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Abstract
Ambiguity resolution enabled precise point positioning (PPP-AR or PPP-RTK) without atmospheric corrections requires the 
user to estimate tropospheric and ionospheric delay parameters. The presence of the unconstrained ionosphere parameters 
impedes fast and reliable ambiguity resolution, so a time-to-first-fix of around 30 min for GPS-only solutions is generally 
reported, which can, to some extent, be reduced when combining multiple GNSS. In this contribution, we investigate the 
capabilities of almost instantaneous PPP-RTK, using only a few observation epochs at a sampling interval of 30 s, with 
the ionosphere-float model. The considered key elements are (a) the MSE-optimal best integer-equivariant estimator, (b) a 
combination of dual-frequency GPS, Galileo, BDS, and QZSS, (c) an area with good visibility of BDS and QZSS, and (d) 
a proper weighting of the PPP-RTK corrections. We provide a formal and simulation-based analysis of kinematic and static 
PPP-RTK with perfect, i.e., deterministic, clock and bias corrections as well as corrections computed from only a single 
reference station. The results indicate that, on average, one can expect centimeter-level positioning results with just slightly 
more than two epochs already with single-station corrections. This is confirmed with real four-system GNSS data, for which 
the availability of two-epoch centimeter-level horizontal positioning results is 99.7% during an exemplary day.

Keywords  Multi-GNSS · Precise point positioning (PPP) · Integer ambiguity resolution · Best integer-equivariant 
estimation · PPP-AR · PPP-RTK

Introduction

For precise point positioning (PPP), a global navigation 
satellite systems (GNSS) user requires precise satellite 
orbit and clock products. Static PPP is capable of reach-
ing a centimeter-level positioning accuracy but only with a 
convergence time of several hours (Zumberge et al. 1997; 
Kouba and Héroux 2001; Bisnath and Gao 2008). When 
also provided with satellite phase biases, a single-receiver 
user can recover the integer property of the carrier phase 
ambiguities and reduce the long convergence times through 
ambiguity resolution (AR), known as PPP-RTK or PPP-AR 
(Wübbena et al. 2005; Laurichesse et al. 2009; Mervart et al. 
2008). Further strategies and methods for PPP-RTK have, 

for instance, been formulated and demonstrated in Collins 
(2008), Ge et al. (2008), Bertiger et al. (2010), Teunissen 
et al. (2010), Zhang et al. (2011), or Geng et al. (2012). 
An overview and comparison are provided in Teunissen and 
Khodabandeh (2015), and the interoperability of different 
PPP-RTK corrections is shown in Banville et al. (2020) for 
products of the International GNSS Service (IGS).

Successful AR instantly leads to centimeter-level PPP-
RTK results, but fast and reliable AR still remains a chal-
lenge, mainly due to the presence of ionospheric delays. A 
time-to-first-fix (TTFF) of about 30 min with 1 Hz GPS 
data is reported in Geng et al. (2011), and a very similar 
value in Zhang et al. (2019) with 30-s data. Similar results of 
34/22 min with 30-s GPS data for kinematic/static PPP-RTK 
are obtained in Li and Zhang (2014), which are reduced to 
20/16 min when integrating GLONASS data. Geng and Shi 
(2017) reported convergence times of 25 and 6 min with 
GPS and GPS + GLONASS using partial AR, and Li et al. 
(2018) showed that the convergence time of static PPP-RTK 
can be further reduced to around 9 min when also including 
BDS and Galileo data. In Li et al. (2020), Galileo PPP-RTK 
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with two to five frequencies is analyzed, with resulting con-
vergence times between 22 and 15 min with 30-s data. In a 
simulation study, Psychas et al. (2020) show that sub-deci-
meter horizontal positioning errors can be expected within 
25 min for GPS and 6.5 and 4.5 min for dual and triple fre-
quency GPS + Galileo + BeiDou with partial AR and deter-
ministic PPP-RTK corrections. Different criteria used in the 
above studies when defining the TTFF or the convergence 
time make it difficult to compare those numbers, but a gen-
eral trend to faster solutions when combining GNSS constel-
lations or using advanced AR strategies is clearly visible.

Faster centimeter-level positioning solutions can be 
obtained when also ionospheric corrections are provided 
to the user. However, as demonstrated in Psychas et al. 
(2018), these have to be at the level of a few centimeters 
to noticeably accelerate reliable AR. This requirement is 
not met by current global ionosphere solutions, such as the 
total electron content maps provided by the IGS, which have 
an uncertainty of several decimeters for GNSS frequencies 
(Brack et al. 2021b). Instantaneous PPP-RTK results using 
(interpolated) ionospheric corrections from one or more 
nearby reference stations are reported in Teunissen et al. 
(2010), Banville et al. (2014), and Psychas et al. (2022), 
however, at the cost of requiring rather dense local or 
regional GNSS networks.

An alternative to fixing the ambiguities to integers is to 
use the best integer-equivariant (BIE) ambiguity estimator 
(Teunissen 2003). The resulting position estimates are MSE 
optimal, and a closed-form expression for normally distrib-
uted data is provided in Teunissen (2003). An extension of 
the BIE principle for elliptically contoured distributions 
is presented in Teunissen (2020), and a sequential scalar 
approximation is proposed in Brack et al. (2014). An evalu-
ation of the BIE estimator based on simulations is given 
in Verhagen and Teunissen (2005), and its performance for 
multi-GNSS single-baseline RTK positioning is analyzed in 
Odolinski and Teunissen (2020).

In Brack et al. (2021a), it is demonstrated that when 
combining all available GNSS with a partial AR approach, 
one can reach centimeter-level single-baseline RTK results 
within 3.3 epochs of 30-s data when ionospheric delays have 
to be estimated. A similar positioning performance should 
also be feasible with PPP-RTK without atmospheric correc-
tions, which is the topic of this contribution. We will make 
use of (a) the MSE-optimal BIE estimator, (b) a combina-
tion of dual-frequency GPS, Galileo, BDS2/3, and QZSS, 
(c) an area with good visibility of BDS and QZSS, and (d) 
a proper weighting of the PPP-RTK corrections. Simulated 
GNSS data in the area of Perth, Australia, will be used to 
show that with corrections from only a single reference sta-
tion just slightly more than two epochs are required on aver-
age to reach centimeter-level static or kinematic PPP-RTK 
results, whereas using deterministic corrections often only 

one epoch is sufficient. This result will be confirmed with 
real GNSS data, where centimeter-level horizontal position 
estimates are obtained after two epochs with an availability 
of 99.7%, thus demonstrating that almost instantaneous PPP-
RTK is feasible with the current GNSS constellations, even 
without any atmospheric corrections.

PPP‑RTK observation model

The single-system undifferenced, uncombined code and car-
rier phase observations ps

r,f
 and �s

r,f
 between receiver r and 

satellite s on frequency f can be modeled as

with E[⋅] being the expectation operator, �s
r
 the geometric 

range between satellite s and receiver r, dtr and dts the 
receiver and satellite clock offsets, �r the residual zenith 
tropospheric delay (ZTD) at receiver r with the mapping 
function ms

r
 , is

r
 the first-order slant ionospheric delay on the 

first frequency with the coefficient �f =
�2
f

�2
1

 depending on the 
wavelengths �f  , dr,f  and ds

,f
 the receiver and satellite code 

biases, �r,f  and �s
,f
 the respective phase biases, and as

r,f
 the 

integer phase ambiguity.
When processing the data of a GNSS receiver or network, 

not all parameters in (1) can be unbiasedly estimated due to 
rank deficiencies in the underlying system model. Estima-
ble combinations of the parameters resulting in a full-rank 
model can be determined using S-system theory (Baarda 
1973; Teunissen 1985) by constraining a minimum set of 
parameters.

We assume that precise orbital positions are available. We 
further assume that for the reference stations providing the 
PPP-RTK corrections, the coordinates are a priori known, 
so that the ranges �s

r
 can be removed from the model. A set 

of estimable parameters together with their definitions is 
given in Table 1, where the first receiver and satellite are 
chosen as pivot (cf. Odijk et al. 2016). In the case of a local 
network, the tropospheric mapping functions are (almost) 
identical so that the ZTDs can only be estimated relative to 
the pivot receiver, whose tropospheric slant delays are then 
included in the satellite clock corrections. This also holds if 
only one reference receiver is used. The PPP-RTK correc-
tions provided to the user contain the estimates of the satel-
lite clocks dt̃s , the satellite phase biases 𝛿s

,f
 , and the satellite 

code biases d̃s
,f
 for f > 2.

On the user side, the observed-minus-computed obser-
vation equations follow from (1) by replacing the ranges �s

r
 

with gs,T
r
Δxr , where gs

r
 is the satellite-to-receiver unit vector, 
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and Δxr is the unknown increment of the user position from 
the initial value. The PPP-RTK corrections are applied to 
the user observations, and the corresponding parameters are 
removed. Other than that, the user parameters are the same 
as defined in Table 1 for r ≠ 1.

For the multi-GNSS model, we assume that all param-
eters except the user position Δxr and the ZTDs �r or �1r 
are set up per constellation. This implies that the biases are 
assumed constellation specific. A calibration of inter-system 
biases on overlapping frequencies that would enable the use 
of a common pivot satellite is not considered (Odijk and 
Teunissen 2013; Paziewski and Wielgosz 2015). With the 
satellite phase biases applied, the user can recover the inte-
ger estimable double-difference ambiguities with the pivot 
receiver and use AR techniques.

Solving the PPP‑RTK user positioning model

Let the integer ambiguity parameters of the PPP-RTK user 
model be collected in the vector a ∈ ℤ

n and all real-valued 
parameters, including the position increment Δxr , in b ∈ ℝ

p . 
We consider three estimators in this contribution, which are 
briefly introduced in the following.

The first one is the ambiguity float estimator b̂ , for which 
the integer property of the ambiguities is disregarded. For 
short observation time spans, its precision is driven by the 
code data. The high precision of the carrier phases only 
starts to have an impact when multiple epochs with time-
constant ambiguities are combined.

The second estimator is the ambiguity fixed estimator b̌ , 
for which all ambiguity parameters are fixed to integers. The 
integer least-squares (ILS) ambiguity estimator is given by

(2)ǎ = argmin
z∈ℤn

‖â − z‖2
Qâ

with â the float ambiguity solution and Qâ its covariance 
matrix. It is optimal in the sense of maximizing the probabil-
ity of correct ambiguity estimates (Teunissen 1999) and is 
efficiently implemented in the LAMBDA method (Teunissen 
1995). If the ambiguities are resolved correctly, the position-
ing precision is immediately driven by the carrier phases, but 
wrong ambiguity estimates can lead to large positioning errors, 
so one will usually prefer the float solution b̂ if the ambiguity 
success rate is too low.

The third estimator is the BIE estimator b (Teunissen 2003). 
For normally distributed data, the BIE ambiguity estimates are 
a weighted sum of integers

and b is the conditional least-squares estimator assuming 
the ambiguities given by a . For computational reasons, 
the infinite set ℤn in (3) has to be replaced by a finite set, 
which is chosen as the set of integers within an ellipsoidal 
region around â . Its radius is defined in the metric of Qâ 
and is derived from a central Chi-squared distribution with 
n degrees of freedom and a significance level of � = 10−5 , 
see Teunissen (2005). The BIE solution b is MSE-optimal 
and unbiased within the class of integer-equivariant esti-
mators, which also contains the float and fixed solutions b̂ 
and b̌ (Teunissen 2003). As the variances of the BIE esti-
mates b are equal or smaller than those of the float and any 
admissible fixed or partially fixed solution, they can serve 
as a benchmark for analyzing the best possible performance 
of a GNSS model. This is done in the following in order 
to evaluate the limits of the convergence time of the PPP-
RTK model that can be achieved with the current GNSS 
constellations.

(3)a =
�

z∈ℤn

z

exp
�
−

1

2
‖â − z‖2

Qâ

�

∑
u∈ℤnexp

�
−

1

2
‖â − u‖2
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�

Table 1   Estimable parameter 
combinations with single-
system undifferenced and 
uncombined code and carrier 
phase observations; the receiver 
and satellite with index 1 are 
chosen as pivot; 
(⋅)1r = (⋅)r − (⋅)1 ; 
(⋅)GF =

1

�2−�1

[−(⋅),1 + (⋅),2] ; 
(⋅)IF =

1

�2−�1

[
�2(⋅),1 − �1(⋅),2

]
 ; 

the entries marked as (⋅)∗ are 
only relevant in a local network

Parameters Definition Condition

Receiver clocks dt̃r dt1r + d1r,IF r ≠ 1

Satellite clocks dt̃s dts + ds
IF
− dt1 − d1,IF −

(
ms

1
�1
)∗

ZTDs 𝜏r �r or 
(
�1r

)∗ (r ≠ 1)∗

Ionospheric delays ĩs
r

is
r
+ dr,GF − ds

GF

Rec. code biases d̃r,f d1r,f − d1r,IF − �f d1r,GF r ≠ 1, f > 2

Sat. code biases d̃s
,f

ds
,f
− ds

IF
− �f d

s
GF

− d1,f + d1,IF + �f d1,GF f > 2

Rec. phase biases 𝛿r,f �1r,f − (d1r,IF − �f d1r,GF)∕�f + a1
1r,f

r ≠ 1

Sat. phase biases 𝛿s
,f

�s
,f
− (ds

IF
− �f d

s
GF

− d1,IF + �f d1,GF)∕�f − �1,f − as
1,f

Integer ambiguities ãs
r,f as

1r,f
− a1

1r,f
r ≠ 1, s ≠ 1
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Experimental setup

The multi-GNSS PPP-RTK positioning capabilities of com-
bined GPS (G), Galileo (E), BDS 2 + 3 (C), and QZSS (J) 
are analyzed with the ambiguity float, ILS and BIE solu-
tions. The station PERT (Trimble Alloy) in Perth, Australia, 
acts as the user receiver, and the corrections are provided 
by the stations CUT0, CUTA, CUTB, and CUTC (all Trim-
ble NetR9, distance to PERT 22.4 km) forming a local 
receiver array or by the individual station NNOR (Septen-
trio PolaRx5TR, distance to PERT 88.5 km). The number 
of visible satellites with an elevation angle greater than 10° 
during April 1, 2022, is shown in Fig. 1.

The observations are weighted according to exponen-
tial noise amplification factors as defined in Euler and 
Goad (1991). The zenith-referenced standard deviations 
of the considered dual-frequency code observations are 
estimated from a different day of double-differenced code 
data from the local CUT* receiver array in a least-squares 
sense (Teunissen and Amiri-Simkooei 2008) and given in 
Table 2. For the tropospheric modeling, we use the global 
mapping function (Boehm et al. 2006) and the a priori cor-
rections from the blind MOPS model (MOPS, 1999). The 
GFZ precise multi-GNSS orbit products are applied (Deng 
et al. 2017).

The PPP-RTK strategy used in this contribution is imple-
mented as follows: The above-mentioned PPP-RTK correc-
tions are computed on an epoch-by-epoch basis from either 
a single reference receiver (CUT0 or NNOR) or from the 
local CUT* receiver array. AR techniques are not applied 
on the network side. In the simulations, also perfect, i.e., 
deterministic, corrections are considered. The user station 
PERT then applies these corrections together with their 
uncertainty as given by their covariance matrix. Neglect-
ing the uncertainty of the corrections can strongly degrade 
the position performance (Psychas et al. 2022). No delay is 

assumed between the generation of the PPP-RTK correc-
tions and the user positioning. The float solution is computed 
with a recursive least-squares implementation, and the ILS 
and BIE ambiguity solutions ǎ and a are computed anew 
in each epoch. We consider both static and kinematic posi-
tioning, where for the latter, the coordinates are assumed to 
be completely unlinked in time. The user ambiguities and 
receiver phase biases are assumed time-constant, and the 
ZTD is modeled as a random walk with a process noise of 
2 mm∕

√
h . All other parameters including the ionospheric 

delays are assumed unlinked in time, so that the results do 
not depend on the ionospheric activity.

Formal and simulation analysis

The average ambiguity float positioning precision against the 
number of epochs is shown in Fig. 2 for the east component, 
where the estimation is started every 10 min during April 1, 
2022. We can clearly see the benefit of combining multiple 
systems, so that, for instance, the kinematic precision with 
single-station corrections reaches 30 cm after around 15 
epochs for GPS, 6 epochs for GPS + Galileo, and 4 epochs 
when also including BDS and QZSS. The static counterparts 
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Fig. 1   Number of visible GNSS satellites at the station PERT during 
April 1, 2022

Table 2   Considered signals with the estimated zenith-referenced 
standard deviations of the code observations in [cm]. The zenith-ref-
erenced carrier phase standard deviations are assumed as 2 mm

GPS Galileo BDS QZSS

Signal L1/L2 E1/E5a B1/B3 L1/L2
St. dev. [cm] 36/19 23/19 40/18 42/21
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Fig. 2   Average ambiguity float kinematic and static PPP-RTK posi-
tioning precision of the east component with single-epoch, single-
station corrections (solid lines) and with deterministic corrections 
(dashed lines)
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converge slightly faster. Khodabandeh and Teunissen (2015) 
demonstrate that PPP-RTK with single-station corrections 
is equivalent to single-baseline RTK positioning. Applying 
the theoretically assumed perfect corrections instead of the 
single-station corrections translates to having no measure-
ment noise at the reference receiver for single-baseline RTK 
positioning. Assuming a similar noise level at both receiv-
ers, the uncertainty of the PPP-RTK user observations with 
the corrections applied is then essentially reduced to half, 
so that the same precision values are obtained faster. When 
extending the single reference station to an array or network 
of receivers, the user positioning precision will be between 
these two shown extremes. In all presented cases, however, 
a centimeter-level precision within at most a few epochs can-
not be expected.

In comparison, the ambiguity fixed precision values in 
the first epoch are already between 9 mm for the GPS-only 
case with single-station corrections and 3 mm for the four-
system case with perfect corrections. These values are the 
conditional standard deviations assuming the ambiguities 
known and do not reflect the uncertainty of the ambiguity 
estimators, but rather the highest precision that can possibly 
be reached with any ambiguity estimator. A formal measure 
of the strength of the GNSS model for ambiguity resolution 
is the ambiguity dilution of precision (ADOP, Teunissen 
1997). The average ADOP values of the above PPP-RTK 
examples are shown in Fig. 3. Again, we see an improve-
ment when combining systems or increasing the quality of 
the corrections. Odijk and Teunissen (2008) found that an 
ADOP ≤ 0.12 generally allows for reliable ILS ambiguity 
resolution with a failure rate of less than 0.1%. This seems 

promising for the four-system cases with perfect corrections, 
but when we look at the actual average TTFF with ILS and 
a failure rate constraint of 0.1% in Table 3 (the integer boot-
strapping failure rate as a tight upper bound is used, see 
Verhagen et al. 2013), we see that on average still around 
15 epochs are required in this case, which is far from the 
envisioned almost instantaneous solutions. The increase of 
the convergence time of the four system solution compared 
to GPS + Galileo is attributed to more frequently rising sat-
ellites. As the BIE estimator does not fix the ambiguities 
to integers, the concept of a success rate does not apply. In 
the following, it is investigated how this increased model 
strength as measured by the ADOP translates into high posi-
tioning precision with the BIE estimator.

The simulated horizontal positioning errors of two kine-
matic GPS + Galileo PPP-RTK examples with single-station, 
single-epoch corrections with five and seven observation 
epochs and 10,000 samples are shown in Fig. 4. We can see 
the basic properties of the involved estimators: The float 
solution (gray) is at the several decimeter level, correctly 
fixed ILS solutions (green) are at the sub-centimeter level, 
whereas incorrectly fixed ILS solutions (red) can have large 
errors (no fixing criterion in form of an acceptance test of 
the ILS ambiguity solution is applied). These are avoided to 
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Fig. 3   Average ADOP values for kinematic and static PPP-RTK posi-
tioning with single-epoch, single-station corrections (solid lines) and 
with deterministic corrections (dashed lines)

Table 3   Average TTFF in epochs for kinematic and static PPP-RTK 
with corrections from a single station or perfect corrections. The fix-
ing criterion is an integer bootstrapping failure rate of 0.1% or lower. 
One epoch corresponds to 30 s

Single-station corr Perfect corr

kinematic static kinematic static

G 47.8 35.6 31.2 23.9
G + E 27.2 26.5 15.2 14.9
G + E + C + J 34.6 34.5 15.5 15.5
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Fig. 4   Simulated horizontal positioning errors for kinematic 
GPS + Galileo PPP-RTK examples with single-epoch, single-station 
corrections. The float solution is shown in gray, the ILS solution in 
green/red for correct/incorrect ambiguity estimates, and the BIE solu-
tion in blue
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some extent with the BIE solutions (blue), which are more 
concentrated around the true position. The ILS success rates 
of the two examples are 69.6% and 81.4%, and the 3D RMS 
errors of the float/ILS/BIE solutions are 88.4/25.8/22.2 cm 
and 57.8/4.5/4.0 cm, showing the RMS error optimality of 
the BIE estimator. An exemplary cumulative distribution 

of the 3D positioning error for the same setup with three 
observation epochs is shown in Fig. 5; see also Verhagen and 
Teunissen (2005), Brack (2019), or Odolinski and Teunis-
sen (2020) for similar results. While the BIE solution has 
the smallest RMS error, the ILS solution has a much higher 
probability of very small positioning errors but is also more 
likely to result in large errors. Interestingly, the ILS success 
rate of this example is 26.6%, implying that correct ambigu-
ity estimates ǎ are not necessarily required for centimeter-
level errors, which occur at about 50%. Finally, the 3D RMS 
positioning errors of the above example relative to the float 
solution against the number of epochs are shown in Fig. 6; 
see also Brack (2019) or Odolinski and Teunissen (2020). 
The fixed solution is worse than the float solution in the first 
epochs due to the very low ILS success rate and eventually, 
with increasing success rate, converges to the dashed line, 
for which the ambiguities are assumed known. The BIE esti-
mator always has the minimum RMS error. Its results are 
close to the float solution for very low ambiguity precision 
in the first epochs and close to the fixed solution for high 
ambiguity precision, which was proven in Teunissen (2003).

The capabilities of the three estimators for kinematic 
and static PPP-RTK are analyzed by means of the average 
simulated RMS positioning error, shown for the east com-
ponent in Fig. 7, and by means of the average probability 
of obtaining an absolute positioning error of less than 3 cm 
for the horizontal components and 15 cm for the vertical 
component in Fig. 8. Again, solid and dashed lines represent 
the setup with single-station and deterministic corrections, 
respectively. The float results confirm the formal analysis in 
Fig. 2, i.e., fast centimeter-level results cannot be expected. 
The BIE results always lead to the smallest RMS positioning 
errors. For strong positioning models in which centimeter-
level results are actually possible, the RMS errors with ILS 
are very close to the BIE results. Almost instantaneous cen-
timeter-level results are only obtained with the four-system 
combination, where the RMS error of the BIE estimator with 
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positioning error of the east 
component for kinematic and 
static PPP-RTK with single-
epoch, single-station corrections 
(solid lines) and with determin-
istic corrections (dashed lines)
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single-station corrections is at the sub-decimeter level using 
two epochs and the sub-centimeter level using three epochs. 
With deterministic corrections, about one fewer epoch is 
required. This result is confirmed by the complementary 
availability values in Fig. 8, showing a very high availabil-
ity of precise positioning solutions with two to three epochs 
with single-station corrections and one to two epochs with 
perfect corrections. This figure also demonstrates again that 
the ILS solution can have a higher probability of very pre-
cise solutions than the BIE solution, cf. Figure 5. That is, 
although the RMS errors of the BIE and ILS estimators are 
very similar, their characteristics are still quite different.

Real‑data analysis

Judging from the simulation results in the previous section, 
we can expect centimeter-level four system PPP-RTK results 
in generally not more than three epochs, quite often with 
one or two epochs, depending on the quality of the correc-
tions. This is now verified with real GNSS data. We focus 
on the kinematic case, but a big benefit of the static case can 
anyway not be expected when only a few epochs are used. 

Positioning solutions are initialized at every 30 s observa-
tion epoch.

With real data, it is obviously not possible to generate 
perfect PPP-RTK corrections that can be assumed determin-
istic. To demonstrate the improvements in the positioning 
capabilities with corrections of higher quality, we compare 
the results using single-station corrections from CUT0 and 
corrections from the four-station array CUT0/A/B/C. The 
same set of satellites is available in both cases. The result-
ing empirical RMS positioning errors of the three estimators 
are given in Table 4 for different numbers of epochs. The 
optimality of the BIE estimator is also confirmed with the 
real data, where for five and ten epochs, the fixed solution is 
essentially equally good in terms of the RMS error. Already 
by using a local array to compute the corrections instead of 
a single station, the PPP-RTK performance can be consider-
ably improved, with an absolute improvement of around one 
meter for the vertical components in the first epoch and a 
relative improvement of the BIE RMS errors between 7.5% 
and 77.3%. The obtained empirical RMS positioning errors 
cannot keep up with the simulations, which promised sub-
centimeter values already for three epochs. The reason is 
that the NetR9 receivers at the CUT* stations do not track 

Fig. 8   Average simulated avail-
ability of precise kinematic and 
static PPP-RTK results with 
single-epoch, single-station 
corrections (solid lines) and 
with deterministic correc-
tions (dashed lines). Precise is 
defined as an error of less than 
3 cm for the horizontal compo-
nents and 15 cm for the vertical 
component
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Table 4   Empirical GPS + Galileo + BDS + QZSS east/north/up RMS 
positioning errors of the station PERT in [cm] with corrections from 
CUT0 and the array formed by CUT0/A/B/C. The lowest values are 

marked in bold. BDS satellites with a PRN larger than 30 are not 
included (see text)



	 GPS Solutions           (2023) 27:12 

1 3

   12   Page 8 of 11

BDS satellites with a PRN larger than 30, so the number of 
visible satellites is clearly reduced.

In a second example, we therefore make use of the station 
NNOR tracking all BDS satellites to compute the PPP-RTK 
corrections. The empirical RMS positioning errors are given 
in Table 5. The horizontal RMS errors using the optimal BIE 
estimator are at the decimeter level with one observation 
epoch, at the centimeter level with two observation epochs, 
and at the sub-centimeter level with three or more epochs, 
confirming that two-epoch centimeter-level PPP-RTK with-
out atmospheric corrections is possible.

The positioning errors of the east, north, and up com-
ponent with one and two observation epochs are shown in 
Fig. 9. The corresponding empirical rates of a positioning 
error of less than 3 cm for the horizontal components and 
15 cm for the up component are given in Table 6, where for 
the values in the parenthesis only the horizontal components 
are considered. With one epoch, the horizontal positioning 

error of the ILS (red) and BIE (blue) solutions is less than 
3 cm in 97.6% and 87.6% of the cases. With two epochs, 
only six and nine of the 2,879 epochs exceed these limits, 
and with three epochs, this limit is always met with ILS 
and exceeded twice with the BIE estimator. The results in 
Table 6 confirm the simulation results in the previous sec-
tion: While the BIE solutions are RMS optimal, see Tables 4 
and 5, ILS often leads to a higher availability of very small 
positioning errors.

Conclusions

The user performance of PPP-RTK with the current GNSS 
constellations and without atmospheric corrections was 
analyzed. In the literature, often convergence times of sev-
eral tens of minutes are reported for this model in order to 
reach centimeter-level positioning results. This contribution 
focused on the feasibility of almost instantaneous precise 
solutions. The main conclusions can be summarized as 
follows:

The BIE estimator provides MSE optimal positioning 
results within the class of integer-equivariant estimators 
and is in this sense superior to the ambiguity float and any 
admissible ambiguity fixed solution. Its results can therefore 
be seen as benchmark results to evaluate the highest achiev-
able performance of a given GNSS model. To this end, a 
simulation analysis of kinematic and static PPP-RTK with 
perfect corrections and single-station corrections was con-
ducted. It showed that a high availability of almost instanta-
neous centimeter-level results with one to three observation 
epochs can only be expected when combining all available 

Table 5   Empirical GPS + Galileo + BDS + QZSS east/north/up RMS positioning errors of the station PERT in [cm] with corrections from the 
station NNOR. The lowest values are marked in bold

1 epoch 2 epochs 3 epochs 4 epochs

Float 59.2/62.0/386.8 50.3/48.0/172.1 45.6/38.6/115.2 42.2/31.4/87.3
NNOR ILS 14.6/14.5/97.7 3.7/1.8/14.2 0.4/0.6/6.3 0.4/0.6/6.1

BIE 11.2/11.4/83.6 2.2/1.4/8.5 0.6/0.6/5.8 0.4/0.6/5.8
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Fig. 9   East, north, and up GPS + Galileo + BDS + QZSS positioning 
errors of the station PERT with single-station PPP-RTK corrections 
from the station NNOR. The float solution is shown in gray, the ILS 
solution in red, and the BIE solution in blue

Table 6   Empirical rates for GPS + Galileo + BDS + QZSS positioning 
errors of the station PERT with corrections from the station NNOR 
of less than 3/3/15 cm for the east/north/up components in [%]. The 
values in parenthesis result from only the horizontal components. The 
highest values are marked in bold

1 epoch 2 epochs 3 epochs

Float 0.0 (0.2) 0.0 (0.2) 0.0 (0.5)
ILS 91.6 (97.6) 95.7 (99.8) 96.7 (100)
BIE 83.2 (87.6) 97.5 (99.7) 97.8 (99.9)
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systems, namely GPS, Galileo, BDS, and QZSS, but is gen-
erally possible.

This result was confirmed with real data recorded at 
the station PERT, with corrections provided by the sta-
tion CUT0, a local array of four receivers around CUT0, 
or the station NNOR. Although perfect PPP-RTK correc-
tions can, of course, not be provided, the results showed how 
the performance of the PPP-RTK user model could already 
be improved when using a local array of receivers instead 
of a single receiver, thereby improving the empirical BIE 
RMS position errors by 7.5% to 77.3%. Using PPP-RTK 
corrections from the station NNOR, horizontal positioning 
errors of less than 3 cm are obtained with the BIE estimator 
in 87.6% of the cases with one observation epoch, and in 
99.7% of the cases with two observation epochs. Two-epoch 
centimeter-level horizontal PPP-RTK results without atmos-
pheric corrections are, therefore, indeed feasible. While this 
precision cannot be reached for the vertical component, its 
empirical two-epoch RMS error using the BIE estimator was 
reduced to 8.5 cm as compared to 14.2 cm with ILS.

It has to be stressed, however, that with the current con-
stellations such short observation spans require a good sat-
ellite visibility. For instance, BDS satellites with a PRN 
larger than 30 are not tracked by the CUT* stations. As a 
consequence of removing these satellites, centimeter-level 
RMS positioning errors with two epochs were no longer pos-
sible, see Table 4. In view of the developments of the GNSS 
constellations in the previous years, however, the number 
of available GNSS satellites can be expected to increase 
further in future so that similar results will also be possible 
on a global scale. Further improvements toward instantane-
ous results can be expected when observations on additional 
frequencies are included. Psychas et al. (2021) concluded 
that the frequency separation is more important than the 
number of frequencies in terms of the ambiguity resolution 
performance, so that, for instance, adding E6 observations 
to a Galileo E1/E5a solution is more beneficial than adding 
both E5b and E5. As the computational burden of the BIE 
estimator increases with the ambiguity dimension, this result 
can prove very beneficial for extending the presented study 
to multi-GNSS solutions with three or more frequencies.
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