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Zusammenfassung

Compressed Sensing ist eine neuartige Methode in der Datenverarbeitung, welche einen

Vorteil aus der Tatsache zieht, dass viele Signale dünnbesetzt (engl.: sparse) sind oder zu-

mindest eine dünnbesetzte Darstellung erlauben. Das heißt, dass nur eine kleine Anzahl

an Einträgen des Signals von null verschieden sind, oder dass sich das Signal als Lin-

earkombination weniger Elemente eines gegebenen Erzeugendensystems darstellen lässt.

Die Dünnbesetztheit erlaubt dann die Rekonstruktion des Signals aus signifikant weniger

Messungen im Vergleich zu traditionellen Methoden.

Im ersten Teil dieser Dissertation betrachten wir Signale mit einer gewissen geometrischen

Struktur. Genauer betrachten wir Signale, welche sich als Vereinigung weniger diskreter

Geraden darstellen lassen. Wir untersuchen die Frameeigenschaften des Systems aus

diskreten Geraden und wenden Compressed Sensing - Methoden an, um u.a. diskrete

Geraden von Punkten zu trennen.

Zudem betrachten wir Signale, welche dünnbesetzt bzgl. eines diskreten Gaborsystems

sind. Dabei sind wir besonders an Gaborsystemen interessiert, welche von sogenan-

nten Differenzmengen generiert werden. Diese können wiederum als Geraden in einem

endlichdimensionalen projektiven Raum betrachtet werden. Wir werden zeigen, dass die

Gaborsysteme als optimal dünnbesetzte Fusion Frames gesehen werden können, und es

sich zudem um äquidistante tight Fusions Frames handelt, also um optimale Grassman-

nsche Packungen.

In der zweiten Hälfte der Dissertation betrachten wir die Phasenrückgewinnung (engl.:

phase retrieval) von Signalen. Im Gegensatz zum Compressed Sensing, welches sich mit

der Rückgewinnung von Signalen aus linearen Messungen beschäftigt, rekonstruieren

wir die Signale bei der Phasenrück- gewinnung nur aus den Beträgen der entsprechenden

Messungen. Im Allgemeinen müssen die Signale hier nicht notwendigerweise dünnbesetzt

sein, wobei das Interesse an dieser zusätzlichen Annahme in den letzten Jahren gestiegen

ist, um die nötige Anzahl der Messungen zu reduzieren. Daher werden wir uns hier

genauer mit Signalen beschäftigen, welche dünnbesetzt bzgl. eines beliebigen, aber festen

Erzeugendensystems sind.

Schließlich betrachten wir die Phasenrückgewinnung aus Messungen mit einem diskreten

Gaborsystem, welches durch einen geeignet gewählten Vektor generiert wird, und be-

weisen, dass die Phasenrückgewinnung so garantiert werden kann. Für dünnbesetzte

Signale können wir die Anzahl der Messungen signifikant reduzieren. Weiter diskutieren

wir, welche Generatoren für das Gaborsystem geeignet sind und stellen einen Algorith-

mus zur Lösung des Problems auf.



Abstract

Compressed sensing is a novel methodology in data processing, which takes an advantage

of the fact that most signals are sparse (have a small number of nonzeros), or admit a

sparse representation, i.e., can be represented as a linear combination of few elements of a

given frame (dictionary). Sparsity then allows one to recover the signal from considerably

fewer linear measurements than what is required by traditional methods.

In the first part of the thesis, we exploit sparse geometric structure of the signal. We

consider signals consisting of unions of a few discrete lines as the simplest case of geo-

metric sparsity. We investigate the frame properties of the system of discrete lines and

the application of compressed sensing to such signal models, for example, for separating

discrete lines and points.

The second type of structured sparsity that we consider is, signals which are sparse

in a dictionary of time- and frequency-shifts, i.e., a Gabor system. We are interested

in Gabor systems generated by difference sets, which can be seen as lines in (finite)

projective geometry. We further view this system as a fusion frame, show that it is

optimally sparse, and moreover an equidistant tight fusion frame, i.e. it is an optimal

Grassmannian packing.

In the second half of this thesis, we move from compressed sensing to phase retrieval:

if compressed sensing studies the recovery of signals from a set of linear, non-adaptive

measurements, phase retrieval tries to recover signals from only the absolute values of

those measurements. In general, the signal in the phase retrieval problem is not neces-

sarily sparse, but there has been an increased interest in the recent years in including the

sparsity assumption for this problem, and by that lowering the number of measurements

needed for recovery of the signal. We investigate the case when the signal itself is not

sparse, but it has a sparse representation in an arbitrary dictionary.

Finally, we consider the phase retrieval problem in the case when the measurements

are time- and frequency-shifts of a suitably chosen generator. We prove an injectivity

condition for recovery of any signal from all time-frequency shifts, and for recovery of

sparse signals, when only some of those measurements are given. We discuss which

generators are suitable for sparse phase retrieval from Gabor measurements, and provide

an algorithm for solving this problem.
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Chapter 1

Introduction

Compressed sensing is a novel methodology in data processing, which in the past decade

has been intensively investigated and widely used by applied mathematicians, engineers,

statisticians, theoretical computer scientists and others. Biology, medicine, astronomy,

communication, radar and sonar signal processing, imaging science are just a few of the

examples where compressed sensing has found applications. This methodology takes an

advantage of the fact that most signals admit a sparse representation. In fact, sparsity

allows one to recover the signal from considerably fewer measurements than what is

required by traditional methods.

Mathematically, we are given a set of measurement vectors {ai}mi=1 in RN , and measure-

ments (samples) of an unknown signal x ∈ RN

⟨a1, x⟩, ⟨a2, x⟩, . . . , ⟨am, x⟩.

Often the measurements are written in a block from as y = Ax. The question is whether

we can recover x, under the assumption that it is k-sparse, i.e., it has at most k nonzero

entries. The system at the same time is underdetermined, i.e., m << N. This idea was

conceived around 2006, with the pioneering works [26, 31, 46], and has been followed

by a variety of reformulations, extensions and applications. Since then, there has been

an exponential growth of articles in the field of sparse representations and compressed

sensing. In the following, we give an overview of the main related questions and problems.

We sketch here the main research directions related to this question.

1. Given the measurements y = Ax, how can the sparse solution x be obtained? Using

the notation ∥x∥0 := | supp(x)|, we can formulate the minimization problem

min ∥x∥0 subject to Ax = y,

1



Chapter 1. Introduction 2

which would ideally find the desired x. However, unfortunately this problem is

NP hard (see, e.g, [64, Theorem 2.17]). A relaxation to an ℓ1 minimization was

proposed in [40]:

min ∥x∥1 subject to Ax = y.

This problem (also called Basis Pursuit (BP)) can be rewritten as a linear program.

Moreover, it can be successfully modified to suit the case when the measurements

are contaminated by noise, by substituting Ax = y with ∥Ax − y∥2 ≤ η, where η

is the noise level. Basis Pursuit is by far not the only possible way of recovering

a sparse vector from a small number of linear measurements. Various iterative,

greedy, or message passing algorithms are proposed in the literature and success-

fully used.

2. How many measurements are needed in order to guarantee recovery of a sparse

vector x? When we speak about recovery guarantees, it is important to distinguish

between uniform and non-uniform recovery. In the first case, recovery is guaran-

teed for all k-sparse signals simultaneously, whereas in the second case, for every

fixed k-sparse vector we have a certain recovery guarantee. Furthermore, often

there are guarantees which work for almost all k-sparse signals, in other words,

for random sparse signals, and recovery is guaranteed almost surely. Moreover, in

applications, the number of measurements is usually fixed, and the question is up

to what level of sparsity recovery can be guaranteed.

3. What kind of properties should the measurement matrix A obey in order to guar-

antee recovery of sparse vectors? The most common guarantees are related to the

notions of spark, mutual coherence, the restricted isometry property (RIP) and

the null space property. These be discussed in details in Chapter 2. We only note

here, that so far the best known guarantees can be obtained if the matrix A is

random. This observation [31] brought a lot of attention to the subject, as with

conventional sampling schemes it was not possible to recover an N -dimensional (k-

sparse) signal from m = O(k ln(N/k)) samples. Unfortunately, pure deterministic

matrix constructions require the number of samples to be of the order of k2, and

the search for measurement matrices which are both suitable for applications and

have good theoretical guarantees still continues.
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1.1 The Future of Compressed Sensing

In 2012, Strohmer [117] and Elad [53] published two articles1 on the current achievements

and future research directions of the theories of compressed sensing and sparse and

redundant representation modeling. To cover all different developments of this field is

far beyond the scope of this thesis, but we state some of the questions, which are analyzed

in this thesis.

1.1.1 Structured Sensing Matrices

Although the best theoretical results so far are for random matrices, the measurement

matrices which are useful in practice (or are simply given by the application) are usually

not Gaussian or Bernoulli. Nevertheless, they typically obey some specific structure,

such as, e.g., of Fourier or Hadamard type, or time-frequency structure (Gabor systems).

Gabor systems [99] are collections of time- and frequency- shifts (translations and mod-

ulations) of a chosen generator, and they have already been shown useful for a variety of

applications of sparse recovery. For example, they are employed in model selection (also

called sparsity pattern recovery) [9], and channel estimation and identification [100].

In the aforementioned applications, two main types of generators have proved to be

particularly useful from both a theoretical and practical point of view, these are Alltop

and random vectors (see, e.g., [99]). They provide theoretical guarantees which are

due to the near optimal coherence properties of the Gabor systems generated by these

vectors. We investigate Gabor systems in Chapters 4 and 6. In Chapter 4, we exploit

how far one can go with a specific deterministic generator (using a construction from

combinatorial design theory), and in Chapter 6 we explore which generators yield Gabor

systems suitable for recovery from only the magnitude of the linear measurements. We

will observe here also, that both random and deterministic generators are possible.

1.1.2 Beyond Sparsity (Other Simplicity Measures)

A key a priori condition for the compressed sensing idea is sparsity. Often in applications,

the signals are not sparse themselves, but have a sparse representation in some dictionary.

There are further extensions of this kind of simplicity measure: for example, our signal

is a matrix X, which is not sparse, but has a small rank (has only few nonzero singular

values). The recovery of such matrices is known as the matrix completion problem. In

this case, an analogous approach to the ℓ0 minimization would be to minimize the rank of
1 invited contributions “offering a vision for key advances in emerging fields”
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the matrix. Since this is also computationally infeasible, a relaxation to minimizing the

nuclear norm was proposed [25]. Another type of sparsity is block sparsity [56], where one

works under the assumption that the signal which has a block structure consists of only

few nonzero blocks. Joint sparsity [39, 50], also known as multiple-measurement vectors

model, is a setup when multiple signals which share the same support are measured.

Somewhere in between is yet another type of simplicity measure, which has deeper geo-

metrical structure. It is based on the powerful concept of redundant systems called fusion

frames [18, 38], which are frame-like collections of subspaces in a Hilbert space. In this

case, one has the assumption that the signal lies in only few subspaces, and as we discuss

in Chapter 4, it is then reasonable to minimize the mixed ℓ1/ℓ2 norm. Similarly to the

classical frame setting, one is interested in constructing fusion frames with prescribed

optimality properties in order to guarantee recovery, including, for example, analogous

coherence and RIP conditions [18, 7].

1.1.3 Nonlinear Compressed Sensing

Another key aspect of compressed sensing, which is crucial for the successful recovery

of sparse vectors, is linearity, i.e., the fact that the measurements are linear. However,

driven by various applications, it is natural to ask how to proceed if the signals are

measured in a non-linear way. One example is the so-called 1-bit compressed sensing

[19, 104], where we are given only the sign of the measurements, ±1, but the value is

lost. Another example, and this is the one that we focus on, is the situation where

we are given only the absolute values of the linear measurements. This is the so-called

phase retrieval problem [13, 28]. Although it is traditionally a problem without sparsity

prior, it is however, natural to assume sparsity of the measured signal [125, 97]. We

consider the phase retrieval problem with both general and structured measurements, in

Chapters 5 and 6.

Finally, we would like to mention that the properties of the dictionary which sparsely

represents the signal are also very important. Having not only sparse, but also a redun-

dant representation instead of a representation in a basis often proves helpful in order to

gain stability, robustness against noise, erasures, etc. By redundant representation here

we mean that the signal is sparse in a dictionary which spans the whole space, but has

more elements then the dimension of the signal. Such construction are known as finite

frames, and the rich theory of finite frames [37, 33] is often useful from a compressed

sensing perspective. For example, having a small mutual coherence (maxj ̸=k |⟨aj , ak⟩|)
of the normalized measurement vectors guarantees recovery of sparse vectors via the ℓ1



Chapter 1. Introduction 5

minimization. Likewise, collection of vectors which have minimal possible mutual coher-

ence are interesting for frame theory and are known as equiangular tight frames (ETF).

As we explain further, especially interesting is the question of constructing ETF with

N2 elements in dimension N, and we give more details about this problem in Chapter 4.

1.2 Main Contributions

The content of this thesis, in light of the aforementioned problems, can be divided into

two logical units. In the first half (Chapters 3 and 4) we consider recovery of sparse

signals from structured linear measurements. In the second half (Chapters 5 and 6), we

investigate respective problems in the non-linear setting, i.e., recovery from phaseless

measurements. In what follows, we give a detailed overview of our contributions in both

areas.

1.2.1 Structured Sparse Signal Recovery from Linear Measurements

As already mentioned, many signals from various applications are sparse, in other words,

consist of only few significant components. Compressed sensing takes advantage of this

fact in order to recover the sparse signals from a small set of (linear) non-adaptive mea-

surements in an efficient manner. Often, signals have additional structure, and sparsity

can be seen from a different point of view, for example, as a measure of the presence of

certain geometric properties in the signal. We want to exploit this geometric structure of

the signals, in order to improve the existing compressed sensing results where no struc-

ture is assumed. Another goal is to broaden the range of applications of the methodology

of compressed sensing, and strengthen them with theoretical guarantees.

In Chapter 3 we investigate signals consisting of unions of discrete lines as the simplest

case of geometric sparsity. The first general definition of discrete lines (called planar

digital straight lines) was given by Reveillès in 1991 [108]. There, the ideas of so called

arithmetic geometry are developed, meaning that discrete geometric structures are de-

fined by linear Diophantine inequalities. This construction is further developed and used

in digital geometry [79].

Our discrete lines are a special case of the definition in [108], and we show that the

standard properties of lines in Euclidean geometry are satisfied, both in two and higher

dimensions. Besides the geometric properties, we are also interested in the behavior of

this system from a signal processing point of view. We show that a collection of discrete

lines can be modified to a unit norm tight frame. In addition, we find an expression for

the spark of these frames. In the above context, we focus on two main objectives:
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1. Separation of discrete lines and points

2. Recovery of unions of discrete lines from a small number of linear measurements.

A motivation for using the model of discrete lines in the separation problem is given

in [47], and stems from extragalactic astronomy, where it is often required to separate

lines, points and planes from 3D volumetric data. Some numerical experiments with

such data are provided in [48]. Also, similar to our idea of separating discrete points and

lines is the work on theoretical and numerical analysis of separation of curve-like and

point-like structures conducted in [84], where shearlets [83] and wavelets were used to

sparsely represent each of the components.

The separation problem in general appears very naturally in the context of compressed

sensing, and we refer to [57, Chapter 11] for a detailed review of the achievements in

this direction. The crucial idea here is the so-called Morphological Component Analy-

sis (MCA) [116, 115], which deals with the separation of features in images which are

morphologically different. If it is known that the morphologically different structures

obey sparse representations in some dictionaries, which, in turn, satisfy certain incoher-

ence conditions, then the data separation problem can be reduced to a sparse recovery

problem.

In that spirit, we would like to obtain theoretical guarantees for successful separation of

discrete points and lines. In this case, we need to make sure that the measurement matrix

in this case satisfies some optimality properties, as for example small mutual coherence,

or small RIP constant. The spark of a matrix (minimal number of linearly dependent

columns) is also very important, because a large spark guarantees uniqueness of the

sparse representation. However, since it is hard to compute in general, it is usually not

a point of direct investigation [47]. It turns out that in our case it is possible to compute

the spark, and obtain a better theoretical recovery guarantee, compared to, for example,

the guarantees obtained via mutual coherence.

We are also interested in obtaining similar results in the case of recovery of sparse geo-

metric structures (lines), from given linear measurements. In this case, it is important

how to choose the measurements, as well as how many of them are needed for successful

recovery.

In Chapter 4, we again consider discrete lines, but from a prospective of (finite) pro-

jective geometry. Interestingly, projective planes can be constructed using tools from

combinatorial design theory [45], and one of the simplest and most popular examples is

the so-called Fano plane, which is a finite projective plane of order 2, having 7 points

and lines, with 3 points on every line, and 3 lines through every point. The set of
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points which define one line in the Fano plane is an example of block design construction

called difference set, which is a subset K of {0, 1, . . . , N − 1}, |K| = K, with parameters

(N,K, λ), such that every nonzero element of ZN can be represented as a difference of

elements in K in exactly λ different ways.

The relation of the construction of difference sets to signal processing and frame theory

comes from the fact that if we choose K rows of the discrete Fourier transform matrix

indexed according to the elements of a difference set – as it was shown in [128] – we

obtain an equiangular tight frame (ETF) of N vectors in dimension K. For other large

families of ETFs inspired from design theory see [60, 78].

The problem of finding frames with optimal (in)coherence (in the sense of achieving

the Welch bound, or equivalently being ETF) is of great importance not only for signal

processing applications, but also for other areas of mathematics. One example is coding

theory, where one seeks for maximum-Welch-bound-equality (MWBE) codebooks [128].

Another example is line packing in Grassmannian manifolds, where N lines in the K-

dimensional space are sought so that the maximum chordal distance between any two

lines is minimized [44, 118]. These equivalent problems are very difficult and analytic

constructions are very limited, known to date only for certain parameters N and K (see

[59] for a comprehensive overview of known results).

Unlike the case of Euclidean discrete lines in Chapter 3, we do not investigate the geomet-

ric properties of difference sets as lines in projective space [15, 114], but we concentrate

immediately on the signal processing aspect. In the first part of Chapter 4, we regard

a difference set as an element of CN via its characteristic function, and investigate the

following question: what type of coherence properties does the full system of modulations

and translations of a difference set exhibit? As we already mentioned, the collection of

all modulations of an (N,K, λ) difference set yield an ETF of N vectors in CK , and we

are interested in properties of the system of modulations and translation in CN . Here

the corresponding optimal packing problem is to pack N2 lines in N -dimensional space.

Although for some difference sets the mutual coherence can be asymptotically small, we

show that achieving the Welch bound for full Gabor frames generated by the charac-

teristic function of difference sets is not possible. However, in the light of compressed

sensing, our numerical results show that the Gabor measurements generated by some

known difference sets are suitable for recovering sparse signals, and have a recovery rate

of the order of the Gabor measurements generated by random or Alltop vectors.

In the second part of Chapter 4 by grouping elements of the aforementioned Gabor system

into subsystems, we generate a so-called fusion frame and prove that these are tight,

optimally sparse, and equidistant. Finally, we solve numerically the problem of recovering

sparse signals from Gabor frame and Gabor fusion frame measurements, generated by
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difference sets. The sparsity is understood differently in each of the cases. In the first

case, the signal is a linear combination of a small number of modulations and translations

of the generator. For Alltop and random generators this problem was considered in

[9, 100]. The second case is fusion sparsity, when the signal is represented as a union

of few subspaces (in our case translations). This problem was considered previously for

general and random fusion frames [18, 7, 8].

1.2.2 Structured Sparse Signal Recovery from Non-linear Measure-
ments

One of the most common steps to go from linear to non-linear measurements is instead

of recovering a signal from its linear measurements, to recover it from the absolute values

of those measurements. Such a setup naturally appears in a variety of applications

including X-Ray crystallography, optical imaging, and electron microscopy [112, 71],

and is known as the phase retrieval problem. We can always recover the signal x only

up to a unimodular constant, because x and cx, where |c| = 1, always give the same

measurements. To fix notation, let F = {fi}mi=1 ⊆ KN be a set of measurement vectors,

where K is R or C. Further, let T = {c ∈ K : |c| = 1}. The measurement process is then

given by the map

MF : KN/T → Rm
+ , MF (x) =

[
|⟨f1, x⟩|2 |⟨f2, x⟩|2 . . . |⟨fm, x⟩|2

]T
. (1.1)

Given MF (x), the task is to recover x up to global phase. We say that F allows phase

retrieval, if the map MF is injective.

There are three main types of questions that one is interested in when studying this

problem:

• Injectivity: Which properties of the measurement vectors yield necessary and/or

sufficient conditions on the injectivity of the map MF ?

• Minimal number of measurements: How many vectors in F are necessary needed

to allow phase retrieval?

• Algorithms: Given the intensity measurements MF (x), how can x be recovered up

to global phase?

Comprehensive answers to these questions and open problems can be found in [3, 12, 13,

28].

Motivated by different applications, these general questions can also be posed only for a

particular type of measurements and/or signals. One common restriction on the signal

side is the sparsity prior: what kind of results can be obtained, given the assumption that
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the vector that we want to recover is sparse? This problem was intensively studied in

[125], where the questions of injectivity, minimal number of measurements and recovery

via ℓ1 minimization were investigated, both in R and C. For example, it was shown that,

2k is the minimal number of measurements needed for k-sparse phase retrieval (k < N)

of real signals (without sparsity prior this number is 2N − 1 [12]).

In Chapter 5, we answer some of the question above, for the case where the signal is

not sparse itself in the standard notion, but has a sparse representation in a dictionary

(frame). This assumption is more realistic for any type of application, and it is therefore

important to know not only intuitively, but also theoretically, that similar results hold

in this case as well.

The sparsity prior is interesting from an aspect of a generalization of the phase retrieval

problem, where the measurements taken are not scalar products (which can be viewed

as projections onto one-dimensional subspaces), but orthogonal projections onto more

general subspaces, and we are given only the norms of the projections. This problem

was called phase retrieval by projections in [20], and turned out to be a difficult topic

with many open problems [32]. It was shown in [20] that any signal can be recovered

from 2N−1 “projection phaseless” measurements, and a connection to the classical phase

retrieval setting was presented. A question now arises: are there similar results as in the

sparse phase retrieval problem discussed above? To our knowledge, sparse phase retrieval

by projections has not been investigated so far, and this thesis makes a contribution to

the field by proving analogous results to [20] in the sparse setting.

In many applications like X-ray crystallography, transmission electron microscopy and

coherent diffractive imaging, the measurements for the phase retrieval problem are of

Fourier type, and in fact this is the initial formulation of this problem in imaging and

optics: recover the signal, given only the magnitude of its Fourier transform [67, 61, 92].

Conditions on the injectivity of phase retrieval from Fourier measurements, which depend

on the structure of the signal (collision free and some additional mild properties) were

presented in [105]. It was proven that as long as the number of measurements is at

least 2N − 1, such vectors can be determined uniquely. This idea was further developed

for the sparse setting in [97], and it was shown that when the dimension N is prime,

2(k2−k+1) Fourier measurements are sufficient to guarantee unique recovery of k-sparse

collision free vectors.

In Chapter 6, we focus on phase retrieval from Gabor, i.e., short-time Fourier mea-

surements, which are time-frequency shifts of a suitably chosen generator. This type of
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measurements is of particular interest for many applications in speech and audio pro-

cessing [95], ptychographical CDI [70], etc. We consider recovery of both arbitrary and

sparse signals.

A combination of phase retrieval from Gabor measurements with sparse signals was first

considered in [55], where theoretical results on the recovery of non-vanishing signals

from a full set of N2 Gabor measurements are obtained, and some intuition about the

difficulty of recovery of sparse signals is given. Numerical results show that the latter

can be effectively conducted with modification of the GESPAR algorithm [111], using

less than N2 measurements.

In the recent work [77], both theoretical and numerical investigations show, thatO(N log3(N))

measurements are sufficient for recovering general signals from block circulant Fourier

based measurements, and if the signal is k-sparse, only O(k log5(N)) measurements are

needed. The structure of the measurements is similar to that one of Gabor systems, but

at this moment it is not clear if and how their results transfer to the Gabor setting that

we consider here.

Our main objective is the question of injectivity of the map (1.1), when F is a Gabor

system. Using the characterization of phase retrievability via the properties of the kernel

of the PhaseLift operator [13], in Chapter 6 we provide a condition on the generator

which is sufficient for the corresponding Gabor system to allow phase retrieval. We show

how this condition can be eased, if the signal that needs to be recovered is non-vanishing.

Further, we provide two representative classes of generators, complex random signals and

characteristic functions of difference sets, which satisfy the above mentioned condition.

On the other hand, we show that the common Gabor generators, which are short windows

or Alltop sequences, are not suitable for phase retrieval of general signals (they fail to

recover sparse signals). This problem was also considered in [77].

Furthermore, we extend the injectivity condition from [13] to the sparse setting, and

provide a similar, but more involved condition on the generator which can guarantee

phase retrievability of sparse signals with less than N2 measurements. When N is prime,

we construct generators such that the Gabor system allows k-sparse phase retrieval from

O(k3) measurements. We also generalize this result to signals which are sparse in the

Fourier domain, and show that if, additionally, the nonzero elements are structured

consecutively in a block, the number of measurements can be further decreased.

Both injectivity theorems naturally yield a simple algorithm for recovery of signals from

phaseless Gabor measurements up to global phase, and we present a pseudo-code for it.

When all N2 measurements are given, the recovery of any signal is possible by using

solely the fast Fourier transform, which makes the algorithm extremely efficient. If some
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of the measurements are lost, we can employ ℓ1 minimization to recover the signal. We

provide several numerical experiments to test this idea in various settings, including a

recovery of discrete lines from phaseless Gabor measurements.

In the following, we briefly outline the thesis. In Chapter 2 we provide the necessary

background on tools and methods from the following fields: compressed sensing and

sparse recovery, frame theory (including Gabor frames and fusion frames), and the phase

retrieval problem.

In Chapter 3 we start with geometric sparsity, i.e., signals which have a sparse represen-

tation in a dictionary of discrete lines. We define discrete lines in arbitrary dimension d,

and show that it is possible to construct a unit norm tight frame from the collection of

all lines. Furthermore, we compute the spark and the mutual coherence of the initial and

the resulting systems. Finally, we consider two sparse recovery settings using discrete

lines: one is the problem of separation of points and lines, and the other is recovery of

lines from small number of linear measurements.

In Chapter 4 we consider lines from the point of view of projective geometry. This

time, instead of translations and rotations, we consider the collection of translations

and modulations (frequency shifts) of the characteristic function of a difference set, i.e.,

a Gabor system. We compare the performance of this system to those generated by

random and Alltop vectors, both theoretically and numerically. Moreover, we consider

the collection of time- and frequency-shifts as a fusion frame, and prove several optimality

conditions for it: tightness, equidistance, and optimal sparsity.

In Chapter 5 we deal with non-linear measurements. We consider the phase retrieval

problem for signals which are sparse in an arbitrary dictionary, and investigate the ques-

tion of injectivity of those measurements both in R and C. We also discuss the character-

ization of ℓ1 recovery from phaseless measurements via the null space property, modified

for the purpose of phase retrieval and dictionary sparse signals. At the end, we shortly

discuss the question of sparse phase retrieval by projections (we are given only the norm

of the projections onto a number of subspaces), and give conditions for injectivity of such

measurements.

Finally, Chapter 6 is dedicated to the question of phase retrieval from Gabor mea-

surements, both for sparse and for general signals. We prove sufficient conditions for

injectivity in the cases of sparse, nonzero, and arbitrary signals, and provide examples

of generators which satisfy those conditions. At the end, we propose an algorithm for

recovery which we test with numerical experiments, and analyze its stability.

In the last chapter, Chapter 7, we provide a conclusion where we summarize the work

conducted in this thesis, and comment on open questions for future research.



Chapter 2

Background

This chapter is divided into three parts, each representing a specific topic: sparsity and

compressed sensing, frame theory, and phase retrieval. We provide the fundamentals,

and to keep concise, formulate only those achievements from every area, which will be

extensively used in the consecutive chapters.

In Section 2.1, we will state the basic tools and results from compressed sensing. Despite

being a fairly new field, sparse representations, compressed sensing, and sparse recovery

have been the subject of already a few comprehensive books [64, 57, 63, 52]. We refer

the interested reader to those for detailed elaboration on the subject. In Section 2.2 we

discuss the theory of finite frames, first in its general setting,followed by Gabor frames

fusion frames. There is also an excellent book on finite frames, both for theory and

applications [37]. Finally, in Section 2.3, we will state the classical results from phase

retrieval, as well as two particular cases: sparse phase retrieval and phase retrieval from

Fourier measurements.

2.1 Sparsity and Compressed Sensing

Compressed sensing is often shortly described as a methodology for the recovery of

sparse vectors from a small number of linear, non-adaptive measurements. The reason

why compressed sensing works and how it is possible to solve linear systems with much

more variables than equations lies in the sparsity constraint. The observation that the

signal we are interested in usually lies in a union of low-dimensional subspaces, gives us

an intuition, why it should be possible to recover it from an under-determined system.

Surely, from an application point of view, it is very rare that many of the components

of the signal are zero. More often, the signal has a sparse representation. For example,

12
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if the signal is an image, it becomes sparse after some transformation (we say is sparse

in some basis), like the wavelet, discrete cosine or Fourier transform. In other cases,

the signal can have a sparse representation in some other, perhaps redundant system, in

general called a dictionary. For example, a signal can consist of few time- and frequency-

shifts of some vector, in which case the discrete Gabor system can sparsely represent this

signal, or sometimes this dictionary is unknown, and methods like dictionary learning are

used in order to find a dictionary which will sparsely represent a class of signals [88, 2].

However, our methods for dealing with dictionary sparsity are very closely related to

those of classical sparsity. Therefore, in this chapter we focus on tha latter.

Let us start with a formal definition.

Definition 2.1. A signal x ∈ RN is called k-sparse, if it has at most k nonzero compo-

nents:

∥x∥0 := |{j : x(j) ̸= 0}| ≤ k.

The set of all k-sparse vectors is denoted by Σk, i.e., Σk := {x ∈ RN : ∥x∥0 ≤ k}.

Although ∥ · ∥0 is not a norm by definition, this notion is useful for the formulation of

the sparse recovery problems. First, it is important to note that, often signals are not

exactly k-sparse, in the sense that many coefficients are not exactly zero, but they are

small or negligible. In this case, an important measure is the best k-term approximation

[43], defined for x ∈ RN as

σk(x)1 := min
x̃∈Σk

∥x− x̃∥1. (2.1)

If a signal x is k-sparse, then σk(x) = 0, and the signal x is called k-compressible, if σk(x)

is sufficiently small, or more precisely, if there exist C, r > 0 such that σk(x)1 ≤ Ck−r.

The question we are interested in is: given a matrix A ∈ RM×N and linear measurements

of the sparse vector y = Ax ∈ Rm, recover x. The sparsity k or the positions of the

nonzero coefficients are not known.

A first and most intuitive approach to find a sparse vector x would be to solve

min ∥x∥0 subject to Ax = y, (P0)

but as we also discussed in the Introduction, this problem is NP hard.

In (2.1), how close is x to being sparse is measured in the ℓ1 norm, defined for x ∈ RN

as

∥x∥1 =
N∑
i=1

|x|,

and this is not accidentally (although in come cases other norms can be considered as

well). Indeed, as indicated in Figure 2.1, the ℓ1 norm promotes sparsity the most among
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all other norms. This led to the idea of Chen, Donoho and Saunders [40] to substitute

Figure 2.1: Different norms in R2 and the solution of Ax = y.

(P0) with an alternative, which can be rewritten as easy as linear programming:

min ∥x∥1 subject to Ax = y. (P1)

This formulation is known as the ℓ1 minimization problem, or Basis Pursuit (BP). Such

an approach to recovering sparse vectors from linear measurements is probably the most

common and most investigated one. There are also various efficient greedy and iterative

methods, as for example the orthogonal matching pursuit (OMP)[121], compressive sam-

pling matching pursuit (CoSaMp) [96], iterative hard thresholding (IHT) [16], message

passing algorithms [49] and many others. In this thesis we will be working mainly with

BP. In order to successfully recover x from y = Ax,, it is not sufficient that x is sparse,

and special properties of the matrix A need to be satisfied. When speaking about recov-

ery guarantees for the ℓ1 minimization problem (P1), the most commonly used features

are: the mutual coherence, the null space property, and the restricted isometry property

of the matrix A. Before we discuss each of them and provide the corresponding results, we

will describe a property which is related to the uniqueness of the sparse representation,

or in other words, to the solution of (P0).

Although the ℓ0 minimization (P0) is not suitable for recovering x practically, it is im-

portant to understand under which conditions the representation y = Ax0 is unique for

k-sparse x0, or equivalently, when a k-sparse x0 is the unique solution to (P0). An answer

to this question is given by using the spark, a notion introduced in [47] and defined as

follows.

Definition 2.2. Let A ∈ RM×N . The spark of A is defined as the smallest number of

linearly dependent columns of A.

We can rewrite this definition using the ℓ0 notation as

spark(A) = min{∥x∥0 : x ∈ RN\{0}, such that Ax = 0}.

Theorem 2.3 ([47]). Let A ∈ RM×N , and let k ∈ N. Then the following conditions are

equivalent.



Chapter 2. Background 15

(i) If a solution x of (P0) satisfies ∥x∥0 ≤ k, then this is the unique solution.

(ii) k < spark(A)/2.

The idea of the theorem is intuitively clear: if the spark of A is sufficiently large, then

any subchoice of less then spark(A) columns will be linearly independent, and thus the

restriction of A to those columns will be injective. However, computing the spark is

an NP-hard problem [120], and other easily computable properties are used in practice

instead. One example is the mutual coherence, which when small, guarantees uniqueness

of the solutions via both (P0) and (P1).

2.1.1 The Mutual Coherence

Definition 2.4. Let A ∈ RM×N be a matrix with columns {ai}Ni=1 ∈ RM . Then its

mutual coherence is defined as

µ(A) := max
i̸=j

|⟨ai, aj⟩|
∥ai∥ ∥aj∥

. (2.2)

We now present two results on sparse recovery including the mutual coherence.

Theorem 2.5 ([47, 54]). Let A ∈ RM×N and let x0 ∈ RN\{0} be a common solution of

(P0) and (P1). If

∥x0∥0 <
1

2

(
1 +

1

µ(A)

)
, (2.3)

then x0 is the unique solution of both (P0) and (P1).

Theorem 2.6 ([47]). Let A ∈ RM×N have a unit norm columns and a mutual coherence

which satisfies

(2k − 1)µ(A) < 1.

Then (P1) recovers every k-sparse vectors x from y = Ax.

Unlike the spark, the mutual coherence is easy to calculate, and in our work we will

often use it to provide theoretical guarantees for the recovery problem with particular

measurement matrices. The drawback of this approach is that the mutual coherence

bound on the sparsity of x (2.3) is highly suboptimal, which can explained partially by

that fact that this is a worst-case bound. Attempts for improvement, which still involve

a measure of the (in)coherence of A were made by introducing the so called average

coherence [9, 10] as well as the asymptotic incoherence [1].
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2.1.2 The Null Space Property

As we noted, the results which involve the mutual coherence give only a sufficient condi-

tion, and often provide a very rough bound on the level of sparsity that can be recovered.

Also, often in compressed sensing one is able to choose the number of measurements M

and the interesting question is: what is the minimal number of measurements for a given

sparsity level, which can guarantee recovery? In this respect, an important role is played

by the notions of null space property and restricted isometry property.

Definition 2.7. Let A ∈ RM×N . Then A has the null space property (NSP) of order k,

if, for all h ∈ N (A)\ {0} and all index sets T ⊆ {1, . . . , n} with |T | ≤ k,

∥hT ∥1 <
1

2
∥h∥1,

where N (A) is the null space of A and hT is the vector h restricted to the indices in T.

Unlike the mutual coherence, the null space property is difficult to verify in general, since

it requires a combinatorial search. Nevertheless, the NSP plays an important role in the

achievements of theoretical results for compressed sensing. As we will see in the next

theorem, it yields a characterization of the solvability of (P1).

Theorem 2.8 ([43]). Let A ∈ RM×N and k ∈ N. Then the following conditions are

equivalent.

(i) If a solution x of (P1) satisfies ∥x∥0 ≤ k, then it is the unique solution.

(ii) A satisfies the NSP of order k.

Various modifications of the null space property appeared in the literature, as people

were getting interested in classes of signals which are more general than that of the k-

sparse vectors: dictionary-based NSP [41], fusion NSP [18] and others. We will also use

some of these approaches in Section 5.3 of Chapter 5, to create a new NSP suitable for

non-linear (phaseless) measurements of signals which are sparse in a dictionary.

2.1.3 The Restricted Isometry Property

Now we come to the last, but probably most widely known property — the restricted

isometry property (RIP). One can say that compressed sensing as a theory started with

the RIP and with the first recovery guarantees using it, in the series of work of Can-

des, Romberg and Tao [26, 30, 31], along with the work of Donoho [46]. The success

of the RIP is based on the fact that many random (sub-Gaussian) or randomly chosen
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measurements (for example, partial Fourier) satisfy the RIP with a small RIP constant,

and that guarantees success of the ℓ1 minimization, both for exact and noisy measure-

ments [27, 109, 90]. Also, the question of the number of measurements needed can be

answered in this case: roughly M ≥ 2k ln(N/k) random measurements will recover k-

sparse vector x with high probability (see, e.g., [64, Chapter 9]. Having measurements

only of the order of the sparsity level and not of the dimension of the signal allows to go

beyond the Nyquist sampling rate [123]. This brought data acquisition to a completely

new dimension, and prompted an avalanche of research in the last decade.

Definition 2.9. Let A ∈ RM×N . Then A has the restricted isometry property (RIP) of

order k, if there exists a δk ∈ (0, 1) such that

(1− δk)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δk)∥x∥22 for all x ∈ Σk. (2.4)

We see that the RIP requires that every set of k columns of A should behave like an

isometry. The RIP constant can be calculated by the following expression:

δk = max
T⊆[1,...,N ],|T |≤k

∥A∗
TAT − IM∥2→2. (2.5)

Since verifying the RIP requires a search over all possible subsets of [1, . . . , N ] of size at

most k, the problem becomes intractable in the case of pure deterministic constructions.

To overcome this problem, the statistical RIP was introduced [23], where we require that

(2.4) holds only for all randomly chosen subsets T of size k. Another idea is to consider so-

called structured random matrices [106], for which the RIP can be computed, and which

are one step closer to deterministic constructions and therefore have certain advantages

from an application point of view.

Let us state one of the most classical results for the ℓ1 recovery of sparse vectors via RIP,

which we will also use later in Chapter 3.

Theorem 2.10 ([43, 24]). Let A ∈ RM×N satisfy the RIP of order 2k with δ2k <
√
2−1.

Let x ∈ RN , and let x̂ be a solution of the associated ℓ1 problem (P1). Then

∥x− x̂∥2 ≤ C · σk(x)1√
k

,

for some constant C dependending only on δ2k.

The condition δ2k ≤
√
2−1 which guarantees recovery was constantly changing its format

and improving over the years. For example, an RIP with δk <
1
3 is another sufficient

condition for recovery of k sparse vectors via ℓ1 [21], and this bound was then further

improved to a sharp result δ2k ≤ 1√
2

by the same authors in [22].
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Also, we would like to note here that there is a crucial difference between the Theorem

2.5 and Theorem 2.10. Namely, the result involving the mutual coherence is so-called

uniform result, because it holds for all k-sparse vectors simultaneously. Whereas in the

RIP result we stated in Theorem 2.10, we first fix a k-sparse vector, and thus it is referred

to as a non-uniform result in the literature. Uniform results based on the RIP also exist,

but we will not formulate them here for the sake of brevity.

2.2 Finite Frames and Fusion Frames

For more details on frame theory and its applications we refer the interested reader to

the book [37] and for abstract frame theory and the history of its development to the

survey paper [33].

Let N be a positive integer. We denote by HN a real or complex N -dimensional Hilbert

space. The Hilbert-Schmidt norm of an operator A : HN ↦→ HN is defined as

∥A∥2HS = Tr(A∗A) =
N∑
i=1

∥Aei∥2,

where Tr denotes the trace of an operator. We have ∥A∥HS = ⟨A,A⟩HS , where

⟨A,B⟩HS = Tr(B∗A) =

N∑
i=1

⟨Aei, Bei⟩ ,

with A,B : HN ↦→ HN , and {ei}Ni=1 any orthonormal basis of HN . Also, following the

notation from [37], we will write ℓM2 for ℓ2([1, . . . ,M ]).

2.2.1 Background on Finite Frame Theory

Although frame theory is a relatively new discipline, the formal definition of a frame

(given in infinite dimension) goes back to 1952 and the work of Duffin and Schaeffer [51]

on non-harmonic Fourier series.

Definition 2.11. A family of vectors {φi}Mi=1 in a Hilbert space HN is called a finite

frame for HN , if there exist constants 0 < A ≤ B <∞ such that

A∥x∥2 ≤
M∑
i=1

|⟨x, φi⟩|2 ≤ B∥x∥2 for all x ∈ HN . (2.6)

Below, we list some notions related to a frame {φi}Mi=1 which we will extensively use.
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1. If A = B in (2.6), then {φi}Mi=1 is called an A-tight frame.

2. If A = B = 1, then {φi}Mi=1 is called a Parseval frame.

3. If there exist a constant c such that ∥φi∥ = c for all i = 1, 2, . . . ,M, then {φi}Mi=1

is an equal norm frame. If c = 1, {φi}Mi=1 is a unit norm frame.

4. If there exists a constant c such that |⟨φi, φj⟩| = c for all i ̸= j, then {φi}Mi=1 is

called an equiangular frame.

Two main operators, the analysis and synthesis operator play an important role in the

development of frame theory. The analysis operator T : HN ↦→ ℓM2 is defined as

Tx := (⟨x, φi⟩)Mi=1, x ∈ HN .

Note that ∥Tx∥2 =
∑M

i=1 |⟨x, φi⟩|2 for all x ∈ HN . Therefore, the inequality (2.6) can be

rewritten as

A∥x∥2 ≤ ∥Tx∥2 ≤ B∥x∥2 for all x ∈ HN .

Hence, {φi}Mi=1 is a frame if and only if T is an injective operator. The synthesis operator

is defined as the adjoint operator T ∗. It is not difficult to see that the adjoint operator

T ∗ : ℓM2 ↦→ HN of T is given by

T ∗(ai)
M
i=1 =

M∑
i=1

aiφi, (ai)
M
i=1 ∈ ℓM2 .

Often, we will identify the family of vectors {φi}Mi=1 with the matrix Φ of size M × N,

with columns φi, i = 1, . . . ,M,

Φ =
[
φ1 φ2 · · · φM

]
. (2.7)

This is actually the matrix representation of the synthesis operator T ∗, and throughout

this thesis we will often write Φ instead of T ∗. A concatenation of analysis and synthesis

operator gives rise to the so-called frame operator S : HN ↦→ HN which is defined as

Sx := T ∗Tx =

M∑
i=1

⟨x, φi⟩φi, x ∈ HN .

Now, observing that ⟨Sx, x⟩ = ⟨T ∗Tx, x⟩ = ∥Tx∥2 we can yet again rewrite (2.6) as

A∥x∥2 ≤ ⟨Sx, x⟩ ≤ B∥x∥2 for all x ∈ HN .
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Finally, we introduce the Gram operator (Grammian) G : ℓM2 ↦→ ℓM2 which is defined as

G(ai)
M
i=1 := TT ∗(ai)

M
i=1 =

M∑
i=1

ai(⟨φi, φk⟩)Mk=1, (ai)
M
i=1 ∈ ℓM2 .

Certain properties like tightness and equiangularity can be expressed now in terms of

the introduced operators.

Let IM be the identity matrix of size M, and 1M the M ×M matrix of all ones.

Proposition 2.12. Let {φi}Mi=1 be a unit norm finite frame.

(i) {φi}Mi=1 is a tight frame if and only if S = T ∗T = ΦΦ∗ = AIM . Moreover, if {φi}Mi=1

is a unit norm tight frame, then A = N
M .

(ii) {φi}Mi=1 is an equiangular frame if and only if G = TT ∗ = Φ∗Φ = c1M − (c−1)IM .

We also note that when {φi}Mi=1 is a unit norm tight frame, every element in the Hilbert

space x ∈ HN can be represented as

x =
1

A

M∑
j=1

⟨x, φj⟩φj . (2.8)

This representation gives us some intuition, why tight frames became a very important

tool in signal processing. Enormous work has been done in the last 20 years to under-

stand better and apply frame theory in real-life problems. A comprehensive work in the

direction of developing the theory of unit norm tight frames (UNTF) is given in [14].

Additional properties and their suitability for solving problems like loss of coefficients in

the representation (2.8) (erasures) are presented in [35]. In Chapter 3, we will see how

to construct a family of UNTF from a collection of discrete lines. As mentioned in [14],

tight frames are not only important for signal processing, but are also directly connected

to questions like equidistribution of points on the unit sphere, and this is moreover true

when it comes to equiangular tight frames (ETF).

An important quantity that measures the relations between the frame elements is the

mutual coherence, which we defined in (2.2). It is clear that on the one hand, when

M = N and Φ is an orthogonal basis, we will have µ(Φ) = 0. On the other hand, if

there exist two linearly dependent vectors in the system, the mutual coherence will be

µ(Φ) = 1. There is a minimal value that µ can have and it is given by the so called Welch

bound [127],

µ(Φ) ≥

√
M −N

N(M − 1)
. (2.9)
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One interesting and very useful property of the Welch bound is that equality in (2.9) is

achieved, if and only if Φ is an equiangular tight frame [118]. This can be seen from the

following chain of inequalities, which hold for an arbitrary unit-norm frame Φ = {φi}Mi=1

for HN :

M2

N
≤ ∥Φ∗Φ∥2HS =

M∑
i=1

M∑
j=1

|⟨φi, φj⟩|2 ≤M +M(M − 1)µ(Φ)2.

Note that an equality on the left-hand side is equivalent to being a tight frame.

We see again here the importance of ETFs: they are the optimally incoherent frames,

but at the same time highly difficult to construct. We shall discuss this question in more

detail in Section 4.2 of Chapter 4. Furthermore, as we saw in Section 2.1, one of the

most common guarantees for recovery of sparse vectors from linear measurements relies

on having small mutual coherence. We will use this approach to get sparse recovery

guarantees in Chapter 3.

2.2.2 Gabor Frames in Finite Dimensions

One particular type of frames, a redundant system popular in applications like radar

and communications [75], is the system of time- and frequency-shifts, also called a Gabor

system. Gabor systems are named by Denis Gabor, who was considering such systems

back in 1946 [65]. Here, we consider only the finite-dimensional case. For a detailed

study, we refer to [99].

We work in the signal space CN , as a space of complex valued, N periodic functions with

integer argument, x = x(j), j ∈ Z, which therefore always has to be assumed modulo

N. We use the customary domain [0, . . . , N − 1] of j, but we often write j ∈ ZN for

convenience. The scalar product between two signals x and y is defined as

⟨x, y⟩ =
N−1∑
j=0

x(j)y(j).

The N -th root of unity will be denoted by ω = e
2πi
N . We define the (discrete) Fourier

transform x̂ and the inverse Fourier transform x̌ ∈ CN as follows:

x̂(j) =
N−1∑
j=0

x(n)ω−nj , j = 0, 1, . . . , N − 1,

x̌(n) =
1

N

N−1∑
j=0

x(j)ωnj , n = 0, 1, . . . , N − 1.
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We will also often use δN ,the discrete periodic Kronecker delta function, defined as

δN (j) =

⎧⎨⎩1, if j is divisible by N ,

0, elsewise.

For p ∈ ZN , we define the translation (or time-shift) operator Tp : CN ↦→ CN through

(Tpx)(n) = x(n− p), x ∈ CN .

Further, we define for ℓ ∈ ZN , the modulation (or frequency-shift) operator Mℓ : CN ↦→
CN through

(Mℓx)(n) = ωℓnx(n), x ∈ CN .

By combining translations and modulations we obtain the time-frequency shift operators

π(p, ℓ) : CN ↦→ CN ,

π(p, ℓ) =MℓTp,

For a pair λ = (p, ℓ) sometimes we will use the short-hand notations Πλ := π(p, ℓ), and

xλ := Πλx for some x ∈ CN . The following result will play an important role in our

investigations on Gabor systems in Chapter 6.

Proposition 2.13 ([99]). The collection of normalized time-frequency shift operators

{ 1√
N
π(k, l)}N−1

k,l=0 forms an orthonormal basis for the Hilbert-Schmidt space of linear op-

erators in CN . In other words, for any λ, µ ∈ ZN × ZN ,

⟨Πλ,Πµ⟩HS = NδN (µ− λ). (2.10)

We also note the well-known commutation relations between translations and modula-

tions.

Proposition 2.14 ([69]). Let λ = (p, ℓ), µ = (q, j) ∈ ZN × ZN . Then, we have

MℓTp = ωℓp TpMℓ,

ΠλΠµ = ω−jpωℓqΠµΠλ.

Now we have all ingredients to define a Gabor system.

Definition 2.15. A Gabor system generated by a vector g ∈ CN\{0} is the collection

of all translations and modulations of g,

Φg := {π(k, l)g}(k,l)∈Z2
N
= {MlTkg}N−1

k,l=0.
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Note that sometimes the Gabor systems are defined as a collection of some translations

and modulations, {π(k, l)g}(k,l)∈Λ, where Λ ⊆ ZN × ZN . Our definition would then

correspond to a full Gabor system. The generator g is often called a window function, by

tradition of the discrete short-time Fourier transform Vg : CN ↦→ CN×N , which is defined

as

Vgx(k, l) = ⟨x, π(k, l)g⟩ =
N−1∑
n=0

x(n)g(n− k)ω−ln
N .

Thus, frame coefficients of Φg correspond to samples of Vg.

The next proposition shows that every Gabor system forms a frame — even equal norm

tight frame.

Proposition 2.16 ([87, 99]). For any g ̸= 0, the collection {π(k, l)g}(k,l)∈Z2
N

is a equal

norm tight frame for CN with frame bounds A = B = N∥g∥2.

We would like to focus on two very challenging problems related to the following prop-

erties of a Gabor frame:

(i) Full spark, and

(ii) Equiangularity.

What we mean by the first condition is finding Gabor frames which have largest possible

spark, i.e., spark(Φg) = N + 1. In other words, every collection of N elements needs

to be linearly independent. This condition is also known as the Haar property [87],

or also as a property of being in a general linear position [89]. Finding Gabor frames

which have the Haar property is also known as the discrete analogue of the HRT (Heil-

Ramanathan-Topiwala) conjecture [73], which remain unsolved up to date in its general

formulation: prove that time-frequency translates (not necessarily integers) of a nonzero

square integrable function f on R are linearly independent. See the survey [72] for more

details on the achievements in this direction. The question for discrete time-frequency

shifts them was partially solved in 2005, when Lawrence, Pfander and Walnut proved

that such construction exist for any prime dimension [87]. Fortunately, in 2013 Malikiosis

solved the existence of full spark Gabor frames affirmatively for any dimension N [89].

The second property, equiangularity, will be discussed in more detail in Chapter 4, so

we mention it here only briefly. The problem of finding Gabor frames which are equan-

gular also has various names and interpretations, one of which comes from quantum

mechanics and is known as the Zauner’s conjecture [129]. It is still an open question if

in arbitrary dimension N one can build N2 equiangular lines (it is also conjectured that

they can always be constructed as the time-frequency shifts of a given generator [107],

or in our notation that there exists a generator g such that the obtained Gabor frame Φg
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is equiangular). So far, there exist numerical experiments which confirm this conjecture

for dimensions up to 67 [110], and some particular dimensions have been investigated

theoretically, including the recent result [42] for dimension N = 17.

Unlike the tightness condition, which is satisfied by any Gabor frame, the question of

small mutual coherence is strongly dependent on the generator of the Gabor frame.

Because we have a fixed dimension of our frame, N×N2, we can write the Welch bound,

µ(Φg) ≥

√
N2 −N

N(N2 − 1)
=

√
1

N + 1
.

Knowing the fact that a frame is an ETF if and only if the Welch bound is achieved

[118], and since we already have tightness, we see that the difficult question related to

Zauner’s conjecture is a question about achieving the Welch bound with Gabor systems.

We will discuss this question for a specific type of generators in Chapter 4.

We focus next on the relations and connections between the theory of sparse recovery and

Gabor frames. The question we are interested in is, given a Gabor frame Φg ∈ CN×N2
,

and measurements y = Φgx of an unknown sparse vector x ∈ CN2
, can we recover x

using ℓ1 minimization? We note here, that this question can be seen as a sparse matrix

identification problem [100]. In such a formulation, one assumes that a matrix Γ ∈ CN×N

has a sparse representation in the dictionary of time-frequency shift matrices, and the

question is to recover Γ from the action of Γ on a test signal g ∈ CN . See [100] for more

details on the subtle differences between the two problems.

Since the size of the measurement matrix Φg, i.e., the number of measrements is fixed, we

are interested only how sparse vectors x can recover. We know from Theorem 2.5, that

one way to do answer this question is via the mutual coherence. There exists generators,

which have nearly optimal mutual coherence, or in other words for which the Welch bound

is almost attained. In particular, it was shown in [118] that if g is an Alltop sequence [5],

i.e. g(j) = ωj3

N , j = 0, . . . , N − 1 (with N necessarily a prime), then µ(Φg) ≤ 1√
N
. For

general dimension N , it was shown in [100] that when g is independent and uniformly

distributed on the torus complex random vector, then the mutual coherence of Φg comes

close to 1√
N

with high probability.

Both these results on the mutual coherence of Gabor systems generated by Alltop and

random vectors lead to a conclusion about recovery of sparse signals via Theorem 2.5.

The corresponding theorems are formulated in [100]. Roughly speaking, it was shown

in [100] there that vectors which have sparsity up to the order of
√
N or

√
N/ logN

can be recovered by ℓ1 minimization. Furthermore, using a result from Tropp [122],

these rates are then improved to a sparsity level of the order of N , if we assume that
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x is random. Independently, similar research using the mutual coherence and Alltop

sequences was conducted in [75], with a focus on the application of such a measurement

process in radar (identifying target scene). Another approach was taken by the authors in

[9], where a condition called the coherence property, involving both (worst-case) mutual

coherence and average coherence is used. They obtain guarantees for recovery of the

support of an unknown sparse signal via a one-step thresholding algorithm, from Gabor

measurements generated by Alltop and random vectors. This result is then also extended

to recovery not only of the support, but also of the vaues of the sparse signal.

2.2.3 Background on Fusion Frames

The needs of the fast developing high technology led to a generalization of frames: the

idea is to have a collection (union) of subspaces which will span the whole space, and

the subspaces are spanned by “smaller” frames. This is the complex framework of fusion

frames, which includes the classical theory of frames as a special case (each element of

the frame in this case generates a one-dimensional subspace). Since its foundation in [38,

36], fusion frames have developed into a rich theory and have found many applications,

especially in parallel or distributed processing of sensor networks.

Let us state the definition of a fusion frame, in our formulation considered with all weights

equal to one.

Definition 2.17. A family of subspaces {Wi}Mi=1 in a Hilbert space HN is called a fusion

frame for HN , if there exist A and B, 0 < A ≤ B <∞ such that

A∥x∥22 ≤
M∑
i=1

∥Pi(x)∥22 ≤ B∥x∥22 for all x ∈ HN ,

where Pi is the orthogonal projection onto Wi.

If A = B is possible, then {Wi}Mi=1 is called an A-tight fusion frame. Tightness is an

important property, required for example, for minimization of the recovery error of a

random vector from its noisy fusion frame measurements [85]. Among other desirable

properties are equidimensionality and equidistance. They assure maximal robustness

against erasures of one or more subspaces, and as we will explain further, yield optimal

Grassmannian packings [85]. Equidimensionality means that all the subspaces {Wi}Mi=1

are of the same dimension, while to define equidistant fusion frames, we need the notion

of chordal distance.

Definition 2.18. Let W1 and W2 be subspaces of HN with m := dimW1 = dimW2

and denote by Pj the orthogonal projection onto Wj , j = 1, 2. The chordal distance
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dc(W1,W2) between W1 and W2 is given by

dc(W1,W2) =
√
m− Tr[P1P2].

Multiple subspaces are called equidistant if they have pairwise equal chordal distance dc.

It was shown in [85] that equidistant tight fusion frames are optimal Grassmannian

packings, where optimality comes from the classical packing problem: For given m,M,N,

find a set of m-dimensional subspaces {Wi}Mi=1 in HN such that mini̸=j dc(i, j) is as large

as possible. In this case we call {Wi}Mi=1 an optimal packing. An upper bound is given

by the simplex bound
m(N −m)M

N(M − 1)
. (2.11)

This is to some extent analogous to the Welch bound from classical frame theory, and

we will see in Chapter 4 that fusion frames generated by so-called difference sets achieve

the simplex bound (2.11).

2.2.4 Sparse Recovery with Fusion Frames

Although the main applications of fusion frames are inspired by distributed sensing,

parallel processing and packet encoding, it is also possible to transfer (generalize) the

classical compressed sensing methodology to the case when a signal is sparse in a fusion

frame [6, 18, 58]. We will use this idea to do some numerical experiments on recovery

with fusion frames in Chapter 4, and therefore we present here the model and the main

achievements in this direction. Let {Wi}Mi=1 be a fusion frame for HN and define

HW := {(xi)Mi=1 : xi ∈ Wi for all i = 1, . . . ,M} ⊆ RMN .

An element x ∈ HW is called k-sparse, if

∥x∥0 := |{i : xi ̸= 0}| ≤ k.

Note that here sparsity is defined as the number of nonzero components, and this is

very similar to block-sparsity [56] (with an additional structure coming from the fact

that xi ∈ Wi). On the other hand, if all subspaces are identical we obtain the case of

joint sparsity [39, 50], also known as multiple-measurement vectors model. For more

details on the hierarchy of different kind of structured sparsity models see Table 1 in

[18]. Let x0 = (x0i )
M
i=1 ∈ HW . We would like to measure x0 with some measurement



Chapter 2. Background 27

matrix A ∈ Rn×N with unit-norm columns in the following way:

y = {yj}nj=1 = {
M∑
i=1

aijx
0
i }nj=1.

We can also rewrite it in a block form as y = AIx
0, if we denote AI = (aijIN )M,N

i,j=1.

Since we denoted by ∥ · ∥0 the norm which counts the number of nonzero components in

Since we assume that x0 lies in only few subspaces, and the number of those subspaces is

measured by the introduced ∥ · ∥0 norm, it is intuitive to pose the following minimization

problem:

min
x∈H

∥x∥0 subject to AIx = y. (2.12)

However, such a problem is intractable in practice, and a relaxation of the minimization

function is needed. Here, since every nonzero component is itself not necessarily sparse,

the idea is to take a mixed ℓ1/ℓ2 norm,

∥x∥2,1 :=
M∑
i=1

∥xi∥2, where x = (xi)
M
i=1 ∈ H.

Thus, the minimization problem can be formulated as

min
x∈H

∥x∥2,1 subject to AIx = y. (2.13)

For computational purposes, this minimization problem 2.13 can be rewritten as a min-

imization process over RMN , using orthonormal bases for each subspace, Ui ∈ RN×mi ,

where mi = dimWi. An equivalent problem to (2.13) is

min
c

∥c∥2,1 subject to AU(c)c = Y,

where c ∈ RMN ,

U(c) =

⎡⎢⎢⎣
cT1 U

T
1

...

cTMU
T
M

⎤⎥⎥⎦ ∈ RM×N , Y =

⎡⎢⎢⎣
yT1
...

yTn

⎤⎥⎥⎦ ∈ Rn×N .

We implemented this minimization problem using MATLAB and CVX and used it for

the numerical experiments in Chapter 4, where we consider recovery of signals sparse in

a Gabor fusion frame.

Regarding the theoretical guarantees for recovery via (2.13), both classical results involv-

ing mutual coherence and RIP could be adapted to the fusion frame setting, see [18, 6]

for more details. We will formulate here only the result on the mutual coherence.
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Definition 2.19. The fusion coherence of a fusion frame {Wi}Mi=1 in RN and a measure-

ment matrix A ∈ Rn×M with normalized columns is defined as

µf
(
A, {Wi}Mi=1

)
= max

j ̸=k
[⟨aj , ak⟩∥PjPk∥2] .

A crucial role in this definition is played by ∥PjPk∥2, which is the largest absolute value

of the cosines of the principle angles between Wj and Wk, and it is called the incoherence

parameter in [8].

Theorem 2.20 ([18]). Let {Wi}Mi=1 be a fusion frame for RN and A ∈ Rn×M with

normalized columns be the measurement matrix. If there exist a solution c0 of the system

Y = AU(c), with Y ∈ Rn×N satisfying

∥c0∥0 <
1

2

(
1 + µf

(
A, {Wi}Mi=1

)−1
)
,

then this solution is the unique solution of (2.12) and (2.13).

Surely, the following question naturally arises: are there fusion frames with small fusion

coherence or fusion RIP constant [18], and how many measurements are sufficient to

guarantee recovery? Using the fusion RIP, it is shown in [7] that if A is a subgaussian

matrix, then fusion sparse vector can be recovered uniformly with high probability, as

long as the incoherence parameter of the fusion frame is sufficiently small. The result

also holds for noisy measurements, as well as approximately sparse vectors. Furthermore,

using ideas from optimal packings of Grassmannian manifolds, a lower bound on the in-

coherence parameter was also obtained in [6].

2.3 Phase Retrieval

Phase retrieval is called the problem of recovery of a signal from the absolute values of

its linear measurements. In Chapters 5 and 6 we consider phase retrieval of structured

(dictionary sparse) vectors, and from structured (Gabor) measurements. Therefore we

shall now briefly formulate here the main achievements and open problems in phase

retrieval. First we consider the phase retrieval problem in its general setting. Then, we

separately discuss the problem of sparse phase retrieval and phase retrieval from Fourier

measurements.

Let K be R or C, and T = {c ∈ K : |c| = 1}. We denote by KN/T the set of equivalence

classes under the equivalence relation x ∼ y ⇔ ∃c ∈ T : x = cy.
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We say that a set of vectors F = {fi}mi=1 in KN allows phase retrieval or has the phase

retrieval property, if the mapping

MF : KN/T → Rm
+ , MF (x) =

[
|⟨f1, x⟩|2 |⟨f2, x⟩|2 . . . |⟨fm, x⟩|2

]T
is injective. We will often refer to the measurements {|⟨fi, x⟩|2}mi=1 as phaseless, magni-

tude, or intensity measurements of x.

Definition 2.21. A set of vectors {fi}Mi=1 in KN satisfies the complement property (CP)

if for every subset S ⊆ [1, . . . ,M ] either {fi}i∈S or {fi}i∈Sc spans KN .

A simple characterization of phase retrievability is given by the complement property

when K = R.

Theorem 2.22 ([12]). A set of measurements F = {fi}mi=1 in RN allows phase retrieval

if and only if F satisfies the complement property.

We would like to mention here the relation between the notion of full spark (every

set of N vectors in F is linearly independent) and the complement property. Namely,

it is not difficult to see that, if a set of vectors is full spark and has m ≥ 2N − 1

measurements, then it will necessarily satisfy the complement property. This then gives

rise to deterministic constructions which allow phase retrieval, see for example the work

[4] on full spark frames. We note here that, however, the constructions in [4] mostly

involve complex vectors, and as we will see next, the complement property is a necessary

but not a sufficient condition in the complex case. In Chapter 5 we discuss the question

of full spark of real (random) measurement vectors, in the context of the complement

property for sparse signals.

In the case K = C, the authors in [13] showed that the complement property is a necessary

condition for phase retrievability.

Theorem 2.23 ([13]). Let F = {fi}Mi=1 be a set of vectors in CN . If MF is injective,

then F satisfies the complement property.

An example of a set of complex vectors having the complement property, but not allowing

phase retrieval was also presented in [13]. However, the authors in [13] formulated

another, also simple characterization of phase retrievability in the complex case, via

the so-called PhaseLift or super analysis operator, which already proved effective in the

question of developing algorithms for solving the phase retrieval problem [29, 11]. Let

HN×N be the space of Hermitian N × N matrices. For a set of measurement vectors
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{fi}mi=1 in CN the PhaseLift operator is defined as

A : HN×N → Rm
+ , H ↦→

[
⟨H, f1f∗1 ⟩HS ⟨H, f2f∗2 ⟩HS . . . ⟨H, fmf∗m⟩HS

]T
.

Notice that the mapping A with H = xx∗ gives exactly the phaseless measurements,

since

A(xx∗)(j) = ⟨xx∗, fjf∗j ⟩HS = Tr(xx∗fjf
∗
j ) = Tr(f∗j xx

∗fj)

= f∗j xx
∗fj = |⟨x, fj⟩|2 = MFx(j).

The following characterization of phase retrievability in the complex case will be essential

for our research in Chapter 6.

Theorem 2.24 ([13]). The mapping A is not injective if and only if there exists a matrix

of rank 1 or 2 in the kernel of A.

Simply stated and with a fairly short proof, this result is still very powerful and will help

us to find generators of Gabor systems in Chapter 6 which are suitable for allowing phase

retrieval. At the same time, after we prove an analogue of this result in the sparse and

dictionary sparse setting in Chapter 5, we will be able to elaborate on the question why

certain generators like Alltop vectors and window functions are not suitable for recovery

of sparse vectors from Gabor phaseless measurements.

One of the most challenging theoretical questions in phase retrieval is to find the smallest

number of measurements which guarantee injectivity. For arbitrary signals in R the result

is known and equals 2N − 1 [12] (see the remark above about the full spark), but the

complex case is an open and ongoing problem. In [12], it was conjectured that 4N−2 are

necessary for phase retrival of complex signals. However, later in [17] and [103] examples

of 4N−4 vectors doing phase retrieval were presented, and therefore 4N−4 was thought

to be the correct answer [13]. Exactly Theorem 2.24 was used in [13] to support the 4M−4

conjecture. Nevertheless, this conjecture was further disproved with a small example of

11 vectors in dimension 4 in [124], leaving space for further investigations. It is important

to note that the best lower bound on the number of measurements is 4N −2α(N −1)−3

due to [74], where α(N) ≤ log2(N) is the number of 1’s in the binary representation of

N − 1.

2.3.1 Sparse Phase Retrieval

The similarity between phase retrieval and compressed sensing becomes apparent when

we add the sparsity prior in the unknown signal x. If in the compressed sensing regime
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we were interested in recovering a k-sparse x from measurements y = Ax, now we have a

similar task but we are given only the absolute values of these measurements, y = |Ax|.

Recalling the null space property and the restricted isometry property from Section 2.1,

we understand intuitively that if we want injectivity for sparse signals, we need to make

sure that A has certain properties when restricted to any subset of k columns. For

example, an analog of the complement property for the sparse setting was given in [97],

and it was then used to formulate a necessary condition for doing k-sparse phase retrieval.

As we will also discuss in Chapter 5, the complement property in the sparse case is no

longer a characterization of the phase retrievability. Let us recall the sparse complement

property, and the corresponding result on the k-sparse phase retrievability in R.

Definition 2.25 ([97]). A given set F = {fi}mi=1 in RN has the k-complement property,

if for all S ⊆ [1, . . . ,m], and all K ⊆ [1, . . . , N ] with |K| ≤ k, either {fKi }i∈S or {fKi }i∈Sc

spans Rk.

Here we denote by fKi ∈ Rk the restriction of fi to the coefficients in K.

Theorem 2.26 ([97]). Let F = {fi}mi=1 in RN satisfy the 2k-complement property. If x0
is a k-sparse vector in RN and y = MF (x0), then x0 is the unique real vector satisfying

the given measurements with k or fewer nonzero elements.

We follow an analogue approach in the case where x is sparse in a dictionary in Chapter

5, and we show that k-complement property is a necessary condition for sparse phase

retrievability in R (in Theorem 2.26 we saw that 2kp-complement property is sufficient).

Further, we shal investigate how sharp are these results.

Regarding the question of finding the minimal number of measurements needed for sparse

phase retrieval in R, [97] showed that 4k − 1 (random) vectors suffice to guarantee

injectivity. This result was improved in [125] where it was shown that 2k is the minimal

(necessary) number of measurements for phase retrieval of k-sparse signals, and that 2k

generically chosen vectors allow k-sparse phase retrieval. We will extend this result in

Chapter 5 to signals which are sparse in a dictionary.

The complex case for sparse phase retrieval remains unsolved regarding the minimal

number of measurements. It was shown in [125] that 4k − 2 generically chosen vectors

allow sparse phase retrieval in C, and it is conjecture there that this is the minimal num-

ber of vectors needed. In Chapter 5 we will formulate necessary and sufficient conditions

for sparse phase retrieval in C via the PhaseLift operator A.
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2.3.2 Phase Retrieval from Fourier Measurements

As in compressed sensing, in phase retrieval we are often not in a position to choose

the type of measurements, but they are given by the application. Taking this into

account, one is not interested in how many measurements guarantee recovery in theory

(for example, random or generic measurements), but how many computationally suitable

measurements (for example, Fourier) can guarantee injectivity? The initial setting of the

phase retrieval problem [92, 67] is exactly recovery from Fourier magnitude measurements

(FMM), but because of the specificity of the problem, only a few theoretical guarantees

are known. In the recent years, there has been a growing interest in this problem with

exploiting additional knowledge about the structure of the signal, in particular that

the signal we are interested in is sparse. It was proven in [105] that the full set of N

Fourier measurements will give injectivity for k-sparse signals, as long as k ̸= 6 and x is

collision-free (to be defined below). For N prime this result was improved in [97], where

it was shown that k2 − k + 1 Fourier measurements guarantee uniqueness under similar

additional conditions on the sparse signal x. We state this result below. Note that the

signal here is still in RN , although the measurements are complex.

Definition 2.27. A vector x ∈ RN is collision free if x(i) − x(j) ̸= x(k) − x(l), for all

distinct i, j, k, l ∈ {n ∈ [0, . . . , N − 1] : x(n) ̸= 0}.

Theorem 2.28 ([97]). Let {k1, k2, . . . , km} ⊆ [0, . . . , 2N − 1],

fj =
[
1 e−i2πkj/2N e−i4πkj/2N · · · e−i(2N−1)πkj/2N

]T
,

and let M : RN/T → Rm
+ be defined by

Mx(j) =

⏐⏐⏐⏐⟨fj , [xT 01×N

]T⟩⏐⏐⏐⏐2 , j = 1, . . . ,m.

Let x0 be k-sparse and collision free vector in RN , and let m be a prime integer larger

than 2(k2 − k + 1). Then, x0 is uniquely defined by y = A(x0) ∈ Rm whenever

• k ̸= 6, or

• k = 6 and x0(j) ̸= x0(k), for some j, k ∈ {i : i ∈ [0, . . . , N − 1], x0(i) ̸= 0}.

Later, in Chapter 6, we will show that phase retrieval from Gabor (short-time Fourier)

measurements is possible with the order of k3 measurements, without additional con-

straints of the signal except for the sparsity.

One could notice that so far we discussed only the injectivity of the measurements, and

what type of measurements guarantee phase retrieval, but not also how to practically
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recover x? This question is a topic on its own, and here we will give only few refer-

ences for well established methods. One of the first algorithms proposed, for recovery

from Fourier magnitude measurements is the Gerchberg-Saxton algorithm [67, 61]. A

novel approach is given in [111], where GESPAR, a greedy method for recovering sparse

signals from Fourier magnitude measurements is proposed. With the development of

compressed sensing and the idea of low-rank matrix recovery via convex optimization, a

convex programming algorithm was proposed in [29] for solving the phase retrieval prob-

lem from arbitrary measurements. It was also shown in [29] that O(N logN) random

phaseless measurements suffice to recover a signal with this method. In Chapter 6, we

will also discuss an algorithm for recovery of both sparse and arbitrary vectors, from

Gabor magnitude measurements.



Chapter 3

Discrete Lines and Sparse Recovery

3.1 Introduction

In this chapter we are interested in discrete lines as one form of geometric sparsity, and

we will be investigating them from few aspects. At first, we will explore the geometric

properties of discrete lines, defined in arbitrary dimension d. Their geometric structure

will be crucial for the frame properties of the collection of discrete lines that we will show

afterward. Our main goal is to then use these results for recovery of signals which are

geometrically sparse (consist of few lines, or few points and lines) from linear measure-

ments.

This chapter is organized as follows. We define discrete lines and explore their main geo-

metric properties in Section 3.2. Next, in Section 3.3 we investigate the frame properties

of the collection of lines, and show how to modify it to a UNTF, and we compute its

mutual coherence and the spark. In Section 3.4 we consider the problem of separation of

discrete points and lines, give theoretical guarantees via the mutual coherence, the spark

and the RIP, and provide numerical experiments. The problem of recovery of unions of

lines from linear measurements is considered in Section 3.5.

3.2 Discrete Lines in d-dimensional Space

We start with the definition of discrete lines in arbitrary d-dimensional space and their

basic geometric properties. Let p be some prime number, and d ≥ 2 some integer. By Zp

we denote the set of integers modulo p, and let Z∗
p := Zp\{0}. For any k ∈ Z, [k]p ∈ Zp

is the equivalence class of the integer k modulo p. Often we will omit the brackets [·]p,
having in mind that all calculations are in Zp, and we will simply use the residual system

34



Chapter 3. Discrete lines 35

{0, . . . , p − 1}. We define a discrete point in Zd
p as a d-tuple (x1, . . . , xd) where xi ∈ Zp

for all i = 1, . . . , d.

Definition 3.1. Let x0 ∈ Zd
p, m ∈ Zd

p\{0}. A discrete line in Zd
p is a set of p discrete

points given by the following system of parametric equations (given in vector form):

Lx0,m = {(x1, . . . , xd) : x = [x0 +mt]p, t ∈ Zp}. (3.1)

Here x0 is a point that lies on the line, m is the direction vector, and t is the parameter

which takes all possible values from Zp. Thus, every line in Zd
p consists of p points.

In Figure 3.1 we plot few lines in three dimensional space viewed from two different

angles. In Figure 3.2 we show examples of discrete lines in two dimensions. We will show
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Figure 3.1: Four different lines in 3-dimensional space, p = 113.

Figure 3.2: Different unions of discrete lines in two dimensions for p = 79.

now that the intuitive Euclidean geometric properties are preserved with such definition.

Some investigation on the geometry of 3 dimensional (digital) lines is given in [62]. At

first we compute the number of all different lines for fixed p. Note that there are pd

discrete points x = (x1, . . . , xd) living in Zd
p.

Proposition 3.2. There are
pd − 1

p− 1
pd−1 distinct discrete lines in a d-dimensional space

Zd
p.
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Proof. At first we calculate the number of lines passing through a given point (for exam-

ple, passing through the origin). This line, x = [mt]p, is defined by its slope (direction

vector), which is a nonzero point. Some of those points have the same direction, and

they will give the same line. Therefore, we divide the number of all nonzero points pd−1

by the number of points that have same direction, which is p− 1, and obtain pd−1
p−1 . Now,

for each of those lines we have all possible shifts, that is pd−1. Therefore, the number of

lines in Zd
p is pd−1

p−1 p
d−1.

We need to prove that our system of lines satisfies the standard properties of lines as

geometric objects. One of the crucial properties of lines in affine geometry is that two

distinct lines intersect at most at one point. The same property holds also for the discrete

lines that we introduced.

Proposition 3.3. Let La,m and Lb,n be two d-dimensional discrete lines. Then, one of

the following holds:

(i) |La,m ∩ Lb,n| = p, i.e., the lines coincide,

(ii) |La,m ∩ Lb,n| = 1, i.e., the lines intersect,

(iii) |La,m ∩ Lb,n| = 0, i.e., the lines are parallel or skew.

Proof. Let us consider two arbitrary d-dimensional discrete lines,

La,m = {(x1, . . . , xd) : x = a+mt, t ∈ Zp},

Lb,n = {(x1, . . . , xd) : x = b+ nt, t ∈ Zp}.

Finding points that will belong to La,m∩Lb,n means finding t, t̃ ∈ Zp, which are solutions

of the system of equations (congruences modulo p) given by

a1 +m1t ≡ b1 + n1t̃ (mod p),

a2 +m2t ≡ b2 + n2t̃ (mod p),

. . .

ad +mdt ≡ bd + ndt̃ (mod p).

(3.2)

Since p is prime, Zp is a finite field with the operations addition and multiplication

modulo p. Thus we can use Gaussian elimination to solve this system. For this purpose
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we write it in a matrix form as Ax = b, where x =

[
t

−t̃

]
, and

[
A | b

]
=

⎡⎢⎢⎢⎢⎢⎣
m1 n1 b1 − a1

m2 n2 b2 − a2

. . .

md nd bd − ad

⎤⎥⎥⎥⎥⎥⎦ . (3.3)

Our system is over-determined. Hence, it will have a solution if and only if with elemen-

tary transformations we can modify it to⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 c1

0 1 c2

0 0 0

. . .

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 c̃1

0 0 0

0 0 0

. . .

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.4)

In the first case, there will be exactly one solution modulo p, and in the second case

there will be p solutions of the system.

We are also interested in the conditions on the vectors m,n and b − a under which the

system has 1, p, or 0 solutions, in other words, conditions for when the lines intersect or

not.

Proposition 3.4. Let p be some prime, and La,m and Lb,n be two d-dimensional discrete

lines. Then, we have

(i) |La,m ∩ Lb,n| = 1 ⇐⇒ m /∈ span(n) and b− a ∈ span(m,n),

(ii) |La,m ∩ Lb,n| = 0 ⇐⇒ m ∈ span(n) and b− a /∈ span(m) or

m /∈ span(n) and b− a /∈ span(m,n),

(iii) |La,m ∩ Lb,n| = p ⇐⇒ m ∈ span(n) and b− a ∈ span(m).

Proof. To prove this proposition we will use the criteria that a linear system of equations

Ax = b has a solution if and only if span(a1, . . . , aN ) = span(a1, . . . , aN , b). In our case,

in order to have a solution of (3.2), it is necessary and sufficient to have

span(m,n) = span(m,n, b− a). (3.5)

Since the dimension of span(m,n) can be only 1 or 2, we have the following two cases:
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dim(span(m,n)) = dim(span(m,n, b − a)) = 2. This case is possible if and only if

the columns of the matrix A are linearly independent, i.e., m ̸= λn, for any λ ̸= 0.

Geometrically, that means that the two directional vectors are not collinear. Since

dim(span(m,n, b− a)) is also 2, b− a must be a linear combination of m and n. Hence,

there exist α and γ such that b− a = αm+ γn. This representation is actually unique,

because if we assume that there is another different linear combination b−a = α1m+γ1n,

then we can write (α1−α)m = (γ−γ1)n. Since at least one of the differences is nonzero,

we can divide by it and obtain that m = λn. This is in contradiction to the fact that

two vectors were linearly independent. Thus, in this case we have a unique solution of

the system — the lines intersect at exactly one point.

dim(span(m,n)) = dim(span(m,n, b − a)) = 1. In this case the vectors are linearly

dependent, i.e., m = λn, for some nonzero λ. Geometrically, it means that the two

directional vectors are collinear. In order to have (3.5), we need b − a to be a linear

combination of m and n, b − a = αm + βn = (αλ + β)n = γn. The parameter γ can

be any element from Zp and so there are p solutions of our system. Geometrically, the

vector b − a has the same direction as the vector n. But this means the point b needs

to lie on the same line as a, in addition both lines have the same direction — the lines

coincide. For completeness of the geometrical interpretation, we also give a description

of the cases where we do not have a solution:

span(m,n) ̸= span(m,n, b− a).

This can happen in the following cases:

dim(span(m,n)) = 1,dim(span(m,n, b)) = 2. In this case the vectors m and n are

collinear, but the vector b− a is not collinear to them, b− a ̸= αm. This means the lines

have the same direction, but the points b and a lie on different lines, so those lines are

parallel (also coplanar).

dim(span(m,n)) = 2,dim(span(m,n, b)) = 3. Now m and n are not collinear, and b− a

is a not a linear combination of the two vectors, in this case the lines are skew - they do

not intersect and there is no plane containing them both.

Finally, we are ready to prove the last property also important for the Euclidean geo-

metric understanding of lines.

Proposition 3.5. For every two different points m and m′ ∈ Zd
p, there exist exactly one

line La,m containing them.
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Proof. We need to prove two things: first, that two distinct points always determine

some line; and second, that this line is always unique. For the first part, let a, b ∈ Zp be

the two points that our line should contain. We thus can use a as the point x0 in equation

(3.1), and we only need a direction vector. For this purpose we construct m := b − a,

and the line La,m satisfies our requirements. When the parameter t = 0, we will obtain

the point a, and when t = 1, we obtain the point b.

For the second part we argue by contradiction. If we assume that the line that passes

through those points is not unique, it will mean that there is a second line, containing

this two points. But that means, that there are two different lines that intersect in more

than one point — that is in contradiction to the result of Proposition 3.3.

Since our final goal is to use this construction for signal processing, it will be useful to

have the characteristic function of a discrete line, defined as follows.

Definition 3.6. Let p be prime, a ∈ Zd
p and m ∈ Zd

p\{0}. We define the characteristic

function 1La,m of a discrete line La,m as an element of Cp × Cp · · · × Cp with values

1La,m(x1, . . . , xd) =

⎧⎨⎩1, if (x1, . . . , xd) ∈ La,m,

0, elsewise,
(3.6)

for all (x1, . . . , xd) ∈ Zd
p.

Often we will consider 1La,b
as a re-sized vector in Cpd , using the standard lexicographic

ordering. Before we investigate the frame properties of the system of characteristic func-

tions of lines, we would like to investigate the discrete Fourier transform of a signal which

represents a discrete line. Interestingly, the Fourier transform of a line geometrically is

a hyperplane passing through the origin and perpendicular to the line.

Proposition 3.7. Let La,m be a discrete line in Zd
p, where m ∈ Zd

p\{0} is the direction

vector and a ∈ Zd
p a point on the line. The discrete Fourier transform (DFT) of 1La,m

is given by

1̂La,m(n1, . . . , nd) = p e
− 2πin·a

p 1{(k1,...,kd)∈Zd
p : k·m=0}. (3.7)
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Proof. To prove this statement we just need to calculate the multidimensional discrete

Fourier transform of the signal defined by (3.6) and (3.1).

1̂La,m(n1, . . . , nd) =

p−1∑
k1,...,kd=0

1La,m(k1, . . . , kd)e
− 2πin·k

pd

=

p−1∑
t=0

exp{−2πi(n1(a1 +m1t) + . . .+ nd(ad +mdt))

pd
}

= e
− 2πin·a

pd

p−1∑
t=0

exp{−2πit(n1m1 + . . .+ ndmd)

pd
}

= p e
− 2πin·a

p δp(n ·m) =

⎧⎨⎩p e
− 2πin·a

p , if n ·m = 0 (mod p),

0, if n ·m ̸= 0 (mod p).

Remark 3.8. As we can see from the equation n · m = 0, the DFT of a line in d di-

mensional space is supported on a hyperplane that passes through the origin, and lies

perpendicularly to the vector m, i.e. to the line La,m. Also, the values of the non zero

entries are no longer 1, but they are complex numbers and depend on a and on the posi-

tion of the point n. We can see further the geometric structure of the Fourier transform

of a line if we see how many nonzero points it contains. We need the number of solutions

to the following equation with d variables:

n1m1 + n2m2 + . . .+ ndmd = 0 (mod p).

Since m ̸= 0, at least one mj ̸= 0, for some j ∈ {1, . . . , d}. Then, the corresponding

variable nj can be expressed in terms of the rest d − 1 variables, and there are exactly

pd−1 solutions to our system. We see now, then in three dimensional space, the Fourier

transform of a line is a plane (with p2 points), and when d = 2, a Fourier transform of

a line is again a line (with p points). This observation will be important later when we

will be investigating the spark of the collection of discrete lines.

3.3 Frame Properties of the Union of Discrete Lines

We are interested in signals which have a line structure, or more precisely, which are

unions of few lines. Mathematically, we would like to build a dictionary of lines, a

matrix Φ where each column will be one characteristic function of a line (p and d are

fixed). Then, a signal x which consists of few lines can be represented as x = Φz, where

z will have nonzero entries at the positions of lines which x consists of. As we know from
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Chapter 2, for compressed sensing-like results which involve recovering the structured

signal x, it is important to investigate the properties of the dictionary of lines Φ. First of

all, we can ask whether it is a frame, whether it satisfies some optimality properties and

more specific, what kind of (in)coherence properties this system has. Among the other

results, we will see that we can calculate the spark of this matrix, which is in general an

NP-hard problem [120]. We summarize everything shown in this section in the following

theorem.

Theorem 3.9. Let p be some prime, and d ≥ 2 be some integer. Let further L be the

matrix of size M ×N, M = pd, N = pd−1
p−1 p

d−1, where each column is one characteristic

function of a discrete line. Let further 1M×N be a matrix that consist of all ones. Let

Φ ∈ RM×N be a matrix obtained from L in the following way:

Ψ =
1

C
(L − c1M×N ), where C2 =

p2(pd−1 − 1)

pd − 1

and c is a solution of the quadratic equation

1− 2c
pd − 1

p− 1
+ c2

pd − 1

p− 1
pd−1 = 0.

Then, Ψ is a unit norm tight frame, and, additionally,

(i) µ(Ψ) =

⎧⎪⎨⎪⎩
pd − p2 + p− 1

p2(pd−1 − 1)
, if d ≥ 3,

1/2, if d = 2.

(ii) spark(L) = 2p, µ(L) = 1
2 .

Now we go step-by-step in proving these properties of the collection of discrete lines.

3.3.1 Constructing UNTF from a Collection of Discrete Lines

Recall that a sequence of vectors Φ = {φi}Ni=1 in RM is an A-tight frame if and only if

ΦΦT = AIM , where IM is the identity matrix. Also, if ∥φi∥ = 1 for all i = 1, . . . , N,

then {φi}Ni=1 is a unit norm frame. Of particular interest in applications are the unit

norm tight frames (UNTF), and we will show how to construct a subclass of those from

a collection of discrete lines.

For this, let L be a matrix of size M×N, M = pd and N = pd−1
p−1 p

d−1, where each column

φn, n = 1, . . . , N is a characteristic function of one discrete line. For the lines and the

points we use the standard lexicographic ordering. We want to check if such a system of

discrete lines {φn}Nn=1 forms a frame in RM . First of all, we will show how to construct
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a UNTF from it. The idea is to modify L by subtracting a carefully chosen constant c

from every entry, such that the obtained matrix Ψ will satisfy ΨΨT = AIM , which will

prove the tightness. Moreover, we will prove that all columns have equal norm, so we

can make the frame unit norm. Then, by expanding an arbitrary vector in the obtained

frame, we will see that if we add the unit vector in the initial system of discrete lines, it

also becomes a frame.

Let us denote by rm ∈ RN ,m = 1, . . . ,M the rows of the matrix L. By answering the

question: how many lines pass through one point, and how many lines can pass through

two distinct points (see Proposition 3.5), we obtain the following result:

⟨rm, rm′⟩ =

⎧⎨⎩
pd−1
p−1 , m = m′,

1, m ̸= m′.

We will also need the number of lines that contain one fixed point,

⟨rm,1M ⟩ = pd − 1

p− 1
. (3.8)

We are now ready to calculate the elements of the matrix ΨΨT . We will consider the

scalar product of the rows of Ψ, which we denote by sm = rm − c1N .

⟨sm, sm′⟩ = ⟨rm − c1N , rm′ − c1N ⟩

= ⟨rm, rm′⟩ − 2c⟨rm,1N ⟩+ c2⟨1N ,1N ⟩

=

⎧⎪⎪⎨⎪⎪⎩
pd − 1

p− 1
− 2c

pd − 1

p− 1
+ c2

pd − 1

p− 1
pd−1, m = m′,

1− 2c
pd − 1

p− 1
+ c2

pd − 1

p− 1
pd−1, m ̸= m′.

We will choose c, such that for m ̸= m′, the scalar product is zero. Then, we will have

that

ΨΨT = AIN , where A =
pd − 1

p− 1
− 1. (3.9)

Such c exists, because the determinant of the quadratic equation is positive:

4

(
pd − 1

p− 1

)2

− 4
pd − 1

p− 1
pd−1 = 4

pd − 1

p− 1

(
pd − 1

p− 1
− pd−1

)
= 4

pd − 1

p− 1

pd−1 − 1

p− 1
> 0.

We have shown that the first condition ΨΨT = AIM is satisfied, i.e. our frame is tight.

We saw that we can modify the system of lines so that we get a frame, but what is with

the initial collection of discrete lines? Is it a frame, or equivalently, can any vector in
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RN be represented as a linear combination of those vectors? Let us consider the columns

of Φ, φn, where n = 1, . . . N, and their modified version ψn = φn − c1M . Every signal

f ∈ RN can be represented in terms of ψ using the frame decomposition, with coefficients
1
p⟨f, ψn⟩ since we have a tight frame. We are interested in this representation in terms

of the initial family of vectors {φn}Nn=1. We will use the fact that
∑N

n=1 φn = pd−1
p−1 1M ,

which follows from equation (3.8). For every signal f ∈ RN we have:

f =
1

A

N∑
n=1

⟨f, ψn⟩ψn =
1

A

N∑
n=1

⟨f, φn − c1M ⟩(φn − c1M )

=
1

A

N∑
n=1

[
⟨f, φn⟩φn − c⟨f, φn⟩1M − ⟨f, c1M ⟩φn − ⟨f, c21M ⟩1M

]
=

1

A

[
N∑

n=1

⟨f, φn⟩φn − c

N∑
n=1

⟨f, φn⟩1M − c

N∑
n=1

⟨f,1M ⟩φn + c2
N∑

n=1

⟨f,1M ⟩1M

]

=
1

A

[
N∑

n=1

⟨f, φn⟩φn − c
pd − 1

p− 1
⟨f,1M ⟩1M − c

pd − 1

p− 1
⟨f,1M ⟩1M +

pd − 1

p− 1
pd−1c2⟨f,1M ⟩1M

]

=
1

A

[
N∑

n=1

⟨f, φn⟩φn + (c2
pd − 1

p− 1
pd−1 − 2c

pd − 1

p− 1
)⟨f,1M ⟩1M

]

=
1

A

[
N∑

n=1

⟨f, φn⟩φn − ⟨f,1M ⟩1M

]
.

We see now that if we consider the family of vectors {φn}Nn=1 ∪ {1M}, then every signal

can be represented as a linear combination of those vectors, f =
∑N

i=1 αiφi + αN+11M ,

where

αi =
1

p
⟨f, φi⟩, i = 1, . . . , N, αN+1 = −1

p
⟨f,1M ⟩.

Thus, the system of all discrete lines with the vector of all ones added, {φn}Nn=1 ∪{1M},
also forms a frame.

The last step in getting a UNTF is to check if all the frame elements ψn, n = 1, . . . , N

have equal norm, and, if yes, then normalize the frame. We will obtain this as a side

result from the calculation of the mutual coherence of Ψ.

3.3.2 Mutual Coherence of d-dimensional Lines

To calculate the mutual coherence, we start with the scalar product of two columns of Ψ,

ψn and ψn′ . We take into account that every line contains p points, hence ⟨φn,1M ⟩ = p.



Chapter 3. Discrete lines 44

We have

⟨ψn, ψn′⟩ = ⟨φn − c1M , φn′ − c1M ⟩ = ⟨φn, φn′⟩ − 2cp+ c2pd

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p− 2cp+ c2pd, n = n′,

1− 2cp+ c2pd, if φn and φn′ intersect,

−2cp+ c2pd, if φn and φn′ do not intersect.

(3.10)

Here, we used that ⟨φn, φn′⟩ is p, 1, or 0, depending on the geometrical position of the

lines, which we proved in Proposition 3.3. Note that when n = n′, the norm of the

vectors ψn are all equal, since they depend only on p and c. Therefore, we conclude that

we have an equal norm tight frame.

Both for the mutual coherence and for getting a UNTF we need to divide by the norm

of the vectors φn, and we would like to have a value that will not contain c explicitly.

For this, we use the following trick:

Tr(ΨΨT ) = Tr(AIM ) = Tr(pIM ),

pd − 1

p− 1
− 1 = A =

1

M
Tr(AIM ) =

1

M
Tr(ΨΨT )

=
1

M
Tr(ΨTΨ) =

1

M

N∑
n=1

∥ψn∥2 =
N

M
∥ψn∥2 =

1

p

pd − 1

p− 1
∥ψn∥2.

Thus,

∥ψn∥2 =
pd − 1− p+ 1

p− 1

p− 1

pd − 1
p =

p2(pd−1 − 1)

pd − 1
, n = 1, . . . , N.

Now we can rewrite (3.10) without the parameter c,

⟨ψn, ψn′⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p2(pd−1−1)

pd−1
, n = n′,

p2(pd−1−1)
pd−1

− (p− 1), if φn and φn′ intersect,
p2(pd−1−1)

pd−1
− p, if φn and φn′ do not intersect,

(3.11)

and, dividing by the norms, yields

⟨ψn, ψn′⟩
∥ψn∥∥ψn′∥

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, n = n′,

−p2+p+pd−1
p2(pd−1−1)

, if φn and φn′ intersect,
−p2+p

p2(pd−1−1)
, if φn and φn′ do not intersect.

. (3.12)

Thus, the system { 1
Cψn}Nn=1 with C = p2(pd−1−1)

pd−1
is a UNTF, The mutual coherence is the

maximum of the absolute values of −p2+p+pd−1
p2(pd−1−1)

and −p2+p
p2(pd−1−1)

, but it is not immediately
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visible which of the two values is larger. As we will see, this depends on the value of d.

To figure this out, we can solve the inequality⏐⏐⏐⏐ −p2 + p

p2(pd−1 − 1)
+

pd − 1

p2(pd−1 − 1)

⏐⏐⏐⏐ ≤ ⏐⏐⏐⏐ −p2 + p

p2(pd−1 − 1)

⏐⏐⏐⏐ , (3.13)

or equivalently, ⏐⏐⏐⏐ −(p2 − p)

p2(pd−1 − 1)
+

pd − 1

p2(pd−1 − 1)

⏐⏐⏐⏐ ≤ p2 − p

p2(pd−1 − 1)
.

Now we can open the absolute values and have

− p2 − p

p2(pd−1 − 1)
≤ −(p2 − p)

p2(pd−1 − 1)
+

pd − 1

p2(pd−1 − 1)
≤ p2 − p

p2(pd−1 − 1)
,

and further,

0 ≤ pd − 1

p2(pd−1 − 1)
≤ 2

p2 − p

p2(pd−1 − 1)
.

We solve the last inequality for d, taking into account that d ≥ 2, and p ≥ 3,

pd − 1 ≤ 2(p2 − p),

and therefore d ≤ logp(2p
2− 2p+1). It is not difficult to see that logp(2p2− 2p+1) < 3.

Our p is prime and p ≥ 2 so we know that the following inequality holds

(p− 2)(p2 + 1) + p+ 1 > 0.

We can open the brackets and rewrite it as p3 > 2p2 − 2p + 1. Since 2p2 − 2p + 1 =

2p(p− 1) + 1 > 0, we obtain the needed logarithmic form logp(2p
2 − 2p+ 1) < 3.

Therefore, for d = 2, the right-hand side of (3.13) is larger, and we have

µ(Ψ) =
−p2 + p

p2(p− 1)
=

1

p
.

For d larger or equal than 3, the opposite inequality takes place, and we obtain that the

mutual coherence of our system Ψ is equal to

µ(Ψ) =
pd − p2 + p− 1

p2(pd−1 − 1)
. (3.14)

When d = 3, the mutual coherence is
p2 + 1

(p+ 1) p2
.

We know that µ(Ψ) of a frame with N elements in dimension M is always great or equal

than
√

N−M
M(N−1) , the Welch bound. In our case, using M = pd and N = pd−1

p−1 p
d−1, we
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obtain that the Welch bound is

√
N −M

M(N − 1)
=

√ pd−1
p−1 p

d−1 − pd

pd
(
pd−1
p−1 p

d−1 − 1
) =

√
pd − 1− p2 + p

p2 d − pd − p2 + p
.

Comparing the result for the mutual coherence in different dimensions, we can see that

the system of modified discrete lines is closest to the Welch bound in the smallest di-

mension, d = 2, when the Welch bound equals 1/
√
p(p2 + p+ 1). In other words, as

the dimension d grows, the Welch bound decreases, but the mutual coherence stays of

the order 1/p. Also, because in higher dimensions two different lines still either intersect

in one point, or do not intersect at all, the mutual coherence of the initial system of

discrete lines, also does not improve as the dimension grows, and stays µ(Φ) = 1
p . Still,

since our mutual coherence is asymptotically going to zero as p goes to infinity, we will

be able to get good recovery guarantees in Sections 3.4 and 3.5. Even better results can

be obtained with the spark, which we can luckily compute for the dictionary of lines.

3.3.3 Spark of d-dimensional Lines

As a frame is usually a redundant system of vectors, it is important to investigate the

linear independency of sub-collections of the elements of a frame. An important frame

property in this context is the spark. For example, if a collection of vectors Φ = {φi}Ni=1

in RM has the property that every set of M vectors is linearly independent, then Φ has

full spark [4]. Recall that the spark of a matrix Φ is defined as the minimal number of

linearly dependent columns. If we denote by Σk the set of vectors of size N with k non

zero elements, and by N (Φ) the kernel of Φ, then we can write

spark(Φ) = min{k : N (Φ) ∩ Σk ̸= {0}}. (3.15)

To compute the spark requires in general a combinatorial search over all possible subsets

of columns of Φ [120]. However, to find an upper bound can be fairly easy — we just

need an example of set of vectors which are linearly dependent. We will show that this

is possible for the collection of lines in d dimensional space, and then we will discuss the

question of computing the spark exactly.

We note at first that it is sufficient to consider only the case d = 2 : if we have a minimal

combination of linearly dependent lines in Z2
p, such a combination will also exist in any

arbitrary space Zd
p, in which those lines will be embedded.

We now provide an example of a linear combination of 2p lines in Z2
p, which sum up to

zero. Let us fix two direction vectors, m and n in Z2
p. The union of all shifts of the lines
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that each of them generates fills up the whole plane Z2
p. Namely,

⋃
j

Lxj ,m = Z2
p,

⋃
j

Lxj ,n = Z2
p. (3.16)

This is not difficult to see, since obviously every point (n1, n2) ∈
⋃

j Lxj ,m is an element

of Z2
p, and vice versa, if we take an arbitrary point n = (n1, n2) ∈ Z2

p, we can find a j

such that the line Lxj ,m contains the point n. For this, we can simply choose xj := n,

and Ln,m will be a line with direction m and containing the point n by definition. In

terms of characteristic functions, (3.16) means that sum of all lines in each group will

give a vector of all ones. Therefore,

∑
j∈S1

1Lxj,m
−
∑
j∈S2

1Lxj,n
= 0.

The number of lines in S1 and S2 is the number of different shifts of a given line, and that

is p. This means we found 2p vectors in Φ which are linearly dependent, and therefore,

spark(Φ) ≤ 2p.

The question is whether there exists a linear combination of less than 2p lines which gives

zero. Recalling (3.15), we need to find a nonzero solution of the system Φc = 0 with

fewest amount of nonzero entries. An equivalent problem would be to work in the Fourier

domain, and solve minc ∥c∥0 such that Φ̂c = 0, where with Φ̂ we denote the matrix of all

Fourier transforms of the lines in Z2
p.

We observe first one property of the discrete Fourier transform. Let ω = e−
2πi
N . If we

want to solve the matrix system⎡⎢⎢⎣
1 1 1

1 ω ω2

1 ω2 ω

⎤⎥⎥⎦
⎡⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
α

0

0

⎤⎥⎥⎦ , (3.17)

we can do so by inverting the Fourier transform matrix, and obtain⎡⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎦ =
1

N

⎡⎢⎢⎣
1 1 1

1 ω−1 ω−2

1 ω−2 ω−1

⎤⎥⎥⎦
⎡⎢⎢⎣
α

0

0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
c

c

c

⎤⎥⎥⎦ , where c =
α

N
.

The general fact that [
1 ω . . . ωp−1

] [
c1 c2 . . . cp

]T
= 0 (3.18)
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is possible if and only if c1 = . . . = cp = c, can also be obtained from the following

observation: Since p is prime, 1, ω, . . . , ωp−1 are all the p-th roots of unity, and we know

that they sum up to zero, i.e.,

1 + ω + ω2 + . . .+ ωp−1 = 0.

Thus, a combination with cj = c, j = 1, . . . , p would give us an equality in (3.18).

On the other hand, if we assume that the entries cj are possibly not all equal, we can

make the following conclusion. If z is some primitive p-th root of unity, we can write

equation (3.18) as

c1 + c2z + . . .+ cpz
p−1 = 0. (3.19)

Furthermore, we know that the cyclotomic polynomial

1 + z + . . .+ zp−2 + zp−1 = 0 (3.20)

is irreducible over the integers [76], and thus: first of all, cp must be different from zero,

and second, if this is the case we can divide by it to rewrite (3.19) as

c̃1 + c̃2z + . . .+ c̃p−1z
p−2 + zp−1 = 0,

and combining it with (3.20) we will obtain

(c̃1 − 1) + . . .+ (c̃p−1 − 1)zp−2 = 0.

Since (3.20) is an irreducible polynomial, the last equation can hold if and only if for all

i = 1, . . . , p− 1, c̃i = 1, or equivalently, ci = cp.

We now use the property of the system (3.17) for our matrix Φ̂, which contains rows of

the discrete Fourier transform matrix in a particular block form (recall from Remark 3.8

that every Fourier transform of a line when d = 2 has also line structure, more precisely

it is a line which passes through the origin and has p-th roots of unity in the nonzero

values). Note also, that when d = 2, there are p2 points and p2 + p different lines, so

Φ̂ ∈ Cp2×(p2+p). Using the results from Proposition 3.7 and the above reasoning, for
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p = 3 for example, the system Φ̂c = 0 must be of the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1

1 ω ω2 0 0 0 0 0 0 0 0 0

1 ω2 ω 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 ω ω2

0 0 0 0 0 0 1 ω ω2 0 0 0

0 0 0 1 ω2 ω 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 ω2 ω

0 0 0 1 ω ω2 0 0 0 0 0 0

0 0 0 0 0 0 1 ω2 ω 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

a

a

b

b

b

c

c

c

d

d

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For arbitrary prime p, the vector c has the following block structure with p elements in

every block:

c =

[
a1 a1 · · · a1

⏐⏐⏐⏐ a2 a2 · · · a2

⏐⏐⏐⏐ · · · ⏐⏐⏐⏐ ap+1 ap+1 · · · ap+1

]
. (3.21)

Thus, to find the solution of Φ̂c = 0 with minimal ∥c∥0, we need to choose c such that it

has minimal number of nonzeros, and provide α = 0. In order to satisfy α = 0 we need

to make sure that
∑p+1

i=1 pai = 0. It is not difficult to see that the sparsest solution c

satisfying α = 0 is obtained by taking for example

a1 = a, a2 = −a, ai = 0, i = 3, . . . , p+ 1,

where a ∈ R is some arbitrary constant. Thus, we have found the minimal number of

linearly dependent vectors, ∥c∥0 = 2p, and that equals the spark of our initial matrix Φ.

We move now from general frame properties of the system of discrete lines to particular

applications of those properties in the problem of geometrically structured signal recovery,

namely separation of geometric structures and recovery of unions of lines.

3.4 Separation of Points and Lines

In this and the next section, we will restrict to the case d = 2, because, as we will

clarify below, going to higher dimensional space does not result in improvement of the

results. First of all, as we saw, the mutual coherence of the initial system of lines does
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not get better as we go larger d, and stays 1/p. The is also the case with the spark:

spark(Φ) = 2p, independent on d. Moreover, for the signal processing problem that we

would like to consider, the spark will be even lower. In particular, we will be considering a

separation matrix, which except for lines as columns, also contains points (unit vectors),

and possibly other structures as planes etc. The spark of the separation matrix, as we

will see, also does not improve with the growth of the dimension of the space. In words

this can be explain by the fact that if we fix one line (which always has p nonzeros), and

take p unit vectors which have nonzeros exactly at the points of the line, we will obtain

p + 1 linearly dependent vectors, and the spark will be at most p + 1, independently

of the dimension d. Furthermore, if we add additional structures (like planes in three

dimensional space), the spark can only get smaller. For these reasons, from now on we

will fix d = 2.

Instead of the parametric definition of the discrete lines which we gave in Definition 3.1,

it will be simpler now to use the canonical “slope-intercept” form for the equation of a

line.

Definition 3.10. Let p be prime and let a and b be any integers. A discrete line with

parameters a and b is defined as the set of points

La,b = {(m, [am+ b]p) : m ∈ Zp}. (3.22)

Since we are working modulo p prime, the parameters a and b from Z actually define

the same discrete line as the parameters [a]p, [b]p ∈ Zp. Therefore, further in the text

we will always assume that the parameters of the discrete line La,b belong to Zp, and we

will use the residual system {0, . . . , p− 1} for their notation.

If a = 0, we obtain a horizontal line. Sometimes we will use the notation

Hb = L0,b = {(m, [b]p) : m ∈ Zp},

to specify that this is a horizontal line. Note, that with the definition that we gave,

vertical lines are not included. Therefore, we give one more definition.

Definition 3.11. A vertical line is defined as

Va = {([a]p,m) : m ∈ Zp}. (3.23)

For consistence of the notation, for the vertical line we will also use a two parameter

notation, Lp,a := Va. For fixed prime p, we will be considering the family of all discrete
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lines,

L := {La,b}p,p−1
a=0,b=0. (3.24)

As we know, there are in total p2 + p lines in this family.

As we discussed in the Introduction Section, the compressed sensing methodology allows

to develop algorithm for separation of two or more morphologically different structures

present in one signal. This could, for instance, be line and point-like structure in images,

different sounds in audio signals, separating noise etc. What one needs in each case is a

sparse representation for every structure, and properties like small mutual coherence or

RIP constant, such that ℓ1 minimization succeeds.

Let p be some prime, and let M = p2, K = p2 + p, and N = M +K. We consider the

task of decomposition of a signal x ∈ RM into

x = x1 + x2,

where x1 consists of points and x2 is a union of discrete lines. In order to sparsely

represent the signals x1 and x2 we can use the following two matrices

Φ1 := IM , Φ2 := L. (3.25)

IM is the identity matrix of size M , and L is the M ×K matrix where each column is a

different normalized discrete line with parameters a, b, i.e.,

L[ : , k] = 1
√
p
1Lak,bk

,

where

ak = ⌊k/p⌋ , k = 0, . . . ,K − 1,

bk = [k]p, k = 0, . . . ,K − 1.

We now write the sparse representations as x1 = Φ1 c1, x2 = Φ2 c2, where c1 and c2 are

sparse vectors. The compressed sensing idea to separate the signals x1 and x2 is to solve

the minimization problem

min
c1,c2

∥c1∥1 + ∥c2∥1 such that x =
[
Φ1 Φ2

] [c1
c2

]
, (3.26)

and assign x̂2 = Φ1ĉ1 and x̂2 = Φ2ĉ2. We will often use the notation

ΦL :=
[
Φ1 Φ2

]
=
[
IM L

]
. (3.27)
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Equation (3.26) is a relaxed version of the ℓ0 minimization problem, which is given by

min
c1,c2

∥c1∥0 + ∥c2∥0 such that x =
[
Φ1 Φ2

] [c1
c2

]
. (3.28)

In order to obtain results about the success of the recovery of x via (3.26) we need

to investigate the properties of the matrix ΦL =
[
IM L

]
. We concentrate on three

most important properties of this matrix: the mutual coherence, the restricted isometry

property, and the spark.

3.4.1 Mutual Coherence of the Separation Matrix

In order to investigate the mutual coherence of a given measurement matrix Φ, it is useful

to know the corresponding Gram matrix ΦTΦ, which contains all possible scalar products

of the columns of Φ. In the case of our separation matrix ΦL it is possible to compute

the Gram matrix exactly, because of the geometric structure, which transform scalar

products into a question of intersection of objects. We thus investigate the properties of

GL = ΦT
LΦL, where ΦL is the measurement matrix (3.27).

Lemma 3.12. Let p be prime, and GL = ΦT
LΦL be the Gram matrix of ΦL =

[
IM L

]
.

Then, GL is a square matrix of size 2p2 + p with structure

GL =

[
Ip2 L
LT K

]
, (3.29)

where K has also specific structure, consisting of blocks of identity matrices of size p on

the diagonal, and constants 1
p off the diagonal blocks. In particular, using the notation

P = 1
p1p×p, K can be written as

K =

⎡⎢⎢⎢⎢⎢⎣
Ip P · · · P

P Ip P · · ·

· · · P
. . . P

P · · · P Ip

⎤⎥⎥⎥⎥⎥⎦ .

Proof. We notice at first that, since ΦL =
[
IM L

]
=
[
Φ1 Φ2

]
, we can write

GL =

[
ΦT
1

ΦT
2

] [
Φ1 Φ2

]
=

[
ΦT
1 Φ1 ΦT

1 Φ2

ΦT
2 Φ1 ΦT

2 Φ2

]
.
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In order to prove (3.29), we consider the four blocks separately. Using the definitions of

Φ1 and Φ2 we can calculate:

ΦT
1 Φ1 = ITMIM = Ip2 , ΦT

1 Φ2 = (ΦT
2 Φ1)

T = IML = L.

It is left only to consider ΦT
2 Φ2 = LTL =: K, the Gram matrix of L. Here we use

the geometric structure of discrete lines. On the diagonal we have 1 since the lines are

normalized. In the diagonal blocks, off the diagonal we have zeros, since there are no

intersections with lines that are in the same block — these are lines which have the same

slope, i.e. lines which are parallel. The rest of the scalar products are 1
p , since, as we

showed in Proposition 3.3, if the lines have different slope, they intersect exactly at one

point.

Using this lemma we can now calculate the mutual and the average coherence of ΦL.

The mutual coherence of a similar separation matrix (for three dimensional objects) was

shortly discussed in [47].

Theorem 3.13. Let p be prime. The mutual coherence of the matrix ΦL =
[
IM L

]
is

equal to

µ(ΦL) =
1
√
p
. (3.30)

Proof. This follows directly from Lemma 3.12 — we only need to find the maximal in

absolute value entry of the Gram matrix GL = ΦT
LΦL. Looking at the structure of GL

described in (3.29), we see that the maximal value comes from the entries in the matrix

L, and it equals 1√
p ,

For comparison, since the matrix ΦL is of size p2× (2p2+p), the Welch bound (see (2.9))

gives us

µ(ΦL) ≥
1√

p(2p− 1)
.

This shows that the mutual coherence of our system is not optimal. Still, it goes to

zero as the dimension parameter p grows, and thus we are able to conclude the following

sparse recovery result.

Corollary 3.14. Let p be some prime, M = p2, N = 2p2 + p. Let ΦL ∈ RM×N be the

block matrix ΦL =
[
IM L

]
and x ∈ RM . If c0 ∈ RN is such that x = ΦLc0 and

∥c0∥0 ≤
1

2
(1 +

√
p) ,

then this c0 is a unique solution of both (3.26) and (3.28).
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Proof. This result follows directly from Theorem 3.13 and Theorem 2.5.

We have shown in Theorem 3.13 that the mutual coherence of ΦL is 1√
p , which is the

maximum magnitude of the scalar product of any two columns in ΦL. Such definition of

the mutual coherence is often also called worst-case coherence. Another measure of the

coherence of a measurement matrix is the so-called average coherence, first introduced

in [10], and defined as

ν(Φ) =
1

N − 1
max

i

⏐⏐⏐⏐⏐⏐
∑
j:j ̸=i

⟨φi, φj⟩

⏐⏐⏐⏐⏐⏐ = 1

N − 1
∥(ΦTΦ− IN )1∥∞. (3.31)

Small average coherence in conjunction with some additional constraints (strong coher-

ence property) also guarantees recovery of sparse signals from linear measurements via

one-step thresholding algorithm [10]. We calculate here the average coherence of our

separation matrix ΦL, leaving the sparse recovery guarantees using it for future investi-

gation.

Theorem 3.15. Let p be prime. The average coherence of the matrix ΦL =
[
IM L

]
is

equal to

ν(ΦL) =
p+

√
p

2p2 + p− 1
. (3.32)

Proof. Using the definition of the average coherence, and the structure of the Gram

matrix described in Lemma 3.12, we see that we have only two different sums of the rows

of ΦT
LΦL − IN , dependent on whether we are in the upper or lower half of ΦT

LΦL. Thus,

ν(ΦL) =
1

2p2 + p− 1
max

{
1
√
p
(p+ 1),

p
√
p
+

1

p
p2
}

=
p+

√
p

2p2 + p− 1
.

3.4.2 Restricted Isometry Property of the Separation Matrix

The restricted isometry property, in particular for deterministic measurement matrices,

is very difficult to check, since it is a condition on all possible sub-collections of k columns

of the matrix. One way to go around this problem is to get a bound on the restricted

isometry constant from the mutual coherence. It is known that mutual coherence µ

implies an RIP constant δ ≤ (k − 1)µ (see Theorem 5.3 and Proposition 6.2 in [64]).

Although this is not a sharp estimate, such a recovery guarantees which use RIP instead

of the mutual coherence is better, in the sense that it guarantees stable and robust

recovery. This is achieved with the notion of best k-term approximation, which we

discussed in Chapter 2 (equation (2.1)).
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Theorem 3.16. Let p be prime. The matrix ΦL =
[
IM L

]
has a restricted isometry

property of order k with constant δ = k−1√
p < 1 whenever k ≤ √

p.

Proof. Although we could view this result as a corollary from Theorem 3.13, we present

the proof of it for completeness. Let K be any subset of [1, . . . , 2p2 + p] of cardinality k.

We are interested in the Gramm matrix GK = ΦT
LKΦLK , whose elements we denote by

gjl,

gj,l = ⟨ΦL(:, j),ΦcL(:, l)⟩, j, l ∈ K.

If we use the notations φ1, . . . , φN for the columns of the matrix ΦL, we see that in Lemma

3.12 we have already calculated the possible values of the scalar products between two

columns of ΦL, gj,l = ⟨φj , φl⟩ for all j, l ∈ [1, . . . , p2 + p].

When j = l, since all columns are normalized we have that gjj = 1, and if j ̸= l the

possible results are 0,
1

p
or

1
√
p
, so we can write that gjl ≤

1
√
p
.

Now we can write GK = BK +Ik, where Ik is the identity matrix of order k, and BK has

zero on the diagonal, and at most
1
√
p

off the diagonal. Next we know that for a matrix

A the RIP constant of order k can be computed as

δk = max
K⊆N,|K|≤k

∥AT
KAK − Ik∥2→2. (3.33)

We can estimate the norm of our matrix BK by the norm of the matrix B̃K ,

∥BK∥2→2 ≤ ∥B̃K∥2→2,

where B̃ is defined by

b̃jj = 0, b̃jl =
1
√
p
, for all j ̸= l.

For this matrix we can conclude

∥B̃K∥2→2 ≤ ∥B̃K∥1→1 =
k − 1
√
p

=: δ.

This value δ is smaller then 1, whenever k ≤ √
p, and that concludes our proof.

In the proof we estimated each entry of BK by the largest possible value, 1√
p . In reality,

many of the elements gjl are smaller (equal to 1/p), or equal to zero, and thus this bound

is very rough. In any case, a small RIP constant guarantees successful ℓ1 minimization,

and we make the corresponding conclusion for our separation matrix in the next corollary.
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Corollary 3.17. Let p be some prime, M = p2, and N = 2p2 + p. Let x be some signal

in RM that can be represented as union of points and lines, i.e.

x = x1 + x2 = IM c1 + L c2,

with c =
[
c1 c2

]
∈ RM+N . If k ≤

√
p

5
, then,

∥ĉ− c∥2 ≤ C
σk(c)1√

k
, (3.34)

where ĉ is the solution of the ℓ1 minimization problem (3.26), and σk(c)1 is the error of

the best k-term approximation of c.

Proof. The proof of this theorem follows immediately from the standard compressed

sensing result which says that if the measurement matrix has RIP of order 2k with

δ2k <
√
2− 1, then the stability condition (3.34) holds (see Theorem 2.10). We need to

check for which k > 0

δ2k :=
2k − 1
√
p

<
√
2− 1.

We see immediately that this is true whenever k <
√
2− 1

2

√
p+

1

2
≤

√
p

5
, which proves

the claim. Note that, if the signal c is exactly k sparse, then δk(c)1 equals zero, and we

will have a perfect recovery.

3.4.3 Spark of the Separation Matrix

Another important characteristic in sparse recovery problems is the spark. As we saw in

Theorem 2.3, if ∥c0∥0 ≤ spark(Φ)
2 , then c0 it is the unique solution of the ℓ0 minimization

problem. We computed the spark of the matrix of discrete lines L in Theorem 3.9, and

we will see now that we can find the spark of the separation matrix Φ consisting of points

and lines as well.

Theorem 3.18. Let ΦL =
[
IM L

]
be the separation matrix of points and lines. Then,

spark(ΦL) = p+ 1.

Proof. Let us first observe that, since all elements in IM are linearly independent,

spark(IM ) = p2 + 1. Also, as it was shown in Theorem 3.9, spark(L) = 2p. Therefore,

we see immediately that the spark can not be larger than 2p. It is possible, however, to

find less then 2p linearly dependent vectors in ΦL. Taking into account the structure of

our matrices, it is easy to find a linear combination of p+1 dependent vectors. Namely,
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take one discrete line, for example φ(2)1 = 1L0,0 . By definition L0,0 = {(m, 0) : m ∈ Zp},
and therefore

1L0,0(j) =

⎧⎨⎩1, if j = kp+ 1, k = 0, . . . , p− 1,

0, otherwise.

Now we take the p unit vectors from IM which correspond to the support of the chosen

discrete line. In this case those will be {e1, ep+1, . . . , e(p−1)p+1}, where

ek(j) =

⎧⎨⎩1, if j = k,

0, otherwise.

It becomes clear that we can write

p−1∑
k=0

ekp+1 − 1L0,0 = 0,

which is a linear combination of p+ 1 vectors from ΦL and which shows us that

spark(ΦL) ≤ p+ 1.

It is left now to show that there are no less then p+1 linearly dependent vectors. Towards

a contradiction, assume that there exists a vector η ̸= 0 such that ΦLη = 0, and ∥η∥0 ≤ p.

That means we have ∑
j∈Λ1

ηjφ
(1)
j +

∑
j∈Λ2

ηjφ
(2)
j = 0, (3.35)

where |Λ1|+ |Λ2| ≤ p. It is important that the sets Λ1 and Λ2 are non empty, since the

spark of each of the corresponding matrices is larger than p, so there can not be p or less

linearly dependent columns taken from only one of the matrices Φ1 or Φ2.

Let us assume at first that |Λ2| = 1. We have one discrete line, and that vector has p

non zeros, ∥φ(2)j ∥0 = ∥1Lj∥0 = p. On the other hand, the vectors from Φ1 have each

only one nonzero value, and they do not intersect. Therefore, in order to get a linear

combination that will sum up to zero, Λ1 always needs to be of the size of the support

of
∑

j∈Λ2
ηjφ

(2)
j , in this case 1Lj . That will give us exactly p+1 vectors, as described in

the beginning of the proof.

Assume next that Λ2 possesses two elements j1, j2. Since two lines intersect at most at

one point, we obtain

∥ηj1φ
(2)
j1

+ ηj2φ
(2)
j2

∥0 ≥ 2p− 2.

In general, if we have k lines, |Λ2| = k, they will have at most (k−1)k/2 intersections, and

thus the linear combination of them will have support at least kp−2k(k−1)
2 = k(p−k+1).
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In order to make sure that we have 0 on the right hand side in (3.35), we need to have

the same number of unit vectors from Λ1, thus |Λ1| = k(p − k + 1). The question now

becomes, whether there exist some positive k such that

k(p− k + 1) + k < p+ 1.

We can easily investigate the function f(k) = k(p− k + 1) + k − (p+ 1) = −k2 + k(p+

2)− (p+1) and see for which k is it negative. Since f ′(k) = −2k+ (p+2), the function

has an extremal point in p+2
2 , and since f ′′(k) = −2 < 0, this point is a maximum. The

zeros of the function are 1 and p + 1, therefore, the minimal positive k such that the

function is strictly negative is p+2. This number is already larger than p+1, the number

of vectors which we have shown that are linearly dependent. Thus, the spark can not be

smaller than p+ 1.

Corollary 3.19. Let p be some prime, M = p2 and N = 2p2+p. Let further ΦL ∈ RM×N

be the block matrix ΦL =
[
IM L

]
and x ∈ RM . If c0 ∈ RN is such that x = ΦLc0 and

∥c0∥0 <
p+ 1

2
,

then c0 is the unique solution of ℓ0 minimization problem (3.28).

Proof. This result follows directly from Theorem 3.18 and Theorem 2.3.

3.4.4 Numerical Experiments on Separation of Points and Lines

Here, we present a few numerical results on the separation problem. Recall that we are

interested in solving

min
c1,c2

∥c1∥1 + ∥c2∥1 subject to x =
[
Φ1 Φ2

] [c1
c2

]
, (3.36)

where Φ1 = Ip2 is the identity matrix which sparsely represents points, and Φ2 is a

dictionary of discrete lines, Φ2 = {La,b}p,p−1
a=0,b=0. In Figure 3.3, we show the separation of

lines and points in two dimensions with p = 79 visually. The sparse vector c =
[
c1 c2

]
or in other words the lines and the points were chosen at random, and the CVX package

[68] was used for solving the ℓ1 minimization.

In Figure 3.4, we show the recovery rate — how many points and lines can be successfully

recovered for fixed dimension of the problem. For every sparsity level k, we chose at

random k points and lines, and try to recover them by solving (3.36). We count the
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Figure 3.3: Visualized separation of points and lines via compressed sensing.

experiment as successful, if the normalized squared error of the recovered signal is smaller

than 10−4. We repeat this experiment T = 100 time for each sparsity level, and plot the

successful recovery rate.
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Figure 3.4: Success rate of separation for randomly chosen points and lines.
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The observation that we obtain successful recovery for sparsity levels much larger then

the theoretical guarantees (which were of order p and √
p) can be explained by that fact

that we used worst-case guarantees, which assure successful recovery uniformly, i.e. for

any sparse signals, but in the numerical experiments we take the nonzero positions at

random.
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3.5 Compressed Sensing of Discrete Lines

We are now getting back to the investigation of signals which are unions of only discrete

lines. Before we start, it will be useful to state a different formulation of the discrete

Fourier transform of lines from what we proved for general d in Proposition 3.7, namely

such which will use the notation of discrete lines from Definition 3.10.

Proposition 3.20. Let p be prime. The discrete Fourier transform of the lines La,b,

where a ∈ Z∗
p, b ∈ Zp, the horizontal lines Hb, b ∈ Zp and vertical lines Va, a ∈ Zp are

given by the formulas

1̂La,b
(m,n) = e

2πi ba
−1m
p 1L−a−1,0

(m,n), (3.37)

1̂Hb
(m,n) = e

−2πi bn
p 1V0(m,n), (3.38)

1̂Va(m,n) = e
−2πiam

p 1H0(m,n). (3.39)

Proof. Having in mind that Hb = L0,b, we start by proving the first two equalities

simultaneously. Let p be prime, and a, b ∈ Zp. By the definition of a discrete line and

the discrete Fourier transform, we have

1̂La,b
(m,n) =

1

p

p−1∑
k,ℓ=0

1La,b
(k, ℓ) · e−2πi

((m,n),(k,ℓ))
p

=
1

p

p−1∑
k=0

e
−2πi

mk+n[ak+b]p
p = e

−2πi bn
p
1

p

p−1∑
k=0

e
−2πi

k(m+an)
p .

We know from the digital signal processing field (see, for example [98]) that

1

p

p−1∑
k=0

e
−2πi kl

p = δp(l), (3.40)

where δp is the periodic Kronecker delta function. Therefore, we have

1̂La,b
(m,n) = e

−2πi bn
p · 1{(m,n)∈Z2

p:[m+an]p=0}. (3.41)

The relation [m + an]p = 0 is equivalent to m = [−an]p, and hence the last set can be

written as

{(m,n) ∈ Z2
p : [m+ an]p = 0} = {([−an]p, n) : n ∈ Zp}. (3.42)

Now we see that if a = 0, then this set is the line V0. If a ̸= 0, then a is element of Z∗
p,

which is a multiplicative group since p is prime, and thus an inverse element exists. We
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can write the set (3.42) as

{(m, [−a−1m]p) : n ∈ Zp} = L−a−1,0,

and conclude

1̂La,b
(m,n) =

⎧⎨⎩e
2πi ba

−1m
p 1L−a−1,0

(m,n), if a ̸= 0,

e
−2πi bn

p 1V0(m,n), if a = 0.

Let now a ∈ Zp. We are interested in the discrete Fourier transform of the vertical line

Va. Proceeding as before,

1̂Va(m,n) =
1

p

p−1∑
k,ℓ=0

1Va(k, ℓ) · e
−2πi

((m,n),(k,ℓ))
p

=
1

p

p−1∑
ℓ=0

e
−2πima+nℓ

p = e
−2πiam

p
1

p

p−1∑
ℓ=0

e
−2πinℓ

p = e
−2πiam

p δp(n).

Since n ∈ Zp, δp(n) is not equal to zero only when n = 0, and thus we will have nonzero

values on the set {(m, 0) : m ∈ Zp}. We obtain

1̂Va(m,n) = e
−2πiam

p 1H0(m,n).

The proposition is proved.

We are interested in the family of signals z ∈ Cp2 which are linear combination of

characteristic functions of discrete lines. We can write each signal in our family as

z =
∑

(c,d)∈Λ

αc,d1Lc,d
, (3.43)

where Λ ⊆ {0, . . . , p} × Zp, |Λ| = k and αc,d ∈ C for all (c, d) ∈ Λ.

As we know, the crucial ingredient for the compressed sensing methodology is the condi-

tion of sparsity, and it is usually defined as the number of nonzero entries of the signal.

In our case, since every line has p nonzero elements, this number would be kp, or smaller

depending on the number of intersections which the lines have. However, in our setting

the signals have a sparse representation in L, and sparsity is measured as the number of

geometric structures in the signal.

Definition 3.21. We say that the signal z defined in (3.43) is k-sparse, if |Λ| ≤ k.
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Thus, the sparsity is now the number of lines that the signal consists of. Instead of the

signal itself, we will measure the Fourier coefficients of the signals z. For this, we set

x := ẑ =
∑

(c,d)∈Λ

αc,d1̂Lc,d
.

The measurements are obtained by taking M scalar products with some discrete lines,

i.e.,

ym = ⟨φm, x⟩, where φm = 1Lam,bm
, am ∈ {0, . . . , p}, bm ∈ Zp, m = 1, . . .M.

If we have one signal x ∈ Cp2 and one measurement φ ∈ Cp2 , then the corresponding

y ∈ C has the form

y = ⟨ω, x⟩ = ⟨1La,b
,
∑

(c,d)∈Λ

αc,d1̂Lc,d
⟩ =

∑
(c,d)∈Λ

αc,d ⟨1La,b
, 1̂Lc,d

⟩.

We will start with investigation with the entries ⟨1La,b
, 1̂Lc,d

⟩, i.e. the scalar product of

a line with a Fourier transform of some other line.

Definition 3.22. Let p be prime. We then define a function wac : {0, . . . , p}×{0, . . . , p} →
Z∗
p by

wac =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ac+ 1, if a, c ̸= p,

−a, if a ̸= p, c = p,

−c, if a = p, c ̸= p,

1, if a = p, c = p.

(3.44)

Theorem 3.23. Let p be prime. Let a, c ∈ {0, . . . , p}, and b, d ∈ Zp. Then,

⟨1La,b
, 1̂Lc,d

⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e
−2πi

bdw−1
ac

p , if wac ̸= 0,

0, if wac = 0 and b ̸= 0,

0, if wac = 0, b = 0, and d ̸= 0,

p, if wac = 0, b = 0, and d = 0.

(3.45)

Proof. We will prove the theorem in four separate cases, according to the four possible

values of wac defined in (3.44).

Case a, c ̸= p : We are interested in the result of the scalar product of the measurement

line

φ = 1La,b
, La,b = {(m, [am+ b]p) : m ∈ Zp} (3.46)
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with the signal (see Proposition 3.20, equations (3.41)-(3.42))

x = 1̂Lc,d
= e

−2πi dn
p 1{([−cn]p,n):n∈Zp}. (3.47)

The scalar product between two lines is geometrically the result of the intersections of

those two lines. We are thus looking for a point that will be contained in both lines.

That is equivalent to looking for a solution of the system of congruences

m ≡ −cn (mod p),

am+ b ≡ n (mod p).

We can substitute m by −cn in the second equation to obtain

(ac+ 1)n ≡ b (mod p). (3.48)

Now we consider different cases.

If ac + 1 ̸= 0, it means that its inverse element exists, and thus we can find the unique

solution (intersection) (m,n) ∈ Zp × Zp, where

m = −cn, n = (ac+ 1)−1b.

The value of x at this point according to (3.47) is exactly e−2πi
d(ac+1)−1b

p .

If ac + 1 = 0, and at the same time b ̸= 0, the equation (3.48) can not have solution,

and thus there are no intersections and the scalar product is zero. If on the other hand,

b = 0, then this equation has p solutions - any n ∈ Zp is a solution, which means that

the two lines have the same support. Therefore the scalar product will be the sum of all

values of the intersection points,

⟨φ, x⟩ = ⟨1La,b
, 1̂Lc,d

⟩ =
p−1∑
n=0

e
−2πi dn

p = p δp(d),

where the last equality is based on equation (3.40). According to the definition of δp, we

have the two different cases as formulated in the statement we want to prove: ⟨φ, x⟩ = 0,

if d ̸= 0, and equals to p, if d = 0.

Case a ̸= p, c = p : Now let φ be defined as in (3.46), and let the signal x be the Fourier

transform of a vertical line,

x = 1̂Vd
, 1̂Vd

= e
−2πi dn

p 1{(n,0):n∈Zp}. (3.49)
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This time we need to solve the system

m ≡ n (mod p), (3.50)

am+ b ≡ 0 (mod p). (3.51)

If a ̸= 0, an inverse element of a exist, and we can find the unique solution as m = n =

−ba−1. Substituting n in the exponent in (3.49), we obtain the first scalar product.

If a = 0, we see that if b ̸= 0, there will be no solution of the system (3.50)-(3.51) – the

scalar product will be zero. If b = 0, again, there are p solutions, and as in the previous

case, the sum of the exponent can be 0 or p depending on the parameter d.

Case a = p, c ̸= p : In this case, we need a vertical line as a measurement,

φ = 1Vb
, Vb = {(b,m) : m ∈ Zp}, (3.52)

and signal x = 1̂Lc,d
, as defined in (3.47). Now we need to solve the system

−cn ≡ b (mod p),

n ≡ m (mod p).

If c ̸= 0, we can solve this system and have n = −c−1b, which is the unique solution, and

the scalar product will be e2πi
dc−1b

p .

If c = 0, but b ̸= 0, there will be no solution to this system, and the scalar product will

be zero. If b = 0, again there are p solutions, and the sum is 0 or p depending on d.

Case a = c = p : Finally, if both the measurement and the signal are vertical lines,

φ = 1Vb
, as in (3.52), and x = 1̂Vd

, as in (3.49). The system of equations has the form

n ≡ b (mod p),

m ≡ 0 (mod p).

This system is already solved uniquely, and the scalar product is thus e−2πi bd
p .

Example 3.1. Let p = 3. For the future discussion, in Table 3.1 we present the val-

ues of the scalar products ⟨φ, x⟩ = ⟨1La,b
, 1̂Lc,d

⟩ for all possible pairs (a, b), (c, d) ∈
{0, . . . , p}×Zp. This can be easily accomplished following the results from Theorem 3.23.

For convenience, we have used the notation ϵ1 = e
2πi
3 and ϵ2 = e

4πi
3 .
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(cd)=
⟨1La,b

, 1̂Lc,d
⟩= 00 01 02 10 11 12 20 21 22 30 31 32

(ab)=

00 1 1 1 1 1 1 1 1 1 3 0 0
01 1 ϵ1 ϵ2 1 ϵ1 ϵ2 1 ϵ1 ϵ2 0 0 0
02 1 ϵ2 ϵ1 1 ϵ2 ϵ1 1 ϵ2 ϵ1 0 0 0
10 1 1 1 1 1 1 3 0 0 1 1 1
11 1 ϵ1 ϵ2 1 ϵ2 ϵ1 0 0 0 1 ϵ2 ϵ1
12 1 ϵ2 ϵ1 1 ϵ1 ϵ2 0 0 0 1 ϵ1 ϵ2
20 1 1 1 3 0 0 1 1 1 1 1 1
21 1 ϵ1 ϵ2 0 0 0 1 ϵ2 ϵ1 1 ϵ1 ϵ2
22 1 ϵ2 ϵ1 0 0 0 1 ϵ1 ϵ2 1 ϵ2 ϵ1
30 3 0 0 1 1 1 1 1 1 1 1 1
31 0 0 0 1 ϵ2 ϵ1 1 ϵ1 ϵ2 1 ϵ1 ϵ2
32 0 0 0 1 ϵ1 ϵ2 1 ϵ2 ϵ1 1 ϵ2 ϵ1

Table 3.1: Scalar products of discrete lines with DFT of discrete lines, for p = 3.

Let p be some prime. Following the notation we used in Table 3.1, we now employ the

general notation:
ϵ0 := 0,

ϵk := e
2πi(k−1)

p , k = 1, . . . , p,

ϵp+1 := p.

(3.53)

Now that we have defined the measurement process, the question left is, which of the

N = p2+p lines to choose for measuring, and how many of them are sufficient to recover

a vector with given sparsity? In order to solve this problem we first investigate the full

matrix denoted by AL ∈ CN×N , where each element is defined as

AL(k, j) := ⟨1Lak,bk
, 1̂Lcj ,dj

⟩, k, j = 0, . . . , N − 1, (3.54)

where ak = ⌊k/p⌋, bk = [k]p, cj = ⌊j/p⌋, dj = [j]p. In Table 3.1 we have seen an example

of the matrix when p = 3.

3.5.1 Deterministically Chosen Measurements

Since we know the structure of our candidate for a measurement matrix, samples from

AL = LL̂T , we would like to come up with a way of choosing the lines that we measure

with, and obtain theoretical guarantees for the recovery with such matrix. How many

measurements (lines) are needed? Certainly one option is to choose m lines at random,

but how far can we go if we want to have a purely deterministic construction? We will

choose p − 1 measurement, namely all lines with a fixed slope, and we will investigate

the properties of this measurement matrix.
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Definition 3.24. Let p be prime, M = p − 1, N = p2 + p. Let a ∈ {0, . . . , p} be fixed.

We define the deterministic measurement matrix Φ0 of size M ×N by

Φ0(k, j) := ⟨1La,bk
, 1̂Lcj ,dj

⟩, k = 1, . . . ,M, j = 0, . . . , N − 1, (3.55)

where bk = [k]p, cj = ⌊j/p⌋, dj = [j]p.

Remark 3.25. The matrix Φ0 defined in (3.55) has a particular structure which can be

described as follows:

Φ0 =
[
Ψ0 Ψ1 . . . Ψp

]
,

where each Ψc, c = 0, . . . , p is a block of size p−1×p. Using Theorem 3.23, we can make

conclude that wac = 0, implies

Ψc =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0

0 0 · · · 0

· · ·
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ ,

and wac ̸= 0, yields

Ψc =

⎡⎢⎢⎢⎢⎢⎢⎣
e
−2πi

1·0w−1
ac

p e
−2πi

1·1w−1
ac

p · · · e
−2πi

1·(p−1)w−1
ac

p

e
−2πi

2·0w−1
ac

p e
−2πi

2·1w−1
ac

p · · · e
−2πi

2·(p−1)w−1
ac

p

· · ·

e
−2πi

(p−1)·0w−1
ac

p e
−2πi

(p−1)·1w−1
ac

p · · · e
−2πi

(p−1)·(p−1)w−1
ac

p

⎤⎥⎥⎥⎥⎥⎥⎦ .

If we introduce the notation ωpac = e
−2πiwac

p , then the elements of the nonzero blocks

can be simply written as

Ψc(k, j) = ωkj
pac, k = 1, . . . , p− 1, j = 0, . . . , p− 1.

It is important to us, that in the nonzero blocks, in every row only one of the parameters

in the exponent is changing, and thus every row contains all p-th roots of unity, possibly

in different permutation. Furthermore, in all the columns except for the first one (which

is a vector of all ones), also all p-th roots of unity except 1 appear without repeating.

In order to prove the main theorem, we need one additional property of the arrangement

of the p-th roots of unity in the columns from different blocks of the matrix Φ0.

Proposition 3.26. Let p be some prime, and let Φ0 be the deterministic measurement

matrix (3.55). Let j, j′ ∈ {0, . . . , N − 1} define two columns in Φ0, different from the
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zero and the unit column, and such that for some k ∈ {1, . . . ,M},

Φ0(k, j) = Φ0(k, j
′). (3.56)

Then, these columns are equal, i.e.

Φ0(k, j) = Φ0(k, j
′) for all k = 1, . . . ,M.

Proof. Let us consider a matrix Φ0 and two of its columns as in the condition of the

proposition. Since the columns are not zero columns, according to Definition 3.24 and

Theorem 3.23, we can rewrite (3.56) as

exp

(
−2π

bkdjw
−1
acj

p

)
= exp

(
−2π

bkdj′w
−1
acj′

p

)
.

This is equivalent to the congruence

bkdjw
−1
acj ≡ bkdj′w

−1
acj′

(mod p).

Since bk ̸= 0, we can divide by it and we will have

djw
−1
acj ≡ dj′w

−1
acj′

(mod p).

Now we can take any other k′ ∈ {1, . . . , p − 1} and multiply the last congruence by bk′

from both sides, that will again lead to equality. Those will form all the other elements

of the two columns.

Coming to the sparse recovery results, if we want to recover x, given the measurements

y = Φ0x, we can not hope for a mutual coherence result, because µ(Φ0) = 1 (we have

some identical columns in Φ0). However, if we focus only on signals which have not

arbitrary, but random support, then we have some hope that we can guarantee recovery

with a certain probability. A handy tool in this setup is the so-called statistical RIP

[23], when we want our measurement to act like an isometry not for every sub-choice of

columns, but for most of them. We can prove the following result.

Theorem 3.27. Let p be prime, M = p − 1, N = p2 + p, and let Φ := 1√
M
Φ0, where

Φ0 ∈ CM×N is the measurement matrix (3.55). Let T ⊂ [0, 1, . . . , N − 1] be any subset

of k indices, chosen uniformly and independently at random. Then, with probability

ε = rp,k, we have

δk = ∥Φ∗
TΦT − Ik∥2→2 =

k − 1

p− 1
. (3.57)
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The probability rp,k equals to

rp,k =

(
p
k

)
pk(p(p+1)

k

) . (3.58)

Proof. First of all, we claim that if we choose the k columns of Φ randomly, uniformly

and independently, the probability of having all k columns different and nonzero is equal

to rp,k defined in (3.58). Furthermore, for all such subsets T , the Gram matrix Φ∗
TΦT

will always be the same, independently of the choice of the k columns.

For simplification of the reasoning, we make the following observation. The following

two sets are equal:

A1 = {T : ΦT (1, j) ̸= ΦT (1, l) for all j ̸= l, j, l ∈ T},

A2 = {T : ΦT (k, j) ̸= ΦT (k, l) for all j ̸= l, j, l ∈ T, k = 1, . . . ,M}.

This is true because of Proposition 3.26: if we assume that A1 ̸= A2, there would be two

columns for which ΦT (1, j) ̸= ΦT (1, l), but not all other elements are different. Hence,

there exists k ∈ {1, . . . , p − 1}, such that ΦT (k, j) = ΦT (k, l). But it then follows (for

zero and unit columns trivially, and elsewise from Proposition 3.26), that

ΦT (k, j) = ΦT (k, l) for all k = 1, . . . ,M,

which includes k = 1 as well. Therefore, we will investigate only the first row of ΦT ,

and count the probability of having all coefficients of this row different and nonzero.

According to the structure of Φ0 that was described in Remark 3.25, the elements

Φ0(1, j), j = 1, . . . , N can have the following values (possibly in different order)

ϵ0 = 0, ϵj = e
2πi(j−1)

p , j = 1, . . . , p,

in the following quantities

|{l ∈ [0, 1, . . . , N − 1] : Φ(1, l) = ϵj}| = p, for all j = 0, 1, 2, . . . , p.

We need to answer the following combinatorial question:

Given p elements of type ϵ0, and p elements of each of the types ϵ1, . . . , ϵp, from the total

of p2 + p elements, we select independently, uniformly at random k elements. What is

the probability that all k elements are different, and ϵ0 is not included?

Since we do not want to choose an element from type ϵ0, we need to count the numbers

of ways to choose k different elements from p types (p elements are also in each type),
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which is (
p

k

)
ps.

We divide this by the total number of choices,
(
p2+p
k

)
, and we obtain the probability rp,k.

Let us now suppose that T is chosen such that there are no zero-columns, and all

Φ(1, j), j ∈ T are different. We can evaluate the elements of the matrix GT = Φ∗
TΦT that

we will denote by gj,j′ . Let k = 1, . . . , p− 1. We take bk = [k]p, cj = ⌊j/p⌋, dj = [j]p. As

noted in Remark 3.25, since the columns are nonzero, we know that the corresponding

wacj and wacj′ are nonzero, and we can write

Φ0
T (k, j) = ⟨1La,bk

, 1̂Lcj ,dj
⟩ = exp

(
−2πi

bkdjw
−1
acj

p

)
.

Φ0
T (k, j

′) = ⟨1La,bk
, 1̂Lcj′ ,dj′

⟩ = exp

(
−2πi

bkdj′w
−1
acj′

p

)
.

We then consider the following cases.

Case j = j′ : We have

gj,j = Φ∗
TΦT (j, j

′) =
1

p− 1

p−1∑
k=1

e
−2πi

bkdjw
−1
acj

p e
2πi

bkdjw
−1
acj

p = 1.

Case j ̸= j′ :

gj,j′ = Φ∗
TΦT (j, j) =

1

p− 1

p−1∑
k=1

e
−2πi

bkdjw
−1
acj

p e
2πi

bkdj′w
−1
acj′

p

=
1

p− 1

(
p−1∑
k=0

e
2πi

bkdjw
−1
acj

p e
−2πi

bkdj′w
−1
acj′

p − 1

)

=
1

p− 1

⎛⎝p−1∑
k=0

e
2πi

bk

(
djw

−1
acj

−dj′w
−1
acj′

)
p − 1

⎞⎠
=

1

p− 1

(
pδp

(
djw

−1
acj − dj′w

−1
acj′

)
− 1
)
.

Since we have assumed that the columns are different, the difference djw−1
acj − dj′w

−1
acj′

is

nonzero by Proposition 3.26, and therefore δp
(
djw

−1
acj − dj′w

−1
acj′

)
= 0.

Summarizing, GT has the following elements:

gj,j′ =

⎧⎨⎩ 1, if j = j′,

− 1
p−1 , elsewise.
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Therefore, we write

GT = Ik +BT ,

where Ik is the identity matrix of size k, and BT is a matrix with zeros on the diagonal,

and − 1
p−1 off the diagonal. In our case, Φ∗

TΦT − Ik = BT , and under the constraint

that all k columns are different and nonzero, BT has the same structure regardless of

the choice of the subset T. Since we know the elements of this matrix explicitly, we can

compute

∥BT ∥2→2 =
k − 1

p− 1
:= δ,

and δ < 1, when k < p.

In Figure 3.5 we see the behavior of the rp,k as the sparsity changes from 1 to p, for four

different values of p. As p increases, the desired value of the constant δk will be satisfied

with high probability for larger values of k.

Figure 3.5: Probability of having all k randomly chosen columns of Φ different.

3.5.2 Numerical Experiments on Recovery of Lines

In this section we give some numerical results on the ℓ1 minimization problem which we

were investigating, i.e.,

min
x

∥x∥1 subject to y =M L̂x. (3.59)

We choose p = 41, hence the size of the signal is N = p2 = 1681. We fix the number of

measurements, m = 40 and m = 100 for each of the plots in Figure 3.6. Then, for fixed

sparsity k, we generate sparse signals z0 ∈ RN with k nonzero elements, which make the
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sparse represenation of k discrete lines, x0 = L̂z0. We measure the signal x0 with three

different matrices:

(i) M-partial Fourier. From the Fourier matrix of size N × N, we pick m rows inde-

pendently at random and normalize the obtained matrix by 1√
m
.

(ii) M-complex random. This matrix is of size m×N and each value is drawn randomly

and uniformly from the complex standard normal distribution.

(iii) M-lines. This is the matrix consisting of m discrete lines, chosen uniformly and

independently at random.

For every sparsity level, we try to recover x0 by solving (3.59) using CVX [68], and count

a recovery as successful if the normalized squared error was less than 10−4. We repeat

this experiment T = 100 times for each measurement matrix, and plot the recovery rate

in Figure 3.6. We see that the complex random matrices give the best recovery rate,
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Figure 3.6: Recovery of union of discrete lines via ℓ1 minimization.

but also that using lines for measurements is a reasonable idea which also gives decent

results, especially when the number of measurements is small.
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Sparse Recovery with Difference

Sets

4.1 Introduction

We move now from Eucledean lines to lines in a projective plane. Namely, we will con-

sider characteristic functions of the so-called difference sets, and instead of collection of

translations and rotations, we will have translations and modulations (frequency shifts),

i.e. a Gabor system. We will investigate the frame properties of this construction, and

also consider the problem of sparse recovery from linear measurements relates in this

setting. This chapter is organized as follows. In Section 4.2, after introducing the main

objects and their basic properties, we start with investigation of the mutual coherence

of the Gabor frame generated by a characteristic function of a difference set. We pro-

vide a formula which depends on the parameters of the difference sets and study the

question of achieving the Welch bound. In Section 4.3 we switch to the properties of

the Gabor-like fusion frame, generated by a difference set. We prove three important

properties of this construction: tightness, equidistance, and optimal sparsity. At the

end of each section, we describe the mathematical models of the corresponding sparse

recovery problem and provide numerical experiments to demonstrate the effectiveness of

the proposed constructions in solving it.

4.2 Gabor Systems Generated by Difference Sets

We start with the definition of difference sets, which comes from combinatorial design

theory [45], but have at the same time strong connections to finite projective geome-

try [15].

73
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Definition 4.1. A subset K = {u1, . . . , uK} of ZN is called an (N,K, λ) difference set,

if the K(K − 1) differences

(uk − ul) mod N, k ̸= l,

take all possible nonzero values 1, 2, . . . , N − 1, with each value exactly λ times.

Example 4.1. Let N = 7. The subset K = {1, 2, 4} is then a (7, 3, 1) difference set. We

can check this by considering all possible differences modulo 7, displayed in the following

diagram:
− 1 2 4

1 − 6 4

2 1 − 5

4 3 2 −

This confirms that indeed every value from 1 to 6 appears exactly one time.

In order to see the geometric structure of the difference sets, let us consider the set K
and all its translations. Taking a characteristic functions as a vector in R7 for every set

(with numeration starting from 0), we get⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1

1 0 0 0 1 0

1 1 0 0 0 1

0 1 1 0 0 0

1 0 1 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In Figure 4.1 we have depicted all translations of the line {1, 2, 4} and we see that we

have obtained a finite projective plane with 7 lines and 7 points, with 3 points on every

line and 3 lines through every point. This example is also known as the Fano plane.

For many other examples of difference sets, parameters for which they they exist or not,

and open questions, see the La Jolla Difference Set Repository1.

Recall that a Gabor system with window g ∈ CN is the collection

Φg = {MjTkg}N−1
j,k=0,

where Mjg(n) = e
2πijn

N g(n) is the modulation (or frequency-shift) operator and Tkg(n) =

g(n−k) for all n = 0, . . . , N−1 is the translation (or time-shift) operator. We emphasize
1http://www.ccrwest.org/ds.html

http://www.ccrwest.org/ds.html
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5

0

3

6

1 2 4

Figure 4.1: Fano plane numerated by the translations of the difference set K = {1, 2, 4}.

that all the operations made in the index set {0, . . . , N −1} are in the sense of the group

ZN , that is, modulo N . For every g ̸= 0, the Gabor system is actually an N∥g∥2-tight

frame [87]. The coherence of this frame, however, depends strongly on the properties of

the generator. It is therefore of interest for many applications to search for “optimal”

generators.

We will now be investigating the Gabor frame (and later its generalization to a fusion

frame), which is generated by a characteristic function of a difference set. Given a

difference set K with parameters (N,K, λ) we denote by χK ∈ CN its characteristic

function:

χK(j) =

⎧⎨⎩1, if j ∈ K,

0, if j /∈ K.

We next note some basic, but important properties of difference sets.

Proposition 4.2. Let K be a difference set with parameters (N,K, λ). Then the following

is true:

(i) K(K − 1) = λ(N − 1),

(ii) λ ≤ K,

(iii) |χ̂K(j)|2 = K − λ, for all j ∈ ZN\{0},

(iv) χ̂K(0) = K.



Chapter 4. Difference sets 76

Proof. The claim in (i) comes just from a counting argument: On the one hand, there

exist K(K−1) differences in total, and on the other hand, there are N −1 numbers that

need to appear λ times.

Once we have this, for (ii) we need to check that K(K−1)
N−1 ≤ K. This inequality is equiv-

alent to K(K − 1) ≤ K(N − 1), which is always true since K ≤ N.

Finally, for the Fourier transform, we evaluate

|χ̂K(j)|
2 = χ̂K(j)χ̂K(j) =

∑
k,k′∈K

e
−2πikj

N e
2πik′j

N =
∑

k,k′∈K
e

−2πi(k−k′)j
N =

∑
k∈K

1 +
∑

k,k′∈K,
k ̸=k′

e
−2πi(k−k′)j

N

= K + λ
N−1∑
ℓ=1

e
−2πijℓ

N = K + λ

(
N−1∑
ℓ=0

e
−2πijℓ

N − 1

)
= K − λ, when j ̸= 0.

For j = 0, we have χ̂K(0) = K, proving (iv).

Let K be a difference set with parameters (N,K, λ) and consider the normalized vector

v :=
χK

∥χK∥ =
χK√
K

∈ CN . We will denote by ΦK the Gabor system generated by v,

ΦK = Φv = {MjTkv}N−1
j,k=0. (4.1)

For short, we will call ΦK the Gabor system generated by K.

Consider the N ×N2 matrix whose columns are the elements of the Gabor system (4.1).

We also denote this matrix by ΦK . Further, we write ΦK as a block matrix,

ΦK =
[
B0 B1 . . . BN−1

]
, (4.2)

where each Bk is a square submatrix of size N × N with columns of fixed translation,

i.e.,

Bk =
[
M0Tkv M1Tkv M2Tkv . . . MN−1Tkv

]
.

Example 4.2. Let N = 7, and let ω = e2πi/7. If we consider the difference set from

Example 4.1, the corresponding matrix ΦK , with not normalized columns for simplicity,

will have the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 0 0 0 0 0 0 0 1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5 1 ω2 ω4 ω6 ω ω3 ω5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 ω3 ω6 ω2 ω5 ω ω4 . . . 1 ω3 ω6 ω2 ω5 ω ω4

1 ω4 ω ω5 ω2 ω6 ω3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 ω5 ω3 ω ω6 ω4 ω2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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4.2.1 Coherence Properties

Going back to the general construction ΦK and the investigation of its coherence, we

note that the Gram matrix of ΦK , which is defined as G = Φ∗
KΦK , is closely related to

the mutual coherence. Namely,

µ(Φ) = max
i̸=j

|G(i, j)| . (4.3)

For our Gabor system, using the notation from (4.2), the Gram matrix can be written

in the block form

G =

⎡⎢⎢⎢⎢⎢⎣
B∗

0

B∗
1

· · ·
B∗

N−1

⎤⎥⎥⎥⎥⎥⎦
[
B0 B1 · · · BN−1

]
=

⎡⎢⎢⎢⎢⎢⎣
B∗

0B0 B∗
0B1 · · · B∗

0BN−1

B∗
1B0 B∗

1B1 · · · B∗
1BN−1

· · ·
B∗

N−1B0 B∗
N−1B1 · · · B∗

N−1BN−1

⎤⎥⎥⎥⎥⎥⎦ .
(4.4)

We will next state a property of the diagonal blocks in G, which will later turn out to

be useful.

Proposition 4.3. Under the notation given above, we have that

|B∗
kBk(j, ℓ)| =

⎧⎨⎩
√

N−K
K(N−1) , if j ̸= ℓ,

1, if j = ℓ,

for all k, j, ℓ = 0, . . . , N − 1. In particular, the diagonal blocks B∗
0B0, . . . , B

∗
N−1BN−1

are all equal in absolute value.

Proof. We will first prove that any entry of the blocks B∗
kBk, k = 1, . . . , N−1 is equal in

absolute value to the corresponding one in the first block B∗
0B0. Let k be some element

from {1, 2, . . . , N − 1}. Using the definition of Bk and the basic properties of translation

and modulation operators, we have

|B∗
kBk(j, ℓ)| = |⟨MℓTkv,MjTkv⟩| = |⟨e

−2πikℓ
N TkMℓv, e

−2πikj
N TkMjv⟩|

= |⟨Mℓv,Mjv⟩| = |B∗
0B0(j, ℓ)|,

for all j, ℓ = 0, 1, . . . , N − 1. Now, according to the definition of B0 and Proposition 4.2

(iii)-(iv),

|B∗
0B0(j, ℓ)| =

1

K

⏐⏐⏐⏐⏐∑
k∈K

e
2πi(ℓ−j)k

N

⏐⏐⏐⏐⏐ = 1

K
|χ̂K(j − ℓ)| =

⎧⎨⎩
1
K

√
K − λ =

√
N−K

K(N−1) if j ̸= ℓ,

1 if j = ℓ.
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Remark 4.4. Note that, for each k = 0, . . . , N−1, Proposition 4.3 says that the collection

of N vectors {M0Tkv,M1Tkv, . . . ,MN−1Tkv} which spans a K-dimensional subspace

of CN , has coherence achieving the Welch bound. Therefore, by [118, Theorem 2.3],

{M0Tkv,M1Tkv, . . . ,MN−1Tkv} is an ETF for the subspace it spans, for every k =

0, . . . , N − 1 and it has frame bound N
K . Note, that this result was proven in [128,

Theorem 1], where equiangular tight frames are called maximum-Welch-bound-equality

(MWBE) codebooks. It is unclear at this point, however, what the absolute values of the

entries in the off diagonal blocks are. As we will see in the next theorem, they will depend

on the value of λ, and thus the mutual coherence of ΦK will depend on the parameters

of the difference set K.

Theorem 4.5. Let ΦK be a Gabor system generated by an (N,K, λ) difference set K.
Then,

µ(ΦK) =

⎧⎪⎨⎪⎩
√

N−K
K(N−1) , if λ = 1,

max{K−1
N−1 ,

√
N−K

K(N−1)}, if λ ̸= 1.

Proof. According to the described block structure of ΦK and by (4.3), the mutual coher-

ence is

µ(ΦK) = max{max
r ̸=q
j,ℓ

|B∗
rBq(j, ℓ)|, max

j ̸=ℓ
|B∗

0B0(j, ℓ)|}.

We have already investigated the diagonal blocks in Proposition 4.3. Next we write

explicitly the elements of the Gram matrix G in the off-diagonal blocks as

|B∗
rBq(j, ℓ)| = |⟨MℓTqv,MjTrv⟩| = |⟨Mℓv, T(r−q)Mjv⟩|

=

⏐⏐⏐⏐⏐
N−1∑
k=0

v(k)e
2πikℓ
N v(k − (r − q))e

−2πi(k−(r−q))j
N

⏐⏐⏐⏐⏐ = 1

K

⏐⏐⏐⏐⏐⏐⏐⏐
∑
k∈K

k−(r−q)∈K

e
2πi(kℓ+(r−q)j−kj)

N

⏐⏐⏐⏐⏐⏐⏐⏐
=

1

K

⏐⏐⏐⏐⏐⏐⏐⏐
∑
k∈K

k−(r−q)∈K

e
2πi(ℓ−j)k

N

⏐⏐⏐⏐⏐⏐⏐⏐ . (4.5)

We can simplify this expression further dependent on the properties of the difference set

K. We thus consider two separate cases.
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Case λ = 1. In the final sum (4.5), in the case q ̸= r, since λ = 1, there can be only one

k ∈ K, such that k and k − (r − q) are both in K. This is because there is only one way

to write r− q as a difference of elements in K, and k− (k− (r− q)) is such a difference.

Thus, we can continue (4.5) to obtain

|B∗
rBq(j, ℓ)| =

1

K

⏐⏐⏐e 2πi(ℓ−j)k
N

⏐⏐⏐ = 1

K
, when q ̸= r.

Further, by Proposition 4.3, |B∗
0B0(j, ℓ)| =

√
N−K

K(N−1) . Therefore, when λ = 1, µ(Φ) =

max{ 1
K ,
√

N−K
K(N−1)} =

√
N−K

K(N−1) .

Case λ ̸= 1. We will estimate maxr ̸=q,j,ℓ |B∗
rBq(j, ℓ)|. For fixed r ̸= q, since K is a

(N,K, λ) difference set we have that {k ∈ K : k − (r − q) ∈ K} is a set of exactly λ

elements. Then, from (4.5) it follows that for all j, l = 0, . . . , N − 1,

|B∗
rBq(j, ℓ)| ≤

λ

K
.

Note that when j = ℓ, also by (4.5), |B∗
rBq(j, j)| = λ

K . Thus maxr ̸=q,j,ℓ |B∗
rBq(j, ℓ)| = λ

K .

Now we just use the fact that K(K − 1) = λ(N − 1) to rewrite λ
K as K−1

N−1 .

Remark 4.6. Although the value
√

N−K
K(N−1) was optimal for the case of N vectors in K

dimensional space, for the full Gabor frame ΦK the optimal Welch bound will be different.

Namely, for a system of N2 vectors in N dimensional space, the Welch bound is

µ∗ =

√
N2 −N

N(N2 − 1)
=

√
1

N + 1
.

In Table 4.1 we present several families of difference sets and the mutual coherence of the

corresponding Gabor systems. For more details on the construction of these difference

sets see [128]. From this table it can be seen that the mutual coherence is not as close

to the optimal bound, as it was established, for example, for the Alltop vectors in [118].

It is still going asymptotically to zero as the dimension grows for the Singer family,

and, as we will see in the numerical experiments, the performance of the difference sets

and the Alltop vectors for the sparse recovery problem are almost identical, making our

construction still interesting for applications.

Reaching the Welch bound is important not only for signal processing, but actually

for many other fields, including quantum mechanics, where ETFs of N2 elements in

dimension N are known as SIC-POVMs (symmetric informationally complete positive-

operator valued measure). It is in fact an open problem whether they exist for every

dimension (Zauner conjecture [129]). Particular examples are also difficult to construct,

and known only for certain values of N.
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Table 4.1: Families of difference sets and the mutual coherence of the corresponding
Gabor frames

Family (N,K, λ) µ(ΦK)
2 µ∗2

Singer, d = 2
(
q2 + q + 1, q + 1, 1

) q

(q + 1)2
1

q2 + q + 2

Singer, d > 2

(
qd+1 − 1

q − 1
,
qd − 1

q − 1
,
qd−1 − 1

q − 1

)
(qd − q)2

q2(qd − 1)2
q − 1

qd+1 + q − 2

Quadratic, q > 7

(
q,
q − 1

2
,
q − 3

4

)
(q − 3)2

4(q − 1)2
1

q + 1

Quartic, p < 57

(
p,
p− 1

4
,
p+ 3

16

)
3p+ 1

(p− 1)2
1

p+ 1

Quartic, p > 57

(
p,
p− 1

4
,
p+ 3

16

)
(p− 5)2

16(p− 1)2
1

p+ 1

From our reasoning above, one might conclude that it is possible to get a Gabor ETF

by choosing a difference set with optimal values of the parameters K and N, such that

µ(Φ) = µ∗. Constructing a difference set with prescribed parameters is however itself a

very difficult and open problem in combinatorial design theory. It is also directly con-

nected to the optimal Grassmannian packing problem [44]. Up to now only constructions

with certain pairs of parameters (N,K) are known. In any case, we will show that, un-

fortunately, combinations of parameters of difference sets such that corresponding Gabor

system achieves the Welch bound can not exist. Such hope was probably too good to be

true, since for illustration, for N = 17 an analytical example of a generator which gives

an ETF of N2 lines in dimension N was provided in [42], but it took over 40 pages to

write its expression down.

Proposition 4.7. Let N > 3. Then, there can not exist an (N,K, λ) difference set such

that the corresponding Gabor system ΦK will form an equiangular tight frame.

Proof. By Theorem 4.5, the mutual coherence can take only one of the two possible

values: √
N −K

K(N − 1)
or

K − 1

N − 1
.

We will now consider these two cases separately.
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Let us first assume that µ(Φ) =
√

N−K
K(N−1) . If we want to reach the Welch bound,

we need to solve N−K
K(N−1) = 1

N+1 , which implies K = N+1
2 . From Proposition 4.2, we

know that the corresponding λ in this case is N+1
4 . However, for this set of parameters(

N, N+1
2 , N+1

4

)
, when N > 3, it is easy to check that the mutual coherence is actually

max
{√

N−K
K(N−1) ,

K−1
N−1

}
= K−1

N−1 = 1
2 , and thus far from the Welch bound µ∗ =

√
1

N+1 . It

is interesting to note that, when N = 3, potential difference sets with parameters (3, 2, 1)

will achieve the Welch bound. An example for such a difference set is K = {0, 1} . Its

characteristic function g̃ =
[
1 1 0

]
(which is a member of a continuous family of

generators presented in [42]) forms a Gabor frame of 9 elements which is an ETF.

Let us next see what happens if we want to reach the Welch bound with the other

value, i.e. to have
(
K−1
N−1

)2
= 1

N+1 . For positive K this equation is solved by K =

N+1+
√
N3−N2−N+1
N+1 . But for such K and N > 3, the mutual coherence will actually be√

N−K
K(N−1) instead of K−1

N−1 , and thus again we can not reach the Welch bound. Note

that when N = 3, K in the obtained solution is again 2. Actually,
√

N−K
K(N−1) = K−1

N−1 =
1√
N+1

= 1
2 , and thus we again achieve the Welch bound.

4.2.2 Compressed Sensing with Gabor Frames

We aim to recover an unknown sparse (having small number of nonzero entries) vector

x ∈ CN2 from its linear measurements y = Φgx, where Φg is the N ×N2 time-frequency

shifts matrix generated by g ∈ CN . This looks like the classical compressed sensing setup

[27], only with a specific deterministic measurement matrix. We can also view Φg as a

dictionary, and x as having a sparse representation in a Gabor system.

In [100], a different prospective of the same problem is given: sparse matrix identification.

Namely, here one is interested in matrices Γ which have a k-sparse representation in the

matrix dictionary Φ = {Φj}Mj=1,

Γ =
M∑
j=1

xjΦj , with ∥x∥0 = k.

The measurement process can be modelled as an action of Γ on a test signal h ∈ CN ,

Γh =
( M∑

j=1

xjΦj

)
h = (Φ1h|Φ2h| . . . |ΦMh)x = (Φh)x.

The task is then to recover x (and by this the sparse representation of Γ) from the

measurements (Φh)x. It is left to notice, that in the case of Φj being the time-frequency
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shift matrices, and h being the generator, we have exactly the first problem described in

the beginning.

To recover the sparse x we will traditionally use Basis Pursuit (BP) [40], which is the

convex problem given by

min ∥x∥1 subject to Φg x = y. (4.6)

We want to compare the results of recovery of sparse vectors using three different types

of generators for Φg : Alltop sequences [5], complex random vectors and difference sets:

1. Alltop sequence. gA(j) = 1√
N
e2πij

3/N , for prime N ≥ 5.

2. Random vector. gR(j) = 1√
N
ϵj , where ϵj are independent and uniformly dis-

tributed on the torus.

3. Difference set. gK = 1√
K
χK for some (N,K, λ)-difference set K.

We have chosen Alltop and random generators, since their Gabor frames have already

proven to be successful for sparse recovery both theoretically and numerically in [100].

The theoretical guarantees come from the near optimality of the mutual coherence of

these Gabor systems, more specifically, the following results were proven.

Theorem 4.8 ([100]). 1. Let N be prime and gA be the Alltop window defined in 1..

If k <
√
N+1
2 then Basis Pursuit recovers all matrices Γ ∈ CN×N having a k-sparse

representation, with respect to the time-frequency shift dictionary ΦgA .

2. Let N be even and choose gR to be the random unimodular window in 2.. Let t > 0

and suppose

k ≤ 1

4

√
N

2 logN + log 4 + t
+

1

2
. (4.7)

Then with probability of at least 1 − e−t Basis Pursuit recovers all matrices Γ ∈
CN×N having a k-sparse representation with respect to the time-frequency shift

dictionary ΦgR .

As noted in [100], similar result to Theorem 4.8–2. hold also for N odd, and in both

cases recovery is stable under noisy measurements. We now add also third part to those

results, when the generator is a characteristic funcion of a difference set.

Theorem 4.9. Let K be a difference set from the Singer family, with parameters (N,K, λ),

where N = q2 + q + 1 and q = pr is a power of prime. Let further gK be its normalized

characteristic function, as defined in 3.. If

k <
1

2
(
√
q +

1
√
q
+ 1), (4.8)
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then Basis Pursuit recovers all Γ ∈ CN×N matrices having k-sparse representation, with

respect to the time-frequency shift dictionary ΦgK .

Proof. We will show at first that the given difference set vector gK has mutual coherence
√
q

q+1 . From there, using Theorem 2.5 from Chapter 1, the claim will immediatelly follow.

A description of the construction of Singer difference sets is given, for example, in [128].

What we need is only the parameters of this set, in our case taken with d = 2 and equal

to

N = q2 + q + 1, K = q + 1, λ = 1.

We can now use Theorem 4.5 to calculate the mutual coherence of ΦgK ,

µ(ΦgK ) =

√
N −K

K(N − 1)
=

√
q2 + q + 1− (q + 1)

(q + 1)(q2 + q)
=

√
q

q + 1
.

It is left only to check what is the value of 1
2(µ

−1+1) — we know from Theorem 2.5 that

for sparsity less than this value, recovery is possible. We see that
( √

q

q + 1

)−1

=
√
q+

1
√
q
,

and from here the claim follows.

From these three results, we can see that unlike the random and Alltop vectors, which

guarantee recovery for all vectors which are of the order of N
1
2 sparse, Gabor systems

based on difference sets reach only N
1
4 sparsity level.

We would like to see next how the difference sets compare to Alltop and random vectors

numerically, despite their theoretical non-optimal coherence.

4.2.3 Numerical Experiments

To solve the Basis Pursuit problem we use CVX, a package for specifying and solving

convex programs [68]. In the numerical experiment in Figure 4.2, we have chosen N = 43

(a prime which gives 3 modulo 4, suitable for difference sets of the Quadratic family that

we will use). For fixed sparsity level k, we generate a random k-sparse vector x ∈ CN2
,

with k nonzero values x(j) = rj exp(2πiθj), where rj is drawn independently from the

standard normal distribution N (0, 1), and θj is drawn independently and uniformly from

[0, 1). Then, we measure this signal with each of the three Gabor frames, and try to

recover it by BP. We count the recovery as successful, if the normalized squared error

was smaller than 10−6. For every k we repeat this experiment T = 500 times, and plot the

successful recovery rates in Figure 4.2. What we observe here is that all three generators

have almost identical recovery rate. The complex random generator performs the best
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since we choose a different realization for gR at every experiment, and the difference sets

are slightly better then the Alltop in the transition level of k.

The fact that the mutual coherence can not always capture the desired properties of the

Gabor frame was noted in [9], where average coherence was introduced. To guarantee

a successful recovery via BP, certain relations between the average and the mutual co-

herence need to be satisfied. One can show that those particular conditions are also not

satisfied by the Gabor frame generated by difference sets. Finding the correct theoret-

ical explanation of this successful behavior in numerical experiments is an interesting

question, and we leave it for future investigation.
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Figure 4.2: Sparse recovery from Gabor measurements.

4.3 Gabor Fusion Frames Generated by Difference Sets

We now move to the second part of this chapter, where we aim to investigate our collection

of time-frequency shifts of a difference set from a perspective of fusion frames, which are

collections of subspaces and generalize the notion of frames. Constructing fusion frames

with prescribed “frame-like” properties is an important and challenging task. We will

show how our Gabor system can be seen as a fusion frame, and that it moreover satisfies

certain optimality properties which will be discussed further. We now recall the definition

of fusion frames [38], in our case considered with all weights equal to one.
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Definition 4.10. A family of subspaces {Wi}Mi=1 in CN is called a fusion frame for CN ,

if there exist A and B, 0 < A ≤ B <∞ such that

A∥x∥22 ≤
M∑
i=1

∥Pi(x)∥22 ≤ B∥x∥22 for all x ∈ CN ,

where for each i = 0, . . . , N − 1, Pi denotes the orthogonal projection of CN onto Wi.

If A = B is possible, then {Wi}Mi=1 is called an A-tight fusion frame. Tightness is an

important property, required for example, for minimization of the recovery error of a

random vector from its noisy fusion frame measurements [85]. Among other desirable

properties are equidimensionality and equidistance. They provide maximal robustness

against erasures of one or more subspaces, and as we will see later, yield optimal Grass-

mannian packings [85]. Equidimensionality means that all the subspaces {Wi}Mi=1 are

of the same dimension, while to define equidistant fusion frames, we need the notion of

chordal distance.

Definition 4.11. Let W1 and W2 be subspaces of CN with m := dimW1 = dimW2

and denote by Pi the orthogonal projection onto Wi, i = 1, 2. The chordal distance

dc(W1,W2) between W1 and W2 is given by

d2c(W1,W2) = m− Tr[P1P2],

where Tr denotes the trace of an operator. Multiple subspaces are called equidistant, if

they have pairwise equal chordal distance dc.

It was shown in [85] that equidistant tight fusion frames are optimal Grassmannian

packings, where optimality comes from the classical packing problem: For given m,M,N,

find a set of m-dimensional subspaces {Wi}Mi=1 in CN such that mini̸=j dc(Wi,Wj) is as

large as possible. In this case we call {Wi}Mi=1 an optimal packing. An upper bound is

given by the simplex bound
m(N −m)M

N(M − 1)
.

This is to some extent analogous to the Welch bound from the classical frame theory, and

we will see that fusion frames generated by difference sets actually achieve the simplex

bound.

We will investigate the family of subspaces arising from Gabor system of difference sets,

defined as follows. Let K be a difference set with parameters (N,K, λ) and let v = 1√
K
χK

be our generator for the Gabor system

ΦK = {MjTiv}N−1
j,i=0.
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For every i = 0, . . . , N − 1, let the subspaces Wi be defined as

Wi = span{MjTiv}N−1
j=0 = {x ∈ CN : supp(x) = K + i}. (4.9)

We call WK = {Wi}Ni=1 a Gabor fusion frame associated to a difference set K. The fact

that this family of subspaces is in fact a fusion frame (and more over tight) will follow

from the next proposition.

Proposition 4.12 (Corollary 13.2 in [37]). Let {Wi}Mi=1 be a family of subspaces in CN .

Let {φij}Jij=1 be an A-tight frame for Wi for each i. Then the following conditions are

equivalent.

(i) {Wi}Mi=1 is a C-tight fusion frame for CN .

(ii) {φij}M,Ji
i=1,j=1 is an AC-tight frame for CN .

Theorem 4.13. The family of subspaces WK = {Wk}N−1
k=0 defined in (4.9) is a K-tight

fusion frame.

Proof. This property follows directly from Proposition 4.12. First of all, as noted in

Remark 4.4, for every fixed i, {MjTiv}N−1
j=0 is a N

K -tight (also equiangular) frame for

Wi. Also, the full system {MjTiv}N−1
i,j=0 is a N -tight frame for CN . Thus, according to

Proposition 4.12, this is equivalent to {Wi}N−1
i=0 being a K-tight fusion frame for CN .

4.3.1 Optimality Properties

When speaking about optimality, we speak about certain desirable properties of a frame

(fusion frame), which usually arise from various application problems. For example, in

the classical frame theory, as we saw in Subsection 4.2.2, small coherence of a frame

applies successful sparse recovery of signals measured with this frame. The Welch bound

gives us a barrier how low can one go. Achieving it is already important not only for

sparse recovery, but for a variety of other problems, for example in coding theory, or

quantum mechanics. Similarly, in the fusion frame theory, there exist a notion of fusion

coherence, which guarantees sparse recovery [18] from fusion measurements. But apart

from compressed sensing-like problems, and there the question of achieving the so called

simplex bound arises. Yet another optimality property is optimally sparse fusion frame,

and in the next subsections we investigate each of them for our Gabor fusion frame

generated by difference sets.
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4.3.1.1 Equidistant Fusion Frames

We saw that our construction produces tight fusion frames consisting of equi-dimensional

subspaces. Next, we will show that they moreover have equal pairwise chordal distance.

Theorem 4.14. The Gabor fusion frame WK = {Wk}N−1
k=0 associated to an (N,K, λ)

difference set K is an equidistant fusion frame with

d2c =
K(N −K)

N − 1
.

Proof. Let Wi1 and Wi2 be any two different subspaces from (4.9). In order to compute

d2c(Wi1 ,Wi2) we require Tr[Pi1Pi2 ] =
∑N−1

ℓ=0 ⟨Pi2eℓ, Pi1eℓ⟩, where {eℓ}N−1
ℓ=0 is the canonical

basis of CN . For this, first note that

Pik eℓ =
K

N

N−1∑
j=0

⟨eℓ, TikMjv⟩TikMjv =
K

N

N−1∑
j=0

TikMjv(ℓ)TikMjv, k = 1, 2.

This leads to

N−1∑
ℓ=0

⟨Pi2eℓ, Pi1eℓ⟩ =
K2

N2

N−1∑
ℓ=0

⟨
N−1∑
j=0

MjTi2v(ℓ)MjTi2v,

N−1∑
j′=0

Mj′Ti1v(ℓ)Mj′Ti1v⟩

=
K2

N2

N−1∑
ℓ=0

N−1∑
j=0

N−1∑
j′=0

MjTi2v(ℓ)Mj′Ti1v(ℓ)⟨MjTi2v,Mj′Ti1v⟩

=
K2

N2

N−1∑
j,j′=0

⟨Mj′Ti1v,MjTi2v⟩⟨MjTi2v,Mj′Ti1v⟩

=
K2

N2

N−1∑
j,j′=0

|⟨MjTi1v,Mj′Ti2v⟩|2

(4.5)
=

1

N2

N−1∑
j,j′=0

⏐⏐⏐⏐⏐⏐⏐⏐
∑
k∈K

k−(i2−i1)∈K

e
2πi(j′−j)k

N

⏐⏐⏐⏐⏐⏐⏐⏐
2

=
1

N2

N−1∑
j,j′=0

|χ̂Ki1−i2
(j − j′)|2,

(4.10)

where Ki1−i2 = {k ∈ K : k − (i1 − i2) ∈ K}. As we have noted before, card(Ki1−i2) = λ.

For fixed j, by Plancherel’s Theorem, we have

N−1∑
j′=0

|χ̂Ki1−i2
(j − j′)|2 = ∥Tjχ̂Ki1−i2

∥2 = ∥χ̂Ki1−i2
∥2 = N∥χKi1−i2

∥2 = Nλ.
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Now we can go back to the sum (4.10), and get the final result,

N−1∑
ℓ=0

⟨Pi2eℓ, Pi1eℓ⟩ =
1

N2

N−1∑
j=0

Nλ = λ.

Notice that this value does not depend on the choice of the subspaces. Thus, taking

into account that our subspaces have dimension K, by definition of chordal distance we

obtain

d2c = K − Tr[P1P2] = K − λ.

Finally, by Proposition 4.2 (ii), the claim follows.

Corollary 4.15. The Gabor fusion frame WK = {Wk}N−1
k=0 associated to an (N,K, λ)

difference set K is an optimal Grassmannian packing of N K-dimensional subspaces in

CN .

Proof. By Theorem 4.14, WK is a fusion frame of equidimensional subspaces with pairwise

equal chordal distances dc. It was proven in [85, Theorem 4.3], that in this case the fusion

frame is tight, if and only if d2c equals the simplex bound. We already know from Theorem

4.13 that our fusion frame is tight, hence the claim follows. We can also check that the

simplex bound is achieved. For this set of parameters, the simplex bound equals

K(N −K)N

N(N − 1)
=
K(N −K)

N − 1
,

and this is exactly d2c . Thus, we have an optimal packing.

4.3.1.2 Optimally Sparse Fusion Frames

The notion of optimally sparse fusion frames was introduced in [34] and means that all

subspaces can be seen as spans of orthonormal basis vectors that are sparse in a uniform

basis over all subspaces, and thus only few entries are present in the decomposition. This

different optimality property is of great practical use when the fusion frame dimensions

are large, and low-complexity fusion frame decomposition is desirable. We will show that

our Gabor fusion frames defined in (4.9) are also optimally sparse.

Definition 4.16. [34] Let {Wi}Mi=1 be a fusion frame for CN with dimWi = mi for all

i = 1, . . . ,M and let {vj}Nj=1 be an orthonormal basis for CN . If for each i ∈ {1, . . . ,M},
there exists an orthonormal basis {φi,ℓ}mi

ℓ=1 for Wi with the property that for each ℓ =
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1, . . . ,mi there exists a subset Ji,ℓ ⊂ {1, . . . , N} such that

φi,ℓ ∈ span{vj : j ∈ Ji,ℓ} and
M∑
i=1

mi∑
ℓ=1

|Ji,ℓ| = k,

we refer to {φi,ℓ}M,mi

i=1,ℓ=1 as an associated k-sparse frame. The fusion frame {Wi}Mi=1 is

called k-sparse with respect to {vj}Nj=1, if it has an associated k-sparse frame and if, for

any associated j-sparse frame, we have k ≤ j.

Definition 4.17. [34] Let FF be a class of fusion frames for CN , let {Wi}Mi=1 ∈ FF ,
and let {vj}Nj=1 be an orthonormal basis for CN . Then {Wi}Mi=1 is called optimally sparse

in FF with respect to {vj}Nj=1, if {Wi}Mi=1 is k1-sparse with respect to {vj}Nj=1 and there

does not exist a fusion frame {Vi}Mi=1 ∈ FF which is k2-sparse with respect to {vj}Nj=1

with k2 < k1.

Let FF(M,m,N) be the class of tight fusion frames in CN which haveM subspaces, each

of dimensionm. One example of optimally sparse fusion frames in this class is the spectral

tetris construction (STFF), explained in more details in [34] and [37, Chapter 13]. For

this fusion frame the following theorem is known.

Theorem 4.18. [34] Let N,M, and m be positive integers such that Mm
N ≥ 2 and

⌊Mm
N ⌋ ≤M − 3. Then the tight fusion frame STFF (M,m,N) is optimally sparse in the

class FF(M,m,N) with respect to the canonical basis in CN .

In particular, this tight fusion frame is mM + 2(N − gcd(Mm,N))-sparse with respect

to the canonical basis.

We will now show that the Gabor fusion frames generated by difference sets are also

optimally sparse in the corresponding class of tight fusion frames.

Theorem 4.19. Let WK = {Wk}N−1
k=0 be the Gabor fusion frame associated with a dif-

ference set K with parameters (N,K, λ). Then, WK is an optimally sparse fusion frame

in the class FF(N,K,N) with respect to the canonical basis with sparsity KN.

Proof. From Theorem 4.13, we know that WK is a tight fusion frame from the class

FF(N,K,N).

Let {ej}Nj=1 be the canonical basis of CN . From the definition of WK (4.9) it follows

that the elements of each subspace Wi are supported on the sets K+ i. Therefore, as an

orthonormal basis for every Wi we can take

{φi,ℓ}Kℓ=1, where φi,ℓ = ekℓ+i, kℓ ∈ K.
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Then, the corresponding sets Ji,ℓ from Definition 4.16 are each of cardinality 1, and the

sparsity of WK is
N∑
i=1

K∑
ℓ=1

|Ji,ℓ| = KN.

Now, for any other associated j-sparse frame with sets {J̃i,ℓ}N,K
i=1,ℓ=1, we have that

∑N
i=1

∑K
ℓ=1 |J̃i,ℓ| ≥

KN because each J̃i,ℓ has at least one element. Thus, WK is KN -sparse. Moreover, this

also says that KN is the smallest sparsity that one can expect in FF(N,K,N). There-

fore, WK is optimally sparse.

Remark 4.20. For K ≥ 2, K ≤ N −3, we have by Theorem 4.18 that STFF (N,K,N) is

optimally sparse in FF(N,K,N). Note that in this case the sparsity given by Theorem

4.18, KN + 2(N − gcd(NK,N)) is exactly KN .

4.3.2 Compressed Sensing with Gabor Fusion Frames

Now we move to another, ideologically different notion of sparsity, which is related not

to the low-complexity of the fusion frame decomposition as a whole, but to the low-

complexity of the structure of the signals. Namely, in many applications like target

recognition or music segmentation, the signal can be modeled as a union of components

lying in only few subspaces, which gives a rise to the notion of fusion sparse signals. For

such signals, a method of linear measurement process, and recovery via minimization

problem which promotes such sparsity was developed in [18], and we explained it briefly

in Section4.3 of Chapter 1.

Definition 4.21. [18] Let W = {Wj}Mj=1 be a fusion frame in RN , and let

HW := {(xi)Mi=1 : xi ∈ Wi for all i = 1, . . . ,M}.

We call a vector x ∈ HW k-fusion sparse, if

∥x∥0 := |{j : xj ̸= 0}| ≤ k.

The problem we are given in short is as follows. Let W = {Wj}Mj=1 be a fusion frame in

RN . Given the condition that x = {xj}Mj=1, xj ∈ Wj has only few nonzero components xj ,

recover x from its measurements y = APx, where AP = {aijPj}n,Mi,j=1. Here, A = {aij}n,Mi,j=1

is the measurement matrix, and Pj are the projections to the corresponding subspaces

Wj . The fusion sparse vector x can be found by solving the minimization problem

min
x∈HW

∥x∥2,1 subject to APx = y. (P2,1)
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The norm which we minimize is the mixed ℓ1/ℓ2 norm, which promotes “block” like

sparsity, and is defined as

∥x∥2,1 =
M∑
j=1

∥xj∥2, where x = {xj}Mj=1, xj ∈ Wj .

A measure of the coherence is this time given by the so-called fusion coherence, defined

as

µf (A, {Wi}Mi=1) = max
j ̸=k

[|⟨aj , ak⟩| · ∥PjPk∥2] .

Small fusion coherence guarantees recovery of fusion sparse vectors via (P2,1), as in the

classical case described in the previous section.

Theorem 4.22 ([18]). Let A ∈ Rn×M have normalized columns {aij}Mi=1, let {Wj}Mj=1

be a fusion frame in RN , and let Y ∈ Rn×N . If there exists a solution c0 of the system

Y = AU(c) satisfying

∥c0∥0 <
1

2

(
1 + µf (A, {Wi}Mi=1)

−1
)
, (4.11)

then this solution is the unique solution of (P2,1).

In the case N = 1, we obtain the result for classical frames formulated in Theorem 2.5.

A detailed theoretical description of this problem for fusion frames in general, and its

importance for applications is given in [18]. Investigations on recovery from random

fusion frames were conducted in [8].

We are interested in exploiting this idea for the Gabor fusion frames that we introduced

in Section 4.3, and looking at the problem of recovery of vectors sparse in a Gabor fusion

frame generated by a difference set. From theoretical point of view, leaving out the

details, the fusion coherence in our case will be equal to the mutual coherence of the

measurement matrix, and will not depend on the fusion frame structure. This is because

one can prove that for our Gabor fusion frame, ∥PjPk∥2, the largest absolute value of

the cosines of the principle angles beween Wj and Wk, always equals 1, and therefore

the structure of the fusion frame does not play a role in the recovery guarantees.

Nevertheless, in the next subsection we conduct numerical experiments with our Gabor

fusion frame and Gaussian measurement matrices, and observe promising results.

4.3.3 Numerical Experiments

The task is to use Gabor fusion frame WK generated by a difference set K for recovery of

signals which are sparse in a fusion frame, namely, which have nonzero components lying

in only few subspaces. In our case that would correspond to having only few translations.
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Although it might not be clear how to numerically solve the described minimization pro-

cess (P2,1), this can be easily accomplished via the standard ℓ1 minimization technique,

by incorporating the basis vectors for each of the subspaces. The details can be found

in [18]. Here the question is not only what level of sparsity are we able to recover, but

also, how many measurements n in the matrix A do we need? At the same time, as we

will see, the dimensions of the subspaces will play an important role.

In Figure 4.3a, we consider a (N,K, λ)-difference set with N = 40 and K = 13, which

means that the dimension of the subspaces is 13, and in the experiment depicted in

Figure 4.3b, we set N = 43 and K = 21. In both experiments we take the measurement

matrix A to be random Gaussian. For a different number of measurements, as denoted

in the legend, and for every sparsity level, we generate random k-fusion sparse vector x

(with independent random Gaussian values at k subspaces chosen at random). Then,

we calculate the measurements y, and try to recover back x by (P2,1) again using CVX.

We repeat each experiment T = 100 times, and count the recovery as successful, if

the normalized mean square error was smaller than 10−6. The results are presented

in Figure 4.3. We observe that as expected, larger number of measurements allows for

higher levels of sparsity, but also that when the dimension of the subspaces is smaller,

fewer measurements are needed to recover the signal. Moreover, if the subspaces are of

small dimension, and the number of measurements is sufficiently large, we can recover x

independently of its sparsity level.

As we saw, the theoretical results for this problem are again not sufficient to capture this

effect. Therefore, a more subtle measure of coherence is still missing in both problems

presented, and these questions will be part of future research.
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Figure 4.3: Fusion sparse recovery with Gabor fusion measurements.



Chapter 5

Phase Retrieval for Signals Having a

Sparse Representation

5.1 Introduction

If compressed sensing is described as a methodology for recovery of sparse signal from

linear measurements, sparse phase retrieval is one possible step towards a generalization

of this problem to non-linear measurements. In this section, we would like to consider the

problem of recovery of vectors which are not sparse, but have a sparse representation in

some redundant system (a dictionary), from the magnitude of their linear measurements.

We call this problem dictionary sparse phase retrieval. This chapter is organized as

follows. In Section 5.2 we provide necessary and sufficient conditions for injectivity in

both R and C, and provide some examples of measurements which allow phase retrieval

of signals which have sparse representation. In Section 5.3 we investigate the question

of recovery via ℓ1 minimization, and its characterization via the null space property,

modified for this particular setting of phase retrieval and dictionary sparsity. Finally, in

Section 5.4 we move to phase retrieval by projections of sparse signals.

5.2 Injectivity of the Dictionary Sparse Phase Retrieval

Let us fix notation. Let K be R or C. We use KN
k to note the set of signals in KN which

have at most k nonzero elements. Furthermore, KN
kD is the set of signals in KN which

have a k-sparse representation in some dictionary D ∈ KN×n,

KN
kD = {x ∈ KN : ∃z ∈ Kn such that x = Dz, ∥z∥0 ≤ k}.

93
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Let F = {fi}mi=1 be a set of measurement vectors in KN . Let D = {di}ni=1 be a fixed

dictionary in KN . We sometimes identify those two sets with the corresponding matrices

of the synthesis operators (see equation 2.7), F ∈ KN×m and D ∈ KN×n. In general,

we often identify a matrix A ∈ KM×N with the linear map from KN to KM it yields,

x ↦→ Ax.

The phase retrieval problem consists of finding x ∈ KN
kD up to a unimodular constant

given the measurements |⟨fi, x⟩|2, i = 1, . . . ,m. Formally, we are interested in the map

MFD : KN
kD/T → Rm

+ , MFD(x) =
[
|⟨f1, x⟩|2 |⟨f2, x⟩|2 . . . |⟨fm, x⟩|2

]T
. (5.1)

Definition 5.1. A set F = {fi}mi=1 in KN is said to have the kD-sparse phase retrieval

property, or allows kD-sparse phase retrieval, if the map MFD is injective.

We focus at first on the case K = R.

5.2.1 Dictionary Sparse Phase Retrieval in R

We show here that the same amount of vectors — which was 2k — necessary for recovery

of k-sparse vectors from phaseless measurements [125] is also needed when x is sparse in

some arbitrary dictionary.

Theorem 5.2. Let F = {fi}mi=1 be a set of vectors in RN , and let D = {di}ni=1 be a

dictionary which spans RN . Let further k < N. If F allows kD-sparse phase retrieval,

then necessarily m ≥ 2k.

Proof. Towards a contradiction, let F = {fi}mi=1 only possess 2k − 1 vectors. We will

construct vectors η and ν ∈ Rn which are k-sparse with Dη ̸= ±Dν but | ⟨fi, Dη⟩ | =
| ⟨fi, Dν⟩ | for all i = 1 . . .m. With this we will prove that F does not have the kD-sparse

phase retrieval property.

First, since D spans the whole space, there must exist a subset T of {1, . . . , n} with

|T | = k + 1 so that the vectors {di}i∈T are linearly independent. If not, the dimension

of the space spanned by the dictionary will be at most k < N and it hence can not be

the whole of RN .

Now consider the subspace W of Rn, W = {α ∈ Rn : suppα ⊆ T}. Because of the way T

was chosen, Dα ̸= 0 for all nonzero vectors α ∈W . Furthermore, we have dimW = k+1.

We split the vectors in F into two groups : {fi}ki=1 and {fi}mi=k+1. Denote the matrices

formed by these two groups as columns with F1 and F2, respectively. Since the space W
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is of dimension k+ 1 and the image of F T
1 D is at most of dimension k, there must exist

a nonzero vector α ∈ W such that F T
1 Dα = 0. Similarly, the dimension of the image of

F T
2 D is at most k− 1 (we assumed that m ≤ 2k− 1), and there hence exist two linearly

independent vectors β and γ in W with F T
2 Dβ = F T

2 Dγ = 0.

Since β and γ are linearly independent, there exists two indices i, j ∈ T such that the

subvectors (βi, βj) and (γi, γj) are linearly independent. There therefore exist t0, s0 such

that

αi = t0βi + s0γi,

−αj = t0βj + s0γj .

If (αi, αj) ̸= (0, 0), we must also have (s0, t0) ̸= (0, 0). If αi = αj = 0, then choose t0
and s0 such that

1 = t0βi + s0γi,

0 = t0βj + s0γj

instead. In both cases, set δ := t0β+ s0γ and η := α+ δ, ν := α− δ ∈ Rn. Then in both

cases η and ν are k-sparse. In the first case, supp η ⊆ T\ {j} and supp ν ⊆ T\ {i}. In

the second case, both supports are contained in T\ {j}. In all cases, the vectors η and

ν are different, both not zero, and supported on T . This implies that Dη ̸= ±Dν, since

D is injective on the subspace W .

However, taking into account that by assumption F T
1 Dα and F T

2 Dδ are equal to zero,

we obtain:

⟨fi, Dη⟩ = ⟨fi, D(α+ δ)⟩ =

⎧⎨⎩⟨fi, Dδ⟩ if i ≤ k,

⟨fi, Dα⟩ if i > k.

⟨fi, Dν⟩ = ⟨fi, D(α− δ)⟩ =

⎧⎨⎩−⟨fi, Dδ⟩ if i ≤ k,

⟨fi, Dα⟩ if i > k.

Hence |⟨fi, Dη⟩| = |⟨fi, Dν⟩| for all i = 1, . . . ,m, although Dη ̸= ±Dν. This proves that

F with 2k − 1 elements can not allow kD-sparse phase retrieval, and hence 2k vectors

are necessary for dictionary sparse phase retrieval.

In the search of measurements which allow phase retrieval, one crucial ingredient is

the characterization via the complement property [12, 13]. A counterpart for it in the
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sparse setting was introduced in [97]. Unlike for general signals, in the sparse setting

the complement property is no longer a necessary and sufficient condition for injectivity,

but it is still very useful since it gives a method for verifying if a system allows sparse

phase retrieval. We extend this result to the dictionary sparse setting, and investigate

how sharp the sparse complement property is.

Let F = {fi}mi=1 be a set of measurement vectors and D = {di}ni=1 a fixed dictionary,

both in RN . For a fixed subset K ⊆ [1, . . . , n], we will often use the notation

WK := span{di}i∈K.

For a fixed subset S ⊆ [1, . . . ,m], we will denote by FS = {fi}i∈S , and the rest of the

elements in F by FSc = {fi}i∈Sc . We will often use matrix notation, and F T
S and F T

Sc

will be the matrices which contain as rows the elements of FS and FSc , respectively. We

will speak about the injectivity of the linear map from RN to R|S|, x ↦→ {|fi, x⟩}i∈S , and

we will identify it with its matrix representation F T
S : x ↦→ F T

S x.

We are now ready to formulate the k-complement property generalized to vectors which

are sparse in a dictionary (see Definition 2.25 for the classical k-complement property).

Definition 5.3. A given set F = {fi}mi=1 has the kD-complement property with a dic-

tionary D = {di}ni=1, if for all S ⊆ [1, . . . ,m] and all K ⊆ [1, . . . , n] with |K| ≤ k, either

F T
S or F T

Sc is injective on the subspace WK = span{di}i∈K.

Note, that if D = I is the identity basis, WK = span{ei}i∈K = {x ∈ Rn : supp(x) ⊆ K}
we obtain the k-complement property, and if additionally k = N, we would have the

classical complement property.

We are interested when a set of vectors F = {fi}mi=1 allows kD-phase retrieval, and we

formulate this result in terms of injectivity of the map MFD (5.1).

Theorem 5.4. Given the notations above, the following two statements hold:

(i) If the map MFD is injective, then F has the kD-complement property.

(ii) If F has the 2kD-complement property, then MFD is injective.

Proof. (i) Assume that the mapping MFD is injective, but the kD-complement property

is not satisfied. That means, that there exist subsets S ⊆ [1, . . . ,m] and K ⊆ [1, . . . , n],

|K| ≤ k, and nonzero vectors x, y ∈WK, such that

⟨fi, x⟩ = 0, i ∈ S,

⟨fi, y⟩ = 0, i ∈ Sc.



Chapter 5. Dictionary sparse phase retrieval 97

Then for all i = 1, . . . ,m, we will have |⟨fi, x + y⟩| = |⟨fi, x − y⟩|. By assumption,

x, y ∈ RN
kD. Moreover, their sparse representations have support contained in K, hence

x± y ∈ RN
kD. Therefore, by injectivity of MFD we have that x+ y = ±(x− y), which is

in contradiction with the assumptions that both x and y were nonzero.

(ii) Assume that F has the 2kD-complement property, but MFD is not injective. Then

there exist x, y ∈ RN
kD, x ̸= ±y which give the same measurements. In other words, there

exist k-sparse zx and zy in Rn such that x = Dzx and y = Dzy, and

|⟨fi, Dzx⟩|2 = |⟨fi, Dzy⟩|2, i = 1, . . .m.

Since we are in the real case, for every i = 1, . . . ,m we can rewrite this equality as

⟨fi, Dzx +Dzy⟩⟨fi, Dzx −Dzy⟩ = 0.

Define S := {i : ⟨fi, Dzx + Dzy⟩ = 0} and K := supp(zx) ∪ supp(zy). Then obviously

|K| ≤ 2k. We see that we have found two nonzero vectors x+ y, x− y ∈WK such that

⟨fi, x+ y⟩ = 0, i ∈ S,

⟨fi, x− y⟩ = 0, i ∈ Sc.

This is in contradiction to the 2kD-complement property.

It was shown in [97] that 2k− 1 independent Gaussian vectors satisfy the k-complement

property with probability 1. From there it follows that 4k − 1 random vectors suffice

to recover k-sparse vectors x uniquely from phaseless measurements. We can now show

that a collection of 2k − 1 random vectors also has the kD-complement property, and

thus 4k − 1 vectors allow kD-sparse phase retrieval.

Proposition 5.5. Let F = {fi}mi=1, fi ∈ RN with m ≥ 2k − 1 be randomly distributed

according to a joint standard normal distribution, and let D = {di}ni=1 be an arbitrary

dictionary in RN . Then F has the kD-complement property with probability 1.

Proof. Let K ⊆ [1, . . . , n], |K| ≤ k and S ⊆ [1, . . . ,m] be arbitrary. We will show

that either F T
S or F T

Sc is injective on the subspace WK := span {di}i∈K . Note that

dimWK := dK ≤ k. Also note that since m ≥ 2k− 1 ≥ 2dK − 1, one of |S| and |Sc| must

be at least dK. Without loss of generality, we may assume that it is |S|.

Let Q ∈ RN×dK be a matrix whose columns form an orthonormal basis of WK. Define

a new matrix F̃ T by choosing dK rows of F T
S . Note that the rows of F̃ TQ ∈ RdK×dK

are still jointly normal distributed. Since the space of invertible matrices is dense in
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RdK×dK , F̃ TQ will therefore with probability 1 be injective. This however implies that

F̃ T is injective on WK with probability 1, and consequently F T
S , too.

We should note that using algebraic geometry tools, the authors in [125] showed that 2k

generic vectors can allow k-sparse phase retrieval, which is a quite stronger result than

the one obtained using the complement property in [97]. Note also, that in [97], only

part (ii) of Theorem 5.4 with D = I was presented (see Theorem 2.26).

It is therefore interesting to ask, how sharp the order of the complement property given in

Theorem 5.4 is. Looking at part (i) of this theorem we ask: can a complement property

of higher order also be guaranteed? We can observe that this is not possible already in

the case D = I : as we just mentioned, a set of 2k generically chosen vectors in RN allows

k-sparse phase retrieval. But such sets can not have the (k + 1)-complement property

for N > k + 1. To see this, just subdivide the vectors into two groups of cardinality k.

Since there are only k in each set, none of them restricted to a set K of k + 1 elements

could span Rk+1, and thus the (k + 1)-complement property can not be satisfied. The

(k+1)-complement property is hence not necessary for allowing k-sparse phase retrieval.

Now looking at part (ii), we ask if we can also observe that the (2k − 1)-complement

property is not sufficient for allowing k-sparse phase retrieval. The answer is not straight-

forward, but will show that indeed one can construct a set of vectors which have the

(2k−1)-complement property, but which do not allow k-sparse phase retrieval. To prove

this, we need two lemmas. The first lemma will be the desired statement but restricted

to dimension N = 2k, and the second lemma will help us to extended this result to larger

N. Our example is for the case D = I, but since kD-sparsity includes in its definition

the classical k-sparsity, it means that our result holds for kD-complement property as

well.

Lemma 5.6. Let N = 2k. Then, a set of 4k − 2 i.i.d. Gaussian vectors satisfy the

(2k−1)-complement property with probability 1, but do not allow k-sparse phase retrieval.

Proof. Let A, B ∈ R2k−1×k be matrices with i.i.d. Gaussian entries. Consider the

following matrix in R4k−2×2k :

M =

[
A B

A −B

]
. (5.2)

We will show that the rows of this matrix satisfy the statement of the theorem. Since

2k > 2k−1, there exists a pair (x, y) ∈ Rk×Rk not equal to (0, 0) for which Ax+By = 0.

We then have

M

[
x

0

]
=

[
Ax

Ax

]
, M

[
0

y

]
=

[
By

−By

]
.
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Hence, |M(x, 0)| = |M(0, y)|. We have found two different vectors (x, 0) and (0, y) which

are both k-sparse but give the same phaseless measurements. Therefore, M can not allow

k-sparse phase retrieval.

It is left to show now that M has the (2k − 1)-complement property with probability

one. For this, it is sufficient to prove that any block of M formed by choosing 2k − 1

columns (corresponding to K) and 2k − 1 rows (corresponding to S or Sc – at least one

of those sets contains at least 2k − 1 indices since |S|+ |Sc| = 4k − 2) is invertible.

Let us employ the block structure of M to describe the matrix MK
S . In the choice of

columns, let us say that k1 ≤ k of the elements in K are from [1, . . . , k] . Let us

denote the upper block of them with P . The number of columns indexed by elements of

[k + 1, . . . , 2k] is denoted k2 and the corresponding upper block with Q. We arrive at a

matrix of the form

MK =

[
P Q

P −Q

]

with P ∈ R2k−1×k1 and Q ∈ R2k−1×k2 with i.i.d. Gaussian entries. Note that

k1 + k2 = 2k − 1, and k1, k2 ≤ k. (5.3)

Now we have to choose rows. Because of the dual-block structure, a certain number of

rows will have a corresponding pair in the other half, i.e., there are j ∈ S such that

j+(2k− 1) ∈ S. Let us call the number of such rows ℓ. In particular, there exists S̃ ⊆ S,

|S̃| = ℓ, such that MK
S contains the block[

PS̃ QS̃

PS̃ −QS̃

]
.

The rest of the rows in S do not have dual-block structure and we denote this block by[
R T

]
.

With possibly changed order of the rows, we can write the matrix MK
S in the form

A =

⎡⎢⎢⎣
PS̃ QS̃

PS̃ −QS̃

R T

⎤⎥⎥⎦ . (5.4)

Here PS̃ ∈ Rℓ×k1 , QS̃ ∈ Rℓ×k2 , R ∈ R2k−1−2ℓ×k1 and T ∈ R2k−1−2ℓ×k2 and all have i.i.d.

Gaussian entries.
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If ℓ = 0, the matrix A is simply a R2k−1×2k−1 Gaussian matrix, and hence almost surely

invertible.

Now suppose that ℓ > 0 and let the vector (x, y) ∈ Rk1 × Rk2 be in the kernel of A,

denoted by N (A). Then,

PS̃x+QS̃y = 0

PS̃x−QS̃y = 0

Rx+ Ty = 0 (5.5)

and subsequently x ∈ N (PS̃), y ∈ N (QS̃). Almost surely, the dimension of N (PS̃) will

be max(0, k1−ℓ) and the one of N (QS̃) = max(0, k2−ℓ). We now distinguish four cases.

If k1, k2 ≤ ℓ, then x = 0, y = 0, and hence the matrix A must be invertible.

If k2 ≤ ℓ < k1, then (5.3) implies that k1 = k and k2 = k − 1 = ℓ. Then y must be

equal to 0, and therefore by (5.5), Rx = 0. The size of PS̃ is in this case k − 1 × k

and therefore x must lie in the 1-dimensional subspace N (PS̃). Since 2k − 2ℓ − 1 =

2k − 2(k − 1) − 1 = 1, R ∈ R1×k will almost surely be injective on this subspace, and

hence using the independence of R and PS̃ we can conclude that x must be zero. The

matrix A is again invertible.

If k1 ≤ ℓ < k2, then k2 = k and k1 = k − 1 = ℓ and we can proceed as above.

Finally, if k1, k2 > ℓ, then dim(N (PS̃) × N (QS̃)) = k1 − ℓ + k2 − ℓ = 2k − 1 − 2ℓ and

thus (x, y) is lying on a (2k − 1 − 2ℓ)-dimensional subspace. Almost surely,
[
R T

]
∈

R2k−1−2ℓ×2k−1 will be injective on this space. (Here, we used that
[
PS̃ QS̃

]
and

[
R T

]
are independent).

We will now show that it is possible to modify a set of vectors, such that the new system

has the sparse complement property of the same order, but in one dimension higher.

Lemma 5.7. Suppose that F ∈ Rm×n is a matrix with rows in Rn that have the k-

complement property for some k. Then, if v ∈ Rm is a vector with i.i.d. Gaussian

entries, then the rows of the matrix
[
F v

]
∈ Rm×(n+1) have the k-complement property

in Rn+1 with probability 1.

Proof. We need to prove that if v ∈ Rm is a Gaussian random vector, then the rows of

F̃ :=
[
F v

]
almost surely have the k-complement property.
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In order to check if F̃ has the k-complement property, we choose k arbitrary columns

from it indexed by K ⊆ [1, . . . , n+ 1]. If f̃i for all i ∈ K are columns in F , we know that

for any S ⊆ [1, . . . ,m], either F̃K
S or F̃K

S will span Rk, since F itself has the k-complement

property.

If one of the chosen columns is v, then n + 1 ∈ K, and we set K̃ := K\{n + 1}. We

proceed as follows. Consider a sub-choice of the rows S ⊆ [1, . . . ,m]. We can restrict to

|S| = k, since necessarily m ≥ 2k − 1, given that the rows of F have the complement

property. The subset K̃ in this case has k − 1 elements. We obtain a matrix
[
F K̃
S vS

]
.

Since F has the k-complement property, the columns in F K̃
S are linearly independent

– if not, we could not obtain a basis by adding one vector, which however is the case.

Hence, in order for
[
F K̃
S vS

]
not to be invertible, vS must lie in the span of {fSi }i∈K, a

(k−1)-dimensional subspace of Rk. Therefore, v must lie on a (k−1)+(m−k) = (m−1)-

dimensional subspace of Rm. This almost never happens. Since S and K were chosen

arbitrary, the claim is proven.

Finally, we have all the ingredients to show that the (2k − 1)-complement property can

not guarantee a k-sparse phase retrieval.

Theorem 5.8. Let 2k ≤ N . Then, there exists a set of 4k − 2 vectors which has the

(2k − 1)-complement property, but does not allow k-sparse phase retrieval.

Proof. By Lemma 5.6, there exists a matrix F ∈ R(4k−2)×2k which rows have the (2k −
1)-complement property but do not allow k-sparse phase retrieval. This matrix can

by Lemma 5.7 be iteratively filled up with new columns in such a way so that the

resulting matrix F̃ still has the (2k − 1)-complement property, but with vectors already

in dimension N. Note that the new vectors will still not allow k-sparse phase retrieval:

if x, y ∈ R2k are k-sparse with x ̸= ±y so that |Fx| = |Fy|, the vectors x̃ = (x, 0), ỹ =

(y, 0) ∈ R2k×RN−2k are also k-sparse with x̃ ̸= ±ỹ and
⏐⏐⏐F̃ x̃⏐⏐⏐ = |Fx| = |Fy| =

⏐⏐⏐F̃ ỹ⏐⏐⏐.
5.2.2 Sparse Phase Retrieval in C

The phase retrieval problem in C is in general much more difficult than for real vectors,

since if previously we were losing only the sign of the measurements, ±⟨fi, x⟩, now there

is a whole circle c ⟨fi, x⟩, |c| = 1 which gives the same measurement in absolute value.

We will write x = y mod T to denote that there exists some c with norm one, such that

x = cy.

One of the most interesting questions here is the minimal number of measurements

needed for injectivity. For arbitrary (not necessarily sparse) signals, as we discussed
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in Section 2.3 of Chapter 2, this question is still open, and the last conjecture 4N − 4

[17, 103], was recently disproved in the work [124].

For sparse phase retrieval, the conjecture for the minimal number of measurements in C
at the moment is 4k−2 [125]. We investigate now the class of complex signals which are

sparse in a given dictionary.

Let F = {fi}mi=1 be a set of measurement vectors in CN . As usual, CN
k is the set of

d-dimensional vectors which have k or less nonzero components. We define the following

two maps:

MF : CN
k → Cm

+ : (MFx)(j) = |⟨x, fj⟩|2, (5.6)

A : HN×N → Cm
+ : (AH)(j) = ⟨H, fjf∗j ⟩HS , (5.7)

where HN×N is the space of Hermitian N ×N matrices. By “lifting” x and taking an H

of the form xx∗, we can rewrite the phaseless measurements via the operator A, since

|⟨x, fi⟩|2 = ⟨fi, Hfi⟩ = ⟨H, fif∗i ⟩HS . We refer to A as the PhaseLift operator [28], also

called super analysis operator in [13]. It was proven in [13] that the vectors F = {fi}mi=1

do phase retrieval of full vectors if and only if the kernel of A does not contain any rank

1 or 2 matrices. The corresponding result for sparse signal was so far not formulated, up

to our knowledge. We generalize it directly to the dictionary sparse setting, a simplified

formulation for classical sparsity shall be given in Chapter 6. Let D be a given dictionary

D = {di}ni=1 in CN , and denote WK = span{di}i∈K for some K ⊆ [1, . . . , n].

Theorem 5.9. Given the notations from above, the following two statements hold.

(i) If for every K with |K| = 2k the kernel of A does not contain rank 1 or 2 matrices

whose range is in WK, then the vectors {fi}mi=1 allow kD-phase retrieval.

(ii) If {fi}mi=1 is allowing kD-phase retrieval, then for every K with |K| = k, the kernel

of A does not contain rank 1 or 2 matrices with range in WK.

Proof. Let us start proving (i) by contraposition. Assume that {fi}mi=1 ∈ CN is not

allowing kD-sparse phase retrieval. Then there exists x ̸= y mod T, both kD-sparse, for

which

⟨xx∗, fif∗i ⟩HS = |⟨fi, x⟩|2 = |⟨fi, y⟩|2 = ⟨yy∗, fif∗i ⟩HS ,

i.e. xx∗−yy∗ is in the kernel of A. Let K := supp zx∪supp zy. If the sparse representations

of x and y are given by x = Dzx and y = Dzy, we see that ran(xx∗ − yy∗) ⊆ WK and

further xx∗ − yy∗ has rank less than or equal to 2. If we knew that the rank is at least

one, we would have a rank 1 or 2 matrix whose range is in WK, with |K| = 2k, since

|K| ≤ 2k. This would be in contradiction to the assumption in (i).
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To see that the condition x ̸= y mod T in fact implies that the rank is at least one,

assume, towards a contradiction, that this is not the case, i.e that xx∗ − yy∗ = 0. Since

x ̸= y mod T, both vectors are nonzero. Hence there exists a vector v ∈ CN such that

⟨v, x⟩ ̸= 0. Multiplying 0 = xx∗ − yy∗ with this v and rearranging terms, we arrive at

x =
⟨v, y⟩
⟨v, x⟩

y,

i.e x = λy for some λ ∈ C. Again plugging this into 0 = xx∗ − yy∗ yields |λ| = 1. This

is a contradiction to x ̸= y mod T.

Let us now turn to (ii). Towards a contradiction, suppose that there exists a K ⊆
[1, . . . , n] such that the kernel of A contains a Hermitian matrix H with rank 1 or 2 with

range in WK. By the spectral theorem, there exists an orthonormal basis {ϕj}Nj=1 of CN

consisting of eigenvectors of H, corresponding to real eigenvalues {λj}Nj=1. Therefore, H

can be written as
∑

j λjϕjϕ
∗
j .

Because of the bounded rank and the fact thatH ̸= 0, either one or two of the eigenvalues

are nonzero. It is clear that the eigenvectors corresponding to those eigenvalues are

vectors in WK, since they form a basis of the range of H. Thus, they are kD-sparse.

Let us first consider the case where only one eigenvalue is different from zero. If we write

x =
√

|λ1|ϕ1, then we have H = ±xx∗ and hence

0 = ⟨xx∗, fif∗i ⟩ = |⟨fi, x⟩|2 = 0, i = 1, . . . ,m.

This means that the two kD-sparse vectors x and 0 have the same phaseless measure-

ments, although x ̸= 0 mod T.

The other case is dealt with similarly. There we write x =
√
|λ1|ϕ1, y =

√
|λ2|ϕ2 and

conclude that H = ±xx∗ ± yy∗, where the signs depend on the signs of the eigenvalues.

In any case x and y give the same measurements in absolute value. If the signs are

equal, we see that |⟨fi, x⟩|2 + |⟨fi, y⟩|2 = 0 and if the signs are not equal, we obtain

|⟨fi, x⟩|2− |⟨fi, y⟩|2 = 0. Hence, we have found x and y, two kD-sparse signals which are

not equal mod T (they are orthogonal), but give the same measurements.

This theorem is particularly useful because it gives a method for verifying whether a

system of vectors is suitable for doing kD-sparse phase retrieval in the complex case. We

shall use it intensively in Chapter 6 to show which type of Gabor measurements can do

(sparse) phase retrieval.



Chapter 5. Dictionary sparse phase retrieval 104

5.3 Dictionary Null Space Property and ℓ1 Recovery

Although theoretically the most important question in the phase retrieval problem is

injectivity, what one is interested in practice is a method for recovery of the vector from

given phaseless measurements. In the case of classical linear measurements of sparse

signals, the compressed sensing methodology is giving us a practical way of finding the

sparse vector by solving an ℓ1 minimization problem. As we recalled in Theorem 2.8 in

Chapter 1, characterization of the solvability of the ℓ1 minimization problem for spase

signals is given by the null space property. In [125], this methodology was developed

further in the case of non-linear measurements — when only the absolute values of the

measurements are known. On the other hand, a null space property for signals which

have a sparse representation in a dictionary was introduced and was investigated in [41].

We merge both ideas into one, to develop conditions for phase retrieval of signals sparse

in a dictionary via ℓ1 recovery. We focus on the case K = R.

We first recall the results from compressed sensing of dictionary sparse signals. Let

RN
kD be the set of all signals which are k-sparse in some dictionary D ∈ RN×n, and let

x0 ∈ RN
kD. Assume we have a measurement matrix M ∈ Rm×N , and want to recover

x0 from the measurements b = Mx0 = MDz0. For this, we can solve the synthesis ℓ1
minimization problem

ẑ = arg min
z∈Rn

∥z∥1 subject to b =MDz, (5.8)

and then find x̂ as Dẑ. We call the ℓ1 method successful when every minimizer ẑ of (5.8)

satisfies Dẑ = x0. Note that it is not required that ẑ = z0.

A necessary and sufficient condition for the success of the ℓ1 recovery is the dictionary

based null space property, defined as follows.

Definition 5.10. [41] Fix a dictionary D ∈ RN×n. A matrix M ∈ Rm×N is said to

satisfy the D-NSP of order k (kD-NSP), if for any index set K with |K| ≤ k, and any

non zero v ∈ D−1(N (M)), there exist u ∈ N (D), such that

∥vK + u∥1 < ∥vKc∥1. (5.9)

We use the notation v ∈ D−1(N (M)) to denote that Dv ∈ N (M), where N (M) is the

null space of M.

Theorem 5.11 ([41]). D-NSP is a necessary and sufficient condition for the ℓ1 mini-

mization (5.8) to successfully recover all signals in the set RN
kD.
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We are interested in the case when a signal x0 has a sparse representation Dz0, but

additionally we are given only the magnitudes of the measurements, b = |MDz0|. This

is the standard dictionary sparse phase retrieval problem, only written in a matrix form

— M ∈ Rm×N in this case contains as rows the usual measurement vectors {fi}mi=1 in

RN . We want to investigate the following minimization problem

ẑ = arg min
z∈Rn

∥z∥1 subject to b = |MDz|, (5.10)

just having in mind that we can find x only up to a unimodular constant. We thus call

this method successful, if every minimizer of (5.10) ẑ satisfies Dẑ = x0 mod T.

If we write explicitly the measurements for each j = 1, . . . ,m, we have

bj = |⟨fj , x⟩| = |⟨fj ,
n∑

i=1

zidi⟩| = |
n∑

i=1

zi⟨fj , di⟩|.

We can now construct a new measurement matrix G ∈ Rm×n, where each row is

gj = [⟨fj , d1⟩, . . . , ⟨fj , dn⟩],

and rewrite our measurements as bj = |⟨z, gj⟩|. Now recovery of z is the usual setting of k-

sparse phase retrieval [125], only that the vectors are now in Rn. Therefore, the question

of minimal number of measurements required for phase retrieval seems straightforward,

we just need to request conditions on the set {gi}mi=1 in Rn instead of {fi}mi=1 in RN . In

matrix form, instead of M our measurement matrix is now MD, and having a null space

property now for MD guarantees a recovery via ℓ1.

This is however not entirely equivalent to the problem that we want to solve. As [41]

suggests, by looking at MD we are aiming for more than what we are interested in. We

do not need to successfully recover both z0 and x0, but only need a good estimate of

x0, and there could be many vectors ẑ that can give us the correct x0 (remember that

D is a frame, i.e. a redundant system which spans Rn). Following the ideas in [41] we

would like to have a dictionary based null space property for phase retrieval, that will

be equivalent to successful recovery of x0 via phase retrieval with ℓ1.

Definition 5.12. Let D ∈ RN×n be a fixed dictionary. A matrix M ∈ Rm×N is said

to satisfy the D-PR-NSP of order k, if for any index set S ⊆ [1, . . . ,m] and all nonzero

u ∈ D−1(N (MS)) and v ∈ D−1(N (MSc)) satisfying ∥u+v∥0 ≤ k, there exists w ∈ N (D)

such that

∥u+ v + w∥1 < ∥u− v∥1. (5.11)

Theorem 5.13. D-PR-NSP is a necessary and sufficient condition for ℓ1-synthesis phase

retrieval (5.10) to successfully recover all signals in the set RN
kD.
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Proof. Sufficient part. Let us assume that D-PR-NSP holds. We will show that up to

a sign (5.10) is able to successfully recover all x0 ∈ RN
kD. Let b = |Mx0|. For a fixed

ϵ ∈ {1,−1}m set bϵ := [ϵ1b1, . . . , ϵmbm]T . We now consider the standard minimization

problem

min ∥z∥1 subject to MDz = bϵ. (5.12)

If zϵ is its solution, we denote xϵ := Dzϵ. We will show that for any ϵ ∈ {1,−1}m, a

solution xϵ satisfies

∥x0∥1 ≤ ∥xϵ∥1,

and equality holds if and only if xϵ = ±x0.

Let ϵ∗ ∈ {1,−1}m be such that bϵ∗ = MDz0. The corresponding solution to the mini-

mization problem (5.12) is denoted zϵ∗ .

Note that the condition D-PR-NSP implies the classical D-NSP. To show this, take any

set K, |K| ≤ k, and any nonzero η ∈ D−1(N (M)). Let S = [1, . . . ,m], and set

u = η, v = ηK − ηKc .

Since MDu = 0, MSDu is zero, and thus u ∈ D−1(N (MS)). Furthermore, Sc = ∅, and

therefore we can write v ∈ D−1(N (MSc)). Finally, u+ v = 2ηK, so ∥u+ v∥0 ≤ k. Thus,

by D-PR-NSP, there exist an w′ = 2w ∈ N (D), such that

∥ηK + w′∥1 < ∥ηKc∥1,

and this is exactly the D-NSP. Now we can use Theorem 5.11 to conclude that we can

successfully recover x0 = Dzϵ∗ by solving (5.12).

Now for any ϵ ∈ {1,−1}m ̸= ±ϵ∗ that gives us another solution zϵ to (5.12), we conclude

the following: Set S∗ = {j : ϵj = ϵ∗j}. Then,

⟨gj , zϵ⟩ =

⎧⎨⎩ ⟨gj , zϵ∗⟩, if j ∈ S∗,

−⟨gj , zϵ∗⟩, if j ∈ Sc
∗.

Set u := z0− zϵ and v = z0+ zϵ. We see that u ∈ D−1(N (MS∗)) and v ∈ D−1(N (MSc
∗)).

Furthermore, u+ v = 2z0, so it is k-sparse, and we can use the D-PR-NSP to conclude

that there exist a w ∈ N (D) such that

∥z0 + w∥1 < ∥zϵ∥1.



Chapter 5. Dictionary sparse phase retrieval 107

Since z0 + w is feasible to (5.12), the strict inequality tells us that zϵ can not be a

minimizer to (5.12). Moreover, all possible solutions z0+w give us a successful recovery,

since D(z0 + w) = x0.

Necessary part. We assume that (5.10) can successfully recover all signals in RN
kD,

but D-PR-NSP is not fulfilled. Namely, there exist a set S ⊆ [1, . . . ,m], nonzero

u ∈ D−1(N (MS)) and v ∈ D−1(N (MSc)) such that ∥u+v∥0 ≤ k and for all w ∈ N (D) :

∥u+ v + w∥1 > ∥u− v∥1. (5.13)

Let z0 = u+ v, ∥z0∥ ≤ k. By assumption, we can successfully recover the corresponding

x0 = Dz0 up to a sign by (5.10). Let ẑ be a successful minimizer, meaning that Dẑ =

±Dz0 and that ∥ẑ∥1 ≤ ∥z∥1 for any other feasible z. In particular, ẑ−z0 or ẑ+z0 ∈ N (D),

and we can write this as

ẑ = z0 + w mod T for some w ∈ N (D). (5.14)

We notice that

|⟨gj , z0⟩| = |⟨gj , u+ v⟩| = |⟨gj , u− v⟩|

for all j = 1, . . . ,m, since ⟨gj , u⟩ = 0 when j ∈ S and ⟨gj , v⟩ = 0 when j ∈ Sc. Therefore,

u−v is also a feasible for (5.10), and hence we must have ∥ẑ∥1 ≤ ∥u− v∥1. Using (5.14),

we obtain

∥u+ v + w∥1 = ∥z0 + w∥ ≤ ∥u− v∥1.

This is a contradiction to (5.13), and thus the theorem is proven.

5.4 Sparse Phase Retrieval by Projections

In this section we want to consider a generalization of the measurement process that we

were considering so far — instead of linear measurements of the signal, which can also

be viewed as rank one projections, the measurements are projections onto subspaces,

and moreover, we are then given only the norms of those projections. This is the so-

called phase retrieval by projections problem, see [20] for recent advances and many open

problems. The sparsity prior was so far not considered in this context, and we contribute

to it with two results: an equivalence condition for injectivity, and the sufficient number

of measurements. We should note that unlike some other problems involving measuring

by projections, here sparsity is not understood as the number of subspaces on which the

signal lies (as we had for example in Section 4.3 of Chapter 4), but as the number of

nonzeros of the signal. We will see, however, that further generalizations are possible.
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Let W = {Wj}mj=1 be a collection of subspaces of KN , where K can be R or C. By Pj

we denote the orthogonal projection onto Wj . We want to consider the class of k-sparse

signals,

KN
k = {x ∈ KN : ∥x∥0 ≤ k},

and pose the question whether we can recover such signals from phaseless measurements

by projections, {∥Pjx∥}mj=1. More precisely, given the following mapping:

MW : KN
k /T → Rm

+ : MW(x) =
[
∥P1x∥2 ∥P2x∥2 . . . ∥Pmx∥2

]T
, (5.15)

we are interested mainly in two questions: When is this mapping injective (when W
allows k-sparse phase retrieval by projections), and how many measurements do we need

in order to have an injective map?

5.4.1 Injectivity

Since the classical phase retrieval problem is already well investigated, one natural ap-

proach would be to transfer the problem of recovery by projections into a recovery by

vectors. The authors in [20] managed to do this in the case of recovery of arbitrary

signals, by incorporating the orthogonal bases of the subspaces. We will show that this

idea can be used when considering a particular class of signals, for example vectors which

are k-sparse.

Theorem 5.14. The following statements are equivalent:

(i) {Wj}mj=1 allows k-sparse phase retrieval by projections (MW is injective).

(ii) Any choice of Φ = {φj,d}m,Dn

j,d=1 , where {φj,d}Dn
d=1 is an orthonormal basis of Wj,

allows k-sparse phase retrieval in KN
k .

Proof. (i) ⇒ (ii). Suppose that MW is injective, i.e. for all x, y ∈ KN
k we have

∥Pjx∥22 = ∥Pjy∥22 , j = 1, . . . ,m ⇒ x = y mod T.

Consider x, y ∈ KN
k . We need to show that if we have a union of ONB’s as above

satisfying

|⟨x, φj,d⟩|2 = |⟨y, φj,d⟩|2 for all j = 1 . . .m, d = 1, . . . Dn, (5.16)
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then necessarily x = y mod T. If however (5.16) is true, then for every j it holds in

particular

∥Pjx∥2 =
Dn∑
d=1

|⟨x, φj,d⟩|2 =
Dn∑
i=1

|⟨y, φj,d⟩|2 = ∥Pjy∥2 .

Therefore, since x, y ∈ KN
k and MW is injective, it follows that x = y mod T.

(ii) ⇒ (i). Let x, y ∈ KN
k be vectors with ∥Pjx∥2 = ∥Pjy∥2 for every j = 1, . . . ,m.

Given such vectors, independent of the sparsity assumption, for each subspace Wj one

can construct an orthonormal basis {φj,d}Dn
d=1 such that |⟨x, φj,d⟩| = |⟨y, φj,d⟩| for all j

and d (see Lemma 3.4 of [20].) Since any collection of that kind was assumed to have

the k-sparse phase retrieval property, we can conclude that x = y mod T.

Note that in the proof, we never explicitly used that the signals are actually k-sparse. We

could substitute the set KN
k with any other subclass of signals, for example dictionary

sparse KN
kD, and the result will still hold. But then for this class of signals, we need

to know, when a set of measurements is doing phase retrieval, and one option is to use

the corresponding complement property. As we discussed in the previous section, the

k and kD-complement properties are no longer equivalent to phase retrievability, and

for recovery of k-sparse signals one needs to require the 2k-complement property. We

will use this idea to construct an example of subspaces allowing k-phase retrieval by

projections in the next section.

5.4.2 Sufficient Number of Measurements

The question of the number of subspaces needed for injectivity was investigated for

general signals in [20]. We will prove that instead of 2N − 1, now 4k − 1 subspaces are

sufficient to recover a real signal which has k nonzero entries. The idea is to transfer

the problem of phase retrieval by projections into a classical phase retrieval problem, by

using the orthogonality of the vectors which span the subspaces. In order to build this

construction we need one lemma, but first we state the main result. We focus here on

the case K = R. A similar approach can be used to obtain result for complex sparse

vectors, where the result for general signals is 4N − 3 subspaces each of dimension N.

The question whether this number of measurements is also necessary (both in R and C)

is still open even for arbitrary signals.

Theorem 5.15. Phase retrieval by projections in RN
k is possible using 4k − 1 subspaces

each of dimension smaller than k − 1.
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Proof. First, let us assume that {φn}4k−1
n=1 are vectors in RN which have the 2k-complement

property, and additionally that {φn}2kn=1 and {φn}4k−1
n=2k+1 are orthonormal sets in RN . We

prove that such construction is possible later in Lemma 5.16. If this is true, then we can

build the 4k − 1 subspaces in the following manner. Let Ij ⊆ {1, . . . , 2k}, j = 1, . . . , 2k

be at this point arbitrary subsets of indices and let PIj be the orthogonal projection

onto WIj = span{φn}n∈Ij . Analogically, let Jj ⊆ {2k + 1, . . . , 4k − 1}, j = 1, . . . , 2k − 1,

and PJj corresponds to WJj = span{φn}n∈Jj . Set WJ2k = {0} for convenience. We will

show that we can choose Ii, Jj such that we can recover any k-sparse vector x from the

measurements {∥PIjx∥2, ∥PJjx∥2}2kj=1. Because of the orthonormality condition, we can

write the measurements as

∥PIjx∥ =
∑
n∈Ij

|⟨x, φn⟩|2, ∥PJjx∥ =
∑
n∈Jj

|⟨x, φn⟩|2, j = 1, . . . , 2k.

We can further rewrite those equations in matrix form, if we use two indicator matrices

of size 2k × 2k :

A = [aij ]
2k
i,j=1 : aij = 1, if j = Ij ,

B = [bij ]
2k
i,j=1 : bij = 1, if j = Jj .

For example, for the first set of measurements, the system is⎡⎢⎢⎣
∥PI1∥2

. . .

∥PI2k∥2

⎤⎥⎥⎦ = A

⎡⎢⎢⎣
|⟨x, φ1⟩|2

. . .

|⟨x, φ2k⟩|2

⎤⎥⎥⎦ , (5.17)

and for B we have a corresponding system which involves {PJi}2ki=1, and {φi}4k−1
i=2k+1. We

see now, that if the matrices A and B were invertible, we could find |⟨x, φj⟩|2 for all

j = 1, . . . , 4k − 1. And since we know that {φj}4k−1
j=1 has the 2k-complement property,

they allow k-sparse phase retrieval by Theorem 5.4. Thus, we can recover x. Therefore,

{Wj}4k−1
j=1 allow k-sparse phase retrieval by projection, and the theorem would be proven.

Since we are using the proof technique from [20], the matrices A and B are in fact the

same except that they are of different size. Thus, we know from Lemma 3.4 in [20] that

Ij and Jj can be chosen such that A and B are invertible.

As it was seen in the proof, the problem boils down to finding an orthonormal system of

vectors in RN which has the 2k-complement property. We show now that it is possible

to construct such. We note at this point the connection between the spark and phase

retrievability which was noticed in [13]: a set of m ≥ 2N − 1 vectors in RN which is full

spark (every collection of N vectors is linearly independent, or equivalently spans RN )
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necessarily satisfies the complement property. If one is interested in the k-complement

property, then any collection of vectors restricted to a subset of k elements has to be full

spark.

Lemma 5.16. Let 2k ≤ N . Then there exists a set of 2k−1 orthonormal vectors in RN

which have the k-complement property.

Proof. Let U ∈ O(N) be an orthogonal matrix chosen at random from the orthogonal

group according to the Haar measure. Consider its first 2k − 1 columns (ui)
2k−1
i=1 . We

claim that these vectors have the k-complement property with probability 1.

To see why, let S ⊆ [1, . . . , 2k − 1] and K ⊆ [1, . . . , N ], |K| = k be arbitrary. We need

to prove that either {uKi }i∈S or {uKi }i∈Sc spans Rk. One of S and Sc has cardinality at

least k, and we can assume without loss of generality that it is S. In order for {ψK
i }i∈S

to span Rk, there must exist a sub-choice of them which is linearly independent. This is

then a k × k block of the original matrix U , and we will show that it has full rank with

probability 1.

It is clear that it is sufficient to consider only the upper left k × k block of U , since by

multiplying U with permutation matrices, which are orthogonal, we can move any block

to the upper left position. Let A ⊆ O(N) be the set of all orthogonal matrices with

invertible upper left k × k block. We want to show that µ(A) = 1, where µ denotes the

Haar measure.

There is a useful characterization of the Haar measure in terms of the standard normalized

measure on the sphere SN−1, denoted by σN−1. For every A ⊆ O(N), and for every

η ∈ SN−1,

µ(A) = σN−1({V η : V ∈ A}).

See, for example [82] for more details. Therefore, it is sufficient to show that O =

{V e1 : V ∈ A} has full measure in SN−1. We will prove that O contains the set

P =
{
η = (η1, . . . ηN ) ∈ SN−1 : (η1, . . . , ηk) ̸= 0

}
.

Since this set has full measure in SN−1, that will conclude our proof.

Let K = [1, . . . , k] and let further η ∈ P. We will construct a matrix U ∈ O(N) with

invertible upper left k × k block and with Ue1 = η as follows:

1. First, let η be the first column of U . This secures Ue1 = η.

2. Now choose k − 1 vectors ũ2, . . . , ũk in Rk which together with the normalized

version of ηK form an ONB of Rk. Take these vectors and fill up the upper left

block of U . This block is then invertible.
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3. Finally, fill the empty entries of the columns 2 to k with zeroes. Then the full

first k columns are all normalized and mutually orthogonal. These can hence be

completed with N − k vectors ṽk+1, . . . ṽn to an ONB of RN . Choose these vectors

as the last N − k columns of U , which then becomes an element of O(N).

In matrix form, we have obtained

U =

[
ηK Ũ ṼK

ηKc 0 ṼKc

]
.

This proves that P ⊆ O, and therefore the lemma is proven.

Notice that the result for non-sparse (arbitrary) signals in the real case is that 2N − 1

subspaces each of any dimension less than N are sufficient for phase retrieval by pro-

jections [20]. There, the initial result is about subspaces of dimension less than N − 1,

and it is then shown how this number can be relaxed to N. Similar approach could be

used to go from k − 1 to k in the case of sparse signals. Also, the number of subspaces

4k − 1 could be decreased to 2k − 1. Looking at the proof of Theorem 5.15, we see that

one only needs to find 2k− 1 vectors which allow k-sparse phase retrieval (previously we

had 4k − 1 which had the 2k-complement property), and additionally that they can be

divided into two orthonormal sets in RN . The authors in [20] also mention that similar

results hold in the complex case. This should be true also in the case of sparse signals,

but we leave the details for further investigation.



Chapter 6

Phase Retrieval from Gabor

Measurements

6.1 Introduction

In this Chapter we bring together the ideas from the last two chapters: Gabor measure-

ment vectors, i.e., time-frequency shifts of a suitably chosen generator from Chapter 4,

and the phase retrieval problem, i.e., recovery from the magnitude of the linear measure-

ments from Chapter 5. Namely, we consider the problem of phase retrieval from Gabor

measurements. We investigate condtions which guarantee injectivity of the phaseless

Gabor measurements, and which type of generators satsify those conditions.

At first, we will provide injectivity condition for recovery of arbitrary signals from the

full set of Gabor magnitude measurements, with a special case of signals which are

non-vanishing. We will see that Gabor system generated by difference sets satisfy this

condition and thus allow phase retrieval, while Alltop and random generators are not

suitable for phase retreival of general signals. Next, we focus on injectivity condition for

sparse signals. Here we will see that generators which are window functions in the Fourier

domain are suitable for sparse phase retrieval. Finally, we will provide an algorithm for

recovery of signals from Gabor magnitude measurements, and a modification of it in

the case the signal is sparse. We will provide numerical experiments to compare this

algorithm with known phase retrieval algorithms, and we will also discuss its stability.

At the end, we will make a connection to the work conducted in Chapter 3. We will test

the proposed algorithm on recovery of unions of discrete lines from the full set of Gabor

magnitude measurements.

113
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The remainder of this chapter is organized as follows. Section 6.2 is dedicated to the

phase retrieval question for general signals, from all N2 Gabor measurements. In Section

6.3, we focus on the sparse setting, and show that k-sparse phase retrieval is possible

with order of k3 Gabor measurements. A detailed description of the algorithm that we

propose, and its empirical evaluation is presented in Section 6.4.

6.2 An Injectivity Condition for Arbitrary Signals

We want to pose the question under what conditions a signal x from some class C ⊆ CN

can be recovered from a set of its Gabor phaseless (magnitude) measurements {|⟨x, gλ⟩|2}λ∈Λ,
Λ ⊆ Z2

N . Recall that for λ = (p, l) ∈ Zp × Zp we use the notation gλ := Πλg, where

Πλ := MℓTp, and the translation and the modulation operators are defined for every

n ∈ ZN as

(Tpx)(n) = x(n− p), (Mℓx)(n) = ωℓnx(n).

Since these measurements are invariant under multiplication with c ∈ T = {c ∈ C, |c| = 1},
the best we can hope for is to recover x up to a global phase. If we denote by C/T the

set of equivalence classes under the equivalence relation x ∼ y ⇔ ∃c ∈ T : x = cy, we

can formally pose the problem as follows: Under what conditions on g is the map

MG : C/T → R|Λ|
+ , x ↦→ {|⟨x, gλ⟩|2}λ∈Λ

injective?

Definition 6.1. We say that the Gabor system G = {gλ}λ∈Λ associated to a generator

g ∈ CN is allowing phase retrieval for C (or has the phase retrieval property), if the map

MG is injective.

6.2.1 Injectivity for Full Gabor Measurements

We start by considering the problem of recovering arbitrary signals from all measure-

ments, i.e. C = CN and Λ = Z2
N . In order to investigate which Gabor frames are

allowing phase retrieval for this class, we will use a well known characterization of the

phase retrieval property in the complex case, given via the properties of the kernel of the

PhaseLift operator, also called super analysis operator in [13]. For a set of measurement

vectors {fi}mi=1 in CN this operator is defined as

A : CN×N → Cm, H ↦→ {⟨H, fif∗i ⟩HS}
m
i=1, (6.1)



Chapter 6. Gabor phase retrieval 115

Notice that the mapping A with H = xx∗ gives exactly the phaseless measurements,

⟨H, fif∗i ⟩HS = |⟨x, fi⟩|2. Also note that in the previous chapter we chose the set of

Hermitian matrices HN×N as the domain of A. We define A this way to avoid some

technicalities. However, the space of Hermitian matrices is a very natural domain in the

context of phase retrieval, as we know from the following result.

Theorem 6.2 ([13]). A set of measurement vectors {fi}mi=1 in CN allows phase retrieval

if and only if the kernel of the associated map A does not contain any Hermitian matrices

of rank 1 or 2.

With this theorem, we can prove that the full set of N2 Gabor phaseless measurements

allows phase retrieval, as long as a simple condition is satisfied.

Theorem 6.3. Let g ∈ CN be a generator for which

⟨g, gλ⟩ ̸= 0 (6.2)

for every λ ∈ Z2
N . Then the corresponding Gabor frame G = {gλ}λ∈Z2

N
allows phase

retrieval.

Proof. Theorem 6.2 suggests that we should investigate ⟨H, gλg∗λ⟩HS for H ∈ HN×N .

Using the fact that the matrices Πλ = MlTp are unitary, and that the collection of

them forms a basis in CN×N [99], ⟨Πλ,Πµ⟩HS = Nδµ,λ, we can write H in terms of the

elements of this basis:

H =
1

N

∑
µ∈Z2

N

⟨Πµ, H⟩HS Πµ.

If µ = (p, ℓ), we have

⟨Πµ, H⟩HS =
∑
i∈ZN

⟨Πµei, Hei⟩ =
∑
i∈ZN

⟨
ωℓ(i+p)ei+p, Hei

⟩
=
∑
i∈ZN

ω−ℓi ⟨ei, Hei−p⟩ = Ĥp(ℓ),

where Ĥp denotes the (discrete) Fourier transform of the vector Hp, defined by

Hp(i) := Hi,i−p. (6.3)

Note that Hp is in some sense the p-th ’band’ of the matrix H. It hence holds

N ⟨H, gλg∗λ⟩HS = N ⟨gλ, Hgλ⟩ =
∑
p,ℓ

⟨
gλ, Ĥp(ℓ)Π(p,ℓ)gλ

⟩
=
∑
p,ℓ

Ĥp(ℓ)
⟨
gλ,Π(p,ℓ)gλ

⟩
.

If we write λ = (q, j), we know by the commutation relations between translations and

modulations (see Proposition 2.14) that Π(p,ℓ)gλ = Π(p,ℓ)Π(q,j)g = ω−jpωℓqΠ(q,j)Π(p,ℓ)g.
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Using this, and the fact that Πλ is unitary, we arrive at

N ⟨gλ, Hgλ⟩ =
∑
p,ℓ

ω−jpωℓqĤp(ℓ) ⟨g, gp,ℓ⟩ . (6.4)

Now, assume that (6.4) vanishes for all λ = (q, j) ∈ Z2
N . Fixing j, we see that the above

expression is just the value of the Fourier transform of the vector V q ∈ CN with pth

entry

V q(p) =
∑
ℓ

ωℓqĤp(ℓ) ⟨g, gp,ℓ⟩

evaluated at j. Since (6.4) equals zero for all j, the vector V q vanishes for every q.

Further, we observe that V q(p) is N times the value at q of the inverse Fourier transform

of the vector wp ∈ CN , where

wp(l) = Ĥp(ℓ) ⟨g, gp,ℓ⟩ . (6.5)

This expression must therefore be equal to zero for all p and ℓ. With the assumption on

the generator, we conclude that all the vectors Ĥp must vanish, and therefore also H. H

can hence not have rank 1 or 2, and the proof is finished.

Carefully going through the argument of the last proof, we see that it did not assume

that the rank of H is 1 or 2. Therefore, the proof actually shows that A is an injective

linear map. We use this idea to prove the following theorem.

Theorem 6.4. Let g ∈ CN be such that ⟨g, gλ⟩ ̸= 0 for all λ ∈ Z2
N . Then, the N2 rank-1

operators {gλg∗λ}λ∈Z2
N

form a frame for CN×N (equipped with the Hilbert-Schmidt norm)

and hence a basis. The frame bounds are given by

A = N · min
λ∈Z2

|⟨g, gλ⟩|2 , B = N ·max
λ∈Z2

|⟨g, gλ⟩|2 .

Proof. What we need to prove is that for every H ∈ CN×N , there exist 0 ≤ A ≤ B such

that

A ∥H∥2HS ≤
∑
λ∈Z2

|⟨H, gλg∗λ⟩HS |
2 ≤ B ∥H∥2HS .

In other words, we need to prove that A ∥H∥2HS ≤ ∥A(H)∥2 ≤ B ∥H∥2HS , where A is the

PhaseLift operator (6.1). Using the notation of the proof of Theorem 6.3, the formula

(6.4) states that the N -tuple {V q}Nq=1 ∈ (CN )N is obtained by performing inverse Fourier

transforms of the columns of the matrix {N⟨H, gλg∗λ⟩HS}λ∈Z2
N
= NA(H). Hence, their
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norms are related as follows:

∥NA(H)∥2 =
{V̂ q}Nq=1

2 = N
{V q}Nq=1

2 .
Using the same argument, we obtain

{V q}Nq=1

2 = {Nw̌p}Np=1

2 = N2

N

{wp}Np=1

2 and
{Ĥp}Np=1

 = N
{Hp}Np=1

2 .
The N -tuples {Ĥp}Np=1 and {wp}Np=1 are related through (6.5). Therefore, if we define

α = minλ∈Z2 |⟨g, gλ⟩|, β = maxλ∈Z2 |⟨g, gλ⟩|, we have

{wp}Np=1

2 = ∑
(p,ℓ)∈Z2

N

|wp(ℓ)|2 =
∑

(p,ℓ)∈Z2
N

⏐⏐⏐Ĥp(ℓ) ⟨g, gp,ℓ⟩
⏐⏐⏐2 ≤ β2

{Ĥp}Np=1

2
≥ α2

{Ĥp}Np=1

2.
Finally, the matrixH is obtained by merely permuting the elements of the array {Hp}Np=1.

Hence ∥H∥2HS =
{Hp}Np=1

2. Combining everything, we obtain

∥A(H)∥2 = N

N2

{V q}Nq=1

2 = {wp}Np=1

2⎧⎪⎨⎪⎩≤ β2
{Ĥp}Np=1

2 = Nβ2
{Hp}Np=1

2 = Nβ2 ∥H∥2HS ,

≥ α2
{Ĥp}Np=1

2 = Nα2
{Hp}Np=1

2 = Nα2 ∥H∥2HS ,

which is exactly what we wanted to prove.

We should note here that the result of Theorem 6.4 is known from the context of sampling

of operators [102, Theorem 15]. Also, more general result in terms of the singular values

of the operators {gλg∗λ}λ∈Z2
N

instead of the values of the frame bounds is given by the

same authors in [101].

6.2.2 Recovery of Non-Vanishing Vectors

We will now show that if we are interested in recovery of only non-vanishing vectors,

weaker condition on the generator can be assumed.

Definition 6.5. A vector x ∈ CN is called non-vanishing (or full), if all its entries are

nonzero, i.e.

x(n) ̸= 0, for all n = 0, . . . , N − 1.

By Cf we denote the class of all non-vanishing signals in CN .
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This situation is much easier to handle, because, intuitively, the non-presence of ”holes”

in the signals keeps the phases of the entries coupled. We will use the same technique as

in Theorem 6.3 to prove that the injectivity condition can be weakened in this setting.

Note that we are still assuming that all measurements are known.

Theorem 6.6. Assume that

⟨g, gp,ℓ⟩ ̸= 0 for p = 0, 1 and ℓ ∈ ZN . (6.6)

Then the Gabor frame G = {gλ}λ∈Z2
N

is allowing phase retrieval for Cf .

Proof. Assume that (6.6) is satisfied, and that x and y are full vectors which give the

same Gabor phaseless measurements. Then H := xx∗ − yy∗ is in the kernel of A, since

for every λ ∈ Z2
N we have

A(xx∗ − yy∗)(λ) = ⟨gλ, (xx∗ − yy∗)gλ⟩ = |⟨gλ, x⟩|2 − |⟨gλ, y⟩|2 = 0.

The proof of Theorem 6.3 then implies that Ĥp = 0 for p = 0, 1, i.e. that H0 = H1 = 0.

Remembering that Hp(i) = Hi,i−p, we arrive at

0 = x(i)x̄(i)− y(i)ȳ(i) = x(i)x̄(i− 1)− y(i)ȳ(i− 1), i = 0, . . . , N − 1.

The first equality simply says that |x(i)| = |y(i)| , i.e. that there exists numbers ϵi ∈ T
so that x(i) = ϵiy(i) for all i. Inserting this into the second equation yields

0 = y(i)ȳ(i− 1)(ϵiϵ̄i−1 − 1).

Since all entries of y are assumed to be nonzero, it follows that ϵi = ϵi−1, i.e. ϵi = ϵ0 =:

c ∈ T for all i. Hence x = cy for a c ∈ T, and x and y are equal mod T.

Remark 6.7. A similar result was proven in [55]. There, it was only assumed that

⟨g, gp,ℓ⟩ ̸= 0 for p = 0 and all ℓ ∈ ZN . However, in this case further constraints on the

generators need to be made: g must be a window of length W ≥ 2, where N ≥ 2W − 1

and N and W − 1 are coprime. Our result, on the other hand, works for more general

generators and any N.

6.2.3 Generators Which Allow Phase Retrieval

We will present two types of signals, one random and one deterministic, which satisfy

condition (6.2), and thus can be used for phase retrieval of signals from all N2 Gabor

measurements.
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6.2.3.1 Complex Random Vectors as Generators

We start by considering a probabilistic approach, a common strategy in signal recovery

in general.

Proposition 6.8. Let g be a vector in CN , randomly distributed according to the complex

standard normal distribution. Then, the condition ⟨g, gλ⟩ ̸= 0 for all λ ∈ Z2
N is satisfied

with probability 1.

Proof. Since there are only finitely many λ’s, it suffices to prove that ⟨g,Πλg⟩ ≠ 0

with probability 1 for one arbitrary λ. Since Πλ is a unitary operator, there exists an

orthonormal basis {qi}Ni=1 of CN and ci ∈ T with

Πλ =

N∑
i=1

ciqiq
∗
i .

If we expand g in this basis, i.e. g =
∑

i hiqi, then the vector h ∈ CN will also be

distributed according to the complex standard normal distribution [66]. We have Πλg =∑
i cihiqi, and hence

⟨g,Πλg⟩ =
N∑
i=1

ci |hi|2 .

In order for g to not satisfy (6.2), the random variable h = {|hi|2}Ni=1 on RN
+ must hence

lie in the subspace of RN defined by{
v :

n∑
i=1

civi = 0

}
.

Since this space has dimension N − 1, the set has Lebesgue measure zero. If we prove

that h has a distribution which has a density with respect to the Lebesgue measure on

RN
+ which is almost never zero, we are done. This is however not hard to see, since the

variables |hi|2 = |ai|2 + |bi|2 , i = 1, . . . , N are independently distributed according to

the χ2
2-distribution, which has density ρ(x) = 1

2 exp(−x/2) on R+.

6.2.3.2 Difference Sets as Generators

The second example are difference sets, a construction coming from combinatorial design

theory [45], which we introduced in Chapter 4, Section 4.2. Interestingly, the set of all

modulations and translations of a difference set has exactly the property desired for

phase retrieval. Moreover, we will show that the Alltop sequences and random vectors,
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which were almost optimal for the applications in Chapter 4, are now not suitable for

recovery of arbitrary vectors from phaseless measurements. Let us recall the definition

of a difference set for completeness.

Definition 6.9. A subset K = {u1, . . . , uK} of ZN is called an (N,K, ν) difference set

if the K(K − 1) differences

(uk − ul) mod N, k ̸= l

take all possible nonzero values 1, 2, . . . , N−1, with each value appearing exactly ν times.

Given a difference set K with parameters (N,K, ν) we denote by χK ∈ {0, 1}N its

characteristic function. We now prove that if such characteristic functions are used as

generators, the corresponding Gabor frames will satisfy (6.2), and hence allow phase

retrieval for arbitrary signals.

Proposition 6.10. Let N be an integer with a prime factorization N = pa11 . . . pa
r

r . Let

K be a difference set with parameters (N,K, ν), such that

ν < min{p1, . . . , pr}. (6.7)

Then, for g = χK,

⟨g, gµ⟩ ̸= 0 for every µ ∈ Z2
N . (6.8)

Proof. Let µ = (q, j), with both q, j ̸= 0. By just using the definition of gµ and K we

obtain

⟨g, gµ⟩ =
∑
n∈ZN

g(n)(MjTqg)(n) =
∑
n∈ZN

g(n)g(n− q)ωjn =
∑

n∈K and
n−q∈K

ωjn. (6.9)

Now, taking into account the nature of a difference set, we can conclude that in the set

{n : n ∈ K, n− q ∈ K}

there will be always exactly ν elements (because for q ∈ ZN there are exactly ν ways to

be written as a difference of elements in K, and n− (n− q) are such differences).

If ν = 1, we are left with a single ωjn0 and then certainly the sum is different from zero.

If ν ̸= 1, we have a sum of ν different N -th roots of unity, and we will show that with

the given assumptions on the difference set, (6.8) holds. We use the following result from

[86] about the vanishing sums of roots of unity. The main theorem in the work [86] states

that for any N = pa11 . . . parr , the only possible amounts of N -th roots of unity that can
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sum up to zero is given by M1p1+ . . .+Mrpr. Here the Mi are any non-negative integers

(0 is included). Now it is clear that the condition ν < min{p1, . . . pr} will ensure that

we will never have a vanishing sum.

If now µ = (0, j) the sum will go over the full set K, and since K is a difference set, again

this sum is non vanishing (see, for example, the proof of Proposition 4.3).

Finally, in the last case µ = (q, 0), we have a sum of ν ones, and therefore we have proven

(6.8) for all cases µ ∈ Z2
N .

Example 6.1. We now provide some examples of families of difference sets, which satisfy

the condition from Proposition 6.10.

Family 1: Quadratic Difference Sets. Let q = pr = 3 (mod 4) be a power of a prime

and

N = q, K =
q − 1

2
, ν =

q − 3

4
.

Then u = {t2 : t ∈ ZN\{0}} is a (N,K, ν) difference set. If r = 1, condition (6.7) is

satisfied.

Family 2: Quartic Difference Sets. Let p = 4a2 + 1 be a prime with a odd, and

N = p, K =
p− 1

4
, ν =

p− 5

16
.

Then u = {t4 : t ∈ ZN\{0}} is a (N,K, ν) difference set and additionally ν < N.

6.2.4 Generators Which Do Not Allow Phase Retrieval

We now consider two cases for which condition (6.2) is not satisfied, and show that this

in fact implies that the Gabor frames do not allow phase retrieval in these cases.

Proposition 6.11. Let g ∈ CN be a generator such that one of the following two condi-

tions is satisfied

⟨g, gp̂,ℓ⟩ = 0, for fixed p̂ ∈ ZN\{0} and all ℓ ∈ ZN . (6.10)

⟨g, gp̂,ℓ⟩ = 0, for p̂ = 0 and all ℓ ∈ ZN\{0}. (6.11)

Then, the corresponding Gabor frame G = {gλ}λ∈Z2
N

does not allow phase retrieval

for CN .
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Proof. Let us first assume that condition (6.10) is satisfied. We consider the matrix

H1 ∈ HN×N , defined by

H1 = e0e
∗
−p̂ + e−p̂e

∗
0

(e0 is the ’first unit vector’ - remember that we are always considering indices from ZN ).

This matrix has rank 2, and it lies in the kernel of the PhaseLift operator associated to

the Gabor frame defined in (6.1). To see this, note that using the notation of the proof

of Theorem 6.3 we have

Hp(i) = Hi,i−p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i = 0, p = p̂,

1 if i = −p̂, p = −p̂,

0 else.

In other words, Hp = 0 for all p ̸= ±p̂. Since ⟨g, gp,ℓ⟩ = ω−ℓp⟨g, g−p,−ℓ⟩, equation (6.10)

also implies ⟨g, g−p̂,ℓ⟩ = 0 for all ℓ ∈ ZN . These two facts prove that

Ĥp(ℓ) ⟨g, gp,ℓ⟩ = 0

for all ℓ and p. Using the technique of the proof of Theorem 6.3 backwards, it follows

A(H1) = 0. The matrix H1 that we have found has rank 2 and it is in the kernel of A.
Therefore, by Theorem 6.2, the Gabor frame can not allow phase retrieval.

Now we assume that (6.11) is satisfied. In this case we define a rank 2 matrix in HN×N

by

H2 = e0e
∗
0 − e1e

∗
1.

For this matrix, Hp = 0 for p ̸= 0. Also Ĥ0(0) =
∑

iHi,i = 0. Because of these two facts

and the assumption on g, we again have

Ĥp(ℓ) ⟨g, gp,ℓ⟩ = 0 for all (p, ℓ) ∈ Z2
N ,

and H2 will by the same argument as before be in the kernel of A. Phase retrieval is

again not possible.

Example 6.2. We now give two examples, for which the conditions of the previous

proposition are satisfied.

Short windows: The condition (6.10) is satisfied if the generator g is a “short window”.

More precisely, if supp g ⊆ [K1,K2] for |K1 −K2| < N
2 , then g and MℓTpg will have
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H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
. . .

1
. . .

. . .
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
H2 =

⎡⎢⎢⎢⎢⎢⎣
1

−1
0

. . .
0

⎤⎥⎥⎥⎥⎥⎦

Figure 6.1: The matrices H1 and H2 used in the proof of Proposition 6.11.

disjoint supports for some p’s and hence have a vanishing scalar product. Using a window

as a generator is a core idea in short-time Fourier analysis [99].

Alltop sequence: It can be easily shown that the Alltop sequence [5], which is defined as

{ 1√
N
ωn3}N−1

n=0 , has the property (6.11). As we saw in Chapter 4, this generator is often

and successfully used in sparse signal recovery from linear Gabor measurements [9, 99].

However, both these families of signals can not be used for phase retrieval, when we are

interested in recovery of all signals in CN .

6.3 An Injectivity Condition for Sparse Signals

Here we would like to focus on recovery of sparse signals, or signals sparse in a dictionary.

Since sparse vectors in some sense are k– and not N -dimensional, one would hope that

the number of measurements required to recover them can be decreased (in our case,

Λ < N2). This, and other, questions for sparse signals were considered and answered

for general measurement vectors in [97] and [125]. We generalized some of them to the

dictionary sparse setup in Chapter 5. We proved Theorem 5.9, a counterpart of Theorem

6.2 in the case of dictionary sparse signals. We formulate it here in the case of classical

sparsity, i.e. D = I. Then with the help of it we will investigate the case of Gabor

measurements as in the previous section.

Let {fj}mj=1 be a set of measurement vectors in CN and let AK be the PhaseLift operator

restricted onto a set K ⊆ [1, . . . , N ], |K| = k, and defined as

AK : Ck×k → Cm
+ : (AKH)(j) = ⟨H, fKj fK∗

j ⟩HS .

Theorem 6.12. Given the notations from above, the following two statements hold.

(i) If MF is not injective, then there exist K ⊆ [1, . . . , N ], |K| ≤ 2k, such that AK has

a Hermitian matrix with rank 1 or 2 in its null space.
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(ii) If there exist K ⊆ [1, . . . , N ], |K| ≤ k, such that AK has a rank 1 or 2 Hermitian

matrix in its null space, then MF is not injective.

We will prove a condition under which a subset of our Gabor frame {gλ}λ∈Z2
N

with ∼ k3

elements allows k-sparse phase retrieval, when N is prime. For general N , it would still

be possible to go below the full set of measurements, N2. We will need a special form of

the discrete uncertainty principle, which involves the sum of the “spread” of the signal

and its Fourier transform. Let us start with a general observation.

Lemma 6.13. Assume that for all nonzero vectors f ∈ CN

∥f∥0 + ∥f̂∥0 ≥ N − θN (6.12)

holds for some number θN . Then, if f is k-sparse (∥f∥0 = k), and f̂ is known to have

θN + k + 1 zero-entries, then f necessarily has to vanish.

This statement follows immediately by contradiction. The question is whether (6.12) is a

reasonable assumption. In [119] it is proved that when N is prime, (6.12) holds with θN
equal to −1. For general N, by the standard multiplicative uncertainty principle and the

geometric mean-arithmetic mean inequality, one can derive (6.12) with θN = N − 2
√
N.

A more involved inequality for general N was obtained in [91] and will be discussed later

on.

Before we proceed with a condition on the generator g for sparse phase retrieval, we

will first prove a more general statement about recovery of sparse matrices from linear

measurements, which is interesting on its own. We will be interested in the following

class of signals,

HK =
{
H ∈ CN×N : ∃K ⊆ [1, . . . N ], |K| = k : Hij = 0 if (i, j) /∈ K ×K

}
.

Theorem 6.14. Let N be such that the uncertainty principle (6.12) holds, and let λ =

(p, l) ∈ Z2
N . Let g have the following property: for each ℓ, the sequence cp = (⟨g, gp,·⟩)

formed by letting ℓ run obeys

θN + k + 1 ≤ ∥cp∥0 ≤ k̂ (6.13)

for some K and k̂. Then, for any subsets A ⊆ ZN , B ⊆ ZN with

|A| ≥ θN + k̂ + 1, |B| ≥ θN + k2 − k + 2,

the following holds. If a matrix H ∈ HK satisfies {⟨gλg∗λ, H⟩HS}λ∈A×B = 0, then H = 0.
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Proof. Let H ∈ HK satisfy ⟨gλg∗λ, H⟩HS = 0 for λ ∈ A × B and let K be such that

Hij = 0 if (i, j) /∈ K × K. We will prove that H then must be 0. Recall the notation

from the proof in Theorem 6.3, Hp(i) = Hi,i−p. Since Hi,i−p is zero, if (i, i− p) is not in

K ×K, we can conclude that

Hp(i) = Hi,i−p = 0 if i /∈ K ∩ (K + p).

This proves the following properties:

1. The vectors Hp are k-sparse.

2. Hp is zero for all but at most k2 − k + 1 different values for p. To see this, notice

first that Hp = 0 if p /∈ K −K. This is because if Hp(i) ̸= 0, then i ∈ K and there

additionally exists a j ∈ K with i = j + p. It follows p = i − j ∈ K − K. And we

know that the set K −K has at most |K| (|K| − 1) + 1 = k2 − k + 1 elements.

Now using the same argument as in the proof of Theorem 6.3, we arrive at

0 = N ⟨gλg∗λ, H⟩ =
∑
p,ℓ

ω−jpωℓqĤp(ℓ) ⟨g, gp,ℓ⟩ for all λ = (q, j) ∈ A×B. (6.14)

Fixing j, the sum in (6.14) is the value at j of the discrete Fourier transform of the vector

V q defined as

V q(p) =
∑
ℓ

ωℓqĤp(ℓ) ⟨g, gp,ℓ⟩ . (6.15)

Because of 2., these vectors are all (k2 − k + 1)-sparse. Further, (6.14) proves that their

Fourier transforms vanish at all j ∈ B, i.e. at θN + (k2 − k + 2) points. The discrete

uncertainty principle (6.12) implies that V q must equal zero.

Considering (6.15), the fact that V q(p) = 0 proves that the inverse Fourier transform of

the vector, which we denote by

wp(ℓ) = Ĥp(ℓ) ⟨g, gp,ℓ⟩

vanishes at the values q ∈ A, i.e. at θN + k̂ + 1 values. Because of our assumption on g,

wp is however k̂-sparse. We can therefore again conclude that

Ĥp(ℓ) ⟨g, gp,ℓ⟩ = 0 for all (p, ℓ) ∈ Z2
N .

Hence, if ⟨g, gp,ℓ⟩ ̸= 0, Ĥp(ℓ) must be 0. Due to our assumption on g, this happens for

at least θN + 2k+ 1 ℓ’s for every p. Because of 1., this is sufficient to prove that Hp = 0

for all p, and H therefore must be 0.
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We now use the theorem we have just proved, to provide a condition, when a Gabor

frame can do k-sparse phase retrieval.

Theorem 6.15. Let N be such that the uncertainty principle (6.12) holds, and let λ =

(p, l) ∈ Z2
N . Let g ∈ CN be a generator which satisfies the following condition: for each

ℓ, the sequence cp = (⟨g, gp,·⟩) formed by letting ℓ run obeys

θN + 2k + 1 ≤ ∥cp∥0 ≤ k̂ (6.16)

for some k and k̂. Then, for any subsets A ⊆ ZN , B ⊆ ZN with

|A| ≥ θN + k̂ + 1, |B| ≥ θN + (2k)2 − 2k + 2,

the set

{gλ, λ ∈ A×B} (6.17)

allows k-sparse phase retrieval.

Proof. We will use part (i) of Theorem 6.12 to show that k-sparse phase retrieval is

possible for the system (6.17). Let H be an Hermitian operator with values in CN
K =

{x ∈ CN , supp(x) ⊆ K} for some K with |K| = 2k for which A(H) = 0 (where A is the

PhaseLift operator associated with (6.17)). We will prove that H must be zero, from

which the claim follows. Since the range of H is contained in CN
K , we know that Hi,j = 0

if i /∈ K. Since Hi,j = Hj,i, we also have Hi,j = 0 if j /∈ K. We can conclude that

H ∈ H2K , and by Theorem 6.14 it immediately follows that H is zero, thus the theorem

is proved.

Let us make few remarks related to Theorems 6.15 and 6.14.

1. If θN + 4k2 − 2k + 2 ≥ N , then the same theorem holds for B = ZN and any A

with |A| ≥ θN + k̂ + 1. We can therefore also in this case reduce the number of

measurements from N2 to (θN+k̂+1)N. Also note that since k̂ must not be smaller

than 2k, the theorem does not yield any enhanced results for non-sparse vectors

(we need the sequences cp to be k̂-sparse to reduce the number of measurements,

but to have at least 2k nonzero elements to ensure injectivity for k-sparse signals).

2. We note, that when N is prime, the conditions of Theorem 6.15 become much

simpler. Namely,

2k ≤ ∥cp∥0 ≤ k̂,
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and the sets A and B should fulfill

|A| ≥ k̂, |B| ≥ (2k)2 − 2k + 1.

Thus, for example, if we can find a Gabor system for which the inequality (6.16)

is fulfilled as an equality, we will be able to do k-sparse phase retrieval with order

of only O(kmin(N, k2)) measurements.

3. When N is not prime, we have θN = N − 2
√
N, and the number of needed mea-

surements is not as good as in the prime case, since we obtain

|A| · |B| ≥ (N − 2
√
N + k̂ + 1)(N − 2

√
N + (2k)2 − 2k + 2),

but some improvement over N2 could still be obtained in some cases. Furthermore,

an extension of [119] from N prime to general N was published in [91], in the form

of the following property:

Let d1 < d2 be two consecutive divisors of N. If d1 ≤ k = ∥f∥0 ≤ d2, then

∥f̂∥0 ≥
N

d1d2
(d1 + d2 − k).

Our function θ will in this case explicitly depend on k and be equal to N − k +
N

d1d2
(d1 + d2 − k). The smaller this value is, the less measurements will be needed

for k-sparse injectivity.

4. Theorem 6.14 is interesting from a different perspective, since HK can be viewed as

a set of k2-sparse vectors in CN2 whose sparsity has a special structure. Thus, we

have provided a deterministic construction which can theoretically recover those

vectors from O(k3) linear measurements. This is interesting since we know from

conventional compressed sensing results [64], that deterministic constructions for

stable recovery of k2-sparse vectors require O(k4) linear measurements, whereas

random constructions only need O(k2) measurements. Finding deterministic con-

structions which can accept sparsity levels on the order higher than the square root

of the number of measurements is known as breaking the “square-root bottleneck”

[93]. Although in our case O(m) measurements are needed for sparsity level m2/3,

one has to bear in mind that the sparsity of the vectors is structured, and that

our result is only about the injectivity of the measurements. In particular, we do

not prove any recovery guarantees for a specific algorithm. Hence, we have not

broken the square-root bottleneck, but the theorem can be seen as a step towards

providing new results in this direction. Furthermore, we can introduce even more

structure to the signal, and decrease the number of measurements needed even fur-

ther. Namely, if we assume that the set K contains K consecutive indices, or if we
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in other words have “block sparse” matrix structure, we can decrease the number

of measurements from O(k3) to O(k2), when N is prime. We will prove this result

below.

We will show below that if the signal is structured further, we can decrease the number

of measurements needed from k3 to k2. We are interested in the following class of signals:

BK = {H ∈ CN×N : ∃k ∈ [1, . . . , N ] such that K = {k, k + 1, . . . , k +K − 1}

and Hij = 0 if (i, j) /∈ K ×K}.

Corollary 6.16. Let N be such that the uncertainty principle (6.12) holds for some θN .

Let (p, ℓ) ∈ Z2
N . Let g ∈ CN be a generator which satisfies (6.16). Then, for any subsets

A ⊆ ZN , B ⊆ ZN with

|A| ≥ θN + k̂ + 1, |B| ≥ θN + 2k,

the following holds: if a matrix H ∈ BK satisfies {⟨gλg∗λ, H⟩HS}λ∈A×B = 0, then H = 0.

Proof. This corollary will follow straight forward from a simple observation about the

set K, when it contains consecutive indices. Namely, the number of elements of K − K,
which we counted in point 2. in the proof of Theorem 6.14, will now be 2k − 1 instead

of k2 − k+1. That allows us to take only θN +2k elements in the set B. The rest of the

proof and the subsequent conclusions remain unchanged.

It is now easy to see that when k̂ = k and N is prime, since θN = −1, the number of

measurements needed for injectivity is |A| · |B| ≥ k(2k − 1). This is of the order of the

sparsity of H (counted as the number of nonzeros in the matrix), k2.

6.3.1 Functions Window in the Fourier Domain as Generators

As in the previous section, we now provide an example of a generator g which fulfills the

condition for sparse phase retrieval from Gabor measurements.

Proposition 6.17. Let N be prime and 2k+1 < N . Further, let v ∈ CN be a window of

length k+1, v = χ[0,k], where χA denotes the characteristic function on the set A ⊆ ZN .

Moreover, let g be defined by ĝ = v, Then, g satisfies (6.16) with k̂ = 2k+1 and therefore,

(2k + 1)min(4k2 − 2k + 1, N) measurements from the Gabor frame with g as generator

will do k-sparse phase retrieval.
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Proof. The Plancherel formula implies that

cp(ℓ) = ⟨ĝ, TℓMpĝ⟩ for all (p, ℓ) ∈ Z2
N

Therefore,

⟨ĝ, TℓMpĝ⟩ =
∑

m∈ZN

v(m)v(m− ℓ)ωp(m−ℓ) =
∑

m∈[0,k] and
m−ℓ∈[0,k]

ωp(m−ℓ), (6.18)

because of the way we defined v. Note that since 2k < N , this sum is empty for |ℓ| > k.

Therefore, the sequences cp are 2k + 1-sparse for every p, i.e. k̂-sparse.

It remains to prove that for |ℓ| ≤ k, the expression above is not zero, and hence ∥cp∥0 =
2k + 1. It suffices to consider ℓ ≥ 0, since the other case can be obtained from this one

by the substitution ℓ→ −ℓ. Using the formula for geometric sums, we obtain

∑
ℓ≤m≤k

ωp(m−ℓ) =

k−ℓ∑
n=0

ωpn =

⎧⎪⎨⎪⎩
1− ωp(k−ℓ+1)

1− ωp
, if p ̸= 0,

k − ℓ+ 1, if p = 0.

The only way this could be zero when ℓ ≤ k is that p ̸= 0 and 1 − ωp(k−ℓ+1) = 0. This

would however mean that N is a divisor of p(k − ℓ+ 1) ̸= 0. Since N is prime and both

p and (k− ℓ+1) are smaller than N , this cannot be the case. Therefore, from Theorem

6.15 we conclude that any subsets A ⊆ ZN , B ⊆ ZN with

|A| ≥ 2k + 1, |B| ≥ (2k)2 − 2k + 2

will do k-sparse phase retrieval.

The choice of ĝ as a characteristic function of [0, k] is not necessary – any generically

chosen function with support on [0, k] will also lead to a Gabor system with the same

properties. To see this, note that if |ℓ| < k, the expression (6.18) is a non-trivial polyno-

mial in the variables re(v), im(v). Since we have proved that there is a particular choice

of v so that all polynomials do not vanish on v, (6.16) will be satisfied for generic v.

The matrices provided to prove that the frames considered in Section 6.2.4 do not allow

phase retrieval were all matrices with range in CN
K for a K with |K| = 2. Hence, the

considerations made there in fact proved that the frames are not allowing phase retrieval

for Ck for any k ≥ 2 (although they might still allow phase retrieval for some other class

of signals).
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6.3.2 Signals Sparse in Fourier domain

After spending some time discussing the standard sparsity case, it is worth noting that

similar results hold for signals which are sparse in the Fourier basis (dictionary) F . Recall

the famous commutation relation of F with translations and modulations:

Π(p,ℓ)F =MℓTpF = FTℓM−p = ωℓpFΠ(−p,ℓ) for all (p, ℓ) ∈ Z2
N . (6.19)

This formula allows us to translate the results provided in the previous section to this

new setting.

Theorem 6.18. Let N be such that the uncertainty principle (6.12) holds and F denote

the Fourier basis. Let g have the following property: for each ℓ, the sequence c̃ℓ =

(⟨g, g·,ℓ⟩) formed by letting p run obeys

θN + 2k + 1 ≤ ∥c̃ℓ∥0 ≤ k̂ (6.20)

for some k and k̂. Then, for any subsets A,B ⊆ ZN with

|A| ≥ θN + (2k)2 − (2k) + 2, |B| ≥ θN + k̂ + 1,

the set {gλ, λ ∈ A×B} allows Fk-sparse phase retrieval.

Proof. We would like to apply now the general Theorem 5.9, with D = F. Using the

notation of that theorem, let H be an arbitrary Hermitian matrix with range contained

in WK for some K with |K| = 2k. We may write H = FHFF ∗ for some other Hermitian

HF , which then has a range which is contained in CN
K . Let us now proceed as in the

proof of Theorem 6.3 and calculate

⟨
Π(p,ℓ), H

⟩
HS

= tr(Π∗
(p,ℓ)FH

FF ∗) = tr(F ∗Π∗
(p,ℓ)FH

F ) =
⟨
F ∗Π(p,ℓ)F,H

F
⟩
HS

=
⟨
ωℓpΠ−p,ℓ, H

F
⟩
HS

= ω−ℓpĤF
−ℓ(p).

We used the commutation relation (6.19), and the fact that F is unitary. We arrive at

N ⟨gλ, Hgλ⟩ =
∑
p,ℓ

ω−ℓpĤF
−ℓ(p)

⟨
gλ,Π(p,ℓ)gλ

⟩
.

This formula is very similar to (6.14), essentially, the only difference is that the roles

of p and ℓ have interchanged. Further, the vectors HF have the same properties as the

vectors H in the proof of Theorem 6.14 (since HF has the same properties as H). These

two facts makes it clear that we can use the exact same technique as in that proof to

prove this theorem. We leave the details to the reader.
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It is not hard to construct a concrete example of a generator g which fulfills the condition

(6.20). We only have to note that the roles of translations and modulations have been

interchanged. Hence, we should no longer use a g which has short support in Fourier

domain, but instead one with short support in spatial domain. With this insight, we

may use the exact same steps as in the proof of Proposition 6.17 to deduce the following.

Proposition 6.19. Let N be prime and 2k+1 < N . Then (2k+1)min(4k2−2k+1, N)

measurements from a Gabor frame generated by generic windows g of length k + 1 will

do Fk-sparse phase retrieval.

6.4 An Algorithm for Phase Retrieval Using Gabor Mea-

surements

The idea of the proof of Theorem 6.15 can be used to design an algorithm to reconstruct

signals from their Gabor phaseless measurements. We start by recovering H, as in the

proof, and then we compute the closest rank 1 operator xx∗ by spectral decomposition

of H. A detailed description is given in Algorithm 1.

Algorithm 1: Simple Gabor Phase Retrieval (SGPR)
Data: A generator g ∈ CN , sets A,B ⊆ ZN , the measurements

b(q, j) = N |⟨x, gq,j⟩|2 , (q, j) ∈ A×B.
Result: An estimate x0 ∈ CN of x.

1 for q = 0 . . . N − 1 do
Solve V̂ q(j) = b(q, j), j ∈ B for V q.

2 for p = 0 . . . N − 1 do
Solve N · w̌p(q) = V q(p), q ∈ A for wp.

3 for p = 0 . . . N − 1 do
for ℓ = 0 . . . N − 1 do

if ⟨g, gp,l⟩ ̸= 0 then
Set Ĥp(ℓ) = wp(ℓ)/ ⟨g, gp,l⟩.
Add ℓ to the set Λp.

Solve Ĥp(ℓ) = wp(ℓ)/ ⟨g, gp,l⟩ , ℓ ∈ Λp for Hp.
Reconstruct H from H(i, i− p) = Hp(i)
Calculate the eigenpair (λ, v) of H corresponding to the largest eigenvalue.
Set x0 =

√
λx.

In steps (1), (2) and (3) one has to invert a Fourier transform. If all values of the

transformed vector are known, one can simply use the standard fast inverse Fourier

transform to compute this, and the signal will be perfectly recovered. If one on the

other hand does not know all the values (not all Gabor measurements are given), some

other method has to be used, where sparsity can be employed. We have chosen Basis
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Pursuit [40]. This is a standard approach in compressed sensing when looking for a

sparse solution x of the equation Ax = b. The algorithm consists of solving the following

optimization problem:

min ∥x∥1 s.t. Ax = b.

We solve this problem with CVX, a package for specifying and solving convex programs

[68].

We now present the results of the numerical experiments for testing Algorithm 1. In

Figure 6.2, we plot the success rate of recovery of sparse signals via Algorithm 1. We

have fixed the length of the signal N = 67 (a prime which gives 3 (mod 4), as needed for

difference sets of Family 1 ). We want to recover two types of signals: k-sparse signals,

where k nonzero random values are distributed on a random support, and k-sparse block

signals, where one random block of k subsequent entries is assigned k random values.
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Figure 6.2: Success rate of Gabor phase retrieval via SGPR.

In Figure 6.2A, we also have chosen two different generators for the Gabor system: a

complex random signal, and a characteristic function of a difference set, described in

Section 6.2. Here, we use 0.5N2 measurements, namely all N translations, and random

0.5N from the modulations. With this setup, we use ℓ1 minimization only in the Step

(1), and in (2) and (3) we use the fast Fourier transform. For a fixed sparsity from 1

to 15, we repeat the experiment T = 200 times, and count a trial as successful, if the

normalized squared error is smaller than 10−2.

In Figure 6.2B, we do the same experiment, but we take partial measurements in both

directions: translation and modulation. Namely, for N = 67, we take 0.52N translations,

and 0.7N modulations at random. The generator here, as described in Proposition 6.17,

is a short Fourier window, with length 8. Now, we need to use Basis Pursuit in all steps
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(1), (2) and (3), which in turn leads to a lower recovery rate. We made T = 100 trials

for every sparsity level.

In Figure 6.3A, we test the speed of our algorithm in comparison to the PhaseLift al-

gorithm [28], implemented using the CVX package. We also use Gabor measurements

for it, but only 2 log(N)N, taken at random. We plot the average execution time over

T = 50 trials, and see that as the dimension grows, our method becomes faster, although

the number of measurements is much larger. Also, if we are using the full set of mea-

surements, the time needed is incomparably smaller to both of the other methods – since

then there is no minimization problem included. In this case, also, we will always recover

the signal with probability 1, independently of the sparsity level.

In Figure 6.3B, we compare the execution time of Algorithm 1 from all N2 measurements

to the GESPAR algorithm [111], a greedy algorithm for recovery of sparse signals from

Fourier magnitude measurements (in our experiment we use 2N measurements). This

algorithm is very fast for high dimensions, but since it is iterative, it becomes slower

as the sparsity increases for a fixed dimension of the signal. We illustrate this behavior

in Figure 6.3B, where for every dimension, we measure the average time of recovery of

signals with sparsity k = 5 and k = 10. We see that the GESPAR algorithm is faster,

when we want to recover a signal which has only 5 nonzeros, but if this number is larger,

our algorithm becomes faster than the GESPAR, since it does not strongly depend on

the sparsity level.
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Figure 6.3: Recovery time of Gabor phase retrieval.

We would like to mention that our algorithm for all N2 measurements is also stable to

additive noise in the measurements. This follows from Theorem 6.4 and can be intuitively

explained by the fact that the only troublesome part is the division in Step (3). If

the generator g is such, that the values ⟨g, gp,l⟩ are bounded away from zero, one can

guarantee robustness to noise. In the next section we provide more details on how small
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can the value ⟨g, gp,l⟩ be in the case g is a difference set. For the recovery from less than

N2 measurements, we leave the detailed investigation on this matter for future work.

6.4.1 Stability of the Gabor Phaseless Measurements Generated by
Difference Sets

The question of how small can the values ⟨g, gµ⟩ , for a generator g ∈ CN and µ = (q, j) ∈
ZN × ZN is a question about structured partial sums of roots of unity, as we can see

from the following chain of equalities:

⟨g, gµ⟩ =
∑
n∈ZN

g(n)(MjTqg)(n) =
∑
n∈ZN

g(n)g(n− q)ωjn =
∑

n∈K and
n−q∈K

ωjn. (6.21)

Let us denote the set over which we sum the roots of unity:

Kq := {n : n ∈ K, n− q ∈ K}. (6.22)

The question how small can a sum of roots of unity be is of interest on itself in number

theory, and was posed as an open problem for arbitrary sets in [94]. Many years later, a

lower bound for N prime was given in [81] and was included in the survey paper [113].

We can make use of this result in the case g is a characteristic function of a difference

set, and therefore we present it here.

Theorem 6.20 ([81]). Let N be some prime. Then, for any set A ⊂ ZN , with |A| = n,

3 ≤ n ≤ N − 1, it holds:

min
j∈ZN

⏐⏐⏐⏐⏐∑
k∈A

ωjk

⏐⏐⏐⏐⏐ > n−(N−3)/4. (6.23)

Let us assume now that K is an (N,K, λ)-difference set. We need to investigate Kq (6.22)

using the structure of difference sets. As we know, the cardinality of Kq is λ. Thus, we

immediately obtain a bound λ−(N−3)/4.

First of all, we can find constructions for which λ = 1, and thefore the sum (6.21) will be

equal to 1. We use the La Jolla Repository1 to find such difference sets. For dimensions

up to 1000, there are 17 possible values for N which give a difference set with λ = 1. We

can also find some examples analytically. The Singer difference sets [114] have parameters

N =
qd+1 − 1

q − 1
, K =

qd − 1

q − 1
, λ =

qd−1 − 1

q − 1
,

1http://www.ccrwest.org/ds.html

http://www.ccrwest.org/ds.html
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where q = pr is a power of a prime, and d ≥ 2 is a positive integer. Fixing d = 2 will

gives us λ = 1 and thus a Singer difference sets with parameters

(q2 + q + 1, q + 1, 1)

will guarantee stability of the Algorithm 1.

Now for general λ ≥ 3, the result of Theorem 6.20 holds for any difference set, and

we used only the fact that the set Kq has λ elements. Is it possible that the lower

bound λ−(N−3)/4 can be improved, by using the inner structure of a particular family of

difference sets?

Let us consider the quadratic family of difference sets. It has parameters (p, p−1
2 , p−3

4 ),

where p is some odd prime with p ≡ 3 (mod 4). The elements of the difference set are

then given by the formula

K = {t2 : t ∈ Z∗
p}.

We are interested in estimating
∑

n∈Kq
ωjn
p for every (q, j) ∈ Z∗

p × Z∗
p. The elements of

the set Kq = {t ∈ K : t − q} can be described as solutions of a system of equations,

namely each condition is equivalent to:

t ∈K ⇐⇒ ∃r ∈ Z∗
p : t = r2,

t− q ∈K ⇐⇒ ∃s ∈ Z∗
p : t = s2 + q.

In number theory [76], those integers t which are congruent to a perfect square modulo

p are called quadratic residues (t R p). Otherwise, t is called a quadratic nonresidue

(t R p). A useful notation related to quadratic residues is the Legendre symbol. It is

defined as follows: (
a

p

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if p divides a,

1, if a R p,

−1, if a N p.

(6.24)

In our case, we need t and t− q to both be quadratic residues, i.e. t such that
(

t
p

)
= 1

and
(
t+q
p

)
= 1. Let us for simplicity consider the case q = 1. That means, that t and

t− 1 need to be quadratic residues, or in other words, we need all the quadratic residues

of Zp which are followed by quadratic residue. Interestingly, we can rewrite our sum of

roots of unity (6.21) using the Legendre symbol:

1

2

∑
t∈Z∗

p

((
t

p

)
+ 1

)((
t+ q

p

)
+ 1

)
ωjt
p (6.25)
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It is easy to see that, when both t and t+ q are quadratic residue, the coefficient before

the corresponding root of unity will be 1. If at least one of them is nonresidue, the

coefficient will be 0 and that term will vanish. The case t = 0 is already excluded. By

opening the brackets and using the multiplicative property of the Legendre symbol we

can split the sum into four parts. We will omit the normalization factor for simplicity.∑
t∈Z∗

p

(
t

p

)(
t+ q

p

)
ωjt
p +
∑
t∈Z∗

p

(
t

p

)
ωjt
p +
∑
t∈Z∗

p

(
t+ q

p

)
ωjt
p +
∑
t∈Z∗

p

ωjt
p =: A+B +C +D.

(6.26)

We would like to try to obtain a lower bound on this expression. Let us start from

backwards. The last sum D is the easiest to calculate: we can add and subtract 1 and

rewrite it as

D =
∑
t∈Zp

ωjt
p − 1.

It is clear that D = −1, since j ̸= 0 and the sum therefore equals zero. Next, with few

change of variables, we can transform C into the form of B, and further eliminate the

parameter j from the sum.∑
t∈Z∗

p

(
t+ q

p

)
ωjt
p =
∑
t∈Zp

(
t

p

)
ω(t−q)j
p − 1

= ω−qj
p

∑
t∈Zp

(
t

p

)
ωtj
p − 1 = ω−qj

p

(
j

p

)∑
t∈Z∗

p

(
t

p

)
ωt
p − 1.

The expression
∑
t∈Z∗

p

(
t
p

)
ωt
p is a so called quadratic Gauss sum, and it is well investigated

in number theory, see for example [76, Chapter 6]. When p is odd prime, congruent to

3 modulo 4, as in our case, it is equal to i√p. Therefore, for the sums B and C we can

conclude:

B =

(
j

p

)
i
√
p,

C = ω−qj
p

(
j

p

)
i
√
p− 1.

We note here that expressions of the type ωt
p + 1 can be estimated by π

p [94].

We are left to investigate the first sum, A. This is actually a version of the so called

Kloosterman sums [80], or more general finite field hypergeometric sums [126], and in

the case of prime p, an upper bound on the absolute value of the sum is known, 2√p.
Regarding a lower bound, it seems like the best one can do is a bound like (4p)(2−p)/2[126],

which at the end is not much better then the bound that we got from Theorem 6.20,

where we did not use the inner structure of the quadratic difference sets. Taking into
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account everything that we discussed, it seem that the best lower bound on |⟨g, gµ⟩| for

g generated by an (N,K, λ) difference set with parameter λ ̸= 1 is

|⟨g, gµ⟩| ≥ λ−(N−3)/4.

One approach to improve this result would be to show that for almost all µ = (q, j) a

lower bound exists — we leave this question for further investigations.

In conclusion, we investigate the effect of noise numerically. In Figure 6.4, we fix the

dimension N = 127, and try to recover an unknown vector x ∈ RN from all N2 noisy

Gabor measurements via Algorithm 1. For every level of the additive Gaussian noise,

we recover x from Gabor measurements generated by a difference set and by a complex

random signal. We repeat every experiment T = 500 times. As we can see in Figure 6.4,

the measurements generated by a difference set give smaller recovery error than the

complex random vectors.

We did not investigate theoretically the stability of the Gabor measurements generated

by random complex vectors. Also, the question of stability of Algorithm 1 when only

part of the measurements are given is left open. In this case, the result will be influenced

by the stability of the ℓ1 minimization problem for sparse signals from partial Fourier

measurements. We leave those questions for further investigations.
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Figure 6.4: The effect of noise on the reconstruction error.

6.4.2 Phase Retrieval of Discrete Lines

In this subsection we would like to combine the ideas of Gabor phase retrieval with

the problem of recovery of discrete lines from Chapter 3. The motivation comes from
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the numerical experiments of the GESPAR algorithm provided in [111], which includes

recovery of 2D sparse signals (images) from the magnitude of its Fourier measurements.

In Figure 6.5, we present an example of the result obtained for recovery of 30 points

from an image of size 32 × 32, N = 322 = 1024. The time it takes GESPAR to recover

x from its N Fourier magnitude measurements is approximately the same as the time

it takes SGPR to recover x from its N2 Gabor magnitude measurements. We would

like to consider n × n signals (where n is some prime number) which consists of union

of discrete lines (see Figure 3.2), and recover them from the full set of N2, N = n2

Gabor measurements via SGPR. We use here a complex random vector as a generator

for the Gabor system, although there are difference sets of dimension n2 which satisfy

the condition for successful phase retrieval (6.2), and therefore can be also used.
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Figure 6.5: Recovery of points from Fourier magnitude measurements.

Note that the GESPAR algorithm is not able to recover more then one discrete line

since that is already N nonzero elements in the signal (maximal sparsity possible). Our

algorithm, on the other hand, does not depend on the sparsity level, and thus can

recover any amount of lines in the signal. However, it requires n4 measurements, since

the dimension of the signal is n2, and if we want efficient and fast recovery, we need to

use all Gabor measurements.
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In Figure 6.6, using the template of the code for the GESPAR algorithm, but with

recovery via Algorithm 1, we present a successful recovery of 3 lines in dimension n = 41.

It is also worth to note that since we only do Fourier and inverse Fourier transform in

our algorithm, it is extremely fast even for recovery from n4 = 2825761 measurements.

Furthermore, algorithms which involve solving an optimization problem (like PhaseLift

[29]) would take much longer regardless of the number of measurements, because the

dimension of the signal n2 = 1681 is already very large.

index
0 100 200 300 400 500 600 700 800 900

va
lu

e

-2

-1

0

1

2

3
True/Recovered (column stacked)

True signal
Recovered

Measurements (Gabor magnitudes)

200 400 600 800

200

400

600

800 500

1000

1500

2000

2500

3000

3500

4000
Recovered signal

10 20 30

5

10

15

20

25

30 -1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 6.6: Recovery of discrete lines from Gabor magnitude measurements.



Chapter 7

Conclusion

In this thesis, we showed that the efficiency of compressed sensing for large data can be

optimized by using deterministic constructions and dictionaries adapted to the class of

signals one is interested in.

In Chapter 3, we employed the geometric structure of the signals to improve some known

results of compressed sensing for the class of discrete lines. We showed how to construct

a unit norm tight frame from the collection of discrete lines, and we computed the

mutual coherence as well as the spark of such a system. We used the methodology of

compressed sensing to recover discrete lines from a small number of linear measurements,

and to separate lines from points in a given signal.

Next, in Chapter 4 we used another type of structure, that is the collection of time- and

frequency-shifts generated by difference sets. There, we investigated the frame and fusion

frame properties of this Gabor system, and showed that from the aspect of a fusion frame,

this construction yields a family of optimally sparse, equidistant tight fusion frames. In

relation to compressed sensing, we tested numerically the recoverability of sparse and

fusion sparse signals from Gabor measurements generated by difference sets. We saw

that the results of the numerical experiments surpassed the theoretical guarantees based

on the mutual coherence. It is interesting, therefore, to search for recovery conditions

which will go beyond the worst-case coherence, not only for Gabor systems, but also for

other structured deterministic measurement matrices.

Further, we analyzed the question of recovery of signals that are sparse in a dictionary,

given only the magnitudes of the linear measurements. This is called the dictionary

sparse phase retrieval problem. In Chapter 5 we obtained results about the injectivity

of such a measurement process, and we investigated the relation to ℓ1 minimization via

the null space property, suited for dictionary sparse signals and phaseless measurements.

140
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We also addressed the problem of sparse phase retrieval by projections, which was so far

not covered in the literature, and proved several results in this direction. Phase retrieval

by projections is a difficult topic with many unsolved problems, and it is appealing to

address those also in the case when this signal is sparse, or admits a sparse representation.

Finally, we investigated the problem of sparse phase retrieval from Gabor measurements

in Chapter 6. Firstly, we obtained a condition on the generator, which is easy to check and

which guarantees a recovery of arbitrary signals from the full set of Gabor magnitude

measurements. Then, we modified this condition in the case of k-sparse signals, and

found that of the order of k3 measurements are needed for recovery. We showed that

the number of measurements can be further decreased to k2, if an additional structure

of the signal is assumed, namely, that it consists of a single block of nonzeros. We

presented examples of families of generators which allow phase retrieval, both in the

general and in the sparse case. Finally, we proposed an algorithm for recovery from

Gabor magnitude measurements. This algorithm uses only the fast Fourier and inverse

fast Fourier transforms in order to recover a signal from the full set of measurements.

We discussed its stability as well, and provided numerical experiments. The algorithm

is adopted to the recovery of sparse signals from fewer measurements, and it then uses

ℓ1 minimization with partial Fourier measurement matrices. The investigation of the

stability of the condition which guarantees phase retrieval led to an interesting connection

to additive number theory. It is interesting to explore this connection further, and to

find connections to other aspects of signal processing.

We conclude that driven by various applications, it is advantageous to exploit additional

structure of the signal that needs to be recovered and of the measurements which are

used. This approach leads to improved recovery guarantees from a compressed sensing

point of view, as well as to a rich mathematical theory also interesting beyond signal

processing.
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