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A new discretization framework for input/output
maps and its application to flow control

Jan Heiland, Volker Mehrmann and Michael Schmidt

Abstract We discuss the direct discretization of the input/outpup widinear time-
invariant systems with distributed inputs and outputs. ¥t fithe input and output
signals are discretized in space and time, resulting in aixnepresentation of
an approximated input/output map. Then the system dynasagproximated, in
order to calculate the matrix representation numericale discretization frame-
work, corresponding error estimates, a SVD-based systdottien method and a
numerical application in optimal flow control are presented

1 Introduction

The control of complex physical systems is a big challengmamny engineering
applications as well as in mathematical research. Typictilese control systems
are modeled by infinite-dimensional state space systentsedreisis of (instationary
and nonlinear) partial differential equations (PDESs). Titifculty is that on the one
hand, space-discretizations resolving most of the stédenration typically lead to
very large semi-discrete systems, on the other hand, pogetagn techniques for
real-time controllers like robust control require lineanakels of very moderate size.
Numerous approaches to bridge this gap are proposed int¢hatlire, see e.g.
[1; 4]. In many applications it is sufficient to approximalte thigh order model by a
low-order model that captures the essential state dynaifoocdetermine such low-
order models one can use physical insight [17; 21] and/ohema&tical methods like
proper orthogonal decomposition [5] or balanced trunecgtio 20]. In this paper we
focus on the situation where for the design of appropriategrotiers it is sufficient
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to approximate thenput/output (i/0) mapf the system, schematically illustrated in
Figure 1.

For such configurations, empirical or simulation-baseadllaox system identi-
fication [3; 14], and mathematical model reduction techeglike balanced trun-
cation [12], moment matching [10] or recent variants of goprthogonal decom-
position [23] are common tools to extract appropriate lodeormodels. Typically
the bottleneck in these methods is the computational effiocbmpute the reduced
order model form the semi-discretized model which ofterf iseny high order.

In contrast to this, we investigate a new and integral appraea derive directly
low-order models with error estimates for the i/o behaviat imstead of semi-
discretizing the system in space and then reducing thie largdel, we focus di-
rectly on the i/o map of theriginal infinite-dimensional system, in the following
sections denoted by

G:%—%, u=ut0)—y=y(t¢E)

and we suggest a framework for its direct discretizatiorafgeneral class dihear
time-invariantsystems (introduced in Section 2.1). Ha@ndy are input and output
signals from Hilbert space®& and#/, respectively, which may vary in timteand
spacef € © andé € =, with appropriate spatial domaid@and=. The framework
consists of two steps.

1. Approximation of signals (cf. Section 8Ye choose finite-dimensional subspaces
% C % and¥ C % with bases{u,,...,us} C % and{y,,...,yg} C %, and
denote the corresponding orthogonal projectioné@@yand P, respectively.
Then, the approximation

GS - PufG]Po)/_

has a matrix representati@e RI*P,

2. Approximation of system dynamics (cf. SectionHgquently,G arises from a
linear PDE state space model. Then the componéts= (yi,Guj)@, can be
approximated bywumerically simulatinghe state space model successively for
inputsu;, j = 1,..., pand by testing the resulting outputs againsyall .., yg.

We discuss several features of this framework.

Physica
System

l

Fig. 1 Schematic illustration of an input/output map, corresponding physical system, given
e.g. by a set of equations or a numerical solver (black-box appjoa

actuators——)

sensors—— Y
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Error estimation (cf. Section 5Jhe total erro, g can be estimated by tisggnal
approximation erroeg and thedynamicalapproximation errog, i.e.,

|G = Gpgl| < |G —Gg|| + |Gs— Gpgll, 1)
=& =& = SD
—“DS S -

where the norms still have to be specified. H&lg; denotes the numerically es-
timated approximation ofs. Theorem 3 shows how to choo%e and#” and the
accuracy tolerances for the numerical solutions of the tyidg PDEs such thadg
andep balance and thadg+ &5 < tol for a given toleranceol.

_ Progressive reduction of the signal err@hoosing hierarchical bases# and
%, the erroreg can be progressively reduced by adding further basis fomsti
Ugy1,Ugio, - @NdYgq, Y2, resulting in additional columns and rows of the
matrix representation.

Control Design (cf. Section 6.2The matrix representatio = [Gij] may di-
rectly be used in control design, or a state realization efith modelGg can be
used as basis for many classical control design algorithms.

2 I/o maps of linear time-invariant systems

ForQ c RY, d e N, L?(Q) denotes the usual Lebesgue space of square-integrable
functions, andH?(Q), a € N, denotes the corresponding Sobolev spaceg-of
times weakly differentiable functions. We interpret funosv, which vary in space

and time, optionally as classical functions[0, T| x Q — R with valuesv(t;x) € R,

or asabstractfunctionsv: [0,T] — X with values in a function spacé such as

X =HY(Q). Correspondingly1? (0, T;HF(Q)), with a, B € N,, denotes the space

of equivalence classes of functions[0, T] — HF (Q) with t — HVHHB(Q) beinga-

times weakly differentiable, for details see e.g. [7]. Weaduce Hilbert spaces

HYB((0, T)xQ)': a(0,T;L%(Q))NL%0,T;HP(Q)), 2)

v p VI

HaB((0T)xQ) " ”V”H“ 0T;L2(Q L2(0,T;HA(Q))’ (3)

see e.g. [18]. BYZ([0, T]; X) andC¥([0, T]; X) we denote the space of functions
[0, T] — X which are continuous respectivalytimes continuously differentiable.

For two normed spacesandy, £ (X,Y) denotes the set of bounded linear oper-
atorsX — Y, and we abbreviat&’(X) := .Z(X,X). Fora e N, L“(0,T;.Z(X,Y))
denotes the space of operator-valued functins[0,T] — .Z(X,Y) with t —
HK(t)H;’f(X,Y) = suR, [K(t)xlly /[[Xl[x lying in L?(0,T). Vectors, often represent-
ing a discretization of a function are written in corresponding small bold lettgrs
whereas matrices, often representing a discrete versian operator likei or G,
are written in bold capital letteis. R?*F stands for the set of real x 8 matrices,
andA ® B denotes the Kronecker tensor product of two matricesdB.
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2.1 1/o maps of co-dimensional state space systems

We consider infinite-dimensional linear time-invarianst®ms of first order

dz(t) = AZ(t) +Bu(t), te (0,T], (4a)
7(0) = 2°, (4b)
y(t) =CZt), te][0,T]. (4c)

Here for every timé € [0, T], the state(t) is supposed to belong to a Hilbert space
Zlike Z = L2(Q), whereQ is a subset oR% with d,, € N. Ais a densely defined
unbounded operatok : Z O D(A) — Z, generating &°-semigroup(S(t)),-o on
Z. The control operatoB belongs to.#(U,Z) and the observation operatGrto
ZL(Z,Y), whereU = L%(0) andY = L?(=) with subsets® ¢ R% and = ¢ R%,
d;,d, € N.

We recall how a linear bounded i/fo-mé&be £ (% , %) with

% =1%0,T;U) and # =L?0,T;Y)

can be associated to (4), for details see e.g. [22, Ch. 43.\tell-known that for
initial valuesz, € D(A) and controlsu € C1([0,T];Z), a uniqueclassical solution
ze C([0,T];Z)NC((0,T);Z) of (4) exists. Foz, € Z andu € %, one has

Z(t) = S(t)zOJr'/(;t St—s)Bu(s)ds te[0,T], (5)

the so calledmild solutionof (4). Hence, the output signg(t) = Czt) is well-

defined and belongs t& NC([0,T];Y). In particular, the output signalgu) € %

arising from input signalsi € %7 and zero initial conditiong, = 0 allow to define
the linear i/o-mapG : Z — % of the system (4) by — y(u). It is possible to
represenG as a convolution with the kernel functidhe L?(—T,T;.2(U,Y)),

~ JesyB, t>0
K(t)—{Q o (6)
Then the i/o-mayis of (4) has the representation
T
GUH = [ Kit-susds te(0T], @)

and belongs t&Z (% , % )N.L (%« ,C([0,T], %)), c.f. [24].
To obtain error estimates we will assume additional smasgkof the input and
output signals, i.e., according to definition (2)

Gy € L (Us %), With % =HP((0,T) x©), %=H%P((0,T)x 3),
(8)

for somea,, B;, a,, B, € N different from zero.
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Remark 1Assumption (8) is fulfilled by many linear time-invariantssgms with
distributed controls and observations, like the heat eguatith homogeneous Neu-
mann boundary conditions and more general parabolic emsatsee [18] and [19].
For Stokes systems, results similar to (7) and (8) are obtaby working with
appropriate subspaces of divergence-free functions,2&e\\Vave equations with
second order time derivatives can be represented in formd)adr{d (7) by means
of an order reduction. Hyperbolic systems do not have theosimmg property of
parabolic systems, such that results like (8) demand irigoats of higher regular-
ity in time, see [18, p. 95]. However, systems with boundamgtmol or pointwise
observation do not fit directly into the setting (4).

2.2 1/o map of linearized Navier-Stokes systems

In order to apply our concepts to flow control we consider thedr differential-
algebraic equation (DAE) system

B2 Q][5 wen
v(0) (10)

arising from the spatial discretization of a linearizedo(ard a steady-state solu-
tion) Navier-Stokes equation. Hevét) € R™ andp(t) € R™ represent the spatially
discretized velocity and pressurigf) € R™ contains the volume forces and the
boundary conditions anBu(t) € R™ stands for the discretized input functia(t)
mapped into the field of volume forces via an oper&of he system is defined by
constant coefficient matricdd, A, J, Q of appropriate size.

Assume thaty .= J} is invertible which is equivalent to the unique solv-

A
_J7 Q
ability of the stationary problem. In addition we assume #al exists, which is
the case for the Stokes and for reasonably formulated Ossegrizations. As a
conclusion we have th&:= Q-+ J"TA1J is invertible and

. {[I —A s mAL —Alel]
sTat st ’

Premultiplying (9) by 1 and settingg,, = [| —A"1JS1JT]A"IM andE,, =

S 1ITAIM we get the equivalent system

Ev(®)]  [v)] _ [EuM MO +Bu®)]]
{E;V( J% (t)} {Eﬁ [f(t)+BU(t)J’ in (0,7,
v(0) = v,.
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To express the solution of this system explicitly we introglisome terms from
DAE calculus, see e.g., [16].
Consider a linear DAE initial value problem defined by its mgpair (&, <7 ):
Ex+gx=f(t), forte][0,T],
X(0) = Xg.

Definition 1. A matrix pair (&,.<7) with &,/ € R™" is regular, if detA & + &)
does not vanish identically for aMl € C.

(11)

For a regular matrix pair one has the Weierstral3 canonicai.fo

Theorem 1 (Weierstral3 canonical form, [11]) Let (&, <) be regular matrix pair.
Then, there exist nonsingular matrices B, € R™" such that

werrormy = ([38 [5])

where T is a matrix in real Jordan canonical form and N is a otgnt matrix also
in Jordan canonical form. Moreover, it is allowed that onetloe other block is not
present.

If the index of nilpotency ofN in Theorem 1 i, then one defines ifd’, «7) :=
v, saying(&, «7) or the corresponding DAE has (differentiation) index

Setting ind&) := ind(&, 1) it follows by the definition thav = ind(&,1) is the
smallest integer for which rark’+1 = rank&" holds. In this case the differentiation
index of & is equivalent to the matrix index, used in the following ditiim of a
generalized inverse:

Definition 2. Let & € R™ have ind&’) = k. A matrix X € R™" satisfying

(D1) &X=X&
(D2) X&X =X
(D3) X&KL= gk

is called a Drazin invers&P® of &.

The Drazin inverses® is well defined and unique. By means of the introduced
concepts one obtains the following solution formula:

Theorem 2.Let &, <7 € R™ be a commuting regular matrix pair. Furthermore,
let f € CY(0,T;R") with v = ind(&,.<7). Then every solution & C1(0,T;R") of
&x+ o/x = f(t) has the form

t
x(t) = e It EPsqt [e P9 gD (g)ds +
0

(I-&P&) Vi(-&ﬁ)iwﬂn(t)
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for some ¢ C".

Thus, ifg exists such, that

v—1
X =EPEq+ (1 - 6P8) %(—@wD)wD £0(0),

then (11) possesses a unique solution, provided4hatd.<7 form a regular com-
muting matrix pair and f is sufficiently smooth. Note that fegular matrix pairs
the commutativity requirement is not a restriction, see [d.§.

E;; O
E,; O
One can show that if&) = 2 and indE,;) < 2, and thus we get the expressions

EP O EPE,, O
ED_{ 1, ] ’ EDE_{ll 11}
E21EJI?1 0 E21E]|.31 0

—EPt) 0
exp(—EPt) = | SPEn }
Pl ) l:E21E1D1exq_E[lDlt) 0

In the present case withY = | and& = E = { this formula simplifies.

In addition we assume that ifi, ;) = 1 which can be shown for the Stokes case
and should be demanded of a reasonable discretizationdantiie general Oseen
case, c.f. [8]. Thus, the explicit solution of (9) reads

v(t)]  [exp(—EPt)ERE av
[p(t)} a {EzleXp(l—lElDlgEiDiCIV] 12)
/f[ exp(—EPy(t—1))EERM (1) +Bu(r)] ] 4
o [Eprexp(—Epi(t—1))(Ef))*EyyM(f(1) +Bu(1)]

0
i {E21[| — EnEyMHf() +Bu(t)]} ’

if (t) +Bu(t) is differentiable and, is a consistent initial value. Note that for the
solution of the velocity component one only neéd$+ Bu(t) to be integrable and
av such tha€,EP qu = v,

Applying an output operatd®’ to the first component in (12) one gets an explicit
formula for the outpuy(t) = CTv(t) = CTv(t; u), depending on the input We will
consider only the part which dependswand define the i/o ma® :  — % via
the formula

() = (Gu)(0) =CT [ expl—EX(t-1)ELERM TBu(ndr. (19

Due to the linear character of the equations the ouypcari be recovered by
adding the response of the uncontrolled system Note thatG is of type (7).
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3 Discretization of signals

In order to discretize the input signalse %7 andy € % in space and time,
we choose four familieiuhl}hPO, {Yhz}h2>0, {%Tl}ﬁ>0 and {YTZ}T2>O of sub-
spacesiJhl cu, Yhz CY, % C L?(0,T) and.#z, C L?(0,T) of finite dimensions
pthy) = dim(Uhl), q(h,) = dim(Yhz), r(ry) = dim(Z;,) ands(t,) = dim(.#7,). We
then define

%hl’rl ={ueZ:u;)e Uhl, u(-;0) € %, foralmostevenyt € [0,T],6 € ©},
Y, = YEZ 1Y) €Y, ¥(§) €7, foralmostevent € [0,T].& € =}

We denote the orthogonal projections onto these subspad@sjg € Z(L%(0,T))
Ponoa, € Z(%) andPy \, . € Z(¥). As first step of the approximation &,
we define

Gs =Gy, Ty, 0, 1) =Py y - GPy 1, o € L(U, D). (14)

In order to obtain a matrix representation@§, we introduce families of bases
{My,...,up} of Uhl’ {vi,...,vq} Othz’ {o,....0} ofe%’rl and{y;,..., s} of 71,
i i pxp axq rxr
and correspondln_g mass mgtrltrég_’hl € RPP My, € R, M%H € R™" and
M ., € R®"S for instance via

[MU)hl]ij:(upui)U? |,J:1,,p
These mass matrices induce, for instance via
(V, W) pw = vTMU_’hlw for all v,w € RP,

weighted scalar products and corresponding norms in tipecéise spaces, which
we indicate by a subscript, like R, with (-,-)pw and| - || pw, in contrast to the
canonical spaces IikRP with (-,-)p and||- || ,. We represent signalse %hl‘rl and

yes,  as

pr q s
u(t; 8) = kzli;UM(t)uk(GL y(t: &) = I;gly',— Yty (&),  (15)

whereuk are the elements of a block-structured vectar RP" with p blocksuk €
R", and the vectoy € R%is defined similarly. Then

lu

2 = Ullprw, —and lylly = [[Yllasw,

where || - |[prw and || - [gsw denote the weighted norms with respect to the mass
matrices
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_ prxpr _ gsxqs
Muno, =Myn ®Mg eRTZE My p o =Myp @M, € RTTE

i.e., the corresponding coordi.nate isomorphiskys, . € "g(%hl,rl’R\E)vr) and
Ky hy.1, € f(%z’rz,Rf}vs) are unitary.
Finally, we obtain a matrix representati@nof G4 by setting

G =G(hy,13,h,,1,) =K, P, GP,, k! € RIP", (16)
where the dependencies bp 1;, h,, 7, have been partially omitted. Considering

H=H (hla T17 h2’ TZ) =M ?yvh2=T2G S Rqsx pr

as a block-structured matrix withx p blocksH € RS*" and block elementsl¥'
R, we obtain the representation

HE = M, Ky, Py G0 @) = (. G(1@) (17)

To have a discrete analogon of tH&(%,% )-norm, we introduce for given
%hl T and@hzj2 the weighted matrix norm

. ” HQSW 1/2 -1/2
HG(hlﬂrlth’TZ)”qsxer = S%E{ ||u||er ”M/J/h T GM%’{]l,T1||qSXpr7 (18)

and we write(h}, 71,1, 15) < (h;, 7, h,, T,) if the inequality holds component-wise.

Lemma 1 ([24, p. 44]).For all (h;,7;,h,,T,) € R, we have
Gy Ty, T lgseprow = BNy Mo ) L) < 1G]y (19)

If the subspaces?, . }p r -oand{#, o are nested in the sense that

rz}h To>

%h T C02/h’ @h T Cg”/h’ ’ for( ?I.aT17h2>T2) (hlaT17h25T2) (20)

R
then||G(hy, T, hy, T,)||gsx pr.w Monotonically grows andG(hy, 7;, 0y, T,) [l gsx prow 1S
convergent foch,, 7;,h,, 7,) \, 0.

4 Approximation of system dynamics

We discuss the efficient approximation @ respectively of its matrix represen-
tation G = M;H. For time-invariant systems with distributed control arfat o
servation, this task reduces to the approximation of thevaation kernelK €
L2(0,T;.2(U,Y)).
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4.1 Kernel function approximation

We recall the notation of the general linear time-invariapgétem (4) for a state
z(t) e Zfort € [0, T],

dz(t) = AZt) +Bu(t), te(0,T], (21a)
2(0) =2, (21b)
y(t) =Czt), te[0,T], (21c)

that can be associated with a bounded i/o map
T
G: U - (Gu)t) :/ Kt—sus)ds te[0,T], 22)
0

where?/ and?%” denote the Hilbert spaces of the input and output signals.
Inserting (22) in (17), by a change of variables we obtain

T /T T
HE = [0 008 oKt =9y dsdt= [ Wy 0K, (0t

with matrix-valued function§V : [0, T] — RS*" andK : [0, T] — R¥*P,

T—
Wi (1) = 0 t Y (t+s)g(s)ds Ky (t) = (Vie KO 1 )y

and thus T
H :MOJG:/O K (t) & W (t) dt. (24)
For systems of the form (21), the matrix-valued functioiis given by
K () = (v, CS1)BY, )y = (¢, S(t)by) 7,

wherecy = C*v, € Zandb, =By, fork=1,...,qandl =1,...,p. Hence K can
be calculated by solving homogeneous systems

Z|(t) = A4 (t)a te (O’T]a (25a)
z(0)=h, (25b)

since (25) has the mild solutiog(t) = S(t)b € C([0,T];L?(Q)). We obtain an
approximatiorH of H by replacingg, (t) by numerical approximatiors, , (t), i.e.,

- T .
= / R (t) @ W(t)dt, (26)
0

with Ky (1) = (V,C7 o, (1)y = (G»7 1oy (1)), Here the subscriptol indicates
that the errog, — 7 , , is assumed to satisfy some tolerance criterion which will be
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specified later. The corresponding approximatiiyy of G is given by
Gps = K5'Gk,, P, withG =M (27)

and depends on;, h,, 7;, T, andtol.

4.2 Dynamics approximation error

The following proposition relates the system dynamicsreggoto the errors made
in solving the PDE (25) for=1,...,p.

Proposition 1 ([24, p. 51]).The system dynamics erreg := | Gg— GDSH:[(
satisfies

max |K., —
)i<i<p’ 7

& < VT|K - Iz||L2<0,T;1R9vxp) <pvT Rtz oz

28
HereK ., andlzlI denote the Ith column &(t) andK (t), respectively;\maX(M\E’hz))
is the largest eigenvalue MY,hz andA,,(M u,hl) the smallest eigenvalue MU,hl'
RI*P denotes the space of reabgp-matrices equipped with the weighted matrix
norm ||M ||q>< pw — SURJ;AO HMU ||C|;W/||UHD:W-

1

4.3 Error estimation for the homogeneous PDE

In order to approximate the system dynamics, the homogeneB (25) has to
be solved via a fully-discrete numerical scheme fodifferent initial values. A
first goal is to choose the time and space grids (and possibly dikeretization
parameters) such that

HK:,I -

<tol resp. [KY — <tol (29)

K.) ”LZ(OAT;RQ) K ”LZ(OAT;]RQ)

is guaranteedor a giventol > 0 by means of reliable error estimatorssacond
goal is to achieve this accuracy ircast-economiavay.

Discontinuous Galerkin time discretizations combinedhvgtandard Galerkin
space discretizations provide an appropriate framewodetive corresponding er-
ror estimates, also for the case of adaptively refined gridislware in general no
longer quasi-uniform, see e.g. [15]. We distinguish tweetypf error estimates.

Global state error estimatemeasure the errofz —z ) in some global
norm. For parabolic problems, a priori and a posteriorineates for the error in
L®(0,T;L?(Q)) andL>(0,T;L*(Q)) can be found in [9]. Such results permit to
guarantee (29) in view of
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1/2
. q
||K:,| - K:,I HLZ(O,T;RQ) < ||CH=~ZJ(ZY) (iZ\”Vi %) ”Z_ 21(;IC),]_H|_2(0,T;Z)' (30)

Goal-oriented error estimatesre used to measure the erjer. | — K o ||L2(O T:R)

directly. This may be advantageous, since (30) may be vergawative. A general
introduction to goal-oriented error estimation and sgee for mesh adaption is
given in the monograph by Bangerth and Rannacher [2].

Assumption 1Given a toleranceol > 0, we can ensure (by using appropriate
error estimators and mesh refinements) that the soluj@fg25) and the solutions
Z ., calculated by means of an appropriate fully-discrete nigakscheme satisfy

HK:’I — < tol, I=1,...,p. (31)

K. ”LZ(OAT;]RQ)

5 Total error estimates

We present estimates for the total error in the approximatioG. Using general-
purpose ansatz spac@ﬁlﬂ and@fhzr2 for the signal approximation, we only obtain

error results in a weake¥’ (%s,%)-norm.

Theorem 3 ([24, p. 55]).Consider the i/lo magz € (% ,%') of the infinite-
dimensional linear time-invariant systgi) and assume that

0] G\“//s € L (%, %) with spaces of higher regularity in space and time

Us=H"Pi((0,T)x0), Z=H%P((0,T)x =), a;,B;,0,B,€N.

(if) The families of subspacess, . }, ., and{%, .}y . satisfy

=By Ul < (€t +ch)ul,,,  ue
IY=Pyp Yy < (Cotiz+ch2)yl,,  veEZ
L 2Lp) 2 2 s

with positive constants g ¢, ¢; and G,.
(iif) The error in the solution for the state dynamics can bad® arbitrarily small,
i.e. for a given tolerance equatigB1) holds.

Letd > O be given. Then one can choose subsp@;@lgi and @3‘% such that

IG —Gpgll g9 2) < O

Moreover, the signal errog§ := |G — Gs”g(% 2) and the system dynamics error
& = [|Gg— GDSHX(%_@,) are balanced in the sense thef{ &, < 5/2.



Discretization of i/o maps and application to flow control 13

6 Application to Flow Control

As a test case we present a 2D driven cavity problem modejlébdebOseen equa-
tions for the velocityv and the pressur@ in Q x | := (-1,1)? x (0,0.1]. Let
Qc=(-0.2,0.2) x (—0.7,—-0.5) and and?, = (—0.1,0.1) x (0,0.6) be rectangular
subsets of2 where the control is active and the observation takes ptaspectively,
c.f. Figure 2.

Fig. 2 Schematic illustration
of a 2D driven cavity flow
and the domains of control
and observationQ. and Qn,
respectively.

SettingY = [L2(0,1)]? andU = [L?(0,1)]?, we defineC € .Z([L?(Q)]%,Y) and
Be Z(U,[L*(Q)]%) by

01 . Om 0cXy ), , Qc,
(Cv)(E):/_M%dxl, (BU)(Xg, %) = {g( % (SI(;e)\(/f/i\Sre

wherefy, : [0,1] — [0,0.6] and 6 : [-0.2,0.2] — [0,1] are affine linear mappings,
that adjust the spatial extensions of the signal spacesteedpective domain@.
and Qn,. By definition, B maps the two input signal components into the control
domain such that they are homogeneous,uiirection. The output is extracted as
the average in;-direction of the velocity within the observation domain.

Thus the considered system reads

1
Vi + (Voo - )V A+ (V- O)Veo + Op— R—eAv=(voo -0)Ve + Bu,
0-v=0,
y=C'v,

with initial and boundary conditiong, _,= v., andv|,,= g.

Hereg defines the boundary data for the driven cavity with movingargid and
Ve denotes the steady state solution.

A stabilizedQ1 — PO finite element discretization of the state space convieets t
above system into a DAE of type (9), see e.qg. [6] for techrigsales. To distinguish
the spatially discretized quantities from the continuogsusge bold letters, e.g.
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denotes the spatially discretized velocity=or an appropriates., c.f. [13], the ob-
tained system meets the assumptions necessary to esthglisbrresponding i/o
mapG via (13).

The considered system was investigated on a uniform reglant28x 128 grid
with the Reynolds numbeRe= 3333. For the numerical estimation@f,5 a mod-
ified projection algorithm [13] with 128 timesteps was used.

6.1 Tests of convergencein signal approximation

The following numerical convergence tests have all beenethout with approx-
imations Gpg(hy, 74, h,, T,,t0l) of the i/o-mapG corresponding to the spatially
discretized system (6). Hierarchical linear finite elensleimuhl anth2 and Haar
wavelets in%’rl and&”r2 have been chosen.

To check the convergence in the signal approximation nwakyj we chose the
testsignali(t; 8) = [sin(10mt) sin(1070) 0] with its numerically computed system
responsg/ = GO. As a measure for the error the relative deviatign- ¥, (|dl|,,
with § = G4l for varying discretization parametens, 7,, h,, T, was taken. Figure
3 (a) shows the evolution of the signal approximation eroord fixed time dis-
cretizationr; = 1, =0.1- 2-5 and varying space resolution of the signals. In Figure
3 (b) the roles of the space and time discretization are athng

10" 10"
4 error for 4 Srror for
=T, = 0.1/32 h1 = h2 =1/33
slope of quadraticc /a slope of lineal
convergence convergence
A
10° 10°
A A
A
A
A A
6 -6
1075 - 10
107 10" 10° 107 1072 10
h, =h T, =T

1 2 1 2

(@ (b)

Fig. 3 Relative output errory — ¥, [|0[|,, with § = G40 errors for (a) varyindy, = h, and fixed
1, = T, = 0.1/32 and (b) for varying, = 1, and fixedh; = h, = 1/33.

The convergence is in the region where it is assumed for appadions using
piecewise constant or piecewise linear finite elementse Nwdt it is necessary to
balance space and time resolution properly, as indicatetthdoypreakdown of the
quadratic convergence of the space discretization on tledblevel of the time
approximation error as shown in Figure 3 (a).
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6.2 Application to Optimal Flow Control

We investigate the use of the i/o-map approximation in ojzétion problems
minJ(u,y) subjecttoy=Gu, ue%. (32)
HereJ: % x % — Ris the cost functional (u,y) = 3|y —yp |3 +allull?,, yp € #

is an aspired system’s output signal, amd> O is a regularization parameter. We
define the discrete cost functional

— — 1
I R XRE=R, Jy(uy) = Sly = Yolasw+ allulfew  (33)
With yp = Ky, ,Pa 1, 1, Yo, @nd instead of (32) we solve

ming, (u,y)  subjecttoy=Gu, ueU (34)
with the solutionu of (34) characterized by
(G™™,,G+aM,,)u=G"M,yp. (35)

As the targey/, we chose the output corresponding to the inge= [1 4" and
solved (35) with the finite dimensional i/o mé&pe R3416<3416 of the driven cavity
case andr = 10",

Solving the linear equation system tool0837 seconds and yieldeduavhich
reduced the energy by ZP6 while causing a relative deviation in the output of
2.26%, c.f. Figure 4.

0.016 — 0.016 -
—— output of optimized signal — output of optimized signal

- - - output of reference signal - - - output of reference signal

uncontrolled output signal uncontrolled output signal

0.01

0'0040 0.05 0.1 0 0.05 0.1
t t

(@ (b)

Fig. 4 lllustration of thex,-component of (a) the output signasi, andGu and (b)Gu, andGu
for varyingt and& = 0.5. Hereu, andu representi, andu in the discrete and continuous input
space, respectively.
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7 Conclusion and Acknowledgement

The presented method provides a completely algebraic geptation of the in-
put/output behavior of a linear time-invariant systeme like Oseen problem. The
developed error estimates guarantee a desired qualityeadghroximation. As il-
lustrated by the numerical example this i/o map also leadsédul solutions of the
inverse problem of determining controls with very shortoédtion times.

This work was funded by Deutsche ForschungsgemeinschtfinCollabora-
tive Research Center (Sfb) 5&806ntrol of complex turbulent shear flows

References

[1] A. C. Antoulas,Approximation of large-scale dynamical systeAdvances in
Design and Control, vol. 6, Society for Industrial and ApgliMathematics
(SIAM), Philadelphia, PA, 2005.

[2] W. Bangerth and R. Rannach&iaptive finite element methods for differential
equationsBirkhauser, Basel, 2003 (English).

[3] R. Becker, M. Garwon, C. Gutknecht, GaBvolff, and R. King,Robust con-
trol of separated shear flows in simulation and experiménof Process Con-
trol 15 (2005), 691-700.

[4] P. Benner, V. Mehrmann, and D. Sorensen (Editdbsnension reduction of
large-scale system&NSCE, vol. 45, Springer, Heidelberg, 2005.

[5] G. Berkooz, P. Holmes, and J. L. Lumléyhe proper orthogonal decomposi-
tion in the analysis of turbulent flow&nnual review of fluid mechanics, Vol.
25, Annual Reviews, Palo Alto, CA, 1993, pp. 539-575.

[6] H. C. EIman, D. J. Silvester, and A. J. Wathdinite elements and fast it-
erative solvers: with applications in incompressible flagighamics Oxford
University Press, Oxford, UK, 2005 (English).

[7] E. Emmrich, Gewodhnliche und operator-differentialgleichungeiieweg,
Wiesbaden, 2004.

[8] E. Emmrich and V. MehrmannAnalysis of a class of operator differential
algebraic equations arising in fluid mechanj¢s preparation, 2009.

[9] K. Eriksson and C. Johnsodaptive finite element methods for parabolic
problems. Il. Optimal error estimates in.L, and LsL,, SIAM J. Numer.
Anal. 32(1995), no. 3, 706-740.

[10] R. W. Freund,Model reduction methods based on Krylov subspatesh.
report, Bell Laboratories, Lucent Technologies, 2001.

[11] F. R. GantmachefThe theory of matrices. Vol. 1. Transl. from the Russian
by K. A. Hirsch. Reprint of the 1959 translatioAMS Chelsea Publishing,
Providence, RI, 1998 (English).

[12] S. Gugercin and A. C. Antoulagy survey of model reduction by balanced
truncation and some new resultaternat. J. Controf7 (2004), 748—-766.



Discretization of i/o maps and application to flow control 17

[13] J. Heiland Distributed Control of Semidiscretized Oseen Equatidiesh. re-
port, Technische Universit Berlin, 2009.

[14] L. Henning, D. Kuzmin, V. Mehrmann, M. Schmidt, A. Soka) and S. Turek,
Flow control on the basis of &EATFLOW-MATLAB coupling Active Flow
Control. Papers contributed to the Conference "Active F@antrol 2006”,
Berlin, Germany, September 27 to 29, 2006 (R. King, ed.)ingpr, Berlin,
2006.

[15] C. JohnsonNumerical solution of partial differential equations byetfinite
element methqdCambridge University Press, Cambridge, 1987.

[16] P. Kunkel and V. MehrmannDifferential-algebraic equations. Analysis
and numerical solutionEuropean Mathematical Society Publishing House,
Zurich, Switzerland, 2006.

[17] O. Lehmann, D. M. Luchtenburg, B. R. Noack, R. King, M. Mgnski, and
G. Tadmor,Wake stabilization using pod galerkin models with integped
modes Proceedings of the 44th IEEE Conference on Decision andr@on
and European Conference ECC, Invited Paper 1618, 2005.

[18] J.-L. Lions and E. Magenebllon-homogeneous boundary value problems and
applications. Vol. I} Springer, New York, 1972.

[19] A. Lunardi, Analytic semigroups and optimal regularity in parabolicopr
lems Progress in Nonlinear Differential Equations and theiphgations, 16,
Birkhauser, Basel, 1995.

[20] V. Mehrmann and T. StykeBalanced truncation model reduction for large-
scale systems in descriptor for@imension Reduction of Large-Scale Sys-
tems (Heidelberg) (V. Mehrmann P. Benner and D. Sorensen), &tbringer
Verlag, 2005, pp. 83-115.

[21] M. Pastoor, R. King, B.R. Noack, A. Dillmann, and G. TaoinModel-based
coherent-structure control of turbulent shear ows using-timensional vor-
tex modelsAlAA-Paper 2003-4261 (2003).

[22] A.Pazy,Semigroups of linear operators and applications to pardifflerential
equationsApplied Mathematical Sciences, vol. 44, Springer, Newky@883.

[23] C. W. Rowley,Model reduction for fluids, using balanced proper orthoglona
decompositioninternat. J. Bifur. Chaos Appl. Sci. Engr@5 (2005), no. 3,
997-1013.

[24] M. Schmidt,Systematic Discretization of Input/Output Maps and othenC
tributions to the Control of Distributed Parameter Systefl.D. thesis, TU
Berlin, Fakulat Mathematik, Berlin, Germany, 2007.

[25] H. Sohr, The Navier-Stokes equatignBirkhauser Advanced Texts: Basler
Lehrhiicher, Birklauser, Basel, 2001.



