Dataset from a microphone array measurement of a rotating fan

Simon Jekosch and Ennes Sarradj

Institute of Fluid Mechanics and Engineering Acoustics Technical University Berlin Einsteinufer 25, 10587 Berlin, Germany

March 30, 2021

1 Overview

The following instruction gives a summary of an microphone array measurement conducted at the TU Berlin in October 2019. The setup consists of a five-bladed fan with a diameter of 800 mm and a sunflower array with 63 microphones as well as a laser trigger. Figure 1 shows a Photograph of the experiment. The given dataset contains 9 measurement files with different rpm speeds and distances between the array and the fan as well as a modified blade and a bluff body in front of the leading edge as a disruption. Overall about 200 different cases were measured. Additional data can be provided on request.

2 Microphone array

The array consists of 63 microphones which are ordered in a single sunflower spiral [1]. The spiral parameter H which defines the radial distribution of the microphones is chosen to be 1.0 and the parameter V defining the azimuthal distribution of points is set to 5.0. The parameters are chosen according to Sarradj [2]. The array aperture of the array is $d_{spiral} = 1.5$ m. The array is shown in Figure 2. The type of microphones used is GRAS 40PL-1 Short CCP and the distance between the array center and the fan was from 0.715 m to 1.210 m.

Figure 1: Photograph of the fan measurement setup in the anechoic chamber at TU Berlin.

3 Fan

The revolution per minutes of the fan are set by a control voltage between 0% and 100% fan power. At 0% the fan is not moving and at 100% the fan reaches a rotational speed of approximately 1050 revolutions per minute. A Sketch of the front view of the fan as well as the side view of the setup is shown in Figure 3.

4 Purpose of the measurement

The measurement is conducted to localize the sound distribution of a rotating source using multichannel microphone measurements. The spiral Array configuration was chosen to test an extension of the virtual rotating array method for arbitrary microphone configurations [3].

5 Measurement data

The measurement time is 40 s with a sampling frequency of 51200 Hz. The sound pressure data is stored in the channels 0 to 62. The trigger-per-revolution signal was synchronized to the pressure measurement and is stored in channel 63. The trigger data has a peak to 70 when the laser is hitting the reflector and is 0 elsewhere. The trigger point is marked by the rising slope of the trigger signal. An exemplary trigger signal is shown in Figure 4. All data is stored in a HDF5 data format under the time_data key. The sampling frequency is stored under the time_data key as well. The air temperature during the measurements is between 20.5° C and 21.6° C. Table 1 shows the configuration

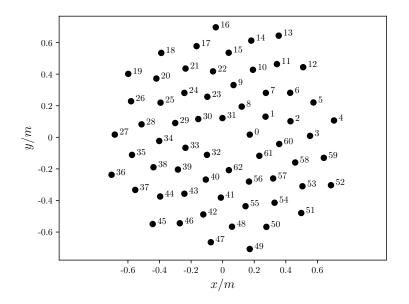


Figure 2: Distribution of microphone sensors in the array.

for each measurement file. The Modifies column indicates three different modifications to the experimental setup: 'Bluff body' indicates a $0.04 \times 0.04 m$ metal square rod in front of the suction side at 0° angle. 'Blade modified' points out a tripping wire at the pressure side on one fan blade and the modification 'Rotational Axis' specifies that the rotational axis of the fan is moved +0.20 m in vertical direction. The modifications 'Blade modified' and 'Bluff body' are shown in Figure 5.

Filename	Distance	Temperature	Rpm	Modifies
2019-10-23_10-57-15_767607.h5	1.21 m	20.9 [°C]	40%	-
$2019-10-23_{11}-10-13_{488}297.h5$	1.21 m	20.9 [°C]	60%	-
2019-10-23_11-24-10_702272.h5	1.21 m	21 [°C]	80%	-
2019-10-23_11-30-27_924582.h5	1.21 m	$21 \ [^{\circ}C]$	100%	-
2019-10-23_13-34-55_206129.h5	1.21 m	21 [°C]	100%	Bluff body
$2019-10-24_10-47-39_584220.h5$	0.829 m	$20.5 \ [^{\circ}C]$	100%	-
2019-10-23_18-33-36_788290.h5	0.829 m	21.6 [°C]	100%	Blade modified
$2019-10-24_11-20-51_276506.h5$	0.829 m	20.7 [°C]	100%	Bluff body
$2019\text{-}10\text{-}24_13\text{-}38\text{-}58_084273.h5$	0.859 m	$20.9 [^{\circ}C]$	100%	Rotational Axis

Table 1: Measurement data files.

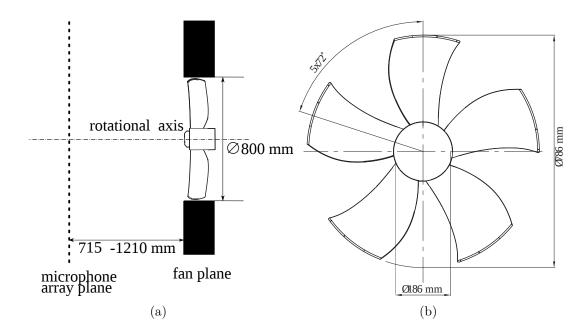


Figure 3: Sketch of the fan measurement setup. (a) shows the side view of the setup and (b) shows the front view of the fan.

6 List of files

- tub_vogel63.xml Microphone positions in the array
- Measurement_data.zip Archive of the time data. Contains the .h5 files listed in Table 1
- Fan_position_at_trigger.jpg A photograph of the orientation of the fan at the trigger point
- Fan_dimensions.pdf A sketch of the fan
- calib.xml The calibration file for each microphone channel

References

- H Vogel. "A Better Way to Construct the Sunflower". In: Mathematical Biosciences 44 (1979), pp. 179–189.
- [2] E Sarradj. "A Generic Approach To Synthesize Optimal Array Microphone Arrangements". In: *Proceedings of the 6th Berlin Beamforming Conference* (2016), pp. 1–12.
- [3] Simon Jekosch and Ennes Sarradj. "An extension of the virtual rotating array method using arbitrary microphone configurations for the localization of rotating sound sources ." In: *MDPI Acoustics* 2 (2020), pp. 1–13.

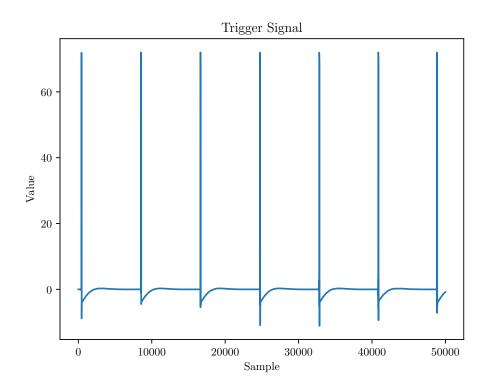


Figure 4: A trigger signal over time.

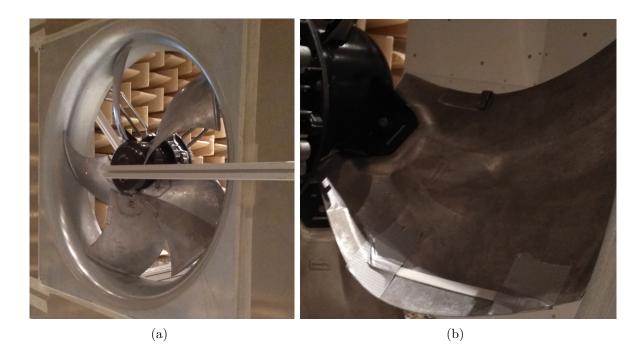


Figure 5: Modifications of the measurement setup. (a) Bluff body and (b) Blade modified.