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Abstract

Electrophysiological recordings with electrodes, or ngeaerally, with arrays of multi-
electrodes, are key for recording neural activity data ftbencentral nervous system.
This technique delivers high temporal and spatial resmiytas well as enables neuron
stimulation by current injection. The neuronal activityceded by action potentials
(simply called "spikes”) of individual neurons, howeves ot recorded directly; rather
the measurement contains a mixture of spike trains fromrakmeurons and additional
noise. To determine the spiking times of a neuron and to hétera spike’s originating
neuron, spike detection and spike sorting algorithms aeele The main focus of this
thesis is the development of such algorithms.

The system consisting of neurons emitting spike traingt thixture and corruption
by noise, and of the process of recording these data withraleslectrodes channels, is
modelled as a linear time-invariant multiple input, mukiputput system. The prob-
lem of spike detectigisorting can then be regarded as a blind equalisation andesour
separation task. We use finite impulse response filters fgalesgtion and source sepa-
ration throughout the thesis, and therefore, we first stért analysing some properties
of these filters. Amongst others, their performance in teofdetection probability
and false alarm probability is studied in the case when til@spaveform is perfectly
known, and when it is estimated from the data themselves.slihsequently presented
spike detection and sorting algorithms are two stage dlgus, consisting of a sys-
tem identification phase and the following equalisageparation. Common to them is
that both stages can be performed with minimal human sugienvalthough the spatial
mixing and temporal distortion are unknown, and the abititadapt to changing wave-
forms during the equalisatigseparation stage. As such they can be termed as adaptive
and blind array processing techniques. Finally, we alspgse an unsupervised control
algorithm for electrodes, which allows to move them to faatle recording sites. This
closes the loop, as the system can now perform spike detgmiiting at any position
and decides by itself whether to move the electrode to a manmiping position or
whether current quality of data isféigient.



Zusammenfassung

Elektrophysiologische Ableitungen mit Elektroden, odégeaneiner, mit einer ganzen
Matrix von Multi-Elektroden, sind eine Schllisseltechnik neuronale Aktivitatsdaten
aus dem zentralen Nervensystem aufzunehmen. Diese Tdigfeikeine hohe zeitliche
als auch raumliche Aufldsung, und erlaubt sogar Neurdimeaktion mittels Injek-
tion von elektrischem Strom. Die neuronale Aktivitat, edlert durch Aktionspo-
tentiale (auch genannt "Spikes”), von einzelnen Neuronéml yedoch nicht direkt
aufgenommen; vielmehr enthalt die Messung eine Mixtur n@hreren Spike Folgen
verschiedener Neuronen und zusatzliches Rauschen. Ugindielnen Spike Zeitpunkte
eines Neurons und um das Herkunftsneuron eines Spikes #imbesn, sind Spike
Detektions- und Spike Sortierungs-algorithmen notwendig

Das System bestehend aus Spike Folgen generierenden Meurdaren Mix-
tur und die Korruption durch Rauschen, und aus dem Prozess Mkessens
dieser Daten mit mehreren Elektrodenkanalen, kann aldimdares zeitinvariantes
MultieingangMultiausgang-System modelliert werden. Das Problem déweSpetek-
tion/Sortierung kann dann als ein blindes Entzerrungs- und énteinnungsproblem
aufgefasst werden. Wir benutzen in dieser Arbeit immeriehdlimpulsantwortsfilter
fur die Entzerrung und Quellentrennung, deshalb beginviemit der Analyse einiger
Eigenschaften dieser Filter. Unter anderem, analysieiedesen Leistungsfahigkeit im
Bezug auf die Detektionswahrscheinlichkeit und Falsahalahrscheinlichkeit wenn
die Spike Funktion bekannt ist, aber auch wenn diese von @¢srnyeschatzt wird. Die
nachfolgend prasentierten Spike Detektion und Sortgsverfahren sind Zweistufe-
nalgorithmen, bestehend aus einer Systemidentifikati@ssp und einer darffolgen-
den Entzerrunuellentrennung. Beide Verfahren sind sich insofernighnkls dass
beide Phasen nur minimalen menschlichen Eifigrerlangen obwohl die raumliche
Mixtur und die zeitliche Verzerrung unbekannt sind, undsdbeide Verfahren sich
andernden Spike Funktionen anpassen konnen. Deshaliekdiese Verfahren allge-
mein als adaptive und blinde Matrixverarbeitungstechmikezeichnet werden. Zuletzt,
prasentieren wir auch einen untiberwachten Kontrolélyous fir Elektroden, welcher
die Elektroden zu gunstigen Aufnahmestellen bewegt. Bhkesst den Kreis, da nun
das System an jeder beliebigen Position Spike Detel8mmierung ausfuhren kann und
selbst entscheidet, ob die Elektrode zu einer vielversmader Position zu bewegen ist,
oder ob die momentane Signalqualitat ausreichend ist.



List of Symbols

and Abbreviations

Abbreviation Description Definition
X constant vector page 12
X[t] time dependent vector page 12
Xn = X, = X(n)  vector entry at dimension n page 12
Ly maximum index value, i.exp, N = —Ly, ..., Ly page 12

Ty dimension of vectok, i.e. Ty = 2Ly + 1 page 12
Xy convolution betweex andy page 12
X%y cross correlation betweenandy page 12
[IXIlp p-norm of vectorx page 14

C noise covariance matrix page 4
Dmn: (D)mn matrix entry inm-th row andn-th column page 12

p nominal steering vector page 32
q actual steering vector page 32
E[] ¢ expectation operator page 11
M number of sourcggansmitters (e.g. neurons) page 3
N number of sensofieeceivers (e.g. electrodes) page 3
% threshold for filter output of filtef' page 13
Q(u) quality of data at position page 97
MPDR minimum power distortionless response page 22
MVDR minimum variance distortionless response page 22




Contents

List of Symbols and Abbreviations Y,
Contents Vi
1 Introduction 1
1.1 Problem formulation and its characteristic . . . . . .. ... ... 3
1.2 Relationtootherfields . . ... ... ... ... ... ......... 4
1.21 Radarandsonar. .. .. .. .. .. ... .. ... 5
1.2.2 Communications . . . . . . ... .. .. ... 5
1.2.3 Blind source separation (BSS) and blind deconvaiutia . . . 6
1.2.4 Terminology of the spike detectjsorting problem . . . . . . . 6
1.3 Thesissummary . . . . . . . . . 7
1.3.1 Thesisoutline . . . . ... ... ... 7
1.3.2 Contribution . ... ... ... ... oL 8
1.4 Fundamentalconcepts . ... .. .. .. . .. .. .. ... 9
1.4.1 Digital signalprocessing . . . ... ... ... .. ....... 9
1.4.2 Higher-order statistics . . . . ... ... ... ......... 10
1.5 Notation . . . . . . . . . . e 12
2 FIR filters and their performance 13
2.1 p-normfilters . . . .. .. 13
2.1.1 Singlewaveform . . ... ... ... .. ... ... 14
2.1.2 Performancecriteria . . . .. ... ... .. ... 15
213 Results . .. ... 15
2.1.4 p-normfiltersinliterature . . . .. ... ... ... .. .. .. 16
2.2 Conv. filters for detection and arrival timeest. . . . . .. ... ... 19
221 Methods ... ... ... . . . ... 21
222 Results . ... ... . ... e 24
223 Discussion . . . . ... 27
224 Conclusion . . . ... 27
225 Proofs . . ... 28
3 Steering vector mismatch analysis and adaptation 31
3.1 Introduction and problem formulation . . . ... ... ....... 31

Vi



CONTENTS Vii

3.2 Method . .. ... . ... 33
3.2.1 Performance analysis under steering vector mismatch. . . 33
3.2.2 Adaptationscheme . .. .. .. .. ... ... ... .. .. .. 35

3.3 Results. . . . .. 36
3.3.1 Comparison of cdf evaluation techniques . . . . . ... ... 36
3.3.2 Simulations . . . . ... 37
3.3.3 Evaluationand comparison . . . . . ... ... ... 38

3.4 Discussion and related literature . . . . ... ... ........... 39

3.5 Conclusion . . .. .. .. 41

4 Online spike sorting 43

4.1 Introduction . . . . . . . . ... 43

4.2 Methods . . . . . . . . . e 46
421 Generativemodel . . ... ... .. ... .. 46
4.2.2 Calculation of linear filters . . . . . ... .. ... ....... 64
4.2.3 Filteringthedata . .. ... ................... 47
4.2.4 Deconfusion . .. ... ... ... a7
4.2.5 Spike detection and classification . . ... ... ....... 48
4.2.6 Artifactdetection . . . .. . ... 49
427 Noiseestimation . ... ... ... .. ... ... ... .... 49
4.2.8 Adaptation . ... ... ... 50
4.2.9 Initialisationphase . . .. ... ... .. . . oL 50
4.2.10 Signal-to-noiseratio (SNR) . . . . ... ... ... ... ... 25

4.3 Experimentsanddatasets . . . ... ... ... ... .. ... ... 4 5
4.3.1 Simultaneous intfaxtra-cellular recordings . . . . . . ... .. 54
432 Simulateddata . . ... ... ... ... . ... ... 54
4.3.3 Acuterecordings . . . .. ... 55

4.4 Resultsanddiscussion . . .. ... ..o 56
4.4.1 Spike sorting performance . . . .. .. .. ... .. .. ..., 56
4.4.2 Limitations ofourmethod . . . ... ... ... ... ..... 61
4.4.3 Newly appearing neurons . . . . . . . . . ... 61
4.4.4 Implementation and computational complexity . . . ...... 62

4.5 Discussion and related literature . . . . .. ... ... ... ..... 62
45.1 Spike sorting based on clustering . . . ... ... ... ... 3 6
4.5.2 Spike sorting based on source separation . . .. ... ... 65

4.6 Conclusionandoutlook . . . . ... ... ... L. 66

4.7 Derivations . . . . . . .. 67
4.7.1 Derivation of optimal linear filters . . . . . .. .. ... ... 67
4.7.2 Derivation of Deconfusion . . . . . .. ... ... ... . ... 68
4.7.3 Derivation of the optimal threshold . . . . . ... ... ... 69

5 Hybrid blind beamforming for spike detection 70

5.1 Introduction . . . . . . . ... 70

5.2 Methods . . . . . . . . . 72

5.2.1 Modelofrecordeddata . . . ... ... ... ... ... .... 72



CONTENTS

53

5.4
5.5

5.2.2 Application of the super-exponential algorithm

5.2.3 Mode detection in the SEA filteroutput . . . . .. ... ...
5.24 Sparsedeflation. . ... ... ... ... ... ...,

5.25 Abortioncriteria . . . . . . . ...

5.2.6 Calculation of the MVDR beamformers . . . ... ... ...
5.2.7 Filtering and spike detection . . . . . . ... ... ... ...
5.2.8 Threshold selection . . . . . . . . . .. ... ... ... ...

5.2.9 Adaptation to changing waveforms . . . . ... ... ...

5.2.10 Implementation . . . . . . ... ... .. ... .

Performance Evaluation . . . . . . . . . . . . . ... .. ......

5.3.1 Generation of artificialdata . . ... ... ... .......
5.3.2 Performance assessment . . . . . . . . ...

5.3.3 Parameter settingsof HBBSD . . . .. ... ... .. ...

5.3.4 Competing algorithms . . . . ... ... ... ... .....

5.3.5 Performance on data with a single neuron . . . . . ... ..
5.3.6 Performance on data with two waveforms . . . . . ... ..
5.3.7 Performance on data with three waveforms . . . . . . . ..

5.3.8 Performance on simultaneous ifgrdra-cellular recordings . .

5.3.9 Performance on non-stationarydata . . . . ... ... ...
Discussion and related literature
Conclusion . . . . . . . .

6 Unsupervised (multi-channel) electrode positioning

6.1
6.2

6.3

6.4

6.5

Introduction . . . . . . ...
Extracellular action potential simulation . . . . ... ... ... ..
6.2.1 Calculation of extracellular field potentials . . . .. .. ..
6.2.2 3-dimensional extracellular recording simulator .. ... . . . .
Processing stages of the positioning algorithm . . . . ... .. ..

6.3.1 Spikedetection . . .. .. .. ... ...

6.3.2 Feature extraction, clustering . . . . . ... ... ......

6.3.3 Qualitymeasure . .. ... ... ... . ... ... ...
6.3.4 Positioning and control logic . . . . . .. ... ... .. ...
6.3.5 Exceptionhandling . . . ... ... ... ... ........
Results. . . . . . . . . . e
6.4.1 Staticenvironment . . . ... ... ... ...

6.4.2 Drifting environment . . . . . ... .. ... . ...
Conclusion . . . . . . ...

A Appendix to Chap. 3
Al Limitsofintegrand . . . . . . . . . ... ... ...

B Appendixto Chap. 4
B.1 Threshold calculation with truncated Gaussians . . . ...... . . . .
B.2 Literature overview . . . . . . . . ..

B.2.1 Blind source separation . . . . . ... ... ... ......

viii

84
84



CONTENTS

B.2.2 Blind channel estimatigidentificatioriequalisation
Bibliography
List of Figures
List of Tables

Index

118

138

140

141



Chapter 1

Introduction

The need for understanding the information processing amésims of the brain makes
the availability of brain activity data essential in orderderive working principles or
test existing theories about it. In contrast to many othéddiedirect measurements of
the activity of individual neurons or their connectivitygtture is rarely possible. This
is due the fact that invasive techniques are only of limited im living organisms (and
most often still do not allow for direct single cell records), whereas non-invasive
techniques are not (yet) precise enough to resolve singi®nectivity. This constraint
of indirect measurement suggests that powerful algorithmast be at hand to allow for
the reconstruction of the neural activity of individuallsel

One particular recording technique is the electrophyigicll electrode. Starting
with inserting single microelectrodes, this technique éasved significantly in the re-
cent years and is widely used for obtaining high quality degen living animals. One
of the reasons of its popularity is the fact that this techeigffers a very high tem-
poral resolution as well as spatial resolution. This meaas iven appropriate algo-
rithms, individual action potentials of neurons are resdlallowing for studying firing
statistics accurately, and, since activity from severamaouring cells is recorded si-
multaneously, this gives the possibility to analyse theugrice of cells on their neigh-
bourhood (such as locking, burst propagation). Althougmynather techniques ap-
peared for recording brain activity data, such as functiamegnetic resonance imaging
or electroencephalography, electrophyisological ebelets continue to be one the major
recording tools. Amongst other, one of the reasons for tratlse recent technologi-
cal developments which add many further advantages. Tihekele for example the
development of multi-channel electrodes, such as tetramrstodes, etc., see Fig. 1.1.
The additional recording channels not only allow for redagd from more neurons si-
multaneously raising the information yield per experiméxit also improve the quality
of the subsequent processing. Depending on the specifiécphgenfiguration of the
individual channels, simultaneous recordings from moesth single tissue layer are
possible as well, see Fig 1.1.

Nowadays, many laboratories use entire multi-channeltrelée arrays (MEA).
Again, such arrays can be used in order to record from selagrais, or, on the other
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Figure 1.1: A): An electrode with 4 recording channels, called tetrode. B): A heptode, an electrode with 7
recording channels. C): An electrode with 8 recording channels for recording from several layers. All the pictures
are from [205]. D): A multi-electrode array containing 100 single channel electrodes (from [235]).

hand, to acquire accurate information from many neuronsnigihg to the same sub-
network within a specific layer or region. Especially thedapossibility is becoming

increasingly interesting as a means to verify network caimgyhenomena (ensemble
coding) or to link network topological aspects of the brairusture to modern graph
respectively complex network theories [197].

Even more promising are arrays which are directly implaimiealthe brain, a promi-
nent example being the Utah array [133]. This allows for tamtsmonitoring of spec-
imens, and, combined with wireless transmission techryplfoy experiments outside
the classical fixed laboratory setup. Such implantablereldes will also certainly play
a key role in the development of naturally controlled presth and in next generation
brain-computer interface (BCI) devices as well as in cudhprain diseases.

This latter aspect was enabled by the development of midnouktion elec-
trodes [205]. Such devices are not only able to record pelgsibut can actively induce
well controlled electric currents into the brain tissue evhstimulate the surrounding
neurons. Once the neural code of a certain brain region isratwbd, such two-sided
communication between the brain and an external devicesdvadlow for fascinating
applications.

In short, the electrophysiological electrodes techniquikely to stay and further
evolve as one of the main recording tools. Hence, it is ingrdrto have algorithms at
hand, which can handle the acquired ddfeciently and extract the maximum possible
information from them. Some major challenges are the faligw

e How can the action potentials within continuous electra®rdings be optimally
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detected? Errors in spike detection will propagate thralbtne subsequent anal-
ysis and may lead to wrong conclusions about the whole irdtion processing
principles of the brain. Moreover, most BCI devices can wetlably only if the
precise firing times of the neurons are known.

¢ In order to make full use of the micro stimulation electrodesl-time action po-
tential detection and classification algorithm must belalséé. Only then the
neural information can be decoded online, and an apprepntro stimulation
sequence induced.

¢ In both, implanted electrode arrays (chronic recordings)yell as external MEA
(acute recordings), the individual electrodes are moreraark often controlled
by electric motors which allow very precise electrode mogeta. Nevertheless,
most experimenters rely on a manual procedure for placmgléctrodes based on
visual recording quality assessment. An automated proeesdould possibly find
not only more suitable recording positions in less setupirap, but also allow for
tracking neurons in the case of tissue drifts.

e Modern external arrays consist of up to 64 multi-channattedeles, whereas im-
plantable arrays even contain up to 100 electrodes. Thigsiakevitable that all
the algorithms operate in an unsupervised manner, as a haogcassing would
not only become infeasible due to time constraints, but dachieve an inferior
performance as well.

In this thesis we will present novel algorithms which canldeith the mentioned
problems. We develop techniques inspired and derived fronemgeneral array process-
ing theories which are adaptive to changing recording d¢mmdi and operate to a large
amount in an unsupervised manner.

1.1 Problem formulation and its characteristic

One of the earliest processing stages of the recorded daséstoof extracting the indi-
vidual action potentials, also called spikes, from the icnr@usly sampled data stream.
This process is denoted as "spike detection”, whereas, ic@ulwith a further classifi-
cation of the spikes, i.e. the assignment of every spike fgeaific neuron, the overall
procedure is denoted as "spike sorting”. In order to develelpfounded detectigisort-
ing algorithms, it must be assumed that the measured>gai@n channek at timet)
can be represented by some specific signal model. Througfisuhesis we assume the
following model (or a simplified form of it):

M
Xt = >0 > OhySor + Mt k=1,...,N (1.1)
i=1 1

whereM is the number of neurongy is the number of recording channels (eN.=
4 for tetrodes, see also the "List of Symbols and Abbreweioon page v for used
notation), andq:(t is the spatio-temporal waveform of neuronlt is not always clear
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M transmitters N receivers

\O

N

Figure 1.2:sketch of a general system with M transmitters and N receivers, also called multiple-input multiple-
output system (MIMO).

to distinguish between the signaland noisen. Of course every physical system is
subject to some thermal noise, but in the case of electragbgscal recordings this is
not the main source of concern. In fact, what we call noisectually the neural activity
from many "background” neurons. Then, we run into the pnobtd how to define a
neuron which belongs to the signal or already to the backgtowHere, we omit this
problematic by defining noise as all sources which follow anrad distribution, whereas
signals as following a non-Gaussian statistics. In padicwe assume that the signals
follow a sparse Bernoulli distribution, the noisés described by a zero mean, colored,
multivariate Normal distribution, and the spike waveforvasy only slowly in time, i.e.

s ~ Binomial(1, p;), pi < 1 Vi n~ N(0,C) q[t] ~ q. (1.2)

The validity of these assumptions is not the topic of thisithe It is sificient to say
that this model is widely accepted in the biosignal literatand has been validated by
experiments, see e.g. [181, 168].

The goal of spike detection is to reconstruct the union oftalsignals when only
Xkt IS observed, i.e.

givenxg; — U; S. (1.3)

On the other hand, the task of spike sorting consists of toacting all the signals
individually when onlyx is observed, i.e.

given X — s Vi, up to permutation and scale. 1.4)

1.2 Relation to other fields

It is essential to notice that similar problems are alsoistlithy other than the neuro-
science community. We want to point out the similarities difterences between these
different fields, as the transfer of methods developed in onetfielgporoblem in another
one often brings new insights. From a formal point of viewg Mhneurons are just a sys-
tem of M transmitters, whereas a multi-channel electrode is arsystd receivers. The
goal common to all fields is to infer the signal propertiesh&¥ transmitters given the

*The decision criteria what is signal and what is noise beimgability of visual discrimination between
a spike waveform and the "rest”.
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measurements recorded by tNereceivers, see Fig. 1.2. For example, such a problem
is encountered in radar, sonar, seismic exploration [2gitad communication, wireless
communication, image restoration [189], speech separaim enhancement [46], vi-
bration analysis for fault detection [116], or mechanigéghature analysis [169]. In the
following subsections we explain some of them in more detail

1.2.1 Radar and sonar

In radar or sonar systems, a similar problem as in electisiplogical recordings arises.
Namely, M targets (such as planes, sub-marines or the like) are eghiti particular
signal signature which is recorded by BAdimensional antenna array. The goal is to
determine whether there are targets in the area, and if sofrtamy of them are present,
and what their positions are. Up until very recently, thesedatatistics (also called clutter
statistics in this community) was assumed to be Gaussamd a time constant wave-
form (called steering vector) was assumed. On the other,lbadignals is assumed
to be continuous, and might be even normally distributede ®ajor diference is that
most literature in this field deals with a parametrised stgerector, in the form of

d@)=(1 expEi®). ... expCi(N-1)@y) (1.5)

where®; := (27-d-sin@))/4, j ;== VY-1,d being the distance between the sensors of the
antenna array, andl being the wavelength of the source signals [104]. This @algr
structure comes from the underlying physics, as the sigarabe approximated by planar
waves due to the open space and its geometry. Hence, in thelthapproximation a
target can be represented by a single parameter, the diresftiarrival 6;. This is a
significant reduction of complexity as the dimension of tteesng vector is reduced
from N to one.

Similar as for the spike detection and spike sorting probléa@re is a large amount
of literature concerned with just target detection and ssply with multiple target clas-
sification, as well as with system calibration or blind beamfing where some of the
blind source separation algorithms originate from. A goaioduction into this field
is given in [195, 210, 138]. In general, the most common apghao tackling these
problems is the use of linear filters, called beamformerkimfteld. This class of filters
will be discussed in more detail in Chap. 2.

1.2.2 Communications

In the community of communications (e.g. wireless commatindns, digital communi-
cations, etc.) the terminology SISO, MISO, and MIMO is usighoting the configura-
tion of the overall system, i.e. single-input single-oufpuaultiple-input single-output,
and multiple-input multiple-output. In contrast to thepceisly discussed field of radar,
the waveform represents the channel fading rather thargattar be detected. Hence,
the task is to reconstruct the original continuous sigrfabm a distorted measurement

Active emission of signals or passive emission, i.e. reéfiestof a radar waves.
*For more recent development, such as robust processiniggl@dth heavy tailed noise distributions
see e.g. [113].
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X. The amplitude of the "steering vector” most often follows@ecific model, such
as Rayleigh or Rician fading channels, and few approachakvdeh general steering
vectors, i.e. the channel is distributed according to a dexpormal distribution

d ~ CN(a. D) a=0 — Rayleigh (1.6)
a#0 — Rician '

In communications the task is seldom related to signal tletecas pilot signals are
emitted for this purpose. The equivalent problem to spikdirgn i.e. multiuser in-
terference elimination, was especially of concern in nebdmmunications regarding
the code-division multiple access (CDMA) technique. Hogregince the recent intro-
duction of a new technology, namely the orthogonal frequetigision multiple access
(OFDMA), this problem seems to be have been solved. Inttimhe into this field can
be found in [67, 186, 213].

The fields of radar and sonar and of communications can marergy be sum-
marised under the term of spatio-temporal array processititgniques [128].

1.2.3 Blind source separation (BSS) and blind deconvolutio n

Perhaps the most fundamental research how to separatelwaenikt signals giverN
dimensional measurements was done in the field of blind sosgparation, primarily
known from the various independent component analysis Yklgorithms. In the often
illustrated application of separating audio sout¢céise problem is to separaté sound
sources recorded witN microphones in a reverberation free environment, wherteas i
can be assumed th& < N and the sources are pairwise statistically independent.
Hence, it is assumed that the mixture is instantaneous eirse¢hse that only a spatial
waveform over the dierent microphones enables a discrimination of the sounae, b
there is no temporal structure. In contrast, the field of dliteconvolution or blind
equalisation has in principle dealt with a SISO system nict.spatial but only temporal
correlations. Although the problem and the methods fordtgilsg are quite similar in
both fields, there seems to be only a limited literature pmgnout the exact dierences
and similarities between the two fields [5, 6].

Later on, the field of ICA extended to cases where there is ¢eahgorrelation as
well (convolutive ICA), or where there are more sources tbansorsM > N, (over-
complet¢under determined ICA). One should note, however, that tineatotive case
was solved most often by applying a Fourier transform, wheelds to frequency ambi-
guities [160].

1.2.4 Terminology of the spike detection/sorting problem

Given the terminology of the fferent fields, the spike detection and the spike sort-
ing problem, given the electrophysiological electrodeordings, can be described as a

$The popular term "cocktail problem” is ambiguous, as margard it as separating just one source
from the rest. Also note, that although blind source sefmaras often demonstrated on audio data, it
originated from a problem in neuroscience [90, 106].
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MISO (single electrode) or MIMO (multi-channel electrogdeyer-complet, blind, and
convolutive system. Although in theory the spike wavefoimage a real physical inter-
pretation in the sense of an electric current, and thus,dcbelparametrised by some
generating quantities, in practice this is of no help dueheounknown neuron config-
uration. Hence, the waveforms cannot be reduced in theiewsionality and must be
regarded as arbitrary, in contrast to the steering vectoradar applications. On the
other hand, the intrinsic signal display an interesting property which makes them
belong to a specific category. Namely, they are sparse,heewaveforms occur only
at few times in contrast to a continuous noise source, amahpifas a special class of
discrete signals), i.e. only the two values 0 or 1 can berathiThis is in contrast to the
continuous signals encountered in most of the communitatiechnology.

1.3 Thesis summary

The goal of this thesis is to make explicit use of this patéicgystem structure in order
to develop powerful spike detection and spike sorting nathadrhe focus is on using
ideas from the field of array processing and BSS for the prgb@pproaches. This
is in noticeable contrast to most of the existing approatheapike detection and spike
sorting, which mainly rely on hypothesis testing, heurstiand clustering. In particular,
the spike sorting task is most often tackled by convertimgédta series into short vectors
in which spikes are detected by hypothesis testing. Thesataife extraction algorithm
is used for further dimension reduction, and finally a clisteprocedure is applied.

The literature in the field of array processing is very extenand it is likely that
in the future more and more BSS techniques will be appliedrectly designed for the
spike detectiofsorting problem. In App. B.2 we point to some BSS literaturigiol
might be helpful for developing future algorithms handlithg spike detectigeorting
task. Existing approaches, which are based on similar lyidgrassumptions, are dis-
cussed in the corresponding chapters.

Next, we shortly summarise the results of subsequent ctsagutel point to published
work based on parts of this thesis.

1.3.1 Thesis outline

In the remainder of Chap.1 a very short introduction to mathigcal concepts which
will be used later on is given, and the scientific contribatad this work is stated. The
original research is presented in Chap. 2 to Chap. 6. Eaghtahia self contained and
includes an introduction to the discussed problem, a reofesxisting works, and a dis-
cussion. Due to this self contained character, some pagsc&lly concerning notation,
problem formulation and introductory explanations, miglightly overlap between the
individual chapters.
In Chap. 2 we start with the discussion of some aspects daiifigers. Linear fil-

ters will be used throughout the thesis as the primary taotl&ecting and classifying

1Except in the case when single, very high impedance elezsrate used, it is unrealistic to assume
that activity from a number of neurons is recorded which $s ldhan the number of channels.
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spikes. In particular, we focus on the matched filter as itlmam@nalytically expressed
and achieves the best detection performance in most of th&dared settings. We in-
troduce a novel modification to the matched filter which inyaiothe performance in
other scenarios, such as real-time detection, and proposasure how to assign a per-
formance to detectors in the case of simultaneous deteatidrarrival times estimation.

In Chap. 3 we continue analysing the performance of filtersmthere is a mismatch
between the true waveform of a neuron, and the waveform aseohstructing the filter.
We show that the results obtained from studying such a sfgoakssing problem can be
linked to findings in the econometrics theory. Based on th&dyesis we propose a filter
adaptation scheme in the case when the neuron’s wavefoies\&owly over time.

In Chap. 4 an algorithm for spike sorting is proposed. Ustagdard spike detec-
tion and clustering techniques, initial waveforms areneated and the corresponding
filters calculated. The filter output is then processed byhrtiglue called Deconfusion,
similar to an un-mixing routine, leading to an improved slfisation performance. As
a unique feature, our approach is suitable for online daiegsising, but is still capable
of resolving overlapping spikes.

In Chap. 5 we address the problem of spike detection for whigipose an unsu-
pervised and adaptive algorithm is formulated. The progpadgorithm is one of the
very few approaches which uses techniques from BSS and ditioonvolution for spike
detection. It dfers superior detection performance, even when multipleomsuwith
distinct waveforms are present in the data, and adapts tayatgwaveforms.

In the last chapter, Chap. 6, an algorithm for unsupervidectrede placement is
presented. Firstly, a quality measure is defined, whiclugialhigher score the better the
signal-to-noise ratio and the separability of the neurdgisads is. Then, the maximum
of this quality measure is found by a stochastic optimizaioheme, and the electrodes
are moved to the corresponding position. To our knowleddsg g the first unsupervised
positioning algorithm developed for multi-channel eledgs.

1.3.2 Contribution

e The work presented in Chap. 2 was partly published in

"Optimal convolutive filters for real-time detection andieal time estimation of
transient signals”, M. Natord. Franke, and K. Obermayétroceedings of World
Academy of Science, Engineering and Technology, Volumedifes 235-240,
2009

e The work presented in Chap. 3 was partly published in

"Optimal steering vector adaptation for linear filters leagto robust beamform-
ing”, M. Natora F. Franke, S.A. Broda, and K. Obermayeroceedings of the In-
ternational Symposium on Communications, Control and&iBrocessing, 2010

e The work presented in Chap. 4 was partly published in

"Blind source separation of sparse overcomplete mixtungisagplication to neu-
ral recordings”, M. NatoraF. Franke, M. Munk, K. Obermayetecture Notes
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in Computer Science - Independent Component Analysis gmalSseparation,
Volume 5441, pages 459-466, 2009

and in

"An online spike detection and spike classification aldoritcapable of instanta-
neous resolution of overlapping spikes”, F. Franke, M. Kgt€. Boucsein, M.
Munk, K. ObermayerJournal of Computational Neuroscience, Volume 29, pages
127-148, 2010

e The work presented in Chap. 5 was partly published in

"Spike detection in extracellular recordings by hybridndli beamforming”,
M. Natora F. Franke, K. ObermayeRroceedings of 32nd Annual International
Conference of the IEEE EMBS, pages 4636-4641, 2010

and in

"An unsupervised and drift-adaptive spike detection atgor based on hybrid
blind beamforming”, M. NatoraK. ObermayerEURASIP Journal on Advances
in Signal Processing, Volume 2011, Article ID 696741, 13g3ag

e The work presented in Chap. 6 was partly published in

"An automated online positioning system and simulationimment for multi-
electrodes in extracellular recordings”, M. NatoFaFranke, P. Meier, E. Hagen,
K. H. Pettersen, H. Linden, G. T. Einevoll, K. Obermay®rpceedings of 32nd
Annual International Conference of the IEEE EMBS, pages®®3 2010

e Code of several algorithms is available online from
http;/user.cs.tu-berlin.denatord for download.

1.4 Fundamental concepts

In this section we briefly present some notions and matheaiatbncepts which will be
used in some of the subsequent chapters.

1.4.1 Digital signal processing

The voltage is recorded with an electrophysiological etet digitally, usually with a
sampling frequency between-840kHz. Hence, in the following we always assume
discrete time series, i.e(t) = x,t = 1,2,... unless otherwise stated.

A systemS (as for example the one shown in Fig. 1.2) is called a LTI syste —
S —y), when itis linear and time-invariant [157]:

e time-invariant (stationary): Ik(t;) —» S — y(t1) thenx(t—7) - S — y(t — 1) V7.

e linear: If x.(f) » S — y1(t) andxo(t) —» S — yo(t), thenay - x¢(t) + a2 - xo(t) —
S —a-yi(t) +az - yot).

e stable: Additionally a system is called bounded-input lmdioutput stable
(BIBO stable) if|x(t)] < oo Vt, then|y(t)| < oo ¥t [190].
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The impulse responge of a systemS is the output when a Kronecker delta function
is the input, i.e.6(t) » S — h(t). The input output relation of stable LTI systems is
described by its impulse responséy following relationship:

Yn = Z NmXn-m (1.7)
M=—oco

whereag|h|| < c. The system is said to be causah{t) = 0 Vt < 0 [105]. Thez
transform othis called the transfer function of the syst&fil57]. The transfer function
H(2) of a causal LTI system can be expressed as

Zfio ij‘j
HE) = —2 2 (1.8)
1+ Zjil a;z’!
and hence the outpytcan be related ta by
Jp Ja
Vo= > bjXa = > ajynj. (1.9)
j=0 =1

Depending on the choice of the dheientsa, b different filter classes are defined, in par-
ticular finite impulse response filters and infinite impulssponse filters. The frequency
responsdH (w) of a filter is obtained by setting= eV-1vin Eg. 1.8.

Finite duration Impulse Response (FIR) filters

The definition of FIR filters is given by; = 0 Vj in Eq. 1.8. This implies that the
input-output relation is given by

Jb
Yn= > X m, (1.10)

m=0

i.e. hj = b; V], and the frequency response is simpljw) = Zfio h; ce V1o |
this sense FIR filters perform a moving average operatiormeSadvantages of FIR
filters compared to IR (infinite (duration) impulse respenBlters, which can perform
an autoregressive moving average operation, are listetDi][ Because FIR filters are
applied in a non-recursive way, all FIR filters are stablejciwhimplies that the filter
output will always be finite, even if there is noise presenthia system. On the other
hand, IIR filters are applied in a recursive way which givesnihmore flexibility, but in
general such filters are not stable.

1.4.2 Higher-order statistics

Higher-order statistics deals with properties of randomaies which go beyond first
and second order statistics such as mean and covariana.viteare mainly interested
in cumulants and joiftross-cumulants. The results summarised here can all Inel fou
in one of the introductory texts [139, 84, 199].
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Letxj, j=1,...,N, beN real random variables. The joint characteristic funct®n i
defined as

p(w) = E[eV ¥]. (1.11)
whereas := V-1. Then, the joint cumulant is calculated!'by
m
Cum(Xy 1 Ng; X i ;... X - ) = (=)™ 97In(9) (1.12)

OMwy ... O"NWN =0

whereasm := }; n;. If the joint characteristic function is not known, the cuant can
be directly computed from the joint moments. The generalti@hship is complicated,
however, for the first couple of cumulants, following exjtlielations are given:

Cum(xg; x2) = E [X1X2] (1.13)
Cum(xy; X; X3) = E [X1X2X3]
Cum(xy; X2; X3; X4) = E [X1XoX3X4] — E [X1X2] E [XaX4]
— E[x1X3] E[X2X4] — E[X1X4] E [X2X3]

whereas, ifx; is not zero mean, one has to replagdy xj — E [Xj] v j on the right hand
side of all equations in Eq. 1.13; aid-] denotes the expectation operator. From this it
follows that

Cum(x) = E[X] (1.14)
Cum(xa; X2) = Cov(xq; X2)
Cum(x:3)
W = skewness()
Cum(x : 4)

————> = excess kurtosis].
Cum(x: 2)

If xis normally distributed, i.ex ~ N'(u, o), thenitis Cumx : 1) = u, Cum(x : 2) = o2,
and Cumk : m) = 0¥Ym > 2. The latter also holds for Cumy(: ns;...; Xy : ny) if the
Xj are jointly Gaussian.

Some important properties of cumulants are stated in thexoig:

1. The joint cumulant of any permutation xfis again Cumfy : ny;...; Xn : NN).

2. For any constants; andN > 1, itis Cumf; +Cy : Ny;...; XN +CN & NN) =
CumXy : Ng;...; XN NND-

3. Cumtl-xl:nl;...;(:N-xN:n,\,)zr[jc'j1j ~CumXq @ Ng;. . XN NND.

4. If the x; are independent ofj, then Cumky +y1 @ Ny ..; XN+ YN NN) =
Cum(xy : Ng;...; XN s NN) + Cumfyr i ng; .o yn NNYD.

5. If any non-empty subset of the; is independent from the rest, then
Cum(xg : ng;...; XN :nn) =0.

IAlternatively, cumulants can be defined by the moment geingréunction instead.



CHAPTER 1. INTRODUCTION 12

1.5 Notation

In the literature it is most often assumed that both the $igrend the noise are zero
mean. In our setting, however, we cannot assume that bottegses are zero mean,
as the mean of depends on the amount of spikes present. A zero mean sigpb¢sm
that the calculation of filters (presented e.g. in Chap. 2@inap. 3) can be done on the
basis of covariance matrices, i.e. for single channel &g = E[%,%,] - E[X]? =
Cov(x;,, X,). For non-zero mean signals, the correct filters are ohddyeusing matri-
ces without mean subtraction, i, t, = E X, %, ]. For simplicity, we still use the same
notationE [ X, X, | = Cov(x, , X,).

Usually, we use the notation of zero-centred vectors, i.aedcory is given by
y = (y_Ly,...,yLy)T, and thus the dimension & = 2L, + 1. The notationy; refers
to the vector entry at dimensidn This will be also denoted bgy),, y(t) or simply y;.
For denoting a time varying vectorial quantity, the notatift] is used instead. Linear
operators in the form of matrices are indexed in a similar,way the entry in the
m-th row andn-th column is denoted aBm, or (D), the indices being in the range
mn=-L,...,L.

The discrete convolution between two vectoss and y is denoted as
(X*y) = X XY-—t. On the other hand, the discrete cross-correlation is defiye
(X% Y) = X XYr4t. The length of the output vector is given By + Ty — 1. In the
case of multi-channel data, every channel is convolutedecively cross-correlated
individually, and the outputs are added up.

For simplicity, in most chapters we will deal with single cm&l data only, i.e.
N = 1. This is only for notational convenience, and does ritgca the generality of
the proposed methods. In fact, the formalism in the case di-channel data is very
similar to the single channel case, as the channels can batemrated to a single vector
again, see e.g. [222, 168].



Chapter 2

FIR filters and their performance

FIR filters have the advantage of being stable (see Sec)l1®hg requirement of sta-
bility is of particular importance, since all data acquileg electrodes are noisy, and
therefore we will analyse only FIR filters. Usually FIR fikesire used for band-pass fil-
tering which requires a design specified on the frequengorese (which i$4(2) g in
Eqg. 1.8) of the filter. In our case, however, we are ratherésted in the filter response
in the time domain. This is because of the specific signal insliewvn in Eq. 1.1, as
every neuron exhibits a specific waveform to which the cpwading filter should re-
spond. In this chapter we formulate a general optimisatioblpm for FIR filters based
on thep-norm. As no universally optimal value fqr seems to exist, we then focus on
the casep = 2. We propose a new class of filters in this case, which is argésetion
of the existing ones. The issue how to evaluate the perfareaha filter is discussed as
well, in particular a novel measure for simultaneous daiacnd arrival time estimation
is proposed.

2.1 p-norm filters

We assume that once the data are filtered with filtera thresholdy! is applied to the
outputy', and presence of signdlis declared wheneve/ﬂ > yl. Therefore, considering
the spike sorting problem defined in Eq. 1.4 filfdrshould have a well defined output
to its corresponding waveforrgl, e.g. fi' - gl = 1, which then allows for an easy
estimation of the sourcg', and a low response to the other waveforhs # j as well
as to noise. Given the fact that \(afrj * n) =fit.Cc.fi= (rij, these requirements
can be formulated as the following optimisation problem:

M 1/p
fl= argmin{[Zﬂf’Z|(l”)T|p] +(1/ijij} subjecttof /" - gl =1 (2.1)
f) i=1 T

TUsing the definition of variance and the fact thitx n is zero mean (since we assumed
to be zero mean), one gets Vdrx n) = E[Ztl fton(ty +7) - X, f(tz)n(t2+r)]. By exchanging
the expectation operator with the summation, and againgusiie fact thatE[n(t)]> = 0, one gets
Yup () F@RIEMNL + NG +7)] =7 C- f.

13
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wherel := g » f1, & controls the amount of template versus noise suppressiep; t
determines how much theth template should be suppressed, arid an integer. The
p-norm of ad-dimensional vectok is defined as

d 1/p
IXllp == [Z | (X); Ip] ; (2.2)
i=1

which allows to re-write above minimisation problem morenpactly as

fl= argmin{||fj||p ta- o-ij} subject to(q » 1) =1 (2.3)
fi

wherefl = (g11%, . ,,BMI'V"J')T. In Eq. 2.3 all templateg*! as well as shifted ver-
sions of the corresponding templajeare regarded as noiseand the overall response
to this "noise” vectori’ is suppressed. If it is desired to individually suppresseve
template, the optimisation problem can be formulated as

M 1/p
fi = argmin ﬂ-[ |(1+] |p] +afi’Ccfll  subjecttofi’ -gi=1 (2.4)
rinl 32 (1019,
or in a compact notation
fi= arngnin{Z,Bi ||I"J||Io +a- (r?j} subject to(q! fl)o =1 (2.5)
i=1

The two optimisation problem, Eq. 2.3 and Eq. 2.5, are rdladeeach other by the
triangle inequality (assuming that > 0 Vi)

I, < 3 e v, = S e, 2.6

Also common to both optimisation problems is the fact thaytare constrained convex
minimisation problems [19]. In general, an explicit clofedm solution for f! is not
obtainable, however powerful numerical methods exist.liEitly, we use thecvx tool-
box, see [72, 73], based on disciplined convex programmidy fo solve the mentioned
optimisation problems numerically.

2.1.1 Single waveform

Let us consider the special case when only a single waveferpreisent in the data.
Then, the filter optimisation problem is stated as

fl= argmin{”M : I“||IO + a/ijij} subject to(q! » fj)o =1, (2.7)
fi

where we introduced the diagonal suppression matixvith My = 1, if (qj * fj)t
should be suppressed, ami; = 0 otherwisé. The formulation in Eq. 2.7 is still not

fIn order to exclude self-suppression one carl det 0.
INote that the matrisM is also defined symmetrically around zero, i.e(.q'jf* fj)l t=-L,..., L, then
alsoMy;, t1 =-L,..., L, to=-L,..., L.
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very practical, as it involves the parameter. This makes itfiicult to compare filters
obtained from dierent p-norms, as one would have to calculate the filters foreall
values and then choose the filter with the best performanae alt@r the optimisation
problem in the following way

(@« 1)1

. _ . _ q
fl= M - |+ bject t 2.8
arggmn” ||Io subjec o{ c ti<c (2.8)

fiT
In this formulation one seeks for a filter which has the optimaponse to the waveform
gl under the constraint of an upper bound false alarm rate. thatethe optimisation
problem is still convex, thus, can be solved with the saméhou= as described previ-
ously.

2.1.2 Performance criteria

The performance of a filter is assessed by its receiver apgraharacteristics (ROC)
curves and the corresponding area under the curves (AUQ) B#j. Since, according
to Eq. 2.8, all filters will have a bounded false alarm raterfoise, we therefore focus
on the ability of the filters to suppress shifted versionshef waveform. If one allows
a tolerance of:A samples in the arrival time estimation, the probability efegttion is
given by 1 minus the probability that the waveform is not degtd within+A, i.e.

A
Ppb=1- n Prob[(fj * r)T < yj], (2.9)

T=—A

whereas is a noisy data sample containing the wavefarmSince we assumed Gaus-
sian zero mean noise, this is expressed as

A —(f j
Po=1- n% 1rerf| " e (2 *Zq)T :
T=—A J 'U}j

where erf denotes the error function. Consequently, argctien of the waveform not
within A is classified as a false alarm (false positive detection)thadorresponding
probability is given by

(2.10)

-A+1 C(f] i L _(f] i
PFA=1—1—+[}1+erf Y ( *q)T 1—[1‘1+erf Y ( *q)‘r ’
=A+

L2 /2-0-?1- mar1 2 /2-0-?1.

whereL denotes the length df! x gi. The AUC is then determined as the area under
the curve in thePra-Pp plane by varying systematically the thresheid

(2.11)

2.1.3 Results

The two template shown in Fig. 2.1 were used as waveformr&ivere calculated for
allnormsp = 1,..., 19, and for the uniforff€hebyshev norm given iy = «. The noise
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T
waveform 1

****** waveform 2 |

-0.8
-4

Figure 2.1 :Waveform templates used in the filter optimisation problems.

covariance matrix was set © = 0.5- 1, and the noise constraint in Eq. 2.8 was set to
¢ = 0.5in the case of waveform 1, aed= 0.75 in the case of waveform 2. The threshold
yj was varied systematically from3 up to+3 in steps of M25. The optimisation was
done with a suppression matiM; = 0,t = —-A,...,+A,A=0,1,...,8, and all filters
had a length of 9 samples. The performance was evaluatecelyyriteria described in
Sec. 2.1.2. In particular, the performance of a filter olgdifrom minimisation with

a suppression matriM; = 0,t = —A,...,+A, was also evaluated with the same
for calculating the probability of detection and false alarThe results in the case of
waveform 1 are shown in Fig. 2.2, whereas the results in tse chwaveform 2 are
shown in Fig. 2.3.

From the two figures it is evident that no univerpaxists. Rather the optimal norm
to choose depends on the waveform shape, the noise consindithe extent to which
the waveform should be suppressed. The case when multipiefoven are present can
be analysed in a very similar way. In fact, as the noise vadasmalready bounded in the
optimisation problem Eq. 2.8, it is enough to add constsaimt the suppression of non-
corresponding templates in order to guaranteefac#nt discrimination performance.
Explicitly, one would add the constrainHmi * fj||oo < ¢, Yi # j in order to suppress
the maximum false responses.

2.1.4 p-norm filters in literature

The design of filters based on convex optimisation critesimdt new. For example,
in [107] convex optimisation is used to design robust beaméus. The focus, however,
is only on the three casgs = 1,2, . A more general work, i.e. not restricted to
antenna design requirements, is presented in [166], wieneer optimisation is used
for designing FIR filters which have a frequency responsdas&@s possible to a given
function (in the sense of the Chebyshev norm) under severstiaints.

To our knowledge no work exists which systematically iniggges the whole
spectrum ofp-norms in thetime domain In [184] optimisation again only involves
p = 1,2, with linear and quadratic constraints, which can be solva@dgisecond-
order cone programming (this is a subclass of convex opditioiz). It is argued that
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Figure 2.2:Area under the ROC curves for different p-norm filters and suppression matrices. The results were
obtained in the case of waveform 1, see Fig. 2.1. The red line indicates the performance when p = co.

a generalp-norm can be approximated by a combination of those thremsowhich
gives motivation to use these norms instead of a gemenalrm. However, the problem
formulation is done in the frequency domain of the FIR filesponse.

In [118] an unconstrained minimisation problem in the fregey domain of a FIR
filter is formulated. A large, evep-norm is used in order to approximate the Cheby-
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Figure 2.3:Area under the ROC curves for different p-norm filters and suppression matrices. The results were
obtained in the case of waveform 2, see Fig. 2.1. The red line indicates the performance when p = co.

shev norm. The advantage of using an epesind not directlyp = ~ is that the cost
function stays dterentiable, so a gradient based approach can be used fargsthe
optimization problem.

In [192] also an unconstrained minimisation problem inuadvthe frequency re-
sponse of a FIR filter is formulated, but apynorm is allowed.

In [151] a filter design framework is introduced, which allww design FIR filters
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in the frequency domain as well as time domain based on théyShev norm. In
particular, envelope-constrained filters can be obtained.

As a matter of fact, envelope-constrained filters, as intced in [53], might be a
better design choice than the time dompinorm filters introduced in Sec. 2.1.1 when a
specific time domain filter response is desired. The corradipg optimisation problem
is given by

fl = argminfi Cf/ subjectto g(r) < (o * f1) <h(r) vz, (2.12)
fi ’
whereg(r), h(r) are arbitrary functions. As it is shown in [53], this is agai convex
optimisation problem with linear constraints. Adaptivgaithms for this class of filters
exist as well [221].

Matched filter ( p = 2)

The case ofp = 2 received particular attention in the literature due to twain rea-
sons. Firstly, the optimisation problem given by Eq. 2.7 &asanalytic solution, and,
secondly, the resulting filter, most often called "matchéefi, is optimal in the sense
that it is the best possible linear transformationdetectingsignal presence [98]. In the
following section, thus, we focus on the cgse 2, but consider not sole detection, but
simultaneous detection and arrival time estimation.

2.2 Convolutive filters for detection and arrival time esti-
mation

For detection of signals in single data samples corrupte@éyssian noise, linear fil-
ters, in particular the adaptive matched filter (AMF), haeetb proven to be powerful.
Their performance is measured with respect to the prolalbiidetection and of false
alarm; see [94] for a performance analysis of the AMF andrdilters. The AMF has
been applied amongst others in radar and antenna systeBis [A®ther applications,
however, the incoming data stream does not consist of a feavsdanples, but of a con-
tinuous data stream, whereas the signal is present onlyew affthe samples (transient
signals). In this case, the signal must not only be detebigichlso its arrival time must
be estimated.

The research field of optimal simultaneous detection arichasbn has been mainly
initiated by the work presented in [141]. Based on this thiesmme detectors were de-
veloped [10, 58, 150], but most of these approaches rely der @tatistics. In the work
of [58], however, the authors mention, that especially i ¢thse of long waveforms,
linear convolutive filters prove to be superior to order statistics. Moreover, linear-c
volutive filters are computationally much moréieient, and thus, more suitable for
real-time applications than order statistics.

This raises the question of which detectors should be usetthdomentioned task,
and how their performance should be compared. In this chamdocus in particular

*By convolutive filters we mean that the detection has to beamadontinuous data, i.ef x x, and
not just in single snapshots as in Chap. 3, f.e: x.
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on the performance of linear filters, since they are easy pdeément and are optimal in
the class of linear transformations [210]. Although thefganance of various detectors
for transient signals was compared, see [61, 165, 226]ethieslies compared only the
detection performance and linear convolutive filters warely used for comparison.
Linear convolutive filters, in the following abbreviatedrgily by the term linear
filters, are a convenient approach for the task of simultaseletection and arrival time
estimation of transient signals, and, thanks to their caatmnal ficiency, suitable for
real-time applications. For example, they are used foraetitrg information from bio-
medical data [240, 204, 223], in speech processing (seq fab@ survey), in image
restoration or in spatial beamforming; just to name a fevd$éielf application.
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Flgure 2.4 llustration of the advantage of having a continuous performance measure. The black curves rep-
resent two possible filter responses to a particular waveform whose arrival time is at 0. Clearly, filter 2 predicts the
arrival time more accurately than filter 1. However, just using the performance criterion presented Sec. 2.1.2 based
on a tolerance zone (indicated by the red lines), both filters could achieve the same score.

However, to the knowledge of the author, no work exists te aetich would pro-
pose a measure assigning a performance to detectors wiihctet® their ability of
simultaneously detecting the presence as well as estignttenarrival time of transient
signals. The method presented in Sec. 2.1.2 by introdudiolgience zone is one possi-
bility. There, any threshold-crossing inside this zoneegarded as signal detection and
correct arrival time estimation, thus counted as a truetipesiletection. From a prac-
tical point of view, the use of a tolerance zone is reasondbépending on the desired
accuracy, the user can chose an appropriate and task spddificof this zone. From a
theoretic point of view, however, this approach is not fgllitisfying. The filter response
within the tolerance zone is not considered, and for moregproblems, no well mo-
tivated zone width might be defined, which makes any pagicahoice of it artificial
and arbitrary; see also Fig. 2.4. Instead, one would likeateracontinuousmeasure
indicating how well a filter performs in terms of simultanealetection and arrival time
estimation.

The remainder of this chapter is organised as follows: In. @21 the general
optimization problem in the case @f = 2 (see Sec. 2.1.1) is presented to which the
linear filters are the solution. By modifying the optimisaticriteria, a new class of
linear filters is derived. In Sec. 2.2.1 a measure of perfoceaf detectors with respect
to simultaneous detection and arrival time estimationésented. In Sec. 2.2.2fférent
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linear filters are compared with respect to this measure. rébglts from simulations
in Sec. 2.2.2 agree with the theoretical findings and dematesthe usefulness of these
new filters and of the performance measure. The work is summethand discussed in
Sec. 2.2.4 and a brief outlook on further research direstisgiven.

2.2.1 Methods
Notation

For the representation of vectors, convolution or crogsetation, we use the same no-
tation as in Sec. 1.5. The symh#j(x) denotes the usual Kronecker delta function, i.e.
dy(X) = 1, if x =y, andéy(x) = O otherwise.

The notion of variance is slightly abused by attributing lagiance to a probabil-
ity density function (pdf)f(x) rather than to a random variab} i.e. for a discrete
probability density

2
Varg(g = Varge(X) = > xf(x) - (Z xf(x)] . (2.13)

Linear convolutive filters

The measured dataq is a continuously sampled data stream which is a linear maxti

a signal source and a noise soungeThe signal is assumed to be sparse, i.e. consisting
only of a short waveforng at specific times. Formally, the data generating process is
written as*

X = )OS + 1 (2.14)

The point process; defines the times at which the waveforrs present, and can be
modelled for example by a Bernoulli process. The naoisis assumed to be Gaussian,
with zero mean and covariance mat€xnot necessarily white). It is assumed that the
amplitude distribution ofs as well as ofg does not change in time, hence, only the
presence of the waveform and its arrival time has to be detetiut not its amplitude
scaling. Further, it is assumed that the signal waveforiand the noise covariance
matrix C are known.

A perfect detector should retrieve the underlying pointcpsss, as, in this case, all
signals were detected and all arrival times estimated cibyrén the following, the focus
will be on detectors in the class of linear filters which miigenthe quadratic response to
the data, combined with a pointwise thresholding of therfdtgput. This class of filters
has the advantage of having an analytical expression, vaiiotvs for fast calculation
(see Sec. 2.1 for other classes of linear filters). The op#titin problem for this kind
of filters is stated as follows

*For the sake of clarity and of simplicity, the analysis widl bestricted to the case of single channel
data. The entire method can be extended to multi-channelidat straightforward manner.

IISince the square root function is monotonic, we can dropihfthe optimisation problem as compared
to Eq. 2.7.
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f = argmin{|I[? + o fCf} subjecttof - q=1 (2.15)
f

wherel is the filter response to the waveforpi.e. | := f x g. The optimisation cri-
teria can be understood intuitively: The first term demamdponse of the filter to the
waveform to be minimal, except for the correct arrival tinne,which case the filter
should respond with a well defined response of 1 (which is resby the optimi-
sation constraint). The response of the filter to noise satgrghould be minimal as
well. Since the noise was assumed to be Gaussian and zerg omesanas to minimise
Var(f x n) = fTCf (see Sec. 2.1). The parameter varies the ratio between minimisa-
tion of the filter response to the signal and to néise

The solution to the problem in Eqg. 2.15 is given by

L (2.16)
q"H™q
where the matribH is given byH = E + oC, and(E), := (q * 0),_;, See e.g. [222].

In the limit of o — co, the filter reduces té = C~*q/ (q"C*q), which is the mini-
mum variance distortionless response (MVDR) beamforméichvis equivalent to the
(adaptive) matched filter (AMF), see [177hlso called Capone beamformer [210, 13].
This detector will be referred to as the “no suppressionrfilte

On the other hand, for a particular choicesproportional to the occurrence fre-
quency of the transient signal, the minimum power distatéss response (MPDR)
beamformer is obtained [210]. Namely, in standard litesitiis (using the conven-
tion of Sec. 1.5) CovX) = Cov (s q) + Cov(n) = (ag + <s>2) - E + C, and comparing
this to the definition ofH, this leads tar = 1/ (o2 +(s)?), see e.g. [216], where)
denotes the mean. This detector will be referred to as thestippression filter”.

The original optimisation problem in Eq. 2.15 will be gensed in two ways:

1) Variable suppression matrix: Instead of either full sgggion of the signal or no
suppression at all, one can demand to suppress only spdifti tsof the waveform.
In this casd is replaced byM - |, where the suppression matti4 is a diagonal matrix
with M¢; = 1 if the shift(f x g), should be suppressed, akli; = 0 otherwise.

2) Variable target function: In the original optimisatioroplem the response of the
filter to the template had to be minimal, i.e. the least sqd#tance to zero. Instead,
one can minimise the distance to an arbitrary functgyrwhich is expressed by the
substitution ofl with g — 1.

Combining both variations 1) and 2) this leads to a modifietih@pation problem
stated as

f =argmin{|g- M - 12+ afTCf} st.fT-q=1 (2.17)
f

The solution to this modified optimization problem can ¢iél obtained analytically.

*Note that a explicit weighting of the template suppressiod @oise suppression term is rarely used
in standard literature, but was for example used in [222].224

"Note that in [177] the filters were obtained under the consttrl Cf = 1 instead, however, in terms
of detection performance the filters are equivalent. Alse,will still refer to this filter as theadaptive
matched filter, even if thexactnoise covariance matrix is known.
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Proposition 2.1. The solution to the optimisation problem stated in Eq. 2s1given by

~ G—l TG—l G—l
f = (G 1o %) . (g * q)[—Lq,Lq] + qTT_qlq (218)

whereG := £ + oC, andZy) := 3; (M;.)? Gks<0i4-, and2Lq + 1 being the dimension of
vectorq (see Sec. 1.5).

The proof is given in Sec. 2.2.5. =0 or g; = do(t) the first term in Eq. 2.18
disappears. Furthermore, if the suppression matriis the identity matrixM = 1, the
original formula in Eqg. 2.16 is obtained, whereas Mrbeing the zero matrixyi = 0,
the no suppression filter is obtained; thus the filters in E8 2onstitute a generalisation
of the existing filter design.

Performance measure

The processing flow of a detector consists of two consecutigps: filtering, and an
application of a threshol@ to the filter output. Hence, it is desired that after these
two steps, the underlying point processn Eq. 2.14 is obtained. If one achieves the
correct estimation of this point process, the signal haa detected and the arrival times
retrieved successfully.

Since a signal consisting of a unique waveform without alag@é variations was
assumed, one can restrict itself to the analysis of deteetiw arrival time estimation
of the waveform itself. Therefore, the output of a perfedied®mr D must always be
D(g+ n) = do(t). As such, the perfect detector reconstructs the origiogitgprocesss
for all possible thresholds. Hence, one would like to have a meaghioh indicates the
closeness of a detector output to ig&) function. In contrast, the classical performance
measure, which is the probability of detectiBp (see e.g. [94]), only indicates whether
the waveform was detected at all, but does not measure teendes of the detection
probability to the correct arrival time.

Based on these observations, the following measure ofpeafocePpe (for a fixed,
but arbitrary thresholg) for combined detection and arrival time estimation is josgd:

. Vary 2 oot — Var2(p()-+éex)
' Var2(gte)+ (1)
wherep(t) is a pdf for which Vag,o(pt)+6,(x) is maximal, i.e.

DE (2.19)

p(t) := arg(rt;\a><{Vaf1/2<p(t)+60(t))} :
pi

The functionp(t) is a detector dependent pdf which is at each pimtime proportional
to the probability that the filter output is above the thrédhq i.e.

_ _Po(®
P = 5P
wherePp(t) is the classical probability of detection. In the case oéér filters, one
hasPp(t) = Prob[(f = (q+ n)); > y]. The motivation for this definition of performance
measurePpe will be discussed in Sec. 2.2.3.

Two important properties dPpg are stated in the following propositions.

(2.20)
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Proposition 2.2. In the case of a discrete pdf defined on the intefva, a], Ppg is
given by

2
PDE =1- ; Varl/z(p(t)+50(t)) . (2.21)

The proof is given in Sec. 2.2.5. In contrast to Eq. 2.19, tt@ession in Eq. 2.21
no longer depends on the unknown quanfift), and thus, allows for calculation of the
performance measure in real applications.

Proposition 2.3. Ppge takes values in the intervg0, 1]. The maximum value df is
attained if and only if ft) = do(t).

The proof is given in Sec. 2.2.5. This last proposition d&thbs bounds on the
range in which the values &pg fall. A value close to 1 indicates a good performance,
whereas a value close to 0 indicates a poor performance afeteetor. Moreover, it
states that only the perfect detector can achieve the bssifj® performance.

As in the calculation of the quantitp(t) a normalisation is involved in order to
obtain a pdf (see Eq. 2.20), even a single small value exegeatie threshold will be
normalised to a pdf. If the threshold is increased towarésify, the measure might
indicate a better and better performance, although thepreakbility of detection will
become arbitrarily small. Hence, in contrast to the cladsiteasures, one has to restrict
the range of possible thresholds. A reasonable choice isttgygx = max {(f x Q);},
andymin = E[f % n]. The upper threshold is justified by the fact that in the edige
case, a threshold greater than the maximal value of the fdsgonse to the waveform
would lead to zero detections. The lower bound of the thigsksalso justified, since a
threshold below the average response to a noise segmertt alaays lead to detection
of the signal, except when the detector is meaningless.

2.2.2 Results
Numerical evaluation

The measure in Eq. 2.21 indicates the performance of a filtenfefixed (but arbitrary)
thresholdy. In order to assign aoverall performance to a detector, however, a total
measure is needed. As such, slightly modified receiver tipgraharacteristics (ROC)
and the area under these ROC curves (AUC) were used.x-Bixés of the ROC curve
corresponded to the probability of false alaRpa [94], i.e. the probability that a data
segment containing only noise will be incorrectly dete@sdignal. Instead d?p, the
y-axis corresponded to the propodgsk measure. According to the propertiesRy in
Sec. 2.2.1, alarger value of the AUC indicates a better pmdiace of the corresponding
filter.

In this evaluation setting, threeftrent linear filters were compared, namely the no
suppression filter, the full suppression filter and a paldicoase of the proposed filter
class. The waveform of the signal had a lengtiT @t 7, whereas the noise covariance
matrix was set t& = 0.025- 1, resulting in a SNR of 10 db.
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Figure 2.5:AUC of various filters for different « values. The partial suppression filter was calculated by Eq. 2.18
in which the target function was set to g; = do(t), YVt € [-6, 6] and the diagonal matrix entries of M were set such
that M_1_1 = Moo = M11 =0, and My = 1Vt ¢ {-1,0,1}. This proposed filter achieved the highest AUC score.
The optimal performance for the partial suppression filter was achieved at @ = 20.220, for the full suppression filter
at @ = 63.685 whereas, by construction, the no suppression filters had constant performance for all @ values.

In the case of zero mean Gaussian noise the probability ettien is given by the

expression
_05.(1_ y-1(t)
Pp(t) = 0.5 (1 erf( TTCf)),

where erf§) denotes the standard error function, aff = (f x q);. Pga is ob-
tained byPra = Pp(I(t) = 0). Ppe was then calculated according to Eq. 2.21 with
a=05-(Trq-1)=6.

For a linear filter, the average response to zero mean naisedsi.e.E[f x n] = 0.

It turned out that for this particular evaluation settingedras max{(f x q);} = 1 for alll
considered filters. Hence, the threshgldvas varied in the interval [d] (in steps of
0.002).

Recall, that the linear filters depended on the trafigp@rametery, see Eq. 2.16 and
Eq. 2.18. The AUC was computed for allvalues starting fronx = 0 in steps of M05
up to a value for which the performance started to convergieetperformance of the no
suppression filter; see Sec. 2.2.1 for explanation. Thétseate shown in Fig. 2.5.

Although the filters attain their best performance &itedenta values (see Fig. 2.5),
the proposed filter, called partial suppression filter, et the highest AUC.

Simulations

The results from the previous section based on the proposddrmance measure in-
dicate that partial suppression filters are advantageoasmparison to the full and no
suppression filters. To verify this result in a realistictiogt, Monte Carlo simulations

were performed. In particular, a single simulation comesisif a data stream containing
1000 signal segments and twice as many noise segments. @tecad waveform and

also the same noise statistics as the ones described indghieys section were used.
The implementation was realised in MATLAB
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Figure 2.6:ROC curves for various filters based on a single simulation. The number of true positive detections
was normalised by the total number of signal segments, whereas the number of false positive detections was
normalised by the total number of data segments. Clearly, the proposed partial suppression filter outperforms the
other filters.

For performance comparison the previously calculateddileere used, with the
parameter set at the specific values for which the respéefiltiee achieved best perfor-
mance (see Fig. 2.5).

As scope the area of real-time applications was chosen. din awsetting, at time
to only datax; from precedent times < ty are available. Nevertheless, the decision
about signal presence has to be made already att§int@onsequently, every threshold
crossing is immediately accounted for a signal presenakeegry detection, which does
not correspond to the exact signal arrival time, is counted &lse positive detection
(FP). Accordingly, only successful detections at the esawval time of a signal are
counted as true positive detections (TP). By varying thedhold (in steps of.0025)
the corresponding ROC curves were obtained, see Fig. 2.6.

For the assessment of the overall performance, the AUC wapuied and con-
sidered only up to the smallest (common for all filters) tetat-P value for which
rel. TP=1, in order to avoid redundant computations. The AUCs of h#rf aver-
aged over 10 independent simulations are shown in Tab. 2dithe variance across the
simulations was of the order of 10

The partial suppression filter achieved the best scorevieltl by the full suppres-
sion filter and lastly the no suppression filter. This is themeaanking as predicted
in Sec. 2.2.2 byPpe. In contrast, the classical performance meassgPra would
not have predicted the correct rankirigy = Prob[f " - (q + n) > y] is largest for the no
suppression filter and smallest for the full suppressioerf{iaind vice-versa faPga).

Table 2.1 :Average AUC for various filters.

Partial Full No
av. AUC || 0.396487| 0.395009| 0.392696
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2.2.3 Discussion

The trick was to re-normalise the detector output to a pdthab it then can be com-
pared to the output of the perfect detector for all thresholthe performance measure
we chose for comparing the pdfs was motivated by M@, (x)+p.(x) — Varp,, which
indicates the dference in variances of the summed pdf and the desired pdfe Siow-
ever, p2(X) = do(X) in our case, the second term vanishes. Note thal, \Mar Varp,x)
would not be good definition, singg (X) and p2(X) might have very similar variances,
but their peaks might be very far apart, thus predicting thiga time at very distinct
time points.

Of course, there are already many well established measuoesnpare two proba-
bility distributions. In the following, we shortly discusghy most of them are not well
suited for the problem we are interested in.

The symmetrised Kullback-Leibler and the Jensen-Shaninergence, for exam-
ple, can produce infinite values, as divisions by zero migicua In our filter setting
this might indeed happen when we assume a noise-free setting

The Hellinger distance in the case of one distribution beirigronecker delta re-
duces to

H? = 172 (18009 - VPr) = 1/2 Y (pa(x) + 60(x) ~ 24503 ()
=1/2(1+1-2/pi(0)) = 1~ Ypa(0).

Hence, only a single value, namepy(0) is considered, which spoils the whole idea
of comparing probability density functions. The same istfar the Bhattacharyya
distance.

On the other hand, the Bregman divergence is very genelt anot clear which
specific convex function should be used in its definition.

Also, the used measures in communications, such as the maxidmstortion or
intersymbol-interference (see e.g. [189]), do not condige shape of the distribution of
the filter response, but only theffiirence between the largest filter output value and its
energy.

One promising distance measure might be the Vasershteiiciradso called earth
mover’s distance. Recently, this metric has indeed beeliegpfo measure the per-
formance of filters [185], and it should be investigated i§tbould be applied for the
detectiopiestimation problem as well.

2.2.4 Conclusion

To sum up, a measure was proposed which assigns a perforrtaacdetector with
respect to simultaneous detection and arrival time estimatf transient signals. Al-
though the proposed measure is general and suitable for detesttors, the detector
class of linear filters is of particular interest. We statiednalyse filters as the solution
of a general optimisation problem involving an arbitr@rporm, but then focused on the
casep = 2 which allows for an analytic solution. In this popular stlass of minimal
guadratic response filters, the existing filters were madilfigintroducing a suppression
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matrix and a target function. The proposed filters have thardge of still being ana-
lytically computable, but fier more flexibility than the existing filters. The widely used
minimum variance distortionless response beamformerCtypmpone filter and the mini-
mum power distortionless response beamformer are alkpéatirealisations within the
proposed filter class.

In fact, the target function introduced in our filter class & used for adjusting the
smoothness of the filter response. This might be helpful s@savhen the post process-
ing consists not just of a pointwise thresholding, but of aemmmplex operation; e.g.
when the data contains more than one signal source and aamols detection and
classification task has to be performed.

On the other hand, the suppression matrix allows for thecketesuppression of
specific filter responses. This can be useful for incorpogapirior knowledge about the
signal into the filter design, as for example a refractoryqueor dead time.

Using the proposed measure, two existing filters (AM¥DR and MPDR) were
compared with a particular filter of the just proposed filteiss. The measure indicated
a favourable performance for the proposed filter, which watdioned in simulations.
In particular, the proposed filter was superior in a reaktohetection and arrival time es-
timation task. This shows that the defined performance measuwell as the proposed
filters are useful and advantageous.

In the performed evaluation the target function and the seggion matrix were set
manually. As an outlook for further investigations one ntittink of an online adaption
scheme: The filtering is started with the classical adaptiagched filter, while in the
background an optimisation problem is solved, which aimfinding an optimal target
function and suppression matrix. Once such a solution iadpthe filter is adapted
accordingly.

2.2.5 Proofs
Proof of proposition 2.1

The objective function of the optimisation problem in EdL2is convex and since the
optimisation constraint is linear, one can use the Lagramgjéplier method for solving
it. The corresponding Lagrangidnis given by

L=1g-M-1P+af"Cf+a(fTq-1)

where A is the Lagrange multiplier. The derivatives with respectftand A can be
calculated as

oL
5_fti =2 Zf: MT,thi +T Zt: MT,th+T ft -0 MT,thi +‘r) + 2 Zt: Cti,t ft + /thi

SL (
(Yt

The calculation of the second derivatives leads to
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oL ,
5fyofy, - ZZ M? Gy+c0y+r +2- - Cyy,
i =0 SL 3
S04 5Hol O

The second derivatives af are independent of and ofA. Therefore, the Taylor
expansion of the first derivative @f around zero consists only of two terms and the
solution can be obtained by solving

oL SL
oL L 2t STt o _oL_ )
0 _ (o] _ [5% I R P S R O KTAE PR
o) — |st] — |t P L - f; oL Al
ol o1/ f,=0,1=0 U 526, f,=01=0 3161 f;;=0,1=0

In matrix notation, the above equation becomes

0= (—2(9 * Q)[—Lq,Lq]) +A. (f) (2.22)
-1 A

where one defined

(g% Dty = (g% Do (@* Q)

H;=(2(é+“’c)’ q)

qr, 0

and

and(é)kJ = ZT nﬁ,qu+Tq|+T'
DefineG := E + aC. The inverse ofd is then given by [122]

l G_l _ G—quTG—l G—lq
|:|_1 _ 2 qTG—lq qTG—lq

qct 2
qT G—lq qTG—lq

The left multiplication of Eq. 2.22 witlid ~* yields the solution foif, which is given
by
1

¢ (g1 Glag’c™ _Glq
q'G1q

q7G1q )(9 * ALyt

Proof of proposition 2.2

If one can show that Vapg+sx) = a2/2, the proposition simply follows from
Eq. 2.19. Itis

Vary a(p+so(x) = Varyzpx + Vary s,y = Varypp) -

Strictly speaking 12p(x) is not a pdf, but Vaop(x is still defined as in Eq. 2.13.
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Itis
2
Var ap = Z X2 - 1/2p(x) — [Z X- 1/2p(x)} < 1/22 X°p(X) = 1/2 Varg,

whereq is a pdf of a discrete random variable with zero mean. Thewmad ofany pdf
q(x) on the interval fa, a] is bounded bya? [3]. Hence, Vafiopx < a2/2.

Now, one can show that this upper bound is attained. Def(Re = 1/2(6_a(X) +
8a(X)). Then, a straightforward calculation yields Yafpx+sox) = 82/2. O

Proof of proposition 2.3

It was already shown in the proof of proposition 2.2 that thedr bound is attained. It
remains to show that the upper bound is attained, i.e. thaf¥@y+s,x) = 0 © p(X) =
50(X).

“&" Varsyy = 02-1-(0-1)%=0.

“=". Let q(X) be an arbitrary pdf. Without loss of generality, one caruassthat
q(x) is zero mean. Hence, 8 Vargy = X x?q(x), soq(X) = 0 ¥x # 0. Since it
must be tha’, q(x) = 1, it follows thatq(0) = 1, i.e. q(X) = do(X). By plugging in
q(x) = 1/2(p(X) + do(X)) = do(X), it follows that p(x) = 5o(X). O



Chapter 3

Steering vector mismatch
analysis and adaptation scheme

In many filter applications the exact steering vector is maivi, and thus, robust beam-
forming methods have to be used. In this chapter, an algontthich achieves robust
beamforming via target tracking is proposed. In contrasexisting approaches, the
algorithm works on sparse signals with arbitrary steeriagter shapes, and the param-
eters of the algorithm are adapted in an optimal way. Thislisexed by deriving and
evaluating the probability of detection and false alarmdeneral steering vector mis-
matches. These probabilities are used to adjust the pagesnestich that the number of
false positive and false negative detections is minimahuktions confirm the theoretic
results and show that the algorithm performs better thamargeapproach.

3.1 Introduction and problem formulation

Let us assume a simplified model of Eq. 1.1 in the sense that aingle, spatial
waveform is present in the data:

X[t] = g- St] + n[t], (3.1)

whereq*is the steering vector (see Sec. 1.2} the source signal antlis a noise vec-
tor sampled from a stationary, zero mean Gaussian digtoibutith covariance matrix
C,i.en ~ N(0,C). The notation using angular brackets, exft], indicates a vectorial
quantity at timd, in contrast tax(t) which denotes the vector entry at dimensidas e.g.

in Chap 2). The observation vectgft] at timet, also called snapshot, has dimension
N x 1. We assume that used filters for detection are of the form
H-p

)

(3.2)

and a signal is declared as detected when the filter outpeeesca certain threshojd
e. fT-x[t] >y.

“In this chapter we writg to denote the deterministic waveformavill indicate a random variable.

31



CHAPTER 3. STEERING VECTOR MISMATCH ANALYSIS AND ADAPTATI®! 32

The expression in Eqg. 3.2 covers the MVDR, MPDddd general diagonal loading
filters [48]. We refer tog as the actual steering vector andgas the nominal steering
vector. In order to maximise the detection performance deisired thaip = @, other-
wise one has a, so called, steering vector mismatch. Singeneral, however, the true
steering vector is not known a priori, it has to be estimatethfthe data, which usually
implies thatp # q.

The field of robust beamforming emerged with the aim of dasmffilters which
deliver acceptable detection performances even undeairgjeector mismatches [66].
Most of these approaches assume a model, either deteiminmisiore recently, prob-
abilistic, describing the steering vector mismatch anduthe this model into the opti-
mization problem for the filter. This approach works well whbke steering vector error
is relatively small and stays constant over time. Howeuss, dctual steering vector
might represent a target which is moving in space, as for pla&im the case of radar
applications. Hence, it ig = (t] and, since the future trajectory of the target is not
known, the mismatch betwegmand g can become arbitrarily large ffis not adapted.

Besides many other fields in which linear filters are usedh sscdigital communi-
cations systems or speech enhancement, they have beeedajgpbiosignals. In par-
ticular, they are used for processing electrophysioldgieaordings from electrodes,
either as a spike detection [102, 204] or a spike sortingrigcie (see literature in
Chap. 4). In this case, the spatial model in Eq. 3.1 is adajatesd temporal model
X(t) = X, q(r)s(t — 7) + n(t), q representing the waveform of the action potential, and
s(t) being the neuronal firing sequence. Due to tissue relaxdtie distance between
the electrode and the neuron is changing over time, whidtsléaan altered observed
waveform of the action potentials [21]. The above mentiosy@kle detection and sorting
methods, all of which are relying on filters shown in Eq. 3.2 suffer from perfor-
mance degradation since no robust beamforming methodsusece

To our knowledge there are only few methods which try to achiebust beamform-
ing by tracking, i.e. by adapting the nominal steering veatzording to the changes of
the actual steering vector. In [2] an adaptation schemehfambminal steering vector
based on the generalized sidelobe canceller algorithnofoged. However, the noise is
assumed to be white and an optimal adaptation rate is saidstooaly in the case when
the actual steering vector is not arbitrary but dependojust single parameter, namely,
the direction of arrival. This makes the algorithm unsugafior applications where the
steering vector cannot be represented by some simple yimderhodel.

A similar scheme is presented in [63]. In that study, theao&n be colored, but the
adaptation rates of the filter and the nominal steering ves®fixed. An algorithm for
obtaining optimal adaptation, which would naturally degh@m the system parameters,
such as the target velocity, was not presented.

In [50] another adaptation scheme for updating the filteragppsed. However, only
changes in the covariance of the noise are considered bahgatanges in the steering
vector. Moreover, the adaption scheme depends on seveehgters which must be
set manually.

In [207] a very high signal-to-noise ratio is assumed, aratetfore a noise model

*See Sec. 2.2.1 for a derivation of these filters.
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is not taken into account at all. Further, a specific phygicatlel of the change of the
actual steering is assumed, making the method unsuitabledme general changes.

In this contribution we consider measured data which the source signa is
present only at few specific times (sparse signal). This sig@atsis not a continuous
process, but rather a sparse Bernoulli process. The formgmaasumed in [63] and im-
plies that the steering vector is present in every measurapisbot. As a consequence
of the sparseness, the nominal steering vector can only &gtextl after a successful
detection and not after every snapshot. To name a few exangparse signals are en-
countered in the aforementioned electrophysiologicabndings or in geophysics [30].

In Sec. 3.2.1 the performance of a linear detector in the chseering vector mis-
match is derived. This result is used in Sec. 3.2.2 to propmseptimal adaptation
scheme of the nominal steering vector which leads to robeatmifiorming via target
tracking. Simulations in Sec. 3.3 show tHEeetiveness of this approach, and conclusive
remarks are given in Sec. 3.5.

3.2 Method

3.2.1 Performance analysis under steering vector mismatch

In order to derive amptimal adaptation scheme, one has to understand how the perfor-
mance of a detector depends on a steering vector mismatcpe@mance measure
we use the probability of detectidAp and false alarmPga. These two probabilities
translate directly into the number of true positive and thmher of false positive detec-
tions, which is a meaningful performance measure for detedf sparse signal®p is
defined by
T T

Pp := Prob[f T - q> 9] = Prob[%
The random variablg is a noisy observation of the actual steering vector anayrdotg
to the model in Eq. 3.1, distributed as~ N (g, C). Since the nominal steering vector
will be based on an estimation from noisy dageis also a random variable and is as-
sumed to be distributed gs~ N(p, D) (in generalD # C).

In the case of the MVDR beamformer, we hate= C1, whereas in the case of the
MPDR beamformerH = (Cov(x))™L. Also for diagonal loading filtersH is in general
positive semi-definite or positive definite, and symmethide suppose thatl can be
estimated on the basis of a large amount of samples. Theréfas justified to assume
that the estimate dfl is so accurate that there is no mismatch between the estamdte
the true covariance, and its distribution can be neglecsemmarising, the probability
of detection is given by

> y]. (3.3)

.
Po = 1 cdf, ( Eﬂg), (3.4)

where the notation cdfz) := Probf < a] is used. The probability of false alarRga is
obtained by setting) = 0in Eq. 3.4. Hence, one has to obtain the cumulative distabut
function of a ratio of quadratic forms of Gaussian randomaldes in order to analyse
the performance of the desired detectors.
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The expression in Eq. 3.4 can be simplified by defining (p",q")". Then,r is
distributed ag ~ N(r, G), wherer = (p",q")" andG := (E
the covariance betwegmandq. This definition allows to rewrite the random variable in

Eqg. 3.4 as
0 H
-
P Hq r(o O]r

E
C]’ whereE denotes

FTAT
= = 3.5
P'HPp  (H 0) TFTBF 59
r r
_ H H
wherer’~ N(GY2.1,1), A= GY2". (8 0) .G'/2, andB := G¥2" . [0 (())] - G1/2,

whereGY? denotes the unique non-negative square ro@.of

The distribution of the ratio on the right hand side of Eq. 885 been analysed for
a long time, since it is of importance in econometrics antissies [60]. The analysis
is mainly focused on cases whefeis symmetric andB is positive semi-definite or
positive definite. In the definition abové, is not symmetric. However, we can replace
A by the symmetrised version of & := 1/2- (A + AT), since itisz" Az= z" AT z for
any square matri¥A and any vector, thusz™ Az = z" Az SinceG is positive definite
(it is a covariance matrix) it follows thaB is positive semi-definite iH is positive
semi-definite. In the case of the beamformers consideregirhet is indeed positive
semi-definite or positive definite as discussed before.llyjntis

PTAF
FTBF

Pp = l—cdfy( ): 1-cdfo (7™ (A-yB)F). (3.6)
There exists a closed form expression for the cdf in Eq. 2%gver, it involves an infi-
nite series of top order polynomials with a very slow coneaige rate [60]. Techniques
for fast evaluation by means of saddlepoint approximatiwese developed in [130, 25].
These approximations, which are based on asymptotic expensf the corresponding
inversion integrals, however, are not accurate enougt#ptoblem at hand.

Instead, the basis of the presented algoritiisna result from [91], where it was
shown that the inversion integral can be reduced to intemyat real function over an
infinite range, namely

e o~ 1 1 (sin(B(u))
T _ — - _= A S 24
cdfy (F7 (A - yB)T) > nfo o du, (3.7)
whereB and p mainly depend on the eigenvalugsand eigenvectorg of A — yB,
ie. f(U) == § ¥ arctan@) + 42, p(u) = exp{3 2 %2 + FIn(c)}, & = Ay, by = a2,
¢ =1+b;, ands, = (6" G 1/?r)2.
This integral is evaluated by mapping it onto the finite rajiigé] via the substitution
u = (1-v)/vand replacing the integrandwat 0 andv = 1 with its limits, which are zero

"For example this ratio arises when studying Gaussian agiessive models or in many test statistics,
see also [117].

*Developed by Prof. Simon Broda from the Department of Quainte Economics, Universiteit van
Amsterdam, The Netherlands.
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and 2 3,(1 + 6)4; (see Sec. A.1 for a derivation), respectively. The resuliintegral
can then be straightforwardly evaluated using standardenigrimtegration routines.

3.2.2 Adaptation scheme

To account for the time varying actual steering veciid}, the nominal steering vector is
adapted after constant time steps of leriftiNotably, after every periodl, the nominal
steering vector is estimated as the sample mean df thast detectionsd (x' := x[t(i)]
such thatf " - x[t(i)] > y), i.e. p=1/K- Zi'(:”;g;ax_Kﬂ X', whereKax denotes the total
number of detections at tinte

The question arises, how many detections should be usedidadtimate. If a large
K is chosen, the estimate of the meanpofvill be robust © small), but the deviation
from the true mean steering vector might be lange: (g). On the other hand, if a smaller
K is chosen, then on average the estimated mean of the nortéeaig vector will be
closer to the mean of the actual steering vecmr(q), but the estimate will be more
noisy (D large).

As an optimal trade®, the value folK should be chosen such that the performance
M of the detector is maximised. Usually, it is desirable tlm&t amount of total rela-
tive error, which is the sum of false positive (FP) and falegative (FN) detections, is
minimal. Therefore, we define our performance as

M :=p1-Pp+p2- (1 Pra), (3.8)

wherePp rsp. Pea are given by the expression in Eq. 3.6, #@idsp. 8, are weighting
parameters which determine their importance. Conseqguénd optimal value foK is
given by

Kopt = argKmax{M(K)}. (3.9)

In order to use the expression Bf in Eq. 3.6 for this adaptation scheme, the as-
sumptions made in its derivation have to be verified. Firstiwas assumed thai is
Gauss distributed. This would be entirely correct only Ifdgtectionsx' were true
positive, there were not any false negative detections, thadarget was stationary
(qt] = const.). For reasonable threshold valgesnost detections will indeed be true
positive and only few signal occurrences will be missed, i@nide change of the ac-
tual steering vector is not too rapid, themwill be approximately Gauss distributed as
p~N(1/K- Ziﬁax«+1 x', D), whereD = 1/K - C. Secondly, the covariance matrix
H was assumed to be known. The validity of this assumption riigpen the amount
of available data. In the case of continuously sampled datardings, as in biomedi-
cal recordings or wireless communications, a large amofiobserved samples are
indeed available, and hendd,can be estimated very reliably.

The evaluation ofPp requires the knowledge of the true actual steering vector at
all time intervals, i.e.q[k - T], wherek is an integer. Generally, this information is not
available and the actual steering vector has to be estinfedgadthe data themselves
as well. For this estimation, again the sample mea dést detections is used, i.e.

g=1/Q- Zi'(:”}?;ax_@l x'. Assuming a linear change of the shape of the actual steering
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Table 3.1 :Maximum absolute error for different cdf evaluation techniques in the case of a F-distribution. SdpAl
and SdpA2 denote the first and second order saddlepoint approximation techniques.

Our method| SdpAl| SdpA2
1.6-108 | 0.0121 | 0.0089

vector* this will give an estimate ofj for a timete, te < k- T. Alarge value ofQ will lead
to a more robust estimate, but atse« kT, which means that there is a large "lag” in the
adaptation. A small value d@ might give a more noisy estimate in the specific setting
(but still a correct estimaten averagg as an advantage, however, the adaptation follows
the change of the actual steering vector more rapidly. Dedpis estimation, the covari-
ance ofg is still given byC (and not XQ - C), hence,g ~ N(1/Q- Ziiinka:;ax—Qﬂ x', C).

We assumed complete blindness about the temporal structuggt]. Therefore,
an optimal value ofQ cannot be provided. In Sec. 3.3.2, however, we will show that
the adaptation scheme works reliably for a wide rang® efalues, thus the algorithm

exhibits a robust behavior with respect to this parameter.

3.3 Results

3.3.1 Comparison of cdf evaluation techniques

In this section we briefly show the accuracy of the cdf evabmatechnique presented
at the end of Sec. 3.2.1 by applying it to two examples. Theesgion in Eq. 3.7 was
evaluated via MATLAE® using the standard commandsg for finding eigenvalues
and eigenvectors, anghadl for numerical integration based on an adaptive Lobatto
rule. The integration error was set to$0 For comparison, both examples were also
evaluated by an first and second order saddlepoint apprtigimésee [25] and [24]
respectively).

The first example is according to [60]. Namely, in the spedake when
A=1-1T/(I7 - 1), wherel is aN-dimensional vector of one® = (Inxn — A)/(N — 1),
and '~ N(0, 1nxn), then, the cdf in Eqg. 3.6 is given by the cdf of the F-disttitn
F(1,N-1).

As an example, the valué = 10 was chosen, and the thresheldias varied in steps
of 0.05 in the interval [011]. The exact value of the cdf was assumed to be given by the
MATLAB function fcdf(y,1,N-1). The three techniques were compared by means
of the maximum absolute error between the exact cdf valugtangalue given by the
corresponding technique for all thresholds. The resuéshown in Table 3.1.

. T T . .
In the second example, we considered (‘(S“l/zrl) , r;) , Wherery is an arbitrary
N:-dimensional vectorr; is the No-dimensional zero vector, arfflis a diagonal ma-

N2 - Ingxng OleNz) andB = (OleN1 OnyxN, ]
OnoxNg OngxNg Onpxng N1 - Ingxn,
then, the cdfin Eq. 3.6 is given by the cdf of the noncentrdidtributionncF(Ny, Na, 1)

trix. Moreover, if we choosé = [

*This is true for small time intervals considering a first ar@iaylor approximation.
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Table 3.2:Maximum absolute error for different cdf evaluation techniques in case of a noncentral F-distribution.
The same notation as in Table 3.1 is used.

Our method| SdpAl| SdpA2
25-10° | 0.0785| 0.0785

with A = Zi'\lll(rli)z/s,-,i, which can be evaluated very accurately for example with the
MATLAB function ncfcdf(y, N1, N2, D).

We choser; =(1,2,...,6)", N, =8, S=diag(76,...,2), and the thresholg¢t was
varied in the interval [150] in steps of M5. The maximum absolute error to the exact
value over all thresholds is reported in Table 3.2.

Clearly, in both examples the used method based on numértegration is more
accurate than both of the saddlepoint approximations.

3.3.2 Simulations

The proposed adaptation scheme was tested on data geneyadimhte Carlo simula-
tions. A single dataset consisted of 1400 snapshots, h#ileaf containing the steering
vector. White noise with a variance of2®, i.e.C = 0.25- 1n«n, Was used for the noise
source. In the first 400 and last 400 snapshots a constaral @teering vecton; rsp.

g2 was simulated having the dimensibh= 7. The signal-to-noise ratio (SNR) of both
steering vectors was identical.Qalb), however, they were orthogonal to each other. In
between, a normalised linear mixture was simulated. To sum u

01, ¥Vt < 400
alt] = { e[t] - ga[t], ¥t € [400, 1000] (3.10)
02, Yt > 1000

whereqg]t] := %0 .t 4 10006400% y thig setting every snapshot corresponds to one
time unit. The value of[t] was set such that SNR(t] - qz) = 6.0dbYt. This guaranteed
that any performance loss of the detector was caused by émgelin shape of the actual
steering vector, and not due to a simple decrease in SNR.

The first 400 snapshots served as initialisation, and wezé tesestimate the initial
nominal steering vector. The adaptation scheme, henceagp@ied on the snapshots
401 - 1400. For this, the performance given by Eq. 3.8 was caledlfdr allK values
(see Fig. 3.1), whereas the values grands, were both set to.8. The expression in
Eqg. 3.7 was evaluated in the same way as described in Set. BiBally, theK value
for which M was the largest was chosenkagy (corresponds to Eq. 3.9), and the filter
was re-calculated (using Eq. 3.2) based on the adapted abst@ering vector.

The MVDR beamformer was used as a filter, which impliéd= C1. The steering
vector was adapted after every 10th snapshot,Ti.e. 10, see Fig. 3.2. Threeftirent
values forQ were tested, namel® = {10,50,150,. For simplicity, the covariance
betweenp and g was ignored, i.e.E = 0 in the calculation ofG (see Sec. 3.2.1), but
similar results were obtained also without this simplificat In total, 10 datasets were
simulated, over which the results were averaged. The pegpadaptation scheme was
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compared to approaches in which a fixed, pre-defined numlzteétions was used for
the computation of the nominal steering vector. The resutssshown in Fig. 3.3.

3.3.3 Evaluation and comparison

From Fig. 3.1 one can observe thdiK) exhibits a kind of plateau region, on which
the optimal maximal value is located, meaning that the perémce does not change a
lot whenK is varied in that region. This results in large variationskgf: across the
simulations (visible in Fig. 3.2), since the maximum mightuor at diferent values of
K due to fluctuations. Although the standard deviatiorKgf; is large, this has small
influence on the total performance (i.e. small standardatievis in Fig. 3.3), which
is again consistent with the theoretic prediction in Fid.. 3ig. 3.2 also demonstrates
the trade between minimisation of the mismatch between the meanseo$tiering
vectors and the minimisation of the variance of the nomitegrng vector estimation.
Notably, when the steering vector is close to stationargh@beginning and the end of
the simulations), the variance is minimised by taking adamgmber of detections for
estimation, i.eK > Q. On the other hand, when the actual steering vector vanpidlya

it is better to use a number closer to the number of detectisad for the estimation of
the actual steering vector, i.&K ~ Q, in order to reduce the mismatch between the
means of the steering vectors.

Fig. 3.3 illustrates that despite a rather rapid variatind extreme thresholds, both
of which lead to a violation of the assumptions under whi@abaptation scheme was
derived, the proposed algorithm performs close to the #imaidly optimal approach for
a wide range of thresholds.

A non adaptive scheme, which assumes that the steeringr\dmte change signif-

0.957

0.9

AS Q=10 g
AS Q =50
AS Q = 150

0.85

0.55 ]

0 200 400 600 800 1000
K

Figure 3.12Exemp|ari|y, the performance M (see Eq. 3.8) as a function of K (K = 1,2,...,9,10, 20, 30, ..., Knax,
where Kmax was the number of total detections at the corresponding time) is shown for t = 700and for a threshold
of y = 0525 The maximum value of M is marked with a circle, which determined Kopt. The different curves
correspond to adaptation schemes (AS) with different Q values.
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Figure 3.23Average value of Kopt as a function of time. The same threshold and color coding as in Fig. 3.1 was
used. The vertical lines indicate the standard deviation across the 10 simulations.

icantly, would use all detections for the steering vectdimestion. Even if a change
in the steering vector is detected, a fixed number of detestior estimation would be
used in such a non-optimal adaptation scheme. Both apm@samrform worse than the
derived optimal adaptation scheme, see Table 3.3.

The simulations also revealed that the proposed adaptstioeme works well for
a wide range ofQ values. In particular for the case when the total relativereis
minimised, i.e. the threshold is arouncb0the performance of the three considered
cases is very similar (Fig. 3.3).

Table 3.3:Average area under the curve (AUC) in descending order for various adaptation schemes. The AUC
was calculated based on the results in Fig. 3.3 with a range of FP € [0.002, 0.73].

Opt. | Q=50|Q=150| Q=10 K =400 | K = Kmax
0.6471| 0.6291 | 0.6234 | 0.6142 | 0.6016 | 0.5169

3.4 Discussion and related literature

A large error in the (noise) covariance matrix estimation ba caused when only few
data snapshots are available. However, in the case of contéty sampled recordings
containing time-varying sparse signals, such as eledasiplogical recordings, other
conditions apply than for radar applications. Namely, tréaciance matrix can be esti-
mated reliably due to the large amount of data, but the estimfathe steering vector is
more problematic as the signal is sparse.

Nevertheless, most of the research regarding the analygerformance in the case
of a steering vector mismatch was done in the field of beanifgni.e. radar systems.
Probably the first study was presented in [99], in which it \wasumed that only the
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Flgure 3.3: Top: Receiver operating characteristics curves: For every adaptation scheme the threshold y was
varied from —0.5 up to 1.5 in steps of 0.025 and the resulting average relative number of false positive (FP) and true
positive (TP) were plotted together with their standard deviations. The black curve corresponds to the theoretically
best possible adaptation scheme, in which the filter was calculated based on the true steering vector, i.e. p= q[t],
t = k- T. The green lines resulted, when a non-optimal number of detections was used for adaptation, i.e. K = 400
(dark green) rsp. K = Kmnax (light green). The color coding of the other lines is the same as in Fig. 3.1. The
corresponding areas under the curves are listed in Table 3.3. Bottom: Magnification of a part of the top figure. In
the herein considered setting the optimal threshold which minimises the total error is y = 0.5. The corresponding
points on the ROC curves are marked with a red circle.

actual steering vector is a random variable, whereas thenabrsteering vector is de-
terministic. On the other hand, it was assumed that the @owse matrixH is Wishart
distributed. This study was later generalized to a broatssscof detectors in [94].
In [175] it was furthermore assumed that the mean of the ta@vee matrix distribution
does not necessarily correspond to the true mean. Howheaméan mismatch was not
completely arbitrary, but had to follow a so called geneeli eigen-relation. This re-
striction was dropped in [135, 17], allowing for an arbiyranismatch in the covariance
matrix.

The performance of a beamformer was also analysed in [228]pdit in terms of
the probability of detection and false alarm, but in termaafimpler quantity called
signal-to-interference-plus-noise ratio (SINR). Thislgsis was later extended to the
case when a steering vector mismatch is present, under shiction that the mean
of the nominal steering vector corresponds to the actuatisge vector [229]. In [14]
similar assumptions as in [229] were made, however, ther@onw@e matrix was more
general covering also so called diagonal loading filtersteNbat the average SINR
provides less information than the probability of detettand false alarm.Pp and
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Pra can be used to directly account for the number of true pesaivd true negative
detections, as well as to evaluate more complex performamgasures as in Chap 2.

In [1] only a deterministic mismatch was considered, andccth@riance matrix was
directly dependent on the nominal steering vector as well.

We used the novel performance analysis to derive an adaptatheme, but also
in the case of stationary data, as a way to compute the norsieating vector. The
initialisation of a beamformer, i.e. the determination loé hominal steering vector is
called calibration in the beamforming literature. Suchlzation algorithms rely either
on algebraic techniques, e.g. in [215, 170] the steerintpvézfound as the intersection
of three diferent sets, or on statistical properties of the data using bburce separation
techniques, e.g. in [26] the blind source separation alyorJADE is proposed, or using
maximum likelihood estimations, e.g. in [12, 13, 51]. Thesgorithms may be used
to find the nominal steering vector in the initialisation phawhen the actual steering
vector is constant, but are unsuitable for temporally chrangnvironments.

We connected the performance analysis of a beamformer tstidbdtion used in
econometrics and statistics For this, we had to assume that the covariance matrix
is deterministic, i.e. it can be estimated from an infinitenier of data samples. If,
however, only a finite number of samples is available and tigenis Gaussian, then the
estimate of the covariance matrix will follow a Wishart distition. Still, the problem
could be reduced to the evaluation of a distribution sintdar™ M r as in Eq. 3.6. Hence,
in the following we give a short overview of some existingidture dealing with related
problems.

The formr™Mr can be seen as a trace of a matrix [70], as the product of tvamran
variables [123, 68, 69, 52], or as a quadratic form [77]. Tds interpretation seems to
be the most common, and in the following we list some workscWltieal with this case
when solelyr is a random variable.

The author in [77] gave a formula for the distribution in terof Laguerrian expan-
sions. However, according to [60], either this expansioasat convergent everywhere,
or they contain unsolved integrals.

In [7, 71] the pdf and cdf were derived for some special casdg ovhereas in
[125, 117, 156] only moments were computed.

The exact cdf was first derived in [59], for the central casrdzanean Gaussian
distributed vector). This result was later extended to the non-central cask atso
an expression for the pdf was given [60]. As already mentdneSec. 3.2.1 the exact
formula is slow to evaluate. Hence, fast methods based orericath integration have
been developed. For example in [120] some advice is giventb@hioose a proper step
size and truncation for evaluation the cdf via the integrakpnted in [91]. In [119, 23]
numerical integration is done to evaluate the pdf.

3.5 Conclusion

In this chaptelPp andPga were derived in the case when both actual and nominal steer-
ing vector are random. It was shown that these probabili@sbe linked to quantities

*See [243] for an overview of some fields where the distribuisoused.
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studied by the econometrics and mathematical statisticsramities. A very accurate
numerical method for theirficient evaluation was applied and compared to other tech-
niques based on saddlepoint approximations.

Furthermore, this analysis allowed to propose an optimaptedion scheme for the
nominal steering vector. In this sense, an algorithm fousttbeamforming via target
tracking was proposed. In our algorithm the shape of theistgeector as well as its
temporal evolution can be arbitrary. This makes the algorielso suitable for appli-
cations beyond radar and antenna systems; amongst otheas) be used for digital
communication systems or in biomedical signal processing

To our knowledge the analysis of the beamformer performavieen both steering
vectors as well as the estimate of the covariance matrixatieftiom the true quantities
has not been carried out yet. This problem is left for furttesearch.

TIn particular, it will be applied in the spike detection aligom presented in Chap. 5.



Chapter 4

Online spike sorting with
Instantaneous overlap resolution

The work in this chapter was done in equal proportion togethth Felix Franke.

In this chapter we address the problem of spike sorting, fisetkein Eq. 1.4. Many
algorithms have been developed to this end, however, tq date of them manages
to fulfil a set of demanding requirements. In particularsitesirable to have an algo-
rithm that operates online, detects and classifies ovarigmpikes in real time, and that
adapts to non-stationary data. Here, we present a combpikel detection and clas-
sification algorithm, which explicitly addresses theseiéss Our approach makes use
of linear filters to find a new representation of the data andpiimally enhance the
signal-to-noise ratio. We introduce a method called “Dégsion” which de-correlates
the filter outputs and provides source separation. Firekgt of well-defined thresholds
is applied and leads to simultaneous spike detection ake stassification. By incor-
porating a direct feedback, the algorithm adapts to notiesi@y data and is, therefore,
well suited for acute recordings. We evaluate our methodronlated and experimental
data, including recordings from the prefrontal cortex oh&e/behaving macaques. We
compare the results to existing spike sorting methods, andlgde that our algorithm
meets all of the mentioned requirements and outperforner ottethods under realistic
signal-to-noise ratios and in the presence of overlappailges.

4.1 Introduction

In order to understand higher brain functions and the iotemas between single neu-
rons, an analysis of the simultaneous activity of a large memof individual neurons
is essential. One common way to acquire the necessary ambueturonal activity
data is to use simultaneous extracellular recordingsgeitiith single electrodes or,
more recently, with multi-electrodes like tetrodes [15He also Chap. 1. However, the
recorded data does not directly provide the isolated agtfisingle neurons, but a mix-

43
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ture of neuronal activity from many neurons additionallyropted by noise. The task
of so called “spike sorting” algorithms is to reconstruat tingle neuron signals (i.e.
spike trains) from these recordings. Many approaches fallyaimg the data after acqui-
sition, i.e.offline spike sorting algorithms, have been developed in the lastysee for
example [220, 42, 167, 100, 200, 191, 87, 110, 55]. Althoughenmethods are avail-
able in this category, there are several reasons to favotiraaie which provide results
already during the recordings, termes@l-time onlinesorting algorithms. For example,
real-time online spike sorting techniques are indispeledai conducting “closed-loop”
experiments and for brain-machine interfaces [180, 152k fEw existing approaches
to real-time online sorting [204, 180, 4] ackistering base@dnd have at least one of the
following drawbacks (see also Sec. 4.5 for further disargsil) They are not explicitly
formulated for data acquired from multi-electrodes, 2)tte not resolve overlapping
spikes, 3) they do not perform well on data with a low sigmahbise ratio 4) they are
not able to adapt to non-stationarities of the data as camgéidsue drifts. We discuss
the reasons and importance of these issues in the following:

1) Multi-electrodes (e.g. tetrodes) provide significamtipre information about the
local neuronal population than single electrodes [79, 1#34ving several recording
electrodes closely spaced instead of one, the same actientiab is present on more
than one recording channel. The so called stefigze- a neuron specific amplitude
distribution among the recording channels - allows for advetiscrimination between
action potentials from dlierent neurons [75]. This allows also for a more reliable reso
lution of overlapping spikes.

2) Tetrodes record from an increased number of neurons aeaip high
impedance single electrodes, thus, overlapping spikesnare likely to occur. Also,
studies stress the relevance of ensemble coding, whicslates into local synchronised
firing and hence a raised occurrence frequency of overlgpgpikes [182]. To identify
such a code, the resolution of overlapping spikes is cragidl éforts have been made
addressing this issue [44, 225, 245, 136, 33]. However,ithd approaches are all com-
putationally very expensive, making a real-time online lienpentation diicult. One
of the reasons for this computational complexity is the enpbntation of separate sub-
routines for the processing of overlapping spikes, whidljtéonally, are more complex
than the processing steps for non-overlapping spikes.

3) Most of the spike sorting approaches use a stand-alondasth spike detection
technique (see for example [38, 152, 173] and Chap. 5 for comhyrused spike de-
tection techniques), and a separate classification proeedieither the shape of the
waveforms nor their change over time or their amplituderithistion across the record-
ing channels is taken into account by the spike detectiomadetThis leads to a poor
detection performance, in particular when the signalds@ratio (SNR) is low. Further,
the spikes are cut and aligned on some feature (e.g., pe@loppsis a preprocessing
to the classification algorithm. However, overlapping spikwhich severely alter the
spike waveform, are not identified as such. This leads to gvadignments and false
classifications by the clustering procedure.

4) There are two general approaches to extracellular regpndith electrodes,
namely acute and chronic recording methods. In acute regzdindividual electrodes
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are advanced into tissue at the beginning of each recordsgim anew, causing a com-
pression of the tissue [29]. During the experiment the és®laxes and the distances
between the electrodes and neurons changeffaatealled tissue drift [21]. As a con-
sequence, the shape of the measured waveforms and thetehatiaoof the background
noise changes. Sorting algorithms which do not take int@@aicsuch variations will
perform poorly on data from acute recordings.

An approach based dslind source separation (BSS) techniqaesl addressing pri-
marily problems 1) and 4) was presented in [202], in whichepehdent component
analysis (ICA) was applied to multi-channel data recordetetrodes. Later, the method
was adopted to data recorded by dodecatrodes (12 chan2@ld) However, both ap-
proaches had to deal with several new problems: Amongstttime delays between
the channels were not considered, biologically meanisgiedependent components
had to be discarded manually, andfelient neuronal signals with similar channel dis-
tributions could not be classified correctly. Furthermahe, methods can only be ap-
plied to data recorded with certain electrode types (i.¢rodes, dodecatrodes). The
most severe problem, though, is the fact that the methodotateal with data contain-
ing neuronal activity from a greater number of neurons treomding channels (over-
completeness).

In this chapter, we present a real-time online spike sortiethod based on the BSS
idea, which explicitly addresses the four issues 1)-4),dsib avoids the drawbacks
of the methods in [202] and [201]. In particular, the herepmsed method works on
data recorded with an arbitrary number of electrodes, amahtimber of neurons which
can be extracted is not limited in any way by the number ofteddes. In sum, a spike
sorting algorithm for multi-electrode data, which deteants resolves overlapping spikes
with the same computational cost as non-overlapping spi&ésrmulated. The method
makes optimal use of an arbitrary number of simultaneowestpnded channels and can
even run on single channel data. Moreover, since spike timtespike alignment, and
spike classification are not separate parts, but are conhloite a single algorithm, our
method performs well on data with low SNR and containing mewsrlapping spikes.
By incorporating a direct feedback, the algorithm adaptsaiying spike shapes and
to non-stationary noise characteristics. The algorithifiully automatic and due to its
linear and parallel computation steps it is ideally suitedreal-time applications (see
Fig. 4.3 for a summary of our method).

This chapter is organised as follows: In Sec. 4.2 we presentrethod step by
step. First, we briefly introduce linear filters. These fiitevere used in e.g. radar
applications [217], geophysics [178] as well as for spikedigon [204, 223], but to our
knowledge have not been applied in the presented way to spikimg yet. Moreover,
in contrast to those studies, we do not directly apply a tiolesto the filter outputs, but
consider them as a new representation of the data. In thisseptation the spike sorting
task can be handled as a well defined BSS problem, which we gath a un-mixing
technique we will refer to as “Deconfusion”.

The evaluation of our method is done on a dataset from reafdams and also
on simulated data. The experimental setup, used equipnmehthe characteristic of
recorded data are described in Sec. 4.3. The advantage®iditidsaof the method are
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demonstrated in Sec. 4.4. The noise robustness and thiy abisuccessfully resolve
overlapping spikes is evaluated systematically on syittldztta. Finally, the method
is applied to data from extracellular recordings made inpilefrontal cortex of awake
behaving macaques. This data set is particularly chaligndiecause the tetrodes are
not implanted chronically, but inserted before every eixpent anew, leading to tissue
drifts. We conclude that our method adopts to non-statitesrand also successfully
resolves overlapping spikes in real data. A summary and @uskson of further im-
provements is given in Sec. 4.6.

4.2 Methods

4.2.1 Generative model

The exactly same data model as introduced in Eg. 1.1 as wilkeasame assumptions
asin Eq. 1.2 are used in this chapter. Namely, the measutadydare a convolution of
the waveformsq:q with the corresponding intrinsic spike traigscorrupted by colored
Gaussian noiseg, i.e.

M
Xt = qu:wslt—r"'nkt k=1,...,N. (4.2)
i=1 7

4.2.2 Calculation of linear filters

Spike sorting is achieved when the intrinsic spike trashare reconstructed from the
measured datX, where(X)y; := Xt. Since, according to the model assumptions, the
data were generated by a convolution of intrinsic spikengrawith fixed waveforms,
the most straightforward procedure would be to apply a desation on X in order

to retrieves. For an exact deconvolution a filter with an infinite impulssponse is
necessary. In general, such a filter is not stable and woufdifgmoise [178]. Never-
theless, a noise robust approximation for an exact decotiwnl can be achieved with
finite impulse response filters, to which we will refer as éinélter.

Let us briefly summarise the idea of these filter$he goal is to construct a set
of filters {fl,..., f'V'} such that each filtef' has a well defined response of 1 to its
matching template at shift 0 (i.e.qf " - f' = 1), but minimal response to the rest of the
data. This means that the spikes of neurare the signal for filterf' to detect but will
be treated as noise by filtdi*.

Incorporating these conditions leads to a constrainecigdiion problem

f' = argminvar(X fi) subjecttoq ' - f' =1 (4.2)
fi

to which the solution are the desired filters (see Sec. 4or 4 inore detailed derivation).
A major advantage is the fact that the mentioned optimisgpimblem can be solved

*For more information about linear filters see Chap. 2. Natedver, that a slightly dierent derivation
is presented in the following.
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analytically. In particular, the filters are given by theléoling expression:

fi ~ R—lqi

= m | = 1,..., M (43)

whereR is the data covariance matfixLinear filters maximise the signal-to-noise ratio
and minimise the sum of false negative and false positiveatiens, and are, therefore,
optimal in this sense [138].

4.2.3 Filtering the data

Once the filters are calculated, they are cross-correlaidd the measured data, i.e.
Dkt X+t fILT = y't Note that we do not have to pre-process the data with a whigen
filter, but the filters can be applied directly ¥a This is because the noise statistics is
already captured in the matriR.

From a diferent point of view, the filtering just changes the represt@n of the
templates. While in the original space thth template was represented &y its rep-
resentation in the filter output space is given by the veatbss f1, j = 1,..., M, where
(o » fj)t = ke O fkj’T, see also Fig. 4.1. This interpretation of filtering will be
useful in the next section.

4.2.4 Deconfusion

The linear filters derived in Sec. 4.2.2 should suppressgabs components except their
corresponding template with zero shift. Thus, the filtepoese to all templates (and
their shifted variants) has to be minimal. This aIreadyiaamﬂZTf - 1)- M minimisation
constraints; a number which is normally greater than thebmimof free variables of a
filter which isT+-N, whereT; is the dimension of the filter. In addition, if the SNR is low,
the data covariance matrRRis similar to the noise covariance matfixi.e. R ~ C. The
lower the SNR, the less spikes from other neurons a filtersuifipress. Thresholding
of every filter outputy individually will, thus, lead to many false positive detecis.
The idea is to de-correlated the filter output first in ordea¢bieve an improved spike
detection and classification.

We have seen in the previous section that each temglai@n be represented in the
filter output byM vectorsg * fl, j = 1,..., M. Since the detection and classification
of the spikes is based on the detection of high positive padikes in the filter output
(by construction), all values below zero in the filter outpte irrelevant, and thus, can
be discarded. As a result, we ignore all values below zerogplyag a half-wave
rectificationl (x) to the filter outputy, where

0= 79 (4.9)
"~ lo. x<o0 '

The next step is to considé(Y) as a linear mixture of dfierent sources, where every
source is the intrinsic spike traghof a neuron. Since there are as many filters as neurons,

"The obtained filters are called MPDR beamformers, see S24d. 2.
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the dimension of the filter output space is equal to the nurabeeurons, and therefore,
the detection and classification problem can be consideyedcamplete BSS problem.
However, it is not guaranteed that the maximal responsetef fil to spikes from neuron
j will be at a shift of 0, i.e., when the filter and the templatertap entirely. This leads
to the following model for the rectified filter output:

I(yh) = Z (A)ij S[jﬂi,j (4.5)
j

with A being the mixture matrix, and ; being the shifts between the maximum response
of filter fJ to templateq'; i.e.,

(A) = mTax{(qi * fj)T} (4.6)

7,j = argmax (' * fj)T}

where(A);; = 1 andr;; = 0 Vi by construction. We want to reconstruct the sourges
by solving the corresponding inverse problem:

S~Z=> Wil (4.7)
j

with W = A~L. Here, the relation to ICA becomes clear, since this is alainmverse
problem ICA solves. In contrast to ICA, we do not have to eatekV andz; j from the
data, but can calculate them directly from the responsesqiioss-correlation functions)
of all filters to all templates, as illustrated in Fig. 4.1.

Once the matridV is applied tol(y), all values which were zero il(y) are set to
zero inzas well. All steps of these procedure are summarised undeetim “Deconfu-
sion”. After Deconfusion the false responses of the filtensdn-matching templates are
suppressed (see Fig. 4.2). In principle, it is possible tt@inverse problem in Eq. 4.7
is not exactly solvable, if the shifts are not consistentn&istent shifts have to satisfy
the following equation

Tipk = Tini = Tiok = Tiai Vi, j1, j2. k. (4.8)

A derivation is given in Sec. 4.7.2. For arbitrary templated data covariance structures,
Eg. 4.8 can in principle be violated. However, with tem@dt®m real experiments we
did not observe this to be a problem.

4.2.5 Spike detection and classification

In the final step, thresholding is applied to every riow Z, whereZ;; := z{ Again, by
construction we have only to consider positive peaks. Alhlonaxima after a threshold
crossing are identified as spiking times of neurorn this sense, spike detection and
spike classification is performed simultaneously.

The threshold is set for each row gfindividually such that the total relative error
of false negative and false positive detections is minindahongst others, the thresh-
old depends on the variance of the noise, on the Deconfusitpu and on the firing
frequencies of the neurons. A detailed derivation is give8ec. 4.7.3.
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Flgure 4.1:This figure illustrates the representation of the templates in the filter output space and the calculation
of the Deconfusion parameters. In this example, three templates (qt, qz, q3, top row of the figure) originating from
tetrode recordings are used. The corresponding linear filters are calculated by Eq. 4.3 and are shown on the left.
The 9 plots show the responses of the linear filters to the templates, i.e. the cross-correlations qi * fj, i,j=123.
The template ¢ is now represented by the three vectors ¢ * fJ, j = 1,2,3. Although filter f' has a maximum
response of 1 to template d, the filters do not provide an exact deconvolution, as the responses of filters f1*' to
template qi are not equal to zero. However, since every template is represented on all filter output channels, the
problem of extracting the signal from neuron i can be viewed as a source separation problem. The entry at position
i, j of the mixing matrix A is given by the maximum peak value of g * f/; as an example (A)23 and (A)z, are
shown. The shift indicates the position at which this maximum values occur; as an example the shifts 723 and 732
are shown.

4.2.6 Artifact detection

Artifacts were removed from our data in two ways. Firstly,pariods during which the
animal had to perform a physical task (e.g., pressing amutt@re not considered for
further analysis. Secondly, for each period of length 10lesiumber of zero-crossings
on each data channel was counted and summed up. All periodg)ich this number
was below 10% of the maximum number of possible zero crossingre not considered
for further analysis. This second type of heuristic rem@iais at eliminating artifacts
caused by oscillations of the electrode shaft inside theiggitube (e.g., caused by
movement of the animal).

4.2.7 Noise estimation

The noise covariance matrix is determined by calculating the auto- and cross correla-
tion functions of every channel. Only data points which weoé part of any spike nor
any artifact period, were used for the calculation. The@oisvariance matrix is needed
for the initialization phase, see Sec. 4.2.9, and for ev@naf the sorting result on real
data, see Sec. 4.4.1.
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Figure 4.2:The figure shows the effect of Deconfusion on the filter outputs. The input for Deconfusion were the
filter responses ¢ = f, i, j = 1,2,3 shown in Fig. 4.1. After Deconfusion the signal of neuron i is mainly present
on the output channel i.

4.2.8 Adaptation

Due to tissue relaxations the measured waveforms changetiowe as the relative
distance between the multi-electrode and the neurons ehalmgorder to track these
changes we re-estimate the templates as well as the datdacmeamatrix after ev-
ery time period of lengtfii. Each templatey' is re-estimated as the mean of the last
350 spikes detected from neuragnwhereas the spikes of neurorare aligned on the
maximal peak of the response of filt€r. For the re-estimation only spikes which were
classified by our method as non-overlapping spikes are Udegldata covariance matrix
is re-estimated from the last 30s of the recordings and tiealifilters are re-calculated.
Consequently, the Deconfusion and the thresholds aremguaied as well. In Sec. 4.4.1
we show that we can indeed track drifts with this approach.

Templates whose SNR decreases over time might be a concgomnBtantly adapt-
ing the template, finally, there is a risk of getting a temphahich is very close to the
noise signature, and the corresponding filter will detecemise. This can be pre-
vented by removing filters at the appropriate moment. Caresatty, we stop tracking
templates whose SNR drops below®. This value proved to be appropriate during
simulations (see Sec. 4.4.1).

4.2.9 Initialisation phase

Most of the analysis done in the precedent sections was hasdke assumption of
known initial templatesy’. Hence, before applying our method, one needs an initial-
isation phase during which the templates are found. In jple&cany supervised or
unsupervised learning method can be applied.

*The adaptation scheme proposed in Chap. 3 is not applied Inareather a heuristic value for the
number of spikes for averaging is used. This is due to theslagmber of filters required in tetrode
recordings (see Sec. 4.4.1) and the resulting computatioad. The adaptation scheme from Chap. 3,
however, will be applied in the case of single electrode mi¢iogs in Chap. 5.
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Figure 4.3 schematic illustration of the way data are processed: The data are bandpass filtered and periods
containing artifacts are excluded from further analysis (Sec. 4.2.6). During the initialisation phase a conventional
spike detection and clustering method is used to determine initial templates (Sec. 4.2.9). The data covariance ma-
trix R is estimated and for every template the corresponding linear filter is calculated as described in Sec. 4.2.2.
The data are filtered and all values in the filter output below zero are set to zero (half-wave rectification). From
all filter responses to all templates the un-mixing transformation is determined and applied to the processed data
(Sec. 4.2.4). A threshold is applied to the Deconfusion output resulting in simultaneous spike detection and classi-
fication. The newly found spikes are used to re-estimated the templates. Also the covariance matrix of the data is
re-calculated after regular time intervals (Sec. 4.2.8).

We want to emphasise that the initialisation phase is ontgsgary at the beginning
of a recording session: Once the initial templates are estidy the main algorithm runs
online. Furthermore, because of the feedback describeédn4s2.8, the initialisation
does not have to be very accurate, as the templates aramextest after every period
of lengthT. Usually we used an initialisation phase of about 30s in eaf recordings
(Sec. 4.3.3). This time window is short enough so that theptaetes change only very
slightly in time and can, therefore, be clustered reliablyt long enough to acquire
enough spikes to estimate robustly the mean waveforms.

Initial spike detection and initial spike alignment

During the initialization phase spike detection can be deitke any conventional tech-
nique. We used an energy based approach, since it usualhgrdeh better performance
than simple amplitude based approaches methods [144, kbparticular, we applied
the MTEO detector (see [38] for definition) wittivalues [13,5] to each recording
channel separately and set the threshold.%otiBnes the median of its output. Spike
periods were defined as intervals of lengtbris, in which the output of the MTEO
detector exceeded the threshold value at least once.

Correct spike alignment is crucial for a good clusteringiiedVhile in many studies
an alignment based on the maximum amdminimum peak value of a spike is used,
again, methods based on the energy of a spike usually yi¢ldrlvesults [55]. After
cutting out all spikes around the peak of the detector, wd tise following algorithm
for alignment:

1. Calculate the average template oatrspikes

2. Minimise the energy tlierence between every spike and the template by shifting
the spikes
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3. Repeat until convergence or a maximum number of iteratisneached

In our experiments described in Sec. 4.3.3 the average muhbpikes in the first 30s of
recordings is around 2500 and convergence is usually aatafter 15 to 20 iterations.

Initial clustering

Although a broad range of sophisticated clustering algor# is available, we used a
standard approach, since a very accurate initializationotscrucial for our method.

The aligned spikes are whitened (e.g., see [168]) and pegjeiato the space of the
first 6 principle components. The clustering consists of ass@n mixture model in

combination with the Expectation-Maximisation algoritfig86]. For every number of

cluster means between 1 and 15 the clustering proceduredsiex 3 times with random
initial means. The covariance matrices are fixed.tbtEnes the identity matrix. The

run and the number of means with the highest score accorditig BBayesian inference
criterion [236] are selected as initialisation for the malgorithm.

4.2.10 Signal-to-noise ratio (SNR)

The SNR is a scalar value which is an indicator for th@dlilty of detecting a signal

in noisy data. In this sense, the SNR definition should be mttgr® on the method
used for signal detection. Several definitions of the SNRuaeal in the spike sorting
literature. A very common one is to define the SNR by some malxialue, e.g., the
maximum amplitude, the maximumftirence in amplitudes (peak to peak distance), or
the maximum of the absolute value of the amplitude, dividedhe variance of noise
o2, ie.,

2
SNRy (0) = | e

o2

(e.g. see [38]). Another current definition for the SNR isduhsn the energy of a signal,

i.e.,
lqll3
SN = L —
Re (a) \/N‘Tf 3

(e.g. see [180]). We introduce a definition of SNR which isdobhsn the Mahalanobis
distance of a templateto zero:

q'Clq

SNRn(a) = ||

. (4.9)

In the special case of single electrode data and of 1-diraeaktemplatesT; = 1), all
SNR definitions are equivalent. To show that SNRan appropriate SNR definition for
linear filters, while the other definitions are in contraidintwith the meaning of signal-
to-noise ratio, we simulated datasets containing a singleam, which fired according
to a Poisson statistic, and a noise covariance métt) .= (1—a)- 1+ a- C(j;p, where

1 denotes the identity matrix, arGexp iS @ noise covariance matrix from one of the
experiments described in Sec. 4.3.1, v('mxp)i’i = o2 for all i. The used template was
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extracted from the same experiment. We simulated datasetsrf diferenta values
between 0 and 1. The SNRlecreased with increasing and consistently the detection
performance of our method decreased, see Fig. 4.4. Not&MNRS = SNR. = 1 for all

a values, which means that those definitions are inapprepfiaitthe proposed method.
Nevertheless, we always provide values for all three dedimstof SNR in order to allow
comparisons with other publications.
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Figure 4.4: (a) Template q (in arbitrary units) used for the simulations. (b) Noise autocorrelation function of
the same experiment from which the template was extracted. This autocorrelation was used to calculate Cexp.
(c) Plot of SNRy, (), of SNRe (0) and of SNRy, (g) in dependence of « (see text for definition). (d) Average detection
performance of different spike detection methods for different values of . The method "squaring” consists of point
wise squaring and thresholding, while "MTEO” is described in [38]. For each « value the average was done over 5
simulations, each with a noise covariance matrix C (a) (see text for definition).
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4.3 Experiments and datasets

For the performance evaluation of our method, thréfedint datasets were used. All
experiments were performed in accordance with German lathéoprotection of exper-
imental animals, approved by the local authorities (“Regigsprasidium”), and are in
full compliance with the guidelines of the European Comryu(EUVD 86/609EEC)
for the care and use of laboratory animals.

4.3.1 Simultaneous intra/extra-cellular recordings

The experiments were doha acute brain slices from Long Evans rats (P17 - P25). In
every experiment a pyramidal cell from visual cortex, Lageor 5 depending on the
experiment, was simultaneously recorded intracellularigl extracellularly. Extracellu-
lar spike waveforms were recorded using a 4-core-Multifiblecctrode (Tetrode) from
Thomas RECORDING GmbH, Germany. The cell was intracellplstimulated by a
current injection (varying from experiment to experimeetieen 80pA and 350pA).
Extracellular recordings were sampled at 28kHz and filtevigd a bandpass FIR filter
(300Hz to 5000Hz).

The intracellularly recorded spikes were detected usingaually set threshold on
the membrane potential. The threshold crossings in the mamalpotential were used
as triggers to cut out periods from the extracellular reicysl (2ms before and 5ms after
the trigger). In total, data were recorded from &elient cells, which resulted in 9957
intracellularly detected spikes. For analysis only therding channel with the highest
SNR was considered. The SNR of théfeient experiments varied from SNR= 0.20
(SNRy = 0.79, SNR = 0.39) to SNR, = 2.37 (SNR, = 7.09, SNR. = 3.64).

4.3.2 Simulated data
Datasets with overlapping spikes

Dataset A1 The atrtificially generated data mimics a single channelnding of 15s
length at a sample frequency of 32kHz containing activityrfrthree neurons. Every
simulation contained exactly 750 equidistantly distrdalispikes of every neuron, which
corresponds to a firing frequency of 50Hz. The three used l&agpwere extracted
from the recordings described in Sec. 4.3.1 and had a lerigitlms. The noise was
generated by an ARMA model [81] approximating the noise attaristic shown in
Fig. 4.4(b).

The relative number of overlapping spikes was systemétigatied from 1% up to
50%. 75% of all overlapping spikes consist of overlaps betwevo templates (25%
for each combination), and 25% of all overlapping spikessiirof overlaps between
all three templates. The amount of overlap, i.e., how muehtémplates overlap, is
distributed according to a uniform distribution on the mtd [1/3,1]. The SNR was
kept constant for all overlapping ratios, namely, all thtemplates were scaled to an

"By Dr. Clemens Boucsein from the Institute for Biology IllJb%rt-Ludwigs-University, Freiburg,
Germany.
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equal SNR, which was SNR= 1.2. This corresponds to SNR= 5.42 and SNR = 2.12
(average values over the three templates).

Dataset B1 The second dataset contained activity from two neurongfisith a fre-
quency of 10Hz each. The data were simulated with a samplaogiéncy of 25kHz and
had a length of 50s. The noise was generated in the same waythe flataset A1l. The
number of overlapping spikes was varied from 0% up to 60% th@dmount of overlap
was drawn form a standard normal distribution. The two textgsl were scaled to equal
height resulting in SNR= 4.76.

Datasets with SNR variation

Dataset A2 The SNR, was systematically varied from®to 14 (which is equivalent

to 271 to 632 average SNRand 106 to 248 average SN&. The amount of over-

lapping spikes was constant and set to 7%, which is appraglypnéghe overlap ratio

resulting by chance under the assumption of independeke $g&ins. The three used
templates and the way how noise was generated were the sameataset Al.

Dataset B2 Again, both templates had equal height, and the SW&s systematically
varied from 278 up to 100. The amount of overlapping spikes was set@#%oLcorre-
sponding to chance probability.

The over-completeness, the equal SNR of all templates,fengresence of overlap-
ping spikes make these datasets particularly challenging.

4.3.3 Acute recordings

Tetrodes were placed in ventral prefrontal cortex for idlial recording sessions, sam-
pling data from the same region across experiments. Remmdiere performédsi-
multaneously from up to 16 adjacent sites with an array oividdally movable fiber
micro-tetrodes [49]. Recording positions of individuarteles were manually chosen to
maximise the recorded activity and the signal quality. De¢se sampled at 32kHz and
bandpass filtered betweerbBHz and 10kHz.

Neuronal activity was recorded while 2 macague monkey®opedd a visual short-
term memory task. The task required the monkeys to compas atimulus to a sample
stimulus presented after a 3 second long delay and to degid#fbrential button press
whether both stimuli were the same or not. Stimuli consisted0 different pictures
of fruits and vegetables which were presented fés(test stimulus) or for 2s (sample
stimulus). Correct responses were rewarded. Match andnadoh trials were randomly
presented with an equal probability. This experimentals@tas presented in [234].

Approximately, the monkeys performed 2000 trials per sessihich is equivalent
to almost 4 hours of recording time. For the evaluation of algorithm only the first
5 seconds of every trial were processed, as the remainireg rdigght contain severe
artifacts caused by the monkey’s movement.

By Dr. Matthias Munk, Max Planck Institute for Biological @grnetics, Tubingen, Germany.
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Table 4.1: Average performance of the proposed method for non overlapping and overlapping spikes. Each
column represents the true category of events detected as spikes (e.g. “N” meaning “noise”, “AB” meaning an
overlapping spike of template A and template B, etc.), while each row represents the category to which they were
assigned by our algorithm. Each total number of classifications was divided by the number of corresponding spike
events, resulting in a percentage value. The bold numbers represent the percentage of correct classifications. The
table shows the average performance over 10 simulations with an overlap ratio of 40% (see Sec. 4.3.2). For a
systematic evaluation over different overlap ratios the absolute numbers of the correct classifications were added
and divided by the total number of inserted spikes; see Fig. 4.5

[NJ] A [ B | C|AB]|AC|BC]JABC
A[00]96.0][ 01] 00 |91.7[935] 1.7 [ 92.0
B|0.0| 00|982| 0.1 |87.4| 9.7 |928| 87.2
C|00| 00| 00978 1.1 | 920|921 887

4.4 Results and discussion

The performance of a spike sorting method depends on itdhidapdo detect spikes
and to assign every spike to a putative neuron. As describ&e¢. 4.2.5, our method
achieves both simultaneously. We evaluated the perforemahour approach thus as
a combined detection and classification technique, and ammip against techniques
commonly used.

4.4.1 Spike sorting performance
Resolution of overlapping spikes

We recall that the applied operations to the recorded datla t® summarised in Eq. 4.7.
The cross-correlation between the filters and the datamearioperation. The following
Deconfusion consists of a half-wave rectification, whickaison-linear operation, but
affects only noise and not the action potentials (representéukifilter output), and the
un-mixing, which is linear again. Hence, one can expect ifhtite superposition of
spike waveforms is also linear, overlaps should be resauedessfully. We validated
this assumption on the dataset Al described in Sec. 4.3&€alfbrithm was executed in
the same way as described in Sec 4.2. In order to allow theadéthadapt (Sec. 4.2.8),
the method was iterated 5 times on the same dataset. We afg@oed the performance
of our method to those of two popular clustering basétine methods, one of them
being the method described in Sec. 4.2.9, which will be absited as “GMM”. Since
this is also the method which is used for initialisation of algorithm, the comparison
with GMM directly provides information about the improventg in sorting when our
method is used.

The other algorithm, called “KlustaKwik”, was explicitlyesteloped for clustering
neuronal data and was first introduced in [79]. The clustegarameters were set to
their default values. Spike detection and alignment wasdonrthe same way as de-
scribed in Sec. 4.2.9. To provide an upper bound on the pe#iace our approach could
achieve, we included the evaluation with the optimal fileakculated directly from the
real templates. Note that other existing, purely clustebased sorting methods, either
in the PCA space or in the original data space, would perfamilagly to GMM and
KlustaKwik.
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Table 4.2: same evaluation as in Tab. 4.1, but for the method “GMM” described in Sec. 4.2.9. The method sorts
non overlapping spikes well, but has difficulties in resolving overlapping spikes

[N A | B | C[AB]AC][BC]ABC
AT 0 [8L0] 00 | 0.1 [27.8]27.3] 04 ] 215
B |0.2|14.5|100.0| 0.6 | 68.0| 4.2 | 45.0| 42.7
C|01| 44| 01 |99.4| 47 |69.0|53.2| 41.7

For the evaluation the relative number of TP was counted. @dh Tab. 4.2). The
simulations show that our method indeed resolves overgpgpikes and outperforms
the clustering based methods; see Fig. 4.5. Our method veves for datasets with a
large amount of overlapping spikes, and the performandess ¢o the theoretical bound
of this approach. On the other hand, the performance of tihelypualustering based
methods rapidly decreases with an increasing amount ofamng spikes. Overlap-
ping spikes are mostly detected as single events by coovetspike detection tech-
niques, which leads to a high FN rate. Furthermore, sinceviveforms of overlapping
spikes are distorted, their distances to the correspordirsger means are large, making
it difficult to assign them to a neuron. This results in a low TP saarelfistering based
methods.

100 ] i

% TP

—+— Opt. filters

651 Our method 1
—— GMM
60 Klustakwik 1
L L L L ‘
55
0 10 20 30 40 50

% Overlap ratio

Figure 4.53Average performance of the different spike sorting methods over 10simulations. The x-axis indicates
the overlap ratio, i.e. the relative number of overlapping spikes (see Sec. 4.3.2) while the y-axis represents the
correct classifications in percentage (true positives divided by total number of spikes).

On the dataset B1 we compared our method with two other egistpproaches,
namely "OSort” and "WaveClus” presented in [180] and in [Lidspectively. "OSort”
is an online sorting algorithm based on Euclidean distatassigication of pre-whitened
spikes. Spikes are detected by thresholding the local gioéthe data and pre-whitened
using an estimated noise covariance matrix. The euclideaande to each mean wave-
form form every cluster is calculated, and either the spgagdsigned to one of the
clusters or a new cluster is created. Since the mean wavefarenupdated after every
spike assignment, at the end, it is tested whether the distdbetween all the clusters
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are still large enough, and merged if necessary.
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Figure 4.6: Average performances over 10 simulations of different spike sorting methods. The error is defined
as the sum of false positive detections and false negative detections times 100, divided by the total number of
inserted spikes. Left: Performance for different noise levels. The noise level is varied by changing the noise
standard deviation with respect to the maximal height of the template. Right: Performance for different amounts of
overlapping spikes; the noise level was set to 21%

"WaveClus” is an @tline method based on wavelet feature extraction and super-
paramagnetic clustering. Spikes are detected by poshiestiolding and features are
extracted by wavelet decomposition. In particular, the rHeavelets are applied, and
the 10 most discriminative céiecients are used for further processing, whereas discrim-
inative power is determined by a statistical test for noityalFinally, the superpara-
magnetic clustering algorithm with an automatically seddctemperature is used for
clustering.

The parameters for the mentioned competing algorithm wetraccording to their
reference. The sorting results are shown in Fig. 4.6, rigid, confirm the findings on
dataset Al.

Performance for various SNR

The evaluation on the dataset with a varying SNR (see Se®)4@s done in the same
way as in the previous section. The results for dataset A&=en in Fig. 4.7, whereas
the results for dataset B2 are shown in Fig. 4.6, left. Théopeance of the cluster-
ing based methods is severeljezted by a low SNR. The performance of the proposed
method follows the one of the GMM algorithm, since it religsits output for initiali-
sation. Nevertheless, our method is always superior toaetaBse of the rapid decrease
in performance from a SNR level of Dto an SNR level of &, we stop the algorithm
from detecting spikes from neurons with a SNR lower th&50n real recordings by
deleting the corresponding templates and filters. In ceptthe optimal filter method
is only slightly dfected by a low SNR level, indicating that a more elaboratiaiiga-
tion would increase the performance of the proposed methathtasets with very low
SNRs.
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Figure 4.7: Average performance of the different spike sorting methods over 10 simulations with respect to
various SNR levels. Note that the performance of the proposed method degrades with the performance of the GMM
algorithm. This is because the output of the GMM is used as the initialisation for our method. However, our method
is always superior to it. Low SNRs do not severely affect the performance of the optimal filter.

Performance on experimental data

We applied our method to data recorded in the prefrontaégat monkeys performing
a short-term memory task as described in Sec. 4.3.3. Fetréltive purposes, we show
the results obtained by processing data from one tetrodeg $ihe qualitative outcomes
from processing other tetrodes anételient recording sessions are similar.

For the initialisation phase we used the first 7 trials of #wording. The initial spike
detection and clustering was done as described in Sec, #4e819ting in a total of 3219
detected spikes, which were assigned to 8 clusters. This tlastering was used as an
initialisation for the main algorithm, which was executedlie same way and with the
same parameters as described in Sec. 4.2 (see also Figr 4.8dmmary). The 7 trials
used for initialisation were also processed with the maithieein order to improve the
sorting quality.

The templates after the first 90 trials are shown in Fig. s8,seeem to be reasonable
by visual inspection. In total, our method found almost 2ZWDBpikes (57111, 18060,
50724, 51709, 3974, 7057, 444, 10915 for each template).vildlleestablished tests to
quantitatively assess the sorting quality of a method periftg on real data are the inter
spike interval distribution and the projection test [1868]t the evaluation of our sorting
with both tests is shown in Fig. 4.8. The relative number dfepduring the first 3ms
is smaller than 5% for all neurons, implying that the refractory period ispected.
On the other hand, the projection test verifies that the spiifea single neuron have
not been artificially split by the sorting algorithm into rtiple clusters or that spikes
from multiple neurons are assigned to the same cluster. diieg of our method also
passes the projection test since the cluster distributiionsot overlap and are close to
the theoretical prediction of a normal distribution withaance of 1. In sum, the good
results of these two tests imply that the found clusters ak separated and indeed
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correspond to single neurons, as well as that the assurspti@de in Sec. 4.2.1 are
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Flgure 4.8: (a) Plot of the concatenated templates and their standard deviation. For the averag-
ing all detected spikes from trial 50 to trial 90 were used. The vertical lines indicate the concatenation
points of the individual tetrode channels, while the colored dots on the right serve as a label. On the
left, the SNRpy, value is shown, the channel dimension of the template being T = 47 and N = 4. The
corresponding SNR, values are (10.06,13.28,21.82 11.57,1312 1332 14.27,10.34), and the SNRe values are
(1.84,3.73,4.22,2.91,2.90, 3.45, 2.99, 2.53), respectively. (b) Histograms of the inter-spike interval distributions with
a bin size of Ims. The numbers on the left indicate the percentage of spikes with an inter-spike interval of less than
3ms. (c) Projection test of the found clusters. The fit (solid line) represents a Gaussian distribution whose mean is
the corresponding template and with variance 1. The D value indicates the distance in standard deviations between
the means. Note that in the case of acute recordings, the waveforms change over time and thus the projection test
is only meaningful for short time intervals. For the projection test the same spikes as in (a) were used.

Since we inserted the tetrodes before every experiment,anevalgorithm has to
deal with the variability in the data caused by tissue driffthe adaption procedure
described in Sec. 4.2.8 was executed after every trial angted the algorithm cor-
respondingly. The time period over which the templates vessimed to be constant
was set tol = 5s*. As a result, 2 neurons could be tracked from the beginnirtheo

*The value ofT was set to 5s just for convenience of implementation, sihedfitst 5s of each trial
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very end of the experiment. The other templates were detsdabr, since their SNR
dropped below ®5.

The disappearance of neurons from the recording volumeasamon phenomenon
in our recordings. However, the opposite, i.e., the appearaf new neurons during
recordings, is rarely observed. This might be explainechiyfact, that at the beginning
of the experiments, the tetrodes are explicitly placed aisitipn where a lot of neuronal
activity is measured. Therefore, it is more probable thainduthe tissue drifts the high
activity population of neurons disappears than that neghliziactive neurons appear.
We discuss this problem also in Sec. 4.4.3.

The evaluation in Fig. 4.8 shows that the clustered spikésough whitened, are
not perfectly Gaussian distributed. This deviation is eausy overlapping spikes, but
it is also due to an intrinsic waveform variability, as it isserved for example during
bursts [56]. In this sense, the generative model assumeegldrdX2.1 is not strictly valid
anymore. Nevertheless, our method achieves a good perfioen&ven for datasets
containing bursting neurons identified by visual inspettid@his can be explained by
the fact that the scaling of the waveform during burst iselmslinear [180]. Because of
the linear character of our method (e.g. see Sec. 4.4.1)eiponse to a linearly scaled
waveform will also only be scaled by the same factor. Hene,algorithm classifies
spikes from bursting neurons correctly as long as the anaditiegradation of the spikes
is not too strong.

4.4.2 Limitations of our method

We have shown that our method is of great potential for spéteation and classification
applications. However, there is a principle limitationn& the filtering and the Decon-
fusion are linear operations, it is impossible to discriat@waveforms which are strictly
linear dependent, i.e., when the spike waveform of one meigra multiple of the wave-
form of another neuron. A possible way to solve this problenoisort the templates
according to their SNR. Spikes with the highest SNR are tedefirst. Whenever a
spike is found, the corresponding template is subtractad the data and all other filter
outputs are re-calculated for thected period. This procedure is repeated for templates
with a lower SNR. Further, if the sum of the waveforms of twffetient neurons with
a certain shift is nearly identical to another neurons spikegeform, it is impossible to
judge whether a spike is an overlap or not. Only probahilistethods or soft clustering
could give a hint at where the waveform came from.

4.4.3 Newly appearing neurons

We have not addressed the problem of neurons which are resitddtduring the initial-
ization phase. As we observe spikes from neurons whose ShifRases due to tissue
drifts, and finally disappear completely from the recordathdthe opposite might also
happen; i.e., neurons, previously undetected, slowly @pipethe recording volume. A
possible solution would be to run a conventional spike dieteenethod in parallel to our
method. All spikes detected by the conventional spike diete¢echnique, but not by

were processed.
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our method, could be collected, aligned and clustered. &dtisyg the newly found clus-
ters, corresponding filters could be initialised and the desion procedure adapted
accordingly.

4.4.4 Implementation and computational complexity

Especially for a real-time implementation the runtime ofadgorithm is crucial. After
the initialisation phase, the proposed method consistslynaf linear operations. The
adaptation of the covariance matrix, of the templates artideoDeconfusion parameters
need only to be computed every few seconds. Therefore, thewational burden lies
in the application of the linear filters and the Deconfusiorathew sample of recorded
(multi-channel) data.

Parallel computing

It is important to note that the cross-correlation for evidltgr - even for every channel
of every filter - are independent of each other and can, treispnputed in parallel as
simple vector-matrix multiplications. For a so called wegtrocessor such a multiplica-
tion would be one single operation only or could be impleradmficiently on a modern

consumer computer-graphics hardware or on programmagitaldiignal processors.

4.5 Discussion and related literature

As the last survey paper [110] is already outdated, we ptéasethis section a short
summary of some existing approaches to spike sorting, aimil pot the diferences to
our method. In most cases, spike sorting is seen as a thigee mtacess consisting of
spike detection, feature extraction, and clustering. is1sense any combination of any
detection, extraction and clustering algorithm is possikihich explains the extensive
spike sorting literature. The main drawback of most apgreads, however, that there
is no feedback incorporating the gained knowledge. Thisnsézat the clustering step
is the final step, and the gained information about wavefdrape and noise statistics
is not used to improve the spike detection, feature extracid finally again the clus-
tering. In contrast, in our approach any existing spikeiisgralgorithm can be used as
initialisation, and the obtained information is used to stauct filters which not only
offer improved detection performance, but also allow for dafaptation and overlap
resolution.

The focus of the selected literature in this chapter lieseatufre extraction and clus-
tering procedures, as spike detection methods will be digmliin Chap. 5. Most of the
published spike sorting algorithms indeed apply the justtinaed three stage process
and will be discussed in Sec. 4.5.1. There are only few spkiing methods relying
on blind source separation (BSS), probably due to the faait BSS is not a simple
approach for spike sorting, as only few methods deal withotlex-complete convolu-
tive case. Some approaches will be discussed in Sec. 4.®%&aver, in App. B.2 we
list some more general studies on BSS and blind deconvalat#oa starting point for
developing spike sorting algorithm based on their prireggh future work.
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4.5.1 Spike sorting based on clustering

We begin the discussion with studies which also rely on tatepéxtraction, and then
move to algorithms relying on other principles.

In [198] a supervised neural network, supervised templateiing and supervised
classification based on principle components (PC) are credpalemplate matching
is done by calculating the squared distance. The/witge covariance matrix is not
taken into account. The neural network achieves best peaioce followed by template
matching. For the PCA method only the first 2 PC were used.

On the other hand, in [8] the data are whitened first, and tlekdman distance to
templates is used for classification. The templates areeaoht blindly, but given a
priori (supervised method). The method is non-adaptivel, @rerlapping spikes are
only resolved when not more than two waveforms superimpose.

Also in [36] it is assumed that the templates are alreadyneséid. The method
yields an improvement if the fierent neuron clusters havef@rent variances. The vari-
ance of a cluster is estimated by the Levenberg-Marquaarighgn, which is basically
an iteration procedure for minimising a function which isuensof squared non-linear
functions. Once the variance estimate is done, spikes aignasl to a cluster by a
modified Euclidean distance (which is not well motivated).

In the work [78] the templates are assumed to be known, ahk@spgire sorted by
computing the variance of the output signal after filteririthwhe templates (in order to
reduce the computational complexity). The method is intelnir low power devices,
such as implantable prosthetics.

In [220] detected spikes are projected into PC space. Insiaee the density is
computed, and templates are then extracted from pointmeg high density. Next,
spike sorting is performed by template matching using theb@shev norm. Overlap-
ping spikes are not processed directly, but must be firstgrésed as such and then
resolved by a more complex sub-routine.

The authors of [172] present a method designed for non-gariustering, i.e. when
the data distributions are non-convex. A relation betwéenentropy and the Cauchy-
Schwartz divergence is established. As such, the entramekea clusters is maximised
while the entropy within a cluster is minimised. The metheduires a training phase,
and the number of clusters must be given. The problem ofifyjass overlaps is not
mentioned.

The main focus of [9] is handling non-stationarities in theal such as changing
templates and noise characteristics. The data are smitainy frames, in which the
data are assumed to be stationary. In every frame a clugtbered on a Gaussian
mixture model is applied (local clustering). In order to done the local clustering into
a global one the theory of types is used. The algorithm alli@wvsplitting and merging
of clusters. On the other hand, this approach is not capdhbalime processing and
overlaps are also not resolved.

In [231, 232] another spike sorting method is presented lwisicapable of dealing
with non-stationarities. The classification is based on asSian mixture model. In each
new frame the Expectation-Maximisation algorithm is alised by the clustering result
of the previous frame. Model selection is not done by the BI@,a more accurate ap-
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proximation based on Laplace’s approximation is used. 8 fealso a routine dealing
with the case when the number of clusters f$alent in two subsequent frames. In con-
trast to [9] the algorithm processes one frame after anptherre is no global clustering.
Still, the clustering can only take place after the data ofilaffame is acquired, and
spike overlaps are not handled (probably overlaps areifitabsas background by the
uniform mixture component).

The method presented in [82] uses a hidden Markov model t@sept spikes. In
this way the refractory period is incorporated. In order stireate the model param-
eters, such as transition probability, template, etc.,Bham-Welch algorithm is em-
ployed. Once these parameters are learnt, spikes are fowhdlassified by applying
the Viterbi algorithm. In principle, this method can reslverlapping spikes. How-
ever, the computational load is enormous, making a rea-timplementation infeasible
(the algorithm is not even capable of online processingdghpuMoreover, a lot of hand-
tuning is required (see section 2.4 in the paper), whictsilas this algorithm rather as
semi-supervised.

The proposed method in [32] is similar to the one in [180]he $ense that clusters
are built online, merged and split. However, this is all donewvavelet cofficients and
not on the original data as in [180]. Also the spike alignmismhore sophisticated.

A good comparison of several approaches is found in [2038] tlae code is available
online. However, the paper does not address the problemeoliapping spikes. The raw
data are filtered with a bandpass FIR filter, and twidedént FIR filters are compared
for this task. Spike detection is done by simple amplitudesholding. For feature
extraction PCA and wavelet cfirwients were compared. Finally, 2 clustering techniques
and two estimation techniques were compared: mixture ofrfdbdistributions, mixture
of Student's t-distributions, and 2 estimation techniquesmely Normal expectation
maximisation and robust variational Bayes. The number wdtels is estimated with
minimum message length, as it is argued that this methodnpesfbetter than Akaike
information criterion and Bayes information criterion. éralgorithms are tested on
simulated and real data. Robust variational Bayes, witheledfeatures and Student's
t-distribution mixture model performs best.

In the work of [16] spikes are detected by amplitude thredingl and projected
into PC space. A hierarchical classification algorithm iscu$or clustering, whereas
overlapping spikes are not handled.

The focus of [100] is on feature extraction and clusteringatiire extraction is done
by projection pursuit maximising the negentropy, whichdeto better results than PCA.
Clustering is done by a Gaussian mixture model, whereasuhwwer of components is
determined visually. Overlapping spikes are not consitlere

The algorithm presented in [167] is computationally expensbut makes use of
almost all available information; not only is the waveforniarmation used, but also
the temporal aspects, such as the inter spike intervaltigtbn and altered waveforms
due to bursting are considered as well. Specific models fatatistics are assumed,
whereby their parameters have to be estimated from the @haigis done by construct-
ing corresponding Markov chains and Monte Carlo simulatiofithem. The number of
clusters has to be user specified, thus, the method is seomatic. Overlapping spikes
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are not considered. A slightly modified version of the altjon was published in [42].

The authors of [191] argue that a Gaussian distribution isappropriate for mod-
elling the variability of a waveform and instead a t-disfition should be used. An
expectation-maximisation algorithm adapted for t-disttions is presented and used for
clustering. Overlapping spikes are treated as outlieroizen

The paper [87] proposes to perform spike sorting in the vedveddficient space.
However, the most discriminative wavelets are chosen by hand no method is pre-
sented how to do this automatically.

In [55] the found spikes are initially clustered, whereas tlumber of clusters is
set to a value around 10 times larger than the number of dstihreeurons. Then, an
aggregation process merges the clusters based on thewo&texrhergy and inter spike
interval times. No online scheme is presented nor are quarg spikes considered.

It is argued in [241] that the derivative of the spike waveaidn the frequency do-
main is better suited for distinguishing spikes fornffelient neurons than the origi-
nal waveform. The overall spike sorting algorithm is asdeis: Spike detection with
NEO detector (see [145]), pre-processing with a frequehapisg filter (in this case the
derivative), feature extraction via PCA, and clusteringfvthe mean shift clustering al-
gorithm. Similar to [168] a measure is defined which indisdtee sorting performance.
This measure relies on the earth mover distance.

In [4] a method is presented which is based on spike trajestgr.e. derivatives of
the signal), i.e. a spike is assigned to the class to whicksithinimum distance in phase
space. The method does not resolve overlapping spikest isudiitomatic and online
(however, it needs a learning phase).

A neural network approach is used in [33], which needs huraparsision for learn-
ing. All overlaps must be also trained with the network, megrhat when many neu-
rons are present and when not only overlaps between pairsunbns are considered,
this approach is computationally very expensive and costailot of human dependent
parameters such as the number of hidden layer, approptiatmation function, etc.

4.5.2 Spike sorting based on source separation

An offline algorithm is presented in [200], which combines clustewith ICA. Firstly,

all regular spikes are clustered with tkeneans algorithm, whereas the number of clus-
ters is around twice the number of neurons. Each clusteers decomposed using the
FastICA algorithm. The obtained independent basis veet@sompared between the
clusters, and clusters with similar basis vector are mefged only the spatial wave-
form, not the temporal waveform is used). A similar procedisrapplied to irregular
spikes, which most probably represent overlapping spikesvever, some of the prob-
lems mentioned in Sec. 4.1 for the pure ICA approaches aceddlsoncern in this
method.

In [206] spikes are enhanced by filters which respond to distoities in the data.
FastICA is then applied to the filter output in order to achiepike sorting. However,
the number of filters is not determined automatically. Alspike detection methods
based on transiency detection are not optimal as will baudged in Chap. 5.

In the work of [86] a method based on array processing is ptedewhich is de-
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rived from the field of radar applications (see Sec. 1.2.h)js Tethods works for multi-

channel electrodes which are aligned parallel to an axotheaalgorithm relies on spe-
cific propagation velocities of spikes from individual nens, and the resulting time
delays when the spike is visible on a channel. The methodpersised, and does not
consider blind beamforming approaches as proposed forgram[174, 39, 246].

The paper [121] claims to have solved the general convalUtNMO source sep-
aration problem, assuming sparse sources. However, onlgtlaoeh in the case of two
sensors is presented which works only in a high SNR setting.

As the neuroscience literature deals with algorithms basdaind source separation
only to a limited extent, we investigate also some methodsh fthe blind source sep-
aration literature, which, however, were not applied torakdata. In the blind source
separation literature there exist approaches dealingavigh-complete systems contain-
ing sparse and finite alphabet sources. However, they ae lifited to the noise-free
case (e.g. [65, 111]), deal only with instantaneous misteeg. [62, 34]), or work only
for under-complete mixtures (e.g. [112]). In principle, @neolutive mixture can be
transformed into an instantaneous one by applying the €otransform, however, this
approach is not without problems [160] and will not be disaasfurther in this thesis.
Nevertheless, as a pure BSS approach might improve thegaytiality (as it will for
spike detection, see Chap. 5), it should be pursued in thesfuhence in B.2 we give an
overview over some existing BSS literature.

4.6 Conclusion and outlook

An automatic method for simultaneous spike detection aiie spassification was pre-
sented, having several advantages which were demonstrateatious datasets. Explic-
itly, the method makes use of the additional informationvjated by multi-electrodes
and has no constraints concerning the number of recordiagngis or the number of
neurons present in the data. It resolves overlapping sjilstantaneously, performs
well on datasets with a low SNR, and it adapts to non-statites present in the data.
Moreover, the method operates online and is well suited feaktime implementation.

In the first step of our algorithm, optimal linear filters wearsed to enhance the
SNR. Linear filters account for the noise statistics as wefioa the full, multi-channel
template, and are, therefore, superior to other methodstecting spikes of a specific
neuron. Further, we used the output of the linear filters asvanepresentation of the
data. The advantage of the filter output space is that itsrbioge is equal to the number
of neurons, whereas this was not the case in the originalsgetee. This allowed us to
treat the spike sorting problem as a well defined source agparmproblem and solve it
by Deconfusion.

In the final step, a channel specific threshold was appliedigirgy simultaneous
spike detection and classification. Unlike in many otherthrods, the thresholds need not
to be set manually by a human supervisor but are determirtechatically in an optimal
way. The advantage of a combined spike detection and ctzsin, in contrast to ex-
isting spike sorting methods, was demonstrated on sintliddéasets. Especially in the
presence of overlapping spike and low SNR, our method aetibetter performances.
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We showed that, in the case of linear filters, a proper dedimitf the signal-to-noise
ratio is based on the Mahalanobis distance, whereas othenoaly used definitions do
not reflect the dficulty in detecting the signal.

By iteratively updating all quantities, namely the linedtefis, the Deconfusion pa-
rameters, and the thresholds, the algorithm adopts to taiosarities present in the
data. As such, the method is also suitable for recordingseniradcute experiments in
which the multi-electrodes are inserted each time anew.

Two drawbacks of the proposed method were discussed, ndaheeigcapability to
detect newly appearing neurons and the problem of strictgal dependent templates.
However, for both problems a possible solution was sketcAdek detailed study and
realisation of these solutions is left for future studies.

By qualitative arguments, systematic runs on realisyicsithulated data and on real
data from awake behaving macaques, we have shown that thetlalg is capable of
resolving overlapping spikes; without additional compgtitime. However, for the
acute recordings in awake behaving monkeys we cannot phadthe found solution
is correct, since the ground truth is unknown. Only massireianeous intra- and
extracellular recordings in vivo could be used to assesguléty of the sorting in real
experiments. Due to technical limitations, such a datasetirently not available.

The algorithm mainly consist of linear, independent operat which can be exe-
cuted in parallel and implemented in hardware. Therefdre,algorithm can be used
for real-time implementations, making it an potential gpgorting method for brain-
machine interfaces and for the execution of closed-loogexgents.

4.7 Derivations

4.7.1 Derivation of optimal linear filters

Filter f' should respond with a peak to its matching temptatéut should have minimal
response to the rest of the data. In particular, one demdradshe response to the
matching template is 1, i.gf ' - f| = 1. The response of the filter to the dataXis f',
where(X * fi)t = Yk Xt fli’r. Using the third assumption of Sec. 4.2.1 the response
of a filter to X will be small (and therefore well distinguishable from treag response

of 1 to the matching template) if the variance of the filterputtis small, i.e., one has to
minimise Var(X * ). In summary, the constrained minimisation problem is state

f' = argmin{Var(X x f')} subjecttog ' - f' = 1. (4.10)
f|

A short calculation (see Sec. 2.1) shows that
Var(X  f')=fI" - R !, (4.11)
Thus, the Lagrangiah of this minimisation problem is given by
L=f"-R-fl+2(qd" - -1) (4.12)

wherea is the Lagrange multiplier. Since the objective functiondsvex inf', there ex-
ists a single minimum, which can be found by solving ,L = 0. In fact, the minimum
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is attained at L

o R4
Often, linear filters are derived in the frequency domairneiad, but linear filter defined
in the time domain have several advantages, see [224].

(4.13)

4.7.2 Derivation of Deconfusion

I(y‘t) can be expressed as a linear combination of the sost@sshiftsr;, i

1) = > (A s, (4.14)
j

We show that _ _
z= ) Wy, (4.15)
]

with W = A=l is the corresponding inverse problem. By inserting the &sgion in
Eqg. 4.14 into Eq. 4.15 one obtains

Z= ) Wiy D (A) kS, (4.16)
j k
= Z (W)ij (A)jie Ser ey
j,k
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ik
This is true, if
Tink = Tjni = Tjok = Tjai Y1, jo, 1,k (4.18)

Note that this condition is always satisfied fo& i.
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4.7.3 Derivation of the optimal threshold

If we assume that the noise in the Deconfusion output issstilixture of Gaussians (as
an approximation for a mixture of truncated Gaussiansllibdvs for its variance

op = Var(Z) (4.19)

= Vaf[zi: Wi - y';M)

M

Cov(WiiYh,, - W Vi)
=1

(W) Var (Y, +222wk.wk,1 Cov(y:,,. ¥y, )
i=1 j>i

(W) f' CfI+ZZZWKIWka Cirij-riat
i=1 j>i

M= M g

1l
=

whereCy, -, are shifted covariance matrices, i.e. taking temporaletations into
account of ordefl't + |ty j — 7wl

The optimal threshold for the detection and classificatibspikes from neuroik is
chosen such that the overlap between the distribution o$plilees from neuroik and
the distribution of the other spikes (from neurgng = 1,..., M, j # K) is minimal. We
assume the distributions to be Gaussian, with meansnd variancer;j2. They j are
given by the maximal response values of filieo templatek after Deconfusion, i.e.

pkj = mTax{(W- | ((ql * . g% fi)T))kT} (4.20)

whereas the variance is given by Eq. 4.19. One has only tadsmnthe maximal false
response and not the whole response, because the refrpetioy is in general longer
than the length of the template. Thus the optimal threskpid given by

Yk = ar%[nm{ﬁk (1 - Eerfc( \/_gi)) + é hi erfc[ \/_(’l:f] ]} (4.21)

whereer fc denotes the complementary error function, @nds a normalised weight.
Namely, if one wants to have an equally good detection pexdoice as false alarm per-
formance, then the weights should be chosefkas 0.5, and thes; j # k proportional
to the firing frequency of neuropsuch that ;. 8j = 0.5. Note that the threshold must
lie in the interval [Q 1], hence this minimisation problem can be solved numédyiedth

a line search algorithm, for example using the “fminbnd” coamd of MATLAB.




Chapter 5

Hybrid blind beamforming for
spike detection

In this chapter we address the problem of spike detectionlefined in Eq. 1.3. We
present a new spike detection algorithm which is based ohadstfrom the field of
blind equalisation and beamforming, and which is partiduladapted to the specific
signal structure neuronal data exhibit. In contrast totexisapproaches, our method
blindly estimates several waveforms directly from the datdects automatically an ap-
propriate detection threshold, and is also able to trackamsuby filter adaptation. The
few parameters of the algorithm are biologically motivatédis, easy to set. We com-
pare our method with current state-of-the-art spike deteclgorithms, and show that
the proposed method achieves favourable results. Reallgtsimulated data, as well
as data acquired from simultaneous iygxdra-cellular recording in rat slices are used as
evaluation datasets.

5.1 Introduction

Extracellular recordings with electrodes constitute ohéhe main techniques for ac-
quiring data from the central nervous system in order toystiid neuronal code. One of
the first processing stages of the recorded data, henceastcoh&entifying the occur-
rence times of these spikes. To this end, various spike tilmtealgorithms have been
developed. To give a structured overview of the recent dgwveént in this field, we
use a categorisation scheme based on the working prindiphe onethods. Note, that
although the spike detection stage is one of the earliesicdlly all algorithm require al-
ready some pre-processing. This includes a band passtijtersually between.BkHz
and 10kHz), and a zero mean normalisation. In the following will still refer to this
kind of pre-processed data as “raw” data, since all tectesqaly on this initial step.
The first category of spike detection methods assumes thapikes exhibit a larger
amplitude than noise fluctuations. Hence, spikes can betdétas data segments which
amplitude cross a certain threshold value. In [152] threeint variations of this
detection paradigm were described, including maximum,jmuim and absolute value

70
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thresholding. Other related approaches rely on the disthrtween the minimum and
maximum value within a certain time frame [124], or templyraierarchical maximum
and minimum value thresholding [18].

The principle of the second category is based on the transigre of a spike,
thus, spikes can be detected by measuring some quantitsitdegahe discontinuity of
data. An example is the nonlinear energy operator whichstak® account instanta-
neous energy and frequency, and which was used for spiketidetén [145]. Further
adaptations of this method to neural data have been propo$ad, 38]. On the other
hand, the approach in [158] considers only the instantanenargy dterence, while the
proposed method in [144] calculates the derivative of a taalfy accumulated energy.
Also based on the first derivative of the data are methodepted in [4, 206].

The algorithms falling into the third category rely on thetféhat spikes from a
specific neuron exhibit a characteristic waveform. Thelsinty between a data segment
and a specified waveform decides whether the consideredeigtaent contains a spike.
When the actual waveform in the data is unknown, a genericoagp can be used. For
example in [101, 147] a biorthogonal respectively a coifletimer wavelet is used, since
they exhibit a certain similarity in shape to waveforms fdimsome real recordings, and
a spike is said to be detected when a specific function of wwaeekficients exceeds a
threshold value. In contrast, unsupervised estimati@o (@lled blind estimation) of the
waveform or blind equalisation has been performed in [41lJdmar prediction, in [102]
by automatic threshold setting, or in [187, 188] by usingdbpstrum of bispectrum.

The choice which algorithm should be used in an applicasarely depends on the
two important aspects of computational complexity andat&ir performance. Limited
power and computing resources, as encountered in implantaouits [247], restrict
applicable algorithm to have a very low computational Idahce mostly methods from
the first category, and some few from the second one are usken Wbt limited by such
constraints, it is favourable with respect to the detecgierformance to use algorithms
belonging to the third category. This is motivated by thd,fttat given the waveform
and the noise covariance matrix, the matched filter, or edgmtly the minimum vari-
ance distortionless response beamformer (MVDR) the optimal detector in case of
Gaussian noise [210].

The aforementioned spike detection methods based on ljinalisation stfer from
three main drawbacks. Firstly, they construct only a siffigiler. In many experimental
situations, however, spikes from more than one neuronnpadistinct waveforms, are
present in the electrode recordings. The single filter eithptures just one waveform,
meaning that spikes from the other neurons will be detectemtlyy or the filter is an
average filter which will have a sub-optimal response toespikkom all the neurons.
This problem aggravates the more neurons are present, anudle the waveforms
are distinct, which is especially the case in multi-chameelording devices, such as
tetrodes [75].

Secondly, few methodsfi@r an automatic threshold selection mechanism, thus al-
lowing for a truly unsupervised operation. The availablprapches [227, 209, 31, 16]
focus on the case when spike detection is done by amplitugshblding (first cate-

"See Sec. 2.2.1 for more information about these and simitiarsfi



CHAPTER 5. HYBRID BLIND BEAMFORMING FOR SPIKE DETECTION 72

gory). For the above mentioned methods which rely on blingaésation, none or only
heuristic values are given regarding the choice of an apjatepthreshold.

Thirdly, the mentioned methods are non-adaptive. Once ex fidt calculated on
a data segment in the time intervalt[+ T], it is also applied to all subsequent data
segments at times> t+ T. Particularly in acute recordings, the shape of the wawefor
will change over time [21], hence the performance of therfiltdl be sub-optimal if
it is not adapted. One could re-estimate the template am@loedate the filter after
every time interval, however, this would increase the caaenal load significantly,
and tracking of neurons would becoméhdult.

In this chapter, we propose a new spike detection algorithmithwovercomes all
those drawbacks. The algorithm is derived by considerimgstiike detection task as
a blind equalisation problem in a multiple-input, singlefmut system. The algorithm
consists of a two step procedure: In the first step, an iteratigorithm based on higher
order statistics and deflation is used, which leads to amlirfitter estimate. In the
next step, the minimum variance distortionless responsB&DR) beamformers are
calculated, leading to an increased detection performarius also allows to formulate
a threshold selection algorithm as well as dieetive adaptation scheme (see Fig.5.1
for a graphical representation of the whole algorithm). &mse we use technigues from
both fields, i.e. blind equalisation and classical beamiiogmin the context of spike
detection, we call our method hybrid blind beamforming foike detection IBBSD.

The rest of the chapter is organised as following: In Sectfealgorithm and all its
individual steps are described. The evaluation of its parémce and comparison with
existing spike detection methods are presented in SecCbrilusive remarks are given
in Sec. 5.5.

5.2 Methods

5.2.1 Model of recorded data

In order to derive a well motivated algorithm avoiding hstids as much as possible, the
recorded data has to be described by some signal model. hethescience community,

it is widely accepted that the daxarecorded at an electrode can often be represented as
a linear sum of convolutions of the intrinsic spike tragsvith constant waveforms;

and colored Gaussian noie€having a noise covariance mat®, see e.g. [181, 168].
Explicitly, it is

M
X®) = > ) a@s(t-1)+n(), (5.)
i=1 1

whereM is the number of neurons whose spikes are present in thedieger For the
sake of clarity, we restricted the model to single channebndings, i.e. electrodes, but
an extension to multi-channel data as provided by tetralssaightforwartl.

Since the goal of spike detection is to recover the spikedrgifrom a linear time-
invariant system without a priori knowledge about the shafpthe waveformgy;, this

*SinceN = 1, the indexk in Eqg. 1.1 can be omitted. For convenience the inddgnoting the-th
source is now written as sub-script compared to Eq. 1.1 wiheras a super-script.
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can be viewed as a blind equalisatigoroblem. An overview about this topic and a
survey of available methods dealing with such problems ediotnd in [35], for further
literature see also Sec. 5.4 and App. B.2.

Most often,M, the number of sources, will be larger than the number ofrdiicg
channels. In the model of a single electrode as describedyirbH, the number of
recording channels is equal to one, in which case the gévemtstem is referred to
as multiple-input, single-output. In general, it is not gibte to extract more sources
than available recording channels [35]. In the followings make explicit use of the
unique properties of neural data, such as sparseness ang hiphabet, to overcome
this restriction partially.

R S —

[Sparse deflation]

/ if abortion criteria met
MVDR Threshold
calculation calculation

N
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L [ Filtering + ]

[ Adaptation J‘ Lthresholding

Figure 5.1: schematic illustration of the proposed algorithm HBBSD. The algorithm starts with the super-
exponential algorithm (SEA), and iterates between SEA, Mode detection and Sparse deflation repetitively, until
certain abortion criteria described in Sec. 5.2.5 are met. Finally, the MVDR filters and the corresponding thresholds
are calculated. Spike detection is done by thresholding the filter output and the newly detected spike are used to
update the filters, allowing for neuron tracking.

5.2.2 Application of the super-exponential algorithm

The super-exponential algorithm (SEA) developed in [18%lieves blind equalisation
via filter calculation by higher order cross cumulants. eal valued data, the filtdr at
iterationk + 1 is computed as

hke1) _ R*-d®

VAW TR-1. dK

*Often also called blind deconvolution, blind identificati@r convolutive blind source separation.

(5.2)
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whereR is the data covariance matrid®(n) denotes the cross-cumuléritetweenp-
timesy®(t) andx(t — n), andy®(t) is the filter output, i.e.:

(R)i,; = cov(x(t — i), x(t - j)) (5.3)
d®(n) = cumfM (1) : p,xt—n) : 1)
Y1) = > h@X(t +7)

T

The algorithm works when the signass are non-Gaussian and when theare sta-
ble’. In the context of neural recordings, both requirementssarely met. Firstly,
the s represent the intrinsic spike trains, thus taking valuesitbier O or 1, and whose
probability density function follow most likely a sparserBeulli distribution, or their
inter spike interval a Poisson distribution. Secondlywlaeeformsg; are finite impulse
response filters, and hence are stable. The SEA algorithaidd® have reached con-
vergence when the flierence between two consecutive iterations is small enosegh (
also Sec. 5.3.3). For convenience, we call the filter obthatehe last iteration simply
h, instead ofh®as)

The choice of the SEA instead of other blind equalisatiom@lgms was motivated
by several of its features. It is shown that in the noise-rase, the algorithm con-
verges independently of the initial condition to the gldpalptimal solution with a
super-exponential convergence rate [189]. If one had adoean infinite amount of
data, this property should also hold when Gaussian noiseesept, as higher order
cumulants are zero for Gaussian signals [189]. Moreoveratgorithm is not gradi-
ent based like Bussgang type algorithms, thus no step dieetisa is required, which
reduces the amount of parameter settings for the user.

For neural data, we chose the order of the cumulant tp be2 or p = 3. In the
former case, the vectatis proportional to a function of the skewness, a statistiactvh
is well suited for asymmetric signals such as th¢155]. Forp = 3, this makes the
vectord proportional to a function of the kurtosis, which is a goaatistics in case of
sparse data following a model as in Eq. 5.1 [95, 88]. Thesénfiyzdvere also confirmed
in[116].

5.2.3 Mode detection in the SEA filter output

The SEA computes a single filter on the basis of a vedtahich contains the statistics
of all M waveforms. Nevertheless, as it is most likely that the dttarsstics of the neu-
rons will be diferent with respect to signal-to-noise ratio, spiking frexgey, or shape of
waveform, it is expected that the filter will have variousp@sses to the elierent neu-
ronal waveforms. The idea is to identify spikes which beltmg single component and
re-calculate the filter using only these spikes. The ideatifdn is done by a technique
called mode finding [27].

Firstly, only the maximum values, denotedmsof the filter outputy within a certain
range 25 + 1 are extracted. Then, the probability density functigm of the my is

$See Sec. 1.4.2 for a short introduction to higher orderstiediand used notation for cumulants.
"Stable in the sense of robust against noise, not in the séissationary in time.
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estimated by a kernel density estimator, which in the asdurase of Gaussian noise is
favourable to be a Gaussian kernel. The kernel bandwidtioisen optimally depending
on the amount of data [93]. The functigom will exhibit a high amplitude mode due
to noise, and possibly several low amplitude modes causespikgs*, see Fig.5.2.
Hence, the second largest mdses the prominent spike mode, i.e. caused by spikes to
which the filter responded the most, and which consequehtiyld be extracted from
the data first (see also Sec.5.2.3). #ilwhich have a smaller distance byg than to any
other spike mode, and which are also larger than the firsthmini separating the noise
peak from the first spike mode, are considered to belorg tsee Fig.5.2. However,
modes which are in the range 8P, aroundb, are not regarded as separate modes,
whereasry,, denotes the estimated standard deviation of the noise ffilitdreoutput (of
filter h) (see Sec.5.2.3).This is motivated by the fact that two Ganglistributions with
identical standard deviation do not exhibit two separatelespunless their means are
at least 2, apart [179]. This merging of modes is necessary in order tomise the
number of spurious modes which do not represent an indivshraponent but are mere
artifacts caused by the kernel smoothing.

Figure 5.2: Top: Estimated probability density of the local maxima values my. The spareness of the data is
clearly exhibited by the large noise peak (at around 1 on the x-axis) and some small spike peaks (at around 4 and
5 on the x-axis). Bottom: Zoom in on the spike modes. The circles indicate the local maxima of the modes that
were found. The mode at around 3.9 was identified as largest (by), and the two modes indicated by blue circles are
discarded, as they are within the range of +257, . The estimated noise standard deviation &7, is indicated by the
thick bar. The green cross indicates the first local minimum, separating the noise peak from the spike modes.

Estimation of the filter output noise variance

To estimateo,, first the meanuy, of the filter output noise is estimated. If one can
assume that is zero mean, this step can be avoided, since then, it imiedygifallows
thatu,, = 0 as well. Otherwise, the probability density functionyos estimated by
a Gaussian kernel density estimator as described in théopegesection. Making again
use of the sparseness of the data, the mears Tound as the global maximum of this
probability density function.

*Due to the large amount of noise samples, the kernel bankiwiiitbe relatively small, which guar-
antees that the modes caused by spikes will not be smoothed aw
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As we expect that the response of filteto spikes is larger thapy,,, we ignore all
values ofy which are above:,, since they are likely to contain spikes. Henesg, iS
solely estimated on values pfvhich are smaller thap,, .

Gaussianity of the modes

Strictly speaking, due to the maximum operation, iipelo not follow a Gauss distribu-
tion anymore, but rather an extreme value distribution. e¥éaeless, a Gaussian kernel
is used for density estimation and the spike modes are asstoiee Gauss distributed
as well. This is justified by the fact that the spike modes leixltarge amplitudes in the
filter output, and thus their maxima values are still almoatu§s distributed even after a
maximum operation.

Even when the noise in the original data is not perfectly Galistributed, after
filtering it probably is due to the central limit theorem. Bhit is justified to assume
Gauss distributed noise in the filter output.

Largest spike mode finding

From the kernel density of the, first a Gaussian distribution with megag, ‘and stan-
dard deviationo,, is subtracted (not shown in Fig.5.2). This removes the noise
tribution to modes, and ensures that the largest spike rhgdeindeed the prominent
one.

Note that in [102] also a mode detection procedure was applie contrast to our
approach, it was done on a generic filter output consistinggafiring and lowpass fil-
tering. Moreover, we merge modes based on their proximityrdter to find all spikes
belonging to the largest spike mode, whereas in [102] odydbal minimum separating
the noise mode from the spike mode is found and a single téeniglaonstructed.

5.2.4 Sparse deflation

In classical algorithms designed for multiple-input, npli#-output systems, sources
are extracted one by one using a technique called deflat@jn ®s such, one single
waveforma; is estimated via second order statistics, the sosfds estimated via the
convolution of the corresponding filtdr; with x, and the convolution betweeny and

s;j is subtracted from the data This classical deflation procedure was developed by
assuming that the sources are continuous signals, andhihataveforms have to be
known only up to a scalar factor. In contrast, the signalsasgnting the occurrences of
spikes are discrete and sparse, and, as will be shown in 26, the waveforms need
to be known without ambiguity.

Therefore, we propose an adapted deflation procedure wiadalhsparse deflation,
as it relies on the sparseness of the data. At iterafidata segments()); of length
2L+ + 1 are cut out ofx around the occurrence timég + tshirt Of the maximam;, i =
1, ..., K, which belong to modé,. The shifttsir; is determined so that the cut out data
segments have maximum total energy. Without this stepaetitin of diferent parts of
the same waveform at several iterations would be possibléheaSEA filter does not
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necessarily respond maximally at the middle of a waveforinally, the waveform is
estimated as the median of all data segntents.

650 = med(xP@).....xP(v) t=—Lg,...Ls, (5.4)

whereK is the total number of maxima, belonging to modé,. Instead of subtracting
the estimated contribution of soursg the data segmeni$)); are simply removed from
the data. The reduced data gétx(;, i = 1, ..., K, is now used as the starting point for
the next iteration of the algorithm. In particular, the stelescribed in Sec. 5.2.2 - 5.2.4

5.2.5 Abortion criteria
The iteration loop is terminated if at least one of the follagvcriteria is met:

e No spike mode can be identified in the filter output anymorethernumber of
spikes belonging to the spike mode is below a relative ttoleshin

e A maximum number of iterations is reached
If the loop abortion happens after the first iteration alye#k filter obtained by Eq. 5.2
is used for further spike detection instead of the MVDR beamers.
5.2.6 Calculation of the MVDR beamformers

Once the iteration loop described in the previous sectism®mpleted, the final filters
used for spike detection are calculated. Namely, we use ¥BRIbeamformekwhich
is given by [210]

¢1.6
fi = %, (55)
G -C- G
whereC is the estimate of the noise covariance matrix, gririotes the vectorial rep-
resentation of the-th estimated waveform, the individual entries beg.;..., §.t,.

The estimate ofC is done after the last algorithm iteration, as the deflated dat

.....

accurate noise estimation.

5.2.7 Filtering and spike detection

After calculating the MVDR beamformers, the data are filtenéth each of them, and a
spike is declared as detected when the filter outxtceeds a certain thresholdi.e.

Z(t) = ). fjOX(t+7) detection ifzj(t) > y; (5.6)

C(F % X)),

$An even better performance could be achieved if the data seggnwere first upsampled, aligned,
averaged and then downsampled [168].

INote that other filters could be used instead, e.g. adaptedaal-time detection task, as discussed in
Chap. 2.
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5.2.8 Threshold selection

The threshold for every filter is selected individually subht the probability of detec-
tion Pp is maximal (probability of a true positive detection), wbas the probability of
false alarmPra (probability of a false positive detection) should be mialmf one ad-
mits a certain toleranc& in the arrival time estimation, meaning that a spike is decla
as correctly detected when the filter output exceeds thstibteé somewhere in the in-
terval|tspike — A. tspike + A, the probability of detection for filtef; given thresholdy; is

expressed as
A

Poj(v) =1- [ | Puj((fj * @).) (5.7)

T=-A

wherePy;(x) := 1/2- (1 + erf(ff"—;‘j)) withj = [f7CH. ThusPy; (X (1,4 ) is the
probability that the spike is not detected at samplerhereasy; is defined in the next
Sec. 5.2.9. Similarly, the probability that a noise segnwriength 2A + 1 is falsely

detected is given by
)2A+l

Praj(7j) = 1 - (Pn;(0)
An optimal detector would always achieve a perfect perfarteafPp = 1 andPga = 0,
thus any detector should have a performance as close ablpdssthe perfect perfor-
mancé. The optimal threshold, hence, is selected according to

(o) ) (PFA j()’j)) } (5.9)
1 Po;(i) Jll,
This optimisation problem can be solveigently as it involves only a single parameter,
namely the thresholgt;, which should lie in the interval [@]. In practice, we evaluate
Praj andPp; for all threshold values in [A] with a resolution of M005, and select as
optimal threshold the one which minimises Eq.’5.9

When the threshold is obtained by Eqg. 5.9, it is assumed thigicting a spike is
equally important as avoiding a false positive detectioowklver, with respect to sub-
sequent analysis for understanding the working principfedbe nervous system, it was
shown, that not detecting a spike has more impact than deglencorrectly a piece of
noise as a spike [159]. This particular characteristic ofakdata could be incorporated
by introducing a weighting parameter in Eg. 5.9.

(5.8)

Yj = argmin{

i

5.2.9 Adaptation to changing waveforms

In Eg. 5.1 we assumed that the waveformsare constant in time, which is approxi-
mately true for short periods at the beginning of an expeamimiBue to tissue relaxation,
however, the distance between the electrode and the nedhamges, which leads to
altered recorded waveforms [21]. In Chap. 3 we proposed aptation scheme for an

INote that in contrast to Sec. 2.1.2 we omit for simplicity se#f-suppression term in the calculation
of Pea, and solely consider the false detections of noise samples.

*Note, that the dference between Eq. 5.9 and the derivation in Sec. 4.7.3 fisgedit norms. In
Eq. 5.9 thd| - |, p = 2 norm was applied, whereas in Sec. 4.3.3 1 was used.
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estimated spatial waveform and the corresponding filteis ethod was especially de-
signed for sparse binary data such as neuronal data. Hereishortly summarise this
method and extend it to multiple, temporal waveforms. letfter every time interval
T, each waveform is updated as the mean okhglast data chunks of length 2.+ + 1
which were detected as spikes, i.e.

KmaX
Gj=1Kopj- D, T (5.10)

i:Kman —Koptj +1

whererji == (X(t() = L¢), .... X(t()+ Lf))T such thatf” - rji > v}, and Kmay
denotes the maximum number of found spikes by fifterlf two or more filters detect
the same spike, the spike is assigned to one filter only, naneethe one which had a
response closest to 1. The optimal number of spikes for gireyas determined by

Kopt; = arglinax{Mj(K)} (5.11)

whereM := Pp;j + (1 - Praj), andq; is estimated as the mean waveform of @dast
detections of filterf;.

5.2.10 Implementation

The higher order cross cumulants were calculated by thefike BIOSA toolbox [199].
The proposed algorithm was implemented in MATL&Bersion 76, but not optimised
for maximum computational speed yet. The code and a samgleifllbe made avail-
able at the website htiffuser.cs.tu-berlin.denatord

Regarding computational complexity, the most expensisk i®the computation of
the cross cumulants during the SEA algorithm. This compriahowever, can be done
in parallel, in the sense that every time shift can be contpatea separate computing
unit.

5.3 Performance Evaluation

5.3.1 Generation of artificial data

Artificial data were generated according to the model in Ef}. $he waveforms were
constructed from sorted spikes obtained from acute rergsdin the prefrontal cortex
of macague monkeys and had a length of abo2in8, see Fig. 5.3. Detailed informa-
tion about the sorting method and the experimental setuge wescribed in Chap. 4.
The spike arrival times were simulated as independent hememus Poisson processes
with an enforced refractory period of 2ms. The noiselesa datre simulated at a sam-
pling frequency of 40kHz and then downsampled to 10kHz, deoto include the phe-
nomenon of sampling jitter as encountered in real recosdir@aussian noise with an
autocorrelation structure measured in real recordingssivaslated by an ARMA pro-
cess and added to the spike trains (see Sec. 4.3.2 for maisyletThree types of
datasets were simulated, containing activity from one,dwthree neurons.

Two data snapshots from the latter type are shown in Fig.5.4.
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Figure 5.3:waveform templates obtained from extracellular recordings in macaques and used for generation of
artificial datasets.
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Figure 5.4:Data chunks of simulated data with different SNR values (in the top figure all waveforms had a SNR
of 3.0, in the bottom figure the SNR was 4.0). The markers indicate the occurrence times of the inserted spikes,
whereas the templates shown in Fig.5.3 were used.

5.3.2 Performance assessment

To allow for a better comparison, the most common definitibrsignal-to-noise ra-

tio (SNR) utilised in the neuroscience community (see fanagle [147]), was used.
Namely, the SNR of théth spike train is defined as the ratio between the norm of the
corresponding waveform and the standard deviation of noise

11910

On

SNR = (5.12)

The detection performance of an algorithm was investighyatieans of receiver op-
erator characteristic (ROC) curves and the correspondiegsainder the curves (AUC),
similarly defined as in [102]. The ROC curves were calculdtgdvaluating the relative
number of true positive (TP) and false positive detectid#®)( given by

# of correct detections
TP= . —,
# of inserted spikes
B # of false detections
~ maximum # of possible false detections

(5.13)
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A detection was classified as correct, if the detectors respaovas within:0.4ms of
the true spiking time, which implied = 2, see Sec. 5.2.8, in the parameter setting of
theHBBSDalgorithm. Multiple detections within this time frame weagmored. Conse-
quently, there is a maximum number of possible false p@sietections a detector can
produce in a dataset of finite length. By the definition in EQ.35 both quantities TP
and FP are bounded on the interval 1D

5.3.3 Parameter settings of HBBSD

In all subsequent simulations the following parametersewaesed in theHBBSD
algorithm:  The SEA algorithm was said to have reached cgevere if
|h&+D — h#), < 10710, The SEA algorithm used higher order statistics wgth= 2,

but switched automatically tp = 3 if no convergence could be achieved in the former
case. The SEA algorithm was initialised with a sine wave,amnyt other initialisation
could be used. To ensure convergence following conditioesewehecked after every
150 iterations:

o If the skewness of the filter output was negative, the filteis wanged to
h® —s —h(®.

o If the Ilast 10 D(k) were not monotonically decreasing, where
D(K) := |h®&D — h#)|,, the SEA algorithm was re-initialised with a random
filter.

The minimum firing frequencyninf was set to 5Hz, the filter length was equal to 9
samplesl(; = Ls = 4), and a maximum number of 3 filters was allowed. Here we would
like to point out that, unlike in some other methods, wheeegrameters are algorithm
specific and thus their value setting is not an obvious téwkparameters diBBSPare
biologically motivated, allowing for a reasonable choidgteir values. For example,
since single channel data is analysed, it is sound to asswahadtion potentials from not
more than 3 to 4 nearby neurons will be recorded, justifyingeaimum filter amount of
3. Thefilter length can be chosen as the length of a spike ha$imost often in the range
of 0.4 to 10ms [147]. Besides, there exist methods to estimate the l@teth even
when no biologically motivated a priori knowledge is avai&a[116, 176]. In Fig. 5.5 it
is shown that the filter lengths has only limited influence on the detection performance
of the SEA algorithm. Finally, it is unlikely that neuronsartask relevant brain region
will exhibit very low firing frequencies, but, as a matter efcf, the parameteminf
could be dropped entirely from the algorithm structure. Tieeded estimate of the
waveformq (see Sec.5.2.9) was obtained as the mearQthe 75 last detections. As
was demonstrated in Chap. 3, the choice of the valu®fisrnot critical.

Comparisonof p=2vs. p=3

The signalss are asymmetric as well as sparse, hence both statjstie® andp = 3

should work in the SEA algorithm. In Fig. 5.6 the results dreven for both cases and
also the performance of the corresponding MVDR filters (ttimum number filters
set in HBBSD algorithm was one). The SEA algorithm achievetigb performance in
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Figure 5.5:same data and evaluation was used as in Sec. 5.3.5. The filter length L was varied and the AUC
for the SEA algorithm was computed. The bars indicate the standard deviation over ten independent simulations.

the case op = 3, and this performance advantage was propagated to the MtBIR.

The results were consistent for both datasets containiffigreintly shaped waveforms.
Nevertheless, since the performancfeatence between HBBSDkurt and HBBSDskew
is quite small, the casp = 2 is used in the subsequent experiments. A lower order
statistics has also the advantage of lower computatioal &nd higher robustness to
data outliers.

5.3.4 Competing algorithms

The algorithms chosen for comparison covered all threegoats mentioned in
Sec. 5.1. The focus, however, was on methods which make usenaform infor-
mation, since in general they achieve the best performahtéhe case of amplitude
crossing, the absolute value thresholding method was deresd, hereinafter abbrevi-
ated asABS The non linear energy operator with a 5 point Bartlett windgmooth-
ing (SNEQ as described in [145] was chosen, representing a commaelg method
based on the transient property of spikes. At last,fRdént methods relying on wave-
form information were compared. These included the wavakthod (Way) presented
in [147], the cepstrum of bispectrum methdcloB) from [187, 188], and the classical,
single iteration, super-exponential meth&E@. The parameters faavandCoBwere
chosen according to their reference and adapted to thenhewesidered sampling fre-
quency and spike length. Explicitly, for tt¥avmethod, the wavelet family was set to
“biorl.5”, scales were set ¥/nin = 0.5ms andVyax = 1.0ms, number of scales was set
to J = 5, acceptance mode was set to “liberal”, and the samplirguéecy was set to
fs = 10 kHz. In the case dfoB, the number of Fourier points was set tifit= 80, the
minimum spike interval was set to 2 ms, and sampling frequevas set to 10 kHz.

5.3.5 Performance on data with a single neuron

The first dataset contained spikes form a single neuronrgpiki a frequency of 25Hz,
whereas the waveform is shown on the left in Fig. 5.3. The RO@es for every con-
sidered method are shown in Fig. 5.7.

In general, methods which estimate the waveform from tha datperform the
generic approaches suchABSandSNEQ Wavrelies on an accordingly chosen mother
wavelet by the user. However, if the shape information isawailable, and thus the
default mother wavelet is used, the performance of this atkthight be very poor, as
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Figure 5.62Average ROC curves for various spike detection methods. The shown results are an average over
10 independent simulations with a SNR = 3.0 and length of 6s. Top: The simulated data contained the left most
waveform shown in Fig. 5.3. Bottom: The simulated data contained the middle waveform shown in Fig. 5.3.

indicated in Fig. 5.7. The decreasing number of true pasitigtections despite a de-
creasing threshold is explained by the fact, thé&tv merges detected spike epochs if
they are too clode The methods which estimate the filter from the data itsedfwstood
performance, wheredsBBSDachieves the highest score, followed $Aand CoB.
Based on these findings, we will focus on the compariso@ai®, SEAandHBBSDIn
the remaining sections.

5.3.6 Performance on data with two waveforms

Ten independent datasets, each of 6s in length, contairmitigity from two neurons
with the first two waveforms shown in Fig.5.3 were simulatéte spiking frequencies
were 15Hz and 25Hz respectively.

IOf courseWav will achieve good results and outperforaBSand SNEOIf the waveform is more
similar to the used mother wavelet.
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Figure 5.7: ROC curves for various spike detection methods. The shown results are an average over 10
independent simulations. Each simulation contained spikes from a single neuron, the signal-to-noise ratio being
SNR = 3.0.

The SNR was varied from.@ to 425 in steps of @5 (all three spike trains always
had equal SNR values), and again the ROC curves were comfoutexery method. To
assess the overall performance for various SNR levels, e under the ROC curves
(AUC) was evaluated. In Fig. 5.8 the results for all compameethods are shown.
HBBSDachieves a clearly better performance than the competitigatg, since it cal-
culates several filters. When the threshold is selectedvattcally, the performance of
HBBSDoften lies above the ROC curves (as e.g. in Fig. 5.8, bottarfjg 5.9, top),
since the threshold is selected for every filter individgalhereas for the ROC curves
generation, the threshold is varied uniformly for all figter

5.3.7 Performance on data with three waveforms

Five independents simulations, each of 10s in length, adntaactivity from three neu-
rons with the three waveforms shown in Fig.5.3 were simdlatde spiking frequencies
were 15Hz, 25Hz and 20Hz respectively. The SNR was variad 86 to 425 in steps

of 0.25 (all three spike trains always had equal SNR values), gathdhe ROC curves
were computed for every method. To assess the overall peafoge for various SNR
levels, the area under the ROC curves (AUC) was evaluatedsaegorted in Fig. 5.9.
Again,HBBSDachieves the best performance throughout all SNR levekslarge stan-

dard deviation in the case of low SNR value (Fig. 5.9, bott@réxplained by the fact
that sometimes only one or two MVDR filters were calculatéd¢ces due to the high
noise, no further modes in the SEA output could be identified.

5.3.8 Performance on simultaneous intra/extra-cellular r ecordings

The same data as described in Sec. 4.3.1 were used, howelyesjrigle channel data
were considered, and the data were downsampled to 10kHagterfprocessing. Two
cells from Long Evans rats (P17-P25) were stimulated by eeatiinjection and simul-
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taneously the extracellular potential was recorded. Inafrtbe experiments, the total
number of spikes was 244, and the SNR was empirically deteuras 350. Since the
ground truth was known, the spikes were removed from the dathhigher order statis-
tics were calculated on the remaining noise samples indgatskewness 6f0.053 and
an excess kurtosis ef0.161. In the second experiment, a total of 103 spikes weredfoun
the SNR being 308, the skewness beirg.012, and the excess kurtosis bei@295.

All the algorithms were applied to these real data with threesparameter settings as in
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Figure 5.10:R0C curves for various spike detection methods on two datasets from simultaneous intra- and
extracellular recordings of cells in rat slices. The circle indicates the performance of HBBSD when the threshold is
selected automatically. Top: Performance on a dataset with an empirical SNR value of 3.050 containing 244 spikes.
Bottom: Performance on a dataset with an empirical SNR value of 3.008 containing 103 spikes.

the case of artificial data. The results are shown in Fig..5A5(he data contained activ-

ity from only one cell, the performance gainldBBSDcompared to the other methods
is not that pronounced as on datasets containing sevetialatliwaveforms. The results

show also, thatiBBSDis robust to violations of the assumptions made in the da@emo
Eq. 5.1. Neither the skewness nor the excess kurtosis ofdise were equal to zero,

nevertheless, the algorithm still achieved favourableltes
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5.3.9 Performance on non-stationary data

Data with temporally changing waveforms were generateleridllowing manner: The
first 8s contained temporally constant waveforms and seasexitialisation data for the
spike detection algorithms. Afterwards, the waveformstathto change for the next
2.5min according to a normalised linear mixture (drift data)d finally in the last 50s,
again constant waveforms were present (end data). To suthaupjaveforms followed
the modet*

g, Yt < 8s

oft] = {ai,[t] - o, [t]. ¥t  [8s. 158 (5.14)
Qi,, Yt > 158s

whereg,[t] := %2144 229 2% The value ofy,[t] is set so that the SNR value stays

constant all the time. Two fferent scenarios were simulated. In the first one, the data
contained a 25Hz firing neuron, whose waveform had a SNF5adr®3d changed from the
second to the first waveform shown in Fig. 5.3. In the secoedao, data containing
two neurons firing at 15Hz and 25Hz respectively were simedlatThe waveform of
one neuron changed from the second to the first waveform aakehe waveform of the
second neuron changed from the first to the third waveformwsho Fig. 5.3.
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Figure 5. lllAverage relative total error of various spike detection method in the case of non-stationary wave-
form templates. The shown results are an average over 10 independent simulations. Top: Data containing a single,
temporally changing waveform. Bottom: Data containing two, temporally changing waveforms.

The filters of theHBBSDmethod were adapted as described in Sec. 5.2.9 after every
T = 5s, whereas the thresholds as described in Sec. 5.2.8. Rgacison to non-

“In order to distinguish the time dependent waveforms froenrtbtation in previous section where the
time index referred to a vector entry, the notatijt] is used here.
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adaptive methods, the MVDR filter from the SEA algorithm aggblon the initialisation
data was calculated and used for spike detection on theadidfend data. The threshold
was also kept constant to the value obtained on the indi#dis data by the method
described in Sec. 5.2.8 (this method is still denote@B4Ain Fig. 5.11, since it relies
on a single filter). Similarly the filter computed by t@®B method on the initialisation
data, was used for spike detection on all subsequent dateests, The threshold was
set to the default value of @ - k;, wherek; denotes the maximum of the filter output
on thei-th data segment [187]. The performance of the algorithm evatuated with
respect to the relative total error TE which is defined as

_FP+(1-TP)
- 2
where FP and TP are given by Eq. 5.13. The worst possibletdetgould have a score
of TE = 1, the score for any reasonable detector, however, shotileikeeed TE= 0.5,

as it either detects all spikes but also generates a lot ¢ fabsitive detections or vice
versa.

The results for both scenarios are shown in Fig. 5.11. HIBBSDalgorithm was
run in one of the scenarios without adapting the threshold¢hwis denoted asiBBSD
NT. Clearly, the adaptive algorithms achieve much bettergperdnce than the static
methods, whereas the fully adaptifBBSD scores best.CoB achieves in general a
better performance theBEA because the threshold is data driven (i.e. relative value o
maximum filter output amplitude), while on the other hand &diabsolute value for
SEAwas used.

TE (5.15)

5.4 Discussion and related literature

The reason whiiBBSDachieves better performance than the spike detectionitigm
belonging to the first two categories mentioned in Sec. 5cler: Taking into account
the full waveform shape for detecting a spike is always maieaatageous than just
considering its amplitude or energy. In this section we wantliscuss some of the
differences to other blind equalisation methods, but also pmsdme relevant literature,
which might be useful for further development of spike detecalgorithms.

The question remains whiyBBSD outperformsCoB, even thoughCoB also uses
higher-order statistics. Theftgrence is thaCoBintendeds to construct an inverse filter,
whereas our method constructs a matched filter, resp. the RIM{2r. An exact inverse
filter, denoted ag ~1, achieves perfect channel equalisation, meaningfthak q = &o.

In general,f~1 will be an IIR filter, and only in some exceptional cases ituesh to a
FIR filter. Then again, chances are high that the exact iavitsr is not stable, which
is an essential requirement in the case of spike detect®omjl aecordings are noisy.
The problem of stability is avoided in [188] by computing gpeoximate inverse filter
which is a FIR filter. To further suppress the noise, a wavehstd denoising algorithm
is applied on the filter output. However, if the waveform andse statistics are estimated
well enough, the resulting matched filter outperforms imeof detection performance
any two stage method combing inverse filtering with dengisiAnother advantage of
HBBSDis that the actual waveforms are estimated, and thus canspéaged to the
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user. This allows for a semi-supervised operation mode,hichvthe algorithm finds
the waveforms, and the user decides whether they are usadtfuer spike detection or
not.

Wavelet based methods achieve in general a good perfornvainee the mother
wavelet is similar to the actual waveform, and new methoilscsintinue to appear.
For example in [244] a good literature list of existing apgrioes to spike detection via
wavelet transform is given. The proposed method uses bigotial mother wavelet,
but instead of thresholding on individual wavelet fiméents (as in [147]), the output
at different scales is multiplied, i.e. multiscale correlatioeffioient are considered. A
spike is detected when this dieient is larger than the output at a single scale.

On the other hand, in [11] the continuous wavelet transfamsied as feature ex-
traction. Spike detection is then done by hypothesis tgdtithe wavelet space. First, it
is tested if there are spikes at all. If there is only noise ithpothesis is that the wavelet
codficients are Gauss distributed, whereas if there are spilesempt, the hypothesis is
that the distribution is a mixture of a Gauss and an uniforstrithution. Which hypoth-
esis is true is decided by the Bayesian information criteribthe second hypothesis is
true, spikes are detected via maximum posteriori prokgbili

The biggest advantage of wavelet methods is that they do ewd an initialisa-
tion/learning phase, but can be directly applied to the recosdinghis is especially
important in acute recordings, as due to tissue drifts, newrans might appear which
were not present during the initialisation phase. As akepiare generated by neurons,
the waveforms cannot be completely arbitrary but follow anoo bi-, or tri-phasic
shape. Therefore, an approach relying on a single motheglatafamily might deliver
poor performance, but a future attempt which combines plaltvavelets families could
overcome the problem.

Another issue with blind deconvolution methods relying dghler order statics
might be their susceptibility to data outliers. This prabléhowever, might be mitigated
by using robust higher order statistics [230].

In Sec. 5.2.3 we used a rather heuristic approach to idetfiifynodes in the filter
output. For example we did not employ any tests to decide lelnet found maxi-
mum corresponds to a mode resulted from a true underlyinigghitity distribution, or
whether it is just an artifa@iutlier. Nevertheless, the problem of identifying modea is
known problem and several test has been proposed. Theyralydmple on the amount
of excess mass [146, 57], critical bandwidth selection [124], or graphical mode tree
representations [142, 143]. Such a test was not implementedr algorithm to avoid
further computational complexity. It is also important tatine that we do not attempt
to identify true components in the filter output, as this wabcbrrespond to the task of
spike sorting. The found mode can, e.g. in the case of sinvéaeform of two neurons,
still be a mixture of two or more components. In this scenanimvever, the MVDR
filter will also be calculated from an average template, grikiesfrom both neurons will
be detected well. TheElBBSDalgorithm solely aims at deliver favourable performance,
when this is not the case, i.e. when highly various wavefarespresent in the data.
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5.5 Conclusion

To our knowledge, blind equalisation algorithms relyinglogher order statistics have
rarely been applied to the task of neural spike detection.this: work, the super-
exponential algorithm has been used for initial filter eation. Furthermore, a mode
detection and a sparse deflation procedure have been pdojpozler to extract multi-
ple spike waveforms, which have then been used for constgubtVDR filters.

To sum up, a novel method for unsupervised spike detectisnbban presented,
which relies on the inherent characteristics of data fromaralerecordings, such as
sparseness and binary sources. For instance, the spareéiie neuronal signal was
exploited for mode finding in the filter output and for propwsia sparse deflation pro-
cedure which reduces error propagation. On the other hhadjihary source property
allowed for an appropriate choice of the statistics for tEA&lgorithm as well as for
an easy estimation of the waveforms and construction of ti® R filters.

In contrast to existing blind devonvolution methods whislswane a finite alphabet
or binary sources such as [242, 112, 114, 43], we also mad# thse spareness property
and formulated a statistical algorithm (as opposed to netestic/algebraic ones) which
does not rely on extensive optimisation of some cost funsti®©n the other hand, exist-
ing approaches dealing with sparse signals often assutta@iaseous mixtures or apply
a corresponding transformation into the frequency domEs3], or use clustering tech-
niques together with further assumptions about the dd¢a fligh SNR) [121]. In this
contribution, we operated always in the time domain whenedyurther assumptions
had to be made about the data. Moreover, we focused on thefaglike detection,
thus, the complete separation of all sources is not requised is in the existing ap-
proaches. The special structure induced by spareness avalutive filters is currently
still being investigated and only first attempts have beedena fully incorporate it into
algorithm design [131, 237].

The main advantage of our method, namely that several datendilters are cal-
culated, resulted in a superior performancéd®&BSDcompared to wavelet methods or
other existing blind equalisation algorithms. Furtherey@ince the waveforms are esti-
mated, this could be used as an initialisation for a spikérgpalgorithm, for example
using the idea of [103]. On the basis of waveform estimatiemalso proposed a proce-
dure for optimal threshold selection and drift adaptati&apecially the latter one again
relies on the distinct properties of neural data.

The whole algorithm was tested on various datasets and cehfracurrent state-of-
the-art spike detection techniques. The used data covemediased datasets containing
one, two, or three distinct waveforms, but also experimeséa containing a single
waveform. In all these €lierent conditions the proposed algorithm worked well and
delivered better performance than the competing methods.



Chapter 6

Unsupervised (multi-channel)
electrode positioning

Although nowadays most multi-electrode arrays are equippith an electric motor
drive unit which could be controlled automatically by a miaeh this unit is still op-
erated manually in most laboratories. Manual control, h@reis not only a tedious
procedure which consumes a lot of potential experiment &intkis infeasible for large
arrays containing up to 64 electrodes, but can also be vagciurate due to continu-
ous tissue drifts. We propose a quality measure which itelctine dificulty to detect
spikes at a given electrode position, as well as tlfiécdity to classify spikes correctly.
Furthermore, a positioning algorithm based on stochagiiraximation is developed,
which finds an optimal recording position with respect tcthuality measure. The
algorithm does not only position the electrode in an unsugped manner, but also mon-
itors continuously the quality and corrects for tissuetdriThe method is demonstrated
on realistically simulated data, and it is shown that it idead able to find favourable
recording positions even in drifting environments.

6.1 Introduction

The use of large arrays of multi-electrodes (AME) is a popuéording technique,

since it combines two favourable aspects with respect ta daalysis. Namely, the

temporal resolution is high enough so that the activity afji@ neurons is available,
and at the same time the activity from a large number of neufiom the same sub-
networks is recorded, allowing for a spatial resolutionhhénough to study neural in-
teraction phenomena. While more and more methods are patllisbout the problems
how to process, sort and analyse such large amounts of daiaedhfrom AME record-

ings (see e.g. [16, 203], and Chap. 4, 5), only few contrimgideal with the task of
properly positioning the individual multi-electrodes. ¥hconsidering acute recording
experiments, in which often arrays of 16 or up to 64 tetrodesuaed, it is evident that

see also Chap. 1 for more information about electrophysicid multi-electrodes.
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positioning every tetrode manually is a time consuming péthe experiment. This
is of particular concern when carrying out experiments \pifimates, as maximum ex-
periment duration is often limited by national animal poien laws. Hence, there is
a need for unsupervised multi-electrode positioning atlgors which would place in-
dividual electrodes not only faster and more reliably thamuean, but possibly also
several electrodes simultaneously, considerably redubia setup time.

Two other important factors motivate the use of such an wrstiged positioning
system. First of all, a manual placement of the electrodgsdnces a certain bias in
the subsequent recording. Most often, the experimentétryilo place the electrode at
positions where neurons with high firing frequency and highal-to-noise ratio (SNR)
are present. The quality assessment of these two critedanie by visual inspection,
thus, the final electrode position depends on personal judgeof a human and might
be far away form the actual optimal recording position. Mweer, in brain regions in
which computing is done in a distributed way (ensemble apyicriteria other than high
firing frequency might be more appropriate.

Secondly, even when the experimenter succeeds to pladeclcgles at favourable
positions at the beginning of the recording session, fficgtanay have only limited ben-
efit. In fact, due to the insertion of electrodes during theg@eriod, the brain tissue is
compressed, while during the experiment, the tissue relagain, which leads to a dis-
placement between the electrodes and the surroundingme[#d]. Consequently, an
experimenter would have to monitor the recording qualitgath electrode constantly,
and adapt its position in order to maintain acceptable diegrperformance.

In [148, 21] an autonomous electrode positioning algorithas proposed, which
was designed to positiosingle channeklectrodes such thaingle unitrecordings are
achieved. In combination with a micro drive unit described49, 22] this algorithm
was used to autonomously control electrodes in implanteleletrode devices. The po-
sitioning algorithm was then slightly improved, mainly tblestering part, in the work
of [231, 232]. Because basically all the fundamental resean which the later publi-
cations rely was done in [148], we will always refer to thipeafor comparison.

The hereinafter proposed methodfeis from the existing approach in several ways.
In brief, the use of tetrodes (or other multi-channel etmbts) allows for a superior
discrimination performance of the recorded spikes, sifyiplj spike classification on
such data as compared to data from single channel electfé8esThis is due to the
fact, that a spike waveform is recorded simultaneously aersé recording channels
("stereo-dfect”), thus, the discrimination task is facilitated tham@ghe higher dimen-
sional space in which the spikes are represented. Keepis@dvantage in mind, it
should be preferred to record from several neurons in ocderaximise the information
yield about the local neural population. Hence, we propogeaity measure which
favours electrode positions where it is most likely thatesal/well discriminable neu-
rons are present, and not just a single cell. Moreover, itrashto the work presented
in [148, 231] the proposed quality measure does not rely mr-erone results of spike
sorting. Since our algorithm is especially designed fortirallannel electrodes, and in
particular it will be tested with 4-channel electrodes, tben "tetrode” will be often
used in the following sections, but the method applies tokadyannel electrode in fact.
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In general, a positioning algorithm relies on a processiogy fis shown in Fig. 6.1.
After detecting spikes (first step), features are extrafrtad them and eventually a clus-
tering procedure is applied (second step). This is then taseaimpute a quality measure
which indicates the goodness of the current electrodeipogthird step). Based on this
measure a positionipgontrol algorithm decides where to move the electrode imehe
time step (fourth step). Theftierences between the steps in our approach and the one
presented in [148] will be discussed in the correspondirzeguent sections.

Spike detection Feature extraction/ Quality measure Positioning/Control
Clustering logic

Figure G.lIProcessing stages needed for an unsupervised electrode positioning algorithm.

To evaluate the proposed automatic positioning algorithealistically simulated
extracellular potential recordings were utilised. Namebmpartmental membrane cur-
rents of a spiking, reconstructed L5 pyramidal cell fromgl@ere simulated by the
group of Prof. Gaute T. Einevoll (Norwegian University off&iSciences) using the
simulation tool NEURON [149, 83], and used to calculate aoetlular potential-traces
using the line-source method presented in [85]. The fieldm@ls were then used in a
simulation environment which allows the simulation of uat tetrode movements in a
volume containing several neurons and realistic noise.

The remainder of this chapter is organised as follows. Timeilsitor used for eval-
uation of the system is outlined in Sec. 6.2. In Sec. 6.3 allptocessing stages of the
algorithm are presented, including the new quality measn the positioning algo-
rithm. The results of the evaluation can be found in Sec.@hd,conclusive remarks are
given in Sec. 6.5.

6.2 Extracellular action potential simulation

The simulation of extracellular action potentials is a egsh field of its own. In this
section a very brief description is given of how the data jated by the group of Prof.
Gaute T. Einevoll were simulated. More detailed explametiand discussions about the
problematics in calculating extracellular action potaintian be found in [161, 162, 164,
163].

6.2.1 Calculation of extracellular field potentials

Extracellular field potentials around a reconstructedi&ygyramidal neuron were cal-
culated using a forward electrostatic scheme similar tditleesource method described
in [85]. The reconstructed neuron was a cat L5 pyramidalerepublished in [126]. The
membrane currents for each of the 1094 compartments of tbasgucted neuron were
calculated using the simulation tool NEURON [149] with thghon interpreter [83],
using a somatic action potential (AP) trace as a forced bayncbndition in the single
compartment representing soma.
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For the compartmental neuron simulation, purely passiv@bnane properties were
assumed, with an intracellular, axial resistivityRf = 1502cm, membrane resistivity
rm = 3000@cn?, membrane capacitan@g, = 1.0uF/cm?, and an initial crossmem-
brane potential ofj,i; = —65V. The simulated membrane currents and the correspond-
ing coordinates of these sources were used to estimate tteeeiular potential (EP)
at each time-step using the line-source method [85], witlbradgenous extracellular
conductivity ofoe = 0.35m.

The soma, with mid-point positiomsoma = (0,0,0)7, was treated as a point
source, and the contribution to the EP from the somatic mangbicurrentlsomdt)
in coordinater is in the quasistatic approximation to Maxwell's equatiaiigen by
(r,t) = L tsomdd e analytical solution to the linearly super-positionedemtial

4noe |r=rsomd

from n segments, wherk(t) is the membrane current of segménts given by [85];

2, 2
(D(H):Zn: li(t) o0 e + o —
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whereAs, is the segment lengthy the distance perpendicular to the axis of the line-
source hg the longitudinal distance to the end-point of the segmemd,la= Asc + hg

the longitudinal distance from the start-point of the segnii#62, 85]. The calculations
of EPs were done during the same simulations as the NEUROWaions, still using
the Python interpreter.

In order to avoid singularities in the EP when the distancendividual segments
was small, the minimum allowable distance to each line sburas set to be the same
as the diameter of each segment. This also ensured that tiaetipbis not calculated
within the intracellular space of the chosen morphologye €alculation of the EP was
performed over the coordinates of 3D cubic grids spannigg(; 200}m and [-100,
100Jum, with spatial resolutions of 5 and 1n respectively, sampling the extracellular
signature of the AP in the volume surrounding the somaticgamment and basal den-
drites. The calculation of potentials at larger distancas mot deemed necessary due to
the low resulting extracellular amplitudes compared tortbise added at a later point.
The resulting potential traces and corresponding cootelinaere written to file on the
HDF5-format, and then used by the extracellular recordimuktor.

(6.1)

6.2.2 3-dimensional extracellular recording simulator

The simulator was mainly developed by Philip Meier, and bijxHeranke, and is pub-
licly available [137]. It allows to compose a scene contagnan arbitrary number of
neurons of the type described in Sec. 6.2.1, each neuromdghavunique orientation
and firing rate. A multi-channel electrode recording is tisenulated by generating a
spike train according to a Poisson process with the correBpg firing frequency and
the pre-calculated waveforms inserte@n arbitrary fixed spatial channel configuration
can be defined, but in this chapter we solely used a configaratiitating a tetrode. In

“The pre-simulated waveforms are only available at the véisol of Jum, see Sec. 6.2.1. In order to
allow electrode movements on finer resolutions, the wawnedarere linearly interpolated inbetween using
trilinear interpolation.
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Figure 6.2:A single neuron was placed at the position (10, 15, 150)" .um. The five sections (separated by the
blue vertical lines) show the waveforms recorded with a tetrode whose tip was at the position (10, 15,z) " -um, with z
being 125, 137.5, 150, 162.5, and 175.

detail, the 3 rear channels wereuh® apart from one another, and the distance from the
tip channel to each of the rear channels was119.4

Finally, Gaussian noise with a covariance structure fitbegal recording noise (see
Sec. 4.3.2 for more details) is added to the spike trains.c@pabilities of this simulator
are illustrated in Fig. 6.2.

6.3 Processing stages of the positioning algorithm

In the following subsection all the processing stages retéal@chieve an unsupervised
multi-channel electrode positioning (see Fig. 6.1) arediesd.

6.3.1 Spike detection

The positioning algorithm should work fast, i.e. find a goedarding position in an
amount of time which is considerably shorter than a humamadpewould need. The
used spike detection must, hence, detect spikes reliabdnginly few seconds of data.
For this reason we suggest to use an algorithm based on ad®tir transiency detec-
tion, rather than relying on waveform information (see Set.for an introduction to
spike detection). The proposed spike detection algorithi@hap. 5 needs a learning
phase in order to estimate the waveforms blindly, whereastaaod based on wavelets
(as e.g. in [147] and used in [148]) might perform poorly whbka mother wavelet
does not match the actual waveforms. A spike detection rddthsed on amplitude or
transiency seems, therefore, to be a good trideztween detection performance and
processing time needed.

6.3.2 Feature extraction, clustering

In the approach presented in [148] the found spikes are edigind projected into a
wavelet space. Only the largest wavelet féoeents are then used for the subsequent
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clustering, which relies on a Gaussian mixture model. Thsteling is done for each
electrode position individually, whereas in [232] the ¢duB1g is more sophisticated in
the sense that information from the previous clusteringegils— 1 is incorporated in
stepk.

Nevertheless, an unsupervised clustering on short datzkshwill always be prone
to errors. The biggest issue is the reliable estimate of tineer of clusters, which cor-
responds to the number of neurons. Since the quality measdllidepend on the number
of clusters, a suddenly changed number will greatly infleghe score of the quality and
the following positioning logic. Moreover, clustering isvays a time consuming task,
thus, prolonging the positioning time in total. We, therefoomit the clustering step
completely and define a quality measure solely relying oroded spike information.
Of course such a measure might not predict the true optingtipo in all cases, but it
will be shown that the chosen approach works well.

6.3.3 Quality measure

The goal of the positioning system presented in [148, 21]twasolate asingleneuron.
Accordingly, the quality measure was designed in such a Wwaythe better a single
neuron is isolated from the "rest”, the higher the quality[d0] several quality measures
were proposed and compared, including SNR of dominanteriystojection t-statistics,
L-ratio, isolation distance, silhouette ratio and symiaetiullback-Leibler divergence.
Finally, however, the simplest measure was chosen, i.e&Si of the dominant cluster
whereas the SNR was defined as the peak-to-peak amplitube wiiveform. This was
due to the sensitivity of the other measures to clusteringr&r

On the other hand, the objective of the proposed method isidcefiposition where
activity from many, well separable neurons is recorded. réfoee, we need a quality
measure which does not indicate how well the dominant dlusteeparated, but how
well all present clusters are separable. In the followirggimthe data model presented
in Eq. 1.1 and Eq. 1.2 is assumed, whereepresents the waveform of neuriorfrurther,
let us assume that all neurons have equal firing rates, ahththaoise is whité Then,
using linear decision boundaries, the data is easier ttecltiee more the waveforms are
apart [80], i.e. the large®p is, where

2 MM
Q= =g L 2 lld - dl (6.2)

i=1 j>i
andM is the number of neurons. The idea is to find a similar measurarf-clustered

data. Letgli( denote the empirical SNRof thei-th detected spike on channrel Then,
We deﬁnwstereoas

11 2
Qstereo:= N Z W Z (<§'>k - S';() =:(Var(s)n » (6.3)
k=1

$This last assumption is not necessary. Instead once theckentres are determined, a whitening
transformation can be applied, see e.g. [168, 180].

“*We chose the SNR for simplicity, but in principle, any otheaiture of a spike could have been chosen,
including the waveform itself. A more advanced feature disties the risk that two neurons will have quite
distinct waveforms, but still cancel each other out in thaliy calculation.
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Figure 6.3: Toy examples illustrating Qstereo. Assume that both neurons/waveforms have a SNR of 1 or 0,
depending on the recording channel (in this toy example a multi-channel electrode with 2 channels is assumed).
Then, the configuration in A) yields Qstereo = 0, whereas for B) one has Qstereo = 0.5, and Qstereo = 0.25 for C).
This means, that the configuration in A) does not allow a separation of the two neurons (at least not based on the

SNR values), while the configuration B) is more favourable than C), since there is not any overlap in the SNRs of
the waveforms.

where(s) == 1/W 3, i, W denotes the total number of detected spikes, Mrid-
dicates the number of recording channels. The motivatidriniethis definition is the
following: When two neurons havefigrent SNR values on a channel, this implies that
their spikes can be easily separated, as one can take the &b®as a discrimina-
tive feature. Hence, the discirminability between neuroesomes better, the larger the
spread of SNR values. The spread is expressed as the samipleceaof the found
spikes, and the mean over all channels is taken for a consistgmalisation in the
case of various multi-channel recording devices. The Uise$s of this measure is also
illustrated in Fig. 6.3.

On the other hand, we defifigsng as

QsnR = (NN - (6.4)

This measure simply indicates the average SNR value of thedig, hence, how easily
spikes can be detected at the current recording positioa.cbhresponding measure, if
clustering were done, would be

19
Qs = .; ld|- (6.5)

In order to check the usefulness of these two quality measRgrr and Qstereo
some prototypical neuron configurations were constructeti aavirtual tetrode track
simulated using the simulator described in Sec. 6.2.2, &pe6. The tetrode was
moved in steps of 0;6n. No spike detection was usednstead the noise free wave-
forms simulated at each position were directly used for aaing both of the quality
measureQsnr and Qsiereo S€€ Fig. 6.5. As can be seen from this figure, the proposed
measures exhibit very similar properties as the true geand Qp. Note, that these
results were obtained in the case of equal fire rates of neuselonging to the same
cluster (namely 10Hz). As is turns out, however, simulatighow that the proposed
measures are quite robust, and will approximately dispaall maxima near the true
local maxima even if the fire rates are not equal. Exemplaribp cases are shown in
Fig. 6.6. All simulations and quality measure calculatiovere also done in the case
of a rotated tetrode configuration. The results show thatnalsi rotation of the tetrode

"Spike detection errors and noise might introduce somescamplicating the evaluation of the prop-
erties of a quality measure.
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Figure 6.4:The blue dots symbolise neurons, whereas the black line indicates the track of the virtual tetrode. In
this plot, the x-axis was shortened for illustration purposes, when in fact during the simulation each cluster a)-d) was
at least 200um apart from the next one, so that there is no interference between them. All neurons were identical
and oriented identically, namely along the x-axis. Cluster a) consists of neurons in a line parallel to the tetrode track
(inter neuronal distance being 10um). Cluster b) consists of 4 neurons in a line perpendicular to the tetrode track
(inter neuronal distance being 5um). Neurons in cluster c) are arranged in the corners of a rectangle parallel to the
track (inter neuronal distance being 20um), whereas the rectangle in cluster d) is perpendicular to the track, i.e. the
track runs trough its central point (inter neuronal distance being 20/30um).

could significantly improve the recording quality, since ttuality maxima are still at
the same position. This suggests the development of mater dnits which allow for
one-dimensional translational as well as for one-dimeraicotational movements.

6.3.4 Positioning and control logic

The objective of the positioning logic is to find a suitablesition for the tetrode, where
the quality measure exhibits a local maximum. This task isallg required at the be-
ginning of an acute recording session. Once such a posgifound, the quality of this
position will most likely decrease after a while due to tssalaxation. Consequently,
the algorithm should detect such a decrease and re-po#itotetrode until an accept-
able recording quality is found again.

Since in Sec. 6.3.3 we defined two quality measures, theiqnesises whether they
should be combined into a single quality or optimised sapbraQsnr indicates only
the dificulty to detect spikes, but contains no information aboeirttiscriminability. If
one simply adds the two qualitieQsnr and Qstereo there is a high chance of losing im-
portant information and, thus, moving the tetrode to a pmsitvhere the discriminability
is sub-optimai. Hence, we propose the following optimisation scheme: Et@de is
advanced with a constant step size, u@nr exceeds a certain threshold. Once this
happens, the positioning logic described in this secticacts/ated, which attempts to
find an optimal position with respect Qswerec  The advantage of this scheme is that

*See for example the first row in Fig. 6.5, in whilangr exhibits a local maximum at a position where
Qstereo€Xhibits a local minimum.
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Figure 6.5ZQSNR, left column, and Qstereo, right column, are plotted in blue for various neuron configurations,
i.e. row one corresponds to configuration a) in Fig. 6.4, row two corresponds to configuration b), and so on. In
black are plotted Qs, left, and Qp, right. The dotted lines show the corresponding quality profile when the neurons
are rotated by 45 degree around the axis defined by the tetrode track in Fig. 6.4. The red lines indicate the x-axis
positions of the neurons.

it finds the position where the neurons are discriminated, lesler the condition that
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Figure 6.6:Shown in blue are Qstereo for configuration a) in Fig. 6.4 when the individual neurons have different
firing rates; and in black again is Qp is plotted. On the left hand side, the neurons had firing rates of 30, 10, 10,
1 Hz, (the order corresponds to the order on the x-axis), while on the right hand side the firing rates were 10, 30,
1,10 Hz.

they can be detected féigiently well. Note that in [148, 231] only a single quality sva
defined, hence, such two step optimisation scheme was nessey.

The decision logic of the positioning algorithm was realibg implementing a finite
state machine consisting of 4 states, see Fig. 6.7. Thealecstays at each position
for a certain amount of time for gatheringfBaient data to reliably estimate the quality
measure. Depending on this value, the algorithm decidesichwsubsequent state the
system should transit. In the following subsections eaatesis well as the transition
criteria are described in detail. The term "quality” or sisnpQ” will always refer to

Qste rec

Search

This is the initial state and as long as the quality of theaiggbelow a certain threshold
Qmin, the electrode is simply advanced in the directldn(D is either -1 or 1, since
electrodes can be moved only in either of two directions, elgrback or forth) by a
constant step siz8s. If three consecutive quality estimates yield a value lathan
Qmin, the algorithm changes to the "optimize” state

Optimize

The goal of this state is to determine the position at whiehghality function exhibits
a local maximum, thus, where the tetrode should be movedeo,to find a tetrode
positionu* such that

u* = argmaxQ(u) = {u” € U | Q(u") > Q(u) Yu € U} (6.6)
ueU
The optimal position can be found by applying some optinvsatechniques, however,
some aspects must be considered: The fundf@n is not given, but only noisy mea-
surements of it are available. Therefore, the gradgén} := VQ(u) is not available

"We require three consecutive quality estimations to be altbreshold in order not to trigger the
"optimize” state by an outlier.
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directly either. In this sense, one is dealing with a sulsctafsstochastic optimisation
problems, namely stochastic approximation [64]. A commay ¥ solve this kind of
problems is to approximate the gradient by a finitéedence. One could, for example,
use the two-sided finite flerence approximation, as described in [196]. Although this
technique is widely applied, it is inappropriate for use im setting. Namely, a realisa-
tion of a two-sided finite diference would imply that, in order to estimate the derivative
the tetrode would have to be moved forward and backward ay @asition (dithering).
This might damage the brain tissue and also evoke furthés.d8imilarly, any random
search algorithm is inappropriate as well. Two feasiblerapghes are presented in the
following.

Optimisation 1: Steepest ascent In [15] methods, called pseudo-gradient schemes,
which avoid the direct estimation of the gradient are listedgeneral, one attempts to
transfer the idea of the steepest ascent algorithm to sttichaptimisation, i.elUx,1 =

Uk + ax - g(uk). One of them, presented in [219, 218], relies only on tha sitimation of
the gradient. However, in this case the information abaeittiality at previous positions
cannot be used directly, but a two step update rules has tppded. For simplicity let

us define the following basic update rule approximating traglignt by the dtference
between the last two consecutive steps, i.e.

QU - Qua)

6.7
Uk — Uk-1 .7

Uk+1 = Uk + S -

This update scheme can be related to the one-sided fifiieratice algorithm in [196]
on p. 157, by the relatiooy = ux — Ux_1. In [196] it is shown that sfiicient condi-
tions for convergence of the finiteftkrence algorithm include, amongst other, all of the

Quality dropped Quality dropped
—)[ Search ](_

Quality above threshold

[ Re-optimize ]—)[ Optimize ]—

Best quality found

—[ Maintain ]
Quality dropped

Figure 6.7 :lllustration of the decision logic of the proposed positioning algorithm implemented as a finite state
machine. The initial state is the "search” state, in which the tetrode is advanced in the same direction until a
reasonable quality is detected. After the transition to the "optimze” state, the algorithm tries to find an optimal
position such that the quality is maximum. Once such a position is reached, the algorithm switches to the "maintain”
state, and the quality is monitored. If the quality drops below a threshold value, the "re-optimize” state is triggered,
which decides in which direction the tetrode should be moved in order to find the maximum quality again.
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following:

a >0 c >0 vk (6.8)
a— 0 cc—0 if K —> oo

k=0 k=0

The last inequality in parentheses can be avoided when sonwtions regarding the
third derivative ofQ are fulfilled (see p. 160, [196] for a detailed list). Fromdbe
conditions it is evident that the convergence of such a mpdate rule as the one in
Eqg. 6.7 is hard to guarantee, since theannot be chosen arbitrarily, but depend on the
positions themselves. Therefore, we propose a secondisegtion procedure.

2
< 00
Ck

i
|Mg
2
L2
A
\_—?—_/

Optimisation 2: Newton-Raphson A slightly different approach is to try to transfer the
Newton-Raphson method to stochastic optimisation, haiwingind that the Newton-
Raphson method has a faster convergence in the near of tt@sdhan the steepest
ascent algorithm. The Newton-Raphson is for finding a kamita function, i.e.f(x) = 0.
Adapting this algorithm to find a local minimymaximum of a function instead, leads
to the update ruley,1 = ux — ax - g(uk)/g’(uk) (in the original algorithme, = 1 Vk, but

a different choice might increase stability, which is particdylémportant in the case of
stochastic optimisation, see [196], chapter 1). In ordeguarantee that the algorithm
converges to a local maximum and not minimum wiger 0, one can combine it with
the steepest ascent algorithm, i.e.

9(ux)
o7 (Ul

The problem of direct estimation of the gradient and the séaterivativeg’ can be
avoided by introducing an interpolation function. In [148%ingle polynomial is fitted
through all available quality measurements. The order efoblynomial is determined
by maximising the model posterior probability, and has todestimated at every new
electrode position. At each position the quality is measgeveral times, although it
is not specified how often exactly. The polynomial is fittedsirch a way that the dis-
tance to all measured data is minimised in the least squase s&he Newton-Raphson
scheme in Eq. 6.9 is then applied, and the optimal positiois said to be found at
iterationk whenay - g(u) /19’ ()| < e.

In order to simplify this procedure and to omit the errorspraask of order esti-
mation [20], we use piecewise interpolation instead. Asrjlation functions cubic
Hermite polynomials are a reasonable choice, as, for ex@rtipty have no overshoots
and oscillations in contrast to splines [45]. This avoids thsk of order estimation
and there is no risk of oscillations at the ends of the fittetd.d&urthermore, in order
to avoid a convergence which might oscillate around thentgdtiposition as in [148],
which would imply a passing of the tetrode through the sarssué several times re-
sulting again in tissue damage and drift evocation, theofalg rule is applied: If
Q(uk:+1) < Q(uk), then a second order polynomiB(u) is fitted through the last three
qualitiesQ(uk+1), Q(uk), Q(uk_1). The final position is then determined as the maximum

Uke1 = Uk + - (6.9)
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Table 6.1 :pefault parameter values for the proposed positioning algorithm.

Parameter Value Reference
Ss 10um page 101

ax 0.25 Eq. 6.9
Trmm 0.8 page 104
S 2um page 104
Omin» Omax | 2um , 15um | page 105

of this polynomial, i.e.u™ = argmay, Po(u). Of course, it is probable that" will not
necessarily correspond to the optint&l However, due to the fact that for small devi-
ations any function is locally well approximated by a seconder polynomialu* and
u* will for the problem at hand lie close enough to each otheileathe more important
issue of tissue damaging is avoided. Once the optimal elgetposition is reached, the
algorithm switches to the "maintain” state.

Maintain

The electrode stays at the best found position and the d¢ugredity is monitored in
regular time intervals, until the quality drops under a @iartvalue. Explicitly, if the
quality Q drops below a certain absolute value, e< Qmm, Or below a certain relative
value, i.e.Q < Trnm- Q*, whereQ* denotes the highest quality which was measured at
positionu®, the "re-optimize” state is triggered. On the other handhédfre is a sudden
dramatic quality dropQ < Qmin, the algorithm returns to the "search” state.

Re-optimze

Once the quality is not sficient anymore, the algorithm has to find out in which direc-
tion the tetrode should be moved in order to find higher gealégain. Therefore, in this
state the algorithm moves the electrode in an arbitranctiieg’ by a constant step size
of S;. If the quality is even lower than at the previous positidrg direction is inverted
and the algorithm switches back to the "optimize” state.

6.3.5 Exception handling

In a practical application of the positioning algorithm soadditional constraints should
be introduced in order to deal with unexpected events arithieal limitations encoun-
tered in real recordings. Some of them are listed below:

e The transitions between states were mainly defined by son@it@mns onQsereo
In an ideal experiment, the algorithm should transit fromearch” to the "opti-
mize” state, and then, depending on the tissue drift, idvatween the three states

"maintain”, "re-optimize” and "optimize”. If, however, fosome reason there is

#In fact, only when the "re-optimize” state is reached for finst time, the direction is random. For
subsequent decisions, the direction from the previous eithe "re-optimize” state is used first.
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Figure 6.8: Visualisation of the positioning algorithm in the case of a static and noise-free quality profile. Left:
Resultin the case of ax = 0.15. Right: Result in the case of ax = 0.25. The other parameters are identical and given
in Tabl. 6.1.

suddenly a huge quality 10sS, i.@stereo< Qmin OF Qsnr < Qsnrmin the position
logic immediately returns back to the search state.

e The position update scheme in Eq. 6.7 and Eq. 6.9 computeotitiqm to which
the tetrode should be moved. However, due to some errors @sumnement the
returned values might be either below the precision of thesl usotor drive unit,
or very large, making it risky to drive such long distanceshaiit checking the
quality in between. Thus, it makes sense to restrict theigtextiposition updates
to some interval, i.e0min < |Uks1 — Ukl < Smax-

e The regionU (see Eg. 6.6), in which an optimal position should be foundsim
be set in order to prevent the advancement of the tetrodesuodilayers not un-
der investigation. Whenever the algorithm reaches a bayrafahis region, the
tetrode changes direction.

e There is always a chance that a neuron lies directly on tlok wéthe tetrode.
Since the SNR will be higher the smaller the distance betwkertetrode and
the neuron, it is likely that the tetrode will be advancedilubtpenetrates the
neuron and possibly damages it. This could be avoided bhydatiing a maximum
allowedQsnr value, which once measured causes the tetrode to stop atrteatc
position.

e A maximum number of iterations should be defined in which tigerithm re-
mains in the "optimize” state. Due to fluctuations (such ay veegular fire
frequencies) the algorithm might not be able to find the oglkiposition in rea-
sonable time. In such a cases, the algorithm should switthetdsearch” state
and try to find a dferent region with acceptable quality.

6.4 Results

In this section we present some results regarding the désbof the positioning al-
gorithm described in Sec. 6.3.4. The used data was agaimagedeavith the simulator
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Figure 6.9: visualisation of the positioning algorithm in the case of a periodically drifting (in time) and noisy
quality profile. The parameters are set as in Tabl. 6.1, whereas the minimum quality Qmm, see Sec. 6.3.4, was set
to 0.5. In the top figure the drift velocity was set to vq = 0.75—£%_  whereas in the bottom figure it was set to

time step ’
— sm
Vd = 1'5time step *

described in Sec. 6.2.2. If not stated otherwise, the defasameters listed in Tabl. 6.1
are used for the positioning algorithm. These values wetairdd by testing the algo-
rithm in various scenarios. As it turns out, they are quiteilsir to the values obtained
in [148].

6.4.1 Static environment

This section serves as a demonstration and visualisatidheopositioning algorithm.
For this, the noise-free, flipped quality profi@sereoalready shown in the first row of
Fig. 6.5 was used. The positioning algorithm was executdd thie parameter values
summarised in Tabl. 6.1, and the results are shown in Fig A& &an be seen from this
figure, the algorithm successfully finds a position closentlocal maximum. Ideally,
the algorithm would find the second local maximum, which isrethe global maximum.
This, however, would be only possible when some exploratnegchanism would be
added, which, on the other hand, would cause additionalrete movement and, thus,
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Figure 6.10: visualization of the positioning algorithm in the case of a continuously drifting and noisy quality
profile. Same notation and paramters as in Fig. 6.9 are used. In the top figure the drift velocity was set to vy =

0.75%, whereas in the bottom figure it was vy = 1.5%.

more tissue damage.

6.4.2 Drifting environment

The positioning system was also tested in a noisy and dyiinvironment. In partic-
ular, the quality profile shown in the last row of Fig. 6.5 wased, but the sampling
resolution was increased to @rh. At every time instance Gaussian zero mean noise
with a standard deviation of @2 was added in order to mimic a real recording and the
resulting uncertainty in the computed quality measure. $oenarios were considered:
In the first one a periodically occurring neuron drift waswased. After an initial con-
stant period of 30 time steps, a drift with a velocitywg im‘é”;tepand duration of 5 time
steps followed by a constant period of 20 time steps occyregiddically. In the second
scenario, after a constant period of 20 time steps, a canigdrift with a velocity of
vd%poccurred. A time step was defined as one cycle of the entiggitiq, i.e. as
one iteration through all the stages shown in Fig. 6.1. Atdvéfis mimicked by shifting
the whole quality profile byy per time step. This corresponds to a tissue drift such that



CHAPTER 6. UNSUPERVISED (MULTI-CHANNEL) ELECTRODE POSIONING 108

only the distance on the x-axis between the tetrode and tm®ng changes, while the
distances between all neurons are not changed (i.e. 1-diome translation of a rigid
configuration).

The results are shown in Fig. 6.9 and Fig. 6.10. For both cordigpns the proposed
algorithm is able to follow the drift and to retain an accépgarecording quality. The
maximum drift velocity the algorithm is able to handle degeon its parameter values
and on the quality profile itself. For example, if the driftr piene step is larger than the
search step siz8, the algorithm will never be able to find a good recording fosi
Even if there is a constant phase first, so that the algorithdsfa good initial position,
a following drift with a high velocity might cause such a seddyuality drop, that im-
mediately the "search” state is triggered, and the algorittill not be able to track the
drift.

6.5 Conclusion

We defined two quality measures for extracellular recorslinghich indicate the de-
tectability of spikes and their separability. These two sueas did not require any spike
clustering, but can be directly computed on unclassifiekespi Nevertheless, the pro-
posed measures correspond well to the true qualities @utdfiground truth information
were available.

Furthermore, we proposed a positioning algorithm whosé igo# find an opti-
mal recording position. In particular, based on a stocbagiproximation scheme, the
quality measure is optimised until an optimal position igrfd. The positioning algo-
rithm operates in an unsupervised manner, and its parasnederbe determined from
simulations. Their values agree well with the ones obtaindd48]. Furthermore, the
numerous dferences of our approach compared to the existing works esgibect to the
proposed quality measures and positioning algorithm wiseudsed at the correspond-
ing places in the preceding sections. A summary of the kfgréinces can be found in
Tab. 6.2. In short, to our knowledge the proposed qualitysueaand positioning logic
are the first ones especially designed for multi-channeadteldes in order to achieve
recording positions with favourable information yield,dontrast to existing approaches

Table 6.2:Main differences between the existing approach presented in [148] and our proposed approach for
unsupervised electrode positioning.

| Existing approach | Our approach
Developed for obtaining single cell record} obtaining good neuron
ings for single channel eleg-discriminability for multi-
trodes channel electrodes

Quality measure | SNR of dominant neuron SNR of all neurons, and
(spike clustering required) variance of SNR distribution
(spike clusteringhot required)
Stochastic approx| order estimation and global piecewise Hermite polynomi-
polynomial fitting als and final second order
polynomial fit
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which aim for single cell measurements.

The proposed positioning algorithm was run on realistjcaiinulated data. It was
able to find good recording positions in static environmestsvell as to retain slicient
quality in drifting environments. An application to realgtiments should be the next
step to take.
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Appendix A

Appendix to Chap. 3

A.1 Limits of integrand

Sinceu = (1 - Vv)/v, the two boundaries of = 0 andv = 1 correspond ta = c and
u = 0. For the case af = it is easy to see that (with the definitipu) = &)

. sin(B(u))

since the enumerator is bounded @ifu)) < 1, and lim_. r(u) = c (because;, > 0
vi).
To prove the second limit, we use I'Hospital’s rule, namely

sin(B(W) _ A sin(Bu) i /() - cosp(u)

i=0 u-€® 10 2 (y.gW) u0eM@ +u-r(u)- €W (A-2)
Itis
(TP =0 (A3)
lim 5"(u) = 1/ 22 A + 6 i
lIJi_rpOr(u) =0
Iy =0
hence
lim W = 1/2Z A + 6. (A.4)
O
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Appendix B

Appendix to Chap. 4

B.1 Threshold calculation with truncated Gaussians

The distribution of the rectified filter outpiify!) of filter f is proportional to
1)~ > > e (B.1)
i T

where tdi’” ~tG (qi * fi)T, A/ fiTCf1,0,0|is a truncated Normal distributidonAf-

ter applying the Deconfusion matrix, the threshold is oi®diby minimising the false
negative and the false positive probability, hence

) A 00 )
yj = argmin{,@j -fyj ij,i Z lcaall +f ij,i ZZﬁk-tGﬂk’f'} (B.2)
Yi - T=—A Yi k2] ©

whereg;j = 0.5 and thegy, k # |, are proportional to the firing frequency of neuron
such thaty,,; 8 = 0.5. TheA is the tolerance zone in which a spike is still classified
correctly (see Sec. 2.1.2). Note that in Eq. B.2 we negleitéaclude the region of the
filter response outside the delta zone in the right exprassis the contribution of this
region is usually quite small. The optimisation problem bansolved by a line search
algorithm.

B.2 Literature overview

This section serves as a pointer to some of the existingtiiez in the fields of blind
source separation and blind deconvolution.
B.2.1 Blind source separation

In [153] a survey of methods for blind source separationeeisly when data is sparse,
is given. Instantaneous, anechoic and echoic (convo)uteses and as well as the over-

*The first argument being the mean, the second one being tiaasthdeviation, followed by the lower
and upper truncation bounds.
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complete case are considered. Algorithms are dividednbatasses: staged estimation
of mixing parameters and estimation of sources, and joitimaton. However, the
deflation approach is not considered.

The paper [160] also provides a survey of methods for blinda®separation, con-
sidering especially non-instantaneous mixtures. Algarg are grouped in two cate-
gories: higher-order statistics, and second order staiét additional conditions). The
advantage of second order methods is that in general thelessesensitive to noise
and outliers, and are often computationally mafeceent. The paper discusses well the
problems of BSS in the frequency domain.

The survey paper [129] considers instantaneous and cdiwolmixtures. As far
as instantaneous mixtures are concerned, methods aresskscwhich are based on
moments, contrast functions, deflation, or whitening pbiation. In the case of convo-
lutive mixtures, higher-order statistics, frequency aggh, and second order statistics
are considered.

The paper [40] makes a distinction between blind signabekivn and blind source
separation. In the later case, all sources are extractdw aame time. In the former
case, one aims only at extracting a certain number of saurthe paper proposes a
unifying framework for both cases.

In [89] an algorithm for separating instantaneous souroa® fa linear mixture is
presented. The mutual information is formulated in termNegentropy, i.e. the mutual
information is minimised (independent sources) when thgad&opy is maximised. In
order to allow for fast computation, the negentropy is agipnated by an expression
depending on a functiofs, for which almost any arbitrary non-quadratic function is
allowed. A criterion how to choose this function optimallythvregards to the signal
distribution is presented. Finally, a newton method to fimal tnaximum of the negen-
tropy is presented. This leads to the following update rule:

w=R1E [x - G'(WTX)] ~E [G"(WTX)] W (B.3)
" e R

which is quite similar to the SEA (see Sec. B.2.2, Eq. B.4)atpdule.

The paper [237] solves the MIMO problem in the time domainewthere are more
sensors than sources. The algorithm makes explicit useeofdbplitz structure of the
matrices. The FIR filters are estimated by minimizing a n@esdt function. The cost
function can be minimisedfiéciently by introducing a new variable, consequently the
function is not quartic but only quadratic, and, hence, camjtimised #iciently. In
comparison to other approaches, this is a one stage algorith

The work in [46] extends the FastICA (from [89]) algorithmuoder-complete con-
volutive blind source separation, and works in the spaiogoral domain. Two ver-
sions of the algorithm are proposed, one in which the sowameextracted sequentially
(deflation) and one for parallel source extraction. In thBatien approach the error
accumulates at each separation stage, therefore, paeitattion should be preferred.
Since the method is not gradient based, no step size has ttapted, and the algorithm
works well for a wide range of initial conditions. Howevéretmethod assumes spatially
and temporally white signals. The filters are learnt withFastICA algorithm together
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with a heuristics. This ensures that the filters are paranpitvhich is an extension of
the orthogonality constraints in FastICA.

In [28] the sources do not necessarily have to be indeperatehidentical, but no
noise in the model is assumed. A contrast function with aeefee signal is used. An it-
erative approach is developed such that the referencel ssgmadated and does not have
to be defined by the user. This approach has the advantagbeéhaintrast function has
to be optimised only in the non-reference variables, whitdwa for faster calculation.
The filters correspond to the minimum power distortionlesponse beamformers, and
the sources are extracted sequentially

B.2.2 Blind channel estimation/identification/equalisat ion

A good overview is @fered in [35] which treats the SISO as well as MIMO case. The
paper divides the algorithms into two classes: implicit arplicit methods, i.e. whether
they use higher-order statistics implicitly or explicitiyfFor example, Bussgang type
algorithms (including the Sato and the constant modulusréilgn (CMA)) belong to
the former category, whereas the super-exponential &gorfSEA) to the latter. The
IFC algorithm (gradient based), the SEA and the CMA algaritire presented in more
detail. Their relation to one another as well as theiyatlsantages are pointed out.
Several improvements for these algorithms are proposebritiglgorithm of SEA and
IFC, prewhitening of data, and smart initial condition (gienplified SEA algorithm).

Another survey paper is [208], in which, however, mostlyyotile SIMO case is
considered.

A survey over some instantaneous blind source separatitimooieand some blind
deconvolution methods is also given in [214], also compatheir respective perfor-
mances.

In [211] the constant modulus algorithm is developed. Camtsinodulus means that
the transmitted signal is of the forig(t)| = 1 Vt, whereass(t) is a complex valued signal.
Hence, the output after equalisation must also have canstadulus which is directly
incorporated into the algorithm. No further assumptionsultthe signal statistics are
necessary.

In [189] an algorithm called super-exponential algoritf®iEA) is presented, which
achieves blind equalisation by higher-order statisticamatations, namely

wp=R1.d (B.4)
W1
W= ————
YwiT-R-wy

whered is a cross-cumulant between the filter output and the ofigiata. The al-
gorithm on page 49 in [222] is a special case of the superrexqt@al algorithm. In
particular, p (from [189])% d (from [222]), and ¢= 1.

In [193] blind filtering is done by two dierent approaches: Gradient based or Hes-
sian basetl However, the paper also cites literature which statesthieatost function of
the constant modulus algorithm (gradient based) is the sarttee optimisation criterion

"The deflation approach is often also called hierarchical wltistage approach.
#Which are just dierent terms for implicit and explicit methods.
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for the super-exponential algorithm (Hessian based). d@tez tonverges much faster in
the case of stationary sources, but also requires more datignal cost. In the case of
non-stationary sources, however, the gradient based ahetight be faster. The paper
considers a convex combination of both approaches.

In [155] it is argued that when the signal is spiky and non4s\gtric, it is better to
learn filters based on maximisation of skewness insteadrtdis. By better, the paper
means that less iterations are needed to achieve convertgetie correct deconvolution
filter. The filer is calculated via steepest ascent iteratiand resembles the MPDR filter.
All algorithms are developed for SISO systems. Twibadtent algorithms are presented:
One in which after every step the filter must be normalised, @me in which this is
approximately ensured by the adaptation step already.

In [132] an analysis of the convergence properties of a waiilfy of Bussgang
blind deconvolution algorithms is conduced. Kurtosis akdvhess maximisation can
be viewed as special cases of this more general approach.

In [183] another Bussgang type algorithm is presented, fieryspikes are modelled
as the sum of two Gaussian distributions.

The authors of [109] develop an algorithm for retrieving Weveformichannel re-
sponse when only a single measurement is available, i.esighal appears only once
(no repetition). This is a deterministic method using thieansform and its greatest
common divisor via eigenvalues calculation. The same asithiesented a very similar
method in [108], only the greatest common divisor is actdewea diterent way.

Another deterministic algorithm for impulsive, i.e. nogpetitive, sources in the
case of a SIMO system is presented in [169]. A version of tgerdhm is developed
when the channel response is sparse (not the source).

In [116] the super-exponential algorithm in the case of siesg and of kurtosis
maximisation in a SISO system is compared with each othés.clincluded that skew-
ness is better when the signal has an asymmetric distriputibereas kurtosis is better
when the signal changes abruptly. The paper also proposesristics how to choose
the filter length.

The super-exponential algorithm is modified in [97] in thesethat higher-order
cumulants are used to estimate the template as well as thiplaation matrix (instead
of second order statistics). This makes the algorithm lessitve to Gaussian noise,
but decreases a little the convergence speed and requirescoraputation time.

A different modification of the super-exponential algorithm igpmsed in [233]. A
SISO system and white Gaussian noise are assumed. The aonaece is first estimated
using minimum description length. This estimate is therdusemodify the Hessian
matrix of the adaptive matched filter. The algorithm is comafianally more éicient
than [97], converges faster, and has better performanceisy settings.

A deflation algorithm for MIMO system is presented in [96].UB@es can be tempo-
rally correlated, but have to be spatially uncorrelatedti@rmore, no noise is assumed
in the model. The algorithm is very similar to the super-exgrtial algorithm, but is
only exponential.

The authors of [239] come form the field of CDMA. In contrastriost other works,
not the AMF but the MPDR is obtained. This is done by jointltiopsing a cost func-
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tion (basically the variance of the filter output) with respt® the filter and the steering
vectoytemplate, respecting some constraints. Several gradéseidoalgorithms are pro-
posed, and global convergence is shown. The methods aintratixg a single source
from a mixture of several sources and noise.

The minimum mean square error receiver (MMSE) solution éNtWDR solution
in the case when the steering vector is perfectly known. &ihowever, the steering
vector is not known, all blind methods will be inferior. Thethors of [212] show how
the steering vector can be estimated blindly. In particula steering vector should be
chosen such that the variance of the filter output is maximodeuthe unity constraint
of the steering vector. The vector is then given by the srsiadliggenvector of the inverse
of the data covariance matrix.

The paper [238] modifies the method presented in [212]. Tisé fomction is very
similar, the only diference is that the data matrix is now to the powemofThe op-
timal detector for this problem would be the maximum likelilll sequence estimator,
but it requires exponential computational load. A lineduson, like the proposed one,
is sub-optimal, but computationally feasible. The optifira¢ar solution is called the
minimum mean square error receiver (MMSE). The MOE (progasg212]) which is
similar to the MVDR beamformer, provides an approximateldittmn that approaches
the MMSE. The proposed method allows also for a noise estmatithout using min-
imum description length techniques.

In [92] the SEA is extended to the MIMO case, but no noise isragsl. The paper
proposes a two stage algorithm. First, SEA together withatlefi is applied. This gives
first estimates of the channel responses. From this, filtersanstructed which are then
used as initial condition for the second SEA algorithm. T™gsond SEA algorithm is a
straightforward extension of the SISO SEA algorithm. Thesadage of deflation is its
global convergence, however, a disadvantage is the empagation. The second SEA
algorithm has no error propagation, but does not exhibibgl@onvergence. Thus, a
combination of both seems to be a good choice.

In [76] discrete sources are assumed, but the method isaekfgr under-complete,
instantaneous mixtures. The method is based on maximumteriposestimation. The
sources and the mixing matrix are estimated simultaneoAsiyadient based approach
has to be applied in order to solve the optimisation probl&fltiple sources are ex-
tracted by deflation.

The authors of [112] consider the under-complete MIMO casd,when the source
signals are finite alphabet random variables. It is assuinadtihe finite alphabet is
known. The paper presents a cost function which must be ngeanby gradient ap-
proaches in order to obtain the filters. The method even wetian the sources are
correlated. This is the main advantage provided by the faijibabet information. In
the case of uncorrelated sources, the sources can be egtrawt by one (deflation) and
the paper gives references to the literature concernedheithto estimate noise.

A method which aims at recovering binary sources from an-owenplete MIMO
system is presented in [114]. This algorithm, however, temheinistic and resembles
more a clustering procedure, and the waveforms cannot beletety arbitrary. Multi-
ple sources are extracted by a deflation procedure.
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In [115] an algorithm for blind deconvolution for a MIMO sgsh, when there are
more sourced/ than senord\, is proposed. The algorithm can extrétsources which
are true sources. The algorithm also works for analog seures only binarydiscrete
sources. Itis a two stage algorithm, whereas in the firstat&pgle source is extracted
based on a contrast function involving fourth order crossnmiats. It is argued that a
contrast function involving only fourth order moments likertosis (no cross moments)
is unsuitable in the case of over complete systems. Aftersongce is extracted, this
source is deconvolved using a FIR filter, which is obtainedoptimising a diferent
contrast function.

The approach in [43] is clustering based and assumes a MIS®@msywith binary
sources. The technique is similar to the one presented #].[2dthough the paper deals
with noisy systems, the method does not seem to be very radmdtis formulated on
the original raw data.

In [134] or [30], the waveforritemplate is known. The underlying process is as-
sumed to be a combination of sparse Bernoulli and Gausshbdistn, and must be
estimated.

The authors of [47] analyse the relation between blind demlation (SISO) and
blind source separation. It is shown that in the case of leintunatrices the algorithms
for blind deconvolution and BSS are the same. In the limit @fyvarge dimensions
circulant matrices approach Toepiltz matrices.

Similarities between blind deconvolution and blind sousmparation are also
pointed out in [5, 6]. However, the discussion is more fromoinpof view of un-
derstanding, i.e. qualitative rather than quantitative.
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