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Summary

Neural systems compute dynamic representations of the environment: sensory neurons respond
selectively to sensory stimuli, and adapt their “code” according to recently received sensory
input. Despite the ubiquity of adaptation throughout neural processing across different species
and sensory modalities, the functional benefits of adaptation often remain unclear. Ultimately, a
complete understanding of the underlying computational principles requires insight into the
neural circuitry and the physiological mechanisms that carry out these computations. Here, we
study the generation and adaptation of sensory representations in low-level sensory processing
in two model systems of different complexity: the auditory pathway of crickets and the primary
visual cortex (V1) of cats.

We first investigate the generation and dynamics of orientation selectivity in V1. Physiological
and anatomical data indicate that the response properties of individual neurons can only be
fully understood in the context of their local circuitry. Specifically, orientation tuned responses
of a V1 neuron and its temporal response characteristics depend on the neuron’s position in
the orientation preference map and the recurrent inputs related to that position. We systemati-
cally explore a whole class of network models that incorporate the structure of the orientation
preference map and conclude that only a network operating in a regime where excitatory and
inhibitory recurrent inputs are balanced and dominate the feed-forward input is consistent with
the experimental data. Furthermore, we argue that one functional benefit of this “balanced
recurrent” operating regime is its enhanced sensitivity to modulations of the balance between
excitation and inhibition.

We then focus on intracortical synaptic depression as a potential mechanism through which
adaptation alters recurrent processing and thus VI’s representation of sensory stimuli. We
simulate orientation adaptation in network models with different strengths of synaptic depres-
sion and select those models that predict adaptation-induced changes in orientation tuning
and perceptual read-out consistent with experimental data. The relative strength of synaptic
depression of the selected models is consistent with in vitro data, making intracortical synaptic
depression a plausible mechanism of orientation adaptation. The best fit of the experimental
data is found for the balanced recurrent network, which also correctly predicts an enhanced
capacity for adaptive changes close to pinwheel centers.

Finally, we study the optimality of adaptive systems in the simpler auditory pathway of
the cricket. Unlike in primary visual cortex, where information is encoded by populations
of neurons, just a single neuron conveys information about high frequency sounds to the
cricket’s brain. This enables us to accurately quantify the mutual information between a sensory
stimulus and its neural representation. We design an experiment that allows us to distinguish
whether this representation follows an infomax principle or a selective coding principle. We
find that adaptation leads to a reduction rather than to an overall enhancement in information
transmission, inconsistent with the infomax principle. However, adaptation also selectively
decreases the amount of information that is transmitted about background signals, facilitating
the detection of behaviorally relevant signals.
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1. Introduction

1.1. Adaptive sensory processing

How do our brains process the sensory information coming from the eyes in order to
shape our perception of the outside world? Understanding the computational principles
and the neural mechanisms that underlie sensory processing is a major challenge in neu-
roscience research. Ultimately, it is some representation of the sensory information that
the brain uses to perform higher-level processing, such as recognizing objects, making
decisions, and navigating our body through a dynamically changing environment.

Indeed, the fact that the environment is dynamically changing is a crucial issue for
understanding perception. For example, when in motion we constantly view individual
objects from different perspectives, or while they are occluded by other objects, or lit
from a different angle or intensity of light, and so on. Remarkably, our brains can deal
with this complexity and easily recognize the same object in a variety of situations.
How does the brain achieve this? We are still far from answering this question - our
understanding of the higher-order visual brain areas that deal with object recognition is
limited: the algorithms for performing these tasks remain largely undiscovered, and the
underlying neural machinery that executes them not well understood.

However, much more is known about the main cortical visual area for “lower-level”
processing, the primary visual cortex (V1). The computations performed in V1 - the
extraction of elementary features such as contour orientation within an image — are
simple enough to be measured precisely by presenting basic visual stimuli and recording
neural responses. Yet, the responses of V1 neurons are complex enough to be interesting;
this makes the visual cortex an ideal model system for studying neural computations. It
has long been thought that V1 neurons respond faithfully and unalterably to physical
properties of visual stimuli within their receptive fields. For instance, the preferred
orientation of a cortical cell was thought to be shaped during development and to
remain unchanged later in life. However, this view has changed as it became clear that
the responses of V1 are remarkably flexible or “plastic” even during normal sensory
processing; for example, they are strongly influenced by the history of the visual input.
This suggests that one strategy the brain uses to deal with an ever changing environment
is to adapt its sensory representations.
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1. Introduction

Physiological mechanisms

A physiologically well characterized form of adaptation in V1 is pattern adaptation.
Pattern adaptation occurs across several stimulus dimensions, such as contrast (Maffei
et al,, 1973; Ohzawa et al., 1985; Carandini and Ferster, 1997; Sanchez-Vives et al., 2000b),
orientation (Miiller et al., 1999; Dragoi et al., 2000), or direction of motion (Hammond
et al., 1985). An important characteristic of adaptation is that it is a rapid form of
plasticity® that has a reversible effect on neuronal selectivity, i. e., the responses adapt on
short time scales, and recover to their pre-adapted state when the source of adaptation
is removed. How adaptation alters sensory representations, and in turn perception, can
be demonstrated by simple psychophysical experiments (Figure 1.1). After prolonged
viewing of the oblique lines (Figure 1.1A), the vertical lines appear briefly as if they
were tilted in the opposite direction. This well-known phenomenon is called the tilt
aftereffect (Gibson and Radner, 1937). Adaptation often leads to a reduction in sensitivity
to stimulus attributes. For instance, in contrast adaptation (Figure 1.1C), the exposure
to a high-contrast stimulus reduces the apparent contrast of a test stimulus.

What is the neural substrate of these aftereffects? Contrast adaptation shifts the
contrast response curve of individual neurons towards higher contrast levels on a time
scale of seconds (Figure 1.1D, Ohzawa et al., 1985; Carandini, 2000). A simple expla-
nation is thus, that adaptation “fatigues” the neurons that respond most strongly; the
fatigued neurons then respond less than they normally would, leading to changes in the
perception. Contrast adaptation in V1 is mainly meditated by a sodium-gated potassium
channel, as described by Sanchez-Vives et al. (2000a,b). This channel is triggered by the
sodium influx that occurs with synaptic input and the generation of action potentials
and it leads to a strong hyperpolarization of individual neurons (Carandini and Ferster,
1997). There is also a subcortical contribution to contrast adaptation, because contrast
adaptation already occurs to some degree in earlier processing stages than V1 (Solomon
et al., 2004); in fact, it can already be found in retinal circuits (Baccus and Meister,
2002).

Concerning orientation adaptation, it has been shown experimentally in monkey
(Miiller et al., 1999) and in cat (Dragoi et al., 2000), that adaptation to orientated gratings
systematically changes neural tuning curves (Figure 1.1B): The response at the adapting
orientation decreases, the tuning curve broadens for neurons with a preferred orientation

"Neural responses in V1 are also modified after visual discrimination learning (Schoups et al., 2001;
Gilbert et al., 2001), during short-term visual memory (Supér et al., 2001), or by top-down processes
reflecting an internal state such as attention and expectation (Sharma et al., 2003). These forms of
plasticity are beyond the scope of this thesis; we focus on bottom-up plasticity during ongoing sensory
processing.
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1.1. Adaptive sensory processing
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Figure 1.1 | Adaptation causes transient changes in visual perception (A, C) and in the responses of neurons
in primary visual cortex (B, D). A | Tilt aftereffect. Fixate on the white dot inside the left image for 30
seconds, moving your eye slightly to avoid developing strong afterimages. Then quickly fixate the right
image. The vertical lines should appear slightly tilted clockwise; this phenomenon is called the tilt aftereffect.
B | Adaptation-induced plasticity in orientation tuning. Adaptation to an oriented grating (marked by the
triangle) alters neuronal tuning curves. When the adapting orientation is close to a neuron’s preferred
orientation, the tuning curve broadens, its peak response decreases, and the curve shifts away from the
adapting orientation. C | Perceptual reduction in apparent contrast. Fixate on the white dot inside the left
image for 30 seconds, moving your eyes back and forth to prevent afterimages. Then quickly move your gaze
to the right image. The low-contrast grating should briefly be invisible. D | Adaptation with a high contrast
stimulus (triangle) reduces contrast sensitivity of individual neurons by shifting the contrast-response
function to the right.
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1. Introduction

close to the adapting orientation (and sharpens for neurons with a preferred orientation
far from the adapting orientation), and the preferred orientation of the neuron shifts
repulsively away from the orientation of the adapting stimulus. These tuning curve
changes show that adaptation is more than just “neuronal fatigue”; adaptation seems
to reorganize tuning curves through a combination of suppression (on the flank close
to the adapting stimulus) and enhancement (on the flank far away from the adapting
stimulus), probably mediated through interactions of recurrently connected neurons.
While the physiological mechanisms underlying contrast adaptation are relatively well
understood, the exact site of orientation adaptation remains unknown.

One aim of this thesis is to study the physiological mechanisms that underlie orienta-
tion adaptation using an explicit model of orientation processing in V1. Specifically, we
focus on a mechanistic model of the local cortical network and explore the hypothesis
that depression of intracortical synapses (Abbott et al., 1997; Tsodyks and Markram,
1997; Varela et al., 1997) provides the substrate for orientation adaptation. Depression of
intracortical synapses is consistent with a recent in vivo study in visual cortex (Boudreau
and Ferster, 2005). Furthermore, both short-term synaptic depression and orientation
adaptation occur at multiple time scales from tens of milliseconds to seconds (synaptic
depression: Varela et al. 1997; Galarreta and Hestrin 1998; Zucker and Regehr 2002;
orientation adaptation: Felsen et al. 2002; Miiller et al. 1999; Dragoi et al. 2002, 2000).
An intrinsic hyperpolarization of the presynaptic neurons might also contribute to ori-
entation adaptation in V1 neurons (as in the case of contrast adaptation), but it occurs
at a time scale of 30 seconds to minutes. We also want to bridge the gap between the
physiologically observed tuning curve changes and the psychophysical tilt aftereffect.
In order to link the neural responses to perception one needs to know how the rest
of the brain “reads out” orientation from the responses of a population of V1 neurons
(see below). It has been shown theoretically that, assuming an optimal decoder and
independent neural responses, the reversible shifts observed in individual V1 neurons
are in quantitative agreement with the tilt aftereffect (Jin et al., 2005). Here, we want to
build on these results and explore the possibility that the adaptation effects emerge as a
result of recurrent processing.

We use a bottom-up approach for modeling orientation tuning, and numerically
simulate network models of primary visual cortex. An important aspect that we take
into account is that response properties of individual neurons can only be understood in
the context of the local circuits they are embedded in. However, the exact role that local
circuits play in the computation of orientation selectivity is still debated. In a first step,
we therefore develop a detailed two-dimensional network model that incorporates the
structure of the orientation preference map and use recent anatomical and physiological
data to constrain the recurrent interactions between a neuron and its local cortical
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1.1. Adaptive sensory processing

neighborhood. We then use this network to study how synaptic depression, caused by
adaptation to orientation stimuli, influences recurrent processing.

Computational principles

While visual illusions like the tilt and the contrast aftereffects may seem like an anomaly
in visual processing or even like a negative effect of adaptation, there is some evidence
that they are actually the result of optimal processing. The benefits of adaptation are
intuitive in the case of contrast coding, where adaptation shifts the contrast response
curve towards higher contrast levels (Figure 1.1D). This can be understood as an ad-
justment of the limited dynamic range of the neuron to the range of contrast values
observed in the recent past, in order to ensure an accurate representation for contrast
values of contextual relevance. Theoretically, such an adjustment to changing contrast
statistics is predicted by the efficient coding hypothesis (Adorjan et al., 1999b; Schwabe
and Obermayer, 2003). The efficient coding hypothesis (Barlow, 1961, 2001), grounded
in information theory, states that sensory systems seek to provide an efficient represen-
tation of the natural environment. To achieve this goal, single sensory neurons should
tully employ their information transmission capacity (this is called the information max-
imization principle or infomax, Linsker, 1988), and different neurons should operate as
independent encoders by decorrelating their responses in order to reduce redundancy.
In this way, also the tilt aftereffect (Figure 1.1A) is consistent with efficient coding, as has
been shown in various modeling studies (Wainwright, 1999; Clifford et al., 2000, 2001;
Schwartz et al., 2007). An abstract Bayesian inference model provides an alternative
explanation; here the tilt aftereffect arises through the optimal combination of sensory
observations with prior knowledge (Stocker and Simoncelli, 2006).

Orientation adaptation not only produces a perceptual bias (the tilt aftereffect), but
also affects orientation discrimination. The discrimination performance is improved
around the adapting orientation (Regan and Beverley, 1985) and the orthogonal orienta-
tion (Clifford et al., 2001), but is markedly impaired for angles of 10°-15° between adapter
and test. These psychophysical effects need adaptation times between 5 sec and 1 min.
Interestingly, the adaptive changes in orientation tuning occur at multiple time scales,
from tens of milliseconds (Felsen et al., 2002) over hundreds of milliseconds (Miiller
et al., 1999; Dragoi et al., 2002) to several minutes (Dragoi et al., 2000). Adaptation
might therefore continuously recalibrate neural responses even during natural viewing
where monkeys (and humans) make saccadic eye movements several times per second.
Indeed, Dragoi et al. (2002) showed that short-term adaptation to oriented gratings
improves orientation discrimination for orthogonal orientations by sharpening neural
tuning curves. Importantly, they also showed in studies of natural images (Dragoi et al.,
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1. Introduction

2002) and of eye movements (Dragoi and Sur, 2006) that saccades to distant image
patches of largely dissimilar orientation structure are more likely than saccades to image
patches with intermediate orientation differences.

Until now most experimental studies have investigated how adaptation can enhance
the coding efficiency of an individual cortical neuron. However, perception relies on
sensory information encoded in the activity of populations of neurons; thus, it is often
difficult to link the results of these studies to a functional benefit for the organism.
How individual neurons contribute to a population code, and how a population code
can be interpreted, remains an active research topic (Deneve et al., 1999; Pouget et al.,
2003; Clatworthy et al., 2003; Kang et al., 2004; Jazayeri and Movshon, 2006; Butts and
Goldman, 2006). It is commonly accepted that correlations between neural responses
can have a large impact on population coding (Averbeck et al., 2006), and in turn on
the accuracy of a perceptual decision such as in a discrimination task (Cohen and
Newsome, 2009). In a recent study, Gutnisky and Dragoi (2008) found that adaptation
improves the accuracy of population coding by selectively reducing the mean and the
variability of pairwise correlations between neurons. However, it might be necessary to
take interactions between neurons beyond pairwise correlations into account to fully
understand population coding (Roudi et al., 2009). Furthermore, perception involves
processing distributed across multiple interconnected cortical areas (de Lafuente and
Romo, 2006), where the responses of neurons are modulated by signals coming from
other neural populations, making it difficult to discern stimulus-driven, adaptive effects
from top-down, behavioral effects such as attention.

An alternative to studying adaptation in large-scale sensory systems that rely on a
distributed population code is to use the simple sensory networks of invertebrates, which
involve representations that are often encoded in the activity of single neurons and not
heavily influenced by feedback signals (see for instance Brenner et al., 2000; Fairhall
et al,, 2001). Part of this thesis describes our use of this approach, where we study the
computational principles of stimulus coding in the auditory pathway of crickets. Using
a top-down approach, we explore how adaptation changes the response properties of
the AN2 neuron and its information transmission capacity. The AN2 neuron is the only
neuron of a local network that conveys information about high frequency sounds to
the cricket’s brain; it is thus a bottleneck for information transmission. Interestingly,
the sound-intensity response curve of the AN2 neuron is reminiscent of the contrast
response curve of V1 neurons (Figure 1.1D). However, in contrast to visual processing in
V1, auditory processing at the stage of the AN2 neuron is purely feed-forward; adapta-
tion is thus driven by the stimulus only, and not by task-dependent top-down processes.
This, together with the fact that the AN2 neuron has a clear behavioral role in evasion
of ultrasonic sounds coming from bats, makes the AN2 an ideal model for studying
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1.1. Adaptive sensory processing

the computational principles underlying sensory adaptation. Combining electrophysi-
ological and modeling techniques, we ask which computational principle - infomax
(Linsker, 1988) or selective coding (Sobel and Tank, 1994) - can predict the responses of
this sensory neuron to a carefully designed stimulus.

Apart from the common topic - the generation and adaptation of sensory repre-
sentations — the different parts of this thesis also share a common methodology. For
modeling orientation tuning in V1, we use model-based data analysis in order to assess
a continuum of network models, that encompasses the full range from feed-forward via
inhibition-and excitation dominated models to models with excitation and inhibition
in balance. Similarly, to shed light on the mechanisms underlying pattern adaptation in
V1, we again explore the full range of synaptic depression parameters. Thus, in contrast
to traditional modeling approaches®, we determine the complete space of models able
to account for the experimental data, rather than merely demonstrating one model to
be compatible with the data set. In the same spirit, we use a Bayesian approach for
quantifying how adaptation changes sound-intensity response curves in the cricket au-
ditory system. Bayesian data analysis yields the joint posterior distribution of the model
parameters which allows us to calculate precise confidence limits of adaptive changes as
well as of derived quantities such as mutual information between stimulus and response.
This is again in contrast to traditional modeling approaches, which preclude such an
analysis because only one model is fit to the experimental data.

*Similar approaches have been used to explore the conductance space of detailed single cell models or
small networks composed of a few a neurons (Marder et al., 2007), but applications to larger networks
are rare.
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1. Introduction

1.2. Addressed questions and outline

A large part of the work presented in this thesis deals with orientation processing in
the primary visual cortex. In order to provide the necessary background, we start with
an overview of the early visual system in Chapter 2. Beyond a mere summary of the
anatomy and physiology, which can be found in many good textbooks, this chapter
also discusses previous functional and mechanistic models for V1 receptive fields and
emphasizes experimental findings concerning the relationship between single neuron
responses and the local cortical circuit.

The original research is presented in Chapter 3 to Chapter 6. Each chapter is self-
contained and includes an introduction to the discussed subject, a review of previous
work, and a concluding remark. Details of the developed network models can be found
in the Appendix. In particular we address the following questions:

1. Can we infer the mechanism underlying the computation of orientation selectiv-
ity from experimentally-characterized relationships between the local cortical
neighborhood and the input and response properties of single neurons?

2. Does short-term synaptic plasticity provide a mechanism that can account for the
physiological (tuning curve changes) and perceptual (tilt aftereffect) consequences
of adaptation in the visual system?

3. Which computational principle can explain adaptation in a first order auditory
interneuron in the cricket?

The first question is considered in Chapter 3 and Chapter 4, where we investigate
the mechanisms of orientation tuning in primary visual cortex (V1). V1 performs a
remarkable transformation of the visual information it receives from the eyes. Cortical
neurons are sensitive to orientation in a way that their afferent inputs are not, which
means that they somehow compute this feature selectivity. The mechanism underlying
this computation has been discussed extensively, giving rise to two different views. In
feed-forward models, orientation selectivity arises primarily through the convergence of
thalamocortical inputs, while in recurrent models it arises through a weak afferent bias
and strong intracortical interactions (see Chapter 2 for a discussion of these models).
The question how orientation tuning is computed is of broad interest because, given
the similarity of neocortical circuits (Creutzfeldt, 1977), similar mechanisms might be
employed in different cortical areas for different tasks.

In Chapter 3, which is based on Wimmer et al. (2009), we argue that experimental
data concerning connectivity patterns and neural responses with respect to the orien-
tation preference map provides constraints to distinguish between various theories of
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1.2. Addressed questions and outline

orientation tuning. We investigate the full range of orientation selectivity models from
feed-forward via inhibition- and excitation-dominated to balanced recurrent computa-
tion. Since neurons in primary visual cortex are embedded in an orientation preference
map with a non-uniform layout, their short-range lateral inputs are determined by the
position in the orientation map and by the strengths of these lateral inputs (which is
dependent upon the relative locations of the neurons providing them). While data is
available on the range of these lateral interactions, their strengths are unknown. Here,
we use recent experimental data from intracellular recordings (Marifio et al., 2005) to
constrain a Hodgkin-Huxley network model and to pin down the “operating regime” of
V1, i. e., the relative strength of afferent excitatory, lateral excitatory and lateral inhibitory
connections.

In Chapter 4, which is based on Schummers et al. (2007) and Stimberg et al. (2009),
we extend the modeling study from Chapter 3 to the temporal domain. Using temporal
filters to describe the dynamics of the afferent input to each model cell in the Hodgkin-
Huxley network model, we simulated “reverse correlation” experiments. Single-unit
recordings from cat primary visual cortex under this paradigm (Schummers et al.,
2007) showed that neurons close to pinwheel centers and neurons in orientation do-
mains exhibit a similar time course in their averaged responses, but differences in their
inter-cell variability. These characteristics of the temporal dynamics of V1 can only be
reproduced in the Hodgkin-Huxley network model operating in a balanced recurrent
regime. One interesting consequence of this operating regime is that the network is
susceptible to small perturbations of excitation or inhibition. Together, Chapter 3 and
Chapter 4 highlight the importance of knowledge about the local network connectivity
in understanding and modeling orientation selectivity in the visual cortex. This work,
while not dealing with the topic of adaptation itself, provides a crucial prerequisite for
studying the effects of adaptation on orientation tuning in Chapter 5.

In Chapter 5, we use a mean-field version of the Hodgkin-Huxley network model to
investigate the mechanisms through which adaptation changes V1’s representation of
sensory stimuli. One motivation for this study was the physiological evidence supporting
the idea that synaptic depression might underlie the experimentally-observed adaptive
changes. We also wanted to test our prediction that even a small modification of the
balance between excitation and inhibition in the highly recurrent network regime
makes large variations in neuronal responses possible (see Chapter 3). Thus, we explore
whether short-term synaptic plasticity evokes adaptive changes in orientation tuning at
the neuronal level and whether these changes correctly predict the magnitude of the
perceptual tilt aftereffect. This is in contrast to previous modeling studies that have
ignored empirical constraints or have focused exclusively either on the perceptual (tilt
aftereffect) or physiological (tuning curve changes) effects associated with orientation
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1. Introduction

adaptation. Our model exploration gives insights into how specific combinations of
synaptic plasticity at different sites (excitatory and inhibitory synapses with excitatory
and inhibitory target cells) contribute to the reshaping of orientation tuning curves.
The set of models that is in quantitative agreement with the experimental data correctly
predicts that adaptation-induced changes are more pronounced close to pinwheel centers
(cf. Dragoi et al., 2001) than in orientation domains.

In Chapter 6, which is based on Wimmer et al. (2008), we focus on the computational
principles that underlie adaptation in the cricket auditory system. Specifically, we
designed a sound stimulus for which two competing hypotheses — infomax (a form
of the efficient coding principle) and selective coding (a form of figure-background
separation) — predict different AN2 neuron tuning curve changes. In other words,
we sought to distinguish if the AN2 neuron is optimized for transmitting as much
information as possible or for preprocessing sensory information in order to transmit
only behaviorally relevant signals. Even if one of these theories is correct, architectural
and physiological constraints might prevent a system from achieving the optimum
predicted by the “correct” theory. However, because we compare the improvement in
information transmission according to the two theories, we can discern which is more
appropriate regardless of whether optimal performance is observed. Finally, we argue
that that this approach is of broad interest because it is highly applicable to other sensory
systems.

20



2. Background

2.1. The early visual system

The visual system can be loosely defined as all the parts of the brain that in some way
analyze information about the visual world, usually conveyed through the eyes. This can,
for example, be determined through the study of neuronal responses in model organisms
- e.g., macaque monkey and cat - by testing for correlations between visual stimuli and
neuronal activity. By studying these correlations, one obtains what is commonly called
a receptive field: a description of the type of stimuli, including location, temporal and
spatial structure, and possibly other aspects that elicits a neuronal response.

The functional approach to studying the visual system is supplemented by an anatom-
ical approach. The connectivity pattern between different parts of the visual system can
be studied in tracer studies, and based on morphological criteria, different areas of the
visual cortex can be distinguished. Findings in both these approaches complement each
other well; areas identified using anatomical techniques contain neurons with similar
functional properties. Moreover, a widespread principle of organization of early areas
in the visual system is that of retinotopy: The relative position of neurons to each other
within an area can be mapped smoothly onto their relative receptive field regions in the
visual field (or the corresponding regions of the retina). Generally, the functional and
anatomical descriptions of visual areas tend to agree.

Exploration of the functional properties of neurons in different visual areas has led
to the widespread view that processing in the visual system is hierarchically organized.
The receptive fields of areas close (in terms of neuronal connections) to the eyes, i. e., at
the “input” end of the system, are found to be small and simple in structure, providing
information about a small proportion of the visual field. Visual areas that receive
information from these early processing stages show larger, more complex receptive
fields, areas receiving input from these show an even higher degree in complexity and
abstraction (Lennie, 2003). This hierarchical view has been strengthened by findings of
consistent connectivity patterns, and anatomical and functional studies have arrived at
convergent descriptions of this processing hierarchy (Felleman and Essen, 1991).

The hierarchical view is useful for a structural characterization of the visual processing
stream, whose subcortical pathways are depicted in Figure 2.1. It starts with light falling
on the retina of the eyes. From the retina, information is transmitted by the retinal
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Figure 2.1 | Overview of the peripheral and subcortical visual pathways in higher mammals. Visual
information originating from the left and right visual field is processed in the right and left cortical
hemisphere.

ganglion cells, whose main projections innervate the lateral geniculate nucleus (LGN).
Half of these projections of each eye cross at the optic chiasm to the other side of the
LGN, such that for each hemifield, the representations of both eyes are mapped to the
contralateral hemisphere. The main projections from LGN go to the primary visual
cortex in the occipital lobe. It is also referred to as striate cortex, area 17, or V1 (the latter
usually for primates; however, V1 will be used for the rest of the thesis, also for cat area
17). V1is the first cortical visual area. While up to this point information processing is
completely monocular, here for the first time, information of the two eyes is combined.
The processing stream branches out at this stage. Two main streams are distinguished,
the dorsal stream and the ventral stream. The dorsal stream is thought to be responsible
for the visual control of action including, for example, the analysis of motion. Areas
of the dorsal stream include MT and MST, where cells show motion sensitivity and
egocentric coding of the visual field. The ventral stream is thought to be involved in
feature processing and perception. Areas in this stream include V3, V4, and IT, where
cells have larger receptive fields, are sensitive to color, shapes, possibly even objects and
faces (IT).

The next sections will give an overview over the properties of the first three areas
in this processing stream, the retina, LGN, and V1. This introduction is thought as a
primer for the rest of this thesis; a detailed description of the visual pathway can be
found in textbooks such as Kandel et al. (2000) or Chalupa and Werner (2003).
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2.1. The early visual system

The retina

The retina is at the periphery of the visual system. The eye’s optical system projects
an image onto the retina, where luminance is translated into neuronal impulses. This
conversion is performed by a densely packed array of photoreceptors. The human retina
contains approximately 10® photoreceptors — rods and cones - and is responsible for a
significant amount of processing in order to compress the signal into 10° fibers of the
optic nerve (Meister and Berry, 1999). Rods are responsible for vision at low light levels,
cones at greater light levels. In humans and some primates (including macaque), cones
are subdivided into three classes, according to their wavelength sensitivity. The signals
from the photoreceptors are processed in the plexiform layers of the retina and finally
carried by the axons of the ganglion cells, in the form of action potentials, out of the
retina.

A major product of processing in the retina is an adaptation of the signals coming
from its afferents to the mean luminance in the visual world (Shapley and Enroth-Cugell,
1984). This is necessary in order to accommodate the working range of several orders of
magnitude of luminance in the limited response range of visual neurons. As a result,
retinal ganglion cells respond to contrast, that is, relative luminance differences or ratios,
rather than to luminance itself.

The receptive field of retinal ganglion cells consists of a center and a larger surround
that interact subtractively. An ON-center cell is one in which a bright light on the center
of the receptive field evokes a positive response (an increase in firing rate) and a dark
light evokes a negative response. An OFF-center cell does the opposite. Stimulation in
different parts of these receptive fields has a linear effect on the firing rate of the cells,
which can be modeled using the difference of two Gaussian functions. Combining this
linear filter with a static nonlinearity and a Poisson generator, one obtains the so called
linear-nonlinear-Poisson (LNP) model. Although the LNP model ignors all of the
complexity of retinal circuitry it has been very successful in describing the responses of
both the sustained (parvocellular pathway) and transient (magnocellular pathway) cells
(Carandini et al., 2005).

The lateral geniculate nucleus (LGN)

The lateral geniculate nucleus is part of the thalamus. In primates, it consists of six major
layers of retinotopically organized visually responsive neurons, two magnocellular layers
(for motion processing) and four parvocellular layers (for color/form processing). In cat,
it has three layers. The strongest retinal input to the LGN originates from ganglion cells
of the X/parvocellular type and of the Y/magnocellular type. Additional input to LGN
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2. Background

relay cells originates from other geniculate neurons, from subcortical structures, and
from cortex. The thalamus has traditionally been viewed as a simple relay station that
passes on messages to the cortex largely as they come in. Evidence is now beginning to
accumulate that it may actually play a much more dynamic role in the processing and
transmission of information (see Sherman and Guillery, 2000).

The neurons in the LGN show a center-surround organization of their receptive fields,
like in retinal ganglion cells. While the spatial properties of the LGN neurons resemble
those of their retinal counterparts closely, the temporal properties have been shown to
differ. In particular, two types of neurons have been found, lagged and non-lagged cells
(Wolfe and Palmer, 1998; Cai et al., 1997). As the name suggests, the difference between
the cells lies in their temporal response properties, lagged cells showing a temporally
offset response to stimulation.

The primary visual cortex (V1)

V1 (or primary visual cortex, striate cortex, or area 17) is located in the occipital lobe of
the brain. The majority of visual input to the cortex passes through V1, and it is mostly
received from the LGN. Thus, in a hierarchical view of the visual system, V1 is two
levels above the retina, one level above the LGN, and at the bottom of the hierarchy
within cortex (Felleman and Essen, 1991). The outputs of V1 feed into both, the dorsal
and the ventral processing stream, making V1 the main provider of visual information
for motion processing as well as feature processing. It is the last stage where one may
still find a representation of the full visual scene before processing becomes specialized,
giving the neuronal transformations performed in V1 additional significance.

The overall organization is, like in the LGN, retinotopic, and it is the first stage at
which information coming from the two eyes is combined. The monocular input into V1
is processed in separate ocular dominance columns, elongated stripes distributed across
the surface of V1. This ordered mapping of eye preference across the surface of visual
cortex gives rise to the so called ocular dominance map. A given V1 neuron not only has
a preference for stimuli being shown to the right versus the left eye and at a particular
location in visual space, but also responds preferentially to stimuli with a particular
orientation, a particular spatial frequency (the spacing of the bars for a grating stimulus),
a particular direction of movement, and other features (for a review see Lennie and
Movshon, 2005). As we move across the cortical surface, we find interrelated maps of
these neuronal response properties (Obermayer and Blasdel, 1993; Hiibener et al., 1997;
Yu et al., 2005). The underlying organizing principle is maximizing the coverage (i. e.,
the cortex’ ability to respond to all possible stimulus properties at every point in visual
space) while providing a smooth representation of the feature space.
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2.2. Orientation selectivity in V1

The organization of V1 in depth also shows regularities. Like all neocortical areas,
it consists of six main laminae. The main input receiving layer is layer 4, where most
projections from LGN terminate. It is vital to remember that the LGN input into V1
neurons represents only a small proportion of their input connections. The consensus
figure from the anatomy is that the thalamus provides around 5 % of the excitatory
synapses in its main target layer (Douglas and Martin, 2007). Most of the connections
in layer 4 are intrinsic connections originating within V1, such as layer 6 pyramidal cells
and spiny stellate cells. The main route of information flow in the local processing is
from layer 4 through layers 2 + 3 to layer 5 and then layer 6, which sends projections back
to thalamus. The functional significance of these layers has still not been established
conclusively. See Douglas and Martin (2004), Binzegger et al. (2004) for a detailed
description of this cortical microcircuit and Hirsch and Martinez (2006) for a review of
the laminar differences in sensory processing.

Mainly the neurons in the superficial layers 2/3 also communicate via long-range
lateral connections over distances of up to several millimeters. Another source of inputs
to V1 neurons comes from inter-areal feedback connections between V1 and extrastriate
areas. In contrast to the local connections, that show an isotropic connection pattern,
long-range and feedback connections predominantly contact neurons with a similar
preferred orientation. A review of the anatomy of V1 can be found in Lund et al. (2003).

2.2. Orientation selectivity in V1

Functional models of V1 receptive fields

In a seminal study of the responses of V1 neurons, Hubel and Wiesel established, initially
in cat (Hubel and Wiesel, 1962) and later in macaque monkey (Hubel and Wiesel, 1968)
that neurons in V1 are selective for stimulus size and orientation. The orientation prefer-
ences of V1 neurons are usually mapped using gratings or bars of various orientations.
The neuronal response varies smoothly as a function of orientation, giving rise to the so
called orientation tuning curve (Figure 2.2D, E). Classically, two different types of neu-
rons are distinguished: The receptive fields of simple cells are characterized by discrete
parallel elongated regions which show either ON or OFF responses; complex cells do not
have such separate excitatory and inhibitory regions, but rather respond to both ON
and OFF stimulation. Due to this different structure, drifting gratings elicit different
response patterns in the two idealized cell models. Simple cells will respond only when
the grating approximately covers the ON and OFF regions with the correct polarity.
They are thus sensitive to the spatial phase of the presented grating, and their response to
the drifting grating is modulated with the temporal frequency of the drifting (Movshon

25



2. Background

et al.,, 1978b). Complex cells, on the other hand, do not show the discrete organization
of the activating regions. Thus, their responses will be more uniform throughout the
drifting (Movshon et al., 1978a). This property of simple and complex cells is often used
to identify them.

The receptive field of a simple cell can be modeled using a linear spatiotemporal
filter (e. g., a Gabor filter) followed by an output-nonlinearity, i. e., an LNP model as
described above for retinal ganglion cells. Complex cells are commonly modeled with
two phase-shifted filters whose outputs are squared and summed (the energy model,
Adelson and Bergen, 1985; Spitzer and Hochstein, 1985) before being passed through
the threshold nonlinearity. This is what could be called the “old standard model” that
is being replaced because it fails to account for important, experimentally observed
receptive field properties, such as the change in gain with the average illumination of the
receptive field or the suppression of responses by stimuli presented outside the receptive
field.

These shortcomings led to the development of a new, more comprehensive, standard
model for V1 cells (Rust and Movshon, 2005; Carandini et al., 2005) incorporating
multiple additional elements. These include multiple linear input filters whose output is
combined nonlinearly and subject to various gain control mechanisms (e. g., luminance
gain, contrast gain) that change responses depending on the combination of stimuli
being presented. Further components of the model capture nonlinearities caused by
the stimulation history (e. g., contrast adaptation) and spatial context effects (e. g., sup-
pression caused by stimuli outside the classical receptive field). Current versions of this
model capture approximately 35 % of the explainable variance of V1 neurons in response
to natural stimuli (Carandini et al., 2005).

Mechanistic models of orientation tuning

To this point, we have specified a receptive field in terms of computations performed
on an image. Such a purely functional description of receptive fields can describe the
mapping from the image space onto the activity of a single neuron; in other words, it
can tell us what the visual system is computing. We now move on to a more mechanistic
description of V1, one that serves for asking the question: how does the visual system do
it? Mechanistic models incorporate findings from anatomy and biophysics, and often
try to describe not only single cells, but local networks.

Orientation selectivity is a property that “emerges” in V1: cortical neurons are selective
for stimulus orientation while the receptive fields of their thalamic input are almost
circular and therefore relatively unselective. The question how orientation selectivity
emerges has provoked much controversy over the years because orientation selectivity
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2.2. Orientation selectivity in V1

can be seen as the prototypical example of a cortical computation, and certainly the
one that is best characterized experimentally. Here we briefly describe the basic ideas
behind the models and their weaknesses that have driven the debate. See Ferster and
Miller (2000); Sompolinsky and Shapley (1997); Teich and Qian (2006); Priebe and
Ferster (2008) for detailed reviews of various models and relevant experimental data.

Hubel and Wiesel (1962) proposed a feed-forward model in which orientation selec-
tivity arises due to an appropriate wiring from the LGN to V1, ensuring that V1 cells
receive inputs from aligned ON and OFF subregions. There is substantial experimental
support for this assumption (Reid and Alonso, 1995; Ferster et al., 1996; Alonso et al.,
2001). Incorporating the intrinsic nonlinear properties of cortical neurons, Finn et al.
(2007) also reconciled the feed-forward idea with the experimental finding that orienta-
tion tuning width is independent of stimulus contrast. However, there are also features
of orientation tuning that this model cannot explain, e. g., why a neuron’s orientation
selectivity can be reduced through pharmacological inactivation of a cortical site in the
vicinity (Crook et al., 1997).

Recurrent models (sometimes also called feedback models) offer a completely dif-
ferent view of how orientation selectivity arises. They rely on intracortical excitation,
inhibition, or a combination of both that refine selectivity relative to a bias provided
by thalamocortical inputs. Inhibition models state that intracortical inhibition sup-
presses non-preferred responses and hereby sharpens weakly tuned feed-forward input
(Worgotter and Koch, 1991; Troyer et al., 1998; McLaughlin et al., 2000; Wielaard et al.,
2001). It is a challenge for models of this type to explain why an intracellular blockade
of inhibition has a negligible effect on the sharpness of orientation tuning (Nelson et al.,
1994). Furthermore, measurements of inhibitory synaptic inputs to V1 neurons have
shown that inhibition tends to be strongest at the preferred orientation rather than at the
orthogonal orientation (Monier et al., 2003; Marifio et al., 2005). Another hypothesis is
that strong recurrent excitation is necessary to generate orientation tuning (Douglas
et al., 1995; Ben-Yishai et al., 1995; Somers et al., 1995; Adorjan et al., 1999a; Marifio
et al., 2005). Depending on the model, recurrent inhibition is unselective or sharply
tuned, only necessary to generate stable network activity or exquisitely balanced with
excitation. In the extreme case, the so called marginal phase (Ben-Yishai et al., 1995;
Adorjan et al., 1999a), orientation selectivity is determined exclusively by the pattern
of recurrent connections and arises from almost untuned afferent input. Responses of
the marginal phase model to multiple simultaneously presented stimuli are inconsistent
with experimental data (Carandini and Ringach, 1997). Furthermore, silencing cortical
responses through cooling does not abolish the selectivity of orientation tuning (Ferster
et al., 1996), but rather leads to a reduction in the response strength (Girardin and
Martin, 2009).
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Figure 2.2 | Relationship between the orientation preference map and responses of V1 neurons. A | Part
of an orientation map obtained from cat V1 with optical imaging of intrinsic signal responses to drifting
gratings. The color of each pixel denotes the preferred orientation of cells located at that pixel (colored
bars at the bottom right). The horizontal scale bar represents 1 mm. The two circles with radius 400 um
denote the regions of the local connections to the points at the center of each circle. B, C | Histograms of
the number of pixels representing each orientation that fall within the two circles shown in (A), for the left
circle that is centered on a pinwheel center (B), and for the right circle that is centered on an orientation
domain (C). D, E | Orientation tuning curves of V1 cells from the two locations marked by crosses in (A).
Figure adapted from Schummers et al. (2004).

Why has it been so difficult to distinguish between the feed-forward and the different
variants of the recurrent hypothesis? Possibly the problem of generating orientation
selectivity is underconstrained. Many models simplified the cortical architecture to a
one-dimensional “hypercolumn” and exclusively focused on explaining the output, i.e.,
the spiking activity, of cortical cells. There is, however, a large variability in the synaptic
inputs of single neurons (Monier et al., 2003), possibly due to laminar differences
(Ringach et al., 2002; Hirsch and Martinez, 2006) and inhomogeneities of the local
circuit (Schummers et al., 2004). To pin down the potential mechanisms underlying
orientation tuning, it seems thus necessary to impose further constraints on the models
by taking into account anatomical and physiological data.

The orientation map and local circuits

It has proven difficult to link functional properties of individual neurons to the un-
derlying neuronal circuits. One way to bridge this gap are variations in the functional
connectivity provided through the cortical map structure. For example, the position of a
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2.2. Orientation selectivity in V1

neuron relative to the orientation map influences the lateral inputs that a neuron receives.
We will show in Chapter 3 and Chapter 4 that this relation of local computations to
the orientation map can be used to constrain the space of possible orientation tuning
models. Here, we give a short overview of the local connectivity and its consequences
for local computations.

The local circuit provides the major source of inputs to a V1 neuron (Binzegger et al.,
2004; Thomson and Lamy, 2007). Anatomical data shows that local excitatory and
inhibitory connections are spatially isotropic with a radius of influence of approximately
250 um (Yousef et al., 2001; Marifo et al., 2005). Thus, the excitatory and inhibitory
inputs that a neuron receives will strongly depend on the local neighborhood. Depend-
ing on the neuron’ position in the orientation preference map, this neighborhood can
be very different (Figure 2.2A). In one extreme, there are regions in the map, close to
the singularities (pinwheel centers), where neurons with most or all of the preferred
orientations are represented in a small neighborhood. In the other extreme, there are
regions, where one particular preferred orientation dominates and only varies slowly
with location (orientation domains). Consequently, neurons near pinwheel centers have
local connections with neurons of a wide range of orientation preferences; neurons far
from pinwheel centers, on the other hand, mainly connect to neurons sharing similar
orientation preference. This is quantified by the histograms of neighboring pixels in
the orientation map in Figure 2.2B, C. These pixel counts are of course only an indirect
measure of the inputs to a V1 neuron. However, Schummers et al. (2002) and Marifio
et al. (2005) experimentally measured the relationship between orientation specificity
of the surrounding local cortical network (calculated from the pixels in the orientation
map) and the orientation specificity of the subthreshold inputs to cat V1 neurons, by
combining optical imaging of orientation maps with intracellular recordings. They
found that map position is strongly correlated with the tuning of the membrane poten-
tial, the excitatory and the inhibitory inputs. Interestingly, while the tuning of the total
recurrent input is broader for pinwheel cells the spike responses are nevertheless highly
selective, similar to orientation domain neurons (Figure 2.2D, E, see also Maldonado
et al., 1997; Dragoi et al., 2001; Marifio et al., 2005; Ohki et al., 2006).
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3. Operating regimes for computing orientation selectivity

This chapter is based on Wimmer et al. (2009). The work presented in this chapter was
done in close collaboration with Marcel Stimberg.

Abstract

In this chapter, we investigate the computational role of the local recurrent network in
primary visual cortex. To address this issue, we analyze intracellular recording data of cat
V1, which combine measuring the tuning of a range of neuronal properties with a precise
localization of the recording sites in the orientation preference map. For the analysis,
we consider a network model of Hodgkin-Huxley type neurons arranged according to a
biologically plausible two-dimensional topographic orientation preference map. We
then systematically vary the strength of the recurrent excitation and inhibition relative
to the strength of the afferent input. Each parametrization gives rise to a different model
instance for which the tuning of model neurons at different locations of the orientation
map is compared to the experimentally measured orientation tuning of membrane
potential, spike output, excitatory, and inhibitory conductances. A quantitative anal-
ysis shows that the data provides strong evidence for a network model in which the
afferent input is dominated by strong, balanced contributions of recurrent excitation
and inhibition. This recurrent regime is close to a regime of “instability”, where strong,
self-sustained activity of the network occurs. The firing rate of neurons in the best-fitting
network is particularly sensitive to modulation, which could be one of the functional
benefits of a network operating in this particular regime.

3.1. Introduction

One of the major tasks of primary visual cortex (V1) is to compute a useful representation
of the environment. Orientation tuning in V1 has long served as a paradigmatic example
of a cortical computation because the thalamic cells providing afferent input to the visual
cortex lack orientation selectivity while the cortical cells are orientation-selective. Early
feed-forward models (Hubel and Wiesel, 1962), combining the center-surround receptive
fields of lateral geniculate nucleus to give rise to orientation selectivity, have been shown
to be over-simplistic. Nonetheless, a debate remains regarding the relative contribution
of afferent and recurrent excitatory and inhibitory influences to the emergence of
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3. Operating regimes for computing orientation selectivity

orientation tuning (Reid and Alonso, 1996; Sompolinsky and Shapley, 1997; Ferster and
Miller, 2000; Ringach et al., 2003; Finn et al., 2007). Modeling studies (for a review
see e. g., Teich and Qian, 2006) have also shown that information processing in cortex
changes dramatically with this “cortical operating regime’, i. e., depending on the relative
strengths of the afferent and the different recurrent inputs (Somers et al., 1995; Ben-
Yishai et al., 1995; Hansel and Sompolinsky, 1996; Troyer et al., 1998; McLaughlin et al.,
2000; Kang et al., 2003). The wide range of models operating in different regimes that
are discussed in the literature are an indication that models of V1 orientation selectivity
are under-constrained.

Recently, experimental studies have investigated how a cell’s orientation tuning de-
pends on its position in the orientation preference map (Maldonado et al., 1997; Schum-
mers et al., 2002; Marifio et al., 2005; Ohki et al., 2006; Nauhaus et al., 2008). Experi-
mental findings concerning the relationship between orientation selectivity of the spike
output and the synaptic inputs are presented in Chapter 2; an experimentally measured
orientation map is shown in Figure 2.2. Here, we assess whether the specific location
dependence of the tuning of internal neuronal properties can provide sufficient con-
straints to determine the corresponding cortical operating regime. The data originates
from intracellular recordings of cat V1 (Marifio et al., 2005), combined with optical
imaging in order to determine the position of the recording sites within the orientation
preference map. This allowed to measure, in vivo, the output (firing rate) of neurons,
the input (excitatory and inhibitory conductances) and a state variable (membrane
potential) as a function of the position in the orientation map. Figure 3.1 shows the
experimentally observed tuning strength of each of these properties depending on the
distribution of orientation selective cells in the neighborhood of each neuron. The x-axis
in each of the subplots denotes the orientation selectivity index of the map (map OSI;
see Appendix A) for each of the recorded cells, which is a measure for a cell’s position in
the orientation map varying from close to a pinwheel center (towards the left end of the
axis), where the neighboring neurons show a range of orientation preferences, or within
an iso-orientation domain (towards the right end of the axis), where the neighboring
neurons have very similar orientation preferences. Each y-axis denotes the tuning of the
individual properties measured in the experiment, quantified by the orientation selectiv-
ity index (OSI; see Appendix A), ranging from 0 (unselective) to 1 (perfectly selective).
The tuning of the membrane potential (V;,) as well as the tuning of the total excitatory
(ge) and inhibitory (g;) conductances vary strongly with map location. Specifically, the
conductances and the membrane potential are sharper tuned for neurons within an
iso-orientation domain, where the neighboring neurons have very similar orientation
preferences, as compared to neurons close to a pinwheel center, where the neighboring
neurons show a broad range of orientation preferences. However, the firing rate (f) of
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Figure 3.1 | Dependence of the synaptic inputs and the responses of V1 cells on the position in the orientation
preference map. Variation of the orientation selectivity indices (OSI, cf. Appendix A) of the firing rate (f),
the average membrane potential (Vi,), and the excitatory (g.) and inhibitory (g;) input conductances of
neurons in cat V1 with the map OSI (the orientation selectivity index of the orientation map at the location
of the measured neuron). Dots indicate the experimentally measured values from 18 cells (Marifio et al.,
2005). Solid lines show the result of a linear regression. The slopes (values + 95 % confidence interval) are
—0.02 £ 0.24 (f), 0.27 £ 0.22 (Vi), 0.49 £ 0.20 (g.), 0.44 + 0.19 (gi).

V1 neurons is highly selective near pinwheel centers and in orientation domains (see
also Maldonado et al., 1997; OhKki et al., 2006).

Here, we show that this specific map-location dependence of neuronal properties
imposes strong constraints on the operating regime of a generic network composed of
Hodgkin-Huxley type model neurons. The model takes into account that the lateral
inputs a cell receives are determined (i) by the position in the orientation map and (ii)
by the way that synaptic inputs are pooled across the map. The synaptic pooling radius
has been shown experimentally to be independent of map location (Marifo et al., 2005),
resulting in essentially different local recurrent networks depending on whether the
neighborhood is made up of neurons with similar preferred orientation, such as in an iso-
orientation domain, or is highly non-uniform, such as close to a pinwheel. The strength
of lateral connections, on the other hand, is unknown. Marifo et al. (2005) have shown
that their data is compatible with a model showing strong recurrent excitation and
inhibition. However, this approach cannot rule out alternative explanations accounting
for the emergence of orientation tuning in V1. Here, we systematically explore the model
space, varying the strength of the recurrent excitation and inhibition. This allows us
to test the full range of models, including feed-forward-, inhibition- and excitation-
dominated models as well as balanced recurrent models, and to determine those that
are compatible with the observed data.
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3.2. Network model and quantitative evaluation

The Hodgkin-Huxley network model

The network model consists of Hodgkin-Huxley type point neurons (Destexhe and
Paré, 1999; Destexhe et al., 2001). Synaptic conductances were modeled as originating
from GABA,4-, AMPA-, and NMDA-like receptors (Destexhe et al., 1998); additional
conductances represent background activity (Ornstein-Uhlenbeck conductance noise).
Orientation preferences were assigned according to the location in an artificial orienta-
tion map (see Appendix B). This orientation map was calibrated such that the pinwheel
distance and the spread of recurrent connections matches experimental data (Marifio
et al., 2005). The network was composed of 50 x 50 excitatory and 1/3 x (50 x 50)
inhibitory neurons, and corresponds to a patch of cortex 1.56 x 1.56 mm? in size. In
order to avoid boundary effects, we used periodic boundary conditions. Intracortical
synaptic connections were modeled as spatially isotropic with the same radial profile
(o = o7 = 125 um) for excitatory and inhibitory cells. Afferent inputs to excitatory and
inhibitory cortical cells were moderately tuned (circular Gaussian tuning function with
oaf = 27.5°) and modeled as Poisson spike trains. In order to calculate the orientation
tuning of Vi, ge, &i> and f, an input spike train with a constant rate was applied and the
network was simulated for 1.5 seconds with 0.25 ms resolution (usually, the network
settled into a steady state after a few hundred milliseconds). For analyzing the tuning
properties, we calculated the firing rate, the average membrane potential, and the aver-
age total conductances for every cell in an interval between 0.5s and 1.5s. A detailed
description of the Hodgkin-Huxley network model can be found in Appendix C.

Quantitative evaluation of network models

In order to compare the model results to the experimental data, we analyze the orienta-
tion tuning properties of Vp,, g, gi, and f for each neuron in the simulated network
model using the orientation selectivity index (see Appendix A). In addition, the map
OSI was used to characterize the sharpness of the recurrent input a cell receives based
on the artificial orientation preference map (see Appendix B). The dependence of each
tuning property on the local map OSI was then described by a linear regression line
using the least squares method (i. e., an OSI-OSI plot as shown in Figure 3.1 for the
experimental data). These linear fits provided a good description of the relationship
between map OSI and the tuning of the neuronal properties in the simulations (mean
squared deviation around the regression lines was typically below 0.0025 and never
above a value of 0.015) as well as in the experimental data (mean squared deviation was
between 0.009 (g;) and 0.015 (f)).
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The slope of the linear regression of this dependence is a single number, which we used
to characterize a network parameterization. In order to find the regions of parameter
space where the linear relationship predicted by the models is compatible with the
experimental data, the confidence interval for the slope of the linear fit to the data was
used. Specifically, we regard a network model as being consistent with the experimental
data if the OSI-OSI slope values for Vi, ge, gi> and f lie inside the 95 % confidence
interval for the slope of the corresponding experimentally measured tuning property
(see Figure 3.1).

3.3. Simulation results

The parameter space of the class of network models considered here is spanned by the
peak conductance of synaptic excitatory connections to excitatory (g;) and inhibitory
(g;p) neurons. We first characterize the operating regimes found in this model space,
before comparing the location dependence of tuning observed in the different models
with that found experimentally.

Operating regimes of the network model

The operating regimes of a firing rate model can be defined in terms of the strength
and shape of the effective recurrent input (Kang et al., 2003, see also Appendix D). The
definitions of Kang et al. (2003), however, are based on the analytical solution of a linear
firing rate model where all neurons are above threshold and cannot be applied directly
to the non-linear Hodgkin-Huxley network model used here. Therefore, we characterize
the parameter space explored here using a numerical definition of the operating regimes.
This definition is based on the orientation tuning of the input currents to the excitatory
model cells in the orientation domain (0.6 < map OSI < 0.9). Specifically, if the sum of
input currents is positive (negative) for all presented orientations, recurrent excitation
(inhibition) is dominant, and the regime thus excitatory (EXC; respectively inhibitory,
INH). If the sum of input currents has a positive maximum and a negative minimum
(i. e., Mexican-hat like), a model receives significant excitation as well as inhibition
and we refer to such a model as operating in the recurrent regime (REC). An example
for the orientation tuning properties observed in the recurrent regime is shown in
Figure 3.2B. Finally, if the sum of the absolute values of the currents through excitatory
and inhibitory recurrent synapses of the model cells (at preferred orientation) is less
than 30 % of the current through afferent synapses, the afferent drive is dominant and
we call such regimes feed-forward (FF).

The regions of parameter space corresponding to these operating regimes are depicted
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Figure 3.2 | Operating regimes of the Hodgkin-Huxley network model. A | Dependence of the operating
regime of the network model on the peak conductance of synaptic excitatory connections to excitatory
(ggp) and inhibitory (g;;) neurons: FF - feed-forward, EXC - recurrent excitatory dominated, INH —
recurrent inhibitory dominated, REC - strong recurrent excitation and inhibition, and unstable. The
conductances are given as multiples of the afferent peak conductance of excitatory neurons (§EAH). The
figure summarizes simulation results for 38 x 28 different values of g and g,;,. B | Tuning curves for one
example network in the REC regime (marked by a cross in A). Mean responses across cells are shown
for the firing rate (f), the membrane potential (V;,), the total excitatory (g.), and the total inhibitory
conductance (g;), separately for cells in iso-orientation domains (0.6 < map OSI < 0.9, thick lines) and
cells close to pinwheel centers (map OSI < 0.3, thin lines). For each cell, responses were individually
aligned to its preferred orientation and normalized to its maximum response; for the Vi, tuning curve, the
mean membrane potential without any stimulation (V;, = —64.5mV) was subtracted beforehand. To allow
comparison of the magnitude of g and g. responses, both types of conductances were normalized to the
maximum g; response.

in Figure 3.2A as a function of the peak conductance of synaptic excitatory connections
to excitatory (gg) and inhibitory (g;;;) neurons. We refer to the network as “unstable”
if the model neurons show strong responses (average firing rate exceeds 100 Hz) and
remain at high firing rates if the afferent input is turned off; i. e., the network shows
self-sustained activity. In this regime, the model neurons lose their orientation tuning.

Orientation tuning properties in the different operating regimes

We analyzed the dependence of the orientation tuning properties on the operating
regimes and compared them to the experimental data. For every combination of g
and g5, we simulated the responses of neurons in the network model to oriented stimuli
in order to measure the orientation tuning of Vy,, f, g and g; (see Section 3.2). The
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Figure 3.3 | Map-location dependence of orientation tuning of the conductances, the membrane potential,
and the firing rate in the network model. The figure shows the slope values of the OSI-OSI regression lines
(in gray values) as a function of the peak conductance of synaptic excitatory connections to excitatory
(8gr) and inhibitory (g;.) neurons, separately for the spike rate (A), the membrane potential (B), the total
synaptic excitatory (C), and inhibitory conductance (D). The conductances are given as multiples of the
afferent peak conductance of excitatory neurons (EEA“). Thin lines denote the borders of the different
operating regimes (cf. Figure 3.2). The region delimited by the thick yellow line corresponds to slope values
within the 95 % confidence interval of the corresponding experimental data. Note that in (A) this region
covers the whole range of operating regimes except the unstable regime. The figure summarizes simulation
results for 38 x 28 different values of excitatory (g;) and inhibitory (g,.) peak conductances.
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3. Operating regimes for computing orientation selectivity

OSI of each of the four quantities can then be plotted against the map OSI to reveal the
dependence of the tuning on the map location (similar to the experimental data shown
in Figure 3.1). The slope of the linear regression of this OSI-OSI dependence was used to
characterize the different operating points of the network. Figure 3.3 shows these slopes
for the tuning of f, Vi, ge and gj, as a function of g and g, of the respective Hodgkin-
Huxley network models (gray scale). Model networks with strong recurrent excitation
(large values of g.;.), as in the REC regime, predict steeper slopes than networks with
less recurrent excitation. In other words, as the regime becomes increasingly more
recurrently dominated, the recurrent contribution leads to sharper tuning of Vj,,, g. and
gi in neurons within iso-orientation domains as compared to neurons near the pinwheel
centers. However, yet closer to the line of instability the map-dependence of the tuning
almost vanishes (slope approaching zero). This reflects the strong excitatory recurrent
input in the EXC regime which leads to an overall increase in the network activity that
is almost untuned and therefore provides very similar input to all neurons, regardless
of map location. Also, the strongly inhibitory-dominated regimes (large values of g;;,)
at the bottom right corner of Figure 3.3 are of interest. Here, the slope of the location
dependence becomes negative for the tuning of firing rate f and membrane potential
Vin. Such a sharpening of the tuning close to pinwheels in an inhibition dominated
regime has been observed elsewhere (McLaughlin et al., 2000).

Comparing the slope of the OSI-OSI regression lines to the 95 % confidence interval
of the slopes estimated from the experimental data (Figure 3.1) allows us to determine
those regions in parameter space that are compatible with the data (yellow contours in
Figure 3.3). The observed location-independence of the firing rate tuning is compatible
with all stable models in the parameter space (Figure 3.3A) and therefore does not
constrain the model class. In contrast to this, the observed location-dependence of the
membrane potential tuning (Figure 3.3B) and the inhibitory conductance tuning (Fig-
ure 3.3D) excludes most of the feed-forward and about half of the inhibitory-dominated
regime. Most information, however, is gained from the observed location-dependence
of the excitatory conductance tuning (Figure 3.3C). It constrains the network to oper-
ate in either a recurrent regime with strong excitation and inhibition or in a slightly
excitatory-dominated regime.

Only the strongly recurrent regime satisfies all constraints

Combining the constraints imposed by the OSI-OSI relationship of the four measured
quantities (yellow contour in both panels of Figure 3.4), we can conclude that the
experimental data constrains the network to operate in a recurrent operating regime
with strong recurrent excitation and inhibition.
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Figure 3.4 | Analysis of the results of the Hodgkin-Huxley network model. Ratio between (A) the excitatory
current through the recurrent synapses and the current through afferent synapses of excitatory model cells
and between (B) the inhibitory recurrent and the excitatory afferent current (in gray values). Currents
were calculated for stimuli at the cells’ preferred orientations, and averaged over all model cells within
orientation domains (0.6 < map OSI < 0.9). The region delimited by the thick yellow line corresponds
to slope values that are in the 95 % confidence interval for each experimentally measured quantity (spike
rate, membrane potential, the total synaptic excitatory, and inhibitory conductance). The white cross at
(2.0,1.7) denotes the combination of model parameters that yields the best fit to the experimental data
(see text). Thin lines denote the borders of the different operating regimes (cf. Figure 3.2).

In addition, we calculated the sum of squared differences between the data points
(Figure 3.1) and the OSI-OSI relationship predicted by the model, for each operating
regime. The “best fitting” operating regime, which had the lowest squared difference,
is marked with a cross in Figure 3.4. The corresponding simulated orientation tuning
curves for orientation domain and pinwheel cells are shown in Figure 3.2B.

In line with the definition of the operating regimes, the excitatory current through
the recurrent synapses (gray values in Figure 3.4A) plays a negligible role in the feed-
forward and in most of the inhibitory-dominated regimes. Only in the recurrent and
the excitatory-dominated regime is the recurrent current stronger than the afferent
current. A similar observation holds for the inhibitory current (Figure 3.4B). The
strong recurrent currents in the excitatory-dominated regime reflect the strong overall
activity that reduce the map-location dependence of the total excitatory and inhibitory
conductances (cf. Figure 3.3C and Figure 3.3D).

We can thus conclude that the operating regime is in a region of parameter space that
is characterized by significant excitatory and inhibitory recurrent contributions, which
are approximately balanced and dominate the afferent input.
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3. Operating regimes for computing orientation selectivity

3.4. Discussion

Although much is known about the anatomy of lateral connections in the primary
visual cortex of cat, the strengths of synapses formed by short-range connections are
largely unknown. In our study, we use intracellular physiological measurements to
constrain the strengths of these connections. Extensively exploring the parameter space
of a spiking neural network model, we find that neither feed-forward dominated, nor
recurrent excitatory- or inhibitory-dominated networks are consistent with the tuning
properties observed in vivo. We therefore conclude that the cortical network in cat V1
operates in a regime with a dominant recurrent influence that is approximately balanced
between inhibition and excitation, and dominates the afferent input.

This main finding - that tuning properties of cat V1 are best explained by a network
operating in a regime with strong recurrent excitation and inhibition - is robust against
variation of the values chosen for other parameters not varied here, such as the strengths
of the inhibitory synapses (g; and gg,) or the spatial range for lateral excitatory and
inhibitory connections (data not shown; a detailed discussion on the robustness of the
simulation results can be found in Stimberg et al., 2009). Nevertheless, the network
architecture is based on a range of basic assumptions: e. g., all neurons in the network
receive equally sharply tuned input. The explicit inclusion of location dependence of the
input tuning might well lead to tuning properties compatible with the experimental data
in different operating regimes. However, there is no evidence supporting such a location
dependence of the afferent input and therefore assuming location-independent input
seemed the most prudent basis for this analysis. Another assumption is the absence of
untuned inhibition, since the inhibitory neurons in the network presented here receive
tuned afferent input, too. The existence of an untuned inhibitory subpopulation is still
a matter of debate (compare e. g., Hirsch et al., 2003; Cardin et al., 2007; Nowak et al.,
2008). Naturally, such an untuned component would considerably reduce the location
dependence of the inhibitory conductance g;. Given that in our exploration only a small
region of parameter space exists where the slope of g; is steeper than in the experiment,
a major contribution of such an untuned inhibition seems incompatible with the data.

Our analysis demonstrates that the network model is compatible with the data only
if it operates in a regime that — due to the strong recurrent connections - is close to the
line of instability across which the network exhibits strong self-sustained activity. Such
a network is very sensitive to changes in its governing parameters, e. g., small changes
in connection strengths lead to large changes in the overall firing rate: In the regimes
close to the line of instability, increasing g by just 5 % typically leads to increases in
firing rate of around 40 % (EXC), respectively 20 % (REC). In the other regimes (FF
and INH) firing rate only changes by around 2 % - 3 %. In the “best fitting” operating
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regime, a 10 % change in firing rate, which is of similar magnitude as observed firing
rate changes under attention in macaque V1 (McAdams and Maunsell, 1999), is easily
achieved by increasing g by 2 %. It therefore seems plausible that one benefit of being
in such a regime is the possibility of significantly changing the “operating point” of
the network through only small adjustments of the underlying parameters or feedback
signals. Candidates for such an adjustment could be contextual modulations, adaptation
or attentional effects.
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3. Operating regimes for computing orientation selectivity

Recapitulation

The cortical mechanisms that underlie the computation of orientation selectivity in
primary visual cortex have been discussed throughout the last four decades. In this
chapter, we showed how physiological measurements of the dependence of a cell’s
orientation tuning properties on its position in the orientation preference map can
be used to constrain the operating regime of a biologically realistic Hodgkin-Huxley
network model. We found that strong and approximately balanced recurrent excitation
and inhibition are necessary to account for the experimental data. Orientation selectivity
arises from the moderately tuned afferent input that is slightly sharpened and amplified
by the recurrent interactions.

An interesting prediction of our model is that the intracortical interactions establish an
operating point close to a line of instability, across which the network activity increases
dramatically. Operating in such a regime would make the cortical responses particularly
sensitive to modulatory effects or feedback signals. An exploration of this hypothesis
will be presented in Chapter 5, where we take adaptation-induced short-term plasticity
as an example of a modulatory, temporal shift of the operating point.

To this point, we abstracted from the dynamics of the V1 responses and based our
analysis on the steady state the network reaches when presented with one non-changing
orientation, i. e., a grating with a time-invariant orientation. In the next chapter, we
investigate if a network model operating in the recurrent regime is also compatible with
the dynamic properties of orientation tuning in V1.
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4. Dynamics of orientation tuning in primary visual cortex

This chapter is based on Schummers et al. (2007) and Stimberg et al. (2009). The work
presented in this chapter was done in collaboration with Marcel Stimberg and Robert
Martin.

Abstract

Analysis of the time-course of the orientation tuning of responses in primary visual
cortex can provide insight into the circuitry underlying orientation tuning. Extending
the analysis of Chapter 3 to the temporal domain, we use recent experimental data
from reverse correlation experiments to further constrain a Hodgkin-Huxley network
model. Single-unit recordings from cat primary visual cortex showed that neurons
close to pinwheel centers and neurons in orientation domains exhibit a similar time
course in their averaged responses, but differences in their inter-cell variability. The
mean responses of orientation domain cells are more similar to one another than those
of pinwheel cells. We investigated how the temporal characteristics in pinwheel and
orientation domain neurons vary with different parameterization of the Hodgkin-Huxley
network. We find that in an excitation dominated regime the responses of orientation
domain cells are markedly longer than those of cells close to pinwheel centers. The
response curves of pinwheel and orientation domain cells are relatively similar for a wide
range of feed-forward, recurrent, and moderately inhibition dominated regimes. The
difference in the variance of the temporal responses between pinwheel and orientation
domain cells observed in vivo can only be observed in the excitatory-dominated and the
balanced recurrent regime of the network model. We show that the differential variability
can be attributed to the variability present in the afferent input provided by neurons
with different temporal characteristics. The recurrent connectivity removes some of
this variability, but the degree of “smoothing” differs between orientation domains and
pinwheel centers. In sum, we find that the in-vivo responses are not compatible with
either excitatory or inhibitory dominated regimes, but can only be reproduced in a
balanced recurrent regime.
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4. Dynamics of orientation tuning in primary visual cortex

4.1. Introduction

The dynamics of V1 cell responses can provide insight into the circuit and the mecha-
nisms underlying orientation tuning. Several experimental studies have analyzed the
orientation tuning dynamics of V1 neurons, for example using the reverse correlation
paradigm (e. g., Ringach et al., 1997; Schummers et al., 2007). In particular, this type of
analysis has been used to distinguish between thalamocortical inputs and intracortical
excitatory or inhibitory inputs, and thus, to estimate their respective roles in the gener-
ation of orientation selectivity. The idea behind this approach is that synaptic inputs
that a cell receives from different sources may be separable in time, and the afferent and
recurrent drive may therefore be relatively more prominent at different periods of the
response. For instance, if orientation selectivity is generated by a purely feed-forward
mechanism - the convergence of inputs from the lateral geniculate nucleus (Hubel and
Wiesel, 1962) — neurons should be equally selective during the initial and late periods of
the response. Alternatively, if orientation selectivity arises from specific intracortical
recurrent interactions, neurons should be less selective during the initial part of the
response compared to the later period. Therefore, measurements of the time-course of
response enhancement and suppression may be able to distinguish between different
models of orientation tuning.

Some studies have demonstrated that the tuning curves derived from early portions
of the visual response are quite different from those derived from later in the response
(Chen et al., 2005; Ringach et al., 2003; Sharon and Grinvald, 2002; Shevelev et al., 1993;
Volgushev et al., 1995), whereas others have found that orientation selectivity is relatively
constant throughout the duration of the visual response (Celebrini et al., 1993; Gillespie
et al., 2001; Mazer et al., 2002; Nishimoto et al., 2005). Recent results of Schummers
et al. (2007) showed that at least part of this discrepancies can be attributed to different
response dynamics resulting from differences in local cortical inputs. The response
dynamics of cortical neurons reflect circuitry based on both vertical (i. e., the laminar
position; see also Martinez et al., 2002) and horizontal location (the location in the
orientation preference map; see also Schummers et al., 2002; Monier et al., 2003; Marifio
et al., 2005) within cortical networks. Other factors influencing the diversity of results
may include cell class, receptive field type, and differences in intracortical connectivity,
probably reflecting functional differences (e. g., directional selective vs. non-selective
cells).

Here, we focus on the characteristic signature of the location in the orientation
preference map that is reflected in the response dynamics. We will first summarize the
experimental findings of Schummers et al. (2007) concerning this issue and then use a
Hodgkin-Huxley network model of V1, as in Chapter 3, to investigate which constraints
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the experimental data impose on the strength of afferent, excitatory recurrent, and
inhibitory recurrent connections.

4.2. Experimental findings

The experiments were performed by James Schummers in the laboratory of Mriganka
Sur at MIT. Here we briefly summarize the experimental findings that are necessary as
a background for this chapter. For the details we refer to Schummers et al. (2007).

Orientation preference maps were obtained using optical imaging of intrinsic signals
from cat V1. Following optical imaging, single unit recordings were performed using
a “reverse correlation” stimulus paradigm. The stimulus is a time series consisting of
randomly chosen 20 ms frames of one of 16 high contrast gratings with 22.5° orientation
spacing. The spike times were then reverse correlated with the stimulus sequence to
estimate the linear relationship between stimulus orientation and firing probability.
Thus, V1 responses were described by the probability of different stimulus orientations a
certain time lag 7 before a spike is elicited. The reverse correlation procedure is described
in detail in Ringach et al. (1997); Schummers et al. (2007).

Neurons near pinwheel centers receive intracortical inputs from a wider range of
orientations (Schummers et al., 2002; Yousef et al., 2001) than neurons in the center of
orientation domains (cf. Section 2.2). Do the response dynamics reveal the different
inputs that pinwheel and orientation domain neurons receive? Figure 4.1 shows the
average tuning curves of the two populations (red: pinwheel cells, blue: orientation
domain cells) over the time-course of the response. The tuning curves demonstrate, as
with previous measurements of steady state responses (Dragoi et al., 2001; Maldonado
et al., 1997; Schummers et al., 2002; Marino et al., 2005), that cells have sharp tuning at
pinwheel as well as orientation domain locations. The average responses of pinwheel
and orientation domain neurons are very similar. Furthermore, there is no evidence of
instability, shifts, multiple peaks, or any other gross differences in tuning in the cells
near pinwheel centers.

To explore the relationship between map location and response dynamics in more
detail, we examined the time-course of responses for the preferred orientation of each
cell. Figure 4.2A shows again that the average response for the preferred orientation
is similar for pinwheel and orientation domain cells. However, the variability of the
response time-course is larger in pinwheel neurons (Figure 4.2B). For the preferred
orientation, higher variance in the pinwheel population was most prominently following
the peak response, during the decay phase.

Is this inter-cell variability significantly higher in the population of pinwheel cells or
is it caused by a few outliers? To test this, we employed a point-wise bootstrap method:
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Figure 4.1 | Orientation dynamics for pinwheel center and orientation domain neurons. A | For each 7, the
average tuning curve for all the pinwheel neurons (red; n = 31) and orientation domain neurons (blue; n =
55) is plotted. The vertical scale is the same for all values of 7. The tuning curves represent the average
of normalized individual tuning curves, with zero representing the blank response (black line), and 1
representing the maximal response at all 7’s and orientations. Thus, points in the tuning curve above the
black line indicate enhancement of firing, whereas points below the black line represent suppression of
firing. B | Average time-course of responses for pinwheel and orientation domain cells.
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Figure 4.2 | Time-course of pinwheel and orientation domain cells at their preferred orientation. A |
Average of the normalized responses of cells close to pinwheel centers (red line) and within orientation
domains (blue line). Both curves are normalized to a peak of one; the shaded area visualizes the difference
between pinwheel center and orientation domain responses. B | Variance of the normalized temporal
responses at the preferred orientation and for each point in time, when averaging cells close to pinwheel
centers (red line) and cells within orientation domains (blue line). The difference in variance is denoted by
the shaded area. Black dots mark points in time, at which the variance of the response of pinwheel neurons
is significantly higher than the variance of the response of orientation domain neurons, assessed using a
bootstrap method.
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15 pinwheel and 15 orientation domain cells were drawn at random from the set of all
recorded cells. For every draw, the mean and the variance of the temporal response
were calculated separately for pinwheel and orientation domain cells. For each time lag
7 it was then counted in which proportion of draws the variance of the pinwheel cell
responses was larger than that for the orientation domain cells. If this proportion was
above 95 %, we regarded the difference as significant. Using this procedure, we found
that the variance of pinwheel cells is indeed significantly higher after the peak of the
response (Figure 4.2B).

Figure 4.3A plots the time-course of variance for pinwheel (red) and domain (blue)
cells for each stimulus orientation. The figure shows that, for all orientations, the variance
was higher in pinwheel cells for the entire response duration, particularly after the peak
of the response. This suggests that the timing in orientation domain cells is much more
uniform, while the timing of pinwheel center cells is much more heterogeneous.

To examine the possibility that the differences in the timing of pinwheel and domain
responses are simply due to differences in the distributions of laminar position in the two
groups, we plotted the differences in timing for each layer independently. Figure 4.3B
shows the time-course of the response to the preferred orientation as a function of map
location (columns), and laminar position (rows). There is more variability in pinwheel
neurons in all three layers. These analyses suggest that despite having similar mean
population tuning curves, there is substantially more individual variability in the timing
of enhancement and suppression that shape the tuning curves of pinwheel cells. One
potential explanation for this effect is the local cortical network surrounding the sites
classified as pinwheel center, which are more heterogeneous than those in orientation
domains (Marifo et al., 2005).

4.3. Modeling the dependence of the orientation tuning dynamics on map
location in a Hodgkin-Huxley network model

To elucidate the mechanisms behind the observation that pinwheel cells show similar
average response dynamics but have much higher variability than their orientation
domain counterparts, we simulated the reverse correlation experiments in a large-scale
neural network of a patch of V1 containing four pinwheel centers. Exactly the same
model was used in the last chapter to determine which steady-state operating regime
generates orientation tuning properties consistent with experimental findings. While up
to this point we abstracted from the dynamics of the V1 responses, using a time-invariant
input, we now include temporal filters, which describe the dynamics of the afferent input
to each model cell. To realistically model the time-course of visual responses, the inputs
to the model were filtered using temporal kernels matched to the impulse response
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Figure 4.3 | Response timing is more variable near pinwheel centers. A | Plots of population variance in
response amplitude as a function of time for each stimulus orientation. Pinwheel neurons (n = 31) are
plotted in red and orientation domain neurons (n = 55) in blue. B | Response time-course of individual
neurons, grouped as a function of laminar position and orientation map position. Orientation domain
cells are plotted in the left column, and pinwheel center neurons in the right column. Superficial layer cells
are plotted in the top row, middle layer cells are plotted in the middle row and deep layer cells are plotted
in the bottom row.

functions of LGN cells (see Section C.5). A detailed description of the Hodgkin-Huxley
network model can be found in Appendix C.

Time-course of averaged responses

We first investigated how the temporal characteristics in pinwheel and orientation
domain neurons vary with different parameterization of the Hodgkin-Huxley network.
These parameterizations correspond to the different operating regimes of the network,
as defined in Chapter 3. The temporal responses of four different models (one for each
operating regime; cf. dots in Figure 4.4A) to reverse correlation stimulation are shown
in Figure 4.4B, using the same format as for the experimental results in Figure 4.2A.
Note that the timescale is shifted for the simulated data: here, zero corresponds to the
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Figure 4.4 | Reverse correlation results for the Hodgkin-Huxley network model. A | Operating regimes of
the network model (same as Figure 3.2A) as a function of the peak conductance of excitatory synaptic
connections to excitatory (g,.) and inhibitory (g;,) neurons: FF - feed-forward; EXC - recurrent excitatory
dominated; INH - recurrent inhibitory dominated; REC - strong recurrent excitation and inhibition.
The conductances are given as multiples of the afferent peak conductance of excitatory neurons (?E“f).
Dots indicate the parameterization of the example models in B and C, one for each parameter regime. B |
Time-course of the responses, determined using the reverse correlation paradigm, at the cells’ preferred
orientation averaged over all pinwheel (map OSI < 0.3; red lines) and orientation domain (0.6 < map OSI <
0.9; blue lines) cells and normalized to a peak of one. Different plots show the results for the four example
models marked in A. The model REC-UNI corresponds to the same operating point as REC; the difference
is that for REC-UNI individual neurons all received as input a similar mix of the different afferent cell types
(i. e., temporal input kernels). The gray shaded area denotes the difference between the averaged responses
of pinwheel and orientation domain cells. C | Variance of the temporal responses at preferred orientation
for cells close to pinwheels (red lines) and in orientation domain (blue lines) regions. The shaded area
denotes the difference between the response variance of pinwheel and orientation domain cells. Black
dots mark points in time at which the variance of the response of pinwheel neurons is significantly higher
than the variance of the response of orientation domain neurons, assessed using a bootstrap method (cf.
Section 4.2).
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input onset for V1, in the experiment zero refers to stimulus onset. Because the network
model does not include influences of long-range connectivity (omitted for simplicity) it
cannot account for the late part of the response. Therefore, all analysis presented here is
restricted to the period from 0 - 100 ms.

We find that in an excitation dominated regime (Figure 4.4B, “EXC”), the responses
of orientation domain cells - for their preferred stimulus and averaged over all cells - are
longer than those of cells close to pinwheel centers. This is intuitive: for an orientation
domain cell, many neighboring cells have similar preferred orientations and, therefore,
the excitation dominated recurrent input will amplify the response to the cell’s preferred
orientation most strongly. A pinwheel center cell, on the other hand, receives recurrent
input from cells with a broader range of preferred orientations and, therefore, its recur-
rent input in response to the preferred orientation will not affect the cells response as
much. It is thus the stronger recurrent drive in orientation domains that prolongs the
response to a phasic input compared to pinwheel centers, where recurrent input is weak.
However, such a prolonged response for cells in the orientation domain is inconsistent
with the observations in vivo (Figure 4.2A). For the other example regimes, on the other
hand, the phasic responses of orientation domain cells are similar (Figure 4.4B, “FF”
and “REC”) or even slightly shorter than those of the pinwheel cells (INH”). In the
recurrent regimes (“REC”), the time-course of the model neurons captures the onset and
the phasic part of the neuronal responses well. The decay phase is less well described:
the real neurons show a small second peak at approximately 120 ms (Figure 4.2A) and
a plateau of sustained activity following their initial decline; the model neurons, on
the other hand, decline further to below baseline. Nevertheless, as in the real neurons,
throughout the whole time-course, the average responses of pinwheel and orientation
domain neurons are similar. This is despite the fact that cells close to a pinwheel center
receive recurrent input from cells with a much broader range of preferred orientations.

The difference between the response curves of pinwheel and orientation domain cells
is quantified in Figure 4.5A. The figure shows the mean difference between the averaged
response curves of pinwheel and orientation domain cells in the interval 0 - 100 ms (i. e.,
a measure for the size of the shaded areas in Figure 4.4B) as a function of g and gpp.
Averaged responses are relatively similar, i. e., differences between response curves are
small to moderate (darker colors) for a relatively wide range of feed-forward, recurrent,
and moderately inhibition dominated regimes. The values are compatible with what has
been observed in vivo (0.06 for the interval 50 ms — 150 ms). For the example models
shown in Figure 4.4A (dots) we obtain values of 0.02 (FF) and 0.06 (“REC” and “INH”),
respectively. Strongly inhibitory as well as excitatory regimes show markedly larger
differences (up to 0.15 for the more extreme cases, 0.08 for the “EXC” regime shown).
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Figure 4.5 | Dependence of the temporal responses on the operating regime for the Hodgkin-Huxley
network model. A | Mean difference in the time-course of the responses of pinwheel and orientation
domain cells (this corresponds to the size of the shaded area in Figure 4.4B) as a function of g, and g,
The mean difference between 0 ms (input onset) and 100 ms is coded by gray values for each of the 27 x 18
parameter combinations tested (see scale bar). The area above the solid line corresponds to parameter
values for which the model network is “unstable”. B | Fraction of time points in the first 100 ms for which
the variance of response in pinwheel regions is significantly higher (cf. dots in Figure 4.4C; significance
level > 0.95) than the variance of the response in orientation domains as a function of g;; and g.. The
fraction of time (given in % ) is coded by gray values (cf. scale bar) for each of the 27 x 18 combinations.
To assess significance, we employed a point-wise bootstrap method (cf. Section 4.2). C | Tuning of the
excitatory conductances of orientation domain neurons (left panel, blue) and pinwheel neurons (right
panel, red) in the REC - regime. The afferent input (dotted lines) has the same strength for both, pinwheel
and orientation domain cells. For the preferred orientation, the strength of the total recurrent excitatory
conductance (red lines) is higher in orientation domain neurons. D | Differences in the contributions of
the afferent drive between pinwheel areas and orientation domains. The contribution of the afferent drive
was calculated as the ratio of the current through afferent synapses and the total excitatory current (all
currents are taken at the cells’ preferred orientations). The relative differences of this contribution between
pinwheel and orientation domain cells are coded by gray values (in %, see scale bar). Thus, values greater
than 0 indicate a higher contribution of the afferent drive in pinwheel neurons.
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4. Dynamics of orientation tuning in primary visual cortex

Inter-cell variability of the responses

The difference in the variance of the temporal responses between pinwheel and orienta-
tion domain cells observed in vivo provides a second important constraint. Figure 4.4C
shows the response variance as a function of time for the selected example models. Only
the excitatory-dominated (Figure 4.4C, “EXC”) and the recurrent regime (Figure 4.4C,
“REC”) show the observed higher response variance in cells close to pinwheel centers.
The variance of the pinwheel cell responses in the model is higher for all orientations, like
for the experimental data (data not shown). To quantify the response variance as a func-
tion of g, and gpp, we compute, for every combination of parameters, the proportion
of the interval 0 - 100 ms, for which the variance between pinwheel cells is significantly
higher than the variance between orientation domain cells (using the bootstrap method
described in Section 4.2). Figure 4.5B shows, that this fraction is highest along the “line
of instability” (“EXC” and “REC” regimes), where values similar to the experimental
data are achieved (Figure 4.2B). Experimental data show significantly increased variance
for 49 % of the interval from 50 ms and 150 ms, though the variance difference is also
partly in the late response, which the model cannot reproduce. Nonetheless the value
compares well with the 30 % and more for the excitatory dominated and recurrent
regimes (47 % and 30 %, respectively for the two examples shown), and is incompatible
with the 0 % found for both, the feed-forward and inhibitory dominated regimes.

The more variable responses of the pinwheel neurons in highly recurrent regimes may
appear trivial at first glance, since it might just reflect the difference in local circuitry:
the recurrent inputs to the pinwheel cells are less uniform because they originate from
cells with a broader range of preferred orientations. However, on closer inspection we
find that rather than having the non-uniform recurrent connections of the pinwheel
cells introducing variability into their responses, what actually happens is that the more
uniform responses of orientation domain cells provide smoothing of the temporal
variability already present in the input to the V1 cells. This can be seen in simulations
where - without changing the operating point of the network - all network neurons
received similar input: all cells then did in fact show smaller variance in their responses,
and the difference between pinwheel and domain disappears (Figure 4.4C, “REC-UNI”
simulation).

The cause of the differential smoothing effect in pinwheel and orientation domain (in
the recurrent regime) can be observed directly by assessing the mean excitatory input
conductances received from the different sources by pinwheel and orientation domain
neurons as a function of stimulated orientation (Figure 4.5C). The relative contribution
of feed-forward connections to a cell’s inputs of the preferred orientation is far greater in
the pinwheel than in the orientation domain. This means that the afferent input drives
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pinwheel neurons more effectively than orientation domain neurons, which receive
strong recurrent excitation. Thus, any variance present in this feed-forward input will
have a more dominant effect on the cells response.

Also the dependence of the variance differences on g and g can be understood by
considering the smoothing influence of the recurrent input. Only in highly recurrent
regimes close to the line of instability the recurrent excitatory input into orientation
domain cells can dominate their afferent input, whereas for pinwheel center neurons
the relative contribution of the recurrent input is much weaker, leading to a particularly
large difference of variability in this regime. This is confirmed by Figure 4.5D, which
compares this relative strength of the afferent drive around pinwheel centers with that
of orientation domain cells. As can be seen, only in regimes with a sufficiently strong
excitatory drive, i. e., the regimes close to the line of instability, is the relative influence
of the afferent drive stronger around pinwheel centers.

In sum, the temporal dynamics of V1 responses and their dependence on location
in the orientation map also constrain the likely operating regime: the response shape
as well as the similarity in the mean response is not compatible with either excitatory
dominated or strongly inhibitory regimes; the response variability found in vivo can
on the other hand only be reproduced in regimes close to the line of instability, i.e.,
excitatory dominated or balanced recurrent regimes. Taken together, only the strongly
recurrent regime with balanced excitation and inhibition can account for both the
observed similar time-course and the different variability of the responses of cells near
and far from pinwheel centers. The results indicate variability already present in the
afferent input as a likely cause of the variability in pinwheel neurons.

4.4. Discussion

We have investigated the influence of local circuit constitution on the dynamics of
orientation tuning in cat V1. Experimental data shows that while the average time-
course of responses is similar in orientation domains and pinwheel centers, there is
much more variability in the timing at pinwheel centers. Using a realistic Hodgkin-
Huxley network model incorporating orientation map topology, we demonstrated that
this previously unreported phenomenon is the natural result of a regime with balanced
excitation and inhibition receiving afferent inputs with diverse temporal kernels.

Robustness of the simulation results and model limitations

An important parameter that is not well characterized experimentally is the ratio of
AMPA vs. NMDA receptors of excitatory synapses in visual cortices (Myme et al., 2003).
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4. Dynamics of orientation tuning in primary visual cortex

In the Hodgkin-Huxley network model, 70 % of the synapses were fast (AMPA-like)
and 30 % were slow (NMDA-like). If the fraction of slow synapses is increased, the
network remains stable for higher values of recurrent excitation. While under this
manipulation the results stay qualitatively the same for the steady-state, the number of
fast vs. slow synapses is crucial for obtaining a higher response variance in pinwheel
regions compared to orientation domains. We tested several ratios of fast vs. slow
synapses and found that more than about 50 % of the synapses have to be fast in order
to obtain the experimentally observed higher variance close to pinwheel centers. This is
intuitive: NMDA synapses have long time constants, slowing down the responsiveness
of the network. Thus, fast afferent inputs are effectively prolonged and made more
similar to one another, independent of the position in the orientation map.

The model responses in the strongly recurrent regime captures the main features of
the responses of the real neurons with the exception of the late part of the response.
This discrepancy between model and real neurons during the late phase of the response
is likely due to the model’s simplicity: Because of its restriction to the local recurrent
network it does not incorporate any long-range horizontal and feedback connectivity,
which may cause sustained activation of the neurons. Alternative explanations, such as
global oscillatory behavior of cortex in response to the flashed grating stimulation are
also difficult to reproduce in a simple one-layered network. Despite the simplicity of
the model, the responses of model and real neurons are in good qualitative agreement
during the first 100 ms.

The network’ input is matched to the output of LGN neurons. Thus, strictly speaking
the model only represents something akin to the input layers of V1. However, the
basic result can easily be extended to other layers of V1. These, too, will receive strong
visually driven input, likely originating in V1 simple cells. Such quasi-afferent inputs
mediated through layer IV simple cells - while in time-course shifted compared to LGN
- nonetheless are very similar in their temporal characteristics to those of LGN cells
(Alonso et al., 2001; Wolfe and Palmer, 1998). Thus, the results regarding similar time-
courses in pinwheel and orientation domain as well as regarding differential variance
likely generalize.

Mechanism underlying the higher variability of pinwheel cells

We argue that the higher variability in response timing near pinwheel centers reflects
the difference in the inputs from the local cortical circuits at those sites compared to
orientation domains. There is evidence that the local circuit connectivity is isotropic
in V1 (e. g., Marifio et al., 2005), and thus, in orientation domains, local inputs are
integrated from a patch of cortex that contains a representation of only a narrow range
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of orientations. All cells classified as orientation domain cells have a similar pattern
of local inputs arising from neurons with a narrow range of preferred orientations.
By contrast, the circuits near pinwheel centers are considerably more varied (Marifio
et al., 2005; Schummers et al., 2002, 2004; Yousef et al., 2001). The network model
implements such a pattern of local recurrent connectivity, and in our simulations, we
were able to confirm that this higher variability in recurrent inputs leads to the observed
larger variability of responses near pinwheel centers. It is worth noting that the local
circuit variability alone is not sufficient to account for the differential output variability.
Rather than actually introducing this variability through variability in the connectivity
of pinwheel cells, the uniform recurrent connectivity in the orientation domain removes
variability by integrating over the different inputs of their neighbors. This ability is
reflected in the fact that the relative contribution of feed-forward connections to a
cell’s inputs of the preferred orientation is larger for pinwheel cells than for orientation
domain cells.

One may hypothesize that other parameter manipulations may also result in the
variance differences between pinwheel and orientation domain neurons, not requiring
the variability to be present in the afferent input already. However, parameter changes,
which may appear well-suited for introducing more variance into pinwheel neurons,
such as varying the afferent input strength for different model cells or using a less
symmetric orientation map for assigning the preferred orientation of the afferent inputs,
did not lead to larger variance in the pinwheel neurons (data not shown). Thus, the
temporally variable afferent input appears essential for reproducing the behavior of the
real neurons in the model. Furthermore, there is experimental evidence that variability
in the temporal response properties is already present in the responses of LGN neurons
and remains present in the input receiving (simple) cells of V1 (Alonso et al., 2001; Wolfe
and Palmer, 1998).

Operating regime of local cortical computations

Interestingly, only the strongly recurrent regime with balanced excitation and inhibition
can account for all aspects of the in vivo data. This is fully consistent with the model-
based analysis of stationary responses, i. e., the previously considered orientation tuning
properties of the membrane potential and the input conductances of V1 neurons and
their dependence on location in the orientation map (see Chapter 3). Both results
constitute converging evidence for a cortical network operating in a regime close to the
“border of instability”, beyond which the network settles into a state of high, self-sustained
activity.
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4. Dynamics of orientation tuning in primary visual cortex

Recapitulation

Beyond considering the steady state, the Hodgkin-Huxley network also allows inves-
tigating the temporal dynamics of orientation tuning. Here, we used experimentally
measured tuning dynamics as an alternative constraint for pinning down the operating
regime of the network. We added realistic temporal dynamics to the afferent input of
the Hodgkin-Huxley network model, and obtained - for every parameterization of the
model - temporal response kernels using the reverse correlation technique.

Our findings support the following conclusions: (i) The higher inter-cell variability
close to pinwheel centers can be attributed to the variability present in the afferent input
provided by neurons with different temporal characteristics. The recurrent connectivity
in V1 removes some of this variability, but the degree of “smoothing” differs between
orientation domains and pinwheel centers, causing the observed differences. (ii) The
map-location dependence of the average temporal response properties of cat V1 neurons
together with their variability can only be accounted for in a regime with significant
recurrent contributions. A similar conclusion was reached analyzing the independent
data set describing the steady-state behavior of V1 in Chapter 3, demonstrating the
robustness of the results.

What are the benefits of an highly recurrent, approximately balanced operating regime
for the processing of sensory signals? Networks operating close to the line of instability
are very sensitive to modulations. Small changes in the network parameters, for instance,
lead to relatively large changes in the neuronal activity. This supports the hypothesis that
the balance between excitation and inhibition may allow for rapid transitions between
relatively stable network states, permitting the modulation of neuronal responsiveness
in a behaviorally relevant manner (Haider et al., 2006). Furthermore, it is conceivable
that spatial and temporal context interactions (Schwartz et al., 2007) or attentional
effects (McAdams and Maunsell, 1999) temporarily shift the operating point. It would
be interesting to investigate if those modulatory influences can be explained in network
models operating in a strongly recurrent, balanced regime.

In the next chapter, we take temporal context effects as an example and explore the
possibility that the strongly recurrent regime facilitates adaptive processing of sensory
stimuli. Specifically, we test if our model is consistent with the pronounced changes in
orientation tuning observed in adaptation experiments.
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5. Orientation adaptation and tilt aftereffect in a network
model of V1

Abstract

The temporal context of a sensory stimulus influences the way the stimulus is represented
by neural populations and, in turn, how the stimulus is perceived. A well studied
adaptation phenomenon is the psychophysical tilt aftereffect, and the accompanying
repulsive shifts and response changes of orientation tuning curves of individual neurons
in primary visual cortex. Here, we use a firing rate model of orientation tuning to
link the physiological and psychophysical results, and to investigate whether synaptic
plasticity is a plausible mechanism underlying orientation adaptation. Since the strength
of intracortical synaptic depression in vivo is unknown, we systematically explore its
influence on recurrent processing in the model. Depending on the relative strength of
depression for the different types of synapses, tuning curves of individual cells as well
as the population responses show either attractive or repulsive shifts, and adaptation
leads either to response suppression or facilitation. Interestingly, models consistent
with experimentally observed physiological and psychophysically adaptation effects
have underlying synaptic depression parameters that are consistent with in vitro studies.
Moreover, we investigate how the tuning curve changes of model neurons depend on the
local cortical neighborhood. The network model provides a mechanistic explanation for
the experimental finding of larger adaptation-induced shifts close to pinwheel centers:
adaptation affects the broadly tuned recurrent inputs near pinwheels more strongly,
which in turn leads to larger tuning curve shifts. We do not observe strong adaptive
tuning curve shifts and differences between pinwheel and orientation domain cells in
models with weaker recurrent excitation or stronger inhibition. This suggests that one
benefit of balanced recurrent processing is an enhanced sensitivity to adaptive changes
and presumably also to other bottom-up and top-down modulations.

5.1. Introduction

The perception of a sensory stimulus depends on what has been observed in the recent
past, i. e., on the stimulus’ temporal context. Typically, prolonged exposure to a stimulus
leads to “repulsive” aftereffects, i. e., stimuli similar to the adapting stimulus appear to
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Figure 5.1 | Summary of experimental data on the psychophysical (A, B) and physiological effects (C-F) of
adaptation to oriented stimuli. A, B | Tilt aftereffect. A | Adaptation to a tilted grating causes the vertical
test grating to appear repulsed away from the adapting orientation. B | Repulsive shift of the perceived
orientation as a function of the difference between the testing orientation and the adapting orientation.
Psychophysical data (gray dots) replotted from Clifford et al. (2000). Solid line is the least square fit of
a polynomial 8(90 - 6)a(1+ b8)(1 + c6) with parameters a = 0.0061, b = —0.011, ¢ = —0.017 (Jin et al.,
2005). C-F | Adaptation-induced plasticity of orientation tuning in V1 cells. C | Change in the preferred
orientation after adaptation (positive numbers indicate repulsive shifts) is plotted against the difference
between the adapting orientation and the control-preferred orientation of each neuron. Experimental data
(gray dots) are taken from Dragoi et al. (2000) and fit by a regression line a + b0 with a = 13 and b = -0.17.
D | Change in maximum firing rate relative to the control condition. Values greater (smaller) than 1 indicate
facilitation (suppression). Data points are replotted from Jin et al. (2005) and fit by a regression line a + b6
with a = 0.63 and b = 0.0066. E | Width of tuning curves (standard deviation of a circular Gaussian tuning
function) measured after adaptation. Data (gray dots) replotted from Jin et al. (2005) and fit by a regression
line a + b6 with a = 27 and b = —0.034. F | Dependence of the adaptive change in the preferred orientation
on the map OSI (the OSI of the orientation map at the location of the measured neuron; cf. Appendix A).
Positive numbers indicate repulsive shifts. Data (gray dots) replotted from Dragoi et al. (2001) and fit by a
regression line a + b8 with a = 13.3 and b = -26.8.
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be more different from the adapting stimulus than they actually are. Psychophysical
aftereffects (Clifford and Rhodes, 2005) have been found for stimulus properties includ-
ing direction of motion (Levinson and Sekuler, 1976; Clifford, 2002), spatial frequency
(Blakemore et al., 1970), stimulus orientation (Gibson and Radner, 1937), brightness
(Eagleman et al., 2004), blur (Webster et al., 2002), and even for higher-level stimulus
properties such as emotion, gender and attractiveness of faces (Rhodes et al., 2003;
Webster et al., 2004). Underlying these phenomena is in many cases pattern-specific
adaptation of visual neurons, leading to reversible changes in their response properties.
How adaptation changes the stimulus encoding in single neurons and in neural pop-
ulations is an active research area (for recent reviews see Clifford et al., 2007; Kohn,
2007; Schwartz et al., 2007). It has, however, proved difficult to link changes in neural
response properties to both the cellular mechanisms they arise from and the perception
they give rise to.

Here, we focus on the tilt aftereffect (Gibson and Radner, 1937; Mitchell and Muir, 1976;
Clifford et al., 2000), a psychophysical phenomenon in which adaptation to a context
stimulus causes an orientated test stimulus to appear repulsed away from the context
orientation (Figure 5.1A-B; see also Figure 2.1A in Chapter 1). Neurophysiological
studies (e. g., Miiller et al., 1999; Dragoi et al., 2000, 2001; Felsen et al., 2002; Dragoi et al,,
2002; Felsen et al., 2005) have identified the accompanying changes in orientation tuning
of individual neurons in primary visual cortex: Through adaptation, tuning curves
shift repulsively away from the adapting stimulus (Figure 5.1C; see also Figure 2.1B
in Chapter 1). The shift magnitude depends on the difference between the preferred
orientation of the neuron and the orientation of the adapting stimulus. The largest
shifts occur for neurons with a small orientation difference (i. e., for neurons whose
preferred orientation is close to the adapting orientation); neurons with large orientation
differences either remain unaffected or show a slight attractive shift. Adaptation also
leads to suppression or enhancement of firing rates (Figure 5.1D), and broadening or
sharpening of tuning widths (Figure 5.1E), all depending on the difference between
the preferred orientation of the neuron and the adapting stimulus. These data show
that adaptation to a specific stimulus reorganizes orientation selective responses across
the whole population of V1 neurons. This process can therefore only be understood
considering the cortical network V1 neurons are embedded in. Indeed, Dragoi et al.
(2001) found that adaptive tuning curve changes are not distributed uniformly across
the cortical surface but depend on the position of a neuron relative to the orientation
preference map (cf. Section 2.2). As shown in Figure 5.1F, neurons close to pinwheel
centers show more pronounced repulsive shifts of their preferred orientation than
neurons in orientation domains.

We have shown in Chapter 3 and Chapter 4 that the experimentally measured response
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properties of V1 neurons are only consistent with the predictions of a Hodgkin-Huxley
network model dominated by recurrent interactions and with balanced contributions
from excitation and inhibition. Our analysis demonstrated that due to the strong
recurrent contributions, the most likely operating point is close to the line of instability
across which the network exhibits self-sustained activity. In this regime, small changes
in network parameters disturbed the balance between excitation and inhibition and led
to large changes in the neuronal activity (for instance, increasing the peak conductance
of all excitatory-to-excitatory synapses by 5 % led to an increase in firing rate of more
than 20 %). It is conceivable that modulatory processes such as adaptation influence
the balance between excitation and inhibition. Since adaptation is stimulus-specific, it
could lead to alocal alteration of the cortical operating point, giving rise to the observed
tuning curve changes. Furthermore, due to the structure of the orientation map, the
balance is more crucial close to pinwheel centers, where neurons receive recurrent
inputs at all orientations, whereas orientation domain neurons only receive recurrent
inputs near their preferred orientation. This might make pinwheel cells more sensitive to
changes in the intracortical inputs and orientation tuning more susceptible to adaptive
modulation.

Here, we want to test the hypothesis that adaptation leads to a local change in the
strength of recurrent excitatory and inhibitory connections, which in turn causes the
changes in orientation selectivity. We use a mean-field (firing rate) model that is matched
closely to the Hodkgin-Huxley network model used in the previous chapters (cf. Stim-
berg et al., 2009, Appendix D) and focus on depression of intracortical synapses as the
underlying mechanism. Short-term synaptic depression has been found at multiple
time scales from tens of milliseconds to seconds (Abbott et al., 1997; Varela et al., 1997;
Tsodyks and Markram, 1997; Galarreta and Hestrin, 1998; Varela et al., 1999; Zucker and
Regehr, 2002). This parallels the modulations of orientation tuning occurring from tens
of milliseconds (Felsen et al., 2002) over hundreds of milliseconds (Miiller et al., 1999;
Dragoi et al., 2002) to several minutes (Dragoi et al., 2000). In principle, the multiple
time scales may originate from diverse intrinsic or synaptic mechanisms. However, the
similarity of the observed effects suggests a common underlying plasticity mechanism
(Felsen et al., 2002; Schwabe and Obermayer, 2005).

Most of our knowledge about synaptic plasticity stems from in vitro studies; the
strength of synaptic depression in vivo is in dispute (Chung et al., 2002; Boudreau and
Ferster, 2005; Reig et al., 2006). We therefore explore, in a first set of analyses, how
adaptive changes in orientation tuning of cells in the network model depend on the
strength of synaptic depression of excitatory and inhibitory connections. For every pa-
rameterization of our model, the changes in orientation tuning were calculated in order
to quantitatively compare the model responses to the physiological data (Figure 5.1C-F).
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Moreover, we estimate the “perceived” stimulus orientation from the population re-
sponse of the network and compare the bias caused by adaptation to the psychophysical
data (Figure 5.1B). This is in contrast to previous modeling studies that have focused
either exclusively on the perceptual tilt aftereffect (Wainwright, 1999; Clifford et al.,
2000, 2001; Bednar and Miikkulainen, 2000) or on the neurophysiological tuning curve
changes (Chelaru and Dragoi, 2008). Another previous study (Teich and Qian, 2003)
concluded that there is a discrepancy between the psychophysical and the physiological
data. However, Jin et al. (2005) showed that tuning curve shifts are in quantitative
agreement with the tilt aftereffect, but in an abstract population coding model that does
not provide a mechanistic explanation of the tuning curve shifts. Here we investigate
how the tuning curve changes emerge as a result of recurrent processing. Together, the
physiological and the psychophysical data provide strong constraints on the strength
of the synaptic depression parameters of the model. An analysis of the set of models
that are consistent with the experimental findings shows how different combinations of
synaptic depression parameters can give rise to tuning curve modulations.

In a second set of analyses, we then use one of the consistent models to investigate
how the observed changes in orientation tuning are generated through local interaction
in the network. This allows us to pin down the mechanism that generates larger tuning
curve shifts of neurons close to pinwheel centers.

5.2. Firing rate model and perceptual read-out

The firing rate network model

The firing rate model (cf. Kang et al., 2003; Stimberg et al., 2009) consists of two popu-
lations of threshold-linear neurons, each arranged in a 2-dimensional grid of 64 x 64
cells. The model architecture resembles the Hodgkin-Huxley network model used in
Chapter 3 and Chapter 4. Both excitatory and inhibitory cells receive identically tuned
feed-forward input, determined by an artificial orientation preference map consisting
of four pinwheels (see Figure B.1 in Appendix B). Lateral connection strengths between
the neurons are spatially isotropic and weighted according to a Gaussian distribution
with the same spatial extent for excitation and inhibition. The main reason for using
the firing rate model instead of the Hodgkin-Huxley model is the reduced simulation
time, allowing us to explore a large range of model parameters. We have shown in
Stimberg et al. (2009) that the firing rate network leads to very similar results as the
Hodgkin-Huxley network model regarding the likely operating regime. In general,
conductance-based models of large cortical neuronal networks can be described by
simplified rate models, unless the underlying network state possess a high degree of
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synchrony (Shriki et al., 2003).

The network model is similar to the model of Stimberg et al. (2009), but was extended
to include dynamic intracortical synaptic connections. Synaptic depression was de-
scribed by the mean-field equation derived by Tsodyks et al. (1998); see Equation D.5
in Appendix D. It is controlled by two parameters: the recovery time constant Tyec
which we set to 300 ms for all synapses, and Uj;, the utilization of synaptic efficacy
(where i, j € {E,I} denote the excitatory and inhibitory populations; j denotes the
presynaptic and i the postsynaptic population). In the detailed model of synaptic de-
pression, involving the arrival times of individual spikes (Abbott et al., 1997; Tsodyks
and Markram, 1997), each presynaptic spike activates a fraction U;; of resources, which
then quickly inactivate (with a time constant of few milliseconds) and recover with the
time constant of 7,... Thus, besides the absolute connection strengths S;;, the major
parameters of the model are the Uj;’s, which determine the dynamics of the synaptic
response. Experimentally, U values were found to cover almost the entire range from
0 to 1 (Tsodyks and Markram, 1997). In agreement with experimental data (Galarreta
and Hestrin, 1998; Varela et al., 1999), we assume that both excitatory and inhibitory
recurrent connections undergo depression. Thus, in our exploration of the phase space,
we systematically vary Ugg, Uig, Upp and Ug;. A detailed description of the firing rate
model and the exact simulation protocol can be found in Appendix D.

Calculating the perceived stimulus orientation

In order to estimate the hypothetical perceived orientation from the population response
of the firing rate network, we have to define how the rest of the brain “reads out” orien-
tation from the responses of a population of V1 neurons. While various ideas exist how
such population codes (Vogels, 1990; Deneve et al., 1999; Pouget et al., 2000, 2003) can
be interpreted, this is still an open issue. Here, we compared the orientation estimates of
two widely-used read-out methods: the population vector and the maximum-likelihood
method.

In the population vector method (Vogels, 1990), the perceived orientation of a stim-
ulus is constructed from the responses of all neurons using the vector average. Each
neuron contributes a vector with orientation equal to twice its preferred orientation (as
measured in the control condition) and length equal to its firing rate. Summation of
these vectors gives a population vector, whose orientation is twice that of the perceived
orientation. The formula for calculating the perceived orientation from the population
response is the same as the one for calculating the preferred orientation of a single
neuron (Appendix A, Equation A.3), with R(¢;) denoting the response of a neuron
with preferred orientation ¢;. For the calculation of the population vector the preferred
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orientations ¢; have to be equally spaced. Because the preferred orientations are not
exactly equally distributed in the artificial orientation map (cf. Appendix B) of the
network, we employed bootstrap method: 60 cells with preferred orientations approxi-
mately (with a tolerance of 5°) equidistantly spaced between —90° to +90° were drawn
at random from the set of all model cells 1000 times. For every draw, the perceived
orientation was calculated. For reporting the results we use the mean and the standard
deviation across the 1000 estimates of the perceived orientation.

The maximum-likelihood method (Pouget et al., 2000) estimates the perceived ori-
entation as the orientation @ that maximizes the likelihood function P(R|6), where R
is the vector of the firing rate responses of all neurons. Equivalently, the maximum-
likelihood method can be described as fitting predetermined response templates to the
population response and choosing the template that matches best (Deneve et al., 1999).
The template corresponding to a perceived orientation 6 is the population response to
the stimulus with orientation 6 before adaptation. Each of these templates is then fitted
to the adapted population response by minimizing the squared error (i. e., assuming
Gaussian distributed noise) through scaling the maximum of the template. The template
that best matches, i. e., the one that achieves the lowest squared error, determines the
perceived orientation.

5.3. Exploring the model space

We set up a firing rate model of a two-dimensional cortical orientation map in order
to investigate how adaptation changes the orientation tuning properties of V1 cells
depending on the strength of synaptic depression of excitatory and inhibitory connec-
tions. All excitatory and inhibitory neurons in the model receive orientation-tuned
afferent inputs with similar tuning widths and with their preferred orientations being
assigned according to the orientation map. The strength of recurrent excitatory synaptic
connections (Sgg for excitatory postsynaptic cells, Sy for inhibitory postsynaptic cells)
and inhibitory connections (Sg; to excitatory cells, Sy for inhibitory) were chosen so
that the model cells receive strong recurrent excitation and inhibition, both dominating
the feed-forward input. We have shown in Chapter 3 (see also Wimmer et al., 2009; Stim-
berg et al., 2009) that only such an operating regime is compatible with experimental
data on orientation tuning in primary visual cortex.

We then systematically varied the strength of the synaptic depression parameters Ugg,
Uig, Unr and Ug for the four types of recurrent connections. Each parameterization
gives rise to a different model instance, which is then used to simulate adaptation
experiments. First, orientation tuning curves of model cells are measured in the control
condition, then the network model is adapted for 1s to a stimulus with 0° orientation,
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and tuning curves are measured again (test condition). A detailed description of the
simulation protocol can be found in Appendix D.

Visualizing the parameter space of the network

We use a technique called dimensional stacking (LeBlanc et al., 1990; Taylor et al., 2006)
to visualize how adaptation influences the response properties of the network as a
function of the four synaptic depression parameters. Dimensional stacking is a linear
projection from a multidimensional parameter space to only two dimensions. For
concreteness, we introduce dimensional stacking by applying it to the firing rate of the
network models, measured after adaptation. Figure 5.2A shows the maximum firing rate
of excitatory neurons (color-coded) in the adapted network models as a function of the
parameters Uy and Upg (depression strength of inhibitory and excitatory connections to
inhibitory neurons) while the other two parameters (Ugg and Ug;) were kept fixed. The
firing rate of excitatory neurons decreases with increasing depression of the connections
from inhibitory to inhibitory neurons (increasing values of Uy, i. e., going from left
to right along the x-axis) because increasing Uy leads to an increase in firing rate of
inhibitory neurons. For increasing depression of excitatory connections to inhibitory
neurons (increasing values of Upg, i. e., going from bottom to top along the y-axis),
firing rates increase until the network crosses the border to a parameter regime where
the network is “unstable” (white squares), that is, where the firing rates exceed 100 Hz
(see Appendix D). The firing rates increase because higher values of Ujg lead to less
excitation of inhibitory neurons which in turn leads to less inhibition of excitatory
neurons (via the connections from inhibitory to excitatory neurons).

Dimensional stacking enables us to visualize the results for the full exploration, where
we independently vary all four depression parameters. This is achieved by making a
montage of plots like the one shown in Figure 5.2A with each individual plot in the
montage scanning Uy and Upg and with the other two parameters (Ugg and Ugy) varying
over the montage. The resulting dimensional stacking image of the maximum firing rate
(Figure 5.2B) is easy to interpret. Synaptic depression is weakest for all connections on
the bottom left of the figure. Firing rates decrease for higher values of Ugg, and increase
for higher values of Ug;. The assignment of parameters to the inner “low order” axis and
the outer “high order” axis influences the usefulness of the visualization (cf. Taylor et al.,
2006). We chose to put Ugg and Ug on the outer and Uy, Ug on the inner axis, because
this order leads to a compact representation of the unstable region (shown in white).
Additionally, this order is particularly useful, because both depression parameter that
lead to more inhibition (and consequently to lower firing rates of excitatory cells) vary
along the x-axis, and both parameters that lead to more excitation vary along the y-axis.
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Figure 5.2 | Maximum firing rate of excitatory cells after adaptation as a function of the synaptic depression
parameters Ugg, Uig, Ui and Ug;. A | Firing rate as a function of the two independently varied parameters
Un (controlling depression of recurrent connections from inhibitory to inhibitory neurons) and Uig
(controlling depression of recurrent connections from excitatory to inhibitory neurons). The parameters
were varied on a logarithmic scale between —2.1 and 0, corresponding to values from 0.0079 (almost no
synaptic depression) and 1 (maximum synaptic depression). The two other parameters were kept fixed at
log Ugg = —0.60 and log Ug; = —1.05. Colors (scale bar on the right) denote the value of the maximum
firing rate across all excitatory neurons and all test stimulus orientations, after adaptation to a 0° stimulus.
White squares denote the unstable region that was determined numerically. In particular, we consider
networks firing at rates higher than 100 Hz as unstable (see Appendix D for the exact definition of the
unstable region). The figure summarizes the simulation results from 15 x 15 different values of Uy and Ute.
B | To visualize the firing rate for the entire parameter space, the grid from (A) is embedded in a larger grid
scanning the additional two depression parameters Ugg and Ug;. Within each square of the grid shown in
(B) is a 15 x 15 grid scanning Uy and Urg. Overall, a 225 x 225 grid is formed, scanning the 50 625 (15*)
possible combinations of depression parameters we tested.
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5. Orientation adaptation in a network model of V1

Adaptive changes in the firing rate model

In order to investigate how adaptation influences the orientation tuning properties of
cells in our network model and thus also the perceived stimulus orientation, we deter-
mine - for every parameter combination - the changes in the population response, in
the preferred orientation, in the maximum response, and in the tuning width. Figure 5.3
summarizes these results, using the dimensional stacking technique (cf. Figure 5.2B).
Interestingly, depending on the relative strength of the depression parameters, tuning
curves of individual cells as well as the population responses can either show attractive
or repulsive shifts, i. e., towards or away from the adapting stimulus (Figure 5.3A,B).
Within a large region of the parameter space (towards the bottom right of Figure 5.3A),
perception shifts towards the adapting stimulus while the preferred orientation of indi-
vidual cells shifts repulsively away from the adapting stimulus (Figure 5.3B). This finding
is consistent with Jin et al. (2005), who showed that shifts in preferred orientation lead
to opposite shifts in perception, unless they are balanced by suppression.

However, in the experimental data (Figure 5.1B,C), both perceived orientation and
tuning curves generally shift repulsively away from the adapting stimulus (indicated by

Figure 5.3 (facing page) | Adaptive changes of perceived orientation (A) and neuronal tuning curves (B-F)
as a function of the synaptic depression parameters of the firing rate model. Parameters were varied
on a logarithmic scale, and the axis in the figures are assigned as in Figure 5.2B: excitatory (Ugg) and
inhibitory connections (Ukr) targeting excitatory neurons vary with grid positions (outer axis), inhibitory
(Unr) and excitatory (Uie) connections targeting inhibitory neurons are varied within each square of the
grid (inner axis). A | Maximum repulsive (positive values) or attractive (negative values) shift in perception,
calculated from the population responses of the models using the maximum-likelihood method. For
parameter combinations that led — depending on the difference between adapting and test stimulus - to
repulsive or attractive shifts, the shift with the higher absolute value was assigned. Colors denote the shift
value in degrees (see scale bar). B | Maximum preferred orientation change (in degrees, positive values:
repulsive shifts) of any of the neurons in the model network, calculated by vector averaging. If neurons in
the model network showed both shift directions, the shift with higher absolute value was assigned. C |
Directions of perception and tuning curve shift (different colors). Perception and neuronal tuning curves
shift repulsively away from the adapting stimulus - as found experimentally - in the yellow region. D |
Average change in maximum firing rate relative to the control condition across all neurons. Values greater
(smaller) than 1 indicate dominating facilitation (suppression). E | Ratio between the width of tuning
curves after adaptation and in the control condition. Shown are the average values of this ratio across all
neurons in the network. Values greater (smaller) than 1 indicate an overall broadening (sharpening) of
tuning curves. F | Difference between the preferred orientation change of cells in pinwheel areas (map OSI
< 0.3) and cells in orientation domains (0.6 < map OSI < 0.9). The difference is calculated between the
average tuning curve shift across all pinwheel and all orientation domain cells. White color corresponds to
parameter values for which the model network becomes unstable (cf. Appendix D). The figure summarizes
the simulation results for 50 625 (15*) different values of the synaptic depression parameters.

66



5.3. Exploring the model space

log U, (log Uy)

log U, (log Uy)

log U, (log Uy)

B
__perception shift | | __preferred orientatioh shift
15 0 15 20 0 20
| 1
1 «
2 i £
i i = A
=]
e g =3 A
d & ) il “' " °
e
F g 8
Ll Fry.
y Fy
i
log U, (log U,)
ohs%hiftjsr pulsive (yellow region ~responiseichange :
Only tuning dunie shift respuisive
Only perception;shift repulsive 05 ! s
,,,,, Both shifts aftragtiy
DE
D
= ke]
,,,,, > c. 4l
o |
ke]
o
Addd
:A
log U, (log U)) log Ug, (log U))
~tuningiwidth change ~_preferred orient. shift PW vs.:OC
“oig 1 12 TH ol ioi o
1
i 5 I
4 2 i
iL = Fd
=]
[
ke
Fry Add4
Ad Ad
log U, (log U,) log U, (log U,)

67



5. Orientation adaptation in a network model of V1

positive shift values). The experimentally observed shifts can be used as a constraint
on our network models. Thus, we defined four different classes of models, depending
on the shift directions of perception (population response) and tuning curves: (i) both
shifts attractive. Figure 5.3C shows this four classes, indicating that a large region in
parameter space (colored in yellow) is consistent with the experimental constraint that
both shifts are repulsive.

In addition to the perception and tuning curves shifts, we also analyzed the changes
in maximum response (Figure 5.3D), tuning widths (Figure 5.3E), and the difference in
preferred orientation shifts for pinwheel cells and orientation domain cells (Figure 5.3F).
Depending on the strength of synaptic depression, adaptation can lead to either response
suppression or facilitation, and the width of tuning curves can either increase (broaden)
or decrease (sharpen). We next sought to determine which of these models are plausible,
given the available experimental evidence.

Model selection

In order to find network models that are consistent with the experimental data, we used
the constraints that the experimental findings impose on the perception and tuning
curve changes. We examined our population of 50 625 network models and selected
those with properties that agreed with the experimental data of Figure 5.1 (cf. Clifford
et al., 2000; Dragoi et al., 2000, 2001; Jin et al., 2005). To be classified as an admissible
model, the population response of the network as well as the tuning properties of each
neuron in the network had to lie within bounds chosen to contain the central 85 % of
the experimental data points. The lower and upper bounds for the different properties
were (i) perception shift: —3° to 6° (estimated from Mitchell and Muir, 1976; Clifford
et al,, 2000, see Figure 5.1B); (ii) preferred orientation shift: -6.06 to 17.99° (calculated
from the data points in Figure 5.1C); (iii) maximum firing rate relative to the control
condition: 0.40 to 1.50 (calculated from the data points in Figure 5.1D); (iv) tuning
width relative to the control condition: 0.69 to 1.25 (calculated from the data points in
Figure 5.1E). Additionally, the average preferred orientation shift had to be larger for
pinwheel cells than for orientation domain cells (Figure 5.1F).

Selecting models using these criteria yielded 1014 admissible models corresponding
to approximately 2 % of the parameter space. Figure 5.4A shows where these models are
located in parameter space (blue region). All admissible models lie below the diagonal
where Uy equals Ugg. In other words, to be consistent with the experimental data, exci-
tatory connections (targeting excitatory neurons) have to undergo stronger depression
than inhibitory connections (Ugg > Ugr). To asses how much each of the experimental
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Figure 5.4 | Distribution of admissible models in the space of the synaptic depression parameters Ugg, Ulg,
Uy and Ug;. A | Admissible models (shown in blue) were selected using consistency with the experimental
data as a criterion. Perception shift, tuning curve shifts, firing rate changes, tuning width changes, and
differences in shift magnitude between pinwheel and orientation domain cells must all lie within the
interval containing 85 % of the corresponding experimental data points. Non-admissible models are shown
in orange, and white corresponds to parameter values for which the model network becomes unstable. The
red cross denotes an admissible model whose responses are analyzed in detail in Figure 5.8 — Figure 5.11.
B | Classification of models as admissible (blue) or non-admissible (orange) when considering each of
the constraints given by the experimental data separately. Admissible models shown in (A) fulfill all of
the constraints, i. e., the blue region in (A) is the intersection of the all the blue regions shown in (B).
Parameters were varied on a logarithmic scale and the axis in the figures are assigned as in Figure 5.2B.

measurements contributes to the selection of admissible models, we consider each of
the constraints given by the experimental data separately (Figure 5.4B). As can be seen
in the figure, the blue regions for the perception shift is smallest, suggesting that this
property particularly restricts the parameter space of admissible models. The changes
in tuning width are consistent with the experimental data for a wide range of model
parameters, reflected by the large blue region for this property. However, this means
that the changes in tuning width are much less informative than the other properties.
Indeed, we found that no model can be excluded from the class of admissible models
only because the tuning width change exceeds the bounds given by the experimental
data, i. e., this property did not provide additional information.

The mean values of perceptive shifts and tuning curve changes of the admissible
models are generally similar to the mean values computed from the experimental data
(Figure 5.5A-E). The shifts in preferred orientation, however, are somewhat smaller than
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Figure 5.5 | Comparison of the properties of admissible models and experimental data. A | Histogram of
the average shifts in perception across the whole range of test orientations. Perceptual shifts were calculated
as the difference between the maximume-likelihood estimate of the stimulus orientation and the actual
stimulus orientation. The triangle denotes the average perceptual shift calculated from the experimental
data of Clifford et al. (2000) shown in Figure 5.1B. B | Histograms of the shift in preferred orientation
compared to the experimental data of Dragoi et al. 2000 (triangle, cf. Figure 5.1B). Shifts were calculated
as the difference between the preferred orientations (vector average of responses) of the neurons after
adaptation and in the control condition. C-E | Histograms of the other properties of adapted tuning curves
compared to the experimental data of Dragoi et al. 2000, 2001; Jin et al. 2005 (experimentally observed
values are denoted by triangles; cf. Figure 5.1D-F for the experimental data). The y-axis in panels A-E is
the number of admissible models. F-H | Correlations between pairs of model responses in the population
of 1014 admissible models. Shown are the scatter plots of pairs of model responses that exhibited large
(r > 0.5) and significant (p < 0.001) correlations.
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Figure 5.6 | Correlations between pairs of model parameters in the population of 1014 admissible models.
A-F | Scatter plots of pairs of model parameters (logarithmic scale). Because of the simulation grid there
are 15 x 15 = 225 possible combinations for each two model parameters. The linear correlation coefficient r
is given on top of each figure (p < 0.001 in all cases).

in the experimental data. Figure 5.5F-H shows that some of the response properties of
the admissible models are correlated. In particular, the shift in preferred orientation
and the difference of the shift for pinwheel versus orientation domain cells is positively
correlated, i. e., models with large shifts in preferred orientation also show large differ-
ences for pinwheel and domain cells. Thus, some models show tuning curve shifts with
a similar magnitude as found experimentally.

Properties of the parameter space of admissible models

The properties of the model subspace spanned by the set of admissible models can pro-
vide insight into the mechanisms underlying the experimentally observed tuning curve
changes. What attracts attention in Figure 5.4A is that it seems that all the admissible
models (blue region) are part of a single connected “island” in parameter space. This
conjecture was tested using connected component analysis (Shapiro and Stockman,
2001) on the sampling grid. The connected components algorithm determines whether
there is a path (on the grid) from any admissible model to any other admissible model
such that each model on the path is also part of the set of admissible models. The result
was, that the set of admissible models indeed form a single connected component, sug-
gesting that the model class is robust against small variations of the synaptic depression
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Figure 5.7 | Results of linear regression on model responses, using the model parameters Ugg, Ui, Unr and
Ug; as predictors. A | Quality of the linear fits for the different response properties. Response properties of
the admissible models are plotted against the values predicted by multiple linear regression. A perfect fit
would have all points on the identity line, shown in black. The R? values of the fits (given below the points)
range between 0.32 for the perception shift to 0.90 for the preferred orientation shift. B | Linear regression
coeflicients bgg, big, bu, bg: for each of the fits shown in panel (A).

parameters. Although this is not a mathematical proof we believe that it is a reasonable
conjecture given that the sampling of the parameter space is dense enough.

We next examined how the constraints imposed on the network models restrict the
parameter space of admissible models. As can be seen in Figure 5.6, the depression
parameters of admissible models span a large range. However, not all parameter com-
binations are possible, e. g., for larger values of Ujg in Figure 5.6A the parameter Ugg
must be increased accordingly to stay in the region of admissible models. Furthermore,
almost all admissible models lie below the “diagonal”. This means that depression must
be stronger for the excitatory-excitatory connections than for the excitatory-inhibitory
connections. Generally, the parameters of admissible models are pairwise correlated.
(Figure 5.6A-F). The parameters Ugg and Uy — that were varied on the outer axis in
Figure 5.4 — exhibit the strongest correlation. These results imply that while each sin-
gle depression parameter can vary in a large range, the parameters cannot be varied
independently. Rather, a change in one model parameter must be compensated by a
corresponding change in other parameters in order to stay in the region of admissible
models.
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Linear regression analysis

We were curious to know how each synaptic depression parameter of the network model
influences each of the response properties, such as the change in preferred orientation.
The model equations provide of course a quantitative description of how the model
properties vary as a function of the model parameters, but only implicitly. In order to
find a simpler description that can be interpreted directly, we performed multiple linear
regression on the model responses, using the model parameters Ugg, Urg, U and Ugg
as predictor variables. If linear regression provides a good fit to the actual property, the
regression coefficients directly reflect the contribution of each model parameter.

Figure 5.7A shows that it is indeed possible to predict the magnitude of the adaptive
changes with a simple linear model. In the figure, the actual model properties are
plotted against the predicted values from linear regression, i. e., a perfect fit would have
all points on the identity line. The quality of the fits for the changes in tuning curve
properties is indicated by high R? values (in the range of 0.70 for the response change
to 0.90 for the shift in preferred orientation). On the other hand, linear prediction
failed to predict the shifts in perception (R* = 0.32, Figure 5.7A, left panel). The worse
prediction performance might reflect the fact that the perception shift is a more indirect
quantity. Whereas the tuning curve changes are a property of individual neurons, the
perception shift is related to the population responses. Response suppression and shifts
in preferred orientation generally have an opposite effect on the population response
(Jin et al., 2005), possibly making it more difficult to predict the perception shift directly
from the network parameters.

The way in which the model parameters determine each model property can be under-
stood by examining the regression coefficients bgg, big, iy and bgg (corresponding to the
model parameters Ugg, Urg, Upp and Ugp). These coefficients are shown in Figure 5.7B.
The sign of each coefficient reveals the direction of the effect that a model parameter
has on a model property. The value of the coefficient indicates how much the predicted
property is expected to increase (decrease) when the corresponding model parameter
increases (decreases), holding all the other model parameters constant. Consider the
response change (Figure 5.7B, third panel) as an example: bgg is negative, indicating
that a higher value of Ugg leads to smaller responses (more suppression). This is ex-
pected because larger values of Ugg lead to more depression of excitatory-excitatory
connections, resulting in response suppression. If, on the other hand, the depression of
connections from inhibitory neurons to excitatory neurons increases (higher values of
Ugr), recurrent inhibition of excitatory neurons decreases and the responses of excita-
tory neurons increase. This is reflected in a large positive value for the coefficient bg;.
Other coefficients are less intuitive: the depression parameter for excitatory to inhibitory
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connections (Ujg), for example, has a negative contribution to the preferred orientation
shift while the depression parameter for inhibitory to excitatory connections (Ug) has
a positive contribution (Figure 5.7B, second panel).

In summary, linear regression analysis provides a quantitative description of how
each model parameter influences each tuning property of the model network. This
description is useful because it reveals the effects that synaptic depression exerts on
recurrent processing.

5.4. Mechanisms underlying orientation tuning changes

To this point, we explored the entire space of possible network models by varying
the synaptic depression parameters and analyzed the average changes that adaptation
induces in the network models. Now we take closer look at one typical admissible model
(the one marked by a red cross in Figure 5.4A) and examine its response properties in
more detail. We first analyze the adaptive changes of the population response and of the
tuning curves of individual cells. Finally, we focus on the mechanism underlying the
stronger adaptive shifts close to pinwheel centers.

Population responses of the network

Figure 5.8 shows the population response of the selected admissible network model
to two different test stimuli, after adapting to a stimulus with 0° orientation. If the
test stimulus has the same orientation as the adapting stimulus (Figure 5.8A,B), the
adaptive changes in the population response are symmetric around this orientation. The
dominant effect is a suppression of the firing rate responses of neurons with a preferred
orientation close to the adapting orientation, resulting in a suppression of the population
response. This is true for orientation domain cells (0.6 < map OSI < 0.9) as well as for
pinwheel center cells (map OSI < 0.3). If, on the other hand, the orientation of the test
stimulus differs from the adapting stimulus (Figure 5.8C,D), the population response
becomes asymmetric. Furthermore, the cell that fires strongest in response to the test
stimulus has a preferred orientation (as determined in the control condition) that is
different from the test stimulus orientation of 33.75°. The reason is that neurons with a
preferred orientation close to the adapting orientation (0°) fire strongly in the adaptation
phase. Hence, synapses originating from these neurons depress. Since neurons with a
preferred orientation close to the adapting orientation receive many inputs from these
depressed synapses they show more changes in their responses. That is why neurons
with preferred orientation close to the adapting orientation of 0° show more changes in
their responses than neurons close to the orientations —90° and +90°.
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Figure 5.8 | Population responses and perception shifts in a selected admissible network model. A | Firing
rate response of the network to a stimulus of 0° orientation in the control condition, i. e., before adaptation
(on the left), and change of the network response through adaptation to a 0° stimulus (on the right). The
triangle denotes the region in the map where the neurons’ preferred orientation is equal to the orientation of
the adapting stimulus (0°). The response change (on the right) is the difference in firing rate of each cell after
and before adaptation, i. e., negative (positive) values correspond to response suppression (enhancement).
Scale bars at the bottom indicate the firing rate (left) and the difference in firing rate (right). For clarity
only the responses of neurons in one out of the four pinwheels are shown. B | Population responses to
the 0° stimulus as a function of the preferred orientation of neurons, for neurons in orientation domains
(left) and for neurons close to pinwheel centers (right). Each point is the response of one neuron. C, D |
Responses of the network to a stimulus of 33.75° orientation, before and after adaptation to a 0° stimulus.
E | Difference between perceived and true stimulus orientation as a function of the difference between test
stimulus and adapting stimulus. The perceived orientation was estimated from the population responses
using the maximum-likelihood method (green line) and the population-vector method (black line). The
shaded area depicts the SD around the estimate from the population-vector method. F | Shift in perception
evaluated only for cells in orientation domains (left) and close to pinwheel centers (right). The depression
parameters of the selected network model were log Ugg = —0.60, log Uiz = —2.10, log Uy = —1.35 and
lOg UEI = —1.05.
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As can be seen in Figure 5.8D, the population response of orientation domain cells
shifts repulsively away from the adapting stimulus while the population response of
pinwheel cells shifts only marginally. This is surprising: since pinwheel cells show more
pronounced shifts in preferred orientation than orientation domain cells, one would
expect that the pinwheel population response also shows a stronger shift. However,
this intuition is wrong. Repulsive shifts of tuning curves cause attractive rather than
repulsive shifts of the population response (see e. g., Jin et al., 2005). Suppression of
tuning curves near the adapting orientation, on the other hand, causes repulsive shifts of
the population response. In other words, suppression and repulsive tuning curve shifts
have opposite effects on the population response. If suppression and repulsive tuning
curve shifts coexist, as is the case here, a repulsive population response occurs when
suppression dominates. Thus, taking the subset of cells that undergo larger repulsive
tuning curve shifts necessarily results in a weaker population shift.

To quantify the impact of the adaptive reorganization of the population response
on “perception”, we estimated the hypothetical perceived orientation from the popu-
lation responses using the maximum-likelihood and the population-vector method
(Figure 5.8E). Both methods led to similar results that are in qualitative agreement with
the experimentally observed perception shifts (cf. Figure 5.1B). Rather than considering
the whole population of cells, the “perceived” orientation can also be calculated for
subpopulations of orientation domain and pinwheel cells. As can be seen in Figure 5.8F,
the perceptual shift in the population of orientation domain cells is very similar to the
shift observed in the entire population while the perceptual shift in the population of
pinwheel cells is much weaker. The weaker “perception” change calculated from the
pinwheel cells is the consequence of the more pronounced repulsive tuning curve shifts
of pinwheel cells as compared to orientation domain cells, as has been discussed above.

Orientation tuning properties of the network

The adaptive changes of the tuning curves of individual cells are shown in Figure 5.9,
for all cells of the selected admissible network model. Tuning curves shift repulsively
away from the adapting stimulus (Figure 5.9A). The largest shifts are observed for cells
around the pinwheel center. This can be seen more clearly when plotting the shifts as a
function of map OSI (Figure 5.9A, middle panel; see Figure 5.1F for the experimental
data). We also plotted the shifts in preferred orientation against the difference between
adapting and control-preferred orientation (Figure 5.9A, right panel; see Figure 5.1C for
the experimental data). Interestingly, pinwheel cells exhibit larger shifts for a broader
range of orientation differences, as has been found experimentally (Dragoi et al., 2001).
This experimental finding was not used in the selection of admissible network models.
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Figure 5.9 | Adaptive changes of orientation tuning curves for cells in a selected admissible network model.
A | Change in the preferred orientation after adaptation is plotted for each cell at the corresponding location
in the orientation map (left), as a function of map OSI (middle) and as a function of the difference between
testing and adapting stimulus (right). Positive numbers indicate repulsive shifts away from the adapting
stimulus. The triangle indicates the position in the map where the neuron’s preferred orientation is equal
to the adapting stimulus (0°). For clarity only the responses of neurons in one out of the four pinwheels are
shown. Each point in the middle and the right panel corresponds to the tuning curve shift of one neuron.
B | Adaptation-induced changes in maximum firing rate relative to the control condition. Changes were
calculated for each neuron as the ratio of the maximum firing rate in response to any of the presented
stimuli after adaptation and the maximum response in the control condition (before adaptation). Values
greater (smaller) than 1 indicate facilitation (suppression). C | Adaptive changes in the width of tuning
curves, measured as the half-width at half-height. The changes were calculated for each neuron as the
ratio of the tuning width after and before adaptation. Values greater (smaller) than 1 indicate broadening
(sharpening) of a cell’s tuning curve through adaptation. The depression parameters of the selected network
model were log Ugg = —0.60, log Ug = —2.10, log Ur; = —1.35 and log Ug; = —1.05.
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While the tuning curve shifts depend on the map OSI as well as on the orientation
difference, the magnitude of the response changes (Figure 5.9B) is mainly determined
by the difference between adapting and control-preferred orientation and depends only
weakly on the map OSI. The dependency on the orientation difference is very similar
between the model and the experimental data (see Figure 5.1D).

Finally, the selectivity of tuning curves (Figure 5.9C) also changes as in the experimen-
tal data (Figure 5.1E): tuning curves of neurons with preferred orientation close to the
adapting orientation show broadening while tuning curves of neurons far away of the
adapting orientation show sharpening. The adaptive sharpening is more pronounced
in cells close to pinwheel centers. It would be interesting to test if this characteristic
difference between orientation domain and pinwheel center can also be found in the
experimental data. However, the tuning width changes are rather small so that the
22.5° spacing of the stimuli used in Dragoi et al. (2001) could make it difficult to detect
differences between pinwheel and orientation domain cells.

In summary, we find a good agreement of experimental data and model results, for
the adaptive changes in the perceived orientation and the tuning curve properties. This
agreement goes beyond the criteria used for the selection of admissible models, that
were based on the comparison of average values rather than the detailed comparison of
the dependencies on orientation difference and map location.

Dependence of adaptation-induced changes in orientation tuning on map location

We have shown that the network models - depending on the synaptic depression
parameters — can show more pronounced adaptation-induced changes close to pinwheel
centers, as has been found experimentally. In oder to shed light on the mechanisms that
underlie the stronger effect of adaptation on pinwheel cells, we now examine how the
tuning curve shifts of model neurons depend on the local cortical interactions.

To illustrate the map-dependence of adaptation, we picked out two neurons: one “pin-
wheel neuron” (PW) close to the pinwheel center and one “orientation domain neuron”
(OD) far from the pinwheel center (Figure 5.10A). While both neurons have the same
preferred orientation (22.5°), the map OSI of the PW neuron is much lower than the
map OSI of the OD neuron (0.13 vs. 0.83; Figure 5.10B). Despite this difference in the
local neighborhood, the firing rates of both neurons are sharply tuned (Figure 5.10C, D;
cf. Marifo et al., 2005). The firing rate tuning curve of the PW cell shows a pronounced
shift away from the adapting orientation, whereas the shift of the OD cell is only modest
(shift magnitudes 8.5° vs. 2.0°). In the control condition, the recurrent as well as the
afferent synaptic inputs of both the OD and the PW neuron are aligned to the preferred
orientation of the firing rate tuning curve (Figure 5.10E, F). The synaptic inputs of the
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Figure 5.10 | Adaptive changes in orientation tuning of individual cells in the selected network model.
A | Part of the artificial orientation preference map showing one out of the four pinwheels. The color of
each pixel denotes the preferred orientation (before adaptation) of cells located at that pixel (colored bars
at the right). OD (PW) denotes a representative cell from an orientation domain (close to a pinwheel
center). Both cells have a preferred orientation of 22.5°, indicated by the dotted line. B | Map OSI of the
artificial orientation map. The map OSI of the cell at location PW is much lower than the map OSI of
the cell at location OD (0.13 vs. 0.83). C, D | Tuning curve of the firing rate of the OD cell (C) and the
PW cell (D) before (dotted line) and after adaptation (solid line). The tuning curves and the triangle
denoting the orientation of the adapting stimulus (0°) were shifted such that the peak response before
adaptation is at 0°. E, F | Tuning curve of the recurrent excitatory (red lines) and the recurrent inhibitory
(blue lines) inputs of the OD cell (E) and the PW cell (F). Dotted (solid) lines depict the tuning curves
before (after) adaptation. All input tuning curves were normalized to the maximum of the afferent input.
The afferent input (black lines) has the same strength for both pinwheel and orientation domain cells.
Tuning curves were shifted as in (C) and (D). The depression parameters of the selected network model
were log Ugg = —0.60, log Ui = —2.10, log Uy = —1.35 and log Ug; = —1.05.
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5. Orientation adaptation in a network model of V1

OD neuron are well-tuned, reflecting the fact that the OD neuron mainly integrates
synaptic inputs from neurons with similar preferred orientations. Through adaptation,
recurrent synapses depressed and the excitatory and inhibitory inputs to the OD neuron
decreased (Figure 5.10E). Since the OD neuron and its neighboring neurons prefer
similar orientations, adaptation causes only little inhomogeneity in the synaptic inputs.
The PW neuron, however, integrates synaptic inputs from neurons with a broad range
of preferred orientations. After adaptation, only synapses originating from neurons
with preferred orientations close to the adapting orientation show strong depression.
Hence, the synaptic inputs of the PW neuron are completely modified after adaptation
(Figure 5.9F): synaptic inputs decrease for test orientations close to the adapting orienta-
tion and increase for orientations far away from the adapting orientation. The preferred
orientation of the input tuning curves after adaptation is different from the preferred
orientations of the input and the firing rate in the control condition. Furthermore, it
seems that the recurrent inputs became slightly more orientation-selective.

Figure 5.11 shows the map-dependences of the adaptation-induced changes in orienta-
tion tuning for neurons with preferred orientation 22.5° and map OSIs between 0.04 and
0.93 (cf. the dotted line in Figure 5.10A). The figure confirms that the shift in preferred
orientation of the firing rate and the synaptic inputs decreases with the distance to the
pinwheel center (Figure 5.11A, B), and that the tuning of synaptic inputs indeed got more
selective close to the pinwheel center (Figure 5.11C). It has been shown experimentally
(Dragoi et al., 2000, 2001), that the shifts of the firing rate tuning curve are characterized
by suppression of the responses on the flank of the tuning curve towards the adapting
stimulus (near flank) and by facilitation of the responses on the flank of the tuning curve
away from the adapting stimulus (far flank). Figure 5.11D-E shows that in the model
adaptation also led to a suppression of firing rates for the preferred orientation (Fig-
ure 5.11D, top panel) and the near flank (Figure 5.11E, top panel) of the tuning curve. For
the far flank of the tuning curve (Figure 5.11F, top panel), the magnitude of the changes
in firing rate is related to the map OSI: responses of neurons close to the pinwheel center
are facilitated, whereas responses of neurons in the orientation domain are slightly
suppressed. Through adaptation, the magnitude of recurrent excitatory and inhibitory
inputs (Figure 5.11D-E, bottom panel) decreased at the center as well as on the near and
far flanks of the tuning curves. At the center and on the near flank recurrent inhibition
dominates recurrent excitation after adaptation, leading to the observed decrease in
firing rate. At the far flank, however, recurrent excitation became slightly stronger than
recurrent inhibition, for small map OSIs, leading to response facilitation. In summary,
we find that the broader orientation distribution of intracortical inputs to neurons close
to pinwheel centers results in larger adaptive changes in orientation tuning of synaptic
inputs and firing rates of these neurons.
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Figure 5.11 | Adaptive changes in orientation tuning properties for cells with 22.5° preferred orientation as
a function of map OSI. The position in the orientation map of these cells in given by the dotted lines in
Figure 5.10A, B. A | Preferred orientation of the cells in the adapted (solid line) and the control (dotted line)
condition. The value of the preferred orientation in the control condition (22.5°) was subtracted before
plotting. Preferred orientation was calculated from the firing rates using vector averaging. B | Difference
between the preferred orientation of the recurrent excitatory and inhibitory inputs and the preferred
orientation of the firing rate in the control condition. In the control condition, the preferred orientation
of the recurrent excitatory and inhibitory inputs are both aligned to the firing rate (dotted line at 0°). In
the adapted condition, the preferred orientation of recurrent inputs is shifted away from the preferred
orientation (solid lines). C | Selectivity of the recurrent inputs before (dotted lines) and after (solid lines)
adaptation, measured using the OSI. D | Firing rate (top) and synaptic inputs (bottom) in response to the
preferred stimulus in the control condition (22.5°), before (dotted lines) and after (solid lines) adaptation.
E | Firing rate (top) and synaptic inputs (bottom) on the “near” flank of the tuning curve, i. e., the flank
of the tuning curve where the adapting stimulus is located. Shown are the responses to a —16.5° stimulus
which evokes a firing rate before adaptation that is approximately 50 % of the maximum response. F |
Firing rate (top) and synaptic inputs (bottom) on the “far” flank of the tuning curve, i. e., the opposite flank
with respect to the adapting stimulus. Again, as in (E), the presented stimulus orientation was chosen so
that the firing rate before adaptation is approximately 50 % of the maximum response (stimulus orientation
61.5°). The adapting orientation was 0°. The depression parameters of the selected network model were
log Ugg = —0.60, log Uig = —2.10, log Uyr = —1.35 and log Ug; = —1.05.
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5. Orientation adaptation in a network model of V1

5.5. Discussion

We used mechanistic models of orientation tuning to investigate the neural substrates
that underlie temporal context effects (orientation adaptation) in primary visual cortex.
As a plausible underlying mechanism, we focused on intracortical synaptic depression
and used experimental data concerning both adaptive changes in orientation tuning
(Dragoi et al., 2000, 2001; Jin et al., 2005) and changes in perception (Mitchell and
Muir, 1976; Clifford et al., 2000) to constrain the strengths of the synaptic depression
parameters. Consistent with in vitro data, our results provide strong evidence for those
network models where excitatory-to-excitatory synapses depress more than excitatory-
to-inhibitory synapses and inhibitory-to-excitatory synapses.

Exploration of the model parameter space and model selection

We simulated more than 50 000 network models with different combinations of synaptic
depression strengths, and selected approximately 1000 models that were consistent with
the physiological and psychophysical experimental data. Using connected component
analysis, we showed that this set of admissible models forms a single connected “island”
in parameter space. This means that the model class is robust against changes in the
synaptic depression parameters: given an admissible network model its neighbors in
parameter space are most likely also part of the “island”. Thus, when the depression
parameters are altered slightly, the behavior of the network will be preserved and,
importantly, remain consistent with the experimental data. Moreover, the finding
that there is only one connected component of admissible models in parameter space
suggests an underlying relationship between the four parameters governing synaptic
depression. Indeed, we found that the model parameters are correlated. For instance,
the strengths of synaptic depression of excitatory synapses targeting excitatory and
inhibitory neurons can vary in a broad range, but in order to achieve tuning curve
changes consistent with experimental data, the synapses targeting inhibitory neurons
must undergo less depression than the synapses targeting excitatory neurons. This
finding is in agreement with in vitro data showing that connections from pyramidal
cells to fast spiking interneurons show little depression or even facilitation (Thomson
and Deuchars, 1997).

Linear regression analysis provides a compact description of how the model properties
vary as a function of the model parameters. For instance, it shows that increasing
the depression strength of excitatory-to-excitatory synapses leads to larger repulsive
tuning curve shifts, whereas increasing depression strength of excitatory-to-inhibitory
depression leads to smaller shifts. This analysis complements the intuitive visualization
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provided by dimensional stacking plots, and helps to understand how each model
parameter influences processing in the recurrent network, giving rise to tuning curve
changes. In principle, this description could also be used to predict the changes we
would expect for altered synaptic plasticity in real cortical networks.

Our systematic exploration of the network model parameter space is in contrast
to the traditional hand tuning of model parameters. Of course, the robustness of
hand-tuned models can be investigated by performing a sensitivity analysis around the
chosen parameter combination; however, our approach directly yields the complete
space of models able to account for the experimental data. This allows determining
the robustness (i. e., how narrowly parameters have to be tuned to produce a specific
behavior) and sensitivity to parameter changes of the network under study. Similar
parameter explorations have been used to characterize the conductance space of detailed
single cell models (Goldman et al., 2001; Prinz et al., 2003; Taylor et al., 2009) or the
space of synapse strengths and neuron properties of a small networks composed of three
neurons (Prinz et al., 2004; Marder et al., 2007), but applications to larger networks are
rare.

Interestingly, our set of admissible models shares a common property with the param-
eter spaces of single cell modeling studies: in both single cell and network models many
different parameter combinations can give rise to similar patterns of neural activity. This
has been confirmed experimentally in the case of the pyloric network of the crustacean
stomatogastric ganglion, where identified neurons have similar response properties
from animal to animal although the conductance densities of specific ion channels show
variations as large as 2-5 fold from animal to animal (Marder et al., 2007). Together,
these results suggest that the parameters of neurons and networks need to co-vary, but
they need not be tightly tuned to specific values. This is important for understanding
the robustness and sensitivity of neural systems.

Sensitivity to modulations of the balanced recurrent operating regime

We showed that a network model operating in a highly recurrent regime — with strong,
balanced recurrent excitation and inhibition - reproduces the experimentally observed,
adaptation-induced changes in orientation tuning. But is this particular operating
regime really a necessary precondition - or could a network operating in a different
regime, with appropriately chosen synaptic depression parameters, lead to similar
results? We repeated the parameter exploration and the selection of admissible models
for networks with weaker recurrent excitatory connections and for networks with
stronger recurrent inhibitory connections. A decrease of the excitatory connection
strength Sgg by 10 % leads to an average tuning curve shift of 3.5° for the optimal choice
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5. Orientation adaptation in a network model of V1

of synaptic depression parameters (i. e., for the depression parameters yielding the
highest tuning curve shifts for the network with reduced Sgg) as compared to 5.5° for
the balanced network. Proportional to a decrease of Sgg, the tuning curve shifts decrease
turther (20 % decrease of Sgg: 2.2° average shift, 30 % decrease of Sgg: 1.3° average shift).
A similar relationship holds for an increase of the connection strength from excitatory
to inhibitory neurons (Sig): an increase of Sig of 10 % (20 %, 30 %) leads to an average
tuning curve shift of 3.8° (2.9°, 2.7°). Thus, only the balanced recurrent regime can
replicate the magnitude of the experimentally observed tuning curve shifts (average
shift in the experimental data: 5.8°, balanced recurrent network: 5.5°).

We have shown in the two previous chapters (see also Wimmer et al., 2009; Stimberg
et al., 2009) that only the balanced recurrent operating regime is consistent with ex-
perimentally measured subthreshold and superthreshold orientation tuning properties
and with the temporal response characteristics of V1 neurons. Recurrent processing in
this regime leads to a slight sharpening of orientation tuning and to an amplification of
the firing rate response. One might argue that this is a rather modest computational
contribution of the extensive recurrent network. However, here we demonstrated a
further benefit of the highly recurrent operating regime: it makes network processing
sensitive to modulation of intracortical synaptic strengths. In fact, the modification
of synaptic strengths, caused by adaptation, can be seen as a local alteration of the
operating regime. Through this alteration, excitation and inhibition are no longer in
balance, the recurrent synaptic inputs to V1 neurons are reorganized, and orientation
tuning properties modified. Based on this, one may expect the local recurrent circuit to
play a critical role in mediating other forms of bottom-up or top-down modulations,
such as attention (McAdams and Maunsell, 1999), spatial context (Seriés et al., 2003) or
internal states (Sharma et al., 2003) as well.

Biological plausibility of the model

One limitation of our study concerns the experimental data used to constrain the param-
eters of the network model: the tilt aftereffect was measured in human psychophysics
experiments, the physiological tuning curve changes, on the other hand, were measured
in V1 of anesthetized cats. However, orientation adaptation has also been documented
in monkey (Miiller et al., 1999; Dragoi et al., 2002), which, given the similarities of
cortical organization across species, makes it likely that orientation adaptation of V1
neurons also occurs in humans.

An assumption of our model is that adaptation causes depression of intracortical
synapses. There is ample experimental evidence for synaptic plasticity in vitro (Abbott
et al., 1997; Tsodyks and Markram, 1997; Varela et al., 1997). Furthermore, both short-
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term synaptic depression and orientation adaptation occur at multiple time scales, from
tens of milliseconds to seconds (synaptic depression: Galarreta and Hestrin, 1998; Varela
et al., 1999; Zucker and Regehr, 2002; orientation adaptation: Felsen et al., 2002; Miiller
et al., 1999; Dragoi et al., 2000, 2002). However, the strength of intracortical synaptic
depression in vivo is unclear: Reig et al. (2006) found that synaptic depression in cat
V1 in vivo is comparable to synaptic depression in slowly oscillating slices but weaker
than in silent slices. While a study in rat barrel cortex found no evidence for depression
of intracortical synapses (Chung et al., 2002), another recent in vivo study in cat visual
cortex is consistent with depression of intracortical synapses (Boudreau and Ferster,
2005).

In order to account for the adaptive changes in orientation tuning, the depression
parameters of different types of synapses have to obey certain relationships in our
model. First, in almost all admissible models, depression must be stronger for the
excitatory synapses onto excitatory neurons than for excitatory synapses onto inhibitory
neurons. This is in agreement with in vitro data (Thomson and Deuchars, 1997). Second,
depression of excitatory synapses onto excitatory neurons is stronger than depression of
inhibitory synapses onto excitatory neurons in all admissible models. This differential
(asymmetric) depression of excitatory and inhibitory synapses is again consistent with
experimental data (Galarreta and Hestrin, 1998; Varela et al., 1999). Thus, the network
models that achieve plausible tuning curve changes rely on plausible underlying synaptic
depression strengths. However, we cannot rule out that other mechanisms, such as
reduction in the neuronal excitability (Carandini and Ferster, 1997; Sanchez-Vives et al.,
2000a,b) also contribute to orientation adaptation in V1 neurons (as in the case of
contrast adaptation).

For simplicity, afferent synapses do not undergo synaptic depression in our model.
This can be justified by experimental data indicating that synaptic depression of thala-
mocortical synapses is weaker than depression of intracortical synapses (Yoshimura
et al., 2000). Furthermore, there is experimental evidence (in vivo) that thalamocortical
synapses are already maintained at high levels of depression by spontaneous activity
(i. e., there is little additional depression; Boudreau and Ferster, 2005).

Our general assumption that the intracortical circuit mediates the dynamic modifi-
cation of orientation tuning is supported by experimental evidence. First, adaptation-
induced tuning curve shifts are not spatial-phase dependent (Felsen et al., 2002; Dragoi
et al,, 2000). This is inconsistent with a feed-forward orientation tuning model in which
adaptation reduces the afferent input (e. g., by suppression of the responses of LGN cells
or by depression of thalamocortical synapses), because this model predicts that changes
in orientation tuning of V1 cells depend on the spatial phase of the stimulus (Felsen
et al., 2002). Second, adaptation-induced shifts of cells close to pinwheel centers are

85



5. Orientation adaptation in a network model of V1

larger compared to cells in orientation domains (Dragoi et al., 2001). It is unclear how
this map-dependence could be explained in a feed-forward model that does not take
into account lateral intracortical interactions. Together, these findings strongly suggest
that the intracortical circuit provides the substrate for orientation adaptation.

Conclusions

Depending on the strength of the synaptic depression for the different types of connec-
tions (excitatory and inhibitory synapses targeting excitatory and inhibitory neurons),
adaptation in our network model leads to suppression or enhancement of firing rates,
broadening or sharpening of tuning widths, and repulsive or attractive shifts in preferred
orientation. For a given parameter regime, the exact modification that a tuning curve
undergoes is determined by the difference between the preferred orientation of the
neuron and the orientation of the adapting stimulus, as well as by the position of the
neuron in the orientation preference map. We demonstrated that a range of models -
with realistic synaptic depression strengths - is consistent with the experimental data on
orientation tuning changes in V1; specifically, the models are consistent with repulsive
post-adaptation shifts of orientation tuning curves. However, differently parameterized
models can also reproduce attractive shifts of orientation tuning curves, as have been
observed in area MT (Kohn and Movshon, 2004). We thus predict that if synaptic de-
pression underlies orientation adaptation in V1 and in MT, synaptic depression strengths
and their relationship should be different in both areas.

We also investigated how the tuning curve shifts of model neurons depend on a
neuron’s position in the orientation preference map. As has been found experimentally
(Dragoi et al., 2001), adaptation-induced shifts of tuning curves are more pronounced
close to pinwheel centers. In the model, the larger shifts naturally arise from the spatial
isotropy of local recurrent connections (Marifio et al., 2005): Since cells close to pinwheel
centers have neighboring cells covering the whole range of preferred orientations they
receive broadly tuned recurrent inputs, while cells in orientation domains receive sharply
tuned recurrent inputs. The broadly tuned recurrent inputs make pinwheel cells more
sensitive to modulations. Through adaptation, synaptic inputs of pinwheel cells decrease
for test orientations close to the adapting orientation and increase for orientations
away from the adapting orientation, causing strong repulsive shifts of the firing rate
tuning curves. Orientation domain cells, however, receive strong recurrent inputs only
from cells with similar orientation preferences; adaptation can therefore not lead to
strong inhomogeneities in synaptic inputs, and the main effect of adaptation is response
suppression rather than large tuning curve shifts. Our results suggest that top-down
influences and spatial context effects too will be modulated through the local cortical
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circuit and therefore be related to a neuron’s position in the orientation map.

In order to determine how the adaptive reorganization of tuning curves influences
the “perceived” orientation, we analyzed the population responses of the network after
adaptation. We confirmed previous results from a theoretical study (Jin et al., 2005),
showing that response suppression around the adapting stimulus and repulsive tuning
curve shifts have opposite effects on the perceptual bias: suppression leads to repulsive
perception shifts, and repulsive tuning curve shifts lead to attractive perception shifts.
An interesting consequence of this antagonistic effect is that if we read out the perceived
orientation taking into account only cells close to pinwheel centers, the perceptual
bias (the tilt aftereffect) is weaker than if we take into account only cells in orientation
domains. Thus, while individual pinwheel cells show larger shifts than orientation
domain cells, they are actually contributing less to the change in perception.
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Recapitulation

We set up a two-dimensional firing rate model of orientation tuning in V1 and asked how
the strength of depression of the different types of intracortical synapses (excitatory and
inhibitory synapses onto excitatory and inhibitory neurons) influences recurrent pro-
cessing. We simulated orientation adaptation and compared the changes in orientation
tuning predicted by the model to physiological and psychophysical data.

Our modeling results support the following conclusions: (i) Synaptic depression is a
plausible mechanism underlying orientation adaptation in V1. We found that networks
in a compact region of the model parameter space give rise to changes in orientation
tuning and perceptual read-out that are consistent with experimental findings. The
synaptic depression parameters within these region are consistent with differential
synaptic depression found in vitro. (ii) The magnitude of experimentally observed shifts
in orientation tuning provides strong support for a highly recurrent, balanced operating
regime of the network, in which adaptation perturbs the balance between excitation and
inhibition. We showed that for network models with decreased excitation or increased
inhibition the adaptive shifts are diminished. (iii) The model also provides a simple,
mechanistic explanation for the larger shifts close to pinwheel centers: pinwheel cells
receive recurrent inputs tuned to a broader range of orientations than orientation domain
cells. They are thus more sensitive to response changes of their neighboring cells. This
result also stresses the importance of taking into account the local cortical architecture
through which response modulations in individual neurons, be it through intrinsic,
feed-forward, long-range, or top-down mechanisms, can give rise to a reorganization of
the responses of a whole neural population.

Here, we have focused on a mechanistic explanation of adaptive changes in orientation
tuning and on the tilt aftereffect. It has recently been found (Gutnisky and Dragoi, 2008)
that adaptation also influences the structure of noise correlations across the whole
population of V1 neurons. Thus adaptation affects population coding beyond a mere
reorganization of firing rate tuning curves. The models that we have developed here
(see also Chapter 3 and Chapter 4) are consistent with a large range of experimental data
and can serve as a solid starting point for investigating population coding, including
the role of adaptive changes in correlations and the underlying mechanisms.
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6. Adaptation and selective information transmission in the
cricket auditory neuron AN2

This chapter is based on Wimmer et al. (2008).

Abstract

Sensory systems adapt their neural code to changes in the sensory environment, often
on multiple time-scales. Here, we report a new form of adaptation in a first order
auditory interneuron (AN2) of crickets. We characterize the response of the AN2
neuron to amplitude-modulated sound stimuli, and find that adaptation shifts the
stimulus-response curves towards higher stimulus intensities, with a time constant of 1.5
seconds for adaptation and recovery. We then address the question whether adaptation
leads to an improvement of the signal’s representation and compare the experimental
results with the predictions of two competing hypotheses: infomax, which predicts
that information conveyed about the entire signal range should be maximized, and
selective coding, which predicts that “foreground” signals should be enhanced while
“background” signals should be selectively suppressed. We test how adaptation changes
the input-response curve when presenting signals with two or three peaks in their
amplitude distributions, for which selective coding and infomax predict conflicting
changes. By means of Bayesian data analysis, we quantify the shifts of the measured
response curves and also find a slight reduction of their slopes. These decreases in
slopes are smaller, and the absolute response thresholds are higher than predicted by
infomax. Most remarkably, and in violation of the infomax principle, adaptation actually
reduces the amount of encoded information when considering the whole range of input
signals. The response curve changes are also not fully consistent with the selective coding
hypothesis: while less information is transmitted about signals with lower intensity the
amount of information conveyed about the loudest part of the signal does not increase
as predicted but remains nearly constant.

6.1. Introduction

Efficient encoding of natural signals is one of the major tasks sensory pathways have
to accomplish. In order to do this, neural representation should be matched to the
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relevant part of incoming signals. Statistical properties of incoming signals are highly
variable in a natural environment (e. g., the mean light level changes dramatically from
a sunny region to a dark forest) but are mostly changing slowly over time (Nelken
et al,, 1999). Since the neural representation in sensory cells is limited to a certain
range and resolution, the principle of efficient coding suggests that the nervous system
should continually adapt its responses to changing statistical properties of the stimuli
(Barlow, 1961). Firing rate adaptation changes the input-response curves of neurons
in sensory pathways and has been shown to provide a mechanism for the adjustment
of the encoding scheme in multiple systems (Baccus and Meister, 2002; Brenner et al.,
2000; Dean et al., 2005; Fairhall et al., 2001; Maravall et al., 2007; Nagel and Doupe,
2006; Solomon et al., 2004). How the input-response curve is altered in response to a
given stimulus should depend on what the relevant information is in the given context.

Here, we want to explore the response properties of a single cell (AN2) in the auditory
pathway of crickets and test for two different principles that have been proposed to
underlie adaptation of the input-response curve: the principle of maximum information
preservation (infomax, Linsker, 1988) and that of selective coding (Sobel and Tank, 1994).
The AN2 neuron provides an ideal model for studying the computational principles
underlying adaptation, since (i) it receives direct input from auditory receptors and
local interneurons at the first processing level (Hennig, 1988), (ii) on present evidence,
it constitutes the only ascending representation of the auditory environment in the
high frequency channel and thus a bottleneck for information transmission to higher
centers (Horseman and Huber, 1994a,b; Wohlers and Huber, 1982), and (iii) it has a
clear behavioral role because it is intimately involved in evasive behavior in response to
ultrasonic signals (Marsat and Pollack, 2006; Nolen and Hoy, 1984; Pollack and Martins,
2007). Several time constants of adaptation in the range from below 100 ms to several
seconds are known for the receptor cells (Givois and Pollack, 2000), local interneurons
(Pollack, 1988) and the ascending neurons (Benda and Hennig, 2008; Samson and
Pollack, 2002) in this model system. Since auditory processing at the stage of the AN2
neuron is mainly feed-forward, adaptation is likely driven by the stimulus only rather
than by task-dependent top-down processes.

The above mentioned principles lead to conflicting hypotheses about changes of
the input-response curve when more than one “signal” is present in an environment
(Figure 6.1). Following the infomax principle, the input-output transformation (the
neuronal response curve) should maximize the information transmission between the
neural representation and the stimulus. The optimal response curve depends on the
statistical properties of the input signals, but internal noise and constraints on the
possible changes limit the amount of information that can be conveyed.

The infomax principle leads to the theoretical result that the derivative of the response
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Figure 6.1 | Optimal sigmoidal stimulus response curves (solid lines) for a stimulus distribution consisting
of three peaks (shaded areas) as predicted by two coding hypotheses. A | Infomax: the dynamic range
of the adapted response curve covers the whole range of input signals. Note that the optimal sigmoidal
response curve is shown; generic optimal transmission would be attained by a response curve that has a
derivative proportional to the local stimulus distribution. Such a response curve would be steep within
peaks of the stimulus distribution and much flatter in between, thus it would be more staircase-like. B |
Selective coding: the response function optimally represents the most intense signal (light gray) whereas
other signals (dark gray) are suppressed.

curve should be proportional to the probability distribution of the stimuli, so that all
available signals in a given environment are represented and every possible output
rate occurs with equal probability. Laughlin (1981) tested this prediction and showed
that contrast response curves in the fly visual system are matched to the statistics of
natural images in order to maximize information transmission. Similar results have
been reported for contrast response curves of retinal and LGN neurons in cat and
monkey (Tadmor and Tolhurst, 2000). Information maximization can explain retinal
coding in the spatial, temporal and chromatic domain (Atick, 1992).

A consequence of the infomax principle is that a change in the statistics of the sensory
input must be compensated by a change in the input-response curve. Experimental
evidence from the motion-sensitive HI neuron in the fly supports this hypothesis:
this neuron adapts its response curve to changing statistics of stimuli on several time
scales (Brenner et al., 2000; Fairhall et al., 2001), in a way which is compatible with the
infomax prediction. Experiments have also shown that adaptation enhances information
transmission in visual cortex (Sharpee et al., 2006). Sharpee et al. estimated neural
filters for the responses to natural inputs and to noise inputs matched for luminance
and contrast, showing that neural filters adaptively changed with higher order statistics
of input signals, so as to increase the mutual information between stimulus and neural
response. Theoretical work also suggested that contrast adaptation in the mammalian
visual system (Baccus and Meister, 2002; Solomon et al., 2004; Carandini, 2000; Kohn
and Movshon, 2003; Ohzawa et al., 1985) can be understood as a consequence of the
infomax principle (Adorjan et al., 1999b; Schwabe and Obermayer, 2003). However, it
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6. Adaptation in the cricket auditory neuron AN2

is difficult to quantify the role of adaptation in enhancing coding efficiency at higher
stages in vertebrate sensory pathways since in these, coding is distributed among large
populations of neurons and their responses are modulated by the activity of other
neural populations or brain areas. Thus, simple sensory networks of invertebrates,
whose representation are not heavily influenced by feedback signals, may provide a
more suitable model to understand the computational principles underlying sensory
adaptation.

An alternative principle that may underlie adaptation is selective coding (or “back-
ground suppression”), a form of temporal inhibition in which a loud sound suppresses
the response to subsequent sounds. This could serve to segregate a single, most impor-
tant signal from other signals or background noise. It has been shown that an auditory
interneuron (ONI) represents mainly the louder part of a stimulus with a bimodal
intensity distribution (Pollack, 1988). Calcium aggregation in the omega neuron is a
possible mechanism underlying this background suppression (Sobel and Tank, 1994;
Baden and Hedwig, 2007). Similar findings have been made in bushcrickets: while
multiple songs in choruses of singing males are present, only the most intense song was
found to be represented in the auditory pathway (Romer and Krusch, 2000). These
previous studies, however, address the phenomenon only qualitatively and not under
the viewpoint of an encoding scheme and information transfer. Segregation of different
auditory objects into different channels has also been studied in vertebrate hearing (Las
et al,, 2005; Nelken, 2004; Ulanovsky et al., 2003). In vertebrates, however, modulation of
carrier frequency is assumed to play a crucial role in this stream segregation (Joris et al.,
2004), complicating a detailed analysis. Information conveyed by carrier frequency
modulation is very limited in crickets, as they possess only two broadly tuned frequency
channels, one in the range around the carrier frequency of the calling songs (5 kHz)
and another one mainly for frequencies above (12 kHz). Thus, crickets provide an ideal
model system to study object-background segregation - in this simple auditory system,
for a given frequency range, an auditory object can simply be seen as the loudest peak
in the entire stimulus distribution.

The questions we sought to answer were: How does the neural response curve adapt to
the statistics of the acoustic environment? Can this sensory system be characterized as a
communication channel optimized for coding the inputs such that as much information
as possible is preserved (infomax principle)? Or does the system perform a preprocessing
that leads to a high fidelity representation of only the loudest part of the stimuli (selective
coding)? To address these questions, we measured the neural response curve of AN2
neurons after adaptation to sound stimuli with either two or three peaks in their intensity
distribution, depicted in Figure 6.1. The two principles studied here predict conflicting
changes of the form of the input-response curve when presenting a stimulus composed
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of more than one signal. Optimal selective coding should lead to a shift of the response
curve in a way that only the peak with the highest intensity is represented (Figure 6.1B).
If infomax is the underlying principle, adaptation pursues the objective to maximize
the information that the neuron’s output conveys about its sensory input. Adaptation
should thus change the response curve in a way that the whole stimulus range is encoded
reliably (Figure 6.1A).

Firing rate adaptation can change the stimulus-response curve basically in two ways
(Benda and Herz, 2003): shifting the threshold to larger intensities and changing the
slope of the curve. We first compare the experimentally observed changes in the slope
and the shift in response curves to the optimal changes predicted by the two competing
hypotheses. Differences between model prediction and data, however, do not necessarily
imply that a particular hypothesis is unlikely to be true, because additional constraints
may limit the potential of tuning curve changes. Therefore, in a second step, we calculate
the mutual information between the sensory input and the neuronal response using the
measured response curves. The infomax principle predicts that the mutual information
between a particular stimulus distribution and the response should be highest for the
response curve that is adapted to the stimulus distribution. The response curve adapted
to the stimulus with three peaks should encode the three-peak stimulus better than
the response curve adapted to the stimulus with two peaks. Selective coding, on the
other hand, predicts, that the mutual information should decrease for the “background”
signals and should increase for the most intense peak.

6.2. Experimental methods

All experiments were performed by K. Jannis Hildebrandt and R. Matthias Hennig. Here
we briefly summarize the experimental methods that are necessary as a background for
this chapter. For a more detailed description we refer to Hennig (1988).

Animal preparation

Crickets of the species T. oceanicus and T. leo were used in the experiments to charac-
terize the time course of adaptation. For the experiments with the multimodal stimuli,
mainly T. leo individuals were used. All animals were laboratory reared. For preparation,
both pairs of wings and the meso- and metathoracic legs were removed. The animal
was fixed ventral side up to a small platform and the prothoracic legs with the ears
were waxed to pins at the coxae and the tarsi in a normal walking position. Ascending
and descending connectives from the prothoracic ganglion were cut in order to reduce
neuronal background activity.

93



6. Adaptation in the cricket auditory neuron AN2

RN Ll

200 ms

Figure 6.2 | Typical recording trace from a cricket AN2 neuron (T. oceanicus). The figure shows the voltage
trace during constant stimulation (duration 1s) with a sinusoidal tone of 16 kHz frequency. The shaded
area depicts the spike detection window, bounded by the lower and upper threshold.

Recordings and acoustical stimulation

Two extra-cellular hook-electrodes were made from tungsten wire and placed in parallel
around one of the two connectives ascending from the prothoracic ganglion. These
connectives contain the axon of the ascending interneuron we wanted to record from
(AN2). Vaseline was placed around connectives and hooks in order to isolate the
electrodes electrically and keep the connective from drying out. Spikes of the AN2 were
detected on the basis of the amplitude peaks of the voltage trace using a lower and upper
threshold. Figure 6.2 shows an example recording and the spike detection window.

The recording set-up was lined with sound-absorbing foam to reduce echoes. Acoustic
stimuli were presented through a loudspeaker positioned ipsilaterally to the recorded
connective at a distance of 36 cm. The main input to the AN2 neuron comes from
receptors ipsilateral to the connective that holds its axon.

Stimulus protocols

Figure 6.3 shows the protocol used for characterizing the adaptation process in the
ascending AN2 neuron. The different ensembles of auditory stimuli consist of an
adapting stimulus, a silent interval, and a test stimulus. The intensity of the adapting
stimulus was adjusted in the beginning of the recording depending on the response
strength of the neuron. Normally, the base line intensity of the adapting stimulus had a
sound pressure level of 84 dB or 87 dB. With the term relative intensity we refer to the
stimulus intensity relative to this base line intensity. Adapting stimuli are 16 kHz signals
that were amplitude-modulated by bandpass-filtered Gaussian white noise with 100 Hz
cut-off frequency. The Gaussian noise had a variance 02 = 1.38 dB? and a mean relative
intensity y = 0 dB. Test stimuli were pure sinusoidal tones with a frequency of 16 kHz.
To characterize adaptation, we used adapting stimuli with durations 75 ms, 150 ms,
300 ms, 600 ms, 1200 ms, 2400 ms and 4800 ms (Figure 6.3A). For testing recovery
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|
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1s

Figure 6.3 | Summary of the experimental protocols. A | Adaptation protocol. Amplitude-modulated
noise signals (adapting stimuli with 0 dB average relative intensity) of variable duration (from 75 ms to
4800 ms) are followed by a test stimulus (16 kHz sinusoidal tone) with a duration of 1000 ms and a relative
intensity ranging from —9 dB to +6 dB (several test stimuli are plotted on top of each other). B | Recovery
protocol. Amplitude-modulated noise signals (adapting stimuli) of 5 second duration are followed by a
pause of variable length (from 75 ms to 4800 ms) and a test stimulus as in (A). C | Adaptation protocol for
amplitude-modulated noise stimuli drawn from a bimodal and a trimodal distribution (the corresponding
amplitude distributions are shown in the right panel). Relative intensities of the test stimuli range from
—6dB to +6 dB.
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6. Adaptation in the cricket auditory neuron AN2

from adaptation, the stimuli had a 5 s adaptation phase followed by pauses of varying
durations from 75 ms to 4800 ms (Figure 6.3B).

Motivated by the competing coding hypotheses, we wanted to examine the conse-
quences of adaptation to different ensembles of auditory stimuli demanding different
changes in the stimulus-response curve. We designed multimodal noise-like stimuli
whose amplitude distribution had two or three modes, mimicking auditory scenes with
multiple signals. The amplitude distribution of the bimodal stimulus is composed of
two Gaussian distributions, with mean relative intensity y; = -3dB, y, = 0dB and
variance 2 = 0.2 dB%. The trimodal stimulus has an additional peak modeled by a third
Gaussian distribution with mean y; = +3dB and ¢ = 0.2dB%. An example of these
stimuli is shown in Figure 6.3C, together with the respective amplitude distributions.
The adaptation time was 5s in these experiments and the silent interval before the test
stimulus was 100 ms.

In all experiments, the intensity response curves were determined by sinusoidal
test stimuli with a frequency of 16 kHz and duration of 1s, following the respective
adaptation stimulus. The relative intensities of the test stimuli were -9 dB to +6 dB.
Each stimulus was presented at least five times.

6.3. Bayesian data analysis

We constructed intensity-response curves to quantify the neural response, as shown
in Figure 6.4 and Figure 6.5. Therefore, we used the spike count in a 200 ms time
window beginning 100 ms after test stimulus onset. The window was chosen such that
the influence of the fast adaptation process (time constant of about 40 ms, similar to
the one described for the AN1 neuron by Benda and Hennig, 2008) is minimized. In
the context of this separation of time scales, we are interested only in the coding of
slower stimulus dynamics. Hence we consider responses to unmodulated test stimuli
and measured spike counts within a 200 ms - rather than a short - time window.

A common methodology to construct neuronal response curves is repeating a single
experimental condition several times and then computing the mean of the observed
spike counts and their variance. In a second step, a parametric model is fit to these
data, typically using least-square approximation. Often it is interesting, however, how
the parameters of the response curve change with different experimental conditions,
but the confidence intervals for the model parameters and tests for the significance of
parameter changes are difficult to establish with traditional statistical methods.

Here, we use a Bayesian analysis (Gelman et al., 1995; MacKay, 2003), to account
for the statistics of each trial to estimate the parameters accurately and to quantify the
confidence limits of the parameter estimation. The method allows estimating the full
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6.3. Bayesian data analysis

probability distribution of the response curve parameters rather than only the mean
value as with traditional methods. Similar techniques have been applied successfully to
the analysis of intracellular membrane potential recordings (Gillespie et al., 2001).

Modeling the sound-pressure-level to spike-count relation

The analysis is based on the assumption that spikes are Poisson-distributed and that
individual trials are independent of each other (i. e., their joint probability is equal to
the product of their individual probabilities).

Let x; denote the ith out of m stimulus intensities and #; the number of times a
stimulus with this intensity is presented. The corresponding number of spikes from an
AN2 neuron is denoted by y; ; , where j is the jth out of the n; repetitions. If spikes are
Poisson distributed, we obtain

yi!j =T

r:e
P(yijlri) = =, (6.1)

i,je
where r; is the average spike count underlying the neuron’s response at the ith stimulus
intensity. For a set y; = (i1, ... ¥in, ) of spike counts of n; independent and identically
distributed observations, the likelihood P(y;|r;) of r; being the underlying average

spike count becomes

moop,
P (yilri) = H —'r?/ e (6.2)
j=1 Vi.j*
o< r{(y")e_""r", (6.3)

1

where the likelihood function is determined, up to a constant factor, by the sufficient
statistic

t(yi) = Z Vije (6.4)
j=1

We assume a sigmoid response curve, relating stimulus intensity to spike counts as

A

> 6.5
1+exp(——x"_CB5°) (65)

ri=f(xi)=

where r; is the underlying average spike count of the neuron, x; is the stimulus intensity,
A is maximum response of the cell, Bsg is the stimulus intensity at 50 % of maximum
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6. Adaptation in the cricket auditory neuron AN2
response, and C is a slope factor. Inserting this relationship into Equation 6.3, we obtain
the likelihood P(y;|r;) in terms of the response curve parameters A, Bsp and C:

A t(yi)
1+ exp (—(x; —Bso)/c)]

ex (—n[ A ]) (6.6)
P\ Tvexp (i - Bso) /O |

Let y = (J1,..., ym) be the set of responses to stimuli with different intensities x;,

P()’i|A,BSO, C;-xi) & [

where i =1...m. Applying Bayes’ rule we obtain the joint posterior distribution

P (A, B50, C|y, X) o« P (A, Bso, C) P (y|A, B50, C, X) (67)

k
o< P (A, Bso, C) [ T P (yilA, Bso, C, xi) (6.8)
i=1
of the parameters A, Bs and C, given the observations, where P(A, Bsg, C) is the prior
distribution of the response curve parameters A, Bsg, C. In the following, we will use a
noninformative, uniform prior distribution P(A, Bsy, C) = constant.

Calculating the joint posterior distribution

Following Gelman et al. (1995), the posterior was calculated for a range of A, Bsy and C
values using a grid of 200 x 200 x 200 points and normalized across this grid. Initially a
large parameter space was sampled (e. g., values for the parameter A in the range from
o to three times the maximum observed spike count of the neuron) that was narrowed
to allow finer sampling in the region of non-zero posterior values. To simplify further
analysis we then draw 10 000 independent and identically distributed random samples
(A4, Bso,i» Ci), where i = 1...10000 from the joint posterior probability distribution.
From these samples, we can estimate the posterior distribution of any quantity of interest,
e. g., the posterior distribution of the response curve parameters “location” Bs or of the
“slope” at half of the maximum response:

1
S50 = el (6.9)
The slope S5y does not depend on the maximum response A, in order to be able to
compare the response curve slopes from different neurons (i. e., for calculating the slope
the neural responses are normalized to the interval between 0 and 1).
To summarize the results for all the recorded AN2 cells, we combined the samples
from the posterior distributions of individual cells to obtain a “combined posterior

distribution” (assuming independence of individual experiments).
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6.3. Bayesian data analysis

When reporting experimental results, we will in most cases characterize the corre-
sponding posterior distributions by their mean values (i. e., the expected values of the
parameters, given the data). We also use these expected parameter values to illustrate
the estimated sigmoid response curve. In most cases, the expected parameters and the
parameters with the maximum posterior probability (i. e., the maximum a posteriori
estimate) had very similar values.

Significance testing

To test for statistical significance we use the samples from the posterior distribution.
Consider one of the parameters of interest, e. g., Bs, and its posterior distributions
Py (BLy|y") and P, (B%y|y?), for two stimulus conditions 1 and 2. Bayesian analysis
provides us with samples from these distributions P; and P,. To determine if Bz,
is significantly different from B2, we calculate the posterior distribution P; of the
difference B2,~BL,. This is done by repeatedly taking one sample b; from the distribution
b (Bé0| yl) and one sample b, from P, (B§O| yz) and calculating the difference b, - by,
giving one sample from the distribution P,.

To determine a significant difference, we calculate the 95 % posterior interval [ i, i3 ]
of P;, defined as the range of values above and below which lie 2.5 % of the samples.
The values 7; and i, can be directly estimated from the samples: 7; corresponds to the
2.5th and i, to the 97.5th percentile. If the 95 % posterior interval of P; includes zero,
the difference between BZ, and Bl is not statistically significant. On the other hand,
if the 95 % posterior interval excludes zero we regard the difference as significant. To
test if an estimated parameter is significantly larger (smaller) than a certain value x, we
calculate the right-tailed (left-tailed) posterior interval. If the right-tailed (left-tailed)
posterior interval excludes the value x, i. e., less than 5 % of the corresponding samples
are smaller (larger) than x, we regard the parameter significantly larger (smaller) than
the value x.

Time course of adaptation

We used a single exponential decay model to characterize the time course of adaptation

-t
y (t) = Ymin * ()/max - ymin) exXp (T_) > (6.10)

where y(t) is the neural response at time ¢, yin and ymax are minimum and maximum
response, and 7, is the decay time constant. A similar single exponential model

Y (t) = Ymin + (Ymax = Ymin) [1 — exp (;—t)] (6.11)

r
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6. Adaptation in the cricket auditory neuron AN2

is used for describing the recovery from adaptation, where 7, is the recovery time
constant. Using the Bayesian approach, we calculate the posterior densities of the
parameters of Equation 6.10 and Equation 6.11 in a similar manner as for the sigmoid
response curve (Equation 6.5).

Numerical estimation of mutual information

The mutual information I[Y; X | between the sensory signal X and the neural response
Y specifies how much information is conveyed on average about all possible signals. In
order to compute the mutual information numerically, taking into account the influence
of discrete, Poisson distributed spike counts, we first construct the joint probability
distribution

P(y,x) = P(ylx)P(x). (6.12)

For each stimulus intensity x;, we calculated the corresponding average spike count r;
using Equation 6.5. The distribution P(y|x = x;) is then given by a Poisson distribution
with mean r; (Equation 6.1). For all simulations, the stimulus X was discretized into
bins of size 0.01 dB. At this resolution, the results did not depend on the bin size.

To measure the information that is associated with specific sensory signals, we define
the stimulus-specific information (Butts, 2003; Butts and Goldman, 2006):

issi(x) = ¥ P(ylx) (H[X] - H[X]Y = y]). (6.13)
y

where H[X] = - Y, P(x)log, P(x) is the entropy of the sensory signal X, and the con-
ditional entropy of a particular response y is H[X|Y = y] = - X, P(x|y)log, P(x|y).
Stimulus-specific information can be interpreted as the average reduction of uncertainty
about the sensory signal gained from one measurement given the stimulus x. Taking
the weighted average over the stimulus-specific information for all possible signals we
obtain the mutual information between stimulus and response:

I[Y;X] =) P(x)issi(x). (6.14)

To determine the information associated with a certain stimulus range [xi, x;], we
evaluate the sum in Equation 6.14 from x; to x;.

6.4. Time course of adaptation

We first studied the effects of prolonged auditory stimulation in recordings of 6 AN2
neurons of T. oceanicus and 7 AN2 neurons of T. leo. Previously, an adaptation process
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operating on a time-scale of 40 ms had been characterized for the AN1 neuron (Benda
and Hennig, 2008). Here, we investigate whether adaptation also occurs on a slower
time-scale, better matched to changes in the acoustic environments.

Adaptation and recovery

We recorded the responses of AN2 neurons to test stimuli of different intensities, after
adaptation to noise stimuli of varying duration (see Section 6.2, Stimulus protocols). A
typical example for the neural responses of an AN2 cell of T. leo is shown in Figure 6.4.
The spike rates after an adaptation period of 4800 ms are always lower than the corre-
sponding responses after 600 ms and 75 ms adaptation time. Responses declined with
prolonged stimulation during the test interval for the applied intensities that were higher
than the intensities of the adapting stimuli (Figure 6.4C-D), a phenomenon which we
observed in all the recorded cells. The rapid initial change, which is most pronounced
for high intensities of the test stimulus (Figure 6.4C-D) is caused by the fast firing-rate
adaptation (similar to the adaptation in the AN1 neuron; Benda and Hennig, 2008).
To minimize an influence of the fast and the slow adaptation occurring during test,
only spikes occurring between 100 ms and 300 ms after test stimulus onset were used
for further analysis (see Section 6.3, Bayesian data analysis). Figure 6.5A shows the
stimulus response curves constructed from the spike counts within the abovementioned
interval. Prolonged stimulation shifted the stimulus-response curves towards higher
stimulus intensities. In the example shown, adapting for 4800 ms virtually eliminated
the response to low relative intensities from —9 dB to —3 dB. Adaptation changes the
range of relative intensities over which the cell responds, but has little effect on the
maximal firing rate. Figure 6.5B shows data from the same cell when using stimuli for
testing the recovery from adaptation (see Section 6.2, Stimulus protocols). Adapting
stimuli were always 5 s long, followed by a silent interval of varying duration and a
test stimulus. After a recovery period of 4800 ms the neuron has almost recovered its
state prior to adaptation. Hence, adaptation and recovery from adaptation operate on a
similar time scale.

Time constants of adaptation

To quantify the time course of adaptation and recovery we analyzed the neural responses
to test stimuli that had the same relative intensity as the adapting stimuli (0 dB). Ad-
ditional cells were recorded with a reduced version of the stimulus protocol that only
included these 0 dB test stimuli (the total number of cells available for each species and
each stimulus protocol is stated in Table 6.1). In order to determine the adaptation and
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6. Adaptation in the cricket auditory neuron AN2

Figure 6.4 | Representative examples of the neural response (AN2 neuron from a T. leo) after adaptation to
noise stimuli of duration 75 ms (dotted line), 600 ms (dashed line) and 4800 ms (solid line). Responses
(spike rates) during a test stimulus of 1s duration (cf. protocol of Figure 6.3A). Relative intensities of the
test stimuli range from —3 dB (A) to +6 dB (D); the average relative intensity of the adapting stimulus was
0 dB. Each stimulus was presented 5 times and the recorded spike trains (1 ms resolution) were convolved
with a Gaussian kernel (o = 50 ms). The instantaneous spike rates were estimated by averaging over the 5
repetitions. The increase of the estimated rate during the first 50 ms is an artifact introduced by filtering
the neural response with the Gaussian kernel. Note that the onset latency of the AN2 neuron is in the
range of 15 ms to 18 ms. The spike counts during the sample period (shaded) from 100 ms to 300 ms are
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Figure 6.5 | Representative example of response curves for different adaptation (A) and recovery times (B)
(cf. protocols of Figure 6.3A, B). The average relative intensity of the adapting stimulus was 0 dB. Symbols
denote the average spike counts during the sample period (cf. Figure 6.4) for different test intensities. Solid
lines indicate the expected response curve, i. e., the response curve with the set of parameters with the
mean value of the posterior distribution (see Section 6.3, Bayesian data analysis). Each stimulus protocol
was repeated 5 times (the error bars indicate the standard deviation). The data shown was obtained from a
T. leo (the same preparation as used in Figure 6.4).

recovery time constants 7, and 7,, we fitted an exponential decay model to the neural
responses (see Section 6.3, Bayesian data analysis). Figure 6.6A, B show examples of
recorded data and exponential fits for a T. oceanicus and a T. leo cell. Both time constants
lie in the range of 1 second for both of these cells. This is considerably longer than the
short-term firing rate adaptation, which operates on a time scale of 40 ms.

Table 6.1. | Summary of the adaptation (7,) and recovery (7,) time constants for the T. oceanicus and T. leo
ANZ2 cells. See Figure 6.3 for the adaptation protocols. SD is the standard deviation across the n cells.

SPECIES ADAPTATION RECOVERY FROM ADAPTATION
T,(ms) SD(ms) n 17,(ms) SD(ms) n

T. oceanicus 1202 558 6 1947 1155 6

T. leo 1828 939 9 1674 582 1

The values of the adaptation and recovery time constants are summarized in Table 6.1
for both species; additionally, Figure 6.7 shows the combined posterior distributions (cf.
Section 6.3, Bayesian data analysis). Comparing the time constants between T. oceanicus
and a T. leo cells, we did not find significant differences, as reflected by the overlapping
95 % posterior intervals in Figure 6.7. Furthermore, adaptation and recovery time
constants have similar values.
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Figure 6.6 | Time course of adaptation and recovery of a T. leo cell (A1, A2) and of a T. oceanicus cell (Bl,
B2). The response to the test stimulus is plotted against the duration of the adapting stimulus (Al, B1) and
the delay between the adapting and the test stimulus (A2, B2). Displayed are the average spike counts in
the 200 ms time window of the test stimulus (cf. Figure 6.4). The intensity of the test stimulus was equal to
the average intensity of the adapting stimulus (0 dB relative intensity). The error bars denote the standard
deviation. Solid lines indicate the exponential function with the set of parameters with the highest value of
the posterior distribution (see Section 6.3, Bayesian data analysis).

We conclude that the neuronal responsivity of AN2 neurons is affected significantly
by adaptation and that the adaptation process operates on a time scale of seconds.
The primary effect is a change in the range of stimulus intensities over which the cell
responds. To put to test our hypothesis that this adaptation serves for adjusting the
stimulus-response curve to the current acoustic environment, we first formalize the
infomax and selective coding principle and then assess the experimentally observed
response curve changes.
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Figure 6.7 | Combined posterior distribution (cf. Section 6.3, Bayesian data analysis) of the adaptation
time constants 7, (A) and the recovery time constants 7, (B) for the T. oceanicus (solid line) and T. leo
(dotted line) AN2 cells. Solid (dotted) lines on top of the figures depict the 95 % posterior intervals.

6.5. Quantitative predictions of the coding hypotheses

The infomax principle and the selective coding hypothesis both predict how the neural
response curve should optimally change in response to a change in the statistics of
the environment. In order to assess the response curve changes quantitatively, we first
compute the parameters of the optimal response curve under either hypothesis as well
as the mutual information between stimulus and neural response.

Infomax principle

If infomax (Linsker, 1988; Atick, 1992; Adorjan et al., 1999b) is the underlying principle,
adaptation pursues the objective to maximize the information that the neuron’s output
conveys about its sensory input. Formally, the goal is maximizing the mutual informa-
tion I[R; X | between the sensory sound signal X and the neuronal output firing rate
R as a function of the response curve parameters. This is achieved by maximizing the
output entropy H[R] while minimizing the uncertainty H[R|X] of the output once the
input is fixed

I[R;X] = H[R] - H[R|X]. (6.15)

We first computed the optimal response curve parameters for a given signal distribu-
tion and a sigmoid response function analytically, assuming additive noise. Next, we
estimated the mutual information numerically in order to account for multiplicative
(Poisson) noise. If we assume only additive noise, with a probability distribution P(n),
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6. Adaptation in the cricket auditory neuron AN2

the mutual information can be written as (Bell and Sejnowski, 1995; Nadal and Parga,
1994)

I[R;X] = H[R] - H[N]. (6.16)

Maximization of the mutual information is then equivalent to the maximization of the
entropy of the output distribution, because the noise entropy H[ N | does not depend
on the input-output-mapping, i. e., the neural response curve r(x). Thus, we have to
maximize

H[R] == P(r)log, P(r), (6.17)

where the sum goes over all possible discrete response levels r (here, the spike counts
in a 200 ms window; cf. Section 6.3, Bayesian data analysis). Formally, we can treat
the response as a continuous variable (Atick, 1992), i. e., as firing rate, and using the
relationship between differential and discrete entropy we approximate the sum by an
integral (Cover and Thomas, 1991):

H[R]=- ZP(r) log, P(r) —

- / P(r)log, P(r)dr —log, Ar, asAr—0 (6.18)

Here, Ar is the limit on the resolution with which the firing rate can be measured
(the length of the bins of the discrete response levels). Note that in the limit Ar - 0
the entropy H[R] diverges (i. e., the information capacity of a continuous variable is
unlimited). In the case Ar — 0, and in the absence of noise, the sensory signal X
could be recovered perfectly from the firing rate R and thus any set of response curve
parameters would be “optimal”. However, if we assume a finite maximum of the response
curve the additive noise provides a resolution scale on the output and we can ask for an
optimal response curve f(x). In the low-noise limit we obtain (Nadal and Parga, 1994)

P(x)

H[R]=- / P(x)log, ‘df(x) dx —log, Ar (6.19)
dx

df(x)

= | P(x)log, |——
[ P()tog, |2

Since the second term of Equation 6.20 only depends on the signal distribution and

the third term only depends on the resolution Ar, they are constant, and we have to

dx - / P (x)log, P(x)dx —log, Ar (6.20)

maximize:

/::P(x)log2 df (x)

dx - max. (6.21)
dx
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6.5. Quantitative predictions of the coding hypotheses

To compare how well a given sensory signal X with distribution P(x) is encoded
by response functions with different parameterizations (r; and ry), we compute the
difference in mutual information AI. Under the assumption of small additive noise and
for a fixed resolution Ar, this difference in mutual information is given by

dri(x)
dx

Al = —/l:P(x)logz drgix) dx - /_:P(x)logz dx. (6.22)

Assuming the sigmoid transfer function of Equation 6.5 and the bimodal or trimodal
stimulus distribution (see Section 6.2, Stimulus protocols), we obtain the optimal val-
ues for the response curve parameters A, Bsy and C using Equation 6.21; the optimal
value for the slope Ssg is then computed using Equation 6.9. Figure 6.8A shows the
predicted response curves for both stimulus distributions, under the assumption that
the response curve parameters Bs and S5 can be optimally adjusted. The optimal value
for Bsg is —1.50 dB for the bimodally distributed stimulus and 0.00 dB for the trimodally
distributed stimulus, corresponding to a response curve shift of +1.50 dB. To cover the
whole stimulus range, the slope should decrease for the trimodally distributed stimulus
compared to the bimodally distributed stimulus by —35.3 %, from 0.25dB ™' to 0.16 dB~.
If we assume that the neural system can only adjust Bs, and the slope S5 is constant,
the infomax principle would still predict a shift of the response curve of +1.50 dB. Eval-
uating Equation 6.22, the infomax principle then predicts that information transmitted
about the trimodal stimulus will improve by 0.61 bit for the trimodally adapted response
curve compared to the bimodally adapted response curve. Note that this calculation
involves the assumption of low additive noise and a fine resolution Ar. Therefore, we
also calculated the predicted increase in information transmission numerically (see
Section 6.3, Numerical estimation of mutual information), assuming discrete, Poisson
distributed spike counts. In this case, the improvement in information transmission
depends on the maximum spike count, defined by the response curve parameter A. For
the experimentally observed maximum spike counts in the range of 20 spikes to 55
spikes we obtain an increase from 0.12 bit (20 spikes) to 0.25 bit (55 spikes).

Selective coding

Selective coding is a concept which is less well defined than the infomax principle, be-
cause it involves an assumption about the “signal” vs. the “background” part of a complex
stimulus. In the following we assume, that the loudest signals of artificial environments,
i. e,, the “loudest” Gaussian distributions of the multimodal stimulus distributions (see
Figure 6.8B) are encoded in an optimal way while the other (“background”) signals are
suppressed. To compute the optimal response curve for the bimodal (trimodal) stimulus
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Figure 6.8 | Optimal response curves for the bimodal (circles) and trimodal (squares) stimulus distribution
predicted by the infomax principle (A) and the selective coding hypothesis (B). The figures show the
predicted relationship between the response variable (spike rate) and the stimulus intensity. The Gaussian
curves depict the probability distributions of stimulus intensity, where the dark shaded areas under the
curve denote the bimodal stimulus distribution and the light shaded area under the curve the additional
peak of the trimodal stimulus distribution (cf. Figure 6.1).

distribution the objective is to maximize Equation 6.21 taking the Gaussian with y =
0dB (¢ = 3dB) as the “signal” part. Figure 6.8B shows the predicted response curves
when we assume that the loudest signal should be encoded reliably and other signals
should be suppressed. The predicted difference between the response curve optimized
for the bimodal and trimodal stimulus is a shift by +3.00 dB (from Bso = 0.00 dB to Bsg
=3.00dB). The slope S5y does not change and remains at 0.98 dB7 .

Surely, the response curves shown in Figure 6.8B are idealized but they illustrate
the consequences of the selective coding vs. the infomax principles: according to the
infomax principle, information transmission is optimized for the whole stimulus range,
while selective coding implies a selective enhancement or a selective suppression of the
transmitted information for certain kinds of stimuli. To quantify this selective stimulus
encoding, we calculated the information associated with parts of the stimulus range
numerically (see Section 6.3, Numerical estimation of mutual information), for the
trimodal stimulus and the predicted response curves (Figure 6.8B). The maximum
responses A were determined by the experimental data (from 20 spikes to 55 spikes),
and noise was Poisson distributed. Next, the mutual information is evaluated for the
stimulus range of —4.5 dB to 1.5 dB (background signals) and for the range of 1.5 dB to
4.5 dB (loudest signal) using Equation 6.14. We find, that the information transmitted
about the loudest peak of the trimodal stimulus distribution is enhanced by 0.51bit
(0.70 bit) for A =20 (55) spikes when using the optimal response curve for the trimodal
stimulus, while at the same time less information (—0.811 bit for A = 20 spikes; —1.07 bit

108
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bit for A = 55 spikes) is conveyed about the first and second peak.

Optimality vs. improvement

The infomax and selective coding hypotheses (as specified above) both make quantitative
predictions of the optimal response curve parameters and how these parameters should
change to optimally adjust the response curve to a changed stimulus statistics. If selective
coding is the underlying principle, the response curve should be steeper than for the
infomax principle. When the environment changes from a bimodal to a trimodal input
distribution, selective coding predicts a large shift of the response curve towards higher
stimulus amplitudes, whereas the slope should remain constant. The infomax principle,
on the other hand, predicts a less pronounced shift and a decrease in slope.

However, the underlying neural architecture might impose constraints on possible
response curve changes and might thus prevent the AN2 neuron from achieving the
theoretically optimal response curve. It is conceivable that, for example, the neural gain
cannot increase such that the slope of the stimulus-response curve would be optimal
for encoding only the loudest peak of the stimulus distribution as required by “optimal”
selective coding. How can we quantify the improvement in neural coding according to
the one or the other hypothesis without requiring optimality?

Both the infomax principle and selective coding also predict characteristic changes
in mutual information between the stimulus and the response for a change from the
bimodal to the trimodal environment. Following the infomax principle, the associated
response curve change leads to an increase in mutual information. Selective coding, on
the other hand, leads to a selective decrease (increase) of the mutual information for the
stimuli with low (high) intensities. Thus, even if architectural constraints might prevent
the AN2 neuron from achieving the theoretically optimal response curve, the selective
increase (decrease) in mutual information provides a test for the infomax (selective
coding) hypothesis.

6.6. Adaptation to the statistics of the acoustic environment

Figure 6.9 shows example traces and the amplitude distribution of the bimodal and tri-
modal sound stimuli together with the corresponding neural responses of a typical AN2
cell (instantaneous firing rate). Adaptation leads to a decrease of the neural responses
to o dB peak signals (drawn from the high amplitude and intermediate amplitude peak
for the bimodal and trimodal distribution) with time.

We recorded responses from 25 AN2 cells for the two stimulus paradigms, 12 cells
from T. oceanicus and 13 cells from T. leo. Since we found no significant differences in
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Figure 6.9 | Representative responses of an AN2 cell (T. leo) to the amplitude-modulated noise stimuli of
Figure 6.3C. Al, A2 | Bimodal stimulus distribution. The envelope of an amplitude-modulated stimulus
and the distribution of the stimulus amplitude are shown in (A2), the corresponding instantaneous spike
rate is shown in (Al). B1, B2 | Trimodal stimulus distribution. The envelope of an amplitude-modulated
stimulus and the distribution of the stimulus amplitude are shown in (B2), the corresponding spike rate is
shown in (B1). The stimuli were presented 45 times and the recorded spike trains (1 ms resolution) were
convolved with a Gaussian kernel (¢ = 5ms). The instantaneous spike rates were estimated by averaging
over the 45 repetitions.
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the adaptation and recovery time constants between the two species, we pooled the data
from both species together for further analysis.

All response curves were quantified using sigmoid input-response functions (cf.
Equation 6.5), and a Bayesian approach was used to determine the distribution of the
corresponding parameters A, Bsy and C (see Section 6.3, Bayesian data analysis). Some
cells did not show response saturation in the trimodal stimulus condition within the
range of stimulus intensities we tested. In these cases, the uncertainty of the estimate of
parameter A is high, and is reflected by a broad posterior distribution for this parameter.
For most of the cells the test stimuli were strong enough to drive the cell to its maximum
rate in both conditions. Although the response maximum occurs at higher stimulus
intensities in the trimodal condition, we did not observe a systematic change of the
saturation response. To fit the response curves, we assumed that the response maximum
A has the same value for both stimulus conditions. Five cells were excluded from further
analysis because the response curve corresponding to the expected parameter values
(posterior means) did not provide a good fit to the data(R? < 0.95). The further analysis
is based on the remaining 20 cells.

A representative example of adapted response curves of an AN2 neuron is shown in
Figure 6.10A1, where the input-response function is plotted for the parameters A, Bs
and C, which correspond to the expected parameter values (posterior means). After
adaptation to the bimodally distributed stimulus (filled symbols), the cell fired with
50 % of its maximal rate (parameter Bs) at about 1.75 dB. Adaptation to the trimodally
distributed stimulus (open symbols) shifted the response curve to higher stimulus
intensities while the slope of the response curve changed only slightly. In fact, the
results of the Bayesian parameter estimation, depicted in Figure 6.10A2, revealed that
the response curve parameter Bs significantly increased for the trimodal stimulus
distribution. The mean of the posterior density changed from 1.74 dB to 3.23 dB (see
Section 6.3, Bayesian data analysis for the definition of statistical significance using
Bayesian posterior intervals), while there was no significant change for the slope S5
(14 % decrease from 0.160 dB™). Figure 6.10B shows data from a second cell. The mean
value of the parameter Bs is 3.47 dB for the bimodally adapted response curve, and
increased by 1.86 dB through adaptation to the trimodally distributed stimulus. The
increase of Bsy was again significant. The slope increased by 15 % (from 0.161 dB™ for
adaptation to the bimodal stimulus) but Bayesian analysis revealed that the increase in
slope was not significant. Figure 6.10C shows data from a third cell. This cell showed a
significant albeit less pronounced change in parameter Bs, of +1.06 dB accompanied by
a significant decrease in the slope S5 (decrease of the posterior mean by 23.5 %).
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Figure 6.10 | Typical examples of stimulus response curves after adaptation to the bimodal and to the
trimodal stimulus distributions (Al Bl, C1) and posterior densities of the corresponding response curve
parameters (A2, B2, C2). Results for AN2 cells of T. leo (A, C) and T. oceanicus (B). Al, B, C1 | Circles and
squares denote the mean spike counts in a 200 ms time window of the test stimulus after adaptation to
the bimodal and trimodal distributions, measured for 9 different relative intensities of the test stimulus
(cf. protocol of Figure 6.3C). Error bars denote the standard deviation. Solid lines indicate the expected
response curve, i. e., the response curve with the set of parameters with the mean value of the posterior
distribution (see Section 6.3, Bayesian data analysis). The shaded areas depict the intensity distribution of the
stimuli (dark: bimodal stimulus distribution, light: additional peak of the trimodal stimulus distribution).
A2, B2, C2 | Marginal posterior densities (cf. Section 6.3, Bayesian data analysis) of the response curve
parameters Bso (location) and Ssq (slope). The posterior densities after adaptation to the bimodal (solid
lines) and trimodal (dotted lines) stimulus distributions are shown in the top panels and the corresponding
posterior densities of the changes (ABso, ASso) between stimulus conditions in the bottom panels. Solid
(dotted) lines on top of the figures depict the 95 % posterior intervals. Significant changes between stimulus
conditions are indicated by a star.
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6.6. Adaptation to the statistics of the acoustic environment

Adaptation induced changes in the response curve parameters Bso and S5

Figure 6.11 summarizes the mean values of the posterior densities of the Bsy parameters
for all 20 AN2 cells. Figure 6.11A1 shows the values of parameter Bs after adaptation to
the bimodal stimulus. The median value in the population is 2.34 dB (mean: 2.43 dB)
and 2.02 dB (mean: 2.07 dB) for cells in which adaptation to the trimodal stimulus led
to individual statistically significant changes in parameter Bsy compared to adaptation
to the bimodal stimulus (black distribution). The optimal Bs, value predicted by the
infomax principle is —1.5 dB (star), while selective coding predicts a Bsy value of 0 dB
(circle). The combined posterior distribution of Bsy (cf. Section 6.3, Bayesian data
analysis) is shown in Figure 6.11A2 (mean: 2.43dB). The measured Bs, values are
significantly larger than the values predicted by either hypotheses (infomax: -1.5 dB,
selective coding: 0 dB). Figure 6.11B1 shows the histogram of Bs values after adaptation
to the trimodal stimulus (median: 3.92 dB, mean: 4.04 dB; individually significant cells:
median: 3.57 dB, mean: 3.69 dB). These values are significantly larger than the infomax
prediction, but similar to the selective coding prediction (Figure 6.11B2). Figure 6.11C1
quantifies the difference of the parameter Bs, between the two adaptation conditions.
The median of the distribution of differences is 1.53 dB (mean: 1.61dB). The right-tailed
posterior interval in Figure 6.11C2 excludes the value 0 dB, indicating that adaptation to
the trimodal stimulus significantly shifts the distribution of response curves towards
higher signal intensities. Individual differences are statistically significant in 8 of 20
cells (see Section 6.3, Bayesian data analysis); the median of the changes in these cells
is 1.46 dB (mean: 1.62 dB). The observed shifts are smaller than expected for optimal
selective coding (predicted shift: 3 dB), but compatible with the infomax principle
(predicted shift: 1.5 dB). Due to the high absolute values of the thresholds, however, the
response curves do not allow for reliable encoding of the whole stimulus range.

Figure 6.12 summarizes the mean estimates of the slope Ssg, for all 20 AN2 cells. The
slopes in the bimodal adaptation paradigm (shown in Figure 6.12A1) have a median
value of 0.16 dB™! (mean: 0.17 dB™!), and are significantly smaller than the value of
0.98 dB™! predicted by the selective coding hypothesis (Figure 6.12A2). The observed
slopes Ss( after adaptation to the trimodal stimulus are shown in Figure 6.12B, and
the relative change of the slope compared to the bimodal paradigm is quantified in
Figure 6.12C. The slope decreased for most cells (median: —15.1%, mean: —15.6 %).
Significant changes in S5y were found individually in 5 of 20 cells, and all of those cells
showed decreases in slope. However, the changes are less pronounced than predicted by
the infomax principle.

We conclude that the main difference between the response curves adapted to the
bimodal vs. the trimodal stimulus distribution is the shift towards higher stimulus inten-
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Figure 6.11 | Summary of adaptation induced changes of the response curve parameter Bsg for all 20
AN2 cells. Al, A2 | Distribution of the mean values of the parameters Bs, for individual cells (A1) and
combined posterior density (see Section 6.3, Bayesian data analysis) over all cells (A2) after adaptation to
the bimodal stimulus distribution. B1, B2 | Distribution and combined posterior density of the parameter
Bs after adaptation to the trimodal stimulus distribution. Cl, C2 | Distribution and combined posterior
density of the change of the parameter Bso between the two stimulus distributions. Symbols depict the
values predicted by infomax (stars) and the selective coding hypothesis (circles). Triangles denote the
median value. The distribution of cells that showed changes in Bs, that were significant (Bayesian posterior
intervals, see Section 6.3, Bayesian data analysis) is marked black in (Al, B, Cl1). Shaded areas depict the
two-tailed 95 % posterior intervals in (A2, B2) and the right-tailed 95 % posterior interval in (C2).
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Figure 6.12 | Summary of adaptation induced changes of the slope Sso of the response curves. Al, A2 |
Distribution of the mean values of the parameters Sso for individual cells (A1) and combined posterior
density (cf. Section 6.3, Bayesian data analysis) over all cells (A2) after adapting to the bimodal stimulus
distribution. B1, B2 | Distribution and combined posterior density of the parameter Sso after adapting to
the trimodal stimulus distribution. Cl, C2 | Distribution and combined posterior density of the relative
change of S5 between the two stimulus distributions. Symbols depict the values predicted by infomax
(stars) and the selective coding hypothesis (circles). Triangles denote the median value. The distribution of
cells that showed changes in Sso that were significant (Bayesian posterior intervals, Methods, Bayesian data
analysis) is marked black in (Al, B, Cl). Shaded areas in (A2, B2, C2) depict the 95 % posterior intervals.
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sities and a reduction in slope. This shift, however, is less pronounced than predicted by
optimal selective coding, and the observed decrease in slopes is smaller than predicted
by the infomax principle and larger than expected by selective coding. Together with
the fact, that the absolute thresholds are too high, these results seem not to favor either
of the two coding hypotheses, if optimality is required.

Reliability of stimulus encoding

Adaptation in a biological system, which is constrained in multiple ways, may fall short
of achieving the theoretical optimum, but may still lead to an improved representation
according to the one or the other principle. In order to test for this, we calculate the
mutual information between the stimulus and the neural response for the whole and
for the high intensity part of the stimulus range. Therefore, 10 000 samples were drawn
from the joint posterior for the parameters A, Bsg, C, for each cell and for each stimulus
condition, and the corresponding response curves were calculated using Equation 6.5.
For each response curve, the joint distribution of stimulus and spike count was calculated
assuming that spike counts are Poisson distributed with the underlying average spike
count given by the response curve (cf. Section 6.3, Numerical estimation of mutual
information). Each of these joint distributions determines the mutual information (see
Equation 6.13 and Equation 6.14) that corresponds to a particular response curve.

We first consider the whole stimulus range from —4.5dB to 4.5dB and calculate
the mutual information between the stimulus (trimodal distribution) and the neural
response, for the response curves obtained after adaptation to the bimodal and trimodal
stimulus distributions. According to the infomax principle the purpose of adaptation is
to reliably encode the whole stimulus range and thus, the mutual information between
the trimodal stimulus and the neural response should increase for the trimodally com-
pared to the bimodally adapted response curve (predicted increase between 0.12 bit and
0.25 bit, depending on the maximum spike count; see Quantitative predictions).

For the example neurons in Figure 6.10, however, we observed a significant decrease in
mutual information, varying from a mean value of —0.183 bit (Figure 6.10A) to —0.372 bit
(Figure 6.10B) and —0.187 bit (Figure 6.10C). This trend is confirmed by a full analysis
of all 20 recorded AN2 cells (Figure 6.13A), which shows that mutual information
decreased for all cells. The median is —0.21bit (mean: —0.21bit), and this decrease is
significant (the left-tailed 95 % posterior interval in Figure 6.13A2 excludes the value
0dB). 15 of 20 cells showed an individually statistically significant decrease in mutual
information (median —0.24 bit, mean —0.24 bit; black distribution in Figure 6.13A2).
These findings provide strong evidence against the infomax principle.

In order to test the selective coding hypothesis, we calculated the mutual informa-
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Figure 6.13 | Adaptation induced changes in the mutual information between the stimulus and the neural
response. Al, A2 | Distribution and combined posterior density of changes in the mutual information
when considering the whole stimulus range (relative intensity from —4.5 dB to 4.5 dB) and the trimodal
amplitude distribution. For each cell the change of the mutual information is calculated as the difference
of the mutual information for the “trimodal” (neural response adapted to the trimodal stimulus) and the
“bimodal” (neural response adapted to the bimodal stimulus) response curve. The distribution in (Al)
is based on the mean values of changes in mutual information for individual cells. B1, B2 | Distribution
and combined posterior density of changes in the transmitted mutual information when considering the
stimulus range from —4.5 dB to 1.5 dB (including only the two low-intensity peaks of the trimodal stimulus
distribution). C1, C2 | Distribution and combined posterior density of changes in the transmitted mutual
information when considering the stimulus range from 1.5 dB to 4.5 dB (including only the high-intensity
peak of the trimodal stimulus distribution). Triangles denote the median value. The distribution of cells
that changed significantly is marked black in (AL, B, C1). Shaded areas depict the left-tailed 95 % posterior
intervals in (A2, B2) and the two-tailed 95 % posterior interval in (C2).
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tion separately for the stimulus range from 1.5 dB to 4.5 dB (high-intensity peak, “fore-
ground”) and from —4.5dB to 1.5 dB (low-intensity peaks, “background”; see Quantita-
tive predictions) using Equation 6.14. For the cells shown in Figure 6.10, the mutual in-
formation decreased significantly by —0.184 bit (Figure 6.10A), —0.335 bit (Figure 6.10B)
and —0.182 bit (Figure 6.10C) for the stimulus range from —4.5 dB to 1.5 dB. While the
mutual information for the peak of the distribution with the highest intensity increased
slightly by +0.018 bit for the cell shown in Figure 6.104, in other cells, such as the ones
shown in Figure 6.10B and 10C, the mutual information decreased not only for the
“background” but also for the loudest signal (—0.038 bit vs. —0.005 bit). However, these
changes in encoding of the loudest signal were not statistically significant. Figure 6.13B
summarizes the change in mutual information for the range from -4.5dB to 1.5dB
for all 20 AN2 cells. Mutual information decreased significantly (the left-tailed 95 %
posterior interval in Figure 6.13B2 excludes the value 0 dB; median —0.19 bit, mean
—0.20 bit), and the decrease was individually significant for 16 of the 20 cells. The infor-
mation transmitted about the “loudest peak” (Figure 6.13C), in the interval from 1.5 dB
to 4.5 dB, remained constant (median 0.00 bit, mean —0.01bit) and is not significantly
different from zero (the 95 % posterior interval in Figure 6.13C2 includes the value 0 dB).
Although these results are consistent with the selective decrease of information for low-
intensity stimuli, they contradict the selective coding hypothesis because information
does not increase for high-intensity stimuli, as would be required for an improvement
of the neural representation.

6.7. Discussion

Neurons in the auditory pathway of crickets adapt on several time scales

In the cricket auditory system, time scales of adaptation observed at first level interneu-
rons range from short (below 100 ms; AN1: Benda and Hennig, 2008) over intermediate
(ca. 300 ms; AN2: Samson and Pollack, 2002, receptors: Givois and Pollack, 2000)
to long time constants (ca. 10s; AN2: Samson and Pollack, 2002, receptors: Givois
and Pollack, 2000). In the present study, we report firing rate adaptation with a time
constant of about one second not reported before in the auditory ascending neuron
AN2 of T. oceanicus and T. leo (Figure 6.6 and Table 6.1).

At present the origin of adaptation in this small network is not known. There is
likely a contribution to adaptation from the receptor neurons (Givois and Pollack,
2000). At the level of interneurons, both local cells (ON1, Sobel and Tank, 1994; Pollack,
1988) as well as the ascending interneuron AN2 (Samson and Pollack, 2002) exhibit
long-lasting hyperpolarizations with intermediate time-constants (approx. 5s) that
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6.7. Discussion

may reflect adaptation processes at the level of the spike-generator in these cells. The
primary task of the first stage of auditory processing in crickets is to maintain and
possibly to condense relevant information for object localization and recognition for
higher computational centers in the brain. In this context, it is remarkable to note that
already at the first synapse several time scales of adaptation can be observed, similar to
those reported from vertebrate systems (Ulanovsky et al., 2003) as well as other sensory
modalities (Fairhall et al., 2001). The adaptation time scale we report here seems ideal
for an adjustment of the coding scheme to the current sensory environment. However,
we find no enhancement of information transfer in the neuron under study. We thus
report the unusual case that adaptation seems to rather selectively suppress sensory
coding instead of improving it.

Bayesian parameter estimation

We characterized the neural response using a sigmoid response curve and estimated
the model parameters from the measured spike counts using a Bayesian approach.
An important feature of the analysis is that it yields the joint posterior distribution
of the model parameters which allows us to calculate the posterior distribution and
precise confidence limits of adaptive changes as well as of derived quantities such as
mutual information. The Bayesian framework can also be applied to other experimental
paradigms and sensory systems in which neural responses can be described in terms
of tuning functions. For instance, it can directly be used to quantify orientation-tuned
responses of V1 neurons, by exchanging the sigmoid response curve used here with a
circular Gaussian tuning function.

One limitation of the approach presented here is that the calculation of the joint
posterior density at a grid of points is only feasible for models with few parameters.
However, for more complex models, approximations of the posterior densities can be
obtained using Markov chain simulation (Gelman et al., 1995).

Adaptation and the infomax principle

We measured how adaptation changes the response curves of AN2 cells depending on
different stimulus conditions (Figure 6.10) and found that the changes are not compatible
with infomax (optimal coding of the entire stimulus range). In general, our results
indicate a response threshold that is too high to allow for reliable encoding of the whole
stimulus range (Figure 6.10 and Figure 6.11). Most remarkably, adaptation reduced the
amount of encoded information about the stimulus when considering the whole range of
input signals (Figure 6.13A). This is in contrast to other studies (fly visual system: Fairhall
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6. Adaptation in the cricket auditory neuron AN2

et al., 2001; Laughlin, 1981; midbrain of guinea pigs: Dean et al., 2005; inferior colliculus
of cats: Kvale and Schreiner, 2004; songbird auditory forebrain: Nagel and Doupe,
2006; rat barrel cortex: Maravall et al., 2007) that reported that stimulus encoding is
compatible with infomax. However, the infomax principle, which considers sensory
systems as communication channels that are optimized for preserving all information
from the sensory input, may fail to explain neural coding when considering stages
where actual processing of information takes place (instead of mere transmission).
Indeed, a recent study by Ringach and Malone (2007) has shown that neurons in the
primary visual cortex of macaque maintain an operating point that does not maximize
information transmission but is tuned to the detection of signals in background noise.

Adaptation and the selective coding hypothesis

We also tested if the response curve changes induced by adaptation are compatible
with selective coding (reliable coding of the most intense signal while suppressing the
“background”). Selective coding can be seen as the simplest form of separating neural
representations of discrete objects in multiple channels or “streams” that has been found
in higher auditory processing levels in vertebrates (Nelken, 2004). Neurons in the
inferior colliculus of cats display the same firing pattern when a stimulus composed of a
signal with or without background noise is presented, indicating a representation of the
signal only (Chechik et al., 2006), and in auditory cortex, neurons show locking to the
amplitude modulations of a low level sound but not to the noise it is embedded in (Las
et al., 2005). In insects, the principle has been found in bushcrickets, separating single
males from background choruses (Romer and Krusch, 2000) and has been suggested to
be at work in crickets as well (Pollack, 1988). However, the selective coding principle
is not clearly defined in an information theoretical framework. Here, we formalize
the hypothesis and accordingly make two predictions about the change of information
transfer with adaptation: (i) information conveyed about the “background” should
decrease, while (ii) transmission for the high-intensity signals should increase. Indeed,
we find that the neural output of the AN2 conveys less information about the first
two peaks (“background”) of the stimulus distribution (Figure 6.13B), supporting the
selective coding hypothesis. However, if we take only the mutual information between
the loudest part of the signal and the neural response into account, information rate
remains nearly constant (Figure 6.13C). This contradicts the selective coding hypothesis.
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The computational role of adaptation

Surprisingly, our results suggest that instead of improving sensory coding, adaptation
in the AN2 decreases information transmission and leaves higher processing centers in
the cricket brain with less (or at most equal) information, regardless of what part of the
stimulus is considered. What could be the reason for this?

Adaptation leads to a selective decrease in the mutual information for the low-intensity
sounds, mainly by shifting the stimulus-response curves towards higher stimulus in-
tensities. As a consequence, spike counts are reduced for low-intensity signals (cf.
Figure 6.10). Through adaptation to the trimodal stimulus, average spike counts in
response to the 0 dB test stimulus decreased for 18 of 20 cells (mean decrease: 42 %,
standard deviation: 31 %) compared to the spike counts after adaptation to the bimodal
stimulus. Thus, in an ecological setting, where background signals are present and
foreground signals are changing their presence dynamically, background signals trans-
mitted to downstream neurons by the AN2 will be reduced. We speculate that this
might reduce the potential interference of “background” and “foreground” spikes in
downstream processing. However, the observed response curves do not represent an
optimal solution for the task of filtering out the most intense part of the stimulus.

Additionally, the algorithm behind adaptation could serve the goal of enhancing the
representation of even louder signals, occurring with less probability. Examples, in
which optimal coding is not used to maximize the average information gained about
high probability stimuli include auditory receptors of locusts which seem to maximize
the information gained about specific, but less often occurring aspects of the stimuli
(Machens et al., 2005) and stimulus specific adaptation in single neurons of auditory
cortex that leads to an enhanced representation of low-probability sounds deviating
from the distribution of the surrounding signal (Ulanovsky et al., 2003). This can be
seen as a form of novelty detection, where part of the dynamic range is preserved for
even louder sounds in a way that the sensory pathway is always able to detect brief,
transient high-intensity signals (Ringach and Malone, 2007). In order to test if the
representation of loud signals is enhanced, we calculated information transmission
for a signal distribution that has an additional peak (modeled by a fourth Gaussian
distribution with mean u4 = +6 dB). Indeed, we find that adaptation increases mutual
information in the stimulus range from 4.5 dB to 7.5 dB for all cells. This increase is
significant in 6 of 20 cells, but it is not statistically significant on the population level
(the 95 % interval of the combined posterior density ranges from —0.015 bit to 0.243 bit).

In this context, it should also be noted that the AN2 neuron in crickets may serve
several functions. Under most stimulus conditions, relatively low firing rates will likely
monitor slowly changing signals as observed in the present study (up to about 5 Hz).
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6. Adaptation in the cricket auditory neuron AN2

The AN2, however, can also operate in a burst mode with high intra-burst firing rates
for the detection of bat calls (Marsat and Pollack, 2006) for which our analysis is not
appropriate. Nevertheless, low firing rates are likely to transmit relevant information
since input-response curves built from spike counts similar to those in the present study
are maintained at somewhat higher thresholds in wingless cricket morphs that are not
at risk from bat predation (Pollack and Martins, 2007). In addition to its relevance
for slow signal features, the adaptation time course reported here is likely to adjust
the operating point of the faster response dynamics (i. e., bursts). Apart from possible
physiological limitation, the findings we report here could be the result of a trade-
off between setting the operating regime for the bursting mode on the one hand and
suppression of background noise on slower time scales on the other hand.

Generally, a neural system may achieve improved performance by means of different
mechanisms as has been shown in a recent modeling study (Schwabe and Obermayer,
2005). Depending on the specific physiological constraints, the resulting neural rep-
resentation can be optimal or a trade-off between optimality and the flexibility of the
neural circuit. Indeed, we found that, for example, the slope of the stimulus-response
curve is not steep enough for optimal encoding of only the loudest peak of the bimodal
or trimodal stimulus distribution. Possibly the neural gain can only increase to a limited
value, leading to a decrease - rather than an increase - in information transmission for
the chosen experimental paradigm.

122
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Recapitulation

We tested whether one of two computational principles may underlie adaptive sensory
processing in an auditory interneuron (AN2) of crickets: infomax and selective coding.
Infomax, a form of optimal coding, predicts that adaptation should maximize the
transmitted information, taking into account the (changing) statistics of sensory stimuli.
In contrast, selective coding predicts that encoding of relevant signals should increase
while background signals should be suppressed.

Our results lead to the following conclusions about the computation performed by the
neuron under study: (i) Adaptation does not maximize the amount of transmitted infor-
mation when considering the whole range of input signals. This finding is inconsistent
with the infomax hypothesis. (ii) Adaptation decreases the amount of information that
is transmitted about background signals. This might facilitate the detection of signals in
background noise. However, we do not find an increase of information transfer for the
relevant (loudest) part of the signal range. Our results are thus also not fully consistent
with the selective coding hypothesis.

Although we cannot give a conclusive answer on what the adaptation-induced se-
lective suppression in the AN2 serves for yet, the paradigm we propose here is rather
general and applicable to other sensory systems. Importantly, our approach allows
quantifying the improvement in neural coding without requiring that neural response
curves achieve optimality. Measuring the information between the proposed relevant
stimulus and the neural output allows testing for different hypotheses on what a sensory
pathway actually adapts to. Ultimately, testing various hypotheses on different stimulus
ensembles will yield important insights on what is or what is not the relevant part of a
sensory environment for a given sensory unit.
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A. Orientation selectivity index and preferred orientation

Orientation selectivity index (OSI)

Orientation tuning was analyzed using the orientation selectivity index (Swindale, 1998),

which is given by
VaZ + b2
osr= V&b (A1)
i R(¢i)
where the components a and b are defined by
N N
a=Y R(¢i)cos(2¢;); b=> R(¢i)sin(2¢;). (A2)
i=1 i=1

R(¢;) is the value of the quantity whose tuning is to be analyzed (e. g., the spiking
activity) in response to a grating stimulus of orientation ¢;. For all measurements, the
stimulus orientations ¢;, i =1... N, are uniformly distributed over —90° to +90°. Then
the OSI is a measure of tuning sharpness ranging from 0 (unselective) to 1 (perfectly
selective).

Map OSI

In addition, the OSI was used to characterize the sharpness of the recurrent input a cell
receives based on the orientation preference map. To calculate this map OSI, we estimate
the local orientation preference distribution by binning the orientation preference of all
pixels within a radius of 250 pm around a cell into bins of 10° size; the number of cells
in each bin replaced the quantity R(¢;). Figure B.IB shows the map OSI of our artificial
orientation preference map (Figure B.1A). The map OSI ranges from almost 0 for cells
close to pinwheel centers to almost 1 in the linear zones of the iso-orientation domains.

Preferred orientation

Preferred orientation is calculated from the vector average of the responses (Swindale,
1998). Using the components a and b, the preferred orientation is given by

PO = %arctan(b/a). (A.3)
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B. Orientation preference map for the network models
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Figure B.1| Artificial orientation preference map and map OSI. A | Artificial orientation map with four
pinwheels of alternating handedness arranged on a 2-dimensional grid. The white (black) circle denotes
the one-(two-) o-area corresponding to the radial Gaussian synaptic connection profile (6¢ = o7 =125 pm).
B | Map OSI of the artificial orientation map. Pinwheel centers appear in black.

0

All orientation maps used in the computer simulations were composed of four pin-
wheels with alternating handedness, arranged on a grid of 50 x 50 (Hodgkin-Huxley
network) or 64 x 64 (firing rate network) pixels (Figure B.1A). Periodic boundary condi-
tions were used. The spatial scale was calibrated against experimental orientation maps
(i) by matching the relationship between the orientation selectivity index (OSI) of the
local orientation map (map OSI) and the OSI of recurrent synaptic inputs (which are
drawn from a spatially Gaussian distribution) and (ii) by matching the overall distribu-
tions of local map OSIs. Details on the map calibration can be found in Stimberg et al.
(2009). The best match between experimentally measured orientation maps and the
artificial map consisting of 50 x 50 pixels is achieved with oy = 4 pixels (corresponding
to 125 um, Mario et al., 2005). This choice corresponds to an average nearest neighbor
pinwheel distance of 781 um and a pinwheel density of 1.64 pinwheels/mm? for the
artificial map. The analysis of the tuning properties of the model cells was restricted to
excitatory cells with a map OSI < 0.9 (the highest map OSI in the experimental data
of Marifio et al., 2005 is 0.86). This was done because OSI values greater than 0.9 are
only possible for cells which lie in the corners of the square around a pinwheel center
in the artificial orientation map (cf. Figure B.1B), resulting in a bias for the orientation
preference of such cells. However, all our results remain valid if the cells with map
OSI > 0.9 are included in the analysis.
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C. The Hodgkin Huxley network model

The network consists of a two-dimensional layer of excitatory and inhibitory neurons,
which receive orientation tuned feed-forward input. Figure C.1 shows the general
architecture of the network model. 2500 excitatory neurons are arranged in a 50 x 50
grid, while the 833 inhibitory neurons are placed at random grid locations. The model
thus contains 75 % excitatory and 25 % inhibitory cells. While some experimental
evidence (Beaulieu et al., 1992) points to a lower fraction of inhibitory neurons (20 %),
we have chosen 25 % to ensure a smooth covering of the orientation map. All model
cells receive input via afferent, recurrent and background synaptic currents. Orientation
tuning is determined according to the calibrated artificial map shown in Figure B.1A.

C.1. Single cell model

For each model neuron, the dynamics of the membrane potential V,, is described by

dVm

Cm_ =—4L (Vm - EL) - Z Iint - Isyn - Ibg’ (Cl)
dt int

where Igyn, line, and [ bg denote the voltage-dependent synaptic, intrinsic and background
currents, g1, and Ep, denote the leak conductance and its reversal potential, C,,, denotes
the membrane capacitance, and ¢ the time (for parameters see Table C.1).

Each current Iiy is described by an expression

Tinc (£) = gm™ (£) BN (£) (Vin (1) — E) , (C2)

where ¢ is the peak conductance, E is the reversal potential, m(t) and h(t) are the
activation and inactivation variables, and M, N are natural numbers. We included three
voltage dependent currents: a fast Na* current and a delayed-rectifier K™ current for the
generation of action potentials, and a slow non-inactivating K* current responsible for
spike frequency adaptation. For parameters and the functional forms of the activating
and inactivating variables, see Destexhe and Paré (1999). The peak conductance of the
non-inactivating K*-current is multiplied by the factor 0.1 for inhibitory neurons, in
order to reduce their spike-frequency adaptation compared to the excitatory neurons.
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C. The Hodgkin Huxley network model
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Figure C.1 | Network architecture. The cartoon shows the general architecture of the Hodgkin Huxley
network model: A layer of excitatory neurons (blue triangles) and inhibitory neurons (green circles)
receives afferent as well as lateral input. Cells are placed on a grid, where the fewer inhibitory neurons
occupy random positions (for simplicity, only 10 x 10 excitatory neurons are shown). This network models
a patch of cortex 1.56 mm x 1.56 mm in size (see scale bar). Examples for lateral connections are indicated
for an inhibitory neuron in an iso-orientation domain (lines connecting to the neuron in the center) and
an excitatory cell close to a pinwheel center (lines connecting to the neuron at the right). The default
values for the connection probabilities are given by the same circular Gaussian with a standard deviation
corresponding to 125 um (right) for all types of connections. The preferred orientation of each neuron
is assigned according to its position in an artificial orientation map with four pinwheels (top). Circular
Gaussian tuning curves with standard deviation 27.5° (bottom) determine the input firing rate for each
neuron, depending on the presented orientation and the orientation preference of the cell.

C.2. Synaptic background inputs

The synaptic background current Iy, is determined, independently for each cell, from
one excitatory and one inhibitory background conductance,

Ibg = ggg(Vm(t) - Eﬁg) + gli)g(vm(t) - Eag)’ (C3)

which follow a stochastic process similar to an Ornstein-Uhlenbeck process (Destexhe
etal., 2001). gy is given by

8og(1+ A1) = gog + [gog (1) — 8o ] exp(=84/n) +1/1 = exp (-284/n, )N(0, 0pg), (C4)
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Table C.1. | Parameters for the Hodgkin-Huxley neuron model.

PARAMETER DESCRIPTION VALUE
Cell properties

Cm Membrane capacity 0.35nF
g Leak conductance of excitatory cells 15.7nS
g Leak conductance of inhibitory cells 31.4nS
EL Leak reversal potential -80 mV
Background activity

gﬁ(g) Mean excitatory background conductance 0.56 - g1,
gli)% Mean inhibitory background conductance 1.84- g1
54 g Excitatory time constant 2.7ms
T]‘Jg Inhibitory time constant 10.5 ms
Tpg Standard deviation of excitatory conductance  0.01- g,
Obg Standard deviation of inhibitory conductance 0.01- g,
Eﬁg Reversal potential of excitatory conductance ~ —5mV
Ey, Reversal potential of inhibitory conductance ~ -70 mV

where ggg is the average conductance, Ty is the background synaptic time constant,
and N(0, o) is a normally distributed random number with zero mean and standard
deviation Obg. For the parameter values, see Table C.1.

C.3. Afferent and recurrent synaptic connections

The synaptic current for neurons of the population j € {E,I} is composed of the input
received from Nyg = 20 afferent excitatory, Ng = 100 recurrent excitatory and N; = 50
recurrent inhibitory neurons. The currents are given by

—Aff —
' 8§ &iE
Ln(1) = | 37—=8"1(1) + = (agai(1) + (1- a)gra(1)) |(Vin - Ee)
Nag Ng
afferent excitatory recurrent excitatory

& '
- ﬁlgl(t)(vm - El)’ (C~5)

recurrent inhibitory

where g(t) are the time-dependent conductances, E. and E; are the synaptic reversal
potentials, @ = 0.7 determines the number of fast (70 %) versus slow (30 %) receptors of

131



C. The Hodgkin Huxley network model

recurrent excitatory synapses, and g are scale factors (peak conductances; the values are
summarized in Table C.2).

Table C.2. | Parameters for connectivity patterns and synaptic properties.

PARAMETER DESCRIPTION VALUE

Connectivity

Ng Excitatory synaptic connections per cell 100

Ni Inhibitory synaptic connections per cell 50

OF = 07 Spread of recurrent connections (SD) 4 pixels

(125 pm)

Synaptic properties

E. Reversal potential excitatory synapses 0mV

E; Reversal potential inhibitory synapses -80mV

(33 Time constant of AMPA-like synapses 5ms

T Time constant of GABA 4 -like synapses 5ms

7] Time constant of NMDA-like synapses 80 ms

(2 Time constant of NMDA-like synapses 2ms

ygelay Mean excitatory synaptic delay 4ms

agelay Standard deviation of excitatory synaptic delays 2 ms
?elay Mean inhibitory synaptic delay 1.25ms

old clay Standard deviation of inhibitory synaptic delays 1ms

Afferent synaptic strengths

géff Afferent peak conductance to excitatory cells 9-gF
§fﬁf Afferent peak conductance to inhibitory cells 0.73 - §§E
Recurrent synaptic strengths

g Peak conductance from inh. to inh. cells 1.33- Egﬁ
x Peak conductance from inh. to exc. cells 1.33- §§E

Recurrent connections to a given neuron were drawn randomly from the Gaussian
probability distribution:

Pi(x) = 0 for x = 0 (no self-connections)
e 1/\/ 27ojexp (—xz/Zaf) otherwise,

where x is the distance to the presynaptic neuron (in pixels) and o = o1 = 4 (in pixels),
corresponding to 125 pm. Periodic boundary conditions were used. If a presynaptic
neuron generated a spike, this spike was transferred to the postsynaptic neuron with a
certain delay. This delay was determined for every cell (i. e., the delay to all postsynaptic

(C.6)
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targets was identical) by drawing a random number from a normal distribution with

delay , delay s delay , d
mean yp - (y; ) and standard deviation o, " (0]
population (see Table C.2). Delays that were smaller than a single integration step dt

were set to dt.

) for the excitatory (inhibitory)

C.4. Synapse model

Three different kinds of synapses are included: GABA 4 -like inhibitory, fast AMPA-like
excitatory, and slow NMDA-like excitatory synapses. Fast excitatory (g% and gg;) and
inhibitory synaptic (gr) conductances arising from a single synaptic event are modeled
as an exponential postsynaptic conductance, multiple events are added linearly. The
synaptic conductance in response to spikes at time t;‘ is thus given by

gj(t)= l > exp (-(t*-0)/)), (C7)

T tk<t
where 7; with j € {E,I} is the synaptic time-constant. Synaptic events occurring at
the slow NMDA-like synapses are modeled by a difference of two exponentials with
multiple events again adding linearly:

gea(1) = - LS (exp(=(-0)m) — exp(~(*-0)s,)), (C.9)

L7002 phey

where 7; and 7, are time constants and t* denotes the time of an incoming spike. Both
types of conductances are normalized so that for a single incoming spike, the integral
over time is 1. Parameters are summarized in Table C.2.

C.5. Afferent input

The afferent input neurons were not modeled explicitly, but represented by Poisson spike
trains generated from an afferent firing rate fag.

Time-invariant afferent input

In simulations with a time-invariant input, for every network parameterization, the
stimuli Ogim € {—90°, —67.5°, —45°, —22.5°, 0°, 22.5°, 45°, 67.5°} were presented to the
network. The afferent firing rate is then given by

fAff(t) estim) =30Hz- (rAff(gstim) + rbase): (C9)
93 im — 0 2
af(Ostim) = (1 - Thase) - €XP (_W) ) (C.10)
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C. The Hodgkin Huxley network model

where 0 is the preferred orientation chosen according to the neuron’s location in the
artificial orientation map (Figure B.1A), oag = 27.5° is the orientation tuning width, and
Tbase = 0.1 is a baseline response.

Dynamics of the afferent input

For simulations under the reverse correlation paradigm, the stimulus orientation Ogtim
varies with time and is one of 16 orientations equidistantly spaced between —90° and
88.75°, or a “blank” stimulus. The afferent firing rate is given by

Fualt, Ostm) = [30 Hz( / rai( (1)) - (¢~ £)di + rbase)]+ ORI

where Oim () is the orientation of the stimulus presented at time ¢ and 4 is the temporal
response envelope. The afferent firing rate for the “blank” stimulus is just the baseline
response, i. e., rag (“blank”) = 0. For each cell, & is chosen randomly with probability
0.3,0.3, 0.2 and 0.2 as one of four temporal kernels 4, p =1...4 (Figure C.2), in order
to account for the variability observed in the temporal responses of LGN cells and V1
simple cells in cat (Alonso et al., 2001; Wolfe and Palmer, 1998). The four kernels have a
temporal profile

h(t) - { T(s)(1pq) "t exp E)—l/t) cos(2m- f, t + @) i i g: (C12)

which closely resembles the profiles found in V1 simple cells (Chen et al., 2001). I'(s)
denotes the gamma function; parameters are summarized in Table C.3. Each kernel was
scaled such that, if the neurons were driven by afferent input of that kernel alone, this
neuron would fire at 6 Hz for the preferred orientation stimulus.

Table C.3. | Parameters for the temporal input kernels.

PARAMETER DESCRIPTION h hy hs hy

TAF Time constant l6ms 16ms 16ms 30ms

s Skewness of the gamma 2 2 2 1
distribution

fo Frequency 72Hz 72Hz 72Hz 5Hz

0] Phase shift 0.1 -015 04 -0.5

In the simulations with more uniform afferent input (Figure 4.4), the temporal kernels
were assigned randomly to the individual afferent input synapses instead of assigning
one temporal kernel to all synapses of a given cell. Therefore, each cell received input
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time (ms)

Figure C.2 | Temporal kernels used for modeling the input in the reverse correlation simulations. The
graphs show the temporal kernels used in the reverse correlation experiments for a stimulus with the cell’s
preferred orientation. For parameters see Table C.3; kernels h; (solid line) and h, (dashed line) where
each used with probability 0.2, kernels h3 (dotted line) and h4 (dash-dotted line) where each used with
probability 0.3.

from afferent synapses with different temporal behavior. This had the effect of making
the effective afferent input time course more similar across cells.

C.6. Simulating the network

All simulations were performed in Matlab (Mathworks, Natick, MA) with a fixed time
step of dt = 0.25ms, employing an integration scheme that alternately updates the
membrane potential and the gating variables. Such a scheme is accurate to second
order in dt (Mascagni and Sherman, 1998). The network was simulated for 1.5, and
the mean conductances (g and g;), the mean membrane potential (V},,) and the firing
rate (f) were then calculated for every cell from the last 1s. For calculating the mean
membrane potential, the values from 4 ms before until 7 ms after every spike were first
removed. From the resulting values we then calculated the mean value and subtracted
the resting potential of the cell (V;, = —64.5mV) in order to calculate the OSI. The
total excitatory conductance g is the sum of the afferent conductance, the recurrent
excitatory conductance of the slow and the fast excitatory synapses, and the excitatory
background conductance. The total inhibitory conductance g; is the sum of the recurrent
inhibitory conductance, the conductance of the non-inactivating K current, and the
inhibitory background conductance.

For analyzing the dynamics of orientation tuning, the network was simulated for at
least 100 s; the input orientation was every 20 ms randomly chosen as one of 16 orienta-
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C. The Hodgkin Huxley network model

tions or a “blank” stimulus. The spike output of the excitatory cells was then analyzed
using the reverse-correlation technique as described in previous reports (Ringach et al.,
1997; Schummers et al., 2007).

A network model is termed “unstable” if — for the combination of values for g
and g;;— model neurons showed strong responses (firing rate across cells of more than
100 Hz) and remain at these high firing rates if the afferent input is turned off; i. e., the
network shows self-sustained activity. In such a network, all cells display untuned firing
(the OSI of the firing rate is < 0.3 for all cells).
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D. The firing rate network model

The firing rate (mean-field) model consists of an excitatory and an inhibitory population
of threshold-linear neurons, each arranged in a two-dimensional grid of 64 x 64 cells.
Lateral connection strengths between the neurons are weighted according to a Gaussian
distribution with the same spatial extent (¢ =125 um) for excitation and inhibition (Mar-
ifio et al., 2005; Stimberg et al., 2009); periodic boundary conditions were used. Both
excitatory and inhibitory cells receive identically tuned feed-forward input, determined
by an artificial orientation preference map consisting of four pinwheels (Figure B.1).

D.1. Dynamics of the firing rate

The network model is similar to the models of Kang et al. (2003) and Stimberg et al.
(2009), but was extended to include dynamic synaptic connections. The dynamics of
the firing rates of the excitatory (mg) and inhibitory (m;) population are given by

TEdrnE_(r’t) = —mE(?, t) + [IAff(T’) + Z (DEE(T’, ?l, t)mE(T", t)

dt
¥ (D.1)
+Z(DEI(7’,7,, t)ml(?', t):| ,
r % = —my(7, ) + [IAﬂ(?) + Y O (77 )my (7', 1)
" (D2)

+
+ ZCDH(?’?,) t)ml(?', t)] 5
?l

where 7 is a vector describing a neuron’s position in the layer (i. e., the 2D cortical
coordinate), 7g = 12 ms (77 = 4 ms) denotes the excitatory (inhibitory) synaptic time
constant, and [... ] is the rectification function. The functions ®;;(#, 7 ', t) denote the
time-dependent weights of the recurrent connections between a presynaptic neuron
from population j at position 7" and a postsynaptic neuron from population i at position
7, where i, j € {E, I} denote the excitatory and inhibitory populations. These recurrent
weights are given by

CD,']-(F,?’, t) :Sij-go(?,?')-xij(?,?',t), (D.3)
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D. The firing rate network model

where the §;; denotes the connection strength, ¢ denotes the spatial connectivity profile,
and x;; governs synaptic depression.

D.2. Recurrent connectivity

The factors S;; denote the summed strength of the connections between the presynaptic
population j and one neuron from the postsynaptic population j (i, j € {E,I}). In
contrast to Kang et al. (2003) we include self-inhibition (Sy; # 0). We used the following
standard values for the connections strengths: Sgg = 3.4, S;g = 4.7, Sip = 1.3, and Sg; =
1.4. These values correspond to a strongly recurrent, balanced operating regime of the
network, in line with the results from Chapter 3 (see also Marifo et al., 2005; Schummers
etal., 2007; Stimberg et al., 2009; Wimmer et al., 2009). The function ¢(7, 7 ), denoting
the normalized spatial profile of cortical interactions, is defined by

= 2\2
p(7,F") = — eXp(—(r_r) ) (D.4)
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and depends only on the cortical distance of interacting neurons. The standard deviation
of the spread of recurrent connections is ¢ = 8 pixels (corresponding to o = 125 um).
This spatial connectivity profile was the same for all types of connections.

D.3. Synaptic depression model

Intracortical synaptic depression was described by the mean-field equation derived by
Tsodyks et al. (1998):

dx,'j(?,?’, t) 1—xi]'(?,7’,, i’)
dt - Trec

- Uijxij(?,?',t)mj(?', t) (D5)

where Tre. is the recovery time constant, m; is the presynaptic firing rate and Uj; is the
utilization of synaptic efficacy. In the detailed model of synaptic depression, involving
the arrival times of individual spikes (Abbott et al., 1997; Tsodyks and Markram, 1997),
each presynaptic spike activates a fraction Uj; of resources, which then quickly inacti-
vate (with time constant of few milliseconds) and recover with a larger time constant
of Trec. We used the same time constant 7. = 300 ms for all the connections. The
mean-field equation was derived under the assumption that the presynaptic firing rate
follows a Poisson process. Besides the absolute connection strengths S;;, the major
parameters of the model are the U;;’s, which determine the dynamics of the synaptic
response. Experimentally, U values were found to cover almost the entire range from
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0 to 1 (Tsodyks and Markram, 1997). In agreement with experimental data (Galarreta
and Hestrin, 1998; Varela et al., 1999), we assume that both excitatory and inhibitory
recurrent connections undergo depression. Thus, in the exploration of the phase space,
we systematically vary Ugg, Urg, U and Ug;. For simplicity, afferent synapses do not
undergo synaptic depression in our model. This can be justified by experimental data
indicating that synaptic depression is weaker for feed-forward synapses compared to
intracortical synapses (Yoshimura et al., 2000), and by a modeling study (Chelaru and
Dragoi, 2008) showing that the major factor for adaptation-induced response changes is
intracortical synaptic depression. Furthermore, there is experimental evidence (in-vivo)
that thalamocortical synapses are already maintained at high levels of depression by
spontaneous activity (i. e., there is little additional depression; Boudreau and Ferster,
2005).

D.4. Afferent input

The afferent input Ing is given by Ing = A + B cos(2(9 - 95tim)), where Oy, is the
orientation of the stimulus presented to the network, 6 is the preferred orientation given
by the corresponding location in the orientation map, A is the mean input and B is the
orientation modulation amplitude. For all simulations we chose A = B = 20, which
results in a steady state firing rate of 47 Hz in the control condition.

D.5. Simulating the network

The differential equations were numerically integrated, using an explicit Runge-Kutta
(4, 5) method (implemented by the function ode45; Matlab; Mathworks, Natick, MA).
In the simulation of adaptation experiments we distinguish control and test condition.
In order to measure the control tuning curves, synaptic depression was turned off by
setting Ugg = Ug = Uyp = Uy = 0 so that the synaptic connections are time-invariant
with a summed strengths of Sgg, Sk, St and Sgr. The network was then simulated
for stimuli of different orientations and the firing rates of the excitatory neurons were
recorded. For obtaining the tuning curves in the test condition, the network was first
adapted for 1000 ms to a stimulus of fixed orientation 0°. Synaptic depression was then
kept fixed, by setting Ugg = Urg = Uy = Uk = 0 and holding x;; at their adapted values,
before the firing rates of excitatory neurons as well as their excitatory and inhibitory
inputs were recorded. Assuming an asynchronous state, in the steady state limit, the
inputs are proportional to the total mean conductance values in a conductance based
neuron model (Shriki et al., 2003). For obtaining tuning curves, we recorded every
unit’s response to stimuli with one of 32 equidistantly spaced orientations Oyn between
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—-90° and +84.38°. All numerical simulations were performed using the 4-pinwheel
map (Figure B.1) with periodic boundary conditions.

A network model is termed “unstable” if - for the combination of values for Ugg, Urg,
Upr and Ugg- either the network activity diverges, the network activity does not reach a
stationary state (because of oscillatory behavior), or the model neurons showed elevated
firing rates. Specifically, the unstable parameter region was determined numerically
using the following criteria: First, the network model was adapted for 4 s (for each
parameter combination) and the standard deviation of the depression variables xgg, x5,
x11 and xg; was calculated across the time points from 2 s to 4 s. We defined a network
model as unstable if any of these standard deviations exceeds the value 0.001. This
criterion excludes divergent and oscillatory regimes. Second, we also excluded network
models in which model neurons showed strong responses (firing rates of more than
100 Hz) in either the adapting or the test condition. Note that 100 Hz correspond to a
more than two-fold increase in firing rate compared to the control condition, which is
higher than the experimentally observed changes (Dragoi et al., 2000).

D.6. Analytical solution of the mean-field equations

The mean-field equations can also be solved analytically if (i) the interactions between
different pinwheels are neglected and (ii) recurrent synapses do not undergo synaptic
depression (Ugg = Urg = Uy = Ugr = 0). Expressing the 2D position of a unit in polar
coordinates 7 = (7, ¢), centered at the pinwheel, the stationary activity profile of the
excitatory population is then given by (cf. Kang et al., 2003)

mg(r,0) = Aa + Bb(r) cos(2(60 - Ogim) ) (D.6)

where 6 = ¢/2 denotes the unit’s preferred orientation. Please note that this notation
differs from Kang et al. (2003), where 6 corresponds to ¢ in our notation. We chose to
consistently use 6 for (preferred or presented) orientations.

The factor a is

_ 1—Sg1+ S
1 - Sgg + Sg1Sie + Su — SuSee

a (D.7)

and determines the cortical gain of the mean activity. The expression b(r) represents
the effect of the cortical interactions on orientation tuning and is given by
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where ¢ is the Fourier transform of the connectivity profile ¢, and J;(kr) is the Bessel
function of order one. Following Kang et al. (2003), we call D(k) the “cortical feedback
kernel”,

D(k) = SEEgb(k) - SEISIEgbZ(k) - SII¢(k) + SHSEE(Z)Z(k) (D9)

Note that this kernel differs from the one analyzed in Kang et al. (2003) for two reasons:
we include self-inhibition (S # 0); and we have identical connectivity profiles ¢ for the
excitatory and the inhibitory populations.

The different parameter regimes (“phases”) of the firing rate model are characterized
by certain properties of the cortical feedback kernel D(k):

o Unstable if D(k) > 1 for any k.
o Feedforward (FF) if |D(k)| < 0.5 for all k.

o Excitatory dominated (EXC) if D(k) > 0 for all k and Dy,ax = D(0).

Recurrent (REC) if Dyax > 0.5and 1— D(0) > 2(1 — Dyax)-

Inhibitory dominated (INH) if D(k) < 0 for some k and D,y < 0.5.

With the chosen values for the connections strengths (Sgg, Sig, Si, Sgr), the network
operates in the recurrent (REC) regime.
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