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Zusammenfassung

In dieser Monografie untersuchen wir das Langzeitverhalten von stochastischen Verzogerungs-
gleichungen. Unser Ansatz sind zufdllige dynamische Systeme, und wir 16sen unsere Gleichung
unter dem Gesichtspunkt der Theorie der rough paths. Wir befassen uns vor allem mit dem
singulédren Fall, in dem die Verzogerungsterme auch im Diffusionsteil vorkommen.

Obwohl wir die Gleichung mit den klassischen Werkzeugen der stochastischen Analysis
16sen konnen, ist das Haupthindernis das Fehlen der Flusseigenschaft. Genauer gesagt hingt
die Losung nicht kontinuierlich vom Anfangswert ab. Um dieses Problem zu lésen, definieren
wir diese Figenschaft anders. Wir werden zeigen, wie wir eine Flusseigenschaft auf Feldern
von Banach-R&umen mithilfe der rough path Theorie erzeugen kénnen. Infolgedessen beweisen
wir die Kozykel-Eigenschaft und stellen ein Wong-Zakai-Theorem auf. Da wir die rough path
Theorie verwenden, kénnen wir unsere Ergebnisse auf den Fall anwenden, dass das Rauschen
aus Brownschen Bewegungen oder fraktionalen Brownschen Bewegungen mit % < H < %
besteht.

Das wichtigste Theorem in zuféilligen dynamischen Systemen ist der berithmte Multiplikative
Ergodensatz (MET). Angeregt durch unseren Rahmen beweisen wir eine Version dieses
Theorems auf Feldern von Banachraumen. Auflerdem zeigen wir unter der Annahme der
Invertierbarkeit der Basis das Oseledets Splitting. Anschlieend wenden wir dieses Theorem
auf die stochastischen linearen Verzogerungsgleichungen an und zeigen, dass die linearen
Verzogerungsgleichungen ein Lyapunov-Spektrum besitzen. Dieses Ergebnis ist bemerkenswert,
denn es liefert eine umfassende Erklarung fiir die Stabilitdt und das chaotische Verhalten der
stochastischen Verzogerungsgleichung.

Das Vorhandensein von invarianten Mannigfaltigkeiten ist eine Anwendung des MET.
Mithilfe des MET beweisen wir dieses Theorem fur nichtlineare Kozykeln, die auf messbaren
Feldern von Banach-Raumen wirken. Insbesondere beweisen wir lokale stabile und instabile
Mannigfaltigkeit fiir nichtlineare, singuldre stochastische Verzogerungsgleichungen um die
stationdren Punkte.

Diese Monografie enthélt auch ein eigenstindiges Kapitel iiber das Konzept der metrischen
Entropie fiir die stochastischen Fliisse, die in endlich vielen Richtungen invariant sind. Nach der
Definition der Entropie fir diese Klasse von Fliissen, beweisen wir die Ruelle’sche Ungleichung
entsprechend. Diese Ungleichung besagt dass, die metrische Entropie durch die Summe der

positiven Lyapunov-Exponenten begrenzt ist.






Abstract

In this monograph, we investigate the long-time behavior of stochastic delay equations. Our
approach is random dynamical systems, and we solve our equation in the rough path point of
view. Namely, we deal with the singular case, i.e., when the delay terms also are appearing in
the diffusion part.

Although we can solve the equation using the classical tools of stochastic analysis, the main
obstacle is the lack of flow property. More precisely, the solution does not depend continuously
on the initial value. To solve this problem, we define this property differently. We will show
how we can generate a flow property on fields of Banach spaces using rough path theory. As a
consequence, we prove the cocycle property and establish a Wong-Zakai theorem. Since we use
rough path theory, we can apply our results to the case where the noise consists of Brownian
motions or fractional Brownian motions with % < H < %

The main theorem in random dynamical systems is the celebrated multiplicative ergodic
theorem (MET). Inspired by our framework, we prove a version of this theorem on fields of
Banach spaces. Moreover, assuming the invertibility of the basis, we show Oseledets splitting.
We then apply this theorem to stochastic linear delay equations and demonstrate linear
delay equations possess a Lyapunov spectrum. This result is remarkable, as it provides a
comprehensive explanation for the stability and chaotic behavior of the stochastic delay flows.

The existence of invariant manifolds is an application of the MET. Using the MET, we prove
this theorem for nonlinear cocycles acting on measurable fields of Banach spaces. In particular,
we prove local stable and unstable manifold theorems for nonlinear, singular stochastic delay
differential equations around the stationary points.

This monograph also contains a separate chapter on the concept of the metric entropy
for the stochastic flows, which are invariant in finitely many directions. Having defined the
entropy for this class of flows, we prove Ruelle’s inequality accordingly. This inequality states

that metric entropy is bounded by the sum of the positive Lyapunov exponents.
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Introduction

Abstract

The aim of this monograph is the study of the long-time behavior of stochastic delay equations.
Our approach to this is pathwise. Namely, we will consider equations that can be solved using
the rough paths method developed by T. Lyons. The main tools used in this work are the
theory of rough paths and the random dynamical system method. In the following, we briefly

review these two subjects, and at the end, we outline our contributions in this thesis.

Rough Path Theory

Let us start with the rough path theory first. Deterministic systems do not capture the essence
of fluctuations in the real situation. In fact, for many physical phenomena, our system is

subject to white noise. In the simple case, our system is controlled by the following controlled
ODE

Yi= fo(Ys) + f1(Ye) Xy (1.0.1)

Here Y is our output which takes values in R, Typically, X is a process that does not have
differentiable sample paths like the Brownian motion. The main challenge here is to make

sense of this equation. Indeed, if we reformulate equation (1.0.1) in integral form, then

V=Yoot [ fo¥ds+ [ fi(vax. (1.02)

The question now is how we can define the second integral. When X is a Brownian motion or
a martingale, this integral is typically defined in the It6 sense. In this case, the It6 integral
can be defined like the Riemann—Stieltjes integral, that is, as a limit in probability of Riemann
sums; such a limit does not necessarily exist pathwise.

On the other hand, the rough path theory provides an alternative approach to solve

stochastic differential equations. It is even more general in many respects since it is not based



1. Introduction

on the classical martingale framework. The main difference with the classical probabilistic
approach is, it depends on some algebraic machinery.

Returning to (1.0.2), we fix the path X and do not assume that it is a random process;
what the theory of rough path is providing is to make sense of this equation in terms of
additional information of X. For simplicity, let us assume that X is a a- Hélder path such
that % <a< %, and we can give meaning to the second iterated integral I';; := fst X rdX,
moreover assume [ has 2a-regularity. Then under some regularity assumptions on fp and fi,
we can give meaning to this equation in terms of X, [ XdX, and initial value.

In the case of Brownian motion, the natural way to define the second iterated integrals is

the usual It6 or Stratonovich integral:

t t
[ BusdBe, [ BodB..
S S

The rough path theory is robust to consider other equations subject to the irregular driving
signal. Moreover, ideas from the rough path have been shown conclusive, especially for
equations in infinite-dimensional spaces. To wit, Martin Hairer used this idea to invent the
theory of regularity structures. He then applied this theory to solve celebrated ill-posed

stochastic partial differential equations, including Burgers type and the KPZ equation.

Random Dynamical System

Let us now briefly talk about the second tool. A random dynamical system (RDS) is a
dynamical system in which the equation of motion contains an element of randomness. This
approach goes back to L. Arnold [1].

The main components of a RDS are

e A measurable dynamical system in the sense of ergodic theory.

e A smooth (topological) dynamical system, typically generated by a differential equation.
To be more specific

o Let (Q,F) and (X, B) be measurable spaces. Let T be either R or Z, equipped with a
o-algebra Z given by the Borel o-algebra B(R) in the case of T = R and by P(Z) in
the case of T = Z. A family 0 = (6;)1e7 of maps from 2 to itself is called a measurable

dynamical system if

(i) (w,t) = b is F ® Z/F-measurable,
(ii) o = Id,

(iii) Os4¢ = 0500, for all s,t € T.

If T =7, we will also use the notation 0 := 6, 0" := 0, and 67" :=0_, forn > 1. If P

is furthermore a probability on (£2, F) that is invariant under any of the elements of 6,
Pof ! =P
for every ¢ € T, we call the tuple (2, F,P,0) a measurable metric dynamical system.

2



o Let TV :={t €T : t >0}, equipped with the trace o-algebra. A measurable random
dynamical system on (X, B) is a measurable metric dynamical system (£, F,P, 0) with
a measurable map
e: TP xOx X+ X

that enjoys the cocycle property, i.e. p(0,w,-) =1Idx, for all w € 2, and
ot + s,w,-) = p(t,0sw,-) o p(s,w,-)

for all s,t € Tt and w € Q. The map ¢ is called cocycle.

This theory allows us to describe not only whether a solution is stable or unstable, but
also to identify the directions of stability, using the concept of stable or unstable invariant
manifolds [2, 3]. Furthermore, domains of attraction can be identified using random attractors
[4, 5, 6], and stochastic bifurcation can be studied [1, Chapter 9]. The concept of random
dynamical systems was successfully applied to stochastic differential equations (SDEs) in finite
and infinite dimensions. It is a natural approach to study the long-time behaviour of stochastic

delay equations.

The results of this thesis

As we stated earlier, the primary motivation of this thesis is to investigate the long-time
behavior of stochastic delay differential equations (SDDE). In particular, we are interested in
the application of the RDS approach. Let us now summarize the results of this monograph.
Chapter 2. The celebrated multiplicative ergodic theorem (MET) is the main theorem in
RDS. This theorem is describing the generic asymptotic behavior of a stationary product of
linear operators A™ = A, 0 A,,_1 0...0 A;. Remarkably, in many cases of natural interest, this
body of ergodic-theoretical tools ensures that generic compositions of these operators exhibit
defined asymptotic exponential growth rates in various directions in the underlying vector
space. Originally proved by Oseledets in the late 1960s for compositions of d x d matrices, the
MET has been extended and refined in the ensuing years in various follow-up works. The MET
forms the theoretical foundation for many areas of dynamical systems research, notably smooth
ergodic theory and the theory of SRB measures for both finite-dimensional systems (ODE
and SDE) and infinite-dimensional systems (PDE and SPDE). To fix ideas while retaining
some informality, let us consider compositions of a stationary sequence Ay, Ao, ... of d X d real
matrices. Indeed, A;’s are random matrices drawn from the same probability space (2, F,P),
A; : Q — M¥9R), and that the law of A; for P does not depend on i. Let us agree to write
A" = A;0A;_10..0A; for i-th random composition. The MET itself has two parts. The first
is the "one-sided" MET for compositions of operators drawn from a "one-sided" stationary
sequence of linear operators. The one-sided version says that, under suitable ergodicity and
integrability assumptions, the following holds: there exist (deterministic) constants 1 < r < d

and A1 > X9 > ... > \,, as well as a random filtration

{0})=F.,1CF.C..CFcF =R



1. Introduction

of R? with the property that with probability 1,
o1
lim —log||A"v| = A,
n—oon

for all v € F; \ F;+1 . Note, of course, that the sequence (A4;) is correlated with the filtration of
subspace (F;). The second aspect of the MET is its “two-sided” version, which in this context
is stated for bi-infinite stationary sequences (A;);ecz of d X d matrices, A; : @ — Mgyq . Define
A™" = (Apo...o A_(n_l))*l for n > 0, and for now assume that the A; are almost-surely
invertible. Then, under suitable ergodicity and integrability assumptions, with A1, ..., A, as in

the one-sided MET, there exists a random splitting
RI=E,®..0F,
of R? into random subspaces E; so that with probability 1, we have
1 n
lim —log||A 0| = =\,
n—oo n,

for all v € E; \ {0}, 1 < i < d. Various extensions of the scope and assumptions of these
theorems have been made over the years, e.g.: extending to stationary compositions of compact
or quasi-compact linear operators on Hilbert and Banach spaces, as well as to compositions
of linear operators which are not invertible (or not even necessarily injective), the latter
sometimes being referred to as “semi-invertible” MET’s. Motivated by our model we made

following contributions on the MET state-of-the-art:

(i) an MET for stationary compositions on a (possibly random) field of (potentially distinct)

Banach spaces, depending on the random sample.
(ii) weakening the measurability requirements for the stationary sequence.

Our main theorems in this chapter are Theorem 2.2.16 which is obtained in collaboration
with Prof. Michael Scheutzow and Dr. Sebastian Riedel and Theorem 2.3.20, brought in
partnership with Dr. Sebastian Riedel.

Chapter 3. Invariant manifolds are topological manifolds that are invariant under the
action of the dynamical system. In ODE’s, these invariant sets play an essential role in
questions of stability and bifurcations near the equilibrium points. To illustrate the idea of

this chapter, we begin with the following simple example from ODE

X=-)MX+F(X,Y), A>0 and F(0,0)=0
Y =uY +G(X,Y), p>0 and G(0,0) = 0.

The invariant manifold theorem states that the solutions of this system near (0,0) look like

the following picture
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Figure 1.1: Stable and Unstable manifolds

the Indeed, we have two curves, so if our initial value starts on either curve, the
corresponding trajectory stays in the same curve. In the stable curve, the solution converges
exponentially toward the equilibrium point. In contrast, in the unstable curve, the solution
escapes away from the equilibrium. However, in the negative times (if we are allowed to go
back), the trajectory converges to the equilibrium point. We should also point out that there
is another invariant curve called the center manifold; the behavior of the solution in this set
can be either stable or unstable.

The key ingredient for these theorems is the linearized equation at the equilibrium point.
Returning to RDS, the MET shows that linear and linearised random dynamical systems
possess a Lyapunov spectrum which can be interpreted as an analog to the spectrum of
eigenvalues of a matrix. Here, positive Lyapunov exponents lead to the existence of an unstable
manifold, and similarly, the negative Lyapunov exponents generate the stable manifold.

The main theorems of this chapter are Theorem 3.2.9 and Theorem 3.3.6, both of these
theorems are obtained with Dr. Sebastian Riedel.

Chapter 4. Stochastic delay equations are the type of stochastic equations, in which the
derivative of the function is given in terms of the values of the function at present and in

previous times. The simple case of this type of equation is in the form of

dyr = b(ye, Yo—r) dt + o (yt, Y1—r) dBi(w). (1.0.3)

Here B can be a Brownian motion or a fractional Brownian motion with é < H< % .
Although we can solve the equation by assuming standard assumptions on b and o, the
absence of the flow property is a severe obstacle to a dynamical theory. As a result, it was
long believed that a dynamical approach to this type of equation was impossible. Our strategy
to debunk this problem is to solve the equations using the theory of rough paths and then

generate a flow property in the fibers of Banach spaces. More precisely, we do not fix the space
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of initial values and let this space also depends on our random object; this space is updated as
we evolve in time.

It turns out that we can define a fiber-like dynamical system. This new setting indeed
coincides with our framework in Chapter 2 and Chapter 3. Recall, in these chapters, we
developed a version of MET and applied this theorem to prove the existence of invariant
manifolds.

The main contributions of this chapter are

e We extend the theory of rough delay differential equations introduced by Deya,
Neuenkirch, and Tindel [7]. The new results are an a priori bound for linear equations
(Theorem 4.2.11), a semi-flow property (Theorem 4.2.13), a Wong-Zakai theorem

(Theorem 4.2.28), and the existence of the random dynamical system (Theorem 4.3.7).

e We show that SDDE induces an RDS on a field of Banach spaces where the fibers are
(essentially) the spaces of controlled paths (Theorem 4.3.14). En passant, we prove that
the spaces of controlled paths form a measurable field of Banach spaces, which we believe
is interesting in its own right since it sheds new light on the geometry of the spaces of

controlled paths.

e We apply the MET to linear SDDE and prove the existence of a Lyapunov spectrum
(Theorem 4.4.1 and Corollary 4.4.2). In the case of the (simple) SDDE (4.1.3), we show
that the largest Lyapunov exponent coincides with the exponential growth rate, which
was studied in [8] (Theorem 4.5.1).

I obtained the results of this chapter in collaboration with Prof. Michael Scheutzow and Dr.
Sebastian Riedel.

Chapter 5. This chapter is the sequel to the previous chapter. Indeed, we notably address
the nonlinear equations and harvest the fruits of our previous results. We accept our framework
in Chapter 4. The main idea is to apply our Multiplicative ergodic theorem and our theorems
on invariant manifolds from Chapter 2 and Chapter 3.

We first solve our equations when the drift components can be unbounded (but linear),
and the nonlinear diffusion coefficient satisfies certain smoothness assumptions. The primary
technique here is to decompose the flows. After solving the equation, we prove the regularity
(In Fréchet sense) and estimate the growth of the solution. Based on these estimates and
earlier results in other chapters, we show the existence of local stable/unstable manifolds
around a stationary trajectory for delay equations. We then give two examples: a rough delay
equation having 0 as a stationary solution and an It6 delay equation with an exponentially
stable linear part.

The main results of this chapter are Theorem 5.4.4 and Theorem 5.4.5 where we prove
the existence of invariant manifolds for nonlinear stochastic delay equations. Both of these
theorems are based on joint work with Dr. Sebastian Riedel.

Chapter 6. This chapter is independent of the other chapters. This chapter aims to define
and explore metric entropy for specific flows that are invariant under a finite of family vectors.
Metric entropy is an essential concept in ergodic theory that measures the chaoticity of the
system. In fact, the positive Lyapunov exponents are responsible for the chaotic behavior of

the systems. After defining this concept for our model (while there is not an invariant measure)

6



and generating the Lyapunov exponents, we prove in this chapter that our entropy is less than
and equal to the sum of the Lyapunov exponents. This result is known as Ruelle’s inequality.

The main results of this chapter are Theorems 6.3.5 and 6.3.7. And these results are
obtained with collaboration with Prof. Michael Scheutzow, Prof. Marc Kefleb6hmer and Dr.

Vitalii Senin.






Multiplicative Ergodic Theorem

2.1 Introduction

The Multiplicative Ergodic Theorem (MET) is a powerful tool with various applications in
different fields of mathematics, including analysis, probability theory, and geometry, and a
cornerstone in smooth ergodic theory. It was first proved by Oseledets [9] for matrix cocycles.
Since then, the theorem attracted many researchers to provide new proofs and formulations
with increasing generality [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In this section we give a
proof for an MET for cocycles acting on measurable fields of Banach spaces. We first prove
the MET and then apply it to prove the Oseledets splitting. Let us quickly recall the setting
here: If (2, F,P) denotes a probability space, we call a family of Banach spaces {E, },cq a
measurable field if there exists a linear subspace A of all sections Il,cqF,, and a countable
subset Ay C A such that {g(w) : g € Ag} is dense in E,, for every w € Q and w — ||g(w)| £,
is measurable for every g € A. Note that this definition implies that every Banach space E,, is
separable. On the other hand, every separable Banach space defines a field of Banach spaces
by simply setting E, = E. This structure is similar to a measurable version of a Banach
bundle with base 2 and total space II,cqF,, in which every space E, is a fiber. However, the
fundamental difference is that we do not put any measurable (or topological) structure on the
bundle Il,cqFE, itself! In fact, the existence of the set A is a substitute for the measurable
structure and will help to prove measurability for functionals defined on I1,cq FE,, as we will see
many times in this chapter. Remember for a measure preserving dynamical systems (€2, F, P, 6)
, a cocycle acting on the field {E, },cq consists of a family of maps ,,: E, — FEjy,,. Setting
Y = tPgn-1,, 0 - - 01, we furthermore assume that w — |9 (g(w))||Eyn,, is measurable for
every g € A and every n € N. Our first main result in this chapter is a MET on a measurable
field of Banach spaces. We state a simplified version here, the full statement can be found in
Theorem 2.2.16 below.

Theorem 2.1.1. Let (0, F,P,0) be an ergodic measurable metric dynamical system and 1)

be a compact linear cocycle acting on a measurable field of Banach spaces {E,},cq. For
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peRU{—o0} and w € Q, define
: 1 n
F,(w):={z € E, : limsup — log ||y (z)|| < pu}.
n—oo T
Assume that

log™ [yl € LY(Q).

Then there is a measurable forward invariant set Q C Q of full measure and a decreasing

sequence {; }i>1, pi € [—00,00) with the properties that limy, o fin, = —00 and either p; > wiy1
or l; = iy1 = —oo such that for every w € €,
. . . 1 n
v € Fu(@)\ B (&) andonly i lim T log [ul() = i (2.1)
Moreover, there are numbers my,ma, ... such that codim F,, (w) = mq + ... +m;_1 for every
weQ.

Let us mention here that, motivated by our example of a stochastic delay equation, we
proved this theorem for compact cocycles only, but it is straightforward to generalize it to the
quasi-compact case as Thieullen did in [14]. Consequently, we believe that all our results in
this work will hold for quasi-compact cocycles, too.

The numbers {yx;} are the Lyapunov ezponents, the subspaces F),(w) are sometimes called

slow-growing subspaces and the resulting filtration
E,=F, (w)DFw)D...

is called Oseledets filtration. Is is easily seen that the slow-growing spaces are equivariant,
meaning that 1, (F, (w)) C Fy,(6w). In the proof of this theorem, no invertibility of § or v
is assumed, in which case a filtration of slow-growing subspaces is the best one can hope for.
However, things change when we assume that the base 6 is invertible. In this case, it is possible
to deduce a splitting of the spaces F,, consisting of fast-growing subspaces which are invariant
under . Such a splitting is called Oseledets splitting, and the corresponding theorem is called
semi-invertible MET. Let us emphasize that we only need to assume invertibility of the base 0
and no invertibility of the cocyle ¥. In the context of SPDE or stochastic delay equations,
these assumptions are quite natural: 6 usually denotes the shift of a random trajectory (which
can be shifted forward and backward in time) and the cocycle denotes the solution map, which
is not injective if the equation can be solved forward in time only.

Our second main result is a semi-invertible MET on a measurable field of Banach spaces.
The full statement can be found in Theorem 2.3.20 below.

Theorem 2.1.2. In addition to the assumptions made in Theorem 2.2.16, assume that 0 is
invertible with measurable inverse o := 0~ and that Assumption 2.3.1 holds. Then there is a
0-invariant set Q of full measure such that for every i > 1 with p; > pip1 and w € Q, there is

an m;-dimensional subspace H' with the following properties:

(i) (Invariance) ¢f(HL) = H},  for every k > 0.

10



2.1 Introduction

(i) (Splitting) H. ® F, ,(w) = F,,(w). In particular,

E,=H,®- ©H, & F,, ().
(iii) (‘Fast-growing’ subspace) For each h, € H. \ {0},

.1 n _
nlgngoﬁlog 19005 (he) || = 1
and

o1 noo\—
lim_—log |(vgn,) ™" (ho)|l = —4;.

n—oo n,

Moreover, the spaces are uniquely determined by properties (i), (ii) and (iii).

Clearly, the Oseledets splitting provides much more information about the cocycle than
the filtration.

Let us discuss some important preceeding results. In the finite dimensional case, an MET
for cocycles acting on measurable bundles can be found in the monograph [1, 4.2.6 Theorem]
by L. Arnold. In [13], Mané proved an MET with Oseledets splitting on a Banach bundle,
assuming a topological structure on €2 and continuity of the map w — v,,. He also assumed
injectivity of ¢. Besides these results, we are not aware of any METs for cocycles acting on
a bundle-type structure. Lian and Lu [16] proved an MET for cocycles acting on a fixed
Banach space, assuming only a measurable structure on €2, but injectivity of the cocycle. This
assumption was later removed by Doan in [17] without giving an Oseledets splitting, however.
In [20], Gonzalez-Tokman and Quas used this result as a “black-box” and proved that an
Oseledets splitting holds in this case, too.

Let us mention that our result is not only the first which provides MET and a splitting
on a bundle structure of Banach spaces without using a topological structure on 2, it also
weakens the measurability assumption on v significantly in case we are dealing with a single
Banach space E only. In fact, the standard measurability assumption, for instance in [19], is

strong measurability of ¢, meaning that for fixed x € E, the map
Q3w Yy(z)e B (2.1.2)
should be measurable. In contrast, our assumption means that the maps
Q3w W5 (2) — e, (@) €R

should be measurable for every n, k € Ny and =,z € S where S is a countable and dense subset
of E. This assumption is clearly implied by (2.1.2).

The proof of Theorem 2.1.2 pushes forward the volume growth-approach advocated by
Blumenthal [18] and Gonzalez-Tokman, Quas [19] which provides a clear growth interpretation
of the Lyapunov exponents. In a way, our result covers and complements these two works in
case of a single Banach space E. In particular, we are not imposing any further assumptions

on F like reflexivity or separability of the dual as in [19].
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2. Multiplicative Ergodic Theorem

The structure of this chapter is as follows. In Section 2.2, we prove a MET for cocycles
acting on measurable fields of Banach spaces. In Section 2.3 we assume in addition, the base 0
is invertible and then prove a semi-invertible MET again for cocycles acting on measurable

fields of Banach spaces.

Notation

o For Banach spaces (X, | - |x) and (Y, - |ly), L(X,Y) denotes the space of bounded
linear functions from X to Y equipped with usual operator norm. We will often not
explicitly write a subindex for Banach space norms and use the symbol || - || instead.
Differentiability of a function f: X — Y will always mean Fréchet-differentiability. A
C™ function denotes an m-times Fréchet-differentiable function such that the m-th order
derivatives are continuous. If A, B C X, we denote by d(A, B) := inf,capep ||a — b|| the
distance between two sets A and B. We also set d(z, B) := d(B,z) := d({z}, B) for
zeX,BCX.

e Let E be a vector space. If we can write E as a direct sum F = F @& H of vector spaces,
we have an algebraic splitting. We also say that F' is a complement of H and vice versa.
The projection operator lpg(e) = f with e = f +h, f € F, h € H, is called the
projection operator onto F parallel to H. If E is a normed space and Ilp|y is bounded

linear, i.e.

I/l
Hpul = sup < 00,
| feFheH, f+ho |f + Rl

we call E = F & H a topological splitting. For normed spaces, a splitting will always

mean a topological splitting.

o Let (2, F) be a measurable space. We call a family of Banach spaces {E,}.cq a

measurable field of Banach spaces if there is a set of sections

Ac [] E.

weN

with the following properties:

(i) A is a linear subspace of [],cq Fu-

(ii) There is a countable subset Ay C A such that for every w € Q, the set {g(w) : g €
Ay} is dense in E,,.

(iii) For every g € A, the map w — ||g(w)|| g, is measurable.

o Let (Q,F) be a measurable space. If there exists a measurable map 6: Q — Q, w — Ow,
we call (Q, F, 0) a measurable dynamical system. We will use the notation "w for n-times
applying @ to an element w € . We also set #° := Idg. If P is a probability measure on
(Q, F) that is invariant under 6, i.e. P(A) = P(§~1A) for every A € F, we call the tuple
(2, F,P,0) a measure-preserving dynamical system. The system is called ergodic if every

f-invariant set has probability 0 or 1.

12



2.2 MET on fields of Banach spaces

« When we say 6 is invertible then we also assume, 6! is measurable and we set =" :=

(6™)~. In this case we call the tuple (Q, F,P,0) a measure-preserving dynamical system
if for every A € F, P(A) = P(A) = P(6~1A).

o Let (Q,F,P,0) be a measure-preserving dynamical system and ({Ey}weq, D, Ao) a
measurable field of Banach spaces. A continuous cocycle on {E,},cq consists of a family

of continuous maps
Yot By — Epg,. (2.1.3)
If ¢ is a continuous cocycle, we define ¢!’ : E,, — Epgn,, as

P = Pgn-14,0 -+ 0 Yy

We also set 90 :=Idg,. We say that v acts on {E, }weq if the maps

w = lvg(9(W)llEgn,, neN (2.1.4)

are measurable for every g € A. In this case, we will speak of a continuous
random dynamical system on a field of Banach spaces. If the map (2.1.3) is bounded

linear /compact, we call ¢ a bounded linear/compact cocycle.

2.2 MET on fields of Banach spaces

Throughout this chapter, we assume (€, F,P, ) is a measurable metric dynamical system and
({Eu}wea, A, Ag) is a measurable field of Banach spaces and also that 1 is a bounded and
linear cocycle acting on {E, },ecq-

We start with an easy observation.

Lemma 2.2.1. For every n € N, the map

w = VSO LB, B

1s measurable.

Proof. Using properties of A and continuity of v,

. @l @)
el mo = 2000 Tl ~ oo, gt X010}

with the convention co -0 = 0. Since the fraction on the right hand side is a quotient of

measurable functions and the supremum runs over a countable set, measurability follows. [

The next lemma proves a further measurability result. The assumptions will be justified in

the sequel.

Lemma 2.2.2. Forw € Q and p € R, define the subspace
. 1 n
Fu(w) :=1<¢ € E, : limsup —log |5 ()| < pp-
n—oo T

13



2. Multiplicative Ergodic Theorem

Assume that there is a strictly decreasing sequence (pj)1<j<n, N < 00, and a §-invariant,

measurable set Qg C 0 of full measure with the following properties:
(i) Fyu,(w) = E, for every w € Q.

(it) For every j < N, there is a number m; € N such that F,

i (W) is closed and mj-

codimensional in Fy,,(w) for every w € Q.

(iii) For every j < N,

.1
lim_ -~ log |45 ()]s )l = H (2.2.1)

n—oo

for every w € Q.
(iv) For every j < N, if HJ is any complement of Fin (W) in Bl (w),

lim llog inf LCAWI] = [ (2.2.2)

n=oon hepivioy A

for every w € .
lim 1 1 n < 2.2
im sup 0g [[Y5() [y ) | < 1w (2.2.3)

for every w € Q.

Then for everyn € N and j < N , the map

w = [950) |F, ) xao(w) (2.2.4)
1s measurable.

Proof. First we claim that for every ¢ € A and j < N the map
w = d(g(w), Fyu, (w)) (2.2.5)

is measurable. To see this, it suffices to show measurability of the function

d(g(w), Sk () = inf -
(9(w). SF, () ge}uj<w)||9(“’) |l

l€l=1

where Sp, () is the unit sphere in F),;(w). We use induction to prove the claim. The statement
J

F#i (w)

7 (w)] < 00, we can find a
Hit1

is clear for j = 1, so let j > 2. For every 1 < i < j, since dim |

finite-dimensional subspace H;(w) such that for a constanti M,

F/Ji (w) - Hl(w) D FM+1 (w) and HWHi(w)HFNHI(w)” < M. (2'2'6)

!The existence of this complement with the given bound for the projection is a classical result and follows
e.g. from [21, IIL.B.11], cf. also [18, Lemma 2.3].

14



2.2 MET on fields of Banach spaces

For pg :=pq and I,k > 1 set

B (i) = {6 € B 16l = 1. (@)1 < exp (k(ps + 7)) and
A6, Fw)) < exp (k{p; — i), 1 <1 < 5
We claim that

d(g(w),SFH]_(w)) = lim liminf d(g(w), B4 (115)). (2.2.7)

k—oo l—o0

Set the right side equal to A. By definition, it is straightforward to show that d(g(w), S Fo. (w)) >
J

A. For the opposite direction, let € > 0. For large k,l we can find ¢"* € BY* (1) such that

|g(w) — 4%l < A + €. By our assumptions on B%!(1;), we have a decomposition of the form

Lk
S DI A L
I<i<y—1

such that for 1 <17 < j, hl ke H;(w) and fb* ¢ Fy,;(w). Moreover, there is a constant M such
that for 1 <i < j—1,

Lk
IR (| < M d(E", Fyyyy (@) and |

From (2.2.2), choosing k larger if necessary, we obtain that for a given § > 0,

exp (k(uj—1 — ) IG5 | < [l (5 DI < 145 E*) I+
> ISR+ M E s, )l

1<i<j—1
Consequently, from our assumptions on BL¥(u;) and (2.2.1), we obtain for large [, k
IB5E411 < Mo exp ((nj — pj-1 + 20))

for a constant M. Now for large I, k,

Lk
1> mtll<e, 1—e<]|

1<i<j

Consequently, d(g(w),SF, ,(w)) < A and (2.2.7) is proved. The rest of the proof is
J
straightforward: For g € A we set

Cl’k’j@) ={w : 9(w) € Bc{}k(/‘j)}

From the definition of BL*(u;) and the induction hypothesis, C%%7(g) is measurable for every
k,l > 1. Note that

d(g(w%SFMj(w)) :glenAfOJ( )

15



2. Multiplicative Ergodic Theorem

where

Jg(w) = {OO ifw ¢ G4 () (2.2.8)

lg(w) — %H otherwise.

Since Jz(w) is measurable, this proves the claim. Therefore, we have also shown measurability
of CY%J(g) for every j,k,1 > 1 and g € A. Next, with the same argument as above, we can
show that

1(5C) B (@)X (@) = lim liminf | sup 15| xa0 ()

o0 koo Lee k()

for every 5 > 2. Since

195 (g(w))ll

sup [ (€)] = sup T N ki (g) (W),
centiy) 0 geno lg@) YW
measurability of (2.2.4) follows. O

We also have the following lemma.

Lemma 2.2.3. Let the same assumptions as in Lemma 2.2.2 be satisfied. Then there exists
a O-invariant, measurable set 1 C Q of full measure such that for every w € Qy, if H, is a

complement of F,,(w) in E,, we have

o1
lim — log HHTPE(Hw)HFuQ(O"W)H =0. (229)

n—oo n

Proof. 1t is enough to show that
lim suplog |1y (a1, £, (67w) | < O (2.2.10)
n—oo
Define

h1(w) = Sup exp (=p(p1 +0) [5G

pa(w) = Sup exp (—=p(p2 + )N YE ) Ey ()

From Lemma 2.2.2, ¢; and ¢9 are measurable functions and bounded on a set of full measure
Q. So from [13, Lemma IIL.8], there exists a measurable subset 25 of full measure such that

for any w € g,

1
lim — log™ ¢(6"w) =0 (2.2.11)

n—oo n,

where ¢(w) = max{¢1(w), p2(w)}. Note that we can assume that €2; is also f-invariant,
otherwise we can replace it by ﬂjez(m)_l(ﬁl). Fix w € Q; and assume that H, ® F),,(w) = E,.
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2.2 MET on fields of Banach spaces

Let € > 0. From (2.2.1) and (2.2.2), we can find an N € N such that for n > N,

ne., < 6 5 TR
5O < oxp (n(pa +8)) | inf -5

?(0"w) < exp(ne).

(2.2.12)

We prove (2.2.10) by contradiction. Assume there is a v > 0 and a sequence (ny, hy, fi) €
(N, Hy,, Fju, (0™ w)) such that

o ()|
T () — foll =

1
ng — o0, || hgl]l =1 and §exp(nk'y) for all £ > 1. (2.2.13)

For p > 0,

152 (i) | = 1, (V5* (i)

(2.2.14)
< [ (OB (i) = Frll + 190y (g, 1

From (2.2.13), it follows that || fx|| < 3||¢%*(hg)||. Now for large ng, from (2.2.12) and (2.2.14),

exp (. + )1~ 8)) < 2exp (e + plous+8) + mylpr +8) i)
+ 3exp (p(,ug +9) + nge + ng(p1 + 5))

Choosing p = n; and 6, € small, we will have a contradiction. ]
We need the following definition.

Definition 2.2.4. Let X,Y be Banach spaces. For x1,...,x; € X, we define

k
Vol(z1,x2, ..., xk) := ||z1]| H d(z;, (x5)1<5<i) (2.2.15)
=2

where d denotes the usual distance between a point and a subset in X. For a given bounded
linear function T : X —Y and k > 1, set

Di(T) := . sup Vol (T(z1), T (x2), ..., T(x))
@il =13i=1,...k

We summarize some basic properties of D, in the next lemma.

Lemma 2.2.5. Let X,Y,Z be Banach spaces andT : X — Y, S :Y — Z bounded linear

maps.
(i) Di(T) = |T|| and D(T) < |T|* for k > 1.

Proof. The proof of (i) is straightforward, (ii) is proven in [19, Lemma 1]. O
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2. Multiplicative Ergodic Theorem

Lemma 2.2.6. Let T : X — Y be a bounded linear map between two Banach spaces, x €

(ri)1<i<k and ||x;|| = 1. Then there exists a constant oy, which only depends on k such that

[T|
]

>1<j<k Bjzj. Consequently, there exists 1 < ¢t < k such that g > %
Define y = (y1,...,yx) as

Vol (T(x1), T(x2), ..., T(xx)) < ou||T)*1

Proof. Assume ﬁ

x; fori#t,n,
Yi =z, fori=rt,

zy for i =n.
By definition,

Vol (T(y1), T(y2) - T(yn)) < TN d(T (yn), (T (1)) 1<i<n—1)
| T|| (2.2.16)

(el

From [18, Proposition 2.14], there is an inner product (-,-)y on V = (T'(z;))1<i<k such that

< k7|

IT@)ly N
f< Ty SVE Ve e s

It is not hard to see that this implies that

L _ dv(T) Tahes) _ g7

VEk h d(T( ) <T($z)>1<z<3)

and, consequently,

L k Voly (T(.Tl), ...,T(mk)) &

(\/%) = Vol (T(21), ..., T(zy)) <V (2:2.17)
Note that Voly (T'(z1),...,T(zx)) = Voly (T'(y1),T(y2), ..., T(yx)) so our claim follows from
(2.2.16) and (2.2.17). O

Lemma 2.2.7. Assume that X,Y are Banach spaces and that T : X — Y is a linear map.
Let V C X be a closed subspace of codimension m. Then for k > m, there exists a constant C

which only depends on k and m such that
Di(T) < CDu(T) Dy (Tl (2.2.18)

Proof. [19, Lemma 8§]. O
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2.2 MET on fields of Banach spaces

Proposition 2.2.8. Let ¢ be a bounded linear cocycle acting on a measurable field of Banach
spaces ({Ey}weq, A, Ag). Then for every n,k > 1, the map

vF 0o R
w = Di(¥5(+))

1s measurable.

Proof. For k = 1, the claim follows from Lemma 2.2.5 and Lemma 2.2.1. Note that for w € 2,

Up(w) = sup Vol (¢2(71(w)), - - ¥L(Fk(W))) X{ligu 50, 1gn 503 (&)
g1,--,9kE€EAQ

where we used the notation §;(w) = gi(w)/||gi(w)||, i = 1,...,k. It is therefore sufficient to
prove that for fixed g1,...,gx € A,

w = Vol (P55 (g1(w))s - -+ V5 (35 (W) X {1191 1150, 1911 >0} (@)

is measurable. For ¢ > 2, we have

d(W5(9:(w)), (W5 (g:(w)))1<t<i)

= E}fle@”% ; — Yict<iqriby (G:(w))) ||
1 n(
ng(w)H . inf 1€QH¢ — Sice<iquhr (G (w))]|
! [958 (W) — Zr<eciarde(w)) |-

||g74(w)|| q1;-- 7‘11 16@

The claim follows by definition of Vol.
O

Lemma 2.2.9. Under the same setting as in Proposition 2.2.8, let xF(w) = log(¥k(w)).

Assume that

log* [|v, ()] € LH(Q).

Then there exists a measurable forward invariant set 1 C Q of full measure such that the limit

Ag(w) := lim M € [—o0,0) (2.2.19)

n—oo  n

exists for every w € Qq and k > 1. Furthermore, Ay (6w) = Ax(w) for every k> 1, w € Q1 and

Ag(w) is constant on Q1 in case the underlying metric dynamical system is ergodic.

Proof. From Lemma 2.2.5 and the cocycle property,

X (@) < X3 (07w) + i, (). (2.2.20)

By assumption and Lemma 2.2.5, it follows that X]f;Jr € L'(Q). Therefore, we can directly
apply Kingman’s Subadditive Ergodic Theorem [1, 3.3.2 Theorem]| to conclude. O
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2. Multiplicative Ergodic Theorem

Remark 2.2.10. (i) From Birkhoff’s Ergodic Theorem, we can furthermore assume that

4 2 390)) (2221)

n—oo n
for all w € .

(i) From Lemma 2.2.7, it follows that
Ak < Am + Ak—m

for every k > m. In particular, if A,, = —o0, it follows that A, = —oco for every k > m.

Definition 2.2.11. If the assumptions of Lemma 2.2.9 are satisfied, we define

Ap(w) = Ap—1(w)  if Ap(w), € R
)\k(w) =
—00 if Ap(w) = —o0
for k > 1, where we set Ag(w) := 0. We call A\ the k-th Lyapunov exponent of ¢». Note that
they are deterministic almost surely in case the underlying system is ergodic.
Remark 2.2.12. One can easily show that (A\;)k>1 is a decreasing sequence.

The next lemma shows that the sequence (A;) does not have real cluster points in case the

cocycle is compact.

Lemma 2.2.13. Let ¢ be as in Lemma 2.2.9. Furthermore, assume that it is compact. Then
there is a measurable forward invariant subset Q C Q with full measure such that for any

we Q and p € R, there are only finitely many exponents Ai(w) that exceed p.

Proof. Let 21 be the set provided in Lemma 2.2.9. For w € Q, let B, be the unit ball in E,,.
Set

G(,v):= {w € O : ¢} (B.) can be covered by e’ balls with sizes less than e”}. (2.2.22)

We claim that G(9,v) is a measurable subset. To see this, define

g(w)

S(w)::{SEBw : SZTW

X{lgl>01@), g € Do, 7 € QN O, 1]} |

One can easily check that S(w) is dense in B,. Let p = ¢’ and define

H(w) = inf (su min L(s) — vl (s )
@= nt (s min (b — vl
It is not hard to see that

G, v)={we : Hw)<e"}

and consequently G(1,v) is indeed measurable. Since 1 is compact, for any v € R,

19151;0]}”((;(19, v)) =1

20



2.2 MET on fields of Banach spaces

Let w € Q3. We can prove that 1) (B,,) can be covered by N,, = €™ balls of size R0;* = emim”

where

v 1 j v v
T (w)zm[v Y XewnWw) + D XawwelogT Vg, (| = vARY (@) + B ().

0jsm 0<jsm

Let Ar(w) > p. For large m, we must have k(p —v%") < 9. If we can show that p — 2" > 0

for some m, 4, u, the proof is finished since in that case, k < %.

P—Tm
Let € > 0 and choose v < 0 such that v < £=¢. From integrability of log™ [|[4/L(-)|, there exists

a d > 0 such that for P(F) < ¢,

[ togt Iwl ol dp < € (2.2.23)
E
Now we choose 9 > 0 such that

P(G(9,v)°) <€A, (2.2.24)

Since 0 < A% (w) < 1,

/ A% dP < P(AY > ¢) £ ¢ and
Q

1
P(BY%Y > €) < g /Q B2V dP.

Now from (2.2.23), (2.2.24) and Birkhoft’s Ergodic theorem, for large m,

P(A% >¢) >1—3¢ and P(B% > ) < 2.

Set A := {A% > ¢} and By := {B%" < ¢} and note that P(A; N By) > 1 — 5e. For
w e AN By,

o
Vi < -

Since € is arbitrary, we can find a set 29 C € of full measure with the desired property.
Finally we put Q3 := ?‘;O(Qj)_lﬂg. O

The following proposition, a trajectory-wise version of the Multiplicative Ergodic Theorem,
will play a central role in the proof of our main result. It is a slight reformulation of [18,
Proposition 3.4]. The proof is very similar to Blumenthal’s original proof, but because of its

importance, we decided to sketch it in the appendix, cf. page 135.

Proposition 2.2.14. Let {V;};>0 be a sequence of Banach spaces and T; : V; — Vii1 a

sequence of bounded linear operators. Set T =T, _1 0...0Ty. Assume that:

(i) lim sup,, %long Tl = 0.

(’L’L) For any ]{? > ]., th@ fOllO’lU’L’I’I,g lzmzts exists:
li 1 1 n
I-/k = 1l11m *n og IDk(I )
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2. Multiplicative Ergodic Theorem

(iii) Setting Lo := 0 and l := Ly — Lg_1 for k > 1, assume that there is a number m < oo

for whichl:=1y = ... =1, > lpy1 = L.
Then the subspace
. 1
F:={v e Vp:limsup—log||[T"v| < I}
n—oo T
is closed and m-codimensional. Also, forv e Vy\ F,
lim * log ||| =1
Jim —log [T = 1.
Furthermore, for any complement H of F,

=1.

1 [T ]|
lim — log
n=comnCveH\{0} ]|

Finally, if hy, ..., hy € Vo are linearly independent and H = (hq, ..., hy,),
1 _
lim —log Vol (T"hy, T"ha, ..., T"hy,) = ml.
n—oo n
Remark 2.2.15. In the proof of the proposition above, we will also see that

1
lim sup — log ||7" || < L
n—oo N

holds.

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

We finally state the main result of this section, a Multiplicative Ergodic Theorem for

cocycles acting on measurable fields of Banach spaces.

Theorem 2.2.16. Let (0, F,P,0) be an ergodic measurable metric dynamical system and 1)

be a compact linear cocycle acting on a measurable field of Banach spaces ({E, }wea, A, Ag).

For p € RU{—o00} and w € Q, remember
: 1 n
F,(w):={z € E, : limsup — log |[¢}}(z)|| < p}.
n—oo T
Assume that

log* [|v,, ()] € LH(Q).

Then there is a measurable forward invariant set @ C Q of full measure such that:

(i) For any w € Q and k > 1, the limit

1
Ay = HILHSOEIOng(%l(')) € [—00,00) (2.2.29)
exists and is independent of w.
(ii) Setting Ay := 0 and N\, := Ax — Ap_1 with \p = —oo if Ay, = —o0, the sequence

(Ak) is decreasing. If the number of distinct values of this sequence is infinite, then
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2.2 MET on fields of Banach spaces

limy_y00 Ay = —00. We denote the decreasing subsequence of distinct values by (pj);>1,
which can be a finite or an infinite sequence, and m; will denote the multiplicity of p; in

the sequence (X\j). If uj € R, m; is finite.

(iii) For p; # —oo and w € €,
. Lo .
v € Fu)\ B () fandonly i Jim Dlogluzl = (2230

(iv) For any pj, codim F, (w) =mq + ... +m;_1 for every w € Q.

(v) For w € Q, if h',...,h* € E, are linearly independent and H, = (h',....h¥) is a

complement subspace for F, (w) in E,, then

nangO%logVol (WR(RY), . 02 (BF) = > map. (2.2.31)

1<i<y
Remark 2.2.17. The sequence (u;) is called the Lyapunov spectrum, the filtration of spaces
Fm(w) ) FMz(“) DR

is called Oseledets filtration.

Proof. Note that (i) and (ii) are direct consequences of Lemma 2.2.9 and Lemma 2.2.13, hence
we only have to prove (iii), (iv) and (v). The idea is to prove the consecutive statements for
each Lyapunov exponent by induction, where Proposition 2.2.14 will play a central role. We
will only give the proof in case that the Lyapunov spectrum is infinite, the case of a finite
Lyapunov spectrum is similar.

Let us start to formulate a result for the first Lyapunov exponent p1. Consider €2 C €2
as in Lemma 2.2.9. We may assume that (2.2.21) is also satisfied for every w € Q. Fix
some w € 2 and define V; := Ey;,, and Tj := 1, (-). Note that, by definition, u1 = A\ =

= Ay > A1 = po and g = Ay, therefore F,, (w) = E,, = Vj. Proposition 2.2.14 now
implies that for z € F),, (w) \ Fj,(w), we have lim, o 2 log |4/ ()| = p1 and that F), (w) is

m1-codimensional. Furthermore, if H,, = (h',...,h™) is a complement for F,,(w),
o1
Jim_ -~ log Vol (P (WYY, .oy 0 (AF)) = myps. (2.2.32)

For the next step, we set Vj := Fj,(#’w) and T := tp; (-) | £, (050)- Note that from the
cocycle property, Tj: V; — Vj11. We claim that there is a measurable and ¢-invariant subset

Qo C Q with full measure such that for any w € Q9 and k£ > 1,
. 1
dim —1og Dy [U3() |5y @) ] = Akrm = Am (2.2.33)

where we set m := m; for simplicity. Let Q9 C £ be a measurable subset with the properties

stated in Lemma 2.2.3. Fix some w € . As a consequence of Lemma 2.2.7,

.1 n
Ak < A + liminf —log De[v5() |7, @) |- (2.2.34)
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2. Multiplicative Ergodic Theorem

For n € N to be specified later, let {f'}1<i<x C F,(w) be chosen such that || f|| = 1 for every

7 and
n/ el n( rk 1
Vol (%(f )s e W (f )) P §Dk [w(n,w, ) |Fu2(w) ] (2.2.35)

Let H, = (h',h?,...,h™) be a complement subspace for F,,(w). We can assume that ||h’|| = 1
for all i. By definition,

Dirm(95(-)) = Vol (45 (h), oo, 05 (R™), 05 (1), oo W5 (f5))

m

= Vo (001 2 007) LT (220 U0 O U e 7))

(2.2.36)

It is not hard to see that

AU, ()

: . < Mg, @mw) 1w, 1) -
A7), ), ). () e 0551

Consequently, by (2.2.35) and (2.2.36),

Diem(W5()) 2 1, (0n) o, | 7™ VOL (@5 (RY), ooy 5 (™)) VOLWL(f1), ooy W5 (7))

1 —m n n m n
> §HHFHQ(9"W)||1/J(TL,W,HW)H Vol (¢ (h'), oo, (™)) D [W5 () [y @) ]

Note that, by definition of the projection operator,

< Mg, @mw)lwn () ll < My (7)1 Fy (00 | + 1

Choosing n large, using (2.2.32) and Lemma 2.2.3, we see that
. 1 n
limsup —log Dy [V (- |7, ) | + Am < A (2.2.37)
n—oo TN

and (2.2.33) is shown. We can now use Proposition 2.2.14 again with [ = ps, [ = u3 and
m = my which proves that for w € 2y and = € F, (w) \ Fju; (w),

1 .
A — log [l (2)]l = pe.

Moreover, F,,(w) is mg-codimensional in F),,(w). Using that F},,(w) is mi-codimensional in
E,, implies that F},,(w) has codimension m; + my in E,,.

It remains to prove (v). Let (h!, ..., h™™2) be a complement subspace for F,,(w). Note
that Vol (¢22(hl), ..., 2(h™T™2)) is not invariant under permutation, but all permutations

are equivalent up to a constant which only depends on mq + mg, cf. the proof of Lemma 2.2.6.

We may assume that H,, = (h',...,h™) is a complement subspace for F},,(w) and that for
m1 + 1 < j < mq + mg, we have b/ = ¢/=™1 + fI=™ where ¢~ € F,,(w) and fI~™ € H,,.
It is not hard to see that G, := (g, ..., g™2) is a complement subspace for F,, (w) in F,(w).
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2.3 Semi-invertible MET on fields of Banach spaces

By definition,

VoL ($5(g1), s U5 (g™2), Y (A1), ooy 5 (R™))
= Vol (¥3(g"), .., ¥ (g™)) ﬁ (W (h7), (W5 ("), e (™), W5 (RY), e W (W T1))).

j=1
Note that

. A (), (W), ey 52 1)) <ML, ol
< AW (h?), (W (gh), - (g™, en(hL), - on(hi 1)) S I yn(Hy) || Fuy (07w)

Together with Lemma 2.2.3 and (2.2.27) in Proposition 2.2.14, this implies that

Jim_ = Jog Vol (W (R), . ¥ (A™ ), 4o "), U (6™))

= lim 710gV01 (wg(gl)aa¢g(gm2)’d}z(hl)aa¢w(h 1)) = mip1 + Mapi2.

n—00 7N,

(2.2.38)

Since f* € H,, for 1 < j < my,
AW, (WAoo (R, UG e (7))

= d(@g(h™ ), (Wi (hY), ooy WG (™), UG (™), (R TH)).

Consequently, by (2.2.38),

: 1 n n m n m n m m
nlgroloﬁlogvol(ww(hl),...,ww(h D), (ML) L (Rt me))

1
= lim —log Vol (" (™), ..., (At m2) o (AY), . " (h™))] = mapn + mape.

n—oo n

This finishes step 2. We can now iterate the procedure and the general result follows by

induction.

O]

2.3 Semi-invertible MET on fields of Banach spaces

In this section, we assume 6 is invertible and (2, F,P,0) will denote an ergodic measure-
preserving dynamical system. We set o := 071, Let ({E,)ueq, A, Ag) be a measurable field of
Banach space and let v¢,,: E, — Fg, be a compact linear cocycle acting on it. In the sequel,

we will furthermore assume that the following assumption is satisfied:

Assumption 2.3.1. For each g,g € A and n,k > 0,

w = [P, [VE(9(w) = GO )| By
18 measurable.

We will always assume that
log™ |4l € L1 ().
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2. Multiplicative Ergodic Theorem

Under this condition, the Multiplicative Ergodic Theorem 2.2.16 applies and yields the existence
of Lyapunov exponents {1 > pg > ...} C [—00,00) on a f-invariant set of full measure Qc .

Remember fOI' all w € Q
A = lim *1 log D kE>1
k nl n g k(ww)a =

and A\ = Ay — Ap_1 also, the sequence (py) is the subsequence of (\) defined by removing all

multiple elements. Note that v is invariant on these spaces in the sense that

wﬂFM(w) P Fy(w) = Fu(0"w).

We also saw in the last section that there are numbers m; € N such that m; =
dim (F,, (w)/F,,, (w)) for every w € Q.

If not otherwise stated, Q C Q will always denote a f-invariant set of full measure. Note
that we can always assume w.l.o.g. that a given set of full measure Qg C Q is f-invariant,

otherwise we can consider

M 0" ()

kEZ

instead.

Next, we collect some basic Lemmas. Recall the definition of Vol and Dj,.

Lemma 2.3.2. Let X,Y be Banach spaces and T : X — Y a linear operator. For k € N,

there exist positive constants cg, Cy depending only on k such that
Cka(T) < Dk<T*) < Cka(T) (2.3.1)

where by T* : Y* — X* we mean the dual map of T.
Proof. [19, Lemma 3]. O

Lemma 2.3.3. For a Banach space X and k > 1, the map

Vol : X¥ — R
k (2.3.2)
(z1, @2, .oy i) = ||| [ ] d@i, (z)1<5<0)
i=2
18 continuous.
Proof. [16, Lemma 4.2]. O
For a Banach space X and a closed subspace U C X, the quotient space X/U is again a

Banach space with norm

el = inf flo—wull
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2.3 Semi-invertible MET on fields of Banach spaces

For an element z € E,,, we denote by [z], its equivalence class in the quotient space E,,/F),(w).

From the invariance property of i, the map

[t s — T (U] () 1=

is well-defined for every j > 1 and n € N. Note also that [¢]],; , is bijective for w € Q. Indeed,

injectivity is straightforward and surjectivity follows from the fact that F), (w)/F},,., (w) and

F;(0"w)/Fy,,,(0"w) are finite-dimensional with the same dimension m;.

Lemma 2.3.4. For m,n € N, the maps

filw) = Dn (¥ |F,,w) and  fo(w) == Dn([¥e],,)
are measurable.

Proof. 1t is not hard to see that

fi(w) = lim lim inf sup Vol (Y (€LY, oo p1(EM)) (2.3.3)

[0 koo (€8 1<tamCBLF (u2)
where
1
B (p2) = {6 € Fuy(w) : 1€l =1, 19E©)I < exp (k(p2 + 7)) I

cf. the proof of Lemma 2.2.2. Let {g:}1<t<m C A and C(g;) := {w : gi(w) € BLE(u2)}. Asa

consequence of the proof of Lemma 2.2.2, these sets are measurable and we have

sup Vol (Y3(E0)s - W(ED)) =

{e8 1<eamCBLF (u2)

sup Vol (v ailw) ) yp(Iml) ) 1 xew

{gt}1gtngAo || (w>” Hgm w 1<t<m

which implies measurability of fi. For fs, note first that

| Vol ([02(E1)], s [wzmm)]
sup

f2(w) = lim lim inf
{& h<tam CFyuy (W) ngtgm H [52}]#2 H

l—o0 k—oo

where we set % := 0. Again as before

Vol ([45(66))uy -+ (€D 0,)

sup _
{€8 <t cm Tl (W) H1<t<m €L ]uz |
sup Vol ({45 (g1(w))] -+ [V (98 (W) z)
{gth1<t<m CAo [lici<m d(gt(w), Fy, (w)) '

It remains to show that for g € A, d(¢7%(g9(w)), Fu, (0™w)) is measurable, which can be achieved
using Assumption 2.3.1 with a proof similar the proof of Lemma 2.2.2. O
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2. Multiplicative Ergodic Theorem

Lemma 2.3.5. For every ¢ > 0, there is a constant M; > 0 such that

i | < Ml

for every w € Q.

Proof. Since dim[%] = m;, we can choose H,, C F},,(w) such that
141
Hy @ By (@) = Fuyw) and [Ty s, ol € Vi +2 = M, (2.3.4)

cf. [18, Lemma 2.3]. Let &, € F,;,(w) \ Fj,,,(w) with corresponding decomposition &, =

hy + fo € Hy @ Fy,, (w). From (2.3.4), we know that % < M; and consequently
e wlmitl
1 1 1
M| D] TSRO
[{tsmpemy Al [ Al
The claim follows. O

Lemma 2.3.6. Assume that {f,(w)}n>1 s a subadditive sequence with respect to 0 and set
gn(w) == fn(o™w). Assume fif(w) € L(Q). Then there is a 0-invariant set Q € F with full

measure such that for every w € (Q,

.1 1
Jm —fr(w) = lim —gn(w) € [~o0,00)

where the limit does not depend on w.

Proof. We can easily check that {g,(w)}n>1 is a subadditive sequence with respect to o.
Since f,,(w) and gy, (w) have same law, the result follows from Kingman’s Subadditive Ergodic
Theorem. O

As a consequence, we obtain the following:

Lemma 2.3.7. There is a O-invariant set of full measure Q € F such that

: 1 n : 1 n 3 1 n *
lim —log Dy (¢}) = nhﬁrgoﬁlog Dy () = nl;ngoﬁlong((¢anw) ) = Ag (2.3.5)

n—oo n

and

1 n o1 n
A = 10g Dy (U5 |5, ) ) =l —1og Di(5n, |5, (0ne) )

. (2.3.6)
= 1 — n * * = —
- nlggo n 1Og Dk((¢a”w) |(Fu2 (J"w)) ] Ak—f—ml Aml
Proof. We already noted that lim,, . %log Dy () = Ag. The equality
1 n
nlggo n log Dy, (sz)w |F,‘2 (w) ) = Nitrm;, — Am, (2.3.7)

was a partial result in the proof of Theorem 2.2.16. The remaining inequalities follow by a
combination of Lemmas 2.3.2 - 2.3.6. O

From now on, we will assume that Q is the set provided in Lemma 2.3.7.
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2.3 Semi-invertible MET on fields of Banach spaces

Lemma 2.3.8. Fizw € Q and let (£,n0)n be a sequence such that Egny, € Fyy (0"w) \ Fyy (0"w)
and ||[€onw]us || = 1 for every n € N. Then

Jim flogll[ o (o) el = - (2.3.8)

Proof. By applying Lemma 2.3.4, Lemma 2.3.5 and Lemma 2.3.6, Kingman’s Subadditive
Ergodic Theorem shows that

1 w1 n
A —log Di([95],) = lim —log Dy([¢5n.],)

exist for every k > 1. Let H,, be a complement subspace for F},,(w) in F},, (w). Using a slight

generalization of Lemma 2.2.3, we have that

1

A~ log [Tyn a1 7, (0me) | = 0-

For &, € Fj,, (w) \ F,,(w), since
198 (M, £y () (E)) < |
XX n(H)||Fpuo, (6™

122 (e Ve 07

it follows that
o1
A log |1 (6w)]us [l = 1. (2.3.9)
Let
.1 n
k :=max {m : Tllggo - logDm(ww}M) = mpu }.

We clalm k = my. Indeed, otherwise from Proposition 2.2.14, there exists a subspace

F, C I E % with codimension k such that for every &, € F,,

hmsup log || [123 (&) el < 1.

Since dun[F”1 EZ;]
H2

= my, we can find a non-zero element in F}, which contradicts (2.3.9). Hence

we have shown that

T}ggo;logDml([w ],.,) = mup.
Therefore, for every n € N, we can find {2, }1<jcm, C F,, (0"w) such that [|[¢/],,] =1 and
lim = Vol ([ (b)) -+ [0 (€58 )] = 11 (2.3.10)

n—o00 N,

Using the definition of Vol, it follows that for every 2 <t < my,

Jim. % 10g d([¢e, (€ o (Yo (Eame) ) 1<ict-1) = . (2.3.11)
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2. Multiplicative Ergodic Theorem

We have {onw = D 1< jom, ozjfgnw mod F),,(0"w). In the proof of Lemma 2.2.6, we already saw

that the the Vol-function is symmetric up to a constant. By our assumption on {,n,,, we can

therefore assume that oy, > mil Finally from (2.3.11)

1 1 _ .
lim *1Og H[wg”w@cr"w)]uzu = lim 7[d([¢( z%w)]mv <[ gnw(ggnw)}mhéjéml—l) = M1

n—oo n n—oo n

O]

Definition 2.3.9. Let X be a Banach space. We define G(X) to be the Grassmanian of closed
subspaces of X equipped with the Hausdorff distance

dp (A, B) := max{ sup d(a,Spg), sup d(b,S4)}
aESA bESB

where Sq ={a € A : |a| =1}. Set

Gr(X)={AeG(X) : dim[A] =k} and G*(X)={A€G(X) : dim[X/A] =k}.

It can be shown that (G(X),dy) is a complete metric space and that G(X) and G*¥(X)
are closed subsets [22, Chapter IV]. The following lemma will be useful.

Lemma 2.3.10. For A, B € G(X) set

d(A, B) := sup d(a, B).

a€Sy
Then the following holds:
(i) dg(A, B) < 2max{0(A, B),d(B,A)}.

(ii) If A, B € Gx(X) with d(A, B) < + for some k € N, we have

kS(A, B)
3(B.A) < T35 By

Proof. [18, Lemma 2.6]. O

Proposition 2.3.11. Assume p1 > —oc. Fizw € Q. For every n € Z, let H,, C Fy,, (0"w)
be a complementary subspace for F,,(w) satisfying (2.3.4). Set H,, := ¢, (H™,,). Then the
sequence {H,, =1 is Cauchy in (G (Fluy (W), dp).

Proof. From (2.3.4), we can deduce that for every n € N and {ne, € Spr,

1
A < lgomw]pell < 1. (2.3.12)

Note that 1/1’;nw|Hgnw is injective for any k > 1, therefore dim(H") = dim(H%,
Fpy (w)
Fuy(w)

) = m. Since

p2 < 1, we know that H,, N F,,(w) = {0} and since dim] | = m1, we obtain that

HZ @Fuz(w) = Fm(w)
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2.3 Semi-invertible MET on fields of Banach spaces

for any n € N. Let {5gnw}1<j<m1 C SFHI(Unw) be a base for H.,. Then for {,n+1, €
SFM1 (O’”+1 ) Hn+1 there exist {/Bj}lgjgml C R such that

0—n+1w7

1/’”2@11 (50’”‘*‘101 on (5" )
N = 10 W pj—I=2 2 e F(w).
ST L (G| 1<JZ<:m1 T
It follows that
Q/)ln-H (‘So‘"Jrl
Yyn .= a ﬁ e F (O’nW),
T o) Zm Juwgnw< )l
thus
n 92 ns1,,l
Bj G | < Mg, yir; yll e
1<Jz<m1 ’ ||w ( )H Hs 1z () ngvtrllw(&a”Jrlw)H
: [
o2 (Eontin) ]
and so

[98n el By (o 19 2,

|‘¢Z¢er+11w(£0”+1w) ||
(2.3.13)

d( ¢Z¢T£1w<§an+lw)

H@Z)Zrtrllw (€U"+1w) ”

L) <1280 = I3 (VI € (4 )

Note that lim;, e 2 log||t)2n,|| = 0 from Birkhoff’s Ergodic Theorem. Using Lemma 2.3.6
and (2.3.7) for k = 1, we have

hm Sup log H@%%|Fu2 o"w) ” < p2.

From Lemma 2.3.8 the estimate 2.3.12 and Lemma 2.3.10, (2.3.13) implies that for € > 0 small

and large n,
d (H", B < M exp (npz — i + €))

for a constant M > 0. The claim is proved. O
Next, we collect some facts about the limit of the sequence above.
Lemma 2.3.12. Assume H dm, H,,. Then the following holds:
(i) H, is invariant, i.e. YE(H,) = Hyr,, for any k > 0.
(ii) H, N F,(w) = {0}.

(iii) H, only depends on w. In particular, it does not depend on the choice of the sequence
{H}n>1.

Proof. By construction, H,, is invariant. We proceed with (ii). Consider the dual map
(d’gnw):l H(Fn (@) = (B (0"w))"

31



2. Multiplicative Ergodic Theorem

It is straightforward to see that (¢gnw):1 enjoys the cocycle property. From (2.3.5)
and Proposition 2.2.14, we can find a closed subspace G}, (w) C (Fm( ))" such that
dim([(Fy, (w))*/Gy, ()] = my and for & € G}, (w), limsup,,_, Llog||( ):1(§Z)H < a-
Set

(Fa(@)) sy, = {€5 € (Fus@)" & &lpy = 0}-

By Hahn-Banach separation theorem,

dim [ (Fyi, (@) | = dim [Fp, (w)/ Fyy (w)] = ma.

Let & € (F,(w ))J' NG}, (w) and assume that £ # 0. Then for some &, ¢ F, (w) \ Fji, (),

(€5,€w) = 1. Using surjectivity of [¢)0n,,]u,, for every n € N, we can find {ne, € H], such
that
onw(Eonw) =& mod F, (w).
Consequently, ((¢gn,, )}, (€5); §onw) = 1. From Lemma 2. 2338,
. 1 ga”w H fw H
lim — log || [0n,,( = lim —log P22l = (2.3.14)
iy o8 o el = o8 e =

Hence for € > 0 and large n,

[[€onwlps |l < exp(—n(u1 —¢€))

which is a contradiction since [|(¢fn,,)5, (€5)] < exp (n(u2 + €)). Thus we have shown that

(Fiu (@) = (B (@)) ;@ Gy (@), (2.3.15)

Now let &, € H,NF),(w) and assume that ||&, | = 1. From 2.3.15, we can find & € G}, (w) such
that (¢,€,) = 1. By definition of H, there exist &%, € Spr,  such that % — &,
as n — 00, and consequently

* g”w(ég"w) > —_ <( n )*(é—*) gg"w > 1

T g (Egna)l T [ (€l

as n — o0o. With Lemma 2.3.8 and a similar argument as above, this is again a contradiction
and we have shown (ii). It remains to prove (iii). For &, € H, C (Fj, (w))™, & € G, (w) and

a sequence {n, chosen as above,

(€

< o"w (ganw)

—’Z‘; 0
[t En) ] 5 ~

as n — oo. Therefore, H, C (G}, (w ) ={& € (F,(w)™" - &l e, (w) = 0} and since
dim [(G7, (w))J' ] = m1, we obtain H,, = (G;Q( ))i‘1 which proves (iii). O

M1
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2.3 Semi-invertible MET on fields of Banach spaces

Combining Proposition 2.3.11 and Lemma 2.3.12, we see that if yu; > —oo, there is a
f-invariant set Q C Q of full measure such that for every w € €, there is an m;-dimensional

subspace H! with the properties
« YE(HL) = H},  for every k>0 and
* Hulz ® FMQ(W) = Ful(w)'

Thanks to the following lemma, we can invoke an induction argument to deduce the

existence of a sequence of invariant spaces H},, ¢ > 1.

Lemma 2.3.13. The family of Banach spaces {F,(w)},cq is a measurable field of Banach

spaces with
A= {g:= HFH2||H1 og, g€ A} and Ay = {g:= HFMHHl 0g, g € Ag}.

In addition, ww|Fu2 () * Flp (W) = Fpu,(0w) is a linear compact cocycle satisfying Assumption

2.3.1 with A replaced by A. Moreover, the maps

fiw) =gk, @l and fo(w) = |E, @)@l
are measurable.

Proof. The only non-trivial part in proving that {F},(w)}, s is a measurable field of Banach

spaces is to show that

w = (U, w)m (9W))] (2.3.16)

is measurable for every g € A. Let
{9i ieN}=A¢ and {(gkys--» Gk, ) * k€ N} = AF.

Fix n € N and w € Q. We define {U¥,}1>1 to be the family of subspaces of Egn,, given by
Uk, = (g, (0"w))1<i<my gp €, Using the same technique as in Lemma 2.3.4, one can show

that the map

w = Gi(o"w) = {HHUrlfnwllFuz (omw)l Ugniy @ Fpy (0"w) = Fyy (0"w)

00 otherwise

is measurable. Set ¢y, (w) := inf{k : Gx(c"w) < M;} with M; as in Lemma 2.3.5. This map is
clearly measurable. By Proposition 2.3.11, H,, := ¢, (U;%“)) LLN H! and consequently

T 5y ) = THY IRy @) 88 7 — 00, (2.3.17)
Let g € A. Then we have a decomposition of the form

HngFuQ(w)g(W)Z Z (W) Vg, (i, (w) (0" w))

1<t<m
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2. Multiplicative Ergodic Theorem

where ¢1,...,tm,: € — N are measurable. We assume m; = 1 first. To ease notation,

set ¢ = wu. Since g(w) — ar(W)pny(guw)(0"w)) € Fuy(w), we have [|[g(w)]ll
|1 (W) [1[gne (9 (w) (0"w))]]| and therefore

d(g(w), Flu, (w))
d(¢a"w(9¢(w) (an))v F,u2 (w)) ‘

o (w)] =
Set

do(w) = d(9(w), Flp(w)) and  di(w) := d(tonw(gu(w)(0"w)), Fuy(W)).

From the proof of Lemma 2.2.2, we know that dy is measurable. Furthermore, a slight
adaptation of the proof yields the measurability of w — d(Yony(gr(0"w)), Fj,(w)) for any

fixed k € N. Since ¢ is measurable, this implies the measurability of d;, too. We have

HEZHFM(W)Q(W) =G(w) EZ;

where G(w) takes values in {—1,0,1}. Set ho(w) := g(w)
g9(w) + dlggg (QL(w) (0"w)) and define

(gL(w (U w))

- X % o w(gl,(w)(anw)) and hl(w) =

Jo(w) := lim ilogwa (ho(w))||,  Ji(w):= lim llogH@/Jm(hl (@)]|-

m—00 M, m—0o0 m,
It follows that Jy and J; are measurable and that

HHZHF#Q(w)g(w) =(1- X{g(w)EFHQ(w)}) [g(w) — Xpo (JO(W))hO(W) — Xpo (Jl(w))hl(w)] .
(2.3.18)

Then (2.3.18) and (2.3.17) prove the measurability of (2.3.16) for every g € A in the case
m1 = 1. Furthermore, measurability of f; and f» and Assumption 2.3.1 for A can also be

deduced. It remains to consider the case mq > 1 for which we invoke the same technique: Let

do(w) = d(g(w), Fluy (@) © (Ugny, (9o (w) (0"w)))2<t<ma )
d1(w) = d(¥5ne(9ir () (0"W))s Fup (W) @ (Wgng (91, () (07W)))2<t<my ) -

For ho(w) = g(w) = 31000 ) (0"w)) and hy(w) = gw) + LIV, (9, () (0w)) let

dio(w) := d(hi(w), Fjuy (W) @ (Ygny, (9u,(w)(0"W)))3<t<my ), @ € {0,1}
dor(w) = d11(W) = d(Vne(Gia(w) (0"W))s Flus (W) © (Ygney(9uy () (0" W) 3<t<m ) -

For i € {0,1} define

1 doo(w
Bos = ha(w) + (-1 2 (g0 07)

4 dig(w
hi; = hi(w) + (1)t di?gwi Voo (Gia () (0" W)).
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2.3 Semi-invertible MET on fields of Banach spaces

We repeat the same procedure with our four new functions. Iterating this, we end up with

2™ functions {Iy(w)}1<i<omi for which we define Jy(w) := limp, o0 — log ||[4/7 (I4(w)) || Since

U5, @) 9(@) = (1 = X{gw)eFy, w)}) [9@) — > X (J(w) L (w) |

0<t<2m1
our claim follows for arbitrary m;. O

Proposition 2.3.14. Let i € N and assume p; > oo. Then there is a 0-invariant set of full

measure Q such that for every w € Q, there is an m;-dimensional space H: with the properties
1. ¢£(Hfu) = H;kw for every k > 0 and
2. HZJ ® FMi+1 (w) = Fui(w)-

Proof. For i = 1, the statement follows from Proposition 2.3.11 and Lemma 2.3.12. For ¢ = 2,

we consider the restricted cocycle ¥ | Fuy ()" From Lemma 2.3.13, we know that this cocycle

acts on the measurable field of Banach spaces {F},,(w)}wen and we can thus apply Proposition
2.3.11 and Lemma 2.3.12 to this cocycle again. It remains to make sure that the top Lyapunov
exponent of the restricted cocycle coincides with ps. This, however, was deduced in Lemma

2.3.7. We can now repeat the argument until we reach 4. O
From now on, H! will always denote the spaces deduced in Proposition 2.3.14.

Remark 2.3.15. Using identities of the form

e, @lecics i =g, @mt © Mg, a2 0~ 0 e, w@)lH,

we can use the same strategy as in Lemma 2.5.13 to see that for each 1 <1< j and k > 0,

k
filw) = HH@Z@QHL%@FHJ'(LU)H’ fa(w) == HHFHJ- (W)l ®1gi<s HE and f3(w) := wa|69l<i<jHZ;H

are measurable.

Lemma 2.3.16. For a measurable and non-negative function f:Q — R

1 1
lim —f(0"w) =0 a.s. if and only if h_}m —f(o"w) =0 a.s.
n—o00 n

n—oo n,

Proof. The main idea is due to Jack Feldman, cf. [23, Lemma 7.2]. Assume that

limy, 00 %f(@”w) = 0 on a set of full measure QY. Let ¢ > 0 and set

01;
Qpi={weQ:Vi>n it ‘w) < €}
]
From our assumptions, for some ng € N,
9
P(Qy,,) > 0
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2. Multiplicative Ergodic Theorem

From Birkhoff’s ergodic theorem, there is a set of full measure Q! such that for every w € Q!,

we can find mg = m,, such that for m > mg,

1 ; 9
— X, (0lw) > —. (2.3.19)
moSm 0 10

W.Lo.g., we may assume that Q° = Q. Now for k > max{3ng, mo}, set m = [2k] + 1. Then

from (2.3.19)

S et T ol

0<j< A P <j<m

5

Sl=

Consequently, there exists 477” < j < m such that 0w € Q,,. Set i := j —k > ng. Then by
the definition of €,

f(Oioiw) B f(akw) <.
i i—k

Since j — k < %k + 1 and e is arbitrary, our claim is shown. The other direction can be proved

similarly. O
As a consequence, we obtain the following:

Lemma 2.3.17. For each 1 <[ < j andw € Q,

1 1
Jim —log [T, s, (17, @nell = i —og [Tl e, jim, (one | = 0o (2:3:20)

Proof. Follows from a straightforward generalization of Lemma 2.2.3 and Lemma 2.3.16. [
The following lemma characterizes the spaces H{ as ‘fast-growing’ subspaces.

Proposition 2.3.18. Forw € Q, everyi > N and &, € H. \ {0},

. 1 . 1
A —log [[95(6w) | = lim —log |45 ] | = pi (2.3.21)
and
lim - log | (¢) ™ (€]l = lim ~log [[(@ i)Y = —ps (2:3.22)
n=00 M g o"w w n—00 1 g oW Hi) i LO.

Proof. The equalities (2.3.21) follow by applying the Multiplicative Ergodic Theorem 2.2.16 to
the map ¥y : H! — H},,. It remains to prove (2.3.22). By definition, for every &, € H,

() (I I[8na (W)~ €]
1€ iy (W5n) 7 ) |

1 (15ne) "t ()
I1(%5n0) ™" (€l i

< Wi, 15, 0wl
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2.3 Semi-invertible MET on fields of Banach spaces

From Lemma 2.3.8,

||[ O'"w(é-(f"w)]lii+1” . 1 ”[ a"w(é-a”w)]uwrl”

lim —  inf = lim — = 1
n—eomn Eonw€H H [50’”&)]#1’-&-1 H noeon H[ a"w]#¢+1 H

where & o € Hin,, is chosen such that

H [wg"w(ganw)]ui+1 || — min ” W?nw (ganw)]ui+1 H )

H [ganw]ﬂi+1 H EJ"WEHénw || [EU"M]HH—l ||
Consequently, from (2.3.20),

i<

. 1
lim sup — log || ()0, |H3J) —Hi
n—oo "N

Finally, from inequality [|&,] < [[2nglpi, [1(¥5n,) " (€0)]l, Lemma 2.3.6 and (2.3.21), the

equalities (2.3.22) can be deduced. O

Lemma 2.3.19. Letw € Q and i < k. For everyi < j < k, let {ffj}telj be a basis of HJ. Set
I :=U;<j<il; and assume &, € H),. Then

1 /
Jim, = log d(W(EL), (WO wer ) = 1y (2.3.23)
and
Jim *logd(( Pas) L) ((Wit) T E e i) = — 14 (2.3.24)

Proof. We will prove (2.3.24) only, the proof for (2.3.23) is completely analogous. First, we
claim that the statement is true for j = ¢ and £ = i + 1. Indeed, in this case we have the

inequalities

1 _ A((Wen)TMED), (W) (€D verny) _ )|
||¢g"w|Hfjan h (&L, (€8 venin) S W Wonw) ™l

and we can conclude with Proposition 2.3.18. For arbitrary k and j = i, we can use the

inequalities

1< d((wg"w)il(é. )7 <(¢o'n”w) 1(§ )>t rel; \{t}) ”HH

A((0) 1€ (@) N Nrerngey) P Fis (o

Lemma 2.3.17 and our previous result above. The definition of Vol allows to deduce that

1
Jim —log Vol (650, H€)) gy (U0) M E)ep) = 30 —mslll (2:3.25)

i<g<k

Since Vol is symmetric up to a constant, the claim (2.3.24) follows for arbitrary j.

O]

The following theorem is the announced semi-invertible Oseledets theorem on fields of

Banach spaces. It summarizes the main result of this section.
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2. Multiplicative Ergodic Theorem

Theorem 2.3.20. There is a 0-invariant set of full measure Q such that for every i > 1 with

Wi > i1 and w € Q, there is an m;-dimensional subspace Hi with the following properties:
(i) (Invariance) YE(HL) = H},  for every k > 0.

(ii) (Splitting) H. & F,

Hit1 (w) = F,, (w) In particular,

E,=H.® - @H,®F,,, (v).
(iii) (’Fast-growing’ subspace I) For each h, € H' \ {0},
li L 1 o (h = U;
A — log [|9g(hu) || = pi
(iv) (‘Fast-growing’ subspace II) For each h,, € H' \ {0},
: 1 n -1
A log [|(¥gne,) ™ ()| = —ps.
(v) If {€ }i<t<m is a basis of ®1<i<;H, then

Jim_ -~ log Vol (2L - (€M) = > mips  and
1IN

. (2.3.26)
T —log Vol (6n,) (€)oo (W) H(E) = S =i

1<i<j

Moreover, the properties (i) - (iv) uniquely determine the spaces HY .

Proof. Properties (i) and (ii) are proven in Proposition 2.3.14. (iii) and (iv) are shown in
Proposition 2.3.18 and (v) can be deduced from Lemma 2.3.19, using the definition of Vol and
symmetry modulo a constant of this function. It remains to prove the uniqueness statement.

Fix i > 1 and assume p1; > pi+1. We define G}, | (w) and (G;Z_H(w))j as in Lemma 2.3.12

and claim that
(2.3.27)

Let h, € H., h € G.yr (W) and set hgny, 1= (g ») 1 (hy). Property (iv) implies that there

is an € > 0 sufficiently small such that
(heo, hiy) = (Wgng (honw), hiy) = (honw, (gny,)™ (hG)) < exp (= n(pi — priv1 —€)) = 0

as n — oo which reveals H! C (G;"LZ +1(w)):. Finally, since these spaces have the same
dimension, (2.3.27) follows.

O
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Invariant Manifolds

3.1 Introduction

A typical application for MET is the construction of stable and unstable manifolds, cf. [11,
12, 13]. Here, the existence of the Oseledets splitting is crucial. In this chapter, we prove an
invariant manifold theorem for nonlinear cocycles acting on fields of Banach spaces. We state
an informal version here; the precise statements are formulated in Theorem 3.2.9 and Theorem

3.3.6.

Theorem 3.1.1. Let ¢ be a nonlinear, differentiable cocycle acting on a measurable field
of Banach spaces {Ey}weq. Assume that Y, is a random fized point of ¢, in particular
vu(Yy,) = Yy,. Then, under the same measurability and integrability assumptions as in
Theorem 2.1.2, the linearized cocycle Dy, @, has a Lyapunov spectrum {ji,}n>1. Under further
assumptions on ¢ and Y, there is a O-invariant set Q of full measure, closed subspaces S,, and

U, of E, and immersed submanifolds Sipe(w) and Ujpe(w) of E,, such that for every w € Q,
TY(W)Sloc(w) = Sw and TY(w)Uloc(w) = Uw
and the properties that for every Z, € Sjoc(w),
. 1 n
lim sup — log ||¢y (Z.) — Yono|| < w4, <0
n—oo T
and for every Z,, € Uppe(w) one has O, (Zonw) = Z,, and
. 1
limsup — log || Zny — Yony || < —p, < 0.
n—oo N

Here we have set pij, = max{p; : pj < 0} and pg, = min{py : pg > 0}. In the hyperbolic

case, i.e. if all Lyapunov exponents are non-zero, the submanifolds S;, .(w) and Up, . (w) are

transversal, i.e.
Ey =Ty, Ujpe(w) @ Ty, Sjpe(w).
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3. Invariant Manifolds

Notation

In the whole of this chapter we assume 6 is invertible and (€2, F, P, 0) will denote an ergodic
measure-preserving dynamical system also we set o := 671, We assume ({E,)uecq, A, Ap) is a

measurable field of Banach space and ], is a nonlinear cocycle acting on it, i.e.

QOZ: Ew — E@nw
e () = Pgma (91()-
We also need following definition.

Definition 3.1.2. We say that ¢, admits a stationary solution if there exists a map Y :
Q — [loeq Ew such that

(i) Y, € Ey,
(ii) ol (Y,) = Yon, and
(iii) w — ||Y, || is measurable.

Stationary solutions should be thought of random analogues to fixed points in (deterministic)
dynamical systems. If ¢ is Fréchet differentiable, one can easily check that the derivative
around a stationary solution also enjoys the cocycle property, i.e for ¥72(.) = Dy, ¢[(.), one
has

Y5T() = Py (V2 ()

In the following, we will assume that ¢ is Fréchet differentiable, that there exists a stationary
solution Y and that the linearized cocycle 1 around Y is compact and satisfies Assumption

2.3.1. Furthermore, we will assume that

log™ [|vull € L'(Q).

Therefore, we can apply the MET to #. In the following, we will use the same notation as in

the previous chapter.

3.2 Stable manifolds

Definition 3.2.1. Let Y be a stationary solution, let {... < pj < prj—1 < ... < 1} € [—00,00)
be the corresponding Lyapunov spectrum and ) the 0-invariant set on which the MET holds.
Set pj, = max{p; : p; < 0} and pj, = —oo if all finite p; are nonnegative. We define the

stable subspace
Sw 1= F; ().
By the unstable subspace we mean
U, = @1<i<joHZz'
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3.2 Stable manifolds

Note that dim[E,,/S,] = dim[U,] =: k < oo for every w € ).

Lemma 3.2.2. For w € Q and € € (0, —p;,), set

F(w) := sup exp[—p(pj, + €)1V s, I

p=0
Then
lim llog [F(0"w)] = 0. (3.2.1)
n—oo n
Proof. Follows from (2.3.7). O

Lemma 3.2.3. Let w € Q, U, = (€!)1<i<x and n,p > 0. Then

IWEEIN 5P EN

3.2.2
2 e < W) )

H ngpw]_l HL[Ugn—O—pvaGPw] <

and

||W§nw]_1”L[Ugn,pw,U ny] S

Vi nr )T (3.2.3)
> [(%gne) 55 t)ll Np— 15 2n,) (ED)]
EDIN () THEL) (W) T EE D we)

1<t<k H( on— pw)

Proof. Choose u € Upr,, and assume that u = >, u waggwgll Then

W ) (32.4)

lull ™ d(wh(EL), (WE(EL))vr)

no._ ¢l P ED] it (EL)
From g, u = > 1cpcp v WTET Tur (e and (3.2.4),

] IBEN 5P ()l
gl ST EL (s (EL), (W™ (€5)erze)

and (3.2.2) follows. The estimate (3.2.3) is proven similarly.

Definition 3.2.4. For w € Q set ¥y, := [[;50 Epio,- For v >0 we define

5 = {1 e 510 = sup [T exp(v)] < oo}
j/

where T1J [li>0 Egi, — Epi,, denotes the projection map.
One can check that X7, is a Banach space.
Lemma 3.2.5. Letw € Q and 0 < v < —pj,. Define

P,: E, — FEy,
§w > ‘PSJ(Yw““Ew) w( W) — w (€w)-
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3. Invariant Manifolds

Let p: Q@ — RT be a random variable with the property that
lim inf 11 0"w) >0
iminf —log p(6"w) >

almost surely. Assume that for ||&,], |€, || < p(w),

1Po(€w) — Po(€)l < Nl€w — ELll F(@)R(IE + 1€ (3.2.5)

almost surely where f : Q — R is a measurable function such that lim,, %long f(0"w) =0
almost surely and h(z) = x"g(x) for some r > 0 where g : R — R is an increasing C*

function. Set

p(w) := inf exp(nv)p(0"w). (3.2.6)

nz

Then the map

I8, x X2 N B0, p(w)) — X,

—1—j .

Y5 (vy) + Zogjgn—1 [@bgwwj ° H561+]’wHUgl+jw] Pw’w(Hfu [F])
07 [L,(ve,I)] = Yl é;gﬂ]_l o HU91+jw||591+jw]P9jw (I, 1] forn >1,
Vo — 2]20 [[wiz—i_l]_l o HU91+jw||Sg1+jwj|P01w (HZJ [F]) fO'f’ n= 0

is well-defined on a 0-invariant set of full measure <.

Proof. We collect some estimates first. Let € € (0, —p;,). From (2.3.20), we can find a random
variable R(w) > 1 such that for j > 0,

Iy, s, < B@)esp(e) . M, o, || < R@)exp(ef).  (3:27)
Also from (3.2.1), for n,p > 0,
[9gn sl Son | < R(w) exp (ppajo + €(n + p)). (3:2.8)
In addition, from (2.3.23) and (3.2.2) for n,p > 0,
1% LUy tp, Uewe] < B(w) exp (€(n + p)) exp(—npjo—1). (3.2.9)

From our assumptions,
. . Lir . A
1 Poseo (L[N < I £ (0w)g (ITLL T
So for j > 0 and a random variable R(w) > 1,

1 Pyso (T [T1) | < R |[TI [T g (1112, [0]]]) exp(e). (3:2.10)
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3.2 Stable manifolds

Now from (3.2.7), (3.2.8), (3.2.9) and (3.2.10), we obtain

[T [ Lo (0, D] < R(w) | exp((pjo + €)n)llve ]|+

Y R(W)R(w)exp (en+2e(1+ j) + (n — 1 — j)pjo) | T, (D) (| [TE, [T])+
0<ij<n—1
Z R(w)R(w) exp (3¢(1 +5) = (5 — n + 1pjo—1) [T, (D)7 (T[] |

Since g is increasing,

[T [y (v, D] || < R(w) | exp (1o + €)n)-Jlve ||+

R(w)R(W)ITl5 g(ITl[ss) exp (en + 2¢ + (n = Do) Y exp (5(2¢ — pjo — (L +7)v))+
0<j<n—1

R(w) R(@) 15 90Tl sz) exp (3¢ + (0 — Dpas1) 3 exp (3¢ — pijoms — (L +7)0)) .

jzn

Since pj,—1 = 0 and 0 < v < —p;j,, we can choose € > 0 smaller if necessary to see that
sup 1117 [ Lo (ve, )] || exp(vn)] < 00.

As a result, 1, is well-defined . O

Lemma 3.2.6. With the same setting as in Lemma 3.2.5, for I' € %, N B(0, p(w)),

Lo, T =T < Vji>0:T[I] = ¢l(Yo + &) — ¢l (o) (3.2.11)
where
£ = vy — 2% ([ o Ty, 18,00, ) Povw (T [T)). (3.2.12)
>
Proof. The strategy of the proof is similar to [13, Lemma VL5]. Let I,[v,,I'] = I". Then

¢, = Y[ and the claim is shown for j = 0. We proceed by induction. Assume that
I3[0 = ¢ (Yo + &) — ¢l (Yy,). By definition,

n+l (Y + §w> Z-H(Yw) = (Pé"w (QOZ(YUJ + gw)) - (Pé" (}/0"0.;) -
Pors (‘Pw(Yw + fw) - anw) + wénw (@Z(Yw + gw) - Y9”w) PG”w(H [ ]) + %n ( [Iw(vwv F)])

Note that for j > n

el . _
w;"w o [¢gn:}+ ] ! - [ gnflw] 1 . U61+jw — U91+nw.
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3. Invariant Manifolds

By definition

Yoo (M Lo (00, D)) = 0 (w) + > [, oM 0y, ] Pasw (T T]) —

0<i<n—1

> W] o Iy i 1Sy145,] Ppjey (TI,[TT).

j=n

Consequently, I = oY, + &) — ¢ 1(Y,,) which finishes the induction step.
Conversely, for &, € E, and ' € X% N B(0, p(w)), assume that for every j > 0, IlJ [I'] =
SOZJ(YW + gw) - SOZ)(Yw)' Set

Vy 1= é‘w + Z J+1 O HU91+jw||591+jw]P9jW (H‘ZJ[F])

]>0

Similar to Lemma 3.2.5, we can see that v, is well-defined. Morever,

2 [Lo(00, T)] = 00E) + S Wi Py, (TH[T)
0<i<n—1
= (PZJ(YUJ + fw) - (PZJ(Yw) = HZJ[F]

which proves the claim. ]

Lemma 3.2.7. Under the same assumptions as in Lemma 5.2.6, set

hi(w) —SUP[eXP(Tw)IIU} |s.ll] - and

n>=0
h3(w) :=sup [exp(nv) > exp(—ju(l+ T))f<9jw)“¢gjjrjlw‘59j+lwHHHSQJ'+1M\|U9J-+1WH
n=0 0<j<n—1
. 1 _
+ exp(nv) Y exp(—ju(1 + 7)) f (¢ )| (™ Uy541) 1H”HU9]-+1M||SGH1WH]'

i>n
Then hY and hY are measurable and finite on a O-invariant set of full measure Q. In addition,

lim flog“L hi(0"w) = lim flog‘”' hy (0"w) =0

n—oo n n—oo n
for every w € Q. Furthermore, the estimates

(@)ool + RS @) T g(IT]) - and

(Moo (v, T) || < Py
hs (@)R(|T] + |IT]) T~ T

[
1o (v, T) = L (w0, D) | <
hold for every w € Q, T', T € Y N B(0, p(w)) and v, € S,,.

Proof. The statements about h{ and h§ follow from our assumption on f, (2.3.7), Lemma
2.3.7 and Proposition 2.3.18. The claimed estimates follow by definition of I,,. O

Recall that h(x) = z"g(x). In particular, h is invertible and h and h~! are strictly

increasing.
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3.2 Stable manifolds

Lemma 3.2.8. Assume that for v, € S,

1 1

el < (s )mln{ I

Then the equation
I,(v,,I)=T

admits a unique solution T' = T'(vy) and the bound

Tl < min {5 (). e} = B () (3:2.13)

holds true.

Proof. We can use the estimates provided in Lemma 3.2.7 to conclude that I(v,,-) is a

. . . . 17— 1 ~
contraction on the closed ball with radius min {5h 1(m), p(w)}. O
Now we can formulate the main theorem about the existence of local stable manifolds.

Theorem 3.2.9. Let (2, F,P,0) be an ergodic measure-preserving dynamical systems and ¢ a
Fréchet-differentiable cocycle acting on a measurable field of Banach spaces {Ey}weq. Assume
that ¢ admits a stationary solution Y and that the linearized cocycle ¥ around Y is compact,

satisfies Assumption 2.3.1 and the integrability condition
log* [l € Lt (w).

Moreover, assume that (3.2.5) holds for ¢ and 1. Let i, < 0 and S be deﬁned as in Definition
3.2.1. For 0 <v < —pjy, we Q and R*(w) := 2h“ mln{ h! 2h“( w)} with p defined
as in (3.2.6), let

Stoe(@) = {Yo + LT ()], lvsll < R (w)}. (3.2.14)

Then there is a O-invariant set of full measure Q on which the following properties are satisfied

for every w € Q:

(i) There are random variables pt(w), py(w), positive and finite on O, for which

1
lim inf — logp (Pw) >0, i=1,2 (3.2.15)

p—00

and such that

{Z. € Ey : supexp(nv)]|@i(Zy) — Yoroll < pY(w)} C Sige(w)

nz0
C {2 € By : supexp(nv)|¢f(Zs) = Yoroll < p5(w)}-
TL/
(it) S}.(w) is an immersed submanifold of E,, and

Ty, Spe(w) = S.
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3. Invariant Manifolds

(iii) Forn > N(w),

o (Sioc(w)) € Sjoc(0"w).

(tv) For 0 < vy < vy < —pj,,

S2

loc

(@) € Sppe(w)-
Also for n = N(w),

Lo (Sio

loc

(w)) € Sjoe(0™(w))
and consequently for Z, € Sp (w),

. 1
lim sup — log ||¢]}(Zw) — Yonwl| < 1o (3.2.16)
n—oo M

(v)

el (Ze) — ol Z)|
hﬁ 120 — Z|

1 - -
lim sup — log v LwF Lwy LwyLw € Slvoc(w)}] < Hjo-

n—oo M

Proof. We start with (i). For the first inclusion, note that we can find a random variable p(w)

satisfying
1
lim inf — log p{(6Pw) > 0 3.2.17
i inf og p (0*w) ( )

and such that whenever ||T'|| < p}(w),

T+ A3 @) g(IT]) <

For example, we can define

1
hs (w)

with H} defined as in (3.2.13). Assume that Z,, € E,, has the property that

PR (w) = min {h~

), H3 (w)/2, H (w) }

sup exp(nv) || (Ze,) — Yonoll < o1 (w).

n=0

Setting

V1= 2y =Y, + Z [[ Z)+1]_1 o HU91+jw||Sgl+jw]P0jw (HZ) [F]),
j=0

it follows that |7, < RY(w). From Lemma 3.2.6, we conclude that I,[o,,I] = I. By
uniqueness of the fixed point map, we have I' = I'(9,,), therefore Z,, = Y,,+11%(T(%,)) € SP(w).
Next, let Z,, € SP (), i.e. Z, =Y, + (T (vy)) for some |v,| < RY(w). From Lemma 3.2.6
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3.2 Stable manifolds

and Lemma 3.2.8,

IT(o)ll = sup exp(rnv)lpi(Ze) = Yor|| < B (w).
We can therefore choose p5(w) = R”(w) and the second inclusion is shown.
The second item immediately follows from our definition for S} (w).
For item (iii), by (3.2.15), we can find N(w) such that for n > N(w),

exp(—nv)py(w) < p1(0"w).

Now the claim follows from item (i).
For item (iv), note first that R"?(w) < R"(w). By definition of I'};(v,,), it immediately

follows that
Sz

loc

(W) S Spoe(w)-

Now take Z, € S™*

loc

(w). From Lemma 2.3.17 and (i), we can find N (w) such that for n > N(w),

MLy, Ugn, (95 (Ze) = Yono) | < B2 (0"w).

We may also assume that exp(—nuv1)ps! (w) < pi*(0"w) for n > N(w). For

Vony = ]:[Sgnw”Ugnw (@Z(Zw) - }/O”w)
let

Zgn =g, (T(veny,)) + Yoo, € Sp2(0"w) C S

loc loc

(0"w).
We claim that Zgn, = ¢{}(Zy). Since Z, € SjL(w),

sup exp(jo1) | @pn,, (1 (Z)) = Yosgnull < exp(—nvi)py! (w) < pi* (0"w).

Jj=0

So from item (i), p(Z,) € S;2

loc

(6"w). Remember Zyn,, € S;L(0"w) N S}2(6"w) and
Hgore oo (Zanes — Yon) = Wgore e (91 Z) — Yans).
So by uniqueness of the fixed point, we indeed have

o (Zw) = Zgny € S)2

loc

(0"w).

To prove (3.2.16), let v < vy < —pp and take Z, € Sp,.(w). Then we know that for large
enough N, 0N (Z,) € S72 (0N w), therefore

loc

sup exp(jua) 0™ (Z) = Yoiswy || < o0
JZ
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3. Invariant Manifolds

and it follows that
. 1 n
limsup —log [|p}}(Zw) — Yonwll < —v2.
n—oo N

We can choose vy arbitrarily close to —pg, therefore the claim follows and item (iv) is proved.
For item (v), first by definition,

1T (ve) = T (@) | = [[Le(vw, T'(vw)) = Lu(Dw, T'(00))|
< o (V0 T'(0w)) — Lo (0w, D)) || + [ 1o (D, T'(vw)) — Lo (D, T'(00)) |

< W@l = 2l + 3 I0(0) - T(@)]
for every vy, ¥, € S, with |[vy]|, [|[9w]] < RY(w). Consequently,
IP() = D@ < 205 () s — B (3218)
Also by definition, cf. (3.2.12),
(0 (0) = T @I > o — ull ~ A§) IT(w) — T (B | AT ()| + T2
So from (3.2.18)
T(0(0)) = T C@N] > o = Bull[1 = 2 @RS @R(IT ()| + [Tum) )] (3:2.19)

First assume that

max{ [T (vs), @)} < 2h(

.
20 Ahf(w)h3(w)”

Then from (3.2.18) and (3.2.19),

T (vw) = (00|
TS, (T (v)) = T, (T (%)) ||

< 4hY (). (3.2.20)

Thus if Z,, = Y, + % ['(v,)] and Z,, = Y, + I [['(v,,)], it follows that

H‘PZ(Zw) — %Z(wa
HZw - ZWH

< dexp(—nv)hi(w)

for every n > 1. In the general case, we can use item (i) and that h=%( m) satisfies
1 2
(3.2.15) to see that for some N = N(w),

[

1

. ] N v —1
3;”5 exp(jv)llepn,, (i (Zu)) = Yoign, || < exp(=Nv)p3(w) < 2h (4%,(9%)%,(9%))-

Consequently, from (3.2.20),

exp(jv)||eh N (Z,) — ol N (Z,,)|

s < 4hY (0N w)
730 oY (Zo) — o¥ (Zw)| !
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3.3 Unstable manifolds

and hence for every n > N,

a2 ZZI < dexp((=n— Ny (6" T ) (3:221)

where

N Zw N Zw - B
5 () = sup {12 (||z) gwﬁ N 20 20 2020 € St}

We claim that Hf;(w) is finite. Indeed, by assumption (3.2.5),

o5 (Z) = 5 (Z)| < lgn-soll 190571 (Z0) — 57 (20
+ F(0%w) llod M (Ze) = 0 T Z)IR (1l ™ (Zo) = Yol + 08 (Z) = Yon-1,)

and we can proceed by induction to conclude. Finally, from (3.2.21) and item (iv), our claim

is proved. O

Remark 3.2.10. Assume that for w € Q the function ¢, is C™. Then, since

1,(0,0) = %IW(O, 0) =0,

we can deduce from the Implicit function theorem that Sp,.(w) is locally C™1.

3.3 Unstable manifolds

We invoke the same strategy for proving the existence of unstable manifolds. Since the
arguments are very similar, we will only sketch them briefly. In this section, we will assume
that the largest Lyapunov exponent is strictly positive, i.e. that u; > 0.

Definition 3.3.1. Set kg := min{k : y, > 0}, S, := Fuk0+1(w) and Uy, = Sr<ick HY for
weQ Fory, = [Ij>0 Eviw, and v > 0, we define the Banach space

¥ = {F €X, : T =sup [HﬁZFH exp(kv)] < oo}
k>0

where ﬁfz iso0 Eoivy = Eyky, is the projection map. Similar to last section, we also set

hy () = sup [exp(nv)||(Vgnylg,) '] and

n=0

hy(w) := sup [exp(nv) Y exp(—v(n—k)(1+7)fe"*w)Wrisly )7

n=0 0<k<n—1

x [T

Un—l—kaSo.n—l—kw H

+exp(nv) Y exp(—v(k + 1)(1+ ) fe ) [wb s Mg, o, ]

k>n

Lemma 3.3.2. Let w € Q, 0 < v < pg, and assume that p: Q — RT satisfies
lim inf ! 1 ") >0 3.3.1
iminf —log p(o"w) = (3.3.1)
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3. Invariant Manifolds

almost surely. Define P as in Lemma 3.2.5 and assume that (3.2.5) holds for a random variable
f:Q — RT which satisfies limy, o0 f(0"w) = 0 almost surely. Set

p(w) == 11;% exp(nv)p(c"w). (3.3.2)
Then the map

I,:U,x% NB(0,pw)) = 2,

[Yne] ™ (1)
~n—k

— 2 0<k<n—1 (st o g n,l,kwugw,l,kw]Pan*kw (1L, "[T7)

k+1
[

I, [T (e, T)] = -
+Zk>n I:wo' ke HS oku HU ]Pa’“‘*lw(ﬂw

is well-defined on a 0-invariant set of full measure Q.

Proof. We can use Lemma 2.3.16 to obtain a version of Lemma 3.2.2 where we replace 6 by o.

The rest of the proof is similar to Lemma 3.2.5. O

Lemma 3.3.3. For 0 < v < pug,, w € Q and T € ¥ N B(0, p(w)),

To(up, ) =T <= VO0<k<n: I "T=gk (0T +Ym) = Yonr, (3.3.3)

g

Proof. Similar to Lemma 3.2.6. O

Lemma 3.3.4. For 0 < v < i, ﬁ;j and ﬁ; are measurable and finite on a 0-invariant set of

full measure Q2. Moreover,

1 1
oot p 2 ost p
plgn plog hi(oPw) = plgn plog hy(0Pw) =0 (3.3.4)

and

o (o, D) | <y () o] + BS(W)HFHTHQ(HFH)
1 (11, T) = Loy (e, D)|| < By (@)R(ITI| + 1)) T =T
hold for every w € Q, T',T € ¥, N B(0, p(w)) and u,, € U,,.
Proof. As in Lemma 3.2.7. O

Lemma 3.3.5. Assume that for u, € f]w,

1
luy || < —=5—— min
N 20 (w)

Then the equation
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3.3 Unstable manifolds

admits a uniques solution T' = T'(uy,) and the bound

1 1
I'(u)|| < min{=h"1(— , plw
Il < min {37 (). 7))
holds true.
Proof. We can show that I(u,,,-) is a contraction using Lemma 3.3.4. O

Finally we can formulate our main results about the existence of local unstable manifolds.

Theorem 3.3.6. Let (Q, F,P,0) be an ergodic measure-preserving dynamical systems, o := 01
and ¢ a Fréchet-differentiable cocycle acting on a measurable field of Banach spaces {Ey}eq-
Assume that ¢ admits a stationary solution Y and that the linearized cocycle ¥ around Y is

compact, satisfies Assumption 2.3.1 and the integrability condition

log* [l ]| € L' (w).

Moreover, assume that (3.2.5) holds for ¢ and v and a random variable p: Q — R satisfying
(3.3.1). Assume that 1 > 0 and let ,uko > 0 and f] be deﬁned as in Definition 3.3.1. For
0<v < gy, we Q and R¥(w) := min {3571 w)} with p defined as in (3.3.2),
let

2h() 2h(

Upe(w) = (Yo + [0 (w)], lus]l < B”(w)}. (3.3.5)

Then there is a O-invariant set of full measure Q on which the following properties are satisfied

for every w € Q:
(i) There are random variables pY(w), py(w), positive and finite on Q, for which
liminfllo pi(cPw) >0, i=1,2
iminf ~ log >0, :
and such that
{Zw € By HZonwlns1 st oo, (Zonw) = Zgn-my, for all0 < m <n and
sggexp(nv)HZanw — Yonyull < [)ﬁ’(w)} CUY(w) C {Zw € Ey : HZyny}n>1 8-t
nz
Oone(Zgnw) = Zgn-my, for all0 <m < n and sup exp(nv)||Zyny, — Yonu| < ﬁg(w)}
n=0
(it) Up.(w) is an immersed submanifold of E,, and

Ty, Ujpe(w) = Us.
(iii) Forn > N(w),

Ul%c(w) - ()00" (Uloc(a LU))
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3. Invariant Manifolds

(iv) For 0 < vy < w2 < fig,

Uz

loc

(W) € Ujge(w)-
Also forn > N(w),

Uloe(w) € ©5ny(Ujge(0™ (W)
and consequently for Z,, € UP (w),

. 1
limsup —log || Zonw — Yonwl|| < —pikg-
n—oo M

(v)

1 Z n - Z n ~ ~
lim sup — log [sup { [Zore, -7 w”, Ziy # Ziyy Ly Zy € Uﬁ,c(w)}] < — Ly -
n—oo T HZw — ZwH

Proof. One uses the same arguments as in the proof of Theorem 3.2.9. O
Remark 3.3.7. We have:

(i) As in the stable case, if @, is O™ for every w € Q, one can deduce that U, (w) is locally
cm-t,

(ii) In the hyperbolic case, i.e. if all Lyapunov exponents are non-zero, if the assumptions
of Theorem 8.2.9 and 3.53.6 are satisfied, we have S, = S, and U, =U,. In particular,

the submanifolds S}, .(w) and U} .(w) are transversal, i.e.

Eo.) = TYw Ulq(j)c(w) D TYu Slli)c(w)'
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Rough Delay Equations |

4.1 Introduction

Stochastic delay differential equations (SDDESs) describe stochastic processes for which the
dynamics do not only depend on the present state, but may depend on the whole past of the

process. In its simplest formulation, an SDDE takes the form

dy: = b(yt, Ye—r) dt + o (Y, Yt—r) dBtH(w) (4.1.1)

for some delay 7 > 0 where B¥ is a fractional Brownian motion, b is the drift and ¢ the
diffusion coefficient, both depending on the present and a delayed state of the system. In this
case, we speak of a (single) discrete time delay. SDDEs appear frequently in practice. For
instance, they can be used to model cell population growth and neural control mechanisms,
cf. [24] and the references therein, they are applied in financial modeling [25], for climate
models [26] and for models of the formation of blood cellular components, called hematopoiesis
[27]. To be able to solve (4.1.1) uniquely, an initial condition has to be given which is a path
or, more generally, a stochastic process. This means that we are led to solve an equation
on an infinite dimensional (path) space. Popular choices for spaces of initial conditions are
continuous paths or L? paths. Standard Ito theory can be applied without too much effort to
solve (4.1.1) for such initial conditions, cf. [28, 29].

Due to its numerous applications, the study of the long-time behaviour for SDDEs of the
type (4.1.1) is an important issue. However, it turns out that this is a challenging problem.
Consequently, there is only a relatively small number of works devoted to this topic. One of the
few articles dealing with this problem is [27]. There, the authors study the moment stability
of a stochastically perturbed model of the hematopoietic stem cell (HSC) regulation system to
model different diseases like leukemia or anemia. They show that stability domains for the
perturbed and unperturbed system differ if the equation is perturbed by a multiplicative noise.
In fact, the multiplicative noise poses a major technical problem, and its stability domain is
not described completely. The theoretical and numerical results in this paper show that the

HSC regulation system is sensitive to perturbations in certain parameters and insensitive in
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4. Rough Delay Equations I

others which then gives a hint on the origin of the above mentioned diseases, cf. [27, Section
5].

Studying the moment stability of a stochastic system is a first step, but a rather coarse one
to describe its long-time behaviour. Indeed, much more information could be deduced if the
equation induces a Random dynamical system (RDS), an approach going back to L. Arnold [1].
The concept of random dynamical systems was successfully applied to stochastic differential
equations (SDEs) in both finite and infinite dimensions, and it is a natural approach to study
the long-time behaviour for SDDESs, too. Unfortunately, it turns out that there are serious
obstacles. In fact, for a long time, it was believed that it is impossible to use the RDS approach
to study SDDEs of the form (4.1.1). Here we claim, that indeed, it is possible.

Let us explain in more detail the difficulty one faces when applying the RDS approach to
SDDE. A necessary condition for the existence of an RDS is that the equation generates a
continuous stochastic semi-flow. Recall that given a probability space (2, F,P), a continuous

stochastic semi-flow on a topological space F is a measurable map
¢: {(5,t) €[0,00)?|s <t} xQAxE— E

such that on a set of full measure €, we have ¢(t,t,w,z) = z and ¢(s,u,w,z) =
o(t,u,w, (s, t,w, x)) for every s,t,u € [0,00), s <t < u, every x € E and every w € Q
and x — ¢(s,t,w,x) is assumed to be continuous for every choice of s,t € [0,00), s < ¢, and

every w € €. Consider the linear stochastic delay equation

dyt = yi—1dBi(w); t>0

4.1.2
ye=&; te[-1,0] ( )

interpreted as an Ito integral equation. It is clear that the solution on the time interval [0, 1]

should be given by

t
b=bo+ | ErdBiw) (4.1.3)

whenever the stochastic integral makes sense. However, Mohammed proved in [30] that there
is no modification of the process y which depends continuously on ¢ in the supremum norm.
This rules out the choice of F = C([—1,0],R) on which a possible semi-flow ¢ induced by
(4.1.2) could be defined. At this stage, one might still hope that another choice of £ could be
a possible state space for our semi-flow. We will prove now that there is in fact no such choice.

Similar as in [31, Section 1.5.1], we make the following definition:

Definition 4.1.1. Let E be a Banach space of functions mapping from [—1,0] to R. We say
that E carries the Wiener measure if the functions t — sin[(n — 1/2)nt] are contained in E for

every n > 1 and if the series

Z Zn(w)sin([in_—lié?iwt], Fe[-1,0]
n=1

converges in E almost surely for every sequence (Zy) of independent, N(0,1)-distributed

random wvariables.
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4.1 Introduction

Note that carrying the Wiener measure is indeed a minimum requirement for the state
space E of a possible semi-flow induced by (4.1.2), otherwise we would not even be able to
choose constant paths as initial conditions. This assumption already rules out the possibility

of the existence of a continuous semi-flow, as the following theorem shows.

Theorem 4.1.2. There is no space E carrying the Wiener measure for which the equation
(4.1.2) induces a continuous mapping I: E — R, I(§) = y1, on a set of full measure, which

extends the pathwise defined mapping for smooth initial conditions.

Proof. The proof is inspired by [31, Proposition 1.29]. Let (Z,,) be a sequence of independent

standard normal random variables. Set

N .
N,y " sin[(n — 1/2)nt]

Then BY — B as N — oo in a-Hélder norm, o < 1/2, on a set of full measure €y, cf. (4.1.5)
where we recall the definition of the Hélder norm and [32, 3.5.1. Theorem]| for a general result
about Gaussian sequences from which the convergence above follows. Assume that F carries
the Wiener measure. Then there is a set of full measure 25 such that the limit

sm (n—1/2)nt] -

Z:: (n—1/2)7 = Jlim By’ (@) = Bi(w)

exists in E for every w € Q9 where Z,, := (—=1)"Z,. The theory of Young integration [33]
implies that

as M — oo for every w € Q1 N Q. Noting that Z, sin[(n — 1/2)7t] = Z, cos[(n — 1/2)m(1 4 1)],
we obtain that

N 2
B dB
/ t ¢ Z (n — 1/2

n=1

for all M > N. Therefore,

1~N w) dBy( A
/0 i Z:: n—1/2 0

as N — oo on a set of full measure Q23 C Q1 N€s. Now we can argue by contradiction. Assume

that there is a set of full measure €24 such that for every w € 4, the map

1
Ess%w/o &1 dBy(w)

is continuous. Since 23 N 4 has full measure, the set is nonempty and we can choose
w e NNQy. Set &, := B"(w) and € := B(w). Then we have &, — € in F as n — oo, but
fol &' 1 dBi(w) diverges as n — oo which leads to a contradiction.

O
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4. Rough Delay Equations I

This theorem shows that there is no reasonable space of functions on which the SDDE
(4.1.2) induces a continuous semi-flow, and using RDS to study such equations seems indeed
hopeless. Let us mention here that only a delay in the diffusion part causes the trouble, a
delay in a possible drift part would be harmless. For this reason, we will discard the drift
here and study equations of the form (4.1.1) with b = 0 only. We also remark that studying
delay equations where the diffusion coefficient may depend on a whole path segment of the
solution, so-called continuous delay, can lead to easier equations since in that case, the diffusion
coefficient might have a smoothing effect. Such equations are called regular stochastic delay
differential equations, and they can indeed be studied using RDS, cf. [34] and [35]. The
equation (4.1.2) is an example of singular stochastic delay differential equation.

Let us now explain the idea of this chapter. We have seen that there is no space of paths
E on which F 3 ¢ — fol &s dBg(w) is a continuous map on a set of full measure. However, in
rough path theory, one knows that there is a family of Banach spaces {E, },cq and a set of

full measure 2 such that the maps

Ewaw/lfsstw
0

are continuous for every w € € where the integral has to be interpreted as a rough paths
integral. Indeed, the spaces E,, are nothing but the usual spaces of controlled paths introduced
by Gubinelli in [36]. Therefore, we can hope to establish a semi-flow property for solutions
to (4.1.2) (and even more general equations) if we allow the state spaces to be random and
by interpreting the equation as a delay differential equation driven by a random rough path.
Fortunately, Neuenkirch, Nourdin, and Tindel already studied delay equations driven by rough
paths in [37], and we can build on their results. Having established such a semi-flow property,
the corresponding RDS will involve random spaces as well. We then argue this family of
random spaces, constitutes a measurable field of Banach spaces. One of our main theorems in
this work is to prove that SDDE induce RDS on a field of Banach spaces, cf. Theorem 4.3.14.

An obvious question is whether this structure is indeed useful for our actual goal which is
to study the long-time behaviour of SDDE. This is not obvious at all since there is no example
yet in the literature where an RDS was defined on a field of Banach spaces. As we pointed
out earlier, the crucial result on which the theory of RDS is built is a Multiplicative Ergodic
Theorem (MET). With the MET proved in Chapter 2, we can indeed deduce the existence of a
Lyapunov spectrum for linear SDDE. Our main result in this chapter can loosely be formulated

as follows:

Theorem 4.1.3. Linear stochastic delay differential equations of the form

dyr = o(yt, Yt—r) dBi(w) (4.1.4)

induce linear RDS on measurable fields of Banach spaces given by the spaces of controlled paths
defined by B(w). Furthermore, an MET applies and provides the existence of a Lyapunov
spectrum for the linear RDS.

Let us remark that stochastic differential equations on infinite dimensional spaces frequently

lack the semi-flow property. For instance, this is often the case for stochastic partial differential
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4.1 Introduction

equations (SPDEs), too, cf. e.g. [38] and the references therein. We believe that the approach
we present here can be applied also in the context of SPDEs to provide a dynamical systems

approach to equations for which the semi-flow property is known not to hold.

We finally remark that, although we focused on the (seemingly) simple SDDE (4.1.1) here,
all of the presented results can be easily generalised to SDDE of the form

=l [ yeimnlar)) dB.(w),

T

where p is a finite signed measure on [—r,0]. However, for the sake of simplicity, we prefer to
work with a discrete delay term. We will later briefly state the necessary required modifications

for this form of equations, cf. Remark 4.4.3.

This chapter is structured as follows. In Section 4.2, we introduce the techniques to study
delay equations driven by rough paths and prove some basic properties. The content of Section
4.2 is to show that the fractional Brownian motion can drive rough delay equations and to
prove a Wong-Zakai theorem. In Section 4.3, we establish the connection to Arnold’s theory
and define RDS on measurable fields of Banach spaces. The main results of this chapter and a
discussion of them are contained in Section 4.4. Finally, we come back to the example (4.1.2)

and discuss it in more detail in Section 4.5.
Preliminaries and notation

In this section we collect some notations which will be used throughout the chapter.

o If not stated differently, U, V, W and W will always denote finite-dimensional, normed
vector spaces over the real numbers, with norm denoted by |-|. By L(U, W) we mean the

set of linear and continuous functions from U to W equipped with usual operator norm.

e Let I be an interval in R. A map m : I — U will also be called a path. For a path m, we

denote its increment by ms¢ = m; — ms where by m; we mean m(t). We set
[mloo;r == sup [ms]
sel

and define the «-Hoélder seminorm, « € (0, 1], by

s 1]

m|y.r := sup .
H H'Y s,tel;s#t |t - S|’Y

For a general 2-parameter function m#: I x I — U, the same notation is used. We
will sometimes omit I as subindex if the domain is clear from the context. The space
C°(I1,U) consists of all continuous paths m: I — U equipped with the uniform norm,

C7(I,U) denotes the space of all y-Holder continuous functions equipped with the norm
|- HC”’;I =l ”00;1 + I ”7;1- (4.1.5)

C>(1,U) is the space of all arbitrarily often differentiable functions. If 0 € I, using 0

as subindex such as for Cj(I,U) denotes the subspace of functions for which zy = 0.
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4. Rough Delay Equations I

An upper index such as C%7(I,U) means taking the closure of smooth functions in the

corresponding norms.

Next, we introduce some basic objects from rough paths theory needed in this chapter. We

refer the reader to [39] for a general overview.
e Let X: R — U be a locally v-Holder path, v € (0,1]. A Lévy area for X is a continuous
function
X:RxR—-U®U
for which the algebraic identity

Xs,t = Xs,u + Xu,t + Xs,u & Xu,t

is true for every s,u,t € R and for which ||X||2,;; < oo holds on every compact interval
ICR. Ifye(1/3,1/2] and X admits Lévy area X, we call X = (X, X) a y-rough path.
If X and Y are y-rough paths, one defines

‘Xs,t - sz,t

’Xst - Yst
0v:1(X,Y):= sup —————+ sup ———p .
K ( ’ ) s,tel;s#t ‘t - S|’Y s,tel;s#t |t - 8|2’Y

e Let I = [a,b] be a compact interval. A path m: I — W is a controlled path based on X
on the interval I if there exists a y-Holder path m': I — L(U, W) such that

—m! #
mS,t - mSX57t + ms,t

for all s,¢t € I where m#: I x I — W satisfies |[m#||2,.,; < co. The path m’ is called
a Gubinelli derivative of m. We use 23 (I, W) to denote the space of controlled paths
based on X on the interval I. It can be shown that this space is a Banach space with

norm
Imllgy, = [1(m,m") | g7, = Imal + lmg] + [ i + 1 [l251.
If X and X are y-Holder paths, (m,m’) € 23(I, W) and (m,m') € 7%, W), we set
dgw;[((m,m'), (m,m’)) = ||m’ - m,H'y;I + Hm# - m#”Q'ﬁI‘

If W = R, we will also use the notation 2% (I) instead of 23 (I,R).

We finally again recall the definition of a random dynamical system introduced in Chapter

2.

e Let (2, F) and (X, B) be measurable spaces. Let T be either R or Z, equipped with a
o-algebra Z given by the Borel o-algebra B(R) in the case of T = R and by P(Z) in
the case of T = 7Z. A family 6 = (6;)ier of maps from  to itself is called a measurable

dynamical system if

(i) (w,t) = b is F ® Z/F-measurable,
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4.2 Basic properties of rough delay equations

(i) 6o = Id,

(iii) Osyy = 0506, for all s,t € T.

If T = Z, we will also use the notation 6§ := 6y, " :=0,, and 07" :=0_,, forn > 1. If P

is furthermore a probability on (€2, F) that is invariant under any of the elements of 0,
Pof; ' =P

for every ¢ € T, we call the tuple (Q, F,P,0) a measurable metric dynamical system. The

system is called ergodic if every #-invariant set has probability 0 or 1.

o Let T :={te T :t>0}, equipped with the trace o-algebra. An (ergodic) measurable
random dynamical system on (X, B) is an (ergodic) measurable metric dynamical system
(2, F,P,0) with a measurable map

e: TP xOx X =+ X
that enjoys the cocycle property, i.e. ¢(0,w,-) =Idx, for all w € 2, and

So(t + s, w, ) - Qo(tv st, ) 0 @(Sywa )

for all s,t € Tt and w € Q. The map ¢ is called cocycle. If X is a topological space with
B being the Borel o-algebra and the map ¢.(w,-): T x X — X is continuous for every
w € Q, it is called a continuous (ergodic) random dynamical system. In general, we say
that ¢ has property P if and only if p(t,w, ): X — X has property P for every t € T+

and w €  whenever the latter statement makes sense.

4.2 Basic properties of rough delay equations

In this section, we show how to solve rough delay differential equations and present some basic
properties of the solution.
Basic objects, existence, uniqueness and stability

This section basically summarizes the concepts and results from [37]. We start by introducing
“delayed” versions of rough paths and controlled paths. Note that, as already mentioned in
the introduction, we restrict ourselves to the case of one time delay only. We refer to [37] for

corresponding definitions for a finite number of delays.

Definition 4.2.1. Let X: R — U be a locally v-Hélder path and r > 0. A delayed Lévy area

for X is a continuous function
X(=r): RxR—-U®U
for which the algebraic identity
Xst(—1) = Xgu(—7) + Xyt (—7) + Xo—ru—r @ Xy

)
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4. Rough Delay Equations I

is true for every s,u,t € R and for which ||X(—7)|l2y;1 < 00 holds on every compact interval
I cR. Ifye(1/3,1/2] and X admits Lévy- and delayed Lévy area X and X(—r), we call
X = (X,X,X(—r)) a delayed v-rough path with delay r > 0. If X and Y are delayed y-rough
paths, we set

|Xs,t - sz,t| ‘Xs,t - Ys,t|

[X(=r)st = Y(=r)s.t]
0v:1(X,Y):= sup —F—"—+ sup — 75—+ sup : :
K ( ) s,tel;s#t |t - S|'y s,tel;s#t ‘t - 5|2’Y s,tel;s#t |t - 5|27

Remark 4.2.2. For X as in the former definition, set
Z =X, X_)eUaU.

If X admits a Lévy- and delayed Lévy area, also Z admits a Lévy area Z given by

7 ( X X(—r) )
X(—r) X_p._p

where Xij(—r) = X;',th — ngt(—r). Conversely, if Z admits a Lévy area, the path X

s—ri—r
admits both Lévy- and delayed Lévy area. The delayed Lévy area can therefore be understood
as the usual Lévy area of a path enriched with its delayed path.

Next, we recall what is a delayed controlled path.

Definition 4.2.3. Let I = [a,b] be a compact interval. A path m: I — W is a delayed
controlled path based on X on the interval I if there exist y-Hélder paths ¢°,¢': I — L(U, W)
such that

Mmst = Cng,t + Clesfr,tfr + mﬁt (421)

for all s,t € I where m#: I x I — W satisfies |m#||2,,1 < 0o. The path (¢°,¢*) will again be
called Gubinelli derivative of m. We use D}((I, W) to denote the space of delayed controlled

paths based on X on the interval I. A norm on this space can be defined by

Imllpy, = l1(m, ¢°, ¢Dllpy, = Imal + 16l + 1Cal + Iz + ¢ s + [ * fl2yir. (4.2:2)

Remark 4.2.4. Note that any controlled path is also a delayed controlled path (by the choice

¢! =0), but the converse might not be true. However, considering again the enhanced path
Z=(X,X_eUal,

the identity (4.2.1) shows that m is a usual W -valued controlled path based on Z with Gubinelli
derivative : I — L(U @ U, W) given by (,(v,w) := (v + G w.

With these objects, we can define an integral as follows.

Theorem 4.2.5. Let X = (X, X, X(—7)) be a delayed y-rough path and m an L(U, W)-valued
delayed controlled path based on X with decomposition as in (4.2.1) on the interval [a,b]. Then

60



4.2 Basic properties of rough delay equations

the limit

b
/a ms dX, = lim Do Xe X G X (1) (4.2.3)
t;€ll

exists where II denotes a partition of [a,b]. Moreover, there is a constant C' depending on -y
and (b — a) only such that for all s <t € [a,b], the estimate

t
/ My, dXy, — msXs,t - ngs,t - Cles,t(_r)

< O (Im# 71X [y + I X N2y + IS IR (=) 27 ) £ = 5

holds. In particular,
t
t |—>/ My, dX,,
S

1s controlled by X with Gubinelli derivative m.

Proof. This is just an application of the Sewing lemma, cf. e.g. [39, Lemma 4.2], applied to
Es,t = msXs,t + ngs,t + <31Xs,t(*r>'

O

Example 4.2.6. Let U =W =R and X = (X, X,X(-1)) be a delayed vy-rough path. We aim

to solve the equation

dys = ye—1dXy; t>0

4.2.4
ye =& te[—1,0]. ( )

If € € 7% ([-1,0]), the path [0,1] >t — &_1 is a delayed controlled path, thus the integral

t
[07 1] St / gs—l dXs
0
exists. Therefore, the path
&t if t € [-1,0]
Yt =
Jo&sm1dXs+ & ift€[0,1]

is the unique continuous solution to (4.2.4) on [—1,1]. Since the integral is again an element

in 2% ([0,1]), we can iterate the procedure to solve (4.2.4) on the whole positive real line.
We will need the following class of vector fields:

Definition 4.2.7. By C}(W? L(U,W)), we denote the space of bounded functions o: W &
W — L(U, W) possessing 3 bounded derivatives.

We can now state the first existence and uniqueness result for rough delay equations.
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4. Rough Delay Equations I

Theorem 4.2.8 (Neuenkirch, Nourdin, Tindel). For r > 0, let X be a delayed ~v-rough path
for v € (1/3,1/2], o € C3(W?% L(U,W)) and (£,¢') € @?(([—T, 0], W) for some B € (1/3,7).
Then the equation
t
yr = &o + /0 U(ysa ys—r) dXs; te [07 T]

ye =& te -0

(4.2.5)

has a unique solution (y,y') € .@)‘?([0, T), W) with Gubinelli derivative given by v, = o(yt, Yi—r).

Proof. The theorem was proved in [37, Theorem 4.2], we quickly sketch the idea here: First, it
can be shown that for an element ¢ € 95(([0, r], W), the path o((.,£._,) is a delayed controlled

path. Therefore, one can consider the map
¢ &0+ [ oG dX,

and prove that it has a fixed point in the space .@)‘2([0, r], W) to obtain a solution on [0, r].
The claimed Gubinelli derivative can be deduced using the estimate provided in Theorem

4.2.5. O

We proceed with a theorem which shows that the solution map induced by (4.2.5) is
continuous. Unfortunately, the corresponding result stated in [37, Theorem 4.2] is not correct,
therefore we can not cite it directly. We will first formulate the correct statement and then

discuss the difference compared to [37, Theorem 4.2].

Theorem 4.2.9. Let X and X be a delayed vy-rough paths with v € (1/3,1/2], o €
C3(W?2,L(U,W)) and choose (£,¢') € @}8(([—1“, 0], W) and (£,&) € .@)’82([—7“, 0], W) for some
B € (1/3,7). Consider the solutions (y,y’) and (y,7') to

dys = o(ys, yr—r) dX; t € [0,7]
ye=E&; te[-r0]
resp.
dgt = U(gt’ @t—r) dxv t € [O’ T]
Uy = gﬁ t e [-r0].
Then

~/

oo (W, 9), (0, 7))

i y o (4.2.6)
< C (‘677‘ - ffr‘ + ’5,—1" - g—r‘ + d26;[—r,0]((§a£ )) (675 )) + O~;[0,7] (Xv X))

holds for some constant C' > 0 depending on r, v, B and M, where M is chosen such that

M 2|l€ll s + ||5||@§( + [1X 1y + 11Xy + X (=7) |2y

X [y A 1K 2y + 1K (=) |25
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4.2 Basic properties of rough delay equations

Remark 4.2.10. In [37, Theorem 4.2/, the authors state that the estimate

”y - ?3”,3;[0#] < C(‘f,r - g—r| + Hg - §||/3;[—r,0] + ,O»Y(X,X)) (4'2-7)

holds for the usual Hélder norm. However, this estimate can not be true in general. To see

this, assume X! = X% =: X and consider the equation in Example 4.2.6. If (4.2.7) was true,

the map

§|—>/§dX

would be continuous in the B-Hdlder norm, which is clearly not the case for a genuine rough
path X.

The proof of Theorem 4.2.9 is a bit lengthy, but mostly straightforward. We sketch it in
the appendix, cf. page 136.

Linear equations

In this section, we consider the case where ¢ is linear, i.e. o € L(WQ, L(U,W)). Note that
in this case, there are 01,09 € L(W, L(U,W)) such that o(y1,y2) = o1(y1) + 02(y2) for all
y1,y2 € W. Since linear vector fields are unbounded, we cannot directly apply Theorem
4.2.8. However, we can prove an a priori bound for any solution of the equation and then
deduce existence, uniqueness and stability for linear equations from Theorem 4.2.8 and 4.2.9

by truncating the vector field o.

Theorem 4.2.11. Let X be a delayed y-rough path over X with v € (1/3,1/2] and o €
L(W?, L(U,W)). Then any solution y: [0,7] — W of

dys = o(ys, yr—r) dX; t €[0,7]

4.2.8
yr=&; te[-n0 ( )

satisfies, for (4,y/) = (40 (y, &), the bound

<
191l 28 (0.1, <

1
O+ X o) 1€l 5 ) &5 {CUX tor) + Kot + IK(=) o) 77}

(4.2.9)

where C' depends on r, ||o||, v and B.

Proof. For s,t € [0,r], we have

Yst = y;Xs,t + yfjt
where
Ys = 0(Ys, Es—r) (4.2.10)
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4. Rough Delay Equations I

and

t
yj:t = / O-(yua yufT) dX, — U(y37 gsfr)Xs,t
s

= Doy + 01y Kot + 028, X 1(—)
with p given by
t / /
ﬁs,t = / U(Zﬁu yu—r) qu - U(y87 fS—T‘)XSﬂf - Ulysxs,t - 0'2€sfrxs,t<_r)-
s

Note that u +— o(yy,&u—r) is a delayed controlled path with Gubinelli derivative u
(o1yl,,02&.,_,). Therefore, we can use the estimate provided in Theorem 4.2.5 to see that for a
constant M = M(3,r) and I = [a,b] C [0,7] :

™ ll2;r < ol (1Y oot X295 + 1€ llows 0] K (=) ll2557) (b — @) 772
+ Mol (ly™ l2g:21X [z + 167 12501 [ X [1351) (b — @) (4.2.11)
+ Mol 1y g l1Xll25sr + 1€ s51-r,0 X (=) l2351) (b = @)*7 7

and by relation (4.2.10) :

1yllgr < lloll(ylloo,r + 1€ lloo o) X 141 — @)™ + [[y# |l25,1(b — @) and
19 11g.r < ol (lyllg;r + 1€l g:j—r0)-

Now assume that b —a =60 < 1 Ar for a given 6 and set
A=1+ ( X000 + IX2y:0, + 1K1 2450,
Our former estimates imply that there are constants M, N depending on ||¢|| such that

lolosr + Nollocsr + 19/l + I ot + 19l <
TG (Wl + llocst + 119Nt + 1% agis + 1/ loot) + (12.12)
N A€ s1r01 + 1Elloro) + 1€ leo—ror + 1€¥1231-r0) + (1 + o) glocs-

Choose 0 small enough such that

- 1
MAm*ﬁg1 and 0°(1+ ||o|) <

1
-. 4.2.1
: (4213)
For n > 1 and nf < r, set I, := [(n — 1)0,nf] and

By = [lyllg;r, + Wllocstn + 19152, + 1y 1285 + 19/ llocsz.
BO = HgHﬂ;[—nO] + Hg“oo;[—r,o] + ‘5/”00;[—7’70} + H§#|]25;[_r70}.

Note that ||yl cc:s,, < Bn1+ 0°B,. By (4.2.12) and (4.2.13),

B, <2NABy +2(1+ ||o||)Bn_1.
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4.2 Basic properties of rough delay equations

Set C'=2NA and C' = 2(1 + ||o||). By a simple induction argument, it is not hard to verify
that for k£ < n,

By <COA+C+C+ .. +C" By + "By
which implies

B, < C"(1+C)By

for k = n. Note that since yjft = yfu + yszt + Yo uXuts
#2000 < D2 My llogir, + 77 P X0 D2 19 151, (4.2.14)
1<n<m 1<n<m

Now set m = [7] + 1. By (4.2.14) and subadditivity of the Holder norm,

191l g:10.) + 19llocstor) + 11181001 + 157 281041 + 19 llscso.
_ _ ~m-+1
<@+ X o) Do Ba < (L4177 Xly0,)C" (14 C)Bo.
1<n<m

Note that an appropriate choice for 8 is

0 — L (4.2.15)

~ _1 1
(AMA)? + (41 + ||o|))F +1+ 1

which implies the claimed bound. O

From Theorem 4.2.11, it follows that in the case of linear vector fields o, the solution map

induced by (4.2.8) is a bounded linear map. We now prove that it is even compact.

Proposition 4.2.12. Under the same assumptions as in Theorem 4.2.11, the solution map
induced by (4.2.8) is a compact linear map for every 1/3 < 3 < 7.

Proof. Fix B <. Let {€(™},51 be a bounded sequence in .@f(([—r, 0], W), i.e.
€00 = (€ Xuw + €ME,

with uniformly bounded S-Hélder norm of £ and (¢(™)" and uniformly bounded 24-Hélder
norm of (€()#. From the Arzela-Ascoli theorem, there are continuous functions & and & such
that

(€M, (€M) — (€,€)

uniformly along a subsequence, which we will henceforth denote by (£, (€()"),, itself. It
follows that (£, (€()) = (&, €) in 6-Hélder norm for every § < . Define fjffv = &uov—&, Xun-
Clearly, (£()# — &# uniformly, and since

ol < sup 1) #lasgnorv = uf*
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4. Rough Delay Equations I

for every —r < u < v < 0, it follows that (£(")# — ¢# in 26-Hélder norm for every § < (. This
implies that (€™, (€M) — (&,¢&') in the space 2% ([—r,0], W) for every § < 3. Let (y", (v")')
denotes the solutions to (4.2.8) for the initial conditions (£7, (£")'). Fix some 1/3 < § < .
From continuity, the solutions (y", (y™)’) converge in the space 2% ([0,r], W), too. Choose
f < B' <. Using a similar estimate as (4.2.11) in Theorem 4.2.11 where we apply the

estimate in Theorem 4.2.5 for § shows that we can bound ||(y", (y™)") uniformly

l9¢ 01wy
over n where the bound depends, in particular, on sup,, [|(y", (y")’ )H%s( (j0,,w)- This implies

convergence also in the space @)@([O, r], W) and therefore proves compactness. O

A semi-flow property

In this section, we discuss the flow property induced by a rough delay equation. Recall that a

flow on some set M is a mapping
¢:[0,00) x [0,00) x M — M
such that ¢(t,¢,&) = & and

d)(svtag) = ¢(u7t7 Qb(S,U,f)) (4216)

hold for every £ € M and s,t,u € [0,00). Our prime example of a flow is a differential equation
in which case £ € M denotes an initial condition at time point s and ¢(s,t,&) denotes the
solution at time . In the setting of a delay equation, we can only expect to solve the equation
forward in time, i.e. ¢(s,t,&) will only be defined for s < t. If (4.2.16) is assumed to hold only
for s < u < t, we will speak of a semi-flow. In case of a rough delay equation, we will give up
the idea of choosing a common set of admissible initial conditions M which will work for all

time instances. Instead, our semi-flow will actually consist of a family of maps
¢(Su tv ) Ms — Mt

where (M;);>0 are sets (later: spaces) indexed by time. Note that the semi-flow property
(4.2.16) still makes perfect sense in this setting, and this is what we are going to prove. Note
also that the phenomenon of time-varying spaces is already visible in Example 4.2.6: admissible
initial conditions are controlled paths defined on intervals depending on the time when we

start to solve the equation.

Theorem 4.2.13. Let X be a delayed y-rough path over X with v € (1/3,1/2] and o €
C3(W?2,L(U,W)). Consider the equation

dy = o(ys, Yyi—r) dX; t € |s,00
Yt (yt Yt ) [ ) (4‘2'17)
y=%&; te[s—rs]

fors e R. Let B € (1/3,v). If€ € @)ﬁ(([s —r,s],W), the equation (4.2.17) has a unique
solution y: [s,00) — W and for t > s, we denote by ¢(s,t,£) the solution path segment

?(5,t,8) = (Yu)t—r<u<t-
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4.2 Basic properties of rough delay equations

Ifr <t—s, we have that ¢(s,t,€) € D5 ([t —r,t], W) with Gubinelli derivative ¢/(s,t,€) =
(U(yu) yu—r))t—rgugt and

O(s,t,-): Do (s —r s, W) = DL([t —r,t], W) (4.2.18)
£ 9(s,t,8)

is a continuous map. In case that £, = o (&s,&s—r), we have ¢(s,t,€) € .@)’i([—r +t,t], W) for
all s <t with Gubinelli derivative given by

&, fort—r<u<s

0 (Yus Yu—r) fors<u<t

¢(s,1,8)(u) = {

forr>t—s. Fors<u <t andr <u—s, we have the semi-flow property

¢(s,s,) =ldge (_risqw) and
(b(u?t?.) © ¢(S,’U,,€> = ¢(87t7§)' (4219)

Again, if £, = o (&s,Erts), (4.2.19) is true for all s <u <t.

Proof. As in Theorem 4.2.8, we can first solve (4.2.17) on the time interval [s, s 4 r]. This
can now be iterated to obtain a solution on [s,00). The claimed Gubinelli derivatives on
every interval [s + kr,s + (k + 1)r], k € Ny, are a consequence of Theorem 4.2.5. Since the
derivatives agree on the boundary points of the intervals, we can “glue them together” to obtain
a controlled path on arbitrary intervals [u,v] C [s,00). If the assumption &, = o(&s, &s—r)
holds, this can even be done for every interval [u,v] C [s — r,00). Continuity of the map
(4.2.18) is a consequence of Theorem 4.2.9. The semi-flow property (4.2.19) is a consequence of
existence and uniqueness of solutions: Let y5¢ be the solution of (4.2.17) for 7 > s — r where
Yot =¢ for s—r <7< s Let s <u <tand assume either r < u—s or &, = o (&5, &-). For

U,¢(S,U,€). If U

T < u, it is not hard to verify that y>¢ = yr < 7 by definition:

y77§_§ +/ yz 7yz r dX _ys§+/ yz ’yz r)dX and

o (06) —yu’5+/ o (305 E) ity e

u

Given the uniqueness of the solution, y5¢ = y$’¢(5’u’£) which indeed implies (4.2.19). O

Existence of delayed Lévy areas for the fractional Brownian

motion and a Wong-Zakai theorem

In order to apply the results from Section 4.2 to stochastic delay differential equations, we
need to make sure that the fractional Brownian motion can be ”lifted” to a process taking
values in the space of delayed rough paths. In this section, B = (B',..., B%): R — R? will
always denote an R%valued two-sided fractional Brownian motion with % < H K %, defined

on a probability space (Q, F,P). When H = %, we mean the usual Brownian motion adapted
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4. Rough Delay Equations I

to some two-parameter filtration (F!)s<¢, i.e. (Biys — Bs)i>o is a usual (F.5);>0-Brownian
motion for every s € R.
Also By = 0 almost surely (cf. [1, Section 2.3.2] for a more detailed discussion about

two-sided stochastic processes).

Brownian Motion

We will first start with the easy case when H = % .

Definition 4.2.14. Forr >0 and H = % set

_ _ _ t t
ng? = (Bs,th]to BQ?(—T)) = (Bt — B, | (Bu—Bs) ®dBu, | (Bu-r — Bs—r) ® dBu)

s,t
S S

for s <t € R where the stochastic integrals are understood in Ito-sense. We furthermore define
1 _
B i (BossBI + 5 (6 - )10, BE(—r))

where I; denotes the identity matriz in R?.

Proposition 4.2.15. Both processes B and B have modifications, henceforth denoted
with the same symbols, with sample paths being delayed y-rough paths for every v < 1/2 almost
surely. Moreover, the v-Holder norms of both processes have finite p-th moment for every

p > 0 on any compact interval.

Proof. The assertion follows by considering the usual Ito- and Stratonovich lifts of the enhanced
process (B, B._,) as in [39, Section 3.2 and 3.], using the Kolmogorov criterion for rough paths
stated in [39, Theorem 3.1] (cf. also Remark 4.2.2). O

The next proposition justifies the names of the processes defined above.

Proposition 4.2.16. Let (m(w), (% (w), ¢t (w)) € D73(w) almost surely. Furthermore, assume
that the process (my, (Y, ()0 is (F§)i>0-adapted. Then

T T ) T T
/ msdBs = / Mg dBﬁtO and / ms odBgs = / ms dBSe
0 0 0 0

almost surely for every T > 0.

Proof. We will first consider the It6-case which is similar to [39, Proposition 5.1]. Set F; := F¢.
To simplify notation, assume W = R. Let (7;) be a partition of [0,7]. We first prove that

E|:(<7qj]BszTj+l + CijBijTj?l»l(iT))( ngTkaJrl + ;kBTkka+1(T))] =0 (4'2'20)

for j < k. To see this, note that

E[(C}'jBTjaTj-Q—l(_T)) (C}'kBTkka-o-l(_T))] = E[E[(C}'jBTj,TjH(_T)) (CikBTkkaH(_T))’ka]} =

E {C;-BT]»,TJ-H (_T)CleE[BTk,TkH (_T) |‘7:Tk]} :
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4.2 Basic properties of rough delay equations

We show that E[B,(—r)|Fs] = 0 for s < u. By definition,

Bs’u(—r) = lim Z Bsfr,tka & Btk,tk+1
tr€ell

where IT is a partition for [s,u] and the limit is understood in L?(£2)-sense. Consequently,

E[Bs,u(_rnfs] = \I%ISO Z E[BS*T,tk*T ® Btk7tk+1|}—8]
tpell

again in L?. Note that

E[Bs,ntk,r ® Btlwthrl |‘7:S] =

Bs—r,tk—r @ ]E[Btk,tk_;,_l"/__;} =0, iftpy —7r<s
Bs—r,s b2 E[Btk,tk+1 |Fs} + E[Bs,tk—r & Btk,tk+1 |J—"s] = O, if s < tk —T.

Other cases are similar and (4.2.20) can be deduced. Using a stopping argument, we may

assume that there is a deterministic M > 0 such that
sup [|¢7(w)[| V [|¢} (w)]] < M
€[0,7]
almost surely. Then,
2
E[(ZC?J-Bfwm + (3 Bry 40 (-17)) } < MZ(TJ-H —75)? < MT max |7j+1 — 7]
J J

which converges to 0 when the mesh size of the partition gets small. The claim now follows using
the definition of the Ito integral as a limit of Riemann sums. The proof for the Stratonovich

integral is similar to [39, Corollary 5.2]. O
The following corollary is immediate.
Corollary 4.2.17. The solution to the Ito equation
dY; = o(Y;,Yi-,) dB,
s almost surely equal to the solution to the random rough delay equation
dY; = o(Y3,Y;_,) dBI®

if the initial condition is F°,-measurable and almost surely controlled by B. The same statement

holds in the Stratonovich case.
Next, we prove an approximation result.

Definition 4.2.18. Let p : R — [0,2] be a smooth function such that supp(p) C [0,1] and
which integrates to 1. We set

Bf := / B_c.icop(z)dz, €€ (0,1].
R
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It is not hard to see that
IE|B§t|2 < M(t—s) and linr(l)IE|B§t - stt|2 =0 (4.2.21)
’ e— ’

where M is independent of €.

Lemma 4.2.19. We have the following pathwise identity:

t—ez
/ B, , ®dB: = /R o(2) / BE s seny ® dBydz. (4.2.22)
S

—E&Z

Proof. Note that both integrals in (4.2.22) are indeed pathwise defined since B¢ is smooth
and B is Holder continuous. Using integration by parts, for i,j € {1,...,d},

t—ez t—r .
/ (Ba)s rutez— TdBu (Bs)s rt— TBg ez Bi-‘,—r Ezd(BE)Z
s—ez s—r

Consequently,

t—ez .

/Rp(z) /s—sz (Ba)s rautez— rdBZLdZ -
/R(Be)s ri— rp t szdz //S u+r €Zd(B€),ZdZ:
(B (B - / BB,

Using integration by parts again, we have

BB = [, = [,

which implies the claim. O
Lemma 4.2.20. For B, (— f Bs ru—r @ dBy and BS, f B, ., . ®dBg,
E|B,(—r)]> < M(t — ) and E|]B§’t(—r)|2 < M(t—s)? (4.2.23)

for a constant M > 0 independent of s,t and €.
Proof. An easy consequence of the Cauchy-Schwarz inequality and Lemma 4.2.19. O

Lemma 4.2.21. We have
lim E[B, ,(—r) — B ,(—r)|> = 0. (4.2.24)
e—0 ?

Proof. A direct consequence of Lemma 4.2.19 and (4.2.21). O

Theorem 4.2.22. Setting

Bi,t = (B8 BibBi,t( ( st’/ B ®dB€ / Bs ru—r ®dB1i)7

sty
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4.2 Basic properties of rough delay equations

we have

Hd%I (Be, BStmt)
lim sup

L1 _ 0
0 g1 Vi

for every v < 1/2 and every compact interval I C R where d.; denotes the homogeneous

metric

Xt =Y, Xst —Y Xst(—=7r) =Yg (=1
4 (X,Y) = sup Ko =Voul [y B 25,t| v sup Pealzr) 2s,t( )|
s,tel;s#t ‘t - 5|’y s,tel;s#t |t - S| v s,tel;s#t |t - S| g

Proof. The strategy of the proof is standard, cf. [40, Chapter 15], we only sketch the main
arguments. First, the uniform bounds (4.2.23) and the convergence (4.2.24) hold for B* and
BStrat | too, cf. [40, Theorem 15.33 and Theorem 15.37]. Since all objects are elements in the
second Wiener chaos, the results even hold in the L%-norm for any ¢ > 1. We can now argue

as in the proof of [40, Proposition 15.24] to conclude. O
Fractional Brownian Motion
In this subsection, we state similar results for the fractional Brownian motion when % < H < %

Definition 4.2.23. Forr > 0 and % < H < %, set

t t
Bs,t — (Bs,th,ta Bs,t(_r)) = (Bt - 337 (Bu - Bs) ® doBu; (Bu—r - Bs—r) X dOBu)

S S

(4.2.25)

for s <t €R, here the integrals are defined in the symmetric sense(cf. Definition A.3.1 for

more details).
Similar to Proposition 4.2.15, we have:

Proposition 4.2.24. Process B have a modification with sample path being v-rough path for
every v < H almost surly. In addition the v-Hélder norms of both processes have finite p-th

moment for every p > 0 on any compact interval.
Proof. [37, Proposition 5.2] O
Similar to Lemma 4.2.19 we have:

Lemma 4.2.25. We have the following pathwise identity:

t t—ez
/S B, ., ®dBS = /R o(2) / BE, wiesr, ® d°Bydz. (4.2.26)

—EZ
Where v, € {0,7} .

Proof. Enough to show

tmez Bu+6z — Bufziz t 2
lim E(/ p(z)/ Flu+ez) @ ————dudz — / Flu)® dB;) =0.
6—0 R s—ez 20 s

Where F(u) = B . O

5—Tp,u—"Tp
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4. Rough Delay Equations I

To prove similar results like Theorem 4.2.22 for the fractional Brownian motion, we need

the following auxiliary lemma.

Lemma 4.2.26. For v <r

/ Burur @d°B,)° S (r—7)2(t — )2+ Y (t—s)2(r—)4 D (4.2.27)

4<a<T

Proof. For @, := B}, .., .X[s4 (1), by Proposition A.3.2
/ ®,d°B] = 65, (®) + Tris g (DP' ®). (4.2.28)
It can be shown Tr[&t]DBjCI) = Héi—j[sgn(r)|r|1=1 — sgn(7)|7|>171](t — s), also

DEJ ((I)a:) = 6i:j Xs,t] (.CU) X[z—7,x—7] (u)
Consequently, for t — s <r — 7

6[5 t](ij(I)) =
5i:j 5[57,5} (X[sfr,tfﬂ(U)X[u+7,t](') + X[t—r,s—7] (U)X[s,t}(‘) + X[s—rt—r] (U)X[s,qur}(')) = (4'2'29)
52':]' [X[S—T,t—’r} (U)BU+T,t + X[t—r,s—7] (U)Bs,t + X[s—rt—r] (u)BS,U+T] :

Forr—7<t—s

5[3 t](ij(I)) =
8i=30a 1) (Xtt—rst—r) (WX [urt] () + Xs—rt—r] (W X[s,0471(-) = Xfs—rtmr] (W X501 (1) =
6i:j [X[tfr,th] (U)Bu-f—ﬂt + X[s—rt—r] (U)BS,U-H’ — X[s—7,t—r] (U)BSJH-T]'

(4.2.30)
In addition, from (A.3.2) and (A.3.3)
BI(6F,(©))%] = B(I9, )+ E(< 67D 9),® >, ) (4.2.31)
/ 1 1
< B0l )+ B(5E (0P o), (0l )},
By (A.3.1)
2 ! 2H 5)2H-1 (r—n)" 2
B(loly,,) 5 [ ==t [ ([ U e
’ . (4.2.32)
tr ot (E(|®y — Du]2)7 2
/(] (E(2; = 2u) o) du S (r =)t~ 9 4 (r =) (e - 5)0.
s u (0' — u)ﬁ_H
Note that, we used the following inequality
0 <222 4207 — o 4y — |z — P! <day", zy >0
Now (4.2.27) can be deduced from (4.2.28), (4.2.29), (4.2.30), (4.2.31) and (4.2.32). O
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4.2 Basic properties of rough delay equations

Finally we have:

Theorem 4.2.27. For

t t
B i= (BB B () o= (Biy [ Biy 0By [ Bi ., wdBs).
S S

we have

d~.;1(B¢,B
i g 1 BB
E—0O0 g1 \/a
for every v < H and every compact interval I.

Proof. We claim
b e e[ on ) LH (-5 H
E( / By ur, @ dB;, — / By rpur,d Bu> <D (t—s)fet ) (4.2.33)

From Lemma (4.2.19)

t t 2
E( / B, ., ®dBS - / Byorur, @ dOBu> <
S S

—€z

t—ez 2
E(/Rp(z) [/ (B.E*TPVUFFCZ*TP B Bs_rpvu‘f‘&’_?"p) ® d° Bu] dZ) +
s

t—ez t 2
E( /R p(2)] / Bs—ryutes—r, @ d° By — / Bs—ryu—r, ® d°By] dz) =T +1I.
s s

—€z
It is not hard to verify the following integration by parts property

t—1z . £ .
% onj 7 opj _
/ 1 Bs—r uttz—r d BU / BS—Tan_TPd Bu
s—=z P n P s

. . t—rp . .
_ R J J o 1t
Bs—Tp,t—rthfiz,t + /S—Tp Bu+7‘p*%2,u+rpd BU
By lemma 4.2.26 :

—Tp

, . t . N\ 2
1< / ¢(z)E<—B§T B+ / B dOB;) dz (4.2.34)
R 23] P t—ﬁz,t s

—rp u+r— Zz,u—&—rp

S 30 (B

4<I<7 n

Also
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4. Rough Delay Equations I

Setslzs—%zandtlzt—%zthen:

t ) ) N\ 2
E(/ [(BZ)ZMH—%z—Tp - le,u—l-iz—rp}doB'l]L)

S1

t1 ) ) N2 11 l
S LB( [ B tyunteny 1y Bl JEBL) dy S Y (t— )b
81 n n n n

4<I<T
consequently

l

1< S (t—s)s Ly, (4.2.35)
n

4<ILT

Now (4.2.34) and (4.2.35) yield (4.2.33).
Following with sup,, E( [f(B*)"

S—r,u—Tr
polation technique and second chaos property, for every v < H and every compact interval
1

d(BY) E([! B, ,_,d°B})* < (t —s)*, inter-

s—ryu—r

d..; (B, B
Cf. [40, Chapter 15] for more details. O

As an application, we can prove a Wong-Zakai theorem for stochastic delay equations.

Theorem 4.2.28. Let o € C3(W? L(U,W)) and B* be defined as above. Assume that there
is a set of full measure Q@ C Q such that

(§(w), €' (W) € ey ([=7, 0], W) N D) ([=7, 0], W) (4.2.36)

holds for every € € (0,1] and every w € Q. Then the solutions to random delay ordinary

differential equations

dYy = o(Y7, Y, )dB;; 20
Yi=6&  tel[-r0

converge in probability as € — 0 in v-Hélder norm on compact sets for every v < H to the
solution Y of

dYy =o(Y:,Yi—)dBy; t>0
Y = &; t € [-r0]

Moreover when H = L, if (&,&}) is FO,-measurable for every t € [—r,0], the solution Y

coincides almost surely with the solution of the Stratonovich delay equation

dYy =o0(Y;,Y;—p) 0dBy; t>0
Y =&; t € [-r0].
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4.3 Random Dynamical Systems induced by stochastic delay equations

Proof. A combination of the stability result in Theorem 4.2.9, Theorem 4.2.22 and Theorem
4.2.27. O

Remark 4.2.29. Note that (4.2.36) is satisfied, for instance, if & has almost surely

differentiable sample paths, in which case we can choose & = 0.

4.3 Random Dynamical Systems induced by stochastic delay

equations

This section establishes the connection between stochastic delay equations and Arnold’s concept
of a random dynamical system.
Delayed rough path cocycles

We start by describing the object which will drive our equation. The following definition is an

analogue of a rough paths cocycle defined in [41] for delay equations.

Definition 4.3.1. Let (Q, F,P, (0¢)icr) be a measurable metric dynamical system and r > 0.
A delayed 7-rough path cocycle X (with delay r > 0) is a delayed y-rough path valued stochastic
process X(w) = (X (w), X(w), X(—r)(w)) such that

X ort(w) = Xo 4 (6:w) (4.3.1)

holds for every w € Q1 and every s,t € R.

Our goal is to prove that Brownian motion together with Lévy- and delayed Lévy area can

be understood as delayed rough path cocycles.

Definition 4.3.2. For a finite-dimensional vector space U, set

) ={(1a& (B @ (1.0) | .U and~,0 €U RU}.

We define projections Hg by

o ifi=1,j=1

; poifi=1,7=2
IH(1e(a,8) @ (v,0)) =

v oifi=2,5=1

0 ifi=2,j=2.

Furthermore, we set

(1@ (1,51) ® (11,601)) ® (1B (a2, B2) B (72,62)) =
(1@ (14 a2, 814 82) (1 +72+ 01 ®az, b+ 02+ 1 @ az))

and 1 := (1, (0,0), (0,0)).
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4. Rough Delay Equations I

It is not hard to verify that (TQ(U ),®) is a topological group with identity 1. For a
continuous U-valued path of bounded variation z, we can define the following natural lifting

map

v v

SZ(x)u,v = (1 b (xu,mxufr,vfr) S (/ Ty,r & dea/ Ty—rr—r & de)) c TZ(U)

Definition 4.3.3. Assume I C R and 0 € 1. We define CO'~""(I,U) as the closure of the set
of arbitrarily often differentiable paths x from I to U with x¢g = 0 with respect to the 1-variation

norm. Furthermore, Cy*~"" (I, T*(U)) is defined as the set of continuous maps x: I — T (U)
0,1—wvar

such that xo = 1 and for which there exists a sequence x,, € C (1,U) with

- . ~ 2\ P
dp*vm" (Xv SQ(xn)) ‘= sup (sup Z |Hg (thytk+1 - Sz(xn)tk7tk+1)| Z) —0
i,je{1,2} \'PCI teeP

as n — oo. We use the notation Xt := X5+ ® x; here. The space Cg’p_var(R,Tz(U)) consists
of all continuous paths x: R — T2(U) for which x|; € CyP~ (I, T2(U)) for every I as above.

We can now state the following results:

Theorem 4.3.4. Let p > 1 and let X be an C’g’pfwr(R,TQ(U))—valued random variable on
a probability space (Q, F,P). Assume that X has stationary increments, i.e. the law of the
process (Xto,to-i-h)heR does not depend on tyg € R. Then we can define a metric dynamical
system (Q, F,P,0) and a Cg’p_MT(R, T2(U))-Ualued random variable X on Q with the same
law as X which satisfies the cocycle property (4.3.1).

Proof. The proof in all lines is similar to Theorem 5 in [41] by setting {2 = C’g’pfmr(R, TZ(U)),
F being the Borel o-algebra, P the law of X and for w € Q, we define

Bsw)(t) :=w(s) T @wt+s), Xi(w)=uwt).

Remark 4.3.5. Note that the cocycle property (4.3.1) is equivalent to X;(0s(w)) = X1 (w) ®
Xiys(w) for every s,t € R and every w € Q.

We will also ask for ergodicity of rough cocycles. The following lemma will be useful.

Lemma 4.3.6. Let (Q, F,P, (6;)icr) and (Q, F, P, (0;)scr) be two measurable metric dynamical
systems and let ®: Q — Q be a measurable map such that P =P o ®~1. Assume that for every
t € R, there is a set of full P-measure Q; C Q0 on which ® o ; = 0, o ® holds. Then, if P is
ergodic, P is ergodic, too.

Proof. The reader will have no difficulties to check that the assertion is just a slight

generalization of [42, Lemma 3]. O

Theorem 4.3.7. Consider the processes B and B (when H = %) defined in Section 4.2.
Then for each process, we can find an ergodic metric dynamical system (Q, F,P,0) on which
we can define a new process with the same law, satisfying the cocycle property (4.3.1), i.e. both

processes are delayed ~y-rough path cocycles for every v € (1/3, H).
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4.3 Random Dynamical Systems induced by stochastic delay equations

Proof. We will first consider B. From the approximation result in Theorem 4.2.22 and Theorem
4.2.27, we see that B takes values in C’g’p_wr(]R,TQ(Rd)) for every p € (£,3). It is easy to
check that the process has stationary increments, therefore we can apply Theorem 4.3.4.
It remains to show ergodicity. By construction, 2 = C3*~ (R, T%(R9)), F is the Borel

o-algebra and P = P oS! where (Q,j: ,]f”, 9) is the measurable metric dynamical system

given by O = Cy(R, RY), F the corresponding Borel o-algebra, P the Wiener measure and
6 = (@t)teR the Wiener shift. The map S': Q) — Q is defined as follows: For x € Q, set

t t
S(.T) = (1 S (xs,ty xsfr,tfr) D (/ Tsr & de‘ra/ Ts—rr—r & me))
s s s<t

if the integrals exist as limits of Riemann sums, in Statonovich sense, on compact sets for the
sequence of partitions given by II,, = {k/2" : k € Z} as n — oo, and S(z) = (1,0,0) otherwise.
It is not hard to see that there is a set of full P-measure on which the limits do exist. It follows

that for every ¢ € R, there is a set of full measure Q); such that for every T € Qt,

Since P is ergodic, ergodicity of P follows by Lemma 4.3.6 which completes the proof .

When H = %, for the Ito-case, we can argue analogously: First, we define a map

A

t 1 t -
S2($)s,t = (1 @ (xs,ta xs—r,t—r) S (/ Tgr & dr, — i(t - S)Ida/ Ts—pr—r & de)) € TQ(U>
s s

~,0,p—var

for smooth paths and a corresponding (separable!) space C| (R, T 2 (R%)) in which, using

again the approximation result for the Stratonovich lift, the random variable B takes its
values. Then a version of [41, Theorem 5] applies and shows the claim. Ergodicity is proven
analogously . O
Cocycle property of the solution map
Let I C R be a compact interval and X : I — U a «-Holder continuous path. It is easy to see
that for a < g < v,

iap: DRI, W) — DI, W),

(& &) = (&)

is a continuous embedding. We make the following definition:
Definition 4.3.8. We define @;’ﬂ(l, W) as the closure of @)”8(([, W) in the space 2% (1, W).

The reason why we introduce these spaces is their separability, which we will prove in the

next lemma.
Lemma 4.3.9. For all o < 3, the spaces .@;’5(1, W) are separable.

Proof. The space .@;’B (I,W)) can be viewed as a subset of
COP(I, W) x C¥P(I, L(U,W)) x C**2 (1, W)
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4. Rough Delay Equations I

where C®# again means taking the closure of S-Holder functions in the a-Holder norm. Since
all spaces above are separable, the result follows.
O

For a < B < 7, we can find a very explicit dense subset. This is the content of the next

theorem, which has far reaching consequences, as we will see.

Theorem 4.3.10. Let a < < v < H. Then the set
t
%mw@r%¢=/fva>+me%=f@MmWefeC“UJ@MV»meecwuwm}

is dense in .@;’ﬂ (I, W), the integral being understood as a Young-integral here. In particular,
@;”B(I, W) does not depend on o.

Proof. Take (£,&) € %P (I,W), ie. &op = & Xos + §ft. Since 257 (I, W) is the closure of
the space 9}3((], W) in 2%(I,W), it suffices to prove that set is dense .@§ (I,W). Thus we
assume without loss of generality that ||¢/||s.1, [|£7|25.1 < oo. For a partition II" = {t; }1<i<n
with At; = 6, we define a function 5’: I — L(U, W) by setting

(’7’ — ti)

T
57‘ T éti + Atz

géi’ti+l7 t’l g T < tl+1‘
Our goal is to find a function R with Ry = 0 and such that for
_ t_, 3 _
Eim [ GaXo+ R &=t (432)
S

we have ||(£,¢) — (gag/)

72(1,W)) <€ for any given € > 0 when choosing 6 small enough, i.e.
1€ =€lla =0 and [|e# — €20 — 0

as # — 0 where E# = Esvt — E/stt. Set ns¢ = E;t — {;t and note that by construction the map
vanishes on the subdivision, i.e. 7, ¢,+1 = 0 for all 1 <4 <n — 1. Inserting subdivision points,

we obtain the (global) estimate,
Inlla < 467~1¢' 5. (4.3.3)

First note that, by our construction, at the mesh points, £ and & coincide, now for arbitrary
s,t which not belong to same interval, we can assume ¢, < s <ty < ... <t; <t < tjqq since

71 is an increment path

=/ =/ =/
ns,t = (gs,tk+1 - gg,tlﬁ,l) + (gtk+1,t]‘ - €£k+1,tj) + (gt]',t - ggj,t)

lky1 — S 4 ’ t—t; /
= tk+1 — tk gtk,tk+1 - Ss,tk+1 + t]+1 - t] Etjythrl - gt]',t
Consequently
|775,t| < tk+1 — S ‘ggk,tk+1| |§;7tk+1| t— t] |££j,tj+1’ |£?€]',t

(=57 S (t—9) ipr—te) (-9 (-9 b~ @ ({L—s)
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4.3 Random Dynamical Systems induced by stochastic delay equations

Note that 341 —s <t—sand t—t; <t—s. Now, (4.3.3), immediately follows, note that here
the main task is to get ride of the SQH Lt €£k+ " then the remaining terms can be controlled.

Define p,; := fst E/T dX, — E;X&t. For s,t € [t;,ti+1], we can use integration by parts to see
that

Sitin [ t—s &l t &t t
— (XI%2 _ dX — /. . X _ iyli4+1 / X d — isbi41 / X d .
Ps,t AL /S (1 —s) dX, AL, Etitiir Xt 7Atj Xr T A, ) X T

Consequently, for I; = [ti, tiy1],

1€115 11X 11 9
g < B Y gy +B-2a 4.3.4

Note that we can deduce the same results without integration by parts, using the estimate

< Cylt = s|"IX Ly

/St(T —s) dX,

for the Young integral instead. Next,

tit1 =/
Ptyt; = Z / fti,q—dXT + gtk,tiXtiyti+1:|
k<i<j i
— [ # /X
- Z Ptitiv1 — £ti7ti+1 + gti,tH»l - gk; titit1 (4.3.5)
k<i<j -
_ [ # #
- Z Ptitivr — Eti7ti+1:| + gtkvtj'
k<i<j -

Set pgy = Eﬁt — psit. (4.3.4) implies that

> - &g 1X _
IPllzair, < €% 1256 auw go-20 (4.3.6)
and from (4.3.5),
Prot; = D |Evis — (4.3.7)
Pty it titipr — Plitipr |- 3.
k<i<j

It is easy to verify that

Z)S,t = ps,u =+ bu,t + ns,uXu,t‘ (438)
Let R be the piecewise linear function defined by

_t—s

Rs,t = th (é.t?iti+1 - pti,t¢+1) ) s,t € [tiati-Fl]

on Il
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4. Rough Delay Equations I

For s,t € I with t, < s <lpq41 < ..o <t <t < tjyq, we have

Rst = Rst 0y + Rty tyyo T+ Byt = Rty + Rejo + Py 55

- iy (4.3.9)
Psit = Pstpia + Ptry1,t; + Pi;.t + és,tk+1th+1,tj + §S,tht]-,t-
Note that
~ B / X||.ov+B—2a
I Rl|2asr, < (16712667~ + €705 11Xy . (4.3.10)
v+1
Also,

ﬁs:t = bs,tkﬂ + Z)tk+1atj + lbtj,t + 778,tk+1th+1,t + 77tk+1,thtj,t- (4-3.11)

So from (4.3.9) and (4.3.11),

H o H# 7 . F = .
Eop0 = 8ot = Rt = Dot = Ry + Ryt = Moty Xyt = Mgyt Xtgt = Pty — Pejie

From (4.3.3), (4.3.6) and (4.3.10), we deduce the following:

4[1¢llglIX ||, 07452
v+1

€%, — ¢t £ 2(6-a)
< 2||€7 250 +

B s L —a)" Y X / ﬂ—a.
s +8(b— a) | X, 1€/ 66

(4.3.12)

We can now pass to the supremum over all s < ¢t on the left hand side and send # — 0 which

proves the claim. O

Theorem 4.3.11. Let X be a delayed vy-rough path cocycle for some v € (1/3,1/2]. Under
the assumptions of Theorem 4.2.13, the map

e(n,w,-) == ¢(0,nr,w, ) (4.3.13)
1S a continuous map
P(n,w, )1 D (=1, 0L, W) = D35 ([=7,0, W)
and the cocycle property
o(n+m,w,-) = pn,lpw,-) o p(m,w,-) (4.3.14)

holds for every s,t € [0,00). If o is linear, the cocycle is compact linear. Furthermore, all

assertions remain true if we replace the spaces 2° by 2P for 1/3<a<f <.

Proof. Note that Qﬁ(w)([—r + nr,nr], W) = sz(emw)([—r, 0], W) by the natural linear map

U: 5 (=r ], V) — 95, ([=7,00,V)

Onrw)

(&r) —ranr<r<nr = (ET =&rtnr) —r<r<0-
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4.3 Random Dynamical Systems induced by stochastic delay equations

Continuity of ¢ is a consequence of Theorem 4.2.13. Regarding the cocycle property, by the
semi-flow property (4.2.19) it is enough to show that

(25(07 nr, Omrw, ) = qﬁ(mr, (m + n)r, W, )

Using again the semi-flow property (4.2.19), it is enough to show the equality for n = 1 only.
Finally, by the definition of the integral in (4.2.3) and the cocycle property of a rough cocycle,
this can easily be verified. The statements about linearity and compactness are a consequence
of 4.2.11 and Proposition 4.2.12. The claim that all spaces 2P can be replaced by 27 follows

from the invariance
o (10, ) (=7, 0L W) € Dfg o (7501, W) (4.3.15)

which is a consequence of the continuity of . O

Note that so far, we worked with delayed rough path cocycles X which are defined on a
continuous-time metric dynamical system (€2, 7, PP, (0)ter). In Theorem 4.3.11, we saw that
stochastic delay equations a priori induce discrete-time RDS only. The reason is that we
cannot expect that the semi-flow property (4.2.16) holds in full generality for all times, cf.
Theorem 4.2.13. Therefore, in what follows, we will continue working with discrete time only.
From now on, whenever we consider cocycles induced by delay equations with delay r > 0, our
underlying discrete-time metric dynamical system is given by (2, F,P,0) with 6 := 6,. We
also use the notation ¢(w,-) := ¢(1,w, ) for the cocycle ¢ defined in (4.3.13).

We recall the definition of measurable field of Banach spaces again.

Definition 4.3.12. Let (2, F) be a measurable space. A family of Banach spaces {Ey}weq 1S

called a measurable field of Banach spaces if there is a set of sections

Ac I] E.

we
with the following properties:
(1) A is a linear subspace of [],,cq Fu-

(i) There is a countable subset Ag C A such that for every w € Q, the set {g(w) : g € Ao}

is dense in E,,.

(iii) For every g € A, the map w — ||g(w)|| g, is measurable.

Proposition 4.3.13. Let X: Q — CV(I,U) be a stochastic process. Assume that there are
a < f<~v. Then {@;‘(’(Bw)([, W)toeq is a measurable field of Banach spaces.

Proof. For s = (v, f,R) € R x C*(I,L(U,W)) x C§°(I,W), define

gs(w) = (v + [ fmax )+ R f) e 7L (1, W)
and set
A= {gs : s € R x C(I, L(U,W)) x C=(L, W)). (4.3.16)
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4. Rough Delay Equations I

It is clear that (i) holds for A. Let S be a countable and dense subset of R x C*°(I, L(U, W)) x
C§°(I,W) and define Ag := {gs : s € S}. By definition, Ag is countable, and {gs(w) : s € S}
is dense in .@;(Bw ) (I, W) for fixed w € Q by Theorem ﬂ It remains to prove (iii). Let
I = [a,b] and choose s = (v, f, R). Then

HQS(W)H = "U’ + ]f(a,)\ + sup M

stelnQs<t  (t—8)®

+ sup |Rs,t + fst f(T) dX‘r(w) B f(s)Xs,t(w)’ .
s,telINQ,s<t (t - S)Za

The integral is measurable since it is a limit of measurable Riemann sums. Measurability of
w > ||gs(w)|| thus follows which finishes the proof.
O

Theorem 4.3.14. The continuous cocycle
P(w,): DLy ([, 0L, W) = 255, ) (=7, 01, W)

defined in Theorem 4.5.11 induces a random dynamical system on the field of Banach spaces
{250, ([=7,0, W) }uea-

Proof. Let A be defined as (4.3.16) and take g € A. Consider the solution y to

w(e) = ) + [ g (@), s (@) A (), £ 0;

ye(w) = gi(w), t€[=r0]

To simplify notation, set || - [z, (o) = II - [lgas We will prove that w —

X (w) ([o,r], W)

Hy(w)H@X(w)([W]) is measurable. Define

W) 1= 90(e) + [ 7{a0(e), gr-r(e)) aX ()

and recursively for n > 1

W) = g0le) + [ o), 9o () AKe ).

By induction, one can show that w — y}'(w) is measurable for every ¢ € [0,7] and n > 1. By a
similar strategy for proving continuity of the Ito-Lyons map, one can show that y"(w) — y(w)
in the space 9;(5 ([0, T(A(w))], W) as n — oo where

w)

Aw) = [[X (@) llyjo,, + K@) l2yig0,r7 + 1K) (=) 25300,

and T': [0,00) — (0,7] is a decreasing function. Define

3=

Q= {w €N :T(Aw)) <

b
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4.4 The Lyapunov spectrum for linear equations

Then €, is a measurable subset and {2 = Um>1 Q. Fix m € N and choose w € €),,,. Then
(y™(w))n is a Cauchy sequence in the space @O‘ ([0 r/m], W) and, consequently, converges
to some element 7°(w) for which we can conclude that w — 77 (w) is measurable for every

t € [0,7/m]. Now we can repeat this argument in []T (jH)T}

for 7 =0,...,m —1 and obtain a
sequence of elements §/ (w) € 2y ’5 ([jr/m (j+1)r/m], W) with the properties that w — 7 (w)

is measurable for every ¢ € [jr/m, (] + 1)r/m] and

This implies that w — y:(w) is measurable for every ¢ € [0, 7] on the subspace §2,,,. Since m
was arbitrary, measurability follows also on the space . Note that y)(w) = o(y:(w), gi—r(w)),
thus

|y;t’
YWl 24 (0 yo(w)| + lyo(w)| +  sup
x@) (107 = |+ Ivo() s<t€[0,7]NQ |t — s|®

(Y7 (@), grr () AXr (@) — 0 (ys(w), G5 ()|
+ sup

s<t€[0,7]NQ ’t - 5‘2(1

and measurability of w — [|y(w)| 2, () ([0,7]) follows. We can now repeat this argument to see

that w — ||y(w)||@X(w)([m(n+1),ﬂ}) is measurable for every n > 0 which proves the theorem. [J

4.4 The Lyapunov spectrum for linear equations

In this section, we formulate the main results of the chapter.

Theorem 4.4.1. Let (Q, F,P,(0)icr) be an ergodic measurable metric dynamical system and
X a delayed ~v-rough path cocycle for some v € (1/3,1/2] and some delay r > 0. Assume that
a < B <. In addition, we assume that

1
HX”’Y;[O,T] + HXHQ'y;[O,r} + ”X(_T)”Q'y;[(),r} € L5 (Q) (441)
Let 0 € L(W?,L(U,W)). Then we have the following:
(i) The equation

dyr = o(yt, Yp—r) dX¢(w); ¢ >0

4.4.2
Yt = ft; te [—T, 0] ( )

has a unique solution y: [0,00) — W for every initial condition (£,£') € .@;’(ﬁw)([—r, 0], W)
with

Wetn (@), Yin(@))te(r0] € D5, (7,00, W)
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4. Rough Delay Equations I

for every n > 0 where

/ o(yi(w), yr—r(w)) fort >0
yt(w) = {
& fort € [—-r,0].

(i) Set o(n,w, &) = (Yttn(W), Yipn(W))ie|—ro and E, := .@;’(w)([—r, 0], W). Then ¢ is a
compact linear cocycle defined on the discrete ergodic measurable metric dynamical system
(Q, F,P,0,) acting on the measurable field of Banach spaces {E, },ecq and all statements
of the Multiplicative Ergodic Theorem 2.2.16 hold. In particular, a deterministic Lyapunov
spectrum (1) >0 exists and induces an Oseledets filtration of the space of admissible

initial conditions .@;’&)([—r, 0], W) on a set of full measure.

Proof. Theorem 4.3.11 together with Theorem 4.3.14 show that (4.4.2) induces a cocycle acting
on a measurable field of Banach spaces given by the spaces of controlled paths. The estimate
in Theorem 4.2.11 together with our assumption (4.4.1) show that the moment condition of
the MET 2.2.16 is satisfied and the theorem follows. O

Finally, we apply our results for the fractional Brownian motion.

Corollary 4.4.2. Theorem 4.4.1 can be applied for X being a two-sided fractional Brownian
motion B. In case H = % and B = B the solution to (4.4.2) coincides with the usual

Ito-solution almost surely in case the initial condition is F°,-measurable.

Proof. The fact that B and B (when H = 1) are delayed y-rough path cocycles on an
ergodic measurable metric dynamical system for every v € (1/3, H) was shown in Theorem
4.3.7. In Proposition 4.2.15, we saw that the integrability condition (4.4.1) is satisfied in the
Brownian case, and we can indeed apply Theorem 4.4.1. The fact that the solution to (4.4.2)

coincides with the usual It6 resp. Stratonovich solution (when H = 3) was shown in Corollary

4.2.17. O

Remark 4.4.3. As we pointed out earlier, our results are applicable to equations where the

dynamics depend on the past in a much more general way, namely to those of the form

= ol [ vesenldr) X (0.

-T

Note that this is the most general form of delay equations in the linear case (without drift). In
addition, for the non-linear case, this is the most common form. To give a meaning to this

integral, we invoke the following ansatz:

/St J<yta /0 ?/H‘rﬂ(dT)) dX(w) ~ Z [U(ysw/or ij+T/‘(dT))XSj:Sj+1+

'

0
Ul(_sj)y;jxsj,5j+l +0-2(_5j)/_r y;j+7X8j,Sj+1(7—)M(dT)]'

It is not hard to see that the above increment is satisfying the assumptions of the sewing

lemma. All the results concerning existence, uniqueness, and our estimates remain valid with
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4.5 An example

some straightforward modifications. Theorem 4.3.4 has to be modified slightly by taking X as a
C([-r,0), C’g’p_var(]R, TQ(U)))—valued random variable. We take 2 = C([—r,0), Cg’p_wr(R, Tz(U)))
and for w € 2, we define

(Osw)(7,1) := w(T, s)_l ®w(r,t+s), 7T€[-r0), s, teR

1t follows that also in the case of this general SDDE, the solution induced a cocycle, and we
can apply the MET.

Remark 4.4.4. It is possible to use the language of Hairer’s Regularity Structures [43] to
reformulate our results. In that case, the space of controlled paths has to be replaced by the
space of modelled distributions. We decided to use the language of rough paths here because
less theory is needed and we can directly rely on prior work such as [37]. However, it might be

useful to use reqularity structures in the future.

4.5 An example

In view of our main results obtained in the former section, we now come back to the previous

example already discussed in the introduction: we consider the stochastic delay equation

dys = yi—1dB1%;  t>0

4.5.1
ye =& te[=1,0]. ( )

This equation can be considered as the prototype of a singular stochastic delay equation. In
its classical Ito formulation, it was studied in [8]. In that work, it was shown that there exists

a deterministic real number A such that
A=1 71 1 t 4.5.2
_tlmt og |lo(t, w, &) (4.5.2)

almost surely for any initial condition { € C([—1,0],R) \ {0} (the exceptional set depends
on §). In (4.5.2), the norm | - | may denote the uniform norm or the M-norm which we
will define below. It is a natural question to ask whether A coincides with the top Lyapunov
exponent provided by the Multiplicative Ergodic Theorem 2.2.16. We will give an affirmative
answer in this section. We point out that the proof of (4.5.2) in [8] was quite long. It relied
on the uniqueness of the invariant measure of the Markov process obtained by projecting
the solution process onto the unit sphere of the state space My introduced below and then
applying a suitable version of the Furstenberg-Hasminskii formula. To establish uniqueness,

the author constructed a tailor-made generalized (asymptotic) coupling.
Set E, = .@;’fd)([—l,O]) with o < 8 . Take (§,&') € E,. On the time interval [—1, 1], the
unique solution to (4.5.1) is given by

(Y, ) = {(&’a) trel=1.0 (4.5.3)

(Jy&1dBI® +&,6 1) ifte0,1].
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4. Rough Delay Equations I

Note that C!([-1,0],R) C E, for every w € Q2 by the embedding 1 ~ (n,0). Let us introduce
the Hilbert space My := R x L?([—1,0],R) furnished with the norm

1

[, la = (1o + Inl32)?

for (v,m) € Ms. Note that C([—1,0],R) C Ms using the embedding 1 — (19, 7). Recall the

definition of Vol given in Definition 2.2.4. Our main result in this section is the following.

Theorem 4.5.1. For every m, ..., € CY([~1,0],R) \ {0}, the limit

lim — logVol( (nyw, M), ey o(n, w, i) (4.5.4)

n—oo n,

exists almost surely in [—oo,00). Moreover, the limit is independent of the choice of the norm
when we take || - ||gyn,, |- o, || - lloo o7 || - |3y @n the definition of Vol. For k =1, if || - ||

denotes any of the norms above, the limit
li 1 1
Al log [l (n, w, )|

is independent of the choice of n € C1([—1,0],R)\ {0} and coincides with the largest Lyapunov
exponent provided by the Multiplicative Ergodic Theorem 2.2.16.

Before proving Theorem 4.5.1, we need two classical inequalities:

Lemma 4.5.2. Let a < %, p>2andlet &: [—1,0] — R be an a-Hdélder path. Then there is a

constant A, such that

1

[ t| (// &ol” ) »
= dud . 4.5.5
Hé‘Ha —1ilsl£tg0 (t — S [ 1 0 ’u — v‘pa—l—Q uav ( )

If X is a-Holder and (€,¢') € 2%([—1,0],R),

1
[34 K// [5ia ) , }
su < dudv) + ol X el 4.5.6
S sy L cucuco [t — v]2ort2 1€ 111X 1] (4.5.6)

Proof. Cf. [36, Corollary 4]. O

Proof of Theorem 4.5.1. First, we claim that the limit (4.5.4) exists for any choice of 1, ..., m
for the norm || - ||g,n.,. Indeed, if 71,...,n; are linearly dependent, the limit (4.5.4) clearly
exists and equals —oo. Also if for every j > 1 we have (n1,...,m) N F,(w) # {0}, since
pj — —oo, Lemma 2.2.6 implies that (4.5.4) exists and equals —oo. So we can assume that for
some j > 1, (1, ..., %) N Fy, ., (w) = {0}. For i < j we can find a finite-dimensional subspace
H;(w) such that H;(w) @ F,,,(w) = F,,(w). Furthermore, for each i < j, there is a subspace
H;(w) C H;(w) with dim [H;(w)] = n; such that

(1, me) _ Bi<icy Hi(w)
FHj-H(w) F ( ) '
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Now as a consequence of item (v) in the Multiplicative Ergodic Theorem 2.2.16,

1
Jim —log Vol (p(n,w, ), s p(n,w, k) = 3 gt

1<i<j

which shows the claim.

The strategy of the proof now is to compare all norms against one another. For —1 <t <0
, &,m € CY[-1,0],R) \ {0} and n € Ny set & = nyt and 7 = y,,, where y* and y" are
solutions to (4.5.1) starting from &, n respectively. By definition,

(én)t = n 1’ fn st_/ fn 1dBn+u (457)

for —1 < s <t <0and n > 0 where we define ¢! = 0. Set F; := ]-'6. From Lemma 4.5.2, for
any C > 0,

P(|[£"e > C | F // €5ul” dudv > i‘]—“ =
« n— 1 1,002 U—U’2+pa = (Ap)p n—1] =

| f[u v] &1 dByyq | (O
> _
(//[ Lo U’pa+2 dudv > (Ap)p |fn 1

almost surely. Similarly,

P ( inf |5 — B, > C|Fn1 ) <
(ﬁngHn BE| | 1>

‘ f ] ny t— ! dBpyr[P CP
- // o e > -
éIGIQ ( 1,0]2 |U — U|PO¢+2 U av (Ap)p | 1

almost surely. Set p = 2m for m chosen such that m(1 — 2«) > 1. From the Burkholder-Davis-

Gundy inequality, it follows that

(e

almost surely for some constant Bag,, > 0. Consequently,

‘J:n—l) < BQm|u - v’mH’Sn_nggn

n R L
: 5 infgeg|ln”t — BT
P ( inf ||n" — BE"a n—1| < Aom == 4.5.
(int " = 5" > C1Fa ) < 2 — (45.9)
for a general constant Asy,,. Now for any ¢ > 0, (4.5.8) implies that
1 n 1 n—1 n—1 n—1
P (- log[¢"la > & + — logl|e" Mloc] ) <P (I fla > 16" oo exple(n — 1)])
(4.5.10)

AQm

< 0
exp [2me(n — 1)] -
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as n — oo. Similarly,

1 1
P ( —log inf ||n" — BE" |l > log inf [~ — B¢"! oo) 45.11
(5 1o i " = 8¢"l0 > &+ log int 17" = 5" Vo) 0 (451

as n — 0o. Now from (4.5.6) and (4.5.7),

P sup ’(5 )st| > C|fn 1 \
_1es<t<o (t — 8)2

1
‘fuvfgrl dBn+T| P
du d n—1 B"
<// 1<u<v<0 U _ u)2pa+2 uav + ”5 ||C¥H HOé

|f gn 1dBn+T|p Cc?
Lo dud =Hi | BYP > Fn_
( I . wdo + IR > s | o

’U _ ’U,) 2pa+2

almost surely. Similarly,

n __ n\#
P (Hlf [ sup ‘(77 Bg2zs,t|

BEQ | —1<s<t<o  (t —9)

| Juo (s = BEL 7) dBrr P cr
. f]P) w,o\u, T u,T d d n—1 o n—1|p Bn P .
Buel(@ (// l<u<v<0 (U _ U)Qpa+2 uav + Hn /Bf ||a” Ha > (2Ap)p |‘/T 1

> C’fn_1> <

almost surely. Set p = 2m such that m(1 — 2a) > 1. Then

(L

almost surely. Consequently, for general constants M and M,

‘J:n—l) < BZm(U - u)m(2a+1)H£n—1H(2Xm

(GO B,
p< sup LS 0| Fuy ) < B (MR BHET) > 07| Fo)
71<s<t<0(

t— s)2
Mo
[
almost surely and
" — BemE M
P £ BE PSS It o | E \ f o n—1(12m
(6, > €1 ) < e -5

almost surely. Similarly to (4.5.10), for any € > 0,

1 1 _
P (5 108 (€20 > e+~ log €M) ) — 0 and

(4.5.12)

1 1
P ( = log inf [[(n" — BE™)# |20 = log inf ||n" "t — gent >_>
(n ogﬂHEIQH(n BE) ll2a > & + — ogﬂngHn BE" o] 0
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as n — co. Remember [|£"[13,, = [€"]* + fgl(ﬁf)Q dt. From Doob’s submartingale inequality,

for a general constant M,

P(I€" oo > C[ Fn-1) <P (5"1| + sup [€8 ] > len—1>
—1<t<0

4lem |2 +4E|521,0|2
<
2

M. .
< IR,

almost surely. Also,
P (nf I — 66" > €1 Fimr ) < g5 it " = ™
BeQ C? peQ 2

almost surely. Again as in (4.5.10), for any € > 0,

1 . . _
P (1 log inf ") > =+ log it € s, ) — 0 and

(4.5.13)

1
P ( = log inf [[n" — BE"|oo > log inf [|n" ! — g&"t )—>0
(n ogﬁnglln B oo > e+ —— ogégQHn BE" v,
as n — 0o. Now from the Multiplicative Ergodic Theorem 2.2.16, (4.5.10), (4.5.11), (4.5.12)

and (4.5.13), the following limits exist

1

1 (4.5.14)
dim —log Vol (o(n, w, ), ¢(n,w, m))
as n — oo where || - || could be any of the proposed norms, used also in the definition of Vol,

and the limit is independent of the choice of the norm. From the definition of Vol, the above
argument together with a simple induction generalizes to every k& > 1 which proves the first
claim.

To prove the second claim, let n € C'([~1,0,R) \ {0}. Then the limit pu :=
lim,, o0 = log ||(n,w,n)|| is independent from 7, cf. [8, Theorem 1.1]. Therefore, from
the Multiplicative Ergodic Theorem 2.2.16, C*([—1,0],R) \ {0} C F},,(w) \ F,,, (w) for some
j>1. Let &, neC®(-1,0],R)\ {O},TE]R and set &, := [*| & dB,. Using (4.5.3), we have

voi=E e+ a=01,07 w0, Ot +m +a—& (4.5.15)

and (4.5.14) implies that lim,_,c L log [ (n, w, 7)|| < p. From Theorem 4.3.10, we know that
elements of the form ~ are dense in E,,. Choose §, € F,, (w) \ Fj,,(w). Since F},,(w) is a closed
subspace, we can find a neighborhood B(&y,,6) C F, (w) \ Fju,(w) and an element v € B(&y, 6)
of the form (4.5.15). Therefore, py < p, thus p = py. O

Remark 4.5.3. Taking the Hilbert space norm || - ||ar, in the definition of Vol, we actually

have

VOl(Xl, ...,Xk) = ||X1 ANXo AL A Xk‘”Mz
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We conjecture that the limit

. 1
nhanolo E IOg ||<,0(n,w,m) JARERA @(nawank)HMz

is independent of the choice of n1, ..., M, whenever these vectors are linearly independent, and
that the limit coincides with Ay almost surely. This would be in good accordance with the

classical definition of Lyapunov exponents in the finite dimensional case, cf. [1, Chapter 3].
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Rough Delay Equations Il

The following chapter is the sequel to the previous chapter. We developed an appropriate
setting to investigate the dynamics of stochastic delay equations. In this chapter, we mainly
deal with non-linear equations. We aim to study stochastic delay differential equations (SDDEs)

of the form

dyr = b(ye, Yye—r) dt + o (ye, Yi—r) dB(w) (5.0.1)

from a dynamical systems point of view. Remember in (5.0.1), r > 0 denotes a time delay, B
is a multidimensional fractional Brownian motion, b is the drift and o the diffusion coefficient.
The goal in this chapter is to prove the existence of random invariant manifolds for (5.0.1).
Invariant manifolds are key objects in the theory of dynamical systems, both deterministic
and random, and play a central role, for instance, in stochastic bifurcation theory [44, 1, 45]
and model reduction for stochastic differential equations [46, 47, 48, 49].

One of our main results in the previous chapter was that (5.0.1) does indeed induce a
cocycle. However, one has to pay a price: the spaces on which the cocycle map is defined will
depend on the trajectory of the driving path B(w). More precisely, if (Q2, F,P, ) is a random

dynamical system, the cocycle ¢ is a continuous map
90(77'7(")7 ) E, — Egny,

where {E, }weq is a family of Banach spaces. One key idea in the previous chapter was to
interpret (5.0.1) as a random rough differential equation in the sense of Lyons [50, 37, 39].
Doing this, we showed that Gubinelli’s spaces of controlled paths [36] are possible choices for
E,, when studying (5.0.1).

In Chapter 2, we proved a version of Multiplicative Ergodic Theorem (MET) in this
framework. We then applied this theorem in the previous chapter. We showed that cocycles
induced by linear equations of the form (5.0.1) possess a Lyapunov spectrum, an analogue to
the set of eigenvalues of a matrix. In Chapter 2, in addition, we proved in a more abstract

framework that an Oseledets splitting, i.e., a decomposition of E, into a direct sum of (-
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invariant spaces. This decomposition was indeed the basis to prove the existence of local stable
and unstable manifolds in Chapter 3 in the same framework.

In this chapter, we harvest the fruit of our former works. In our main results, Theorem
5.4.4 and Theorem 5.4.5, we formulate sufficient conditions under which we can deduce the
existence of local stable and unstable manifolds for equation (5.0.1). Let us mention that one
difficulty in the unstable case is that the cocycle induced by (5.0.1) is not invertible, which is
natural for delay equations: solutions exist only forward in time. Therefore, we can not just
apply the stable manifold theorem to the inverse cocycle as, for instance, in [2]. To overcome
this difficulty, in Chapter 3, we used our semi-invertible MET (Theorem (2.3.20)) to obtain
the existence of unstable manifolds. We formulated both theorems ((3.2.9) and (3.3.6) ) in a

generality that allows them to be applied to equations that are driven by other noise than

fractional Brownian motion, e.g., by semimartingales with stationary increments.

There are many invariant manifold theorems for stochastic differential equations. In the case
of a finite dimensional state space, let us mention [51, 52, 53, 2, 54]. For infinite dimensional
state spaces, invariant manifold theorems were proved by Mohammed and Scheutzow for a
class SDDEs in [3] and for different classes of stochastic partial differential equations in [55,
56, 57, 58, 59, 60, 61, 62, 63, 64].

The structure of the chapter is as follows: In Section 5.1, we study properties of rough delay
differential equations. In particular, we prove their differentiability and provide bounds for the
derivative. We furthermore study equations with a linear drift term. Section 5.3 contains our
main results. We introduce random fixed points for cocycles (stationary trajectories) around
which the invariant manifolds exist. The main results are formulated in Theorem 5.4.4 and

Theorem 5.4.5. Subsection 5.4 contains examples of equations for which our theorems apply.

Preliminaries and notation

We use the same notations as previous chapters; here, we collect some additional notations.
e Differentiable will always mean differentiability in Fréchet-sense.

o If not stated differently, U, V, W and W will always denote finite-dimensional, normed
vector spaces over the real numbers, with norm denoted by |- |. The space L(U, W)

consists of all bounded linear functions from U to W equipped with usual operator norm.

e By C’IZL(WQ, W), we denote the space of bounded functions o: W @ W — W having
n bounded derivatives such that the n-the order derivatives are continuous, where

n > 0. Often, we will omit domain and codomain and just write Cj'. We set on ym :=
8n+m
xr

Wo(cc,y) for n,m > 0 and o0, 1= 0,1 40, 0y := 0,40 ,1. Dropping the subindex b

means dropping the boundedness assumption.

Y

5.1 Properties of nonlinear rough delay equations

In this section, we study different aspects of nonlinear rough delay differential equations. For

simplicity, we will study equations without a drift coefficient first. Fix a delay » > 0 and
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consider

t
Yt = 50 +/0 U(ysays—r) dXS; te [O,T]

ye=&; te[-n0]

(5.1.1)

where X = (X, X, X(—r)) is a delayed -rough path, v € (1/3,1/2], and X: R — U is locally

~v-Holder continuous. We recall the following result:

Theorem 5.1.1. Assume o € C3(W? L(U,W)), 1/3 < a < B8 < v < 1/2 and either
€€ @)‘?([—T, 0], W) or¢ e @;"B([—T, 0], W). Then the equation (5.1.1) has a unique solution
Y€ 9@([O,T],W) resp. y € .@%’B([O,T], W) for any T > 0. In both cases, y, = o (Y, Yt—r)-

Proof. The case £ € .@)B(([—r, 0], W) was shown in Theorem 4.2.8 and the case ¢ €
@;’ﬁ ([, 0], W) follows from continuity of the solution map, cf. Theroem 4.2.9. ]

Regularity

In this subsection, we will study the regularity of the solution map induced by (5.1.1). More
precisely, we will give sufficient conditions under which this map is differentiable in the initial
condition, which means differentiability in Fréchet-sense on the space of controlled paths. To

prove our result, we will follow a similar strategy as in [65] and [66].

Definition 5.1.2. Form € N and 0 < x < 1, we say that f: V2 — W belongs to €™+ (V2 W)
if its derivatives up to order m are bounded and continuous and if D™ f is k- Hélder continuous.

The space is equipped by the norm

1/

Em+r = '_max {HDJfHOO? HDme“}
j=0,....,m

Next, we give a more general definition of a delayed controlled path.

Definition 5.1.3. Let I = [a,b]. We say that m: I — W is a delayed («, 3, 0)-controlled
path based on X on the interval I if there exist paths (°,¢: I — L(U, W) such that

Mgt = Cng,t + Cles—r,t—r + mﬁt
holds for all s,t € I where
Imllasrs 16N gz, 1M 131 and m™ |lgsr < oo
We denote the corresponding space by D%B’G(I, W) where the norm on this space is defined as

Imllpy, = 11(m, <% Moy, = Imal + 1Ca1 + [Cal + Imllasr + 1 N5 + 1E g1 + m* llo.r-
(5.1.2)
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5. Rough Delay Equations II

Remark 5.1.4. Clearly, D%B’w(l, W) = Di([, W). Using the sewing lemma [39, Lemma
4.2], it is easy to check that we can define an integral of the form

/de

as in Theorem 4.2.5 for delayed v-rough paths X and delayed (o, 3, 0)-controlled paths m
provided 0 +~v > 1 and  + 27y > 1. Furthermore, the (linear) map

DY (1, L(U, W) — DL (I, W)
m — /de

is well defined and continuous .

The next theorem is a version of the Omega lemma [66, Proposition 5] for delayed controlled

paths.

Theorem 5.1.5. (Delayed Omega lemma) Let n € N and 0 < k < 1 for G € €T (VE W),
n € (0,1) and r > 0. Then the map

DG : 250,11, V) x ZR([=r,0), V) — DRI [0, 1] )
(yt7 gt—r)te[o,r] = (G(&) + Yt gt_r))te[o,r]
is locally of class €™ He1-n),

Proof. We noted in Remark 4.2.4 that every delayed controlled path based on X can be seen
as a usual controlled path based on (X, X._,) and vice versa. Using this identification, the

assertion just follows from [66, Proposition 5]. O
Thanks to the delayed Omega lemma, we can state the following theorem:

Theorem 5.1.6. Let 0 < k < 1,2 < n+k and o € €"HHT5(W?2 L(U,W)). For a delayed
y-rough path X, consider equation (5.1.1). Then, under the same assumptions as in Theorem
5.1.1, the solution map induced by (5.1.1) is locally of class =0 for any n € (0,1)
provided (2 + kn) > 1.

Proof. Fix £ € .@)@([—r, 0], W). We aim to prove the claimed regularity in a neighbourhood
around 5 . Choose M > 0 such that

&€ Bi={€€ 25,01 W), &l s oy < M)

Let @)ﬁm([a, b], W) be the set of functions in @ﬁ([a, b], W) starting from 0. Let 0 < tp < r and
define

T2 B x 9% ([0, o], W) = 25 ([0, to], W)

t
(ftfmyt)ogtgto = </0 J(yT +§07£TT)dXT> . (513)

0<t<to
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5.1 Properties of nonlinear rough delay equations

Note that by Remark 5.1.4 and Theorem 5.1.5, this map is locally of class €1~ Using
the estimates (59) and (61) in [37], we see that

1P )l o) < CrA> (L €G3 o) (123 Nl )

~ 2 - _
IP(,9) = T )Ly ) < CLA® L+ 1l 0 ) + 158 00y T 1€0 52 )18 = Tl 2 017
(5.1.4)

where C; only depends on ¢. Let C := C1A3(1 + M?) and set 1 := (802)ﬁ. From [37,

Lemma 4.1],
sup {u € RT : C(1+ T{’_ﬂu2) <u} < (4+2V2)C =: M. (5.1.5)
Choose 7 such that

ClAS(l +2M + M)27’2 - <

[\3\*—‘

Set 73 := min{7y, 72, 7}. Choosing 73 smaller if necessary, we can assume that N := % e N.
Set

By = {y € 9?(,0([0773]714/) : ”yH@;O([o,rg],W) < Ml}'
With this choice, the map
I'y:=T|pxp,: Bx B1 — B
is well defined. Moreover, for fixed & € B,

AllBl—>Bl

(Ys)o<s<rs — </OS o(&o+yr &) dXT>

0<s<73

is a contraction, so it admits a unique fixed point which we denote by (Z;’%)ogsgm. This
shows that we can use the implicit function theorem on Banach spaces (cf. [67, 2.5.7 Implicit
Function Theorem] or [66, Theorem 1]) to see that there is a neighbourhood U around ¢ such
that for every ¢ € U, there are functions (2}¢)o<s<r; with the property that A;(z1¢) = 21¢
and the map & — 2'¢ is of class €"+*(1="). Therefore, & — (y2¢ = & 4 21%)o<s<ry, Which is

the solution of equation (5.1.1) in [0, 73], is also locally of class €™+~  Moreover,
1.¢
|2 H@f(([oﬂ's}) <4+ 2\/5)0 (5.1.6)

holds for every & € U. Now we proceed inductively. For 2 < j7 < N, define

By = {y € 2016~ gl W) < 1ol gg 5 1ymgng < M
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5. Rough Delay Equations II

and
Aj : Bj — Bj
S ~
jflzg ¢
(ys)(j—1)73<5<j73 = (/(jl)T3 O-(y(kfl)T3 + Yr, gr—r)dXT) (j—1)73<5<jr3'
Again, this map is contraction and admits a unique fixed point, namely (zgf) (—1)rs<s<jrs? and

a locally defined map & — (2%) which is of class €"t"(1=) Again,

(j—1)73<s<yTs
127098 (1 1ym sy S (4 F2V2)C (5:1.7)

holds for all € in a neighbourhood around €. This shows that (17 = y{ J‘_—1i§73 4208 )G=1)rs<s<jms>
the solution of (5.1.1) in [(j — 1)73, j73], has the same local regularity. Finally, the following

map is locally of class ¢"Hr(1—);

A:B— [ 281G — Drs, 7]
1<j<N

éH H (y?g)(jfl)fggsgjm'
IS

Since we can consider @f( [0,7] as a closed subspace of [[; ;< @)’2[( j—1)73, j73], the regularity

claim is proved. O

Remark 5.1.7. Since C3 C €3, Theorem 5.1.6 implies that the solution of (5.1.1) is Fréchet

differentiable in the initial condition.

The proof of Theorem 5.1.6 also reveals a bound for the solution to (5.1.1) which we record

in the next theorem.

Theorem 5.1.8. Under the same assumptions as in Theorem 5.1.1, there exists a polynomial
P :R x R — R such that its coefficients depend on o, B and ~ and if y* denotes the solution

to (5.1.1) with initial condition &, we have

151195 0,07y < P (A€l 2 1y ) (5.1.8)

where A =1+ [|X||5 10,

Proof. With the same notation as in the proof of Theorem 5.1.6,

1) " g0 < D0 IE) o je1ymbrg) 77 PUNX o Do NEEEY g0k 1)r sors] -
1<k<N 1<k<N

(5.1.9)

The estimate (5.1.8) now follows from (5.1.7), (5.1.9), subadditivity of the Holder norm and

our choice for 3. 0

It is possible to show that all derivatives solve linear, non-autonomous rough delay equations
obtained by formally taking the derivatives of (5.1.1). We give a proof of this result for the

first derivative in the next proposition. Higher order derivatives can be treated similarly.
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5.2 Rough delay equations with a linear drift

Proposition 5.1.9. For £ € @g([—r, 0], W), let (yf)ogtgr be the solution to (5.1.1). The

derivative of the solution at € in the direction of & exists and satisfies the following equation:

Dyg[g] (t) — go = /Ot [Ux(yﬁ,fT_r)Dyg[g] (7) + Uy(yﬁafT—r)gffr]dXT; t€[0,r]
Dy*[E](t) = &; € [-r,0].

(5.1.10)

Proof. By definition,

E4+28 ¢
Ut [ (4,6 )DITEP) + 07 X

25 z — 0 £ —r £
/ [ + e gT T> (yﬂ&— )_ [Ux(yq—’fT T)Dy [f]( )+0y(y7§"§7'*r)£7*7] X,

z

[ [AZM? + B2 — [A M, + BT]] i,

where
1 : E+z€ _ €
Az = /O oy 4 (L= )yl &y 42, ) dn Mf:%
1
B? :/0 oy (s 4 (1= M), &y 128, )
and

AT = 0$(y£7§T—T)7 MT == Dyg[g](T)v BT = Uy(yﬁvéT—T)gT—r‘

Note that by Theorem (5.1.6), lim,—,o [[M* — M || 5 0] = 0. From continuity in the initial
x Y

condition, we furthermore see that lim,_,o Hyﬁ“E -l 28

0] = 0. Consequently, thanks to
X )

our assumptions on o, it is not hard too see that

lim |[A*M? + B*] — [A.M. + BJ| D [0,r]

Using remark (5.1.4), equality (5.1.10) can be verified. O

5.2 Rough delay equations with a linear drift

Our next goal is to generalize the theory in order to include a drift term in the equation. More

precisely, we aim to solve the equation

dys = B(yt, Ye—r)dt + o (ys, Yr—r)dXs

5.2.1)
Ys = fs, —-r<s<0 (

with initial condition & € .@f(([—r, 0], W) for a linear drift B : W2 — W and to give a bound
for the solution map. We believe that we could even include a nonlinear drift satisfying suitable
growth assumptions as in [68], but we restrict ourselves to a linear drift here for the sake of

simplicity. The next theorem is the main result of this section.
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5. Rough Delay Equations II

Theorem 5.2.1. Let ¢ € C{f. Then the equation (5.2.1) has a unique solution y €
@ﬁ([o, r], W). Moreover, there is a polynomial @ depending on B, o, v and 3 such that

<
Hyugﬁ([om}) <Q4, HgH@g([—r,O]))
where A =1+ ||X H%[O,r],

Proof. The idea is to give a representation of the solution to (5.2.1) using the flow map of the

respective equation omitting the drift term. Let & € @)’8(([—7*, 0], W) be fixed and consider the

equation

dy; = U(ytaft—r) dXy
ys=x, 0<s<t<r.

(5.2.2)

Existence and uniqueness of this equation can be shown similarly to the usual delay case. We
use p(s,t,x) to denote the solution of (5.2.2) at time ¢ with initial condition ys = z. From

uniqueness of the solution, we have for every 7 < s < t,

o(r,t,x) = @(s,t, (7, s,2)).

As for usual rough differential equations [40, Theorem 10.14], one can show that there is a

polynomial P; such that

sup_[1(s,t,2) — ol < (= ) PuA, €l o (o) (5.23)

xeW,0<s<t<r

In addition, one can check that the solution is differentiable with respect to initial value and

that its derivative is the matrix solution of the equation

t
Do(s,t,x) — T :/ ox(p(s,7,2),&r—r)Dp(s, 7, 2)dX ;.
S
Let 0 < tg < r be fixed. For 0 < 7 < ¢ < tg, we define

X = Xt(]*T? XT,( = _Xtofg,tofﬂﬂ XT,((_T) = _Xtofg,tof'r(_r)-
We say that n € .@g([a, b], W) if we have a decomposition of the form
Nsit = néXs,t + 77?;

where

#
17"l 8;fap) < 00 and SupM < o
h o (L — )2
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5.2 Rough delay equations with a linear drift

Using the sewing lemma [39, Lemma 4.2] we can also define

n.dX, := lim Z (117502 X

/
jmie1 T TITj+1XijTj+1]

[a,b] [T —=0 7
/[a o] frr X |1%i|130Z 741Xy 740 + ”/THerTNJH(_T)]'
) I

For ¢ € @)ﬁ(([a, b], W), it is straightforward to check that & := &, . € @é([to —b,tg —al, W)
and that

é-TdXT = / gTdXT'
[a,b] [to—b,to—a]

For sy < to < r and @(so,t,z) := p(so,to — t,x) we consider the equation

dZt =0y (@(807 ta CC()), gt—T)thXt

2 (5.2.4)

I, 0§t§t0—80.

Then
Zto—so = [D@(SO’ to, x)]il‘

Thus by standard estimates for linear equations [40, Theorem 10.53], we have a bound of the

form

sup H[DS_D(S?tvx)]il _IH <
s<t<rze€W (5.2.5)
M(t - 8)5P2 (A> H§||_@)B(([_r70])) exp ((t - S)PQ (Aa HgH@i([_,«,()])))

where M is just a general constant and P» is a polynomial. Now we consider the ODE

dny = [D@(0,t,m:)] " B(@(0, £, 1), &) dlt

no = &o-

Using the chain rule, it is straightforward to see that (0, ¢, ;) solves (5.2.1). Next, we choose

7 > 0 sufficiently small such that

MTBP2(A7 |’§H@§([,T70])) exp(T (4, HgH@g([,r,O]))) <1

holds. Using some basic calculations, we can check that there is a polynomial P; such that

P
; = P3(A7 nggg([_r,o]))' (5'2‘6)

99



5. Rough Delay Equations II

Choosing 7 smaller if necessary, we can assume that there is some n € N such that nt = r.

Define I,, := [(m — 1)7,m7] for 1 <m < n and 7)) := &. Inductively, we define the equations

dn" = [D@,((m = D).t/ B(@((m = D)7, t,0"), &) dt, ¢ € [(m —1)7,m7]

m m—1 )

n(m—l)T = Q_D((m - 1)T7 U(m_l)T
(5.2.7)

Again, it is not hard to see that
Yt = (TO((’I?’L - 1)7-7ta 77;71)7 te [(m - 1)7-7 mﬂ

solves (5.2.1). From (5.2.5),

 le(m = )+l ds.

m—1)T

1" ] = (1)l < 2[1B]] (

By Gronwall’s lemma and (5.2.3), we can deduce that there is for a constant M and polynomial
Py such that

17" loo; 10 < exPIBITI 1™ lloosr 1 + M[expIIBIT) = 1 [lI€lloc + Pa(A; M€l g2y p)]-

Finally, from (5.2.3) and (5.2.6), for a polynomial Ps,

19 llocio.r < P5(As 1€l 55 (7)) (5.2.8)

Remember that

t t
Ys,t :/ B(ye,&—r) ds +/ U(ygyfc—r) dX.

Using the standard estimate for the rough integral [39, Theorem 4.10] and (5.2.8), we obtain
for0<s<t<r

19l 3.1, 2805 <
_ VB #
PolA, €]l g ) + (8 = 5P PrCAL €] o () 350 + 157 g
(5.2.9)
where Pg and P; are polynomials. Again, we can find a polynomial Py and 7 > 0 such that

T 1

R Y=8 -
— Py(A, HéH@f{([_r70])) and 777 Pr(A, Hf”@f{([_no])) < 9

Finally, from (5.2.9) and subadditivity of the Holder norm, we can deduce the existence of a

polynomial () such that

19115 (0,07 S @A NEN 98 (1 07))- (5.2.10)

O]
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5.2 Rough delay equations with a linear drift

Corollary 5.2.2. Under the same assumptions as in Theorem 5.2.1, the results of Theorem
5.1.6 and Proposition 5.1.9 hold for equation (5.2.1), too.

Proof. We can rewrite the equation (5.2.1) as

dys = 7 (yt, yt—r)dXt

(5.2.11)
Ys =&, -1 <s5<0

where ¢ := (B, o) and X is the delayed rough path obtained from X by including ¢ — ¢ as a
smooth component, cf. [40, Section 9.4]. Note that & has the same smoothness as o. Fixing an
initial condition £ and a neighbourhood around it, we can assume that & is bounded for these
initial conditions by replacing the unbounded & by a version which is compactly supported in
the region where the respective solutions take their values. Therefore, we can directly apply
Theorem 5.1.6 and Proposition 5.1.9 to (5.2.11). O

We finally give some bounds for the solution to the linearized equation. Since the proofs
are a bit technical, we decided to put them in the appendix.
We finally give some bounds for the solution to the linearized equation. Since the proofs

are a bit technical, we decided to put them in the appendix.

Theorem 5.2.3. Assume o € C3. Then the solution of (5.1.1) is differentiable and if Dy* [é]

denotes the derivative at & in the direction €, we have the bound

1D @] g ) < 18 gy xPIQUA, €2 ) (5.212)

where @ is a polynomial and A = 1+ || X[ 0, If 0 € C, we have the same result for
equation (5.2.1).

Proof. Cf. appendix. ]

Theorem 5.2.4. Under the same assumptions as in Theorem 5.2.3,

HDy'E[n] - Dyg[n]Hgéz[oﬂ«] < ”5 - g”@f([_r,o]”n”@f([_r7o] exXp [P(A, Hf”@f([—r,o]’ Hf - gH@f([_T’o})]
(5.2.13)

for a polynomial P.
Proof. Cf. appendix. O

Remark 5.2.5. Note that since P is a polynomial, we can find a polynomial P and an

increasing function Q such that also

1Dy 0] = Dy*nlll g 10,7 < 1€ = Ell g (g1l o gy €30 [P (A, 8L )]

ol (5.2.14)
x exp [Q(||€ — fH%ﬁ([_r,o]ﬂ

holds.
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5. Rough Delay Equations II

Remark 5.2.6. If f: W2 — W has the same smoothness as o and is bounded with bounded

derivatives, the equation

dye = B(ye, yi—r) dt + f(ye, Ye—r) dt + o (Y, ye—r) dXy
ys =&, —1r<s<0

(5.2.15)

with initial condition £ € @g([—r, 0], W) has a unique solution and all results in this section
hold for (5.2.15), too, where the constants will now depend on f as well. As in the proof of
Corollary 5.2.2, this just follows by including t — t as a smooth component of X and viewing
(f,o) as an element in CHW? LR & U,W)).

5.3 Invariant manifolds for random rough delay equations

Let B: W? — W be a linear map and o € C} resp. o € Cgl in the case when C # 0. Our goal
is to study invariant manifolds for the solution to stochastic delay differential equations of the

form
dyr = B(ye, yt—r) dt + 0 (ys, yt—r) * dBy(w) (5.3.1)

where «dB(w) can be either the Ito- (when H = }) or the Stratonovich (symmetric integral)
differential. As already pointed out in the previous chapter, it is equivalent to study the

random rough delay equation

dyy = B(yt, Ye—r) dt + o (ye, yr—r) dXy(w) (5.3.2)

where X is either B1*® (when H = 1) or B.

Recall that we could also add a smooth drift term to (5.3.2) as explained in Remark 5.2.6,
but we will not do so in the sequel for the sake of clarity.

Using the same cut-off argument as in the proof to Corollary 5.2.2, we can deduce from
theorem 4.2.13 that the solution to (5.3.2) induces a semi-flow ¢ on the spaces of controlled
paths. From Theorem 4.3.7 , we can assume that there is an ergodic metric dynamical system
(Q, F,P, (0;)1er) on which BI*® (when H = 3) and B are defined and satisfy the cocycle
property. More generally, from now on, we will consider an arbitrary delayed ~v-rough path
cocycle X which drives the equation (5.3.2), cf. Definition 4.3.1. With Theorem 4.3.11, we can
deduce that ¢(n,w,-) := ¢(0,nr,w, ) is a continuous map

p(n,w, ) D0, (=, 0L, W) = 250 ) ([=7,01, W)

satisfying the cocycle property
en+m,w,) =@, Onw,) o p(m,w,-) (5.3.3)

for every n,m € Ny with parameters % < a < B < H. From Corollary 5.2.2, the cocycle

is differentiable. Set 6" := 0,,,., 6 := 6, then by Proposition 4.3.10, {_@;’(ﬁw)([fr, 0], W)}wen
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5.4 Random fixed points and formulation of the main theorems

constitutes a measurable field of Banach spaces, and the cocycle ¢ defined on the discrete

metric dynamical system (2, F, P, 6) acts on it, cf. Theorem 4.3.14.

5.4 Random fixed points and formulation of the main theo-

rems

In order to deduce the existence of invariant manifolds, we aim to linearize the equation (5.3.2)

around random fixed points which we define now.

Definition 5.4.1. Let ¢ be a cocycle defined on a metric dynamical system (2, F,P,0) acting
on a measurable field of Banach spaces {E,}ueq. A map Y @ Q — [l,cq Ew is called

stationary trajectory if the following properties are satisfied:
(i) Y, € E,,
(ii) ¢(n,w,Y,) = Yyn, and

(iii) w — ||Y,|| g, is measurable.

For the given random fixed point, we first linearize (5.3.2) around it. We aim to apply

our Multiplicative Ergodic Theorem to the linearized equation. The following Lemma gives a

sufficient condition for this goal.

Lemma 5.4.2. Assume that the cocycle induced by (5.3.2) admits a stationary trajectory Y
and that

Q(Au, IY,]) € L'(Q)

holds for the polynomial Q obtained in Theorem 5.2.3 where Ay, = 1+ ||X(w)|ly,0,,- Then
Y= Dy, p(n,w,-) defines a compact linear cocycle acting on the measurable field of Banach
spaces {@;’(ﬁ))([—r, 0], W))}uea and the semi-invertible Mutliplicative Ergodic Theorem 2.3.20

holds true.

Proof. 1t is straightforward to check that 1) satisfies the cocycle property. We need to
verify Assumption 2.3.1 which also implies the measurability condition (2.1.4). The proof
of Assumption 2.3.1 is very similar to the proof of Theorem 4.3.14 using that i solves a
(non-autnonomous) linear delay equation, cf. Proposition 5.1.9 resp. Corollary 5.2.2, so we
decided to omit it here. Compactness follows as in the proof of Proposition 4.2.12. From
our assumption and Theorem 5.2.3, it follows that log™ [|4!|| is integrable. Therefore, all
conditions of Theorem 2.3.20 are indeed satisfied. O

From now on, we assume that the conditions of Lemma 5.4.2 are satisfied. Let Q denote

the #-invariant set of full measure provided in Theorem 2.3.20.

Definition 5.4.3. Let {... < pj < pj—1 < ... < 1} € [—00,00) be the Lyapounov spectrum
of 1 provided by the MET (Theorem 2.2.16) and let {H! };cn be the fast growing subspaces
provided by the semi-invertible MET (Theorem 2.3.20). Recall the splitting

Doy (=, 0L W) = HY @ - & H @ F, .y ()
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5. Rough Delay Equations II

for every n € Ny and w € Q with F,(w) defined as inTheorem 2.2.16. Set pj, := max{p; :
pi < 0} and pj, = —oo if all p; for which p; # —oo are nonnegative. We define the stable

subspace
Su 1= Fy; (w)
for w € Q. Similarly, if u1 > 0, set ko := min{k : g, > 0} and define the unstable subspace
U, = @1<z‘<k0Hf,

forwe Q. If py <0, we set U, := {0}.

From both METs Theorem 2.2.16 and Theorem 2.3.20, we know that

dim(2%, ([=7,0],W))/Su] < 00 and  dim[U,] < o0

for every w €  and that the dimension does not depend on w. Note also that

D0, (7.0, W)) = Uy @ 5,

in the case where all Lyapounov exponents are nonzero.

Now we are ready to state our main results of this section. Note that they are basically
reformulations of the abstract stable and unstable manifold theorems in Chapter 3, but we
decided to give a full statement here for the readers convenience. We start with the stable

case.

Theorem 5.4.4 (Local stable manifolds). Let X be a delayed ~vy-rough path cocycle defined
on an ergodic metric dynamical system (Q, F, P, (0):cr) and let % <a<f<y< % Assume
o € CP resp. o € Cf in the case B # 0. Assume also that the cocycle ¢ induced by (5.3.2)

admits a stationary trajectory Y for which
P(Ay, IYol) € LHQ) and Q(Au, Vo) € L'(Q) (5.4.1)

where Ay, = 1+|1X(w)|l1,0,1 P is the polynomial in (5.2.14) and Q is the polynomial in (5.2.12).
Then there is a O-invariant set of full measure Q and a family of immersed submanifolds SP (W)
of @;’(ﬁw)([—h 0], W)), 0 < v < —puj, and w € Q, satisfying in the following properties for every
weQ:

(i) There are random variables pY(w), py(w), positive and finite on O, for which

1
lim inf = log p? (#Pw) > i =1,2 4.2
fmyinf og pi (Pw) = 0, i=1, (5.4.2)
and such that
{€€ 73y swpexp(nv)p(n,w,€) = Youu|| < p(@)} € Sioelw)

C {€ € R0 supexp(nv) ip(n,w, ) = Yoo | < p5(w)}.
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5.4 Random fixed points and formulation of the main theorems

(i)
Ty, Spe(w) = S.
(iii) Forn > N(w),

(1, W, Sjpe(w)) S Sjoe(0"w).

() For 0 < vy < w2 < —[ij,,

Sz

loc

(w) € Spge(w)-
Also forn > N(w),
p(n,w, Sioe(w)) S Sige (0" (w))

loc

and consequently for & € Sp.(w),

_ 1
limsup —log [l¢ (1, w, ) = Yora|| < ptjo- (5.4.3)

(v)

[oup { L28) = o)

= ) ~a 7~ S’L(J)c < jo*
" E4E EEcs) (w)}] 1

1
lim sup — log

n—oo N

Proof. Set E, := @;{i )([—r, 0], W). In Lemma 5.4_.2, we saw that our assumptions imply
that ¥ = Dy, p(n,w,-) defines a compact linear cocycle acting on the measurable field of
Banach spaces {E, }ueq, that Assumption 2.3.1 holds and that log™ [|¢!|| € L'(Q). In view of
Theorem 3.2.9, it therefore suffices to check the condition (3.2.5). Set

P, : E, — Eg,
E = 90(17W7Yw +£) - @(Lw’Yw) - ¢i(f)

Then from Theorem 5.2.4,

1P (€) = Pot@ll < (€N + 1END explQUIEN + IE])] exp[P(Aw, [[Yall)] 1€ — &l

where P is the polynomial from (5.2.14) and Q) is an increasing function. By Birkhoff’s Ergodic

Theorem,

.1
lim —P(Apnw, || Yonol||) =0

n—o00 N,

almost surely. Therefore, (3.2.5) is indeed satisfied and the result follows from Theorem

3.2.9. O

Next, we formulate the result for unstable manifolds.
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5. Rough Delay Equations II

Theorem 5.4.5 (Local unstable manifolds). Assume the same setting as in Theorem 5.4.4.

Furthermore, assume that i1 > 0 holds for the first Lyapunov exponent. Set ¢ := 0~'. Then
there is a O-invariant set of full measure Q and a family of immersed submanifolds Up.(w) of

@;’(w)([—r, 0], W)), 0 < v < pug, and w € Q, satisfying in following properties for every w € §:
(i) There are random variables pY(w), py(w), positive and finite on 2, for which
liminfllo pi(Pw) >0, i=1,2
P00 p gpz < — Y — 1y
and such that
{fw € 9;’50) D IH{lnwlnz1 st p(m, "W, Eny) = Ecn-my, for all 0 <m <n and
sup exp(no) [¢n — Yorul| < 7Y(0) | € Uileo) € {60 € 5L, 5 3ot st

n=0

Pl ", &) = &y for all 0 < m < and sup exp(no) [gons = Yiou| < psw}.
nz

(i)
Ty, Upe(w) = Uy.
(iii) Forn > N(w),

Upe(w) C o(n,s"w, Up,(¢"w)).

(iv) For 0 < vy < w2 < fig,

Uz

loc

(@) € Upge(w)-
Also for n > N(w),

Uk

loc

(W) € @(n,¢"w, Ujpe(c"w))
and consequently for &, € UY (w),

. 1
limsup — log [|§ene — Yonw| < — ik,
n—oo T

1 N T ¢ e < < v
lim sup — log [sup {M, o &, &, € Uloc(w)}] < — Ly -
n—oo N 160 — &ull
Proof. Follows from Theorem 3.3.6. 0

Remark 5.4.6. (i) In both Theorems 5.4.4 and 5.4.5, the assumption o € C° implies that
the cocycle ¢ is differentiable. Higher order smoothness of o will lead to higher order
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5.4 Random fixed points and formulation of the main theorems

differentiability of ¢, cf. Theorem 5.1.6. As a consequence, we obtain higher order
smoothness of the stable and unstable manifolds. In fact, o € C™ implies that S, .(w)
resp. Up . (w) are almost surely locally C™ 1 ¢f Remark 3.2.10 and Remark 3.3.7.

(ii) If all Lyapunov exponents are non-zero, the stationary trajectory Y is called hyperbolic.

In this case, the submanifolds Sy, .(w) and UP (w) are transversal, i.e.

g;?(‘i;) = TYw Sﬁ)c(w) @ TYw Ul’[())C (CL))

almost surely.

Examples

We will now discuss examples of stochastic delay equations for which we can apply our results.

First, we will consider the case of 0 being a deterministic fixed point for the cocycle.

Proposition 5.4.7. Let X be a delayed vy-rough path cocycle defined on an ergodic metric
dynamical system (Q, F, P, (0;)cr) and let % <a<f<y< % Assume o € C} resp. o € Cf
in the case B # 0 and that

a(0,0) = 0,(0,0) = 0,4(0,0) = 0.
Then Y =0 is a stationary trajectory for the cocycle ¢ induced by
dyr = B(yt, yi—r) dt + 0 (yt, y—r) dX(w). (5.4.4)
If
P(A,,0) € LY(Q) and Q(A,,0) € LY(Q) (5.4.5)

where Ay = 1 + | X(w)]l5,0,r), P is the polynomial in (5.2.14) and Q is the polynomial in
(5.2.12), the integrability condition of Theorem 5.4.4 and Theorem 5.4.5 is satisfied and yields
the existence of local stable and unstable manifolds around 0. In particular, the result holds for
X being B (when H = %) or B.

Proof. From

¢
/ O-(ysv yS*T) dXs(CU) = lim Z O-(ytj7ytj77')th,tj+1 + o-x(ytj7ytj77‘)0-(ytj ) ytj—r)th,th
0 11| —0 t;€ll
+ oy (ytj ) ytj—T)U(ytj y Yt —T)th,tﬂq (—7"),
it follows that Y = 0 is a solution to (5.4.4) and therefore a stationary trajectory in the sense

of Definition 5.4.1. In the case of X being B"(when H = %) or B, the norm of the delayed

rough path cocycle has moments of any order, therefore condition (5.4.5) is satisfied. O

Next, we propose a condition under which (5.2.1) admits a random stationary trajectory Y

when H = % Let B be a two-sided Brownian motion defined on a probability space (2, F,P)
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adapted to two-parameter filtration (F!)s<; (cf. [1, Section 2.3.2]). Consider

dy; = Cyp dt + o (ye, Yi—r)dBy

Ys =&, —T<s<0

(5.4.6)

as a classical stochastic delay differential equation in Ito sense where C': W — W is a linear
map. Assume that o is a bounded Lipschitz function with Lipschitz constant L and let all the

eigenvalues of C be negative. Consequently, there exist M, A > 0 such that for every t > 0,
|exp(tC)| < M exp(—At). (5.4.7)

Set F! . = 0(Us<tFL). A stochastic process y: R — W is called (F' . )-adapted if y; is
Ft -measurable for every t € R. In that case for, any continuous, (F . )-adapted process ¥,

the following process is well defined, continuous and (F* _)-adapted:
t
C)(©) = [ exp((t = 7)C)r(yr. o) dBr.
—0oQ
By the Ito isometry,

BIRG)OP <E [ Jexp((t - r)C)Plolyr. ve) P dr
e (5.4.8)

ET(y)(t) - T@) @) < E/; |exp((t = 7)O) |0 (Yrs yr—r) = 0 (r Ur—r )| dT.

Lemma 5.4.8. Assume QA{\LQ < 1. Then there is a continuous, (F...)-adapted process Y;

such that for everyt € R,
t
Y, = / exp((t — )C)o Yy, Y, ) dB,.
—0o0
Proof. Set
X = {y :R — W : y is continuous, (F* )-adapted and sup(E\ytP)% < oo} .
teR

It can easily be seen that X is a Banach space. By (5.4.8),
rx¥—x

is a contraction, so our claim follows from a standard fixed point argument. ]

Lemma 5.4.9. Let Y be the process from Lemma 5.4.8 and set Y] = o(Yy,Yi—r). Then (Y,Y”)
73 () € LP(Q) for every p >0 and

is almost surely controlled by B. Moreover, ||(Y,Y")]

every a < b.

Proof. From the Burkholder-Davis-Gundy inequality, for every m € N there exists a fo,,, € R
such that

E|Y. "™ < Bam(t —5)™ (5.4.9)
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5.4 Random fixed points and formulation of the main theorems

for every s < t. Note that
Yay — 0(Ya, Ysor)Bas = [ SOO exp (s — 7)C) [exp ((t — 5)C) — 1]o(Ys, Y;,) dB,
+ [ el = O (Vs Vo) = oV, Vi )] 4B
+ /: [exp((t — 7)C) — 1] dB, o(Ys, Ya_p).

By the Burkholder-Davis-Gundy inequality and our assumptions, for as, € R,

2m

E‘ /_; exp ((s — 7)C)[exp ((t — 8)O) — 1o (Y, Vo) dB,| < agp(t — 5)*™

and

t 2m
IE/ lexp((t — 7)CO) — 1]dB, o(Ys, Your)| < amm(t — )™

Using again the Burkholder-Davis-Gundy inequality, Holder’s inequality and (5.4.9), we obtain
that there are constants Bom,, Yom € R such that

2m

E / Lexp((t — )C)[0(Ye, Vi) — 0(Y, Ys_p)] dB,

m

t
< BomE / ([Yarl? + [Yacrrr[2)dr
S

¢
< Bam(t = )" B [ (Vo 4 YVemprmr )7 < ot 5™
S
Consequently, we have shown that for every m > 1 there are constants &a,, such that
Yyt — 0(Ys, Yomy) By ™ < Gom(t — )™

for every s < t. Set in =Y, — 0(Ys,Ys—,)Bs. By a version of Kolmogorov’s continuity

theorem similar to [39, Theorem 3.1], we obtain
HYH’y;[a,b] + ||Y#H2’y;[a,b] € Lp(Q)

for every p > 0 and a < b from which the result follows.
O

Proposition 5.4.10. Let C be a linear map with negative eigenvalues only and o € C{}. Let
A and M be as in (5.4.7) and let L be the Lipschitz constant of o. Assume % < 1. Then

there exists a stationary trajectory for the cocycle ¢ induced by

dy; = Cy, dt + o(yy, yt—r)dB%tﬁ

(5.4.10)
Ys = 687 —r<s<0

and the integrability condition (5.4.1) of Theorem 5.4.4 and Theorem 5.4.5 is satisfied.
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Proof. Let Y = (Y,Y”) be defined as in Lemma 5.4.9. Then

A t A A —
Vo= [ expl(t = 1C)o(¥ . o) aBLS

—0o
almost surely for every t. Therefore, (i) and (ii) of Definition 5.4.1 follow directly. Since

A Y -Y! Y.: —Y/B
Pl gy = Vol +20+ sup  BEZTl gy a2 BBl
BUTD s,te[—r,0|NQ, st |t — s s,te[—r,0|NQ,s£t |t — s

measurability of w — ||V (w) ) follows, too. The integrability condition (5.4.1) is

H—@g(w)([*ﬁo]
satisfied due to Lemma 5.4.9 and Proposition 4.2.15. O

Remark 5.4.11. [t is possible to prove directly that the rough differential equation

A t A A —
Vo= [ expl(t = 1O (V7Y ,o,) dBLS

—00

has a fixed point using the standard estimates for the rough integral. However, this would yield

a stronger condition than QA{\LQ < 1. Nevertheless, we quickly sketch the argument here. For a

fixed w € Q) and € > 0, set

en_ v nr
Y= {7 o YO € Dy ([, 0L W), Yo T = I,

(Y(’)(nﬂ)r“){J = (Ye’”“’)'_,, and sup || exp(neI)YG"“"H < oo}

n<0

where I is the identity matriz. It is not hard to check that Y is a Banach space. Define
I':Yy—Yby

T = 3 /_OT exp((t — 7+ (m — n)r)C)a (Y, Y7 ) dB (6,0) 1+

n<m

t _
[ et = )Yt YA B 0

-r

where m < 0 and t € [—r,0]. We can use a fized-point argument as in Lemma 5.4.8 for T’ now

to conclude.
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Ruelle’s Inequality for Translation

Invariant Flows

In this chapter we investigate the concept of entropy for a class of random dynamical systems,
which are invariant in distribution in a finite number of directions. For this family of stochastic
flows, we do not necessarily have an invariant probability measure. The first challenge here is
proving the existence of the Lyapunov exponents and, secondly, how the entropy can be defined
in a natural setting. In this chapter, we try to address these difficulties. After explaining
this concept, the main question is to estimate or even calculate the entropy. Traditionally,
there are two significant results: Ruelle’s inequality, which provides an upper bound for the
entropy. The second considerable result is Pesin’s formula, which claims under some regularity
assumption for the invariant measure, the upper bound provided by Ruelle’s inequality is
the exact value of the entropy. For this concept, again, the multiplicative ergodic theorem
plays an inevitable role. Indeed, the upper bound for the entropy is the sum of the positive
Lyapunov exponents of the system.

Compared with the invariant manifolds, relating the Lyapunov exponents to entropy is
more challenging. For the deterministic regime, entropy is well studied; however, for stochastic
equations, this concept still is not well studied. The main obstacle in this regime is the lack of
compactness. More precisely, the white noise in the stochastic equations pushes the systems
out of any bounded set. After introducing our model and justifying the entropy in this chapter,
we give two versions of Ruelle’s inequality. The fundamental strategy here is adapting the
deterministic argument provided in [69]. An important class of stochastic flows that fulfill
our assumptions are translation invariant Brownian flows. The corresponding distribution is
homogeneous in time and invariant under translations in space for this family of stochastic
flows (like isotropic Brownian flows). This chapter is structured as follows; we first introduce
our setting and then argue that the Lyapunov exponents exist. We define the concept of

entropy and then prove a version of Ruelle’s inequality for our entropy.
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6. Ruelle’s Inequality for Translation Invariant Flows

6.1 Preliminaries and notation

Assume (E,||.||) is a real separable Banach space. Let © := (;, ¢ € I) be a finite family
of linearly independent elements of E (I might also be the empty set). Let V,,, n € Z be
independent identically distributed random variables form a probability space (Q, A, P), taking
values in some measurable space (U,U). Also, assume F' : E x U — E be a measurable map
that is continuous in the first variable for each fixed value of the second variable. Further,

assume that for each ¢ € I, we have
L(F(x,Vp), x € E) = L(F(x+ 6;,Vp) — 0;, x € E), (6.1.1)

i.e. the law of the random map F' is translation invariant in the directions 6;, i € I. Let
S := FE/(O) denote the quotient space associated to the group action of the discrete subgroup
(0) generated by © on the additive group F. For the canonical projection 7 : E — S we also
write m(y) =y mod ©O. Let S be equipped with the quotient topology. Note there is a closed
subspace space F of E such that E = F @ (0;)icr. Consequently, for every element of x € S,
x = f+ 3 crtith, where f € Fand 0<t; <1, Viel. Also,for z,y € S we can define the

following metric

dw,y) = If = FIl+ D1 — 1], 2= f+> t:6;, and y=f'+ ti;

icl icl icl
Note that S is a smooth manifold. For n € N, we recursively define
X;0) = F(X;°, V), (6.1.2)

where X 1X° = F(Xo, W), and the initial E-valued condition X is independent of V;,, for all
n € Nyg. Note that in this way we obtain an E-valued Markov chain with transition kernel

K(z,A) == P({F(z,Vy) € A}). Let P be the probability measure induced on U by the random
variable Vj, i.e. for B € U,

P(B) = P(V; ' (B)),

then we can define a random dynamical system (rds). To see this define the space of
random sequences (2, A4,P) = ®,((U,U, P)) together with the shift map o : @ — €,

u = (uj)iez — U = (@;), where @; = u;4+1. Then the skew product map

P OxFE—-QxE
(u,x) — (o(u), F(z,u)),

defines a rds. We let ®0 = id. and ®"! := ®" 0 & for n € Ny and

on(.) =m0 ®"(u,.).
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Similarly for (Q1, AT, P") = Qn((U,U, P)), the shift map o : QT — QT (ug,u,...) —

(u1,ug,...) is defined, also we set

P:O0TXE—- QN xE

(ut,z) = (o(uh), F(z,u)),

and ®" is defined in a similar manner. Due to translation invariance, the process ;X0 := X Xo
mod © is an S-valued Markov chain (but in general not an rds) with transition kernel
Ko(x,A) :== P({Y{ € S})). We assume that the chain Y;,, n € Ny has a unique invariant
probability measure p, i.e. p ® K = p. By definition for A € B(S) and z € S

PHY e A = > PHXZeA+> mib}), (6.1.3)
(mi)ierCZ! el
and
1(A) Z/SK@(:E’A) pldz) = (mi)%;CZI/SK(a:,AJr;miei)u(dm). (6.1.4)

We extend u to E by translating with respect to the elements of ©, i.e. for A € B(S)

n(A+> niby) := p(A) (6.1.5)
i€l

From definition, (6.1.1) and (6.1.4)

WA+ n0) = p(4)= 3 /SK(:U, A+ mibi)u(da) =

i€l (my)ierCZ7 icl
(mi)ierCZT iel
> [ PUF@ = mibiuo) € A}n(do) =
(mi)ier CZ! iel
2. / P({F(z,up) € A})u(dzx) = [E K(z, A)p(da).

(m;)icr CZ! S_Zief m;0;
Note that p is not a probability measures on E (if I # 0).

Definition 6.1.1. Set

U:OxS—-0QxS8
(u, ) = (o(w), [F(z,u0)]),

where

[F(x,up)] = F(z,ug) mod ©
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Again VO = id and O™ .= Um0 U and 7(.) = 79 0 W (u,.), similarly define

T: 0T x50 xS
(u™,z) = (o7 (), [F(2,u0)])

and P2() = m 0 T(.).
Let {A;}1<j<m, be a measurable partition of S. For the sequence {n;}i1<j<m of positive

integers and x € S

[ NeAjvVi 1<j<m})=
{[¢o ( (€) = by () +y(@)] € Aj, Vi 1<j<m}) =

P({
( i (
Z P({pgh  (oh(z) —vl(x) +vi(@) € Aj+ Y mib, Vi 1<j<m}))

P

(m])ierCZ (m?)cz!
S P @Wh@) €4+ Y mio, Vi 1<j<m}) =
(m])ierC2! (ml)cz!

({w 6 A],VJ 1<7< m})
(6.1.6)

The next lemma is standard.
Lemma 6.1.2. The following items hold true :
(i) Pt x p is an invariant probability measure for U .
(ii) There is a unique V-invariant measure u* on Q x S, such that p*|g+xg =PT X p .

In addition p* disintegrates. i.e. there is a family a random measure { i, }yeq on S such that

for Aec A® B(S):
pr(A) = [ a(AB(dw)
where A" :={z € S : (u,x) € A}, also
(7i3) i s invariant under VL, i.e.
() pu = Hou,
and for P a.a. u € Q following limit, weakly converges
(O, LTE

Proof. Refer to [1], Chapter 1. O
Remark 6.1.3. Items (iii) in last lemma implies ,, depends on u,, n <0 .

Definition 6.1.4. For each of these sample measures we set K, := support(u,) -

114
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MET

We now state a simpler version of our MET in Chapter 2. Note that the only differences with
our previous version in Chapter 2., are that, firstly, we fixed our Banach space, and, secondly,
instead of assuming compactness, we assume that our operators are quasi-compact (Definition
6.1.6).

Definition 6.1.5. For the linear map, T : E — E index of compactness is defined as below.
IT|q :=inf{r > 0: T(B(0,1)) can be covered by finitely many balls of radius r},

where B(0,1) ={x € E : ||z|]| < 1} .

Remember, F is a separable Banach space. Assume for u € Q , ¢} : E — E be O
Note that by definition, ¥} : § — S is then also differentiable. We further assume (u,z) —
|Dak|| € LY (u*). By a standard argument with the Kingman’s subadditive ergodic theorem,

the following limits exist
. 1 n : ]' n
A(u,x) = Jim - log || Davill,  a(u,z) = Jim glog | Dzl || - (6.1.7)

Definition 6.1.6. We say our operators ({Dzy, }n (uz)) are quasi-compact, if for p*-a.a.
(u,x) € 2 xS

a(u,z) < A (u,x)

The proof of the following version of MET is the same as our previous version in Chapter

2.

Theorem 6.1.7. Under the above assumptions for p*-a.a. (u,z) € Q X S, exists a number
1 < k(u,z) < oo and:

e a sequence of measurable values (Lyapunov exponents) \i(u,x) > Aa(u,z) > ... >

)‘k(u,x) (ua J)) > a(u, l’),
e a sequence of positive and measurable integers mi(u,x), ..., My z)(u, ), in addition

e a measurable splitting of closed sub-spaces & = F,\l(u@)(u,:):) D F)\Q(uw)(u, z) D ..D
F)‘k(u,x)(uvw) (’LL, :E) ) FC/>O(U7 .’IT),

such that for every 1 < i < k(u,z), Dyl(Fi(u,z)) C Fy(ou,¥k(x)) and also

Dyt (Flo(u,2)) € Fl(ou, v(2). For 1< i < k(u,x), dim(72442-) = mi(u, ),
i+1(u,z

o1 n .
nh—>nc}o E log ||wau (y)H = )‘l<u7 .T), if ye€ F/\i(u,x) (uv x) \ F/\¢+1(u,x) ('LL, $),
and
. 1 n
lim sup — log Hmeu ‘Féo(u,x) H < a(u, J))
n—oo T
Remark 6.1.8. Remember, 1. (x) and [¢p](x) have a same distribution (cf. (6.1.6)).
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6.2 Entropy

In this section, we define the concept of entropy for our setting; we first start by the following

standard definition.

Definition 6.2.1. Let (X,B,v) be a probability space and A be a sub-sigma-algebra of B.
Assume P a countable measurable partition of X. The conditional information function with
respect to A is defined by

L(PIA)() === > 1p(.)logE,(1p|A)(.).
Pep

Also, conditional entropy with respect to P is given by

H,(P|A) = /1 (PlA)dv / S" By (1p]A) log B, (1p|A)dv

PeP

Now we are ready to define the concept of metric entropy.

Definition 6.2.2. Assume T : X — X is measurable and v-invariant. Also assume A C B
be a sub-sigma-algebra such that T"*A C A. Then the conditional metric entropy of T with
respect to A is given by

hy(T|A) := sup {h,(T,P|A)},

PeHA
where
1 n—1
h,(T,P|A) = hm H \/ T_’P|A)
=0
and

Ha={P:P is a measurable and countable partition of X such that H,(P|A) < oo}.

Remark 6.2.3. For sequence {P;}o<i<n of measurable and countable partition of X, joint
partition \/Z”:_O1 P; is defined by

n—1
\/ Pi={ () Pu: Pn €Pi}
1=0

0<i<n

Fiber Entropy

Back to our setting, for X = Q x S, assume u* be the extended measure provided by Lemma
6.1.2. Remember the skew product ¥ : X — X is defined by (u,z) — (ou,v}(z)), then
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Definition 6.2.4. Assume Z be a countable and measurable partition of Q x S, for (u,z) €
Q xS, set

n—1
Z_,=\/(¥,) "2, 2Z“:={P": PecZ}
=0
n—1

28 = (2o, 24 (2) = (W) TZT YY) (@) = () (h) HET (i),

i=0 0<i<n
where Z%(x) is the element of Z*, contains x. Also remember P* ={z € S: (u,x) € P}.

The fiber entropy with respect to Z is given by

H, (2") == Y logpu(P) juu(P).
PeZu

Then from [70, Lemma 2.2.3]

Hye (217 (F) = | Hu(Z)P(dw)

Similarly the conditional entropy of Z for ¥ with respect to (2, F) is given by

hys (U, Z|mq ' (F)) = lim f/ H,, )27 P(du).

n—oo n,

Note that a standard argument by Kingman’s subadditive ergodic theorem yields that the

above limit exists P-a.a. The metric entropy in this setting is defined by

By (W) := sup {h,« (¥, Z|7g" (F)) : Z is a measurable, countable partition of X
such that H,»(Z|rg(F))) < oo}

Due to the separability of S, by [70, Theorem 2.2.4], indeed
s (B) = sup {hy (¥, 75 (P) 7o  (F)) : P is a finite, measurable partition of S} (6.2.1)

See also [71]. We also have the following classical lemma.

Lemma 6.2.5. Let ()1 (x) := " () and denote the corresponding skew product by
Uy QX E—=QxE, (u,x)— (c™u,) (z))
then
hys (W) = mihy (0)

Proof. [72, Lemma 1.] O

For Z2 € Haxs, we denote the sigma-algebra generated with the family
{ ?gol(wZ)’l(ZUi“)}n>1 on S by V(i) 1(Z7'%). The next lemma is the random

version of the McMillann theorem.
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Theorem 6.2.6. Assume Z be a measurable and countable partition of € x S such that

H,+(Z2|7q (F))) < 0o, then the following items are true

(i) Timcsoe 3, (VI3 (63)71 270) (@) = By (F1T) (,0) t* — aco.
where f(u,z) = 1,, (Z| V(i) L Z7), where J is sigma-algebra of W-invariant sets.

(ii) hy (0, Z|mg?t = Jo Hou (ZI V0 (2) 1 Z7 )P (du).

(iii) In particular, if VU is ergodic with respect to u*, then

lim - log ju( 2%, (2)) = by (¥, 2|75 (F)), 1 — a.a
n

n— oo

Proof. [70, Theorem 2.2.5] O

Remark 6.2.7. The concept of entropy for (T, P+, \TJ) is defined similarly. In that case, we

substitute p with sample measures.
Finally, we summarize our discussion in this section in the next Proposition:

Remark 6.2.8. For the skew product ¥ : w x S — w x S, with Y"1 = W™ o U, following

items hold true
e U isa RDS,
o u* is invariant for U,

e U admits the same distribution with ®. Furthermore, the Lyapunov exponents for both

processes remain the same.

Also, the concept of metric entropy for W is well defined. Accordingly, we define the metric
entropy for ® by the same metric entropy of V.

6.3 Ruelle’s inequality

The classical Ruelle’s inequality claims a relation between the entropy and the Lyapunov
exponents. Namely, it says that the entropy is less than or equal to the sum of the positive
Lyapunov exponents. In the following, we state two theorems for this inequality with different

assumptions. We will also assume :

Assumption 6.3.1. Let K, := Support(p,), we assume
(i) P-a.a. u € Q, K, is compact,
(i) Yy (Ku) C Kou,

(iii) U :Q xS — QxS is ergodic with respect to p*.
(iv) folog™ supyerc, | Dal [P(du) < o0

(v) We also assume lim, oo = [, logsup,e g, || Dath?||aP(du) < 0.
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6.3 Ruelle’s inequality

Remark 6.3.2. Note that o : 2 — Q) is ergodic; also, from the ergodic decomposition theorem,

we can assume Item [(iii)], and apply to this theorem for the general case.

Remark 6.3.3. By the ergodicity assumption, all values, including the integers and Lyapunov

exponents in the in Theorem 6.1.7 are deterministic (u* — a.a.).

Remark 6.3.4. Item (v) in many cases is checkable. For example, when our Banach space
has a finite dimension, then this assumption follows from Item (iv), also for the flow of the

delay equations (which is defined on C), Dyl is compact, and automatically this Item is
fulfilled.

We are now ready to state Ruelle’s inequality in the infinite dimensional Banach spaces.

The proof is almost the same as [71], with some minor modifications.

Theorem 6.3.5. In addition to the Assumption 6.3.1, assume that there exists g > 0 such
that

/1og+ sup || Dbl ||P(du) < oo. (6.3.1)
Q x€B(Kuy,€0)

Then

h,u*(\lf) < Z m,/\z
Ai>0
Remark 6.3.6. For deterministic equations (like PDE’s), it is standard to assume the support
of the invariant measure(if it exists) is compact. But due to the effect of the white noise, this
assumption is no longer valid for the stochastic equations. Yet, for this family of equations, it
is natural to assume that the sample measures are compact (for example, when we have an

attractor). However, still, in the application, it is not clear how (6.3.1) can be verified.

We now provide this inequality with another assumption. Here we state the theorem, and

in the next section, we prove our claim.

Theorem 6.3.7. Let E be a finite dimensional space and in addition to the Assumption 6.5.1,

assume
1
[0 () = Pu(2) = Dby (y — 2)Il < hlow)lly — 217, y,2 € Ky and [ly — z|| < T
h(ou)
(6.3.2)
where
log(h) € LY(Q). (6.3.3)
Then
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6. Ruelle’s Inequality for Translation Invariant Flows

Proof of Theorem 6.3.7

The main idea to prove Ruelle’s inequality is to use local entropy to find a sequence of upper
bounds for the entropy and then relate these bounds (in the limit) to the Lyapunov exponents.
This concept (local entropy) was initially introduced by Brin and Katok in [73] and was later
refined in [71]. Let

Cp(K) :={A: A is a measurable subset of 2 x S
and for a compact set K4 and Yu € mqA, K, C Ka}.

The Bowen ball around the the (z,u) € K is defined by

BY (w.e) ={y € Ky :Vi,0<i<n, (c'u,¥}(y)) €A if and only if (c'u,},(z)) € A and

[ () = ()|l < € if (o'u, ¢y (x)) € A}.
(6.3.4)

We also use BY(z,€) when A = Q x S. The fundamental relationship between entropy and

local entropy is stated in the next Proposition.
Proposition 6.3.8. Let {A,,}m>0 C Cp(K) such that pu(Ay,) — 1 then
(1) By (W) = i 00 im0 limyp 500 = log pu(BY, (2,€)),  p* — a.a.
(i) hys (V) < limeo limy, o0 —1 log pu(BY(z,€)), p* —a.a.
Proof. [71, Proposition 3.3] O

Remark 6.3.9. In Items (i) and (ii), in Proposition 6.3.4, we can also put the lim instead of

lim.

To relate the entropy with the Lyapunov exponents, we need some technical definitions.
Similar to [69] and [71], for A C S and metric d, define

r(A,e,gl):inf{n>1: AcC U Bj(zi,€i), st e <e and z; € S},

1<i<n

Where Bj(z,€) is usual e-neighborhood around x respect to the d. Also for T € L(E)
R(T,€) :=r(T(Bg)¢|l)-

For v : Q — R define

Dy — sup WD) — @]

, 2 € Ky .
0<j<n 7(U]u) Y “

The following proposition is crucial, as it allows us to choose a nice partition to estimate the
local entropy. This proposition was first proved in [69, Proposition IV.6] for the deterministic
case and also is stated in [71, Proposition 3.7]. Since there are some gaps in [71, Proposition

3.7], we state it again with detailed proof.
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6.3 Ruelle’s inequality

Proposition 6.3.10. Let {f,}n>1 be sequence of measurable function such that

()

nlgr()lo 1fn(u z) =g(u,z), p*— a.a. (6.3.5)
(ii)
lim sup fn(u x) < k(u), P-—a.a. (6.3.6)

For well-defined measurable functions k and g. Then there is a sequence of partitions {Z'}>1
of @ x S, such that

(i)

1
lim lim —— log pu((ZH%,(2) =0  p* —a.a. (6.3.7)
t—o0 M7
(i)
1 t
Jim nfn(u x) = llf?onlgﬁlo nA(fn,Z )(u, ), (6.3.8)

where

Afr, 2)(w,2) = Y ( sup  fi(u,y)).xp(2).

pezuw YEPNKy

Proof. Let J be the sigma-algebra of measurable invariant sets under ¥ (note that here we do
not assume the ergodicity), assume {7, },>1 be an increasing finite [7- measurable partition of
2 x § such that Up,> J), generates J. Also by N p we mean the sigma-algebra which is generated
by J,. For

= {T € jp : ,u*(T) > 0} = {TpJ Y ey Tp,N(p)} s

set

By = {(u,): Vg =p g(u,z)—e<E(glT)(u,x) < glu,z) + e},

1
Tpiq=A{(w2) € TaNBy: ¥t 2q —filu,2) < g(u,2) + e},

€ € p) €
qu {IL 1,g »- Tva(p), QXS\U Tzq}

Note that if (u,z) € T, ,, for 1 <i < N(p) and large m

1 1,9 dp
A(fm, Ty ) (u, ) = sup — fm(u,y) < 2e+ Tpi? T < g(u,x)+3e. (6.3.9)

YE(TS , VM (@)NK, T w(Tp)
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6. Ruelle’s Inequality for Translation Invariant Flows

From (6.3.5), (6.3.6) and (6.3.9)

T A, () ) (0,2) < - Alfin, T ) 0,2)

m—r0o0

< (9(u, ) + 36)-XU§(5)T6 () + k(u) X, p UV @) e (u, ).

p,t,q = p,t,q

(6.3.10)

Also

— 1

g—o0 N0

1 — 1
lim lim —Eloguu((jpe’q)ljn(m)) < lim ——loguu((jpe)ﬁn(x)),

n—+00 g—00 n—oo n

where
j; = {TPJ N B;, . Tp,N(p) N B;, QxS \ UlgigN(p)Tp,i N B;}
1
is an invariant partition. Set {Z'};>1 = {Jpq}r.qpen then

tim [ T A, (290 (n2) + T~ logpu((Z)%,(0)] = glu)  (6311)

t—00 n—oo n,

Finally since

lim — fu(u,2) < T = A(fa, (29)_)(u, 2),

n—oo n, n—oo n,

our claim follows by (6.3.11) . O

Back to the proof, from Proposition 6.3.8, it is enough to prove

o 1
lim lim —Elog;ﬁu(B;f(:L‘, €)) < Z Aim;. (6.3.12)

e—0n—00
Ai>0

To prove our claim, we begin by our assumption in (6.3.2). Let Z be a (measurable) partitions
of @ x S and z € K, N Z%(x), for v(u) <

- we have
h(ou)?2

Yu(B(z,79(w) N Ku) C Kou 0 [1hy(2) +7(w) D2by (B(0, 1)) + h(ou)y*(u) B(0,1)]

Assume D,9L(B(0,1)) C Ur<i<n(u,z) B(2i;n(w)), where N(u,z) = R(D L, n(u)). Let w; €
Kou N Bk (2) + y(u)zi, y(u)[n(u) + h(ou)y(u)]) N 294k (x)), (Note that if this intersection
is empty, then this ball is redundant) then

Gy (B(z,7(w) NKy) NZ7Wy (@) € | [Koun Blwi, 29(u)[n(w) + how)y(u)])].
1<i< N (u,2)
Set

1

B 4H1<j<oo h(UjU)Q_j ’

¥(u)
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6.3 Ruelle’s inequality

and n(u) = h(ou)vy(u). Note that form (6.3.3), v(u) is well defined also

Yu(Blz (W) NK) N 27y (2) € |J  [Kou N Blwi,v(ow))].
1<i<N (u,2)

Since y(u) < ——, by repeating this argument
h(ou)?2

r2 ) < (2@, ) ] S R(Dybhi (o)

0<i<n—1 yeZo v (yi(x))NK i,
(6.3.13)

Consequently

lim llogr(Zﬁn( ), 1,d") //log sup  R(Dyiby, n(ow))p(dz)P(du). (6.3.14)

neen yeZu(z)NK,

The next proposition allows us to repeat the same argument for the higher compositions of

our cocycle.

Proposition 6.3.11. For m > 1 and

Hu(o™u) =4[] b a)(1DgL, ] v 1) (6.3.15)
0<j<m—1
we have
1 m m m m
ly —zfl < — [0 (y) — ¥ (x) — Det (y — 2)|| < Hp(0™u)|ly — 2.

Hyp(omu)?
(6.3.16)

Proof. We start with the following identity

U ) — U () — Dyt (y — ) =
S Dyt [k () — B (@) — Dy B () — ¥ ()],

0<j<m—1

(6.3.17)

Set Ho(u) =0, Hy(u) = h(ou) and

Hyp(u)=2 Y he’w)||Dk ;. 0™ 7| [Hj(w) + |Dx, w517,
0<j<m—1
Where || D, ¢ || := supyer, D0 |-

It is not hard to see H,,(u) < Hy,(c™u). We claim if ||y — z|| < ﬁ, then
m(oc™u)?2

(@) v (y) — i)l < —

— T
h(citly)2

(i) 9 (y) — vi(x) = Duf(y — o)l < Hj(w)lly — 2|, 0<j<m.

o 0sg<m,
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6. Ruelle’s Inequality for Translation Invariant Flows

We proceed by induction, from (6.3.17),

[ (y) = o' (2) = Datil'(y =) < D h(e M u)llDi 0 i vi(y) — v (@)

0<j<m—1
. IR . ~
< D> 2h(0]+1u)”DKJj+1u¢Z‘+l N Hj(w) + (|1 D, WP Ny — 2l = Hp(w) ||y — 2|

0<jsm—1

1

— S ———— 1
Also for [ly —z < (Hii1 (o™ 1)) 2

13 () = 9 (@)l < H(w)lly = 2] + | D, 03 ly — ]
H,(u) Dl 1
Hyppq (o™t lu) (Hm+1(0m+1u))% h(0m+1u)$

So our claim is proved.
We also need the following lemma
Lemma 6.3.12. For H,,(c™u), defined in (6.3.15), set

Hp,(0™u)

Mm (0™ u) : (6.3.18)

then

1
lim — lognm(c™u) =0, Pa.a.

m—o0 M,

Proof. For A := lim,, o % log Hy,(6™u) and 6 > 0, set

¢(u) = sup exp(—m(A + 9))Hy (6™ u),

m=0

It is not hard to see
log™ ¢(ou) — log™ ¢(u) € LI(Q),
so from [13, Lemma III.8]

1
lim —log ¢(c"w) =0

n—oo n

This implies our claim .

Set ym(u) = 1 — and Ny (0™ u) = Hp, (0™ u)vm (u), also define

4 ngjgoo Hpp (09mu)2 ™

Jm _ qdm
i) — sup 170 G
0<j<n 'Ym(o'] u)
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6.3 Ruelle’s inequality

By (6.3.13) and (6.3.2), similarly we can prove

— 1
fin -~ log (2, (o), Ldy) < [ [log  swp Ry (o™w)pu(de) Pldu).
n—oo n, ’ Q yezu ﬂKu

(6.3.19)

where Z_,, _, = VI (W) ") Z_,,,. Set By (x,e) = {y € Ky : d)m"(z,y) < €} then we

have

Lemma 6.3.13. For an arbitrary partition of Z of 2 x S :

1
lim f*log/zu(Bﬁ%m(:v,l)) Jim { - *loguu(Z_m (@) 4+ =logr(2Y,, . (x),1,d)m")}
’ n

n->c0

w— a.a.

Proof. Similar to [69, Page 87] . O
We also need this technical lemma.

Lemma 6.3.14. For u € €, a.a.

R m m
Yggmoomlogysequu R(Dyy', mm(0™u)) < oo

Proof. For a > 0, from [74, Theorem 2.3.4] and ergodicity assumption, there is a (deterministic)

sequence ... < A5 < M < 0o and integer sequence {m};>1, such that

1
lim — log sup R(Dyy', e ™) < ZmZK()\ZK +a)t, (6.3.20)

since limy, o0 = 10g Ny (0™u) = 0, by (6.3.20)

lim —log sup R(Dyy,', H" (0™ u) Zm (MY F

m—room yeKy
O

Now are now ready to finish the proof. Let {Z'};>1 be the partition, that was constructed in
Proposition 6.3.10, set fy,(u, x) := R(Dz)", nm (™)) then since lim,, o % log N (0™u) = 0,

we can show p* — a.a.

W}gnooalog R(Dy)y, (™) )\z;()mz i

Note that by Lemma 6.3.14, we can apply to Lemma 6.3.13 and Proposition 6.3.10, consequently
for § > 0 and large ¢

— 1
— U, Ym im — tyu Ym U
lim log,uu(Bnm (z,1)) < 6—|—nhm - logr((Z2°)% . —n (), 1, Ay,

)
n—oo n,m
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6. Ruelle’s Inequality for Translation Invariant Flows

so by (6.3.19)

1
lim ——loguu(B“"ym(m 1)) <

n—oo
5+ / / log  sup  R(Dy™ m(0™)) pu(dz)P(du).
ye(Z2H)  (z)NKy

Not that (6.3.16) remains true if we replace Hy,(c™u) by Hin(0™)

— €

. Consequently

1
lim lim —=log puu (B, (2, €)) <

e—0n—oo n

(6.3.21)
5+ / / log ) R(Dy™, o (0™)) p (dP(lut),
(2" (2)NK,

where Bl (v,€) = {y: 0 <Vj < n, [[4i"(y) — ¥i"(@)]| < €}, finally since hy, () = 2]
from (6.3.21)

1)
) < 2+ [ [ o B RO o™ ) 0B (6322

Since dim(F) < oo, for M, N >0

[ Doty |

m)]\’. (6.3.23)

R(Dytby", i (0™ u)) < M (

Now from (6.3.8), (6.3.22) and (6.3.23)

v< [ [ T L log R(D,, o (070) () P(dr) = 3 ik
E

m—00
m Ai>0

6.4 Example

In this section, without going too much into details, we sketch several examples. The first
example is the translation invariant Brownian flows. A particular class of this family is the
isotropic Brownian flows. For more details and exact definition about this family of flows, we
refer the reader to [75].

Example 6.4.1. Assume E =R?, U = C(R%,RY) and F(z,v) = v(z). Let ¢s4, 0 <t be
a translation invariant Brownian flow on R4 (st : Q- U) and define V,, := qbn,n_,_l?n > 0.
Choose 0; = e; to be the i-th unit vector in R%, i € {1,...,d}. Then due to the translation
invariance property, S ~ [0,1)% and the Lebesgue measure i on S is an invariant probability
measure of the associated S-valued Markov chain (Yy) (cf.[75]). Then from [75, Lemma 2.1.1],

we can deduce Ruelle’s inequality.
Here is another example.

Example 6.4.2. Consider the following stochastic differential equation

AX(t) = F(X (1) dt + g(XE) AW (E), t > 0;  Xo =z, (6.4.1)
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where W is m-dimensional Brownian motion and f : R — R%, g: R? — R¥X™  are Lipschitz
continuous functions. For U = RY, it is well-known that equation (6.4.1) generates a continuous-
time U-valued random dynamical system. The corresponding discretized sequence X,,, n € Ny
is of the form (6.1.2) for some (continuous) F', where V,, := Wy, (Wpy(s) := W(n+s)—W(n)).
Fori € {1,...,d}, assume 0; == e; to be the i-th unit vector in R, in addition, assume for
every i € {1,...,d}, there exist c; > 0 such that for all x € U, f(x + aje;) = f(z) and
g(x + aje;) = g(x). Obviously, the rds (X,,) satisfies (6.1.1) with 0; := aye; (fori € {1,...,d}).
Then S = [l1<i<[0, i), by assuming further regularity assumptions on f and g, the solution
is also differentiable (with respect to x). Let v be a probability measure on S. Since S is

. Zo<j<n{(}/})#y Y .
compact, the family of measures ==="——— on S is tight. Now, from the Feller property of
the process Y, and tightness property, there exists an invariant measure (Krylov—Bogolyubov

theorem ). We can now apply our result to derive Ruelle’s inequality for this invariant measure.

Remark 6.4.3. An interesting example in the infinite-dimensional case is for the delay

equations. In this example we take the following equation
dX(t) = f(Xy)dt + g(X(t))dW(t), t >0; Xo=mn, (6.4.2)

where W is m-dimensional Brownian motion, n € C := C([—1,0],R?), X;(s) :== X(t + s), t >
0, s € [-1,0], where, f:C — R? s Lipschitz continuous with respect to the sup-norm and
g : R — R¥*™ s Lipschitz continuous. In this model, we assume there exist r € {0,...,d} and
a; >0,i€{l,...r} (if r > 0) such that f(x + aje;) = f(x) for every x € C and i € {1,...,7},
where e; is the function in C' which is identically equal to 1 in the i-th coordinate and 0 in all
other coordinates. We assume that g has the same property (with the same numbers «;) but with
C replaced by R%. It is well-known (cf. [76]) that equation (6.4.1) generates a continuous-time
C-valued random dynamical system. Like the previous example, the corresponding discretized
sequence X, satisfies (6.1.1). We can choose S = {f € C: f(0) € [[;=1[0,04)} if i € {1,...,7}
and S = C if r = 0. the existence of invariant measure is a standard assumption. However,

the main challenge is, here, it is not clear how we can verify condition (6.3.1).

127






[11]

[12]

[13]

References

Ludwig Arnold. Random dynamical systems. Springer Monographs in Mathematics.

Berlin: Springer-Verlag, 1998, pp. xvi+586.

Salah-Eldin A. Mohammed and Michael K. R. Scheutzow. “The stable manifold theorem
for stochastic differential equations”. In: Ann. Probab. 27.2 (1999), pp. 615-652.

Salah-Eldin A. Mohammed and Michael K. R. Scheutzow. “The stable manifold theorem
for non-linear stochastic systems with memory. II. The local stable manifold theorem”.
In: J. Funct. Anal. 206.2 (2004), pp. 253-306.

Bjorn Schmalfuss. “Backward cocycle and attractors of stochastic differential equations”.
In: International Seminar on Applied Mathematics - Nonlinear Dynamics: Attractor
Approximation and Global Behavior. Ed. by V. Reitmann, T. Riedrich, and N. Koksch.
Technische Universitdt Dresden, 1992, pp. 185-192.

Hans Crauel and Franco Flandoli. “Attractors for random dynamical systems”. In: Probab.
Theory Related Fields 100.3 (1994), pp. 365-393.

Hans Crauel, Arnaud Debussche, and Franco Flandoli. “Random attractors”. In: J.
Dynam. Differential Equations 9.2 (1997), pp. 307-341.

Aurélien Deya, Andreas Neuenkirch, and Samy Tindel. “A Milstein-type scheme without
Lévy area terms for SDEs driven by fractional Brownian motion”. In: Ann. Inst. Henri
Poincaré Probab. Stat. 48.2 (2012), pp. 518-550.

Michael Scheutzow. “Exponential growth rate for a singular linear stochastic delay
differential equation”. In: Discrete Contin. Dyn. Syst. Ser. B 18.6 (2013), pp. 1683-1696.

V. I. Oseledec. “A multiplicative ergodic theorem. Characteristic Ljapunov, exponents
of dynamical systems”. In: Trudy Moskov. Mat. Obsé. 19 (1968), pp. 179-210.

M. S. Raghunathan. “A proof of Oseledec’s multiplicative ergodic theorem”. In: Israel J.
Math. 32.4 (1979), pp. 356-362.

David Ruelle. “Ergodic theory of differentiable dynamical systems”. In: Inst. Hautes
Etudes Sci. Publ. Math. 50 (1979), pp. 27-58.

David Ruelle. “Characteristic exponents and invariant manifolds in Hilbert space”. In:
Ann. of Math. (2) 115.2 (1982), pp. 243-290.

Ricardo Mainié. “Lyapounov exponents and stable manifolds for compact transformations”.
In: Geometric dynamics (Rio de Janeiro, 1981). Vol. 1007. Lecture Notes in Math.
Springer, Berlin, 1983, pp. 522-577.

129



REFERENCES

[14]

[15]

[16]

[18]

[19]

[20]

[21]

22]

[23]

[24]

P. Thieullen. “Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov.
Entropie. Dimension”. In: Ann. Inst. H. Poincaré Anal. Non Linéaire 4.1 (1987), pp. 49—
97.

Peter Walters. “A dynamical proof of the multiplicative ergodic theorem”. In: Trans.
Amer. Math. Soc. 335.1 (1993), pp. 245-257.

Zeng Lian and Kening Lu. “Lyapunov exponents and invariant manifolds for random
dynamical systems in a Banach space”. In: Mem. Amer. Math. Soc. 206.967 (2010),
pp. vi+106.

Thai Son Doan. “Lyapunov Exponents for Random Dynamical Systems”. PhD thesis.
Technische Universitat Dresden, 2009. URL: https://nbn-resolving.org/urn:nbn:
de:bsz:14-qucosa-25314.

Alex Blumenthal. “A volume-based approach to the multiplicative ergodic theorem on
Banach spaces”. In: Discrete Contin. Dyn. Syst. 36.5 (2016), pp. 2377-2403.

Cecilia Gonzalez-Tokman and Anthony Quas. “A concise proof of the multiplicative
ergodic theorem on Banach spaces”. In: J. Mod. Dyn. 9 (2015), pp. 237-255.

Cecilia Gonzélez-Tokman and Anthony Quas. “A semi-invertible operator Oseledets
theorem”. In: Ergodic Theory Dynam. Systems 34.4 (2014), pp. 1230-1272.

P. Wojtaszczyk. Banach spaces for analysts. Vol. 25. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1991, pp. xiv+382.

Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Reprint
of the 1980 edition. Springer-Verlag, Berlin, 1995, pp. xxii+619.

Russell Lyons, Robin Pemantle, and Yuval Peres. “Conceptual proofs of L log L criteria
for mean behavior of branching processes”. In: Ann. Probab. 23.3 (1995), pp. 1125-1138.

Evelyn Buckwar. “Introduction to the numerical analysis of stochastic delay differential
equations”. In: J. Comput. Appl. Math. 125.1-2 (2000). Numerical analysis 2000, Vol. VI,
Ordinary differential equations and integral equations, pp. 297-307.

George Stoica. “A stochastic delay financial model”. In: Proc. Amer. Math. Soc. 133.6
(2005), pp. 1837-1841.

Tan Boutle, Richard HS Taylor, and Rudolf A Rémer. “El Nifio and the delayed action
oscillator”. In: American Journal of Physics 75.1 (2007), pp. 15-24.

Jinzhi Lei and Michael C. Mackey. “Stochastic differential delay equation, moment
stability, and application to hematopoietic stem cell regulation system”. In: SIAM J.
Appl. Math. 67.2 (2007), pp. 387-407.

Xuerong Mao. Stochastic differential equations and applications. Second. Horwood
Publishing Limited, Chichester, 2008, pp. xviii+422.

S. E. A. Mohammed. Stochastic functional differential equations. Vol. 99. Research Notes
in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984, pp. vi+245.

S. E. A. Mohammed. “Nonlinear flows of stochastic linear delay equations”. In: Stochastics
17.3 (1986), pp. 207-213.

130


https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-25314
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-25314

REFERENCES

[41]

[42]

Terry J. Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by
rough paths. Vol. 1908. Lecture Notes in Mathematics. Lectures from the 34th Summer
School on Probability Theory held in Saint-Flour, July 6-24, 2004, With an introduction
concerning the Summer School by Jean Picard. Berlin: Springer, 2007, pp. xviii+109.

Vladimir I. Bogachev. Gaussian measures. Vol. 62. Mathematical Surveys and Mono-

graphs. Providence, RI: American Mathematical Society, 1998, pp. xii+433.

Laurence C. Young. “An inequality of the Hoélder type, connected with Stieltjes
integration”. In: Acta Math. 67.1 (1936), pp. 251-282.

Salah-Eldin A. Mohammed and Michael K. R. Scheutzow. “Lyapunov exponents of
linear stochastic functional differential equations driven by semimartingales. I. The
multiplicative ergodic theory”. In: Ann. Inst. H. Poincaré Probab. Statist. 32.1 (1996),
pp- 69-105.

Salah-Eldin A. Mohammed and Michael K. R. Scheutzow. “Lyapunov exponents of linear
stochastic functional-differential equations. II. Examples and case studies”. In: Ann.
Probab. 25.3 (1997), pp. 1210-1240.

Massimiliano Gubinelli. “Controlling rough paths”. In: J. Funct. Anal. 216.1 (2004),
pp. 86-140.

A. Neuenkirch, I. Nourdin, and S. Tindel. “Delay equations driven by rough paths”. In:
FElectron. J. Probab. 13 (2008), no. 67, 2031-2068.

Franco Flandoli. Regularity theory and stochastic flows for parabolic SPDEs. Vol. 9.
Stochastics Monographs. Yverdon: Gordon and Breach Science Publishers, 1995,
pp- x+79.

Peter K. Friz and Martin Hairer. A Course on Rough Paths with an introduction to
reqularity structures. Vol. XIV. Universitext. Berlin: Springer, 2014, p. 251.

Peter K. Friz and Nicolas B. Victoir. Multidimensional stochastic processes as rough
paths. Vol. 120. Cambridge Studies in Advanced Mathematics. Theory and applications.
Cambridge: Cambridge University Press, 2010, pp. xiv+656.

I. Bailleul, S. Riedel, and M. Scheutzow. “Random dynamical systems, rough paths and
rough flows”. In: J. Differential Equations 262.12 (2017), pp. 5792-5823.

Maria J. Garrido-Atienza and Bjorn Schmalfufl. “Ergodicity of the infinite dimensional
fractional Brownian motion”. In: J. Dynam. Differential Equations 23.3 (2011), pp. 671
681.

Martin Hairer. “A theory of regularity structures”. In: Invent. Math. 198.2 (2014),
pp- 269-504.

E. Knobloch and K. A. Wiesenfeld. “Bifurcations in fluctuating systems: the center-
manifold approach”. In: J. Statist. Phys. 33.3 (1983), pp. 611-637.

Tomés Caraballo, José A. Langa, and James C. Robinson. “A stochastic pitchfork
bifurcation in a reaction-diffusion equation”. In: R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Seci. 457.2013 (2001), pp. 2041-2061.

131



REFERENCES

[46]

[47]

[48]

[54]

[55]

[56]

Aijjun Du and Jingiao Duan. “Invariant manifold reduction for stochastic dynamical
systems”. In: Dynam. Systems Appl. 16.4 (2007), pp. 681-696.

Jinqgiao Duan and Wei Wang. Effective dynamics of stochastic partial differential equations.

Elsevier Insights. Elsevier, Amsterdam, 2014, pp. xii+270.
Mickaél D. Chekroun, Honghu Liu, and Shouhong Wang. Approzimation of stochastic

invariant manifolds. SpringerBriefs in Mathematics. Stochastic manifolds for nonlinear
SPDEs. 1. Springer, Cham, 2015, pp. xvi+127.

Mickaél D. Chekroun, Honghu Liu, and Shouhong Wang. Stochastic parameterizing man-
ifolds and non-Markovian reduced equations. SpringerBriefs in Mathematics. Stochastic

manifolds for nonlinear SPDEs. II. Springer, Cham, 2015, pp. xviii+129.

Terry J. Lyons. “Differential equations driven by rough signals”. In: Rev. Mat.
Iberoamericana 14.2 (1998), pp. 215-310.

Andrew Carverhill. “Flows of stochastic dynamical systems: ergodic theory”. In:
Stochastics 14.4 (1985), pp. 273-317.

Petra Boxler. “A stochastic version of center manifold theory”. In: Probab. Theory Related
Fields 83.4 (1989), pp. 509-545.

Thomas Wanner. “Linearization of random dynamical systems”. In: Dynamics reported.
Vol. 4. Dynam. Report. Expositions Dynam. Systems (N.S.) Springer, Berlin, 1995,
pp- 203-269.

Christian Kuehn and Alexandra Neamtu. “Rough center manifolds”. In: SIAM J. Math.
Anal. 53.4 (2021), pp. 3912-3957.

Jingiao Duan, Kening Lu, and Bjérn Schmalfuss. “Invariant manifolds for stochastic
partial differential equations”. In: Ann. Probab. 31.4 (2003), pp. 2109-2135.

Jingiao Duan, Kening Lu, and Bjérn Schmalfuss. “Smooth stable and unstable manifolds
for stochastic evolutionary equations”. In: J. Dynam. Differential Equations 16.4 (2004),
pp- 949-972.

Salah-Eldin A. Mohammed, Tusheng Zhang, and Huaizhong Zhao. “The stable manifold
theorem for semilinear stochastic evolution equations and stochastic partial differential
equations”. In: Mem. Amer. Math. Soc. 196.917 (2008), pp. vi+105.

Tomas Caraballo et al. “Invariant manifolds for random and stochastic partial differential
equations”. In: Adv. Nonlinear Stud. 10.1 (2010), pp. 23-52.

Salah Mohammed and Tusheng Zhang. “Dynamics of stochastic 2D Navier-Stokes
equations”. In: J. Funct. Anal. 258.10 (2010), pp. 3543-3591.

Maria J. Garrido-Atienza, Kening Lu, and Bjorn Schmalfuf. “Unstable invariant
manifolds for stochastic PDEs driven by a fractional Brownian motion”. In: J. Differential
Equations 248.7 (2010), pp. 1637-1667.

Xiaopeng Chen, Anthony J. Roberts, and Jingiao Duan. “Centre manifolds for stochastic
evolution equations”. In: J. Difference Equ. Appl. 21.7 (2015), pp. 606-632.

132



REFERENCES

Kening Lu, Alexandra Neamtu, and Bjorn Schmalfuss. “On the Oseledets-splitting for
infinite-dimensional random dynamical systems”. In: Discrete Contin. Dyn. Syst. Ser. B
23.3 (2018), pp. 1219-1242.

Xiaopeng Chen, Anthony J. Roberts, and Jingiao Duan. “Centre manifolds for infinite
dimensional random dynamical systems”. In: Dyn. Syst. 34.2 (2019), pp. 334-355.

Alexandra Neamtu. “Random invariant manifolds for ill-posed stochastic evolution
equations”. In: Stochastics and Dynamics 20.02 (2020).

Ismaél Bailleul. “Regularity of the Itd6-Lyons map”. In: Confluentes Math. 7.1 (2015),
pp. 3—11.

Laure Coutin and Antoine Lejay. “Sensitivity of rough differential equations: an approach
through the omega lemma”. In: J. Differential Equations 264.6 (2018), pp. 3899-3917.

R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications.
Second. Vol. 75. Applied Mathematical Sciences. Springer-Verlag, New York, 1988,
pp. x+654.

Sebastian Riedel and Michael Scheutzow. “Rough differential equations with unbounded
drift term”. In: J. Differential Equations 262.1 (2017), pp. 283-312.

Philippe Thieullen. “Fibrés dynamiques asymptotiquement compacts. Exposants de
Lyapounov. Entropie. Dimension [Asymptotically compact dynamic bundles. Lyapunov
exponents. Entropy. Dimension]”. In: Ann. Inst. Henri Poincaré Anal. Non Linéaire 32.1
(1987), pp. 49-97.

Jorg Bahnmiiller. “Equilibrium states for random dynamical systems”. PhD thesis.

Institut fiir Dynamische Systeme, Universitat Bremen, 1993.

Zhiming Li and Lin Shu. “The metric entropy of random dynamical systems in a Banach

space: Ruelle inequality”. In: Ergodic Theory Dynam. Systems. 34.2 (2014), pp. 594-615.

Jorg Bahnmiiller and Thomas Bogenschiitz. “A Margulis-Ruelle inequality for random
dynamical systems”. In: Archiv der Mathematik 64.3 (1995), pp. 246-256.

Michael Brin and Anatole Katok. “On local entropy”. In: Geometric Dynamics. Vol. 1007.
Lecture Notes in Mathematics. Berlin: Springer, 1981, pp. 30-38.

Philippe Thieullen. “Entropy and the Hausdorff dimension for infinite-dimensional
dynamical systems”. In: J. Dynam. Differential Equations 4.1 (1989), pp. 127-159.

Vitalii Senin. “Pesin’s Formula for Translation Invariant Random Dynamical Systems”.
PhD thesis. Technische Universitdt Berlin, 2019. URL: https://depositonce . tu-
berlin.de/handle/11303/10218.

Salah-Eldin A. Mohammed and Michael K. R. Scheutzow. “The stable manifold theorem
for non-linear stochastic systems with memory. 1. Existence of the semiflow”. In: J. Funct.
Anal. 205.2 (2003), pp. 271-305.

David Nualart. The Malliavin Calculus and Related Topics. Second. Springer., 2005.

133


https://depositonce.tu-berlin.de/handle/11303/10218
https://depositonce.tu-berlin.de/handle/11303/10218




A.1 A pathwise MET

Proof of Proposition 2.2.14. For given n € N, let E} := (el

subspace of V) with ||eX || = 1 and

Vol(T"el, ..., T"e™) > ~ D, (T").

ny

., be an m-dimensional

(A.1.1)

By [18, Lemma 2.3], we can find a closed complement subspace F? to E2 := T"E} in V,, such

that for P? := Hpg2 | F2,

122 < v/m.

Let F! := {v € Vy: T"v € F?}. One can check that F! is a closed complement subspace to
E}. Set P! := g1 pr- From Lemma 2.2.6 and (A.1.1), it follows that there is a constant a,

such that for any v € E}L,

[Tl Do(T™)

> . A12
ol 20T (A12)
From P} = (T”]E}l)’lPﬁT", (A.1.2) implies that
- 200, | T (™
1 1 m
1Bl < (m+ DIT{[[(T" 1)l < Do (T7) (A.1.3)
Let v € F} with |lv|| = 1. Then
Vol(T™el, ..., T"e™, T"v) = Vol(T"e} ..., T™e™) d(T™v, (T™e), ..., T"e™)). (A.1.4)
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Since d(T"v, (T"e,,, ..., T"el")) = infg,er |[T"0 — 31 < BiT7€L ||, we see that

[T
d(Tmv, (Trel, ..., Trem))

<|PI+1<vm+1.

Consequently, from (A.1.1) and (A.1.4),

2(ym + 1) Dyt (TT) (A.1.5)

TM|| <

The rest of the proof is almost identical to the original proof of [18, Proposition 3.4]. First,
one can show that the sequence of subspaces (F™) converge to F' in the Hausdorff distance at
a sufficiently fast exponential rate, cf. [18, Claim 3 on page 2396]. Together with (A.1.5), this

implies the bound
i 1
lim sup ~ log | 7| < L
n—oo T

which was announced in Remark (2.2.15). From the convergence, we can also deduce that F’
is closed and m-codimensional. The identities (2.2.25) and (2.2.26) can be proved exactly as
in [18]. To see (2.2.27), let H = (h1, ..., hyy,) be a complement subspace to F'. Note that, from
(2.2.26) and assumption (ii), for any § > 0, we can choose n large enough such that

exp (n(T - ) < T < exp (n( + )

]l
holds for all v € H. Consequently,

_ A(T™h;, (T™hi)1<iv _
exp (n(l —9)) < ( d(hj-, éhi>1<>il<j) ) < exp (n(l+9))

for all 1 < j <m and (2.2.27) follows. O

A.2 Stability for rough delay equations

In the following, we sketch the proof of Theorem 4.2.9. The strategy is the same as in [37,
Theorem 4.2].

Proof of Theorem 4.2.9 (sketch). For simplicity, we assume that U = W = R. By definition,
¢ 2 1 2
Ysit = / U(yTa 57—7’) dXT = As,t + ps,t = U(ysa gs—r)Xs,t + ps,t + ps,t <A21)
S

where

As,t = U(y87 §s—r)Xs,t + o1 (y37 gs—r)yéxs,t + U2(y57 gs—r)gg_rxs,t(_r)>
pis = 01(Ys, Es—r) VKot + 02(ys, Es—r)Es_,Xsp(—7)  and

t
pg,t = / o(Yr &r—r) dX; — Agy,
S
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A.2 Stability for rough delay equations

using the notation o1 (x,y) = 80 (2,y), o2(x,y) = dyo(z,y). Analogously, one defines A, p'
and p? such that

Ui = Do+ P20 = 0 (05, Eor) Xt + Phy + Do
Note that y, = o(ys,&s—r) and yfft = pi+ P24 It is not hard to see that
As,t - As,u - Au,t = [Ul (ys’ fs—r)yf:u + o2 (ys’ fs—r)gjir,ufr}Xu,t
+ [Ul (yu7 gu—r)y; — 01 (y57 gs—r)y;]xu,t + [UQ(yuv éu—r)géfr - 02(,%7 és—r)a@—r]xu,t(_r)

1
+ /0 (1 - T) [0171(2;,u7 zg,u)(y&u)z + 20172(2;,u7 zg,u)y57y§5—7"7U—7‘

+ 02,2(25 4 z;u)(gs,m,rﬁ] dr Xy
(A.2.2)

where 27, = Tyu + (1= 7)ys, 25, = Tu—r + (1 = 7)€ and 01,1 (2,y) = 020 (z,y), o12(7,y) =
0,0y0(x,y) and o2o(x,y) = 850(1‘,3/). Set
R:=[|X = Xy 0,1 + 1X = Xllay, 0,0 + IX(=) = X(=7)l|21,j0,1
~/ ~# ~
+ 1€ = Ellp o + €7 = & Nl2g 00 + 1€ = Ellg 0,5
Cly) == HXH’Y + HXHQV,[OJ} —+ ”X(_T)”Q'y,[oﬂ + ”yH@)ﬁ’(([QTLW) + Hf”@f{([_r,ww) and
D(X) = Xy + 1Ky + 1K)y + 1€l o109

with an analogous definition of C'(3) and D(X). Tt is not hard to see that there is a continuous

function g : (0,00)* — [0, 00), increasing in every of its arguments, such that

||:01 - Z)IHQB;[a,b] < (b - a)’y—ﬁg [D(X)v D(X)a C(y)v C(@)]
R+ 1y = llgan + 1V = 7 ggas + 187 — 7 l2.0.]

for every [a,b] C [0,7]. From the Sewing lemma [39, Lemma 4.2],

‘(As,t - As,t) - (As,u - As,u) - (Au,t - Au t)’

)

12— Plasun <M sup
Bila] s,u,t€a,b] (t - 5)25

for some constant M > 0. Using (A.2.2), one can deduce that

Sup |(As,t - As,t) - (As,u - ]\s,u) - (Au,t - Au,t)|
s,u,t€a,b] (t - S)QB

< (b—a)Pg[D(X), D(X),C(y), C@)] R+ Iy — Ullogias) + 1V = 7l gjap) + 197 — 5% |25am]-

Now, along with (A.2.1),

ly = 3l gstan) + 1Y = 7 llsa) + 157 = 77 |20 <
(b—a)P§[D(X),D(X),C(y), CO] R+ ly — Ulpas) + IV — ¥ llgfap) + 197 = 77 l25:10)]
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with g being a continuous increasing function. Using the bounds for the norm of y and % provided
in [37, Equation (62)], we can find an increasing continuous function H : (0,00)% — [0, 00)
such that

ly = Gl gijas + 18 = T llgan + 197 — 7% 250 <
(b—a) PH[D(X), D(X)[R+ lly — W) + 1V — 7 lgas) + 157 — 77 l2551a]-

Now by the same argument as for the linear case, cf. the proof of Theorem 4.2.11, one sees
that

1y = Bl g0, + 11V = F g0, + 197 — 57200 < FID(X) + D(X)|R (A.2.3)

holds for an increasing continous function F'. The claim follows from (A.2.3) . O]

A.3 Elements of Malliavin Calculus

Basic definitions

In this section, we quickly sketch some of the necessary definitions and theorems in Malliavin’s
calculus. Most of the proofs can be found in [77]. Let £ be the set of step-functions on R
taking values in R?. Define the Hilbert space H as the closure of step-functions with the

following inner product

<(X[51,t1]a SX3) X[sd,td])’(X[ul,m]v ey X[ud,vd])> =
Z (Rp(siyu;) + R (ti, vi) — Ru(si,vi) — Ru(ti, ui)).

1<i<d

Where
1
Rp(s,t) = §(|1t|2H + [P =t — s

We also can define the isonormal stochastic Gaussian process B = B = {B(¢),¢ € H} on a

complete probability space (€2, F,P) such that

E((B(¢), B())) = (¢, ¥)n, ¢,% €H.

In particular B(X(s, 1] -+ X[sa,ta]) = (Bi(ti) — Bi(s:))1<i<d -
For o < 1 and ¢ € H set

[T s,
0

(ngs)(u) = F(l _ Oé) plta

Note that if supp(¢) C (—o0,b), then

u (0% b u) — xT
D20)0) = =t e [ A,

)1—',—04
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A.3 Elements of Malliavin Calculus

Also for ¢,v € H
1_ g

(6, 0)m = (DT 6, D274 1o gy,

consequently for ¢ € H with sup(¢) C [a, b]

(u (2)]%)?
B(lol) < M [ (” Daus [* ([ j_u;ygg dz) dut
Le (”d’((;‘)_;)ffi” JEO

Let G be the set of smooth cylindrical random variables

(A.3.1)

:f(B(¢1)’7B(¢k))v ¢1 eH, 1 glgk)

where f is a smooth real function. Define the derivative operator by

pPF= % LB B e H

1<i<k

Where DPF := (DBF)(r). Note that this operator is closable from LP(f) into LP(2,H).
Also define DY2(H) as the closure of smooth cylindrical random variables with respect to the

following norm
IFllp120) = E(F*) + E(|IDPF1%,).

We also use 02 to denote the adjoint operator of DB.

Remember

[E(DPF, u)y)|

Dom(68) := {u e L*(Q,H) : sup o0},
O = e I o TRl <>
And for G € Dom(6%) and F € DV2(H) we have the following identity
E(F§P(Q)) = E(DPF,G)%). (A.3.2)

6B is called Skorohod integral. We use 5@ g to denote the Skorohod integral in [s, ], in
particular we write (5[ . t]( u) = [Lu(r)dB, . We have following relations between D and 6% :

o For u € Dom(6P) and F € DV2(H) such that Fu € L?(2,H), then

6B(Fu) = F6P (u) — (DPF,u)y

o Assuming E(||ull3,) + E(|[DPull3,44) < oo and for every r € R, furthermore assume
(6B(DBu)),er € L?(92,H), then

DE(6Bu) = u(r) + 6B(DBu). (A.3.3)
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Stochastic integral

Assume B be a fractional Brownian motion with H < % To define the stochastic integral with
respect to B is more natural to work with the symmetric integral introduced by Russo and
Vallois.

Definition A.3.1. For a given process u, the symmetric integral is defined as

t v Byi— B,_
/ upd°B, := L? — lim urudr,
S

e—0 Jg 2¢

when it exists.
The following Proposition relates the symmetric integral to the Skorohod integral.

Proposition A.3.2. Let u = {u,, r € [s,t]} be a stochastic process such that
2 ! B, |2
E(Jul}) + | EQIDPulf)dr < .
S
Assume that the trace defined as following

B
T'I"[S t]DBu = L2 — lim t <D Uy, 1[T—G,T+e]ﬁ[5,t]>’H
’ e—0 Jg ¢

dr

exists. Then the symmetric integral exists and we have

t
/S u,d° B, = 5[5,t] (u) + T’I"[Svt]DBu.

A.4 Some bounds for the linearized equation

Proof of Theorem 5.2.3. We start with equation (4.2.5). From Proposition 5.1.9, the derivative

of the solution at € in the direction of £ satisfies the equation

Dy*[E](t) — & = /Ot (02 (Y2, &—r) DY* [E)(T) + 0y (45, &—1 )€, ] dX 75t € [0,7]

Dy*lE](t) =&; te[-r0].

(A4.1)

Set Z, = DyE[E)(7) and 1 = 04 (vt E—r) Ze + Uy(yf, )€, Using a Taylor expansion and

the definition of controlled paths, we obtain

7787t = U:E(ygv §S—T)Z;X87t + [0$2 (ygv §S—T)(y£)<lsX57t + Um,y(yga és—?")g;erS_"'yt_"'}
ZS + O-y(y§7 gS—T)(g);—TXS—T,t—T (A42)
+ [U%y(ygv fs—r)(yg);X&t + Oy2 (y§7 SS—T)fg—rXS—Tyt—T]ES—T + 77?;
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A.4 Some bounds for the linearized equation

where

77?; = [O'z(ytga gt—r) - O'x(yga fs—r)} Zs,t + [Uy(yfa gt—r) - O'y(yg’ gs—r)]gs—r,t—r_}_

#
Ux(yga gsfr)th + Uy(yga 55*7’)55,15 + [%2 (yg, fsfr)(yf)ﬁt + Um,y(ygv 58*7")6::#—7",15—7"] Zs
+0y2 (@/23 £S*T)£ir,t—r]gs—r + [Uw,y(yg’ gsfr)(yg)ﬁt

s - (A.4.3)
+ =2 o tenf + 0= 2t + (- 26| 202
0
1 d2 ¢ _
[0 e + (1= 2ty + (1= D) [
and Z,; = Z\ X, + Z7, with
Zy = 00 (Y5, Es—r) DY*[E](s) + 0y (45, E—r)E s

By Theorem ﬁ, for a delayed controlled path with decomposition 7 ; = 77; Xs,t+77§ X rirt
nft, we have for any wg € W

fst Nr dXT - nsXs,t

Fila.t] a<s<t<b ’t - 5’26

(A.4.4)

Hwo +/ Nr dXTH@f([aM < |wol + [nal + [|7]
a

and

[rn, dX, = nsXey
sup
a<s<t<b ’t - 3‘25

1% oot 1K (=) |sgap (b — @)20~5)+

M |:H77#”2,3;[a,b] ||X”'y;[a,b](b - a)’Y + Hnl”/&[a,b} HXHQ’y;[a,b] (b - a)27718+

= HanOO%[avb}HX”%[a,b](b —a)? 0P

17215401 1K) 2 g (b — a)M]

for a general constant M. Thanks to our assumptions on o, (A.4.2), (A.4.3) and Theorem
5.1.8,

ma {7 3ot 172 0t 7% st } < (1205 0,1 + 1Bl ) @1 (A€l )
and

1o < 0= @7 112l g 0, + 1€l g ) Q1A IEl g2 )

for a polynomial ;. Using this bound in (A.4.1), we see that for 0 < (n —1)7 <n7 <r

”Z”@§[(n_1)r7n7—] < T’YiIB”Z”@f([(n—l)’r,n’r]QQ(A’ |’§H@§[—7‘,0])

1€l g @24 Il 2 ) + Znmye] + 1 Zinaye
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for a polynomial Qy. Choosing 7 such that 77~2Q,(A, 1€l 5 0] ) < 1, we can proceed as in
X

the proof of Theorem 4.2.11 to conclude the claimed bound for (4.2.5). The proof for (5.2.1)

is similar. 0

Proof of Theorem 5.2.4. We will prove the statement for the solution to (4.2.5) only, the proof
for (5.2.1) is similar. Set Z! := Dy*[n](7) and Z2 := Dy%[n](7). From Proposition 5.1.9,

(Zgy— 23] = / t [02(v5, &) ZE — Z2) + B, dX, (A.4.5)

where

B = [Jx(yﬁ,&-,r) - Ux(yﬁngfr)]Zf + [Uy(yﬁv&'fr) - Uy(yﬁagr—r”m'*r
=: B} + B2

Set Cr = [Ux(y£7 Er—r) — O'x(y'zg—) gT—r)]' By a Taylor expansion,
Csp = 002 (45, E—r) () — 002 (45, &) ()] Xt
+ [Ux,y(ytgagt—r)gg r — Oz y(ysagt 7’) ] s=rit—r

+ [O-xz(ygvgs—r)( )ft -0 2(ys,§8 r)( )s t]
+ [Ux,y(yga §s—r)§s,t - Jiﬂ,y(ys7£s—'r)§s,t}

s [ E ot + 0 - ot + (- 28
— Ux(zyt (1- Z)y37 th (1= Z)gs—r) dz
= O} Xy + O3 X rpr + CF.
Note that
= / { 02 (2yf + (1= 2), 26 + (1 — 2)€,,)
— oua(ayf + (1= 2o+ (1 D) | ()i
0 (5,6 (50 — W),
[ ol (- 2+ (1= )| 490 2
(00 (05, ) — 02 (05 ] () — (991
From Theorem 5.1.8, Theorem 5.2.3 and our assumptions on o,

max {||01H5;[0,r]> HCl”oo;[O,r]} <

_ _ (A.4.6)
1€ = Elys oy 0 [Pr(A €Dy g 1E = Ell g2 )]

where P; is a polynomial. Note that

Bl, = [CiXod Z2 + Col(Z°), Xo] + [CXsmr—i) 22 + CLZE + OA(Z2)E, + Cou 22,
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A.4 Some bounds for the linearized equation

Setting D, = Uy(yﬁ, Er—r) — Uy(yé, ET_T), we have the same decomposition for B2 = D1, _,
with similar estimates. Using Theorem 4.2.5, we can deduce that there exists a polynomial P,

such that for every [a,b] € [0, 7],

| [ BrdXel g0y <

~ R (A.4.7)
1€ — 5“_@)5([,7"70} H77||_@§[,r70} exp [P(A4, ||§||@§[,T,O]a 1€ — €||9§[*T70})]'
By a similar argument as in the proof of Theorem 5.2.3,
I oatwo )2 = 221X gy <
a Ixlet] (A.4.8)

— 2 1
(b= a2 = 2" g2 oy P (A 1€l o)

for a polynomial P;. Finally from (A.4.5), (A.4.7) and (A.4.8), we obtain for 0 < (n — 1)7 <

nrtr<r

1 2 — 1 2

”Z -7 H_@?{[(n_l)fr"n/r] <7 /BHZ -7 HOj)ﬁ{('n,—l)ﬂ','nﬂ']F)3(‘4’ ”gHOJ)E([—'I‘,O])
+ 11§ — £||9§[,T70] ||77||@§[,T70] exXp [P2(Av ||§H@§[,r,0]v 1€ — gH@f([*T,O])]
+ HZl - ZQ](nfl)T‘ + ’[Zl - ZQ]I(n—l)T|

Choosing 7 such that 77=2Q(A, 1€l 56 (n—1)r m])
X b
Theorem 4.2.11 to obtain the result. OJ

< %, we can again proceed as in the proof of
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