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A new discretization framework for input/output
maps and its application to flow control

Jan Heiland, Volker Mehrmann and Michael Schmidt

Abstract We discuss the direct discretization of the input/output map of linear time-
invariant systems with distributed inputs and outputs. At first, the input and output
signals are discretized in space and time, resulting in a matrix representation of
an approximated input/output map. Then the system dynamicsis approximated, in
order to calculate the matrix representation numerically.The discretization frame-
work, corresponding error estimates, a SVD-based system reduction method and a
numerical application in optimal flow control are presented.

1 Introduction

The control of complex physical systems is a big challenge inmany engineering
applications as well as in mathematical research. Typically, these control systems
are modeled by infinite-dimensional state space systems on the basis of (instationary
and nonlinear) partial differential equations (PDEs). Thedifficulty is that on the one
hand, space-discretizations resolving most of the state information typically lead to
very large semi-discrete systems, on the other hand, popular design techniques for
real-time controllers like robust control require linear models of very moderate size.

Numerous approaches to bridge this gap are proposed in the literature, see e.g.
[1; 4]. In many applications it is sufficient to approximate the high order model by a
low-order model that captures the essential state dynamics. To determine such low-
order models one can use physical insight [17; 21] and/or mathematical methods like
proper orthogonal decomposition [5] or balanced truncation [1; 20]. In this paper we
focus on the situation where for the design of appropriate controllers it is sufficient
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to approximate theinput/output (i/o) mapof the system, schematically illustrated in
Figure 1.

For such configurations, empirical or simulation-based black-box system identi-
fication [3; 14], and mathematical model reduction techniques like balanced trun-
cation [12], moment matching [10] or recent variants of proper orthogonal decom-
position [23] are common tools to extract appropriate low order models. Typically
the bottleneck in these methods is the computational effortto compute the reduced
order model form the semi-discretized model which often is of very high order.

In contrast to this, we investigate a new and integral approach to derive directly
low-order models with error estimates for the i/o behavior but instead of semi-
discretizing the system in space and then reducing this large model, we focus di-
rectly on the i/o map of theoriginal infinite-dimensional system, in the following
sections denoted by

G : U → Y , u = u(t,θ ) 7→ y = y(t,ξ )

and we suggest a framework for its direct discretization fora general class oflinear
time-invariantsystems (introduced in Section 2.1). Hereu andy are input and output
signals from Hilbert spacesU andY , respectively, which may vary in timet and
spaceθ ∈Θ andξ ∈ Ξ , with appropriate spatial domainsΘ andΞ . The framework
consists of two steps.

1. Approximation of signals (cf. Section 3).We choose finite-dimensional subspaces
Ū ⊂ U andȲ ⊂ Y with bases{u1, . . . ,up̄} ⊂ Ū and{y1, . . . ,yq̄} ⊂ Ȳ , and
denote the corresponding orthogonal projections byP

Ū
andP

Ȳ
, respectively.

Then, the approximation
GS = P

Ȳ
GP

Ū

has a matrix representationG ∈ R
q̄×p̄.

2. Approximation of system dynamics (cf. Section 4).Frequently,G arises from a
linear PDE state space model. Then the componentsGi j = (yi ,Gu j )Y

can be
approximated bynumerically simulatingthe state space model successively for
inputsu j , j = 1, . . . , p̄ and by testing the resulting outputs against ally1, . . . ,yq̄.

We discuss several features of this framework.
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G : u 7→ y

Fig. 1 Schematic illustration of an input/output map, correspondingto a physical system, given
e.g. by a set of equations or a numerical solver (black-box approach).
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Error estimation (cf. Section 5).The total errorεDS can be estimated by thesignal
approximation errorεS and thedynamicalapproximation errorεD, i.e.,

||G−GDS||︸ ︷︷ ︸
=:εDS

≤ ||G−GS||︸ ︷︷ ︸
=:εS

+ ||GS−GDS||︸ ︷︷ ︸
=:εD

, (1)

where the norms still have to be specified. HereGDS denotes the numerically es-
timated approximation ofGS. Theorem 3 shows how to choosēU andȲ and the
accuracy tolerances for the numerical solutions of the underlying PDEs such thatεS
andεD balance and thatεS+ εD < tol for a given tolerancetol.

Progressive reduction of the signal error.Choosing hierarchical bases in̄U and
Ȳ , the errorεS can be progressively reduced by adding further basis functions
up̄+1,up̄+2, . . . andyq̄+1,yq̄+2, . . . resulting in additional columns and rows of the
matrix representation.

Control Design (cf. Section 6.2).The matrix representationG = [Gi j ] may di-
rectly be used in control design, or a state realization of the i/o modelGDS can be
used as basis for many classical control design algorithms.

2 I/o maps of linear time-invariant systems

For Ω ⊂ Rd, d ∈ N, L2(Ω ) denotes the usual Lebesgue space of square-integrable
functions, andHα(Ω ), α ∈ N0 denotes the corresponding Sobolev spaces ofα-
times weakly differentiable functions. We interpret functionsv, which vary in space
and time, optionally as classical functionsv : [0,T]×Ω →R with valuesv(t;x)∈R,
or asabstractfunctionsv : [0,T] → X with values in a function spaceX such as
X = Hα(Ω ). Correspondingly,Hα(0,T;Hβ (Ω )), with α ,β ∈N0, denotes the space
of equivalence classes of functionsv : [0,T] → Hβ (Ω ) with t 7→ ||v||

Hβ (Ω)
beingα-

times weakly differentiable, for details see e.g. [7]. We introduce Hilbert spaces

Hα ,β ((0,T)×Ω ) := Hα(0,T;L2(Ω ))∩L2(0,T;Hβ (Ω )), (2)

||v||
Hα,β ((0,T)×Ω)

:= ||v||
Hα (0,T;L2(Ω))

+ ||v||
L2(0,T;Hβ (Ω))

, (3)

see e.g. [18]. ByC([0,T];X) andCα([0,T];X) we denote the space of functionsv :
[0,T] → X which are continuous respectivelyα-times continuously differentiable.

For two normed spacesX andY, L (X,Y) denotes the set of bounded linear oper-
atorsX →Y, and we abbreviateL (X) := L (X,X). Forα ∈ N, Lα (0,T;L (X,Y))
denotes the space of operator-valued functionsK : [0,T] → L (X,Y) with t 7→
||K(t)||

L (X,Y)
= supx 6=0 ||K(t)x||Y/||x||X lying in Lα (0,T). Vectors, often represent-

ing a discretization of a functionv, are written in corresponding small bold lettersv,
whereas matrices, often representing a discrete version ofan operator likeG or G,
are written in bold capital lettersG. R

α×β stands for the set of realα ×β matrices,
andA⊗B denotes the Kronecker tensor product of two matricesA andB.
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2.1 I/o maps of ∞-dimensional state space systems

We consider infinite-dimensional linear time-invariant systems of first order

∂tz(t) = Az(t)+Bu(t), t ∈ (0,T], (4a)

z(0) = z0, (4b)

y(t) = Cz(t), t ∈ [0,T]. (4c)

Here for every timet ∈ [0,T], the statez(t) is supposed to belong to a Hilbert space
Z like Z = L2(Ω ), whereΩ is a subset ofRdΩ with dΩ ∈ N. A is a densely defined
unbounded operatorA : Z ⊃ D(A) → Z, generating aC0-semigroup(S(t))t≥0 on
Z. The control operatorB belongs toL (U,Z) and the observation operatorC to
L (Z,Y), whereU = L2(Θ) andY = L2(Ξ) with subsetsΘ ⊂ Rd1 andΞ ⊂ Rd2,
d1,d2 ∈ N.

We recall how a linear bounded i/o-mapG ∈ L (U ,Y ) with

U = L2(0,T;U) and Y = L2(0,T;Y)

can be associated to (4), for details see e.g. [22, Ch. 4]. It is well-known that for
initial valuesz0 ∈ D(A) and controlsu ∈ C1([0,T];Z), a uniqueclassical solution
z∈C([0,T];Z)∩C1((0,T);Z) of (4) exists. Forz0 ∈ Z andu∈ U , one has

z(t) = S(t)z0 +
∫ t

0
S(t −s)Bu(s)ds, t ∈ [0,T], (5)

the so calledmild solutionof (4). Hence, the output signaly(t) = Cz(t) is well-
defined and belongs toY ∩C([0,T];Y). In particular, the output signalsy(u) ∈ Y

arising from input signalsu∈ U and zero initial conditionsz0 ≡ 0 allow to define
the linear i/o-mapG : U → Y of the system (4) byu 7→ y(u). It is possible to
representG as a convolution with the kernel functionK ∈ L2(−T,T;L (U,Y)),

K(t) =

{

CS(t)B, t ≥ 0

0, t < 0
. (6)

Then the i/o-mapG of (4) has the representation

(Gu)(t) =
∫ T

0
K(t −s)u(s)ds, t ∈ [0,T], (7)

and belongs toL (U ,Y )∩L (U ,C([0,T],Y )), c.f. [24].
To obtain error estimates we will assume additional smoothness of the input and

output signals, i.e., according to definition (2)

G|Us
∈ L (Us,Ys), with Us = Hα1,β1((0,T)×Θ), Ys = Hα2,β2((0,T)×Ξ),

(8)
for someα1,β1,α2,β2 ∈ N different from zero.
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Remark 1.Assumption (8) is fulfilled by many linear time-invariant systems with
distributed controls and observations, like the heat equation with homogeneous Neu-
mann boundary conditions and more general parabolic equations, see [18] and [19].
For Stokes systems, results similar to (7) and (8) are obtained by working with
appropriate subspaces of divergence-free functions, see [25]. Wave equations with
second order time derivatives can be represented in form of (4) and (7) by means
of an order reduction. Hyperbolic systems do not have the smoothing property of
parabolic systems, such that results like (8) demand input signals of higher regular-
ity in time, see [18, p. 95]. However, systems with boundary control or pointwise
observation do not fit directly into the setting (4).

2.2 I/o map of linearized Navier-Stokes systems

In order to apply our concepts to flow control we consider the linear differential-
algebraic equation (DAE) system

[
M 0
0 0

]
d
dt

[
v(t)
p(t)

]

+

[
A J

−JT Q

][
v(t)
p(t)

]

=

[
f(t)+Bu(t)

0

]

in (0,T] (9)

v(0) = v0 (10)

arising from the spatial discretization of a linearized (around a steady-state solu-
tion) Navier-Stokes equation. Herev(t)∈ R

nv andp(t)∈R
np represent the spatially

discretized velocity and pressure,f(t) ∈ Rnv contains the volume forces and the
boundary conditions andBu(t) ∈ Rnv stands for the discretized input functionu(t)
mapped into the field of volume forces via an operatorB. The system is defined by
constant coefficient matricesM,A,J,Q of appropriate size.

Assume thatA :=

[
A J

−JT Q

]

is invertible which is equivalent to the unique solv-

ability of the stationary problem. In addition we assume that A−1 exists, which is
the case for the Stokes and for reasonably formulated Oseen linearizations. As a
conclusion we have thatS:= Q+JTA−1J is invertible and

A
−1 =

[
[I −A−1JS−1JT ]A−1 −A−1JS−1

S−1JTA−1 S−1

]

.

Premultiplying (9) byA −1 and settingE11 = [I −A−1JS−1JT ]A−1M andE21 =
S−1JTA−1M we get the equivalent system

[
E11v̇(t)
E21v̇(t)

]

+

[
v(t)
p(t)

]

=

[
E11M

−1[f(t)+Bu(t)]
E21M

−1[f(t)+Bu(t)]

]

, in (0,T],

v(0) = v0.
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To express the solution of this system explicitly we introduce some terms from
DAE calculus, see e.g., [16].

Consider a linear DAE initial value problem defined by its matrix pair (E ,A ):

E ẋ+A x = f (t), for t ∈ [0,T],

x(0) = x0.
(11)

Definition 1. A matrix pair (E ,A ) with E ,A ∈ Rn×n is regular, if det(λE +A )
does not vanish identically for allλ ∈ C.

For a regular matrix pair one has the Weierstraß canonical form.

Theorem 1 (Weierstraß canonical form, [11]).Let (E ,A ) be regular matrix pair.
Then, there exist nonsingular matrices P1,P2 ∈ Rn×n such that

(P1E P2,P1A P2) =

([
Id 0
0 N

]

,

[
T 0
0 Ia

])

,

where T is a matrix in real Jordan canonical form and N is a nilpotent matrix also
in Jordan canonical form. Moreover, it is allowed that one orthe other block is not
present.

If the index of nilpotency ofN in Theorem 1 isν , then one defines ind(E ,A ) :=
ν , saying(E ,A ) or the corresponding DAE has (differentiation) indexν .

Setting ind(E ) := ind(E , I) it follows by the definition thatν = ind(E , I) is the
smallest integer for which rankE ν+1 = rankE ν holds. In this case the differentiation
index of E is equivalent to the matrix index, used in the following definition of a
generalized inverse:

Definition 2. Let E ∈ R
n,n have ind(E ) = k. A matrix X ∈ R

n,n satisfying

(D1) E X = XE

(D2) XE X = X

(D3) XE
k+1 = E

k

is called a Drazin inverseE D of E .

The Drazin inverseE D is well defined and unique. By means of the introduced
concepts one obtains the following solution formula:

Theorem 2.Let E ,A ∈ Rn,n be a commuting regular matrix pair. Furthermore,
let f ∈ Cν(0,T;Rn) with ν = ind(E ,A ). Then every solution x∈ C1(0,T;Rn) of
E ẋ+A x = f (t) has the form

x(t) = e−E DA t
E

D
E q+

t
∫
0

e−E DA (t−s)
E

D f (s)ds+

(I −E
D
E )

ν−1

∑
i=0

(−E A
D)i

A
D f (i)(t)
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for some q∈ C
n.

Thus, ifq exists such, that

x0 = E
D
E q+(I −E

D
E )

ν−1

∑
i=0

(−E A
D)i

A
D f (i)(0),

then (11) possesses a unique solution, provided thatE andA form a regular com-
muting matrix pair and f is sufficiently smooth. Note that forregular matrix pairs
the commutativity requirement is not a restriction, see e.g. [16].

In the present case withA = I andE = E :=

[
E11 0
E21 0

]

this formula simplifies.

One can show that ind(E) = 2 and ind(E11) ≤ 2, and thus we get the expressions

ED =

[
ED

11 0

E21E
D2

11 0

]

, EDE =

[
ED

11E11 0
E21E

D
11 0

]

exp
(
−EDt

)
=

[
exp(−ED

11t) 0
E21E

D
11exp(−ED

11t) 0

]

.

In addition we assume that ind(E11) = 1 which can be shown for the Stokes case
and should be demanded of a reasonable discretization for the more general Oseen
case, c.f. [8]. Thus, the explicit solution of (9) reads

[
v(t)
p(t)

]

=

[
exp(−ED

11t)E
D
11E11qv

E21exp(−ED
11t)E

D
11qv

]

(12)

+

∫ t

0

[
exp(−ED

11(t − τ))E11E
D
11M

−1[f(τ)+Bu(τ)]
E21exp(−ED

11(t − τ))(ED
11)

2E11M
−1[f(τ)+Bu(τ)]

]

dτ

+

[
0

E21[I −ED
11E11]M

−1[f(t)+Bu(t)]

]

,

if f(t)+Bu(t) is differentiable andv0 is a consistent initial value. Note that for the
solution of the velocity component one only needsf(t)+Bu(t) to be integrable and
qv such thatE11E

D
11qv = v0.

Applying an output operatorCT to the first component in (12) one gets an explicit
formula for the output ˜y(t) =CTv(t) = CTv(t;u), depending on the inputu. We will
consider only the part which depends onu and define the i/o mapG : U → Y via
the formula

y(t) = (Gu)(t) = CT
∫ t

0
exp(−ED

11(t − τ))E11E
D
11M

−1Bu(τ)dτ . (13)

Due to the linear character of the equations the output ˜y can be recovered by
adding the response of the uncontrolled system toy. Note thatG is of type (7).
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3 Discretization of signals

In order to discretize the input signalsu ∈ U and y ∈ Y in space and time,
we choose four families{Uh1

}h1>0, {Yh2
}h2>0, {Rτ1

}τ1>0 and{Sτ2
}τ2>0 of sub-

spacesUh1
⊂ U , Yh2

⊂ Y, Rτ1
⊂ L2(0,T) andSτ2

⊂ L2(0,T) of finite dimensions

p(h1) = dim(Uh1
), q(h2) = dim(Yh2

), r(τ1) = dim(Rτ1
) ands(τ2) = dim(Sτ2

). We
then define

Uh1,τ1
= {u∈ U : u(t; ·) ∈Uh1

, u(·;θ ) ∈ Rτ1
for almost everyt ∈ [0,T],θ ∈Θ},

Yh2,τ2
= {y∈ Y : y(t; ·) ∈Yh2

, y(·;ξ ) ∈ Sτ2
for almost everyt ∈ [0,T],ξ ∈ Ξ}.

We denote the orthogonal projections onto these subspaces by P
S ,τ2

∈L (L2(0,T))

P
U ,h1,τ1

∈ L (U ) andP
Y ,h2,τ2

∈ L (Y ). As first step of the approximation ofG,
we define

GS = GS(h1,τ1,h2,τ2) = P
Y ,h2,τ2

GP
U ,h1,τ1

∈ L (U ,Y ). (14)

In order to obtain a matrix representation ofGS, we introduce families of bases
{µ1, . . . ,µp} of Uh1

, {ν1, . . . ,νq} of Yh2
, {φ1, . . . ,φr} of Rτ1

and{ψ1, . . . ,ψs} of Sτ2

and corresponding mass matricesMU,h1
∈ Rp×p, MY,h2

∈ Rq×q, M
R,τ1

∈ Rr×r and

M
S ,τ2

∈ Rs×s, for instance via

[MU,h1
]i j = (µ j ,µi)U , i, j = 1, . . . , p.

These mass matrices induce, for instance via

(v,w)p;w = vTMU,h1
w for all v,w ∈ R

p,

weighted scalar products and corresponding norms in the respective spaces, which
we indicate by a subscriptw, like R

p
w with (·, ·)p;w and || · ||p;w, in contrast to the

canonical spaces likeRp with (·, ·)p and|| · ||p. We represent signalsu∈ Uh1,τ1
and

y∈ Yh2,τ2
as

u(t;θ ) =
p

∑
k=1

r

∑
i=1

uk
i φi(t)µk(θ ), y(t;ξ ) =

q

∑
l=1

s

∑
j=1

yl
jψ j(t)νk(ξ ), (15)

whereuk
i are the elements of a block-structured vectoru ∈ Rpr with p blocksuk ∈

Rr , and the vectory ∈ Rqs is defined similarly. Then

||u||
U

= ||u||pr;w, and ||y||
Y

= ||y||qs;w,

where || · ||pr;w and || · ||qs;w denote the weighted norms with respect to the mass
matrices
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M
U ,h1,τ1

= MU,h1
⊗M

R,τ1
∈ R

pr×pr, M
Y ,h2,τ2

= MY,h2
⊗M

S ,τ2
∈ R

qs×qs,

i.e., the corresponding coordinate isomorphismsκ
U ,h1,τ1

∈ L (Uh1,τ1
,Rpr

w ) and

κ
Y ,h2,τ2

∈ L (Yh2,τ2
,Rqs

w ) are unitary.
Finally, we obtain a matrix representationG of GS by setting

G = G(h1,τ1,h2,τ2) = κ
Y

P
Y

GP
U

κ−1
U

∈ R
qs×pr, (16)

where the dependencies onh1,τ1,h2,τ2 have been partially omitted. Considering

H = H(h1,τ1,h2,τ2) := M
Y ,h2,τ2

G ∈ R
qs×pr

as a block-structured matrix withq× p blocksHkl ∈ Rs×r and block elementsHkl
i j ∈

R, we obtain the representation

Hkl
i j = [M

Y
κ

Y
P

Y
G(µl φ j)]

k
i = (νkψi ,G(µl φ j))Y

. (17)

To have a discrete analogon of theL (U ,Y )-norm, we introduce for given
Uh1,τ1

andYh2,τ2
the weighted matrix norm

||G(h1,τ1,h2,τ2)||qs×pr;w := sup
u∈Rpr

||Gu||qs;w

||u||pr;w
= ||M1/2

Y ,h2,τ2
GM−1/2

U ,h1,τ1
||qs×pr, (18)

and we write(h′1,τ ′1,h′2,τ ′2)≤ (h1,τ1,h2,τ2) if the inequality holds component-wise.

Lemma 1 ([24, p. 44]).For all (h1,τ1,h2,τ2) ∈ R4
+, we have

||G(h1,τ1,h2,τ2)||qs×pr;w = ||GS(h1,τ1,h2,τ2)||L (U ,Y )
≤ ||G||

L (U ,Y )
. (19)

If the subspaces{Uh1,τ1
}h1,τ1>0 and{Yh2,τ2

}h2,τ2>0 are nested in the sense that

Uh1,τ1
⊂ Uh′1,τ

′
1
, Yh2,τ2

⊂ Yh′2,τ
′
2

for (h′1,τ
′
1,h

′
2,τ

′
2) ≤ (h1,τ1,h2,τ2), (20)

then||G(h1,τ1,h2,τ2)||qs×pr;w monotonically grows and||G(h1,τ1,h2,τ2)||qs×pr;w is
convergent for(h1,τ1,h2,τ2) ց 0.

4 Approximation of system dynamics

We discuss the efficient approximation ofGS respectively of its matrix represen-
tation G = M−1

Y
H. For time-invariant systems with distributed control and ob-

servation, this task reduces to the approximation of the convolution kernelK ∈
L2(0,T;L (U,Y)).
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4.1 Kernel function approximation

We recall the notation of the general linear time-invariantsystem (4) for a state
z(t) ∈ Z for t ∈ [0,T],

∂tz(t) = Az(t)+Bu(t), t ∈ (0,T], (21a)

z(0) = z0, (21b)

y(t) = Cz(t), t ∈ [0,T], (21c)

that can be associated with a bounded i/o map

G : U → Y : (Gu)(t) =

∫ T

0
K(t −s)u(s)ds, t ∈ [0,T], (22)

whereU andY denote the Hilbert spaces of the input and output signals.
Inserting (22) in (17), by a change of variables we obtain

Hkl
i j =

∫ T

0

∫ T

0
ψi(t)φ j(s)(νk,K(t −s)µl )Y dsdt=

∫ T

0
W i j (t)Kkl(t)dt,

with matrix-valued functionsW : [0,T] → Rs×r andK : [0,T] → Rq×p,

W i j (t) =
∫ T−t

0
ψi(t +s)φ j(s)ds, Kkl(t) = (νk,K(t)µl )Y,

and thus

H = M
Y

G =

∫ T

0
K(t)⊗W(t)dt. (24)

For systems of the form (21), the matrix-valued functionK is given by

Kkl(t) = (νk,CS(t)Bµl )Y = (c∗k,S(t)bl )Z,

wherec∗k = C∗νk ∈ Z andbl = Bµl for k = 1, . . . ,q andl = 1, . . . , p. Hence,K can
be calculated by solvingp homogeneous systems

żl (t) = Azl (t), t ∈ (0,T], (25a)

zl (0) = bl , (25b)

since (25) has the mild solutionzl (t) = S(t)bl ∈ C([0,T];L2(Ω )). We obtain an
approximationH̃ of H by replacingzl (t) by numerical approximationszl ,tol(t), i.e.,

H̃ =
∫ T

0
K̃(t)⊗W(t)dt, (26)

with K̃kl(t) = (νk,Czl ,tol(t))Y = (c∗k,zl ,tol(t))Z. Here the subscripttol indicates
that the errorzl −zl ,tol is assumed to satisfy some tolerance criterion which will be
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specified later. The corresponding approximationGDS of GS is given by

GDS = κ−1
Y

G̃κ
U

P
U

, with G̃ = M−1
Y

H̃ (27)

and depends onh1, h2, τ1, τ2 andtol.

4.2 Dynamics approximation error

The following proposition relates the system dynamics error εD to the errors made
in solving the PDE (25) forl = 1, . . . , p.

Proposition 1 ([24, p. 51]).The system dynamics errorεD := ||GS−GDS||L (U ,Y )

satisfies

εD ≤
√

T||K − K̃ ||
L2(0,T;Rq×p

w )
≤ p

√
T

√
√
√
√

λmax(MY,h2
)

λmin(MU,h1
)

max
1≤l≤p

||K :,l − K̃ :,l ||L2(0,T;Rq)
.

(28)
HereK :,l andK̃ :,l denote the lth column ofK(t) andK̃(t), respectively,λmax(MY,h2

)

is the largest eigenvalue ofMY,h2
andλmin(MU,h1

) the smallest eigenvalue ofMU,h1
.

Rq×p
w denotes the space of real q× p-matrices equipped with the weighted matrix

norm||M ||q×p;w = supu6=0 ||Mu ||q;w/||u||p;w.

4.3 Error estimation for the homogeneous PDE

In order to approximate the system dynamics, the homogeneous PDE (25) has to
be solved via a fully-discrete numerical scheme forp different initial values. A
first goal is to choose the time and space grids (and possibly otherdiscretization
parameters) such that

||K :,l − K̃ :,l ||L2(0,T;Rq)
< tol resp. ||Kw

:,l − K̃w
:,l ||L2(0,T;Rq)

< tol (29)

is guaranteedfor a giventol > 0 by means of reliable error estimators. Asecond
goal is to achieve this accuracy in acost-economicway.

Discontinuous Galerkin time discretizations combined with standard Galerkin
space discretizations provide an appropriate framework toderive corresponding er-
ror estimates, also for the case of adaptively refined grids which are in general no
longer quasi-uniform, see e.g. [15]. We distinguish two types of error estimates.

Global state error estimatesmeasure the error(zl − zl ,tol) in some global
norm. For parabolic problems, a priori and a posteriori estimates for the error in
L∞(0,T;L2(Ω )) andL∞(0,T;L∞(Ω )) can be found in [9]. Such results permit to
guarantee (29) in view of
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||K :,l − K̃ :,l ||L2(0,T;Rq)
≤ ||C||

L (Z,Y)

(
q

∑
i=1

||νi||2Y

)1/2

||z−z(l)
tol

||
L2(0,T;Z)

. (30)

Goal-oriented error estimatesare used to measure the error||K :,l − K̃ :,l ||L2(0,T;Rq)

directly. This may be advantageous, since (30) may be very conservative. A general
introduction to goal-oriented error estimation and strategies for mesh adaption is
given in the monograph by Bangerth and Rannacher [2].

Assumption 1Given a tolerancetol > 0, we can ensure (by using appropriate
error estimators and mesh refinements) that the solutionszl of (25) and the solutions
zl ,tol calculated by means of an appropriate fully-discrete numerical scheme satisfy

||K :,l − K̃ :,l ||L2(0,T;Rq)
< tol, l = 1, . . . , p. (31)

5 Total error estimates

We present estimates for the total error in the approximation of G. Using general-
purpose ansatz spacesUh1,τ1

andYh2,τ2
for the signal approximation, we only obtain

error results in a weakerL (Us,Y )-norm.

Theorem 3 ([24, p. 55]).Consider the i/o mapG ∈ L (U ,Y ) of the infinite-
dimensional linear time-invariant system(7) and assume that

(i) G|Us
∈ L (Us,Ys) with spaces of higher regularity in space and time

Us = Hα1,β1((0,T)×Θ), Ys = Hα2,β2((0,T)×Ξ), α1,β1,α2,β2 ∈ N.

(ii) The families of subspaces{Uh1,τ1
}h1,τ1

and{Yh2,τ2
}h2,τ2

satisfy

||u−P
U ,h1,τ1

u||
U

≤ (c
R

τα1
1

+cUhβ1
1

)||u||
Us

, u∈ Us,

||y−P
Y ,h2,τ2

y||
Y

≤ (c
S

τα2
2

+cYhβ2
2

)||y||
Ys

, y∈ Ys,

with positive constants c
R

, c
S

, cU and cY.
(iii) The error in the solution for the state dynamics can be made arbitrarily small,

i.e. for a given tolerance equation(31)holds.

Let δ > 0 be given. Then one can choose subspacesUh∗1,τ
∗
1

andYh∗2,τ∗2
such that

||G−GDS||L (Us,Y ) < δ .

Moreover, the signal errorε ′S := ||G−GS||L (Us,Y ) and the system dynamics error

εD := ||GS−GDS||L (U ,Y ) are balanced in the sense thatε ′S,εD < δ/2.
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6 Application to Flow Control

As a test case we present a 2D driven cavity problem modelled by the Oseen equa-
tions for the velocityv and the pressurep in Ω × I := (−1,1)2 × (0,0.1]. Let
Ωc = (−0.2,0.2)×(−0.7,−0.5) and andΩm = (−0.1,0.1)×(0,0.6) be rectangular
subsets ofΩ where the control is active and the observation takes place,respectively,
c.f. Figure 2.

Fig. 2 Schematic illustration
of a 2D driven cavity flow
and the domains of control
and observation,Ωc andΩm,
respectively.

−1 −0.2 0.2 1
−1

−0.7

−0.5

0

0.6

1

x
1

x
2

Ω
c

Ω
m Ω

SettingY = [L2(0,1)]2 andU = [L2(0,1)]2, we defineC ∈ L ([L2(Ω )]2,Y) and
B∈ L (U, [L2(Ω )]2) by

(Cv)(ξ ) =

∫ 0.1

−0.1

v(x1,θmξ )

0.2
dx1, (Bu)(x1,x2) =

{

u(θcx1), (x1,x2) ∈ Ωc,

0, elsewhere,

whereθm : [0,1] → [0,0.6] andθc : [−0.2,0.2] → [0,1] are affine linear mappings,
that adjust the spatial extensions of the signal spaces to the respective domainsΩc

andΩm. By definition,B maps the two input signal components into the control
domain such that they are homogeneous inx2-direction. The output is extracted as
the average inx1-direction of the velocity within the observation domain.

Thus the considered system reads

vt +(v∞ ·∇)v+(v ·∇)v∞ +∇p− 1
Re

△v =(v∞ ·∇)v∞ +Bu,

∇ ·v =0,

y =CTv,

with initial and boundary conditionsv|t=0= v∞ andv|∂Ω = g.
Hereg defines the boundary data for the driven cavity with moving upper lid and

v∞ denotes the steady state solution.
A stabilizedQ1−P0 finite element discretization of the state space converts the

above system into a DAE of type (9), see e.g. [6] for technicalissues. To distinguish
the spatially discretized quantities from the continuous we use bold letters, e.g.v
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denotes the spatially discretized velocityv. For an appropriatev∞, c.f. [13], the ob-
tained system meets the assumptions necessary to establishthe corresponding i/o
mapG via (13).

The considered system was investigated on a uniform rectangular 128×128 grid
with the Reynolds numberRe= 3333. For the numerical estimation ofGDS a mod-
ified projection algorithm [13] with 128 timesteps was used.

6.1 Tests of convergence in signal approximation

The following numerical convergence tests have all been carried out with approx-
imationsGDS(h1,τ1,h2,τ2,tol) of the i/o-mapG corresponding to the spatially
discretized system (6). Hierarchical linear finite elements in Uh1

andYh2
and Haar

wavelets inRτ1
andSτ2

have been chosen.
To check the convergence in the signal approximation numerically, we chose the

testsignal ˆu(t;θ ) = [sin(10πt)sin(10πθ ) 0]T with its numerically computed system
responsey = Gû. As a measure for the error the relative deviation||y− ỹ||

Y
||û||

U

with ỹ = GDSû for varying discretization parametersh1,τ1,h2,τ2 was taken. Figure
3 (a) shows the evolution of the signal approximation error for a fixed time dis-
cretizationτ1 = τ2 = 0.1·2−5 and varying space resolution of the signals. In Figure
3 (b) the roles of the space and time discretization are changed.
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Fig. 3 Relative output errors||y− ỹ||
Y
||û||

U
with ỹ= GDSû errors for (a) varyingh1 = h2 and fixed

τ1 = τ2 = 0.1/32 and (b) for varyingτ1 = τ2 and fixedh1 = h2 = 1/33.

The convergence is in the region where it is assumed for approximations using
piecewise constant or piecewise linear finite elements. Note that it is necessary to
balance space and time resolution properly, as indicated bythe breakdown of the
quadratic convergence of the space discretization on the lowest level of the time
approximation error as shown in Figure 3 (a).
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6.2 Application to Optimal Flow Control

We investigate the use of the i/o-map approximation in optimization problems

minJ(u,y) subject toy = Gu, u∈ U . (32)

Here,J : U ×Y →R is the cost functionalJ(u,y) = 1
2||y−yD||2Y +α ||u||2

U
, yD ∈Y

is an aspired system’s output signal, andα > 0 is a regularization parameter. We
define the discrete cost functional

J̄h : R
pr ×R

qs→ R, J̄h(u,y) =
1
2
||y−yD||2qs;w +α ||u||2pr;w, (33)

with yD = κ
Y ,h2,τ2

P
Y ,h2,τ2

yD, and instead of (32) we solve

minJ̄h(u,y) subject toy = G̃u, u ∈ Ū (34)

with the solutionū of (34) characterized by

(G̃TM
Y

G̃+αM
U

)ū = G̃TM
Y

yD. (35)

As the targetyD we chose the output corresponding to the inputu0 ≡ [1 1]T and
solved (35) with the finite dimensional i/o mapG̃ ∈ R34·16×34·16 of the driven cavity
case andα = 10−7.

Solving the linear equation system took 0.0537 seconds and yielded āu which
reduced the energy by 21.3% while causing a relative deviation in the output of
2.26%, c.f. Figure 4.
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Fig. 4 Illustration of thex1-component of (a) the output signalsG̃u0 andG̃ū and (b)Gu0 andGū
for varying t andξ = 0.5. Hereu0 andū representu0 andū in the discrete and continuous input
space, respectively.
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7 Conclusion and Acknowledgement

The presented method provides a completely algebraic representation of the in-
put/output behavior of a linear time-invariant system, like the Oseen problem. The
developed error estimates guarantee a desired quality of the approximation. As il-
lustrated by the numerical example this i/o map also leads touseful solutions of the
inverse problem of determining controls with very short calculation times.

This work was funded by Deutsche Forschungsgemeinschaft within Collabora-
tive Research Center (Sfb) 557Control of complex turbulent shear flows.
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[7] E. Emmrich, Geẅohnliche und operator-differentialgleichungen, Vieweg,
Wiesbaden, 2004.

[8] E. Emmrich and V. Mehrmann,Analysis of a class of operator differential
algebraic equations arising in fluid mechanics, In preparation, 2009.

[9] K. Eriksson and C. Johnson,Adaptive finite element methods for parabolic
problems. II. Optimal error estimates in L∞L2 and L∞L∞, SIAM J. Numer.
Anal. 32 (1995), no. 3, 706–740.

[10] R. W. Freund,Model reduction methods based on Krylov subspaces, Tech.
report, Bell Laboratories, Lucent Technologies, 2001.

[11] F. R. Gantmacher,The theory of matrices. Vol. 1. Transl. from the Russian
by K. A. Hirsch. Reprint of the 1959 translation, AMS Chelsea Publishing,
Providence, RI, 1998 (English).

[12] S. Gugercin and A. C. Antoulas,A survey of model reduction by balanced
truncation and some new results, Internat. J. Control77 (2004), 748–766.



Discretization of i/o maps and application to flow control 17

[13] J. Heiland,Distributed Control of Semidiscretized Oseen Equations, Tech. re-
port, Technische Universität Berlin, 2009.

[14] L. Henning, D. Kuzmin, V. Mehrmann, M. Schmidt, A. Sokolov, and S. Turek,
Flow control on the basis of aFEATFLOW-MATLAB coupling, Active Flow
Control. Papers contributed to the Conference ”Active FlowControl 2006”,
Berlin, Germany, September 27 to 29, 2006 (R. King, ed.), Springer, Berlin,
2006.

[15] C. Johnson,Numerical solution of partial differential equations by the finite
element method, Cambridge University Press, Cambridge, 1987.

[16] P. Kunkel and V. Mehrmann,Differential-algebraic equations. Analysis
and numerical solution, European Mathematical Society Publishing House,
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