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Christian Fleischhack, Joachim Hilgert and Torsten Wedhorn. You inspired me
to study math and computer science simultaneously and provided me with a lot
of good advice, so without you I would have definitely not pursued PhD stud-
ies in mathematics. Furthermore, I want to thank the student council for math
and computer science at the university of Paderborn and all my other nice fel-
low students, including Evgeni Wachnowezki, Malte Splietker, Juliana Seidlez,
Tobias Rojahn, Alexander Dircksen and Tobias Black. Your positive feedback
was a great source of motivation and brought me back on track whenever I had
self-doubts. Without you I would not have become a PhD student at all.

Finally, I want to thank the people closest to my heart. My oldest and best
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Abstract

In this thesis, we study subvarieties of Grassmannians which are characterized
by certain rank one conditions on their tangent or conormal spaces. Although
these concepts seem to be very abstract at first sight, we will see that many
of these subvarieties are naturally associated to underlying projective varieties.
Typically such varieties consist of linear spaces which meet a projective variety
with some prescribed contact. First examples are the set of all lines intersecting
a space curve or the set of all lines tangent to a space curve.

A subvariety of a Grassmannian is called coisotropic if its conormal spaces
satisfy the above mentioned rank one conditions. The notion of coisotropic hy-
persurfaces was introduced by Gel’fand, Kapranov and Zelevinsky. We develop
their theory further and generalize their notion to subvarieties of Grassmanni-
ans with codimension higher than one. Moreover, we introduce the dual notion
of isotropic varieties by requiring the rank one conditions to hold on their tan-
gent spaces instead of their conormal spaces.

Throughout this thesis, we investigate different aspects of isotropic and co-
isotropic varieties. We focus on classifying them by their underlying projective
varieties. Furthermore, we are interested in their degrees, their singular loci
and their behavior under projective duality. We also provide Macaulay2 code
for explicit computations with some of the varieties we encounter in this the-
sis. In parts of this thesis, we restrict ourselves to the Grassmannian of lines
in three-dimensional projective space, which contains already many interest-
ing and non-trivial examples of (co)isotropic varieties. These lead us to ques-
tions which have been actively studied in the 19th century, like the classifica-
tion of congruences, and to modern applications in algebraic vision, a recently
emerged research area in the intersection of computer vision and algebraic ge-
ometry.

Additionally, we present two rather unrelated results at the end of this the-
sis, which have been developed in parallel to the findings described above.
First, we describe a Macaulay2 package for computations in tropical geometry.
Secondly, we investigate a simplicial complex whose facets represent the most
widely used scales in western music.





Zusammenfassung

In dieser Arbeit untersuchen wir Untervarietäten von Graßmann-Mannigfaltig-
keiten, welche durch gewisse Rang-Eins-Bedingungen auf deren Tangential-
oder Konormalräumen charakterisiert sind. Obwohl diese Konzepte auf den
ersten Blick sehr abstrakt wirken, werden wir sehen, dass viele dieser Unterva-
rietäten auf natürliche Weise zu zugrundeliegenden projektiven Varietäten as-
soziiert sind. Typischerweise bestehen solche Varietäten aus linearen Räumen,
welche eine projektive Varietät mit einem vorgegebenen Kontakt treffen. Erste
Beispiele hierfür sind die Menge aller Linien, die eine Raumkurve schneiden,
oder die Menge aller Linien, die zu einer Raumkurve tangential sind.

Eine Untervarietät einer Graßmann-Mannigfaltigkeit heißt koisotrop, falls
ihre Konormalenräume die oben genannten Rang-Eins-Bedingungen erfüllen.
Der Begriff der koisotropen Hyperfläche wurde von Gel’fand, Kapranov und
Zelevinsky eingeführt. Wir entwickeln diese Theorie weiter und verallgemein-
ern diesen Begriff auf Untervariatetäten von Graßmann-Mannigfaltigkeiten mit
größerer Kodimension als eins. Weiterhin führen wir den dualen Begriff der
isotropen Varietäten ein, indem wir verlangen, dass obige Rang-Eins-Bedin-
gungen auf deren Tangential- statt deren Konormalräumen gelten.

Im Laufe dieser Arbeit studieren wir verschiedene Aspekte isotroper und ko-
isotroper Varietäten. Ein Schwerpunkt ist die Klassifizierung dieser bezüglich
ihrer zugrundeliegenden projektiven Varietäten. Außerdem interessieren wir
uns für ihre Grade, ihre singulären Orten sowie ihr Verhalten unter projektiver
Dualität. Wir stellen auch Macaulay2-Code für explizite Berechnungen mit eini-
gen der Varietäten aus dieser Arbeit zur Verfügung. In Teilen dieser Arbeit
beschränken wir uns auf die Graßmann-Mannigfaltigkeit der Linien im drei-
dimensionalen projektiven Raum, welche bereits viele interessante und nicht-
triviale Beispiele von (ko)isotropen Varietäten enthält. Diese führen uns zu Fra-
gen, welche aktiv im 19. Jahrhundert untersucht wurden, wie zum Beispiel
die Klassifizierung der algebraischen Strahlensysteme, sowie zu modernen An-
wendungen in Algebraic Vision, einem vor Kurzem entstandenen Forschungs-
gebiet im Schnittbereich von algebraischer Geometrie und Computer Vision.

Zudem stellen wir zwei eher unverwandte Resultate am Ende dieser Arbeit
vor, welche parallel zu den oben beschriebenen Ergebnissen entwickelt wur-
den: Erstens beschreiben wir ein Macaulay2-Paket für Berechnungen in der
tropischen Geometrie und zweitens untersuchen wir einen Simplizialkomplex,
dessen Facetten den meistverwendeten Skalen in der westlichen Musik ent-
sprechen.
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1 Introduction

The parametrization of all subvarieties of Pn with fixed dimension and degree
is one of the most important problems in the history of algebraic geometry. The
parametrization of zero-dimensional varieties is trivial. Hypersurfaces can be
parametrized by their defining equations. Linear subspaces of Pn are points in
their respective Grassmannian. Hence, the first non-trivial case are curves in P3

of degree (at least) two.
Space curves can be parametrized by their Chow forms, which were first in-

troduced by Cayley [18]. The Chow hypersurface of a curve C ⊂ P3 is the set
of all lines in P3 that intersect C. This is a hypersurface in the Grassmannian
Gr(1, P3) of lines in P3. It is defined by one equation in the Plücker coordinates
of Gr(1, P3), which is unique up to a constant factor and the Plücker relation.
This polynomial has the same degree as the curve C and is called the Chow form
of C. One can recover the vanishing ideal of the curve C from its Chow form.
Thus, the variety of Chow forms with a fixed degree in the coordinate ring of
the Grassmannian Gr(1, P3) is a parameter space for the set of all space curves
with that fixed degree. Moreover, although the vanishing ideal of a space curve
is defined by at least two polynomials, which are clearly not unique, the Chow
form is a single equation defining the curve.

Example 1.1 ([28, Prop. 1.2]). The twisted cubic is a smooth rational curve of
degree three in P3. Parametrically, this curve is the image of the morphism
ν3 : P1 → P3 defined by (s : t) ↦→ (s3 : s2t : st2 : t3). Its vanishing ideal is
minimally generated by three quadrics: x0x3 − x1x2, x2

1 − x0x2, x2
2 − x1x3. The

line L, which is determined by the two equations a0x0 + a1x1 + a2x2 + a3x3 = 0
and b0x0 + b1x1 + b2x2 + b3x3 = 0, intersects the twisted cubic if and only if
there exists a point (s : t) ∈ P1 such that

a0s3 + a1s2t + a2st2 + a3t3 = 0 = b0s3 + b1s2t + b2st2 + b3t3 .

The resultant for these two cubic polynomials, which can be expressed as the
determinant of their Sylvester matrix, vanishes exactly when they have a com-
mon root. It follows that the line L meets the twisted cubic if and only if

0 = det

⎡⎢⎢⎢⎢⎢⎢⎣
a0 a1 a2 a3 0 0
0 a0 a1 a2 a3 0
0 0 a0 a1 a2 a3
b0 b1 b2 b3 0 0
0 b0 b1 b2 b3 0
0 0 b0 b1 b2 b3

⎤⎥⎥⎥⎥⎥⎥⎦ = −det

⎡⎣p01 p02 p03
p02 p03 + p12 p13
p03 p13 p23

⎤⎦ ,

1



1 INTRODUCTION

where pij are the Plücker coordinates of L, i.e., the minors of
[

a0 a1 a2 a3
b0 b1 b2 b3

]
. Hence,

the Chow form of the twisted cubic is

p3
03 + p2

03p12 − 2p02p03p13 + p01p2
13 + p2

02p23 − p01p03p23 − p01p12p23.

This polynomial is uniquely determined, up to a constant factor and the Plücker
relation p01p23 − p02p13 + p03p12 = 0. ♦

The generalization of Chow forms to arbitrary varieties was given by Chow
and van der Waerden [23]. For a given variety X ⊂ Pn of dimension k, projec-
tive subspaces of dimension n − k − 1 have typically no intersection with the
variety X, but those subspaces that do intersect X form the Chow hypersurface of
X in the corresponding Grassmannian Gr(n − k − 1, Pn). The Chow form of X
is the defining polynomial of this hypersurface, which is a unique (up to scal-
ing with constants) polynomial in the coordinate ring of Gr(n − k − 1, Pn). It
has the same degree as X and determines X uniquely. Therefore, the variety
of Chow forms with a fixed degree in the coordinate ring of the Grassmannian
Gr(n − k − 1, Pn) is a parameter space for the set of all k-dimensional subvari-
eties X ⊂ Pn with that fixed degree. For more on Chow forms, see [28].

This parameter space is called Chow variety by Gel’fand, Kapranov and
Zelevinsky [43, Ch. 4]. A natural question is to describe the vanishing ideal
of such a Chow variety, which was already posed by Green and Morrison [46].
Their approach to this problem is also discussed in [43, Ch. 4.3]. Here, the au-
thors proceed in two steps. First, they note that the vectors in the conormal
spaces of a Chow hypersurface are homomorphisms of rank at most one. They
call all hypersurfaces of Grassmannians with this rank-one-property coisotropic
and they give criteria to determine if a given hypersurface is coisotropic. Sec-
ondly, following [46], they describe how to distinguish the Chow forms among
all coisotropic forms.

Cayley had already realized that a hypersurface in the Grassmannian
Gr(1, P3) of lines in P3 is coisotropic if and only if it is either the Chow hyper-
surface of a space curve or the variety formed by all tangent lines to a surface in
P3. A generalization of the latter type of coisotropic hypersurfaces is studied by
Sturmfels in [101]: given a subvariety X ⊂ Pn of dimension k, the Hurwitz hy-
persurface of X is the subvariety of the Grassmannian Gr(n− k, Pn) consisting of
all (n − k)-dimensional subspaces which do not intersect X in deg(X) reduced
points. So shortly put, Cayley’s result says that a hypersurface of Gr(1, P3) is
coisotropic if and only if it is either the Chow hypersurface of a curve or the
Hurwitz hypersurface of a surface. Recently, Catanese [16] showed that these
are exactly the self-dual hypersurfaces of Gr(1, P3). Moreover, the volume of
the Hurwitz hypersurface of a projective variety X plays a crucial role in the
study of the condition of intersecting X with varying linear subspaces [12].
More generally, one can compute the volume of all coisotropic hypersurfaces,
which is essential for the probabilistic Schubert calculus proposed by Bürgisser
and Lerario [14].

An important generalization of Cayley’s result is presented in [43, Ch. 4,

2



1.1 Main Results

Thm. 3.14], which gives a geometric characterization of all coisotropic hyper-
surfaces. Given a subvariety X ⊂ Pn, the higher associated hypersurfaces of X are
subvarieties of Grassmannians formed by all linear spaces which intersect X
non-transversely. For example, Chow and Hurwitz hypersurfaces are higher as-
sociated hypersurfaces. Gel’fand, Kapranov and Zelevinsky show in [43, Ch. 4,
Thm. 3.14] that a hypersurface of a Grassmannian is coisotropic if and only if it
is a higher associated hypersurface of some projective variety.

1.1 Main Results

The starting point of this thesis is the described main result [43, Ch. 4, Thm. 3.14]
by Gel’fand, Kapranov and Zelevinsky about coisotropic hypersurfaces. We
aim to study these hypersurfaces in more detail and to generalize the theory
presented in [43]. The study of subvarieties of Grassmannians is a journey from
19th century algebraic geometry, where the geometry of linear spaces was an
active area of research (e.g., see [94, 55, 33]), to recently emerged subjects like
algebraic vision, which is the interplay of computer vision and algebraic ge-
ometry. The main difference of this thesis compared to other literature is the
focus on the tangent spaces of subvarieties of Grassmannians and the geomet-
ric results derived from these. This new point of view yields many interesting
insights.

First of all, we give a new proof for [43, Ch. 4, Thm. 3.14] in Chapter 3. Fur-
thermore, we study the degrees of coisotropic hypersurfaces and their relation
to projective duality, since the latter is one of the key concepts throughout the
whole thesis. We will also present the topic from a computational point of view
by providing a Macaulay2 package for calculations with coisotropic hypersur-
faces.

In Chapter 4, we introduce two notions which generalize coisotropy to sub-
varieties of Grassmannians with larger codimension. For the stronger of the
two notions, we provide a full geometric characterization, which is a general-
ization of [43, Ch. 4, Thm. 3.14]. For the weaker notion, we discuss non-trivial
and geometrically meaningful examples; namely varieties formed by all lines
which meet a given hypersurface with higher contact.

We study iterated singular loci of the coisotropic hypersurfaces of Gr(1, P3)
in Chapter 5. Moreover, we explicitly describe the tangent spaces of the singular
loci with dimension two. An application of these results to algebraic vision is
provided in Chapter 6, where we study the visual event surface of a given curve
or surface in P3.

Finally, in Chapter 7, we introduce a dual notion to coisotropy. Instead of re-
quiring rank-one-conditions on the vectors in the conormal spaces of a subvari-
ety of a Grassmannian, we impose those conditions on its tangent vectors. The
notion corresponding to a coisotropic hypersurface is then an isotropic curve. We
give a full classification of all isotropic curves. Furthermore, we present two no-
tions which generalize isotropy to larger dimension; these notions correspond

3



1 INTRODUCTION

to the two notions of coisotropy mentioned above. For the stronger of the two
notions, we provide again a full geometric characterization. The weaker notion
is, for example, satisfied by all surfaces in Gr(1, P3). Using this, we present a
geometric classification of all surfaces in Gr(1, P3). This has been partly known
in classical literature [94], but our focus on the geometry of tangent spaces gives
a full and formal proof.

1.2 Additional Parts

Part I of this thesis contains the main results discussed above. In Part II and III,
we present additional results which are less related with the main content.

Following the computational focus of some of the chapters in Part I, we de-
scribe a Macaulay2 package for computations with tropical varieties in Chap-
ter 8. In tropical geometry, we can associate to each algebraic variety a poly-
hedral complex. This combinatorial objects reflects parts of the geometry of
the original variety. More generally, tropical geometry studies polyhedral com-
plexes which do not arise from algebraic varieties but have the same properties
as those complexes that do arise like this. These are called tropical varieties. The
purpose of the package presented in Chapter 8 is to facilitate computations in
tropical geometry using Macaulay2. It provides a powerful and user friendly
tool for computing tropical varieties requiring little prerequisite knowledge and
making the process as simple as possible for the end user.

Chapter 9 lies in the interplay between mathematics and music. We describe
a simplicial complex capturing all commonly used musical scales, and explicitly
compute its facets and topology. These results are not only relevant for musical
theory. Instead they are mainly motivated by improvisational practice. More-
over, since Chapter 9 targets both mathematicians and musicians, it is written
in an elementary manner, such that mathematical concepts are explained for
musicians and the other way around.
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(Co)Isotropic Varieties
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2 Preliminaries

We usually work over an algebraically closed field of characteristic zero, unless
otherwise specified. All vector spaces are finite-dimensional. The dual vector
space of a given vector space V is denoted by V∗. We denote by An+1 affine
(n+ 1)-dimensional space and by Pn := P(An+1) its projectivization. Similarly,
we write (Pn)∗ := P((An+1)∗). The List of Symbols at the end of this thesis
should help the reader to keep track of the notation.

2.1 Varieties

All algebraic varieties that appear in this thesis are either affine or projective. By
an affine variety in An+1 we mean the common zero locus of some polynomials
in n + 1 variables. Similarly, a projective variety in Pn is the common zero locus
of homogeneous polynomials in n + 1 variables. In particular, varieties do not
necessarily have to be irreducible. We say that an affine or projective variety is
nondegenerate if it spans its ambient space.

Given a set P of polynomials in n + 1 variables, we write Z(P) for their com-
mon zero locus in An+1. If the ideal generated by P is homogeneous, Z(P)
usually denotes the zero locus in Pn. Vice versa, given a subset S of An+1 or Pn,
we write I(S) for its vanishing ideal in n + 1 variables. Moreover, S := Z(I(S))
denotes the Zariski closure of S.

We denote the affine cone over a subset S ⊂ Pn by SSSSSSSSS ⊂ An+1. The pro-
jectivization of an affine cone C is denoted by P(C). We write Sing(X) for the
singular locus of a variety X and Reg(X) := X \ Sing(X) for its regular locus. If
X ⊂ Pn, the embedded tangent space of X at p ∈ Reg(X) is

TX,p :=

{
y ∈ Pn

⏐⏐⏐⏐⏐ ∀ f ∈ I(X) :
n

∑
i=0

∂ f
∂xi

(p) · yi = 0

}
. (2.1)

A hyperplane in Pn is called tangent to X at a smooth point p if it contains TX,p.
Note that each hyperplane H ⊂ Pn corresponds to a point in (Pn)∗, which we
denote by H∨. The projectively dual variety of X is

X∨ :=
{

H∨ | H ⊂ Pn hyperplane, ∃p ∈ Reg(X) : TX,p ⊂ H
}
⊂ (Pn)∗.

If X is irreducible, so is X∨ [43, Ch. 1, Prop. 1.3]. For example, if L is an ℓ-
dimensional projective subspace of Pn, then L∨ is a projective subspace of (Pn)∗

with dimension n − ℓ − 1, whose points correspond to hyperplanes contain-
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2 PRELIMINARIES

ing L. In particular, we have (Pn)∨ = ∅. Throughout this thesis, we use the
convention that the empty set is a projective space with dimension −1.

Example 2.1. The dual of a line in P2 is a point, and the dual of an irreducible
plane curve of degree at least two is again a plane curve. The dual of a line in
P3 is a line, and the dual of an irreducible curve in P3 of degree at least two is
a surface. The dual of a plane in P3 is a point, and the dual of an irreducible
surface in P3 of degree at least two can be either a curve or a surface. ♦

We will make frequent use of the following biduality of projective varieties,
which is also known as reflexivity.

Theorem 2.2 (Biduality theorem [43, Ch. 1, Thm. 1.1]). Let X ⊂ Pn be a projective
variety over an algebraically closed field of characteristic zero. If p ∈ Reg(X) and
H∨ ∈ Reg(X∨), then the hyperplane H is tangent to X at the point p if and only if the
hyperplane p∨ is tangent to X∨ at the point H∨. In particular, we have (X∨)∨ = X.

♦

We note that Gel’fand, Kapranov and Zelevinsky prove the biduality theorem
in [43] over the ground field C of complex numbers. Due to Lefschetz’ princi-
ple [72, 6, 36, 39, 96], this extends to any algebraically closed field of character-
istic zero. We invoke this principle occasionally throughout this thesis, without
mentioning it explicitly.

In the remainder of this chapter, we discuss the most important examples of
projective varieties for this thesis: Grassmannians and Segre varieties.

2.2 Grassmannians

The Grassmannian Gr(ℓ, Pn) is the set of all projective subspaces of Pn with di-
mension ℓ. It is naturally identified with the Grassmannian Gr(ℓ+ 1, An+1) of
(ℓ+ 1)-dimensional linear subspaces of An+1. Moreover, it is a (ℓ+ 1)(n − ℓ)-
dimensional variety, embedded in P(n+1

ℓ+1)−1 via Plücker coordinates.

Coordinate systems. We now describe six different coordinate systems on
the Grassmannian Gr(ℓ+ 1, An+1). Following the conventions in [43, Ch. 3.1]
and [101], we call these primal/dual Plücker/Stiefel/affine coordinates.

First, let A ∈ A(n−ℓ)×(n+1) be a matrix such that L ∈ Gr(ℓ+ 1, An+1) is the
kernel of A. The entries of A are primal Stiefel coordinates of L, and the maximal
minors pi1...in−ℓ

of A are the primal Plücker coordinates of L. Up to scaling, the
Plücker coordinates are unique, whereas the Stiefel coordinates are clearly not:
multiplying A with any invertible (n − ℓ) × (n − ℓ)-matrix does not change
its kernel. Hence, when denoting by S(n − ℓ, n + 1) the Stiefel manifold of all
(n − ℓ)× (n + 1)-matrices of full rank, the Grassmannian Gr(ℓ+ 1, An+1) can
be seen as the quotient S(n − ℓ, n + 1)/GL(n − ℓ).

8



2.2 Grassmannians

Pick now a maximal linearly independent subset of the columns of A, in-
dexed by (i1, . . . , in−ℓ), and multiply the inverse of this submatrix with A it-
self. The resulting matrix has the same kernel as A and its columns indexed by
(i1, . . . , in−ℓ) form the identity matrix. The remaining entries of this new matrix
are the primal affine coordinates of L. These give a unique representation of L in
the primal affine chart

Ui1...in−ℓ
:=
{

ker A
⏐⏐⏐⏐ ij-th column of A ∈ A(n−ℓ)×(n+1) is the

standard basis vector ej (for j = 1, . . . , n − ℓ)

}
=
{

L ∈ Gr(ℓ+ 1, An+1) | pi1...in−ℓ
(L) ̸= 0

}
∼= A(n−ℓ)×(ℓ+1)

of the Grassmannian Gr(ℓ+ 1, An+1).

Secondly, let B ∈ A(ℓ+1)×(n+1) such that L is the row space of B. The entries
of B are dual Stiefel coordinates of L, and the maximal minors qj0...jℓ of B are the
dual Plücker coordinates of L. As above, for every maximal linearly independent
subset of columns of B, indexed by (j0, . . . , jℓ), the subspace L has unique dual
affine coordinates in the dual affine chart {L | qj0...jℓ(L) ̸= 0} ∼= A(ℓ+1)×(n−ℓ) of the
Grassmannian Gr(ℓ+ 1, An+1).

There is a canonical isomorphism

Gr(ℓ, Pn)
∼−→ Gr(n − ℓ− 1, (Pn)∗),

L ↦−→ L∨.
(2.2)

Primal coordinates on Gr(ℓ, Pn) are dual coordinates on Gr(n − ℓ − 1, (Pn)∗),
and vice versa. To see this, we write L ∈ Gr(ℓ, Pn) as the projectivization of
the kernel of a homomorphism ϕ ∈ Hom(An+1, An−ℓ), which corresponds to
a matrix A ∈ An−ℓ ⊗ (An+1)∗. The entries of A are primal Stiefel coordinates
of L. We consider the natural identifications

Hom(An+1, An−ℓ)∼= An−ℓ ⊗ (An+1)∗ ∼= (An+1)∗ ⊗ An−ℓ ∼= Hom
(
(An−ℓ)∗, (An+1)∗

)
,

ϕ ↦→ A ↦→ AT ↦→ ϕ∗,

(2.3)

where ϕ∗ : (An−ℓ)∗ → (An+1)∗, f ↦→ f ◦ ϕ denotes the dual homomorphism of
ϕ. Note that L∨ is the projectivization of the image of ϕ∗. Hence, the entries of
AT are dual Stiefel coordinates for L∨.

To change between primal and dual coordinates on the same Grassmannian
(which coincides by the above observation with the map (2.2) using the same
coordinates), we write L as the projectivization of the kernel of (In−ℓ|M), where
In−ℓ denotes the (n − ℓ)-dimensional identity matrix and M is some (n − ℓ)×
(ℓ + 1)-matrix. In this case, L is the projectivized row space of (−MT|Iℓ+1).
The analogous statement holds for the other affine charts of Gr(ℓ, Pn). For the
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2 PRELIMINARIES

Plücker coordinates it follows that

qj0...jℓ = s(i1, . . . , in−ℓ) · pi1...in−ℓ
, (2.4)

where i1, . . . , in−ℓ form the complement of {j0, . . . , jℓ} in strictly increasing order
and s(i1, . . . , in−ℓ) denotes the sign of the permutation (i1, . . . , in−ℓ, j0, . . . , jℓ).

Example 2.3. Consider the following polynomial in the primal Plücker coordi-
nates of Gr(1, P3), which will appear again in Examples 3.6 and 3.16:

(p6
01 + p6

02 + p6
03 + p6

12 + p6
13 + p6

23)

+2(p3
10 p3

02 + p3
10 p3

03 + p3
20 p3

03 + p3
01 p3

12 + p3
01 p3

13 + p3
21 p3

13)

+2(p3
02 p3

21 + p3
02 p3

23 + p3
12 p3

23 + p3
03 p3

31 + p3
03 p3

32 + p3
13 p3

32)

+2
(

p01 p23(p2
03 p2

12 − p2
02 p2

13)− p02 p13(p2
01 p2

23 − p2
03 p2

12) + p03 p12(p2
02 p2

13 − p2
01 p2

23)
)

.

(2.5)

To display the symmetry of the polynomial, the convention pji = −pij for i < j
is used. The change of coordinates

p01 ↦→ q23, p02 ↦→ −q13, p03 ↦→ q12, p12 ↦→ q03, p13 ↦→ −q02, p23 ↦→ q01,

yields the polynomial in dual Plücker coordinates:

(q6
01 + q6

02 + q6
03 + q6

12 + q6
13 + q6

23)

−2(q3
10q3

02 + q3
10q3

03 + q3
20q3

03 + q3
01q3

12 + q3
01q3

13 + q3
21q3

13)

−2(q3
02q3

21 + q3
02q3

23 + q3
12q3

23 + q3
03q3

31 + q3
03q3

32 + q3
13q3

32)

+2
(
q01q23(q2

03q2
12 − q2

02q2
13)− q02q13(q2

01q2
23 − q2

03q2
12) + q03q12(q2

02q2
13 − q2

01q2
23)
)

.

(2.6)

The polynomial in primal or dual Stiefel coordinates is obtained by substi-
tuting the 2 × 2-minor given by the columns i and j of a general 2 × 4-matrix[

a0 a1 a2 a3
b0 b1 b2 b3

]
into pij or qij, respectively. Similarly, one gets the polynomial in pri-

mal or dual affine coordinates by using a matrix of the form
[

1 0 a2 a3
0 1 b2 b3

]
, e.g., by

substituting

q01 ↦→ 1, q02 ↦→ b2, q03 ↦→ b3, q12 ↦→ −a2, q13 ↦→ −a3, q23 ↦→ a2b3 − b2a3. (2.7)

♦

Remark 2.4 ([43, Ch. 3, Prop. 2.1]). Every hypersurface in Gr(ℓ, Pn) is defined
by one homogeneous polynomial in Plücker coordinates, which is unique up to
a constant factor and the Plücker relations of Gr(ℓ, Pn). The Plücker relations
are the polynomials in the vanishing ideal of the image of Gr(ℓ, Pn) under its
Plücker embedding into P(n+1

ℓ+1)−1. ♦

Tangent and conormal spaces. Grassmannians are smooth and irreducible
varieties. The tangent space of Gr(ℓ+ 1, An+1) at a point L ∈ Gr(ℓ+ 1, An+1)
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2.2 Grassmannians

is naturally identified with

TGr(ℓ+1,An+1),L := Hom(L, An+1/L). (2.8)

A detailed discussion of tangent spaces of Grassmannians can for example be
found in [49, Lecture 16]. In fact, the description in (2.8) is very intuitive. A
tangent vector at L is a direction in which L can move. Such a direction can be
specified by describing the movement of every point on the linear subspace
L, i.e., by a homomorphism L → An+1. If the direction of movement of a
point on L lies inside L, its movement does not contribute to the direction of
movement of L. Thus, a tangent vector of Gr(ℓ+ 1, An+1) at L is already given
by a homomorphism ϕ : L → An+1/L.

Remark 2.5. Since TGr(ℓ,Pn),L = Hom(LLLLLLLLL, An+1/LLLLLLLLL), the tangent space of projective
space at a point p ∈ Pn is

TPn,p = Hom(ppppppppp, An+1/ppppppppp) ∼= An+1/ppppppppp.

Hence, for a projective variety X ⊂ Pn, we distinguish between the Zariski
tangent space TX,p ⊂ TPn,p at p ∈ Reg(X) and the embedded tangent space
TX,p ⊂ Pn; see (2.1). Note that the dimension of both tangent spaces is dim(X),
although the embedded tangent space is a projective space, whereas the Zariski
tangent space is an abstract vector space. For an affine variety Y ⊂ An+1 both
notions coincide and we simply write TY,p ⊂ An+1 for p ∈ Reg(Y). Note that
TX,p

∼= TXXXXXXXXX,x/ppppppppp and TX,p = P(TXXXXXXXXX,x) for x ∈ ppppppppp \ {0}. ♦

For a subvariety Σ ⊂ Gr(ℓ + 1, An+1), the normal space of Σ at L ∈ Reg(Σ)
is NΣ,L := TGr(ℓ+1,An+1),L/TΣ,L. Its dual vector space is the conormal space of
Σ at L. For two vector spaces U and W, we identify the dual vector space of
Hom(U, W) with Hom(W, U) via

Hom(W, U) −→ Hom(U, W)∗,
φ ↦−→ tr(· ◦ φ) = tr(φ ◦ ·),

which we use to express the conormal space of Σ at L:

(NΣ,L)
∗ ∼=

{
ϕ ∈

(
TGr(ℓ+1,An+1),L

)∗
| TΣ,L ⊂ ker ϕ

}
∼=
{

ϕ ∈ Hom(An+1/L, L) | ∀ψ ∈ TΣ,L : tr(ϕ ◦ ψ) = 0
}

=: N∗
Σ,L

Remark/Definition 2.6. The canonical isomorphism (2.2) of Grassmannians can
also be expressed as follows:

Gr(ℓ+ 1, An+1)
∼−→ Gr(n − ℓ, (An+1)∗),

U ↦−→
(

An+1/U
)∗

.

11
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The differential of this isomorphism at U ∈ Gr(ℓ+ 1, An+1) is

Hom
(

U, An+1/U
)
−→ Hom

((
An+1/U

)∗
, U∗

)
,

ϕ ↦−→ ϕ∗.

For a subvariety Σ ⊂ Gr(ℓ+ 1, An+1), we denote by Σ⊥ ⊂ Gr(n − ℓ, (An+1)∗)
the image of Σ under this isomorphism. Since the trace of an endomorphism ψ
is zero if and only if the trace of ψ∗ is zero, the isomorphism of the conormal
space of Σ at U ∈ Reg(Σ) with the corresponding conormal space of Σ⊥ is

Hom
(
An+1/U, U

)
Hom

(
U∗,

(
An+1/U

)∗)
∪ ∪

N∗
Σ,U −→ N∗

Σ⊥,(An+1/U)∗
,

ϕ ↦−→ ϕ∗. ♦
In this thesis, we will often consider incidence correspondences of Grass-

mannians and their tangent spaces. For this, we introduce the following no-
tation. Let ϕ : U → V1/V2 be a homomorphism of vector spaces, where
V2 ⊂ V1. For a subspace W ⊂ U, we denote by ϕ|W : W → V1/V2 the re-
striction of ϕ to W. Furthermore, for a vector space V with V2 ⊂ V ⊂ V1 we
denote by (ϕ mod V) : U → V1/V the composition of the canonical projection
V1/V2 → V1/V with ϕ.

Lemma 2.7. Let k < ℓ. The tangent space of the flag variety

Fk,ℓ :=
{
(L1, L2) ∈ Gr(k + 1, An+1)× Gr(ℓ+ 1, An+1) | L1 ⊂ L2

}
at a point (L1, L2) ∈ Fk,ℓ is

TFk,ℓ,(L1,L2) =
{
(ψ, ϕ) | ϕ|L1 = (ψ mod L2)

}
⊂ Hom(L1, An+1/L1)× Hom(L2, An+1/L2).

Proof. From our description of tangent spaces to Grassmannians it follows im-
mediately that every tangent vector (ψ, ϕ) ∈ TFk,ℓ,(L1,L2) and every v ∈ L1 satisfy
ϕ(v) = ψ(v) modulo L2; see also [49, Example 16.2, Exercise 16.3]. Hence,
TFk,ℓ,(L1,L2) ⊂ {(ψ, ϕ) | ϕ|L1 = (ψ mod L2)}. Since both vector spaces have the
same dimension, they are equal.

We usually apply this result to graphs of rational maps which are contained
in Fk,ℓ. Therefore, we formulate this version of the result explicitly in Corol-
lary 2.9. For a rational map ϖ : X 99K Y between varieties, we denote by
Dpϖ : TX,p → TY,ϖ(p) the differential of ϖ at p where it is defined.

Example 2.8. Many proofs in this thesis will follow the ideas presented in this
example.
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2.2 Grassmannians

Let C ⊂ P3 be an irreducible curve of degree at least two. The graph of the
rational map

ϖ : C 99K Gr(1, P3),
Reg(C) ∋ p ↦−→ TC,p

is contained in the flag variety F0,1. We denote the Zariski closure of the image of
ϖ by T ℓ(C); here we follow the notational convention of Chapter 6, where the
upper index “ℓ” stands for lines, since points in T ℓ(C) correspond to tangent
lines of C. For a general point p on the curve C with tangent line L := TC,p, the
differential Dpϖ : TC,p → TT ℓ(C),L is an isomorphism. Note that

TC,p = {ϕ ∈ Hom(ppppppppp, A4/ppppppppp) | im ϕ ⊂ LLLLLLLLL/ppppppppp}.

By the following Corollary 2.9, we have for every ϕ ∈ TC,p that

Dpϖ(ϕ)|ppppppppp = (ϕ mod LLLLLLLLL).

Since the image of every ϕ ∈ TC,p is contained in LLLLLLLLL/ppppppppp and Dpϖ is an isomor-
phism, the kernel of every homomorphism in TT ℓ(C),L ⊂ Hom(LLLLLLLLL, A4/LLLLLLLLL) con-
tains ppppppppp. In particular, the one-dimensional vector space TT ℓ(C),L is spanned by
a homomorphism ψ : LLLLLLLLL → A4/LLLLLLLLL such that ppppppppp ⊂ ker ψ. Since LLLLLLLLL is a plane con-
taining the line ppppppppp, the kernel of ψ is equal to ppppppppp and the homomorphism ψ has
rank one. We will see in Section 7.1 that the one-dimensional image of this ho-
momorphism is HHHHHHHHH/LLLLLLLLL, where H ⊂ P3 is the osculating plane of the curve C at the
point p. ♦

Corollary 2.9. Let Σ ⊂ Gr(ℓ+ 1, An+1) be an irreducible subvariety with a rational
map ϖ : Σ 99K Gr(k + 1, An+1). If k ≤ ℓ and ϖ(L) ⊂ L for a general L ∈ Σ, then a
general L ∈ Σ satisfies

ϕ|ϖ(L) = (DLϖ(ϕ) mod L) (2.9)

for every ϕ ∈ TΣ,L, i.e., the following diagram commutes:

Hom
(

L, An+1/L
)
⊃ TΣ,L Hom

(
ϖ(L), An+1/ϖ(L)

)
Hom

(
ϖ(L), An+1/L

)·|ϖ(L)

DLϖ

(· mod L)

If k ≥ ℓ and ϖ(L) ⊃ L for a general L ∈ Σ, then a general L ∈ Σ satisfies

DLϖ(ϕ)|L = (ϕ mod ϖ(L))

for every ϕ ∈ TΣ,L, i.e., the following diagram commutes:
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2 PRELIMINARIES

Hom
(

L, An+1/L
)
⊃ TΣ,L Hom

(
ϖ(L), An+1/ϖ(L)

)
Hom

(
L, An+1/ϖ(L)

)(· mod ϖ(L))

DLϖ

·|L

Proof. We denote by Σ0 ⊂ Σ the subset where ϖ is defined. Let us first assume
that k ≤ ℓ and that ϖ(L) ⊂ L holds for all L ∈ Σ0. We consider the Zariski
closure of the graph of ϖ:

Γ := {(ϖ(L), L) | L ∈ Σ0} ⊂
(

Gr(k + 1, An+1)× Σ
)
∩ Fk,ℓ.

Moreover, let π1 : Γ → Gr(k + 1, An+1) and π2 : Γ → Σ denote the projections
onto the first and second factor, respectively. We can draw another commutative
diagram (see below): at a general L ∈ Σ, the differential D(ϖ(L),L)π2 is bijective
and DLϖ = D(ϖ(L),L)π1 ◦ (D(ϖ(L),L)π2)

−1. Hence, by Lemma 2.7, the differential
DLϖ of ϖ at L satisfies (2.9).

TΓ, (ϖ(L),L) Hom
(
ϖ(L), An+1/ϖ(L)

)
TΣ,L

D(ϖ(L),L)π2

D(ϖ(L),L)π1

DLϖ

If k ≥ ℓ and L ⊂ ϖ(L) for all L ∈ Σ0, we proceed analogously.

With Lemma 2.7 we can also understand the differential of the rational map

ρ : A(ℓ+1)×(n+1) 99K Gr(ℓ+ 1, An+1),
A ↦−→ rowspace(A).

(2.10)

For an (ℓ+ 1)× (n + 1)-matrix A and 0 ≤ i ≤ ℓ, we write Ai ∈ An+1 for the
i-th row of A.

Corollary 2.10. Let A ∈ A(ℓ+1)×(n+1) be a matrix of full rank and let L := ρ(A)
denote its rowspace. The differential of (2.10) at A is given by

DAρ : A(ℓ+1)×(n+1) −→ Hom(L, An+1/L),
M ↦−→ (Ai ↦→ Mi + L for all 0 ≤ i ≤ ℓ) .

Proof. Let i ∈ {0, . . . , ℓ}. We consider the map

πi : A(ℓ+1)×(n+1) 99K Gr(1, An+1) ∼= Pn,
A ↦−→ span(Ai).
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Its differential at A is

DAπi : A(ℓ+1)×(n+1) −→ Hom
(

span(Ai), An+1/ span(Ai)
)

,

M ↦−→ (Ai ↦→ Mi + span(Ai)) .

The differential of the product map πi × ρ : A(ℓ+1)×(n+1) 99K F0,ℓ at A is equal
to DAπi × DAρ. Hence, by Lemma 2.7, we have for every M ∈ A(ℓ+1)×(n+1)

that
(DAρ(M))(Ai) = (DAπi(M) mod L)(Ai) = Mi + L.

With this we can also describe the differential of the Plücker embedding

pl : Gr(ℓ+ 1, An+1) ↪→ P

(
ℓ+1⋀

An+1

)
. (2.11)

Recall that (
⋀ℓ+1 An+1)/pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L) is naturally identified with the Zariski tangent

space of P(
⋀ℓ+1 An+1) at pl(L), where pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L) denotes the one-dimensional lin-

ear space corresponding to the projective point pl(L).

Corollary 2.11. Let L ∈ Gr(ℓ + 1, An+1) be the rowspace of a full rank matrix
A ∈ A(ℓ+1)×(n+1). For ϕ ∈ TGr(ℓ+1,An+1),L and M0, . . . , Mℓ ∈ An+1 such that
ϕ(Ai) = Mi + L for 0 ≤ i ≤ ℓ, we have that

DLpl : Hom(L, An+1/L) −→
(

ℓ+1⋀
An+1

)
/pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L),

ϕ ↦−→
ℓ

∑
i=0

A0 ∧ . . . ∧ Ai−1 ∧ Mi ∧ Ai+1 ∧ . . . ∧ Aℓ + pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L)pl(L).

Proof. First note that this description of (DLpl)(ϕ) is indeed well-defined, i.e.,
independent of the choice of A and M0, . . . , Mℓ. Secondly, we consider the ra-
tional map

µ : A(ℓ+1)×(n+1) 99K P

(
ℓ+1⋀

An+1

)
,

B ↦−→ [B0 ∧ . . . ∧ Bℓ],

where [x] := P(span(x)) denotes the projective point corresponding to a point
x in affine space. The differential of this map at A is

DAµ : A(ℓ+1)×(n+1) −→
(

ℓ+1⋀
An+1

)
/µ(A)µ(A)µ(A)µ(A)µ(A)µ(A)µ(A)µ(A)µ(A),
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N ↦−→
ℓ

∑
i=0

A0 ∧ . . . ∧ Ai−1 ∧ Ni ∧ Ai+1 ∧ . . . ∧ Aℓ + µ(A)µ(A)µ(A)µ(A)µ(A)µ(A)µ(A)µ(A)µ(A).

Since µ = pl ◦ ρ, Corollary 2.10 implies Corollary 2.11.

2.3 Segre Varieties

Since the elements of the tangent and conormal spaces of subvarieties of Grass-
mannians are homomorphisms, we can consider their rank. In this thesis, ho-
momorphisms of rank one play a central role. For two vector spaces U and W,
we denote by Seg(U, W) the projectivization of {ϕ ∈ Hom(U, W) | rank ϕ ≤ 1}.
This Segre variety has dimension d + e and degree (d+e

d ), where d := dim U − 1
and e := dim W − 1. It has two rulings by maximal projective subspaces: one
ruling consists of the projectivizations of all α-spaces, and the other ruling of the
projectivizations of all β-spaces, which are defined as follows.

Definition 2.12. Let U and W be vector spaces. For a linear hyperplane u ⊂ U,
we define the α-space of u as

Eα(u) := {ϕ ∈ Hom(U, W) | u ⊂ ker ϕ}.

Analogously, the β-space of a one-dimensional linear subspace w ⊂ W is

Eβ(w) := {ϕ ∈ Hom(U, W) | im ϕ ⊂ w}.

Example 2.13. Let U := C4 and W := C3. We pick bases (e1, . . . , e4) and
( f1, . . . , f3) of U and W, respectively. With respect to these bases we identify
Hom(U, W) with C3×4. For u := span{e1, e2, e3} and w := span{ f1}, we have
that Eα(u) and Eβ(w) consist of all matrices of the form⎡⎣ 0 0 0 ∗

0 0 0 ∗
0 0 0 ∗

⎤⎦ resp.

⎡⎣ ∗ ∗ ∗ ∗
0 0 0 0
0 0 0 0

⎤⎦ .
♦

Remark 2.14. The isomorphism

Hom(U, W) −→ Hom(W∗, U∗),
ϕ ↦−→ ϕ∗

maps the α-space Eα(u) to the β-space Eβ((U/u)∗). Dually, it maps the β-space
Eβ(w) to the α-space Eα((W/w)∗). ♦

Note that the notions rank, kernel and image are well-defined for elements in
P(Hom(U, W)). Thus, for ϕ ∈ P(Hom(U, W)), we will usually write rank ϕ,
ker ϕ and im ϕ. For example, we write

Seg(U, W) = {ϕ ∈ P(Hom(U, W)) | rank ϕ = 1} is ruled by spaces of the form
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2.3 Segre Varieties

P(Eα(u)) = {ϕ ∈ Seg(U, W) | ker ϕ = u} of dimension e and
P(Eβ(w)) = {ϕ ∈ Seg(U, W) | im ϕ = w} of dimension d.

Now that we have discussed our basic notions and necessary tools, we begin
to study coisotropic hypersurfaces of Grassmannians.
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3 Coisotropic Hypersurfaces

In this chapter, we revisit the main results in [43, Ch. 3+4] about coisotropic
hypersurfaces and develop the theory further. We use the definition in [43,
Def. 3.9]:

Definition 3.1. A hypersurface Σ ⊂ Gr(ℓ, Pn) is called coisotropic if, for every
L ∈ Reg(Σ), the conormal space N∗

Σ,L ⊂ Hom(An+1/LLLLLLLLL, LLLLLLLLL) is spanned by a
homomorphism of rank one.

Moreover, in [43, Ch. 3, Sec. 2.E], Gel’fand, Kapranov and Zelevinsky de-
fine the higher associated hypersurfaces of projective varieties. Their main result
about these hypersurfaces is that these are exactly the coisotropic ones [43, Ch. 4,
Thm. 3.14]. Due to this result, we will use a more meaningful name for our main
objects of study and call the i-th higher associated hypersurface of a projective
variety X the i-th coisotropic hypersurface of X. More specifically, we define:

Definition 3.2. Let X ⊂ Pn be an irreducible variety. For i ∈ {0, . . . , dim X}, the
i-th coisotropic variety of X is defined as

CHi(X) := {L | ∃x ∈ Reg(X) ∩ L : dim(L ∩ TX,x) ≥ i}
⊂ Gr(n − dim X + i − 1, Pn).

If CHi(X) has codimension one, we call it the i-th coisotropic hypersurface of X.

Note that the condition dim(L∩TX,x) ≥ i is equivalent to dim(L+TX,x) < n,
which means that L intersects X at x non-transversely.

Example 3.3. CH0(X) is the Chow hypersurface of X. If deg X ≥ 2, then CH1(X)
has codimension one in its ambient Grassmannian and is called the Hurwitz
hypersurface of X [101]. ♦

In Section 3.1, we determine for which index i Definition 3.2 yields indeed
a hypersurface in its ambient Grassmannian. We do this by showing that the
coisotropic varieties of a projective variety parametrize projectively dual vari-
eties to Segre products of the variety with projective spaces. We prove in Sec-
tion 3.2 that the degrees of the coisotropic hypersurfaces of a projective variety
coincide with its polar degrees.

Section 3.3 revisits the main theorem of [43] about coisotropic hypersurfaces,
which states that the two above definitions of coisotropic hypersurfaces agree.
In contrast to Definition 3.2, note that Definition 3.1 is local and does not depend
on any underlying projective variety. The proof in [43] uses machinery from
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3 COISOTROPIC HYPERSURFACES

Lagrangian varieties to construct the projective variety X a given coisotropic
hypersurface is associated to, whereas our proof (Theorem 3.11) is more direct
and explicit in defining the underlying variety X.

In Section 3.4, we derive that the coisotropic hypersurfaces of the projectively
dual variety X∨ are the coisotropic hypersurfaces of X in reversed order. Hy-
perdeterminants are special cases of coisotropic hypersurfaces, as we discuss
in Section 3.5. We study characterizations of coisotropy in different coordinate
systems on Grassmannians in Section 3.6.

We define the Cayley variety as the set of all coisotropic hypersurfaces of fixed
degree in a fixed ambient Grassmannian. We explicitly compute the vanishing
ideal of the Cayley variety of coisotropic quadrics in Gr(1, P3) in Section 3.7.
Moreover, we compute the vanishing ideal of its Chow subvariety, i.e., the variety
of all quadratic Chow hypersurfaces in Gr(1, P3).

The unitary group acts transitively on the tangent spaces of a coisotropic hy-
persurface, which allows to compute volumes of intersections of general trans-
lates of coisotropic hypersurfaces under the group action, see [14]. This is es-
sential for the probabilistic Schubert calculus proposed in [14]. We show in
Section 3.8 that not all hypersurfaces of Grassmannians with such an action are
coisotropic. Finally, we present a Macaulay2 package for computations with
coisotropic hypersurfaces in Section 3.9.

3.1 Cayley Trick

The Chow hypersurface can be constructed as the dual of a Segre product,
which is known as the Cayley trick [43, Ch. 3, Thm. 2.7]. We generalize this
for all coisotropic varieties. For an irreducible variety X ⊂ Pn of dimension k
and an integer 0 ≤ i ≤ k, we consider the Segre embedding

X × (Pk−i)∗ ↪→ Pn × (Pk−i)∗ ↪→ P
(

An+1 ⊗ (Ak−i+1)∗
)
= P

(
Hom(Ak−i+1, An+1)

)
and

(
X × (Pk−i)∗

)∨
↪→ P

(
Hom(An+1, Ak−i+1)

)
.

With this, we will show that the projectively dual variety (X × (Pk−i)∗)∨ is
in fact CHi(X), when both varieties are interpreted in the primal Stiefel space
P(Hom(An+1, Ak−i+1)). Formally, consider the following projection from the
Stiefel manifold S(n + 1, k − i + 1) ⊂ Hom(An+1, Ak−i+1) of all homomor-
phisms of full rank onto the ambient Grassmannian of CHi(X):

p : P (S(n + 1, k − i + 1)) −→ Gr(n − k + i − 1, Pn),
ϕ ↦−→ P(ker ϕ),

and take the closure p−1(CHi(X)) in P(Hom(An+1, Ak−i+1)).

Proposition 3.4. The varieties p−1(CHi(X)) and (X × (Pk−i)∗)∨ are equal.

Proof. This proof follows the ideas of the proof of [43, Ch. 3, Thm. 2.7].
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3.1 Cayley Trick

For x ∈ Reg(X) and y ∈ (Pk−i)∗, we can compute the affine cone in H :=
Hom(Ak−i+1, An+1) over the embedded tangent space of X × (Pk−i)∗ at (x, y)
as follows:

TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y) = (TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x ⊗ yyyyyyyyy) +
(

xxxxxxxxx ⊗ (Ak−i+1)∗
)

= {ϕ ∈ H | im ϕ ⊂ TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x, y∨y∨y∨y∨y∨y∨y∨y∨y∨ ⊂ ker ϕ}+ {ϕ ∈ H | im ϕ ⊂ xxxxxxxxx}
= {ϕ ∈ H | im ϕ ⊂ TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x, ϕ(y∨y∨y∨y∨y∨y∨y∨y∨y∨) ⊂ xxxxxxxxx}.

The corresponding affine conormal space in H∗ = Hom(An+1, Ak−i+1) is(
H/TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)

)∗
= {ψ ∈ H∗ | ψ(TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x) ⊂ y∨y∨y∨y∨y∨y∨y∨y∨y∨, xxxxxxxxx ⊂ ker ψ}. (3.1)

Indeed, the linear spaces in (3.1) have the same dimension, and, for every
ϕ ∈ TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y)TX×(Pk−i)∗,(x,y) and every ψ ∈ H∗ contained in the right hand side of (3.1),
we have tr(ψ ◦ ϕ) = 0. Hence, we have computed (X × (Pk−i)∗)∨ explicitly:

(
X × (Pk−i)∗

)∨
=

{
ψ ∈ P(H∗)

⏐⏐⏐⏐ ∃x ∈ Reg(X) ∃y ∈ (Pk−i)∗ :
ψ(TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x) ⊂ y∨y∨y∨y∨y∨y∨y∨y∨y∨, xxxxxxxxx ⊂ ker ψ

}
.

For ψ ∈ H∗ and x ∈ Reg(X), note that ψ(TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x) ⊂ y∨y∨y∨y∨y∨y∨y∨y∨y∨ for some y ∈ (Pk−i)∗ if
and only if the restriction of ψ to TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x is not surjective, which is equivalent to
that the dimension of ker(ψ|TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x) = ker ψ ∩ TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x is at least (k + 1)− (k − i) =
i + 1. This shows(

X × (Pk−i)∗
)∨

=

{
ψ ∈ P(H∗)

⏐⏐⏐⏐ ∃x ∈ Reg(X) : xxxxxxxxx ⊂ ker ψ,
dim(ker ψ ∩ TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x) ≥ i + 1

}
= p−1(CHi(X)).

Proposition 3.4 shows that the defining polynomials of the coisotropic vari-
eties (in case they are all hypersurfaces) interpolate from the Chow form via
the Hurwitz form to the X-discriminant which is the defining polynomial of X∨.
This raises immediately the next question: when is the i-th coisotropic variety
indeed a hypersurface in its ambient Grassmannian.

Corollary 3.5. CHi(X) has codimension one in Gr(n − k + i − 1, Pn) if and only
if 0 ≤ i ≤ k − codim X∨ + 1.

Proof. For any irreducible variety X ⊂ Pn, let µ(X) := dim X + codim X∨ − 1.
As shown in [43, Ch. 1, Thm 5.5,], we have

µ(X × Y) = max{dim X + dim Y, µ(X), µ(Y)} (3.2)

for the product X × Y ↪→ P(n+1)(m+1)−1 of two irreducible varieties X ⊂ Pn

and Y ⊂ Pm. Hence, the dual (X × Y)∨ is a hypersurface in (P(n+1)(m+1)−1)∗

if and only if the above maximum equals dim X + dim Y. This holds in par-
ticular when one of the factors is the variety Pk−i embedded into itself such
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3 COISOTROPIC HYPERSURFACES

that (Pk−i)∨ = ∅ [43, Ch. 1, Cor. 5.9]. By convention, dim(Pk−i)∨ = −1,
so µ(Pk−i) = 2(k − i). Thus (X × (Pk−i)∗)∨ is a hypersurface if and only if
2k − i ≥ k + codim X∨ − 1.

Example 3.6. Let X := Z(x3
0 + x3

1 + x3
2 + x3

3) ⊂ P3 be the Fermat cubic surface.
The projectively dual of X is also a surface. Therefore, the surface X has three
coisotropic hypersurfaces. The Chow form of X in dual Plücker coordinates
of Gr(0, P3) = P3 is just the Fermat cubic itself. The Hurwitz form of X in
primal and dual Plücker coordinates of Gr(1, P3) is given by the polynomials in
Example 2.3. This was computed with Macaulay2 (see Code A in the Appendix).
Finally, the second coisotropic form of X in primal Plücker coordinates pi of
Gr(2, P3), which are the dual coordinates of (P3)∗, is the following polynomial
of degree 12, which is also the defining equation of X∨:

6(z4
0 + z4

1 + z4
2 + z4

3)− 8(z3
0 + z3

1 + z3
2 + z3

3)(z0 + z1 + z2 + z3)

+(z2
0 + z2

1 + z2
2 + z2

3)
2 + 2(z2

0 + z2
1 + z2

2 + z2
3)(z0 + z1 + z2 + z3)

2 − 40z0z1z2z3,

where zi := p3
i for 0 ≤ i ≤ 3. ♦

3.2 Polar Degrees

After studying the dimension of the coisotropic varieties in Definition 3.2, the
next focus will lie on their degrees. In fact, these degrees agree with the well-
studied polar degrees, see [80] and [53]. As before, let X ⊂ Pn be an irreducible
variety of dimension k. Moreover, let 0 ≤ i ≤ k and V ⊂ Pn be a projective
subspace of dimension n − k + i − 2. For almost all x ∈ X, the dimension of
V intersected with TX,x equals i − 2. We define the i-th polar variety of X with
respect to V as

Pi(X, V) := {x ∈ Reg(X) | dim(V ∩ TX,x) ≥ i − 1} ⊂ X.

Given a general X, the i-th polar variety has codimension i in X for almost all
choices of V. Furthermore, for any X there exists an integer δi(X) that is equal
to the degree of Pi(X, V) for almost all V. This integer δi(X) is called the i-th
polar degree of X.

These degrees satisfy a lot of interesting properties:

1. δi(X) > 0 if and only if i ≤ k − codim X∨ + 1.

(Note that this coincides with the range of indices where the coisotropic
varieties of X are hypersurfaces.)

2. δ0(X) = deg X.

3. δk−codim X∨+1(X) = deg X∨.

4. δi(X) = δk−codim X∨+1−i(X∨).
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3.2 Polar Degrees

5. δi(X ∩ H) = δi(X) for any 0 ≤ i ≤ k − 1 and any general hyperplane
H ⊂ Pn.

6. δi(π(X)) = δi(X) if codim X ≥ 2 and π : Pn 99K Pn−1 is a general linear
projection.

One can also define the polar degrees via the conormal variety

NX,X∨ := {(x, y) | x ∈ Reg(X), TX,x ⊂ y∨} ⊂ Pn × (Pn)∗.

The multidegree of a variety X embedded into a product of projective spaces
Pn1 × . . . × Pnd with codimension c is a homogeneous polynomial of degree
c whose term αtc1

1 . . . tcd
d indicates that the intersection of X with the product

L1 × . . .× Ld of general projective subspaces Li ⊂ Pni with dim(Li) = ci consists
of α points. Thus, the multidegree of NX,X∨ is a homogeneous polynomial of
degree n + 1 in two variables. The non-zero coefficients of this polynomial are
the polar degrees (cf. [61, Prop. (3) on page 187] and [41, Lem. (2.23) on page
169]). Using the command multidegree in Macaulay2, this gives a practical way
to compute the polar degrees of a given variety X.

Now another property will be added to the above list, namely that the de-
gree of the i-th coisotropic hypersurface of X is the i-th polar degree of X. On
first sight, this may seem remarkable since the coisotropic hypersurfaces are
subvarieties of a Grassmannian, whereas the polar varieties are subvarieties of
the projective variety X ⊂ Pn. The degree of a hypersurface Σ ⊂ Gr(ℓ, Pn) is
defined as

deg Σ := |{L ∈ Σ | N ⊂ L ⊂ M}|,

where N ⊂ M ⊂ Pn is a general flag of (ℓ − 1)-dimensional and (ℓ + 1)-
dimensional projective subspaces. Alternatively, the degree of Σ can be de-
fined as the degree of the defining polynomial of Σ in the coordinate ring of
Gr(ℓ, Pn) [43, Ch. 3, Prop. 2.1].

Example 3.7. The degree of the Chow hypersurface CH0(X) in Gr(n− k− 1, Pn)
of an irreducible variety X ⊂ Pn of dimension k is the degree of X: a general
(n − k)-dimensional subspace M intersects X in exactly deg(X) points, so there
are exactly deg(X) many L ∈ Gr(n − k − 1, Pn) that pass through a general
(n − k − 2)-dimensional subspace N ⊂ M and intersect X; see Figure 3.1. ♦

Theorem 3.8. For 0 ≤ i ≤ k − codim X∨ + 1, the degree of the i-th coisotropic
hypersurface of X equals the i-th polar degree of X, i.e.,

deg CHi(X) = δi(X).

Proof. Let 0 ≤ d ≤ k. For 0 ≤ i ≤ k − d and a general subspace M ⊂ Pn

of codimension d, we have δi(X ∩ M) = δi(X) by applying the fifth property
above several times. Fix now 0 ≤ i ≤ k − codim X∨ + 1 and set d := k − i.
Choose a general M of codimension d as well as a general subspace N ⊂ M
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N M

C

1

Figure 3.1: The degree of the Chow hypersurface of a space curve C is deg C.

with dim N = dim M − dim(X ∩ M) + i − 2 = n − k + i − 2. Then the i-th
polar degree of X equals deg Pi(X ∩ M, N). Since X ∩ M is i-dimensional, it
follows from the first and the third property above that the dual (X ∩ M)∨ is a
hypersurface in M∗ with degree δi(X ∩ M). To sum up,

δi(X) = deg Pi(X ∩ M, N) = δi(X ∩ M) = deg(X ∩ M)∨.

The degree of the hypersurface (X ∩ M)∨ is also the number of hyperplanes in
M that are tangent to X ∩ M at some smooth point and that contain N, but these
hyperplanes are exactly the subspaces in CHi(X) with N ⊂ L ⊂ M.

Remark 3.9. For general projective varieties X, we can give another geometric ar-
gument to show Theorem 3.8. As above, let V be a general projective subspace
of dimension n − k + i − 2. Consider the variety Si(X, V) ⊂ Pn formed by the
union of all lines through V and the i-th polar variety Pi(X, V). For general X,
the i-th polar variety has codimension i in X and Si(X, V) is a hypersurface of
degree δi(X). The i-th coisotropic form of X in dual Stiefel coordinates is a poly-
nomial in the entries of a general (n − k + i) × (n + 1)-matrix B. Substituting
the last rows of that matrix by a basis of V yields a homogeneous polynomial
F ∈ C[b0j | 0 ≤ j ≤ n], whose degree is the degree of the i-th coisotropic hyper-
surface of X. This polynomial defines an irreducible hypersurface in Pn, which
is in fact Si(X, V). This shows Theorem 3.8 for general X.

To see that Si(X, V) and the zero locus of F are the same, it is enough to
show that F vanishes at every point of Si(X, V). This is clear for all points in
V ⊂ Si(X, V). For a point y /∈ V on the line between x ∈ Pi(X, V) and some
point in V, we have that F vanishes at y if and only if it vanishes at x. If x is a
smooth point of X such that the dimension of V ∩ TX,x is at least i − 1, then the
projective span of V and x is a point in CHi(X) and F vanishes at x. Since the
set of all those x is dense in Pi(X, V), all points in Pi(X, V) are in the zero locus
of F. ♦
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3.3 Rank One Characterization

The fundamental equivalence of the two notions of coisotropic hypersurfaces
given in Definitions 3.1 and 3.2 was first proven in [43, Ch. 4, Thm. 3.14]. That
proof contains many geometric ideas by taking a detour over conormal vari-
eties and Lagrangian varieties in general. Here a new and direct proof will be
presented. First, we compute the conormal spaces of the varieties CHi(X) ex-
plicitly to see that they are coisotropic in the sense of Definition 3.1.

Proposition 3.10. Consider an irreducible variety X in Pn and an integer
0 ≤ i ≤ dim X − codim X∨ + 1. For L ∈ Reg(CHi(X)) such that there is exactly
one x ∈ Reg(X) ∩ L with dim(L ∩ TX,x) = i we have that

N∗
CHi(X),L =

{
ϕ ∈ Hom(An+1/LLLLLLLLL, LLLLLLLLL) | im ϕ ⊂ xxxxxxxxx, (TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x + LLLLLLLLL)/LLLLLLLLL ⊂ ker ϕ

}
.

In particular, CHi(X) is coisotropic.

Proof. We denote by Σ0 the set of all L ∈ Reg(CHi(X)) such that there is exactly
one xL ∈ Reg(X)∩ L with dim(L ∩TX,xL) = i. Note that Σ0 is dense in CHi(X).
We consider the rational map

ϖ : CHi(X) 99K X,
Σ0 ∋ L ↦−→ xL

and a general L ∈ CHi(X). By Corollary 2.9, we have ϕ|xLxLxLxLxLxLxLxLxL = (DLϖ(ϕ) mod LLLLLLLLL)
for every ϕ ∈ TCHi(X),L. Since the image of DLϖ(ϕ) is contained in TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL /xLxLxLxLxLxLxLxLxL,
the tangent space TCHi(X),L is contained in {ϕ ∈ Hom(LLLLLLLLL, An+1/LLLLLLLLL) | ϕ(xLxLxLxLxLxLxLxLxL) ⊂
(TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL + LLLLLLLLL)/LLLLLLLLL}. This containment is actually an equality since the projective
space TX,xL + L is a hyperplane in Pn due to dim(L ∩ TX,xL) = i. Hence,

TCHi(X),L = {ϕ ∈ H | ϕ(xLxLxLxLxLxLxLxLxL) ⊂ (TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL + LLLLLLLLL)/LLLLLLLLL}
= {ϕ ∈ H | xLxLxLxLxLxLxLxLxL ⊂ ker ϕ}+ {ϕ ∈ H | im ϕ ⊂ (TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL + LLLLLLLLL)/LLLLLLLLL} ,

(3.3)

where H := Hom(LLLLLLLLL, An+1/LLLLLLLLL). Since we have shown (3.3) for general L in
CHi(X), it also holds for all L ∈ Σ0. From this it follows immediately that
N∗

CHi(X),L is spanned by a rank one homomorphism with image xLxLxLxLxLxLxLxLxL and kernel
(TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL + LLLLLLLLL)/LLLLLLLLL.

Secondly, we need to construct for every coisotropic hypersurface (in the
sense of Definition 3.1) an underlying projective variety. For points x ∈ Pn and
y ∈ (Pn)∗ such that x ∈ y∨, we define Gℓ(x, y) := {L ∈ Gr(ℓ, Pn) | x ∈ L ⊂ y∨}.
Moreover, for an irreducible variety X ⊂ Pn, we consider the following open
subset of the conormal variety:

UX,X∨ := {(x, y) ∈ Reg(X)× Reg(X∨) | TX,x ⊂ y∨}. (3.4)
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Since the condition dim(L ∩ TX,x) ≥ i in the definition of CHi(X) is equiva-
lent to dim(L + TX,x) ≤ n − 1, which means that L is contained in a tangent
hyperplane of X at x, we have for 0 ≤ i ≤ dim X that

CHi(X) =
⋃

(x,y)∈UX,X∨

Gn−dim X+i−1(x, y). (3.5)

Theorem 3.11. 1. For an irreducible variety X in Pn and an integer
0 ≤ i ≤ dim X − codim X∨ + 1, the i-th coisotropic hypersurface of X is
coisotropic (in the sense of Definition 3.1).

2. For an irreducible coisotropic hypersurface Σ ⊂ Gr(ℓ, Pn), there is an irreducible
variety X ⊂ Pn such that Σ = CHdim X+ℓ+1−n(X).

Proof. The first part was already proven in Proposition 3.10. For the second part,
we consider the one-dimensional conormal space N∗

Σ,L ⊂ Hom(An+1/LLLLLLLLL, LLLLLLLLL) at
L ∈ Reg(Σ). It is spanned by a rank one homomorphism. Hence, there are
unique xL ∈ L and yL ∈ (Pn)∗ such that L ⊂ y∨L ,

N∗
Σ,L =

{
ϕ ∈ Hom(An+1/LLLLLLLLL, LLLLLLLLL) | im ϕ ⊂ xLxLxLxLxLxLxLxLxL, y∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨L /LLLLLLLLL ⊂ ker ϕ

}
, and (3.6)

TΣ,L =
{

ϕ ∈ Hom(LLLLLLLLL, An+1/LLLLLLLLL) | ϕ(xLxLxLxLxLxLxLxLxL) ⊂ y∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨L /LLLLLLLLL
}

. (3.7)

Thus, we can define the rational map ϖ : Σ 99K Pn which maps L ∈ Reg(Σ)
to xL. We denote the Zariski closure of the image of ϖ by X ⊂ Pn. Since
Σ is irreducible, so is X. By Corollary 2.9, the differential of ϖ at a general
L ∈ Σ is a surjection ϖL : TΣ,L → TX,xL such that ϕ|xLxLxLxLxLxLxLxLxL = (ϖL(ϕ) mod LLLLLLLLL)
for every ϕ ∈ TΣ,L. Due to (3.7), we see that the image of each ψ ∈ TX,xL
is contained in y∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨Ly∨L /xLxLxLxLxLxLxLxLxL, which means that TX,xL ⊂ y∨L . Hence, using (3.5), we
have shown that Σ ⊂ CHi(X), where i := dim X + ℓ + 1 − n. Since Σ is a
hypersurface and CHi(X) ⊂ Gr(ℓ, Pn) is a proper irreducible subvariety, we
have Σ = CHi(X).

Example 3.12. All coisotropic hypersurfaces in the Grassmannian Gr(1, P3) of
lines in P3 are either Chow hypersurfaces of curves or Hurwitz hypersurfaces
of surfaces. According to [16], these define exactly the self-dual hypersurfaces
in Gr(1, P3). ♦

3.4 Duality

By Remark/Definition 2.6, a hypersurface Σ ⊂ Gr(ℓ, Pn) is coisotropic if and
only if Σ⊥ ⊂ Gr(n − ℓ− 1, (Pn)∗) is coisotropic. In that case, their underlying
projective varieties are projectively dual to each other.
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Theorem 3.13. For an irreducible variety X in Pn as well as an integer
0 ≤ i ≤ dim X − codim X∨ + 1, we have

CHi(X)⊥ = CHdim X−codim X∨+1−i(X∨).

Proof. We set ℓ := n − dim X + i − 1 and use (3.5). First, we clearly have
Gℓ(x, y)⊥ = Gn−ℓ−1(y, x). Secondly, the biduality theorem implies the equal-
ity UX∨,X = {(y, x) | (x, y) ∈ UX,X∨} (see (3.4)). Hence,

CHi(X)⊥ =
⋃

(x,y)∈UX,X∨

Gℓ(x, y)⊥

=
⋃

(y,x)∈UX∨ ,X

Gn−ℓ−1(y, x) = CHdim X−codim X∨+1−i
(
X∨) .

Note that Theorems 3.8 and 3.13 give an alternative proof that the polar de-
grees of a projective variety and its dual are the same but in reversed order, as
stated in the forth property of polar degrees in Section 3.2.

Corollary 3.14 (Dual Cayley Trick). Using the projection

q : P(S(n − dim X + i, n + 1)) −→ Gr(n − dim X + i − 1, Pn),
ϕ ↦−→ P(im ϕ)

sending full rank homomorphisms in P(Hom(An−dim X+i, An+1)) to their projec-
tivized image, we have

q−1 (CHi(X)) =
(

Pn−dim X+i−1 × X∨
)∨

.

Proof. We set k := dim X and consider the Segre embedding

Pn−k+i−1 × X∨ ↪→ Pn−k+i−1 × (Pn)∗ ↪→ P(Hom(An+1, An−k+i))

and
(

Pn−k+i−1 × X∨
)∨

↪→ P(Hom(An−k+i, An+1)).

Moreover, we define

p : P(S(n − k + i, n + 1)) −→ Gr(k − i, (Pn)∗),
ϕ ↦−→ P(ker(ϕ∗)).

In particular, we have q(ϕ)∨ = p(ϕ). This yields together with Proposition 3.4
and Theorem 3.13 for j := k − codim X∨ + 1 − i that

q−1 (CHi(X)) = q−1
(
CHj(X∨)⊥

)
= p−1

(
CHj(X∨)

)
=
(

Pdim X∨−j × X∨
)∨

.
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3 COISOTROPIC HYPERSURFACES

Note that the two factors of the Segre product appear in a different order than
in Proposition 3.4 since the map ϕ ↦→ ϕ∗ exchanges the factors of the tensor
product as in (2.3).

Example 3.15. The Chow form of a curve of degree at least two in P3 is natu-
rally isomorphic to the Hurwitz form of its dual surface. Thus, a line intersects
the curve if and only if its dual line is tangent to the dual surface. For exam-
ple, the dual of the twisted cubic is the surface cut out by the discriminant of a
cubic univariate polynomial. By Example 1.1, the Chow form of the twisted cu-
bic in primal Plücker coordinates on Gr(1, P3) is the determinant of the Bézout
matrix B:

B :=

⎡⎣ p01 p02 p03
p02 p03 + p12 p13
p03 p13 p23

⎤⎦!

⎡⎣ q23 −q13 q12
−q13 q03 + q12 −q02
q12 −q02 q01

⎤⎦ ,

and the Hurwitz form of the discriminant surface in primal Plücker coordinates
on Gr(1, (P3)∗) is the determinant of the matrix on the right. ♦

Example 3.16. The Hurwitz form of a general surface in P3 is naturally isomor-
phic to the Hurwitz form of its dual surface. Consider for example the self-
dual Segre surface P1 × P1. Its Hurwitz form is the determinant of the matrix[

2p02 p12+p03
p12+p03 2p13

]
(see Code B in the Appendix), which stays invariant under the

change of coordinates (2.4).
This phenomenon can also be observed in Example 3.6. The hypersurface

in Gr(1, (P3)∗) whose defining equation in primal Plücker coordinates is (2.6)
and whose defining equation in dual Plücker coordinates is (2.5) is the Hurwitz
hypersurface of the projectively dual X∨ of the Fermat cubic surface X ⊂ P3.
Hence, the two similar polynomials of degree six in Example 2.3 are the Hur-
witz forms of the surface X of degree three and the surface X∨ of degree twelve.
Moreover, the second coisotropic hypersurface of X∨ is the Fermat cubic sur-
face X. ♦

Example 3.17. In Gr(2, P4), there are three cases for coisotropic hypersurfaces:
Chow forms of curves, Hurwitz forms of surfaces, and second coisotropic forms
of threefolds. On the other hand, there are just two cases for Gr(1, P4), namely
Chow forms of surfaces and Hurwitz forms of threefolds. The following table
summarizes which forms coincide, depending on the dimensions of the variety
X and its dual X∨.

X | X∨ curve surface threefold
curve CH0(X)⊥ = CH0(X∨) CH0(X)⊥ = CH1(X∨)

surface CH0(X)⊥ = CH0(X∨) CH0(X)⊥ = CH1(X∨) CH0(X)⊥ = CH2(X∨)
CH1(X)⊥ = CH0(X∨) CH1(X)⊥ = CH1(X∨)

threefold CH1(X)⊥ = CH0(X∨) CH1(X)⊥ = CH1(X∨) CH1(X)⊥ = CH2(X∨)
CH2(X)⊥ = CH0(X∨) CH2(X)⊥ = CH1(X∨)♦
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3.5 Hyperdeterminants

The purpose of this section is to derive and discuss the following result.

Proposition 3.18. The i-th coisotropic form of the Segre variety Pn1 × . . . × Pnd in
P(n1+1)···(nd+1)−1, in primal Stiefel coordinates, coincides with the hyperdeterminant
of format (n1 + 1)× . . . × (nd + 1)× (n1 + . . . + nd − i + 1). All hyperdeterminants
arise in that manner.

Chapter 14 of [43] is devoted to the study of hyperdeterminants. They are
defined as follows. For n1, . . . , nd ≥ 1, the variety X := Pn1 × . . . × Pnd in
P(n1+1)···(nd+1)−1 characterizes all tensors of format (n1 + 1) × . . . × (nd + 1)
having rank at most one. Whenever the dual variety X∨ is a hypersurface,
its defining polynomial is called the hyperdeterminant of format
(n1 + 1)× . . . × (nd + 1). Analogously to Corollary 3.5, one can derive the con-
dition for codim X∨ = 1: recall that µ(Y) := dim Y + codim Y∨ − 1 for every
irreducible variety Y ⊂ Pn. The equality (3.2) proven in [43, Ch. 1, Thm. 5.5]
generalizes by induction to

µ(X1 × . . . × Xd) = max{dim X1 + . . . + dim Xd, µ(X1), . . . , µ(Xd)}.

Hence, X∨ is a hypersurface if and only if 2ni ≤ n1 + . . . + nd for all i = 1, . . . , d.
More generally,

codim X∨ = max {1, 2 max{n1, . . . , nd} − (n1 + . . . + nd) + 1} .

Example 3.19. In the special case d = 2 of matrices, the projectively dual va-
riety X∨ is given by all matrices that do not have full rank. This variety is a
hypersurface if and only if the matrices have square format (n1 = n2). In this
case, the defining polynomial of X∨ is the usual determinant. Otherwise the
codimension of X∨ equals |n2 − n1|+ 1. ♦

Proof of Proposition 3.18. Let 0 ≤ i ≤ n1 + . . . + nd − codim X∨ + 1. By the Cay-
ley trick in Proposition 3.4, the i-th coisotropic form of X written in primal
Stiefel coordinates is exactly the hyperdeterminant of format (n1 + 1) × . . . ×
(nd + 1) × (n1 + . . . + nd − i + 1). It is clear that all hyperdeterminants arise
in that way as coisotropic forms of the varieties of tensors with rank at most
one.

Remark 3.20. Note that even the usual determinant of square matrices is given
by the Chow form of Pn. Using the duality explained in Theorem 3.13, the
hyperdeterminants can also be characterized as the coisotropic forms of the va-
rieties of degenerate tensors. ♦

If all inequalities 2ni ≤ n1 + . . . + nd are satisfied (which means that X∨ is a
hypersurface) such that at least one of them holds with equality, the hyperde-
terminant is said to be of boundary format. An example for this is the determi-
nant of square matrices. The hyperdeterminants of boundary format can also be
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3 COISOTROPIC HYPERSURFACES

characterized in terms of coisotropic forms. This is also studied in [43, Ch. 14,
Sec. 3C], but here this naturally and immediately follows from the duality stud-
ied in Theorem 3.13.

Corollary 3.21. The Chow form of the Segre variety X = Pn1 × . . . × Pnd in primal
Stiefel coordinates is a hyperdeterminant of boundary format, and – up to permuting
the tensor format – all hyperdeterminants of boundary format arise in that manner.

If codim X∨ ≥ 2, then the Chow form of X∨ in dual Stiefel coordinates is a hy-
perdeterminant of boundary format, and – up to permuting the tensor format – all
hyperdeterminants of boundary format arise in that manner.

Proof. The first part of this proposition is clear. Note that the second part uses
the convention that the Chow form of the empty variety (Pn)∨ in dual Stiefel
coordinates is the usual (n + 1)× (n + 1)-determinant. If X∨ is not a hypersur-
face and d ≥ 2, exactly two coisotropic forms of X yield hyperdeterminants of
boundary format: its Chow form and its (2 · (n1 + . . . + nd −max{n1, . . . , nd}))-
th coisotropic form, where – by Theorem 3.13 – the latter is naturally isomorphic
to the Chow form of X∨. So, although X∨ is not defining a hyperdeterminant,
its Chow form in dual Stiefel coordinates is the hyperdeterminant of boundary
format (n1 + 1)× . . .× (nd + 1)× (2 max{n1, . . . , nd}− (n1 + . . .+ nd) + 1).

Remark 3.22. Theorem 3.3 in [43, Ch. 14] shows that all hyperdeterminants of
boundary format can be written as the usual determinant of a square matrix
whose entries are linear forms in the tensor entries. Hence, if X∨ is not a hy-
persurface, the Chow forms of X and X∨ have determinantal representations in
their Stiefel coordinates.

Analogously, if X∨ is a hypersurface and the corresponding hyperdetermi-
nant is of boundary format, the Chow form of X and the (n1 + . . . + nd)-th
coisotropic hypersurface of X (which is just X∨) give hyperdeterminants of
boundary format. These are the only two coisotropic hypersurfaces of X with
that property, and their defining polynomials in Stiefel coordinates have deter-
minantal representations. Finally, if X∨ is a hypersurface and its hyperdetermi-
nant is not of boundary format, the Chow form of X is the only coisotropic form
which yields a hyperdeterminant of boundary format. In all cases the Chow
form of X has a determinantal representation in primal Stiefel coordinates. ♦

Example 3.23. The variety X = P1 × Pn of 2 × (n + 1)-matrices of rank at most
one is self-dual and it has three coisotropic hypersurfaces. Hence, after the
change of coordinates in (2.4), the Chow form of X is the same as the second
coisotropic form of X.

For n = 1, the variety X itself is a hypersurface, given by the 2 × 2-deter-
minant. Therefore, its Chow form and its second coisotropic form are also the
2 × 2-determinant in their respective Plücker coordinates. As mentioned in Ex-
ample 3.16, the Hurwitz form of X is the determinant of

[
2p02 p12+p03

p12+p03 2p13

]
, which

leads after substitution by the 2 × 2-minors of a general 2 × 4-matrix to the hy-
perdeterminant of format 2 × 2 × 2.
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Analogously, the Chow form of X in primal Stiefel coordinates is the hyper-
determinant of boundary format 2 × 2 × 3. Hence, this hyperdeterminant can
be written as the determinant of

[ p012 p013
p023 p123

]
, where the pijk are the 3× 3-minors of

a general 3 × 4-matrix. On the other hand, the 2 × 2 × 3-hyperdeterminant has
a determinantal representation: let A, B ∈ A2×3 be the two slices of a general
2 × 2 × 3-tensor in the first direction. The 2 × 2 × 3-hyperdeterminant is the de-
terminant of the 6× 6-matrix

[
AT BT 0
0 AT BT

]
, since by Laplace expansion in the first

three rows this determinant is equal to p012p123 − p013p023, where the pijk are the
minors of the 3 × 4-matrix [AT|BT]. Moreover, the 2 × 3 × 2-hyperdeterminant
is also given by the second coisotropic form of P1 × P2 in primal Stiefel co-
ordinates, or equivalently by the Chow form of P1 × P2 in dual Stiefel coordi-
nates. Thus, the 2× 3× 2-hyperdeterminant can be obtained by substituting the
2 × 2-minors of the general 2 × 6-matrix [A|B] into the following Chow form of
P1 × P2 (see Code C in the Appendix):

q12q23q34 − q02q24q34 − q12q13q35 + q02q14q35 − q01q15q35

+q01q24q35 − q02q04q45 + q01q05q45 + q02q13q45 − 2q01q23q45. ♦

3.6 Coordinate Systems of Grassmannians

For explicit computations it is important to be able to check for coisotropy in dif-
ferent coordinate system of Grassmannians. We will investigate affine, Stiefel
and Plücker coordinates in this section. Due to the duality explained in Sec-
tion 3.4, it is enough to consider dual coordinates only. All statements presented
here will hold analogously for primal coordinates.

We begin with dual Stiefel coordinates. For this, we consider the rational map
ρ in (2.10), which is defined on the set of full rank matrices, and the Plücker em-
bedding pl in (2.11). So the map µ := pl ◦ ρ sends a matrix of full rank to
its maximal minors; see the diagram before Proposition 3.25. If Q denotes the
defining equation of a hypersurface Σ ⊂ Gr(ℓ+ 1, An+1) in dual Plücker coor-
dinates, then Q ◦ µ denotes the defining equation of the hypersurface ρ−1(Σ) in
A(ℓ+1)×(n+1). Note that ρ−1(Σ) is an affine cone and that the projectively dual
of Y := P(ρ−1(Σ)) is the Zariski closure of the image of

Y 99K P
(

A(ℓ+1)×(n+1)
)∗

,

A ↦−→ JQ◦µ(A),

where JQ◦µ is the (ℓ+ 1)× (n + 1)-matrix of partial derivatives of Q ◦ µ.

Proposition 3.24. Let Σ ⊂ Gr(ℓ + 1, An+1) be an irreducible hypersurface, given
by a homogeneous polynomial Q in dual Plücker coordinates. Moreover, we consider
Y := P(ρ−1(Σ)) = Z(Q ◦ µ) ⊂ P(A(ℓ+1)×(n+1)). The following are equivalent:

1. Σ is coisotropic.

31
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2. The Segre variety (Pℓ)∗ × (Pn)∗ ↪→ P
(

A(ℓ+1)×(n+1)
)∗

contains Y∨.

3. The rank of JQ◦µ(A) is at most one for all A ∈ Y.

Proof. Clearly, the second and the third assertion are equivalent. To show the
equivalence with assertion one, we first assume that Σ is coisotropic. By The-
orem 3.11 and the dual Cayley trick in Corollary 3.14, we have that Σ is a
coisotropic hypersurface of some variety X ⊂ Pn such that Y∨ is equal to the
Segre product (Pℓ)∗ × X∨. This shows that assertions two and three hold if Σ is
coisotropic.

For the other direction, let L ∈ Reg(Σ) and A ∈ ρ−1(L) ∩ Reg(YYYYYYYYY). We denote
the rows of a matrix M ∈ A(ℓ+1)×(n+1) by M0, . . . , Mℓ. Assertions two and three
imply that TYYYYYYYYY,A is the zero locus of ∑i,j λizjxij, where λ0, . . . , λℓ and z0, . . . , zn are
constants. From{

M ∈ A(ℓ+1)×(n+1) | ∀i = 0, . . . , ℓ : Mi ∈ L
}
= Tρ−1(L),A ⊂ TYYYYYYYYY,A = Z

(
∑
i,j

λizjxij

)

it follows that L is contained in the hyperplane H := Z(∑n
j=0 zjxj) ⊂ An+1. By

Corollary 2.10, the image of TYYYYYYYYY,A under the differential of ρ at A consists of all
ϕ ∈ Hom(L, An+1/L) with ϕ(∑ℓ

i=0 λi Ai) ∈ H/L. Since Σ is a hypersurface and
p := ∑ℓ

i=0 λi Ai ̸= 0, we have TΣ,L = {ϕ ∈ Hom(L, An+1/L) | ϕ(p) ∈ H/L}.
This shows that N∗

Σ,L ⊂ Hom(An+1/L, L) is spanned by a rank one homomor-
phism with kernel H/L and image span{p}. Thus, Σ is coisotropic.

Proposition 3.24 provides a practical tool to check if a given hypersurface of a
Grassmannian is coisotropic. It might be more efficient to run this computation
in an affine chart of the Grassmannian. This motivates the following proposi-
tion, which asserts that it is enough to check for coisotropy of a hypersurface
of a Grassmannian in one fixed affine chart to deduce coisotropy for the whole
hypersurface. This statement can also be found as Proposition 3.12 in [43, Ch. 4].

The set up is the following. We fix integers 0 ≤ j0 < . . . < jℓ ≤ n and consider
the map ι := ιj0...jℓ which sends a matrix A ∈ A(ℓ+1)×(n−ℓ) to the matrix ι(A) ∈
A(ℓ+1)×(n+1) whose columns indexed by j0, . . . , jℓ form the identity matrix and
whose remaining columns form A. Thus, if Q is the defining polynomial in dual
Plücker coordinates of a hypersurface Σ ⊂ Gr(ℓ+ 1, An+1), then Q ◦ µ ◦ ι is the
equation for Σ in the dual affine chart {L ∈ Gr(ℓ+ 1, An+1) | qj0...jℓ(L) ̸= 0} ∼=
A(ℓ+1)×(n−ℓ) . We summarize the used maps in the following commutative
diagram:

A(ℓ+1)×(n−ℓ) A(ℓ+1)×(n+1)

Gr(ℓ+ 1, An+1) P
(⋀ℓ+1 An+1

)
ι

ρ
µ

pl
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Proposition 3.25. Let Σ ⊂ Gr(ℓ+ 1, An+1) be an irreducible hypersurface, given by
a homogeneous polynomial Q in dual Plücker coordinates. Moreover, fix a dual affine
chart {L | qj0...jℓ(L) ̸= 0} ⊂ Gr(ℓ + 1, An+1) together with the map ι := ιj0...,jℓ
and let Z := (ρ ◦ ι)−1(Σ) = Z(Q ◦ µ ◦ ι) ⊂ A(ℓ+1)×(n−ℓ). If Z ̸= ∅, then Σ is
coisotropic if and only if the rank of the (ℓ+ 1)× (n − ℓ)-matrix JQ◦µ◦ι(A) of partial
derivatives of Q ◦ µ ◦ ι is at most one for all A ∈ Z.

Proof. We may assume that (j0, . . . , jℓ) = (n − ℓ, . . . , n). Defining Y as in Propo-
sition 3.24 and denoting by Iℓ+1 the (ℓ+ 1)× (ℓ+ 1)-identity matrix, we have
for a general A ∈ Z that

(DAι) |TZ,A : TZ,A −→ TYYYYYYYYY,[A|Iℓ+1]
,

M ↦−→ [M|0].
(3.8)

We need to show that Σ is coisotropic if and only if, for a general A ∈ Z, there
are λ ∈ Aℓ+1 and z ∈ An−ℓ such that

TZ,A = Z

(
ℓ

∑
i=0

n−ℓ−1

∑
j=0

λizjxij

)
. (3.9)

First, we assume that the hypersurface Σ is coisotropic. By Proposition 3.24,
there are λ ∈ Aℓ+1 and z′ ∈ An+1 such that TYYYYYYYYY,[A|Iℓ+1]

= Z(∑ℓ
i=0 ∑n

j=0 λiz′jxij)

and L := ρ([A|Iℓ+1]) ⊂ Z(∑n
j=0 z′ixj). In particular, z := (z′0, . . . , z′n−ℓ−1) is not

zero. By (3.8), every M ∈ TZ,A satisfies ∑ℓ
i=0 ∑n−ℓ−1

j=0 λizjMij = 0. Since Z is a
hypersurface, we have shown (3.9).

Secondly, for A ∈ Z general, we assume that (3.9) holds for some λ ∈ Aℓ+1

and z ∈ An−ℓ. We set p := [A|Iℓ+1]
Tλ, z′ := [In−ℓ| − AT]Tz ∈ An+1 \ {0} and

H := Z(∑n
j=0 z′jxj) ⊂ An+1. Note that L := ρ([A|Iℓ+1]) ⊂ H. The differential of

ρ ◦ ι at A is an isomorphism of TZ,A with TΣ,L. By Corollary 2.10, every ϕ ∈ TΣ,L
satisfies ϕ(p) ∈ H/L. Since Σ is a hypersurface, we have shown that TΣ,L =
{ϕ ∈ Hom(L, An+1/L) | ϕ(p) ∈ H/L}. This shows that Σ is coisotropic.

Finally, we turn to characterizations of coisotropy in Plücker coordinates.
Cayley [18] had already realized that an irreducible hypersurface Σ ⊂ Gr(1, P3)
with defining polynomial Q in Plücker coordinates is coisotropic if and only if
the following polynomial vanishes everywhere on Σ:

∀L ∈ Σ :
(

∂Q
∂q01

· ∂Q
∂q23

− ∂Q
∂q02

· ∂Q
∂q13

+
∂Q
∂q03

· ∂Q
∂q12

)
(pl(L)) = 0. (3.10)

This follows directly from the affine or Stiefel characterization of coisotropy
given in Propositions 3.25 and 3.24. Now we provide a generalization of Cay-
ley’s result to Gr(1, Pn) for n ≥ 3.

For a homogeneous irreducible polynomial Q in dual Plücker coordinates of
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Gr(1, Pn) and for 0 ≤ j < k < i < m ≤ n, define

RQ
jkim :=

∂Q
∂qjk

· ∂Q
∂qim

− ∂Q
∂qji

· ∂Q
∂qkm

+
∂Q

∂qjm
· ∂Q

∂qki
.

Note that this polynomial of degree 2(deg Q − 1) is a differential version of the
usual Plücker relations. To allow permutations of the indices, define RQ

π(jkim)
:=

sgn(π)RQ
jkim for π ∈ S4.

Theorem 3.26. Let n ≥ 3, and let Σ ⊂ Gr(1, Pn) be an irreducible hypersur-
face, given by a homogeneous polynomial Q in dual Plücker coordinates. Then Σ is
coisotropic if and only if for all 0 ≤ i < m ≤ n, the following polynomial in dual
Plücker coordinates vanishes everywhere on Σ:

∀L ∈ Σ :

⎛⎝ ∑
0≤j<k≤n,j,k/∈{i,m}

qjkRQ
jkim

⎞⎠ (pl(L)) = 0.

Proof. This proof relies on Proposition 3.24. Let µ be the map that sends a
2 × (n + 1)-matrix to its maximal minors, such that µ(A)ij = a0ia1j − a0ja1i de-
notes the minor given by the i-th and j-th column of a matrix A. For shorter no-
tation, write βij := ∂Q

∂qij
◦ µ, as well as qij = µ(·)ij. This will be used to compute

the 2× 2-minors of JQ◦µ. For this, pick two columns with indices 0 ≤ i < m ≤ n.
The set of remaining column indices is denoted by S := {0, . . . , n} \ {i, m}. The
chain rule for partial derivatives gives

∂(Q ◦ µ)

∂a0i
= − ∑

j∈S
β jia1j − βmia1m,

∂(Q ◦ µ)

∂a1m
= ∑

j∈S
β jma0j + βima0i.

Hence, the (2 × 2)-minor of JQ◦µ given by the columns i and m equals

∂(Q ◦ µ)

∂a0i
· ∂(Q ◦ µ)

∂a1m
− ∂(Q ◦ µ)

∂a1i
· ∂(Q ◦ µ)

∂a0m

=a0ia1mβ2
im + ∑

j∈S
a0ja1mβimβ jm − ∑

j∈S
a0ia1jβimβ ji − ∑

j,k∈S
a0ka1jβ jiβkm

− a0ma1iβ
2
im + ∑

j∈S
a0ja1iβimβ ji − ∑

j∈S
a0ma1jβimβ jm + ∑

j,k∈S
a0ja1kβ jiβkm

=qimβ2
im + ∑

j∈S
qjmβimβ jm + ∑

j∈S
qjiβimβ ji + ∑

j,k∈S,j ̸=k
qjkβ jiβkm

=βim

(
∑

0≤j<k≤n
qjkβ jk − ∑

j,k∈S,j<k
qjkβ jk

)
+ ∑

j,k∈S,j<k
qjkβ jiβkm − ∑

j,k∈S,j<k
qjkβkiβ jm

=βim ∑
0≤j<k≤n

qjkβ jk − ∑
j,k∈S,j<k

qjk
(

β jkβim − β jiβkm + β jmβki
)
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=βim ∑
0≤j<k≤n

qjkβ jk − ∑
j,k∈S,j<k

qjkRQ
jkim.

Since Q is homogeneous, we have ∑
0≤j<k≤n

(qjkβ jk)(M) = 0 for all M ∈ Z(Q ◦ µ).

Now the theorem follows from Proposition 3.24.

Example 3.27. For n = 3, the above theorem yields exactly Cayley’s differential
characterization in (3.10): RQ

0123(pl(L)) = 0 for all L ∈ Σ. For n = 4, one gets the
following ten polynomials in dual Plücker coordinates:

q01RQ
0134 + q02RQ

0234 + q12RQ
1234, q01RQ

0124 − q03RQ
0234 − q13RQ

1234,

q01RQ
0123 + q04RQ

0234 + q14RQ
1234, −q02RQ

0124 − q03RQ
0134 + q23RQ

1234,

−q02RQ
0123 + q04RQ

0134 − q24RQ
1234, q03RQ

0123 + q04RQ
0124 + q34RQ

1234,

q12RQ
0124 + q13RQ

0134 + q23RQ
0234, q12RQ

0123 − q14RQ
0134 − q24RQ

0234,

−q13RQ
0123 − q14RQ

0124 + q34RQ
0234, q23RQ

0123 + q24RQ
0124 + q34RQ

0134.

(3.11)

♦

3.7 Cayley Variety

Chow forms of space curves and Hurwitz forms of surfaces in P3 – which are
all cases of coisotropic hypersurfaces in Gr(1, P3) – were already studied by
Cayley [18]. Therefore the variety C(ℓ, d, Pn) of all coisotropic forms of degree
d in the coordinate ring of Gr(ℓ, Pn) is called Cayley variety in the following. Its
subvariety Ch(ℓ, d, Pn) of all Chow forms was introduced by Chow and van der
Waerden [23] and is called Chow variety. The problem of recognizing the Chow
forms among all coisotropic forms is addressed in [43, Ch. 4, Sec. 3]. This goes
already back to Green and Morrison [46], who gave explicit equations for the
Chow variety. We present a definitive computational solution for the smallest
non-trivial case, namely for cycles of dimension one and degree two in P3.

The Chow form of a cycle of degree two is a quadratic form in the Plücker
coordinates of Gr(1, P3). Quadratic forms in Plücker coordinates form a projec-
tive space P19. The Chow variety we are interested in, denoted Ch(1, 2, P3), is
the set of all Chow forms in that P19. The aim of this section is to make the con-
cepts in [18, 23, 46] and [43, Ch. 4.3] completely explicit. All ideals and Maple

computations discussed in this section are contained in the folder section3-7

at

https://github.com/kathlenkohn/thesis-material

The Cayley variety C(1, 2, P3). We start with the nine-dimensional subvariety
C(1, 2, P3) of P19 whose points are the coisotropic quadrics in Gr(1, P3). By
Theorem 3.11, this decomposes as the Chow variety and the variety of Hurwitz
forms, representing lines that are tangent to a quadric surface in P3. The generic
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3 COISOTROPIC HYPERSURFACES

quadric in Gr(1, P3) is written as a generic quadratic form

Q(q) = q ·

⎡⎢⎢⎢⎢⎢⎢⎣
c0 c1 c2 c3 c4 c5
c1 c6 c7 c8 c9 c10
c2 c7 c11 c12 c13 c14
c3 c8 c12 c15 c16 c17
c4 c9 c13 c16 c18 c19
c5 c10 c14 c17 c19 c20

⎤⎥⎥⎥⎥⎥⎥⎦ · qT. (3.12)

The quadric Q(q) is an element in V := C[q]2/C{q01q23 − q02q13 + q03q12} ≃
C21/C. Hence, c = (c0, c1, . . . , c20) serves as homogeneous coordinates on P19 =
P(V), which – due to the Plücker relation – need to be understood modulo

c5 ↦→ c5 + λ, c9 ↦→ c9 − λ, c12 ↦→ c12 + λ. (3.13)

The coordinate ring Q[V] is a subring of Q[c0, c1, . . . , c20], namely it is the invari-
ant ring of the additive group action (3.13). Hence Q[V] is the polynomial ring
in 20 variables c0, c1, c2, c3, c4, c5 − c12, c6, c7, c8, c9 + c12, c10, c11, c13, . . . , c20.

We are interested in the c’s that lead to coisotropic hypersurfaces of Gr(1, P3).
By (3.10), the quadric hypersurface {Q(q) = 0} in Gr(1, P3) is coisotropic if and
only if there exist s, t ∈ C such that

∂Q
∂q01

· ∂Q
∂q23

− ∂Q
∂q02

· ∂Q
∂q13

+
∂Q
∂q03

· ∂Q
∂q12

= s · Q + t · (q01q23 − q02q13 + q03q12) .

Equivalently, the vector (t, s,−1)T is in the kernel of the 21×3-matrix in
Figure 3.2. The 3 × 3-minors of this matrix are all in the subring Q[V]. The
coisotropic ideal I is the ideal of Q[V] generated by these minors. The sub-
scheme Z(I) of P19 = P(V) represents all coisotropic hypersurfaces {Q = 0}
of degree two in Gr(1, P3). Using computations with Maple and Macaulay2, we
found that I has codimension 10, degree 92 and is minimally generated by 175
cubics. Besides, Z(I) is the reduced union of three components, of dimensions
nine, eight and five.

Proposition 3.28. The coisotropic ideal is the intersection of three prime ideals:

I = PHurwitz ∩ PChowLines ∩ PSquares. (3.14)

So, I is radical. The prime PHurwitz has codimension 10 and degree 92, it is minimally
generated by 20 quadrics, and its variety Z(PHurwitz) consists of Hurwitz forms of
quadric surfaces in P3. The prime PChowLines has codimension 11 and degree 140, it is
minimally generated by 265 cubics, and Z(PChowLines) consists of Chow forms of pairs
of lines in P3. The prime PSquares has codimension 14 and degree 32, it is minimally
generated by 84 quadrics, and Z(PSquares) consists of all quadrics Q(q) that are squares
modulo the Plücker relation. ♦

From our geometric perspective, the third prime PSquares is extraneous. The-
orem 3.11 concerns irreducible hypersurfaces, and the identification of Chow
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3.7 Cayley Variety

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c0 2c0c5 − 2c1c4 + 2c2c3
0 c1 c0c10 − c1c9 + c2c8 + c3c7 − c4c6 + c1c5
0 c2 c0c14 − c1c13 + c2c12 + c3c11 − c4c7 + c2c5
0 c3 c0c17 − c1c16 + c2c15 + c3c12 − c4c8 + c3c5
0 c4 c0c19 − c1c18 + c2c16 + c3c13 − c4c9 + c4c5
1 c5 c0c20 − c1c19 + c2c17 + c3c14 − c4c10 + c2

5
0 c6 2c1c10 − 2c6c9 + 2c7c8
0 c7 c1c14 − c6c13 + c7c12 + c8c11 + c2c10 − c7c9
0 c8 c1c17 − c6c16 + c7c15 + c8c12 + c3c10 − c8c9
−1 c9 c1c19 − c6c18 + c7c16 + c8c13 + c4c10 − c2

9
0 c10 c1c20 − c6c19 + c7c17 + c8c14 − c9c10 + c5c10
0 c11 2c2c14 − 2c7c13 + 2c11c12
1 c12 c2c17 − c7c16 + c11c15 + c3c14 − c8c13 + c2

12
0 c13 c2c19 − c7c18 + c11c16 + c4c14 + c12c13 − c9c13
0 c14 c2c20 − c7c19 + c11c17 + c12c14 + c5c14 − c10c13
0 c15 2c3c17 − 2c8c16 + 2c12c15
0 c16 c3c19 − c8c18 + c4c17 + c12c16 − c9c16 + c13c15
0 c17 c3c20 − c8c19 + c12c17 + c5c17 − c10c16 + c14c15
0 c18 2c4c19 − 2c9c18 + 2c13c16
0 c19 c4c20 − c9c19 + c5c19 − c10c18 + c13c17 + c14c16
0 c20 2c5c20 − 2c10c19 + 2c14c17

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 3.2: This matrix has rank ≤ 2 if and only if the quadric given by c is

coisotropic.

forms within the coisotropic hypersurfaces in [43, Ch. 4, Thm. 3.22] assumes
the corresponding polynomial to be squarefree. With this, the following would
be the correct ideal for the Cayley variety in P19:

PHurwitz ∩ PChowLines =
(

I : PSquares
)

. (3.15)

This means that the reduced coisotropic quadrics in Gr(1, P3) are either Chow
forms of curves or Hurwitz forms of surfaces. The ideal in (3.15) has codimen-
sion 10, degree 92, and is minimally generated by 175 cubics and 20 quartics
in Q[V].

Remark 3.29. According to [16, Thm. 4.2], the variety Z(I) is isomorphic to the
variety of all quadratic polynomials Q in the dual Plücker coordinates such that

(q01q23 − q02q13 + q03q12) |
(

∂Q
∂q01

· ∂Q
∂q23

− ∂Q
∂q02

· ∂Q
∂q13

+
∂Q
∂q03

· ∂Q
∂q12

)
.

Moreover, this variety is defined by quadratic equations. In fact, analogously to
our computations above, we see that it is the zero locus of the ideal I′ generated
by the 2 × 2-minors of the 21 × 2-matrix that is obtained by deleting the middle
column of the matrix in Figure 3.2. Besides, Z(I) is the image of Z(I′) under
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3 COISOTROPIC HYPERSURFACES

the projection whose center is the Plücker relation. The ideal I′ has codimen-
sion 11 in the 20-dimensional space P(C[q]2). Furthermore, it has degree 92 and
is minimally generated by 20 quadrics. ♦

The Chow variety Ch(1, 2, P3). Now we study the Chow variety Ch(1, 2, P3)
of one-dimensional algebraic cycles of degree two in P3. By [43, Ch. 4, Ex. 1.3],
the Chow variety Ch(1, 2, P3) is the union of two irreducible components of
dimension eight in P19, one corresponding to planar quadrics and the other to
pairs of lines. Formally, this means that

Ch(1, 2, P3) = Z(PChowConic) ∪ Z(PChowLines),

where PChowConic is the homogeneous prime ideal in Q[V] whose variety com-
prises the Chow forms of irreducible curves of degree two in P3. The ideal
PChowConic has codimension 11 and degree 92, and it is minimally generated
by 21 quadrics and 35 cubics. The radical ideal PChowConic ∩ PChowLines has codi-
mension 11, degree 232 = 92+ 140, and it is minimally generated by 230 cubics.

Since Ch(1, 2, P3) should be contained in the Cayley variety, it seems that
PChowConic is missing from the decomposition (3.14). Here is the explanation:

Proposition 3.30. Every Chow form of a plane conic in P3 is contained in the Zariski
closure of the set of all quadratic Hurwitz forms. In symbols, PHurwitz ⊂ PChowConic
and thus Z(PChowConic) ⊂ Z(PHurwitz).

Proof. Our first proof is by computer: just check the inclusion of ideals in
Macaulay2. For a conceptual proof, we consider a 4 × 4-symmetric matrix
M = M0 + εM1, where rank(M0) = 1. By [101, eqn. (1)], the Hurwitz form
of the corresponding quadric surface in P3 is Q(q) = q(∧2M)qT. Divide by ε
and let ε → 0. The limit is the Chow form of the plane conic defined by restrict-
ing M1 to ker(M0) ≃ P2. This type of degeneration is familiar from the study of
complete quadrics [30]. Proposition 3.30 explains why the locus of irreducible
curves is not visible in (3.14).

Gel’fand, Kapranov and Zelevinsky [43, Ch. 4.3] introduce a class of differ-
ential forms in order to discriminate Chow forms among all coisotropic hy-
persurfaces. In their setup, these forms represent the integrability of the α-
distribution Eα,Z. We shall apply the tools of computational commutative alge-
bra to shed some light on the characterization of Chow forms via integrability
of α-distributions.

For this, we use dual affine coordinates instead of Plücker coordinates. We
express the quadrics Q in (3.12) in terms of the local coordinates a2, a3, b2, b3, by
substituting the Plücker coordinates with the minors of

[
1 0 a2 a3
0 1 b2 b3

]
as in (2.7). We
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3.7 Cayley Variety

consider the following differential 1-forms on A4:

α1
1 :=

∂Q
∂a2

da2 +
∂Q
∂a3

da3, α1
2 :=

∂Q
∂a2

db2 +
∂Q
∂a3

db3,

α2
1 :=

∂Q
∂b2

da2 +
∂Q
∂b3

da3, α2
2 :=

∂Q
∂b2

db2 +
∂Q
∂b3

db3.
(3.16)

By taking wedge products, we derive the 16 differential 4-forms

dQ ∧ dαi
j ∧ αk

l = qijkl · da2 ∧ da3 ∧ db2 ∧ db3 for i, j, k, l ∈ {1, 2}. (3.17)

Here the expressions qijkl are certain polynomials in Q[V][a2, a3, b2, b3].
Theorems 3.19 and 3.22 in [43, Ch. 4.3] state that a squarefree coisotropic

quadric Q is a Chow form if and only if all 16 coefficients qijkl are multiples
of Q. By taking normal forms of the polynomials qijkl modulo the principal
ideal ⟨Q⟩, we obtain a collection of 720 homogeneous polynomials in c. Among
these, 58 have degree three, 340 have degree four, and 322 have degree five. The
aforementioned result implies that these 720 polynomials cut out Ch(1, 2, P3)
as a subset of P19.

The integrability ideal J ⊂ Q[V] is generated by these 720 polynomials and
their analogues from other affine charts of the Grassmannian, obtained by per-
muting columns in

[
1 0 a2 a3
0 1 b2 b3

]
. We know that Z(J) = Ch(1, 2, P3) holds set-

theoretically. Maple, Macaulay2 and Magma verified for us that it holds scheme-
theoretically:

Proposition 3.31. The integrability ideal J is minimally generated by 210 cubics.
Writing m for the irrelevant ideal ⟨c0, c1, . . . , c20⟩ of Q[V], we have√

J = (J : m) = PChowConic ∩ PChowLines ∩ PSquares. (3.18)

♦

Generalizations. In principal, Theorem 3.26 gives a method to compute the
vanishing ideal of the Cayley variety C(1, d, Pn) for n ≥ 3. For positive inte-
gers N and D, denote by

((
N
D
))

:=
( N+D−1

D

)
the multiset coefficient, i.e., the

number of monomials of degree D in N variables.

Corollary 3.32. Consider the Cayley variety C(1, d, Pn) ⊂ P(C[Gr(1, Pn)]d), and
let c be a vector of homogeneous coordinates on P(C[Gr(1, Pn)]d). There are

( n+1
2

)
matrices of size⎛⎝⎛⎝ (

n + 1
2

)
2d − 1

⎞⎠⎞⎠×

⎡⎣1 +

⎛⎝⎛⎝ (
n + 1

2

)
d − 1

⎞⎠⎞⎠+
( n+1

4

)
·

⎛⎝⎛⎝ (
n + 1

2

)
2d − 3

⎞⎠⎞⎠⎤⎦
(3.19)
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3 COISOTROPIC HYPERSURFACES

whose entries are polynomials in c, such that the ideal generated by the maximal minors
of these matrices defines – up to saturation – the Cayley variety C(1, d, Pn). Moreover,
these minors have degree

2 +

⎛⎝⎛⎝ (
n + 1

2

)
d − 1

⎞⎠⎞⎠ (3.20)

in the dim(C[Gr(1, Pn)]d) many unknowns c.

Proof. Let Q be a general homogeneous polynomial of degree d in the dual
Plücker coordinates qij of Gr(1, Pn). Denote the coefficient vector of the
polynomial Q by c. The entries of c serve as homogeneous coordinates on
P(C[Gr(1, Pn)]d), although – due to the Plücker relations – they are not inde-
pendent unknowns. The characterization in Theorem 3.26 states that the equa-
tion

Ci,m := ∑
0≤j<k≤n,j,k/∈{i,m}

qjkRQ
jkim

vanishes everywhere on the hypersurface of Gr(1, Pn) defined by Q, for all 0 ≤
i < m ≤ n. Equivalently, the polynomial Ci,m is contained in the radical of the
ideal generated by Q and the Plücker relations. Under the assumption that this
ideal is already radical, we get the condition

Ci,m − F(d−1) · Q − ∑
0≤α<β<γ<δ≤n

G(2d−3)
αβγδ · Rαβγδ = 0, (3.21)

where Rαβγδ denotes the quadratic Plücker relation qαβqγδ − qαγqβδ + qαδqβγ,

and G(2d−3)
αβγδ and F(d−1) are homogeneous polynomials of degree 2d − 3 and

d − 1, respectively. In our above computation of C(1, 2, P3), condition (3.21)
reduces to RQ

0123 − s · Q − t · R0123 for constants s and t.
Let a denote the coefficient vector of F(d−1), and let b denote the vector of all

coefficients of all G(2d−3)
αβγδ . The coefficient of each monomial of (3.21), where the

variables are the Plücker coordinates qij, has quadratic terms in c (coming from
Ci,m), multilinear terms in a and c (coming from F(d−1) · Q), and linear terms in
b (coming from ∑ G(2d−3)

αβγδ · Rαβγδ). Hence, we can represent such a coefficient
as a vector: the quadratic terms in c are the first entry. For each coefficient in a
we add an entry, namely the corresponding linear form in c. Finally, we add the
constant factor of each coefficient in b.

In this way, we get a vector for each monomial in (3.21). Let Mi,m be the ma-
trix whose rows are given by these vectors. To sum up, the rows of Mi,m are
indexed by the monomials of (3.21), its columns are indexed by the entries in
the vector (1, a, b), and the entries of Mi,m are (at most quadratic) polynomials
in c: the first column contains quadrics, the columns corresponding to a consist
of linear forms, and the remaining columns (corresponding to b) contain con-
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stants. In particular, the matrix Mi,m has size (3.19), and its maximal minors
have degree (3.20) in c. In our above computation of C(1, 2, P3), we get only
one matrix M with 3 columns and 21 rows. This matrix is given explicitly in
Figure 3.2 (but with columns in reversed order as described here).

The condition (3.21) is equivalent to that the vector (1, a, b) is contained in
the kernel of the matrix Mi,m. Hence, for all 0 ≤ i < m ≤ n, the maximal mi-
nors of Mi,m give basic equations for the vanishing ideal of the Cayley variety
C(1, d, Pn), but one still has to do some careful computational work to compute
the actual vanishing ideal. There are three reasons for this. First, the maximal
minors of Mi,m also capture vectors in the kernel of Mi,m that are of the form
(0, a, b). Thus one still has to saturate by the minors of the matrix that is ob-
tained by deleting the first column from Mi,m. Note that this saturation was
not needed in our above computation of C(1, 2, P3), since it cannot happen that
the kernel of M contains vectors of the form (0, a, b). Secondly, we assumed
the ideal generated by Q and the Plücker relations to be radical. Therefore,
this method might not characterize all coisotropic forms. Finally, the maximal
minors of the matrices Mi,m already lead to extraneous factors that arise since
Theorem 3.26 requires Q to be irreducible. In particular, all squares trivially
satisfy the condition (3.21).

Example 3.33. Consider the Cayley variety C(1, 3, P4) of cubic coisotropic forms
in Gr(1, P4). We have the ten equations in (3.11) of degree 5 in the 10 vari-
ables qij. For each such equation, condition (3.21) contains 2002 monomials. The

quadric F(2) has 55 monomials and the cubics G(3)
αβγδ have 220 monomials each.

This leads to ten matrices with 2002 rows and 1156 = 1 + 55 + 5 · 220 columns.
The first column of each matrix consists of quadratic forms in c, the next 55
columns contain linear forms in c, and the remaining columns have only con-
stants. The maximal minors of these matrices are thus 10 ·

(
2002
1156

)
equations of

degree 57 in the 220 unknowns c, which are in fact just 175 = dim C[Gr(1, P4)]3
independent unknowns due to the Plücker relations. Hence, the computation
of the vanishing ideal of the Cayley variety C(1, 3, P4) is a hard computational
task. ♦

3.8 Transitive Action on Tangent Spaces

In this section, we work over the real numbers R and study the concept of tran-
sitive action on tangent spaces introduced by Bürgisser and Lerario in [14].

The orthogonal group O(n+ 1) acts transitively on Gr(ℓ, Pn
R). For an element

g ∈ O(n + 1), let g∗ : Gr(ℓ, Pn
R) → Gr(ℓ, Pn

R) denote the corresponding action
and DLg∗ : TGr(ℓ,Pn

R
),L → TGr(ℓ,Pn

R
),g∗(L) its derivative at L ∈ Gr(ℓ, Pn

R).

Definition 3.34. Let Σ ⊂ Gr(ℓ, Pn
R) be a subvariety. We say that Σ has transitive

action on its tangent spaces if, for general points L1, L2 ∈ Σ, there is g ∈ O(n + 1)
such that g∗(L1) = L2 and DL1 g∗(TΣ,L1) = TΣ,L2 .
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Given subvarieties of Gr(ℓ, Pn
R) with transitive action on their tangent spaces,

one can compute the expected volume of the intersection of O(n + 1)-translates
of the given subvarieties [14, Thm. 3.15]. This is one of the key ingredients of
the propobabilistic Schubert calculus presented in [14]. In particular, the authors
of [14] show that coisotropic hypersurfaces have transitive action on their tan-
gent spaces. For completeness, we repeat their proof here.

Lemma 3.35 ([14, Lem. 3.7]). A coisotropic hypersurface Σ ⊂ Gr(ℓ, Pn
R) has transi-

tive action on its tangent spaces.

Proof. Let L1, L2 ∈ Reg(Σ). For i ∈ {1, 2}, we denote by LiLiLiLiLiLiLiLiLi
⊥ ⊂ Rn+1 the orthog-

onal complement of LiLiLiLiLiLiLiLiLi. We use the canonical identifications

N∗
Σ,Li

⊂ Hom(Rn+1/LiLiLiLiLiLiLiLiLi, LiLiLiLiLiLiLiLiLi) ∼= LiLiLiLiLiLiLiLiLi ⊗
(

Rn+1/LiLiLiLiLiLiLiLiLi

)∗ ∼= LiLiLiLiLiLiLiLiLi ⊗ LiLiLiLiLiLiLiLiLi
⊥.

Since Σ is coisotropic, there are unit length vectors ui ∈ LiLiLiLiLiLiLiLiLi and vi ∈ LiLiLiLiLiLiLiLiLi
⊥ such

that N∗
Σ,Li

is spanned by ui ⊗ vi. There is g ∈ O(n + 1) such that g∗L1 = L2,
g(u1) = u2, and g(v1) = v2. This shows that DL1 g∗ maps N∗

Σ,L1
to N∗

Σ,L2
, so it

maps TΣ,L1 to TΣ,L2 .

Remark 3.36. In Section 7.1, we study isotropic curves. These are curves in Grass-
mannians whose tangent lines at smooth points are spanned by rank one homo-
morphisms. Every isotropic curve has transitive action on its tangent spaces.
The proof for this assertion is analogous to the proof of Lemma 3.35. ♦

The authors of [14] asked if all hypersurfaces of Gr(ℓ, Pn
R) with transitive

action on their tangent spaces are coisotropic. We show now that this is not
the case by providing a counterexample in Proposition 3.37. Antonio Lerario
helped with the geometric interpretation of the example as we present it here.
For this, we recall the notion of principal angles between subspaces of Rn+1,
which was first introduced by Jordan [58]. Let us consider two linear subspaces
U1, U2 ⊂ Rn+1. We set m := min{dim U1, dim U2}, choose an orthonormal ba-
sis for each subspace, and denote by Ai ∈ Rdim(Ui)×(n+1) the matrix whose rows
are the basis vectors of Ui, for i ∈ {1, 2}. We write 0 ≤ σ1, . . . , σm ≤ 1 for the sin-
gular values of A1AT

2 . The principal angles between U1 and U2 are θj := arccos σj,
for j ∈ {1, . . . , m}. Note that this definition is independent of our choice of the
orthogonal bases.

We now study the special case of the Grassmannian of lines in P3. The Fubini-
Study metric on Gr(1, P3

R) is defined as follows: for L1, L2 ∈ Gr(1, P3
R), we con-

sider the principal angles θ1, θ2 between L1L1L1L1L1L1L1L1L1 and L2L2L2L2L2L2L2L2L2, and set

dFS(L1, L2) := arccos(cos θ1 · cos θ2).

Note that dFS(L1, L2) = arccos(det A1AT
2 ), where the rows of the 2 × 4-matrices

A1 and A2 form again orthonormal bases for L1L1L1L1L1L1L1L1L1 and L2L2L2L2L2L2L2L2L2. We denote the set of
lines with the same distance to two given distinct lines L1, L2 ∈ Gr(1, P3

R) by

ΞL1,L2 := {L ∈ Gr(1, P3
R) | dFS(L, L1) = dFS(L, L2)}.
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Proposition 3.37. For L1, L2 ∈ Gr(1, P3
R) such that L2L2L2L2L2L2L2L2L2 is the orthogonal comple-

ment of L1L1L1L1L1L1L1L1L1, we have that ΞL1,L2 is a non-coisotropic hyperplane of Gr(1, P3
R) which has

transitive action on its tangent spaces.

Proof. Let M ∈ O(4) be such that its first two rows are an orthonormal basis for
L1L1L1L1L1L1L1L1L1 and its last two rows are an orthonormal basis for L2L2L2L2L2L2L2L2L2. Moreover, we consider
L ∈ Gr(1, P3

R) and a 4 × 2-matrix A whose columns are an orthonormal basis
for LLLLLLLLL. Then L ∈ ΞL1,L2 if and only if the first and the last 2 × 2-minor of MA are
equal. Hence, the linear change of coordinates given by M maps ΞL1,L2 to

{L ∈ Gr(1, P3
R) | q01(L) = q23(L)},

where qij(L) is the (i, j)-th dual Plücker coordinate of L. Thus, we may assume
that L1L1L1L1L1L1L1L1L1 is the row space of

[
1 0 0 0
0 1 0 0

]
and L2L2L2L2L2L2L2L2L2 is the row space of

[
0 0 1 0
0 0 0 1

]
.

Now we describe the tangent space of ΞL1,L2 at a point L. Note that the image
of the Grassmannian Gr(1, P3

R) under its Plücker embedding and the hyper-
plane H := Z(q01 − q23) ⊂ P5

R intersect transversely. Hence, the tangent space
TΞL1,L2 ,L is the preimage of TH,q(L) under the differential of the Plücker embed-
ding at L. We pick an orthonormal basis (a, b) for LLLLLLLLL and use Corollary 2.11 to
derive that TΞL1,L2 ,L is the image of{

ϕ ∈ Hom(LLLLLLLLL, R4)

⏐⏐⏐⏐ (ϕ(a)0 b1 − ϕ(a)1 b0) + (a0 ϕ(b)1 − a1 ϕ(b)0)
= (ϕ(a)2 b3 − ϕ(a)3 b2) + (a2 ϕ(b)3 − a3 ϕ(b)2)

}
under the map Hom(LLLLLLLLL, R4) → Hom(LLLLLLLLL, R4/LLLLLLLLL) which is the composition with
the canonical projection π : R4 → R4/LLLLLLLLL. Thus, the one-dimensional conormal
space N∗

ΞL1,L2 ,L is spanned by a map ψ ∈ Hom(R4/LLLLLLLLL, LLLLLLLLL) such that ψ ◦ π is given
by the matrix [

b1 −b0 −b3 b2
−a1 a0 a3 −a2

]
(3.22)

with respect to the standard basis of R4 and the basis (a, b) of LLLLLLLLL. Note that (3.22)
has rank two, which shows that ΞL1,L2 is not coisotropic. Moreover, the rows
of (3.22) form an orthonormal basis of the orthogonal complement LLLLLLLLL⊥ of LLLLLLLLL.

If we now consider a second point L′ ∈ ΞL1,L2 with an orthonormal basis
(a′, b′) of L′L′L′L′L′L′L′L′L′, there is g ∈ O(4) with g(a) = a′, g(b) = b′, g(b1,−b0,−b3, b2)

T =
(b′1,−b′0,−b′3, b′2)

T, and g(−a1, a0, a3,−a2)
T = (−a′1, a′0, a′3,−a′2)

T. In particular,
DLg∗ maps N∗

ΞL1,L2 ,L to N∗
ΞL1,L2 ,L′ , so it maps TΞL1,L2 ,L to TΞL1,L2 ,L′ .

3.9 Computations

A Macaulay2 package for calculating coisotropic hypersurfaces and recovering
their underlying projective varieties can be obtained at

https://github.com/kathlenkohn/thesis-material
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with the file name Coisotropy.m2. To use the package, the user can simply
start Macaulay2 from the same directory where the package file was saved and
then use the command loadPackage "Coisotropy". After that, the following
commands are available:
dualVariety I: Computes the ideal of the projectively dual variety of the

projective variety given by the ideal I.
polarDegrees I: Computes a list whose i-th entry is the degree of the i-th

coisotropic hypersurface of the projective variety given by the ideal I. This is
done by computing the multidegree of the conormal variety, as described in
Section 3.2.
coisotropicForm (I,i): Returns the i-th coisotropic form in primal Plücker

coordinates of the projective variety given by the ideal I. The computation of
this form follows essentially Definition 3.2.
isCoisotropic (Q,k,n): Checks if a hypersurface in Gr(k, Pn) is coisotropic.

The hypersurface is given by a polynomial Q in primal Plücker coordinates. This
is implemented by using the characterization of coisotropy in Proposition 3.25.
recoverVar (Q,k,n): Computes the ideal of the underlying projective vari-

ety of a given coisotropic hypersurface in Gr(k, Pn), which is defined by a poly-
nomial Q in primal Plücker coordinates. This computation uses the Cayley trick
in Proposition 3.4.
dualToPrimal (Q,k,n): Transforms a polynomial Q in dual Plücker coordi-

nates of the Grassmannian Gr(k, Pn) to a polynomial in primal Plücker coordi-
nates. This can be used to perform the change of coordinates (2.4) before calling
one of the above commands that require primal Plücker coordinates.
primalToDual (Q,k,n): Reverse transformation to dualToPrimal.

After having studied coisotropic hypersurfaces in detail, we will not restrict
ourselves to varieties of codimension one in the following chapters.
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In this chapter, we aim to generalize the notion of coisotropy to subvarieties of
Grassmannians with codimension larger than one. There are two natural candi-
dates for such a notion: either we require every homomorphism in the conormal
spaces of the given variety to have rank at most one, or we require each conor-
mal space to be spanned by rank one homomorphisms. If we want our condi-
tion for coisotropy to be Zariski closed, we need to adjust the latter alternative
slightly: thus, we require each conormal space to be in the Zariski closure of
the set of all linear spaces that are spanned by homomorphisms of rank one. To
give a more precise definition, we introduce Grassmann secant varieties.

4.1 Grassmann secant varieties

We define the following analogue of secant varieties in Grassmannians. For an
irreducible variety X ⊂ Pn and k ∈ Z≥0, we set

Sec0
k(X) := {L ∈ Gr(k, Pn) | L = span(L ∩ X)}

and let Seck(X) ⊂ Gr(k, Pn) denote its Zariski closure, called the k-th Grassmann
secant variety of X. Grassmann secant varieties have recently played a role in the
study of tensor rank and Waring’s problem [11, 15, 22, 21], but they have also
been studied on their own right [20, 24, 27]. In [24], Ciliberto and Cools show,
for every irreducible and non-degenerate variety X ⊂ Pn, that

dim Seck(X) ≥ (k + 1)dim X, if Seck(X) ̸= Gr(k, Pn). (4.1)

This implies immediately the following.

Lemma 4.1. Let X ⊂ Pn be an irreducible nondegenerate variety. If k ≥ codim X,
then Seck(X) = Gr(k, Pn).

Proof. If k ≥ codim X, then (k + 1)dim X ≥ (k + 1)(n − k) = dim Gr(k, Pn) and
the assertion follows from (4.1).

We also present an alternative proof: we show by induction on k that a gen-
eral L ∈ Gr(k, Pn) is spanned by L ∩ X. For the induction beginning, we con-
sider k = codim X: a general L ∈ Gr(k, Pn) intersects X at deg(X) points and
is spanned by those points [19, Thm. 59]. For the induction step, we assume
k > codim X. We consider a general L ∈ Gr(k, Pn) and two general hyper-
planes H1, H2 ⊂ L. By induction hypothesis, both H1 and H2 are spanned by
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4 COISOTROPIC VARIETIES

their respective intersection with X. Since L is spanned by H1 and H2, it is also
spanned by L ∩ X.

Before defining coisotropic varieties formally, we state another key property
of Grassmann secant varieties for our purposes.

Lemma 4.2. Consider an irreducible variety X ⊂ Pn. For L1 ∈ Seck1(X) and
L2 ∈ Seck2(X), we have that L1 + L2 ∈ Secdim(L1+L2)(X).

Proof. Let k := dim(L1 + L2). For i ∈ {1, 2}, we write Si := Secki(X) and
S0

i := Sec0
ki
(X). In addition, we set

U := {(L′
1, L′

2) ∈ S0
1 × S0

2 | dim(L′
1 + L′

2) = k}.

For every (L′
1, L′

2) ∈ U, we have L′
1 + L′

2 ∈ Seck(X). Since S0
i is dense in Si and

O := {(L′
1, L′

2) ∈ S1 × S2 | dim(L′
1 + L′

2) = k} is a dense and open subset of
Z := {(L′

1, L′
2) ∈ S1 × S2 | dim(L′

1 + L′
2) ≤ k}, it follows that U = (S0

1 × S0
2) ∩O

is dense in Z. Thus, the Zariski closure of the image of the rational map

Z 99K Gr(k, Pn),

(L′
1, L′

2) ↦−→ L′
1 + L′

2,

which is defined on all of O, is contained in Seck(X).

4.2 Two Notions of Coisotropy

In this thesis, we are mainly interested in Grassmann secant varieties of Segre
varieties. For two vector spaces U and W, a key player for our definition of
coisotropic varieties is

Seck(Seg(U, W)) = {L | L = span(L ∩ Seg(U, W))} ⊂ Gr(k, P(Hom(U, W))).

Definition 4.3. An irreducible subvariety Σ ⊂ Gr(ℓ, Pn) of codimension c ≥ 1
is coisotropic if, for every L ∈ Reg(Σ), the conormal space of Σ at L is spanned by
rank one homomorphisms or is in the Zariski closure of the set of such spaces,
i.e.,

P(N∗
Σ,L) ∈ Secc−1(Seg(An+1/LLLLLLLLL, LLLLLLLLL)).

Moreover, Σ is strongly coisotropic if, for every L ∈ Reg(Σ), the rank of every
homomorphism in the conormal space of Σ at L is at most one, i.e.,

P(N∗
Σ,L) ⊂ Seg(An+1/LLLLLLLLL, LLLLLLLLL).

Example 4.4. Let C ⊂ P3 be a nondegenerate irreducible curve. The Zariski
closure Sec(C) := Sec1(C) ⊂ Gr(1, P3) of the set of all secant lines of C (i.e.,
lines which intersect C twice) is a surface. By Proposition 3.10 and (3.3), we can
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compute the tangent and conormal space of Sec(C) at a general secant line L:

TSec(C),L =
{

ϕ ∈ Hom(LLLLLLLLL, A4/LLLLLLLLL) | ∀i ∈ {1, 2} : ϕ(xixixixixixixixixi) ⊂ HiHiHiHiHiHiHiHiHi/LLLLLLLLL
}

,

where C ∩ L = {x1, x2} and Hi := TC,xi + L is a tangent plane to C for i ∈ {1, 2}.
Thus, TSec(C),L is spanned by two homomorphisms ϕ1, ϕ2 : LLLLLLLLL → A4/LLLLLLLLL with
ker ϕ1 = x1x1x1x1x1x1x1x1x1, im ϕ1 = H2H2H2H2H2H2H2H2H2/LLLLLLLLL, ker ϕ2 = x2x2x2x2x2x2x2x2x2, and im ϕ2 = H1H1H1H1H1H1H1H1H1/LLLLLLLLL. So the conormal
space N∗

Sec(C),L is spanned by two rank one homomorphisms ψ1, ψ2 : A4/LLLLLLLLL → LLLLLLLLL
with ker ψi = HiHiHiHiHiHiHiHiHi/LLLLLLLLL and im ψi = xixixixixixixixixi for i ∈ {1, 2}. This shows that Sec(C) is
coisotropic. But since L was chosen generally, we have rank(ψ1 + ψ2) = 2 and
Sec(C) is not strongly coisotropic. ♦

Our leading questions for the next chapters are the following:

1. Can we characterize (strongly) coisotropic varieties by underlying projec-
tive varieties analogously to Theorem 3.11?

2. Are singular loci of coisotropic varieties again coisotropic?

3. Do we need the Zariski closure in the definition of coisotropy, or could we
define a variety to be coisotropic if its conormal space at a general point is
spanned by rank one homomorphisms?

We give a full classification of all strongly coisotropic varieties in Section 4.3.
Our result is a direct generalization of Theorem 3.11. Moreover, we answer the
third question in Section 4.4: we show that we need the Zariski closure in the
definition of coisotropic varieties, by presenting geometrically meaningful ex-
amples of coisotropic varieties, whose conormal spaces are not spanned by rank
one homomorphisms. Since the second question seems to be harder to answer,
we study iterated singular loci of the coisotropic hypersurfaces in Gr(1, P3) ex-
plicitly in Chapter 5. We present an application of those iterated singular loci to
algebraic vision in Chapter 6.

In this thesis, we will not give a full classification of all coisotropic vari-
eties. Instead, we state two simple observations towards such a classification
in the remainder of this section. First, all varieties of low enough dimension are
coisotropic, which follows immediately from Lemma 4.1.

Corollary 4.5. Every subvariety of Gr(ℓ, Pn) of dimension at most n− 1 is coisotropic.

Proof. Let Σ ⊂ Gr(ℓ, Pn) be a subvariety with dim Σ ≤ n− 1. The codimension c
of Σ in Gr(ℓ, Pn) is at least (ℓ+ 1)(n− ℓ)− (n− 1) = ℓ(n− ℓ− 1)+ 1. Moreover,
the codimension of Seg(An+1/LLLLLLLLL, LLLLLLLLL) in P(Hom(An+1/LLLLLLLLL, LLLLLLLLL)) is ℓ(n − ℓ− 1) for
every L ∈ Gr(ℓ, Pn). By Lemma 4.1, we have

Secc−1(Seg(An+1/LLLLLLLLL, LLLLLLLLL)) = Gr(c − 1, P(Hom(An+1/LLLLLLLLL, LLLLLLLLL))).

In particular, Σ is coisotropic.
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Example 4.6. An irreducible subvariety of Gr(1, P3) is coisotropic if and only if
it is a point, a curve, a surface, the Chow hypersurface of a curve in P3, or the
Hurwitz hypersurface of a surface in P3 (see Theorem 3.11 / Example 3.12). ♦

Secondly, we will see that generically transverse intersections of coisotropic
varieties are coisotropic again, which follows from Lemma 4.2. We say that two
subvarieties X1, X2 ⊂ Y intersect transversely at a point x ∈ X1 ∩ X2 if X1, X2 and
Y are all smooth at x and TX1,x + TX2,x = TY,x. The subvarieties X1, X2 ⊂ Y are
said to intersect generically transversely if every irreducible component of X1 ∩X2
contains a point where X1 and X2 are transverse.

Corollary 4.7. If two coisotropic subvarieties Σ1, Σ2 ⊂ Gr(ℓ, Pn) intersect generically
transversely, then every irreducible component of Σ1 ∩ Σ2 is coisotropic.

Proof. Let Σ be a non-empty irreducible component of Σ1 ∩ Σ2, and let L ∈ Σ be
a general point. We have dim TΣ,L = dim Σ ≥ dim Σ1 +dim Σ2 −dim Gr(ℓ, Pn).
Since Σ1 and Σ2 intersect transversely at L and TΣ,L ⊂ TΣ1,L ∩ TΣ2,L, we also have

dim TΣ,L ≤ dim(TΣ1,L ∩ TΣ2,L) = dim Σ1 + dim Σ2 − dim Gr(ℓ, Pn).

Thus, TΣ,L = TΣ1,L ∩ TΣ2,L. Besides, the transverse intersection at L implies
N∗

Σ1,L ∩ N∗
Σ2,L = {0}, which shows that both N∗

Σ1,L + N∗
Σ2,L and N∗

Σ,L have the
same dimension (namely 2 dim Gr(ℓ, Pn)− dim Σ1 − dim Σ2). As N∗

Σ1,L + N∗
Σ2,L

is contained in N∗
Σ,L, we can apply Lemma 4.2 to the equality

P
(

N∗
Σ,L
)
= P

(
N∗

Σ1,L

)
+ P

(
N∗

Σ2,L
)
∈ Secc−1(Seg(An+1/LLLLLLLLL, LLLLLLLLL)),

where c is the codimension of Σ in Gr(ℓ, Pn). Since L ∈ Σ was chosen generally,
we have shown P

(
N∗

Σ,L

)
∈ Secc−1(Seg(An+1/LLLLLLLLL, LLLLLLLLL)) for every L ∈ Reg(Σ).

Example 4.8. Similarly, self-intersections of coisotropic hypersurfaces are co-
isotropic as well. For instance, consider a nondegenerate surface S in P4. The
self-intersection Sec(S) := Sec1(S) of its Chow hypersurface is a four-dimen-
sional subvariety of Gr(1, P4). This is the Zariski closure of the set of its secant
lines. As in Example 4.4, we see that the conormal space of Sec(S) at a general
secant line L is spanned by two rank one homomorphisms ψ1, ψ2 : A5/LLLLLLLLL → LLLLLLLLL
with ker ψi = (TS,xiTS,xiTS,xiTS,xiTS,xiTS,xiTS,xiTS,xiTS,xi + LLLLLLLLL)/LLLLLLLLL and im ψi = xixixixixixixixixi, where S ∩ L = {x1, x2}. Hence,
Sec(S) is coisotropic, although it is not trivially coisotropic by Corollary 4.5.

Analogously, for a general hypersurface X ⊂ Pn of degree at least four, the
self-intersection Bit(X) of its Hurwitz hypersurface is coisotropic. More specifi-
cally, Bit(X) is the Zariski closure of the set of all bitangent lines of X. As above,
the conormal space of this locus at a general bitangent line L is spanned by two
rank one homomorphisms ψ1, ψ2 : An+1/LLLLLLLLL → LLLLLLLLL with ker ψi = TX,xiTX,xiTX,xiTX,xiTX,xiTX,xiTX,xiTX,xiTX,xi /LLLLLLLLL and
im ψi = xixixixixixixixixi, where the line L is bitangent to X at the points x1 and x2. ♦

Conjecture 4.9. We conjecture that the irreducible components of the singular locus
of a coisotropic variety are again coisotropic. This is supported by the following class of

48



4.3 Strongly Coisotropic Varieties

examples. We will see in Theorem 5.13 that the singular locus of the Hurwitz hypersur-
face of a general hypersurface X ⊂ Pn of degree at least 2(n − 1) has two components:
the locus of all bitangent lines and the locus of all lines, which intersect X at some point
with multiplicity at least three. By Example 4.8 and Theorem 4.26, both components
are coisotropic.

4.3 Strongly Coisotropic Varieties

First examples of strongly coisotropic subvarieties of Gr(ℓ, Pn) are sets of linear
spaces that intersect a fixed variety in Pn of dimension at most n − ℓ − 1 (see
Proposition 4.14).

Definition 4.10. For an irreducible variety X ⊂ Pn and 0 ≤ ℓ ≤ n − dim X − 1,
we define the ℓ-th associated variety of X as follows:

Gℓ(X) := {L ∈ Gr(ℓ, Pn) | L ∩ X ̸= ∅} .

Example 4.11. The (n − dim X − 1)-th associated variety of X is the Chow hy-
persurface of X. ♦

Example 4.12. We consider the Segre variety X := Seg(A2, A4) ⊂ P(V) ∼= P7,
where V := Hom(A2, A4). It has dimension four, so ℓ ranges between zero
and two in Definition 4.10. Clearly, G0(X) = X and G1(X) is the set of lines
intersecting X. Moreover, G2(X) = CH0(X). ♦

Remark 4.13. Note that Gℓ(X) = CHℓ−(n−1−dim X)(X) when we extend Defini-
tion 3.2 of CHi(X) to negative i ∈ {−(n− 1−dim X), . . . , 0}. In that way, we as-
sociate a coisotropic variety in each Grassmannian Gr(0, Pn), . . . , Gr(n − 1, Pn)
to X ⊂ Pn, as we will see in Corollary 4.16. ♦

Proposition 4.14. For every irreducible variety X ⊂ Pn and ℓ ≤ n − dim X − 1, the
ℓ-th associated variety Gℓ(X) ⊂ Gr(ℓ, Pn) of X is strongly coisotropic.

Proof. We proceed as in the proof of Proposition 3.10. A general L ∈ Gℓ(X) inter-
sects X at exactly one point xL, which gives us a rational map ϖ : Gℓ(X) 99K X,
L ↦→ xL. By Corollary 2.9, we have ϕ|xLxLxLxLxLxLxLxLxL = (DLϖ(ϕ) mod LLLLLLLLL) for a general
L ∈ Gℓ(X) and every ϕ ∈ TGℓ(X),L. Since the image of DLϖ(ϕ) is contained in
TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL /xLxLxLxLxLxLxLxLxL, the tangent space TGℓ(X),L is contained in

VL := {ϕ ∈ Hom(LLLLLLLLL, An+1/LLLLLLLLL) | ϕ(xLxLxLxLxLxLxLxLxL) ⊂ (TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL + LLLLLLLLL)/LLLLLLLLL}.

Since L was chosen generally, the dimension of TX,xL + L is dim X + ℓ, which
shows that VL has dimension ℓ(n − ℓ) + dim X. This is also the dimension of
the variety Gℓ(X). Hence, we have derived

TGℓ(X),L = VL

=
{

ϕ ∈ TGr(ℓ,Pn),L | xLxLxLxLxLxLxLxLxL ⊂ ker ϕ
}
+
{

ϕ ∈ TGr(ℓ,Pn),L | im ϕ ⊂ (TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL + LLLLLLLLL)/LLLLLLLLL
}

.
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This shows that the conormal space of Gℓ(X) at a general point L ∈ Gℓ(X)
contains only homomorphisms of rank one:

N∗
Gℓ(X),L =

{
ϕ ∈ Hom(An+1/LLLLLLLLL, LLLLLLLLL) | (TX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xLTX,xL + LLLLLLLLL)/LLLLLLLLL ⊂ ker ϕ, im ϕ ⊂ xLxLxLxLxLxLxLxLxL

}
. (4.2)

Since L was chosen generally, we have shown P(N∗
Gℓ(X),L) ⊂ Seg(An+1/LLLLLLLLL, LLLLLLLLL)

for every L ∈ Reg(Gℓ(X)).

Remark 4.15. The duality statement in Theorem 3.13 and its proof extend to all
coisotropic varieties associated to a variety X ⊂ Pn, i.e.,

CHi(X)⊥ = CHdim X−codim X∨+1−i(X∨)

holds for all i ∈ {−(n − 1 − dim X), . . . , dim X}. In particular, we have shown
the following. ♦

Corollary 4.16. The i-th coisotropic variety CHi(X) of an irreducible variety X ⊂ Pn

is strongly coisotropic for each i ∈ {−(n − 1 − dim X), . . . , dim X}.

Proof. If CHi(X) is a hypersurface, we apply Theorem 3.11. If i < 0, the as-
sertion follows from Remark 4.13 and Proposition 4.14. Finally, if i > 0 and
CHi(X) is not a hypersurface, Corollary 3.5 and Remark 4.15 imply CHi(X)⊥ =
CHj(X∨) for some j < 0. As above, CHj(X∨) is strongly coisotropic, which
shows that CHi(X) is also strongly coisotropic by Remark/Definition 2.6.

Example 4.17. As in Example 4.12, we consider V := Hom(A2, A4) as well as
X := Seg(A2, A4) in P(V). This Segre variety is self-dual: X∨ = Seg(A4, A2)
in P(V∗). There are seven strongly coisotropic varieties associated to X, among
which are the three coisotropic hypersurfaces depicted in the middle:

G0(X) = CH−2(X) = X CH0(X) = G2(X) CH3(X)
G1(X) = CH−1(X) CH1(X) CH4(X)

CH2(X)
(4.3)

The extended duality relations (additionally to those in Theorem 3.13) read
CH4(X)⊥ = CH−2(X∨) = G0(X∨) = X∨ as well as CH3(X)⊥ = CH−1(X∨) =
G1(X∨). ♦

In fact, every strongly coisotropic variety is associated to a projective variety
as in Corollary 4.16. We prove this assertion in the remainder of this section.

Theorem 4.18. For an irreducible strongly coisotropic variety Σ ⊂ Gr(ℓ, Pn), there is
an irreducible variety X ⊂ Pn such that Σ = CHℓ−(n−1−dim X)(X).

Since we have already shown this statement for coisotropic hypersurfaces in
Theorem 3.11, we consider only strongly coisotropic varieties of codimension
at least two in the following. For this, we use the notion of α- and β-spaces
introduced in Definition 2.12.
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Lemma 4.19. Let U and W be vector spaces. Every linear space E of dimension at least
two which is contained in the affine cone {ϕ ∈ Hom(U, W) | rank(ϕ) ≤ 1} over the
Segre variety Seg(U, W) is contained in a unique α- or β-space.

Proof. Since the dimension of the intersection of two distinct α-spaces is zero
(similarly for β-spaces) and the intersection of an α- with a β-space is one-
dimensional, it is enough to show that E is contained in some α- or β-space.

If E would neither be contained in an α- nor in a β-space, then E would con-
tain ϕ1, ϕ2, ψ1, ψ2 ∈ Hom(U, W) \ {0} with ker ϕ1 ̸= ker ϕ2 and im ψ1 ̸= im ψ2.
Among these four homomorphisms are two with both, distinct kernels and
distinct images, say χ1 and χ2. Let us pick u1 ∈ ker χ1 \ ker χ2 as well as
u2 ∈ ker χ2 \ ker χ1. We see that (χ1 + χ2)(u1) ∈ im χ2 \ {0} and analogously
(χ1 + χ2)(u2) ∈ im χ1 \ {0}. Thus, the image of χ1 + χ2 ∈ E must be at least
two-dimensional, which contradicts that all homomorphisms in E have rank at
most one.

Definition/Corollary 4.20. Let Σ be an irreducible strongly coisotropic variety
of codimension at least two. Either each conormal space at a smooth point of Σ
is contained in a unique α-space, or each conormal space at a smooth point of Σ
is contained in a unique β-space. In the first case, we call Σ strongly coisotropic of
α-type. In the latter case, we say that Σ is strongly coisotropic of β-type.

Corollary 4.21. Every strongly coisotropic variety in Gr(ℓ, Pn) of α-type has codimen-
sion at most ℓ+ 1, and every strongly coisotropic variety of β-type has codimension at
most n − ℓ.

Proof. This follows from the fact that α-spaces in Hom(An+1/LLLLLLLLL, LLLLLLLLL) have dimen-
sion ℓ+ 1 and that the dimension of β-spaces is n − ℓ, where L ∈ Gr(ℓ, Pn).

Lemma 4.22. A subvariety Σ ⊂ Gr(ℓ, Pn) is strongly coisotropic of β-type if and only
if Σ⊥ ⊂ Gr(n − ℓ− 1, (Pn)∗) is strongly coisotropic of α-type.

Proof. First, we notice that L is a smooth point of Σ if and only if L∨ is a smooth
point of Σ⊥. Secondly, the image of ϕ ∈ N∗

Σ,L is contained in a linear subspace
U ⊂ LLLLLLLLL if and only the kernel of ϕ∗ ∈ N∗

Σ⊥,L∨ contains (LLLLLLLLL/U)∗.

Corollary 4.23. Let X ⊂ Pn be an irreducible variety. Table 4.1 summarizes the types
of the strongly coisotropic varieties associated to X (see (4.2) and Remark 4.15). ♦

Example 4.24. For the Segre variety X := Seg(A2, A4), the two associated
strongly coisotropic varieties on the left of (4.3) are of β-type, the three varieties
in the middle of (4.3) are its coisotropic hypersurfaces, and the two strongly
coisotropic varieties on the right of (4.3) are of α-type. ♦

Now we will finally prove Theorem 4.18 by restricting ourselves to strongly
coisotropic varieties of β-type.

Theorem 4.25. For an irreducible strongly coisotropic variety Σ ⊂ Gr(ℓ, Pn) of β-
type, there is an irreducible variety X ⊂ Pn such that Σ = Gℓ(X).
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i ambient Grassmannian of CHi(X) type of CHi(X)
−(n − 1 − dim X) Gr(0, Pn)

...
... β-type

−1 Gr(codim X − 2, Pn)
0 Gr(codim X − 1, Pn)
...

... hypersurface
dim X − codim X∨ + 1 Gr(dim X∨, Pn)
dim X − codim X∨ + 2 Gr(dim X∨ + 1, Pn)

...
... α-type

dim X Gr(n − 1, Pn)

Table 4.1: Types of strongly coisotropic varieties associated to an irreducible va-
riety X in Pn.

Proof. Since Σ is strongly coisotropic of β-type, there is, for every L ∈ Reg(Σ),
a unique xL ∈ L such that the conormal space N∗

Σ,L is contained in the β-space
Eβ(xLxLxLxLxLxLxLxLxL). In other words, for every L ∈ Reg(Σ) and every ϕ ∈ N∗

Σ,L, the image
of ϕ is contained in the one-dimensional subspace xLxLxLxLxLxLxLxLxL ⊂ An+1 corresponding to
the projective point xL. Hence, we get a rational map ρ : Σ 99K Pn which maps
L ∈ Reg(Σ) to xL ∈ Pn. We denote the Zariski closure of the image of this map
by X ⊂ Pn. Note that X is irreducible since Σ is irreducible.

Moreover, for every L ∈ Reg(Σ), we consider the intersection of the kernels
of all ϕ ∈ N∗

Σ,L to find PL ∈ Gr(n − codim Σ, Pn) with L ⊂ PL and PLPLPLPLPLPLPLPLPL/LLLLLLLLL ⊂ ker ϕ

for every ϕ ∈ N∗
Σ,L. Thus, for L ∈ Reg(Σ), we see that

N∗
Σ,L =

{
ϕ ∈ Hom(An+1/LLLLLLLLL, LLLLLLLLL) | im ϕ ⊂ xLxLxLxLxLxLxLxLxL, PLPLPLPLPLPLPLPLPL/LLLLLLLLL ⊂ ker ϕ

}
, (4.4)

since both spaces in (4.4) have the same dimension (namely codim Σ). This
shows

TΣ,L = {ϕ ∈ Hom(LLLLLLLLL, An+1/LLLLLLLLL) | xLxLxLxLxLxLxLxLxL ⊂ ker ϕ}+ {ϕ ∈ Hom(LLLLLLLLL, An+1/LLLLLLLLL) | im ϕ ⊂ PLPLPLPLPLPLPLPLPL/LLLLLLLLL}
= {ϕ ∈ Hom(LLLLLLLLL, An+1/LLLLLLLLL) | ϕ(xLxLxLxLxLxLxLxLxL) ⊂ PLPLPLPLPLPLPLPLPL/LLLLLLLLL}.

The differential of ρ : Σ 99K X at a general L ∈ Σ is a surjection TΣ,L � TX,xL .
By Corollary 2.9, the image of each ψ : xLxLxLxLxLxLxLxLxL → An+1/xLxLxLxLxLxLxLxLxL in TX,xL is contained
in PLPLPLPLPLPLPLPLPL/xLxLxLxLxLxLxLxLxL. Thus, TX,xL ⊂ PL for a general L ∈ Σ. In particular, the dimension
of X is at most dim PL = n − codim Σ. Since we have constructed X such that
Σ ⊂ Gℓ(X), we derive

dim Σ ≤ dimGℓ(X) ≤ ℓ(n − ℓ) + dim X
≤ ℓ(n − ℓ) + n − codim Σ = ℓ(n − ℓ) + n − (ℓ+ 1)(n − ℓ) + dim Σ
= dim Σ + ℓ.

(4.5)
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This shows that dim X ≥ dim Σ − ℓ(n − ℓ) = n − codim Σ − ℓ. If dim X =
n − codim Σ − ℓ, then all inequalities in the first two of (4.5) are equalities and
Σ = Gℓ(X). Hence, it is only left to show that the dimension of X cannot be
larger than n − codim Σ − ℓ.

Let us first assume that dim X = n− codim Σ > n− codim Σ− ℓ. In this case,
we have ℓ > 0, PL = TX,xL for a general L ∈ Σ, and

Σ ⊂ Σ′ := {L | ∃x ∈ Reg(X) : x ∈ L ⊂ TX,xL} ⊂ Gr(ℓ, Pn).

This yields

dim Σ ≤ dim Σ′ ≤ dim X + dim Gr(ℓ− 1, Pdim X−1)

= (n − codim Σ) + ℓ(n − codim Σ − ℓ)

= dim Σ − ℓ(n − ℓ− 1) + ℓ (dim Σ − ℓ(n − ℓ)) ,

which is, due to ℓ > 0, equivalent to dim Σ ≥ (ℓ + 1)(n − ℓ) − 1. The latter
inequality is a contradiction to codim Σ ≥ 2.

Finally, we assume that n − codim Σ − ℓ < dim X < n − codim Σ. We define
δ := dim X − (n − codim Σ − ℓ) = dim X − dim Σ + ℓ(n − ℓ) > 0. For a general
L ∈ Σ, we have TX,xL + L ⊂ PL and thus dim(TX,xL ∩ L) ≥ δ. This shows that

Σ ⊂ Σ′′ := {L | ∃x ∈ Reg(X) : x ∈ L, dim(TX,x ∩ L) ≥ δ} ⊂ Gr(ℓ, Pn).

We can parametrize a general point in Σ′′ by a point x ∈ Reg(X), a δ-dimen-
sional subspace L′ of TX,x passing through x, and an ℓ-dimensional subspace of
Pn containing L′. This leads us to

dim Σ ≤ dim Σ′′

≤ dim X + dim Gr(δ − 1, Pdim X−1) + dim Gr(ℓ− δ − 1, Pn−δ−1)

= dim X + δ(dim X − δ) + (ℓ− δ)(n − ℓ) =: D.

Note that ℓ− δ − 1 ≥ 0 due to dim X < n − codim Σ. By definition of D and δ,

0 ≤ D − dim Σ = δ (1 + (dim X − δ)− (n − ℓ)) = −δ (codim Σ − 1) .

This is a contradiction since codim Σ ≥ 2 and δ > 0.

Proof of Theorem 4.18. If Σ is a hypersurface, we apply Theorem 3.11. If Σ is
strongly coisotropic of β-type, the assertion follows from Theorem 4.25 and Re-
mark 4.13. Finally, if Σ is strongly coisotropic of α-type, then Σ⊥ is strongly
coisotropic of β-type by Lemma 4.22. Thus, Σ⊥ = CHdim X−ℓ(X) for some irre-
ducible variety X ⊂ (Pn)∗. By Remark 4.15, we get Σ = CHℓ−(n−1−dim X∨)(X∨).
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4.4 Lines with Higher Contact to Hypersurfaces

For a hypersurface X ⊂ Pn and 1 ≤ m ≤ deg X, we define

Lm(X) := {L | ∃p ∈ Reg(X) : L intersects X at p with multiplicity m}
⊂ Gr(1, Pn).

Lines that intersect X at some point with multiplicity three are known as princi-
pal tangents or as inflectional lines. Lines which intersect X with multiplicity four
at some point are called flecnodal. Inflectional and flecnodal lines will appear
frequently in the remainder of this thesis.

Throughout this section, we consider a general hypersurface X ⊂ Pn of de-
gree at least three and assume m ≤ n. The subvariety Lm(X) of the Grassman-
nian of lines in Pn has codimension m − 1 (cf. Lemma 4.28). We will show that
Lm(X) is coisotropic, but that its conormal spaces are not spanned by rank one
homomorphisms if m ≥ 3:

Theorem 4.26. If m ≥ 2, a general L ∈ Lm(X) intersects X at exactly one point
pL ∈ Reg(X) with multiplicity m and

P(N∗
Lm(X),L) ∩ Seg(An+1/LLLLLLLLL, LLLLLLLLL) = {ϕ},

where im ϕ = pLpLpLpLpLpLpLpLpL and ker ϕ = TX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pL /LLLLLLLLL. Moreover, the (m − 2)-dimensional projec-
tivized conormal space P(N∗

Lm(X),L) intersects Seg(An+1/LLLLLLLLL, LLLLLLLLL) at ϕ with multiplicity
m − 1. In particular,

P(N∗
Lm(X),L) ∈ Secm−2(Seg(An+1/LLLLLLLLL, LLLLLLLLL))

and Lm(X) is coisotropic.

Example 4.27. L2(X) = CH1(X) is the Hurwitz hypersurface of X. For a gen-
eral L ∈ L2(X), we have seen in Proposition 3.10 that P(N∗

L2(X),L) consists of
one projectivized homomorphism with image pLpLpLpLpLpLpLpLpL and kernel TX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pL /LLLLLLLLL.

The projectivized conormal space at a general L ∈ L3(X) is a tangent line to
the Segre variety Seg(An+1/LLLLLLLLL, LLLLLLLLL) at this homomorphism. ♦

To prove Theorem 4.26, we further define

Lm,p(X) := {L | L intersects X at p with multiplicity m} ⊂ Gr(1, Pn)

for any p ∈ Reg(X) and denote by Cm,p(X) ⊂ Pn the union of all L ∈ Lm,p(X).

Lemma 4.28. For a general p ∈ X, the cone Cm,p(X) has codimension m − 1 in Pn

and degree (m − 1)!. Moreover, it is smooth everywhere, except at p if m ≥ 3.

Proof. We may assume that p is the origin of an affine chart of Pn. We con-
sider the defining equation f (x) = f1(x) + f2(x) + . . . of X in this affine chart,
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where fi is a homogeneous polynomial of degree i. In this affine chart, the cone
Cm,p(X) is the zero locus of { f1(x), . . . , fm−1(x)}. Since X and p are general, the
polynomials f1, . . . , fm−1 define smooth irreducible hypersurfaces whose pro-
jectivizations intersect transversely.

Note that C1,p(X) = Pn and that C2,p(X) = TX,p. Each cone Cm,p(X) is a
hypersurface in the cone Cm−1,p(X). In particular, for a line L ∈ Lm,p(X), we
have a flag of projective spaces

p ∈ L ⊂ TLCm,p(X) ⊂ TLCm−1,p(X) ⊂ . . . ⊂ TLC2,p(X) = TX,p ⊂ Pn, (4.6)

where TLCk,p(X) is a hyperplane in TLCk−1,p(X) for 2 < k ≤ m. Here TLCk,p(X)
denotes the unique embedded tangent space of the cone Ck,p(X) along L. Be-
sides, we denote by TLCk,p(X) := {ϕ : ppppppppp → An+1/ppppppppp | im ϕ ⊂ TLCk,p(X)TLCk,p(X)TLCk,p(X)TLCk,p(X)TLCk,p(X)TLCk,p(X)TLCk,p(X)TLCk,p(X)TLCk,p(X)/ppppppppp}
the corresponding subspace of TPn,p.

For m ≥ 2, we consider the rational map Lm(X) 99K X which sends a general
L ∈ Lm(X) to the unique point pL ∈ Reg(X) at which L intersects X with
multiplicity m. For a general L ∈ Lm(X), the differential of this map at L is a
surjection ΦL : TLm(X),L � TX,pL . We can prove Theorem 4.26 by computing the
preimages of ΦL along the flag in (4.6).

Lemma 4.29. For m ≥ 2 and L ∈ Lm(X) general, we have

ker ΦL = {ϕ ∈ H | pLpLpLpLpLpLpLpLpL ⊂ ker ϕ, im ϕ ⊂ TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)/LLLLLLLLL}, (4.7)

Φ−1
L (TL,pL) = {ϕ ∈ H | pLpLpLpLpLpLpLpLpL ⊂ ker ϕ, im ϕ ⊂ TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)/LLLLLLLLL}, (4.8)

Φ−1
L (TLCm,pL(X)) =

{
ϕ ∈ H

⏐⏐⏐⏐ ϕ(pLpLpLpLpLpLpLpLpL) ⊂ TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)/LLLLLLLLL,
im ϕ ⊂ TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)TLCm−1,pL(X)/LLLLLLLLL

}
, (4.9)

Φ−1
L (TLCm−l,pL(X)) ⊂

{
ϕ ∈ H

⏐⏐⏐⏐ ϕ(pLpLpLpLpLpLpLpLpL) ⊂ TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)/LLLLLLLLL,
im ϕ ⊂ TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)/LLLLLLLLL

}
, (4.10)

Φ−1
L (TLCm−l,pL(X)) ̸⊂

{
ϕ ∈ H

⏐⏐⏐⏐ ϕ(pLpLpLpLpLpLpLpLpL) ⊂ TLCm−l+1,pL(X)TLCm−l+1,pL(X)TLCm−l+1,pL(X)TLCm−l+1,pL(X)TLCm−l+1,pL(X)TLCm−l+1,pL(X)TLCm−l+1,pL(X)TLCm−l+1,pL(X)TLCm−l+1,pL(X)/LLLLLLLLL,
im ϕ ⊂ TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)TLCm−l−1,pL(X)/LLLLLLLLL

}
, (4.11)

Φ−1
L (TLCm−l,pL(X)) ̸⊂

{
ϕ ∈ H

⏐⏐⏐⏐ ϕ(pLpLpLpLpLpLpLpLpL) ⊂ TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)/LLLLLLLLL,
im ϕ ⊂ TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)TLCm−l,pL(X)/LLLLLLLLL

}
, (4.12)

where 1 ≤ l ≤ m − 2 and H := Hom(LLLLLLLLL, An+1/LLLLLLLLL).

We prove Theorem 4.26 before we give the technical proof of Lemma 4.29.
The ideas for the computations in the next two proofs were developed together
with Emre Sertöz.

Proof of Theorem 4.26. We choose coordinates for LLLLLLLLL and An+1/LLLLLLLLL such that we
can write every ϕ ∈ Hom(LLLLLLLLL, An+1/LLLLLLLLL) as a matrix in A2×(n−1). For LLLLLLLLL, we
pick a basis {e0, e1} such that e0 ∈ pLpLpLpLpLpLpLpLpL \ {0} and e1 ∈ LLLLLLLLL \ pLpLpLpLpLpLpLpLpL. For An+1/LLLLLLLLL,
we pick a basis {e2, . . . , en} such that TLCk,pL(X)TLCk,pL(X)TLCk,pL(X)TLCk,pL(X)TLCk,pL(X)TLCk,pL(X)TLCk,pL(X)TLCk,pL(X)TLCk,pL(X)/LLLLLLLLL is spanned by e2, . . . , en−k+1

for 2 ≤ k ≤ m. The first row of a matrix in A2×(n−1) encoding a map in
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Hom(LLLLLLLLL, An+1/LLLLLLLLL) corresponds to e0, the second row to e1, and the i-th column
corresponds to ei+1. According to Lemma 4.29, the kernel of ΦL is spanned by

[ ]
0 0 · · · 0
1 0 · · · 0

, . . . ,

n−m

↓[ ]
0 · · · 0 0 0 · · · 0
0 · · · 0 1 0 · · · 0

.

Φ−1
L (TL,pL) is additionally spanned by

n−m+1

↓[ ]
0 · · · 0 0 0 · · · 0
0 · · · 0 1 0 · · · 0

.

Φ−1
L (TLCm,pL(X)) is spanned by all the matrices above as well as

[ ]
1 0 · · · 0
0 0 · · · 0

, . . . ,

n−m

↓[ ]
0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0

.

Φ−1
L (TLCm−1,pL(X)) is additionally spanned by

n−m+1

↓[ ]
0 · · · 0 1 0 0 · · · 0
0 · · · 0 0 C1 0 · · · 0

for some non-zero constant C1. Analogously, Φ−1
L (TLCm−2,pL(X)) is additionally

spanned by

n−m+2

↓[ ]
0 · · · 0 1 0 0 · · · 0
0 · · · 0 c2,1 C2 0 · · · 0

,

where C2 ̸= 0 and c2,1 are constants. More generally, for 1 ≤ l ≤ m − 2, a
non-zero matrix in Φ−1

L (TLCm−l,pL(X)) \ Φ−1
L (TLCm−l+1,pL(X)) is

n−m+l

↓[ ]
0 · · · 0 0 · · · 0 1 0 0 · · · 0
0 · · · 0 cl,1 · · · cl,l−2 cl,l−1 Cl 0 · · · 0

,
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where Cl ̸= 0 and cl,1, . . . , cl,l−1 are some constants. In particular, for l = m − 2,
this matrix is[ ]

0 · · · 0 0 · · · 0 1 0
0 · · · 0 cm−2,1 · · · cm−2,m−4 cm−2,m−3 Cm−2 .

All these matrices together span TLm(X),L. Thus, the conormal space N∗
Lm(X),L is

spanned by maps in Hom(An+1/LLLLLLLLL, LLLLLLLLL) corresponding to[ ]
0 · · · 0 1
0 · · · 0 0 ,

[ ]
0 · · · 0 −C1 −c2,1 −c3,1 · · · −cm−2,1 0
0 · · · 0 0 1 0 · · · 0 0 ,

. . . ,

[ ]
0 · · · 0 −Cm−3 −cm−2,m−3 0
0 · · · 0 0 1 0 ,

[ ]
0 · · · 0 −Cm−2 0
0 · · · 0 0 1 .

(4.13)

Since the matrix entry in row 2 and column n−m+ 1 is zero in every matrix in
N∗
Lm(X),L, the only rank one matrices in N∗

Lm(X),L are scalar multiples of the first

matrix in (4.13). By our choice of coordinates, the linear map ϕ : An+1/LLLLLLLLL → LLLLLLLLL
corresponding to the first matrix in (4.13) has image pLpLpLpLpLpLpLpLpL and kernel TX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pLTX,pL /LLLLLLLLL.
Thus, set-theoretically the intersection of P(N∗

Lm(X),L) with the Segre variety

Seg(An+1/LLLLLLLLL, LLLLLLLLL) consists just of one point as claimed in Theorem 4.26.
We can either see from (4.13) or directly from (4.9) that

N∗
Lm(X),L ⊂ {ψ ∈ Hom(An+1/LLLLLLLLL, LLLLLLLLL) | TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)/LLLLLLLLL ⊂ ker ψ}.

Hence, we can embed N∗
Lm(X),L canonically into Hom(An+1/TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X), LLLLLLLLL)

and denote the image of this embedding by N′. In our coordinates, this embed-
ding simply forgets the first n − m columns of the matrices in (4.13). As before,
P(N′) intersects the Segre variety Seg(An+1/TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X), LLLLLLLLL) set-theoretically
at one point. Since the codimension of this Segre variety in its ambient space
P(Hom(An+1/TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X), LLLLLLLLL)) is m − 2 and the dimension of P(N′) is also
m − 2, the intersection multiplicity at the unique point of intersection is
deg Seg(An+1/TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X), LLLLLLLLL) = m − 1. Thus, also the intersection multiplic-
ity of P(N∗

Lm(X),L) and Seg(An+1/LLLLLLLLL, LLLLLLLLL) at their unique point of intersection is
m − 1.

Proof of Lemma 4.29. We consider the rational map Lm(X) 99K X, L ↦→ pL. It
restricts to Lm,pL(X) 99K {pL}, which shows ΦL(TLm,pL (X),L) ⊂ T{pL},pL

= {0}.
Since Lm,pL(X) and ker ΦL both have dimension n − m, we have derived the
equality TLm,pL (X),L = ker ΦL. The image of every ϕ ∈ TLm,pL (X),L is contained in
TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)TLCm,pL(X)/LLLLLLLLL and its kernel contains pLpLpLpLpLpLpLpLpL. Since both vector spaces in (4.7) have
the same dimension, the equality in (4.7) is proven.

For the remaining assertions, we choose coordinates x0, . . . , xn on Pn such
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4 COISOTROPIC VARIETIES

that we can express the flag in (4.6) with the following zero loci:

pL = Z(x1, . . . , xn),
L = Z(x2, . . . , xn),

TLCk,p(X) = Z(xn−k+2, . . . , xn) for 2 ≤ k ≤ m.

In the following, we work in the affine chart Pn \ Z(x0) ∼= An with the standard
basis e1, . . . , en. We extend this basis to a basis for An+1 by adding e0 ∈ pLpLpLpLpLpLpLpLpL \ {0}.
Note that these coordinates are compatible with the coordinates in the proof of
Theorem 4.26. We write f (x) = f1(x) + f2(x) + . . . for the defining equation of
X in the chosen affine chart, where fi is homogeneous of degree i. By our choice
of coordinates, there are constants ci,j such that the gradients of the fi satisfy

▽ f1 = (0, . . . , 0, c1,n) for c1,n ̸= 0,
▽ f2(e1) = (0, . . . , 0, c2,n−1, c2,n) for c2,n−1 ̸= 0,

...
▽ fm−1(e1) = (0, . . . , 0, cm−1,n−m+2, . . . , cm−1,n) for cm−1,n−m+2 ̸= 0.

(4.14)

For every tangent direction e1, . . . , en−1 to X \ Z(x0) at pL, we compute its
fiber under ΦL as follows. For each 1 ≤ i ≤ n − 1, we choose a path of points
γi(t) = ei · t + O(t2) ∈ X \ Z(x0). Along the path γi, we compute all possible
paths of lines Li(t) ∈ Lm,γi(t)(X) such that Li(0) = L. For this, we consider
the Taylor expansion of f around γi(t). Hence, we perform a linear change
of coordinates x̃ := x − γi(t) such that f (x) = f (x̃ + γi(t)) =: F(i)(x̃). Now
we want to write again F(i)(x̃) = F(i)

0 + F(i)
1 (x̃) + F(i)

2 (x̃) + . . ., where F(i)
j is

homogeneous of degree j in x̃. For j = 1, . . . , m, we have f j(x̃ + γi(t)) =

f j(x̃) + t⟨ei,▽ f j(x̃)⟩ + O(t2), where ⟨·, ·⟩ denotes the nondegenerate bilinear
form (x, y) ↦→ ∑k xkyk. This implies

F(i)
j (x̃) = f j(x̃) + t⟨ei,▽ f j+1(x̃)⟩+ O(t2) for 1 ≤ j ≤ m − 1.

The solutions of these m − 1 polynomials are the directions with contact order
of at least m at γi(t). Since we are only interested in paths of lines that start at
L, we want to compute those solutions of F(i)

1 (x̃) = 0, . . . , F(i)
m−1(x̃) = 0 that are

of the form v(t) := e1 + d · t + O(t2) for some d ∈ An. We get that

F(i)
j (v(t)) = t

⟨
d,▽ f j(e1)

⟩
+ t
⟨
ei,▽ f j+1(e1)

⟩
+ O(t2), (4.15)

since f j(e1) = 0 for 1 ≤ j ≤ m − 1. Each solution v(t) of F(i)
1 (x̃) = 0, . . . ,

F(i)
m−1(x̃) = 0 defines a path of lines Li,v(t)(t) ∈ Lm,γi(t)(X) starting at L, where

each line Li,v(t)(t) is spanned by γi(t) and γi(t) + v(t). To this path of lines
corresponds the tangent vector ϕi,v(t) ∈ TLm(X),L ⊂ Hom(LLLLLLLLL, An+1/LLLLLLLLL) defined
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by

e0 ↦−→ γ′
i(0) + LLLLLLLLL = ei + LLLLLLLLL,

e1 ↦−→ γ′
i(0) + v′(0) + LLLLLLLLL = ei + d + LLLLLLLLL.

(4.16)

Since ϕi,v(t) depends only on d, we write ϕi,d := ϕi,v(t). The fiber of the tangent
direction ei under ΦL is spanned by all ϕi,d such that d ∈ An is a solution of

F(i)
1 (v(t)) = 0, . . . , F(i)

m−1(v(t)) = 0. (4.17)

i = 1 : The fiber of the tangent direction e1 under ΦL is Φ−1
L (TL,pL). By (4.15),

(4.14) and Euler’s relation for homogeneous polynomials, we have

F(1)
1 (v(t)) = c1,ndn · t + O(t2),

F(1)
2 (v(t)) = (c2,n−1dn−1 + c2,ndn) · t + O(t2),

...

F(1)
m−2(v(t)) = (cm−2,n−m+3dn−m+3 + . . . + cm−2,ndn) · t + O(t2),

F(1)
m−1(v(t)) = (cm−1,n−m+2dn−m+2 + . . . + cm−1,ndn + m fm(e1)) · t + O(t2).

Solving for d implies dn = 0, dn−1 = 0, . . . , dn−m+3 = 0. Since L ∈ Lm(X)
was chosen generally, it has exactly intersection multiplicity m at pL. Thus, we
have that fm(e1) ̸= 0 and dn−m+2 must be a non-zero constant. Furthermore,
d1, . . . , dn−m+1 are arbitrary. Since Φ−1

L (TL,pL) is spanned by all ϕ1,d for these
solutions d, where ϕ1,d is defined by (4.16), we have shown (4.8).

2 ≤ i ≤ n − m + 1 : The fibers of the tangent directions e1, . . . , en−m+1 under
ΦL span Φ−1

L (TLCm,pL(X)). For 1 ≤ j ≤ m − 2, we have F(i)
j (v(t)) = F(1)

j (v(t)).

This implies again d(i)n = 0, d(i)n−1 = 0, . . . , d(i)n−m+3 = 0 for a solution d(i) of (4.17).
Furthermore, the equality

F(i)
m−1(v(t)) = (cm−1,n−m+2dn−m+2 + . . . + cm−1,ndn +

∂ fm
∂xi

(e1)) · t + O(t2)

shows that d(i)n−m+2 is some constant. As before, d(i)1 , . . . , d(i)n−m+1 are arbitrary.
Since Φ−1

L (TLCm,pL(X)) is spanned by all ϕi,d(i) for 1 ≤ i ≤ n − m + 1 and solu-
tions d(i) of (4.17), where ϕi,d(i) is defined by (4.16), we have shown (4.9).

i = n − k for 1 ≤ k ≤ m − 2 : For each 1 ≤ l ≤ m − 2, the fibers of the
tangent directions e1, . . ., en−m+l+1 under ΦL span Φ−1

L (TLCm−l,pL(X)). For

1 ≤ j ≤ k − 1, we have F(i)
j (v(t)) = F(1)

j (v(t)). So a solution d(i) of (4.17)
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4 COISOTROPIC VARIETIES

satisfies d(i)n = 0, . . . , d(i)n−k+2 = 0. Since

F(i)
k (v(t)) = (ck,n−k+1dn−k+1 + . . . + ck,ndn + ck+1,n−k) · t + O(t2)

and the two constants ck,n−k+1 and ck+1,n−k are non-zero, we get that d(i)n−k+1
must be a non-zero constant. Finally, we have for k + 1 ≤ j ≤ m − 1 that

F(i)
j (v(t)) = (cj,n−j+1dn−j+1 + . . . + cj,ndn +

∂ f j+1
∂xi

(e1)) · t + O(t2),

which implies that d(i)n−k, . . . , d(i)n−m+2 are some constants. As before, the remain-

ing entries d(i)1 , . . . , d(i)n−m+1 are arbitrary. Since Φ−1
L (TLCm−l,pL(X)) is spanned

by all ϕi,d(i) for 1 ≤ i ≤ n − m + l + 1 and solutions d(i) of (4.17), where ϕi,d(i) is
defined by (4.16), we have shown (4.10) – (4.12).

Now we have classified all strongly coisotropic varieties and we have encoun-
tered non-trivial examples of coisotropic varieties. As we still do not know if
coisotropy is preserved under taking singular loci, we will gain a better under-
standing of the singular loci of coisotropic hypersurfaces by computing them
explicitly in the case of Gr(1, P3) in the next chapter.
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5 Singular Loci of Coisotropic
Hypersurfaces in Gr(1, P3)

Surfaces in Gr(1, P3) are classically known as congruences. The aim of this chap-
ter is to study congruences which arise as singular loci of Chow hypersurfaces
of space curves or of Hurwitz hypersurfaces of surfaces. We determine their
classes in the Chow ring of Gr(1, P3) and their singular loci. Throughout this
thesis, we use the phrase ‘singular points of a congruence’ to simply refer to its
singularities as a subvariety of the Grassmannian Gr(1, P3). In older literature,
this phrase refers to points in P3 lying on infinitely many lines of the congru-
ence; nowadays, these are called fundamental points.

For a general point v ∈ P3 and a general plane H ⊂ P3, the bidegree of a
congruence is a pair (α, β), where the order α is the number of points in Σ corre-
sponding to a line L ⊂ P3 such that v ∈ L and the class β is the number of points
in Σ corresponding to lines L ⊂ P3 such that L ⊂ H. For instance, consider the
congruence of all lines passing through a fixed point x. Given a general point
v, this congruence contains a unique line passing through v, namely the line
spanned by x and v. Given a general plane H, we have x ̸∈ H, so this congru-
ence does not contain any line that lies in H. Hence, the set of lines passing
through a fixed point is a congruence with bidegree (1, 0). A similar argument
shows that the congruence of lines lying in a fixed plane has bidegree (0, 1).

The study of congruences goes back to Kummer [69], who classified those of
order one. Ran [87] studies surfaces of order one in general Grassmannians and
gives a modern proof of Kummer’s classification. In Section 7.3, we classify all
congruences according to their strict focal loci and compare our classification to
Kummer’s result (see Remark 7.25). Congruences play a role in algebraic vision
(e.g., see Chapter 6) and multi-view geometry, where cameras are modeled as
maps from P3 to congruences [86]. The multidegree of the image of several of
those cameras is computed by Escobar and Knutson in [37].

This chapter provides complete solutions to Problem 5 on Curves, Problem 4
on Surfaces, and Problem 3 on Grassmannians in [100]. Our main results are
consolidated in the following theorem.

Theorem 5.1. Let C ⊂ P3 be a nondegenerate curve of degree d and geometric genus
g having only ordinary singularities x1, x2, . . . , xs with multiplicities r1, r2, . . . , rs. If
Sec(C) denotes the locus of secant lines to C, then the singular locus of CH0(C) is
Sec(C) ∪⋃s

i=1{L ∈ Gr(1, P3) | xi ∈ L}, the bidegree of Sec(C) is(
1
2(d − 1)(d − 2)− g −

s
∑

i=1

1
2ri(ri − 1), 1

2 d(d − 1)
)

,
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5 SINGULAR LOCI OF COISOTROPIC HYPERSURFACES IN Gr(1, P3)

and the singular locus of Sec(C), when C is smooth, consists of all lines that intersect
C with total multiplicity at least three.

Let S ⊂ P3 be a general surface of degree d with d ≥ 4. If Bit(S) denotes the locus
of bitangents to S and Infl(S) denotes the locus of inflectional tangents to S, then the
singular locus of CH1(S) is Bit(S) ∪ Infl(S), the bidegree of Bit(S) is(

1
2 d(d − 1)(d − 2)(d − 3), 1

2 d(d − 2)(d − 3)(d + 3)
)

,

and the bidegree of Infl(S) is (d(d − 1)(d − 2), 3d(d − 2)). Moreover, the singular
locus of Infl(S) consists of all lines that are inflectional tangents at at least two points
of S or intersect S with multiplicity at least four at some point.

The bidegree of Infl(S) also appears in [77, Prop. 4.1]. The bidegrees of Bit(S),
Infl(S), and Sec(C), for smooth C, already appear in [5]. Nevertheless, we give
new, more geometric, proofs not relying on Chern class techniques. The sin-
gular loci of Sec(C), Bit(S), and Infl(S) are partially described in Lemma 2.3,
Lemma 4.3, and Lemma 4.6 in [5].

Using duality, we establish some relationships of the varieties in Theorem 5.1.

Theorem 5.2. If C is a smooth nondegenerate irreducible space curve, then the secant
lines of C are dual to the bitangent lines of the dual surface C∨ and the tangent lines of
C are dual to the inflectional tangent lines of C∨.

If S ⊂ P3 is an irreducible surface with dual surface S∨, then the bitangent lines of
S and S∨ are dual to each other.

We show the duality of the inflectional tangents of a surface and its dual sur-
face in Corollary 7.31.

Section 5.1 studies the singular locus of the Chow hypersurface of a space
curve and computes its bidegree. Section 5.2 describes the singular locus of a
Hurwitz hypersurface and Section 5.3 uses projective duality to calculate the
bidegree of its components. In Section 5.4, we connect the intersection theory in
Gr(1, P3) to Chow and Hurwitz hypersurfaces. Section 5.5 analyzes the singu-
lar loci of secant, bitangent, and inflectional congruences. Finally, in Section 5.6,
we compute tangent spaces at smooth points of these congruences. An applica-
tion to algebraic vision of these computations can be found in Chapter 6, where
we determine the irreducible components of the visual event surface of a given
curve or surface.

First we record a technical lemma which will be useful throughout the rest of
this chapter.

Lemma 5.3. Let f : X → Y be a birational finite surjective morphism between irre-
ducible projective varieties and let y ∈ Y. The variety Y is smooth at the point y if and
only if the fiber f−1(y) contains exactly one point x ∈ X, the variety X is smooth at
the point x, and the differential Dx f : TX,x → TY,y is an injection.

We will prove this with the help of Zariski’s Main and Connectedness Theo-
rems as well as criteria for finite maps and isomorphisms.
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5.1 Secants of Space Curves

Theorem 5.4 (Zariski’s Main Theorem). Let f : X → Y be a birational morphism
with finite fibers between irreducible varieties. If Y is normal, then f is an isomorphism
of X with an open subset of Y.

Theorem 5.5 (Zariski’s Connectedness Theorem). Let f : X → Y be a birational
morphism between irreducible projective varieties and let y ∈ Y. If Y is normal at y,
then f−1(y) is a connected set in the Zariski topology.

Lemma 5.6 (Criterion for Finite Maps). Let f : X → Y be a morphism between
irreducible projective varieties. Let Y0 ⊂ Y be open, X0 := f−1(Y0), and let f0 be the
restriction of f to X0. The morphism f0 is finite if and only if its fibers are finite.

Theorem 5.7 (Criterion for Isomorphisms). Let f : X → Y be a finite morphism
between irreducible varieties. The map f is an isomorphism if and only if it is bijective
and the differential Dx f : TX,x → TY, f (y) is an injection for all x ∈ X.

The above formulation of Zariski’s Main and Connectedness Theorems can
for example be found in [75, Ch. III.9, p. 288–289, Thm. I, Thm. V], whereas the
two criteria appear in [49, Lem. 14.8, Thm 14.9].

Proof of Lemma 5.3. First, suppose that Y is smooth at the point y. Since Y is
normal at the point y, Zariski’s Connectedness Theorem proves that the fiber
f−1(y) is a connected set in the Zariski topology. As f is a finite morphism,
its fibers are finite and we deduce that f−1(y) = {x}. For X0 := f−1(Reg(Y)),
Zariski’s Main Theorem implies that the restriction of f to X0 is an isomorphism
of X0 with Reg(Y). In particular, we have that x ∈ X0 ⊂ X is a smooth point.
Moreover, the above criterion for isomorphisms shows that the differential Dx f
is injective.

For the other direction, suppose that f−1(y) = {x} for some smooth point
x ∈ X with injective differential Dx f . Let Y1 be an open neighborhood of y
containing points in Y with one-element fibers and injective differentials. Com-
bining the two criteria in Lemma 5.6 and Theorem 5.7 produces an isomorphism
of X1 := f−1(Y1) with Y1. Since x ∈ X1 is smooth, we conclude that y ∈ Y1 ⊂ Y
is smooth.

5.1 Secants of Space Curves

This section describes the singular locus of the Chow hypersurface of a curve
C ⊂ P3. For a curve with mild singularities, we also compute the bidegree of
this locus.

If C has degree at least two, the set of lines that meet it in two points forms
a surface Sec(C) ⊂ Gr(1, P3) called the secant congruence of C. More precisely,
Sec(C) is the Zariski closure in Gr(1, P3) of the set of points corresponding to
a line in P3 which intersects the curve C at two smooth points. In particular,
Sec(C) contains the tangent lines at smooth points of C. A line meeting C at
a singular point might not belong to Sec(C), even though it has intersection
multiplicity at least two with the curve; see Remark 5.9.
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The following theorem is the main result in this section.

Theorem 5.8. Let C ⊂ P3 be an irreducible curve of degree at least two. The singular
locus of the Chow hypersurface of C is

Sec(C) ∪

⎛⎝ ⋃
x∈Sing(C)

{L ∈ Gr(1, P3) | x ∈ L}

⎞⎠ .

Proof. We first show that the incidence variety

ΦC := {(v, L) | v ∈ L} ⊂ C × Gr(1, P3)

is smooth at the point (v, L) if and only if the curve C is smooth at the point
v ∈ C. Let f1, f2, . . . , fk be generators for the vanishing ideal of C in the un-
knowns x0, . . . , x3. We use dual Plücker coordinates q01, . . . , q23 on Gr(1, P3).
Consider the affine chart of P3 × Gr(1, P3) where x0 ̸= 0 and q01 ̸= 0. We
may assume that v = (1 : α : β : γ) and the line L is spanned by the points
(1 : 0 : a : b) and (0 : 1 : c : d). We have that v ∈ L if and only if the line L is
given by the row space of the matrix[

1 α β γ
0 1 c d

]
=

[
1 α
0 1

] [
1 0 β − αc γ − αd
0 1 c d

]
,

which is equivalent to a = β − αc and b = γ − αd. Hence, in the chosen affine
chart, ΦC can be written as

{(α, β, γ, a, b, c, d) | fi(1, α, β, γ) = 0 for 1 ≤ i ≤ k, a = β − αc, b = γ − αd} .

As dim ΦC = 3, it is smooth at the point (v, L) if and only if its tangent space
has dimension three or, equivalently, the Jacobian matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

(1, α, β, γ) ∂ f1
∂x2

(1, α, β, γ) ∂ f1
∂x3

(1, α, β, γ) 0 0 0 0
∂ f2
∂x1

(1, α, β, γ) ∂ f2
∂x2

(1, α, β, γ) ∂ f2
∂x3

(1, α, β, γ) 0 0 0 0
...

...
...

...
...

...
...

∂ fk
∂x1

(1, α, β, γ) ∂ fk
∂x2

(1, α, β, γ) ∂ fk
∂x3

(1, α, β, γ) 0 0 0 0
−c 1 0 −1 0 −α 0
−d 0 1 0 −1 0 −α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
has rank four. We see that this Jacobian matrix has rank four if and only if the
Jacobian matrix of C has rank two, in which case v ∈ C is smooth. Therefore,
we deduce that ΦC is smooth at the point (v, L) exactly when C is smooth at the
point v.

By Lemma 5.6, the projection π : ΦC → CH0(C) defined by (v, L) ↦→ L is
finite; otherwise C would contain a line contradicting our assumptions. More-
over, the general fiber of π has cardinality one because the general line
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L ∈ CH0(C) intersects C in a single point. Hence, π is birational. Applying
Lemma 5.3 shows that CH0(C) is smooth at L if and only if π−1(L) = {(v, L)}
where v ∈ C is a smooth point and the differential D(v,L)π is injective. Us-
ing our chosen affine chart, we see that the differential D(v,L)π sends every
element in the kernel of the Jacobian matrix to its last four coordinates. This
map is not injective if and only if the kernel contains an element of the form
(∗, ∗, ∗, 0, 0, 0, 0)T ̸= 0. Such an element belongs to the kernel if and only if it is
(λ, cλ, dλ, 0, 0, 0, 0)T for some non-zero constant λ and

∂ fi

∂x1
(1, α, β, γ) + c

∂ fi

∂x2
(1, α, β, γ) + d

∂ fi

∂x3
(1, α, β, γ) = 0

for all 1 ≤ i ≤ k. Hence, for a smooth point v ∈ C, the differential D(v,L)π is
not injective if and only if L is the tangent line of C at v. Since we have that
all tangent lines to C are contained in Sec(C) and that |π−1(L)| = 1 if and only
if L is not a secant line, we conclude that CH0(C) is smooth at L if and only if
L /∈ Sec(C) and L meets C at a smooth point.

Remark 5.9. Local computations show that the secant congruence of C generally
does not contain all lines through singular points of C. To be more explicit, let
x ∈ C be an ordinary singularity; the point x is the intersection of r branches of
C with r ≥ 2, and the r tangent lines of the branches at x are pairwise different.
We claim that a line L intersecting C only at the point x is contained in Sec(C)
if and only if L lies in a plane spanned by two of the r tangent lines at x. The
union of all those lines forms the tangent star of C at x; see [57, 98].

Suppose that x = (1 : 0 : 0 : 0) and L ∈ Sec(C) intersects the curve C only at
the point x. The line L must be the limit of a family of lines Lt that intersect C
at two distinct smooth points. Without loss of generality, the line L is not one of
the tangent lines of the curve C at the point x and each line Lt intersects at least
two distinct branches of C. Since there are only finitely many branches, we can
also assume that each line Lt in the family intersects the same two branches of
the curve C. These two branches are parametrized by (1 : f1(s) : f2(s) : f3(s))
and (1 : g1(s) : g2(s) : g3(s)) with fi(0) = 0 = gj(0) for 1 ≤ i, j ≤ 3. Thus, the
tangent lines to these branches are spanned by x and (1 : f ′1(0) : f ′2(0) : f ′3(0))
or (1 : g′1(0) : g′2(0) : g′3(0)). Parametrizing intersection points, we see that the
line Lt intersects the first branch at (1 : f1 (ϕ(t)) : f2 (ϕ(t)) : f3 (ϕ(t))) and the
second branch at (1 : g1 (ψ(t)) : g2 (ψ(t)) : g3 (ψ(t))) where ϕ(0) = 0 = ψ(0).
Hence, the dual Plücker coordinates for Lt are(

g1(ψ(t))− f1(ϕ(t))
t : g2(ψ(t))− f2(ϕ(t))

t : · · · : f2(ϕ(t))g3(ψ(t))− f3(ϕ(t))g2(ψ(t))
t

)
.

Taking the limit as t → 0, we obtain the line L with Plücker coordinates(
g′1(0)ψ

′(0)− f ′1(0)ϕ′(0) : . . . : g′3(0)ψ
′(0)− f ′3(0)ϕ′(0) : 0 : 0 : 0

)
.
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This line is spanned by the point x and(
1 : g′1(0)ψ

′(0)− f ′1(0)ϕ′(0) : g′2(0)ψ
′(0)− f ′2(0)ϕ′(0) : g′3(0)ψ

′(0)− f ′3(0)ϕ′(0)
)

,

so it lies in the plane spanned by the two tangent lines. From this computation,
we also see that all lines passing through x and lying in the plane spanned by the
tangent lines can be approximated by lines that intersect both of the branches at
points different from x. For this, one need only choose ϕ(t) = λt and ψ(t) = µt
for all possible non-zero constants λ and µ. ♦

Using Chern classes, Proposition 2.1 in [5] calculates the bidegree of the se-
cant congruence of a smooth curve. We give a geometric description of this
bidegree and extend it to curves with ordinary singularities.

Theorem 5.10. If C ⊂ P3 is a nondegenerate irreducible curve of degree d and genus g
having only ordinary singularities x1, x2, . . . , xs with multiplicities r1, r2, . . . , rs, then
the bidegree of the secant congruence Sec(C) is((

d − 1
2

)
− g −

s

∑
i=1

(
ri

2

)
,
(

d
2

))
.

Proof. Let H ⊂ P3 be a general plane. The intersection of H with C consists of
d points. Any two of these points define a secant line lying in H; see Fig. 5.1.
Hence, there are (d

2) secant lines contained in H, which gives the class of Sec(C).

H

C

1

Figure 5.1: The class of the secant congruence of a space curve.

To compute the order of Sec(C), let v ∈ P3 be a general point. Projecting
away from v defines a rational map πv : P3 99K P2. Set C′ := πv(C). The map
πv sends a line passing through v and intersecting C at two points to a simple
node of the plane curve C′; see Fig. 5.5. Moreover, every ordinary singularity
of C is sent to an ordinary singularity of C′ with the same multiplicity, and the
plane curve C′ has the same degree as the space curve C. As the geometric
genus is invariant under birational transformations, it also has the same genus;
see [50, Thm. II.8.19]. Thus, the genus-degree formula for plane curves [93,
p. 54, Eq. (7)] shows that the genus of C is equal to (d−1

2 )− ∑s
i=1 (

ri
2) minus the

number of secants of C passing through v.
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Remark 5.11. If a curve C ⊂ P3 of degree at least two is contained in a plane, its
secant congruence consists of all lines in that plane and has bidegree (0, 1). ♦

Problem 5 on Curves in [100] asks to compute the dimension and bidegree of
Sing(CH0(C)). When C is not a line, Theorem 5.8 establishes that Sing(CH0(C))
is two-dimensional. For completeness, we also state its bidegree explicitly.

Corollary 5.12. If C ⊂ P3 is an irreducible curve of degree d ≥ 2 and geometric genus
g having only ordinary singularities x1, x2, . . . , xs with multiplicities r1, r2, . . . , rs, the

bidegree of Sing (CH0(C)) equals
(
(d−1

2 )− g −
s
∑

i=1
(ri

2) + s, (d
2)

)
if C is nondegener-

ate, and (s, 1) if C is contained in a plane.

Proof. The bidegree of each congruence {L ∈ Gr(1, P3) | xi ∈ L} is (1, 0).
Hence, combining Theorem 5.8, Theorem 5.10, and Remark 5.11 proves the
corollary.

5.2 Bitangents and Inflections of Hypersurfaces

This section describes the singular locus of the Hurwitz hypersurface of a hy-
persurface in Pn. Although the main interest of this chapter lies on subvarieties
of Gr(1, P3), we study Hurwitz hypersurfaces of Gr(1, Pn) in this section, since
the proof of Theorem 5.13 for n = 3 generalizes immediately to higher dimen-
sions as it is given below.

In analogy with the secant congruence of a curve, we associate two congru-
ences to a surface S ⊂ P3. Specifically, the Zariski closure in Gr(1, P3) of the
set of lines which are tangent to a surface S at two smooth points forms the bi-
tangent locus Bit(S). The inflectional locus Infl(S) := L3(S) associated to S is the
Zariski closure in Gr(1, P3) of the set of lines that intersect the surface S at a
smooth point with multiplicity at least three. For a general surface S, the bitan-
gent and inflectional loci are congruences. However, this is not always the case,
as Remarks 5.21 and 5.23 demonstrate.

More generally, for a hypersurface X ⊂ Pn, we set Infl(X) := L3(X) and
denote by Bit(X) ⊂ Gr(1, Pn) the Zariski closure of the set of lines which are
tangent to X at two smooth points. In parallel with Section 5.1, the main result
in this section describes the singular locus of the Hurwitz hypersurface of X.

Theorem 5.13. If n ≥ 3 and X ⊂ Pn is an irreducible smooth hypersurface of degree
at least 2(n − 1) which does not contain any lines, then we have

Sing (CH1(X)) = Bit(X) ∪ Infl(X).

Proof. We first show that the incidence variety

ΦX := {(v, L) | v ∈ L ⊂ TX,v} ⊂ X × Gr(1, Pn)

is smooth. Let f be the defining equation for X in Pn in the unknowns x0, . . . , xn.
We use dual Plücker coordinates q01, q02, . . . on Gr(1, Pn). Consider the affine

67



5 SINGULAR LOCI OF COISOTROPIC HYPERSURFACES IN Gr(1, P3)

chart in Pn × Gr(1, Pn) where x0 ̸= 0 and q01 ̸= 0. We may assume that v =
(1 : α1 : . . . : αn) and the line L is spanned by the points (1 : 0 : b2 : . . . : bn)
and (0 : 1 : c2 : . . . : cn). In this affine chart, X is defined by g0(x1, . . . , xn) :=
f (1, x1, . . . , xn). As in the proof of Theorem 5.8, we have that v ∈ L if and only
if bj = αj − α1cj for 2 ≤ j ≤ n. For such a pair (v, L), we also have that L ⊂ TX,v

if and only if (0 : 1 : c2 : . . . : cn) ∈ TX,v. Setting g1 := ∂g0
∂x1

+ c2
∂g0
∂x2

+ . . . + cn
∂g0
∂xn

,
we have L ⊂ TX,v if and only if g1(α1, . . . , αn) = 0. Hence, in the chosen affine
chart, ΦX can be written as{

(α1, . . . , αn, b2, . . . , bn, c2, . . . , cn)

⏐⏐⏐⏐ gi(α1, . . . , αn) = 0 for 0 ≤ i ≤ 1,
bj = αj − α1cj for 2 ≤ j ≤ n

}
.

As dim ΦX = 2n − 3, it is smooth at the point (v, L) if and only if its tangent
space has dimension 2n − 3 or, equivalently, its Jacobian matrix⎡⎢⎢⎢⎢⎢⎢⎣

∂g0
∂x1

(α) ∂g0
∂x2

(α) · · · ∂g0
∂xn

(α) 0 · · · 0 0 · · · 0
∂g1
∂x1

(α) ∂g1
∂x2

(α) · · · ∂g1
∂xn

(α) 0 · · · 0 ∂g0
∂x2

(α) · · · ∂g0
∂xn

(α)

−c2 1 0 −1 0 −α1 0
... . . . . . . . . .

−cn 0 1 0 −1 0 −α1

⎤⎥⎥⎥⎥⎥⎥⎦
has full rank n + 1. Since X is smooth, we deduce that this Jacobian matrix has
full rank, so ΦX is also smooth.

Since X does not contain lines, all fibers of the projection π : ΦX → CH1(X)
defined by (v, L) ↦→ L are finite, so Lemma 5.6 implies that π is finite. More-
over, the general fiber of π has cardinality one, so π is birational. Applying
Lemma 5.3 shows that CH1(X) is smooth at the point L if and only if the fiber
π−1(L) consists of one point (v, L) and the differential D(v,L)π is injective. In
particular, we have |π−1(L)| = 1 if and only if L is not a bitangent. It remains
to show that the differential D(v,L)π is injective if and only if L is a simple tan-
gent of X at v. Using our chosen affine chart, we see that the differential D(v,L)π

projects every element in the kernel of the Jacobian matrix on its last 2(n − 1)
coordinates. This map is not injective if and only if the kernel contains an ele-
ment of the form (∗, . . . , ∗, 0, . . . , 0)T ̸= 0. Such an element belongs to the kernel
if and only if it is equal to (λ, c2λ, . . . , cnλ, 0, . . . , 0)T for some non-zero constant
λ and g1(α) = 0 = g2(α) where g2 := ∂g1

∂x1
+ c2

∂g1
∂x2

+ . . . + cn
∂g1
∂xn

. Parametrizing
the line L by

ℓ(s, t) := (s : sα1 + t : sα2 + tc2 : . . . : sαn + tcn)

for (s : t) ∈ P1 shows that the line L intersects the hypersurface X with mul-
tiplicity at least three at v if and only if f (ℓ(s, t)) is divisible by t3. This is
equivalent to the conditions that g1(α) = ∂

∂t [ f (ℓ(s, t))]
⏐⏐
(1,0) = 0 and g2(α) =

∂2

∂2t [ f (ℓ(s, t))]
⏐⏐
(1,0) = 0.

68



5.3 Projective Duality

Remark 5.14. When the degree of X is at least 2(n − 1), the hypothesis that X
does not contain any lines is relatively mild, since a general hypersurface of
degree at least 2(n − 1) in Pn does not contain a line; see [105].

We can generalize Theorem 5.13 to hypersurfaces in Pn which contain at most
finitely many lines and have degree at least 2n − 3 (note that general hyper-
surfaces of degree 2n − 3 contain finitely many lines [105]): for an irreducible
smooth hypersurface X ⊂ Pn with deg X ≥ 2n− 3 which contains finitely many
lines L1, . . . , Lk, we have

Bit(X) ∪ Infl(X) ⊂ Sing(CH1(X)) ⊂ Bit(X) ∪ Infl(X) ∪ {L1, . . . , Lk}. (5.1)

In the proof of Theorem 5.13, we have used the assumption that X contains no
lines only to see that the projection π : ΦX → CH1(X) is finite. Hence, the
proof of (5.1) is completely analogous to the proof of Theorem 5.13, with the
only exception that we have to define the incidence variety ΦX as follows:

ΦX := {(v, L) | v ∈ L ⊂ TX,v, L /∈ {L1, . . . , Lk}} ⊂ X × Gr(1, Pn). ♦

5.3 Projective Duality

This section uses projective duality to compute the bidegrees of the components
of the singular locus of the Hurwitz hypersurface of a surface in P3, and to relate
the secant, bitangent and inflectional congruences of projectively dual curves
and surfaces.

Plücker’s formula, which relates the number and type of singularities of a
plane curve to the degree of its dual curve, plays an important role in calculat-
ing the bidegrees of the bitangent and inflectional congruences. A point v on a
planar curve C is a simple node or a cusp if the formal completion of OC,v is iso-
morphic to C[[z1, z2]]/(z2

1 + z2
2) or C[[z1, z2]]/(z3

1 + z2
2) respectively; see Fig. 5.2.

Both singularities have multiplicity two; nodes have two distinct tangents and
cusps have a single tangent.

Lemma 5.15 (Plücker’s formula [32, Example 1.2.8]). If C ⊂ P2 is an irreducible
curve of degree d with exactly κ cusps, δ simple nodes, and no other singularities, then
the degree of the dual curve C∨ is d(d − 1)− 3κ − 2δ.

Sketch of proof. Let f be the defining equation for C in P2 in the unknowns
x0, x1, x2, so we have deg( f ) = d. To begin, assume that C is smooth. The
degree of its dual C∨ ⊂ (P2)∗ is the number of points of C∨ lying on a general
line L ⊂ (P2)∗. By duality, the degree equals the number of tangent lines to C
passing through a general point y ∈ P2. Such a tangent line at the point v ∈ C
passes through the point y if and only if g := y0

∂ f
∂x0

(v)+ y1
∂ f
∂x1

(v)+ y2
∂ f
∂x2

(v) = 0.
Hence, the degree of C∨ is the number of points in the zero locus Z( f , g). Since
deg(g) = d − 1, this finite set contains d(d − 1) points.

If C is singular, then the degree of C∨ is the number of lines that are tangent to
C at a smooth point and pass through the general point y. Those smooth points
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`∨

C∨C

`

1
`∨
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`

1
Figure 5.2: A bitangent and an inflectional line corresponding to a node and a

cusp of the dual curve.

are contained in the set Z( f , g), but all of the singular points also lie in Z( f , g).
The curve Z(g) passes through each node of C with intersection multiplicity
two and through each cusp of C with intersection multiplicity three. Therefore,
we conclude that deg(C∨) = d(d − 1)− 3κ − 2δ.

Using Lemma 5.15, we can compute the degree of the Hurwitz hypersurface
of a smooth surface; this formula also follows from Theorem 1.1 in [101].

Proposition 5.16. For an irreducible smooth surface S ⊂ P3 of degree d with d ≥ 2,
the degree of the Hurwitz hypersurface CH1(S) is d(d − 1).

Proof. Let H ⊂ P3 be a general plane and v ∈ H be a general point. The degree
of CH1(S) is the number of tangent lines L to S such that v ∈ L ⊂ H. Bertini’s
Theorem [49, Thm. 17.16] implies that the intersection S ∩ H is a smooth plane
curve of degree d. The degree of CH1(S) is the number of tangent lines to
S ∩ H passing through the general point v; see Fig. 5.3. By definition, this is
equal to the degree of the dual plane curve (S ∩ H)∨, so Lemma 5.15 shows
deg (CH1(S)) = d(d − 1).

Using Lemma 5.15, we can also count the number of bitangents and inflec-
tional tangents to a general smooth plane curve.

Proposition 5.17. A general smooth irreducible curve in P2 of degree d has exactly
1
2 d(d − 2)(d − 3)(d + 3) bitangents and 3d(d − 2) inflectional tangents.

Proof. Let C ⊂ P2 be a general smooth irreducible curve of degree d. A bitan-
gent to C corresponds to a node of C∨, and an inflectional tangent to C corre-
sponds to a cusp of C∨; see Fig. 5.2 and [47, pp. 277–278]. Lemma 5.15 shows
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v

H

S

1

Figure 5.3: The degree of the Hurwitz hypersurface of a surface.

that C∨ has degree d(d − 1). Let κ and δ be the number of cusps and nodes of
C∨, respectively. Applying Lemma 5.15 to the plane curve C∨ yields

d = deg(C) = deg
(
(C∨)∨

)
= d(d − 1) (d(d − 1)− 1)− 3κ − 2δ .

The dual curves C and C∨ have the same geometric genus; see [103, Prop. 1.5].
Hence, the genus-degree formula [93, p. 54, Eq. (7)] gives

1
2(d − 1)(d − 2) = genus(C)

= genus(C∨) = 1
2 (d(d − 1)− 1) (d(d − 1)− 2)− κ − δ .

Solving this system of two linear equations in κ and δ, we obtain κ = 3d(d − 2)
and δ = 1

2 d(d − 2)(d − 3)(d + 3).

The next result is the main theorem in this section and solves Problem 4 on
Surfaces in [100]. The bidegrees of the bitangent and the inflectional congruence
for a general smooth surface appear in [5, Prop. 3.3], and the bidegree of the
inflectional congruence also appears in [77, Prop. 4.1].

Theorem 5.18. Let S ⊂ P3 be a general smooth irreducible surface of degree d ≥ 4.
The bidegree of Bit(S) is

(
1
2 d(d − 1)(d − 2)(d − 3), 1

2 d(d − 2)(d − 3)(d + 3)
)

, and
the bidegree of Infl(S) is (d(d − 1)(d − 2), 3d(d − 2)).

Proof. For a general plane H ⊂ P3, Bertini’s Theorem [49, Thm. 17.16] im-
plies that the intersection S ∩ H is a smooth plane curve of degree d. Ac-
cording to Proposition 5.17, the number of bitangents to S contained in H is
1
2 d(d − 2)(d − 3)(d + 3), which is the class of Bit(S). Similarly, the number
of inflectional tangents to S contained in H is 3d(d − 2), which is the class of
Infl(S).

It remains to calculate the number of bitangents and inflectional lines of the
surface S that pass through a general point y ∈ P3. Following the ideas in [81,
p. 230], let f be the defining equation for S in P3 in the unknowns x0, . . . , x3,
and consider the polar curve C := P1(S, y) ⊂ S with respect to the point y.
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Recall that the curve C consists of all points x ∈ S such that the line through
y and x is tangent to S at the point x; see Fig. 5.4. The condition that the point

y

C

C′

zLT
H

S

1

Figure 5.4: Polar curve.

x lies on the curve C is equivalent to saying that the point y belongs to TS,x.
As in the proof for Lemma 5.15, we have that C is the zero locus Z( f , g) where
g := y0

∂ f
∂x0

+ y1
∂ f
∂x1

+ · · ·+ y3
∂ f
∂x3

. Thus, the curve C has degree d(d − 1).
Projecting away from the point y gives the rational map πy : P3 ��� P2. Re-

stricted to the surface S, this map is generically finite, with fibers of cardinality
d, and is ramified over the curve C. If C′ is the image of C under πy, then a
bitangent to the surface S that passes through y contains two points of C and
these points are mapped to a simple node in C′; see Fig. 5.5. All of these nodes

Figure 5.5: A secant projecting onto a node and a tangent projecting to a cusp.

in C′ have two distinct tangent lines because no bitangent line passing through
y is contained in a bitangent plane that is tangent at the same two points as the
line; the bitangent planes to S form a one-dimensional family, so the union of
bitangent lines they contain is a surface in P3 that does not contain the general
point y.

We claim that the inflectional lines to S passing through the point y are exactly
the tangent lines of C passing through y. The line between a point x ∈ S and
the point y is parametrized by the map � : P1 → P3 which sends the point
(s : t) ∈ P1 to the point (sx0 + ty0 : sx1 + ty1 : sx2 + ty2 : sx3 + ty3) ∈ P3.
It follows that this line is an inflectional tangent to S if and only if f (�(s, t)) is
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divisible by t3. This is equivalent to the conditions that ∂
∂t [ f (ℓ(s, t))]

⏐⏐
(1,0) = 0

and ∂2

∂2t [ f (ℓ(s, t))]
⏐⏐
(1,0) = 0, which means that x ∈ C and y0

∂g
∂x0

+ y1
∂g
∂x1

+ · · ·+
y3

∂g
∂x3

= 0, or in other words y ∈ TC,x. Therefore, the inflectional lines to S
passing through y are the tangents to C passing through y, and are mapped to
the cusps of C′; again see Fig. 5.5.

Since the bitangent and inflectional lines to S passing through y correspond to
nodes and cusps of C′, it suffices to count the number κ′ of cusps and the num-
ber δ′ of simple nodes in the plane curve C′. We subdivide these calculations as
follows.

κ′ = d(d − 1)(d − 2): From our parametrization of the line through the points
x ∈ S and y, we see that this line is an inflectional tangent to S if and only if
x ∈ Z( f , g, h) where h := y0

∂g
∂x0

+ y1
∂g
∂x1

+ · · ·+ y3
∂g
∂x3

. Since deg(h) = d− 2
and S is general, the zero locus Z( f , g, h) consists of d(d− 1)(d− 2) points.

deg ((C′)∨) = deg(S∨): By duality, the degree d′ of the curve (C′)∨ is the num-
ber of tangent lines to C′ ⊂ P2 passing through a general point z ∈ P2.
The preimage of z under the projection πy is a line L ⊂ P3 containing y;
see Fig. 5.4. Hence, d′ is the number of tangent lines to C intersecting L in
a point different from y. For every line T that is tangent to C at a point x
and intersects the line L, it follows that the pair L and T spans the tangent
plane of S at the point x. On the other hand, given any plane H which is
tangent to S at the point x and contains L, we deduce that x must lie on
the polar curve C and H is spanned by L and the tangent line to C at x, so
this tangent line intersects L. Therefore, d′ is the number of tangent planes
to S containing L, which is the degree of the dual surface S∨.

deg(S∨) = d(d − 1)2: By duality, the degree of S∨ is the number of tangent
planes to the surface S containing a general line, or the number of tan-
gent planes to S containing two general points y, z ∈ P3. Thus, this is the
number of intersection points of the two polar curves of S determined
by y and z, which is the cardinality of the zero locus Z( f , g, g̃) where
g̃ := z0

∂ f
∂x0

+ z1
∂ f
∂x1

+ · · ·+ z3
∂ f
∂x3

. Since deg(g̃) = d − 1, we conclude that
deg(S∨) = d(d − 1)2.

Finally, both the surface S and the point y are general, so Lemma 5.15 implies
that d(d − 1)2 = deg ((C′)∨) = deg(C′) (deg(C′)− 1)− 3d(d − 1)(d − 2)− 2δ′.
Since deg(C′) = deg(C) = d(d − 1), we have δ′ = 1

2 d(d − 1)(d − 2)(d − 3).

We end this section by proving that the secant locus of an irreducible smooth
nondegenerate curve is isomorphic to the bitangent congruence of its dual sur-
face via the natural isomorphism between Gr(1, P3) and Gr(1, (P3)∗). Analo-
gously, the bitangent congruences of two surfaces which are projectively dual
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to each other are naturally isomorphic as well. Note that for every congruence
Σ ⊂ Gr(1, P3) with bidegree (α, β), the bidegree of Σ⊥ ⊂ Gr(1, (P3)∗) is (β, α).

Proposition 5.19. If C ⊂ P3 is a smooth nondegenerate irreducible curve, then we
have Sec(C)⊥ = Bit(C∨), the inflectional lines of C∨ are dual to the tangent lines of
C, and Infl(C∨) ⊂ Bit(C∨).

Proof. We first show that Sec(C)⊥ = Bit(C∨). As in the proof of Theorem 3.13,
the biduality of projective varieties over algebraically closed fields of charac-
teristic zero is the main ingredient. Consider a line L that intersects C at two
distinct points x and y, but is equal to neither TC,x nor TC,y. Together the line L
and TC,x span a plane corresponding to a point a ∈ C∨. Similarly, the span of
the lines L and TC,y corresponds to a point b ∈ C∨. Without loss of generality,
we may assume that both a and b are smooth points in C∨. By biduality, the
points a, b ∈ C∨ must be distinct with tangent planes corresponding to x and y.
Thus, the line L∨ is tangent to C∨ at the points a, b, and Sec(C)⊥ ⊂ Bit(C∨). To
establish the other inclusion, let L′ be a line that is tangent to C∨ at two distinct
smooth points a, b ∈ C∨. The tangent planes at the points a, b correspond to
two points x, y ∈ C. If x ̸= y, then (L′)∨ is the secant to C through these two
points. If x = y, then biduality establishes that (L′)∨ is the tangent line of C at
x. In either case, we see that Bit(C∨) ⊂ Sec(C)⊥, so Sec(C)⊥ = Bit(C∨).

For the second part, let L be an inflectional line at a smooth point a ∈ C∨.
A point y ∈ L∨ \ C corresponds to a plane H such that L = TC∨,a ∩ H, so the
line L is also an inflectional line to the plane curve C∨ ∩ H ⊂ H. Regarding L
as a subvariety of the projective plane H, its dual variety is a cusp on the plane
curve (C∨ ∩ H)∨ ⊂ H∗; see Fig. 5.2. If πy : P3 99K P2 ∼= H∗ denotes the pro-
jection away from the point y, then we claim that (C∨ ∩ H)∨ equals πy(C); for
a more general version see [53, Prop. 6.1]. Indeed, a smooth point z ∈ πy(C)
is the projection of a point of C whose tangent line does not contain y. To-
gether this tangent line and the point y span a plane such that its dual point w
is contained in the curve C∨ ∩ H. Thus, the tangent line Tπy(C),z equals πy(w∨);
the latter is the line in H∗ dual to the point w ∈ H. In other words, we have(
πy(C)

)∨ ⊂ C∨ ∩ H. Since both curves are irreducible, this inclusion must be
an equality. Hence, when considering L in the projective plane H, its dual point
is a cusp of πy(C). It follows that L∨ is the tangent line TC,x, where x ∈ C
is the point corresponding to the tangent plane TC∨,a; see Fig. 5.5. Reversing
these arguments shows that the dual of a tangent line to C is an inflectional line
to C∨. Since every tangent line to C is contained in Sec(C), we conclude that
Infl(C∨) ⊂ Bit(C∨).

Proposition 5.20. Let S ⊂ P3 be an irreducible surface. If S∨ is a surface as well, then
Bit(S)⊥ = Bit(S∨).

Proof. A general L ∈ Bit(S) is tangent to S at two distinct smooth points x and
y such that a := (TS,x)

∨ and b := (TS,y)
∨ are smooth point of S∨. Biduality

implies that a and b must be distinct and that L∨ is tangent to S∨ at both a and
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b. Now we have shown that Bit(S)⊥ ⊂ Bit(S∨). Repeating the same argument
with the roles of S and S∨ exchanged yields Proposition 5.20.

Proof of Theorem 5.2. This result is a restatement of Propositions 5.19 and 5.20.

Remark 5.21. Proposition 5.19 shows, for a smooth nondegenerate irreducible
space curve C, that Infl(C∨) is a curve, as Infl(C∨)⊥ is the set of tangent lines
to C; so the inflectional locus of a surface in P3 is not always a congruence. ♦
Remark 5.22. For a curve C ⊂ P3 with dual surface C∨ ⊂ (P3)∗, Theorem 3.13
establishes that CH0(C)⊥ = CH1(C∨). Combined with Proposition 5.19, we see
that the singular locus of the Hurwitz hypersurface CH1(C∨), for smooth and
nondegenerate C, has just one component, namely the bitangent congruence. ♦
Remark 5.23. Proposition 5.19 does not hold for degenerate curves. If C ⊂ P3 is
an irreducible curve which spans the plane H ⊂ P3, then its secant congruence
is the set of all lines contained in H, but the bitangent congruence of the dual
surface C∨ does not consist of all lines passing through the point H∨. Note that
C∨ is a cone with vertex H∨, whose image under the projection πv with center
v := H∨ is the dual curve to the plane curve C ⊂ H ∼= P2. There are two types
of bitangent lines of C∨: lines contained in the cone C∨ (which are dual to the
tangent lines of C) and lines whose image under πv are bitangent lines of the
plane curve πv(C∨). Conversely, given a bitangent line L of the plane curve
πv(C∨), almost all lines in the plane π−1

v (L) are bitangent lines of C∨, so all
lines in the plane π−1

v (L) are contained in Bit(C∨). Since bitangent lines of the
plane curve πv(C∨) correspond to nodes of C, we have derived the following:

Bit(C∨)⊥ = T ℓ(C) ∪
⋃

x node of C

{
L ∈ Gr(1, P3) | x ∈ L

}
,

where T ℓ(C) denotes the Zariski closure of the set of tangent lines to smooth
points of C. Analogously, since inflectional lines of a plane curve correspond to
cusps of its dual curve, we have

Infl(C∨)⊥ = T ℓ(C) ∪
⋃

x cusp of C

{
L ∈ Gr(1, P3) | x ∈ L

}
.

Similarly, for nondegenerate singular curves, the bitangent and inflectional
loci of their dual surfaces may have several components each. For example, if
such a curve C has a node x, then all lines in the plane x∨ correspond to points
of Bit(C∨), but according to Remark 5.9, not all lines passing through the point
x correspond to points of Sec(C) (cf. also Theorem 5.8). ♦

5.4 Intersection Theory

In this section, we recast the degree of a subvariety in Gr(1, P3) in terms of
certain products in the Chow ring. For information about subvarieties of more
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general Grassmannians, we recommend [4].
Consider a smooth irreducible variety X. For each c ∈ Z≥0, the group Zc(X)

of codimension-c cycles is the free abelian group generated by the closed irre-
ducible subvarieties of X having codimension c. Given a variety W of codi-
mension c − 1 and a non-zero rational function f on W, we have the cycle
div( f ) := ∑Z ordZ( f ) Z where the sum runs over all subvarieties Z of W with
codimension one in W and ordZ( f ) ∈ Z is the order of vanishing of f along Z.
The group of cycles rationally equivalent to zero is the subgroup generated by
the cycles div( f ) for all codimension-(c − 1) subvarieties W of X and all non-
zero rational functions f on W. The Chow group Ac(X) is the quotient of Zc(X)
by the subgroup of cycles rationally equivalent to zero. We typically write [Z]
for the class of a subvariety Z in the appropriate Chow group. Since X is the
unique subvariety of codimension 0, we see that A0(X) ∼= Z. We also have
A1(X) ∼= Pic(X).

Theorem/Definition 5.24 ([34, Thm.-Def. 1.5]). If X is a smooth projective variety,
then there is a unique product structure on A∗(X) =

⨁dim X
c=0 Ac(X) which satisfies

the condition:

If two subvarieties Y1, Y2 ⊂ X are generically transverse, then [Y1][Y2] = [Y1 ∩ Y2].

This makes A∗(X) into an associative commutative Z-graded ring, called the Chow
ring of X. ♦

Example 5.25 ([34, Thm. 2.1]). The Chow ring of Pn is isomorphic to
Z[h]/⟨hn+1⟩, where h ∈ A1(Pn) is the (rational equivalence) class of a hyper-
plane in Pn. More generally, any subvariety of codimension c and degree d is
rationally equivalent to the d-times multiple of the intersection of c hyperplanes.

♦

To a given a vector bundle E of rank r on X, we associate its Chern classes
ci(E) ∈ Ai(X) for 0 ≤ i ≤ r; see [102]. When E is globally generated, these
classes are represented by degeneracy loci; the class cr+1−j(E) is associated to
the locus of points x ∈ X where j general global sections of E fail to be lin-
early independent. In particular, the top Chern class cr(E) is represented by the
vanishing locus of a single general global section. Given a short exact sequence
0 → E ′ → E → E ′′ → 0 of vector bundles, the Whitney Sum Formula as-
serts that ck(E) = ∑i+j=k ci(E ′)cj(E ′′); see [40, Thm. 3.2]. Moreover, if E∗ :=
Hom(E ,OX) denotes the dual vector bundle, then we have ci(E∗) = (−1)ici(E)
for 0 ≤ i ≤ r; see [40, Rem. 3.2.3].

Example 5.26. Given nonnegative integers a1, a2, . . . , an, consider the vector
bundle E := OPn(a1) ⊕ OPn(a2) ⊕ · · · ⊕ OPn(an). Since each OPn(ai) is glob-
ally generated, the Chern class c1 (OPn(ai)) is the vanishing locus of a general
homogeneous polynomial of degree ai, so c1 (OPn(ai)) = aih in A∗(Pn). Hence,
the Whitney Sum Formula implies that cn(E) = ∏n

i=1 c1 (O(ai)) = ∏n
i=1(aih).

On the one hand, cn(E) is the locus where a general section vanishes. In other
words, it is the common zeros of general polynomials of degree a1, a2, . . . , an.
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On the other hand, it is represented by ∏n
i=1 ai times the point hn. Thus we have

recovered Bézout’s Theorem in the case of general polynomials. ♦

Example 5.27. If TPn is the tangent bundle on Pn, then we have the short exact
sequence 0 → OPn → OPn(1)⊕(n+1) → TPn → 0; see [50, Example 8.20.1]. The
Whitney Sum Formula implies that c1(TPn) = (n + 1)c1 (OPn(1))− c1(OPn) =

(n + 1)h and c2(TPn) = c2

(
OPn(1)⊕(n+1)

)
= (n+1

2 )h2. ♦

Example 5.28. Let Y ⊂ Pn be a smooth hypersurface of degree d. If TY de-
notes the tangent bundle of Y, then we have the following short exact sequence:
0 → TY → TPn |Y → OPn(d)|Y → 0; see [50, Prop. 8.20]. Setting H := h|Y in
A∗(Y), the Whitney Sum Formula implies

c1(TY) = c1(TPn |Y)− c1 (OPn(d)|Y) = (n + 1)H − dH = (n + 1 − d)H and

c2(TY) = c2(TPn |Y)− c1(TY)c1 (OPn(d)|Y) =
((

n + 1
2

)
− (n + 1 − d)d

)
H2.

♦

We next focus on the Chow ring of Gr(1, P3); see [4, 102]. Fix a complete flag
v0 ∈ L0 ⊂ H0 ⊂ P3 where the point v0 lies in the line L0, and the line L0 is
contained in the plane H0. The Schubert varieties in Gr(1, P3) are:

Σ0 := Gr(1, P3) , Σ1 := {L | L ∩ L0 ̸= ∅} ⊂ Gr(1, P3) ,

Σ1,1 := {L | L ⊂ H0} ⊂ Gr(1, P3) , Σ2 := {L | v0 ∈ L} ⊂ Gr(1, P3) ,

Σ2,1 := {L | v0 ∈ L ⊂ H0} ⊂ Gr(1, P3) , Σ2,2 := {L0} ⊂ Gr(1, P3) .

The corresponding classes σI := [ΣI ], called the Schubert cycles, form a basis
for the Chow ring A∗(Gr(1, P3)); see [34, Thm. 5.26]. Since the sum of the sub-
scripts gives the codimension, we have

A0 (Gr(1, P3)
) ∼= Zσ0 , A1 (Gr(1, P3)

) ∼= Zσ1 , A2 (Gr(1, P3)
) ∼= Zσ1,1 ⊕ Zσ2 ,

A3 (Gr(1, P3)
) ∼= Zσ2,1 , A4 (Gr(1, P3)

) ∼= Zσ2,2 .

To understand the product structure, we use the transitive action of GL(4, C)
on Gr(1, P3). Specifically, Kleiman’s Transversality Theorem [60] shows that,
for two subvarieties V and W in Gr(1, P3), a general translate U of V under
the GL(4, C)-action is rationally equivalent to V and the intersection of U and
W is transversal at a general point of any component of U ∩ W. Hence, we
have [V][W] = [U ∩ W]. To determine the product σ1,1σ2, we intersect general
varieties representing these classes: σ1,1 consists of all lines L contained in a
fixed plane H0, and σ2 is all lines L containing a fixed point v0. Since a general
point does not lie in a general plane, we see that σ1,1σ2 = 0. Similar arguments
yield all products:

σ2
1,1=σ2,2 , σ2

2 =σ2,2 , σ1,1σ2=0 , σ1σ2,1=σ2,2 ,
σ1σ1,1=σ2,1 , σ1σ2=σ2,1 , σ2

1 =σ2 + σ1,1 .
(5.2)
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The degree of a subvariety in Gr(1, P3) can be interpreted as certain coef-
ficients of its class in the Chow ring. Geometrically, the order α of a surface
X ⊂ Gr(1, P3) is the number of lines in X passing through the general point v0.
Since we may intersect X with a general variety representing σ2, it follows that
α equals the coefficient of σ2 in [X]. Similarly, the class β of X is the coefficient
of σ1,1 in [X], the degree of a threefold Σ ⊂ Gr(1, P3) is the coefficient of σ1 in
[Σ], and the degree of a curve C ⊂ Gr(1, P3) is the coefficient of σ2,1 in [C].

The degree of a subvariety in Gr(1, P3) also has a useful reinterpretation via
Chern classes of tautological vector bundles. Let S denote the tautological sub-
bundle, the vector bundle whose fiber over the point W ∈ Gr(1, P3) is the two-
dimensional vector space W ⊆ A4. Similarly, let Q be the tautological quotient
bundle whose fiber over W is A4/W. Both S∗ and Q are globally generated;
H0 (Gr(1, P3),S∗) ∼= (A4)∗ and H0 (Gr(1, P3),Q

) ∼= A4; see [4, Prop. 0.5]. A
global section of S∗ corresponds to a non-zero map ϕ : A4 → A1, where its
value at the point W is ϕ|W : W → A1. The Chern class c2(S∗) is represented
by the vanishing locus of ϕ, so we have c2(S∗) = σ1,1 = c2(S). For two gen-
eral sections ϕ, ψ : A4 → A1 of S∗, the Chern class c1(S∗) is represented by
the locus of points W where ϕ|W and ψ|W fail to be linearly independent, i.e.,
W ∩ ker(ϕ) ∩ ker(ψ) ̸= {0}. Generality ensures that ker(ϕ) ∩ ker(ψ) is a two-
dimensional subspace of A4, so c1(S∗) = −c1(S) = σ1. Similarly, a global
section of Q corresponds to a point v ∈ A4; its value at W is simply the im-
age of the point in A4/W. Thus, c2(Q) is represented by the locus of those
W containing v, which is σ2. Two global sections of Q are linearly dependent
at W when the two-dimensional subspace of A4 spanned by the points inter-
sects W nontrivially, so c1(Q) = σ1. Finally, for a surface X ⊂ Gr(1, P3) with
[X] = ασ2 + βσ1,1, we obtain

c2(Q) [X] = σ2(ασ2 + βσ1,1) = ασ2,2 ,
c2(S) [X] = σ1,1(ασ2 + βσ1,1) = βσ2,2 ,

so computing the bidegree is equivalent to calculating the products c2(Q) [X]
and c2(S) [X] in the Chow ring.

We close this section with three examples demonstrating this approach. Fur-
ther elaboration and examples of intersection theory on the Grassmannian
Gr(1, P3) are found in Section 6.4.

Example 5.29. Given a smooth surface S in P3, we recompute the degree of
CH1(S); compare with Proposition 5.16. Theorem 3.8 implies that this degree
equals the degree δ1(S) of the first polar locus P1(S, y) = {x ∈ S | y ∈ TS,x},
where y is a general point of P3. Letting TS be the tangent bundle of S, Exam-
ple 14.4.15 in [40] shows that δ1(S) = deg (3h − c1(TS)). Hence, Example 5.28
gives δ1(S) = deg(3h − h(3 + 1 − d)) = (d − 1)deg(h). Since S is a degree d
surface, the degree of the hyperplane h equals d, so δ1(S) = d(d − 1). ♦

Example 5.30 (Problem 3 on Grassmannians in [100]). Let S1, S2 ⊂ P3 be
general surfaces of degree d1 and d2, respectively, with d1, d2 ≥ 4. To find
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the number of lines bitangent to both surfaces, it suffices to compute the car-
dinality of Bit(S1) ∩ Bit(S2). Theorem 5.18 establishes that, for 1 ≤ i ≤ 2,
we have [Bit(Si)] = αiσ2 + βiσ1,1, where αi := 1

2 di(di − 1)(di − 2)(di − 3) and
βi := 1

2 di(di − 2)(di − 3)(di + 3). So [Bit(S1) ∩ Bit(S2)] = [Bit(S1)][Bit(S2)] =
(α1α2 + β1β2)σ2,2 and the number of lines bitangent to S1 and S2 is

1
4 d1(d1 − 1)(d1 − 2)(d1 − 3)d2(d2 − 1)(d2 − 2)(d2 − 3)

+ 1
4 d1(d1 − 2)(d1 − 3)(d1 + 3)d2(d2 − 2)(d2 − 3)(d2 + 3) . ♦

Example 5.31. Let S ⊂ P3 be a general surface of degree d1 with d1 ≥ 4, and let
C ⊂ P3 be a general curve of degree d2 and geometric genus g with d2 ≥ 2. To
find the number of lines bitangent to S and secant to C, it suffices to compute
the cardinality of Bit(S) ∩ Sec(C). Theorem 5.18 and Theorem 5.10 imply that

[Bit(S)] = 1
2 d1(d1 − 1)(d1 − 2)(d1 − 3) σ2 +

1
2 d1(d1 − 2)(d1 − 3)(d1 + 3) σ1,1 ,

[Sec(C)] =
(

1
2(d2 − 1)(d2 − 2)− g

)
σ2 +

1
2 d2(d2 − 1) σ1,1 .

It follows that [Bit(S) ∩ Sec(C)] = [Bit(S)][Sec(C)] = γσ2,2 where

γ := 1
4 d1(d1 − 1)(d1 − 2)(d1 − 3) ((d2 − 1)(d2 − 2)− 2g)

+ 1
4 d1(d1 − 2)(d1 − 3)(d1 + 3)d2(d2 − 1) ,

so the number of lines bitangent to S and secant to C is γ. ♦

5.5 Singular Loci of Congruences

This section investigates the singular points of the secant, bitangent, and in-
flectional congruences. We begin with the singularities of the secant locus of a
smooth irreducible curve that is not contained in a plane. Note that the secant
congruence of a curve that is not a line but contained in a plane is simply the
set of all lines lying in the same plane; hence this congruence is smooth.

Proposition 5.32. Let C be a nondegenerate smooth irreducible curve in P3. If L
is a line that intersects the curve C in three or more distinct points, then the line L
corresponds to a singular point in Sec(C).

Proof. The symmetric square C(2) is the quotient of C × C by the action of the
symmetric group S2, so points in this projective variety are unordered pairs
of points on C; see [49, pp. 126–127]. The map ϖ : C(2) → Sec(C), defined by
sending {x, y} to the line spanned by the points x and y if x ̸= y or to the tangent
line TC,x if x = y, is a birational morphism. Since |L ∩ C| ≥ 3, the fiber ϖ−1(L)
is a finite set containing more than one element. Hence, ϖ−1(L) is not connected
and the Zariski Connectedness Theorem proves that Sec(C) is singular at L.

We use the following result without proof.
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Proposition 5.33 ([5, Lem. 2.3]). Let C be a nondegenerate smooth irreducible curve
in P3 and L be a line that intersects C in exactly two points x and y. The line L
corresponds to a smooth point of Sec(C) if and only if L is different from TC,x and TC,y.

♦

Finally we have to consider lines in Sec(C) that meet the curve in a single
point. For this, we need the following technical lemma.

Lemma 5.34. If f ∈ C[[z, w]] satisfies f (z, w) = − f (w, z), then the linear form z − w
divides the power series f .

Proof. We write the formal power series f as a sum of homogeneous polynomi-
als f = ∑i∈Z≥0

fi. Since we have f (z, w) + f (w, z) = 0, it follows that, in each
degree i, we have fi(z, w) + fi(w, z) = 0. In particular, we see that fi(w, w) = 0.
If we consider fi(w, z) as a polynomial in the variable z with coefficients in C[w],
it follows that w is a root of fi. Thus, we conclude that z − w divides fi for all
i ∈ Z≥0.

Theorem 5.35. Let C be a nondegenerate smooth irreducible curve in P3. If a point in
Sec(C) corresponds to a line L that intersects C in a single point v, then the intersection
multiplicity of L and C at v is at least two. Moreover, the line L corresponds to a smooth
point of Sec(C) if and only if the intersection multiplicity is exactly two.

Proof. First we note that Jenia Tevelev helped with the following proof.
Suppose the line L intersects the curve C at the point v with multiplicity two.

Without loss of generality, we may work in the affine open subset with x3 ̸= 0,
and we assume that v = (0 : 0 : 0 : 1) and L is the zero locus Z(x1, x2). Since C
is smooth, there is a local analytic isomorphism ϕ from a neighborhood of the
origin in A1 to a neighborhood of the point v in C. The map ϕ will have the form
ϕ(z) = (ϕ0(z), ϕ1(z), ϕ2(z)) for some ϕ0, ϕ1, ϕ2 ∈ C[[z]]. We have ϕ′

0(0) ̸= 0 and
ϕ′

1(0) = ϕ′
2(0) = 0 because L is the tangent to the curve C at v. After making

an analytic change of coordinates, we may assume that ϕ(z) = (z, ϕ1(z), ϕ2(z)).
As L is a simple tangent, at least one of ϕ1 and ϕ2 must vanish at 0 with order
exactly two. Hence, we may assume that ϕ1(z) = z2 + z3 f (z) and ϕ2(z) =
z2g(z) for some f , g ∈ C[[z]]. The line spanned by the distinct points ϕ(z) and
ϕ(w) on the curve C is given by the row space of the matrix[

z z2 + z3 f (z) z2g(z) 1
w w2 + w3 f (w) w2g(w) 1

]
.

The dual Plücker coordinates are skew-symmetric power series, so Lemma 5.34
implies that they are divisible by z − w. In particular, if f (z) = ∑i aizi, then we
have q03 = z − w,

q01 = z
(
w2 + w3 f (w)

)
− w

(
z2 + z3 f (z)

)
= −zw(z − w)

(
1 + ∑

i
ai

i+1
∑

j=0
wjzi+1−j

)
,

q13 = z2 + z3 f (z)− w2 − w3 f (w) = (z − w)

(
z + w + ∑

i
ai

i+2
∑

j=0
zjwi+2−j

)
.
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The symmetric square (A1)(2) of the affine line A1 is a smooth surface iso-
morphic to the affine plane A2; see [49, Example 10.23]. Consider the map
ϖ : (A1)(2) → Sec(C) defined by sending the pair {z, w} of points in A1 to the
line spanned by the points ϕ(z) and ϕ(w) if z ̸= w or to TC,ϕ(z) if z = w. In
other words, the map ϖ sends {z, w} to(

−zw + h1(z, w) : q02
z−w : 1 : q12

z−w : z + w + h2(z, w) : q23
z−w

)
, where

h1(z, w) := −zw ∑
i

ai
i+1
∑

j=0
wjzi−j+1 and h2(z, w) := ∑

i
ai

i+2
∑

j=0
zjwi+2−j .

Since the forms zw and z + w are local coordinates of (A1)(2) in a neighborhood
of the origin, we conclude that ϖ is a local isomorphism and Sec(C) is smooth
at the point corresponding to L.

Suppose the line L intersects the curve C at the point v with multiplicity at
least three. It follows that the line L is contained in the Zariski closure of the set
of lines that intersect C in at least three points or that intersect C in two points,
one with multiplicity at least two. By Propositions 5.32 and 5.33, we conclude
that the line is singular in Sec(C).

Corollary 5.36. Let C be a nondegenerate smooth irreducible curve in P3. If the line
L corresponds to a point in Sec(C), then L corresponds to a singular point of Sec(C) if
and only if one of the following three conditions is satisfied:

• the line L intersects the curve C in three or more distinct points,

• the line L intersects the curve C in exactly two points and L is the tangent line to
one of these two points,

• the line L intersects the curve C at a single point with multiplicity at least three.

Proof. Combine Propositions 5.32 and 5.33, and Theorem 5.35.

Analogously, we want to describe the singularities of the inflectional locus
Infl(S) and the bitangent locus Bit(S) of a surface S ⊂ P3.

Theorem 5.37. If S ⊂ P3 is an irreducible smooth surface of degree at least four
which does not contain any lines, then the singular locus of Infl(S) corresponds to lines
which either intersect S with multiplicity at least three at two or more distinct points,
or intersect S with multiplicity at least four at some point.

Proof. We consider the incidence variety

ΨS := {(v, L) | L intersects S at v with multiplicity 3} ⊂ S × Gr(1, P3) . (5.3)

The projection π : ΨS → Infl(S), defined by (v, L) ↦→ L, is a surjective mor-
phism. Since S does not contain lines, all fibers of π are finite and Lemma 5.6
implies that the map π is finite. Moreover, the general fiber of π has cardinality
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one, so π is birational. To apply Lemma 5.3, we need to examine the singulari-
ties of ΨS and the differential of π.

Let f be the defining equation for S in P3 in the unknowns x0, . . . , x3. We use
dual Plücker coordinates q01, . . . , q23 on Gr(1, P3). Consider the affine chart in
P3 × Gr(1, P3) where x0 ̸= 0 and q01 ̸= 0. We may assume v = (1 : α : β : γ)
and the line L is spanned by the points (1 : 0 : a : b) and (0 : 1 : c : d).
In this affine chart, S is defined by g0(x1, x2, x3) := f (1, x1, x2, x3). As in the
proof of Theorem 5.8, we have v ∈ L if and only if a = β − αc and b = γ − αd.
Parametrizing the line L by ℓ(s, t) := (s : sα + t : sβ + tc : sγ + td) for
(s : t) ∈ P1 shows that L intersects S with multiplicity at least m at v if and
only if f (ℓ(s, t)) is divisible by tm. This is equivalent to

∂
∂t [ f (ℓ(s, t))]

⏐⏐⏐
(1,0)

= ∂2

∂2t [ f (ℓ(s, t))]
⏐⏐⏐
(1,0)

= · · · = ∂m−1

∂m−1t [ f (ℓ(s, t))]
⏐⏐⏐
(1,0)

= 0 .

Setting gk :=
[

∂
∂x1

+ c ∂
∂x2

+ d ∂
∂x3

]k
g0 for k ≥ 1, the incidence variety ΨS can be

written on the chosen affine chart as

{(α, β, γ, a, b, c, d) | gk(α, β, γ) = 0 for 0 ≤ k ≤ 2, a = β − αc, b = γ − αd} .

As dim ΨS = 2, it is smooth at the point (v, L) if and only if its tangent space
has dimension two or, equivalently, its Jacobian matrix⎡⎢⎢⎢⎢⎢⎢⎣

∂g0
∂x1

(α, β, γ) ∂g0
∂x2

(α, β, γ) ∂g0
∂x3

(α, β, γ) 0 0 0 0
∂g1
∂x1

(α, β, γ) ∂g1
∂x2

(α, β, γ) ∂g1
∂x3

(α, β, γ) 0 0 ∂g0
∂x2

(α, β, γ) ∂g0
∂x3

(α, β, γ)
∂g2
∂x1

(α, β, γ) ∂g2
∂x2

(α, β, γ) ∂g2
∂x3

(α, β, γ) 0 0 2 ∂g1
∂x2

(α, β, γ) 2 ∂g1
∂x3

(α, β, γ)

−c 1 0 −1 0 −α 0
−d 0 1 0 −1 0 −α

⎤⎥⎥⎥⎥⎥⎥⎦
has rank five. Since S is smooth, the first two and the last two rows of the
Jacobian matrix are linearly independent. If ΨS is singular at (v, L), then the
third row is a linear combination of the others; specifically, there exist scalars
λ, µ such that ∂g2

∂xj
(α, β, γ) = λ

∂g1
∂xj

(α, β, γ) + µ
∂g0
∂xj

(α, β, γ) for 1 ≤ j ≤ 3. It follows

that g3(α, β, γ) = λg2(α, β, γ) + µg1(α, β, γ) = 0. Thus, the line L intersects the
surface S at the point v with multiplicity at least four if ΨS is singular at (v, L).

It remains to show that the differential D(v,L)π is not injective if and only if
the line L intersects the surface S at the point v with multiplicity at least four.
The differential D(v,L)π sends every element in the kernel of the Jacobian ma-
trix to its last four coordinates. This map is not injective if and only if the kernel
contains an element of the form (∗, ∗, ∗, 0, 0, 0, 0) ̸= 0. Such an element belongs
to the kernel if and only if it equals (λ, cλ, dλ, 0, 0, 0, 0) for some non-zero con-
stant λ and g1(α, β, γ) = g2(α, β, γ) = g3(α, β, γ) = 0. This shows that the line
L intersects the surface S at the point v with multiplicity at least four if and only
if D(v,L) is not injective.
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5.5 Singular Loci of Congruences

Finally, the fiber π−1(L) consists of more than one point if and only if L
intersects S with multiplicity at least three at two or more distinct points, so
Lemma 5.3 completes the proof.

Proof of Theorem 5.1. The first part related to the curve C is an amalgamation of
Theorems 5.8 and 5.10, and Corollary 5.36. Similarly, the second part related to
the surface S follows from Theorems 5.13, 5.18 and 5.37.

Remark 5.38. Analogously to Remark 5.14, we can formulate Theorem 5.37 for
surfaces which contain at most finitely many lines. So let S ⊂ P3 be an irre-
ducible smooth surface of degree at least three which contains finitely many
lines L1, . . . , Lk. For a line L /∈ {L1, . . . , Lk}, we have that L corresponds to a sin-
gular point of Infl(S) if and only if L is either inflectional at at least two points
of S or it intersects S with multiplicity at least four at some point. The proof
of this assertion is completely analogous to the proof of Theorem 5.37, except
that we have to remove the lines L1, . . . , Lk from the incidence variety (5.3); cf.
Remark 5.14. ♦

Proposition 5.39. Let S ⊂ P3 be a general irreducible surface of degree at least four.
If L is a line that is tangent to S at three or more distinct points, then the line L corre-
sponds to a singular point of Bit(S).

Proof. As in the proof of Proposition 5.32, the symmetric square S(2) is the quo-
tient of S × S by the action of the symmetric group S2. The projection ϖ from{
({x, y}, L) | x, y ∈ Reg(S), x ̸= y, x, y ∈ L ⊂ TS,x ∩ TS,y

}
⊂ S(2) × Gr(1, P3)

onto Bit(S), defined by sending the pair ({x, y}, L) ↦→ L is a birational mor-
phism. The fiber ϖ−1(L) is a finite set containing more than one element if L
is tangent to S in at least three distinct points. Hence, ϖ−1(L) is not connected
and the Zariski Connectedness Theorem proves that Bit(S) is singular at L.

We do not yet have a full understanding of points in Bit(S) for which the cor-
responding lines have an intersection multiplicity greater than four at a point
of S. We know that a line L that is tangent to the surface S at exactly two points
corresponds to a smooth point in Bit(S) if and only if the intersection multi-
plicity of L and S at both points is exactly two. Moreover, given a line L that
is tangent to S at a single point, the intersection multiplicity of L and S at this
point is at least four, and the line L corresponds to a smooth point of Bit(S)
when the multiplicity is exactly four; see [5, Lem. 4.3]. To complete this picture,
we make the following prediction.

Conjecture 5.40. Let S ⊂ P3 be a general irreducible surface of degree at least four. If
a point in the bitangent congruence Bit(S) corresponds to a line L that is tangent to S
at a single point x and the intersection multiplicity of L and S at x is at least five, then
L corresponds to a singular point of Bit(S).
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5 SINGULAR LOCI OF COISOTROPIC HYPERSURFACES IN Gr(1, P3)

Even for a surface S of degree five we do not know how to prove this. The
reason for this is the following. There are in principle two possibilities on how to
approximate the line L by lines in Bit(S) with lower intersection multiplicities.
Either L is in the closure of a set of lines that have a double and a triple point
in the intersection with S (these are singular in Bit(S) by [5, Lem. 4.3]), or L is
in the closure of a set of lines that have two double and one single point in the
intersection with S. The problem is that the last type of lines is smooth in Bit(S)
by [5, Lem. 4.3], and thus we cannot conclude that L is singular.

Conjecture 5.41. More generally, we conjecture that the iterated singular loci of the
Hurwitz hypersurface of a general hypersurface X ⊂ Pn have the same combinatorial
structure as the singular loci of coincident root loci [70].

5.6 Tangent Spaces to Congruences

In this section, we explicitly compute tangent spaces to the secant, inflectional
and bitangent congruences. This will be useful in Chapter 6, where we inves-
tigate the irreducible components of the visual event surface of a given curve or
surface in P3. We begin with an explicit description of the tangent spaces of
secant congruences. This involves the osculating planes to a space curve, which
will appear frequently in the subsequent chapters. At a smooth point x of a
curve C in P3 there is a pencil of planes tangent to C at x. Among those there
is a unique plane which meets C at x with multiplicity at least three, called the
osculating plane of C at x.

Proposition 5.42. Let C be a nondegenerate smooth irreducible curve in P3, and let the
line L ⊂ P3 correspond to a smooth point of Sec(C). If L intersects C at two distinct
points x1 and x2, then

TSec(C),L =
{

ϕ ∈ Hom(LLLLLLLLL, A4/LLLLLLLLL) | ∀i ∈ {1, 2} : ϕ(xixixixixixixixixi) ⊂ (TC,xiTC,xiTC,xiTC,xiTC,xiTC,xiTC,xiTC,xiTC,xi + LLLLLLLLL)/LLLLLLLLL
}

. (5.4)

If L is the tangent line to C at some point p with osculating plane H, then

TSec(C),L =
{

ϕ ∈ Hom(LLLLLLLLL, A4/LLLLLLLLL) | im ϕ ⊂ HHHHHHHHH/LLLLLLLLL
}

. (5.5)

Proof. The first part (5.4) follows immediately from Proposition 3.10 resp. (3.3).
For the second part (5.5), we choose coordinates such that p = (1 : 0 : 0 : 0), and
L = TC,p is the zero locus L = Z(x2, x3). Without loss of generality, we may
work in the affine open subset P3 \ Z(x0). Since C is smooth, there is a local
analytic isomorphism f from a neighborhood of the origin in A1 to a neighbor-
hood of the point p in C. The map f has the form f (t) = ( f1(t), f2(t), f3(t)) for
some f1, f2, f3 ∈ C[[t]] with f (0) = (0, 0, 0). For all ε ∈ C with f1(ε) ̸= 0, we
define

fε(t) :=
1

f1(ε)

(
ε f ′1(0) f1(t), f1(ε) f2(t)− f2(ε) f1(t), f1(ε) f3(t)− f3(ε) f1(t)

)
.
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5.6 Tangent Spaces to Congruences

Due to L = TC,p, we have f ′1(0) ̸= 0 and f ′2(0) = f ′3(0) = 0. This implies that
limε→0 fε(t) = f (t). Moreover, the line L intersects the curve Cε parametrized
by fε at fε(0) = (0, 0, 0) and fε(ε) = (ε f ′1(0), 0, 0). For small enough ε, the line
L corresponds to a smooth point of the secant congruence of Cε. Hence, we can
apply (5.4) and consider the limit ε → 0 to compute TSec(C),L.

For δ ∈ {0, ε}, the plane spanned by L and the tangent line to Cε at fε(δ) is
spanned by (0, 0, 0), (1, 0, 0) and ▽ fε(δ), where

▽ fε(0) =
f ′1(0)
f1(ε)

(
ε f ′1(0), − f2(ε), − f3(ε)

)
and

▽ fε(ε) =
1

f1(ε)

(
ε f ′1(0) f ′1(ε), f1(ε) f ′2(ε)− f2(ε) f ′1(ε), f1(ε) f ′3(ε)− f3(ε) f ′1(ε)

)
.

Thus, by (5.4), the tangent space of Sec(Cε) at L is spanned by two homomor-
phisms ϕ

(ε)
1 , ϕ

(ε)
2 : LLLLLLLLL → A4/LLLLLLLLL, where

ϕ
(ε)
1 (1, 0, 0, 0) := (0, 0, f2(ε), f3(ε)) + LLLLLLLLL,

ϕ
(ε)
1 (0, 1, 0, 0) := 0 + LLLLLLLLL,

and

ϕ
(ε)
2 (1, 0, 0, 0) := 0 + LLLLLLLLL,

ϕ
(ε)
2 (0, 1, 0, 0) :=

(
0, 0, f1(ε) f ′2(ε)− f2(ε) f ′1(ε), f1(ε) f ′3(ε)− f3(ε) f ′1(ε)

)
+ LLLLLLLLL.

Because of

lim
ε→0

2
ε2 ϕ

(ε)
1 (1, 0, 0, 0) = (0, 0, f ′′2 (0), f ′′3 (0)) + LLLLLLLLL = lim

ε→0

2
ε2 f ′1(0)

ϕ
(ε)
2 (0, 1, 0, 0),

the tangent space TSec(C),L consists of all homomorphisms LLLLLLLLL → A4/LLLLLLLLL whose
image is spanned by (0, 0, f ′′2 (0), f ′′3 (0)) + LLLLLLLLL. Since the osculating plane of C at
the point (0, 0, 0) is spanned by ( f ′1(0), 0, 0) and ( f ′′1 (0), f ′′2 (0), f ′′3 (0)), we have
proven (5.5).

We next focus on the tangent spaces of bitangent and inflectional congru-
ences.

Lemma 5.43. Let S be a surface in P3 of degree at least four, and let the line L ⊂ P3

correspond to a smooth point of Bit(S). If L is tangent to S at exactly two distinct
points x1 and x2, then

TBit(S),L =
{

ϕ ∈ Hom(LLLLLLLLL, A4/LLLLLLLLL) | ϕ(x1x1x1x1x1x1x1x1x1) ⊂ TS,x1TS,x1TS,x1TS,x1TS,x1TS,x1TS,x1TS,x1TS,x1/LLLLLLLLL, ϕ(x2x2x2x2x2x2x2x2x2) ⊂ TS,x2TS,x2TS,x2TS,x2TS,x2TS,x2TS,x2TS,x2TS,x2/LLLLLLLLL
}

. (5.6)

Proof. This follows immediately from Proposition 3.10 resp. (3.3).

Let S ⊂ P3 be a general surface of degree at least three. By Lemma 4.28, a
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general point on S has exactly two inflectional lines. There is a curve of those
points on S that have just one inflectional line. This is called the parabolic curve
and is the intersection of S and its Hessian surface Z(det(H f )), where the en-
tries of the Hessian matrix H f are the second partial derivatives of a defining
polynomial f of S.

Remark 5.44. As we have seen, a formal study of the singular loci of the families
of lines described in this chapter presents many technical challenges. For exam-
ple, in the course of examining inflectional lines at parabolic points of a surface
S, we discovered a small error in [5, Sec. 4], where Arrondo et al. consider the in-
cidence variety (5.3) for inflectional tangents of S. They denote it by Y2. Lemma
4.1 b) in [5] states that the surface Y2 is singular at points (x, L) for which x is on
the parabolic curve. This is incorrect. A general cubic surface S has a parabolic
curve of degree 12. However, the incidence variety Y2 is smooth. This is shown
by direct computation; see Code D in the Appendix. ♦

The inflectional line L at a general parabolic point of S corresponds to a
smooth point of Infl(S); see Remark 5.38. By Theorem 4.26, the projectivized
conormal space of Infl(S) at L is a tangent line to the quadric Seg(A4/LLLLLLLLL, LLLLLLLLL).
Now we show that it is in fact a line on one of the two rulings of this Segre
variety. Moreover, projectivized conormal spaces to Infl(S) at lines L which are
inflectional at non-parabolic points of S are tangent lines to the Segre variety
that are not contained in any ruling.

Note that the Segre varieties we consider here are self-dual. More specifically,
for two-dimensional vector spaces U and W, we have Seg(U, W)∨ = Seg(W, U).
In particular, a line is tangent to Seg(U, W) if and only its dual line is tangent to
Seg(W, U). Furthermore, a line is contained in Seg(U, W) if and only if its dual
line is contained in Seg(W, U).

Theorem 5.45. Let S be a general surface in P3 of degree at least three, and let the line
L ⊂ P3 correspond to a smooth point of Infl(S). If deg S = 3, we assume that L is not
one of the 27 lines on S.

1. If L is an inflectional line at a point p ∈ S, the projectivization of TInfl(S),L
is a tangent line to the Segre variety Seg(LLLLLLLLL, A4/LLLLLLLLL) at the unique point ϕ ∈
P(Hom(LLLLLLLLL, A4/LLLLLLLLL)) with ker ϕ = ppppppppp and im ϕ = TS,p/LLLLLLLLL.

2. The point p is parabolic if and only if every homomorphism in TInfl(S),L has rank
at most one. In that case, we have

TInfl(S),L =
{

ϕ ∈ Hom(LLLLLLLLL, A4/LLLLLLLLL) | im (ϕ) ⊂ TS,p/LLLLLLLLL
}

. (5.7)

Proof. The first part is a special case of Theorem 4.26 for m = 3. For the second
part, we repeat the proof of Lemma 4.29 for the special case m = 3 without as-
suming that L ∈ Infl(S) is general. Instead, we only assume L to be a smooth
point of Infl(S) and to be not contained in S. By Remark 5.38, the rational map
Infl(S) 99K S which sends a general L′ ∈ Infl(S) to the unique point pL′ ∈ S at
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which L′ intersects S with multiplicity three is defined on all of Reg(Infl(S)) \L,
where L denotes the set of the 27 lines on S if S is a cubic surface and L = ∅
if the degree of S is at least four. We choose coordinates on P3 such that
p = Z(x1, x2, x3), L = Z(x2, x3), and TS,p = Z(x3). Moreover, we work in the
affine chart P3 \ Z(x0) with the standard basis e1, e2, e3, and we extend this basis
to a basis for A4 by adding e0 ∈ ppppppppp \ {0}. We write f (x) = f1(x) + f2(x) + . . .
for the defining polynomial of S in this affine chart, where fi is homogeneous of
degree i.

We first assume that p is not parabolic. We will show that the differential
ΦL : TInfl(S),L → TS,p of the rational map Infl(S) 99K S at L is bijective, and we
will compute TInfl(S),L explicitly. By our choice of coordinates, we may assume
f1(x) = x3 and f2(x) = x2ℓ1(x)+ x3ℓ2(x), where ℓ1 and ℓ2 are homogeneous lin-
ear forms, and ℓ1 /∈ ⟨x2, x3⟩ since p is not parabolic. Using the notation in (4.14),
we have c1,3 = 1, c2,2 = ℓ1(e1) ̸= 0, and c2,3 = ℓ2(e1). Now we follow exactly the
remaining proof of Lemma 4.29 to compute the fibers of the tangent directions
ei for i ∈ {1, 2} under ΦL.

i = 1 : As in the proof of Lemma 4.29, solving (4.17) for (d1, d2, d3) implies
d3 = 0. Furthermore, by Remark 5.38, the line L has exactly intersection multi-
plicity three at p, which shows f3(e1) ̸= 0 and d2 ̸= 0. From (4.16) we see that
Φ−1

L (TL,p) is spanned by

ϕ1 : LLLLLLLLL −→ A4/LLLLLLLLL,
e0 ↦−→ 0 + LLLLLLLLL,
e1 ↦−→ e2 + LLLLLLLLL.

i = 2 : As in the proof of Lemma 4.29, we solve the system

F(2)
1 (v(t)) = (d3 + ℓ1(e1)) · t + O(t2),

F(2)
2 (v(t)) =

(
ℓ1(e1)d2 + ℓ2(e1)d3 +

∂ f3

∂x2
(e1)

)
· t + O(t2).

This yields d3 = −ℓ1(e1) ̸= 0 and d2 = ℓ2(e1)− 1
ℓ1(e1)

· ∂ f3
∂x2

(e1). From (4.16) we

see that Φ−1
L (TS,p) = TInfl(S),L is spanned by ϕ1 and

ϕ2 : LLLLLLLLL −→ A4/LLLLLLLLL,
e0 ↦−→ e2 + LLLLLLLLL,
e1 ↦−→ −ℓ1(e1)e3 + LLLLLLLLL.

In particular, the rank of ϕ2 is two.
Finally, we assume that p is a parabolic point of S. Due to our choice of

coordinates, we may assume f1(x) = x3 and f2(x) = x2
2 + x3ℓ(x), where ℓ is

a homogeneous linear form. Using the notation in (4.14), we have c1,3 = 1,
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but c2,2 = 0. Therefore, we cannot follow the lines of the proof of Lemma 4.29
directly. Instead we compute the tangent space TInfl(S),L in this case as the limit
of non-parabolic cases. More specifically, we change the defining equation f to
f (ε) = f (ε)1 + f (ε)2 + . . ., where f (ε)i := fi if i ̸= 2 and f (ε)2 := x2(x2 + εx1)+ x3ℓ(x).
For all ε ̸= 0, the zero locus L = Z(x2, x3) is still an inflectional line to the surface
S(ε) defined by f (ε) at the origin of the affine chart, but now the origin is a non-
parabolic point of S(ε). Hence, we can use our computations above to deduce
that TInfl(S(ε)),L is spanned by ϕ1 and

ϕ
(ε)
2 : LLLLLLLLL −→ A4/LLLLLLLLL,

e0 ↦−→ e2 + LLLLLLLLL,
e1 ↦−→ −εe3 + LLLLLLLLL.

Taking the limit ε −→ 0 shows (5.7).

The congruences we have studied in this chapter, their singular loci and tan-
gent spaces will appear again in the next chapter, where they play a crucial role
in describing the irreducible components of the visual event surface of a given
curve or surface in P3.
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6 Changing Views on Curves and
Surfaces

Consider a curve or surface in three-dimensional space, and pretend you are
taking a picture of that object with a camera. If the object is a curve, you see
again a curve in the image plane. For a surface, you see a region bounded by a
curve, which is called image contour or outline curve. The outline is the natural
sketch one might use to depict the surface, and is the projection of the critical
points where viewing lines are tangent to the surface. In both cases, the im-
age curve has singularities that arise from the projection, even if the original
curve or surface is smooth. Now, let your camera travel along a path in three-
dimensional space. This path naturally breaks up into segments according to
how the picture looks like. Within each segment, the picture looks alike, mean-
ing that the topology and singularities of the image curve do not change.

The appearance of a solid object under a continuously varying viewpoint was
studied in the 1970s by Koenderink and van Doorn [63]. Their motivation came
from visual perception in psychology and artificial intelligence. Koenderink
offers a detailed discussion in his remarkable book on Solid Shape [62]. On the
mathematical side, the topic was studied in singularity theory by Arnol’d and
others [3, 59, 83]. In that setting, the transitions between locally stable views are
the non-generic singularities from catastrophe theory. These catastrophes have
been classified for projection-generic surfaces. The catalogue consists of the
following six visual events. The first three names are due to René Thom [104]:

(L) Local events: lip, beak-to-beak, and swallowtail.
(M) Multi-local events: tangent crossing, cusp crossing, and triple point.

In the 1980s, visual events became a research topic in computer vision [10, 76, 78,
85]. Chapter 13 in the textbook by Forsyth and Ponce [38] offers an introduction
in that context. The motivation in computer vision was to give a description of
all possible appearances of a solid object using a finite number of stable views,
or aspects. The overall structure of aspects and events is encoded in the aspect
graph, in which vertices correspond to aspects, and edges correspond to visual
events between stable views. Although these ideas never found much practical
use, several algorithms for computing aspect graphs of algebraic surfaces were
proposed. Test implementations involved both numerical and symbolic meth-
ods. Ponce and Kriegman [85] and Rieger [90] studied the case of orthographic
projections of parametric algebraic surfaces. Methods for implicit algebraic sur-
faces were introduced by Petitjean et al. [78] for orthographic projections, and by
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6 CHANGING VIEWS ON CURVES AND SURFACES

Rieger [91] for perspective projections. All examples shown in these articles are
very special low-degree surfaces. We here revisit this literature, now 25 years
old, and develop it further for today’s applied algebraic geometry.

Our model for the object to be viewed is a smooth variety X of dimension
one or two in complex projective space P3. We assume that X is defined over
R and the real locus XR is Zariski dense in X. Taking a picture of XR is mod-
eled by the linear projection πz : P3 99K P2 with center z (for Zentrum). This
defines a curve Cz(X) in the image plane P2. If X is a curve, then Cz(X) is the
Zariski closure of the image of X under πz. If X is a surface, then Cz(X) is the
branch locus of π restricted to X. This is the Zariski closure of the set of points
in P2 whose corresponding viewing lines are tangent to X. Even though X is
smooth, the curve Cz(X) has many singular points. For a surface viewed from a
general viewpoint z, the only singularities in the contour are nodes and cusps.
For a space curve, the image curve has only nodes. As the center z changes,
the structure of its singularities is locally constant. At some point, a transition
occurs, and the singularity structure changes. The visual event surface V(X) is
the Zariski closure in P3 of the set of these transition points. This definition can
be extended to singular curves and surfaces by excluding the role of singular
points on X.

The visual event surface V(X) is usually reducible. If X is a general curve,
then V(X) has three irreducible components. If X is a general surface, then
V(X) has five irreducible components. These arise from the six events in (L)
and (M) above. We shall explain the geometry of these irreducible components
and their parametrization by the iterated singular loci of the coisotropic hyper-
surfaces of X. In addition, we discuss how to compute them in practice. An
important caveat for applications is the distinction between real and complex
points. Algebraic methods do not distinguish between them. They apply to
any complex curve or surface X in P3. For any particular X that is defined over
R, it can happen that some visual events are not seen on its real points, i.e., they
might live in the set X\XR of complex points.

The focus in this chapter lies on curves and surfaces that are general in the
sense of algebraic geometry. Thus, for a surface X in P3 of degree d, we as-
sume that its defining equation is general among homogeneous polynomials of
degree d in four variables. For a curve X in P3 of degree d and genus g, we
assume that it is a general point in the Hilbert scheme of such curves.

We now briefly describe the organization and main results in this chapter.
Section 6.1 is devoted to ruled surfaces in P3 and to its subclass of developable
surfaces. We introduce effective representations of ruled surfaces, and we show
how to compute with these. This is relevant because all visual event surfaces
are ruled. Their irreducible components are the ruled surfaces in the bottom
rows of Figures 6.2 and 6.3. These arise as iterated singular loci of Chow and
Hurwitz threefolds in Gr(1, P3), and of dual varieties in (P3)∗.

In Section 6.2, we develop the geometry of visual event surfaces for curves
in P3. The three irreducible components are the tangential surface, edge sur-
face and trisecant surface. These represent the three Reidemeister moves on
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the image curve, as shown in Figure 6.4. We demonstrate how the coisotropic
hypersurfaces of the given space curve can be used to prove that these are all
irreducible components. Finally, we present case studies that show the compu-
tation of visual event surfaces for curves up to degree six.

Section 6.3 concerns the visual event surface V(X) of a general surface X
in P3. The six events in (L) and (M) are depicted in Figure 6.5, which we
discuss in detail. These events are translated into the algebraic setting, where
they correspond to the five irreducible components of V(X). We use again the
coisotropic hypersurfaces of the given surface to derive these five irreducible
components. Their degrees are listed in Theorem 6.19. These formulas were
known classically: they appear in paragraphs 597, 598, 599, 608 and 613 of
Salmon’s book [94]. Modern proofs were given by Petitjean [77]. In Section 6.4,
we present new proofs, based on intersection theory in algebraic geometry, as
seen in the textbook by Eisenbud and Harris [34].

Section 6.5 is devoted to practical methods for computing and representing
the visual events associated with a surface X in P3. This is a non-trivial matter
because the degrees of the ruled surfaces in the output are very high, as seen
in Table 6.2. For instance, if X is a quintic, then the degrees of the irreducible
components of V(X) range between 260 and 930.

6.1 Ruled Surfaces and Developable Surfaces

An irreducible surface in P3 is ruled if it is covered by straight lines. These
lines are parametrized by some curve C, and they are known as the generators
of the surface. A first example are smooth quadratic surfaces in P3. These
possess two rulings of lines over C. We refer to the book by Edge [33] for many
classical results on ruled surfaces. In this section, we develop algebraic tools for
computing and representing ruled surfaces in practice.

Ruled surfaces arise naturally when taking pictures of an object in three-
dimensional space. We encounter them because all components of a visual
event surface V(X) are ruled. Indeed, every general point z on V(X) deter-
mines a line of sight that has a special intersection with the curve or surface X.
Every point on the line shares this property with z and hence lies in V(X).

Consider now an irreducible curve C in Gr(1, P3) whose image under the
Plücker embedding has degree d in P5. We write IC for its prime ideal in the
coordinate ring of Gr(1, P3). The union of all lines on C is a ruled surface SC
in P3.

Lemma 6.1. The ruled surface SC is irreducible and it has degree d in P3. Conversely,
every irreducible ruled surface in P3 arises in this way from some irreducible curve
C ⊂ Gr(1, P3).

Proof. This is one of the basic facts derived in Edge’s book [33, Ch. I, §26].

The defining polynomial of the surface SC ⊂ P3 can be computed from the
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equations ⎡⎢⎢⎣
0 p01 p02 p03

−p01 0 p12 p13
−p02 −p12 0 p23
−p03 −p13 −p23 0

⎤⎥⎥⎦ ·

⎛⎜⎜⎝
x0
x1
x2
x3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ , (6.1)

where the pij are primal Plücker coordinates. We add these four bilinear forms
to the ideal IC, and then we saturate with respect to the irrelevant ideal
⟨p01, p02, p03, p12, p13, p23⟩ of P5. The resulting ideal is prime, and it describes
the incidence correspondence of points on lines that are in the curve C. Now, by
eliminating the unknowns pij, we obtain a principal homogeneous prime ideal
in C[x0, x1, x2, x3]. The generator of this ideal is the polynomial of degree d that
defines the desired surface.

This computation can be reversed. Given a surface S in P3, we can compute
the Fano scheme of all lines on S . This lives in Gr(1, P3). To obtain its ideal in
C[p01, p02, p03, p12, p13, p23] we use that every line in P3 satisfying p23 ̸= 0 has
the parametric representation

z(t) =
(
−p23 : tp23 : p03 − tp13 : tp12 − p02

)
. (6.2)

We substitute (6.2) into the equation of S , extract the coefficients of the resulting
polynomial in t, and saturate their ideal by ⟨p23⟩. The Fano scheme is usually
empty or consists of points. However, if it is a curve C, then the surface is ruled
and S = SC.

Typically, the dual S∨ of an irreducible surface S of degree at least two will be
a surface in (P3)∗. However, it can happen that S∨ is a curve. In that case, S is
called developable. Each developable surface S is encoded by its dual curve S∨

since we can recover the surface by the biduality relation S = (S∨)∨.

Theorem 6.2. Every developable surface S is a ruled surface, i.e., it satisfies S = SC
for some curve C in Gr(1, P3). For a curve C in Gr(1, P3), the corresponding ruled
surface SC is developable if and only if all tangent lines of the image of C under the
Plücker embedding into P5 are contained in the Plücker quadric.

Proof. For the first statement see [33, Ch. V, §344]. The second is [7, Prop. 12.4.1].
We give an alternative derivation for the second assertion in Example 7.11.

A developable surface S = SC that is not a cone has three distinct encodings
as a curve. First, there is the curve C in the Grassmannian Gr(1, P3). Second,
there is the dual curve S∨ in (P3)∗. We saw how to recover S from these en-
codings. Finally, there is the edge of regression E(S) which lies on the surface S
in P3. Points in E(S) are the osculating planes to the curve S∨. The surface S
is the tangential surface of E(S), i.e., it is the union of lines that are tangent to
E(S) (see [82, page 111]). This also verifies that S is indeed a ruled surface. The
curves E(S) and S∨ are also related by a biduality relation; namely, S∨ is the
curve consisting of the osculating planes of E(S) [79, Thm. 5.1]. Moreover, the
tangent lines of E(S) and S∨ are dual to each other. We summarize these dual-
ity relations in Figure 6.1, where T (X) ⊂ P3 denotes the tangential surface of a
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S E(S)∨

E(S) S∨

·∨

E(·)

·∨

E(·)T (·)

T p(·)

T (·)

Figure 6.1: Duality relations of a developable surface S .

curve X ⊂ P3 and T p(X) ⊂ (P3)∗ denotes the curve formed by its osculating
planes. This situation degenerates when the surface S is a cone, which means
that its dual S∨ is a plane curve. In that special case, the edge of regression E(S)
is the vertex of the cone S .

We illustrate the three curve encodings of a developable surface with a simple
example.

Example 6.3. The Macaulay2 code for the following computations is listed in
Code E in the Appendix. Let S be the surface of degree six in P3 that is defined
by the polynomial

f = 16x3
1x3

2 − 27x2
0x4

2 + 6x0x2
1x2

2x3 − 27x4
1x2

3 + 48x2
0x1x2x2

3 − 16x3
0x3

3.

This is the surface in [97, §3, eqn. (9)]. We verify that S is developable by com-
puting the ideal of its dual variety S∨ ⊂ (P3)∗. This shows that S∨ is a smooth
rational quartic curve defined by⟨

y1y2 − 4y0y3 , y3
2 + 4y1y2

3 , y0y2
2 + y2

1y3 , y3
1 + 4y2

0y2
⟩
. (6.3)

The curve C in the Grassmannian Gr(1, P3) that encodes the ruling of S = SC
has the ideal⟨

2p03 − p12 , p2
13 + 3p02p23 , p02p13 − 9p01p23 , p2

12 − 16p01p23 , p2
02 + 3p01p13

⟩
.

This ideal defines the Fano scheme of S in P5. Finally, the edge of regression
E(S) is the rational quartic curve {(s4 : s3t : st3 : t4)} in P3. The ideal of this
curve equals ⟨

x1x2 − x0x3 , x3
2 − x1x2

3 , x0x2
2 − x2

1x3 , x3
1 − x2

0x2
⟩
. (6.4)

This curve has S as its tangential surface. Note that (6.3) is isomorphic to (6.4).
This reflects the isomorphism between (9) and (10) in [97]. All of these compu-
tations can be reversed. This example shows how various objects can serve as a
representation of the surface S . ♦

Many of the ruled surfaces SC we shall encounter in later sections have the
property that their defining polynomial f is extremely large and impossible to
compute symbolically. In such cases, the curve C in Gr(1, P3) ⊂ P5 is more
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manageable, and we can often compute generators for its ideal IC. This encod-
ing of the ruling enables us to carry out computations with the surface SC. For
example, suppose SC has degree d and consider a general line L in P3. We may
wish to compute the d points in the intersection SC ∩ L. This problem arises
in our computer vision application when the camera travels along L. The real
intersection points with the visual event surfaces are precisely the visual events
we are interested in.

Fix two points (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3) on L, and parametrize L
by

xi = sai + tbi for i = 0, 1, 2, 3. (6.5)

To compute SC ∩ L from IC, we substitute (6.5) into (6.1), we add the resulting
four bilinear forms to IC, we saturate with respect to ⟨p01, . . . , p23⟩, and we then
eliminate the six Plücker coordinates. The result is the principal ideal in C[s, t]
that is generated by the binary form

f
(

sa0 + tb0, sa1 + tb1, sa2 + tb2, sa3 + tb3
)
. (6.6)

Thus, even when f is unknown, we can compute its specialization (6.6) directly
from IC.

When S is developable, the specialization (6.6) can also be obtained from the
ideal I(S∨). Let J be a Jacobian matrix for the ideal I(S∨) in C[y0, y1, y2, y3].
This matrix has four columns. Let Jx be the matrix obtained from J by adding
one more row, namely the vector (x0, x1, x2, x3) in (6.5). We now add the 3 × 3-
minors of Jx to the ideal I(S∨), we saturate with respect to the ideal of 2 × 2-
minors of J, and then we eliminate the unknowns y0, y1, y2, y3. The result is the
desired principal ideal (6.6) in C[s, t]. See Example 6.30 for an application.

These strategies can be adapted to compute the plane curve that is obtained
as the intersection of a ruled or developable surface S with a fixed plane H in
P3. For event surfaces, this corresponds to restricting the camera movement to
a plane, or to assuming that all projections are orthographic (which means that
the viewpoint lies on the plane at infinity). It is sufficient to parametrize the
points on H by writing xi = sai + tbi + uci in (6.6).

Associated ruled surfaces. The ruled surfaces of interest to us arise from an
arbitrary curve or surface X in P3. They represent families of planes and lines
that intersect X with prescribed multiplicities and are shown in the bottom rows
of Figures 6.2 and 6.3. For a general curve or surface X in P3, the rows of these
diagrams correspond to codimension in (P3)∗ or Gr(1, P3). The shown sub-
varieties consist of lines and planes that intersect X with various multiplicities
m. A solid edge from Y1 to Y2 means that Y2 is an irreducible component of
the singular locus of Y1. A dashed edge just means that Y2 is contained in Y1.
Below the ambient spaces (P3)∗ and Gr(1, P3) we see the coisotropic hypersur-
faces associated to X. As we shall see in Sections 6.2 and 6.3, the irreducible
components of the visual event surface of X are (iterated) singular loci of these
hypersurfaces. The developable components are dual to the singular curves in
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6.1 Ruled Surfaces and Developable Surfaces

the dual surface X∨. The non-developable components are parametrized by the
singular curves in the singular locus of the Chow or Hurwitz threefold of X.

We first consider a general smooth curve X in P3. The left diagram in Fig-
ure 6.2 depicts the landscape in (P3)∗. The dual surface X∨ consists of planes
that meet X with multiplicity two. The singular locus of X∨ is the union of two
irreducible curves, whose points are osculating planes (m = 3) and bitangent
planes (m = 2 + 2). The symbols that denote our loci, like T p(X) and E p(X),
will be explained in Sections 6.2 and 6.3. The right diagram in Figure 6.2 shows
the landscape in the Grassmannian Gr(1, P3). We refer to Theorem 5.1 and Sec-
tion 5.5 for precise statements and proofs, also for the right diagram in Figure
6.3. The singular locus of the Chow threefold CH0(X) is the surface Sec(X)
in Gr(1, P3) of secant lines, i.e., lines that meet X twice. The singular locus of
Sec(X) is the curve Dℓ(X) of trisecant lines. The curve T ℓ(X) of tangent lines
is contained in Sec(X) but it does not belong to the singular locus.

(P3)∗

m = 1

X∨

m = 2

T p(X)
m = 3

E p(X)
m = 2 + 2

Gr(1, P3)
m = 0

CH0(X)
m = 1

Sec(X)
m = 1 + 1

Dℓ(X)
m = 1 + 1 + 1

T ℓ(X)
m = 2

Figure 6.2: Loci of planes and lines that meet a curve X with assigned multiplic-
ities.

In Figure 6.3, we consider various loci associated with a general smooth sur-
face X in P3. The dual surface X∨ is singular along two irreducible curves. The
nodal component E p(X) of its singular locus is the set of all bitangent planes,
and the cuspidal component P p(X) is the set of all planes that intersect X with
multiplicity three at a point. The Hurwitz threefold CH1(X) is singular along
two irreducible surfaces. Its nodal component Bit(X) contains all bitangent
lines, and its cuspidal component Infl(X) comprises all inflectional lines. These
surfaces contain three special curves F ℓ(X), Cℓ(X) and T ℓ(X), indicating lines
that meet X with multiplicity four, or 3+2, or 2+2+2. For instance, 2+2+2
refers to tritangent lines. Sections 6.3, 6.4 and 6.5 are devoted to the ruled sur-
faces in P3 that are represented by these curves.

For each of the five curves at the bottom of Figure 6.3, there is also an asso-
ciated curve on X. It consists of the points on X where the special intersection
occurs. For example, the curve associated with E p(X) is the locus of points on
X that lie on bitangent planes. These are the contact points on a curved object
when it is rolled on a table. Our favorite terminology for this curve is due to
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(P3)∗

m = 1

X∨

m = 2

P p(X)
m = 3

E p(X)
m = 2 + 2

Gr(1, P3)
m = 1

CH1(X)
m = 2

Infl(X)
m = 3

F ℓ(X)
m = 4

Bit(X)
m = 2 + 2

Cℓ(X)
m = 3 + 2

T ℓ(X)
m = 2 + 2 + 2

Figure 6.3: Loci of planes and lines that meet a surface X with assigned multi-
plicities.

Cayley: he calls it the node-couple curve. For P p(X) and F ℓ(X), the special con-
tact occurs at a single point, and we can give a more detailed description. At a
general point x, the surface has two inflectional lines (see Lemma 4.28). These
are the tangent lines of the nodal curve obtained by intersecting X = Z( f ) with
its tangent plane at x. The same lines are the intersection of the tangent plane
with the Hessian quadric at x defined by

y · H f (x) · yT = 0, where y = (y0 : y1 : y2 : y3) and H f =

(
∂2 f

∂xi∂xj

)
0≤i,j≤3

.

Exceptional situations occur at flecnodal and parabolic points x. At a flecnodal
point, one of the two inflectional lines has intersection multiplicity four. Such
a line is called a flecnodal line. At a parabolic point, the Hessian matrix H f (x)
drops rank, and the two inflectional lines degenerate to a double line. At these
points, the intersection of X with its tangent plane has a cusp at x. The locus of
all parabolic points is the curve given by the intersection of X with the Hessian
surface Z(det(H f )). Over the real numbers, the parabolic curve is the boundary
between the elliptic and hyperbolic regions on X, where the two inflectional lines
are respectively both complex or both real.

The curve P p(X) is the set of tangent planes at parabolic points, and the curve
F ℓ(X) = L4(X) is the set of flecnodal lines at flecnodal points. The parabolic
and flecnodal curves always intersect tangentially, at special points known as
godrons (or cusps of the Gauss map). Interestingly, the node-couple curve also
passes through the godrons, and has the same tangent as the parabolic and
flecnodal curves [17, p. 170].
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6.2 Views of Curves

In this section, we study the visual events for a general curve X in P3 of degree d
and genus g. In particular, X is smooth and irreducible. The three visual events
of X correspond to the three Reidemeister moves that are familiar from knot the-
ory. They are shown in Figure 6.4. For a general center z, the plane curve Cz(X)
has 1

2(d − 1)(d − 2)− g nodes and no other singularities (see Theorem 5.10). If
z is a point on the visual event surface of X, other singularities occur. The three
components of the visual event surface are as follows: 07/05/16 05:43type_of_moves.jpg 758×449 pixels

Page 1 of 1http://agnijomaths.com/images/knots/type_of_moves.jpg

Figure 6.4: Changing views of a curve correspond to Reidemeister moves. The
viewpoint z crosses the tangential surface (left), edge surface (mid-
dle), or trisecant surface (right).

1. The tangential surface T (X), also known as the tangent developable, is the
union of all tangent lines to X. It represents viewpoints z such that the
plane curve Cz(X) has a cusp. When z crosses T (X), a node on Cz(X)
transitions from being real to complex.

2. The edge surface E(X) is the union of all secant lines that are edges. An edge
is the line spanned by two points on X whose tangent lines lie in a com-
mon plane. This surface represents viewpoints z such that the plane curve
Cz(X) has a tacnode. When z crosses E(X), a pair of nodes transitions
between being real and being complex.

3. The trisecant surface D(X) is the union of all lines that are spanned by
triples of collinear points on X (the symbol D stands for drei). This rep-
resents viewpoints z such that Cz(X) has a triple point. When z crosses
D(X), the real curve Cz(X) experiences a triangle crossing, but the real
singularity structure is unchanged.

We use the coisotropic hypersurfaces of X and their iterated singular loci
to formally prove that the described surfaces are all components of the visual
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event surface of X. Consider the projection πz : X ⊂ P3 99K P2 from a center
z ∈ P3\X. The target P2 has two intrinsic realizations. These live in the ambient
spaces Gr(1, P3) and (P3)∗ respectively. The first is the surface α(z) of all lines
in P3 that contain z. The second is the plane z∨ of all planes in P3 that contain z.
Basic projective geometry yields the following characterizations of the image
curve Cz(X) in these intrinsic realizations of the image plane.

Proposition 6.4. The image Cz(X) of our curve X is projectively equivalent to the
curve α(z) ∩ CH0(X) in the Grassmannian Gr(1, P3). The dual curve (Cz(X))∨ in
(P2)∗ is projectively equivalent to the curve z∨ ∩X∨ in the dual projective space (P3)∗.

♦

In computer vision, the term visual cone is used for the union of all lines in the
preimage of a set in P2. The visual cone of a curve is a developable surface in P3.
The dual of the visual cone associated with Cz(X) is the plane curve z∨ ∩ X∨.
Hence, Proposition 6.4 describes the curves in Gr(1, P3) and (P3)∗ that encode
this visual cone, as discussed after Theorem 6.2.

Theorem 6.5. For a general space curve X of degree d ≥ 3 and genus g, the visual
event surface V(X) is the branch locus of the finite projection

ϖ : {(z, L) ∈ P3 × Gr(1, P3) | z ∈ L, L ∈ Sing(CH0(X))} −→ P3,
(z, L) ↦−→ z,

and has (at most) three irreducible components, namely T (X), E(X), and D(X).

Proof. Let z ∈ P3 \ X. Nodes in Cz(X) correspond to points in Sec(X) ∩ α(z),
i.e., to points in the fiber ϖ−1(z) by Theorem 5.8. Hence, the curve Cz(X) has
the expected number 1

2(d − 1)(d − 2) − g of nodes if and only if z is not in
the branch locus of ϖ. This is equivalent to that α(z) intersects Sec(X) only
at smooth points and the intersection at all those points is transverse (cf. [34,
Thm. 1.26]). Thus, by Corollary 5.36, there are exactly three cases when the
number of nodes is different:

1. The congruence α(z) intersects the curve Sing(Sec(X)), which is the
Zariski closure of the set of all trisecant lines of X.

2. The congruence α(z) intersects Sec(X) at some L ∈ Reg(Sec(X)) non-
transversely:

a) either L ∩ X = {x1, x2}, x1 ̸= x2, L ̸= TX,x1 and L ̸= TX,x2 ,

b) or L ∩ X = {x} and L = TX,x.

The first case yields directly the trisecant surface D(X). For the other two cases,
we first observe that

Tα(z),L =
{

ϕ ∈ Hom(LLLLLLLLL, A4/LLLLLLLLL) | zzzzzzzzz ⊂ ker(ϕ)
}

, (6.7)

which we have derived in the proof of Proposition 4.14.
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If we have a line L as in Case 2a, then α(z) and Sec(X) intersect non-trans-
versely at L if and only if the intersection of (5.4) and (6.7) contains a non-
zero homomorphism. Since z /∈ X, such a homomorphism exists if and only
if (TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1 + LLLLLLLLL)/LLLLLLLLL = (TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2 + LLLLLLLLL)/LLLLLLLLL, i.e., TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1 + LLLLLLLLL = TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2 + LLLLLLLLL, which means
that L is an edge. Thus, Case 2a yields the edge surface E(X).

If L is a line as in Case 2b, then the intersection of (5.5) and (6.7) contains
always a non-zero homomorphism, and α(z) and Sec(X) intersect non-trans-
versely at L. Hence, Case 2b yields the tangential surface T (X).

We use the symbols T ℓ(X), E ℓ(X) and Dℓ(X) to denote the curves in the
Grassmannian Gr(1, P3) that represent the surfaces T (X), E(X) and D(X). Two
of the curves appear on the lower right in Figure 6.2.

The trisecant surface D(X) is ruled but not developable, so it has no associ-
ated curve in (P3)∗. The surfaces T (X) and E(X) are developable, so they can
also be represented by their dual curves in (P3)∗. We use the same notation as
the left diagram in Figure 6.2:

T p(X) = T (X)∨ and E p(X) = E(X)∨.

Here the index “p” stands for planes. The earlier used upper index “ℓ” stands
for lines. We have already explained in Section 6.1 that the curve T p(X) of
osculating planes to X is dual to T (X) (see Figure 6.1 and [82, page 111]). The
duality of the edge surface and the curve E p(X) of bitangent planes is easy to
see. Indeed, a general bitangent plane H is tangent to X at two distinct points
x, y ∈ H. Since TX,x ⊂ H and TX,y ⊂ H, the line L spanned by x and y is an
edge. Due to biduality, x∨ and y∨ are tangent planes to the curve E p(X) at the
point H∨. Hence, every point on L corresponds to a tangent plane of this curve
at H∨.

The following classical theorem characterizes the expected degrees of the
ruled surfaces T (X), E(X) and D(X).

Theorem 6.6. For a general space curve X of degree d and genus g, the degrees of the
tangential surface T (X), the edge surface E(X) and the trisecant surface D(X) are as
follows:

deg
(
T (X)

)
= 2(d + g − 1),

deg
(
E(X)

)
= 2(d − 3)(d + g − 1),

deg
(
D(X)

)
= (d−1)(d−2)(d−3)

3 − (d − 2)g.

Proof. The degree of the tangential surface T (X) is the Riemann-Hurwitz num-
ber 2d + 2g − 2. This coincides with the degree of the dual surface X∨. See [82,
page 111] for a geometric derivation and [56] for computational examples. The
formula for the degree of the edge surface E(X) appears in [88, Thm. 2.1]. The
proof given there is based on De Jonquiéres’ Formula. The degree of the trisecant
surface D(X) is due to Berzolari who first found it in 1895. One finds Berzolari’s
formula in Bertin’s article [8] on the geometry of D(X).

99



6 CHANGING VIEWS ON CURVES AND SURFACES

d g deg(T (X)) deg(E(X)) deg(D(X))
3 0 4 0 0
4 0 6 6 2
4 1 8 8 0
5 0 8 16 8
5 1 10 20 5
5 2 12 24 2
6 0 10 30 20
6 1 12 36 16
6 2 14 42 12
6 3 16 48 8
6 4 18 54 4

Table 6.1: Degrees of the components of the visual event surface of a space
curve.

Table 6.1 summarizes the conclusion of Theorem 6.6 for space curves of de-
gree d at most six. The genus g ranges from 0 to Castelnuovo’s bound. Note that,
for fixed d and increasing g, the degree of D(X) decreases while that of the oth-
ers increases. In particular, there is no trisecant surface for twisted cubic curves
and elliptic quartic curves (cf. [8, Prop. 1]).

The edge surface E(X) is of importance in convex geometry because the alge-
braic boundary of the convex hull of a real affine curve XR consists of E(X) and
the tritangent planes of X. This was shown by Ranestad and Sturmfels in [88,
§2], and in [88, §3] they describe a method for computing E(X) when X is ra-
tional. This theme was picked up by Seigal and Sturmfels in their study of real
tensor decompositions [97]. According to [97, §3], the real rank two boundary
of X is the union T (X)∪ E(X), so it is part of the visual event surface of X. The
study of curves in the present section is thus a further development of [88, 97].

Our task in this section is to solve the following computer algebra problem.
Given a general space curve X, compute the ruled surfaces T (X), E(X) and
D(X). Here the input is either the ideal of X, or a parametric representation
of X. The output is the defining polynomial f of the surface SC in P3. If the
polynomial f is too large, we compute the ideal of the curve C in Gr(1, P3) or,
when SC is developable, the ideal of the dual S∨

C in (P3)∗.
Many space curves arising in applied contexts lie in the zero set of a quadratic

polynomial. A generic curve has this property when its genus g is maximal with
respect to the Castelnuovo bound [50, Thm. 6.4, page 351]. We now focus on
that special case. Later in this section we address our computational task for
general curves that are not on a quadric.

Let X be a general curve on a smooth quadric Q in P3. Any line L in P3 that
intersects the quadric Q in three points must lie on Q, so L lies in one of the two
rulings of Q.

Remark 6.7. If d ≥ 4 and (d, g) ̸= (4, 1) and X lies on a quadric Q, then the
trisecant surface D(X) coincides with the quadric surface Q, taken with an ap-
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propriate multiplicity. ♦
To derive that multiplicity, and to set the stage for computing T (X) and E(X),

we perform a linear change of coordinates in P3 so that the equation of Q equals
x0x3 = x1x2. Thus, we identify Q with the Segre surface P1 × P1. We fix affine
coordinates ((1 : s), (1 : t)).

Corollary 6.8. If X has bidegree (a, b) on Q = P1 × P1 ⊂ P3, then the degrees of
the tangential surface T (X), the edge surface E(X) and the (non-reduced) trisecant
surface D(X) are

deg
(
T (X)

)
= 2ab,

deg
(
E(X)

)
= 2ab(a + b − 3),

deg
(
D(X)

)
= 2

(
(a

3) + (b
3)
)
.

Proof. The affine polynomial f (s, t) that defines X has degree a in s and degree b
in t. Our curve X has degree d = a+ b and genus g = (a− 1)(b− 1). Indeed, it is
a basic fact from toric geometry that the genus g is the number of interior lattice
points of the Newton polygon, which is a rectangle of size a × b. Moreover, a
general curve X in P3 of that degree and genus lies on a quadric, so we can
apply Theorem 6.6. We substitute d = a + b and g = (a − 1)(b − 1) into the
formulas given there. This yields the formulas in Corollary 6.8.

We now see that the “appropriate multiplicity” in Remark 6.7 is (a
3) + (b

3). The
two summands correspond to the two rulings of Q. Each line in the first ruling
meets X in a points, so it counts as a trisecant with multiplicity (a

3), and ditto
with b for the second ruling.

We shall present algorithms for computing T (X) and E(X) from the affine
polynomial f (s, t) that defines X in P1 ×P1. Recall that a change of coordinates
is required in order to apply our method in situations when X is given by its
ideal in R[x0, x1, x2, x3]. We illustrate this point, and later our algorithms, for
the case when a = 3, b = 2 and hence d = 5, g = 2.

Example 6.9. Let X be the bicanonical embedding of a curve with genus two. It
has degree five in P3. The curve is arithmetically Cohen-Macaulay. Its ideal is
given by the 2 × 2-minors of [

ℓ11 ℓ12 q1
ℓ21 ℓ22 q2

]
. (6.8)

The ℓij are linear forms and the qi are quadratic forms, found by computing
syzygies of X. Assuming ℓ11, ℓ12, ℓ21, ℓ22 to be linearly independent, we change
coordinates and write this as[

x0 x2 q1(x0, x1, x2, x3)
x1 x3 q2(x0, x2)

]
=

[
1 t g1(s, t)
s st g2(t)

]
.

Here, the polynomial g1 has bidegree (2, 2) in (s, t), the polynomial g2 has de-
gree two in t, and we used column operations to eliminate x1 and x3 from q2.
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One of the 2 × 2-minors of this 2 × 3-matrix is the equation of bidegree (3, 2)
that defines our curve in the affine plane:

f (s, t) = g2(t)− sg1(s, t).

Conversely, every polynomial of bidegree (3, 2) in (s, t) has such a matrix rep-
resentation (6.8). ♦

To compute the tangential surface T (X) from f (s, t), we form the 3× 4-matrix

M =

⎡⎣ 1 s t st
0 − ft fs s fs − t ft
x0 x1 x2 x3

⎤⎦ , where fs =
∂ f
∂s

and ft =
∂ f
∂t

.

The first two rows of M are linearly independent, and they span the tangent
line at the point of X corresponding to (s, t). The second row is the image of
the tangent direction (− ft, fs) of the affine curve { f = 0} under the linear map
given by the Jacobian of C2 → C3, (s, t) ↦→ (s, t, st). Another point (x0 : . . . : x3)
lies on that tangent line in P3 precisely when rank(M) = 2. The following ideal
is generated by five polynomials in R[s, t, x0, x1, x2, x3]:

⟨ f ⟩+ ⟨ 3 × 3-minors of M ⟩. (6.9)

Our argument implies the following method for finding the tangential surface
of degree 2ab:

Proposition 6.10. Eliminating the unknowns s and t from the ideal (6.9) yields a prin-
cipal ideal in R[x0, x1, x2, x3]. Its generator is the polynomial defining the tangential
surface T (X). ♦

Example 6.11. Let d = 5, g = 2 as in Example 6.9, and fix the curve X ⊂ P1 ×P1

defined by
f = s3t2 + s3 + t2 + s + t + 1. (6.10)

The polynomial that defines the tangential surface T (X) has degree 12. It has
432 monomials, out of the (15

3 ) = 455 possible ones of degree 12, and it looks
like this (see Code F in the Appendix):

93x12
0 + 310x11

0 x1 + 341x10
0 x2

1 + 558x9
0x3

1 + 1054x8
0x4

1 + 744x7
0x5

1 + 837x6
0x6

1

+ · · · + 216x1x11
3 + 108x12

3 . ♦

We now consider the edge surface E(X). Its degree is 2ab(a + b − 3). We shall
compute its dual representation E p(X). Planes in P3 correspond to curves of
bidegree (1, 1) in P1 × P1:

y0 + y1s + y2t + y3st = 0. (6.11)

We solve for t, substitute into f (s, t), and clear denominators. The result is a
polynomial in one variable s of degree a + b. We seek the condition that this
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has two double roots, corresponding to m = 2 + 2 in Figure 6.2. This condition
defines the curve E p(X) in (P3)∗.

Example 6.12. Let d = 5, g = 2 as before in Example 6.9. Fix the curve X in
Example 6.11. We shall compute the dual curve E p(X) to the edge surface; see
Code G in the Appendix for Macaulay2 code. The moving curve (6.11) has five
intersection points with the fixed curve f = 0 in (6.10). Their s-coordinates are
the roots of

c0 + c1s + c2s2 + c3s3 + c4s4 + c5s5 = 0, (6.12)

where the ci are quadratic polynomials in y0, y1, y2, y3. Regarding the coeffi-
cients as unknowns, we pre-compute the ideal ∆(2,2)(5) ⊂ R[c0, c1, c2, c3, c4, c5]
whose variety consists of quintics (6.12) with two double roots. The ideal
∆(2,2)(5) has codimension 2 and degree 12. It is generated by 10 quintics in the
ci, as seen in the row labeled λ = 221 in [71, Table 1]. Let I be the ideal obtained
from ∆(2,2)(5) by replacing the ci with the quadrics in y0, y1, y2, y3 that represent
the specific curve X, and then saturating by the irrelevant ideal ⟨y0, y1, y2, y3⟩.
The variety of I is the curve E p(X) in (P3)∗. The ideal I has 14 minimal genera-
tors, all of degree 10, with large integer coefficients. This is the dual representa-
tion of the edge surface.

Computing E(X) by directly dualizing E p(X) rarely terminates in practice.
It is easier to intersect E(X) with lines or planes, as explained in Section 6.1,
around (6.5) and (6.6). ♦

We now consider curves X that need not lie on a quadric Q. Let us first as-
sume that X is the image of a variety Y in a higher-dimensional space Pd under
a linear projection ϖ : Pd 99K P3. This allows us to preprocess Y, especially if
the Chow form of Y is known.

This approach works well when X is rational. Here Y is the rational normal
curve in Pd, parametrized by

(
1 : t : t2 : · · · : td ). Let ϖ : Pd 99K P3 be the

linear projection that maps Y onto our curve X. We write A for the 4 × (d + 1)
matrix that represents ϖ.

We first compute the tangential surface T (X). Let s be an unknown and let Q
be the skew-symmetric 4×4-matrix obtained from (6.1) by substituting to dual
Plücker coordinates. We form the ideal in R[s, q01, q02, . . . , q23] that is generated
by the Plücker quadric q01q23 − q02q13 + q03q12 and the eight entries of the 4 × 2
matrix

Q · A ·
[

1 s s2 s3 s4 · · · sd

0 1 2s 3s2 4s3 · · · dsd−1

]T

.

Eliminating s and saturating with respect to the qij now yields the ideal of the
curve T ℓ(X). From this we can compute the defining polynomial of T (X) via
(6.1). The edge surface E(X) can be computed similarly. This was also discussed
in [88, §2] and in [97, §3].

We now compute the trisecant surface D(X) of a rational curve X of degree
d in P3. The Chow form of Y is the resultant of two binary forms of degree d.
We write this as the determinant of the Bézout matrix B(r). This is a symmetric
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d × d-matrix whose entries are linear forms in the Plücker coordinates rij of
(d − 2)-planes in Pd. For the formula we refer to equation (1.18) on page 402 in
Section III.12.1 of [43]. The Bézout matrix for d = 6 equals

B(r) =

⎡⎢⎢⎢⎢⎢⎢⎣
r01 r02 r03 r04 r05 r06
r02 r03 + r12 r04 + r13 r05 + r14 r06 + r15 r16
r03 r04 + r13 r05 + r14 + r23 r06 + r15 + r24 r16 + r25 r26
r04 r05 + r14 r06 + r15 + r24 r16 + r25 + r34 r26 + r35 r36
r05 r06 + r15 r16 + r25 r26 + r35 r36 + r45 r46
r06 r16 r26 r36 r46 r56

⎤⎥⎥⎥⎥⎥⎥⎦
We shall use the following fact that is well-known in computer algebra; see

[1, page 1228].

Lemma 6.13. The minors of the Bézout matrix B(r) having size d − k + 1 define an
irreducible variety of codimension k in the Grassmannian of (d− 2)-planes in Pd. Gen-
eral points q on this variety represent pairs of univariate polynomials of degree d that
have k common zeros. ♦

The second exterior power ∧2A of the matrix A is a matrix of format 6× (d+1
2 ).

We write p = (p01, p02, p03, p12, p13, p23) for the Plücker coordinates of a line in
P3. The preimage of the line p under the projection α is the (d − 2)-plane in Pd

with Plücker coordinates r = p · ∧2A.

Proposition 6.14. If the 4 × (d+1)-matrix A is sufficiently general, then the ideal of
(d−2)× (d−2)-minors of the matrix B

(
p · ∧2A

)
defines the curve Dℓ(X) of degree

2(d−1
3 ) in P5.

Proof. We use Lemma 6.13. Intersecting the curve X with two planes in P3

amounts to solving two univariate polynomials of degree d. The Chow form
of X is the determinant of the specialized Bézout matrix B

(
p · ∧2A

)
. The corank

of that matrix is the number of common zeros. That number is three when
the intersection of the two planes is a trisecant line of X. Thus, the line p is
in the trisecant curve Dℓ(X) precisely when B

(
p · ∧2A

)
has rank ≤ d − 3. By

Lemma 6.1 and setting g = 0 in Theorem 6.6, the degree of Dℓ(X) is 2(d−1
3 ).

For an illustration consider rational curves X of degree d = 6. Then A is
a 4 × 7 matrix, and ∧2A is a 6 × 21 matrix. The ideal of 4 × 4-minors of the
6 × 6-matrix B

(
p · ∧2A

)
is minimally generated, modulo the Plücker relation,

by 45 quartics. After saturating with respect to the irrelevant maximal ideal
⟨p01, p02, p03, p12, p13, p23⟩, we obtain the prime ideal IC of the curve C of trise-
cants; see Code H in the Appendix. The ideal IC has degree 20 and is generated
by 10 cubics.

The success of this computation relied on writing the Chow form of X as a
determinant of a matrix whose entries are linear in Plücker coordinates. Eisen-
bud, Schreyer and Weyman [35, §4] proved that such a formula exists for all
curves. See [35, Prop. 4.2] for a derivation of the Bézout matrix B(r) from the
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perspective of Ulrich sheaves, and [35, Example 4.6] for an extension to hyper-
elliptic curves. Whenever we have such matrices explicitly, we get the surface
D(X) by imposing the corank 3 constraints. Such matrix formulas for Chow
forms can also be derived for curves X in P3 that arise by intersecting certain
nice varieties.

Example 6.15. The Macaulay2 code for the following computations is listed in
Code I in the Appendix. Let X be the curve in P3 defined by the 3 × 3-minors
of the 3 × 4-matrix

M(x) =

⎡⎣ x0 + x3 x1 − x0 x2 − x1 x2 + x3
x3 − x2 x0 + x3 x1 − x0 x1 + x2
x2 − x1 x1 − x2 + x3 x0 + x3 x0

⎤⎦ .

This curve has (d, g) = (6, 3). By computing syzygies, we can represent every
curve of degree six and genus three via such a matrix with linear entries. This
follows from the Hilbert-Burch Theorem. Let Y be the variety of 3 × 4-matrices of
rank ≤ 2. The Chow form of Y is the determinant of the following 6 × 6-matrix
in dual Plücker coordinates for lines in P11:⎡⎢⎢⎢⎢⎢⎣

r00,01 r00,11 + r10,01 r00,21 + r20,01 r10,11 r10,21 + r20,11 r20,21
r00,02 r00,12 + r10,02 r00,22 + r20,02 r10,12 r10,22 + r20,12 r20,22
r00,03 r00,13 + r10,03 r00,23 + r20,03 r10,13 r10,23 + r20,13 r20,23
r01,02 r01,12 + r11,02 r01,22 + r21,02 r11,12 r11,22 + r21,12 r21,22
r01,03 r01,13 + r11,03 r01,23 + r21,03 r11,13 r11,23 + r21,13 r21,23
r02,03 r02,13 + r12,03 r02,23 + r22,03 r12,13 r12,23 + r22,13 r22,23

⎤⎥⎥⎥⎥⎥⎦ . (6.13)

This matrix appears in [43, page 472]. We now replace the Plücker coordinates
rij,kl by linear forms in the six coordinates qij = aibj − biaj for lines in P3. For
instance, r00,01 = q01 + q03 − q13, r00,02 = −q01 + q02 + q13 − q23, r00,03 = q02 +
q03 − q23, . . .. These linear forms are obtained by setting rij,kl = M(a)ijM(b)kl −
M(b)ijM(a)kl where a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3).

The trisecant curve Dℓ(X) is defined in Gr(1, P3) ⊂ P5 by the 4 × 4-minors
of the resulting matrix (6.13). Saturating by ⟨q01, q02, q03, q12, q13, q23⟩ yields the
prime ideal of Dℓ(X):

I = ⟨q03q12 − q02q13 + q01q23, q02q12 − q2
12 − q03q13 − q2

13 + q01q23 − 2q02q23 + 2q03q23 + 2q12q23,
q01q12 − q2

12 − q01q13 + q02q13 − 3q03q13 − q12q13 − q01q23 + 2q03q23+3q12q23+q13q23−2q2
23,

q2
03+q03q13+q2

13−q01q23−2q03q23−q12q23+q2
23, q2

02−q2
12−q03q13−2q02q23+q03q23+2q12q23,

q01q03 − 2q03q13 − q12q13 − 2q2
13 + q01q23 + 2q03q23 + 2q12q23 + 2q13q23 − 2q2

23,
q01q02 + 2q02q03 − q2

12 − q01q13 − q02q13 − 2q03q13 − q12q13 + 3q12q23 + 2q13q23 − 2q2
23⟩.

From this, we easily find the octic equation of the trisecant surface D(X):

x7
0x2 − 2x4

0x3
1x2 + x0x6

1x2 + 2x5
0x1x2

2 + 2x4
0x2

1x2
2 + 2x3

0x3
1x2

2 − 2x2
0x4

1x2
2 + · · ·

This polynomial uses 136 of the 165 = (8+3
3 ) monomials of degree eight. ♦

The past few pages were devoted to specialized techniques that exploit the
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6 CHANGING VIEWS ON CURVES AND SURFACES

structure of a given curve X. Such techniques can be designed for all entries in
Table 6.1. However, equally important are general purpose methods that work
for all curves. We close this section by discussing the latter. The curve X is given
by its ideal I = ⟨ f1, f2, . . . , fk⟩ in R[x0, x1, x2, x3].

The edge surface E(X) was already discussed in [88, 97]. We therefore focus
on the other two ruled surfaces in Theorem 6.6. The easier among them is the
tangential surface T (X). At any given point p on the curve X, the tangent line
is defined by the linear equations⎡⎢⎢⎣

∂ f1
∂x0

(p) ∂ f1
∂x1

(p) ∂ f1
∂x2

(p) ∂ f1
∂x3

(p)
...

...
...

...
∂ fk
∂x0

(p) ∂ fk
∂x1

(p) ∂ fk
∂x2

(p) ∂ fk
∂x3

(p)

⎤⎥⎥⎦ ·

⎛⎜⎜⎝
x0
x1
x2
x3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ . (6.14)

To find the polynomial F defining T (X), we take a vector of variables p =
(y0, y1, y2, y3), and we augment I with the constraints (6.14). This gives an ideal
in R[x0, x1, x2, x3, y0, y1, y2, y3]. From that ideal, we saturate and eliminate the
variables y0, y1, y2, y3. The output is ⟨F⟩.

The trisecant surface D(X) will be represented by its curve Dℓ(X) in the
Grassmannian Gr(1, P3). To compute this, we parametrize the line in P3 as in
(6.2). Suppose for now that our curve is a complete intersection: X = Z( f1, f2).
We want the univariate polynomials f1(z(t)) and f2(z(t)) to have three common
roots, i.e., their greatest common divisor (GCD) has degree at least three. This
can be expressed using subresultants [1]. The vanishing of all subresultants of
order i = 0, . . . , r − 1 for two polynomials in t means that their GCD has degree
at least r. In our case, we form the ideal given by the subresultant coefficients
of f1(z(t)) and f2(z(t)) of order 0, 1 and 2 (together with the Plücker relation).
The ideal of the trisecant curve Dℓ(X) is obtained by saturating by the ideal of
the leading coefficients of f1(z(t)) and f2(z(t)).

This approach generalizes to the case when X is not a complete intersection.
Indeed, if X is defined by f1, . . . , fk, then we can use the same strategy to impose
that s1 f1(z(t)) + · · ·+ sk−1 fk−1(z(t)) and fk(z(t)) have three roots in common
for any choice of s1, . . . , sk−1.

We conclude this section with an example that illustrates the last row of Ta-
ble 6.1.

Example 6.16. Let X be the smooth curve of degree six and genus four in P3

defined by
x2

0 + x2
1 + x2

2 + x2
3 = x3

0 + x3
1 + x3

2 + x3
3 = 0.

The above method easily yields the equation of degree 18 for the tangential
surface T (X):

4x12
0 x6

1 − 12x12
0 x5

1x2 − 12x12
0 x5

1x3 + 21x12
0 x4

1x2
2 + · · ·+ 13770x6

0x4
1x4

2x4
3

+ · · ·+ 24x7
2x11

3 + 4x6
2x12

3 .

This polynomial has 1094 terms. Its largest coefficient is underlined. It is also
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easy to compute the quartic surface D(X) with the above method. This is in-
deed a quadric with multiplicity two, defined by

x2
0 + x2

1 + x2
2 + x2

3 = 0.

The Macaulay2 code for these computations is given in Code J in the Appendix.
♦

6.3 Views of Surfaces

We now turn to the visual events for a general surface X in P3. For a general
center z, the contour Cz(X) has 1

2 d(d − 1)(d − 2)(d − 3) nodes, d(d − 1)(d − 2)
cusps and no other singularities (see Theorem 5.18). Special situations occur
at the six visual events associated with X, which were mentioned at the very
beginning of this chapter in items (L) and (M). We shall explain these events
and how they give rise to the following five irreducible surfaces:

1. The flecnodal surface F (X) is the union of all lines L with contact of order
four at a point of X. In other words, the equation of X restricted to L has a
root of multiplicity four.

2. The cusp crossing surface C(X) is the union of all lines L with contact of
order 3 + 2 at two points of X, i.e., the equation for X ∩ L on L has a triple
root and a double root.

3. The tritangent surface T (X) is the union of all lines L with contact of order
2 + 2 + 2 at three points of X, i.e., the equation for X ∩ L on L has three
double roots.

4. The edge surface E(X) is the envelope of the bitangent planes of X. It is the
union of all bitangent lines contained bitangent planes with the same two
points of tangency. This surface was denoted (X[2])∨ in [88].

5. The parabolic surface P(X) is the envelope of all tangent planes that have
contact of order three with X. It is the union of all inflectional lines at
parabolic points [78, §A.1.2].

Consider again the projection πz : X ⊂ P3 99K P2 from a center z ∈ P3\X.
The following result, analogous to Proposition 6.4, describes intrinsic realiza-
tions of the contour Cz(X).

Proposition 6.17. The contour Cz(X) of our surface X is projectively equivalent to the
curve α(z) ∩ CH1(X) in the Grassmannian Gr(1, P3). The curve (Cz(X))∨ in (P2)∗

that is dual to the contour is projectively equivalent to the curve z∨ ∩ X∨ in the dual
projective space (P3)∗. ♦
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We use again the coisotropic hypersurfaces of X and their iterated singular
loci to give a formal proof on the irreducible components of the visual event
surface of X.

Theorem 6.18. For a general surface X of degree at least four, the visual event surface
V(X) is the branch locus of the finite projection

ϖ : {(z, L) ∈ P3 × Gr(1, P3) | z ∈ L, L ∈ Sing(CH1(X))} −→ P3,
(z, L) ↦−→ z,

and has (at most) five irreducible components: F (X), C(X), T (X), E(X), P(X).

Proof. Let z ∈ P3 \ X. Nodes in Cz(X) correspond to points in Bit(X)∩ α(z) and
cusps in Cz(X) to points in Infl(X) ∩ α(z). Note that the union of these points
corresponds to points in the fiber ϖ−1(z) by Theorem 5.13. Hence, there are
the expected numbers 1

2 d(d − 1)(d − 2)(d − 3) of nodes and d(d − 1)(d − 2) of
cusps in Cz(X) if and only if z is not in the branch locus of ϖ. This is equivalent
to that α(z) intersects both Bit(X) and Infl(X) only at smooth points and the
intersection at all those points is transverse (cf. [34, Thm. 1.26]). According to
Theorem 5.37, Proposition 5.39 and [5, Lem. 4.3] (see also the discussion before
Conjecture 5.40), there are exactly the following three cases when the number
of nodes or cusps is different:

1. The congruence α(z) intersects T ℓ(X), Cℓ(X) or F ℓ(X) (see Figure 6.3).

2. The congruence α(z) intersects Bit(X) at some L ∈ Reg(Bit(X)) non-
transversely.

3. The congruence α(z) intersects Infl(X) at some L ∈ Reg(Infl(X)) non-
transversely.

The first case yields the tritangent, cusp crossing and flecnodal surfaces.
Let us consider the second case. We can assume that L is not a flecnodal

line, since those lines are already covered by Case 1. Thus, L is tangent to X
at exactly two points x1, x2, and L has contact order of exactly two at both x1
and x2. The congruence α(z) intersects Bit(X) non-transversely at L if and only
if the intersection of (5.6) and (6.7) contains a non-zero homomorphism. Since
z /∈ X, such a homomorphism exists if and only if TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1TX,x1/LLLLLLLLL = TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2TX,x2/LLLLLLLLL, i.e.,
TX,x1 = TX,x2 , which means that L is a bitangent line contained in a bitangent
plane. Hence, this case yields the edge surface E(X).

Finally, we focus on the third case. The Segre variety in Lemma 5.45 is a
quadric surface in P3. Hence, every line is either contained in it, or intersects it
at exactly two distinct points, or intersects it at just one point with multiplicity
two. If L ∈ Reg(Infl(X)) is inflectional at a non-parabolic point x of X, then, by
Lemma 5.45, the projectivization of TInfl(X),L intersects the Segre variety at ex-
actly one point ϕ, whose kernel is xxxxxxxxx. Since (6.7) contains only homomorphisms
of rank one and z /∈ X, the intersection of (6.7) and TInfl(X),L is {0}. Thus, α(z)
and Infl(X) intersect transversely at inflectional lines at non-parabolic points. If
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L ∈ Reg(Infl(X)) is inflectional at a parabolic point, then α(z) and Infl(X) inter-
sect non-transversely at L, since (6.7) and (5.7) clearly contain a common non-
zero homomorphism. All in all, Case 3 yields the parabolic surface P(X).

The following theorem characterizes the expected degree of the irreducible
components of V(X).

Theorem 6.19. For a general surface X of degree d in P3, the degrees of the five ruled
components of V(X) listed above are:

deg
(
F (X)

)
= 2d(d − 3)(3d − 2), [94, §597] and [77, Prop. 4.5]

deg
(
C(X)

)
= d(d − 3)(d − 4)(d2 + 6d − 4), [94, §598] and [77, Prop. 4.12]

deg
(
T (X)

)
= 1

3 d(d − 3)(d − 4)(d − 5)(d2 + 3d − 2), [94, §599] and [77, Prop. 4.10]
deg

(
E(X)

)
= d(d − 2)(d − 3)(d2 + 2d − 4), [94, §613] and [77, Prop. 4.16]

deg
(
P(X)

)
= 2d(d − 2)(3d − 4). [94, §608] and [77, Prop. 4.3]

We first learned these degree formulas from Petitjean’s article [77]. We then
discovered that all five formulas already appeared in Salmon’s 1882 book [94].
The precise pointers to both sources are given above. In Section 6.4, we present
new proofs that are self-contained, except for pointers to the textbook [34].

The five ruled surfaces in Theorem 6.19 are encoded by the curves shown
in the last row in Figure 6.3. The surfaces E(X) and P(X) are developable,
and are the duals of the singular loci shown on the left in Figure 6.3 (see next
paragraph). The remaining three surfaces T (X), C(X) and F (X) arise from the
curves in the Grassmannian Gr(1, P3) seen on the right of that diagram.

The duality of the edge surface with the curve of bitangent planes is anal-
ogous to the proof in the case of a curve X. For the duality of the parabolic
surface of a surface X, we denote by P ⊂ X the parabolic curve on X. Every
plane H ∈ (P p(X))⊥ is tangent to X at a parabolic point p ∈ P. We will see
in Lemma 6.28 that the inflectional line L at a general parabolic point p ∈ P
is spanned by p and the unique projective point in the kernel of the Hessian
matrix H f (p), where f is a defining polynomial of X. We consider the Gauss
map γ : P → P p(X) restricted to P. Taking the differential of γ at p, we get
the map TP,p → TP p(X),H∨ , v ↦→ H f (p)v. For y = p or y ∈ ker H f (p), we have
yT H f (p)v = 0. This means that every point in L corresponds to a tangent plane
of P p(X) at H∨.

The curves of lines and planes from Figure 6.3 capture both the local and
multi-local features of the surface X. This is an advantage compared to the tra-
ditional approach for studying the appearance of surfaces based on differential
geometry and singularity theory. In the computer vision literature [10, 78, 84,
85, 90], prominent local features of a surface were defined in terms of the eu-
clidean Gauss map and the asymptotic spherical image. These are maps from the
surface to the unit sphere S2, taking a point on XR to its normal direction, or
to the direction of one of its inflectional lines. In our algebro-geometric setting,
the role of S2 is played by the dual surface X∨ ⊂ (P3)∗ and the inflectional con-
gruence Infl(X) ⊂ Gr(1, P3). These surfaces carry much more information than
the unit sphere S2.
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6 CHANGING VIEWS ON CURVES AND SURFACES

We now describe the special singularities of the curve Cz(X) that arise by
projecting X from z ∈ V(X). Given a point u ∈ Cz(X), we write Lu = π−1

z (u) ∈
Gr(1, P3) for its fiber under πz. Additionally to singularities of the contour, it is
also interesting to learn (e.g. from [84]) that if Lu is a (non-inflectional) tangent
line at a parabolic point, then u is a flex point of Cz(X). Here, we are interested
in higher order singularities seen in the image curve for special viewpoints:

(T ) If Lu is a tritangent line, then u is a triple point. This is a triple point event.

(C) If Lu is an inflectional bitangent, then Cz(X) has a smooth branch and a
cuspidal branch that meet at u. This is a cusp crossing event.

(F ) If Lu is a flecnodal line, then u is the limit of two cusps and a node, i.e., an
infinitesimal change of the viewpoint produces two cusps and a node.
This is a swallowtail event.

(E ) If Lu is a bitangent line on a bitangent plane, then u is a tacnode. It is
obtained as the limit of two smooth branches coming together at u. This
is a tangent crossing event.

(P) If Lu is the inflectional tangent at a parabolic point p, then, over the real
numbers, two behaviors are possible: either u is an isolated node, which
corresponds to a lip event, or u is a tacnode, obtained as the limit of two
cusps, which is a beak-to-beak event.

The triple point, cusp crossing, and tangent crossing events are multi-local.
The six visual events are shown in Figure 6.5. Detailed renderings of these
pictures are ubiquitous in the relevant computer vision literature. For instance,
see [78, Figures 5 and 6], and Figures 13.20 through 13.25 in the textbook [38].

We now briefly explain how to distinguish the two possible local behaviors
(lip versus beak-to-beak) of the contour when the viewpoint z belongs to the
parabolic surface P(X). As argued before, the parabolic surface P(X) is a de-
velopable surface, since it is dual to the curve P p(X) in (P3)∗. In particular, all
inflectional lines at parabolic points are the tangents of the edge of regression
curve, denoted by E(P(X)). This allows us to associate each parabolic point x
with another point ex, where the inflectional line at x is tangent to E(P(X)). In
real projective three-dimensional space, the complement of {x, ex} in that line
has two connected components. The distinction between lip and beak-to-beak
is made by which of these two components the viewpoint z belongs to. This
was shown in [83, Thm. 4.10].

We next offer an informal discussion that should provide an intuitive under-
standing of our five event surfaces. The following are some real life situations
where these events can actually be observed. We encourage our readers to look
at the world from multiple viewpoints, and to then spot the six pictures of Fig-
ure 6.5. Do look carefully at the objects that surround you.

We first note that cuspidal and nodal singularities of image contours are sta-
ble features, which are visible in most surfaces. Nodes occur whenever occlu-
sions create discontinuities in the contour. Cusps only appear for non-convex
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6.3 Views of Surfaces

Figure 6.5: The catalogue of visual events for the projections of a smooth surface from
a viewpoint that moves. The local events (left, from top to bottom) are lip,
beak-to-beak, swallowtail. The multi-local events (right, from top to bot-
tom) are tangent crossing, cusp crossing, triple point. Reprinted from [76]
with permission of Springer.

objects. For instance, they can be observed on the folds of a piece of cloth. From
an exceptional viewpoint, it is possible that several of these singularities occur
along the same visual ray. This gives rise to a multi-local visual event (cusp
crossing, tangent crossing, or triple points). Try it with a napkin or towel.

The three local events on the left in Figure 6.5 are more complicated. Videos
of these events and their corresponding ruled surfaces are available at

https://github.com/kathlenkohn/thesis-material

in the folder chapter6. The readme file in that folder gives further explanations
to the videos. The Sage code that was used to create the visualizations depicted
in the videos can be found in the file Examples.ipynb.

It takes some practice to discover the local events in the real world. Here are
some concrete examples that we found helpful:

• Lip event: If we observe a small hill from a high aerial viewpoint (say,
from a hot air balloon), then all points on the ground are visible. The hill
does not generate an image contour. However, as we descend closer to
the ground, the profile of the hill suddenly becomes visible in the contour.
This qualitative change of appearance is a lip event.

• Beak-to-beak. Observe a glass bottle from the bottom, with your eye close
to the base. You see a part of the contour generated by the convex region
where the sectional diameter of the bottle decreases. Now, tilt the bottle
slowly towards its upright position. At some point, you see a complete
path from the base to the top of the bottle. Previously your view had
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6 CHANGING VIEWS ON CURVES AND SURFACES

been blocked. This is a beak-to-beak event. Contrary to the lip event, the
contour does not disappear at the transition point, but it breaks into two
pieces.

• Swallowtail. The traditional drawing of a (transparent) torus presents two
swallowtails. We see both cuspidal and nodal singularities in the contour
[90, Fig. 2]. As we rotate the torus, a visual event occurs, and these singu-
larities disappear. Try it with a bagel.

6.4 Intersection Theory

In this section, we derive the degrees of E p(X), P p(X), P(X) and F (X), and we
sketch the relevant ideas for E(X), C(X) and T (X). We found Petitjean’s proofs
in [77] to be lengthy and hard. They require a full understanding of Colley’s
multiple point theory [25, 26], and several of the steps are left out. By contrast,
the derivations in Salmon’s book [94] are inspiring but they lack the rigor of
20th century intersection theory.

The exposition that follows refers to the textbook by Eisenbud and Harris [34].
We believe that students of that book will find this section to be useful as sup-
plementary reading.

We have discussed that the surfaces E(X) and P(X) are represented by their
dual curves in (P3)∗. These are the irreducible components in the singular locus
of the dual surface X∨.

Proposition 6.20. The degrees of the curves dual to the edge and parabolic surface of a
general surface X of degree d ≥ 4 or d ≥ 3, respectively, are

deg
(
E p(X)

)
=

1
2

d(d − 1)(d − 2)(d3 − d2 + d − 12) and

deg
(
P p(X)

)
= 4d(d − 1)(d − 2).

Proof. We count the bitangent and parabolic planes that contain a general point
z ∈ P3. Consider the branch curve Cz(X) ⊂ P2. A bitangent plane to X contain-
ing z maps onto a bitangent line of Cz(X). A tangent plane to X at a parabolic
point that contains z maps onto a flex line of Cz(X). These correspond, respec-
tively, to the nodes and the cusps of the dual curve Cz(X)∨ in (P2)∗. We denote
the number of nodes of Cz(X)∨ by ν2 = deg(E p(X)) and the number of cusps
of Cz(X)∨ by κ2 = deg(P p(X)).

We collect several results that can be found in the proof of Theorem 5.18:
the plane curve Cz(X) has degree d(d − 1). Moreover, the degree of the dual
curve (Cz(X))∨ ⊂ (P2)∗ is d(d − 1)2. The number of nodes in Cz(X), which
is the number of bitangent lines to X passing through the general point z, is
ν1 := 1

2 d(d − 1)(d − 2)(d − 3). The number of cusps in Cz(X) is the number of
inflectional lines to X passing through z, which is κ1 := d(d − 1)(d − 2).
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6.4 Intersection Theory

We now apply Plücker’s formula (see Lemma 5.15) to the dual plane curve
Cz(X)∨ to derive

d(d − 1) = deg(Cz(X)) = deg((Cz(X))∨)
(
deg((Cz(X))∨)− 1

)
− 2ν2 − 3κ2

= d(d − 1)2
(

d(d − 1)2 − 1
)
− 2ν2 − 3κ2.

(6.15)

The dual curves Cz(X) and (Cz(X))∨ have the same geometric genus. By the
degree-genus formula, it is

1
2
(d(d−1)− 1)(d(d−1)− 2)− ν1 − κ1 =

1
2
(d(d−1)2 − 1)(d(d−1)2 − 2)− ν2 − κ2.

(6.16)
Solving the equations (6.15) and (6.16) for ν2 and κ2 leads to the formulas in
Proposition 6.20.

This proof was entirely classical. By contrast, we derive the degrees of the vi-
sual event surfaces using modern intersection theory [34]. At the heart of inter-
section theory lies the Chow ring (see Section 5.4). In the following, we denote
the rational equivalence class of a point in an irreducible projective variety Y by
∗ ∈ Adim Y(Y), whenever this is well-defined. Moreover, we use the following
two generators of the Chow ring of the Grassmannian Gr(1, P3): the class γ1 of
the threefold of all lines that meet a given line (denoted by σ1 in Section 5.4),
and the class γ2 of the surface of all lines that lie in a given plane (denoted by
σ1,1 in Section 5.4). The products (5.2) show that

A0(Gr(1, P3)) ∼= Z·[Gr(1, P3)], A1(Gr(1, P3)) ∼= Zγ1, A2(Gr(1, P3)) ∼= Zγ2
1 ⊕ Zγ2,

A3(Gr(1, P3)) ∼= Zγ1γ2, A4(Gr(1, P3)) ∼= Z∗, and

γ3
1 = 2γ1γ2 , γ2

2 = ∗ , γ2
1γ2 = ∗ , γ4

1 = 2 ∗ .

Further, the class γ2
1 − γ2 represents the surface of all lines passing through a

given point, which was denoted by σ2 in Section 5.4.

Example 6.21 ([34, Prop. 9.10]). The universal line

Φ := {(x, L) ∈ P3 × Gr(1, P3) | x ∈ L}

is a five-dimensional smooth projective variety. The Chow ring of this va-
riety equals A∗(Φ) = A∗(Gr(1, P3))[H]/⟨H2 − γ1H + γ2⟩. Here, the class
H ∈ A1(Φ) represents the preimage of a plane in P3 under the projection
Φ → P3 onto the first factor. ♦

We give an overview of the most crucial varieties, morphisms and classes,
which are used throughout the following proofs, in Figure 6.6.
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6 CHANGING VIEWS ON CURVES AND SURFACES

E, Γ1, Γ2 H, γ1, γ2

ΦX Φ P3 × Gr(1, P3)

X P3 Gr(1, P3)

e h γ1, γ2

i

j

Figure 6.6: Commutative diagram of some morphisms appearing in this section.
Classes in the Chow rings of the depicted varieties are represented
in gray.

Proposition 6.22. For a general surface X of degree d ≥ 4, the degrees of the flecnodal
surface F (X) and the flecnodal curve F on X are

deg
(
F (X)

)
= 2d(d − 3)(3d − 2) and deg

(
F
)
= d(11d − 24).

Proof. Let X4
Φ ⊂ Φ be the incidence variety of pairs (x, L) such that the line L

has contact of order at least four at the point x ∈ X. The degree of the flecnodal
surface F (X) is the number of intersections of F (X) with a general line. This is
the number of pairs (x, L) ∈ X4

Φ such that L meets a general line. In particular,
we have [X4

Φ] · γ1 = deg(F (X))∗ in A∗(Φ).
We shall compute [X4

Φ] ∈ A4(Φ) via Chern classes. Fix any vector bundle
E on Φ and any integer m ∈ Z>0. By [34, Thm. 11.2], there is a new vector
bundle J m

Φ/Gr(E) on Φ whose fiber at (x, L) is the space of all germs of sections
of E|{(y,L)∈Φ} modulo those that vanish to order ≥ m + 1 at (x, L). This is called
the bundle of relative principal parts or the relative jet bundle. We shall compute its
top Chern class.

Let now E be the pullback to Φ of the line bundle OP3(d). A global section
of E is given by the homogeneous polynomial in x0, x1, x2, x3 of degree d that
defines X in P3. Restricting this polynomial to the line L gives a global section
of E|{(y,L)∈Φ}. Thus, we get a global section of J m

Φ/Gr(E). That global section
vanishes at (x, L) if and only if L has contact of order at least m + 1 at x ∈ X.
Hence, the top Chern class of J m

Φ/Gr(E) is the class of the subvariety of all pairs
(x, L) in Φ such that L has contact of order at least m + 1 at x ∈ X. In particular,
c4(J 3

Φ/Gr(E)) = [X4
Φ].

In addition, we see from [34, Thm. 11.2] that J m
Φ/Gr(E) agrees locally with

E ⊕ (E ⊗ ΩΦ/Gr) ⊕
(
E ⊗ Sym2ΩΦ/Gr

)
⊕ · · · ⊕ (E ⊗ SymmΩΦ/Gr) , (6.17)

where ΩΦ/Gr is the relative cotangent bundle, which has rank one in our case.
We compute the top Chern class of J m

Φ/Gr(E) from its representation (6.17).
From [34, p. 395] we have c1(SymmΩΦ/Gr) = m(γ1 − 2H) in A1(Φ). Since
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the equation f of X gives a global section of E , we further have c1(E) = dH in
A1(Φ). The top Chern class of the tensor product of two line bundles is the sum
of their top Chern classes [34, Prop. 5.17]. Hence

c1(E ⊗ SymiΩΦ/Gr) = (d − 2i)H + iγ1 in A1(Φ) for i = 0, 1, 2, . . . , m.

Finally, the Whitney Sum Formula [34, Thm. 5.3] asserts that the top Chern class
of a direct sum of vector bundles is the product of the top Chern classes of the
summands. This implies

cm+1(J m
Φ/Gr(E)) =

m

∏
i=0

((d − 2i)H + iγ1) in Am+1(Φ).

Example 5.25 implies H4 = 0. Since exactly one line meets two general lines
and passes through a given point, we have H3γ2

1 = ∗. Finally, H2γ3
1 = 2∗ and

Hγ4
1 = 2∗, since exactly two lines meet four general lines in P3. Putting these

pieces together, we get the desired formula

deg(F (X))∗ = [X4
Φ] · γ1 = c4(J 3

Φ/Gr(E)) · γ1 = γ1

3

∏
i=0

((d − 2i)H + iγ1)

=
(

6d3−44d2+72d
)

H3γ2
1 +

(
11d2−36d

)
H2γ3

1 + 6dHγ4
1

= 2d(d − 3)(3d − 2) ∗ .

An analogous computation yields the degree of the flecnodal curve F on X:
deg(F)∗ = [X4

Φ] · H = H ∏3
i=0 ((d − 2i)H + iγ1) = d(11d − 24) ∗ .

Proposition 6.23. The degree of the parabolic surface of a general surface X of degree
d ≥ 3 is

deg
(
P(X)

)
= 2d(d − 2)(3d − 4).

Proof. We consider the incidence variety P3
Φ that consists of all pairs (x, L) in Φ

with the property that x is parabolic on X and L has contact order at least three
at x ∈ X. Set-theoretically, this is the intersection of the variety X3

Φ ⊂ Φ of
pairs (x, L) such that L is an inflectional line to X at x with the variety P1

Φ ⊂ Φ
of pairs (x, L) such that x is parabolic on X. Since codimΦP3

Φ = 4 < 3 + 2 =
codimΦX3

Φ + codimΦP1
Φ, we cannot simply multiply the classes of X3

Φ and P1
Φ

in A∗(Φ) to get the class of P3
Φ.

Instead, we shall compute all relevant classes in A∗(ΦX), where ΦX is the
variety of pairs (x, L) ∈ Φ with x ∈ X. The varieties X3

Φ and P1
Φ intersect with

the expected codimension in ΦX, although this intersection is not transverse. It
is difficult to describe the Chow ring of ΦX. We find some generators and rela-
tions of A∗(ΦX) by taking pullbacks of elements in A∗(Φ) under the inclusion
ΦX ↪→ Φ. Recall that the pullback of a class [Z] under a nice enough morphism
f between varieties is [ f−1(Z)], by [34, Thm. 1.23]. We denote by E ∈ A1(ΦX)
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the pullback of the hyperplane class H ∈ A1(Φ) and by Γi ∈ A∗(ΦX) the pull-
back of γi ∈ A∗(Φ) for i ∈ {1, 2} (see Figure 6.6).

By definition, P1
Φ is the preimage of the parabolic curve P ⊂ X under the map

ΦX → X. The parabolic curve P is the intersection of X with the Hessian surface
of degree 4(d − 2). Thus, the class of P in A∗(X) is 4(d − 2)e, where e ∈ A1(X)
is the pullback of the hyperplane class h ∈ A1(P3) under the inclusion X ↪→ P3.
As E ∈ A1(ΦX) is also the pullback of e ∈ A1(X) under the projection ΦX → X,
we have [P1

Φ] = 4(d − 2)E ∈ A1(ΦX).
We compute [X3

Φ] in the Chow ring of Φ using the formula (6.17) with m = 2:

[X3
Φ] = c3(J 2

Φ/Gr(E)) =
2

∏
i=0

((d−2i)H+iγ1)

= dH
(
(d2−6d+8)H2 + (3d−8)Hγ1 + 2γ2

1

)
.

The right hand side lives in the Chow ring of the five-dimensional variety Φ
and we pull it back to the Chow ring of its four-dimensional subvariety ΦX.
That pullback is the cycle dEβ with β := (d2 − 6d + 8)E2 + (3d − 8)EΓ1 + 2Γ2

1
in A2(ΦX). Since pullback preserves codimension, [X3

Φ] ∈ A2(ΦX) cannot be
equal to dEβ ∈ A3(ΦX). Instead [34, Thm. 13.7] tells us that dEβ = [X3

Φ] ·
c1(NΦX/Φ) ∈ A3(ΦX), where NΦX/Φ is the normal bundle of ΦX in Φ. By [34,
Prop.-Def. 6.15], we have c1(NΦX/Φ) = dE and dEβ = dE[X3

Φ].
We cannot yet say that [X3

Φ] = β in A2(ΦX) because multiplication with E
has a non-trivial kernel. However, since E is a factor of [P1

Φ], we conclude that
[X3

Φ][P
1
Φ] = 4(d − 2)Eβ in the Chow ring of ΦX. Since a general point on X has

two inflectional lines, the intersection multiplicity of the varieties P1
Φ and X3

Φ is
two. Therefore, by [34, Thm. 1.26], we have [P3

Φ] =
1
2 [X

3
Φ][P

1
Φ] = 2(d − 2)Eβ in

A∗(ΦX). As in the case of flecnodal lines, the degree of the parabolic surface
P(X) is the number of points in the zero-dimensional cycle

[P3
Φ] · Γ1 = 2(d − 2)

(
(d2 − 6d + 8)E3Γ1 + (3d − 8)E2Γ2

1 + 2EΓ3
1

)
.

Finally, we use the pushforward of the inclusion i : ΦX ↪→ Φ to express the
above monomials in the point class ∗ of A∗(Φ). The pushforward f∗ of a proper
morphism f maps [Z] to 0 if dim( f (Z)) < dim(Z), and otherwise to ν[ f (Z)]
where ν ∈ Z denotes the degree of the restricted map f |Z : Z → f (Z). Using
the push-pull formula [34, Thm. 1.23], we derive

i∗(E2Γ2
1) = i∗(i∗(H2γ2

1) · [ΦX]) = H2γ2
1 · i∗([ΦX]) = dH3γ2

1 = d ∗ .

Similarly, we get i∗(EΓ3
1) = 2d∗ and i∗(E3Γ1) = 0. Hence, we conclude that

deg(P(X))∗ = i∗([P3
Φ] · Γ1) = 2d(d − 2)(3d − 4)∗.

Proposition 6.24. The degree of the edge surface of a general surface X of degree d ≥ 4
is

deg
(
E(X)

)
= d(d − 2)(d − 3)(d2 + 2d − 4).
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Proof sketch. We describe an idea for computing the degree of E(X) with a mix
of classical methods and intersection theory, similar to Petitjean’s approach [77,
Prop. 4.14-4.16]. Since the degree of E(X) = (E p(X))∨ is the degree of the tan-
gential surface of the curve E p(X), we can use a generalization of the first for-
mula in Theorem 6.6 to singular curves. We have already computed the degree
of E p(X) in Proposition 6.20, so we have to compute the genus of this curve. We
will achieve this by first computing the degree and genus of the node-couple
curve.

The Gauss map γ : X → (P3)∗ assigns to each point x ∈ X the tangent plane
to X at x. The preimage of E p(X) under γ is the node-couple curve C ⊂ X, and
the restriction γ|C : C → E p(X) is a 2-to-1 covering of E p(X). From this we get
that γ∗([C]) = 2[E p(X)] in A∗((P3)∗).

We can compute the class [C] in A1(X) as follows. Let us denote by h∗ ∈
A1((P3)∗) the class of a hyperplane in (P3)∗, and by e∗ ∈ A1(X) the pullback of
h∗ under the Gauss map γ. Since e ∈ A1(X) (which we defined as the pullback
of the hyperplane class h ∈ A1(P3) under the inclusion j : X ↪→ P3) generates
A1(X), we know that e∗ = αe for some α ∈ Z. The push-pull formula implies

γ∗
(
(e∗)2) = γ∗

(
γ∗ ((h∗)2) · [X]

)
= (h∗)2γ∗([X]) = (h∗)2 · deg(X∨)h∗

= (h∗)2 · d(d − 1)2h∗ = d(d − 1)2∗,

j∗
(
(e∗)2) = α2 j∗

(
e2) = α2 j∗

(
j∗
(
h2) · [X]

)
= α2h2 j∗([X]) = α2h2 · dh = α2d∗,

and thus α = d − 1. Hence, we have (d − 1)γ∗(e) = γ∗(e∗) = d(d − 1)2(h∗)2

and γ∗(e) = d(d − 1)(h∗)2. Writing [C] = δe for δ ∈ Z, we finally derive

2 deg(E p(X))(h∗)2 = 2[E p(X)] = γ∗([C]) = δγ∗(e) = δd(d − 1)(h∗)2

and δ = (d − 2)(d3 − d2 + d − 12) by Proposition 6.20.
The numbers a and b of cusps and nodes of the curve C are given by [77,

Prop. 4.15]:

a = 4d(d − 2)(d − 3)(d3 + 3d − 16),

b =
1
2

d(d − 2)(d7 − 4d6 + 7d5 − 45d4 + 114d3 − 111d2 + 548d − 960).

Since the curve C does not have any other singularities, we can apply the in-
tersection theoretic genus formula: the geometric genus of C is given by the
number of points in the zero-dimensional cycle 1

2([C]
2 + KX[C]) plus the num-

ber 1 − a − b (cf. [34, Sec. 2.4.6]), where KX = (d − 4)e is the canonical class
(cf. [34, Sec. 1.4.3]):

j∗([C]2 + KX[C]) =
(

δ2 + δ(d − 4)
)

j∗(e2) =
(

δ2 + δ(d − 4)
)

d ∗ and

genus(C) =
1
2

(
δ2 + δ(d − 4)

)
d + 1 − a − b

= 3d6 − 15d5 + 27d4 − 104d3 + 340d2 − 336d + 1.
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The map γ′ : C′ → E p(X)′ between the normalizations of C and E p(X) is exactly
ramified at the godrons, i.e., the points of tangency of the parabolic curve P
and the flecnodal curve F on X (see [81, pp. 229-231]). Thus, the number of
those points is the number of points in the zero-dimensional cycle 1

2 [P][F] =
1
2 · 4(d − 2)e · (11d − 24)e, which is

1
2

j∗([P][F]) = 2(d − 2)(11d − 24)j∗(e2) = 2d(d − 2)(11d − 24) ∗ .

We find the genus of E p(X) by applying the Riemann-Hurwitz formula [50,
Cor. 2.4] to γ′:

2 genus(C)− 2 = 2(2 genus(E p(X))− 2) + 2d(d − 2)(11d − 24).

Thus, the genus of E p(X) is 1
2(3d6 − 15d5 + 27d4 − 115d3 + 386d2 − 384d + 2).

Finally, the degree of the surface E(X) = (E p(X))∨ is the degree of the tan-
gential surface of the curve E p(X). The latter degree equals 2

(
deg(E p(X)) +

genus(E p(X))−1
)
− a = d(d − 2)(d − 3)(d2 + 2d − 4) (see [79, Thm. 3.2]), since

a is also the number of cusps on E p(X).

Proving the degrees of C(X) and T (X) is more technical. We will not include
this here. One method is Colley’s multiple point theory [25, 26]. Alternatively,
one can write C(X) and T (X) as the intersection of loci of (inflectional) tangents
in the fiber product Φ ×Gr Φ or Φ ×Gr Φ ×Gr Φ and remove extra components
in the intersection by blowing these up.

6.5 Computing Visual Events

Theorem 6.19 gives the degrees of the irreducible components of the visual
event surface when X is a general surface of degree d in P3. Table 6.2 below
summarizes these degrees for d ≤ 7. One notices that the degrees are now
much larger than those for curves in Table 6.1.

d deg(F (X)) deg(C(X)) deg(T (X)) deg(E(X)) deg(P(X))
3 0 0 0 0 30
4 80 0 0 160 128
5 260 510 0 930 330
6 576 2448 624 3168 672
7 1064 7308 3808 8260 1190

Table 6.2: Degrees of the components of the visual event surface of a general
surface.

The degrees in Table 6.2 pose a challenge because a homogeneous polynomial
in four unknowns of degree δ can have as many as (δ+3

3 ) terms. For instance, if
X is a quintic surface, then its flecnodal surface F (X) has degree δ = 260, so the
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6.5 Computing Visual Events

expected number of terms is (δ+3
3 ) = 2997411. In this section, we address this

challenge. See Example 6.26 for a solution.
Throughout this section, we make use of the multiple root loci for binary

forms. The ideals of these varieties are defined by homogeneous polynomials
in the coefficients c0, c1, . . . , cd of

c0td + c1td−1 + c2td−2 + · · ·+ cd−1t + cd. (6.18)

For a partition λ = (λ1, . . . , λk) ∈ Zk
>0 with ∑k

i=1 λi ≤ d, we write ∆λ(d) for the
homogeneous prime ideal in R[c0, . . . , cd] whose variety consists of polynomials
(6.18) that have k complex roots with multiplicities λ1, . . . , λk. The varieties are
called multiple root loci or coincident root loci [71, 70]. For example, ∆(4)(d) is the
prime ideal for polynomials of degree d with one quadruple root.

Example 6.25. Let d = 4 in (6.18) and consider univariate quartics that have
a single root of multiplicity four. These quartics are the points on a rational
normal curve in P4. The prime ideal of this curve is ∆(4)(4). It is generated by
the six 2×2-minors of the 2×4-matrix[

12c0 3c1 2c2 3c3
3c1 2c2 3c3 12c4

]
.

The variety of quintics (d = 5) with one root of multiplicity four is the tangential
surface of the rational normal curve in P5. Its ideal is the complete intersection
of three quadrics:

∆(4)(5) =
⟨

20c0c4 − 8c1c3 + 3c2
2 , 50c0c5 − 6c1c4 + c2c3 , 20c1c5 − 8c2c4 + 3c2

3
⟩
.

(6.19)
We give Macaulay2 code for computing ∆(4)(4) and ∆(4)(5) using subresultants
as described below in Code K in the Appendix.

Another multiple root locus was seen in Example 6.12. The ideal ∆(2,2)(5) is
minimally generated by ten quintics. We used this to compute the edge surface
of a curve with degree five. ♦

We refer to [71, Table 1] for details on the ideals ∆λ(d). Some relevant in-
stances are listed in Table 6.3. Its entries are copied from [71, Table 1]. For
instance, the entry 610, 838 in the last column means that ∆(3,2)(7) is minimally
generated by 10 sextics and 38 octics.

The ideals ∆λ(d) can be computed either by direct implicitization, or by us-
ing subresultants [1]. The i-th subresultant Si(h1, h2) of two polynomials h1(t)
and h2(t) is a polynomial of degree at most i whose coefficients are the determi-
nants of particular minors of the Sylvester matrix of h1 and h2. The vanishing of
Si(h1, h2) for 0 ≤ i ≤ d − 1 means that the greatest common divisor (GCD) of h1
and h2 has degree at least d. Moreover, if Sd(h1, h2) is not zero, it is exactly this
GCD. If we let hd be the polynomial (6.18) and h′d be its derivative with respect
to t, then the condition that hd has roots with multiplicity λ = (λ1, . . . , λk) is
equivalent to the fact that the GCD of hd and h′d has degree ∑k

i=1(λi − 1) and
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6 CHANGING VIEWS ON CURVES AND SURFACES

has roots with multiplicities λ′ = (λ1 − 1, . . . , λk − 1). This allows us to com-
pute the ideal ∆λ(d) recursively.

For example, let us assume that we have recovered the conditions for a poly-
nomial to have a double root (λ = (2)) and a triple root (λ = (3)) for all de-
grees up to d − 1. We consider the ideal I defined by S0(hd, h′d), S1(hd, h′d) and
S2(hd, h′d) = 0, saturated by the leading coefficient c0. This ideal decomposes
into three components corresponding to ∆(4)(d), ∆(3,2)(d) and ∆(2,2,2)(d). The
component ∆(4)(d) can be recovered by adding to I the conditions for S3(hd, h′d)
to have a triple root. The component ∆(3,2)(d), is obtained by adding I the con-
ditions for S3(hd, h′d) to have a double root, and saturating by the condition for
it to have a triple root. The component ∆(2,2,2)(d) is obtained by saturating I for
the condition that S3(hd, h′d) has a double root.

Ruled surface Partition d = 4 d = 5 d = 6 d = 7
F (X) λ = (4) 26 23 21, 33, 41 420

C(X) λ = (3, 2) 428 41, 53, 631 610, 838

T (X) λ = (2, 2, 2) 445 678

Table 6.3: The ideals ∆(λ)(d) of multiple root loci relevant for visual events of
surfaces.

In what follows we assume that the ideals ∆λ(d) have been pre-computed for
d ≤ 5. We use these data to compute the curves F ℓ(X), Cℓ(X) and T ℓ(X) in
the Grassmannian Gr(1, P3). The correspondence between the three multi-local
events F , C, T and the three special partitions λ was seen on the right side in
Figure 6.3, where λ was denoted by m.

Let f = f (x0, x1, x2, x3) be the polynomial of degree d that defines the sur-
face X. We parametrize the line in P3 with Plücker coordinates q using a param-
eter t. For instance, we can write (6.2) dually as z(t) = (q01 : tq01 : tq02 − q12 :
tq03 − q13). We substitute z(t) into the polynomial f , and we regard f (z(t)) as
a univariate polynomial in t, written as in (6.18). The coefficients ci are now
homogeneous expressions of degree d in the Plücker coordinates q. At this
point, we substitute these expressions ci(q) into the generators of ∆λ(d). The
result is an ideal in the Plücker coordinates q that defines the desired curve set-
theoretically. The same method can be applied when local coordinates on the
Grassmannian Gr(1, P3) are preferred. In this case, we parametrize the line in
P3 by z(t) = (1 : t : α + tγ : β + tδ).

Example 6.26. Let d = 5 and consider the smooth quintic surface X defined by

f = x5
0 + x5

1 + x5
2 + x5

3 + (x0 + x1 + x2 + x3)
5 + x0x1x2x3(x0 + x1 + x2 + x3).

We compute the curve F ℓ(X) in Gr(1, P3) that represents the flecnodal surface.
Its prime ideal has degree 260 and is generated by ten sextics plus the Plücker
quadric. This computation was done with the method above, starting from the
ideal ∆(4)(5) in (6.19); see Code L in the Appendix. ♦
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6.5 Computing Visual Events

Let us shift gears and focus on the events P and E , seen on the left in Fig-
ure 6.3. We start with the parabolic surface P(X). Let X be defined by a poly-
nomial f ∈ R[x0, x1, x2, x3]. The ideal I(P) of the parabolic curve P is defined
by f and the determinant of the Hessian matrix H f . Consider the incidence va-
riety of the parabolic curve and its tangent planes, that is {(x, T∨

X,x) | x ∈ P}
in P3 × (P3)∗. We compute the ideal of the incidence variety by adding the
2 × 2-minors of the matrix

[
∂ f /∂x0 ∂ f /∂x1 ∂ f /∂x2 ∂ f /∂x3

y0 y1 y2 y3

]
to I(P). We then satu-

rate the resulting ideal by ⟨x0, x1, x2, x3⟩ and afterwards eliminate x0, x1, x2, x3.
This furnishes the ideal of the dual curve P p(X) in (P3)∗, which encodes the
developable surface P(X).

Proposition 6.27. If X is a general cubic surface, the curve P p(X) is a complete in-
tersection of a quartic and a sextic, obtained from the two basic invariants of ternary
cubics.

Proof. A classical fact from invariant theory states that the ring of invariants
for ternary cubics is generated by a quartic and a sextic, and these vanish pre-
cisely when the cubic has a cusp. We represent X as the blow-up of P2 at six
points, namely as the image of the map to P3 defined by four independent cu-
bics f0, f1, f2, f3 in x, y, z that vanish at these points. We now consider the cubic
y0 f0 + y1 f1 + y2 f2 + y3 f3, where y0, y1, y2, y3 are unknowns. Plugging this cubic
into the two basic invariants gives the condition for a plane to meet X in a cus-
pidal curve. Hence that locus in (P3)∗ is the complete intersection of a quartic
and a sextic.

For a general parabolic point x of X, the Hessian matrix H f (x) has rank three.
Its kernel represents a unique point px in P3. We use the following simple fact
to compute P ℓ(X).

Lemma 6.28. For a general parabolic point x of X, the points px and x span the unique
inflectional line of X at x.

Proof. The relation x H f (x) pT
x = 0 holds. Euler’s relation shows that x H f (x)

is the gradient vector of f at x. Hence px lies on the tangent plane to X at x.
Furthermore, px belongs to the inflectional line since px H f (x) pT

x is zero. Since
X is smooth, the kernel of H f (x) does not contain x. Hence x and px span the
inflectional line.

The curve P ℓ(X) ⊂ Gr(1, P3) is the collection of the lines spanned by a gen-
eral parabolic point x and the corresponding point px from Lemma 6.28. This
allows us to compute the ideal of P ℓ(X) in dual Plücker coordinates q01, . . . , q23.
First, we form the ideal I of the incidence variety {(x, y) | x ∈ P, y ∈ ker H f (x)}
by adding the four entries of the column vector H f (x) · y to the ideal I(P) =
⟨ f , det H f (x)⟩. Secondly, we consider the map from the coordinate ring of the
Grassmannian to the quotient ring of I that maps Plücker coordinates qij to the
2× 2-minors of

[ x0 x1 x2 x3
y0 y1 y2 y3

]
. The kernel of this ring map is the ideal of the curve

P ℓ(X) ⊂ Gr(1, P3). This ideal is generated by four cubics and six quartics, plus
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6 CHANGING VIEWS ON CURVES AND SURFACES

the Plücker quadric. One verifies computationally that the ideal defines a curve
of degree 30 in P5 for a general cubic surface X.

Example 6.29. Consider the Fermat cubic X defined by f = x3
0 + x3

1 + x3
2 + x3

3.
We can easily compute the ideal of the curve P ℓ(X) as described above (see
Code M in the Appendix), and from this we find the parabolic surface P(X). It
decomposes into irreducible components of low degree:

(x0 + x1) · (x0 + x2) · (x0 + x3) · (x1 + x2) · (x1 + x3) · (x2 + x3)

·(x2
0 − x0x1 + x2

1) · (x2
0 − x0x2 + x2

2) · (x2
0 − x0x3 + x2

3)

·(x2
1 − x1x2 + x2

2) · (x2
1 − x1x3 + x2

3) · (x2
2 − x2x3 + x2

3)

·(x3
1 + x3

2 + x3
3) · (x3

0 + x3
2 + x3

3) · (x3
0 + x3

1 + x3
3) · (x3

0 + x3
1 + x3

2).

This is one of the few cases where symbolic computation of the equation of
P(X) is easy. ♦

Example 6.30. Fix the cubic f = x3
0 + x3

1 + x3
2 + x3

3 + (x0 + 2x1 + 3x2 + 4x3)
3. It

defines our surface X. Using the method above, we rapidly compute the ideal
of P ℓ(X). We demonstrate how to find the visual events of type P as the camera
moves along a line; see Code N in the Appendix.

We consider the fixed line in P3 with the parametric representation z(t) =
(t : 1 : t − 1 : t + 1) . Let Q be the skew-symmetric 4 × 4-matrix obtained from
(6.1) by substituting to dual Plücker coordinates. We add the four coordinates
of z(t) · Q to the ideal of P ℓ, we then saturate with respect to ⟨q01, . . . , q23⟩, and
thereafter we eliminate the unknowns qij. The result is

495403946635821355157683145728t30 + 4349505253226024309192581220352t29

+18437739306679654261938338946432t28 + 50562321054013553614808463278912t27

+ · · · · · · − 81509153943200707008t2 − 1885273424647073088t − 19650742648215232.

This polynomial has 30 distinct complex roots. Precisely eight of them are real:{
−1.01358602985259,−1.011352289518,−0.600974923580648,−0.35014676100811,
−0.2668550692437, −0.191676056625, −0.0811161566932513, 0.378943747730770

}
.

These eight roots mark the visual events of type P as the viewpoint travels
along the line z(t).

The univariate polynomial of degree 30 can also be computed from the dual
curve P p. Let g1 and g2 be the polynomials in y0, y1, y2, y3 of degree four and
six promised in Proposition 6.27. We augment the ideal I(P p) = ⟨g1, g2⟩ by the
3 × 3-minors of the 3 × 4-matrix⎡⎣ ∂g1/∂x0 ∂g1/∂x1 ∂g1/∂x2 ∂g1/∂x3

∂g2/∂x0 ∂g2/∂x1 ∂g2/∂x2 ∂g2/∂x3
t 1 t − 1 t + 1

⎤⎦ .

We then saturate the resulting ideal by the ideal of the six 2 × 2-minors in first
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two rows, and finally we eliminate x0, x1, x2, x3. This gives the same polynomial
of degree 30 in t. ♦

We found that the computation of the edge surface E(X) is more challenging
than that of the parabolic surface P(X). Consider the case when X is a general
quartic. Here, the surface E(X) has degree 160, and hence so does the curve
E ℓ(X) in Gr(1, P3). We succeeded in computing the ideal of this curve only
for quartics X that are singular or very special. For instance, if X is the Fermat
quartic then E(X) is a surface of degree 80, with multiplicity two. Since E(X)
is developable, we could also try to use E p(X) as an encoding. Unfortunately,
the degree is then even higher. Namely, by Proposition 6.20, the dual curve
E p(X) has degree 480 in (P3)∗ for a general quartic X. The computation of edge
surfaces E(X) definitely requires further research.

So far we have studied coisotropic varieties in general as well as in examples
and applications. In the next chapter, we will switch gears and introduce the
study of isotropic varieties. In particular, this will lead us to a classification of
congruences, in which all congruences from Chapters 5 and 6 appear again (see
Table 7.2).
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7 Isotropic Varieties

This chapter is based on an ongoing collaboration with James Mathews. We
investigate a dual notion to coisotropic varieties. Instead of imposing rank one
conditions on the conormal spaces of a subvariety of a Grassmannian, we re-
quire such conditions to hold for its tangent spaces.

Definition 7.1. An irreducible subvariety Σ ⊂ Gr(ℓ, Pn) of dimension d ≥ 1 is
isotropic if, for every L ∈ Reg(Σ), the tangent space of Σ at L is spanned by rank
one homomorphisms or is in the Zariski closure of the set of such spaces, i.e.,

P(TΣ,L) ∈ Secd−1(Seg(LLLLLLLLL, An+1/LLLLLLLLL)).

Moreover, Σ is strongly isotropic if, for every L ∈ Reg(Σ), the rank of every
homomorphism in the tangent space of Σ at L is at most one, i.e.,

P(TΣ,L) ⊂ Seg(LLLLLLLLL, An+1/LLLLLLLLL).

Example 7.2. Both definitions of isotropy agree for curves. Let us consider a
first example of an isotropic curve: given an irreducible curve C ⊂ P3 of degree
at least two, the curve T ℓ(C) ⊂ Gr(1, P3) consisting of the tangent lines to C
(cf. Figure 6.2) is isotropic by Example 2.8. ♦

Dually to Corollary 4.5, we observe that all subvarieties of Grassmannians
with low enough codimension are isotropic.

Lemma 7.3. Every subvariety of Gr(ℓ, Pn) of codimension at most n − 1 is isotropic.

Proof. Let Σ ⊂ Gr(ℓ, Pn) be a subvariety with codim Σ ≤ n − 1. The dimension
d of Σ is at least (ℓ+ 1)(n − ℓ)− (n − 1) = ℓ(n − ℓ− 1) + 1. Moreover, the codi-
mension of Seg(LLLLLLLLL, An+1/LLLLLLLLL) in P(Hom(LLLLLLLLL, An+1/LLLLLLLLL)) is ℓ(n − ℓ − 1) for every
L ∈ Gr(ℓ, Pn). By Lemma 4.1, we have

Secd−1(Seg(LLLLLLLLL, An+1/LLLLLLLLL)) = Gr(d − 1, P(Hom(LLLLLLLLL, An+1/LLLLLLLLL))).

In particular, Σ is isotropic.

Example 7.4. All surfaces and hypersurfaces in Gr(1, P3) are isotropic. ♦

Example 7.5. The secant congruence Sec(C) of a nondegenerate irreducible
space curve is not strongly isotropic. Using the notation in Example 4.4, we
see that the tangent space of Sec(C) at a general secant line L is spanned by two
rank one homomorphisms ϕ1, ϕ2 : LLLLLLLLL → A4/LLLLLLLLL with ker ϕ1 = x1x1x1x1x1x1x1x1x1, im ϕ1 = H2H2H2H2H2H2H2H2H2/LLLLLLLLL,
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ker ϕ2 = x2x2x2x2x2x2x2x2x2, and im ϕ2 = H1H1H1H1H1H1H1H1H1/LLLLLLLLL. Thus, Sec(C) is isotropic, but since L was cho-
sen generally, we have rank(ϕ1 + ϕ2) = 2 and Sec(C) is not strongly isotropic.

♦

As before, our leading question will be if we can characterize (strongly) iso-
tropic varieties by underlying projective varieties. By Example 7.4, it is enough
to consider isotropic curves to classify all isotropic subvarieties of Gr(1, P3). We
give a full characterization of isotropic curves in Section 7.1. As for the stronger
notion of coisotropy, it is not too hard to determine all strongly isotropic vari-
eties. We provide this classification in Section 7.2. Finally, Examples 7.4 and 4.6
show that all congruences in Gr(1, P3) are isotropic and coisotropic at the same
time. We can actually classify all congruences by their underlying projective
varieties. We present these results in Section 7.3. Hence, we conclude with the
following open question:

Can we characterize all subvarieties of Grassmannians which are isotropic and
coisotropic at the same time by underlying projective varieties?

7.1 Isotropic Curves

In this section, we show that the isotropic curves are exactly the curves of oscu-
lating spaces to projective curves. For a detailed treatment of osculating spaces
and osculating bundles of projective curves we refer to [79]. We only give a
brief and non-exhaustive summary here. For a nondegenerate irreducible curve
C ⊂ Pn and an integer 0 ≤ k ≤ n, we define the osculating k-space Lk(x) at a
point x ∈ Reg(C) to be the k-dimensional subspace of Pn which has the highest
order of contact with C at x. This order of contact of Lk(x) with C is at least
k + 1, and at a general point x ∈ C it is exactly k + 1. Those osculating k-spaces
with a higher contact order are called hyperosculating or stationary k-spaces. For
example, the tangent line at a flex point is a stationary tangent. For k < n, we
define the curve Osck(C) ⊂ Gr(k, Pn) of osculating k-spaces of C as the Zariski
closure of the set of all osculating k-spaces Lk(x) at smooth points x ∈ C.

Remark 7.6. Clearly, Osc0(C) = C. The curve Osc1(C) consists of the tangent
lines of C. It was denoted by T ℓ(C) for C ⊂ P3 in Chapter 6 as well as Exam-
ples 2.8 and 7.2. The curve Oscn−1(C) ⊂ Gr(n − 1, Pn) ∼= (Pn)∗ is also known
as the dual curve of C. It was denoted by T p(C) for C ⊂ P3 in Chapter 6. The
dual curve of C ⊂ P3 is the edge of regression of the dual surface C∨, or in other
words, the dual surface C∨ is the tangent developable of the dual curve of C (see
Fig. 6.1). For any nondegenerate curve C ⊂ Pn, the dual curve of Oscn−1(C) is
again the original curve C [79, Thm. 5.1]. ♦

Of course we can also define osculating spaces to degenerate curves, which
we will use in the formulation of Theorem 7.10. If a curve C ⊂ Pn spans Pm ⊂
Pn for m < n, we define the osculating k-spaces for 0 ≤ k ≤ m inside of Pm

such that we have m curves Osck(C) ⊂ Gr(k, Pn) for 0 ≤ k < m.
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Now we consider an irreducible isotropic curve Σ ⊂ Gr(ℓ, Pn). Since each
curve in Pn or (Pn)∗ is trivially isotropic, we assume 1 ≤ ℓ ≤ n − 2. For each
L ∈ Reg(Σ), the tangent space TΣ,L is spanned by a rank one homomorphism
ϕL : LLLLLLLLL → An+1/LLLLLLLLL. Hence, to every L ∈ Reg(Σ) we associate unique linear
spaces L− ∈ Gr(ℓ − 1, Pn) and L+ ∈ Gr(ℓ + 1, Pn) such that L− ⊂ L ⊂ L+,
ker ϕL = L−L−L−L−L−L−L−L−L−, and im ϕL = L+L+L+L+L+L+L+L+L+/LLLLLLLLL. This provides us with a rational map
τ : Σ 99K Gr(ℓ − 1, Pn) × Gr(ℓ + 1, Pn). We denote the projections of the
codomain onto the first or second factor by π− or π+, respectively. Moreover,
for ⋆ ∈ {+,−}, we let ϖ⋆ := π⋆ ◦ τ and define Σ⋆ ⊂ Gr(ℓ ⋆ 1, Pn) as the Zariski
closure of the image of ϖ⋆. We summarize these maps in the following commu-
tative diagram:

Σ−

Gr(ℓ− 1, Pn)

Σ Gr(ℓ− 1, Pn)× Gr(ℓ+ 1, Pn)

Gr(ℓ+ 1, Pn)

Σ+

τ

ϖ+

ϖ−

π+

π−

Since Σ is an irreducible curve, Σ− and Σ+ are both irreducible and have each
dimension zero or one. If Σ− is a point, then all L ∈ Σ contain the same
(ℓ − 1)-dimensional subspace. Analogously, if Σ+ is a point, then all L ∈ Σ
are contained in the same (ℓ+ 1)-dimensional projective space. If Σ− or Σ+ is a
curve, we show now that it is isotropic and that we can recover Σ from it.

Lemma 7.7. If Σ− is a curve, then, for each L ∈ Reg(Σ) such that L− ∈ Reg(Σ−),
the image of every homomorphism in TΣ−,L− is contained in LLLLLLLLL/L−L−L−L−L−L−L−L−L−. In particular, Σ−

is isotropic.

Proof. Let L ∈ Σ be general such that the differential DLϖ− : TΣ,L → TΣ−,L− of
ϖ− at L is bijective. For each ϕ ∈ TΣ,L, we have ϕ|L−L−L−L−L−L−L−L−L− = (DLϖ−(ϕ) mod LLLLLLLLL) by
Corollary 2.9. Since the kernel of every homomorphism in TΣ,L contains L−L−L−L−L−L−L−L−L−, we
have (ψ mod LLLLLLLLL) = 0 for every ψ ∈ TΣ−,L− . Thus, the image of each homomor-
phism in TΣ−,L− is contained in LLLLLLLLL/L−L−L−L−L−L−L−L−L−.

Lemma 7.8. If Σ+ is a curve, then, for each L ∈ Reg(Σ) such that L+ ∈ Reg(Σ+),
the kernel of every homomorphism in TΣ+,L+ contains LLLLLLLLL. In particular, Σ+ is isotropic.

Proof. The proof of this statement is completely dual to the proof of Lemma 7.7.
We consider a general L ∈ Σ such that the differential DLϖ+ is bijective. For
each ϕ ∈ TΣ,L, we have DLϖ+(ϕ)|LLLLLLLLL = (ϕ mod L+L+L+L+L+L+L+L+L+) by Corollary 2.9. Since
the image of every homomorphism in TΣ,L is contained in L+L+L+L+L+L+L+L+L+/LLLLLLLLL, we have that
LLLLLLLLL ⊂ ker ψ for every ψ ∈ TΣ+,L+ .
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For every curve Σ ⊂ Pn, we define Σ+ ⊂ Gr(1, Pn) as above. Note that Σ+ is
the curve of tangent lines to Σ. Dually, for a curve Σ ⊂ Gr(n − 1, Pn) ∼= (Pn)∗,
we define Σ− ⊂ Gr(n − 2, Pn). This allows us to formulate the following:

Corollary 7.9. Let Σ ⊂ Gr(ℓ, Pn) be an irreducible isotropic curve. If ℓ ≥ 1 and Σ−

is a curve, then (Σ−)+ = Σ. Dually, if ℓ ≤ n− 2 and Σ+ is a curve, then (Σ+)− = Σ.

Proof. The first part follows immediately from Lemma 7.7, which shows that
(L−)+ = L for a general L ∈ Σ. Similarly, Lemma 7.8 implies the second part.

So far we have shown that we can associate a maximal sequence of isotropic
curves in different Grassmannians to each isotropic curve Σ ⊂ Gr(ℓ, Pn), where
0 ≤ ℓ ≤ n − 1. By this, we mean a sequence of isotropic curves(

Σℓ1 , Σℓ1+1, . . . , Σℓ, . . . , Σℓ2−1, Σℓ2

)
,

∩ ∩ ∩ ∩ ∩
Gr(ℓ1,Pn) Gr(ℓ1+1,Pn) Gr(ℓ,Pn) Gr(ℓ2−1,Pn) Gr(ℓ2,Pn)

(7.1)

where Σℓ = Σ, and ℓ1 ∈ {0, . . . , ℓ} is minimal and ℓ2 ∈ {ℓ, . . . , n− 1} is maximal
such that Σ+

i = Σi+1 holds for all ℓ1 ≤ i < ℓ2 and Σ−
j = Σj−1 holds for all

ℓ1 < j ≤ ℓ2.
If ℓ2 < n− 1, then Σ+

ℓ2
is a point in Gr(ℓ2 + 1, Pn), i.e., an (ℓ2 + 1)-dimensional

subspace P2 ⊂ Pn. For each ℓ1 ≤ i ≤ ℓ2, we have that every L ∈ Σi is contained
in P2. Hence, the whole sequence (7.1) of isotropic curves can be embedded into
Grassmannians of subspaces of P2 via Σi ↪→ Gr(i, P2), L ↦→ L.

Dually, if ℓ1 > 0, then Σ−
ℓ1

is a point in Gr(ℓ1 − 1, Pn), i.e., an (ℓ1 − 1)-
dimensional subspace P1 ⊂ Pn. For each ℓ1 ≤ i ≤ ℓ2, we have that every
L ∈ Σi contains P1. Thus, denoting by πP1 : Pn 99K P(An+1/P1P1P1P1P1P1P1P1P1) ∼= Pn−ℓ1 the
projection away from P1, we can embed the whole sequence (7.1) into smaller
Grassmannians via Σi ↪→ Gr(i − ℓ1, Pn−ℓ1), L ↦→ πP1(L). We denote by πP1(Σi)
the image of Σi under this embedding.

Therefore, we can always assume that ℓ1 = 0 and ℓ2 = n − 1. In this case,
Σk = Osck(Σ0) for every 0 ≤ k ≤ n − 1, as the following theorem shows.
Recall for this theorem that we view the empty set as a projective space with
dimension −1.

Theorem 7.10. 1. For each irreducible curve Σ0 ⊂ Pn and each 0 ≤ k ≤ ℓ2,
we have that Osck(Σ0) = Σk. In particular, the curve Osck(Σ0) of osculating
k-planes of Σ0 is isotropic.

2. For each irreducible isotropic curve Σ ⊂ Gr(ℓ, Pn), there is a unique subspace
P1 ⊂ Pn and a unique irreducible curve C ⊂ Pn−dim P1−1 such that −1 ≤
dim P1 < ℓ, every L ∈ Σ contains P1, and πP1(Σ) = Oscℓ−dim P1−1(C).

Proof. Let us first consider the second part of Theorem 7.10. We write Σℓ = Σ
and associate the maximal sequence (7.1) of isotropic curves. If ℓ1 = 0, we set
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7.1 Isotropic Curves

P1 := ∅. Otherwise, ℓ1 > 0 and P1 := Σ−
ℓ1

. Note that P1 is the maximal subspace
of Pn with the property that it is contained in every L ∈ Σ. In any case, we
define C := πP1(Σℓ1) ⊂ Pn−ℓ1 . Now, πP1(Σ) = Oscℓ−ℓ1(C) follows from the
first part of Theorem 7.10.

Hence, it is enough to show the first assertion of this theorem. For this, we
consider an irreducible curve Σ0 ⊂ Pn and a point p ∈ Reg(Σ0). We choose
coordinates such that p = (1 : 0 : . . . : 0). Without loss of generality, we may
work in the affine chart Pn \ Z(x0). Since Σ0 is smooth around p, there is a local
analytic isomorphism f from a neighborhood of the origin in A1 to a neighbor-
hood of the point p in Σ0. The map f has the form f (t) = ( f1(t), . . . , fn(t)) for
some f1, . . . , fn ∈ C[[t]] with f (0) = (0, . . . , 0). In our affine chart, the osculating

k-plane at f (ε) is the affine span of f (ε), ∂ f
∂t (ε), . . . , ∂k f

∂kt (ε). We define

Ak(ε) :=

⎡⎢⎢⎢⎢⎣
1 f1(ε) · · · fn(ε)

1 ∂ f1
∂t (ε) · · · ∂ fn

∂t (ε)
...

...
...

1 ∂k f1
∂kt (ε) · · · ∂k fn

∂kt (ε)

⎤⎥⎥⎥⎥⎦ ∈ C(k+1)×(n+1)

such that the rowspace Lk(ε) ∈ Gr(k, Pn) of Ak(ε) is an osculating k-plane of Σ0.
In particular, Lk(0) is the osculating k-plane at p. The tangent line at Ak(ε) to
the curve in A(k+1)×(n+1) parametrized by t ↦→ Ak(t) is the affine span of Ak(ε)
and ⎡⎢⎢⎣

0 ∂ f1
∂t (ε) · · · ∂ fn

∂t (ε)
...

...
...

0 ∂k+1 f1
∂k+1t (ε) · · · ∂k+1 fn

∂k+1t (ε)

⎤⎥⎥⎦ .

Hence, by Corollary 2.10, the tangent line at Lk(0) to the curve Osck(Σ0), which
is locally parametrized by t ↦→ Lk(t), is spanned by

ϕ : Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0) −→ An+1/Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0),
(1, f (0)) ↦−→ 0 + Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0),(
1, ∂ f

∂t (0)
)
↦−→ 0 + Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0),

...(
1, ∂k−1 f

∂k−1t (0)
)
↦−→ 0 + Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0),(

1, ∂k f
∂kt (0)

)
↦−→

(
0, ∂k+1 f

∂k+1t (0)
)
+ Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0)Lk(0).

Since p was an arbitrary smooth point of Σ0, this shows that the curve Osck(Σ0)
is isotropic with (Osck(Σ0))

+ = Osck+1(Σ0) and (Osck(Σ0))
− = Osck−1(Σ0).

Now the assertion Osck(Σ0) = Σk follows by induction on k. It is trivial for
k = 0. For k > 0, the induction hypothesis yields (Osck(Σ0))

− = Osck−1(Σ0) =
Σk−1, which then implies Osck(Σ0) = ((Osck(Σ0))

−)+ = Σ+
k−1 = Σk.
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7 ISOTROPIC VARIETIES

Σ+ ⊂ Gr(2, P3) curve Σ+ ∈ Gr(2, P3) point
Y := (Σ+)⊥ ⊂ (P3)∗ H := Σ+ ⊂ P3 plane

Σ− ⊂ P3 curve
S = T (Σ−)

S∨ = Y
S = T (Σ−)

Σ− ⊂ H = S

Σ− ∈ P3 point
S is cone through Σ−

S∨ = Y ⊂ (Σ−)∨
Σ− ∈ H = S

Table 7.1: All cases of isotropic curves Σ ⊂ Gr(1, P3). The developable surface
S is ruled by the lines on Σ. See also Figure 6.1.

Example 7.11. Let Σ ⊂ Gr(1, P3) be an irreducible isotropic curve and let S in
P3 be the union of all lines on Σ. If Σ− ⊂ P3 is a curve, the surface S is the
tangent developable of Σ−. If Σ− is a point, then S is a cone with vertex Σ−. In
any of the two cases, the surface S can be either a plane or the dual of a curve,
as Table 7.1 summarizes. So shortly put, a curve Σ ⊂ Gr(1, P3) is isotropic if
and only if the surface ruled by the lines on Σ is developable. By Corollary 2.11,
this assertion is equivalent to the second part of Theorem 6.2. ♦

7.2 Strongly Isotropic Varieties

In this section, we show that each strongly isotropic variety is either a curve or
a subvariety of an α- or β-variety.

Definition 7.12. For 1 ≤ ℓ ≤ n and P1 ∈ Gr(ℓ− 1, Pn), we call

α(P1) := {L ∈ Gr(ℓ, Pn) | P1 ⊂ L}

the α-variety of P1. Analogously, for 0 ≤ ℓ ≤ n − 2 and P2 ∈ Gr(ℓ+ 1, Pn), the
β-variety of P2 is

β(P2) := {L ∈ Gr(ℓ, Pn) | L ⊂ P2}.

Note that α(P1) is isomorphic to Gr(0, Pn−ℓ) = Pn−ℓ, and that β(P2) is iso-
morphic to Gr(ℓ, Pℓ+1) ∼= (Pℓ+1)∗.

Remark 7.13. The tangent space of the α-variety α(P1) at a point L is the α-space
Eα(P1P1P1P1P1P1P1P1P1) ⊂ Hom(LLLLLLLLL, An+1/LLLLLLLLL) (see Definition 2.12). Dually, the tangent space of
the β-variety β(P2) at a point L is the β-space Eβ(P2P2P2P2P2P2P2P2P2/LLLLLLLLL) ⊂ Hom(LLLLLLLLL, An+1/LLLLLLLLL).
Conversely, given any L ∈ Gr(ℓ, Pn) and an α-space in TGr(ℓ,Pn),L, there is a
unique α-variety containing L whose tangent space at L is the given α-space.
The analogous assertion holds for β-spaces and β-varieties. ♦

These observations show that subvarieties of α- and β-varieties are strongly
isotropic. In fact, we can even show that all strongly isotropic varieties either are
such subvarieties or have dimension one. Note that we have seen in Section 7.1
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7.2 Strongly Isotropic Varieties

that (strongly) isotropic curves are not necessarily contained in α- or β-varieties.
The curve Osc1(C) ⊂ Gr(1, P3) of tangent lines to a nondegenerate irreducible
curve C ⊂ P3 is such an example.

Theorem 7.14. 1. Every subvariety of an α- or β-variety is strongly isotropic.

2. Every irreducible strongly isotropic variety of dimension at least two is either a
subvariety of a unique α-variety or a subvariety of a unique β-variety.

As in the classification of strongly coisotropic varieties in Section 4.3, we use
Lemma 4.19 two distinguish two types of strongly isotropic varieties.

Definition/Corollary 7.15. Let Σ be an irreducible strongly isotropic variety of
dimension at least two. Either each tangent space at a smooth point of Σ is
contained in a unique α-space, or each tangent space at a smooth point of Σ is
contained in a unique β-space. In the first case, we call Σ strongly isotropic of
α-type. In the latter case, we say that Σ is strongly isotropic of β-type.

Lemma 7.16. Every strongly isotropic variety in Gr(ℓ, Pn) of α-type has dimension at
most n − ℓ, and every strongly isotropic variety of β-type has dimension at most ℓ+ 1.

Proof. This follows from the fact that α-spaces in Hom(LLLLLLLLL, An+1/LLLLLLLLL) have dimen-
sion n − ℓ and that the dimension of β-spaces is ℓ+ 1, where L ∈ Gr(ℓ, Pn).

Lemma 7.17. 1. A subvariety Σ ⊂ Gr(ℓ, Pn) is strongly isotropic of α-type if and
only if Σ⊥ ⊂ Gr(n − ℓ− 1, (Pn)∗) is strongly isotropic of β-type.

2. Moreover, Σ is contained in the α-variety α(P1) if and only if Σ⊥ is contained in
the β-variety β(P∨

1 ).

Proof. First, we notice that L is a smooth point of Σ if and only if L∨ is a smooth
point of Σ⊥. Secondly, a linear subspace U ⊂ LLLLLLLLL is contained in the kernel of
ϕ ∈ TΣ,L if and only if the image of ϕ∗ ∈ TΣ⊥,L∨ is contained in (LLLLLLLLL/U)∗. This
shows the first part of Lemma 7.17. The second part is immediate.

Thus, to prove Theorem 7.14, we only have to consider strongly isotropic
varieties of α-type. To every strongly isotropic variety Σ ⊂ Gr(ℓ, Pn) of α-type,
we can associate a variety Σker ⊂ Gr(ℓ − 1, Pn) as follows. For every smooth
point L of Σ, there is a unique hyperplane PL ⊂ L such that every tangent vector
ϕ ∈ TΣ,L satisfies PLPLPLPLPLPLPLPLPL ⊂ ker ϕ. Hence, we get a rational map

Ψker : Σ 99K Gr(ℓ− 1, Pn),
Reg(Σ) ∋ L ↦−→ PL,

(7.2)

and we define Σker to be the Zariski closure of its image. Since Σ is irreducible,
so is Σker. We will prove Theorem 7.14 by showing that Σker is a point.

Lemma 7.18. Let Σ ⊂ Gr(ℓ, Pn) be a strongly isotropic variety of α-type.
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1. For a general point L of Σ, the image of every tangent vector φ ∈ TΣker,PL is
contained in LLLLLLLLL/PLPLPLPLPLPLPLPLPL.

2. If the general fiber of Ψker contains exactly one point, then Σker is strongly
isotropic of β-type. Otherwise, Σker must be a point.

Proof. For a general point L ∈ Σ, the differential

DLΨker : TΣ,L −→ TΣker,PL

of Ψker at L is a surjection. By Corollary 2.9, it sends a map ϕ : LLLLLLLLL → An+1/LLLLLLLLL in
TΣ,L to a linear map φ : PLPLPLPLPLPLPLPLPL → An+1/PLPLPLPLPLPLPLPLPL such that ϕ|PLPLPLPLPLPLPLPLPL = (φ mod LLLLLLLLL). But since
ϕ|PLPLPLPLPLPLPLPLPL is the zero-map, the image of φ must be contained in LLLLLLLLL/PLPLPLPLPLPLPLPLPL. In particular,
the rank of φ is at most one. Since DLΨker is surjective, every φ ∈ TΣker,PL has
at most rank one and satisfies im φ ⊂ LLLLLLLLL/PLPLPLPLPLPLPLPLPL. This shows that Σker is strongly
isotropic of β-type if dim Σker ≥ 2. Now we have shown the first assertion of
Lemma 7.18 as well as the first part of the second assertion.

Finally, we assume that the general fiber of Ψker contains more than one point.
We consider a general point P ∈ Σker and two general points L1, L2 ∈ Ψ−1

ker(P)
in its fiber. Both differentials DL1Ψker and DL2Ψker are surjective, and the image
of every φ ∈ TΣker,P is contained in L1L1L1L1L1L1L1L1L1/PPPPPPPPP ∩ L2L2L2L2L2L2L2L2L2/PPPPPPPPP = {0}. Thus, the dimension of
Σker must be zero.

Proof of Theorem 7.14. The first part follows immediately from Remark 7.13. For
the second part, let Σ ⊂ Gr(ℓ, Pn) be an irreducible strongly isotropic variety
of dimension at least two. Due to Lemma 7.17, we can assume that Σ is of α-
type. Thus, we have a dominant rational map Ψker : Σ 99K Σker as in (7.2).
Moreover, we assume for contradiction that Σker ⊂ Gr(ℓ− 1, Pn) is not a point.
By Lemma 7.18, the general fiber of Ψker consists of exactly one point and Σker
is strongly isotropic of β-type. In particular, dim Σker = dim Σ.

We denote by Xker ⊂ Pn the variety swept out by all P ∈ Σker. It is the image
of the incidence correspondence Fker := {(x, P) ∈ Pn × Σker | x ∈ P} under
the projection π onto the first factor; so dim Xker ≤ dim Fker = dim Σ + ℓ− 1 ≤
n − 1 by Lemma 7.16. At a smooth point (x, P) ∈ Fker such that P ∈ Reg(Σker)
the incidence correspondence has the tangent space

TFker,(x,P) =
{
(φ, ϕ) ∈ Hom(xxxxxxxxx, An+1/xxxxxxxxx)× TΣker,P | ϕ|xxxxxxxxx = (φ mod PPPPPPPPP)

}
, (7.3)

since the inclusion “⊂” follows from Lemma 2.7 and both linear spaces in (7.3)
have the same dimension.

Let (x, P) ∈ Fker be general. As the differential D(x,P)π : TFker,(x,P) → TXker,x of
π at (x, P) is surjective, we see from (7.3) that

TXker,x =
{

φ ∈ Hom(xxxxxxxxx, An+1/xxxxxxxxx) | ∃ϕ ∈ TΣker,P : ϕ|xxxxxxxxx = (φ mod PPPPPPPPP)
}

.

We denote by L ∈ Σ the unique point in the fiber Ψ−1
ker(P). By Lemma 7.18, the
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space TXker,x is a subset of Hx,L := {φ ∈ Hom(xxxxxxxxx, An+1/xxxxxxxxx) | im φ ⊂ LLLLLLLLL/xxxxxxxxx}. The
dimension of Hx,L is ℓ, which implies that the dimension of Xker is at most ℓ.
Since we assumed that Σker ⊂ Gr(ℓ − 1, Pn) is not a point, the dimension of
Xker must be exactly ℓ, so TXker,x = Hx,L. Moreover, the dimension of the fiber
π−1(x) is dim Fker − dim Xker = dim Σ − 1 ≥ 1. We pick another general point
(x, P′) in this fiber and repeat the above argument. We see that the unique point
L′ ∈ Σ in the fiber Ψ−1

ker(P′) also satisfies TXker,x = Hx,L′ . In particular, we have
Hx,L = Hx,L′ , so L = L′ and P = P′, but this is a contradiction since (x, P) and
(x, P′) were generally chosen on the variety π−1(x) of dimension at least one.

Thus, we have shown that Σker must be a point, i.e., an (ℓ− 1)-dimensional
subspace P ⊂ Pn. Every L ∈ Σ contains P, so Σ ⊂ α(P).

7.3 Congruences

So far we have classified all subvarieties of Gr(1, P3) of dimension one or three
which are isotropic and coisotropic at the same time by their underlying pro-
jective varieties. Coisotropic hypersurfaces, which are trivially isotropic by
Lemma 7.3, have been studied in Chapter 3, and isotropic curves, which are
trivially coisotropic by Corollary 4.5, have been discussed in Section 7.1. Now
we focus on congruences, as these are also isotropic and coisotropic.

Congruences can arise naturally from subvarieties of P3, as we have seen
in Chapter 5. In the following, we show that every congruence is associated
to a projective variety, as we summarize in Table 7.2. The key notion for this
classification is the (strict) focal locus of a congruence. Recall that the order α of
a congruence Σ is the number of lines on Σ which pass through a general point
p ∈ P3. A point p ∈ P3 is a focal point of Σ if the number of lines on Σ passing
though p differs from the order α. In other words, the focal locus of Σ is the
branch locus of the projection{

(p, L) ∈ P3 × Σ | p ∈ L
}
−→ P3

onto the first factor. For example, by Theorems 6.5 and 6.18, the visual event
surface of a general curve or surface X ⊂ P3 is the focal locus of the singular
locus of the Chow or Hurwitz hypersurface of X, respectively.

Lemma 7.19. Let Σ ⊂ Gr(1, P3) be a congruence. A point p ∈ P3 is a focal point of
Σ if and only if one of the following two conditions is satisfied:

1. p is contained in some line L ∈ Sing(Σ), or

2. p is contained in some line L ∈ Reg(Σ) such that there is a non-zero ϕ ∈ TΣ,L
with ppppppppp ⊂ ker ϕ.

Proof. As in the proofs of Theorems 6.5 and 6.18, we see that p is not a focal
point if and only if the α-variety α(p) of lines passing through p intersects the
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congruence Σ at exactly α (here denoting the order of Σ) points. This is equiv-
alent to that α(p) intersects Σ only at smooth points and the intersection at all
those points is transverse (cf. [34, Thm. 1.26]). Since the tangent space of the α-
variety α(p) at a point L is the α-space Eα(ppppppppp) ⊂ Hom(LLLLLLLLL, A4/LLLLLLLLL), we have shown
Lemma 7.19.

Remark 7.20. By Corollary 2.11, the second condition in Lemma 7.19 is equiv-
alent to that the embedded tangent plane of the image of Σ under the Plücker
embedding pl at the point pl(L) meets the embedded α-plane pl(α(p)) in at
least a line of P5 (i.e., a pencil of lines in P3). This is in fact the definition of
p being a focal point given by Goldstein in [44]. For smooth congruences, this
definition agrees with the definition given above. ♦

A line L ∈ Σ is called a focal line if every point on L is a focal point. In
particular, every L in the singular locus of Σ is a focal line. The strict focal locus
of Σ is the Zariski closure of the branch locus of the projection{

(p, L) ∈ P3 × Σ | p ∈ L, L is not focal
}
−→ P3,

(p, L) ↦−→ p.

Example 7.21. By Theorems 6.5 and 5.8, the focal locus of the secant congruence
of a general curve C ⊂ P3 is the visual event surface of C. We will see in
Proposition 7.35 that the strict focal locus of the secant congruence is only C. ♦

Example 7.22. Every line on an α-variety α(p) has exactly one focal point,
namely the point p itself. In particular, α(p) has no focal lines, and both its
focal locus and strict focal locus contain only the point p.

Dually, we consider the β-variety β(H) of lines contained in a plane H. Every
line on this congruence is a focal line. Its focal locus is the plane H, but its strict
focal locus is empty. ♦

Remark 7.23. Recall that the class β of a congruence Σ is the number of lines on Σ
which lie in a general plane. A plane H ⊂ P3 is a focal plane of Σ if the number of
lines on Σ lying in H differs from the class β. Equivalently, a focal plane H ⊂ P3

of Σ ⊂ Gr(1, P3) corresponds to a focal point H∨ of Σ⊥ ⊂ Gr(1, (P3)∗).
Analogously to the strict focal locus, one may define the strict locus of focal

planes, which consists of those planes that are projectively dual to points in the
strict focal locus of Σ⊥. ♦

Congruences have first been classified according to their (strict) focal loci by
Kummer [69], who studied only those of order one. General classifications have
been classically known, but usually not described exhaustively. For example,
the characterization of congruences on page 417 of [94] misses the cases denoted
by “Seg-type 1” in Table 7.2. Many more classical and modern sources study
focal loci of congruences, like [55, Ch. XIV] or [95, 92, 44, 5]. We give a complete
classification of congruences in Table 7.2.

By Theorem 7.14, every irreducible strongly isotropic (and thus strongly co-
isotropic) congruence must be either an α- or a β-variety. Hence, we focus here
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notation description Seg-type

α(x) lines through a fixed point x
∞

β(H) lines in a fixed plane H

intersection of two coisotropic hypersurfaces

2
CH0(C1) ∩ CH0(C2) lines intersecting two given curves
CH0(C) ∩ CH1(S) lines meeting a curve and tangent to a surface
CH1(S1) ∩ CH1(S2) lines tangent to two given surfaces

self-intersection of a coisotropic hypersurface
2Sec(C) secant lines to a given curve

Bit(S) bitangent lines to a given surface

Infl(S) inflectional tangent lines to a given surface

1
Σ(C) Σ(C) is the image of (x, L, y) ↦→ L

{(x, L, y) | (x, y) ∈ C, x ∈ L ⊂ y∨} → Gr(1, P3) for
curves X ⊂ P3, Y ⊂ X∨, C ⊂ NX,X∨ ∩ (X × Y)

Table 7.2: All types of congruences in Gr(1, P3).
The value in the column Seg-type denotes |P(TΣ,L) ∩ Seg(L, A4/L)|
for a general L in the congruence Σ .

on irreducible congruences which are not strongly isotropic. For a general point
L of such a congruence Σ, the projective line P(TΣ,L) intersects the correspond-
ing Segre variety Seg(LLLLLLLLL, A4/LLLLLLLLL) ∼= P1 × P1 either at one or at two points. In
other words (by Lemma 7.19), a general L ∈ Σ contains either one or two fo-
cal points. We call this number the Seg-type of the congruence. Note that the
congruences Σ and Σ⊥ have the same Seg-type by Remark/Definition 2.6.

All congruences listed in Table 7.2 appeared before in this thesis, except the
congruences in the last row. Here NX,X∨ ⊂ X × X∨ denotes the conormal va-
riety of an irreducible curve X ⊂ P3, and C ⊂ NX,X∨ is an irreducible curve
whose projections onto the first and second factor surject onto X and a curve
Y ⊂ X∨. The congruence Σ(C) is defined as the image of the incidence corre-
spondence {(x, L, y) ∈ X × Gr(1, P3)× Y | (x, y) ∈ C, x ∈ L ⊂ y∨} under the
projection onto the middle factor. Since X and Y are curves, they are projectively
dual to each other if and only if they are both lines.

Example 7.24. Let X ⊂ P3 be an irreducible nondegenerate curve and let Y =
Osc2(X)⊥ ⊂ (P3)∗ be its osculating dual curve. In this situation, C is the Zariski
closure of the set of all (x, y) where y∨ is the osculating plane at x ∈ Reg(X).
Hence, Σ(C) consists of the lines in osculating planes of X passing through the
corresponding point of osculation. ♦

Remark 7.25. Let us compare the classification of all congruences in Table 7.2
with Kummer’s classification of order one congruences. The following version
of Kummer’s result using modern mathematical language was derived by De
Poi in [29]. A congruence Σ of bidegree (1, β) is either

1. α(x) for some x ∈ P3 (here β = 0), or
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2. the secant congruence of a twisted cubic (here β = 3),

3. the family of lines meeting both a rational curve C of degree β and a line L,
where L and C intersect in β − 1 points (counted with multiplicities), or

4. the following special case of the last row of Table 7.2: for a line L ⊂ P3

and a non-constant morphism Φ : L∨ → L of degree β, the congruence
Σ is the union of all pencils of lines {L ∈ Gr(1, P3)|Φ(y) ∈ L ⊂ y∨} for
y ∈ L∨. ♦

Congruences of Seg-type one. For a congruence Σ of Seg-type one, we denote
by Σ◦ ⊂ Σ the subset of all L ∈ Reg(Σ) with |P(TΣ,L) ∩ Seg(LLLLLLLLL, A4/LLLLLLLLL)| = 1. By
Lemma 7.19, all lines L ∈ Σ◦ contain exactly one focal point and are contained
in exactly one focal plane. We define the incidence correspondence

FΣ := {(x, L, H) | L ∈ Σ◦, ∃ϕ ∈ TΣ,L : ker ϕ = xxxxxxxxx, im ϕ = HHHHHHHHH/LLLLLLLLL}
⊂ P3 × Gr(1, P3)× Gr(2, P3).

(7.4)

Identifying (P3)∗ with Gr(2, P3), we get three projections π1 : FΣ → P3,
π : FΣ → Σ, and π2 : FΣ → (P3)∗. We denote by X := X(Σ) := im (π1) ⊂ P3

and Y := Y(Σ) := im (π2) ⊂ (P3)∗ the respective images. Note that X is the
strict focal locus of Σ and that Y is the strict focal locus of Σ⊥. Since the map π is
finite of degree one and we assume Σ to be irreducible, X and Y are irreducible
varieties. Since Σ has dimension two, the dimensions of X and Y are at most
two.

First, we observe that neither X nor Y can be a point. Indeed, if X would be a
point x, then every line on Σ would need to pass through x, and thus Σ = α(x).
Similarly, if Y would be a point y, then Σ would need to be β(y∨). In any of
these two cases, every tangent vector of Σ would be a homomorphism of rank
at most one.

Proposition 7.26. Let Σ be an irreducible congruence of Seg-type one. For a general
L ∈ Σ with (x, L, H) ∈ FΣ, we have that

TX,x ⊂ H and TY,H∨ ⊂ x∨.

Proof. P(TΣ,L) is a tangent line to the quadric Seg(LLLLLLLLL, A4/LLLLLLLLL) ∼= P1 × P1 at the
projective point corresponding to ϕ ∈ TΣ,L with ker ϕ = xxxxxxxxx and im ϕ = HHHHHHHHH/LLLLLLLLL.
Thus, it is contained in the tangent plane to the Segre variety at this point, which
consist of all ϕ : LLLLLLLLL → A4/LLLLLLLLL with ϕ(xxxxxxxxx) ⊂ HHHHHHHHH/LLLLLLLLL. In particular, every map
ϕ ∈ TΣ,L satisfies ϕ(xxxxxxxxx) ⊂ HHHHHHHHH/LLLLLLLLL. Since L ∈ Σ is general, the differential of π
at (x, L, H) is an isomorphism TFΣ,(x,L,H) → TΣ,L. Furthermore, the differential
of π1 at (x, L, H) surjects TFΣ,(x,L,H) onto TX,x; analogously for π2. Thus, we
get surjections Φ : TΣ,L → TX,x and Ψ : TΣ,L → TY,H∨ as in the following
commutative diagram:
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TFΣ,(x,L,H)

TX,x TΣ,L TY,H∨

D(x,L,H)π

D(x,L,H)π2D(x,L,H)π1

ΨΦ

By Lemma 2.7, we have ϕ|xxxxxxxxx = (Φ(ϕ) mod LLLLLLLLL) and Ψ(ϕ)∗|LLLLLLLLL = (ϕ mod HHHHHHHHH) for
all ϕ ∈ TΣ,L. Hence, for every ϕ ∈ TΣ,L, the image of Φ(ϕ) : xxxxxxxxx → A4/xxxxxxxxx is
contained in HHHHHHHHH/xxxxxxxxx, and the kernel of Ψ(ϕ)∗ : HHHHHHHHH → A4/HHHHHHHHH contains xxxxxxxxx.

An immediate corollary from Proposition 7.26 is that Y ⊂ X∨ and X ⊂ Y∨.
Moreover, in the situation of Proposition 7.26, if X is a surface, then L is a tan-
gent line to X at x. Dually, if Y is a surface, then L∨ is a tangent line to Y at H∨.

Proposition 7.27. Let Σ be an irreducible congruence of Seg-type one. If its strict focal
locus X is a curve, then Y is a curve and Σ = Σ(C) for some curve C ⊂ NX,X∨ whose
projections onto the first and second factor surject onto X and Y, respectively.

Proof. First we assume for contradiction that Y is a surface. Our idea is to foliate
Σ into a one-dimensional family of isotropic curves. We do this by following the
rank one direction at each L ∈ Σ◦. To be more precise, we consider a general
L ∈ Σ with (x, L, H) ∈ FΣ. Locally around L, there is an analytic curve Γ ⊂ Σ
through L which is isotropic. As in Section 7.1, we get an analytic curve Γ+ ⊂
Y ⊂ (P3)∗ around H∨ such that L∨ is the tangent line to Γ+ at H∨. Similarly,
all points in Γ correspond to tangent lines of Γ+. All such curves Γ+ that arise
from the isotropic curves Γ in the foliation of Σ form a foliation of Y. Note that
Γ+ cannot be a point since dim Y = 2 and L was chosen generally. On the other
hand, Γ− ⊂ X cannot be a curve, because otherwise every L ∈ Σ would need to
be a tangent line to the curve X. So Γ− is the point x ∈ X, which implies that Γ+

is contained in the plane x∨. By Proposition 7.26, we have that Y = X∨ and that
x∨ = TY,y for general y ∈ Γ+. Since L ∈ Σ was chosen generally, x is a general
point of X and x∨ is the tangent plane to Y along a line. In particular, Γ+ is a
line, but this implies that Γ = {L}, which contradicts that dim Γ = 1.

Hence, Y is a curve. As above, we consider an analytic isotropic curve Γ ⊂ Σ
through a general L ∈ Σ with (x, L, H) ∈ FΣ. In this situation, Γ− ⊂ X is the
point x ∈ X and Γ+ ⊂ Y is the point H∨ ∈ Y. Thus, every line in Γ passes
through x and lies in the plane H. In particular, the whole pencil of lines in H
passing through x must be contained in Σ, and we have (x, L′, H) ∈ FΣ for a
general line L′ in this pencil. By Proposition 7.26, we have (x, H∨) ∈ NX,X∨ . As
the above argument holds for general L ∈ Σ, the image of π1 ×π2 : FΣ → X ×Y
is a curve C satisfying Proposition 7.27.

Proposition 7.28. Let Σ be an irreducible congruence of Seg-type one. If its strict focal
locus X is a surface, then Y is a surface and Σ is the inflectional congruence of X.

Proof. By Proposition 7.27, the variety Y is a surface, which is actually dual to
X by Proposition 7.26. We consider a general point L ∈ Σ and (p, L, H) ∈ FΣ.
Locally around L, there is an analytic curve Γ ⊂ Σ through L which is isotropic.
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As in Section 7.1 (and in the proof of Proposition 7.27), we get analytic curves
Γ− ⊂ X and Γ+ ⊂ Y around p and H∨, respectively, such that L is the tangent
line to Γ− at p and H is the osculating plane of Γ− at p (and vice versa). By
Proposition 7.26, the plane H is also the embedded tangent plane of X at p.
From this, we will show that L is an inflectional line of X at p.

We choose coordinates such that p = (1 : 0 : 0 : 0) and work in the affine
chart P3 \ Z(x0). We parametrize Γ− by a local analytic isomorphism γ from a
neighborhood of the origin in A1 to a neighborhood of the point p in Γ−. This
map has the form γ(t) = (γ1(t), γ2(t), γ3(t)) for some γ1, γ2, γ3 ∈ C[[t]] with
γ(0) = (0, 0, 0). Furthermore, we denote by f = f1 + f2 + . . . ∈ C[x1, x2, x3]
a defining polynomial for X in our affine chart, where fi is homogeneous of
degree i. Since we already know that L is a tangent line to X at p, we only have
to show that f2(γ

′(0)) = 0.
For all t in the neighborhood around the origin in A1, we have f (γ(t)) = 0.

In particular,

0 =
∂2( f ◦ γ)

∂2t
(0) = 2 f2(γ

′(0)) + f1(γ
′′(0)). (7.5)

Since H is the osculating plane of Γ− at p, it contains the point γ′′(0). Moreover,
since H is also TX,p, this point is in the zero locus of f1. Together with (7.5), this
shows f2(γ

′(0)) = 0.

Finally, we prove the converse of Propositions 7.27 and 7.28.

Proposition 7.29. For irreducible curves X ⊂ P3, Y ⊂ X∨ and C ⊂ NX,X∨ such that
the projections of C onto the first and second factor surject onto X and Y, respectively,
the congruence Σ(C) is of Seg-type one, X(Σ(C)) = X and Y(Σ(C)) = Y.

Proof. For L ∈ Σ := Σ(C) general, there is (x, H∨) ∈ C with x ∈ L ⊂ H such
that ΓL := {L′ ∈ Gr(1, P3) | x ∈ L′ ⊂ H} ⊂ Σ. Hence,

TΣ,L ⊃ TΓL,L = {ϕ ∈ Hom(LLLLLLLLL, A4/LLLLLLLLL) | xxxxxxxxx ⊂ ker ϕ, im ϕ ⊂ HHHHHHHHH/LLLLLLLLL}.

Since Σ is contained in the Chow hypersurface of X, we see from (3.3) that every
ϕ ∈ TΣ,L satisfies ϕ(xxxxxxxxx) ⊂ (TX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,xTX,x + LLLLLLLLL)/LLLLLLLLL = HHHHHHHHH/LLLLLLLLL. So P(TΣ,L) is a tangent line of
Seg(LLLLLLLLL, A4/LLLLLLLLL) at the point P(TΓL,L).

Since L was chosen generally, we have shown Proposition 7.29.

Proposition 7.30. Let S ⊂ P3 be an irreducible surface with a dual surface S∨. If
dim Infl(S) = 2, the congruence Infl(S) is of Seg-type one and X(Infl(S)) = S =
Y(Infl(S))∨.

Proof. We have proven this statement already for general surfaces S ⊂ P3 in
Theorems 4.26 and 5.45. Here, we give a different proof without using local
calculations.

We define Σ := Infl(S) and

FS := {(x, L, H∨) | x ∈ Reg(S), H = TS,x, L is an inflectional line to S at x}
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⊂ S × Σ × S∨.

For a general L ∈ Σ, there is exactly one point x ∈ S such that L is an inflectional
line to S at x. We set H := TS,x. Moreover, the differentials of the canonical
projections FS → S, FS → S∨ and FS → Σ yield isomorphisms from TFS,(x,L,H∨)
to TS,x, TS∨,H∨ and TΣ,L. Composing these yields isomorphisms Φ : TS,x → TΣ,L
and Ψ : TS∨,H∨ → TΣ,L as in the following commutative diagram:

TFS,(x,L,H∨)

TS,x TΣ,L TS∨,H∨
Φ

ρ

Ψ

By Lemma 2.7, we have

Φ(φ)|xxxxxxxxx = (φ mod LLLLLLLLL) for all φ ∈ TS,x and
ψ∗|LLLLLLLLL = (Ψ(ψ) mod HHHHHHHHH) for all ψ ∈ TS∨,H∨ .

(7.6)

Besides, the isomorphism ρ : TS,x → TS∨,H∨ which arises as the differential of
the Gauss map S 99K S∨ satisfies Φ = Ψ ◦ ρ. As L is in particular a tangent line
to S at x, there is φ1 ∈ TS,x with im φ1 = LLLLLLLLL/xxxxxxxxx. By (7.6), the kernel of ϕ1 := Φ(φ1)
is xxxxxxxxx. Since the kernel of ρ(φ1)

∗ is LLLLLLLLL, (7.6) implies im ϕ1 = im Ψ(ρ(φ1)) = HHHHHHHHH/LLLLLLLLL.
To show that the line P(TΣ,L) is tangent to Seg(LLLLLLLLL, A4/LLLLLLLLL) at the projective point
corresponding to ϕ1, we only have to show that P(TΣ,L) is contained in the
tangent plane of the Segre variety at this point. This means that every ϕ ∈ TΣ,L
needs to satisfy ϕ(xxxxxxxxx) ⊂ HHHHHHHHH/LLLLLLLLL. But this follows from (7.6) and the fact that the
image of every φ ∈ TS,x is contained in HHHHHHHHH/xxxxxxxxx.

Since L was chosen generally, we have shown Proposition 7.30.

Corollary 7.31. Let S ⊂ P3 be an irreducible surface with a dual surface S∨. If its
inflectional locus is a congruence, we have that Infl(S)⊥ = Infl(S∨).

Proof. We know that the congruence Infl(S)⊥ ⊂ Gr(1, (P3)∗) is of Seg-type one
and that X(Infl(S)⊥) = Y(Infl(S)). By Proposition 7.30, we have X(Infl(S)⊥) =
S∨. Thus, Proposition 7.28 implies that Infl(S)⊥ = Infl(S∨).

Remark 7.32. If the surface S ⊂ P3 is the dual of a curve, the inflectional locus of
S consists of a curve and possibly several β-varieties; see Proposition 5.19 and
Remark 5.23. ♦

Congruences of Seg-type two. For a congruence Σ of Seg-type two, we denote
by Σ◦ ⊂ Σ the subset of all L ∈ Reg(Σ) such that |P(TΣ,L) ∩ Seg(LLLLLLLLL, A4/LLLLLLLLL)| = 2.
By Lemma 7.19, all lines L ∈ Σ◦ contain exactly two focal points and are con-
tained in exactly two focal planes. We define the incidence correspondence FΣ
as in (7.4). We consider again the projections π1 : FΣ → P3, π : FΣ → Σ,
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and π2 : FΣ → (P3)∗, with their images X := X(Σ) := im (π1) ⊂ P3 and
Y := Y(Σ) := im (π2) ⊂ (P3)∗. Note again that X is the strict focal locus of Σ
and that Y is the strict focal locus of Σ⊥. In this situation, the map π is finite
of degree two, and since we assume Σ to be irreducible, as schemes X and Y
have exactly two irreducible reduced components each. We denote these com-
ponents by X1, X2 and Y1, Y2, respectively. As before, the dimension of each of
those components is either one or two. During the rest of this section, we will
see that the components of Y are in fact projectively dual to the components of
X, which is generally not the case for congruences Σ(C) as in the last row of
Table 7.2.

Proposition 7.33. Let Σ be an irreducible congruence of Seg-type two. For a general
L ∈ Σ with (x1, L, H1), (x2, L, H2) ∈ FΣ, x1 ∈ X1, x2 ∈ X2, H1 ∈ Y1 and H2 ∈ Y2,
we have that

TX1,x1 ⊂ H2 and TX2,x2 ⊂ H1,

TY1,H∨
1
⊂ x∨2 and TY2,H∨

2
⊂ x∨1 .

Proof. As in the proof of Proposition 7.26, we get surjections Φi : TΣ,L → TXi,xi
and Ψi : TΣ,L → TYi,H∨

i
for i ∈ {1, 2}, such that ϕ|xixixixixixixixixi = (Φi(ϕ) mod LLLLLLLLL) and

Ψi(ϕ)∗|LLLLLLLLL = (ϕ mod HiHiHiHiHiHiHiHiHi) for all ϕ ∈ TLΣ. Let ϕi : LLLLLLLLL → A4/LLLLLLLLL be a homomor-
phism with ker ϕi = xixixixixixixixixi and im ϕi = HiHiHiHiHiHiHiHiHi/LLLLLLLLL. The image of Φ1(ϕ1) : x1x1x1x1x1x1x1x1x1 → A4/x1x1x1x1x1x1x1x1x1
is contained in LLLLLLLLL/x1x1x1x1x1x1x1x1x1 and the image of Φ1(ϕ2) : x1x1x1x1x1x1x1x1x1 → A4/x1x1x1x1x1x1x1x1x1 in H2H2H2H2H2H2H2H2H2/x1x1x1x1x1x1x1x1x1. This
shows that H2 is tangent to X1 at x1. Similarly, the images of Φ2(ϕ1) and Φ2(ϕ2)
are contained in H1H1H1H1H1H1H1H1H1/x2x2x2x2x2x2x2x2x2 and LLLLLLLLL/x2x2x2x2x2x2x2x2x2, respectively, and H1 is tangent to X2 at x2.
Dually, the kernel of Ψ1(ϕ1)

∗ : H1H1H1H1H1H1H1H1H1 → A4/H1H1H1H1H1H1H1H1H1 contains LLLLLLLLL, ker Ψ1(ϕ2)
∗ ⊃ x2x2x2x2x2x2x2x2x2,

ker Ψ2(ϕ1)
∗ ⊃ x1x1x1x1x1x1x1x1x1, and ker Ψ2(ϕ2)

∗ ⊃ LLLLLLLLL.

In particular, we have shown Y2 ⊂ X∨
1 , Y1 ⊂ X∨

2 , X2 ⊂ Y∨
1 , and X1 ⊂ Y∨

2 .
Moreover, in the situation of Proposition 7.33, if one of the components Xi is a
surface, then L is a tangent line to Xi at xi. Dually, if a component Yj is a surface,
then L∨ is a tangent line to Yj at H∨

j . This yields the following:

Corollary 7.34. Let Σ be an irreducible congruence of Seg-type two.

• If X1 and X2 are two distinct curves, then Σ consists of all lines intersecting both
curves.

• If X1 and X2 are a curve and a surface, then Σ consists of lines intersecting the
curve that are also tangent to the surface.

• If X1 and X2 are two distinct surfaces, then Σ consists of lines that are tangent to
both surfaces.

• If X1 = X2 is a curve, then Σ is its secant congruence.

• If X1 = X2 is a surface, then Σ is its bitangent congruence. ♦
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Finally, we want to show the converse of Corollary 7.34. Since we have al-
ready classified all strongly isotropic congruences and all congruences of Seg-
type one, we can still restrict ourselves to congruences of Seg-type two.

Proposition 7.35. Let Σ ⊂ Gr(1, P3) be an irreducible congruence of Seg-type two.
In each of the following five cases, the components of Y are projectively dual to the
components of the strict focal locus X:

• If Σ ⊂ CH0(C1)∩CH0(C2) for two distinct curves C1 and C2, then these curves
are the components X1, X2 of X.

• If Σ ⊂ CH0(C) ∩ CH1(S) for a curve C and a surface S, then C and S are the
components X1, X2 of X.

• If Σ ⊂ CH1(S1) ∩ CH1(S2) for two distinct surfaces S1 and S2, then these
surfaces are the components X1, X2 of X.

• If Σ ⊂ Sec(C) for a curve C, then X1 = X2 = C.

• If Σ ⊂ Bit(S) for a surface S, then X1 = X2 = S.

Proof. In any of the five cases, Proposition 3.10 and particularly (3.3) imply the
following: for L ∈ Σ general, the tangent space TΣ,L is spanned by two homo-
morphisms ϕ1, ϕ2 : LLLLLLLLL → A4/LLLLLLLLL with ker ϕ1 = x1x1x1x1x1x1x1x1x1, im ϕ1 = H2H2H2H2H2H2H2H2H2/LLLLLLLLL, ker ϕ2 = x2x2x2x2x2x2x2x2x2,
and im ϕ2 = H1H1H1H1H1H1H1H1H1/LLLLLLLLL, where (for i ∈ {1, 2})

• L is either tangent to a surface S at xi and Hi = TS,xi

• or L intersects a curve C at xi and Hi is spanned by L and TC,xi .

From this and Corollary 7.34 we also get immediately that the involved curves
and surfaces are the components X1, X2 of X, as claimed in Proposition 7.35.

It is left to show that the components of Y are indeed X∨
1 and X∨

2 . For a
congruence Σ as in Proposition 7.35, we know that Σ⊥ ⊂ Gr(1, (P3)∗) is also of
Seg-type two and that X(Σ⊥) = Y(Σ). To see that the components of Y(Σ) are
X∨

1 and X∨
2 , we use Theorem 3.13 in the first three cases of Proposition 7.35 and

Theorem 5.2 together with Remark 5.23 in the last two cases.

A future line of research in this area could be to generalize the classifica-
tion given in Table 7.2 to congruences in Gr(1, Pn). An irreducible subvariety
of Gr(1, Pn) is a congruence if it has dimension and codimension n − 1. Note
that these generalized congruences are both isotropic and coisotropic by Corol-
lary 4.5 and Lemma 7.3.
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A Package for Tropical Geometry
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8 Computing Tropical Varieties in
Macaulay2

This chapter introduces a package for doing tropical computations in Macaulay2

[45]. At the moment the main computational tool for tropical geometry is the
program Gfan [54] by Jensen. This computes the Gröbner fan of an ideal I and
includes functions to compute only the subfan of the Gröbner fan given by the
tropicalization of the variety Z(I). The polyhedral geometry program Polymake

[42] also has some tropical functionality that is not implemented in Gfan.
The package gfanInterface2 [52], implemented in Macaulay2, allows the

user to interface with Gfan while retaining the computational speed provided
by Macaulay2 for Gröbner basis computations. A drawback of this package is
that it requires good knowledge of the functions and conventions of Gfan. The
goal of the Tropical package is to provide a user friendly tool to do these com-
putations in Macaulay2 without requiring any knowledge of these conventions.
The package includes different strategies for the same function depending on
the input, and calls functions from Gfan, via gfanInterface2, and Polymake, as
appropriate. Moreover, the package implements some extra functionality not
yet available in Gfan, such as computing multiplicities for tropical varieties of
non-prime ideals and allowing the user to swap between the min and max con-
ventions.

The package is available with the general release of Macaulay2 (since ver-
sion 1.11). It can also be downloaded from

http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/TropicalPackage.html

8.1 Mathematical Background

We follow the conventions of chapters two and three of [74]. Let K be a field
with valuation v.

Definition 8.1. Let f = ∑u∈Zn auxu be a polynomial in S = K[x±1
1 , . . . , x±1

n ]. The
tropicalization of f is the function trop( f ) : Rn → R given by

trop( f )(w) = min{v(au) + w · u | au ̸= 0}.

The tropical hypersurface defined by f is

trop(Z( f ))={w ∈ Rn | the minimum in trop( f )(w) is achieved at least twice}.
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Let I be an ideal in S. The tropicalization of the variety Z(I) is

trop(Z(I)) =
⋂
f∈I

trop(Z( f )).

The same definitions can be formulated using max instead of min. The
Tropical package allows the user to choose their convention when loading the
package.

If the ideal I is generated by f1, ..., fs, it is not true in general that trop Z(I) is
the intersection of the tropical hypersurfaces associated to the fis. The intersec-
tion trop Z( f1) ∩ ... ∩ trop Z( fs) is a tropical prevariety.

Definition 8.2. Let I = ⟨ f1, ..., fs⟩ be an ideal in S = K[x±1
1 , . . . , x±1

n ]. Then
f1, ..., fs are a tropical basis of I if trop Z(I) =

⋂s
i=1 trop Z( fi).

The tropical variety trop Z(I) is a polyhedral complex ([74, Prop. 3.2.8]) con-
tained in the Gröbner complex of the ideal I. If the valuation is trivial, the
tropical variety is a rational polyhedral fan and is a subfan of the Gröbner fan
of the ideal. Moreover, we can associate to each maximal cell an integer num-
ber, called multiplicity, such that a certain balancing condition holds (see [74,
Def. 3.3.1]).

The Tropical package takes as input an ideal I in a usual (non-Laurent)
polynomial ring K[x1, . . . , xn]. The tropical variety computed is the variety
Z(J) ⊂ (K∗)n of the ideal J = IK[x±1

1 , . . . , x±1
n ].

8.2 Examples

In this section, we give explicit examples in order to give a short overview of
the package. The computations are all over the field Q of rational numbers with
trivial valuation, hence all tropical varieties are polyhedral fans.

Example 8.3. Consider the algebraic variety X = Z(I) ⊂ (C∗)2 defined by
the ideal I = ⟨x + y + 1⟩. The tropicalization of this variety can be computed
using the function tropicalVariety(I). The package outputs this as a tropical
cycle: a fan with a list of multiplicities corresponding to integer weights on the
maximal cones. We extract information about the tropical cycle using associated
functions. For example, rays gives the generators of the rays as the columns of
a matrix.
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i1 : needsPackage("Tropical",

Configuration=>{

"tropicalMax"=>false});

i2 : R=QQ[x,y];

i3 : I=ideal(x+y+1);

i4 : T=tropicalVariety I;

o4 = T

o4 : TropicalCycle

i5 : rays T

o5 = | -1 1 0 |

| -1 0 1 |

2 3

o5 : Matrix ZZ <--- ZZ

i6 : linealitySpace T

o6 = 0

3

o6 : Matrix ZZ <--- 0

i7 : maxCones T

o7 = {{0}, {1}, {2}}

o7 : List

i8 : multiplicities T

o8 = {1, 1, 1}

o8 : List

The tropical variety trop Z(I) is the standard tropical line in the plane: a one-
dimensional fan in R2 whose rays are (−1,−1), (1, 0), and (0, 1). ♦

The function tropicalVariety uses one of two different algorithms depend-
ing on the input ideal. If the ideal is prime, the tropical variety is connected
through codimension one ([9, Thm. 3.1]) and the Gfan commands
gfan_tropicalstartingcone and gfan_tropicaltraverse, which implement
the algorithm described in [9], are used. However if the ideal is not prime, this
algorithm might fail. The package then calls the more computationally expen-
sive command gfan_tropicalbruteforce, which computes the entire Gröbner
fan. The multiplicities are then computed separately. The package does not re-
quire that the user knows these intricacies, but simply requires that they flag
when the ideal is not prime.

i9 : elapsedTime(

tropicalVariety I);

-- 0.088835 seconds elapsed

i10 : elapsedTime(

tropicalVariety(

I,Prime=>false));

-- 0.103651 seconds elapsed

For most functions, Gfan requires the input to be homogeneous. The
Tropical package will accept non-homogeneous input, and do the pre- and
post-processing to put it into a format acceptable for Gfan. Small additions such
as this help decrease the prerequisite knowledge for the package.

Example 8.4. A tropical cycle is a fan with multiplicities attached to its maximal
cones; it need not be the tropicalization of an algebraic variety. Therefore the
package allows the user to create a tropical cycle manually by defining a fan
via its maximal cones and attaching multiplicities to each of those cones. The
following example shows how we can construct trop Z(I) manually.
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i11 : C1=posHull(matrix{{1},{0}});

i12 : C2=posHull(matrix{{0},{1}});

i13 : C3=posHull(matrix{{-1},{-1}});

i14 : F=fan({C1,C2,C3})

o14 = F

o14 : Fan

i15 : mult={1,1,1}

o15 = {1, 1, 1}

o15 : List

i16 : S=tropicalCycle(F,mult)

o16 = S

o16 : TropicalCycle

i17 : isBalanced S

o17 : true

The tropicalCycle command does not check whether the resulting weighted
fan is balanced. To verify this, we use the isBalanced command. ♦

Example 8.5. Consider the tropical hypersurfaces trop Z( f ) and trop Z(g) cut
out by the polynomials f = x + y + z and g = x2 + y2 + z2. Their intersection
cuts out a tropical prevariety. We would like to compute whether this prevariety
is equal to the tropical variety trop Z(I) where I = ⟨ f , g⟩.

i18 : R=QQ[x,y,z];

i19 : f=x+y+z;

i20 : g=x^2+y^2+z^2;

i21 : l={f,g};

i22 : Tp=tropicalPrevariety l;

i23 : Tv=tropicalVariety ideal l;

i24 : isTropicalBasis l

o24 = false

i25 : dim Tp

o25 = 2

i26 : dim Tv

o26 = 1

The polynomials f , g are not a tropical basis for I and therefore the prevariety
given by them is not equal to trop Z(I). We can see from our computation that
the prevariety has a two-dimensional cone, while trop Z(I) is one-dimensional.

♦

Example 8.6. For two curves Z( f ) and Z(g) in P2, Bézout’s Theorem states
that |Z( f ) ∩ Z(g)| equals deg( f ) · deg(g), counting multiplicities. The tropi-
cal analogue of Bézout’s Theorem states that the stable intersection of trop Z( f )
and trop Z(g) is deg( f ) · deg(g) points, counting multiplicities. The following
example shows how the package and the stableIntersection function can be
used to verify examples of tropical Bézout’s Theorem.
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i27 : f=random(2,R);

i28 : g=random(1,R);

i29 : Tf=tropicalVariety ideal f;

i30 : Tg=tropicalVariety ideal g;

i31 : Tint=stableIntersection(Tf,Tg)

o31 = Tint

o31 : TropicalCycle

i32 : rays Tint

o32 = 0

3

o32 : Matrix ZZ <--- 0

i33 : maxCones Tint

o33 = {{}}

o33 : List

i34 : multiplicities Tint

o34 = {2}

o34 : List

The above code considers the stable intersection of a tropical line and a plane
quadric. The resulting tropical cycle is a single point, the origin, with multiplic-
ity two, verifying the claim of tropical Bézout’s theorem.

The function stableIntersection has two different strategies for computa-
tion depending on the software available to the user. If the user has a recent ver-
sion of Polymake installed, the default strategy is to use atint [48], a Polymake

extension for tropical intersection theory by Simon Hampe. If this is not avail-
able, the package instead uses Gfan to compute the stable intersection. ♦

8.3 Future Plans

We plan for the Tropical package to become the umbrella package for all tropi-
cal computations in Macaulay2. This will include implementing alternate strate-
gies for some of the core commands as algorithms improve, before they are in-
cluded into Gfan and Polymake.

In addition, there are still functions available in Gfan and Polymake that are
not yet available in the package. We particularly highlight the treatment of
nontrivial valuations, which is available in Gfan, and the visualization of low-
dimensional tropical varieties, which is available in Polymake.

149





Part III

A Simplicial Complex for Music
Theory and Praxis
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9 The Complex of Non-Chromatic
Scales

We consider the space of all musical scales with the ambition to systematize it.
To do this, we pursue the idea to view certain scales as basic constituents and to
“mix” all remaining scales from these. This chapter is written for readers who
neither have a background in music nor mathematical knowledge exceeding
basic linear algebra. The German version of this article appeared in Mitteilungen
der DMV, volume 25, issue 1.

The musical idea of using basic constituents for the space of all scales has
been suggested in the recently published book [31] on improvisation (not only)
in jazz music. From the mathematical point of view, these constituents form
a simplicial complex, whose facets coincide with the most widely used scales in
western music – with the exception of the blues scale. We will explain this
connection in the following. First, we have to clarify what exactly we mean
by a scale. The pitch space that is currently used in western music contains
twelve different pitch classes: these are the seven natural notes C, D, E, F, G, A, B
as well as the five notes C♯/D♭, D♯/E♭, F♯/G♭, G♯/A♭, A♯/B♭, which appear as
raising/lowering of the naturals.
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Figure 9.1: Western pitch space in modern times with twelve pitch classes.

From the mathematical perspective, we do not want to distinguish the notes
C♯ and D♭. In what follows, we will always use the ♯-convention. A scale is
simply defined to be a subset of {C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B}. As an
example, we consider the C major scale in our subset notation:

{C, D, E, F, G, A, B} .
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The twelve notes have a cyclic order. For example, in the C major scale we
have again C after the B (see Fig. 9.2). Note that the two C’s in Figure 9.1 are
different pitches, but they are said to be in the same pitch class. This cyclic
order allows us to define a distance between two pitch classes
t1, t2 ∈ {C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B}: on the one hand, we can con-
sider the clockwise distance from t1 to t2, and on the other hand the clockwise
distance from t2 to t1. The distance between t1 and t2 is defined to be the mini-
mum of both clockwise distances. As an example, we look at the pitch classes
A and C: the clockwise distance from A to C is three and the clockwise distance
from C to A is nine, which means that these two pitch classes have distance
three. The sequence of distances between consecutive pitch classes in a scale
in the cyclic order is called the interval sequence of the scale. As we can see in
Figure 9.2, the C major scale has the interval sequence 2-2-1-2-2-2-1.

The cyclic order of the twelve pitch classes implies that the interval sequence
of a scale has a cyclic order, too. For example, we can also say that the C ma-
jor scale has the interval sequence 2-1-2-2-2-1-2. From the musical perspective,
we would say that we start the major scale from a different root than C – in
this case D. This yields the widely used Gregorian modes, D-Dorian in our case.
Mathematically speaking, we would identify the scales C-Ionian, D-Dorian, E-
Phrygian, F-Lydian, G-Mixolydian, A-Aeolian (natural A minor) and B-Locrian with
each other, since they all have the same interval sequence. These modes are im-
portant in modal jazz. Since there are twelve major scales and thus 12 · 7 = 84 dif-
ferent Gregorian modes, the mentioned book by Deuker [31] takes the didactical
approach to restrict oneself to the consideration of the major scales instead of
studying all Gregorian modes, although this is still common in the widespread
scale theory. A modern representative of the latter approach is for example Mark
Levine [73].

An interval of length one is called semitone (or half tone) and an interval of
length two is called whole tone. The scale whose intervals are twelve semitones
(and thus contains all twelve pitch classes) is called chromatic scale. Therefore,
we say that a scale whose interval sequence does not contain two consecutive
semitones is non-chromatic. This is equivalent to the scale not containing three
consecutive pitch classes in the cyclic order in Figure 9.2. The C major scale is
an example for such a non-chromatic scale. A counterexample is given by the
scale

{C, C♯, E, F, G, A, B} ,

with interval sequence 1-3-1-2-2-2-1. With some justification, we can view the
non-chromatic scales as the “primary colors” in music, whereas the (partly)
chromatic scales with at least two consecutive semitones could be seen as “sec-
ondary colors”. With this approach, the mentioned book [31] tries to order the
space of all scales systematically.

Here we consider the non-chromatic scales from the mathematical perspec-
tive. The non-chromatic scales form a simplicial complex. Such a simplicial com-
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Figure 9.2: Cyclic order of the twelve pitch classes. Marked in green: C major
scale with interval sequence.

plex is defined on a ground set G as a set K of finite subsets of G such that, for
every set M in K and every subset T of M, we have that T is also in K. As an ex-
ample, we choose the ground set G := {0, 1, 2}. The set K1 := {{0, 1}, {2}}
is not a simplicial complex since {0} is a subset of {0, 1} but not contained
in K1. We can extend K1 to a simplicial complex in the following way:
K2 := {{0, 1}, {0}, {1}, {2}, ∅}.

The set of all non-chromatic scales is a simplicial complex on the ground set
of the twelve pitch classes G := {C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B}. Indeed,
if we remove a pitch class from a non-chromatic scale, the scale stays non-
chromatic. We denote this complex of non-chromatic scales in the following by
KNC. In other words, we can define KNC as the set of all subsets of the twelve
pitch classes in Figure 9.2 which do not contain three consecutive pitch classes.
In the following, we want to answer three questions concerning KNC which
mathematicians typically ask about a given simplicial complex. Moreover, we
will see that these questions are musically relevant.

9.1 f -Vector

We can represent the sets with n elements in a simplicial complex geometrically
as (n− 1)-dimensional objects. A set with one element corresponds to a point, a
set with two elements to a line segment, a set with three elements to a triangle,
a set with four elements to a tetrahedron, etc. This allows us to draw simplicial
complexes (see Figure 9.3 for an illustration of the example complex K2). Such
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9 THE COMPLEX OF NON-CHROMATIC SCALES

an illustration is purely schematic; for example, embeddability of the complex
is not essential.

� � �

Figure 9.3: K2.

The higher-dimensional generalization of a tetrahedron is called simplex. This
is where the name “simplicial complex” stems from. Now we consider a fixed
simplicial complex and a positive integer n. We denote by fn the number of
n-dimensional simplexes in K (i.e., the number of sets in K that have n + 1
elements). We view the empty set ∅, which is contained in every simplicial
complex, as a −1-dimensional simplex and therefore we set f−1 = 1. The list
( f−1, f0, f1, f2, f3, . . .) of all these numbers is the f -vector of K. The f -vector of
the example complex K2 is (1, 3, 1).

When we ask for the f -vector of our simplicial complex KNC, we ask how
many non-chromatic scales with 0, 1, 2, 3, . . . , 12 pitch classes exist. This is rel-
evant musically; for example, one might want to know how to improvise non-
chromatically. In this case, it is particularly important to know how many pitch
classes one is allowed to use maximally. Furthermore, there are several im-
provisational approaches which are built up on pentatonic scales – these are
scales with five pitch classes. Therefore the number of non-chromatic penta-
tonic scales is relevant. We calculated the f -vector of KNC using the software
polymake [42] (it also possible to do it by hand without too much effort):

(1, 12, 66, 208, 399, 456, 282, 72, 3)
( f−1, f0, f1, f2, f3, f4, f5, f6, f7)

.

In particular, this implies there there is no non-chromatic scale with nine or
more pitch classes. Moreover, there are exactly three non-chromatic scales with
eight pitch classes. We will have a closer look at these three scales in the next
section. Furthermore, we note that there are 456 non-chromatic pentatonic
scales.

9.2 Facets

A simplex in a simplicial complex K that is not contained in any other simplex
of K is called facet. The example complex K2 has two facets, namely {0, 1}
and {2}.

In musical terms, we want to know how many non-chromatic scales exist to
which we cannot add a further pitch class without creating two consecutive
semitones. One example for such a scale is the C major scale. This concept

156



9.2 Facets

of maximality is also important to improvising: it is enough to remember all
maximal non-chromatic scales since all other non-chromatic scales are subsets
of the maximal ones. This is the reason why the mentioned book by Deuker [31]
treats these scales in detail. He even proves in the second chapter that there are
exactly 57 maximal non-chromatic scales and outlines the significance of these
scales in music history. It is remarkable that these scales are important in music
as well as visible in the mathematical formulation (as facets of KNC).

In the following, we describe the 57 facets of KNC.

number of number of name of
pitch classes interval sequence scales scales

8 2-1-2-1-2-1-2-1 3 diminished
7 2-2-1-2-2-2-1 12 major
7 2-1-2-2-2-2-1 12 melodic minor
7 2-1-2-2-1-3-1 12 harmonic minor
7 2-2-1-2-1-3-1 12 harmonic major
6 2-2-2-2-2-2 2 whole tone
6 1-3-1-3-1-3 4 augmented

Table 9.1: 57 maximal non-chromatic scales.

We see in Table 9.1 that the 57 maximal non-chromatic scales have only seven
different interval sequences. Looking at the first row, there are three different
scales which each have eight pitch classes and the prescribed interval sequence.
These three scales are exactly those that we encountered when calculating the
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Figure 9.4: The three diminished scales.

f -vector. They are depicted in Figure 9.4. Furthermore, we see 48 maximal
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9 THE COMPLEX OF NON-CHROMATIC SCALES

non-chromatic scales which consist of seven pitch classes. These come in four
different types, determined by the interval sequence. The f -vector tells us that
there are exactly 72 = 48 + 24 non-chromatic scales with seven pitch classes.
The remaining 24 = 3 · 8 scales are subsets of the three scales with eight pitch
classes in Figure 9.4, each of those containing eight subsets with seven elements.
Moreover, there are six maximal non-chromatic scales with six pitch classes.
In particular, we see that the facets of our simplicial complex have different
dimensions. Mathematically we say that KNC is not pure.

Now we want to describe the meaning of these 57 facets in music.
2-1-2-1-2-1-2-1: This interval sequence has three different associated scales,

see Figure 9.4. These are the diminished scales, also known as the octatonic scales,
because they are the most widely used scales among all the scales with eight
pitch classes. Nowadays they are frequently used in jazz. There is a whole jazz-
textbook devoted to these scales [106]. Around the year 1900, the diminished
scales were quite popular in Russia, in particular in compositions by Rimski-
Korsakov. The Dutch composer Willem Pijper used these scales extensively as
well. Thus, the diminished scales are sometimes also called Korsakovian scales
or Pijper scales.

2-2-1-2-2-2-1: This interval sequence corresponds to the well-known major
scale (today often called melodic major scale). Our first example of a scale was the
C major scale, but all twelve possibilities to choose a starting note yield twelve
different major scales (D♭ major, D major, etc.). These are the most widely used
scales in western music. As already mentioned, the interval sequence above
corresponds as well to the natural minor scales and the other Gregorian modes.
For example, the C major scale has exactly the same pitch classes as the natural
A minor scale. From the point of view of minor scales, we would write the
interval sequence as 2-1-2-2-1-2-2. This variant of minor scales is the second
most common scale in occidental music, directly after the major scales.

2-1-2-2-2-2-1: These are the melodic minor scales. There are again twelve dif-
ferent ones, depending on the chosen starting note. The melodic minor scales
are widespread, from early compositions – particularly vocal music – to modern
pop and rock. There is a common rule in books about the theory of harmony
which says that the ascending melodic minor scale is the scale defined above,
whereas the descending melodic minor scale is the same as the natural minor
scale with the same starting note. This rule is uninteresting from the mathe-
matical perspective, and Deuker [31] takes the view that it does not make much
sense from the practical musical perspective either since specific melodies are
rarely linearly ascending or descending.

2-1-2-2-1-3-1: This interval sequence corresponds to the harmonic minor scales.
All twelve possible starting notes give twelve different such scales. In contrast
to melodic minor scales, the harmonic minor scales are mainly used to build
chords, but in particular in compositions by Mozart or Schubert they do appear
in melodies as well.

2-2-1-2-1-3-1: This last type of seven-note maximal non-chromatic scales has
again twelve different representatives. These are called harmonic major scales.
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They are conceived as a mixture of major and harmonic minor scales, and they
are found most frequently in jazz music.

2-2-2-2-2-2: This is the whole tone scale. Due to its high symmetry, there are
just two different such scales, depending on the starting note. Since there are
no semitones at all, the choice of the starting note is a relatively arbitrary de-
termination and there is no audible root in the scale. As a consequence, the
impression of the whole tone scale is often described as levitating. In modern
western music (except jazz), this scale is not used that often, but in impression-
ism – in particular in compositions by Debussy – it played a major role, and it
was applied before this era by Franz Liszt and Rimski-Korsakow.

1-3-1-3-1-3: The augmented scales belong to this interval sequence. Analo-
gously to the case of the diminished scales (see Fig. 9.4), there are four different
augmented scales. These appeared already in compositions by Franz Liszt, but
they were used increasingly in the 20th century by composers like Béla Bartók
or Arnold Schönberg as well as in jazz. There is even a jazz-textbook which is
explicitly dedicated to the augmented scales [89].

At the end of this section, we want to deduce why there are exactly the seven
possibilities in Table 9.1 for an interval sequence I of a maximal non-chromatic
scale.

Observation 1: I cannot contain an interval of length four or more. If I
would have such an interval –e.g., between the pitch classes C and E –, then we
could add a pitch class in the middle of the interval (D in the example) and the
scale would stay non-chromatic.

Observation 2: If I contains an interval of length three, then the right and
the left neighbor of this interval in I must be both semitones. In other words, if
3 is contained in I , then I has to contain the sequence 1-3-1. Indeed, if I would
contain the sequence 3-2 – e.g., the pitch classes C, D♯ and F are in the scale –,
then we could add a pitch class from the interval of length three (in the example
D) to the scale such that the scale would stay non-chromatic.

Using these two observations, we can distinguish a few cases to explore all
seven possibilities for I .

Case 1: I contains a 3 and thus – by Observation 2 – the sequence 1-3-1. Either
we extend this sequence with a 3 or with a 2. If we choose to extend it with a
3, we see that I has to contain the sequence 1-3-1-3-1. Since all numbers in I
have to add up to twelve, there is just one possibility to extend the sequence to
an interval sequence of a non-chromatic scale:

1 − 3 − 1 − 3 − 1 − 3.

If we would have chosen to extend the sequence 1-3-1 on the left side with a
3, the same interval sequence would have been our result. Hence, we have
just one case left to consider, namely that I contains the sequence 2-1-3-1-2. By
Observation 2, we have to complete this sequence with a 2 and a 1, which yields
two possibilities:

2 − 2 − 1 − 2 − 1 − 3 − 1,

159



9 THE COMPLEX OF NON-CHROMATIC SCALES

2 − 1 − 2 − 2 − 1 − 3 − 1.

Case 2: I contains no 3, and as a consequence, consists only of ones and twos.
Since the sum of all numbers in I has to be twelve, the number of ones in I is
even. If I contains no ones at all, we know that I looks as follows:

2 − 2 − 2 − 2 − 2 − 2.

If I contains exactly two ones, then there are only two possibilities to arrange
them:

2 − 1 − 2 − 2 − 2 − 2 − 1,
2 − 2 − 1 − 2 − 2 − 2 − 1.

Due to the cyclic order, the further possibilities 2-2-2-1-2-2-1 and 2-2-2-2-1-2-1
are in fact equal to the two interval sequences above. If I contains four ones, it
is already uniquely determined:

2 − 1 − 2 − 1 − 2 − 1 − 2 − 1.

Moreover, this shows that I cannot contain more than four ones.

9.3 Topology

Topology is a branch of mathematics that investigates which properties of spaces
are preserved under continuous deformations. We say that a deformation is
continuous if – roughly speaking – it does not require to cut or glue parts of the
space. Typical examples of continuous deformations are stretching and bending
of spaces. For example, a ball can be continuously deformed to a cube. Since
this deformation can also be reversed continuously, we say that ball and cube
are homeomorphic. A mug with a handle is homeomorphic to a donut with a
hole. However, such a donut is not homeomorphic to a ball, because its hole
cannot be filled by a continuous deformation. Thus, the number of holes is an
example of a property that homeomorphic spaces have in common.

The idea of homeomorphy can be extended to homotopy equivalence, which
also preserves the number of holes. Let X and Y be two spaces with two con-
tinuous maps g : X → Y and f : Y → X. If the compositions f ◦ g : X → X and
g ◦ f : Y → Y are the identities on X and Y, respectively (i.e., f (g(x)) = x for
all x ∈ X and g( f (y)) = y for all y ∈ Y), then X and Y are called homeomorphic.
If the map f ◦ g can be deformed continuously to the identity on X and if g ◦ f
can be deformed continuously to the identity on Y, then we say that X and Y
are homotopy equivalent. Hence, every homeomorphism is a homotopy equiva-
lence. Examples of homotopy equivalences that are not homeomorphisms are
to thicken or to squash spaces. For instance, a ball and a point are homotopy
equivalent but not homeomorphic.
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Holes in Simplicial Complexes. We can also count holes in a given simpli-
cial complex K. For this, we determine the (reduced) simplicial homology of the
complex. We give here a short introduction to this topic and refer the interested
reader to [51]. As in the definition of the f -vector, we consider all n-dimensional
simplexes in K. A formal sum over these simplexes denotes simply a sum of the
simplexes with rational coefficients, which we write down without evaluating
it. We denote by Cn(K) the set of all such formal sums. This is a vector space
over the rational numbers Q. In our example complex K2, we have among oth-
ers the following formal sums:

3
2
{0, 1} ∈ C1(K2), 2{0} − {2} ∈ C0(K2), −∅ ∈ C−1(K2).

The boundary operator maps an n-dimensional simplex to its (n − 1)-dimen-
sional boundary. It maps, for instance, a triangle to its three bounding line
segments, and a tetrahedron to its four faces (which are triangles). Formally,
the boundary operator ∂n : Cn(K) → Cn−1(K) is defined by mapping every set
in K with (n + 1) elements to an alternating sum of its subsets with n elements.
For this, the elements of a set with (n + 1) elements will be omitted one after
the other, in an order that was fixed beforehand. In our example K2 this means:

∂1({0, 1}) = {1} − {0},
∂0({0}) = ∂0({1}) = ∂0({2}) = ∅.

The formal sums in Cn(K) that get mapped to 0 by the boundary operator
are called n-cycles. The set of all these cycles is a vector space, which we de-
note by Zn(K). We call the image ∂n+1(Σ) of a formal sum Σ ∈ Cn+1(K)
an n-boundary. The set of all these boundaries is also a vector space, denoted
Rn(K). Now one can verify immediately that every n-boundary is an n-cycle,
i.e., Rn(K) ⊆ Zn(K). We say that two n-cycles are equivalent if their difference is
an n-boundary. The equivalence class of an n-cycle ζ is the set of all n-cycles that
are equivalent to ζ. We denote by Hn(K) the set of all equivalence classes. This
is again a vector space, called the n-th homology group of K.

In our example K2, the 0-cycles are all formal sums of the form a{0}+ b{1}+
c{2}, where a, b, c are rational numbers with a + b + c = 0. The 0-boundaries
look as follows: d{0} − d{1} with d ∈ Q. Thus, the equivalence class of a 0-
cycle a{0}+ b{1}+ c{2} consists of all 0-cycles that have the same coefficient
c in front of {2}. Hence, such an equivalence class is uniquely determined by
the coefficient c. Since c is an arbitrary rational number, we say that H0(K2) is
isomorphic to Q. The only 1-cycle of K2 is 0 (i.e., the formal sum with coefficients
0). Due to the fact that K2 contains no set with 3 elements, we can say that 0 is
also the only 1-boundary of K2. This shows that H1(K2) contains nothing but 0.

When considering the illustration of K2 in Figure 9.3, we see that K2 is not
connected. This means that one cannot draw K2 without lifting the pen. In-
stead, K2 has two connected components. We can read off the number of these
components from the zeroth homology group: for every simplicial complex K,
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the vector space H0(K) is isomorphic to the vector space Qk−1, where k is the
number of connected components of K. We use the convention that Q0 = {0}.

We cannot only count the connected components of a simplicial complex with
homology, but also the number of holes. To explain this, we consider a filled and
an unfilled triangle as example complexes:

K△ := {{0, 1}, {1, 2}, {0, 2}, {0}, {1}, {2}, ∅},
KN := {{0, 1, 2}, {0, 1}, {1, 2}, {0, 2}, {0}, {1}, {2}, ∅}.

The illustration of both complexes looks as follows:

� �
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Figure 9.5: K△ and KN.

Since both triangles are connected, we know that H0(K△) and H0(KN) must
be isomorphic to {0}. We can verify this directly: both for K△ and for KN, the
first two boundary operators are equal:

∂1({0, 1}) = {1} − {0},
∂1({1, 2}) = {2} − {1},
∂1({0, 2}) = {2} − {0},

∂0({0}) = ∂0({1}) = ∂0({2}) = ∅.

Thus, all 0-cycles of both simplicial complexes are of the form a{0} + b{1} +
c{2}, where a, b, c are rational numbers with a + b + c = 0. The 0-boundaries
look like

d({1} − {0}) + e({2} − {1}) + f ({2} − {0})
= (−d − f ){0}+ (d − e){1}+ (e + f ){2}

with d, e, f ∈ Q. From this we deduce that every 0-cycle is a 0-boundary. Hence,
there is just one equivalence class of 0-cycles, and H0(K△) = H0(KN) is a set
with one element, which is consequently isomorphic to {0}, as claimed above.

The 1-cycles of K△ and KN are of the form d{0, 1} + d{1, 2} − d{0, 2}. The
boundary operator ∂2 of the filled triangle KN maps {0, 1, 2} to {1, 2}− {0, 2}+
{0, 1}. That is why the 1-boundaries of KN look exactly like the 1-cycles, and
H1(KN) contains just one equivalence class. We conclude again that H1(KN)
is isomorphic to Q0. Since the unfilled triangle K△ contains no sets with three
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elements, the only 1-boundary of K△ is 0. Therefore, different 1-cycles of K△
can never be equivalent. We get that H1(K△) is isomorphic to Q1, because the
coefficient d of the 1-cycles is an arbitrary rational number. The triangle K△ has
a (one-dimensional) hole, whereas KN has no holes. Thus, we have for both
triangles that the dimensions of H1(K△) and H1(KN) are equal to the number
of one-dimensional holes of K△ and KN, respectively.

Furthermore, we see in Figure 9.3 that K2 has no one-dimensional holes,
which fits to our calculation that H1(K2) = {0}. We can generalize this idea: in-
tuitively, the dimension of Hn(K) counts the n-dimensional holes in a simplicial
complex K.

Holes in KNC. Now one might ask the question how many holes of which
dimensions are in the complex of non-chromatic scales, and what is the musical
meaning of these holes? Using the software polymake, we obtain that H5(KNC)
is isomorphic to Q3 and that all other homology groups are simply {0}. As a
consequence, we can conclude that KNC has three 5-dimensional holes. More-
over, the software polymake gives us a basis for the homology for each of the
three holes, i.e., a set of hexatonic (6-note) scales that defines the boundary of
the hole. Furthermore, we can check with polymake that the union of those
hexatonic scales that define the boundary of such a hole is homeomorphic to
the 5-sphere. The n-sphere is the boundary of an (n + 1)-dimensional ball. For
instance, the unfilled triangle in Figure 9.5 is homeomorphic to the 1-sphere,
which is simply the boundary of a circle. Roughly speaking, we can imagine
the complex of non-chromatic scales to be composed of three 5-spheres.

Such a 5-sphere consists – as mentioned above – of hexatonic scales. Addi-
tionally, all subscales of such a hexatonic scale lie also on the respective sphere;
just as the unfilled triangle in Figure 9.5 consists of sets with two elements, but
their subsets with one element lie as points on the triangle. Now we still have
scales with seven and eight pitch classes in KNC. We explain why these do
not play any role in the topological picture of the three spheres using so-called
collapses (see e.g. [68]). Whenever a simplicial complex K has a facet F with a
subset M ⊆ F such that the following two properties hold:

1. M contains exactly one element less than F,

2. F is the only facet that contains M,

then we can remove F and M from the complex K and we obtain another sim-
plicial complex. This process is referred to as a collapse and it is an example for
a homotopy equivalence of simplicial complexes. In particular, the homology
groups of the smaller complex are isomorphic to the homology groups of K,
and both simplicial complexes have the same number of holes. Let us observe
the example in Figure 9.6 to understand better how a collapse looks and why it
leaves the number of holes unchanged.

In our complex of non-chromatic scales, we remove successively all scales
with seven and eight pitch classes by using collapses. For example, if we re-
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Figure 9.6: The left simplicial complex has 3 facets, but only one of these can
be collapsed: {1, 2, 3}. In doing so, we can either remove the inner
edge (green) or one of the two outer edges (e.g., orange). In the first
case, we cannot perform a second collapse after the first one. In the
second case, there is exactly one further collapse possible.

move the pitch class C from the first eight-note scale in Figure 9.4, then we ob-
tain a seven-note scale which can be extended to an eight-note non-chromatic
scale in exactly one way. Thus, we can perform a collapse with these two
scales. We consider the C major scale as a second example. Here we can re-
move the pitch class D such that the resulting hexatonic scale is contained in
only one maximal non-chromatic scale. Therefore, we can collapse the C ma-
jor scale and its hexatonic subscale. In this manner, we can remove all scales
with seven and eight pitch classes from KNC. This means that there are higher-
dimensional scales (namely with seven and eight pitch classes) glued onto the
three 5-spheres in KNC (which have hexatonic scales in their boundaries), just
as the filled triangle is glued onto the unfilled triangle in Figure 9.6. By the way,
it is impossible to collapse the hexatonic facets of KNC.

We are left with the question how our three spheres look exactly. In par-
ticular, we want to understand which hexatonic scales define the boundary of
which sphere. For this, we consider the augmented triad C − E − G♯. After re-
moving this triad from our twelve pitch classes, we obtain the nine-note scale
in Figure 9.7 which was used by the French composer Messiaen.

This scale does not contain non-chromatic scales with seven or eight pitch
classes, but 27 non-chromatic scales with six pitch classes. The latter scales
can be obtained as follows: choose two pitch classes out of C♯− D − D♯ (there
are three possibilities to do this), then pick two pitch classes from F − F♯ − G
(again, there are three possibilities), and finally choose two pitch classes out of
A − A♯− B (which gives three more possibilities). Our analysis with polymake

shows that these 27 hexatonic scales (and their subscales) form one of our three
5-spheres.

As in the case of the three different diminished scales in Figure 9.4, we see
that there are four different Messiaen scales with nine pitch classes, which are
obtained by omitting an augmented triad (see Figure 9.10). Each of these four
scales contains 27 non-chromatic hexatonic scales, which form a sphere in KNC.
However, we claimed before that there are only three holes in KNC. The rea-
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Figure 9.7: Messiaen’s nine-note scale.

son for this is that the four Messiaen spheres described above are not indepen-
dent of each other in KNC. This principle can be easily explained by looking
at the skeleton of a tetrahedron: whenever we draw the simplicial complex in
Figure 9.8, we see only three one-dimensional holes, although there are four
1-spheres (unfilled triangles).

� �

�

�

Figure 9.8: Simplicial complex with facets {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3},
{2, 3}.

One can show that any three of the four Messiaen spheres are indeed inde-
pendent of each other in KNC, i.e., that they form a basis of the vector space
H5(KNC). Let us finally observe that each 5-sphere described above contains
exactly three of the hexatonic facets of KNC. In fact, any two distinct Messiaen
scales intersect in a hexatonic facet of KNC, and all six hexatonic facets come as
such an intersection (see Figure 9.10). Three distinct Messiaen scales intersect in
an augmented triad, i.e., in a filled triangle as in Figure 9.5. In particular, we can
successively perform collapses on the intersection of any two Messiaen spheres
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to obtain the common augmented triad, and afterwards we can collapse this
triad until there is just a point left. That is why we can say from a topological
perspective that the three spheres are glued together at a point. Hence, we can
think of KNC as three 6-dimensional balloons, which are held together at one
point and have a higher-dimensional layer glued onto them (see Figure 9.9).

Figure 9.9: Schematic illustration of the topology of KNC.

We have described the 57 facets of the simplicial complex KNC as well as
its topological structure from the point of view of mathematics and music. In
Mitteilungen der DMV, volume 22, issue 4, there is an article on “Mathematik
und Musik?” written by the mathematician and pianist Christian Krattenthaler,
which holds the opinion that mathematics and music have actually nothing to
do with each other. However, we came to the conclusion that this is not always
the case, since the simplicial complex KNC has both mathematical and musical
meaning, and there are many more connections between musical practice (e.g.,
change of scales) and mathematics that can be investigated.
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Figure 9.10: The hexatonic facets of KNC are the pairwise intersections of the
four Messiaen scales.
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Appendix

Here we present Macaulay2 code for computations in our examples and remarks
in Part I. This code can also be found at

https://github.com/kathlenkohn/thesis-material

in the folder appendix. At several places, we use the package Coisotropy,
which is also provided at this URL. We specify the computation time for each
line of code which needed more than one second when executed on the follow-
ing machine:

• CPU: Intel Core i7-5600U, 2.60GHz

• RAM: DDR3, 16 GB

Code A. We use the package Coisotropy (see also Section 3.9) to verify the
computations in Example 3.6.

loadPackage "Coisotropy"

R = QQ[x_0..x_3]

I = ideal(sum apply(4, i -> x_i^3))

coisotropicForm (I,1) --Hurwitz form in primal Plücker coordinates

coisotropicForm (I,2) --second coisotropic form

dualVariety I

The following code verifies that the polynomial (2.5) is indeed the Hurwitz form
as computed above:

G = Grassmannian (1,3)

S = ring G

v = flatten entries vars S

q_{0,1} = v#0

q_{0,2} = v#1

q_{0,3} = v#3

q_{1,2} = v#2

q_{1,3} = v#4

q_{2,3} = v#5

q_{1,0} = - q_{0,1}

q_{2,0} = - q_{0,2}

q_{3,0} = - q_{0,3}

q_{2,1} = - q_{1,2}

q_{3,1} = - q_{1,3}

q_{3,2} = - q_{2,3}

polOld = q_{0,1}^6+q_{0,2}^6+q_{0,3}^6+q_{1,2}^6+q_{1,3}^6+q_{2,3}^6
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+2*(q_{1,0}^3*q_{0,2}^3+q_{1,0}^3*q_{0,3}^3+q_{2,0}^3*q_{0,3}^3

+q_{0,1}^3*q_{1,2}^3+q_{0,1}^3*q_{1,3}^3+q_{2,1}^3*q_{1,3}^3

+q_{0,2}^3*q_{2,1}^3+q_{0,2}^3*q_{2,3}^3+q_{1,2}^3*q_{2,3}^3

+q_{0,3}^3*q_{3,1}^3+q_{0,3}^3*q_{3,2}^3+q_{1,3}^3*q_{3,2}^3)

+2*(q_{0,1}*q_{2,3}*(q_{0,3}^2*q_{1,2}^2-q_{0,2}^2*q_{1,3}^2)

-q_{0,2}*q_{1,3}*(q_{0,1}^2*q_{2,3}^2-q_{0,3}^2*q_{1,2}^2)

+q_{0,3}*q_{1,2}*(q_{0,2}^2*q_{1,3}^2-q_{0,1}^2*q_{2,3}^2))

polNew = coisotropicForm (I,1)

T = ring polNew

Phi = map(S,T,{q_{0,1},q_{0,2},q_{1,2},q_{0,3},q_{1,3},q_{2,3}})

polNew = Phi(polNew)

G+ideal(polOld) == G+ideal(polNew)

Code B. We use the package Coisotropy (see Section 3.9) to verify the Hurwitz
form of the Segre variety P1 × P1 as stated in Example 3.16.

loadPackage "Coisotropy"

R = QQ[a..d]

I = ideal(a*d-b*c)

coisotropicForm (I,1)

Code C. We use the package Coisotropy (see Section 3.9) to verify the Chow
form of the Segre variety P1 × P2 as stated at the very end of Example 3.23.

loadPackage "Coisotropy"

R = QQ[x_(0,0)..x_(1,2)]

M = genericMatrix(R,3,2)

I = minors(2,M)

ch = coisotropicForm (I,0) --took 5.5 hours to compute

primalToDual(ch,1,5)

Code D. The following code verifies that the incidence variety of inflectional
lines of a random cubic surface as described in Remark 5.44 is smooth. We
compute the ideal I of the incidence variety in the same affine chart as in Theo-
rem 5.37

R = ZZ[x_0..x_3]

f = random(3,R)

R = QQ[x_1..x_3, a,b,c,d]

g_0 = sub(sub(f, {x_0 => 1}),R)

g_1 = diff(x_1, g_0) + c*diff(x_2, g_0) + d*diff(x_3, g_0)

g_2 = diff(x_1, g_1) + c*diff(x_2, g_1) + d*diff(x_3, g_1)

I = ideal(g_0, g_1, g_2, x_2-x_1*c-a, x_3-x_1*d-b)

Sing = ideal singularLocus I --took 8.4 minutes to compute

dim Sing, degree Sing --checks that this singular locus is empty

Code E. We use the package Coisotropy (see Section 3.9) to compute the dual
variety of the surface S defined in Example 6.3.
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loadPackage "Coisotropy"

R = QQ[x_0..x_3]

f = 16*x_1^3*x_2^3-27*x_0^2*x_2^4+6*x_0*x_1^2*x_2^2*x_3

-27*x_1^4*x_3^2+48*x_0^2*x_1*x_2*x_3^2-16*x_0^3*x_3^3

I = ideal f

dualVariety I

Now we compute the curve C ⊂ Gr(1, P3) which encodes the ruling of S .

S = QQ[x_0..x_3,p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)][t]

subL = {x_0 => -p_(2,3), x_1 => t*p_(2,3), x_2 => p_(0,3)-t*p_(1,3),

x_3 => t*p_(1,2)-p_(0,2)}

coeffs = last coefficients sub(sub(f,S), subL)

Icoeffs = ideal flatten entries coeffs

G = QQ[p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)]

Icoeffs = sub(Icoeffs,G)

+ ideal(p_(0,1)*p_(2,3)-p_(0,2)*p_(1,3)+p_(0,3)*p_(1,2))

C = saturate (Icoeffs, ideal(p_(2,3)))

C = radical C

Finally, we compute the edge of regression of S . We do this by first computing
the union of the lines which are dual to the lines on C. This is the dual surface
of the edge of regression; see Figure 6.1.

subL = {p_(0,1) => p_(2,3), p_(0,2) => -p_(1,3), p_(0,3) => p_(1,2),

p_(1,2) => p_(0,3), p_(1,3) => -p_(0,2), p_(2,3) => p_(0,1)}

Cdual = sub(C, subL)

S = QQ[x_0..x_3,p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)]

M = matrix{{0, p_(0,1), p_(0,2), p_(0,3)},

{-p_(0,1), 0, p_(1,2), p_(1,3)},

{-p_(0,2), -p_(1,2), 0, p_(2,3)},

{-p_(0,3), -p_(1,3), -p_(2,3), 0}}

v = transpose matrix{{x_0,x_1,x_2,x_3}}

J = ideal flatten entries (M*v)+sub(Cdual,S)

plVars = {p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)}

J = saturate(J, ideal plVars)

Edual = eliminate(J, plVars)

Edual = sub(Edual, R)

dualVariety Edual

Code F. We compute the tangential surface of the curve X in Example 6.11.

R = QQ[s,t,x_0..x_3]

f = s^3*t^2+s^3+t^2+s+t+1

ft = diff(t,f)

fs = diff(s,f)

M = matrix{{1,s,t,s*t},

{0, -ft, fs, s*fs-t*ft},

{x_0,x_1,x_2,x_3}}

I = ideal(f)+minors(3,M)

eliminate(I,{s,t}) --took 6.6 seconds to compute
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Code G. We compute the dual curve of the edge surface of the curve X as in
Example 6.12. First, we need a function which computes the k-th subresultant
of two polynomials p and q in one variable t.

subresultant = (p,q,t,k) -> (

d0 = degree (t,p);

d1 = degree (t,q);

D = d0+d1;

M = sylvesterMatrix (p,q,t);

L1 = apply(k, i -> D-i-1);

L2 = L1 | apply(k, i -> d1-i-1);

M = submatrix’(M, L2, L1);

S = apply(k+1, i -> D-(k+1+i));

Res = {};

scan(S,s -> Res = Res|{determinant submatrix’(M, ,delete(s,S))});

Res

)

Secondly, we precompute ∆(2,2)(5).

R = QQ[c_0..c_5][t]

F = sum apply(6, i -> c_i*t^i)

Ft = diff(t,F)

S2 = subresultant(F,Ft,t,2)

S1 = subresultant(F,Ft,t,1)

S0 = {determinant sylvesterMatrix(F,Ft,t)}

I = ideal(S0|S1)

I = saturate(I, ideal c_5)

Delta = saturate(I, ideal discriminant(S2#2*t^2+S2#1*t+S2#0,t))

Finally, we compute E p(X).

S = QQ[y_0..y_3,s,t]

f = s^3*t^2+s^3+t^2+s+t+1

subL = {t => -(y_0+y_1*s) / (y_2+y_3*s)}

g = sub(f,subL)

g = numerator(g)

C = reverse flatten entries last coefficients(g, Variables => {s})

T = QQ[c_0..c_5, y_0..y_3]

subL = apply(6, i -> (c_i => sub(C#i,T)))

I = sub(sub(Delta, T),subL)

U = QQ[y_0..y_3]

I = sub(I,U)

I = saturate I --took 6 seconds to compute

Code H. The following code illustrates Proposition 6.14 for rational curves of
degree six.

A = random(ZZ^4, ZZ^7)

Ext2A = exteriorPower(2,A)
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R = QQ[p_(0,1),p_(0,2),p_(1,2),p_(0,3),p_(1,3),p_(2,3),r_(0,1),r_(0,2),

r_(1,2),r_(0,3),r_(1,3),r_(2,3),r_(0,4),r_(1,4),r_(2,4),r_(3,4),

r_(0,5),r_(1,5),r_(2,5),r_(3,5),r_(4,5),r_(0,6),r_(1,6),r_(2,6),

r_(3,6),r_(4,6),r_(5,6)]

P = matrix{{p_(0,1),p_(0,2),p_(1,2),p_(0,3),p_(1,3),p_(2,3)}}

VarsP = flatten entries (P*Ext2A)

VarsR = {r_(0,1),r_(0,2),r_(1,2),r_(0,3),r_(1,3),r_(2,3),r_(0,4),

r_(1,4),r_(2,4),r_(3,4),r_(0,5),r_(1,5),r_(2,5),r_(3,5),r_(4,5),

r_(0,6),r_(1,6),r_(2,6),r_(3,6),r_(4,6),r_(5,6)}

B = matrix{{r_(0,1),r_(0,2),r_(0,3),r_(0,4),r_(0,5),r_(0,6)},

{r_(0,2),r_(0,3)+r_(1,2),r_(0,4)+r_(1,3),r_(0,5)+r_(1,4),

r_(0,6)+r_(1,5),r_(1,6)},

{r_(0,3),r_(0,4)+r_(1,3),r_(0,5)+r_(1,4)+r_(2,3),

r_(0,6)+r_(1,5)+r_(2,4),r_(1,6)+r_(2,5),r_(2,6)},

{r_(0,4),r_(0,5)+r_(1,4),r_(0,6)+r_(1,5)+r_(2,4),

r_(1,6)+r_(2,5)+r_(3,4),r_(2,6)+r_(3,5),r_(3,6)},

{r_(0,5),r_(0,6)+r_(1,5),r_(1,6)+r_(2,5),r_(2,6)+r_(3,5),

r_(3,6)+r_(4,5),r_(4,6)},

{r_(0,6),r_(1,6),r_(2,6),r_(3,6),r_(4,6),r_(5,6)}}

subL = apply(#VarsR, i -> (VarsR#i => VarsP#i))

I = minors(4,sub(B, subL)) --took 12.5 seconds to compute

S = QQ[p_(0,1),p_(0,2),p_(1,2),p_(0,3),p_(1,3),p_(2,3)]

I = sub(I,S) + ideal(p_(0,1)*p_(2,3)-p_(0,2)*p_(1,3)+p_(0,3)*p_(1,2))

C = saturate I --took 2.8 seconds to compute

Code I. We compute the trisecant surface of the curve X in Example 6.15. First,
we need a function which computes a polynomial in Plücker coordinates from
a given polynomial in Stiefel coordinates, if possible. The following is an im-
plementation by Paolo Tripoli of [99, Algorithm 3.2.8].

piglia = (e,n,l) -> (

outp:={};

vr1:=new MutableList;

vr2:=new MutableList;

vr3:=new MutableList;

for a from 0 to l-1 do vr1#a=e_{n*a..(n*(a+1))-1};

for i from 0 to (l-2) do (while (vr1#i!=apply(n, a-> 0)) do

(for j from i to (l-1) do vr2#j=position (vr1#j, a->a!=0);

outp={apply(l, a-> (if a< i then 0 else vr2#a))}|outp;

for j from i to (l-1) do (vr3#j=apply(n, a ->

(if a==vr2#j then 1 else 0)); vr1#j=vr1#j-vr3#j;)));

outp

)

toBracket = (ch, elli, n,l) -> (

subi:=subsets(n,l);

R:=QQ[elli, MonomialOrder=>{Lex}];

ch=sub(ch, R);

pluchi:= apply(subi, a->p_a);

S:=QQ[pluchi];
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MT:=matrix apply(l, a->apply(n, b-> elli#(a*n+b)));

E:=apply(subi, a-> det MT_a);

E=apply(E, a-> sub(a, R));

OUT:=0_S;

while (ch!=0) do {lead:=leadMonomial(ch);

coef:=leadCoefficient(ch);

b:=piglia(flatten exponents lead, n, l);

OUT=OUT+sub(coef, S)*(product apply(b, a->p_a));

ch=ch-coef*(product apply(b, c->E#(position(subi, a->a==c))));};

OUT

)

Secondly, we compute the prime ideal of Dℓ(X).

L = flatten apply (3, i -> apply(4, j -> {i,j}))

L = flatten apply(L, s -> apply(L, t -> (s|t)))

S = QQ[x_0..x_3,y_0..y_3,apply(L, i -> r_i),

p_{0,1},p_{0,2},p_{1,2},p_{0,3},p_{1,3},p_{2,3}]

M = matrix{{x_0+x_3 , x_1-x_0 , x_2-x_1 , x_2+x_3},

{x_3-x_2 , x_0+x_3 , x_1-x_0 , x_1+x_2},

{x_2-x_1 , x_1-x_2+x_3 , x_0+x_3 , x_0}}

X = minors(3,M)

R = matrix{

{r_{0,0,0,1},r_{0,0,1,1}+r_{1,0,0,1},r_{0,0,2,1}+r_{2,0,0,1},

r_{1,0,1,1},r_{1,0,2,1}+r_{2,0,1,1},r_{2,0,2,1}},

{r_{0,0,0,2},r_{0,0,1,2}+r_{1,0,0,2},r_{0,0,2,2}+r_{2,0,0,2},

r_{1,0,1,2},r_{1,0,2,2}+r_{2,0,1,2},r_{2,0,2,2}},

{r_{0,0,0,3},r_{0,0,1,3}+r_{1,0,0,3},r_{0,0,2,3}+r_{2,0,0,3},

r_{1,0,1,3},r_{1,0,2,3}+r_{2,0,1,3},r_{2,0,2,3}},

{r_{0,1,0,2},r_{0,1,1,2}+r_{1,1,0,2},r_{0,1,2,2}+r_{2,1,0,2},

r_{1,1,1,2},r_{1,1,2,2}+r_{2,1,1,2},r_{2,1,2,2}},

{r_{0,1,0,3},r_{0,1,1,3}+r_{1,1,0,3},r_{0,1,2,3}+r_{2,1,0,3},

r_{1,1,1,3},r_{1,1,2,3}+r_{2,1,1,3},r_{2,1,2,3}},

{r_{0,2,0,3},r_{0,2,1,3}+r_{1,2,0,3},r_{0,2,2,3}+r_{2,2,0,3},

r_{1,2,1,3},r_{1,2,2,3}+r_{2,2,1,3},r_{2,2,2,3}}}

N = sub(M, apply(4, i -> x_i => y_i))

elli = {x_0,x_1,x_2,x_3,y_0,y_1,y_2,y_3}

subL = apply(L, i -> (r_i => sub(toBracket(M_(i#0,i#1)*N_(i#2,i#3)

-N_(i#0,i#1)*M_(i#2,i#3),elli,4,2),S))) --took 2.3 seconds to compute

R = sub(R,subL)

D = minors(4,R) --took 20.7 seconds to compute

T = QQ[p_{0,1},p_{0,2},p_{1,2},p_{0,3},p_{1,3},p_{2,3}]

D = sub(D,T)

D = saturate D

Finally, we compute the defining polynomial of the trisecant surface of X.

S = QQ[p_{0,1},p_{0,2},p_{1,2},p_{0,3},p_{1,3},p_{2,3},x_0..x_3]

D = sub(D,S)

M = matrix{{0, p_{2,3}, -p_{1,3}, p_{1,2}},
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{-p_{2,3}, 0, p_{0,3}, -p_{0,2}},

{p_{1,3}, -p_{0,3}, 0, p_{0,1}},

{-p_{1,2}, p_{0,2}, -p_{0,1}, 0}}

v = transpose matrix{{x_0,x_1,x_2,x_3}}

J = ideal flatten entries (M*v)+D

plVars = {p_{0,1},p_{0,2},p_{0,3},p_{1,2},p_{1,3},p_{2,3}}

J = saturate(J, ideal plVars)

eliminate(J, plVars)

Code J. We compute the tangential surface of the curve X in Example 6.16.

R = QQ[x_0..x_3,y_0..y_3]

X = ideal(sum apply(4, i -> y_i^2), sum apply(4, i -> y_i^3))

v = transpose matrix{{0,0,0,0,x_0,x_1,x_2,x_3}}

Inc = X + ideal flatten entries((transpose jacobian X)*v)

Inc = saturate(Inc, ideal y_0) --took 11.8 minutes to compute

eliminate(Inc, {y_0,y_1,y_2,y_3}) --took 51.9 seconds to compute

Since saturating Inc by the ideal generated by y0, y1, y2, y3 took too long, we
instead tried to compute the saturation above, which also yields the desired
result after elimination.

Moreover, we describe how to compute the trisecant surface of X. For this, we
first compute the corresponding curve Dℓ(X) in Gr(1, P3) with subresultants.
We use the function subresultant in Code G.

S = QQ[x_0..x_3,p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)][t]

subL = {x_0 => -p_(2,3), x_1 => t*p_(2,3), x_2 => p_(0,3)-t*p_(1,3),

x_3 => t*p_(1,2)-p_(0,2)}

f1 = sub(sum apply(4, i -> x_i^2), subL)

f2 = sub(sum apply(4, i -> x_i^3), subL)

S0 = {determinant sylvesterMatrix(f1,f2,t)}

S1 = subresultant(f1,f2,t,1)

S2 = subresultant(f1,f2,t,2)

Dl = ideal (S0|S1|S2)

+ ideal(p_(0,1)*p_(2,3)-p_(0,2)*p_(1,3)+p_(0,3)*p_(1,2))

G = QQ[p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)]

Dl = sub(Dl,G)

c1 = first flatten entries last coefficients f1

c2 = first flatten entries last coefficients f2

leadCoeffs = sub(ideal (c1,c2),G)

Dl = saturate(Dl, leadCoeffs)

Dl = saturate(Dl, ideal p_(2,3))

It turns out that Dℓ(X) has two quadratic components, which are both rulings
of the quadric surface D(X):

Dl1 = first decompose Dl

Dl2 = last decompose Dl

S = QQ[x_0..x_3,p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)]

M = matrix{{0, p_(0,1), p_(0,2), p_(0,3)},
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{-p_(0,1), 0, p_(1,2), p_(1,3)},

{-p_(0,2), -p_(1,2), 0, p_(2,3)},

{-p_(0,3), -p_(1,3), -p_(2,3), 0}}

v = transpose matrix{{x_0,x_1,x_2,x_3}}

plVars = {p_(0,1),p_(0,2),p_(0,3),p_(1,2),p_(1,3),p_(2,3)}

J1 = ideal flatten entries (M*v)+sub(Dl1,S)

J1 = saturate(J1, ideal plVars)

D1 = eliminate(J1, plVars)

J2 = ideal flatten entries (M*v)+sub(Dl2,S)

J2 = saturate(J2, ideal plVars)

D2 = eliminate(J2, plVars)

Code K. In the following, we use the function subresultant in Code G. First,
we compute the multiple root locus ∆(3)(3).

R = QQ[c_0..c_5][t]

d = 3

F = sum apply(d+1, i -> c_i*t^i)

Ft = diff(t,F)

S2 = subresultant(F,Ft,t,2)

S1 = subresultant(F,Ft,t,1)

S0 = {determinant sylvesterMatrix(F,Ft,t)}

I = ideal(S0|S1)

I = saturate(I, ideal c_d)

J = ideal(discriminant(S2#2*t^2+S2#1*t+S2#0,t))

J = saturate(J, ideal(S2#2))

Delta_(3,3) = I+J

Secondly, we compute ∆(4)(4); see Example 6.25.

d = 4

F = sum apply(d+1, i -> c_i*t^i)

Ft = diff(t,F)

S3 = subresultant(F,Ft,t,3)

S2 = subresultant(F,Ft,t,2)

S1 = subresultant(F,Ft,t,1)

S0 = {determinant sylvesterMatrix(F,Ft,t)}

I = ideal(S0|S1|S2)

I = saturate(I, ideal c_d)

J = sub(Delta_(3,3), apply(4, i -> (c_i => S3#i)))

Delta_(4,4) = I+J

Finally, we compute ∆(4)(5); see again Example 6.25.

d = 5

F = sum apply(d+1, i -> c_i*t^i)

Ft = diff(t,F)

S3 = subresultant(F,Ft,t,3)

S2 = subresultant(F,Ft,t,2)

S1 = subresultant(F,Ft,t,1)
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S0 = {determinant sylvesterMatrix(F,Ft,t)}

I = ideal(S0|S1|S2)

J = sub(Delta_(3,3), apply(4, i -> (c_i => S3#i)))

Delta_(4,5) = I+J

Delta_(4,5) = saturate(Delta_(4,5), ideal c_d)

Delta_(4,5) = saturate(Delta_(4,5), ideal first S3)

Code L. We compute the curve F ℓ(X) in Gr(1, P3) corresponding to the flecn-
odal surface of the surface X in Example 6.26.

R = QQ[x_0..x_3, c_0..c_5,

q_(0,1),q_(0,2),q_(0,3),q_(1,2),q_(1,3),q_(2,3)][t]

f = x_0^5+x_1^5+x_2^5+x_3^5+(x_0+x_1+x_2+x_3)^5

+x_0*x_1*x_2*x_3*(x_0+x_1+x_2+x_3)

Delta = ideal(20*c_0*c_4-8*c_1*c_3+3*c_2^2,

50*c_0*c_5-6*c_1*c_4+c_2*c_3, 20*c_1*c_5-8*c_2*c_4+3*c_3^2)

subL = {x_0 => q_(0,1), x_1 => t*q_(0,1), x_2 => t*q_(0,2)-q_(1,2),

x_3 => t*q_(0,3)-q_(1,3)}

C = flatten entries last coefficients(sub(f, subL))

subL = apply(6, i -> (c_i => C#i))

Fl = sub(Delta, subL)

S = QQ[q_(0,1),q_(0,2),q_(0,3),q_(1,2),q_(1,3),q_(2,3)]

Fl = sub(Fl,S)+ideal(q_(0,1)*q_(2,3)-q_(0,2)*q_(1,3)+q_(0,3)*q_(1,2))

Fl = saturate(Fl, ideal q_(0,1)) --took 4 minutes to compute

Code M. The following computes the parabolic surface of the Fermat cubic sur-
face X as in Example 6.29. We start by computing the corresponding curve
P ℓ(X) in Gr(1, P3).

R = QQ[x_0..x_3,v_0..v_3]

f = sum apply(4, i -> x_i^3)

H = matrix apply(4, i -> apply(4, j -> diff(x_i, diff(x_j,f))))

P = determinant H

I = ideal (f,P) + ideal apply(4, i -> sum apply(4, j -> H_(i,j)*v_j))

I = saturate (I, ideal apply(4, i -> x_i))

Gr = Grassmannian (1,3, CoefficientRing => QQ)

G = ring Gr

RQ = R / I

M = matrix{apply(4, i -> x_i), apply(4, i -> v_i)}

PL = {determinant submatrix(M, {0,1}), determinant submatrix(M, {0,2}),

determinant submatrix(M, {1,2}), determinant submatrix(M, {0,3}),

determinant submatrix(M, {1,3}), determinant submatrix(M, {2,3})}

F = map(RQ, G, PL)

InflPar = kernel F

From this, we compute the defining equation of the parabolic surface and its
factorization. When we have to saturate by the ideal generated by the Plücker
variables, we instead compute iterated colon ideals due to run time efficiency.

R = QQ[v_0..v_3, p_(0,1), p_(0,2), p_(0,3), p_(1,2), p_(1,3), p_(2,3)]

177



Appendix

Pl = matrix{{0, p_(2,3), -p_(1,3), p_(1,2)},

{-p_(2,3), 0, p_(0,3), -p_(0,2)},

{p_(1,3), -p_(0,3), 0, p_(0,1)},

{-p_(1,2), p_(0,2), -p_(0,1), 0}}

InflPar = sub(InflPar, R)

Inc = InflPar + ideal apply(4, i -> sum apply(4, j -> Pl_(i,j)*v_j))

plVars = {p_(0,1), p_(0,2), p_(0,3), p_(1,2), p_(1,3), p_(2,3)}

Inc = Inc:ideal(plVars)

Inc = Inc:ideal(plVars)

Inc = Inc:ideal(plVars)

Inc = Inc:ideal(plVars) --took 1 second to compute

Inc = Inc:ideal(plVars) --took 2.9 seconds to compute

PX = eliminate(Inc, plVars)

eq = first flatten entries gens PX

factor eq

Code N. We compute the curve P ℓ(X) in Gr(1, P3) corresponding to the
parabolic surface of the cubic surface X in Example 6.30. For this, we use the
same code as in the first half of Code M; we only have to exchange f by

f = sum apply(4, i -> x_i^3)+(x_0+2*x_1+3*x_2+4*x_3)^3

This time InflPar = kernel F took 11.3 seconds. With this computation, we
are able to stab the parabolic surface of X with a given line. We use the line in
Example 6.30.

S = QQ[(flatten entries vars G)|{t}]

Q = matrix{{0, p_(2,3), -p_(1,3), p_(1,2)},

{-p_(2,3), 0, p_(0,3), -p_(0,2)},

{p_(1,3), -p_(0,3), 0, p_(0,1)},

{-p_(1,2), p_(0,2), -p_(0,1), 0}}

Inters = sub(InflPar,S) + ideal flatten entries(matrix{{t,1,t-1,t+1}}*Q)

plVars = {p_(0,1), p_(0,2), p_(0,3), p_(1,2), p_(1,3), p_(2,3)}

Inters = saturate (Inters, ideal plVars) --took 19 seconds to compute

sols = eliminate(Inters, plVars)

The ideal sols is generated by the univariate polynomial of degree 30 given in
Example 6.30. One can solve for its real roots with a variety of software, e.g.,
with the command realroots of the computer algebra system Maxima.

Now we compute this polynomial of degree 30 by first computing the dual
curve of the parabolic surface of X.

use R

M = matrix{apply(4, i -> diff(x_i,f)), apply(4, i -> v_i)}

I = ideal(f,P)+minors(2,M)

xVars = {x_0,x_1,x_2,x_3}

I = saturate(I, ideal xVars) --took 5.5 minutes to compute

Pdual = eliminate(I,xVars)

Finally, we compute the univariate polynomial of degree 30 as described at the
end of Example 6.30.
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T = QQ[v_0..v_3,t]

Pdual = sub(Pdual,T)

L = flatten entries mingens Pdual

g_1 = first L

g_2 = last L

M = matrix{

apply(4, i -> diff(v_i,g_1)),

apply(4, i -> diff(v_i,g_2)),

{t, 1, t-1, t+1}}

K = Pdual+minors(3,M)

M = M^{0,1}

sat = minors(2,M)

K = saturate(K,sat) --took 51.6 minutes to compute

sols = eliminate(K, {v_0,v_1,v_2,v_3})
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