, e.g. buildings, bridges or walls, whose characteristic scale are
in meters. In order to accurately capture the effect of microtopography
or buildings, they have to be included in the discretization. Due to the
co-existence of multiple scales, this leads to extremely large computational
mesh, which requires large data storage, large number of operations per
time step, small time step size and thus large computational effort. In fact,
the computational cost is inversely proportional to the third power of the
cell size [77]. Therefore, practical applications have to compromise between
spatial accuracy and computational efficiency [80] and are often carried out
on super-computers [129].

For super-computers, high-performance parallel computation methods
on shared or distributed memory have been developed in literature [56]
and very recently graphic processing units have been exploited for scientific
computation, e.g. [80, 81, 129].
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A different approach to speed up simulations is to conceptually account
for small scale ground variations without explicitly discretizing them [97].
This allows to run the simulations on coarser meshes. In this context,
the shallow water equations with porosity have been initially developed
by Defina [27, 26] to account for microtopography in partially inundated
cells. Here, a single porosity is assigned to each cell, which represents the
fraction of the cell that contributes to the flow. The porosity is calculated
by a distribution function, which returns the porosity depending on the
water depth in the cell. The distribution function is defined for the whole
domain. In [154], Defina’s porous shallow water equations are applied to
coupled simulations of surface and subsurface flows in natural catchments.

The porosity concept was also applied to urban flood modeling by Her-
vouet [55] to account for buildings. Significant contribution to the porosity
concept in the context of urban flood modeling was made by Guinot and
Soares-Frazão [51, 132, 48]. Because the buildings in urban flood models are
usually not fully submerged during the flood event, the area available for
the flow stays constant during the simulation. Consequently, most porous
urban flood models assign a constant porosity to each cell which only de-
pends on the fraction of the cell occupied by buildings. An exception is
the urban flood model presented in [53], wherein the authors calculate the
inundated area of each cell according to the water elevation and use it in the
mass balance. Although the authors do not explicitly use porosity terms,
the model in [53] is essentially equivalent to a single porosity model with a
depth-dependent porosity. The same strategy for porosity calculation is fol-
lowed in this work. Further studies regarding the shallow water equations
with single porosity in the context of urban flooding were carried out in
[18, 39, 100, 132, 152]. Single porosity shallow water models can not differ-
entiate between spatial directions. The flow in all directions is governed by
the same porosity. However, buildings in urban flood models usually have
a directionality which leads to preferential flow paths of the water. There-
fore, Sanders et al. [125] introduced the anisotropic porosity shallow water
model, wherein a volumetric porosity inside the cell is defined to account
for the fraction of the cell available for water. In addition an areal porosity
is assigned to each cell edge which describes the conveyance there (Sanders’
model). The equations were derived using the integral form of the shallow
water equations, thus these equations can be solved only by a finite volume
method. Sanders’ model was further investigated in [19, 77, 126]. In [114]
a modified version of Sanders’ model that allows full submergence of unre-
solved topographic features by introducing a mutual dependency between
water depth and porosity is derived.

This article presents a numerical model to solve the equations derived in
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[114] on Cartesian grids. The main difference from Sanders’ model is that
submergence of unresolved topography leads to a different formulation of
the porosities depending on the water depth in the cell. The main contri-
bution of this work is the discussion on discretizing the porosity terms in
the cell and at the edge and the illustration of the model’s behaviour via
detailed case studies. In the present model, each cell and each edge are au-
tomatically assigned an individual porosity that depends on the water depth
and the underlying topography. Thus, the model is automatically adjusted
based on the computational mesh. The model performance is investigated
in a theoretical test case. Then, case studies of laboratory experiments are
presented to further investigate the model’s behaviour.

4.3 Governing equations

The two-dimensional shallow water equations with anisotropic porosity can
be written in integral-differential form as:

∂

∂t

∫
Ω

iqdΩ +

∮
∂Ω

iFndr =

∫
Ω

isdΩ +

∮
∂Ω∗

s∗dr∗ (4.1)

Here, Ω is the total base area of the control volume, ∂Ω is the boundary
of the control volume, r is the path along the boundary ∂Ω, ∂Ω∗ is the
boundary between the fluid and the solid inside the control volume and r∗

is the path along this boundary (cf. [125, 113]). i is the so-called phase
function, defined as:

i (x, y) =

{
1, η (x, y) > zb (x, y)

0, else
(4.2)

η is the water elevation, zb is the bottom elevation, q is the vector of
conserved variables, s is the source term vector, F is the flux vector and
n = [nx, ny]

T is the normal vector of the boundary, with nx and ny are the
components of the normal vector in x- and y-directions of the Cartesian
coordinate system, respectively. Figure 4.1 illustrates the phase function, η
and zb. The vectors q and s are expressed as:

q =

hqx
qy

 , s =

 ir
sb,x + sf,x
sb,y + sf,y

 (4.3)

Here, h = η − zb stands for water depth, qx and qy are the unit discharges
in x- and y-directions, respectively. ir is the mass source term, e.g. rainfall
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intensity; sb,x, sb,y are the bed slope source terms in x- and y-directions,
respectively which account for variations in bottom, sf,x, sf,y are the friction
source terms in x- and y-directions, respectively:

sb,x = −gh∂zb
∂x

, sb,y = −gh∂zb
∂y

, (4.4)

sf,x = −cfqx
√
q2
x + q2

y

h2
, sf,y = −cfqy

√
q2
x + q2

y

h2
(4.5)

cf is the Chézy roughness coefficient, which can be expressed via Manning’s
law:

cf = gn2h−1/3 (4.6)

n is Manning’s roughness coefficient and g is the gravitational acceleration.
The flux vector is often split into its x- and y-component:

Fn = fnx + gny (4.7)

f and g are defined as:

f =

 qx
uqx + 0.5gh2

uqy

 , g =

 qy
vqx

vqy + 0.5gh2

 (4.8)

Here, u and v are the velocities in x- and y-directions, respectively. Finally,
s∗ is the source vector accounting for fluid pressure along the interface ∂Ω∗.
The calculation of s∗ is non-trivial and will be addressed in the next section.

4.4 Numerical model

Finite volume formulation of the equations

The integral-differential form of the shallow water equations can be solved
with the finite volume method. However, the phase function i can not be
evaluated explicitly in the finite volume cell, because the bottom elevation
inside the cell is not resolved. Therefore, the integral terms on the left hand
side of Equation 4.1 have to be calculated with the concept of porosity.

In [110], the volumetric porosity is defined as:

φ =

∫
Ω
i (η − zb) dΩ∫

Ω
(η − z0) dΩ

(4.9)



CHAPTER 4. POROSITY – NUMERICAL MODEL 93

Figure 4.1: Definition of phase function i, water elevation η (dashed), bot-
tom elevation zb (black) and zero datum z0 in a vertical section through a
control volume

The areal porosity is calculated as:

ψ =

∮
∂Ω

i (η − zb) dr∮
∂Ω

(η − z0) dr
(4.10)

Here, z0 is the elevation of the lowest point inside the control volume with
regard to a datum. Both are illustrated in Figure 4.1. Evaluating the
integral terms leads to modified flux and storage vectors [110]. Rewriting
the line integral as a sum over the finite volume edges transforms Equation
4.1 to:

∂

∂t
(φΩq̄) +

∑
k

ψkrkF̂knk =

∫

Ω

isdΩ +

∮

∂Ω∗
s∗dr (4.11)

k is the index of the path integral and rk is the length of the integration
path. The storage vector q in Equation 4.3 is rewritten as:

q̄ =




(η̄ − z0)
ū (η̄ − z0)
v̄ (η̄ − z0)


 (4.12)

The bar over a variable indicates volume-averaged variables which are con-
stant within the cell:

η̄ =

∫
Ω
iηdΩ∫

Ω
idΩ

, v̄ =

∫
Ω
ihvdΩ∫

Ω
ihdΩ

(4.13)
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If i = 0 over the whole control volume, the averaging is not carried out and
the volume-averaged variables are taken to be η̄ = 0 and v̄ = 0. The flux
vector in Equation 4.3 is rewritten as:

F̂n =

 û (η̂ − z0)nx + v̂ (η̂ − z0)ny
ûû (η̂ − z0)nx + 0.5g (η̂ − z0)2 nx + ûv̂ (η̂ − z0)ny
v̂û (η̂ − z0)nx + v̂v̂ (η̂ − z0)ny + 0.5g (η̂ − z0)2 ny

 (4.14)

The circumflex over a variable indicates area-averaged variables at the edge:

ĥ =

∫
r
ihdr∫
r
idr

, η̂ =

∫
r
iηdr∫
r
idr

, v̂ =

∫
r
ihvdr∫
r
ihdr

(4.15)

As before, if i = 0 over the whole edge the averaging is not carried out and
all variables are taken to be nil. Then, Equation 4.11 can be solved with a
suitable time integration method.

Porosity computation

In order to calculate the porosities, the Probability Mass Function (PMF)
of the unresolved bottom elevation inside the cell is calculated in the pre-
processing step. The PMF is defined as the probability density function
with discrete variables and can be computed by sampling the bottom el-
evation at a resolution much higher than the computational mesh. This
assumes that the bottom elevation data is resolved at the finer resolution
than the computational mesh resolution. The PMF is calculated for each
cell and each edge seperately. In the context of this work, the PMF value of
a certain elevation corresponds to the fraction of area below this elevation
over the total area of the cell or the fraction of length of the edge below
the specified elevation over the total length. Then, for any given water
elevation η̄, the volumetric porosity φ can be calculated as:

φ (η̄) =
1

η̄Ω

N∑
i

min (0, η̄ − zb,i) PMF (zb,i) Ωi (4.16)

Here, i is the index of bottom elevation zb,i. PMF (zb,i) is the value of
the PMF evaluated at zb,i. In the present numerical model, the class index
increases as the bottom elevation increases, i.e. the lowest bottom elevation
corresponds to the smallest class index and the highest bottom elevation
corresponds to the largest class index. N denotes the total number of
classes. Similarly, the areal porosity ψ at one edge is computed as:

ψ (η̂) =
1

η̂∆k

N∑
i

min (0, η̂ − zb,i) PMF (zb,i) ∆ki (4.17)
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∆k is the length of the edge. The PMF for the edge is sampled from the
subgrid cells adjacent to the edge under consideration. Because the adjacent
neighbour cell also contributes to the porosity of the edge. The samples at
the edges are modified as:{

zLb,i = zRb,i, if zLb,i < zRb,i
zRb,i = zLb,i, if zLb,i > zRb,i

(4.18)

Here, the superscripts L and R denote the left and right sides of the edge,
respectively. The idea is to take clustering effects and cell blockage which
have been reported in [160, 161] into account. The PMF is computed for
each cell and edge once in the pre-processing step and is stored. Once the
PMF is obtained, the mesh used for sampling is discarded and therefore the
information of the high-resolution bottom elevation is not available any-
more. The bottom elevation of each computational cell is set at the lowest
value found from the high-resolution mesh. Additionally, the elevation at
each edge is stored and used in the subsequent computation. The porosities
are updated at the beginning of each time step according to Equations 4.16
and 4.17. It is noted that in Equation 4.16 and 4.17 each sample is weighted
equally. This assumes that each sample represents an equal amount of area.
This is easy to assume for either square-shaped or rectangular-shaped grid
cells if the subgrid-scale elevations are evenly distributed. For a triangular
cell, evenly distributed subgrid-scale bottom elevations would not represent
equal areas and the equations must be further modified to account for this.
One approach would be to perform a Voronoi-tessellation in each cell to
calculate weights for each sample. In this study, only structured grids with
square-shaped cells are used.

Choice of water elevation for areal porosity calculation

The areal porosity at the edge is calculated according to the water elevation
at the edge. Because the edge is an interface between two neighbouring cells,
a choice between two water elevations has to be made to calculate the areal
porosity, namely the water elevation at the left η̂L and the water elevation
at the right η̂R of the edge. In this work, the upstream water elevation
is chosen for porosity calculation. For example, if the case illustrated in
Figure 4.2 is considered, the areal porosity ψ will be computed according
to the water elevation on the left side of the edge η̂L. In Figure 4.2, ẑb is
the bottom elevation at the edge. The calculation of ẑb is discussed in the
next section (Section 4.4).
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Figure 4.2: Side view of two neighbouring cells for the choice of the water
elevation to calculate ψ, the cell under consideration is on the left side,
water elevation is dashed line, definitions of ∆z, n, η̂L and η̂R

Flux computation

The numerical scheme is a Godunov-type explicit finite volume scheme with
second order MUSCL reconstruction [150]. Values at cell center are linearly
extrapolated to the edges, whereby the slope of the extrapolation function
is limited by a min-mod slope limiter [64]. The reconstructed values are
used to calculate the numerical fluxes over the cell edge by solving the Rie-
mann problem at the edge using a Harten, Lax and van Leer approximate
Riemann solver with the contact wave restored (HLLC) [143]. As suggested
in [2], only η̂, q̂ and ĥ are extrapolated. At wet-dry interfaces, the MUSCL
reconstruction is omitted to ensure numerical stability [91, 60, 92].

The reconstruction of the bottom elevation at the edge differs slightly
from most reconstructions, e.g. [2, 60]. In a first step, the bottom elevation
at the edge zrecb,i is calculated as

zrecb,i = η̂i − ĥi. (4.19)

In an additional second step the difference between the lowest bed elevation
at the edge and the bottom elevation of the cell is calculated:

∆zi = zedgeb − zcellb,i (4.20)

zedgeb refers to the lowest elevation at the edge and zcellb,i refers to the bottom
elevation of the cell on the left or right side of the edge (cf. Figure 4.2).
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Then, ∆zi is added to zrecb,i :

ẑb,i = zrecb,i + ∆zi (4.21)

The reconstruction carried out for the left and right side of the edge gives η̂L,
q̂L, ĥL, ẑb,L, η̂R, q̂R, ĥR, ẑb,R. Hereinafter, the cell on the left side of the edge
is assumed to be the cell under consideration. Then, the non-negative water
depth reconstruction [2] is carried out as follows: The bottom elevation at
the edge is defined as:

ẑb = max (ẑb,L, ẑb,R) (4.22)

Water elevation on the left side of the edge and the bottom elevation at the
edge are compared and the lower value is set as the new bottom elevation.

ẑb = min (ẑb, η̂L) (4.23)

Water depths are reconstructed as:

ĥR = max (0, η̂R − ẑb)−max (0, ẑb,R − ẑb) , ĥL = η̂L − ẑb (4.24)

The vector of velocities at the left and right sides of the edge (v̂i = [ûi, v̂i]
T )

are calculated as:

v̂i =

{
0, ĥi < ε

q̂i/ĥi, ĥi ≥ ε
(4.25)

ε is a threshold to avoid division by 0 and further indicates whether a cell
is considered wet or dry. In this work it is chosen ε = 10−6 m. Finally, ĥL,
v̂L, ĥR and v̂R are used by the HLLC Riemann solver to compute the flux
over the edge.

Source term computation

Bed slope and friction source term computation

In Equation 4.1, three source terms have to be numerically solved: the bed
slope source term, the friction source term and the solid-fluid interfacial
pressure source term. The first two source terms occur as a result of depth-
averaging and can be found also in the classical two-dimensional shallow
water equations. The last term results from the ground unevenness not
resolved by the computational mesh and is discussed in [125, 110].

The bed slope source term can be written as

sb =

 0
sb,x
sb,y

 (4.26)
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where the definitions of the terms are given in Equation 4.4. In [148], the
divergence form for bed slope is presented, which transforms the bed slope
source term within the cell into a flux term over its edges:∫

Ω

isbdΩ =

∮
∂Ω

iFbndr (4.27)

The integral is evaluated and the line integral is approximated by the alge-
braic expression: ∮

∂Ω

iFbndr =
∑
k

ψkrkF̂bnk (4.28)

Hou et al. [60] propose an extension of this approach to higher order accu-
racy by dividing the integral over the cell into integrals over subcells. This
allows non-linear variations of bed elevation, which is suitable for the model
presented in this work because separate bottom elevations are defined at
the cell edges. The vector of bed slope flux at edge k is written as:

Fb,knk =

 0
−0.5nxg

(
hk + h̄

)
(ẑb,k − z̄b)

−0.5nyg
(
hk + h̄

)
(ẑb,k − z̄b)

 (4.29)

Using Equation 4.10, the evaluation of the integral in Equation 4.28 over
edge k in x-direction gives:∫

∂Ωk

−0.5inxg
(
hk + h̄

)
(ẑb,k − z̄b) dr

= −0.5g (ẑb,k − z̄b)
∫
∂Ωk

g
(
ihk + ih̄

)
dr

= −0.5g (ẑb,k − z̄b)
(
ψk (η̂k − z0) rk +

∫
∂Ωk

ih̄dr

) (4.30)

The latter integral in Equation 4.30 is approximated with:∫
∂Ωk

ih̄dr ≈ ψkh̄rk (4.31)

The evaluation of the integral in y-direction is similar. Then, the evaluated
bottom slope flux vector F̂b,knk over the edge k can be written as:

F̂b,knk =

 0
−0.5nxg

(
η̂k − z0 + h̄

)
(ẑb,k − z̄b)

−0.5nyg
(
η̂k − z0 + h̄

)
(ẑb,k − z̄b)

 (4.32)

For the friction source term, the standard expression of the friction
source vector as introduced in Equation 4.5 is used. The term is discretized
in a point implicit way as shown in [128].
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Solid-fluid interfacial pressure source term computation

The solid-fluid interfacial pressure source term treatment follows the model-
ing concept in [125]. The term is split into a stationary and non-stationary
part: ∮

∂Ω∗
s∗dr =

∮
∂Ω∗

s∗stdr +

∫
Ω

is∗nsdΩ (4.33)

The stationary part balances the pressure and flux terms as the flow con-
verges to a stationary state and the non-stationary part results from the
water elevation fluctuation inside the computational cell that can not be
resolved [125]. The non-stationary term s∗ns is integrated over the cell. In
[125, 113], this term follows a generalized drag law proposed in [107]:

s∗ns =

 0

cDū
√
ū2 + v̄2

cDū
√
ū2 + v̄2

 (4.34)

cD is the dimensionless drag coefficient, which is calculated with:

cD = 0.5 c0
Da ·min

(
h, zmax

b − zmin
b

)
(4.35)

The parameter a represents the projected width of the obstruction facing
the flow per unit planform area and depends on the angle of attack and
width of the obstacle [125]. c0

D is a reference drag coefficient obtained by
calibration, and a is a modification coefficient. In theory, it is possible
to determine a exactly from the geometry data and calibrate only c0

D, yet
this is not done in this work. Instead, the model is calibrated using the
product c0

D · a. The reason for this is that calculating the angle of attack
for the value of a during the simulation is not trivial. In addition, the
value of c0

D depends on the Reynolds number and the shape of the obstacle.
In [107, 125], it is suggested that the value of a should be estimated in a
predictor step and then updated in a corrector step based on the flow values
of the predictor step. This approach is not followed in this work, because it
requires extra knowledge of the subgrid-scale obstacles beyond the porosity
function, i.e. information about the shape and the directionality of the
obstacles have to be stored. An additional challenge is that the values of
a and c0

D depend on the water depth in the cell, as the geometry of the
obstacles might vary in the vertical direction. The full assessment of the
present approach requires additional research. Additionally, the value c0

D ·a
is assumed constant over the whole domain, because the cases investigated
are relatively simple. However, each cell could also be assigned a separate
c0
D · a. This would allow a better representation of the heterogeneity in
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the domain, but the drawback is that the model calibration becomes very
complicated and requires large quantities of data. This further suggests
that a more precise definition of both a and c0

D is required. Overall, the
calculation of the non-stationary term needs further research.

The stationary part of the interfacial pressure source term is essential,
as it well-balances the scheme. Here, the vector of the stationary interfacial
pressure source term is derived by evaluating the C-property of the scheme.
This leads to the same formulation as in [125]:∮

∂Ω∗
s∗stdr =

∑
k

ψkF̂∗,knkrk, (4.36)

with:

F̂∗,k =

 0
0.5h̄2nk,x
0.5h̄2nk,y

 (4.37)

The proof of C-property is trivial and omitted for sake of brevity.

Time integration

A two-step total variation diminishing Runge-Kutta method [45] is used.
The values at next time step n + 1 are calculated in two stages. The first
stage is

φ̃n+1q̃n+1 = φnqn −∆t
∑
k

ψnk F̂n
tot,krknk + ∆tφn(sn + s∗,nns )Ω, (4.38)

and the final value is then calculated as

φn+1qn+1 =

1

2
(φnqn + φ̃n+1q̃n+1

−∆t
∑
k

ψnk
˜̂
Fn+1
tot,krknk + ∆tφ̃n+1(s̃n+1 + s∗,n+1

ns )Ω).

(4.39)

Here, F̂tot,k = F̂k − F̂b,k − F̂∗,k. The first term of the vector φn+1qn+1,
i.e. φn+1 (η̄ − z0)n+1 expresses the volume of water inside the cell. In order
to determine the individual value of φn+1 and q̄n+1, a corresponding water
depth has to be calculated. In literature, tabulated values are used to map
water volume to a certain water elevation [117]. In this work, the exact
values of φn+1 and (η̄ − z0)n+1 are calculated from the water volume in an
iterative way. Once (η̄ − z0)n+1 is calculated, φn+1, qx and qy can be deter-
mined. Using an iterative solution significantly increases the computational



CHAPTER 4. POROSITY – NUMERICAL MODEL 101

cost. In the current model implementation, the evaluation of porosities, i.e.
Equations 4.16 and 4.17, turns out to be the most expensive part of the
code, taking up to 15% of the total CPU time. It is important to note that
this is not the one-off evaluation of porosity, but all evaluations summed
up. The reason for the high cost is that, due to their dependency on water
depth, the porosity values have to be evaluated several times for different
water depths during one time step. Equation 4.16 is solved at the beginning
of the time step in each cell. During MUSCL reconstruction Equation 4.17
is solved at each edge. Then, Equation 4.16 is solved repeatedly during the
iterative procedure to determine the new water depth and porosity in the
next time step. For a two-stage Runge-Kutta method all these calculations
have to be carried out twice in each time step.

A more efficient, approximate solution for this problem is presented in
[161]. However, in our opinion the calculation of the water depth should
have very high accuracy, so the mass conservation is strictly satisfied.

The presented scheme is of explicit nature and therefore its stability
is restricted by the Courant-Friedrichs-Lewy criterion (CFL), although the
theoretical analyses of the stability constraint are very complicated for the
present equations. The CFL criteria given in [125] is

Cr = ψλ∆r
∆t

φΩ
≤ 1, (4.40)

where λ = |unx + vny| +
√
gh is the largest wavespeed at the cell edge.

Numerical experiments show that Equation 4.40 degenerates the time step
in cases with small porosity such that in the worst case the simulation comes
to a halt.

In this work, the CFL number is heuristically calculated as

Cr =

(
|v|+

√
gh
)

∆t

∆x
. (4.41)

For the presented cases, Cr < 0.3 gives satisfactory results.

Boundary conditions

Boundary conditions are imposed on the boundary edge of the cell according
to the theory of characteristics proposed in [135]. State variables at the
boundary edge can be computed using Riemann invariants. The porosities
are mirrored from the cell inside the domain.
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4.5 Computational examples

Kim et al. [76] noted three types of errors of the porous shallow water model:
(1) structural model errors, (2) scale errors and (3) porosity model errors.
Errors of type 1 refer to the limitations of the mathematical model concept
of the shallow water equations and are defined by the difference between
measurement and high-resolution model (HR) results. Errors of type 2 are
associated with the lack of sufficient grid resolution. In [76] it is suggested
to study the difference between HR model results and the HR model results
which have been averaged over each porosity model grid cell (CR, standing
for coarse-resolution). Errors of type 3 are the errors introduced by the
porosity concept and are defined as the difference between the porosity
model results (AP, standing for anisotropic porosity) and the CR model
results.

Following the studies presented in [76], the errors are computed using
an L1-norm:

L1 =
1

N

N∑
j=1

|w1,j − w2,j| (4.42)

Here, N is the number of points compared, w stands for a variable, e.g. h or
q, w1,j and w2,j are results of two different models and j is the point index.
The AP model is first calibrated by minimizing the L1-norm in a manual
calibration process. In a second step the fine calibration is automated using
the SciPy library [72]. In the following examples, the errors of type 1, 2
and 3 as well as the differences between HR model and AP model, and AP
model and measurement data are presented.

The classical shallow water model used for obtaining the reference results
is the model presented in [128]. All simulations are run in parallel with 8
threads of an Intel R© CoreTM i7-2600 CPU (3.40 GHz).

All triangular meshes are generated using the mesh generator Gmsh [42].

Idealized test case: Dam-break flow through artificial
street network

The first test case is a test case which is initially proposed in [48]. The HR
model is used to generate the reference solution. The aim of this test case
is to assess the sensitivity of the porosities φ and ψ to the mesh. Thus,
different meshing strategies for the AP model are compared against each
other. A second objective is to test the sensitivity of the model to the
proposed drag coefficient a · c0

D. For this purpose, the drag coefficient is
varied and the results are compared.
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Figure 4.3: Idealized test case: Dam-break flow through periodic struc-
tures: Top view on domain (not correctly scaled) [48] (top), meshing strate-
gies (bottom)

Domain description, initial and boundary conditions

The computational domain is an infinitely long, frictionless street with pe-
riodical structures as shown in Figure 4.3. The initial water elevation on
the left is ηL = 10m and on the right side ηR = 0.25m. The discontinuity
of water elevation located at x = 0, which is the middle of the domain.

The HR model is two-dimensional and uses triangular cells with a char-
acteristic length of 1m. The AP model is one-dimensional with a cell length
of 40m.
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Influence of different meshes and areal porosity

The AP model is expected to be sensitive to the mesh, because the areal
porosity ψ depends on the position of the cell edge. Two configurations are
investigated: (1) the cell edge is located at the narrow section of the street
network (cf. Figure 4.3 (bottom left)), i.e. ψ = 1/7, (2) the cell edge is
located in the wider section of the street network (cf. Figure 4.3 (bottom
right)), i.e. ψ = 1. The volumetric porosity in both cases is the same and is
calculated to be φ = 11/14. Thus, the difference in results can be directly
related to the different areal porosities.

Comparison of model results at t = 50 s are plotted in Figure 4.4 (top).
The AP model with ψ = 1/7 (mesh 1) produces the blockade effects of the
structure better than the AP model with ψ = 1 (mesh 2). Because both
models do not resolve the street network explicitly, they can not reproduce
the local fluctuations in the water elevation. In both models, the right-
traveling shock wave as well as the left-traveling rarefaction wave are not
captured accurately. If the edge is placed at the narrow section of the street
network (mesh 1), introduces correct amount of resistance to the flow. In
upstream direction, the water depth is slightly underpredicted. While the
agreement is not perfect, the AP model results resemble the HR model
solution. If the edge is placed at the wide section, the model is equivalent
to the isotropic porosity shallow water model of [51, 132]. Here, the shock
and rarefaction waves advance too quickly, and the AP model results are
completely different from the HR model results.

The CR model is compared with the AP model with ψ = 1/7 in Figure
4.4 (middle left) and with the AP model with ψ = 1 in Figure 4.4 (middle
right). The CR model is more diffusive than the HR model. Local water
depth fluctuations are averaged out. The AP model with ψ = 1/7 shows
better agreement with the CR model results than the AP model with ψ = 1.

This shows that the AP model results are very sensitive to the areal
porosity ψ and therefore are very sensitive to the mesh. Results indicate
that the mesh should be constructed in such way that the cell edges are
located on the blocking structures to capture their influence. If a structure
is located completely inside a cell, its influence on the flow is only modeled
by the volumetric porosity which can not model its obstruction to the flow
sufficiently.

The right traveling shock wave in the AP model advances too slow. The
reason for this might be that the local acceleration at narrow sections can
not be taken into account by the AP model, which leads to an underesti-
mation of the mass and momentum fluxes.
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Figure 4.4: Idealized test case: Dam-break flow through periodic struc-
tures: Results for a · c0D = 0 at t = 50 s in the whole domain (top left),
detail of the results for x = [−400, 400] (top right), CR model results for
water depth compared with HR model results and AP model with ψ = 1/7
(middle left), and AP model with ψ = 1 (middle right), CR model results
for water depth compared with AP model results for different values of
c = a · c0D at t = 50 s for ψ = 1/7 (bottom left), for ψ = 1 (bottom right)
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Influence of drag coefficient

The value a · c0
D is now varied to study its influence on the AP model.

Beginning from a ·c0
D = 0, the value is increased with a step size of 0.25 m−1

until a · c0
D = 10 m−1. Figure 4.4 (bottom left) shows the AP model with

ψ = 1/7, while Figure 4.4 (bottom right) shows the AP model results with
ψ = 1. In both cases, increasing the drag coefficient improves the agreement
until a critical value a · c0

D > 1 is exceeded. After that, the drag coefficient
does not change the result anymore. For the AP model with ψ = 1/7, the
value a · c0

D = 0.25 gives the best agreement. For the AP model with ψ = 1
the agreement improves for a · c0

D > 1 but stays overall poor.
Figure 4.5 compares the sensitivity of both models to the drag coeffi-

cient. For this purpose, ∆ is calculated as

∆i = L1

(
AP ((ac0

D)i), AP ((ac0
D)i+1)

)
(4.43)

where (ac0
D)0 = 0, (ac0

D)1 = 0.25, (ac0
D)2 = 0.5, and so on, and AP (x) is

the result of the AP model for the drag coefficient x. For a meaningful
comparison, Figure 4.5 shows a normalized value obtained by dividing each
∆i by the maximum ∆i, i.e.

∆n,i =
∆i

max∆i

. (4.44)

Figure 4.5 shows, that the AP model with ψ = 1/7 is less sensitive to the
drag coefficient than the AP model with ψ = 1. This implies that the areal
porosity effect dominates the flow such that the influence of the drag force
on the momentum is less significant. For values ac0

D > 1, the influence of
the increasing drag coefficient is negligible. This is because the numerical
scheme limits the drag force source term in such way that the flow direction
is not reversed.

If the areal porosities are large, the numerical flux is not limited as
strictly and blocking effects of the obstructions are not reproduced as well
as for smaller areal porosities. In this case, increasing the drag coefficient
has larger influence on model results. The drag force depends only on the
volumetric porosity, which is the same for both cases. Increasing the drag
coefficient has a similar effect as increasing the friction coefficient and the
results are similar to the findings by Liang et al. [88] who capture the effect
of buildings to some extent using an increased roughness coefficient. If the
areal porosities are small, the flow is blocked more severely at the edges
and the flow velocity is not as high as in the unobstructed flow. Therefore,
changing the value of a · c0

D does not effect the results as much.
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Figure 4.5: Idealized test case: Dam-break flow through periodic struc-
tures: Sensitivity of the AP model results for different values of a · c0

D at
t = 50 s with ∆i = L1[AP (ac0

D)i − AP (ac0
D)i+1]

Dam-break flow over a triangular bottom sill

Herein, the depth-dependent porosity is demonstrated by replicating a lab-
oratory experiment conducted at the Université catholique de Louvain, Bel-
gium, [134].

Domain description, initial and boundary conditions

The experiment was carried out in a 5.6 m long and 0.5 m width channel.
The peak of the triangular bottom sill is located at x = 4.45 m and is
0.065 m high. The sill is symmetrical and has a base length of 0.9 m. The
initial conditions and the geometry is given in Figure 4.6. An initial water
elevation of ηres = 0.111 m is ponding in the reservoir before the gate is
opened. The gate is located at x = 2.39 m. On the downstream side of the
sill, water is at rest with an initial water elevation of η = 0.02 m.

The HR model uses square shaped cells with a side length of 0.01 m.
It is noted that this test case is essentially one-dimensional. However, the
domain was discretized in two dimensions, resulting in a mesh with 28000
cells. The AP model uses square shaped cells with side length of 0.4 m,
which gives a mesh with 56 cells. The bottom of the AP model is completely
flat and the sill is accounted for only by the porosity terms. Figure 4.7
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Figure 4.6: Dam-break over triangular bottom sill: Side view on domain
(not correctly scaled) [134]

(bottom right) shows a sideview of the AP model mesh with the HR model
bed elevation plotted for reference.

Measured water depth over time is available at 3 measurement gauges,
located at x = 5.575m (G1), x = 4.925m (G2) and x = 3.935m (G3). The
locations of the gauges are given in Figure 4.6.

The roughness of the channel is quantified in [134] with a Manning’s
coefficient of n = 0.011 sm−1/3. This value is used both in the HR and the
AP model.

Model calibration and run time

The AP model is calibrated by changing the value a · c0D in Equation 4.35.
Calibration is carried out manually using the CR model as reference. Good
agreement has been achieved with a·c0D = 5m−1. The HRmodel takes about
4000 s to finish, while the AP model takes only 3.5 s. This corresponds to
a speedup of about 1140.

Error analysis

Structural model errors This test case features an obstruction that is
unsubmerged at the beginning of the simulation, completely submerged by
the dam-break wave in the middle of the simulation, partially submerged
towards the end of the simulation. In Figure 4.7, snapshots of the HR
model results at various times are shown. The HR model shows excellent
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Figure 4.7: Dam-break over triangular bottom sill: Snapshots at different
time steps of HR model results for water elevation and AP model mesh
plotted over HR model bed elevation (bottom right)
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Figure 4.8: Dam-break over triangular bottom sill: HR model results for
water depth compared with experimental data [134] (left), CR model results
for water depth compared with HR model results, dotted lines denote the
minimum and maximum values inside the coarse cell (right)

agreement with the experimental results, as seen in Figure 4.8 (left), espe-
cially at gauge 2 and gauge 3. The larger discrepancy at gauge 1 might
be explained by the splashing of water in the experiment which can not be
reproduced by the shallow water equations.

Scale errors Scale errors are calculated by mapping the HR model results
to a coarser grid, which in this study is the grid of the AP model. The value
at a low resolution cell is determined by arithmetic averaging the values
over all the high-resolution cells lying inside the low resolution cell. The
CR model results show very good agreement with the HR model results,
as seen in Figure 4.8 (right), where the comparison at the three gauges is
shown. The dotted lines show the maximum and minimum water depths
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sampled inside the coarse grid. It can be seen that at gauge 1 and gauge
3, the difference between the minimum and the maximum water depth is
low. At gauge 2, which is located just behind the sill, the deviation is high.
Owing to the reflected waves, the flow at gauge 2 is more complex than
at the other gauges. Consequently, here the agreement between CR model
and HR model is not as close as at the other gauges. It is observed that
the CR model introduces some diffusion to the results and the curves are
smoother than the HR model results.

Porosity model errors The porosity model errors are assessed by com-
paring AP model results to CR model results, as shown in Figure 4.9 (left).
The AP model shows good agreement with the CR model at all gauges. At
gauge 1, which is located furthest away from the gate the predicted wave
arrives a bit late. However, after 5 s the arrival time of the second peak is
captured despite the slightly undershot peak water level. The third peak
is captured accurately. After that, the AP model does not predict as much
fluctuation as the CR model but the average water elevation does not differ
much. The agreement at gauge 2 and gauge 3 is much better. Especially at
gauge 3 all waves are captured with good agreement. At gauge 2, the rise
of the curve starts correctly but the AP model overshoots the CR model at
about 8 s. A comparison between AP model result with experimental data
is shown in Figure 4.9 (right). The AP model reproduces the experimental
data well.

Summary The L1-errors are listed in Table 4.1 and 4.2. In both tables,
the errors are calculated as the arithmetic mean of the errors at the 3 gauges.
Table 4.1 shows a summary of the cell sizes and L1-errors for HR model, CR
model and AP model. Here, the errors are calculated using the experimental
data as a reference. Overall, the errors are two orders of magnitude smaller
than the initial water elevation in the reservoir (ηres = 0.111 m). The L1-
errors for structural, scale and porosity model errors are summarised in
Table 4.2. All errors are in the same order of magnitude, which is one
order of magnitude smaller than the maximum measured water depth. The
porosity model (E3) error is the largest, followed by the structural model
error (E1). The scale error (E2) is the smallest error. It is concluded that
in this example, the error introduced by the coarse grid is the smallest. The
mathematical model limitation of the shallow water equations introduces
larger errors than the grid coarsening, but the largest error is introduced
by not resolving the sill explicitly.
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Figure 4.9: Dam-break over triangular bottom sill: AP model results for
water depth compared with CR model results (left), AP model results for
water depth compared with experimental data [134] (right)

Model Mesh Resol. (m) Cell nr. Time (s) L1 (m)
HR Square 0.01 28000 4000 0.0024
CR Square 0.01 28000 4000 0.0031
AP Square 0.4 56 3.5 0.0035

Table 4.1: Dam-break over triangular bottom sill: Summary of shallow
water model formulations and corresponding meshes (HR: High-resolution,
CR: averaged HR model, AP: anisotropic porosity); L1-norm is calculated
with regard to the experimental results
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Type L1 (m)
E1 0.0024
E2 0.0016
E3 0.0038

Table 4.2: Dam-break over triangular sill: Model error (E1), scale error
(E2) and porosity error (E3)

Dam-break flow through an idealized city

In this computational example, results of a dam-break experiment con-
ducted at the Université catholique de Louvain, Belgium, [133] are numer-
ically reproduced.

Domain description, initial and boundary conditions

The domain is a 35.8 m long and 3.6 m wide channel with horizontal bed.
The idealized city consists of 5 × 5 buildings, each of them being a square
block with a side length of 0.30 m. The distance between the blocks is
0.10 m. The center of the building block is placed 5.95 m away from the
gate and rotated 22.5◦ in counter-clockwise direction around its center. The
dam-break is constructed by opening a 1 m gate, which initially seperates
the reservoir, where water is ponding at 0.40 m, from the rest of the channel,
where a very thin layer of 0.011 m water is reported. For further details on
the experimental setup and employed measurement techniques, the reader
is referred to [133]. The domain is illustrated in Figure 4.10 (top left),
where the reservoir is coloured in grey.

The computational domain only includes the reservoir and the first 16 m
of the channel. For the duration of the simulations, t = 15.5 s, the shock
wave does not travel further than this length. The downstream boundary
is an open boundary and all other boundaries are closed boundaries.

The HR model uses a triangular mesh with variable cell sizes: the reser-
voir is discretized with cells with a characteristic length of lc,1 = 0.3 m.
The area inside the channel which is sufficiently far away from the build-
ing blocks is discretized with a characteristic length of lc,2 = 0.1 m. The
space between the buildings is discretized with a characteristic length of
lc,3 = 0.01 m. The buildings are represented as holes in the mesh, which is
a method commonly used in urban flood modeling [127]. Hence, the gap
between two buildings is discretized with about 10 cells and the total cell
number is 96339. The AP model uses square-shaped cells with side length
0.25 m, whereby the volumetric porosity is calculated using 125 subgrid
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Figure 4.10: Dam-break through idealized city: Top view on domain (not
correctly scaled) [133] (top left), position of all 87 gauges (black), results
are plotted for 8 gauges (indicated by their numbers), the boundary of the
building block is plotted for reference (top right), comparison of HR model
mesh (triangular) and CR and AP model mesh (square), meshing of the
building block (bottom left), mesh detail between houses (bottom right)

cells, resulting in a mesh with 1272 cells. The HR mesh is compared to the
AP model mesh in Figure 4.10 (bottom). Both meshes in the region of the
building block is shown in Figure 4.10 (bottom left), while in Figure 4.10
(bottom right) a close-up view is shown. A building is in general contained
in 4 AP model cells. The buildings do not align with the cell edges. As
discussed in Section 4.5, the blocking effect of buildings is not captured
accurately if the building is positioned inside the cell instead of at the edge,
but this is inevitable for some fron-row houses (cf. Figure 4.10 (bottom)).

Experimental data are available at 87 measurement gauges distributed
inside the channel [133]. The positions of these gauges are given in Figure
4.10 (top right). In the discussion, results are plotted for 8 gauges, namely
gauges 3, 13, 25, 35, 40, 59, 67 and 85.

The roughness of the channel has been estimated in [133] with a Man-
ning’s coefficient of n = 0.01 sm1/3. This value is used for both the HR and
the AP model.
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Model calibration and run time

The AP model is calibrated with the value a · c0
D in the drag law, given

in Equation 4.35. Calibration is carried out with regard to the CR model
results using Brent’s algorithm for minimisation [7]. Brent’s search returns
a · c0

D = 1.9 m−1 with a corresponding L1-error of 0.025 m. The HR model
simulation takes about 3000 s to finish. The AP model requires about 4 s.
Consequently, the speedup is calculated as 750.

Error analysis

Structural model errors The HR model makes overall an acceptable
prediction of the water depth at the evaluated gauges. In Figure 4.11, the
water depth calculated by the HR model at the aforementioned gauges is
plotted together with the measured water depth. The arrival time of the
wave is predicted correctly at all gauges, although the HR model predicts
a slightly later arrival. Larger deviations between the results occur at the
later stages of the simulation, where the HR model results undershoot the
experimental data. For this test case, Soares-Frazão and Zech [133] re-
port lower computed water depths as well. The deviations might partly
be caused by the frictionless wall-boundaries imposed at the buildings and
the wave reflections that can not be modeled by the shallow water equa-
tions. The model overestimates the the flow velocities, leading to overall
lower water depths. As time passes, this effect becomes more significant.
Gauge 67 is located in front of the houses. Overall, the characteristics of
the experimental data set are captured by the HR model, i.e. the small
peak at around t = 2 s and the rise at around t = 4 s, however the first peak
is delayed and the second rise at t = 4 s is too early. In general, the HR
model appears to overpredict the steepness of the water level variations.
This is especially distinct at the sharp rise of the HR model curve at t = 4 s
in comparison to the smoother rise of the experimental curve. As in [133],
this indicates that the entrance contraction can not be reproduced by the
mathematical model. This is also indicated by the discrepancies at gauge
3, which is located at the entrance of the building block. The rise of the
water level is again delayed. The drop in water depth at around t = 6 s is
not observed in the experiment. Gauge 13, located slightly behind gauge 3,
shows good agreement. Here, the front of the wave is captured accurately
in time. The agreement at gauges 25, 35 and 59, which are all located
between the buildings, is very well.

Gauge 40, which is also located between the buildings, shows worse
agreement than the aforementioned gauges. As at gauge 3, the general
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Figure 4.11: Dam-break through idealized city: HR model results for water
depth compared with experimental data of [133]
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shape of the experimental data is reproduced. Finally, at gauge 85, which
is outside of the building block, good agreement is achieved.

Overall, this is a challenging test case for the mathematical model. The
angled position of the buildings that are not aligned with the flow direction
coupled with the hydraulic jump at the entrance of the building block in-
creases the difficulty. In addition, wave reflections and turbulent eddies are
not accounted for in the model. Consequently, the structural model error
is relatively high.

Scale errors In Figure 4.12, the averaged water depth is plotted against
the HR model water depth at the four gauges. The measured water depth
is omitted to avoid cluttering the figure. Maximum and minimum values
of the high-resolution cells lying inside the low-resolution cell are plotted
as well. Overall, the averaging process smooths out the HR model results.
Local fluctuations are not captured by the CR model. It is noted that a large
difference between the minimum and the maximum in a coarse cell indicates
complex flows. As expected, the location of the gauge can be related to the
complexity of the flow. Gauges 67 and 85 are located outside of the building
block and the minimum and maximum of the values at these gauges do not
differ much. Conversely for the other gauges located between the buildings,
the local fluctuation is high. In general, the difference between the minimum
and maximum gives a good indication for the difference between HR and
CR model. If the flow in a coarse cell is complex, there exist high differences
between minimum and maximum water levels inside the cell. This complex
flow can not be resolved on the scale of the CR model, thus it introduces
an error due to scale to the CR model result. Consequently, the difference
between HR and CR model is high at, e.g. Gauge 3, positioned at the front
of the building block where the flow is complex, and at Gauge 40, located at
a crossroad. In contrast, if the flow inside a coarse cell is relatively smooth,
the loss of information due to low resolution is not that severe. This is seen,
e.g. at Gauge 85, located outside of the building block.

Porosity model errors The AP model shows acceptable agreement with
the CR model, although some gauges observe less good agreement, e.g.
gauge 85 the agreement is poor. In general, the results of the AP model
are smoother and more “smeared” than the CR model results. In Figure
4.13, AP and CR model results are plotted for eight gauges. The AP model
water depth at gauge 3 shows similarities to the maximum value at this
gauge. Gauges 13, 25 and 67 show good agreement. At gauge 35, the
shape of the curve is reproduced but the AP model underestimates the
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Figure 4.12: Dam-break through idealized city: CR model results for water
depth compared with HR model results, dotted lines denote the minimum
and maximum values inside the coarse cell
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Figure 4.13: Dam-break through idealized city: AP model results for water
depth compared with CR model results

water depth. Gauge 85, which is located behind the building block, shows
the worst agreement among the eight presented gauges. The AP model is
unable to reproduce the CR model result, with underestimated peak water
level and delayed arrival time. Overall, the general properties of the AP
model results, i.e. the lack of local and spatial fluctutations, are consistent
with the findings in [76].
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Model Mesh Resol. (m) Cell nr. Time (s) L1 (m)
HR Triangle 0.01 - 0.3 95975 3000 0.020
CR Triangle 0.01 - 0.3 95975 3000 0.021
AP Square 0.25 1272 4 0.026

Table 4.3: Dam-break through idealized city: Summary of shallow water
model formulations and corresponding meshes (HR: High-resolution, CR:
averaged HR model, AP: anisotropic porosity); L1-norm is calculated with
regard to the experimental results

Type L1 (m)
E1 0.020
E2 0.018
E3 0.025

Table 4.4: Dam-break through idealized city: Model error (E1), scale error
(E2) and porosity error (E3)

Summary An overview of the results of this computational study is given
in Table 4.3 and 4.4. The L1-errors in Table 4.3 are calculated by taking the
measured data by averaging the L1-errors of all 87 gauges. Moreover, the
AP model results are plotted against the measurement data in Figure 4.14.
The errors are as expected: the HR model has the lowest error, the CR
model comes second and the AP model shows the largest error. However,
the errors have the same order of magnitude and are one order of magnitude
smaller than the initial water depth in the reservoir (h0 = 0.4 m). Table 4.4
shows the structural, scale and porosity errors E1, E2 and E3, respectively.
The values are again averaged over 87 gauges. In this example, the error due
to coarser cells is smaller than the structural and porosity errors. Indeed,
the CR model results show good agreement with the HR model (cf. Figure
4.12), while the difference between CR model and AP model is larger.

Rainfall-runoff in an idealized urban catchment

A series of experiments regarding pluvial flooding in urban catchments were
carried out at the Universidad de A Coruna, Spain [16]. One of these
experiments is studied in this computational example.
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Figure 4.14: Dam-break through idealized city: AP model results for water
depth compared with experimental data of [133]



CHAPTER 4. POROSITY – NUMERICAL MODEL 122

Domain description, initial and boundary conditions

Constant rainfall with an intensity of i = 300 mm/h is applied for 20 s
to a 2.5 m long and 2 m wide rectangular inclined domain with a slope
of 0.05. Inside of the domain, a simplified urban district is built using
0.30 m× 0.20 m wooden blocks as houses. The configuration of the houses
is plotted in Figure 4.15 (top). The domain is initially dry. Further details
regarding the experimental setup and more building configurations can be
found in [16]. In the numerical models, the outlet of the domain is an
open boundary and all other boundaries are closed. The simulation runs
for 150 s.

The HR model discretises the domain with a triangular mesh with vary-
ing cell size, starting at lc,1 = 0.05 m at the boundary of the domain to
lc,2 = 0.01 m between the buildings, which are again represented as holes in
the mesh. The resulting mesh has 62058 cells. The AP model uses square
shaped cells with a side length of 0.125 m, which results in a mesh with 320
cells. The two meshes are compared in Figure 4.15. The whole domain is
plotted in Figure 4.15 (middle) with the houses marked out as reference
and in Figure 4.15 (bottom) the region between houses. One building can
be contained in approximately 6 AP model cells. Again, the alignment of
the buildings does not match the AP model mesh cells.

In contrast to the previous examples, no measurement data inside the
domain is available, Cea et al. [16] measured the total discharge at the
outlet of the domain.

Model calibration and run time

The roughness of the domain is reported in [16] in form of a Manning’s
coefficient of 0.016 sm−1/3. The results of the HR model agree well with
the experimental data, thus no further calibration is required. The HR
simulation takes about 5340 s. The AP model uses the same roughness
coefficient (0.016 sm−1/3) and a drag force with a·c0

D = 0.5 m−1 (determined
with Brent’s method). In each cell, 400 subgrid-cells are used to calculate
the porosity. The AP model simulation runs for about 43 s, which is a
speedup of about 124. The lower speedup in comparison to the first test case
is because the stability criterion has to be set to Cr = 0.1 in this example.
The numerical simulation of rainfall is prone to instabilities because of small
water depths and the presence of the mass source [105].
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Figure 4.15: Rainfall-runoff in an idealized urban catchment: Bottom
elevation in the domain and configuration of houses (top), CR and AP
model mesh of the whole domain (middle), comparison of HR model mesh
(triangular) and CR and AP model mesh (square) between houses (bottom)
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Figure 4.16: Rainfall-runoff in an idealized urban catchment: HR model
results for discharge at the outlet of the domain compared with experimental
data [16] (top left), CR model results for discharge at the outlet compared
with HR model results, dotted lines denote the minimum and maximum
values inside the coarse cell (top right), AP model results for discharge at
the outlet compared with CR model results (bottom left), AP model results
for discharge at the outlet compared with experimental data [16] (bottom
right)

Error analysis

Structural model errors The HR model shows good agreement with
the experimental data. The discharge at the outlet of the domain as calcu-
lated by the HR model is plotted against the measured discharge in Figure
4.16 (top left). In the first 10 s of the simulation, the model discharge over-
shoots the measured discharge. This has been also observed in [16], and
is most likely because at the beginning of the experiment the shear stress
on the thin water film in the domain is holding the water back. This can
not be reproduced by the shallow water model. After the first 10 s, both
hydrographs show very good agreement.

Scale errors The CR model agrees with the HR model, yet the agreement
is not as good as in the first test case, especially at the beginning of the
simulation. In Figure 4.16 (top right), the maximum and minimum values
of the subgrid-cells are also plotted. It is seen that the peak of the curve
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Figure 4.17: Rainfall-runoff in an idealized urban catchment: Sensitivity
of the subgrid-cell number on the AP model results

of maximum values is about 3 times larger than the peak of the CR model
while the curve of minimum values is close to zero. Generally, it can be
concluded that the scale error underestimates the retention effect of the
domain.

Porosity model errors The AP model results are plotted against the
CR model results in Figure 4.16 (bottom left) and against the experimental
results in Figure 4.16 (bottom right). The AP model results show a similar
evolution as the CR model results. The major difference between both
curves is at the beginning of the simulation. The AP model undershoots
the CR model results. Yet, as can be seen in Figure 4.16 (bottom right),
it better matches the measured discharge at the end of the domain. Figure
4.17 shows a sensitivity analysis with regard to the subgrid-cell number,
from which it is concluded that the model is sensitive to the subgrid-cell
number. Apparently, a grid convergence test should be carried out for the
subgrid-cell number for each simulation. The subgrid-cell number required
to reach subgrid convergence increases if the subgrid-scale obstacles are not
aligned with the edges. Yet, even with a small number of subgrid-cells,
reasonable results can be obtained (cf. Figure 4.17).

Model validation In order to show that the calibrated model is valid
for different hydraulic conditions, the rainfall intensity is decreased to i =
180 mm/h and its duration is increased to 40 s. The same mesh and model
parameters are used.

Results are plotted in Figure 4.18. The HR model results are compared
with the experimental data in Figure 4.18 (top left). The hydrograph of the
HR model is very similar to the previous simulation with i = 300mm/h,
as it overshoots the experimental data in the beginning but shows good
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Figure 4.18: Rainfall-runoff in an idealized urban catchment: Model vali-
dation with rainfall intensity i = 180mm/h, HR model results for discharge
at the outlet of the domain compared with experimental data [16] (top left),
CR model results for discharge at the outlet compared with HR model re-
sults, dotted lines denote the minimum and maximum values inside the
coarse cell (top right), AP model results for discharge at the outlet com-
pared with CR model results (bottom left), AP model results for discharge
at the outlet compared with experimental data [16] (bottom right)

agreement during the later stage of the simulation. Similarly, the CR model
results overshoot the HR model at the beginning and undershoot it at later
times (Figure 4.18 (top right). The AP model results, plotted in Figure
4.18 (bottom left) shows good agreement with the CR model, only the first
20 s show significant discrepancy. In Figure 4.18 (bottom right), the AP
model is compared to the experimental data. The agreement between the
AP model and the experimental data is good. Comparing Figure 4.18 to
Figure 4.16 shows that the AP model behaviour is consistent for varying
hydraulic conditions.

The errors, summarised in Table 4.5 and Table 4.6, support that the
model results are consistent with the first simulation. The structural error
is the smallest, the second smallest error is the scale error and the largest
error is the porosity error (cf. Table 4.6). However, if model results are
compared to experimental results (Table 4.5), the AP model error is less
than the CR model error.
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Model Mesh Resol. (m) Cell nr. Time (s) L1 (m3/s)
HR Triangle 0.01 - 0.05 62058 5340 1.3 · 10−5

CR Triangle 0.01 - 0.05 62058 5340 2.6 · 10−5

AP Square 0.125 320 43 1.7 · 10−5

Table 4.5: Rainfall-runoff in an idealized urban catchment: Validation:
Summary of shallow water model formulations and corresponding meshes
(HR: High-resolution, CR: averaged HR model, AP: anisotropic porosity);
L1-norm is calculated with regard to the experimental results

Type L1 (m3/s)
E1 1.3 · 10−5

E2 2.0 · 10−5

E3 5.5 · 10−5

Table 4.6: Rainfall-runoff in an idealized urban catchment: Validation:
Model error (E1), scale error (E2) and porosity error (E3)

Summary A summary is listed in Table 4.7. The total rainfall discharge
is calculated by multiplying rainfall intensity with the area of the domain,
which gives Qrain = 4.2 · 10−4 m3/s. The HR model error is two orders of
magnitude smaller than Qrain, but the CR and AP model errors are only one
order of magnitude smaller. The errors of type 1, 2 and 3 are given in Table
4.8. The structural error (E1) is about two orders of magnitude smaller
than the experimental results and both scale (E2) and porosity (E3) errors
are about one order of magnitude smaller than the experimental results.
Although E3 is greater than E2, in this test case the scale error seems to be
the most significant error and the porous model somehow negates the scale
errors. Simulation runs with larger cells, e.g. ∆x = 0.25 m, which are not
shown here, fail to calculate good results. The main reason is that blockage
effects, which have a big influence on the flow field, are underestimated for
too large cells. If the coarse cell is too large such that the building lies
completely inside the cell, it is not taken into account for the edge porosity
and thus, its blockage effects can not be reproduced. This model limitation
might give a good upper bound for the size of the coarse cell: it should be
possible to capture the significant blockage effects via the edge porosities.
If the coarse cell length is chosen too large, the subgrid obstacles can not
occupy a significant portion of the edge and their influence on the flow will
be underestimated. The authors suggest to use an edge length of about the
obstacle size if the obstacles are not arranged densely. For dense building
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Model Mesh Resol. (m) Cell nr. Time (s) L1 (m3/s)
HR Triangle 0.01 - 0.05 62058 5340 6.0 · 10−6

CR Triangle 0.01 - 0.05 62058 5340 2.4 · 10−5

AP Square 0.125 320 43 2.0 · 10−5

Table 4.7: Rainfall-runoff in an idealized urban catchment: Summary of
shallow water model formulations and corresponding meshes (HR: High-
resolution, CR: averaged HR model, AP: anisotropic porosity); L1-norm is
calculated with regard to the experimental results

Type L1 (m3/s)
E1 6.0 · 10−6

E2 2.2 · 10−5

E3 2.4 · 10−5

Table 4.8: Rainfall-runoff in an idealized urban catchment: Model error
(E1), scale error (E2) and porosity error (E3)

arrays, such as the first example, larger cells might be chosen. It is noted
that in [19], a method to represent this type of building blockage effects
is shown which does not depend on edge porosities. This method requires
additional pre-processing and is not used in this work.

4.6 Conclusions

A two-dimensional shallow water model with depth-dependent anisotropic
porosity is tested in four test cases. The main novelty of the proposed
model is the calculation of the porosities that depends on the water depth.

The formulation of the porosities suggests that the model is sensitive to
the computational mesh. The model is tested in a theoretical test case to as-
sess the sensitivity of the model to different meshes and the drag coefficient
a · c0

D. The computational mesh determines the values of the volumetric
and the areal porosities. The areal porosities are the terms that introduce
anisotropy to the model. It is found that the mesh has to be constructed
such that the main obstructions are located at the cell edges. Otherwise,
their influence on the flow diminishes significantly. The sensitivity of the
drag coefficient is related to the areal porosities. If the flow is mainly in-
fluenced by obstructions that block and divert the flow, the head loss due
to drag is not as significant. This means that in cases where the areal
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porosities affect the flow significantly, the model is less sensitive to the drag
coefficient. However, if the obstructions are located mainly inside the cells,
the drag coefficient becomes a more influential parameter. In all cases, the
model needs to be calibrated to determine the value a · c0

D.
In three case-studies, where measured data are available, three types of

errors are presented in L1-norm, as shown in [76]. In all cases, the porosity
model error has the same order of magnitude as the scale error. The results
are in agreement with the case study conducted in [76]. Good agreement
has been achieved between the porosity model and the reference solution.

The model was calibrated using the drag coefficient a · c0
D. Based on

the research in [125, 113] and the current results, a value up to 10 m−1

seems reasonable. After this value, the drag coefficient does not change the
simulation results anymore. In the investigated cases, especially the range
between 0 and 1 m−1 is found to alter the results significantly. It is noted
that this claim is based solely on the authors’ experience.

Using the porosity model concept allows to run simulations on signif-
icantly coarser grids. The speedup in all investigated cases is significant,
the anisotropic porosity model is about three orders of magnitude faster
than the high-resolution model. The main reason behind the speedup is of
course the reduced cell number.

Limitations of the presented porosity model are its mesh dependency,
which means that different results may be obtained for the same case if
different meshes are used and the ambiguity of the drag coefficient ap-
proximation. Further systematic research that addresses these issues would
certainly improve these type of models’ accuracy and reliability.
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5.1 Abstract

Porous shallow water models are a promising approach to reduce compu-
tational cost in urban flood simulations. In this type of models, buildings
and other obstacles are not explicitly discretized but rather accounted for by
means of porosity. The porosity terms are normally related to the fraction
of the cell that is available to fluid flow. In the anisotropic-porosity shallow
water model, an additional porosity term is defined at each cell edge that
describes the conveyance. Models with only one porosity value at a cell
edge have limited capability to capture porosity discontinuities at the cell
edge. This paper proposes a simple flux correction that is described using
two conveyance porosities (defined at the left and right side of the edge) to
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improve the model accuracy at porosity discontinuities. A novel approach
to estimate the head-loss due to subgrid-scale building-fluid interaction in
an anisotropic way is presented. A well-balanced first order Godunov-type
scheme using an HLL solver is used to solve the governing equations on
unstructured meshes. A novel way to maintain the monotonicity during
the variable reconstruction is presented. The model is tested in two aca-
demic examples and a laboratory experiment. The proposed flux correction
improves the results especially in cases with a large porosity discontinuity.
The proposed monotonicity treatment prevents spurious oscillations of flow
velocities, but decreases the model accuracy if applied too strictly. The pre-
sented head-loss estimation is shown to improve the model results compared
to an isotropic head-loss estimation, especially for cases with unsymmetric
building configurations.

5.2 Introduction

Shallow water models with porosity are consist of a set of equations to
model large scale flood events in urban areas. The porosity accounts for
the presence of buildings and other obstacles that block the water flow. The
advantage of using the porous shallow water formulation is that buildings do
not have to be discretized explicitly with mesh refinement and simulations
can be carried out with a coarser resolution.

The benefit of using coarser cells is illustrated by the estimation of
computational cost for explicit models in [76] as

C ∼ k
1

∆x3
, (5.1)

where k is a parameter that depends on the implementation of the numerical
scheme. As the cell size increases, the computational cost decreases with
order 3. This results in simulations that run two [125] up to three orders
of magnitude [110] faster than the classical high-resolution shallow water
model.

In the pioneering work of [51, 132] a single porosity shallow water model
is proposed. The cell is considered a representative elementary area (REA)
and the buildings are accounted for by a porosity term. Flux terms are
limited by the same porosity that describes the volume available in the
cell. Then, a lateralized Godunov-type finite volume scheme is proposed to
solve the equations. In [151], the numerical scheme is further developed. A
different numerical scheme to solve the equations that is based on a modified
Rusanov method can be found in [100].
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In [125], the porous shallow water equations were derived without an
REA assumption which enabled the use of different porosities to represent
the conveyance of the edge. The flux terms are limited by the conveyance
porosities, while the space inside the cell is described by a volume poros-
ity. These equations are referred to as anisotropic porosity shallow water
equations. In [125], the equations are solved with a Godunov-type finite
volume scheme and the same numerical scheme is applied and discussed ex-
tensively in [77, 76]. A modified version of the equations has been presented
in [110, 116, 10].

This paper presents a well-balanced first order Godunov-type finite-
volume scheme to solve the anisotropic-porosity shallow water equations on
unstructured grids. The scheme is a simplification of the model presented
in [116], where the main difference is a modified reconstruction of the in-
terface variables and additional treatment to prevent spurious oscillations.
A simple Harten, Lax and van Leer (HLL) approximate Riemann solver is
used that is motivated by the solver shown in [51]. A limitation of the con-
ventional anisotropic shallow water model is that a porosity discontinuity
across the edge can not be represented accurately if the edge conveyance is
described with a single porosity. In order to improve the accuracy of the
model in this case, this study proposes a simple flux correction based on an
empirical equation for head loss due to a rapid narrowing. In addition, a
novel way to estimate the drag force in an anisotropic way is presented.

The proposed scheme is applied to two analytical examples, where it is
shown that the prediction of the present model agrees well with the reference
solution. Then, the model is applied to replicate a laboratory experiment
[139], to study its limitations. In the last section, conclusions are drawn.

5.3 Governing equations

The anisotropic-porosity shallow water equations derived in [125] are writ-
ten in integral vector form as

∂

∂t

∫
Ω

iqdΩ +

∮
Γ

i (F · n− F∗) dΓ =

∮
Γ∗
iH ·mdΓ +

∫
isdΩ, (5.2)

cf. [76], with t being time, x and y being the Cartesian coordinates, i being a
binary function that returns 1 if the evaluation point is available to flow and
0 if the evaluation point coincides with an obstruction, Ω being the control
volume area, Γ being the path along the boundary of the control volume
and Γ∗ being the path along the unresolved obstruction-fluid interface inside
the control volume. n is the unit outward normal vector along Γ and m is
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the unit outward normal vector along Γ∗. For a more detailed discussion
see [125]. F∗ is a flux correction term that is based on a head-loss due to
geometric contractions and is discussed in Sec. 5.4. The other vectors are
defined as

q =

hqx
qy

 , F =

 qx qy
q2
x/h+ 1

2
gh2 qxqy/h

qxqy/h q2
y/h+ 1

2
gh2

 , (5.3)

H =

 0 0
1
2
gh|2η0 0
0 1

2
gh|2η0

 , s =


sm

−sb,x −
(
cfD + cbD

)
qx|q|/h2

−sb,y −
(
cfD + cbD

)
qy|q|/h2

 . (5.4)

h is the water depth, qx and qy are unit discharges in x- and y-direction, re-

spectively, |q| is the norm of the vector of unit discharges, i.e. q = [qx, qy]
T ,

g is the gravitational constant, sm is the mass source term, sb,x and sb,y
are the bed slope source terms in x- and y-direction, respectively, cfD and
cbD are the drag coefficients for bed friction and subgrid-scale obstructions,
respectively. The terms in the matrix H result from the macroscopic mod-
eling point of view [125] with h|η0 being the water depth corresponding to a
constant water surface elevation η0, and represent the pressure force acting
at the obstruction-fluid interface, similar to the geometry source term that
arises in the cross-section-averaged shallow water equations, cf. e.g., [118].

5.4 Numerical scheme

Finite-volume scheme

In each finite-volume cell j and cell edge k, porosities are defined as follows:

φj =
1

Ωj

∫
Ωj

idΩ, ψk =
1

∆rk

∫
Γk

idrk (5.5)

Here, φj is the volumetric porosity, representing the fraction of the cell
available to flow and ψk is the conveyance porosity, representing the fraction
of the edge available to flow. A similar modeling concept can be found in
[19], where flux terms are limited by a so-called conveyance reduction factor
and storage terms are multiplied with a building coverage ratio.

This study adopts a dual conveyance porosity approach, i.e. the con-
veyance porosity is calculated at infinitesimally small distances left and
right to the edge and the edge itself is considered a porosity discontinuity.
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Discretizing Eq. 5.2 with an explicit finite-volume method that uses a
forward Euler time discretization gives

(φjqj)
n+1 = (φjqj)

n +
∆t

Ω

[∫
Ω

isndΩ−
nb∑
k=1

ψkF
n
k · nk∆rk

]
. (5.6)

Here, nb is the number of edges and ∆rk is the length of the edge k. As
shown below, due to the way the vectors in Eq. 5.3 and 5.4 are discretized,
H does not appear in Eq. 5.6.

Reconstruction of face variables

At the interface between two cells, the bed elevation is set to a single value
as shown in [2] as

zk = max(zL, zR), (5.7)

where L and R denote the left and right cell of the edge k. For the recon-
struction from cell j to edge k, the water depth is calculated in a positivity
preserving way as

hk = max(0, ηj − zk). (5.8)

Following the simplified hydrostatic reconstruction in [60], the bed elevation
of the edge is then modified only according to the water elevation of the
cell under consideration as

zk = min(ηj, zk) (5.9)

to preserve C-property at wet/dry interfaces.
Velocities are reconstructed as suggested in [125]:

uk =
(φqx)j
(ψh)k

vk =
(φqy)j
(ψh)k

(5.10)

The reconstruction is carried out twice at each edge, once for each adjacent
cell. Conveyance porosities ψL and ψR at the left and right side of each
edge, respectively, are determined in the preprocessing step and thus, the
value of ψ changes depending on whether the cell is located at the left or
right side of the edge.

If the product (ψh)k is very small, unphysically high velocities may be
calculated. The same issue emerges during a second-order reconstruction
of interface variables. As discussed in [61], in order to avoid numerical
instablity, the monotonicity conditions

max(uj, ui) ≥ uk ≥ min(uj, ui), (5.11)
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max(vj, vi) ≥ vk ≥ min(vj, vi), (5.12)

have to be satisfied, where j and i denote indices of two adjacent cells
connected by the edge k. The issue is also addressed to certain extend in
[125], where the reconstruction is reverted (“to avoid division by zero”) to
uk = uj, vk = vj, if (ψh)k is smaller than a threshold value. Here, a similar
treatment is proposed. As spurious velocities with high local extreme values
induce numerical instability, these critical velocities should be limited as

if uk > max(uj, ui) then uk = max(uj, ui);

or if uk < min(uj, ui) then uk = min(uj, ui), (5.13)

if vk > max(vj, vi) then vk = max(vj, vi);

or if vk < min(vj, vi) then vk = min(vj, vi). (5.14)

A suggestion for the correct identification of critical velocities is given here,
which is similar to the treatment in [61]. Unphysically high velocities may
occur during the reconstruction of velocities (Eq. 5.10) for large values of
the ratio

ψhk
φhj

, (5.15)

which results in the first criterion

hk
hj
≤ φγ

ψ
, (5.16)

where γ is a prescribed threshold that is lower than 1. Another critical case
is that after the hydrostatic reconstruction, the water depth at edge k is
smaller than the difference between bottom elevations in cell j and at edge
k. Thus, the second criterion is

hk ≤ |zk − zj|. (5.17)

The type of reconstruction of velocities can be deduced directly by the
reconstructed water depth. If the condition

hk ≤ min(|zk − zj|,
φγ

ψ
hj) (5.18)

is satisfied, the velocities are limited according to Eq. 5.13 and 5.14, else
Eq. 5.10 is used.
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Numerical flux computation

The reconstructed values from Eq. 5.10 at the left and right side of the
edge are used as the states of a Riemann problem. The HLL approximate
Riemann solver derived in this work uses the simplified wave speed estimates
in [25] to calculate the left and right wave speeds, SL and SR, respectively,
as

SL = min (uL − cL, uR − cR, 0) , (5.19)

SR = max (uL + cL, uR + cR, 0) , (5.20)

with cL =
√
ghL and cR =

√
ghR. Components of the numerical flux (F∗)

can then be calculated as mass flux, normal momentum flux and tangential
momentum flux.

Motivated by [51], the conveyance porosity of the edge is calculated as

ψ̄ = min(ψL, ψR) (5.21)

The HLL mass flux can be calculated as

(ψhu)∗ = ψ̄
SR(hu)L − SL(hu)R + SLSR(hL − hR)

SR − SL
, (5.22)

which is the classical HLL flux formulation for mass balance multiplied by
the conveyance porosity. Similarly momentum flux normal to the edge is
calculated with the HLL flux formula as(

ψhu2 +
g

2
ψh2

)
∗

=
ψ̄

SR − SL

(
SR

(
hu2 +

g

2
h2
)
L

− SL
(
hu2 +

g

2
h2
)
R

+ SLSR ((hu)R − (hu)L)
)
. (5.23)

The tangential momentum flux is calculated using an upwind formula-
tion based on (ψhu)∗ as

(ψhuv)∗ =

{
(ψhu)∗ vR, (ψhu)∗ < 0,

(ψhu)∗ vL, (ψhu)∗ ≥ 0.
(5.24)

Preservation of C-property

The interfacial pressure term in H and the bed slope source term in s in Eq.
5.4 are discretized in a similar manner to that in [116] using the divergence
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form of source terms [148] as ∮
Γ∗
i
1

2
gh|2η0mdΓ +

∫
Ω

sbdΩ =∑
k

ψ̄k
1

2
g
[
(zk − zj)(hk + hj) + h2

j

]
nk∆rk. (5.25)

Here, ψ̄k represents a conveyance porosity that represents both the left
and the right side of the edge, calculated using Eq. 5.21. Evaluating the
numerical flux for a quiescent steady state (u = v = 0 and ηL = ηR), cf.
[61], shows that the proposed discretization preserves the quiescent steady
state as it exactly balances out the pressure force terms.

Head loss term calculation

Head loss term at the finite volume edge

The head-loss term at the edge k, i.e. F∗ in Eq. 5.2, is only calculated
across sudden geometric discontinuities, i.e. ψL 6= ψR. Here, it is suggested
to use the head-loss ∆H according to a slightly modified version of [13, 21]
cited in [132] as

∆Hk,j =

[(
1

m
− 1

)2

+
1

9

]
ψ2
k,L

ψ2
k,R

|v|
2g
nk,j, j = x, y. (5.26)

m is the contraction coefficient and a value of m = 0.62 is recommended in
[13, 21]. The head-loss is applied as a momentum flux correction at each
edge and the correction term F∗ in Eq. 5.2 is

F∗ =

 0
∆Hk,x

∆Hk,y

 (5.27)

Head loss term inside the finite volume cell

As shown in Eq. 5.4, head-loss due to building drag is accounted for by the
drag formulation in [107]:

sd,j = cbDh
−2qj|q|, j = x, y, (5.28)

where

cbD =
1

2
cwph, (5.29)
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with wp being the projected width of the obstruction and c being the drag
coefficient. In previous studies [125, 76, 110, 116], the difficulty of finding
a suitable expression of the projected width wp has been pointed out. The
main difficulty is that wp depends on the angle of attack and therefore on the
flow itself. [125] suggest that wp could be determined in a preprocessing step
using the geometric data set. This would require storing different values of
wp at different angles of attack for each cell. Furthermore, as pointed out in
[125] the drag force is then solved iteratively by firstly calculating a velocity
based on an estimated wp and then updating wp based on the new velocity to
solve for cD. In [110], it is acknowledged that both c and wp contain great
uncertainty and the product cwp is used as calibration parameter. This
neglects the direction of the flow and might not be suitable for complex
’real world’ applications.

Herein, following the discussion in [151] where a fourth-order tensor
with two up to four free calibration parameters is derived, it is suggested
to use a tensor of second-order to describe the drag force. Firstly, the areal
porosities are used to estimate the parameter wp in cell i as

wp,j = (1− ψ̇j)∆k, j = x, y, (5.30)

whereby ∆k is the characteristic length of the cell and ψ̇ denotes an esti-
mated areal porosity inside the cell that is herein calculated as

ψ̇j =
1

2
(ψ̄k + ψ̄m), j = x, y. (5.31)

In other words, the arithmetic average of both areal porosities at the two
edges k and m that intersect a line drawn through the cell center in j-
direction. Hereby, ψ̄k and ψ̄m are calculated using Eq. 5.21. The variables
for the case j = x and j = y are sketched in Fig. 5.1. Based on preliminary
studies, the characteristic length ∆k is set equal to the circumference.

Then, the drag force is calculated as

sd =

[
cbD,x 0

0 cbD,y

] [
qx
qy

]
h−2|q| =[

1
2
cwp,xh 0

0 1
2
cwp,yh

] [
qx
qy

]
h−2|q|, (5.32)

where the only calibration parameter is c in Eq. 5.29.
This formulation should be seen as an approximation to the real pro-

jected length wp. It contains more information about flow direction, rather
than simply calibrating with the isotropic product cwp as in [110]. It may
be less accurate than the method with extensive preprocessing suggested in
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Figure 5.1: Definition for ψ̄k, ψ̄m and φi in x-direction (left) and y-direction
(right)

[125], but it requires less computational effort. Compared to the anisotropic
tensor in [151], it has fewer calibration parameters.

In addition, the calculation of the drag force now depends on the areal
porosities, which implies that the model results depend on the computa-
tional mesh. However, in practice this drawback is not very relevant, as the
anisotropic-porosity model is expected to be mesh dependent [48, 49].

Splitting point-implicit friction and drag force source
term computation

As in [125], the friction and drag force source terms are calculated using
the splitting point-implicit discretization introduced in [11]. As this is not
elaborated in detail in [125], a short overview is given here.

The vectors q̄, f , sf and sd are defined as follows:

q̄ =

[
qx
qy

]
, f =

[
q2
x/h+ 1

2
gh2 qxqy/h

qxqy/h q2
y/h+ 1

2
gh2

]
,

sf =

[
−φcfDqx|q̄|/h2

−φcfDqy|q̄|/h2

]
, sd =

[
−cbDqx|q̄|/h2

−cbDqy|q̄|/h2

]
. (5.33)
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If bed friction is calculated using Manning’s law and the vector stot can
defined as

sntot,j = snf,j + snd,j = −
(
φgN2h−7/3 + cbDh

−2
)
qj|q|, (5.34)

where n denotes the time level, N is Manning’s coefficient and j = x, y.
Then, sn+1

tot can be written as a Taylor series expansion around the nth time
level as

sn+1
tot = sntot + Jn∆q̄ +O

(
∆q2

)
, Jn =

(
∂Itot
∂q̄

)n
, (5.35)

with stot = [stot,x, stot,y], ∆q̄ = q̄n+1 − q̄n and J is the Jacobian matrix of
stot,

J =

[
ξq2x
|q̄| + ξ|q̄| ξqxqy

|q̄|
ξqxqy
|q̄|

ξq2y
|q̄| + ξ|q̄|

]
, ξ = −

(
gN2h−7/3 + cDh

−2
)
. (5.36)

For computational efficiency, the non-diagonal entries of J are dropped, as
suggested in [11].

The final solution for the momentum equations is

(φq̄)n+1 = (φq̄)n +
1

I− Jn

(
− 1

Ω

∑
k

(fknk)
n + ∆t (φstot)

n

)
, (5.37)

where I is the identity matrix.

Wetting/drying treatment and zero porosity
treatment

The proposed reconstruction of interface variables, cf. Sec. 5.4, is sufficient
to keep the scheme stable at wet/dry fronts [2, 60]. A cell is considered
dry if the water depth is smaller than a threshold, ε, and in this case all
velocities and discharges are forced to zero. The threshold here is set to
ξ = 10−6 m.

Another case to be considered is when ψ = 0, which implies that the
edge is essentially a solid wall. Then, the scheme automatically calculates
a zero flux.

Stability

Similar to the numerical scheme reported in [125], the stability of the pro-
posed scheme is limited by the Courant-Friedrichs-Lewy condition

max(ψkSk∆rk)
∆t

φjΩj

≤ 1, (5.38)
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which is evaluated for each edge k of each cell j in the computational do-
main, with ψk standing for the lower conveyance porosity at the edge and
Sk standing for the maximum wave speed at the edge.

5.5 Computational examples

The model is first verified in two simple benchmarks that are proposed
in literature. Then, a case study at the laboratory scale is presented. The
quality of results is quantified in terms of the absolute value of the difference
between model result and reference solution, calculated as

ε1,i = |qm,i − qr,i| (5.39)

at point i with qm,i and qr,i standing for model result and reference solution
at point i, respectively. The sum of this error over all points in the domain
is referred to as the L1-norm of the error:

L1 =
n∑
k=1

ε1,i (5.40)

If the domain is in space, the points refer to the cell centers. If the domain
is in time, then the points refer to discrete time steps.

Stationary flow in a channel with rapid porosity
transition

This test case studies stationary flow in a frictionless channel with rapid
porosity transition. The case is proposed in [125], where it is discussed that
a reference solution can be obtained by solving an analogous stationary flow
problem in a channel with variable width using the conservation of energy
at each point (Bernoulli’s equation). The porosity is dependent upon the
x-coordinate such that φ = 1 for x < 400 and x > 600 m, φ = 0.75 for
x > 410 and x < 590 m, φ decreases linearly from 1.0 to 0.75 between
x = 400 and 410 m and increases linearly from 0.75 to 1.0 between 590 to
600 m. Drag force and friction are neglected. Initial conditions and model
parameters are given in Tab. 5.1.

Comparisons of model results with the reference solution for water depth
and velocity are plotted in Fig. 5.2. The error calculated according to Eq.
5.39 is plotted in Fig. 5.3. The error plot agrees with the results reported in
[125], where localized errors due to the porosity discontinuity are reported.
The error in front of the section with reduced porosity is higher than that
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Symbol Meaning Value
q0,L Unit discharge at left boundary 2 m2s−1

h0,R Water depth at right boundary 2 m
L Length of the domain 1000 m
∆x Cell size 0.25 m
m Contraction coefficient 0.62
γ Threshold to limit velocity 10−3

N Manning’s coefficient neglected
c Drag coefficient neglected
φ(x) Porosity function described in text

Table 5.1: Parameters of the stationary flow in a channel with rapid porosity
transition

behind the section. This is because the downstream boundary regulates the
water depth, while the upstream boundary is an inflow boundary where the
water depth regulates itself. Thus, the numerical model converges to the
exact water depth downstream but overestimates the water depth slightly
at the inflow boundary. The L1,v-norm is calculated as 0.2 m/s for velocity
and L1,h-norm is calculated as 0.2 m for water depth. This corresponds to
an average L1-norm of 5 · 10−5 m/s for velocity and 5 · 10−5 m for water
depth.

Dam-break flow across a porosity discontinuity

This example studies a one-dimensional dam-break with different porosity
values on the left and right sides of the dam. It is initially introduced in [51]
for the single porosity shallow water model. The reference solution can be
obtained by iteratively solving the corresponding Riemann problem across
a porosity discontinuity using a Newton-Raphson procedure.

The computational parameters for the benchmark are given in Tab. 5.2.
Results are plotted in Fig. 5.4–5.6 for different porosity configurations. The
L1-errors for the investigated configurations are summarized in Tab. 5.3. It
is seen that the proposed head-loss correction of momentum flux improves
the model accuracy compared to the discretization that depends solely on
the areal porosity ψ as in [125, 110, 10] (ψ-AP model), however the two mod-
els become identical as the ratio ψL/ψR goes to 1. For ψL/ψR = 1.0/0.5,
the two model results are almost the same. Although the accuracy is im-
proved, the results still do not completely agree with the reference solution.
Specifically the front of the shock wave is not fully accurately captured.
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Figure 5.2: Stationary flow in a channel with rapid porosity transition:
Reference and numerical solutions at steady state
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Symbol Meaning Value
h0,L Initial water depth on the left side 10 m
h0,R Initial water depth on the right side 1 m
L Length of the domain 100 m
x0 Location of the dam 50 m
∆x Cell size 0.1 m
m Contraction coefficient 0.62
γ Threshold to limit velocity 10−3

N Manning’s coefficient neglected
c Drag coefficient neglected
φL Porosity, left-hand side of the dam 1.0
φR Porosity, right-hand side of the dam 0.1, 0.2, 0.5

Table 5.2: Parameters of the dam-break test case with porosity discontinu-
ity

This is because the water depth downstream of the discontinuity is either
overestimated or underestimated, which leads to an over- or underestima-
tion of the gradient in water depth at the front. Hence, the shock wave
travels with a different speed than the reference solution.

It is noted that the single porosity models in [51, 132] are able to cor-
rectly replicate the reference solution in this benchmark. This is because
the single porosity shallow water model comprises a momentum source term
that accounts for the gradient in the porosity. In these models, the flow
is accelerated in the direction of the porosity gradient and slowed down if
the flow is opposite to the porosity gradient. The conventional anisotropic-
porosity model lacks this source term, because it vanishes during the in-
tegration process [125] and therefore can not describe the influence of a
porosity gradient on the flow. This explains the deviation between model
results and reference solution and why it decreases for smaller porosity gra-
dients. By correcting the momentum flux based on the head-loss due to a
sudden narrowing, the proposed anisotropic porosity model introduces the
influence of a porosity gradient and is able to replicate flow at a poros-
ity discontinuity more accurately while keeping the advantage of additional
subgrid-scale information at the edges.

Flash flood in Toce River Valley

This test case replicates the laboratory experiment in [139], which has been
used commonly in the porous shallow water model literature, cf. [51, 132,
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Figure 5.4: Dam-break flow across a porosity discontinuity: Reference and
numerical solution for case with φR = 0.1
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numerical solution for case with φR = 0.2
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φL φR c. L1,h uc. L1,h c. L1,q uc. L1,q

1.0 0.1 53.5 m 233.1 m 104.3 m2/s 439.5 m2/s
1.0 0.2 66.1 m 186.1 m 111.1 m2/s 338.1 m2/s
1.0 0.5 75.3 m 81.7 m 120.3 m2/s 131.7 m2/s

Table 5.3: L1-error for the simulation runs (c. L1,h: with flux correction,
uc. L1,h: without flux correction)
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Figure 5.6: Dam-break flow across a porosity discontinuity: Reference and
numerical solution for case with φR = 0.5

125, 49, 77].
The domain is a 1 : 100 scaled physical model of the Toce River Valley,

Italy. The topography data are available with a resolution of 5 cm. Bed
friction is accounted via a Manning coefficient that is reported in [139] as
N = 0.0162 sm−1/3. The model city consists of twenty houses which are
square-shaped blocks with an edge length of 0.15 m.

The mesh is generated using the mesh generator Gmsh [42] with an
element size of 0.5 m as shown in Fig. 5.7. The resolution corresponds
to the mesh size reported in [125] and results in a total of 462 triangular
mesh cells. The inflow boundary conditions with measured time series of
discharge and water depth are imposed [139] because the flow condition is
critical. The computational parameters for the test case are summarized in
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Symbol Meaning Value
h0 Initial water depth 0 m
v0 Initial velocity 0 m/s
∆x Cell size 0.5 m
φ, ψ Porosity Acc. to buildings
m Contraction coefficient 0.62
γ Threshold to limit velocity 10−5, 10−3

N Manning coefficient 0.0162 sm−1/3

c Drag force coefficient 0, 5, 10 m−2

qb(t) Boundary condition at inflow Time series

Table 5.4: Parameters of the Toce Valley test case

γ L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 L1,8 L1,9 L1,10

10−3 0.81 2.49 4.41 1.32 1.10 0.81 3.98 1.19 1.70
10−4 0.81 2.45 4.33 1.32 1.01 0.80 3.98 1.19 1.70
10−5 0.79 2.32 4.17 1.34 0.99 0.80 3.98 1.18 1.70

Table 5.5: Flash flood in Toce River Valley – aligned case: L1-error (m) for
different gauges for different γ-values

Tab. 5.4.

Influence of γ-value

In the first two simulation runs drag force is neglected and only the γ-
value in Eq. 5.16 is varied to study its influence. For γ = 10−5, spurious
oscillations in velocity occur at the wet/dry interfaces. If the threshold is
increased to γ = 1.0−3, the spurious oscillations are avoided. Results for
these test cases are compared in Fig. 5.8 with measurement data. It is seen
that especially at gauge 4 and gauge 5 the influence of γ is high. Here,
increasing the threshold γ introduces numerical diffusion, as also reported
in [60]. The results do not differ significantly between γ = 10−4 (slightly
less diffusive) and γ = 10−3, thus the results for γ = 10−4 have been omitted
to avoid cluttering. Tab. 5.5 summarizes the L1-errors for each gauge.

The present results are in agreement with results reported in [125, 77]
in terms of over- and underprediction at different gauges. Only gauge 4 is
captured more accurately by the model in [125]. Comparison with results of
the single porosity model in [132] shows that the over- and underpredictions
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Figure 5.7: Flash flood in Toce River Valley – aligned case: top view of
mesh whole domain (top); mesh detail showing the buildings and the gauges
located between the buildings (buildings are plotted for illustration purposes
only) (bottom)

at different gauges are reproduced, although the present results are more
diffusive. This is because the model in [132] uses a mesh with higher resolu-
tion than the present model. In addition, the model results reported in [132]
benefit from calibration of model parameters [125]. The test case has also
been modeled in [128] using a high-resolution second-order accurate classi-
cal shallow water model. Comparison of the two model predictions shows
that the presented model behaves very similar to the classical shallow wa-
ter model, although the results presented here are much more diffusive.
Furthermore, as the over- and underpredictions are in agreement between
the two models, it can be assumed that these are systematic model errors
resulting from the limitations of the shallow water assumptions, cf. [76].
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Figure 5.8: Flash flood in Toce River Valley – aligned case: Model pre-
dictions and measurements of water depth for c = 0 and γ = 10−5 and
γ = 10−3

Influence of drag coefficient

The sensitivity of the drag force coefficient is studied. The threshold for the
velocity limitation is set to γ = 10−3 and the drag coefficient c is set to c = 2
and c = 5 m−2, separately. Results are plotted in Fig. 5.9 and L1-errors
between predictions and measurements are summarized in Tab. 5.6. The
prediction accuracy at gauges 6, 7 and 8 is improved by the increased drag
coefficient. These are the gauges that are positioned between the buildings
and therefore are most affected by drag force. The model does not behave
as sensitively to the drag coefficient as the model in [125], where c ≈ 2 m−2

causes significant change in the model prediction. However, it is observed
that the influence of the drag force on the results follows the same trend. In
both [125] and the present model, the water depths at all gauges rise with
increasing drag coefficient. The difference in the sensitivity between models
is most likely due to the difference in the projected width estimation.
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Figure 5.9: Flash flood in Toce River Valley – aligned case: Model pre-
dictions and measurements of water depth for γ = 10−3 and c = 0 and
c = 5 m−2

c L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 L1,8 L1,9 L1,10

0 0.81 2.49 4.41 1.32 1.10 0.81 3.98 1.19 1.70
2m−2 0.80 2.00 4.12 1.68 1.13 1.02 3.35 1.59 1.31
5m−2 0.79 1.48 3.18 2.55 1.15 1.19 2.16 2.13 0.74

Table 5.6: Flash flood in Toce River Valley – aligned case: L1-error (m) for
different gauges for different c-values
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drag L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 L1,8 L1,9 L1,10

isotr. 0.80 2.21 4.08 1.64 0.72 0.78 3.16 1.48 1.47
novel 0.79 1.48 3.18 2.55 1.15 1.19 2.16 2.13 0.74

Table 5.7: Flash flood in Toce River Valley – aligned case: L1-error (m) at
different gauges for drag formulations

drag L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 L1,8 L1,9 L1,10

isotr. 0.92 2.23 4.17 6.09 5.29 0.97 5.76 0.80 1.29
novel 0.93 1.70 3.50 4.70 4.40 0.88 4.31 1.40 2.03

Table 5.8: Flash flood in Toce River Valley – staggered case: L1-error (m)
at different gauges for drag formulations

Comparison of novel drag formulation with isotropic drag
formulation in [110]

In this section, results obtained with the novel drag formulation are com-
pared with results obtained with the isotropic drag formulation in [110],
where the drag coefficient cbD in Eq. 5.28 is calculated as

cbD =
1

2
Ch. (5.41)

Here, C accounts for both the projected width wp and c in Eq. 5.29 and is a
model calibration parameter. For the simulation here, a value of C = 2 m−1

is chosen by trial and error. For the proposed drag formulation, c = 5 m−2.
Results are compared in Fig. 5.10 and L1-errors are presented in Tab.

5.7. It is observed that both drag formulations yield similar results. This
is most likely due to the regularity and alignment of the building block.

The argument is supported by an additional simulation run that investi-
gates the same domain with a different building configuration, the so-called
“staggered” case. The computational mesh is the same as before, but the
buildings are rearranged as shown in Fig. 5.11 (top). All model parameters
are kept the same.

The results in the staggered case are improved by the proposed drag
force formulation, as seen in Fig. 5.12. The summary of L1-errors is given
in Tab. 5.8. It can be seen that the model accuracy is enhanced at gauges
6, 7, 8 and 9.

Finally, results can be significantly improved by adopting a special com-
putation mesh as shown in Fig. 5.11 (bottom). This can be regarded as
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Figure 5.10: Flash flood in Toce River Valley – aligned case: Model pre-
dictions and measurements of water depth for novel drag formulation and
isotropic drag formulation from [110]

a variation of the “gap-conforming” meshes in [125], where the edges align
with the gap between the buildings. It is noted that in [125], in the gap-
conforming meshes cell vertices are located at the center of the buildings.
Because the essence of both meshes is the same (conforming to the gap
between buildings), the name “gap-conforming” is used hereinafter as well.
As before, the mesh is created using an edge length of 0.5 m. Results us-
ing this mesh are shown in Figure 5.13 and the L1-errors are summarized
in Tab. 5.9. Again, the present drag formulation also improves results at
every gauge. The improvement is not as significant as in the case with the
non-conforming mesh. Comparison with results reported in [125] show that
the present model behaves similarly to the model in [125] for the staggered
case in terms of the over- and undershooting. However, it does not repro-
duce the results as accurately as the model in [125] which uses an almost
exact projected length.
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Figure 5.11: Flash flood in Toce River Valley – staggered case: top view
of mesh detail showing the buildings (buildings are plotted for illustration
purposes only) with old mesh (top) and gap-conforming mesh (bottom)

drag L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 L1,8 L1,9 L1,10

isotr. 0.92 1.82 4.14 3.04 4.96 0.91 2.32 1.28 1.54
novel 0.92 1.25 3.37 2.52 4.29 0.67 2.95 0.67 2.18

Table 5.9: Flash flood in Toce River Valley – staggered case: L1-error (m)
at different gauges for drag formulations for the gap-conforming mesh
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Figure 5.12: Flash flood in Toce River Valley – staggered case: Model
predictions and measurements of water depth for novel drag formulation
and isotropic drag formulation from [110]

5.6 Conclusions

A simple and efficient scheme was proposed to solve the anisotropic-porosity
shallow water equations on unstructured meshes. The scheme is well-
balanced and able to maintain stationary flow states. The computational
cost is reduced as reported in [125, 110, 116] two-orders up to three-orders
of magnitude compared to conventional high-resolution simulations.

In order to avoid spurious oscillations due to the reconstruction of the
velocity terms at the edge, a novel criterion to limit the velocities is pro-
posed. The criterion requires the specification of one numerical parameter
(γ) that enables to control how strict the monotonicity criterion is applied.
The stricter the limitation is applied, the more diffusive the model results
become. Consequently, avoiding spurious velocities relaxes the time step
and the simulation runs faster. In the presented test case in Sec. 5.5 with
complex topography and wetting and drying, a value of γ = 10−3 was found
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Figure 5.13: Flash flood in Toce River Valley – staggered case: Model
predictions and measurements of water depth for novel drag formulation
and isotropic drag formulation from [110] for the gap-conforming mesh

to be a good balance between accuracy and robustness.
The traditional anisotropic-porosity shallow water model describes the

conveyance of the edge using a single areal porosity. Thus, a large discon-
tinuity across the edge cannot be represented accurately. Using a simple
head-loss term to correct the numerical flux improves the model accuracy at
large discontinuities significantly. The proposed head-loss term does not in-
troduce any calibration parameters to the model, as the proposed value for
the contraction coefficent m = 0.62 yields good results in the investigated
cases.

A simple method to estimate the projected width in the drag force
calculation is proposed that does not require extensive preprocessing. The
projected width is calculated separately in the x-direction and y-direction,
thus the drag force is calculated in an “anisotropic” way. The proposed
drag coefficient calculation enhances the accuracy of the results, especially
if the building configuration is staggered. The choice of the characteristic
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length in the proposed drag formulation influences the results significantly.
In this work, the circumference of the cell was found to yield satisfactory
results for both aligned and staggered building configurations.

The model is mesh dependent and in order to get accurate results special
care has to be taken concerning the computational mesh. The mesh-de-
pendency of the anisotropic-porosity model is well-known and has been
reported in [125, 116]. Meshes that partially align with building geometry,
especially gap-conforming meshes [125], provide more accurate results. If
gap-conforming meshes are used, the influence of the drag formulation on
the model results is not significant. Thus, if the mesh is appropriate, a
simple estimation for the drag force head-loss may be sufficient.

In recent years, some effort has been devoted to reduce the mesh-depen-
dency of the anisotropic-porosity model (M. Bruwier, private communica-
tion). As discussed in [48, 49], the mesh-dependency of the model can not
be removed completely, as it is inherent in the model derivation. Thus, in
the authors’ opinion, another approach that would enhance the model accu-
racy would be to develop unstructured meshing techniques to automatically
generate gap-conforming meshes.
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6.1 Abstract

Flood events in urbanized areas are usually caused by localized rainfall
events with very high intensity that occur in catchments located at the up-
stream of the city. The typical model chain for forecasting this type of event
is a hydrological model that generates input for a two-dimensional hydraulic
model. However, in recent years, the depth-averaged two-dimensional shal-
low water equations are applied to compute rainfall-runoff in natural catch-
ments as well as inundation areas in city environment. The application is
limited by computational constraints, that result from the high mesh res-
olution required to account for microtopography in natural and buildings
in urban catchments. In this context, coarse grid approaches aim to reduce
computational cost by enabling simulations on coarser meshes and intro-
ducing subgrid treatments to recover some of the information at subgrid-

157
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scale. This contribution presents a novel model chain that comprises two
coarse grid approaches with specialized application domains: (1) friction
law-based coarse grid approach and (2) anisotropic porosity-based coarse
grid approach. The hydrological model that is usually used for these type of
predictions is replaced by a shallow water model with a specialized friction
law to account for microtopography. The urban flood inundation model is
sped up by introducing anisotropic porosity terms to account for buildings.
The model chain is applied to predict rainfall-runoff in an idealized city,
based on a real rainfall event in a real natural catchment. An averaged be-
havior of a high-resolution model chain can be obtained with significantly
lower computational cost such that the simulations run on average about
100 times faster than the high-resolution counterpart.

6.2 Introduction

In most forecasting systems, a model chain that consists of a hydrological
model and a two-dimensional hydraulic model is used to predict inundated
areas for a rainfall event. Here, the hydrological model calculates a dis-
charge at the outlet of the natural catchment that is then down-scaled and
used as a boundary condition to drive the hydraulic model that computes
inundation areas in city environment.

Using a hydraulic model instead of the hydrological model is currently
hardly feasible due to high computational cost. In addition, the computa-
tional cost of conventional hydraulic finite-element and finite-volume codes
typically prevents model discretization at a resolution that is achievable
with airborne LIDAR technology [97]. The computational constraint on
the discretization scale can be illustrated by the fact that the computa-
tional cost of an explicit finite-volume code is quantified by [76] as inversely
proportional to the third power of the cell size. Codes that operate on the
high-resolution data set scale to simulate flooding of large urban catchments
are usually utilizing high-performance computing technology on supercom-
puters to achieve feasible computation time, e.g. [56, 129, 80, 1].

Besides from high-performance computing, the issue can be approached
in two ways, either by simplifying the mathematical model [97, 19, 20, 69],
or by reducing the cell number by means of a subgrid parameterization of
the building or microtopography effects on the flow. Fig. 6.1 shows an
overview of the motivation for using coarse grid approaches in hydro- and
environmental system modeling.

A very straight-forward subgrid approach is artificially increasing the
roughness parameter in the shallow water model to account for head loss
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Figure 6.1: Motivation for using coarse grid methods

due to unresolved obstacles. This approach has been investigated for urban
flood modeling in [106], wherein it is noted that this approach may lead to
errors in the modeled flow routes and in [88], wherein it is reported that
finding suitable values for the roughness parameters is rather non-intuitive.
For applications in natural catchments, [123] derive a friction approach
to account for ridges and furrows and [70] present a friction approach that
accounts for vegetation. In this study, we use the friction law derived in [114]
to account for unresolved microtopography to enable an efficient shallow
water equations-based computation of rainfall-runoff in natural catchments
that replaces the hydrological model in the aforementioned model chain.

Another coarse grid approach is based on a porosity term. Essentially,
in this approach the computational cell with unresolved buildings inside of
it, is treated as a porous medium. Thus, a porosity term is introduced into
the shallow water equations. Following the pioneering work by Defina [26]
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and Hervouet et al. [55], Guinot & Soares-Frazão [51] and Soares-Frazão et
al. [132] presented the so-called isotropic porosity shallow water equations
and provided a Godunov-type finite-volume method to solve them. The
isotropic porosity shallow water equations are derived using a representative
elementary area (REA) assumption. Guinot [48] notes that the existence of
an REA in urbanized areas is debatable. Assuming that a REA exists, [48]
then shows that the scale of the assumed REA exceeds the mesh resolution
for several orders of magnitudes, but points out that from a numerical point
of view, it is safe to choose a mesh resolution below the REA scale, as the
numerical convergence requires the cell size to become infinitely small. We
note that from an application point of view, the discussion about the REA
scale is unimportant as satisfying results are obtained by using the isotropic
porosity model [51, 132].

The anisotropic porosity shallow water equations have been derived
in [125], to overcome a limitation of the isotropic porosity shallow water
model, that is, the impossibility for the isotropic porosity shallow wa-
ter model to account for directional effects induced by local anisotropic
structures. Sanders et al. [125] derive the equations in integral form to
remove the constraint of isotropy imposed by the REA assumption. In
the anisotropic porosity model by [125], directionality is accounted for by
means of additional porosity terms at the edges of the computational cell.
A similar approach was later adopted in [20], where edge conveyance coef-
ficients are defined at each edge. As pointed out by many researchers, e.g.
[125, 48, 110], the integral approach results in porosity terms that are heav-
ily mesh-dependent. Currently, there is no treatment available to overcome
the mesh-dependency of the anisotropic porosity shallow water model, al-
though research in this direction is currently carried out at the University of
Liege (M. Bruwier, private communication). In this work, the anisotropic
porosity shallow water equations, solved by the numerical model presented
in [116], are used to predict inundation heights in urban environment.

In this study, the anisotropic porosity shallow water model for urban
environment is coupled with the friction-based coarse grid approach for
natural catchments to obtain a novel model chain that can be applied for
the fast prediction of urban runoff.

6.3 Governing equations

In this section, we give an overview of the mathematical model concepts that
are used. For sake of brevity, we omit the derivation of the equations. The
reader is referred to [114] and [110] for a detailed discussion of the friction
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law-based coarse grid approach and the anisotropic porosity shallow water
equations, respectively. We further note that in the following, turbulence
and molecular viscosity as well as other momentum diffusion terms are
neglected. This has the advantage that the governing equations become
hyperbolic instead of being of mixed type. The physical justification is that
in very shallow flows such as rainfall-runoff, turbulence is mainly produced
by bed friction [17].

Classical shallow water equations with specialized
friction law

The classical shallow water equations are written in differential form as

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= s (6.1)

where t is time, x and y denote the axes of the Cartesian coordinate system,
q is the vector of conserved variables, f and g are the flux vectors in x- and
y-direction, respectively, and s is the source term vector. The flux and
storage vectors in Eq. 6.1 are defined as

q =

 hhu
hv

 , f =

 hu
hu2 + gh2/2

huv

 , g =

 hv
hvu

hv2 + gh2/2

 , (6.2)

with h standing for water depth, u and v standing for velocity in x- and
y-direction, respectively, and g standing for the gravitational acceleration,
usually set to 9.81 m/s2. The source term vector is defined as

s =

 i
−gh∂z/∂x− fx
−gh∂z/∂y − fy

 . (6.3)

Here, i is the rainfall intensity, z is the bed elevation and fx and fy are the
friction source terms in x- and y-direction, respectively. The definition of
the friction source terms is according to the friction law in [114]:

fx = −
(
ngh−

1
3 +K

)
||v||u, (6.4)

where v = [u, v]T is the vector of velocity and ||v|| denotes the Euclid-
ian norm of the vector, n is Mannings roughness coefficient and K is a
geometrical parameter defined as

K = α0exp (α1 (Λ− 1)) , (6.5)
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with α0 and α1 being calibration parameters and Λ being the so-called
inundation ratio [83]:

Λ =
h

(1− s0) k
(6.6)

Here, s0 is the bottom slope and k is the characteristic roughness height,
which is set equal to the standard deviation of the subgrid-scale structure.
While in [114], a spatially uniform distribution of the roughness height is
used, [112] examined, whether calculating the roughness height individually
in each cell improves the model accuracy and report no significant improve-
ment in natural catchments.

Anisotropic porosity-based shallow water equations

The anisotropic porosity shallow water equations are written in an integral-
differential form as ∫

Ω

i
∂q

∂t
dΩ +

∮
∂Ω

iFndr =

∫
Ω

isdΩ, (6.7)

where i(x, y) is a so-called phase function that returns 1 if (x, y) corresponds
to a void or 0 if (x, y) corresponds to an obstruction. We note that Fn =
fnx+gny, and that the flux and storage vectors correspond to Eq. 6.2, and
the source term vector contains an additional source term that models the
fluid-building interaction at subgrid scale. This reads∫

Ω

isdΩ =

∫
Ω

ipdΩ +

∮
∂Ω∗

g
h2|η0

2
mdr +

∫
Ω

cv||v||dΩ, (6.8)

where the term with p now corresponds to the source term of Eq. 6.3
and the second term on the right-hand side is the additional source term,
calculated by a path integral along the fluid-building interface with m being
the unit normal vector pointing outside of the fluid phase. The third term
is a head loss term calculated via a drag force formulation with c being the
drag force coefficient. A finite-volume type discretization of the equation
then yields: (

1 + κn
∗)

(φq)n −∆t
∑
k

(ψkFknk)
n∗

∆rk, (6.9)

where κ represents an implicit treatment of friction and drag source terms
[11], φ is the cell porosity, ψ is the edge porosity, n stands for the time
level and the choice of n∗ determines the time-stepping method. If n∗ = n,
the method corresponds to an explicit forward Euler time-stepping, if n∗ =
n+ 1/2 the method corresponds to a two-step Runge-Kutta scheme.
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Figure 6.2: Catchment topography (left); intensity of the rainfall event
(right)

6.4 Numerical method

The governing equations are solved in integral-differential form (Eq. 6.7)
with a Godunov-type finite-volume method. Second order accuracy is
achieved by means of a linear MUSCL reconstruction. Time is discretized
by a second order accurate two-step TVD Runge-Kutta scheme, cf. Eq.
6.9. More details about the numerical method can be found in [116].

6.5 Computational example

The two presented coarse grid approaches are coupled to obtain a model
chain that is applied to model runoff in an urbanized environment caused
by a heavy rainfall event in a natural catchment located at the upstream of
the city. We consider an idealized city that is located at the outlet of the
subcatchment and impose the discharge of the subcatchment as an inflow
boundary condition of the model of the city. While there is measurement
data available for the discharge of the subcatchment, no measurement data
is available for the city.

Friction law-based coarse grid approach for
rainfall-runoff in natural catchment

Initial and boundary conditions

The natural catchment is a real world subcatchment of the Heumöser slope
in Vorarlberg, Austria, that spans about 100000m2. Bottom elevation is
provided in 1m by 1m resolution by the Austrian Torrent and Avalanche
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Figure 6.3: Comparison of coarse grid model results with measurement data
and a high-resolution simulation by [128]

Control department, cf. Fig. 6.2 (left). The whole domain is initially
dry. Discharge is generated by a spatially uniform rainfall according to a
time series measured in July 2008 with a temporal resolution of 10 min, cf.
Fig. 6.2 (right). Here, the rainfall intensity is multiplied with the runoff
coefficient ψ = 0.3 to account for infiltration [128]. In addition, following
[128], the interflow component is modeled by means of a linear storage
model, with a storage coefficient of K = 6 h, and added to the overland
flow to obtain the total discharge at the outlet. All boundaries are open
boundaries. The domain is discretized with a quadratic grid with cell size
of 10 m. The model is calibrated as reported in [114] with n = 0.035 sm−1/3,
α0 = 0.3 and α1 = 0.87. The simulation runs for 120 h, i.e. 5 days.

Results

Model results for the discharge at the outlet of the domain are compared
with field measurement data and a high-resolution simulation (mesh reso-
lution 1 m) by [128] in Fig. 6.3.

Both the high-resolution model and the coarse grid model overshoot the
measurement data at the beginning of the simulation. As discussed in [16],
this might be due to shear effects on the thin water film in the real world
that cannot be reproduced with the mathematical model of the shallow
water equations. After t = 20 h, the deviation between the models and
the measurement data diminishes. The third and fourth peaks at about



CHAPTER 6. COUPLING OF COARSE GRID APPROACHES 165

t = 40 h and t = 60 h, respectively, are captured fairly accurately.
The friction-law based coarse grid approach reduces the computational

cost such that the simulation results are obtained 350 times faster than the
high-resolution simulation of [128].

Anisotropic porosity shallow water model for urban
environment

We define an idealized city geometry to complete the model chain. We
assume that the city, that represents the real city of Ebnit, Austria, in a very
simplified way, is directly located at the outlet of the natural catchment,
such that we can apply the model result obtained in the simulation above as
an inflow boundary condition to drive the anisotropic urban flood model.
In a second simulation run, we artificially increase the discharge at the
boundary to produce a more hazardous flood event.

Initial and boundary conditions

The domain is a 500 m by 300 m large urban basin with flat bed, wherein
the only topographical features are the buildings inside the domain, cf. Fig.
6.4 (top). We construct a building block with elements that are rectangles
with dimensions 20 m by 30 m. Outside of the block, we position a C-
shaped building that represents an important building with a high damage
potential, e.g. school or university. We are interested in the arrival time of
the flood wave and the resulting water depth at this location. Thus, a gauge
is positioned at the front of this building. The domain is initially dry, the
discharge calculated by the previous model run is imposed at a 25 m wide
inlet at the west boundary of the domain that shall represent a breach in
the dam that protects the city. All other boundaries are open boundaries.

In Fig. 6.4 (bottom), the coarse mesh used by the anisotropic porosity
model is shown. Buildings are plotted only for illustration purposes and
are actually accounted for by means of the porosity terms. We note that
the mesh is constructed such that the outline of the building block aligns
with cell edges. This discretization significantly enhances the quality of the
results.

The high-resolution mesh consists of 8222 triangular cells with element
size ranging between 10 m and 5 m, and the coarse-resolution mesh consists
of 698 triangular cells with cell size of 25 m.
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Figure 6.4: High-resolution mesh, building configuration and position of
gauges and the inlet (left); coarse resolution mesh for the anisotropic poros-
ity model with buildings plotted for illustration purposes (right)

Figure 6.5: Model results for the high-resolution simulation (top) and the
anisotropic porosity approach (bottom)
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Figure 6.6: Comparison of high-resolution model results (HR) with
anisotropic porosity model results (AP) at gauges 3 (top), 2 (center) and 1
(bottom)

Results

Model results for both the high resolution simulation and the anisotropic
porosity approach are shown in Fig. 6.5. The overall dynamics of the flood
wave is captured well by the anisotropic porosity model. The hydrograph
consists of four peaks that correspond to the peaks in the inflow (cf. Fig.
6.3). For both models, the runoff arrives at gauge 1 (highest damage poten-
tial) at about t = 20 h, while gauge 2 at city center is inundated at about
t = 15 h. We observe that gauge 3 is influenced more by fluctuations in
the inflow than gauge 2 and gauge 3. The maximum water depth is mea-
sured at gauge 3 at about 62 h, which corresponds to the maximum peak
in the inflow data. In comparison to the inflow hydrograph, the results at
the gauges are damped and temporally delayed. This behavior is captured
by both models, although we see that the maximum water depth in the
anisotropic porosity approach results (about 1.6 cm) is smaller than in the
high resolution results (about 1.8 cm).

The results of both model runs are compared in Fig. 6.6. In the be-
ginning, the results of the anisotropic porosity approach overall undershoot
the hydrograph produced by the high resolution model. In the late stage of
the simulation, when the inflow begins to decline (t = 80 h), the anisotropic
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porosity model results overshoot the high resolution hydrograph. We re-
port an average deviation of about 3 mm in water depth at all gauges but
an exact prediction of the arrival times of the runoff waves in all cases.

The forecast of this model chain predicts that fortunately the rainfall
event in the natural catchment is not heavy enough to cause substantial
damage in the city. The maximum water depth we observed is about 2 cm
and located at the city border. The model chain is able to reproduce an
averaged behavior of the high resolution simulation and is about 100 times
faster than its high-resolution counterpart.

For illustration purposes, we artificially increase the discharge at the
inlet boundary by factor 100. Results for the increased discharge are shown
in Fig. 6.7. We observe that the water level at all gauges increases signif-
icantly and the arrival time of the flood wave is significantly shorter. At
gauge 3, a maximum water level of about 1.6 m at t = 60 h is predicted by
the high-resolution model (Fig. 6.7 (top)) which is accurately captured by
the anisotropic porosity shallow water model as well (Fig. 6.7 (bottom)).
As the flood wave propagates through the city environment, the amplitude
of the water level is damped such that at gauge 2, the maximum water level
calculated by the high-resolution model is about 0.8 m at about t = 60 h.
Here, the anisotropic porosity model underestimates the water level and
yields a maximum value of about 0.75 m. Finally, at gauge1, that is located
in the area with high damage potential, the porosity model overestimates
the maximum water level slightly.

Overall, the dynamic of the flood is reproduced accurately by the aniso-
tropic porosity model. Fig. 6.8 shows a comparison of the model results per
gauge where the aforementioned discussions can be observed as well. Fig.
6.9 shows water levels plotted at different time steps and good agreement
between both models is observed. In both cases, the simulation with the
anisotropic porosity model runs about 100 times faster.

6.6 Conclusions

We presented and coupled two coarse-grid approaches, i.e. modified friction-
law approach and anisotropic porosity approach, for application in urban
runoff and urban flood modeling. The novelty of the presented approach
is that the model chain contains two hydraulic models instead of the more
common model chain hydrological model coupled with hydraulic model.

As a proof of concept, we simulated runoff and inundation in an ideal-
ized city using the suggested model chain. Model results are promising and
indicate that this approach might indeed be used to forecast flood arrival
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Figure 6.7: Model results for case with artificially increased discharge for
the high-resolution simulation (top) and the anisotropic porosity approach
(bottom)

Figure 6.8: Comparison of high-resolution model results (HR) with
anisotropic porosity model results (AP) at gauges 3 (top), 2 (centers) and
1 (bottom) for case with artificially increased discharge
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Figure 6.9: Water level plotted at different time steps for the artificially
increased discharge for high-resolution model (left) and anisotropic porosity
model (right)
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times and flood inundation areas. The decrease in computational cost en-
ables to obtain model results in feasible time spans on a personal computer.
On average, the models run about two orders of magnitude faster than their
high-resolution counterparts.

Future research may focus on studying the presented model approaches
at even larger scales, e.g. large natural catchments and cities.
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Chapter 7

Supplementary work

This chapter summarizes supplementary work carried out during my time
as a PhD student at Technische Universität Berlin during the years from
2014 to 2017.

7.1 Effect of buildings on the S-curve of

urban catchments

Published as:
[89] Liang, D., Özgen, I., Hinkelmann, R., Xiao, Y., and Chen, J.M.

(2015) Shallow water simulation of overland flows in idealised catchments.
Environmental Earth Sciences 74, pp. 7307–7318.
doi: 10.1007/s12665-015-4744-5

This is the postprint version of the publication. The final publication is
available at Springer via https://doi.org/10.1007/s12665-015-4744-5.

Abstract

This paper investigates the relationship between the rainfall and runoff
in idealised catchments, either with or without obstacle arrays, using an
extensively-validated fully-dynamic shallow water model. This two-dimen-
sional hydrodynamic model allows a direct transformation of the spatially
distributed rainfall into the flow hydrograph at the catchment outlet. The
model was first verified by reproducing the analytical and experimental
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results in both one-dimensional and two-dimensional situations. Then, di-
mensional analyses were exploited in deriving the dimensionless S-curve,
which is able to generically depict the relationship between the rainfall and
runoff. For a frictionless plane catchment, with or without an obstacle array,
the dimensionless S-curve seems to be insensitive to the rainfall intensity,
catchment area and slope, especially in the early steep-rising section of the
curve. Finally, the model was used to study the hydrological response of
an idealised catchment covered with buildings, which were represented as
an obstacle array. The influences of the building array size and layout on
the catchment response were presented in terms of the dimensionless time
at which the catchment outflow reaches 50% of the equilibrium value.

7.2 Numerical treatment of wet/dry fronts

Published as:
[37] Fǐser, M., Özgen, I., Hinkelmann, R. and Vimmr, J. (2016) A

mass conservative well-balanced reconstruction at wet/ dry interfaces for
the Godunov-type shallow water model. International Journal for Numer-
ical Methods in Fluids 82, pp. 893–908.
doi: 10.1002/fld.4246

This is the postprint version of the publication. The final publication is
available at Wiley via https://doi.org/10.1002/fld.4246.

Abstract

This paper presents a novel mass conservative, positivity preserving wetting
and drying treatment for Godunov-type shallow water models with second-
order bed elevation discretization. The novel method allows to compute
water depths equal to machine accuracy without any restrictions on the
time step or any threshold that defines whether the finite volume cell is
considered to be wet or dry. The resulting scheme is second-order accurate
in space and keeps the C-property condition at fully flooded area and also
at the wet/dry interface. For the time integration, a second-order accurate
RungeKutta method is used. The method is tested in two well-known com-
putational benchmarks for which an analytical solution can be derived, a
C-property benchmark and in an additional example where the experimen-
tal results are reproduced. Overall, the presented scheme shows very good
agreement with the reference solutions. The method can also be used in
the discontinuous Galerkin method.

https://doi.org/10.1002/fld.4246
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7.3 Diffusive wave model

Published as:
[69] Jahanbazi, M., Özgen, I., Aleixo, R. and Hinkelmann, R. (2017)

Development of a diffusive wave shallow water model with a novel stability
condition and other new features. Journal of Hydroinformatics, 19, pp.
405–425.
doi: 10.2166/hydro.2017.108

This is the postprint version of the publication. The final publication is
available at IWA Publishing via https://doi.org/10.2166/hydro.2017.

108.

Abstract

One of the approaches to flood modelling is numerical simulation of the dif-
fusive wave approximation of the shallow water equations. Improving these
models in various aspects is still an open area of research. In this study,
a new diffusive wave model with explicit time integration was developed
which includes some novel features: (1) time steps are determined using
a novel stability criterion which resulted in more dynamic time steps (i.e.,
broader range) compared to the conventional Courant-Friedrichs-Lewy sta-
bility condition; (2) stability constraints are reduced, considering the flow
processes within surface ponds; (3) besides Manning’s formula, which is the
common equation for computing velocities in diffusive wave models, the
free fall velocity and a new equation for wave-front velocity are employed;
and (4) the influence of upstream surface ponds on downstream flow is
considered. This paper introduces the enhanced diffusive wave model, the
so-called overland flow simulator cellular automata (OFS-CA), and its re-
sults for five test cases. Available analytical solutions and an experimental
study were used for verification. Two other shallow water models were used
for comparison and benchmarking. Overall, good agreements were observed
and OFS-CA was computationally less expensive compared to the other two
shallow water models.

https://doi.org/10.2166/hydro.2017.108
https://doi.org/10.2166/hydro.2017.108


Chapter 8

Synthesis

8.1 Conclusions

Surface water systems are multiscale systems, wherein small scale features
may have significant influence on the large scale flow field. Explicitly dis-
cretizing these small features in large domains leads to meshes with high cell
number. Due to finite computer resources, the simulation on these meshes is
often only feasible on supercomputers. Coarse grid approaches can be used
to decrease the cell number of the mesh while conceptually accounting for
the subgrid-scale features to perform computationally efficient simulations.

The main outcome of this work are the two coarse grid approaches that
have been developed, namely the friction law-based coarse grid approach
[114] (Chapter 2), and the porosity-based coarse grid approach, i.e. the
anisotropic porosity shallow water model [110, 116, 115] (Chapters 3-5).
Both model concepts have been studied in several test cases, ranging from
very idealized academic benchmarks to laboratory scale experiments and
“real world” applications.

As a proof of concept, a model chain that comprises both coarse grid
approaches was applied to forecast a hypothetical flood event in an idealized
city that results from rainfall concentration in a natural catchment (Chapter
6). The modeling results are promising, the inundation heights and the flood
arrival time could be reproduced by the coarse grid approach-based model
chain accurately enough for forecasting and early warning purposes.

A short overview of supplementary work that is related to the research
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topic was given (Chapter 7).

General conclusions

Before drawing more detailed conclusions for each model approach, the
following general conclusions can be drawn:

• It is possible to coarsen the computational mesh and to some extent
recover subgrid-scale information by means of conceptual model ap-
proaches.

• These conceptual model approaches are based on sampling the topog-
raphy information on a much finer scale than the computational grid
and finding a suitable way to incorporate this information into the
coarse grid shallow water model.

• The sampling of the subgrid-scale information may require more pre-
processing than conventional shallow water models.

• The sampled subgrid-scale information is usually assigned individually
to each computational cell which introduces mesh-dependency to the
models. This mesh-dependency cannot be overcome completely.

• The coarse grid approaches cannot fully restore the model accuracy
to equal a conventional high-resolution shallow water model, but re-
produce an averaged behaviour of it.

• On average, the coarse grid approach reduces the simulation wall-time
between two and three orders of magnitude, compared to a conven-
tional high-resolution shallow water model. The magnitude of the
speedup depends on the factor of grid coarsening and the specific
problem that is investigated. The coarser the resolution is chosen,
the higher the speedup becomes. For cases that are numerically chal-
lenging, e.g. rainfall-runoff over rough terrain, the speedup decreases
because the time step size of the coarse grid model degenerates sig-
nificantly.

• Overall, the approaches yield accurate results for the water depths
and integral discharges at the outlet but less accurate results for the
velocities and the unit discharges inside the domain. Localized flow
processes at subgrid-scale cannot be resolved.

• Obtaining accurate results using the coarse grid approaches requires
more user experience than the conventional shallow water model.
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Friction law-based coarse grid approach

In Chapter 2, a novel friction law-based coarse grid approach, which uses
three free calibration parameters and a water depth-dependent inundation
ratio to calculate flow resistance in dependency of the water depth is de-
veloped. The inundation ratio depends on the roughness height, which is
chosen to be the standard deviation of the subgrid-scale microtopography.
The standard deviation can be calculated globally for the whole domain or
locally in each cell.

Following conclusions are drawn for friction law-based coarse grid ap-
proaches:

• Implementing the friction-law based approach into an existing soft-
ware framework is straight-forward, which is the main advantage of
this approach.

• The approach is applicable to both structured and unstructured grids,
using triangular, quadrilateral or mixed type elements.

• The approach yields stable results for rainfall-runoff simulations, be-
cause the numerical treatment of a friction source term is well under-
stood in the state of the art of shallow water modeling, e.g. point-
implicit discretization [11] or wave Riemann description [104].

• The calibration of three parameters is challenging for the modeler and
is currently addressed by means of automatic calibration using numer-
ical optimization methods for multidimensional functions. Based on
personal experience, the Limited-memory Broyden, Fletcher, Gold-
farb and Shanno algorithm (L-BFGS-B) [164] is recommended [114].
If an optimum set of parameters cannot be obtained with the L-BFGS-
B algorithm, a brute force approach is recommended.

• Using automated calibration, good agreement between the coarse grid
model and reference solutions or field measurements is obtained. The
calibration effort is found reasonable, compared to the speedup that is
obtained. Once the model is properly calibrated, the error introduced
by applying it to different hydraulic conditions is found to be small.
However, the modeler should be aware that there is a risk of overfitting
the model.

• If calibrated correctly, the proposed friction approach outperforms
many friction laws from literature in terms of accuracy.
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• Applying the calibrated model to different hydraulic conditions or
using a different mesh resolution decreases the accuracy of the results.
Then, the model is required to be calibrated again for the specific
hydraulic condition or mesh resolution.

Porosity-based coarse grid approach

In Chapters 3-4, a novel extension of the anisotropic porosity shallow wa-
ter equations initially derived in [125] is presented. The extension derives
a novel water depth-dependent formulation of the porosity terms that en-
ables full inundation of subgrid-scale obstacles, which was not considered
in the conventional anisotropic porosity shallow water model. A second-
order Godunov-type finite-volume method to solve the modified equations
on structured grids is presented.

In Chapter 5, the conventional anisotropic porosity shallow water model
is studied and a Godunov-type finite-volume scheme is proposed for the
solution of the equations on unstructured meshes. A novel monotonicity
condition is derived which improves the robustness of the model. Improved
calculation of the numerical flux and source term calculation are presented.

The porous shallow water model uses porosity terms to account for
subgrid-scale topography information. The fraction of the cell that is avail-
able to flow, i.e. not blocked by buildings, is expressed by the volumetric
porosity. In addition, in anisotropic porosity shallow water models, an addi-
tional edge porosity term, which represents the fraction of the edge available
for flow, is assigned to each edge. The porosity terms are directly linked
to the high-resolution topography data set, which needs to be sampled at
a finer resolution than the computational mesh.

For the porosity-based coarse grid approaches, the following conclusions
are drawn:

• In urban flood modeling the buildings usually are not inundated by
the flood wave and thus, the porosity terms are constant model param-
eters. However, the porosity terms can be calculated in dependency
of the water depth to account for inundation of the subgrid-scale fea-
tures. Promising results are obtained using this novel formulation,
which indicates that the porous shallow water model might be ap-
plied to a broader range of hydraulic and environmental problems
such as rainfall-runoff modeling in natural catchments.

• Implementing the porosity-based approach into an existing software
framework is more complicated than the friction law-based coarse
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grid approaches. Here, porosity values have to be stored in each cell
and each edge. In addition, additional source terms appear in the
equations which have to be treated numerically. Thus, a large section
of the existing code has to be completely rewritten.

• As the high-resolution data needed to calculate the porosities is usu-
ally provided in form of equidistant points, the porosity calculation is
easy on structured grids, but becomes more complicated on unstruc-
tured triangular meshes.

• The porosity calculation that directly depends on the underlying to-
pography results in a mesh-dependent model. In addition, the value
of the edge porosity term changes depending on the location of the
edge which means that even if the cell centroid remains at the same
point and the cell is rotated, the values of the edge porosities may
change. Hence, the anisotropic porosity model is mesh-dependent.

• The mesh-dependency was investigated in several cases, and it was
found that a poor meshing strategy significantly reduces the accuracy
of the model.

• If structured grids are used, aligning cell edges with building edges
enhances the model accuracy.

• If unstructured triangular meshes are used, gap-conforming meshing,
i.e. cell vertices are located at building centroids, is found to be the
best meshing strategy. This is in agreement with current research
reported in [125, 77, 76, 50].

• In this work, results obtained with unstructured triangular meshes
are in general more accurate than the results obtained with struc-
tured grids. This is because unstructured triangular meshes are more
flexible than structured grids and can better be fit to the building ge-
ometry. In addition, structured grids cause more numerical diffusion
[14].

• As obstacles are not explicitly discretized, head loss terms due to
obstacle-fluid interaction appear in the equations. Most commonly,
these interactions are splitted in two parts: (1) the dynamic part and
(2) the stationary part. As these processes are not resolved by the
model, closure terms have to be derived (as in turbulence modeling).
Usually, the stationary part is discretized as a geometric pressure
term that is used to well-balance the model and the dynamic part is
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described using a drag law. The optimal closure for these terms has
not yet been found.

• The ambiguity of the drag law-based head loss formula reduces the
model accuracy. Hence, a simple drag law-based head loss estima-
tion that takes into account anisotropic features was presented. This
approach increases the model accuracy to some extent.

• The reconstruction of the interface variables in the presence of edge
porosities was identified as a source of instability. If the ratio between
edge porosity and volumetric porosity is very small (investigations
point to values smaller than 0.1 or 0.01, depending on the problem),
spurious velocities may appear.

• A monotonicity treatment was proposed to suppress unphysically high
velocities during the reconstruction process.

• In the presence of a porosity discontinuity across the edge, the ani-
sotropic porosity model overestimates the momentum flux. Because
a single edge porosity is assigned to each edge, the model cannot
represent a porosity discontinuity across the edge. This is also re-
cently addressed in [50], where it is shown that the eigenvalues of
the anisotropic porosity shallow water model are different from the
isotropic porosity model that is able to represent these type of dis-
continuities.

• In this work, the porosity discontinuity issue is addressed by adopt-
ing a double edge porosity approach. Defining a porosity at the left
and right side of the edge allows to calculate an empirical head loss
formula-based flux correction term. The head loss formula accounts
for the momentum loss at sudden contractions, which is an analogical
problem to the porosity discontinuity. This correction enhances the
model accuracy significantly for large porosity jumps.

Final notes

Depending on the particular problem, one coarse grid approach has been
found more advantageous than the other. While the friction law-based ap-
proach has been found to yield better results for rainfall-runoff simulations
in natural catchments, the porosity-based approach yields better results for
urban flood simulations.
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8.2 Open issues and future research

The following open issues are identified which could be addressed in future
research:

• The application of the friction law-based approach could be improved
by a systematic study of the calibration parameters. Default values
for common material and roughness heights, similar to the tables for
Manning’s coefficient available in literature would guide the modeler
in the calibration process. An additional challenge here is that the
calibration also depends on the mesh resolution, which needs to be
addressed as well. This would require laboratory studies and extensive
numerical simulations.

• The calculation of the roughness height in the friction law-based ap-
proach is not completely analysed. In [114], the roughness height
was calculated globally for the whole domain and in [112], the rough-
ness height was calculated individually in each cell. In an applica-
tion to a natural catchment (Heumös slope, Austria), no significant
improvement was observed. However, this could be related to the
specific study site and the sensitivity of the roughness height calcu-
lation should be investigated in different case studies to draw final
conclusions.

• In [115], it is reported that the anisotropic porosity shallow water
model is not able to correctly calculate the flux in the presence of a
porosity discontinuity and an empirical flux correction is proposed.
This is not entirely satisfactory, and future research should focus on
deriving a physically-based mechanism to account for the porosity
discontinuity.

• Another interesting research area is the development of augmented
Riemann solutions to the equations. A major limitation here is that
the system of equations is only available in integral differential form.
However, following the eigenvalue analysis in [50], one could derive
augmented Riemann solutions for these equations that would stabilize
the solution.

• The mesh-dependency of the anisotropic porosity shallow water model
cannot be entirely removed. Thus, in order to enhance model accu-
racy, research should focus on an automatic gap-conforming mesh
generation for anisotropic porosity shallow water models. A possible
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way would be to extract the building boundaries as individual poly-
gons using image analysis tools and then forcing a constraint Delaunay
triangulation with the centroids of these polygons as fixed points.

• Given the benefit of the unstructured meshes, the anisotropic poros-
ity model with depth-dependent porosity terms should be extended
to unstructured triangular meshes. A possible way to calculate the
porosity functions is to carry out a Voronoi tessellation in each cell
and weighting each sampled topography data with its corresponding
Voronoi area.

• Except of the work in [50], where levee failure in a small neighborhood
is investigated, the anisotropic porosity shallow water model has not
been applied to a “real world” case yet. An important step for future
research would be to apply the anisotropic porosity model to a large
scale “real world” urban catchment, possibly at city scale, but at
least at the scale of several districts to identify possible undetected
limitations of the model.

• Here, an interesting approach that would further decrease the compu-
tational cost would be applying high-performance scientific computing
techniques to the coarse grid methods. Here, a distributed memory
parallelization could significantly reduce the computational time. Us-
ing GPU-based parallelization is also possible.

• Another interesting line of work would be the coupling of coarse grid
methods and adaptive methods. Possible combinations are a simple
mesh adjusting coarse grid model, where cells are refined based on an
error estimator, or a model-adaptivity where model concepts and cell
sizes are adjusted according to the state of the solution, e.g. conven-
tional high-resolution shallow water model to resolve the shock wave
and porosity model on coarser resolution in smooth regions.

• Finally, the coarse grid approaches could be coupled with different
processes such as contaminant and heat transport and morphody-
namics. The extension to contaminant and heat transport is straight-
forward but modeling morphodynamics is expected to be challenging.
The major challenge is the coarse resolution of the computational
mesh that averages bed elevation inside the cell. Smaller topographic
features are accounted for conceptually. However, these small to-
pographic features are expected to erode. In the friction law-based
approach this would change the roughness height, and in the porosity-
based approach this would change not only the value of the porosity



CHAPTER 8. SYNTHESIS 183

terms but the porosity function itself. In addition, the calculation of
sediment and bedload fluxes in the presence of porosity is ambiguous.
Nevertheless, a coarse grid model for morphodynamics would be very
interesting for long-term simulations. Another possible application
area of the coarse grid approaches would be to account for vegetation
in rivers and reservoirs.
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[6] G. Blöschl and M. Sivapalan. Scale issues in hydrological modelling:
a review. Hydrological Processes, 9:251–290, 1995.

[7] R. P. Brent. Algorithms for Minimization without Derivatives.
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[8] A. Bronstert, A. Agarwai, B. Boessenkool, M. Fischer, L. Köhn,
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J. Lewandowski, T. Nehls, and M. Barjenbruch. Urban water inter-
faces. Journal of Hydrology, 514:226–232, 2014.

[42] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh
generator with built-in pre- and post-processing facilities. Interna-
tional Journal for Numerical Methods in Engineering, 79(11):1309–
1331, 2009.

[43] M. J. Gibson, D. A. Savic, S. Djordjevic, A. S. Chen, S. Fraser, and
T. Watson. Accuracy and computational efficiency of 2d urban surface
flood modelling based on cellular automata. Procedia Engineering,
154:801 – 810, 2016.

[44] S. K. Godunov. A difference scheme for numerical computation of
discontinuous solutions of hydrodynamic equations. Matematicheskii
Sbornik, 47:271–306, 1959.

[45] S. Gottlieb and C.-W. Shu. Total variation diminishing Runge-Kutta
schemes. Mathematics of Computation, 67(221):73–85, 1996.

[46] P. Gourbesville. Data and hydroinformatics: new possibilities and
challenges. Journal of Hydroinformatics, 11(34):330–343, July 2009.

[47] V. Guinot. Godunov-type schemes: an introduction for engineers.
Elsevier Science B.V., Amsterdam, the Netherlands, 2003.

[48] V. Guinot. Multiple porosity shallow water models for macroscopic
modelling of urban floods. Advances in Water Resources, 37:40–72,
Mar. 2012.

[49] V. Guinot and C. Delenne. Macroscopic modelling of urban floods.
La Houille Blanche – Revue internationale de l’eau, 6:19–25, 2014.



BIBLIOGRAPHY 189

[50] V. Guinot, B. Sanders, and J. Schubert. Dual integral porosity shallow
water model for urban flood modelling. Advances in Water Resources,
Accepted, nd.

[51] V. Guinot and S. Soares-Frazão. Flux and source term discretization
in two-dimensional shallow water models with porosity on unstruc-
tured grids. International Journal for Numerical Methods in Fluids,
50(3):309–345, Jan. 2006.

[52] D. A. Haleem, G. Kesserwani, and D. Caviedes-Voullième. Haar
wavelet-based adaptive finite volume shallow water solver. Journal
of Hydroinformatics, 17(6):857–873, 2015.

[53] J. Henonin, M. Hongtao, Z.-Y. Yang, J. Hartnack, K. Havnø,
P. Gourbesville, and O. Mark. Citywide multi-grid urban flood mod-
elling: the July 2012 flood in Beijing. Urban Water Journal, 12(1):52–
66, 2015.

[54] J. Hervouet. Hydrodynamics of free surface flows: modeling with the
finite element method. Wiley & Sons, Inc., 2007.

[55] J.-M. Hervouet, R. Samie, and B. Moreau. Modelling urban areas in
dam-break flood-wave numerical simulations. In International Semi-
nar and Workshop on Rescue Actions based on Dambreak Flood Anal-
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[106] S. Néelz and G. Pender. Sub-grid scale parameterisation of 2D hydro-
dynamic models of inundation in the urban area. Acta Geophysica,
56(3):65–72, 2007.

[107] H. M. Nepf. Drag, turbulence, and diffusion in flow through emergent
vegetation. Water Resources Research, 35(2):479–489, Feb. 1999.
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die wasserwirtschaftliche Praxis, 2002.
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