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Abstract. The problem of designing efficient networks with degreerzboon-
straints has received a lot of attention recently. In thisgpawe study several
generalizations of this fundamental problem. Our genaatitins are of the fol-
lowing two types:

— Generalize constraints on vertex-degrearuatrary subsets of edges

— Generalize the underlying network design problem to otleenkinatorial
optimization problems lik@olymatroid intersectiomndlattice polyhedra

We present several algorithmic results and lower boundghfese problems. At
a high level, our algorithms are based on the iterative rmgricelaxation tech-
nique introduced in the context of degree bounded netwosligdeby Lau et
al. [LNSS07] and Singh-Lau [SLO7]. However many new ideasraquired to
apply this technique to the problems we consider. Our mauligare:

— We consider theminimum crossing spanning tree problgBr+04] in the
case that the ‘degree constraints’ havéaminar structure(this general-
izes the well-known bounded degree MST [SLO7]). We providd & +
O(log n)) bicriteria approximation for this problem, that improveepear-
lier results [B+04,BKNO08].

— We introduce theminimum crossing polymatroid intersectipnoblem, and
give a(2,2b + A — 1) bicriteria approximation (whergl is the maximum
number of degree-constraints that an element is part ofhdrspecial case
of bounded-degree arborescence (hére: 1), this improves the previously
best known(2, 2b + 2) bound [LNSS07] tq2, 2b).

— We also introduce theinimum crossing lattice polyhed@oblem, and ob-
tain a(1, b+ 2A — 1) bicriteria approximation under certain condition. This
result provides a unified framework and common generatinatif various
problems studied previously, such as degree bounded ms{i6LS08].

1 Introduction

Recently there has been a substantial progress in algaritinmetwork design prob-
lems with additional degree-bound constraints. Theselpnab arise naturally in var-
ious contexts, the degree bound may correspond to limitsiiilo outgoing bandwidth
from a node, limitations in processing power, or even litiotas of budget for the out-
going edges. The most widely studied problem in this lineesfearch is the mini-
mum cost degree bounded spanning tree problem. Here givesiginted undirected



graph, and degree bounds for vertices, the goal is to find themam cost spanning
tree subject to these degree bounds. Even in the absencdgiftsyehis problem is

NP-Hard, since finding a spanning tree with maximum degree isnequivalent to

finding a Hamiltonian Path. A variety of techniques has beseduor this problem

[R+93,KR02,KR05,C+05,C+06,RS06,G06] which culminated recent breakthrough
by Singh and Lau [SLO7] who gave the best possible algorithat,achieves the opti-
mum cost, and an additive +1 violation in the degrees.

Subsequently, these results and techniques have beeadppdifferent and more
general settings such as matroids, arborescences, direete/ork design problems
with intersecting and crossing super-modular connegtieitjuirements, and survivable
network design [LNSS07,LS08,BKN08,KLS08]. Another diten has been to look at
more general bounds than simply degree bounds, e.g., [BKIND8,KLS08]. In this
paper, we study further extensions and generalizatiorteesktproblems. In addition to
several results, we also introduce and investigatel&geee bounded lattice polyhedron
problem This problem forms a common generalization of severale®gounded op-
timization problems studied recently. We now formally dése various problems we
consider, our results and techniques and how they connéwt forevious work.

2 Our results, techniques and previous work

2.1 Minimum Crossing Spanning Tree

The algorithm of Singh and Lau [SLO7] for the degree-bounaétimum spanning
tree problem is based on an iterative rounding approachiofJal] based on a natural
linear programming relaxation. They show that in each fienaeither some variable
is set to 0 or 1, or else the degree constraint on some vertekearopped. A natu-
ral question is whether one can generalize this approacbunds on arbitrary subsets
of edges, instead of just degree bounds. This has been dtndike literature as the
Minimum Crossing Spanning Tree Problem (MCSii this problem, we are given sub-
sets of edge#, ..., E,, C I and degree bounds, ..., b,,, and the goal is to find a
minimum cost spanning tree that contains at nbpsidges from¥;.

There are two previous results on the MCST problem. The &silt, due to Bilo
et al. [B+04], gives a multiplicative guarantee on both carstl degree violation: the
algorithm finds a spanning tree where the degréisg n)b; + O(log m) and the cost
violation is a multiplicativeD (log n). This algorithm is based on randomized rounding.
The second result [BKNO8] gives an optimal cost guarantekesanadditive guarantee
on degree: if each edge lies in at massets{ E;} ,, then there is an algorithm that
finds a spanning tree of optimum cost and degree at ljoestA — 1. This algorithm
uses the iterative rounding/relaxation approach of Singt leau [SLO7]. Note that
these degree guarantees are incomparable: the first rebelttér for larged, whereas
the second does better whehis small. For example, whed = ©(n) there is either
an additiveO(n) or a multiplicativeO(log n) bound for the degree.

We consider a special case of MCST when the degree-boundstiaminar struc-
ture’, and improve over the above bounds. Our motivation isnderstand how far one
can take the iterative rounding approach and provide sastlitivedegree constraint



violations with respect to the MCST problem. In tleeninar MCST problemwe are
given graphz = (V, E') with edge-costs : £ — R, and degree bounds represented
by a laminar familyC on V" along with a bound(S) for eachS € C. The goal is to
compute a minimum cost spanning treeGinthat contains at most(S) edges from
0(S) for eachS € C; heres(S) := {(u,v) € E |u € S, v ¢ S} is the set of edges
crossingsS. We refer to edge-subsets of the fodifit) for someS C V asvertex-cuts
We obtain the following result for laminar MCST in Sectiorti3at improves over both
the previously known bounds.

Theorem 1 There is a polynomial time algorithm for laminar MCST thatquutes a
spanning tree of cost at most the optimum, and that contdinsoatb(.S) + O(logn)
edges fromd(S) forall S € C.

This algorithm is again based on iterative rounding, an@d two new main ideas.
First, we modify the iterative rounding procedure of Singld &au, to drop a constant
fraction of constraints in each iteration. This is cruckltacan be shown that dropping
one constraint at a time as in Singh and Lau can indeed leadiége@e violation of
£2(A). Second, the algorithm does not just drop degree constrdint in some itera-
tions it also generates new degree constraints, by mergistingy degree constraints.

Degree-bounded Matroids A natural generalization of the MCST problem is thai-
mum crossing matroid basgoblem [KLS08]. Here we are given a matroid on ground-
set E with rank functionr : 2¥ — N, cost functionc : £ — R and degree bounds
specified by subsetsE; C E'}7, and respective bound$;}” . The goal is to find a
min-cost basisB of the matroid satisfyingB N E;| < b; for all ¢ € [m]. Once again
we denote byA, the maximum number of sefd; }1 , that any element oF lies in.

A result of [BKNO8,KLS08] shows that iterated rounding canused to finds a basis
of optimal cost that violates degree bounds by an at most dditize A — 1 term. Our
second result extends the guarantee of [B+04] to the crgssatroid problem.

Theorem 2 There is a polynomial time algorithm for the minimum crogsmatroid
basis problem, that computes a basis of cost at rag&ig k) times the optimum and
with at mostO(log k)b; + O(log m) elements fronE; for eachi € [m]. Herem is the
number of degree constraints akds the rank of the underlying matroid.

This algorithm is based on randomly rounding an optimal LRitgmn. Although the
algorithm in Theorem 2 is a natural extension of [B+04], thalgsis is not completely
straightforward. The algorithm of Bilo et al. [B+04] perfos O(log n) rounds of the
following: sample each edge independently according tavétheée produced by the LP
solution. The key argument here is a result of Alon [A95] slythat w.h.p. the chosen
edge-set (from the above procedure) contains a spanniegtiis proof relies on the
graph structure and the notion of connected componentsekAawt is not clear how
to apply this argument to matroids, since there is no egemtalf a connected compo-
nent in general matroids. Instead, we obtain the desiradtreg using a theorem of
Polesskii [Pol90] (also proved in [Kar98]) that states: ihatroid of rankk contains
2L - In k disjoint bases, then picking each element independently prbbability%,
results in a set containing a basis w.h.p. Details of The@ame given in Appendix B.



Hardness of approximation. Our next result shows that the crossing spanning tree
problem is strictly harder than the bounded degree mininpamising tree problem.

Theorem 3 Unless\P has quasi-polynomial time algorithms, the minimum cragsin
matroid basis problem admits r@(log® m) additive approximation for some constant
a > 0. This holds even when there are no costs. Moreover, the mimigrossing
spanning tree problem does not admitlab + O(log™ m))-bicriteria approximation.

To show the hardness result in Theorem 3, we give a reduation the Label Cover
Problem. The reduction proceeds in two steps. First, we sheWwardness foraniform
matroid instance, without costs. Then, we show how to usetthieduce to an MCST
problem with costs, such that any minimum spanning tree afimum cost violates
the degree bounds. The details are given in Section A.

We note that there is still a large gap between the positigetla@ negative results
for MCST. There is also an additive(/A) gap for the standard LP-based approaches,
using discrepancy argument§Vhile this integrality gap is substantially better tham ou
hardness result, given the lack of any reasonable hardesgks on discrepancy type
problems, it is not clear how this could improve the hardmessalt for MCST.

2.2 Minimum Crossing Arborescence and Polymatroid Intersetion

The degree bounded spanning tree problem has also beeadstudidirected graphs
[KKRRO04,LNSS07,BKNO8]. Here we are given a weighted dieglagraphz = (V, E)
with rootr € V and outdegree bounds on the vertices € V. Thedegree bounded
min-cost arborescence probleis to find a minimum cost arborescence rooted- at
subject to the degree bounds. The results for arborescaneesther different from
those for spanning trees. Bansal et al. [BKNO08] designedigorithm that for any
0 < e <1/2,produces &b, /(1 —e€) +4, 1/¢) bi-criteria guarantee. In fact this guaran-
tee holds more generally for directed network design witlieisecting supermodular
requirements’. It turns out that this guarantee is best @mehope for via the natural
LP relaxation, even for arborescences, since there is #asimiegrality gap for every
0 < e < 1/2. In particular, any approximation better than multiplieatfactor 2 in the
degree bounds causes a factor of at least 2 in the costs. lbwetdtare about costs, we
can sekt = 0 and obtain only an additive degree violation; in fact, [BK8Jiimproved
this guarantee to plus 2.

Now, suppose we consider bounds on general edge sets. Gaeadditive guar-
antees exist for both crossing spanning trees and unweligib®rescences (with out-
degree bounds), a natural question is whether results gmadato spanning trees or
matroids also hold for unweighted arborescences. In pdaticsuppose we consider
the unweighted arborescence problem with bouris , on sets{ E;}7 ,, where the
set system hagl := max.cg |[{i € [m] : e € E;}| = O(1), orevenifA =1 (i.e.,
setsF; are disjoint). Is there an additive degree violation guggaim this case? Some-
what surprisingly, we show that for the natural LP relaxatithe answer is negative in
a rather strong sense:

5 This was pointed out to us by Mohit Singh.



Theorem 4 For anye > 0, there exists an instance of the unweighted minimum cross-
ing arborescence problem such that even though the LP ishfeathe bound on some
set{E;}7, must be violated by a multiplicative factor at le&st- e. Moreover, this
instance hag\ = 1, and just one non-degree constraint.

On the positive side we show a tight upper bound matchingativerd bound above,
for the much more general polymatroid intersection problem

Definition 1 (Minimum crossing polymatroid intersection problem). Let ry,r, :
2F — 7 be two supermodular functions,: E — R and{E;};c; be a collection of
subsets of’ with corresponding bound®; };< . Then theminimum crossing polyma-
troid intersection probleris:

min ¢’
x(S) > max{ri(S5),r2(S)} VSCEFE
x(E;) <b; Vi € [m)]
xz. €{0,1} Ve € E.

Recall that the arborescence problem is an intersectionpafréition matroid and a
graphic matroid, and hence it is a special case of the maitrtadsection problem. The
following theorem captures our main result for this problem

Theorem 5 Any optimal basic solution:* of the linear relaxation of the minimum
crossing polymatroid intersection problem can be roundetd ian integral solution
& such thatz(S) > max{r1(S),r2(S)} forall S C F and

<2z and #(E;)<2b;+A—1 Viel.

We note that this result is the best one can hope given ther lbaends above.
First, the integrality gap instance mentioned previousiplies that the multiplicative
factor in the degree cannot be improved beyond 2. SeconB#MNO08] lower bound
for arborescences implies that one cannot hope to obtaiticabetter than 2 in costs
(without violating factor strictly greater than 2 in degsgd-or the special case of degree
bounded arborescence, Theorem 5 improves the previoustikbewn bicriteria bound
of (2,2b+ 2) [LNSS07] to(2, 2b).

The algorithm for this theorem uses iterative rounding, asgroof is based on
a ‘fractional token’ counting argument similar to the onedi$n proving theA — 1
additive guarantee for the MCST problem [BKNOS8]. Proofs bedrems 4 and 5 are
in Appendix C.

2.3 Minimum Crossing Lattice Polyhedron Problem

We generalize the minimum crossing polymatroid intersecproblem even further
to minimum crossing lattice polyhedrhattice polyhedra form a common framework
for several discrete optimization problems such as polyoidg, intersection of two
polymatroids, shortest paths, max flow/min cutim-planar graphs, supermodular sys-
tems, etc. (see Appendix D). Lattice polyhedra were firststigated by Hoffman and



Schwartz [HS78] and the natural LP relaxation was shown ttotadly dual integral.
Even though greedy-type algorithms are known for all thergdas mentioned above,
so far no combinatorial algorithm has been found for laftiol/hedra in general. Two-
phase greedy algorithms have been established only in edsze an underlying rank
function satisfies a monotonicity property (see [Fra9$](B]).

Before formally defining the crossing lattice polyhedralgem, we need to intro-
duce some terminology. LéF, <) be a partially ordered set with £ (). We consider
alattice (F, <), where there are two commutative binary operatiomsetA andjoin
V, that are defined oall pairsA, B € F, such that:

AANB < A,B < AVB

Note that our definition is more general than the usual defimivf a lattice, since the
join AV B is notrequired to be the least common upper bound ahd B. A function
r: F — Z is said to besupermodulapn (F, <, A, V) iff:

r(A)+r(B)<r(AANB)+7r(AvB), forallA,BeF

Given a supermodular function: 7 — Z,, a ground sef’, a cost functiore : £ —
R, and a set-valued functign: 7 — 2 satisfying:

1. Consecutive property:If A < B < C thenp(A) N p(C) C p(B),
2. Submodularity: ForallA, B € F, p(AV B) Up(AAB) C p(A) U p(B),

thelattice polyhedron probleris defined as the following integer program:
min{c’ -z | Z z. > r(9), VS € F; x € {0,1}F}
e€p(9)

Definition 2 (Minimum crossing lattice polyhedron).Given a lattice polyhedron spec-
ified by (F,<,A,V, E,p,r,c), and a family{E;}™, of subsets off with bounds
{b;}, theminimum crossing lattice polyhedrqmoblem is:

T

minc’ - x
xz(p(S)) > r(S), VSeF Rank constraints
z(F;) <b;, Viel Degree constraints

z € {0,1}*

We prove the following result for this problem.

Theorem 6 Consider any instance of minimum crossing lattice polyhéDefinition 2)
that satisfies the following assumption:

(x) S<T = |p(S)|<|p(T)|, forall S,T cF

Then there is an algorithm that computes a solution of cost@dt the optimal, where
all rank constraints are satisfied, and each degree bounddited by at most an
additive2A — 1. Here A := maxecp |{i € [m] : e € E;}|.



This theorem also holds in the presence of both lower andrugggree-bounds.
We note that assumptigr) is satisfied for matroids, so Theorem 6 matches the previ-
ously best-known bound [KLS08] for degree bounded matrgidih both upper/lower
bounds). We also note that this theorem is only applicabknthe rank constraints are
separable in polynomial time; this corresponds to the grmolif minimizing a submod-
ular function on ground-set over the subset§p(S) | S € F} C 2F. This is indeed
possible in all aforementioned examples of lattice polybed

Observe that propert) is valid in case of inclusion-wise ordering, i.e., if

S<T <<= p(S)Cp(T) VS.TeF.
In this special case, we can improve the result of Theorem 6.

Theorem 7 If the underlying lattice of the minimum crossing latticdypmdron prob-
lem is ordered by inclusion, then there is an algorithm th@nputes a solution of cost
at most the optimal, where all rank constraints are satisfaatl each degree bound is
violated by at most an additiva — 1.

Theorems 6 and 7 are similar to the corresponding proofs f08WM[BKNO08] and
degree-bounded matroid [KLS08], however the argumentd teeke carefully adapted
in the more general setting of lattice polyhedra. Proofssapmn Appendix D.

3 Crossing Spanning Tree with Laminar degree bounds

We consider therossing spanning tree problewith bounds on vertex-cuts that form

a laminar family. In this problem, we are given an undiregeabhG = (V, E,) onn
vertices, non-negative edge-costsfor e € E,, and a familyD of subsets ol with
“degree-boundsi(S) for eachS € D. We assume thd? is alaminar familyof vertex-
sets:i.eS CTorT C SorSNT = holds foranyS,T € D. The problem involves
computing a minimum-cost spanning tfBef G that contains at mo$(.S) edges from
0(S) for eachS € D. This problem reduces to the usual degree-bounded MST when
D = {{v} | v € V}. In this section we prove Theorem 1.

The algorithm uses iterative rounding based on an LP rdtaxathe algorithm
modifies the laminar family of degree bounds during its ekecuA generic iteration
starts with a subsdf of edges already picked in the solution, a suliseif undecided
edges, i.e., the edges not yet picked in or dropped from thii@o, a laminar family
L onV, and residual degree bounilsS) for eachS € L. The laminar familyC has
a natural forest-like structure withodescorresponding to each element©f A node
S € L is called theparentof nodeC € L if S is the inclusion-wise minimal set
in £\ {C} that containg”; and C is called achild of S. NodeD € L is called a
grandchildof nodeS € L if S is the parent oD’s parent. Node$, T € £ aresiblings
if they have the same parent node. A node that has no paraitédot. Thelevelof
any nodeS € L is the length of the path in this forest frohto the root of its tree. We
also maintain dinear orderingof the children of eaclf-node. A subsel8 C L is called
consecutivéf all nodes inB3 are siblings (with parer) and they appear consecutively



in the ordering ofS’s children. In any iteratiod ', E, L, b), the algorithm solves the
following LP relaxation of the residual problem.

min Zcezce 1)
ecE
st. z(E(V))=|V|—|F|-1
x2(BEU)) <|U|l-|F{U)|-1 vUcCcVv
z(0g(5)) < b(S) vSeL
ZTe >0 Vee FE

For any vertex-subséf C V and edge-sell, we let H(U) := {(u,v) € H |
u,v € U} denote the edges induced b anddéy (S) := {(u,v) e H |u e S, v ¢
S} the set of edges crossing The first two sets of constraints are spanning tree
constraints while the third set corresponds to the degree
bounds. Letr denote an optimaéxtreme point solutioto
this LP. By reducing degree bountlsS), if needed, we as-
sume thatr satisfies all degree bounds at equalftiye de-
gree bounds may be fractional-valued). het= 24.

Definition 3. An edgee € F is said to bdocalfor S € £
if e has at least one end-point ii but is neither inE(C')
norind(C) Né(S) for any grandchild” of S. Letlocal(.9)
denote the set of local edges f6rA nodeS € L is said to
begoodif [local(S)| < .

The figure on the right shows a s&t its childrenB; and
Bs, and grand-childred, ..., Cy; edges inlocal(S) are
drawn solid, non-local ones are shown dashed.

The algorithm is initialized withF «— 0, £ «— E,,
L « D, the original degree bounds dn, and an arbi-
trary linear ordering on the children of each nodelinin
a generic iterationlF, E, L, b), the algorithm performs one
of the following steps:

1. If xz, = 1 for some edge € F thenF «— F U {e}, E «— FE\ {e}, and set
b(S) < b(S) —1forall S € Lwithe € §(95).

2. If z. = 0 for some edge € E thenE — E\ {e}.

3. DropN: Suppose there at lealgt|/4 good non-leaf nodes id. Then either odd-
levels or even-levels contain a sét C £ of |£|/8 good non-leaf nodes. Drop
the degree bounds of ahildrenof M and modifyL accordingly. The ordering of
siblings also extends naturally.

4. DropL: Suppose there are more thgij/4 good leaf nodes i, denoted by\/.
Then partition\V into parts corresponding to siblings ih For any parf Ny, - - - |
Ni} € N consisting of ordered (not necessarily contiguous) caildf some node
S:
(a) DefineM; = N3;—1 U Ny, forall 1 <i < |k/2] (if kis odd N}, is not used).



(b) Modify £ by removing leave$Ny, - - - , Ni} and adding new leaf-nod€d/;,
--+, M}/2) } as children ofS. The children ofS in the new laminar family are
ordered as follows: each node; takes the position of eitheNy;, 1 or Ny,
and other children of are unaffected.

(c) Setthe degree bound of eath to b(M;) = b(Na;—1) + b(Na;).

S

f F\
N ‘
DropL step

/
1 /a E /E‘\ DropN step

S
{ Good non-leaf S
A5
1 2 3 /4

Fig. 1. Examples of the degree constraint modifications DropN arapDr

Good leaves {N;}?_;

Assuming that one of the above steps applies at each iter#tie algorithm termi-
nates wherf = () and outputs the final sét as a solution. Itis clear that the algorithm
outputs a spanning tree &f. An inductive argument (see e.g. [LNSS07]) can be used
to show that the LP (1) is feasible at each each iterationd@fd + LP.,, < LP,
whereL P, is the original LP valueL P, is the current LP value, an#l is the chosen
edge-set at the current iteration. Thus the cost of the folatisn is at most the initial
LP optimumL P,. Next we show that one of the four iterative steps alwaysiagpl

Lemma 1 In each iteration, one of the four steps above applies.

Proof: We crucially use the fact thatis an extreme point solution of (1). This implies
thatz is uniquely defined by satisfying a linearly independent amtinar subses of
the spanning tree constraints at equality together withbafamily £ C £ of degree-
constraints, such thaf| = |S|+|L£'|. If the first two steps do not apply, thén< z. <
1forall e € E. A counting argument (see, e.g., [SLO7]) shows that thezexbleasp
edges induced on ea¢he £’ that are notinduced on any of its children; 38| < |E|.
From the definition of local edges, we get that any edge (u, v) is local to at most
the following six sets: the smallest s&t € £ containingu, the smallest se$y; € £
containingv, the parents?;, and P, of S; and S, resp., the least-common-ancesior
of P, and P», and the parent of.. Thus} ¢ . [local(S)| < 6|E|. Combining these
facts, we conclude that ¢ - [local(S)| < 12|£|. Thus at leas{L|/2 setsS € £ must
have|local(S)| < a = 24, i.e., must be good. Now either at le&s{/4 of them must
be non-leaves or at lealgt| /4 of them must be leaves. In the first case, step 3 holds and
in the second case, step 4 holds. [ ]



It remains to bound the violation in the degree constrawtsich turns out to
rather challenging. We note that this is unlike usual appilbns of iterative round-
ing/relaxation, where the harder part is in showing thatafribe iterative steps applies.

It is clear that the algorithm reduces the sizeCdby at least£|/8 in each DropN
or DropL iteration. Since the initial number of degree coaists is at mos2n — 1,

Lemma 2 The number of drop iterations (DropN and DropL)iis:= O(logn).

3.1 Performance guarantee for degree constraints

We begin with some notation. The iterations of the algoritma broken into periods
between successive drop iterations: there are exdttyop-iterations (Lemma 2). In
what follows, thet-th drop iteration is calledound¢. Thetime ¢ refers to the instant
just after round; time 0O refers to the start of the algorithm. At any timedefine:

— L, denotes the laminar family of degree constraints.

— F, denotes the undecided edge set, i.e., support of the cluPemptimal solution.

— For any set3 of consecutive sibling® L;, Bnd(B,t) = > vz b(IV) equals the
sum of the residual degree bounds on nodes.of

— For any set3 of consecutive siblings £, Inc(B,t) equals the number of edges
from ég, (UnepN) included in the final solution.

Recall thath denotes theesidualdegree bounds at any point in the algorithm. The
following lemma is the main ingredient in bounding the degr®lation.

Lemma 3 For any setB of consecutive siblings if; (at any timef), we havénc(B, t) <
Bnd(B,t) + 4o - (T — t).

Observe that this implies the desired bound on each origiegtee constraing:
usingt = 0 andB = {S}, the violation is bounded by an additite. - 7" term.
Proof: The proof of this lemma is by induction ah— ¢. The base case= T is trivial
since the only iterations after this correspond to inclgdiredges: hence there is no
violation inanydegree bound, i.énc({N},T) < b(N) forall N € L. Hence for any
BC L Inc(B,T) <> nepnc({N},T) <> nepb(N) =Bnd(B,T).

Now supposeé < T, and assume the lemma fo# 1. Fix a consecutivé8 C L,.
We consider different cases depending on what kind of dreprsdn round + 1.

DropN round. Here either all nodes i get dropped or none gets dropped.

Case 1:None ofB is dropped.The inductive hypothesis implidac(B,t + 1) <
Bnd(B,t+1)+4a-(T—t—1). Since the only iterations between rourahd round + 1
involve edge-fixing, we haviac(B,t) < Bnd(B,t) — Bnd(B,t+ 1) + Inc(B,t + 1) <
Bnd(B,t) + 4o - (T —t —1).

Case 2All of B is droppedLet C denote the set of all children (ifi;) of nodes in
B. Note thatC consists of consecutive siblings4h 1, and inductivelyinc(C,t + 1) <
Bnd(C,t + 1) + 4a - (T —t — 1). Let S € L, denote the parent of thB-nodes;
soC are grand-children of' in £;. Let z denote the optimal LP solutioust before
roundt + 1 (when the degree bounds are still givenfyy, andH = E;,, the support



edges ofz. At that point, we havé(N) = z(§(N)) forall N € BUC. Also let
Bnd'(B,t + 1) := >y b(N) be the sum of bounds ai-nodes just before round
t + 1. SinceS is a good node in round+ 1, [Bnd'(B,¢ + 1) — Bnd(C,t + 1)| =
| EnenbV) = Y aree M) = | X yepa(0(N)) = Y pree #(3(M))| < 2a. The
last inequality follows since' is good; the factor o2 appears since some edges, e.g.,
the edges between two children or two grandchildresi,ohay get counted twice. Note
also that the symmetric difference &ff (UnepN) andéy (Uprec M) is contained in
local(S). Thusd g (UnegN) andd g (Uprec M) differ in at mosta edges.

Again since all iterations between timandt + 1 are edge-fixing:

Inc(B,t) < Bnd(B,t) — Bnd'(B,t + 1) + [0u (UnesN) \ 6 (Unrec M)

+Inc(C,t +1)
< Bnd(B,t) —Bnd' (B,t + 1)+ a+Inc(C,t + 1)
< Bnd(B,t) —Bnd'(B,t+ 1)+ a+Bnd(C,t+ 1)+ 4a- (T —t—1)
< Bnd(B,t) —Bnd'(B,t + 1) + a+ Bnd' (B,t + 1) + 2a + da - (T —t — 1)
< Bnd(B,t) +4a - (T —t)

The first inequality follows from simple counting; the seddallows since y (UnxesN)
anddy (Uprec M) differ in at mosta edges; the third is the induction hypothesis, and
the fourth isBnd(C, ¢ + 1) < Bnd'(B,t + 1) + 2« (as shown above).

DropL round. Inthis case, lef be the parent aB-nodesinC,, and\V = {Ny,--- , N, }

be all the ordered children ¢f, of which B is a subsequence (since it is consecutive).
Suppose indices < 7(1) < 7(2) < --- < w(k) < p correspond to good leaf-nodes
in V. Then for eachl < i < |k/2], nodesN,(2;—1) and N, ;) are merged in this
round. Let{r(i) | e < i < f} (possibly empty) denote the indices of good leaf-nodes
in 5. Then it is clear that the only nodes Bfthat may be merged with nodes outside
B are Ny andN,); all other3-nodes are either not merged or merged with another
B-node. LetC be the inclusion-wise minimal set ohildren ofS in £, s.t.

— Cis consecutive irC; 1,
— C contains all nodes o8 \ {N,.(;}*_,, and
— C contains all new leaf nodes resulting from mergiwg good leaf nodesf 5.

Note thatUy;cec M consists of some subset Bfand at most two good leaf-nodes in
N\ B. These two extra nodes (if any) are those merged with the adahodesV, .,
and N,y of B. Again letBnd'(B,t + 1) := Y y .5 b(IN) denote the sum of bounds
on B just before drop round + 1, when degree constraints afe. Let H = E,, be
the undecided edges in round- 1. By the definition of bounds on merged leaves, we
haveBnd(C,t+ 1) < Bnd'(B,t+ 1) + 2a. The term2a is present due to the two extra
good leaf-nodes described above.

Claim1 We have}éH(UNegN) \ §H(UAJECM)| < 2a.

Proof: We say thatV € N is represented i@ if either N € C or N is contained
in some node of. Let D be set of nodes oB that arenot represented i€ and the



nodes of\/ \ B that are represented ¢h Observe that by definition df, the setD C
{Nz(e=1)> Nx(e) Nx(5)s Nr(s+1) }: in fact it can be easily seen thid?| < 2. Moreover
D consists of only good leaf nodes. Thus, we havecp d(L)| < 2. Now note that
the edges idy (UnepN) \ 0y (Unree M) mustbe inUgepdy (L). This completes the
proof. |

As in the previous case, we have

Inc(B,t) < Bnd(B,t) — Bnd'(B,t + 1) + |6 (UnesN) \ 61 (Unrec M)
+Inc(C, t+1)
< Bnd(B,t) — Bnd'(B,t + 1) + 2+ Inc(C, t + 1)
< Bnd(B,t) —Bnd'(B,t + 1) + 2a + Bnd(C,t + 1) + 4 - (T —t — 1)
< Bnd(B,t) — Bnd'(B,t + 1) + 2a + Bnd'(B,t + 1) + 2a + 4a - (T —t — 1)
= Bnd(B,t) + 4o - (T —1t)

The first inequality follows from simple counting; the sedamses Claim 1, the third
is the induction hypothesis (sin€eis consecutive), and the fourthBnd(C,t + 1) <
Bnd'(B,t + 1) + 2« (from above).

This completes the proof of the inductive step and hence La®m |
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A Hardness Result for Minimum Crossing Spanning Tree

In this section we will show that unlesg§’P has quasi-polynomial time algorithms,
any solution with optimum cost for minimum crossing spawgriree, must violate the
degree by at least an additive term®@flog® m) for some universal constant Before
we prove this result, we show hardness for the more generatmaim crossing matroid
basis problem: given a matroidt on a ground seV’ of elements, a cost function
¢:V — R4, and degree bounds specified by pdif8’;, b;)}*, (where eactE; C V
andb; € N), find a minimum cost basisin M such thatl N E;| < b; forall i € [m].
Later we show how to adapt this hardness result to special @athe spanning tree
matroid.



Theorem 8 Unless\/P has quasi-polynomial time algorithms, the minimum cragsin
matroid basis problem admits @(log® m) additive approximation for some fixed con-
stante > 0. This holds even if we do not care about the costs.

Proof: We reduce from the label cover problem [A+93]. The input israph G =
(U, E) where the vertex séf is partitioned into piece&1, - - - , U,, each having size,
and all edges ity are between distinct pieces. We say that theresigoeredgdetween
U; andUj if there is an edge connecting some verteX/jrto some vertex itt/;. Let¢
denote the total number of superedges.

t={(i,j) € ([Z]) | there is an edge i&¥ betweerl/; andU; }|

The goal is to pick one vertex from each pélt; }*_, so as to maximize the number of
induced edges. This is called the value of the label covéamte. Note that the value
can be at most

It is well known that there exists a universal constant- 1 such that for every
k € N, there is a reduction from any instance of SAT (having $i2eto a label cover
instance(G = (U, E), q, t) such that:

— If the SAT instance is satisfiable, the label cover instaraedptimal valué.

— If the SAT instance is not satisfiable, the label cover instahas optimal value
< t/y".

— |G| = NO®), ¢ = 2%, and the reduction runs in timg°*),

We construct a uniform matroidt with rank¢ on ground set~ (recall that any
subset oft edges is a basis in a uniform matroid). There is a set of degpeeds
corresponding to eache [n]: for every collectionC' of edges incident to vertices in
U; such that no two edges i@l are incident to the same vertexif, there is a degree
bound requiringat most oneslement to be chosen frod. Note that the number of
degree bounds: < n - (nq)? < n2.

Observe that if the original SAT instance is satisfiablenttie matroidM contains
a basis obeying all the degree bounds: namely #dges covered in the optimal solu-
tion to the label cover instance. This is because if we cansidylU;, then all the edges
having a vertex irJ; as their endpoint, have the same endpoint. Thus, by the veay th
collectionC' is defined, at most one such edge can lie in it.

On the other hand, we will show that if the SAT instance is tigBable, then every
basis inM picks at leasp = 7"/ edges from some degree-constrained set of edges.
Suppose (for a contradiction) that there is a basis (i.eofseedgesB C F) such that
|B N C| < pforeach degree constrai@t This means that each pdi’;}_, contains
fewer thanp vertices that are incident to edgB8s For each part € [n], let W; C U;
denote the vertices incident to edgeghfnote thatW;| < p. Consider the label cover
solution obtained as follows. For eatke [n], choose one vertex fro; uniformly
at random. Clearly, the expected number of edges in thetigihduced subgraph is
at leastt/p? = t/~*, which contradicts that the value of label cover instancristly
less thart /v,

The steps described in the above reduction can be done inpttyaomial inm
and |G|. Also, instead of randomly choosing vertices from the $&}s we can use



conditional expectations to derive a deterministic algni that recovers at least?
edges. Setting = ©(loglog N) (recall thatV is the size of the original SAT instance),
we obtain an instance of bounded-degree matroid basiseisiz{m, |G|} = N'o¢" N
andp = v%/2 = log” N, wherea, b > 0 are constants. Note thhatgm = log®™! N,
which impliesp = log®m for ¢ = a_j)»l > 0 a constant. Thus it follows that for this
constant > 0 the bounded-degree matroid basis problem ha®flog® m) additive

approximationunless\NP has quasi-polynomial time algorithms. [ ]

We now consider the special case of minimum-cost crossiagrspg tree: given an
edge-weighted graph with degree-boundsordge-sets, find a minimum cost span-
ning tree satisfying all degree bounds. Using Theorem 3,neeathe following.

Corollary 1 UnlessN'P has quasi-polynomial time algorithms, there is(he-log® m, 1)
approximation for the minimum-cost crossing spanning freeblem, for some fixed
constant: > 0.

Proof: Recall that Theorem 3 actually shows the hardness of appatiig the bounded-
degreauniformmatroid problem. We show how the bases of a uniform matramcbea
represented in a suitable instance of the min-cost crosgiagning tree problem. Let
the uniform matroid from Theorem 3 consisto&lements and have rank< e. We
construct a graph as in Figure 2, with vertiegs- - - , v, corresponding to elements in
the uniform matroid. Each vertex is connected to the rootby two vertex-disjoint
paths:(v;, u;, ) and(v;, w;, r). The edgeg(r, u;) | ¢ € [e]} U{(vi, u;) | i € [e]} have
cost zero, and edgésér, w;) | i € [e]} U{(vi,w;) | i € [e]} have cost 1. Corresponding
to each degree bound (in the uniform matroidpaf') on a subse€ C [¢], there is a
constraint to pick at mosC| + b(C') edges fromd ({u; | i € C}).

V;

The dashed edges have cost 0, solid edges have cost 1.

Fig. 2. The crossing spanning tree instance used in the reduction.

Observe that for each e [e], any spanning tree must choose at least three edges
among{(r, u;), (u;,v;), (r,w;), (w;, v;)}, in fact any three edges suffice. Thus for any
spanning tree of cosin — ¢, there must be exactlyindices: for which both edges



(r,u;) and(u;, v;) lie in the spanning tree. Thus we can associate a basis imtfeem
matroid with every spanning tree of cast — ¢.

In Theorem 3, for the bounded-degree uniform matroid pmbiéis hard to dis-
tinguish the following two cases: (yes-case) there is asbiassatisfying all degree
bounds, and (NO-case) every basis violates some degreal liguan additivep =
2(log®m) term. In the yes-case, whenevdres in the basi$*, we choose the edges
{(r,u;), (us,v;),r(w;)}. This solution has costn — ¢, and satisfies all the degree
bounds. On the other hand, in the no-case any spanning tileeogt2n — ¢, must vio-
late some degree bound by at least an addjtivehis implies that there is n@ + p, 1)
approximation for minimum-cost crossing spanning tregegisome instancg (which
is either a YES-instance or NO-instance) of the boundededegratroid problem, we
reduce? to a crossing spanning tree instance as above and app(y the, 1) algo-
rithm. If we obtain a tree of cost at mdxt — ¢ thenZ is a (YES-instance), otherwise it
is a (NO-instance). |

B An algorithm for minimum crossing matroid basis

In this section, we consider the minimum crossing matroicbfgm defined as fol-
lows. Given a matroid\ havingn elements, rank function : 2"/ — N and cost

¢ : [n] — R, andm arbitrary “degree” constraint§ £;, b; },, find a minimum cost
basis subject to the degree constraints. For the case aficgaspanning tree, Bilo et al.
gave anO(log n)b+ O(logm), O(log n)) approximation algorithm based on random-
ized rounding of the natural LP relaxation. We note that teilt can be extended to
the bounded-degree matroid problem. In particular, we sheiv

Theorem 9 There is an(O(log k)b + O(logm), O(log k)) bicriteria approximation
algorithm for the bounded-degree matroid basis problenh witdegree constraints on
a matroid of rankk.

The algorithm is very simple: We consider the following LRasation.

min g Ce * Te

e€[n]
x(S) <r(S) VS C [n]
([n]) = r([n])

If = denotes an optimal solution to the above LP-relaxatiom the integer solution
R consists of each elemente [n] chosen independently with probabilityin{p -
xe, 1}, wherep = 2[In k]. We will show that w.h.pR contains a basis and that all the
degree violations are small. Using the Chernoff bound feheéa [m], Pr[|RN E;| >
2pb; +2logm] < L5 (since the expected value @ N E;| is at mostp - b;). Thus with
probability at least — % for every degree bounde [m], we have RN E;| < 2pb; +
2logm. Before showing thaR contains a basis w.h.p., we state a relevant theorem of
Polesskii [Pol90], which was also proved in Karger [Kar98].



Theorem 10 (Theorem 4.2, Karger [Kar98]) Suppose a matroidd” of rank & con-
tains2L - In k disjoint bases. Then if each element\dfis chosen independently with
probability % the resulting set contains a basis with probability at kehs- O(%).

Claim 2 The setR contains a basis oM with probability at leastl — O(+).

Proof: This is a direct application of Theorem 10. Liebe some large integer so that
L - z. is integral for alle € [n] (recall thatz is the optimal LP solution). Construct
matroid " from M by keepin@L[In k]| - z. copiesof each element € [n]; clearly
the rank of\V equalsk (rank of M). Sincex is a fractional basis in\, matroid A/
containsP = 2L - [In k| disjoint bases. This follows from the matroid base packing
theorem, Corollary 42.1d, [Sch03], which states that a oiditon element set” with
rank functionr has/ disjoint bases if and only i(r(V) — r(S)) < [V'\ S|.

Consider picking each element.id independently with probabilit%, and letT”
be the resulting set of elements. 1C [n] be the set of distinct element @# in T”;
clearlyT” contains a basis oY/ iff 7' contains a basis 0$1. Theorem 10 implies that
contains a basis with probability at ledst- O(+). We now relate the random s&tto
the random seR. Itis clear that each element [n] is chosen independentlyifi(as is
the case ink). The probabilityg, of notpicking element € [n] in T equalg1 — +) 7
which is at most — £x.. Note thatg, > max(0,1 — £z.). Now, p. = min(1, £z.)
is the probability that is picked in set?, and henc®; = max(0,1 — %xe) which is
at mostg, . Thus the random sét stochastically dominatés. Since basis containment
is a monotone property, the probability thatcontains a basis is larger than that Tor
implying the claim. |

Combining the high probability statements for degree-labuialation and Claim 2,
we obtain Theorem 2.

C Minimum Crossing Arborescence and Polymatroid Interseciton

Recall that there is an additive +2 approximation for therdedounded arborescence
problem without costs. In this section, we consider thidfgm when bounds on arbi-
trary edge sets are allowed. Surprisingly, we show that éwga add one extra "non-
degree” bound, the degree bounded arborescence problémuvitost has a (multi-
plicative) integrality gap of 2. In particular, we prove Trem 4:

Proof: [Theorem 4] We first define the graph. This graph is shown in Figure 3, and
is similar to the one in [BKNO8] (but has different paramejetetk be an arbitrarily
large integer, considerfaary arborescence rooted at reobf depthd > 21n(2/¢)/e.

We call the edges of this arborescence solid edges. Coriklaatural drawing of this
tree, and label these leavks . ., k%, from right to left. Next we define dashed edges as
follows. There is one edge going from raoto leaf1, and one edge from each leab

i+ 1fori=1,...,k% — 1. Finally, the dotted edges are defined as follows. For each
internal node (other than the root), there is an incoming dotted edge flemdftmost
leaf root in the subtree rooted at This completes the description of the graph. The
degree bounds are as follows. For each non-leaf vertexg than out-degree bound of
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Fig. 3. The integrality gap instance. The 96t consists of all dashed edges.

k/2.In addition, we define th&; to be the set of all dashed edges and assign it a bound
of by = k%/2. Note that £, | = k“. Itis easily verified thatAd = 1.

Consider the LP solution which assigns= 0.5 to every edge. It is easily verified
that this is a valid arborescence solution (each vertex easeint a unit of flow from
the root by sending 0.5 unit of flow along the solid edges, aBdifit along the dashed
and dotted edges), and satisfies all #)ebounds.

We now show that in any integral solution, the degree is Woldy at factor of at
least2—e. Let us assume that each internal vertex has an outdegremob#: (1—¢/2),
otherwise this is a violated vertex and we are done. It sifficeshow that in this case,
there must be at leat (1 — ¢/2) edges chosen from); in a valid arborescence. This
follows from the simple property (see [BKNO8], Prop. 1, fdoamal proof) that if a leaf
i does not have path from root to itself using only solid edtesn the edgéi — 1, 4)
must be present in the arboresence. Now, if internal degraemost:(1 — ¢/2), then
the number of leaves with a path from root using only solidesdg at most1 —e/2) k¢
which, by our choice ofl, is at mostk?/2. Thus at leastk?(1 — ¢/2) edges must be
chosen fromE; which proves the result. [ ]

Recall that several problems such as the minimum cost asbnce problem can
be cast as a matroid intersection problem. While the degoeeaded version of the
minimum cost arborescence problem is well understood [B&N@ot much is known
about its behavior with degree bounds on arbitrary sub¥étsiow consider thenini-
mum crossing polymatroid intersection probléee Defintion 1) and prove Theorem 5.

The algorithm 1 for minimum crossing polymatroid intersewtis based on itera-
tively rounding the following natural LP relaxation.

min ¢!z
2(S) > max{ri(S),r2(S)} — |[F N S| VSCFE
o(E;) <0, View

0<az. <1 Ve € E.



Above, E denotes the set of unfixed elemerfisthe set of chosen element®] C [m]
the set of remaining degree bounds, &h@for eachi € W) the residual degree-bound
in thei*" constraint.

Algorithm 1 Algorithm for minimum crossing polymatroid intersection.
1: Intially, setF' = 0, W = [m], b; = b;, foralli € I
2: while E # () do
: Compute an optimal basic solutiafi of the LP;

4: forall e € Ewithz"(e) =0do

5: E — E\ {e}

6: endfor

7: forall e € Ewithz*(e) > £ do

8 F—FU{e}; E— FE\ {e}

9: bi — b — z*(e), foralli € W with e € E;
10:  end for

11:  forall i € W with |E;| < [2b;] + A —1do
12: W — W\ {i}

13:  end for

14: end while

15: Return the incidence vectof of F;

Note that this algorithm rounds variables of valtge) > 1 to 1, and hence we
loose a factor of two in the cost and in the degree bounds. rfEne® follows as a
consequence if we can show that in each iteration, eithees@mable can be rounded,
or some constraint can be dropped. For this, we prove:

Lemma 1. If z* € R¥ is a basic optimal solution ofLP2) with 0 < z*(e) < 1 for
all e € F, then there exists at least one W such that

|E;| < 2] +A-1

Proof: Sincex* is a basic feasible solution, there exist linearly indememdight
setsTy C {S C E | 2*(S) = nr(9)}, 2 € {S C E | 2*(S) = r(9)} and
B C{E; C E|x*(E;) =} such that

|E| = |T1| + |T2| + |B].

Sincex* is modular and-, r, are supermodular on the Boolean lattie&, C), it can
be assumed (again, using uncrossing arguments) that e&€h af) and (73, C) form
a chain. We use the following claim from [BKNO8] (which wasginally stated for
spanning trees, but immediately extends to any polymatroid

Claim ([BKNO8]). We have|T:|,|72| < ). p ;. Additionally, 7; = 2*(E) (for
je{1,2})onlyif E € T;.

Suppose (for a contradiction) that for ak W, |E;| > [2b]] + A. For each € W,
defineSp; := >_ cp. (1 — 227) = |Ey| — 22*(E;). Then we havép; > |E;| — 2b; >
|E;| — [20]] > A. Hence)_, .y Sp; > A - [W|.



Foreacte € E,letr. :=|{ie W :e€ E;}| < A.Notealsothab < 1 -2z <1
for eache € E. Now,

D Sp=) re-(1-2a5) <A (1-2a7)

ieW ecE ecE
=A-([E[-2-2°(E)) < A-(E| - |T| - |T2])

Thus we have _,_;, Sp, < A-|B| < A - |W| with equality only if £ € 7; N7 (from
Claim C),r. = Aforalle € E,andB = W.

We now claim that equality _, ;- Sp; = A - [W] is not possible. If this were the
case,x(E) is a constraint in each ¢f; and7;; and) ", s X(E;) = > ,cpy X(Ei) =
A - x(E). However this contradicts the linear independence of caims in7; and
B. Thus it must be tha} _,_,,, Sp; < A - [W/|, which contradicts the assumption that
|E;| > [20)] + Aforalli € W. [

Proof: [Theorem 5] Lemma 1 implies that an improvement is possible in eachtitera
of Algorithm 1. Since we only round elements that the LP setstue at least half, the
cost guarantee is immediate. Consider any degree boundm/; let b, denote its
residual bound when it is dropped, afd the set of chosen elements at that iteration.
Again, rounding elements of fractional value at least halblies|E; N F’| < |2b; —
20| = 2b; — [20}]. Furthermore, the number &f;-elements in the support of the basic
solution at the iteration when constrainis dropped is at mog2d] + A — 1. Thus
the number ofZ;-elements chosen in the final solution is at nitigt— [20]] + [20]] +
A-1=2-b,+A-1 [ |

D Minimum Crossing Lattice Polyhedra

Before we studyminimum crossing lattice polyhed(®efinition 2), we give a few ex-
amples of well-known discrete optimization problems whiam be formalized as the
problem to find an optimal integral vector of a lattice polgthan.

D.1 Examples of lattice polyhedra
The reductions given here can also be found in [Sch03] ané {8, for example.
Polymatroid intersection. Letry,ro : E — Z, be two supermodular rank functions

on the same ground sét, ¢ : £ — R and consider the polymatroid intersection
problem

min{c’ z | z(T) > max{r(T),r(T)VT C E,z € {0,1}F}.

We show that this problem might as well be formulated as eéfiolyhedron problem:
Let £’ andE" be two disjoint copies o and set: = E’ UE". We consider the lattice
(F,<C,U,N) defined on

F={SCE|SCFEorE CS}.



The set-valued functiop : F — 2F and the rank function : ¥ — Z, are now given
by
r(T'") :=r(T) and 7(E\T"):=nr(T) VT CE,

p(T"Y:=T and p(E\T"):=T VT CE,

whereT” andT"” are theE’ and E”-copies, respectively, of the s&t Sincep satisfies
the consecutivity and submodularity propertieg 61 C, N, U), problem

min{c’z | Z z. > 1(S),¥S € F;z € {0,1}F}
e€p(S)

is a lattice polyhedron problem and equivalent to the polyaidintersection problem
above.

Shortest paths. Let D = (V, F) be a digraph with edge-costs: £ — R, and
designated verticeg t € V. In the shortest-path problerane aims to find a directed
s,t-path P in G' of minimum costc(P) = ° . pc.. We formulate the shortest-path
problem as a lattice polyhedron problem as follows: Condtige collection of alls, t-
cuts

F={UCV|seUtgU},

and map each cut € F to the set of its outgoing edges; i.e(U) := 67 (U) C
2 1t is well-known that the functiop : F — 2F satisfies the consecutivity and
submodularity properties i, C, N, U). Since the constant function= 1 is certainly
supermodular otF, the shortest-path problem

min{c’z | Z r. > 1,¥S € Fyx € {0,1}7}
ecdt(S)

turns out to be a special instance of the lattice polyhedrohlpm.

Max flow/min cut in s,t-planar graphs. Let G = (V, E)) be a directed or undirected
graph withs, ¢ € V and denote by C 2F the collection of all cycle-free, t-paths in
G. Given edge-capacities: £ — R the min cut problem can be formulated as

min{c’z | Z:ce > 1,VP € P;x € {0,1}F}.
ecP

Note that this problem is a lattice polyhedron (with constank functionr = 1 and
identity functionp(P) = P for all P € P) as soon as we can find a lattite, <, Vv, A)

on the collection of paths satisfying the consecutivity andmodularity properties.
Given a planar representation@fwith s, ¢t on the outer boundary of the representation
(graphs for which such a representation exists are callieglanar graphy we can
define such a lattice in a natural manner: we simply set

P<Q@Q <= Qistheuppermostpathi@PUQ] VP,Q € P,



whereG[P U Q)] is the subgraph off induced by the edges iR and@, and theup-
permost paths constructed greedily as follows: start with the uppereadsge leaving
s and always traverse the next outgoing edge in clockwiserdvdet. the planar rep-
resentation). Consequently, the jdihv @ is the uppermost path, and the méet @
is thelowestmospath inG(P U Q) (the latter is constructed analoguesly by starting
with the lowests-leaving edge and always traversing the next outgoing ealgetun-
terclockwise order). It is not hard to see that the resulkiitice satisfies the desired
consecutivity and submodularity properties.

We note that the two-phase greedy algorithms describedra®ff, [FP08] find a
min cut together with a max flow (i.e., the dual solution) insatrplanar graph evenin
the more general setting with supermodular monotone ramétionr» : P — Z. .

Supermodular systems. Following Fujishige [Fuj05], aupermodular systeitD, r)
consists of a family of subsef® C 2F of a finite setE with (), E € D such tha{D, C
,U,N) forms a distributive lattice, together with a supermod@lenctionr : D — R
which is normalized in the sensé()) = 0. Fujishige described a greedy algorithm
which optimizes a linear function over the base polyhedfansupermodular system

{z e R | 2(E) = r(E);z(S) > r(S),VS € D}.

Note that our iterative rounding algorithm for the minimumogsing lattice polyhe-
dron problem also applies when we are interested in a bakiti®sg i.e., one sat-
isfying (E) = r(E). Since any supermodular system defines a lattice polyhedron
with inclusion-wise ordering, Theorem 7 applies in the splezase where we are inter-
ested in an integral vector of a supermodular base polyhesitisfying certain degree
bounds.

D.2 Algorithm for minimum crossing lattice polyhedra

We consider the minimum crossing lattice polyhedron pnahile a slightly more gen-
eral form than Definition 2: we allow botbpper and lower boundsen the family
{E;}™,. Let{a;}, denote the respective lower-bounds, as in Definition ZUgt™ |
denote the upper-bounds. We first give an algorithm for Téwedd and prove it.

The algorithm for minimum crossing lattice polyhedra isdxhen iterative round-
ing. At each iteration, we maintain the following:

— F' C FE of elements that have been chosen into the solution.
— FE’ C F\ F of undecided elements.
— W C [m] of degree bounds.

Initially E' = E, F = () andWW = [m]. In a generic iteration wittE’, F, W, we solve
the following LP relaxation on variablgs:. | e € E'}, calledLP 4 (E', F, W) :

minc? -z

r(S) — |F np(9)|, vSeF
1‘(Ei)§bi—|FﬂEi|, VieW
<z, <1, Ve € £/

z(p(S)) =
a; — |F M El| <
0



Consider an optimal basic feasible solutioto the above LP relaxation. The algorithm
does one of the following in iteratiof£’, F, W), until E/ = W = {).

1. Ifthereise € E’ with x. = 0, thenE’ — E’\ {e}.
2. Ifthereise € E' with z. = 1, thenF «— F U {e} andE’ — E’\ {e}.
3. Ifthereisi € W with |E; N E'| < 2A, thenWW «— W\ {i}.

D.3 Proof of Theorem 6

Assuming that one of the steps (1)-(3) applies at eachiberdt is clear that we obtain
a final solutionF™* that has cost at most the optimal value, satisfies the rargti@onts,
and violates each degree constraint by at most an additive 1. We next show that
one of (1)-(3) applies at each iteratioh’, F, V).

Lemma 4 SupposéF, <) is a lattice satisfying the consecutive and submodular prop
erties, and conditiorfx), functionr is supermodular, and is a basic feasible solution
to LP|gt With0 < z. < 1forall e € E’. Then there exists somec W with
|E;NE'| <2A.

We first establish some standard uncrossing claims, beforéng the lemma. We
also need some more definitions. Two elemeht® € F are said to beomparabldf
eitherA < B or B < A; they arenon-comparabletherwise. A subsef C F is called
achainif £ contains no pair of non-comparable elements.

Letr'(S) :=r(S)— |F Nnp(S)|forall S € F denote the right hand side of the rank
constraints in the LP solved in a generic iterati@#, F, W).

Claim. r’ is supermodular.

Proof: This follows from the consecutive and submodular propewidattice(F, <).
Consider any, B € F, and

[F0pal+[FNpsl=|FN0(paUps)|+[FN(panps)
> |FN(parUpavs)| +|F N0 (panps)l
> [FN(parUpavs)| +|F N (pars N pavs)l
= |F' N pans| +[F Npavel
The second inequality follows from submodularity (icey U pg D pars U pavs),
and the third inequality uses the consecutive propegtys N pave C pa, ps (since

AN B < A, B < AV B). This combined with supermodularity efimpliesr’(A) +
(B) <r"(AANB)+1(Av B)forall A,B € F. [

For any elementl € F, letx(A4) € {0,1}7 be the incidence vector pf A) C E'. Let
T :={A e F|x(pa) =r"(A)} denote the elements jf that correspond to tight rank
constraints in the LP solution of this iteration. Using the fact that is supermodular
(from above), and by standard uncrossing arguments, wénahtfollowing.

Lemmas5 If S,T € F satisfyz(ps) = r'(S) andz(pr) = r/(T), then:
z(p(SAT))=7"(SAT) and z(p(SVT))=r"(SVT)
Moreover,x(S) + x(T) = x(SAT) + x(S Vv T).



Proof: We have the following sequence of inequalities:

P"(SAT)+7r'(SVT) < x(psar) + x(psvr)
= z(psar N psvr) + z(psat U psvr)
< x(psar N psvr) +x(ps U pr)
< z(ps N pr) +x(ps U pr)
= z(ps) + z(pr)

' (S) +r'(T)
r"(SAT)+r'(SVT)

IN

The first inequality is by feasibility of, the third inequality is the submodular lattice
property, the fourth inequality is by consecutive propeaityd the last inequality is su-
permodularity ofr’. Thus we have equality throughout, in particuldp(S v T)) =
" (SVvT)andxz(p(S AT)) =7 (SAT).Finally sincex. > 0forall e € E’, we also
havex(S) + x(T) = x(SAT) 4+ x(SVT). [

Lemma 6 ([Sch03]) There exists a chaif C 7 such that the vectorsy(4) | A € £}
are linearly independent and spdiy(B) | B € T }.

We are now ready for the proof of Lemma 4.

Proof: [Lemma 4] |E’| is the number of non-zero variables in basic feasiblelence
there exist tight linearly independent constraiftsz F corresponding to rank-constraints
andB C W degree-constraints, such that| = |£| + |B|. Furthermore, by Lemma 6

L is achainin F, say consisting of the elemerfis < Sy < --- < S;. We claim that,

(i) \ (UiZip(S) |22, foreachl <j <k 2

The above condition is clearly true fgr= 1: sincex(p(S1)) = '(S1) > 1 (itis
positive and integer-valued), and < 1 for all ¢ € E’. Consider any; > 2. By
the consecutive property ofk < S;_; < S; (foranyl < t < j — 1), we have
p(S;5)Np(St) € p(Sj-1). S0,p(55)\ (Ui;llp(st)) = p(S;)\ p(Sj-1). We now claim
that|p(S;) \ p(S;-1)| > 2, which would prove (2). Sinc€;_; < S;, assumptior{x)
implies that there is at least one elemerg p(S;) \ p(S;—1). Moreover, if this is the
only element, i.e., ip(S;) \ p(S;—-1) = {e}, thenp(S;_1) = p(S;) \ {e} must be true
(again by propertyx)). But this causes a contradiction to the non-integrality of

ze =z (p(S5)) —x (p(Sj-1)) =" (p(S})) — ' (p(Sj-1)) € Z.

Now, equation (2) implies thdt = |£| < |E2—| Hence|E'| < 2|B].

Suppose (for contradiction) thgt;NE'| > 2A+-1foralli € W. Then)_, ., |EiN
E'| > (2A + 1) - |W|. Since each element iB’ appears in at mosf sets{E; };cw,
we haveA - |E'| > 3.y [E; N E'| > (2A + 1) - [W]. Thus|E'| > 2|W| > 2|8,
which contradict$E’| < 2|B| from above. [ |

We are now able to prove the main result of this section:



Proof: [Theorem 6] Since the algorithm only picks-elements into the solutiof’,
the guarantee on cost can be easily seen. As argued in Lemataedch iteration
(E', F,W) one of the Steps (1)-(3) apply. This implies that the quanft'| + |W|
decreases by 1in each iteration; hence the algorithm tatesmafter at most| + |1 it-
erations. To see the guarantee on degree violation, camsigle € 7 and let(E’, F, W)
denote the iteration in which it is dropped, i.e. Step (3)ighere with E;NE’| < 2A
(note that there must be such an iteration, since fiddlly= ?). Since a degree bound
is dropped at this iteration, we hate< z. < 1 for all e € E’ (otherwise one of the
earlier steps (1) or (2) applies).

1. Lower Boundu,; — |FNE;| < z(E;NE') < |E'NE;| <2A,i.e.a; < |FNE;|+
2A — 1. The final solution contains at least all elementdinso the degree lower
bound onF; is violated by at mos2A — 1.

2. Upper BoundThe final solution contains at md$tN E; |+ |E' N E;| elements from
E;. If E;NE’ = (), the upper bound of; is not violated. Else) < z(E; N E’) <
in either case, the final solution violates the upper bound oy at mos A — 1.

Observing that all the steps (1)-(3) preserve the feasilofithe L7, it follows that
the final solution satisfies all rank constraints (sie= () finally). [ ]

D.4 Inlcusion-wise ordered lattice polyhedra

We now consider a special case of minimum crossing lattitgheadra where the lattice
Fis ordered by inclusion. This class of lattice polyhedradiesatisfy assumptiofk),
so Theorem 6 applies. However in this case, we prove thegtragyuarantee in Theo-
rem 7 for the setting witlonly upper boundas in Definition 2. The algorithm remains
the same as the one above for Theorem 6. In order to prove &imediit suffices to
show the following strengthening of Lemma 4.

Lemma 7 SupposéF, <) is a lattice satisfying the consecutive and submodular prop
erties, and condition

S<T <= psCpr VS TEF,

functionr is supermodular, and is a basic feasible solution t6P |4 with0 < z. <1
forall e € E'. Then there exists some W with |E; N E’| < b, + A — 1.

Proof: Sincex is a basic feasible solution, there exist linearly indepentidight rank
function- and degree bound constraifitend83 C W such that

|E'| = |T]+B].
Using uncrossing arguments, we can assume(that) forms a chain

T={Th<Th<...<Ty}



Consider an arbitrary paif; < 7,41 in 7. Sincez, > 0 foralle € F andp(T;) C
p(Tit1), it follows that0 < z(p(Ti+1) \ p(73)) and therefore, by the integrality of

z(p(Tiv1) \ p(T3)) = x(p(Ti11)) — 2(p(T)) = r(Tix1) —r(T3) = 1.
Thus,
k—1

2(E) = a(p(Ty)) = Y a(p(Ti+1) \ p(T3)) = k = |T|

i=1
with equality only if E = p(T}). This implies that

~

|E'| = x(E) = |T| + |B| - x(E) < [B]. 3)

Let E/ = E' N E;. To prove the statement of the Lemma, it suffices to show:

Y UEN=b) = > (1B —a(E:) < AW,

iceW icW

In order to prove this, defind, = |{i € W | e € E;}| and consider the derivations

DB -xE)) = > Y (I—m)=> Ac(l—a)

iEW €W ecE] ecE
= A (1-mz) =) (A=A)(1-=)
ecE eck
< A|B| - Z(A - Ae)(l - xe)
—~ eck
€q(3)
— AW AW\B| = (A= A)(1 - z) < AW,
ecE

Note that equality can only hold ' = p(7%) andA|W \ B| + > . (A — A)(1 -
x.) = 0. The latter can only be true 8| = |IW| andA. = A for eache € E. But this

would imply that
Do =AxE = Ay,
ieB

wherex® € {0,1}7*F is the incidence vector of € F with x5 = 1iff e € p(S).

However, this contradicts the fact that the constrainend are linearly independent.
[ |



