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Abstract

Electrophysiological recordings with electrodes, or moregenerally, with arrays of multi-
electrodes, are key for recording neural activity data fromthe central nervous system.
This technique delivers high temporal and spatial resolution, as well as enables neuron
stimulation by current injection. The neuronal activity encoded by action potentials
(simply called ”spikes”) of individual neurons, however, is not recorded directly; rather
the measurement contains a mixture of spike trains from several neurons and additional
noise. To determine the spiking times of a neuron and to determine a spike’s originating
neuron, spike detection and spike sorting algorithms are needed. The main focus of this
thesis is the development of such algorithms.

The system consisting of neurons emitting spike trains, their mixture and corruption
by noise, and of the process of recording these data with several electrodes channels, is
modelled as a linear time-invariant multiple input, multiple output system. The prob-
lem of spike detection/sorting can then be regarded as a blind equalisation and source
separation task. We use finite impulse response filters for equalisation and source sepa-
ration throughout the thesis, and therefore, we first start with analysing some properties
of these filters. Amongst others, their performance in termsof detection probability
and false alarm probability is studied in the case when the spike waveform is perfectly
known, and when it is estimated from the data themselves. Thesubsequently presented
spike detection and sorting algorithms are two stage algorithms, consisting of a sys-
tem identification phase and the following equalisation/separation. Common to them is
that both stages can be performed with minimal human supervision although the spatial
mixing and temporal distortion are unknown, and the abilityto adapt to changing wave-
forms during the equalisation/separation stage. As such they can be termed as adaptive
and blind array processing techniques. Finally, we also propose an unsupervised control
algorithm for electrodes, which allows to move them to favourable recording sites. This
closes the loop, as the system can now perform spike detection/sorting at any position
and decides by itself whether to move the electrode to a more promising position or
whether current quality of data is sufficient.
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Zusammenfassung

Elektrophysiologische Ableitungen mit Elektroden, oder allgemeiner, mit einer ganzen
Matrix von Multi-Elektroden, sind eine Schlüsseltechnikum neuronale Aktivitätsdaten
aus dem zentralen Nervensystem aufzunehmen. Diese Technikliefert eine hohe zeitliche
als auch räumliche Auflösung, und erlaubt sogar Neuronenstimulation mittels Injek-
tion von elektrischem Strom. Die neuronale Aktivität, enkodiert durch Aktionspo-
tentiale (auch genannt ”Spikes”), von einzelnen Neuronen wird jedoch nicht direkt
aufgenommen; vielmehr enthält die Messung eine Mixtur vonmehreren Spike Folgen
verschiedener Neuronen und zusätzliches Rauschen. Um dieeinzelnen Spike Zeitpunkte
eines Neurons und um das Herkunftsneuron eines Spikes zu bestimmen, sind Spike
Detektions- und Spike Sortierungs-algorithmen notwendig.

Das System bestehend aus Spike Folgen generierenden Neuronen, deren Mix-
tur und die Korruption durch Rauschen, und aus dem Prozess des Messens
dieser Daten mit mehreren Elektrodenkanälen, kann als einlineares zeitinvariantes
Multieingang/Multiausgang-System modelliert werden. Das Problem der Spike Detek-
tion/Sortierung kann dann als ein blindes Entzerrungs- und Quellentrennungsproblem
aufgefasst werden. Wir benutzen in dieser Arbeit immer endliche Impulsantwortsfilter
für die Entzerrung und Quellentrennung, deshalb beginnenwir mit der Analyse einiger
Eigenschaften dieser Filter. Unter anderem, analysieren wir deren Leistungsfähigkeit im
Bezug auf die Detektionswahrscheinlichkeit und Falschalarmwahrscheinlichkeit wenn
die Spike Funktion bekannt ist, aber auch wenn diese von den Daten geschätzt wird. Die
nachfolgend präsentierten Spike Detektion und Sortierungsverfahren sind Zweistufe-
nalgorithmen, bestehend aus einer Systemidentifikationsphase und einer darauffolgen-
den Entzerrung/Quellentrennung. Beide Verfahren sind sich insofern ähnlich, als dass
beide Phasen nur minimalen menschlichen Eingriff verlangen obwohl die räumliche
Mixtur und die zeitliche Verzerrung unbekannt sind, und dass beide Verfahren sich
ändernden Spike Funktionen anpassen können. Deshalb können diese Verfahren allge-
mein als adaptive und blinde Matrixverarbeitungstechniken bezeichnet werden. Zuletzt,
präsentieren wir auch einen unüberwachten Kontrolalgorithmus für Elektroden, welcher
die Elektroden zu günstigen Aufnahmestellen bewegt. Das schliesst den Kreis, da nun
das System an jeder beliebigen Position Spike Detektion/Sortierung ausführen kann und
selbst entscheidet, ob die Elektrode zu einer vielversprechender Position zu bewegen ist,
oder ob die momentane Signalqualität ausreichend ist.
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Chapter 1

Introduction

The need for understanding the information processing mechanisms of the brain makes
the availability of brain activity data essential in order to derive working principles or
test existing theories about it. In contrast to many other fields, direct measurements of
the activity of individual neurons or their connectivity structure is rarely possible. This
is due the fact that invasive techniques are only of limited use in living organisms (and
most often still do not allow for direct single cell recordings), whereas non-invasive
techniques are not (yet) precise enough to resolve single neuron activity. This constraint
of indirect measurement suggests that powerful algorithmsmust be at hand to allow for
the reconstruction of the neural activity of individual cells.

One particular recording technique is the electrophyisological electrode. Starting
with inserting single microelectrodes, this technique hasevolved significantly in the re-
cent years and is widely used for obtaining high quality datafrom living animals. One
of the reasons of its popularity is the fact that this technique offers a very high tem-
poral resolution as well as spatial resolution. This means that, given appropriate algo-
rithms, individual action potentials of neurons are resolved allowing for studying firing
statistics accurately, and, since activity from several neighbouring cells is recorded si-
multaneously, this gives the possibility to analyse the influence of cells on their neigh-
bourhood (such as locking, burst propagation). Although many other techniques ap-
peared for recording brain activity data, such as functional magnetic resonance imaging
or electroencephalography, electrophyisological electrodes continue to be one the major
recording tools. Amongst other, one of the reasons for that are the recent technologi-
cal developments which add many further advantages. These include for example the
development of multi-channel electrodes, such as tetrodes, octotodes, etc., see Fig. 1.1.
The additional recording channels not only allow for recordings from more neurons si-
multaneously raising the information yield per experiment, but also improve the quality
of the subsequent processing. Depending on the specific physical configuration of the
individual channels, simultaneous recordings from more than a single tissue layer are
possible as well, see Fig 1.1.

Nowadays, many laboratories use entire multi-channel electrode arrays (MEA).
Again, such arrays can be used in order to record from severallayers, or, on the other

1
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A) B)

D)C)

Figure 1.1: A): An electrode with 4 recording channels, called tetrode. B): A heptode, an electrode with 7
recording channels. C): An electrode with 8 recording channels for recording from several layers. All the pictures
are from [205]. D): A multi-electrode array containing 100 single channel electrodes (from [235]).

hand, to acquire accurate information from many neurons belonging to the same sub-
network within a specific layer or region. Especially the latter possibility is becoming
increasingly interesting as a means to verify network computing phenomena (ensemble
coding) or to link network topological aspects of the brain structure to modern graph
respectively complex network theories [197].

Even more promising are arrays which are directly implantedinto the brain, a promi-
nent example being the Utah array [133]. This allows for constant monitoring of spec-
imens, and, combined with wireless transmission technology, for experiments outside
the classical fixed laboratory setup. Such implantable electrodes will also certainly play
a key role in the development of naturally controlled prosthesis and in next generation
brain-computer interface (BCI) devices as well as in curingof brain diseases.

This latter aspect was enabled by the development of micro stimulation elec-
trodes [205]. Such devices are not only able to record passively, but can actively induce
well controlled electric currents into the brain tissue which stimulate the surrounding
neurons. Once the neural code of a certain brain region is understood, such two-sided
communication between the brain and an external devices would allow for fascinating
applications.

In short, the electrophysiological electrodes technique is likely to stay and further
evolve as one of the main recording tools. Hence, it is important to have algorithms at
hand, which can handle the acquired data efficiently and extract the maximum possible
information from them. Some major challenges are the following:

• How can the action potentials within continuous electrode recordings be optimally
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detected? Errors in spike detection will propagate throughall the subsequent anal-
ysis and may lead to wrong conclusions about the whole information processing
principles of the brain. Moreover, most BCI devices can workreliably only if the
precise firing times of the neurons are known.

• In order to make full use of the micro stimulation electrodesreal-time action po-
tential detection and classification algorithm must be available. Only then the
neural information can be decoded online, and an appropriate micro stimulation
sequence induced.

• In both, implanted electrode arrays (chronic recordings),as well as external MEA
(acute recordings), the individual electrodes are more andmore often controlled
by electric motors which allow very precise electrode movements. Nevertheless,
most experimenters rely on a manual procedure for placing the electrodes based on
visual recording quality assessment. An automated procedure would possibly find
not only more suitable recording positions in less setup-uptime, but also allow for
tracking neurons in the case of tissue drifts.

• Modern external arrays consist of up to 64 multi-channel electrodes, whereas im-
plantable arrays even contain up to 100 electrodes. This makes it inevitable that all
the algorithms operate in an unsupervised manner, as a manual processing would
not only become infeasible due to time constraints, but would achieve an inferior
performance as well.

In this thesis we will present novel algorithms which can deal with the mentioned
problems. We develop techniques inspired and derived from more general array process-
ing theories which are adaptive to changing recording conditions and operate to a large
amount in an unsupervised manner.

1.1 Problem formulation and its characteristic

One of the earliest processing stages of the recorded data consists of extracting the indi-
vidual action potentials, also called spikes, from the continuously sampled data stream.
This process is denoted as ”spike detection”, whereas, combined with a further classifi-
cation of the spikes, i.e. the assignment of every spike to a specific neuron, the overall
procedure is denoted as ”spike sorting”. In order to developwell founded detection/sort-
ing algorithms, it must be assumed that the measured dataxk,t (on channelk at timet)
can be represented by some specific signal model. Throughoutthis thesis we assume the
following model (or a simplified form of it):

xk,t =

M
∑

i=1

∑

τ

qi
k,ts

i
t−τ + nk,t k = 1, . . . ,N (1.1)

whereM is the number of neurons,N is the number of recording channels (e.g.N =
4 for tetrodes, see also the ”List of Symbols and Abbreviations” on page v for used
notation), andqi

k,t is the spatio-temporal waveform of neuroni. It is not always clear
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System  S

N  receiversM  transmitters

Figure 1.2:Sketch of a general system with M transmitters and N receivers, also called multiple-input multiple-
output system (MIMO).

to distinguish between the signals and noisen. Of course every physical system is
subject to some thermal noise, but in the case of electrophysiological recordings this is
not the main source of concern. In fact, what we call noise∗ is actually the neural activity
from many ”background” neurons. Then, we run into the problem of how to define a
neuron which belongs to the signal or already to the background. Here, we omit this
problematic by defining noise as all sources which follow a normal distribution, whereas
signals as following a non-Gaussian statistics. In particular, we assume that the signalssi

follow a sparse Bernoulli distribution, the noisen is described by a zero mean, colored,
multivariate Normal distribution, and the spike waveformsvary only slowly in time, i.e.

si ∼ Binomial(1, pi ), pi ≪ 1 ∀i n ∼ N(0,C) qi [t] ≈ qi . (1.2)

The validity of these assumptions is not the topic of this thesis. It is sufficient to say
that this model is widely accepted in the biosignal literature and has been validated by
experiments, see e.g. [181, 168].

The goal of spike detection is to reconstruct the union of allthe signals when only
xk,t is observed, i.e.

given xk,t −→ ∪i si . (1.3)

On the other hand, the task of spike sorting consists of reconstructing all the signals
individually when onlyx is observed, i.e.

given xk,t −→ si ∀i, up to permutation and scale. (1.4)

1.2 Relation to other fields

It is essential to notice that similar problems are also studied by other than the neuro-
science community. We want to point out the similarities anddifferences between these
different fields, as the transfer of methods developed in one fieldto a problem in another
one often brings new insights. From a formal point of view, the M neurons are just a sys-
tem ofM transmitters, whereas a multi-channel electrode is a system of N receivers. The
goal common to all fields is to infer the signal properties of theM transmitters given the

∗The decision criteria what is signal and what is noise being our ability of visual discrimination between
a spike waveform and the ”rest”.
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measurements recorded by theN receivers, see Fig. 1.2. For example, such a problem
is encountered in radar, sonar, seismic exploration [28], digital communication, wireless
communication, image restoration [189], speech separation and enhancement [46], vi-
bration analysis for fault detection [116], or mechanical signature analysis [169]. In the
following subsections we explain some of them in more detail.

1.2.1 Radar and sonar

In radar or sonar systems, a similar problem as in electrophysiological recordings arises.
Namely, M targets (such as planes, sub-marines or the like) are emitting† a particular
signal signature which is recorded by anN-dimensional antenna array. The goal is to
determine whether there are targets in the area, and if so, how many of them are present,
and what their positions are. Up until very recently, the noise statistics (also called clutter
statistics in this community) was assumed to be Gaussian‡, and a time constant wave-
form (called steering vector) was assumed. On the other hand, the signals is assumed
to be continuous, and might be even normally distributed. One major difference is that
most literature in this field deals with a parametrised steering vector, in the form of

qi(θi) =
(

1, exp(− jΘi), . . . , exp(− j(N − 1)Θi)
)⊤

(1.5)

whereΘi := (2π ·d·sin(θi))/λ, j :=
√
−1, d being the distance between the sensors of the

antenna array, andλ being the wavelength of the source signals [104]. This particular
structure comes from the underlying physics, as the signal can be approximated by planar
waves due to the open space and its geometry. Hence, in the far-field approximation a
target can be represented by a single parameter, the direction-of-arrival θi. This is a
significant reduction of complexity as the dimension of the steering vector is reduced
from N to one.

Similar as for the spike detection and spike sorting problem, there is a large amount
of literature concerned with just target detection and separately with multiple target clas-
sification, as well as with system calibration or blind beamforming where some of the
blind source separation algorithms originate from. A good introduction into this field
is given in [195, 210, 138]. In general, the most common approach to tackling these
problems is the use of linear filters, called beamformers in this field. This class of filters
will be discussed in more detail in Chap. 2.

1.2.2 Communications

In the community of communications (e.g. wireless communications, digital communi-
cations, etc.) the terminology SISO, MISO, and MIMO is used,denoting the configura-
tion of the overall system, i.e. single-input single-output, multiple-input single-output,
and multiple-input multiple-output. In contrast to the previously discussed field of radar,
the waveform represents the channel fading rather than a target to be detected. Hence,
the task is to reconstruct the original continuous signals from a distorted measurement

†Active emission of signals or passive emission, i.e. reflections of a radar waves.
‡For more recent development, such as robust processing dealing with heavy tailed noise distributions

see e.g. [113].
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x. The amplitude of the ”steering vector” most often follows aspecific model, such
as Rayleigh or Rician fading channels, and few approaches deal with general steering
vectors, i.e. the channel is distributed according to a complex normal distribution

qi ∼ CN(a, D)



















a = 0 −→ Rayleigh

a , 0 −→ Rician.
(1.6)

In communications the task is seldom related to signal detection, as pilot signals are
emitted for this purpose. The equivalent problem to spike sorting, i.e. multiuser in-
terference elimination, was especially of concern in mobile communications regarding
the code-division multiple access (CDMA) technique. However, since the recent intro-
duction of a new technology, namely the orthogonal frequency-division multiple access
(OFDMA), this problem seems to be have been solved. Introductions into this field can
be found in [67, 186, 213].

The fields of radar and sonar and of communications can more generally be sum-
marised under the term of spatio-temporal array processingtechniques [128].

1.2.3 Blind source separation (BSS) and blind deconvolutio n

Perhaps the most fundamental research how to separate a mixture of M signals givenN
dimensional measurements was done in the field of blind source separation, primarily
known from the various independent component analysis (ICA) algorithms. In the often
illustrated application of separating audio sources§, the problem is to separateM sound
sources recorded withN microphones in a reverberation free environment, whereas it
can be assumed thatM < N and the sources are pairwise statistically independent.
Hence, it is assumed that the mixture is instantaneous, in the sense that only a spatial
waveform over the different microphones enables a discrimination of the source, but
there is no temporal structure. In contrast, the field of blind deconvolution or blind
equalisation has in principle dealt with a SISO system, i.e.not spatial but only temporal
correlations. Although the problem and the methods for its solving are quite similar in
both fields, there seems to be only a limited literature pointing out the exact differences
and similarities between the two fields [5, 6].

Later on, the field of ICA extended to cases where there is temporal correlation as
well (convolutive ICA), or where there are more sources thansensors,M > N, (over-
complete/under determined ICA). One should note, however, that the convolutive case
was solved most often by applying a Fourier transform, whichleads to frequency ambi-
guities [160].

1.2.4 Terminology of the spike detection/sorting problem

Given the terminology of the different fields, the spike detection and the spike sort-
ing problem, given the electrophysiological electrode recordings, can be described as a

§The popular term ”cocktail problem” is ambiguous, as many regard it as separating just one source
from the rest. Also note, that although blind source separation is often demonstrated on audio data, it
originated from a problem in neuroscience [90, 106].
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MISO (single electrode) or MIMO (multi-channel electrode), over-complete¶ , blind, and
convolutive system. Although in theory the spike waveformshave a real physical inter-
pretation in the sense of an electric current, and thus, could be parametrised by some
generating quantities, in practice this is of no help due to the unknown neuron config-
uration. Hence, the waveforms cannot be reduced in their dimensionality and must be
regarded as arbitrary, in contrast to the steering vectors in radar applications. On the
other hand, the intrinsic signalssi display an interesting property which makes them
belong to a specific category. Namely, they are sparse, i.e. the waveforms occur only
at few times in contrast to a continuous noise source, and binary (as a special class of
discrete signals), i.e. only the two values 0 or 1 can be attained. This is in contrast to the
continuous signals encountered in most of the communications technology.

1.3 Thesis summary

The goal of this thesis is to make explicit use of this particular system structure in order
to develop powerful spike detection and spike sorting methods. The focus is on using
ideas from the field of array processing and BSS for the proposed approaches. This
is in noticeable contrast to most of the existing approachesto spike detection and spike
sorting, which mainly rely on hypothesis testing, heuristics, and clustering. In particular,
the spike sorting task is most often tackled by converting the data series into short vectors
in which spikes are detected by hypothesis testing. Then, a feature extraction algorithm
is used for further dimension reduction, and finally a clustering procedure is applied.

The literature in the field of array processing is very extensive and it is likely that
in the future more and more BSS techniques will be applied or directly designed for the
spike detection/sorting problem. In App. B.2 we point to some BSS literature which
might be helpful for developing future algorithms handlingthe spike detection/sorting
task. Existing approaches, which are based on similar underlying assumptions, are dis-
cussed in the corresponding chapters.

Next, we shortly summarise the results of subsequent chapters and point to published
work based on parts of this thesis.

1.3.1 Thesis outline

In the remainder of Chap.1 a very short introduction to mathematical concepts which
will be used later on is given, and the scientific contribution of this work is stated. The
original research is presented in Chap. 2 to Chap. 6. Each chapter is self contained and
includes an introduction to the discussed problem, a reviewof existing works, and a dis-
cussion. Due to this self contained character, some parts, especially concerning notation,
problem formulation and introductory explanations, mightslightly overlap between the
individual chapters.

In Chap. 2 we start with the discussion of some aspects of linear filters. Linear fil-
ters will be used throughout the thesis as the primary tool for detecting and classifying

¶Except in the case when single, very high impedance electrodes are used, it is unrealistic to assume
that activity from a number of neurons is recorded which is less than the number of channels.
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spikes. In particular, we focus on the matched filter as it canbe analytically expressed
and achieves the best detection performance in most of the considered settings. We in-
troduce a novel modification to the matched filter which improves the performance in
other scenarios, such as real-time detection, and propose ameasure how to assign a per-
formance to detectors in the case of simultaneous detectionand arrival times estimation.

In Chap. 3 we continue analysing the performance of filters when there is a mismatch
between the true waveform of a neuron, and the waveform used for constructing the filter.
We show that the results obtained from studying such a signalprocessing problem can be
linked to findings in the econometrics theory. Based on this analysis we propose a filter
adaptation scheme in the case when the neuron’s waveform varies slowly over time.

In Chap. 4 an algorithm for spike sorting is proposed. Using standard spike detec-
tion and clustering techniques, initial waveforms are estimated and the corresponding
filters calculated. The filter output is then processed by a technique called Deconfusion,
similar to an un-mixing routine, leading to an improved classification performance. As
a unique feature, our approach is suitable for online data processing, but is still capable
of resolving overlapping spikes.

In Chap. 5 we address the problem of spike detection for whichpurpose an unsu-
pervised and adaptive algorithm is formulated. The proposed algorithm is one of the
very few approaches which uses techniques from BSS and blinddeconvolution for spike
detection. It offers superior detection performance, even when multiple neurons with
distinct waveforms are present in the data, and adapts to changing waveforms.

In the last chapter, Chap. 6, an algorithm for unsupervised electrode placement is
presented. Firstly, a quality measure is defined, which yields a higher score the better the
signal-to-noise ratio and the separability of the neurons signals is. Then, the maximum
of this quality measure is found by a stochastic optimization scheme, and the electrodes
are moved to the corresponding position. To our knowledge, this is the first unsupervised
positioning algorithm developed for multi-channel electrodes.

1.3.2 Contribution

• The work presented in Chap. 2 was partly published in

”Optimal convolutive filters for real-time detection and arrival time estimation of
transient signals”, M. Natora, F. Franke, and K. Obermayer,Proceedings of World
Academy of Science, Engineering and Technology, Volume 55,pages 235-240,
2009

• The work presented in Chap. 3 was partly published in

”Optimal steering vector adaptation for linear filters leading to robust beamform-
ing”, M. Natora, F. Franke, S.A. Broda, and K. Obermayer,Proceedings of the In-
ternational Symposium on Communications, Control and Signal Processing, 2010

• The work presented in Chap. 4 was partly published in

”Blind source separation of sparse overcomplete mixtures and application to neu-
ral recordings”, M. Natora, F. Franke, M. Munk, K. Obermayer,Lecture Notes
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in Computer Science - Independent Component Analysis and Signal Separation,
Volume 5441, pages 459-466, 2009,

and in

”An online spike detection and spike classification algorithm capable of instanta-
neous resolution of overlapping spikes”, F. Franke, M. Natora, C. Boucsein, M.
Munk, K. Obermayer,Journal of Computational Neuroscience, Volume 29, pages
127-148, 2010

• The work presented in Chap. 5 was partly published in

”Spike detection in extracellular recordings by hybrid blind beamforming”,
M. Natora, F. Franke, K. Obermayer,Proceedings of 32nd Annual International
Conference of the IEEE EMBS, pages 4636-4641, 2010

and in

”An unsupervised and drift-adaptive spike detection algorithm based on hybrid
blind beamforming”, M. Natora, K. Obermayer,EURASIP Journal on Advances
in Signal Processing, Volume 2011, Article ID 696741, 13 pages

• The work presented in Chap. 6 was partly published in

”An automated online positioning system and simulation environment for multi-
electrodes in extracellular recordings”, M. Natora, F. Franke, P. Meier, E. Hagen,
K. H. Pettersen, H. Linden, G. T. Einevoll, K. Obermayer,Proceedings of 32nd
Annual International Conference of the IEEE EMBS, pages 593-597, 2010

• Code of several algorithms is available online from
http://user.cs.tu-berlin.de/∼natora/ for download.

1.4 Fundamental concepts

In this section we briefly present some notions and mathematical concepts which will be
used in some of the subsequent chapters.

1.4.1 Digital signal processing

The voltage is recorded with an electrophysiological electrode digitally, usually with a
sampling frequency between 8− 40kHz. Hence, in the following we always assume
discrete time series, i.e.x(t) = xt, t = 1, 2, . . . unless otherwise stated.

A systemS (as for example the one shown in Fig. 1.2) is called a LTI system (x→
S→ y), when it is linear and time-invariant [157]:

• time-invariant (stationary): Ifx(t1)→ S→ y(t1) thenx(t − τ)→ S→ y(t − τ) ∀τ.

• linear: If x1(t) → S → y1(t) andx2(t) → S → y2(t), thena1 · x1(t) + a2 · x2(t) →
S→ a1 · y1(t) + a2 · y2(t).

• stable: Additionally a system is called bounded-input bounded-output stable
(BIBO stable) if|x(t)| < ∞ ∀t, then|y(t)| < ∞ ∀t [190].
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The impulse responseh of a systemS is the output when a Kronecker delta function
is the input, i.e.δ(t) → S → h(t). The input output relation of stable LTI systems is
described by its impulse responseh by following relationship:

yn =

∞
∑

m=−∞
hmxn−m (1.7)

whereas||h|| < ∞. The system is said to be causal ifh(t) = 0 ∀t < 0 [105]. Thez-
transform ofh is called the transfer function of the systemS [157]. The transfer function
H(z) of a causal LTI system can be expressed as

H(z) =

∑Jb
j=0 b jz− j

1+
∑Ja

j=1 a jz− j
, (1.8)

and hence the outputy can be related tox by

yn =

Jb
∑

j=0

b j xn− j −
Ja
∑

j=1

a jyn− j . (1.9)

Depending on the choice of the coefficientsa, b different filter classes are defined, in par-
ticular finite impulse response filters and infinite impulse response filters. The frequency
responseH(ω) of a filter is obtained by settingz= e

√
−1·ω in Eq. 1.8.

Finite duration Impulse Response (FIR) filters

The definition of FIR filters is given bya j = 0 ∀ j in Eq. 1.8. This implies that the
input-output relation is given by

yn =

Jb
∑

m=0

hmxn−m, (1.10)

i.e. h j = b j ∀ j, and the frequency response is simplyH(ω) =
∑Jb

j=0 h j · e−
√
−1·ω. In

this sense FIR filters perform a moving average operation. Some advantages of FIR
filters compared to IIR (infinite (duration) impulse response) filters, which can perform
an autoregressive moving average operation, are listed in [105]. Because FIR filters are
applied in a non-recursive way, all FIR filters are stable, which implies that the filter
output will always be finite, even if there is noise present inthe system. On the other
hand, IIR filters are applied in a recursive way which gives them more flexibility, but in
general such filters are not stable.

1.4.2 Higher-order statistics

Higher-order statistics deals with properties of random variables which go beyond first
and second order statistics such as mean and covariance. Here, we are mainly interested
in cumulants and joint/cross-cumulants. The results summarised here can all be found
in one of the introductory texts [139, 84, 199].
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Let x j, j = 1, . . . ,N, beN real random variables. The joint characteristic function is
defined as

φ(w) := E
[

eiw⊤ ·x
]

. (1.11)

whereasi :=
√
−1. Then, the joint cumulant is calculated by‖

Cum(x1 : n1; x2 : n2; . . . ; xN : nN) = (−i)m ∂m ln(φ)
∂n1w1 . . . ∂nNwN w=0

(1.12)

whereas,m :=
∑

j n j . If the joint characteristic function is not known, the cumulant can
be directly computed from the joint moments. The general relationship is complicated,
however, for the first couple of cumulants, following explicit relations are given:

Cum(x1; x2) = E [x1x2] (1.13)

Cum(x1; x2; x3) = E [x1x2x3]

Cum(x1; x2; x3; x4) = E [x1x2x3x4] − E [x1x2] E [x3x4]

− E [x1x3] E [x2x4] − E [x1x4] E [x2x3]

whereas, ifx j is not zero mean, one has to replacex j by x j − E
[

x j

]

∀ j on the right hand
side of all equations in Eq. 1.13; andE [·] denotes the expectation operator. From this it
follows that

Cum(x) = E [x] (1.14)

Cum(x1; x2) = Cov(x1; x2)

Cum(x : 3)

Cum(x : 2)3/2
= skewness(x)

Cum(x : 4)

Cum(x : 2)2
= excess kurtosis(x).

If x is normally distributed, i.e.x ∼ N(µ, σ), then it is Cum(x : 1) = µ, Cum(x : 2) = σ2,
and Cum(x : m) = 0 ∀m > 2. The latter also holds for Cum(x1 : n1; . . . ; xN : nN) if the
x j are jointly Gaussian.

Some important properties of cumulants are stated in the following:

1. The joint cumulant of any permutation ofx j is again Cum(x1 : n1; . . . ; xN : nN).

2. For any constantsc j and N > 1, it is Cum(x1 + c1 : n1; . . . ; xN + cN : nN) =
Cum(x1 : n1; . . . ; xN : nN).

3. Cum(c1 · x1 : n1; . . . ; cN · xN : nN) =
∏

j c
nj

j · Cum(x1 : n1; . . . ; xN : nN).

4. If the x j are independent ofy j , then Cum(x1 + y1 : n1; . . . ; xN + yN : nN) =
Cum(x1 : n1; . . . ; xN : nN) + Cum(y1 : n1; . . . ; yN : nN).

5. If any non-empty subset of thex j is independent from the rest, then
Cum(x1 : n1; . . . ; xN : nN) = 0.

‖Alternatively, cumulants can be defined by the moment generating function instead.
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1.5 Notation

In the literature it is most often assumed that both the signal s and the noisen are zero
mean. In our setting, however, we cannot assume that both processes are zero mean,
as the mean ofs depends on the amount of spikes present. A zero mean signal implies
that the calculation of filters (presented e.g. in Chap. 2 andChap. 3) can be done on the
basis of covariance matrices, i.e. for single channel dataRt1,t2 = E

[

xt1 xt2
] − E [x]2 =

Cov(xt1, xt2). For non-zero mean signals, the correct filters are obtained by using matri-
ces without mean subtraction, i.e.Rt1,t2 = E

[

xt1 xt2
]

. For simplicity, we still use the same
notationE

[

xt1 xt2
]

= Cov(xt1, xt2).
Usually, we use the notation of zero-centred vectors, i.e. avector y is given by

y =
(

y−Ly, . . . , yLy

)⊤
, and thus the dimension isTy = 2Ly + 1. The notationyt refers

to the vector entry at dimensiont. This will be also denoted by(y)t, y(t) or simply yt.
For denoting a time varying vectorial quantity, the notation y[t] is used instead. Linear
operators in the form of matrices are indexed in a similar way, i.e. the entry in the
m-th row andn-th column is denoted asDm,n or (D)m,n, the indices being in the range
m, n = −L, . . . , L.

The discrete convolution between two vectorsx and y is denoted as
(x ∗ y)t =

∑

τ xτyτ−t. On the other hand, the discrete cross-correlation is defined by
(x ⋆ y)t =

∑

τ xτyτ+t. The length of the output vector is given byTx + Ty − 1. In the
case of multi-channel data, every channel is convoluted respectively cross-correlated
individually, and the outputs are added up.

For simplicity, in most chapters we will deal with single channel data only, i.e.
N = 1. This is only for notational convenience, and does not affect the generality of
the proposed methods. In fact, the formalism in the case of multi-channel data is very
similar to the single channel case, as the channels can be concatenated to a single vector
again, see e.g. [222, 168].
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FIR filters and their performance

FIR filters have the advantage of being stable (see Sec. 1.4.1). The requirement of sta-
bility is of particular importance, since all data acquiredby electrodes are noisy, and
therefore we will analyse only FIR filters. Usually FIR filters are used for band-pass fil-
tering which requires a design specified on the frequency response (which isH(z)|z=eiω in
Eq. 1.8) of the filter. In our case, however, we are rather interested in the filter response
in the time domain. This is because of the specific signal model shown in Eq. 1.1, as
every neuron exhibits a specific waveform to which the corresponding filter should re-
spond. In this chapter we formulate a general optimisation problem for FIR filters based
on thep-norm. As no universally optimal value forp seems to exist, we then focus on
the casep = 2. We propose a new class of filters in this case, which is a generalisation
of the existing ones. The issue how to evaluate the performance of a filter is discussed as
well, in particular a novel measure for simultaneous detection and arrival time estimation
is proposed.

2.1 p-norm filters

We assume that once the data are filtered with filterf j, a thresholdγ j is applied to the
outputyi, and presence of signalsi is declared whenevery j

t > γ
j . Therefore, considering

the spike sorting problem defined in Eq. 1.4 filterf j should have a well defined output
to its corresponding waveformq j , e.g. f j⊤ · q j = 1, which then allows for an easy
estimation of the sourcesj, and a low response to the other waveformsqi i , j as well
as to noise. Given the fact that Var

(

f j ⋆ n
)

= f j⊤ · C · f j =: σ2
f j
†, these requirements

can be formulated as the following optimisation problem:

f j = argmin
f j



































M
∑

i=1

β
p
i

∑

τ

|
(

li, j
)

τ
|p
















1/p

+ α f j⊤C f j



















subject tof j⊤ · q j = 1 (2.1)

†Using the definition of variance and the fact thatf ⋆ n is zero mean (since we assumedn
to be zero mean), one gets Var( f ⋆ n) = E

[

∑

t1 f (t1)n(t1 + τ) ·
∑

t2 f (t2)n(t2 + τ)
]

. By exchanging

the expectation operator with the summation, and again using the fact thatE [n(t)]2 = 0, one gets
∑

t1,t2 f (t1) f (t2)E [n(t1 + τ)n(t2 + τ)] = f ⊤ · C · f .

13
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whereli, j := qi ⋆ f j , α controls the amount of template versus noise suppression, theβi

determines how much thei-th template should be suppressed, andp is an integer. The
p-norm of ad-dimensional vectorx is defined as

||x||p :=

















d
∑

i=1

| (x)i |p
















1/p

, (2.2)

which allows to re-write above minimisation problem more compactly as

f j = argmin
f j

{

∣

∣

∣

∣

∣

∣ l̂ j
∣

∣

∣

∣

∣

∣

p
+ α · σ2

f j

}

subject to
(

q j ⋆ f j
)

0
= 1 (2.3)

wherel̂ j :=
(

β1l1, j , . . . , βM lM, j
)⊤

. In Eq. 2.3 all templatesqi, j as well as shifted ver-
sions of the corresponding templateq j are regarded as noise‡, and the overall response
to this ”noise” vectorl̂ j is suppressed. If it is desired to individually suppress every
template, the optimisation problem can be formulated as

f j = argmin
f j















M
∑

i=1

βi















∑

τ

|
(

li, j
)

τ
|p














1/p

+ α f j⊤C f j















subject tof j⊤ · q j = 1 (2.4)

or in a compact notation

f j = argmin
f j















M
∑

i=1

βi

∣

∣

∣

∣

∣

∣li, j
∣

∣

∣

∣

∣

∣

p
+ α · σ2

f j















subject to
(

q j ⋆ f j
)

0
= 1. (2.5)

The two optimisation problem, Eq. 2.3 and Eq. 2.5, are related to each other by the
triangle inequality (assuming thatβi ≥ 0 ∀i)

∣

∣

∣

∣

∣

∣ l̂
∣

∣

∣

∣

∣

∣

p ≤
∑

i

∣

∣

∣

∣

∣

∣βi · li, j
∣

∣

∣

∣

∣

∣

p =
∑

i

βi

∣

∣

∣

∣

∣

∣li, j
∣

∣

∣

∣

∣

∣

p . (2.6)

Also common to both optimisation problems is the fact that they are constrained convex
minimisation problems [19]. In general, an explicit closedform solution for f j is not
obtainable, however powerful numerical methods exist. Explicitly, we use thecvx tool-
box, see [72, 73], based on disciplined convex programming [74], to solve the mentioned
optimisation problems numerically.

2.1.1 Single waveform

Let us consider the special case when only a single waveform is present in the data.
Then, the filter optimisation problem is stated as

f j = argmin
f j

{

∣

∣

∣

∣

∣

∣M · l j, j
∣

∣

∣

∣

∣

∣

p
+ α f j⊤C f j

}

subject to
(

q j ⋆ f j
)

0
= 1, (2.7)

where we introduced the diagonal suppression matrixM with Mt,t = 1, if
(

q j ⋆ f j
)

t
should be suppressed, andMt,t = 0 otherwise‖. The formulation in Eq. 2.7 is still not

‡In order to exclude self-suppression one can setl j, j = 0.
‖Note that the matrixM is also defined symmetrically around zero, i.e. if

(

q j ⋆ f j
)

t
t = −L, . . . , L, then

alsoMt1,t2 t1 = −L, . . . , L, t2 = −L, . . . , L.



CHAPTER 2. FIR FILTERS AND THEIR PERFORMANCE 15

very practical, as it involves theα parameter. This makes it difficult to compare filters
obtained from different p-norms, as one would have to calculate the filters for allα
values and then choose the filter with the best performance. We alter the optimisation
problem in the following way

f j = argmin
f j

∣

∣

∣

∣

∣

∣M · l j, j
∣

∣

∣

∣

∣

∣

p
subject to



















(

q j ⋆ f j
)

0
= 1

f j⊤ · C · f j ≤ c
. (2.8)

In this formulation one seeks for a filter which has the optimal response to the waveform
q j under the constraint of an upper bound false alarm rate. Notethat the optimisation
problem is still convex, thus, can be solved with the same methods as described previ-
ously.

2.1.2 Performance criteria

The performance of a filter is assessed by its receiver operating characteristics (ROC)
curves and the corresponding area under the curves (AUC) [140, 54]. Since, according
to Eq. 2.8, all filters will have a bounded false alarm rate fornoise, we therefore focus
on the ability of the filters to suppress shifted versions of the waveform. If one allows
a tolerance of±∆ samples in the arrival time estimation, the probability of detection is
given by 1 minus the probability that the waveform is not detected within±∆, i.e.

PD = 1−
∆

∏

τ=−∆
Prob

[(

f j ⋆ r
)

τ
< γ j

]

, (2.9)

whereasr is a noisy data sample containing the waveformq j . Since we assumed Gaus-
sian zero mean noise, this is expressed as

PD = 1−
∆

∏

τ=−∆
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, (2.10)

where erf denotes the error function. Consequently, any detection of the waveform not
within ±∆ is classified as a false alarm (false positive detection) andthe corresponding
probability is given by

PFA = 1−
−∆+1
∏

τ=−L
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,

(2.11)

whereL denotes the length off j ⋆ q j . The AUC is then determined as the area under
the curve in thePFA-PD plane by varying systematically the thresholdγ j .

2.1.3 Results

The two template shown in Fig. 2.1 were used as waveforms. Filters were calculated for
all normsp = 1, . . . , 19, and for the uniform/Chebyshev norm given byp = ∞. The noise
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Figure 2.1:Waveform templates used in the filter optimisation problems.

covariance matrix was set toC = 0.5 · 1, and the noise constraint in Eq. 2.8 was set to
c = 0.5 in the case of waveform 1, andc = 0.75 in the case of waveform 2. The threshold
γ j was varied systematically from−3 up to+3 in steps of 0.025. The optimisation was
done with a suppression matrixMt,t = 0, t = −∆, . . . ,+∆, ∆ = 0, 1, . . . , 8, and all filters
had a length of 9 samples. The performance was evaluated by the criteria described in
Sec. 2.1.2. In particular, the performance of a filter obtained from minimisation with
a suppression matrixMt,t = 0, t = −∆, . . . ,+∆, was also evaluated with the same∆
for calculating the probability of detection and false alarm. The results in the case of
waveform 1 are shown in Fig. 2.2, whereas the results in the case of waveform 2 are
shown in Fig. 2.3.

From the two figures it is evident that no universalp exists. Rather the optimal norm
to choose depends on the waveform shape, the noise constraint and the extent to which
the waveform should be suppressed. The case when multiple waveform are present can
be analysed in a very similar way. In fact, as the noise variance is already bounded in the
optimisation problem Eq. 2.8, it is enough to add constraints on the suppression of non-
corresponding templates in order to guarantee a sufficient discrimination performance.
Explicitly, one would add the constraints

∣

∣

∣

∣

∣

∣qi ⋆ f j
∣

∣

∣

∣

∣

∣∞ ≤ ci , ∀i , j in order to suppress
the maximum false responses.

2.1.4 p-norm filters in literature

The design of filters based on convex optimisation criteria is not new. For example,
in [107] convex optimisation is used to design robust beamformers. The focus, however,
is only on the three casesp = 1, 2,∞. A more general work, i.e. not restricted to
antenna design requirements, is presented in [166], where convex optimisation is used
for designing FIR filters which have a frequency response as close as possible to a given
function (in the sense of the Chebyshev norm) under several constraints.

To our knowledge no work exists which systematically investigates the whole
spectrum ofp-norms in thetime domain. In [184] optimisation again only involves
p = 1, 2,∞ with linear and quadratic constraints, which can be solved using second-
order cone programming (this is a subclass of convex optimization). It is argued that
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Figure 2.2:Area under the ROC curves for different p-norm filters and suppression matrices. The results were
obtained in the case of waveform 1, see Fig. 2.1. The red line indicates the performance when p = ∞.

a generalp-norm can be approximated by a combination of those three norms, which
gives motivation to use these norms instead of a generalp-norm. However, the problem
formulation is done in the frequency domain of the FIR filter response.

In [118] an unconstrained minimisation problem in the frequency domain of a FIR
filter is formulated. A large, evenp-norm is used in order to approximate the Cheby-
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Figure 2.3:Area under the ROC curves for different p-norm filters and suppression matrices. The results were
obtained in the case of waveform 2, see Fig. 2.1. The red line indicates the performance when p = ∞.

shev norm. The advantage of using an evenp and not directlyp = ∞ is that the cost
function stays differentiable, so a gradient based approach can be used for solving the
optimization problem.

In [192] also an unconstrained minimisation problem involving the frequency re-
sponse of a FIR filter is formulated, but anyp-norm is allowed.

In [151] a filter design framework is introduced, which allows to design FIR filters
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in the frequency domain as well as time domain based on the Chebyshev norm. In
particular, envelope-constrained filters can be obtained.

As a matter of fact, envelope-constrained filters, as introduced in [53], might be a
better design choice than the time domainp-norm filters introduced in Sec. 2.1.1 when a
specific time domain filter response is desired. The corresponding optimisation problem
is given by

f j = argmin
f j

f j⊤C f j subject to g(τ) ≤
(

q j ⋆ f j
)

τ
≤ h(τ) ∀τ, (2.12)

whereg(τ), h(τ) are arbitrary functions. As it is shown in [53], this is again a convex
optimisation problem with linear constraints. Adaptive algorithms for this class of filters
exist as well [221].

Matched filter ( p = 2)

The case ofp = 2 received particular attention in the literature due to twomain rea-
sons. Firstly, the optimisation problem given by Eq. 2.7 hasan analytic solution, and,
secondly, the resulting filter, most often called ”matched filter”, is optimal in the sense
that it is the best possible linear transformation fordetectingsignal presence [98]. In the
following section, thus, we focus on the casep = 2, but consider not sole detection, but
simultaneous detection and arrival time estimation.

2.2 Convolutive filters for detection and arrival time esti-
mation

For detection of signals in single data samples corrupted byGaussian noise, linear fil-
ters, in particular the adaptive matched filter (AMF), have been proven to be powerful.
Their performance is measured with respect to the probability of detection and of false
alarm; see [94] for a performance analysis of the AMF and other filters. The AMF has
been applied amongst others in radar and antenna systems [138]. In other applications,
however, the incoming data stream does not consist of a few data samples, but of a con-
tinuous data stream, whereas the signal is present only in a few of the samples (transient
signals). In this case, the signal must not only be detected,but also its arrival time must
be estimated.

The research field of optimal simultaneous detection and estimation has been mainly
initiated by the work presented in [141]. Based on this theory some detectors were de-
veloped [10, 58, 150], but most of these approaches rely on order statistics. In the work
of [58], however, the authors mention, that especially in the case of long waveforms,
linear convolutive filters∗ prove to be superior to order statistics. Moreover, linear con-
volutive filters are computationally much more efficient, and thus, more suitable for
real-time applications than order statistics.

This raises the question of which detectors should be used for the mentioned task,
and how their performance should be compared. In this chapter we focus in particular

∗By convolutive filters we mean that the detection has to be made in continuous data, i.e.f ⋆ x, and
not just in single snapshots as in Chap. 3, i.e.f⊤ · x.
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on the performance of linear filters, since they are easy to implement and are optimal in
the class of linear transformations [210]. Although the performance of various detectors
for transient signals was compared, see [61, 165, 226], these studies compared only the
detection performance and linear convolutive filters were rarely used for comparison.

Linear convolutive filters, in the following abbreviated simply by the term linear
filters, are a convenient approach for the task of simultaneous detection and arrival time
estimation of transient signals, and, thanks to their computational efficiency, suitable for
real-time applications. For example, they are used for extracting information from bio-
medical data [240, 204, 223], in speech processing (see [160] for a survey), in image
restoration or in spatial beamforming; just to name a few fields of application.
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Figure 2.4:Illustration of the advantage of having a continuous performance measure. The black curves rep-
resent two possible filter responses to a particular waveform whose arrival time is at 0. Clearly, filter 2 predicts the
arrival time more accurately than filter 1. However, just using the performance criterion presented Sec. 2.1.2 based
on a tolerance zone (indicated by the red lines), both filters could achieve the same score.

However, to the knowledge of the author, no work exists to date which would pro-
pose a measure assigning a performance to detectors with respect to their ability of
simultaneously detecting the presence as well as estimating the arrival time of transient
signals. The method presented in Sec. 2.1.2 by introducing atolerance zone is one possi-
bility. There, any threshold-crossing inside this zone is regarded as signal detection and
correct arrival time estimation, thus counted as a true positive detection. From a prac-
tical point of view, the use of a tolerance zone is reasonable. Depending on the desired
accuracy, the user can chose an appropriate and task specificwidth of this zone. From a
theoretic point of view, however, this approach is not fullysatisfying. The filter response
within the tolerance zone is not considered, and for more general problems, no well mo-
tivated zone width might be defined, which makes any particular choice of it artificial
and arbitrary; see also Fig. 2.4. Instead, one would like to have acontinuousmeasure
indicating how well a filter performs in terms of simultaneous detection and arrival time
estimation.

The remainder of this chapter is organised as follows: In Sec. 2.2.1 the general
optimization problem in the case ofp = 2 (see Sec. 2.1.1) is presented to which the
linear filters are the solution. By modifying the optimisation criteria, a new class of
linear filters is derived. In Sec. 2.2.1 a measure of performance of detectors with respect
to simultaneous detection and arrival time estimation is presented. In Sec. 2.2.2 different
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linear filters are compared with respect to this measure. Theresults from simulations
in Sec. 2.2.2 agree with the theoretical findings and demonstrate the usefulness of these
new filters and of the performance measure. The work is summarised and discussed in
Sec. 2.2.4 and a brief outlook on further research directions is given.

2.2.1 Methods

Notation

For the representation of vectors, convolution or cross-correlation, we use the same no-
tation as in Sec. 1.5. The symbolδy(x) denotes the usual Kronecker delta function, i.e.
δy(x) = 1, if x = y, andδy(x) = 0 otherwise.

The notion of variance is slightly abused by attributing thevariance to a probabil-
ity density function (pdf)f (x) rather than to a random variableX, i.e. for a discrete
probability density

Varf (x) := Varf (x)(X) =
∑

x

x2 f (x) −














∑

x

x f(x)















2

. (2.13)

Linear convolutive filters

The measured dataxt is a continuously sampled data stream which is a linear mixture of
a signal source and a noise sourcent. The signal is assumed to be sparse, i.e. consisting
only of a short waveformq at specific times. Formally, the data generating process is
written as∗

xt =
∑

τ

qτst−τ + nt. (2.14)

The point processst defines the times at which the waveformq is present, and can be
modelled for example by a Bernoulli process. The noisent is assumed to be Gaussian,
with zero mean and covariance matrixC (not necessarily white). It is assumed that the
amplitude distribution ofst as well as ofq does not change in time, hence, only the
presence of the waveform and its arrival time has to be detected, but not its amplitude
scaling. Further, it is assumed that the signal waveformq and the noise covariance
matrix C are known.

A perfect detector should retrieve the underlying point processst, as, in this case, all
signals were detected and all arrival times estimated correctly. In the following, the focus
will be on detectors in the class of linear filters which minimise the quadratic response to
the data, combined with a pointwise thresholding of the filter output. This class of filters
has the advantage of having an analytical expression, whichallows for fast calculation
(see Sec. 2.1 for other classes of linear filters). The optimisation problem for this kind
of filters is stated as follows‖:

∗For the sake of clarity and of simplicity, the analysis will be restricted to the case of single channel
data. The entire method can be extended to multi-channel data in a straightforward manner.

‖Since the square root function is monotonic, we can drop it from the optimisation problem as compared
to Eq. 2.7.



CHAPTER 2. FIR FILTERS AND THEIR PERFORMANCE 22

f = argmin
f

{

|l|2 + α f⊤C f
}

subject tof⊤ · q = 1 (2.15)

where l is the filter response to the waveformq, i.e. l := f ⋆ q. The optimisation cri-
teria can be understood intuitively: The first term demands response of the filter to the
waveform to be minimal, except for the correct arrival time,in which case the filter
should respond with a well defined response of 1 (which is ensured by the optimi-
sation constraint). The response of the filter to noise segments should be minimal as
well. Since the noise was assumed to be Gaussian and zero mean, one has to minimise
Var( f ⋆ n) = f⊤C f (see Sec. 2.1). Theα parameter varies the ratio between minimisa-
tion of the filter response to the signal and to noise‡.

The solution to the problem in Eq. 2.15 is given by

f =
H−1q

q⊤H−1q
(2.16)

where the matrixH is given byH := Ξ + αC, and(Ξ)k,l := (q ⋆ q)k−l , see e.g. [222].
In the limit of α→ ∞, the filter reduces tof = C−1q/

(

q⊤C−1q
)

, which is the mini-
mum variance distortionless response (MVDR) beamformer, which is equivalent to the
(adaptive) matched filter (AMF), see [177]†, also called Capone beamformer [210, 13].
This detector will be referred to as the “no suppression filter”.

On the other hand, for a particular choice ofα proportional to the occurrence fre-
quency of the transient signal, the minimum power distortionless response (MPDR)
beamformer is obtained [210]. Namely, in standard literature it is (using the conven-
tion of Sec. 1.5) Cov (x) = Cov (s ∗ q) + Cov (n) =

(

σ2
s + 〈s〉2

)

· Ξ + C, and comparing

this to the definition ofH, this leads toα = 1/
(

σ2
s + 〈s〉2

)

, see e.g. [216], where〈·〉
denotes the mean. This detector will be referred to as the “full suppression filter”.

The original optimisation problem in Eq. 2.15 will be generalised in two ways:
1) Variable suppression matrix: Instead of either full suppression of the signal or no

suppression at all, one can demand to suppress only specific shifts t of the waveform.
In this casel is replaced byM · l, where the suppression matrixM is a diagonal matrix
with Mt,t = 1 if the shift( f ⋆ q)t should be suppressed, andMt,t = 0 otherwise.

2) Variable target function: In the original optimisation problem the response of the
filter to the template had to be minimal, i.e. the least squaredistance to zero. Instead,
one can minimise the distance to an arbitrary functiong, which is expressed by the
substitution ofl with g − l.

Combining both variations 1) and 2) this leads to a modified optimisation problem
stated as

f = argmin
f

{

|g − M · l|2 + α f⊤C f
}

s.t. f⊤ · q = 1. (2.17)

The solution to this modified optimization problem can stillbe obtained analytically.
‡Note that a explicit weighting of the template suppression and noise suppression term is rarely used

in standard literature, but was for example used in [222, 224].
†Note that in [177] the filters were obtained under the constraint f⊤C f = 1 instead, however, in terms

of detection performance the filters are equivalent. Also, we will still refer to this filter as theadaptive
matched filter, even if theexactnoise covariance matrix is known.
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Proposition 2.1. The solution to the optimisation problem stated in Eq. 2.17 is given by

f =
(

G−1 − G−1qq⊤G−1

q⊤G−1q

)

· (g ⋆ q)[−Lq,Lq] +
G−1q

q⊤G−1q
(2.18)

whereG := Ξ̃ + αC, andΞ̃k,l :=
∑

τ

(

Mτ,τ
)2 qk+τql+τ, and2Lq+1 being the dimension of

vectorq (see Sec. 1.5).

The proof is given in Sec. 2.2.5. Ifg = 0 or gt = δ0(t) the first term in Eq. 2.18
disappears. Furthermore, if the suppression matrixM is the identity matrix,M = 1, the
original formula in Eq. 2.16 is obtained, whereas forM being the zero matrix,M = 0,
the no suppression filter is obtained; thus the filters in Eq. 2.18 constitute a generalisation
of the existing filter design.

Performance measure

The processing flow of a detector consists of two consecutivesteps: filtering, and an
application of a thresholdγ to the filter output. Hence, it is desired that after these
two steps, the underlying point processst in Eq. 2.14 is obtained. If one achieves the
correct estimation of this point process, the signal has been detected and the arrival times
retrieved successfully.

Since a signal consisting of a unique waveform without amplitude variations was
assumed, one can restrict itself to the analysis of detection and arrival time estimation
of the waveform itself. Therefore, the output of a perfect detector D must always be
D(q + n) = δ0(t). As such, the perfect detector reconstructs the original point processst

for all possible thresholds. Hence, one would like to have a measurewhich indicates the
closeness of a detector output to theδ0(t) function. In contrast, the classical performance
measure, which is the probability of detectionPD (see e.g. [94]), only indicates whether
the waveform was detected at all, but does not measure the closeness of the detection
probability to the correct arrival time.

Based on these observations, the following measure of performancePDE (for a fixed,
but arbitrary thresholdγ) for combined detection and arrival time estimation is proposed:

PDE :=
Var1/2(p̄(t)+δ0(t)) −Var1/2(p(t)+δ0(x))

Var1/2(p̄(t)+δ0(t))
(2.19)

wherep̄(t) is a pdf for which Var1/2(p(t)+δ0(x)) is maximal, i.e.

p̄(t) := argmax
p(t)

{

Var1/2(p(t)+δ0(t))

}

.

The functionp(t) is a detector dependent pdf which is at each pointt in time proportional
to the probability that the filter output is above the threshold γ, i.e.

p(t) :=
PD(t)

∑

t PD(t)
(2.20)

wherePD(t) is the classical probability of detection. In the case of linear filters, one
hasPD(t) = Prob[( f ⋆ (q + n))t ≥ γ]. The motivation for this definition of performance
measurePDE will be discussed in Sec. 2.2.3.

Two important properties ofPDE are stated in the following propositions.
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Proposition 2.2. In the case of a discrete pdf defined on the interval[−a, a], PDE is
given by

PDE = 1− 2

a2
Var1/2(p(t)+δ0(t)) . (2.21)

The proof is given in Sec. 2.2.5. In contrast to Eq. 2.19, the expression in Eq. 2.21
no longer depends on the unknown quantity ¯p(t), and thus, allows for calculation of the
performance measure in real applications.

Proposition 2.3. PDE takes values in the interval[0, 1]. The maximum value of1 is
attained if and only if p(t) = δ0(t).

The proof is given in Sec. 2.2.5. This last proposition establishes bounds on the
range in which the values ofPDE fall. A value close to 1 indicates a good performance,
whereas a value close to 0 indicates a poor performance of thedetector. Moreover, it
states that only the perfect detector can achieve the best possible performance.

As in the calculation of the quantityp(t) a normalisation is involved in order to
obtain a pdf (see Eq. 2.20), even a single small value exceeding the threshold will be
normalised to a pdf. If the threshold is increased towards infinity, the measure might
indicate a better and better performance, although the realprobability of detection will
become arbitrarily small. Hence, in contrast to the classical measures, one has to restrict
the range of possible thresholds. A reasonable choice is to set γmax = maxt

{

( f ⋆ q)t
}

,
andγmin = E[ f ⋆ n]. The upper threshold is justified by the fact that in the noise-free
case, a threshold greater than the maximal value of the filterresponse to the waveform
would lead to zero detections. The lower bound of the threshold is also justified, since a
threshold below the average response to a noise segment would always lead to detection
of the signal, except when the detector is meaningless.

2.2.2 Results

Numerical evaluation

The measure in Eq. 2.21 indicates the performance of a filter for onefixed (but arbitrary)
thresholdγ. In order to assign anoverall performance to a detector, however, a total
measure is needed. As such, slightly modified receiver operating characteristics (ROC)
and the area under these ROC curves (AUC) were used. Thex-axis of the ROC curve
corresponded to the probability of false alarmPFA [94], i.e. the probability that a data
segment containing only noise will be incorrectly detectedas signal. Instead ofPD, the
y-axis corresponded to the proposedPDE measure. According to the properties ofPDE in
Sec. 2.2.1, a larger value of the AUC indicates a better performance of the corresponding
filter.

In this evaluation setting, three different linear filters were compared, namely the no
suppression filter, the full suppression filter and a particular case of the proposed filter
class. The waveform of the signal had a length ofTq = 7, whereas the noise covariance
matrix was set toC = 0.025· 1, resulting in a SNR of 14.0 db.
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Figure 2.5:AUC of various filters for different α values. The partial suppression filter was calculated by Eq. 2.18
in which the target function was set to gt = δ0(t), ∀t ∈ [−6, 6] and the diagonal matrix entries of M were set such
that M−1,−1 = M0,0 = M1,1 = 0, and Mt,t = 1 ∀t < {−1, 0, 1}. This proposed filter achieved the highest AUC score.
The optimal performance for the partial suppression filter was achieved at α = 20.220, for the full suppression filter
at α = 63.685, whereas, by construction, the no suppression filters had constant performance for all α values.

In the case of zero mean Gaussian noise the probability of detection is given by the
expression

PD(t) = 0.5 ·
(

1− erf

(

γ−l(t)√
2· f⊤C f

))

,

where erf(x) denotes the standard error function, andl(t) = ( f ⋆ q)t. PFA is ob-
tained byPFA = PD(l(t) = 0). PDE was then calculated according to Eq. 2.21 with
a = 0.5 ·

(

T f⋆q − 1
)

= 6.
For a linear filter, the average response to zero mean noise iszero, i.e.E[ f ⋆ n] = 0.

It turned out that for this particular evaluation setting one has maxt
{

( f ⋆ q)t
}

= 1 for all
considered filters. Hence, the thresholdγ was varied in the interval [0, 1] (in steps of
0.002).

Recall, that the linear filters depended on the trade-off parameterα, see Eq. 2.16 and
Eq. 2.18. The AUC was computed for allα values starting fromα = 0 in steps of 0.005
up to a value for which the performance started to converge tothe performance of the no
suppression filter; see Sec. 2.2.1 for explanation. The results are shown in Fig. 2.5.

Although the filters attain their best performance at differentα values (see Fig. 2.5),
the proposed filter, called partial suppression filter, achieved the highest AUC.

Simulations

The results from the previous section based on the proposed performance measure in-
dicate that partial suppression filters are advantageous incomparison to the full and no
suppression filters. To verify this result in a realistic setting, Monte Carlo simulations
were performed. In particular, a single simulation consisted of a data stream containing
1000 signal segments and twice as many noise segments. The identical waveform and
also the same noise statistics as the ones described in the previous section were used.
The implementation was realised in MATLABr.
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Figure 2.6:ROC curves for various filters based on a single simulation. The number of true positive detections
was normalised by the total number of signal segments, whereas the number of false positive detections was
normalised by the total number of data segments. Clearly, the proposed partial suppression filter outperforms the
other filters.

For performance comparison the previously calculated filters were used, with theα
parameter set at the specific values for which the respectivefilter achieved best perfor-
mance (see Fig. 2.5).

As scope the area of real-time applications was chosen. In such a setting, at time
t0 only dataxt from precedent timest ≤ t0 are available. Nevertheless, the decision
about signal presence has to be made already at timet0. Consequently, every threshold
crossing is immediately accounted for a signal presence, and every detection, which does
not correspond to the exact signal arrival time, is counted as a false positive detection
(FP). Accordingly, only successful detections at the exactarrival time of a signal are
counted as true positive detections (TP). By varying the threshold (in steps of 0.0025)
the corresponding ROC curves were obtained, see Fig. 2.6.

For the assessment of the overall performance, the AUC was computed and con-
sidered only up to the smallest (common for all filters) relative FP value for which
rel. TP= 1, in order to avoid redundant computations. The AUCs of all filters aver-
aged over 10 independent simulations are shown in Tab. 2.1, and the variance across the
simulations was of the order of 10−7.

The partial suppression filter achieved the best score, followed by the full suppres-
sion filter and lastly the no suppression filter. This is the same ranking as predicted
in Sec. 2.2.2 byPDE. In contrast, the classical performance measurePD/PFA would
not have predicted the correct ranking:PD = Prob[f⊤ · (q + n) ≥ γ] is largest for the no
suppression filter and smallest for the full suppression filter (and vice-versa forPFA).

Table 2.1:Average AUC for various filters.

Partial Full No

av. AUC 0.396487 0.395009 0.392696
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2.2.3 Discussion

The trick was to re-normalise the detector output to a pdf, sothat it then can be com-
pared to the output of the perfect detector for all thresholds. The performance measure
we chose for comparing the pdfs was motivated by Var1/2(p1(x)+p2(x)) −Varp2(x), which
indicates the difference in variances of the summed pdf and the desired pdf. Since, how-
ever, p2(x) = δ0(x) in our case, the second term vanishes. Note that Varp1(x) −Varp2(x)

would not be good definition, sincep1(x) and p2(x) might have very similar variances,
but their peaks might be very far apart, thus predicting the arrival time at very distinct
time points.

Of course, there are already many well established measuresto compare two proba-
bility distributions. In the following, we shortly discusswhy most of them are not well
suited for the problem we are interested in.

The symmetrised Kullback-Leibler and the Jensen-Shannon divergence, for exam-
ple, can produce infinite values, as divisions by zero might occur. In our filter setting
this might indeed happen when we assume a noise-free setting.

The Hellinger distance in the case of one distribution beinga Kronecker delta re-
duces to

H2 = 1/2
∑

x

(√

δ0(x) −
√

p1(x)
)2
= 1/2

∑

x

(

p1(x) + δ0(x) − 2
√

δ0(x)
√

p1(x)
)

= 1/2
(

1+ 1− 2
√

p1(0)
)

= 1−
√

p1(0).

Hence, only a single value, namelyp1(0) is considered, which spoils the whole idea
of comparing probability density functions. The same is true for the Bhattacharyya
distance.

On the other hand, the Bregman divergence is very general, and it is not clear which
specific convex function should be used in its definition.

Also, the used measures in communications, such as the maximum distortion or
intersymbol-interference (see e.g. [189]), do not consider the shape of the distribution of
the filter response, but only the difference between the largest filter output value and its
energy.

One promising distance measure might be the Vasershtein metric, also called earth
mover’s distance. Recently, this metric has indeed been applied to measure the per-
formance of filters [185], and it should be investigated if this could be applied for the
detection/estimation problem as well.

2.2.4 Conclusion

To sum up, a measure was proposed which assigns a performanceto a detector with
respect to simultaneous detection and arrival time estimation of transient signals. Al-
though the proposed measure is general and suitable for mostdetectors, the detector
class of linear filters is of particular interest. We startedto analyse filters as the solution
of a general optimisation problem involving an arbitraryp-norm, but then focused on the
casep = 2 which allows for an analytic solution. In this popular sub-class of minimal
quadratic response filters, the existing filters were modified by introducing a suppression
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matrix and a target function. The proposed filters have the advantage of still being ana-
lytically computable, but offer more flexibility than the existing filters. The widely used
minimum variance distortionless response beamformer, theCapone filter and the mini-
mum power distortionless response beamformer are all particular realisations within the
proposed filter class.

In fact, the target function introduced in our filter class can be used for adjusting the
smoothness of the filter response. This might be helpful in cases when the post process-
ing consists not just of a pointwise thresholding, but of a more complex operation; e.g.
when the data contains more than one signal source and a simultaneous detection and
classification task has to be performed.

On the other hand, the suppression matrix allows for the selective suppression of
specific filter responses. This can be useful for incorporating prior knowledge about the
signal into the filter design, as for example a refractory period or dead time.

Using the proposed measure, two existing filters (AMF/MVDR and MPDR) were
compared with a particular filter of the just proposed filter class. The measure indicated
a favourable performance for the proposed filter, which was confirmed in simulations.
In particular, the proposed filter was superior in a real-time detection and arrival time es-
timation task. This shows that the defined performance measure as well as the proposed
filters are useful and advantageous.

In the performed evaluation the target function and the suppression matrix were set
manually. As an outlook for further investigations one might think of an online adaption
scheme: The filtering is started with the classical adaptivematched filter, while in the
background an optimisation problem is solved, which aims atfinding an optimal target
function and suppression matrix. Once such a solution is found, the filter is adapted
accordingly.

2.2.5 Proofs

Proof of proposition 2.1

The objective function of the optimisation problem in Eq. 2.17 is convex and since the
optimisation constraint is linear, one can use the Lagrangemultiplier method for solving
it. The corresponding LagrangianL is given by

L = |g − M · l|2 + α f⊤C f + λ
(

f⊤q − 1
)

whereλ is the Lagrange multiplier. The derivatives with respect tof and λ can be
calculated as

δL
δ fti
= 2















∑

τ

Mτ,τqti+τ

∑

t

Mτ,τqt+τ ft − gτMτ,τqti+τ















+ 2α
∑

t

Cti ,t ft + λqti

δL
δλ
=















∑

t

qt ft















− 1

The calculation of the second derivatives leads to
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δL
δ ftiδ ftI

= 2
∑

τ

M2
τ,τqti+τqtI+τ + 2 · α · Cti ,tI

δL
δλδλ

= 0
δL
δ ftiδλ

= qti

The second derivatives ofL are independent off and ofλ. Therefore, the Taylor
expansion of the first derivative ofL around zero consists only of two terms and the
solution can be obtained by solving













0
0













=















δL
δ fti
δL
δλ















=















δL
δ fti
δL
δλ















fti=0,λ=0

+





















∑

tI
δL
δ fti δ ftI fti=0,λ=0

· ftI
∑

tI
δL
δλδ ftI fti=0,λ=0

· ftI





















+



















δL
δ fti δλ fti=0,λ=0

· λ
δL
δλδλ fti=0,λ=0 · λ



















.

In matrix notation, the above equation becomes

0 =













−2(g ⋆ q)[−Lq,Lq]

−1













+ H̃ ·












f
λ













(2.22)

where one defined

(g ⋆ q)[−Lq,Lq] :=
(

(g ⋆ q)−Lq
, . . . , (g ⋆ q)Lq

)⊤

and

H̃ :=















2
(

Ξ̃ + α · C
)

, q

q⊤, 0















and
(

Ξ̃

)

k,l
:=

∑

τm2
τ,τqk+τql+τ.

DefineG := Ξ̃ + αC. The inverse ofH̃ is then given by [122]

H̃−1 =





















1
2

(

G−1 − G−1qq⊤G−1

q⊤G−1q

)

G−1q
q⊤G−1q

q⊤G−1

q⊤G−1q − 2
q⊤G−1q





















The left multiplication of Eq. 2.22 with̃H−1 yields the solution forf , which is given
by

f =
(

G−1 − G−1qq⊤G−1

q⊤G−1q

)

(g ⋆ q)[−Lq,Lq] +
G−1q

q⊤G−1q

�

Proof of proposition 2.2

If one can show that Var1/2(p̄(x)+δ0(x)) = a2/2, the proposition simply follows from
Eq. 2.19. It is

Var1/2(p(x)+δ0(x)) = Var1/2p(x) +Var1/2δ0(x) = Var1/2p(x) .

Strictly speaking 1/2p(x) is not a pdf, but Var1/2p(x) is still defined as in Eq. 2.13.
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It is

Var1/2p(x) =
∑

x

x2 · 1/2p(x) −














∑

x

x · 1/2p(x)















2

≤ 1/2
∑

x

x2p(x) = 1/2 Varq(x),

whereq is a pdf of a discrete random variable with zero mean. The variance ofanypdf
q(x) on the interval [−a, a] is bounded bya2 [3]. Hence, Var1/2p(x) ≤ a2/2.

Now, one can show that this upper bound is attained. Define ¯p(x) = 1/2(δ−a(x) +
δa(x)). Then, a straightforward calculation yields Var1/2(p̄(x)+δ0(x)) = a2/2. �

Proof of proposition 2.3

It was already shown in the proof of proposition 2.2 that the lower bound is attained. It
remains to show that the upper bound is attained, i.e. that Var1/2(p(x)+δ0(x)) = 0⇔ p(x) =
δ0(x).

“⇐”: Varδ0(x) = 02 · 1− (0 · 1)2 = 0.
“⇒”: Let q(x) be an arbitrary pdf. Without loss of generality, one can assume that

q(x) is zero mean. Hence, 0= Varq(x) =
∑

x x2q(x), so q(x) = 0 ∀x , 0. Since it
must be that

∑

x q(x) = 1, it follows thatq(0) = 1, i.e. q(x) = δ0(x). By plugging in
q(x) = 1/2(p(x) + δ0(x)) = δ0(x), it follows that p(x) = δ0(x). �



Chapter 3

Steering vector mismatch
analysis and adaptation scheme

In many filter applications the exact steering vector is not know, and thus, robust beam-
forming methods have to be used. In this chapter, an algorithm which achieves robust
beamforming via target tracking is proposed. In contrast toexisting approaches, the
algorithm works on sparse signals with arbitrary steering vector shapes, and the param-
eters of the algorithm are adapted in an optimal way. This is achieved by deriving and
evaluating the probability of detection and false alarm forgeneral steering vector mis-
matches. These probabilities are used to adjust the parameters, such that the number of
false positive and false negative detections is minimal. Simulations confirm the theoretic
results and show that the algorithm performs better than a generic approach.

3.1 Introduction and problem formulation

Let us assume a simplified model of Eq. 1.1 in the sense that only a single, spatial
waveform is present in the data:

x[t] = q̄ · s[t] + n[t], (3.1)

whereq̄ ∗is the steering vector (see Sec. 1.2.1),s is the source signal andn is a noise vec-
tor sampled from a stationary, zero mean Gaussian distribution with covariance matrix
C, i.e n ∼ N(0,C). The notation using angular brackets, e.g.x[t], indicates a vectorial
quantity at timet, in contrast tox(t) which denotes the vector entry at dimensiont (as e.g.
in Chap 2). The observation vectorx[t] at time t, also called snapshot, has dimension
N × 1. We assume that used filters for detection are of the form

f =
H · p̄

p̄⊤ · H · p̄
, (3.2)

and a signal is declared as detected when the filter output exceeds a certain thresholdγ,
i.e. f⊤ · x[t] ≥ γ.

∗In this chapter we write ¯q to denote the deterministic waveform asq will indicate a random variable.

31
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The expression in Eq. 3.2 covers the MVDR, MPDR∗ and general diagonal loading
filters [48]. We refer to ¯q as the actual steering vector and to ¯p as the nominal steering
vector. In order to maximise the detection performance it isdesired that ¯p = q̄, other-
wise one has a, so called, steering vector mismatch. Since ingeneral, however, the true
steering vector is not known a priori, it has to be estimated from the data, which usually
implies thatp̄ , q̄.

The field of robust beamforming emerged with the aim of designing filters which
deliver acceptable detection performances even under steering vector mismatches [66].
Most of these approaches assume a model, either deterministic, or more recently, prob-
abilistic, describing the steering vector mismatch and include this model into the opti-
mization problem for the filter. This approach works well when the steering vector error
is relatively small and stays constant over time. However, the actual steering vector
might represent a target which is moving in space, as for example in the case of radar
applications. Hence, it is ¯q = q̄[t] and, since the future trajectory of the target is not
known, the mismatch between ¯p and q̄ can become arbitrarily large if ¯p is not adapted.

Besides many other fields in which linear filters are used, such as digital communi-
cations systems or speech enhancement, they have been applied to biosignals. In par-
ticular, they are used for processing electrophysiological recordings from electrodes,
either as a spike detection [102, 204] or a spike sorting technique (see literature in
Chap. 4). In this case, the spatial model in Eq. 3.1 is adaptedto a temporal model
x(t) =

∑

τ q̄(τ)s(t − τ) + n(t), q̄ representing the waveform of the action potential, and
s(t) being the neuronal firing sequence. Due to tissue relaxation the distance between
the electrode and the neuron is changing over time, which leads to an altered observed
waveform of the action potentials [21]. The above mentionedspike detection and sorting
methods, all of which are relying on filters shown in Eq. 3.2, will suffer from perfor-
mance degradation since no robust beamforming methods wereused.

To our knowledge there are only few methods which try to achieve robust beamform-
ing by tracking, i.e. by adapting the nominal steering vector according to the changes of
the actual steering vector. In [2] an adaptation scheme for the nominal steering vector
based on the generalized sidelobe canceller algorithm is proposed. However, the noise is
assumed to be white and an optimal adaptation rate is said to exist only in the case when
the actual steering vector is not arbitrary but depends juston a single parameter, namely,
the direction of arrival. This makes the algorithm unsuitable for applications where the
steering vector cannot be represented by some simple underlying model.

A similar scheme is presented in [63]. In that study, the noise can be colored, but the
adaptation rates of the filter and the nominal steering vector are fixed. An algorithm for
obtaining optimal adaptation, which would naturally depend on the system parameters,
such as the target velocity, was not presented.

In [50] another adaptation scheme for updating the filter is proposed. However, only
changes in the covariance of the noise are considered but notany changes in the steering
vector. Moreover, the adaption scheme depends on several parameters which must be
set manually.

In [207] a very high signal-to-noise ratio is assumed, and therefore a noise model

∗See Sec. 2.2.1 for a derivation of these filters.
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is not taken into account at all. Further, a specific physicalmodel of the change of the
actual steering is assumed, making the method unsuitable for more general changes.

In this contribution we consider measured datax in which the source signals is
present only at few specific times (sparse signal). This means thats is not a continuous
process, but rather a sparse Bernoulli process. The former was assumed in [63] and im-
plies that the steering vector is present in every measured snapshot. As a consequence
of the sparseness, the nominal steering vector can only be adapted after a successful
detection and not after every snapshot. To name a few examples, sparse signals are en-
countered in the aforementioned electrophysiological recordings or in geophysics [30].

In Sec. 3.2.1 the performance of a linear detector in the caseof steering vector mis-
match is derived. This result is used in Sec. 3.2.2 to proposean optimal adaptation
scheme of the nominal steering vector which leads to robust beamforming via target
tracking. Simulations in Sec. 3.3 show the effectiveness of this approach, and conclusive
remarks are given in Sec. 3.5.

3.2 Method

3.2.1 Performance analysis under steering vector mismatch

In order to derive anoptimaladaptation scheme, one has to understand how the perfor-
mance of a detector depends on a steering vector mismatch. Asperformance measure
we use the probability of detectionPD and false alarmPFA. These two probabilities
translate directly into the number of true positive and the number of false positive detec-
tions, which is a meaningful performance measure for detectors of sparse signals.PD is
defined by

PD := Prob[f⊤ · q ≥ γ] = Prob

[

p⊤H⊤ · q
p⊤Hp

≥ γ
]

. (3.3)

The random variableq is a noisy observation of the actual steering vector and, according
to the model in Eq. 3.1, distributed asq ∼ N(q̄,C). Since the nominal steering vector
will be based on an estimation from noisy data,p is also a random variable and is as-
sumed to be distributed asp ∼ N( p̄, D) (in generalD , C).

In the case of the MVDR beamformer, we haveH = C−1, whereas in the case of the
MPDR beamformer,H = (Cov(x))−1. Also for diagonal loading filters,H is in general
positive semi-definite or positive definite, and symmetric.We suppose thatH can be
estimated on the basis of a large amount of samples. Therefore, it is justified to assume
that the estimate ofH is so accurate that there is no mismatch between the estimateand
the true covariance, and its distribution can be neglected.Summarising, the probability
of detection is given by

PD = 1− cdfγ

(

p⊤Hq
p⊤Hp

)

, (3.4)

where the notation cdfa(z) := Prob[z≤ a] is used. The probability of false alarmPFA is
obtained by setting ¯q = 0 in Eq. 3.4. Hence, one has to obtain the cumulative distribution
function of a ratio of quadratic forms of Gaussian random variables in order to analyse
the performance of the desired detectors.
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The expression in Eq. 3.4 can be simplified by definingr :=
(

p⊤, q⊤
)⊤. Then,r is

distributed asr ∼ N(r̄,G), where r̄ :=
(

p̄⊤, q̄⊤
)⊤ andG :=













D E
E C
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



, whereE denotes

the covariance betweenp andq. This definition allows to rewrite the random variable in
Eq. 3.4 as

p⊤Hq
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=

r⊤
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r

=
r̃⊤Ar̃
r̃⊤Br̃

, (3.5)

wherer̃ ∼ N(G−1/2 · r̄, 1), A := G1/2⊤ ·












0 H
0 0













· G1/2, andB := G1/2⊤ ·












H 0
0 0













· G1/2,

whereG1/2 denotes the unique non-negative square root ofG.
The distribution of the ratio on the right hand side of Eq. 3.5has been analysed for

a long time, since it is of importance in econometrics and statistics [60]†. The analysis
is mainly focused on cases whereA is symmetric andB is positive semi-definite or
positive definite. In the definition above,A is not symmetric. However, we can replace
A by the symmetrised version of it̃A := 1/2 · (A + A⊤

)

, since it isz⊤Az = z⊤A⊤ z for
any square matrixA and any vectorz, thus z⊤ Ãz = z⊤Az. SinceG is positive definite
(it is a covariance matrix) it follows thatB is positive semi-definite ifH is positive
semi-definite. In the case of the beamformers considered herein, H is indeed positive
semi-definite or positive definite as discussed before. Finally, it is

PD = 1− cdfγ

(

r̃⊤ Ãr̃
r̃⊤Br̃

)

= 1− cdf0
(

r̃⊤
(

Ã − γB
)

r̃
)

. (3.6)

There exists a closed form expression for the cdf in Eq. 3.6, however, it involves an infi-
nite series of top order polynomials with a very slow convergence rate [60]. Techniques
for fast evaluation by means of saddlepoint approximationswere developed in [130, 25].
These approximations, which are based on asymptotic expansions of the corresponding
inversion integrals, however, are not accurate enough for the problem at hand.

Instead, the basis of the presented algorithm‡ is a result from [91], where it was
shown that the inversion integral can be reduced to integrating a real function over an
infinite range, namely

cdf0
(

r̃⊤
(

Ã − γB
)

r̃
)

=
1
2
− 1
π

∫ ∞

0

sin(β(u))
u · ρ (u)

du, (3.7)

whereβ and ρ mainly depend on the eigenvaluesλi and eigenvectorsei of Ã − γB,
i.e. β(u) := 1

2

∑

i arctan(ai ) +
θiai
ci

, ρ(u) := exp
{

1
2

∑

i
θibi
ci
+ 1

4 ln(ci)
}

, ai := λiu, bi := ai
2,

ci := 1+ bi , andθi := (e⊤i G−1/2r̄)2.
This integral is evaluated by mapping it onto the finite range[0, 1] via the substitution

u = (1−v)/v and replacing the integrand atv = 0 andv = 1 with its limits, which are zero

†For example this ratio arises when studying Gaussian auto-regressive models or in many test statistics,
see also [117].

‡Developed by Prof. Simon Broda from the Department of Quantitative Economics, Universiteit van
Amsterdam, The Netherlands.
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and 1/2
∑

i(1 + θi)λi (see Sec. A.1 for a derivation), respectively. The resulting integral
can then be straightforwardly evaluated using standard numeric integration routines.

3.2.2 Adaptation scheme

To account for the time varying actual steering vectorq[t], the nominal steering vector is
adapted after constant time steps of lengthT. Notably, after every periodT, the nominal
steering vector is estimated as the sample mean of theK last detectionsxi (xi := x[t(i)]
such thatf⊤ · x[t(i)] ≥ γ), i.e. p̄ = 1/K ·∑Kmax

i=Kmax−K+1 xi , whereKmax denotes the total
number of detections at timet.

The question arises, how many detections should be used for this estimate. If a large
K is chosen, the estimate of the mean ofp will be robust (D small), but the deviation
from the true mean steering vector might be large ( ¯p , q̄). On the other hand, if a smaller
K is chosen, then on average the estimated mean of the nominal steering vector will be
closer to the mean of the actual steering vector ( ¯p ≈ q̄), but the estimate will be more
noisy (D large).

As an optimal trade-off, the value forK should be chosen such that the performance
M of the detector is maximised. Usually, it is desirable that the amount of total rela-
tive error, which is the sum of false positive (FP) and false negative (FN) detections, is
minimal. Therefore, we define our performance as

M := β1 · PD + β2 · (1− PFA), (3.8)

wherePD rsp. PFA are given by the expression in Eq. 3.6, andβ1 rsp. β2 are weighting
parameters which determine their importance. Consequently, the optimal value forK is
given by

Kopt = argmax
K
{M(K)} . (3.9)

In order to use the expression ofPD in Eq. 3.6 for this adaptation scheme, the as-
sumptions made in its derivation have to be verified. Firstly, it was assumed thatp is
Gauss distributed. This would be entirely correct only if all detectionsxi were true
positive, there were not any false negative detections, andthe target was stationary
(q̄[t] = const.). For reasonable threshold valuesγ, most detections will indeed be true
positive and only few signal occurrences will be missed, andif the change of the ac-
tual steering vector is not too rapid, thenp will be approximately Gauss distributed as
p ∼ N(1/K ·

∑Kmax
i=Kmax−K+1 xi , D), whereD = 1/K · C. Secondly, the covariance matrix

H was assumed to be known. The validity of this assumption depends on the amount
of available data. In the case of continuously sampled data recordings, as in biomedi-
cal recordings or wireless communications, a large amount of observed samplesx are
indeed available, and hence,H can be estimated very reliably.

The evaluation ofPD requires the knowledge of the true actual steering vector at
all time intervals, i.e. ¯q[k · T], wherek is an integer. Generally, this information is not
available and the actual steering vector has to be estimatedfrom the data themselves
as well. For this estimation, again the sample mean ofQ last detections is used, i.e.
q̄ = 1/Q ·

∑Kmax
i=Kmax−Q+1 xi . Assuming a linear change of the shape of the actual steering
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Table 3.1:Maximum absolute error for different cdf evaluation techniques in the case of a F-distribution. SdpA1
and SdpA2 denote the first and second order saddlepoint approximation techniques.

Our method SdpA1 SdpA2

1.6 · 10−8 0.0121 0.0089

vector∗ this will give an estimate of ¯q for a timete, te < k · T. A large value ofQ will lead
to a more robust estimate, but alsote≪ kT, which means that there is a large ”lag” in the
adaptation. A small value ofQ might give a more noisy estimate in the specific setting
(but still a correct estimateon average), as an advantage, however, the adaptation follows
the change of the actual steering vector more rapidly. Despite this estimation, the covari-
ance ofq is still given byC (and not 1/Q · C), hence,q ∼ N(1/Q ·

∑Kmax
i=Kmax−Q+1 xi ,C).

We assumed complete blindness about the temporal structureof q̄[t]. Therefore,
an optimal value ofQ cannot be provided. In Sec. 3.3.2, however, we will show that
the adaptation scheme works reliably for a wide range ofQ values, thus the algorithm
exhibits a robust behavior with respect to this parameter.

3.3 Results

3.3.1 Comparison of cdf evaluation techniques

In this section we briefly show the accuracy of the cdf evaluation technique presented
at the end of Sec. 3.2.1 by applying it to two examples. The expression in Eq. 3.7 was
evaluated via MATLABr using the standard commandseig for finding eigenvalues
and eigenvectors, andquadl for numerical integration based on an adaptive Lobatto
rule. The integration error was set to 10−8. For comparison, both examples were also
evaluated by an first and second order saddlepoint approximation (see [25] and [24]
respectively).

The first example is according to [60]. Namely, in the specialcase when
Ã = l · l⊤/(l⊤ · l), wherel is aN-dimensional vector of ones,B = (1N×N − A)/(N − 1),
and r̃ ∼ N(0, 1N×N), then, the cdf in Eq. 3.6 is given by the cdf of the F-distribution
F(1,N − 1).

As an example, the valueN = 10 was chosen, and the thresholdγ was varied in steps
of 0.05 in the interval [0, 11]. The exact value of the cdf was assumed to be given by the
MATLAB function fcdf(γ,1,N-1). The three techniques were compared by means
of the maximum absolute error between the exact cdf value andthe value given by the
corresponding technique for all thresholds. The results are shown in Table 3.1.

In the second example, we considered ˜r =
(

(

S−1/2r1

)⊤
, r⊤2

)⊤
, wherer1 is an arbitrary

N1-dimensional vector,r2 is the N2-dimensional zero vector, andS is a diagonal ma-

trix. Moreover, if we chooseA =













N2 · 1N1×N1 0N1×N2

0N2×N1 0N2×N2













andB =













0N1×N1 0N1×N2

0N2×N1 N1 · 1N2×N2













,

then, the cdf in Eq. 3.6 is given by the cdf of the noncentral F-distributionncF(N1,N2, λ)

∗This is true for small time intervals considering a first order Taylor approximation.
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Table 3.2:Maximum absolute error for different cdf evaluation techniques in case of a noncentral F-distribution.
The same notation as in Table 3.1 is used.

Our method SdpA1 SdpA2

2.5 · 10−6 0.0785 0.0785

with λ =
∑N1

i=1(r1i)2/Si,i, which can be evaluated very accurately for example with the
MATLAB function ncfcdf(γ,N1,N2,λ).

We choser1 = (1, 2, ..., 6)⊤, N2 = 8, S = diag(7, 6, ..., 2), and the thresholdγ was
varied in the interval [1, 50] in steps of 0.05. The maximum absolute error to the exact
value over all thresholds is reported in Table 3.2.

Clearly, in both examples the used method based on numericalintegration is more
accurate than both of the saddlepoint approximations.

3.3.2 Simulations

The proposed adaptation scheme was tested on data generatedby Monte Carlo simula-
tions. A single dataset consisted of 1400 snapshots, half ofthem containing the steering
vector. White noise with a variance of 0.25, i.e.C = 0.25 · 1N×N, was used for the noise
source. In the first 400 and last 400 snapshots a constant actual steering vector ¯q1 rsp.
q̄2 was simulated having the dimensionN = 7. The signal-to-noise ratio (SNR) of both
steering vectors was identical (6.0db), however, they were orthogonal to each other. In
between, a normalised linear mixture was simulated. To sum up

q̄[t] =































q̄1,∀t ≤ 400

α[t] · q̄3[t],∀t ∈ [400, 1000]

q̄2,∀t ≥ 1000

(3.10)

whereq̄3[t] := q̄2−q̄1
600 · t +

1000·q̄1−400·q̄2
600 . In this setting every snapshot corresponds to one

time unit. The value ofα[t] was set such that SNR(α[t] · q̄3) = 6.0db∀t. This guaranteed
that any performance loss of the detector was caused by the change in shape of the actual
steering vector, and not due to a simple decrease in SNR.

The first 400 snapshots served as initialisation, and were used to estimate the initial
nominal steering vector. The adaptation scheme, hence, wasapplied on the snapshots
401− 1400. For this, the performance given by Eq. 3.8 was calculated for allK values
(see Fig. 3.1), whereas the values forβ1 andβ2 were both set to 0.5. The expression in
Eq. 3.7 was evaluated in the same way as described in Sec. 3.3.1. Finally, theK value
for which M was the largest was chosen asKopt (corresponds to Eq. 3.9), and the filter
was re-calculated (using Eq. 3.2) based on the adapted nominal steering vector.

The MVDR beamformer was used as a filter, which impliedH = C−1. The steering
vector was adapted after every 10th snapshot, i.e.T = 10, see Fig. 3.2. Three different
values forQ were tested, namelyQ = {10, 50, 150}. For simplicity, the covariance
between ¯p and q̄ was ignored, i.e.E = 0 in the calculation ofG (see Sec. 3.2.1), but
similar results were obtained also without this simplification. In total, 10 datasets were
simulated, over which the results were averaged. The proposed adaptation scheme was
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compared to approaches in which a fixed, pre-defined number ofdetections was used for
the computation of the nominal steering vector. The resultsare shown in Fig. 3.3.

3.3.3 Evaluation and comparison

From Fig. 3.1 one can observe thatM(K) exhibits a kind of plateau region, on which
the optimal maximal value is located, meaning that the performance does not change a
lot whenK is varied in that region. This results in large variations ofKopt across the
simulations (visible in Fig. 3.2), since the maximum might occur at different values of
K due to fluctuations. Although the standard deviation ofKopt is large, this has small
influence on the total performance (i.e. small standard deviations in Fig. 3.3), which
is again consistent with the theoretic prediction in Fig. 3.1. Fig. 3.2 also demonstrates
the tradeoff between minimisation of the mismatch between the means of the steering
vectors and the minimisation of the variance of the nominal steering vector estimation.
Notably, when the steering vector is close to stationary (atthe beginning and the end of
the simulations), the variance is minimised by taking a large number of detections for
estimation, i.e.K ≫ Q. On the other hand, when the actual steering vector varies rapidly,
it is better to use a number closer to the number of detectionsused for the estimation of
the actual steering vector, i.e.K ≈ Q, in order to reduce the mismatch between the
means of the steering vectors.

Fig. 3.3 illustrates that despite a rather rapid variation and extreme thresholds, both
of which lead to a violation of the assumptions under which the adaptation scheme was
derived, the proposed algorithm performs close to the theoretically optimal approach for
a wide range of thresholds.

A non adaptive scheme, which assumes that the steering vector does change signif-
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Figure 3.1:Exemplarily, the performance M (see Eq. 3.8) as a function of K (K = 1, 2, ...,9, 10, 20, 30, ...,Kmax,
where Kmax was the number of total detections at the corresponding time) is shown for t = 700and for a threshold
of γ = 0.525. The maximum value of M is marked with a circle, which determined Kopt. The different curves
correspond to adaptation schemes (AS) with different Q values.
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Figure 3.2:Average value of Kopt as a function of time. The same threshold and color coding as in Fig. 3.1 was
used. The vertical lines indicate the standard deviation across the 10 simulations.

icantly, would use all detections for the steering vector estimation. Even if a change
in the steering vector is detected, a fixed number of detections for estimation would be
used in such a non-optimal adaptation scheme. Both approaches perform worse than the
derived optimal adaptation scheme, see Table 3.3.

The simulations also revealed that the proposed adaptationscheme works well for
a wide range ofQ values. In particular for the case when the total relative error is
minimised, i.e. the threshold is around 0.5, the performance of the three considered
cases is very similar (Fig. 3.3).

Table 3.3:Average area under the curve (AUC) in descending order for various adaptation schemes. The AUC
was calculated based on the results in Fig. 3.3 with a range of FP ∈ [0.002, 0.73].

Opt. Q = 50 Q = 150 Q = 10 K = 400 K = Kmax

0.6471 0.6291 0.6234 0.6142 0.6016 0.5169

3.4 Discussion and related literature

A large error in the (noise) covariance matrix estimation can be caused when only few
data snapshots are available. However, in the case of continuously sampled recordings
containing time-varying sparse signals, such as electropyhsiological recordings, other
conditions apply than for radar applications. Namely, the covariance matrix can be esti-
mated reliably due to the large amount of data, but the estimate of the steering vector is
more problematic as the signal is sparse.

Nevertheless, most of the research regarding the analysis of performance in the case
of a steering vector mismatch was done in the field of beamforming, i.e. radar systems.
Probably the first study was presented in [99], in which it wasassumed that only the
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Figure 3.3:Top: Receiver operating characteristics curves: For every adaptation scheme the threshold γ was
varied from −0.5 up to 1.5 in steps of 0.025, and the resulting average relative number of false positive (FP) and true
positive (TP) were plotted together with their standard deviations. The black curve corresponds to the theoretically
best possible adaptation scheme, in which the filter was calculated based on the true steering vector, i.e. p̄ = q̄[t],
t = k · T. The green lines resulted, when a non-optimal number of detections was used for adaptation, i.e. K = 400
(dark green) rsp. K = Kmax (light green). The color coding of the other lines is the same as in Fig. 3.1. The
corresponding areas under the curves are listed in Table 3.3. Bottom: Magnification of a part of the top figure. In
the herein considered setting the optimal threshold which minimises the total error is γ = 0.5. The corresponding
points on the ROC curves are marked with a red circle.

actual steering vector is a random variable, whereas the nominal steering vector is de-
terministic. On the other hand, it was assumed that the covariance matrixH is Wishart
distributed. This study was later generalized to a broader class of detectors in [94].
In [175] it was furthermore assumed that the mean of the covariance matrix distribution
does not necessarily correspond to the true mean. However, the mean mismatch was not
completely arbitrary, but had to follow a so called generalized eigen-relation. This re-
striction was dropped in [135, 17], allowing for an arbitrary mismatch in the covariance
matrix.

The performance of a beamformer was also analysed in [228], but not in terms of
the probability of detection and false alarm, but in terms ofa simpler quantity called
signal-to-interference-plus-noise ratio (SINR). This analysis was later extended to the
case when a steering vector mismatch is present, under the restriction that the mean
of the nominal steering vector corresponds to the actual steering vector [229]. In [14]
similar assumptions as in [229] were made, however, the covariance matrix was more
general covering also so called diagonal loading filters. Note that the average SINR
provides less information than the probability of detection and false alarm.PD and
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PFA can be used to directly account for the number of true positive and true negative
detections, as well as to evaluate more complex performancemeasures as in Chap 2.

In [1] only a deterministic mismatch was considered, and thecovariance matrix was
directly dependent on the nominal steering vector as well.

We used the novel performance analysis to derive an adaptation scheme, but also
in the case of stationary data, as a way to compute the nominalsteering vector. The
initialisation of a beamformer, i.e. the determination of the nominal steering vector is
called calibration in the beamforming literature. Such calibration algorithms rely either
on algebraic techniques, e.g. in [215, 170] the steering vector is found as the intersection
of three different sets, or on statistical properties of the data using blind source separation
techniques, e.g. in [26] the blind source separation algorithm JADE is proposed, or using
maximum likelihood estimations, e.g. in [12, 13, 51]. Thesealgorithms may be used
to find the nominal steering vector in the initialisation phase, when the actual steering
vector is constant, but are unsuitable for temporally changing environments.

We connected the performance analysis of a beamformer to a distribution used in
econometrics and statistics∗ . For this, we had to assume that the covariance matrix
is deterministic, i.e. it can be estimated from an infinite number of data samples. If,
however, only a finite number of samples is available and the noise is Gaussian, then the
estimate of the covariance matrix will follow a Wishart distribution. Still, the problem
could be reduced to the evaluation of a distribution similarto r⊤Mr as in Eq. 3.6. Hence,
in the following we give a short overview of some existing literature dealing with related
problems.

The formr⊤Mr can be seen as a trace of a matrix [70], as the product of two random
variables [123, 68, 69, 52], or as a quadratic form [77]. The last interpretation seems to
be the most common, and in the following we list some works which deal with this case
when solelyr is a random variable.

The author in [77] gave a formula for the distribution in terms of Laguerrian expan-
sions. However, according to [60], either this expansions are not convergent everywhere,
or they contain unsolved integrals.

In [7, 71] the pdf and cdf were derived for some special cases only, whereas in
[125, 117, 156] only moments were computed.

The exact cdf was first derived in [59], for the central case (zero mean Gaussian
distributed vectorr). This result was later extended to the non-central case, and also
an expression for the pdf was given [60]. As already mentioned in Sec. 3.2.1 the exact
formula is slow to evaluate. Hence, fast methods based on numerical integration have
been developed. For example in [120] some advice is given howto choose a proper step
size and truncation for evaluation the cdf via the integral presented in [91]. In [119, 23]
numerical integration is done to evaluate the pdf.

3.5 Conclusion

In this chapterPD andPFA were derived in the case when both actual and nominal steer-
ing vector are random. It was shown that these probabilitiescan be linked to quantities

∗See [243] for an overview of some fields where the distribution is used.
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studied by the econometrics and mathematical statistics communities. A very accurate
numerical method for their efficient evaluation was applied and compared to other tech-
niques based on saddlepoint approximations.

Furthermore, this analysis allowed to propose an optimal adaptation scheme for the
nominal steering vector. In this sense, an algorithm for robust beamforming via target
tracking was proposed. In our algorithm the shape of the steering vector as well as its
temporal evolution can be arbitrary. This makes the algorithm also suitable for appli-
cations beyond radar and antenna systems; amongst others, it can be used for digital
communication systems or in biomedical signal processing† .

To our knowledge the analysis of the beamformer performancewhen both steering
vectors as well as the estimate of the covariance matrix deviate from the true quantities
has not been carried out yet. This problem is left for furtherresearch.

†In particular, it will be applied in the spike detection algorithm presented in Chap. 5.



Chapter 4

Online spike sorting with
instantaneous overlap resolution

The work in this chapter was done in equal proportion together with Felix Franke.

In this chapter we address the problem of spike sorting, as defined in Eq. 1.4. Many
algorithms have been developed to this end, however, to date, none of them manages
to fulfil a set of demanding requirements. In particular, it is desirable to have an algo-
rithm that operates online, detects and classifies overlapping spikes in real time, and that
adapts to non-stationary data. Here, we present a combined spike detection and clas-
sification algorithm, which explicitly addresses these issues. Our approach makes use
of linear filters to find a new representation of the data and tooptimally enhance the
signal-to-noise ratio. We introduce a method called “Deconfusion” which de-correlates
the filter outputs and provides source separation. Finally,a set of well-defined thresholds
is applied and leads to simultaneous spike detection and spike classification. By incor-
porating a direct feedback, the algorithm adapts to non-stationary data and is, therefore,
well suited for acute recordings. We evaluate our method on simulated and experimental
data, including recordings from the prefrontal cortex of awake behaving macaques. We
compare the results to existing spike sorting methods, and conclude that our algorithm
meets all of the mentioned requirements and outperforms other methods under realistic
signal-to-noise ratios and in the presence of overlapping spikes.

4.1 Introduction

In order to understand higher brain functions and the interactions between single neu-
rons, an analysis of the simultaneous activity of a large number of individual neurons
is essential. One common way to acquire the necessary amountof neuronal activity
data is to use simultaneous extracellular recordings, either with single electrodes or,
more recently, with multi-electrodes like tetrodes [154],see also Chap. 1. However, the
recorded data does not directly provide the isolated activity of single neurons, but a mix-
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ture of neuronal activity from many neurons additionally corrupted by noise. The task
of so called “spike sorting” algorithms is to reconstruct the single neuron signals (i.e.
spike trains) from these recordings. Many approaches for analysing the data after acqui-
sition, i.e.offlinespike sorting algorithms, have been developed in the last years; see for
example [220, 42, 167, 100, 200, 191, 87, 110, 55]. Although more methods are avail-
able in this category, there are several reasons to favour methods which provide results
already during the recordings, termedreal-time onlinesorting algorithms. For example,
real-time online spike sorting techniques are indispensable for conducting “closed-loop”
experiments and for brain-machine interfaces [180, 152]. The few existing approaches
to real-time online sorting [204, 180, 4] areclustering basedand have at least one of the
following drawbacks (see also Sec. 4.5 for further discussion): 1) They are not explicitly
formulated for data acquired from multi-electrodes, 2) they do not resolve overlapping
spikes, 3) they do not perform well on data with a low signal-to-noise ratio 4) they are
not able to adapt to non-stationarities of the data as causedby tissue drifts. We discuss
the reasons and importance of these issues in the following:

1) Multi-electrodes (e.g. tetrodes) provide significantlymore information about the
local neuronal population than single electrodes [79, 173]. Having several recording
electrodes closely spaced instead of one, the same action potential is present on more
than one recording channel. The so called stereo-effect - a neuron specific amplitude
distribution among the recording channels - allows for a better discrimination between
action potentials from different neurons [75]. This allows also for a more reliable reso-
lution of overlapping spikes.

2) Tetrodes record from an increased number of neurons compared to high
impedance single electrodes, thus, overlapping spikes aremore likely to occur. Also,
studies stress the relevance of ensemble coding, which translates into local synchronised
firing and hence a raised occurrence frequency of overlapping spikes [182]. To identify
such a code, the resolution of overlapping spikes is crucialand efforts have been made
addressing this issue [44, 225, 245, 136, 33]. However, the cited approaches are all com-
putationally very expensive, making a real-time online implementation difficult. One
of the reasons for this computational complexity is the implementation of separate sub-
routines for the processing of overlapping spikes, which, additionally, are more complex
than the processing steps for non-overlapping spikes.

3) Most of the spike sorting approaches use a stand-alone standard spike detection
technique (see for example [38, 152, 173] and Chap. 5 for commonly used spike de-
tection techniques), and a separate classification procedure. Neither the shape of the
waveforms nor their change over time or their amplitude distribution across the record-
ing channels is taken into account by the spike detection method. This leads to a poor
detection performance, in particular when the signal-to-noise ratio (SNR) is low. Further,
the spikes are cut and aligned on some feature (e.g., peak position) as a preprocessing
to the classification algorithm. However, overlapping spikes, which severely alter the
spike waveform, are not identified as such. This leads to wrong alignments and false
classifications by the clustering procedure.

4) There are two general approaches to extracellular recording with electrodes,
namely acute and chronic recording methods. In acute recordings, individual electrodes
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are advanced into tissue at the beginning of each recording session anew, causing a com-
pression of the tissue [29]. During the experiment the tissue relaxes and the distances
between the electrodes and neurons change; an effect called tissue drift [21]. As a con-
sequence, the shape of the measured waveforms and the characteristic of the background
noise changes. Sorting algorithms which do not take into account such variations will
perform poorly on data from acute recordings.

An approach based onblind source separation (BSS) techniquesand addressing pri-
marily problems 1) and 4) was presented in [202], in which independent component
analysis (ICA) was applied to multi-channel data recorded by tetrodes. Later, the method
was adopted to data recorded by dodecatrodes (12 channels) [201]. However, both ap-
proaches had to deal with several new problems: Amongst others, time delays between
the channels were not considered, biologically meaningless independent components
had to be discarded manually, and different neuronal signals with similar channel dis-
tributions could not be classified correctly. Furthermore,the methods can only be ap-
plied to data recorded with certain electrode types (i.e. tetrodes, dodecatrodes). The
most severe problem, though, is the fact that the method cannot deal with data contain-
ing neuronal activity from a greater number of neurons than recording channels (over-
completeness).

In this chapter, we present a real-time online spike sortingmethod based on the BSS
idea, which explicitly addresses the four issues 1)-4), butalso avoids the drawbacks
of the methods in [202] and [201]. In particular, the here proposed method works on
data recorded with an arbitrary number of electrodes, and the number of neurons which
can be extracted is not limited in any way by the number of electrodes. In sum, a spike
sorting algorithm for multi-electrode data, which detectsand resolves overlapping spikes
with the same computational cost as non-overlapping spikes, is formulated. The method
makes optimal use of an arbitrary number of simultaneously recorded channels and can
even run on single channel data. Moreover, since spike detection, spike alignment, and
spike classification are not separate parts, but are combined into a single algorithm, our
method performs well on data with low SNR and containing manyoverlapping spikes.
By incorporating a direct feedback, the algorithm adapts tovarying spike shapes and
to non-stationary noise characteristics. The algorithm isfully automatic and due to its
linear and parallel computation steps it is ideally suited for real-time applications (see
Fig. 4.3 for a summary of our method).

This chapter is organised as follows: In Sec. 4.2 we present our method step by
step. First, we briefly introduce linear filters. These filters were used in e.g. radar
applications [217], geophysics [178] as well as for spike detection [204, 223], but to our
knowledge have not been applied in the presented way to spikesorting yet. Moreover,
in contrast to those studies, we do not directly apply a threshold to the filter outputs, but
consider them as a new representation of the data. In this representation the spike sorting
task can be handled as a well defined BSS problem, which we solve with a un-mixing
technique we will refer to as “Deconfusion”.

The evaluation of our method is done on a dataset from real recordings and also
on simulated data. The experimental setup, used equipment and the characteristic of
recorded data are described in Sec. 4.3. The advantages and abilities of the method are
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demonstrated in Sec. 4.4. The noise robustness and the ability to successfully resolve
overlapping spikes is evaluated systematically on synthetic data. Finally, the method
is applied to data from extracellular recordings made in theprefrontal cortex of awake
behaving macaques. This data set is particularly challenging, because the tetrodes are
not implanted chronically, but inserted before every experiment anew, leading to tissue
drifts. We conclude that our method adopts to non-stationarities and also successfully
resolves overlapping spikes in real data. A summary and a discussion of further im-
provements is given in Sec. 4.6.

4.2 Methods

4.2.1 Generative model

The exactly same data model as introduced in Eq. 1.1 as well asthe same assumptions
as in Eq. 1.2 are used in this chapter. Namely, the measured data xk,t are a convolution of
the waveformsqi

k,t with the corresponding intrinsic spike trainssi corrupted by colored
Gaussian noisenk,t, i.e.

xk,t =

M
∑

i=1

∑

τ

qi
k,τs

i
t−τ + nk,t k = 1, . . . ,N. (4.1)

4.2.2 Calculation of linear filters

Spike sorting is achieved when the intrinsic spike trainssi are reconstructed from the
measured dataX, where(X)k,t := xk,t. Since, according to the model assumptions, the
data were generated by a convolution of intrinsic spike trains with fixed waveforms,
the most straightforward procedure would be to apply a deconvolution on X in order
to retrievesi. For an exact deconvolution a filter with an infinite impulse response is
necessary. In general, such a filter is not stable and would amplify noise [178]. Never-
theless, a noise robust approximation for an exact deconvolution can be achieved with
finite impulse response filters, to which we will refer as linear filter.

Let us briefly summarise the idea of these filters∗: The goal is to construct a set
of filters

{

f1, . . . , f M
}

such that each filterf i has a well defined response of 1 to its

matching templateqi at shift 0 (i.e.qi⊤ · f i = 1), but minimal response to the rest of the
data. This means that the spikes of neuroni are the signal for filterf i to detect but will
be treated as noise by filterf j,i .

Incorporating these conditions leads to a constrained optimisation problem

f i = argmin
f i

Var
(

X ⋆ f i
)

subject toqi⊤ · f i = 1 (4.2)

to which the solution are the desired filters (see Sec. 4.7.1 for a more detailed derivation).
A major advantage is the fact that the mentioned optimisation problem can be solved

∗For more information about linear filters see Chap. 2. Note, however, that a slightly different derivation
is presented in the following.
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analytically. In particular, the filters are given by the following expression:

f i =
R−1qi

qi⊤R−1qi
i = 1, ...,M (4.3)

whereR is the data covariance matrix†. Linear filters maximise the signal-to-noise ratio
and minimise the sum of false negative and false positive detections, and are, therefore,
optimal in this sense [138].

4.2.3 Filtering the data

Once the filters are calculated, they are cross-correlated with the measured data, i.e.
∑

k,τ xk,τ+t f i
k,τ =: yi

t. Note that we do not have to pre-process the data with a whitening
filter, but the filters can be applied directly toX. This is because the noise statistics is
already captured in the matrixR.

From a different point of view, the filtering just changes the representation of the
templates. While in the original space thei-th template was represented byqi , its rep-
resentation in the filter output space is given by the vectorsqi ⋆ f j , j = 1, ...,M, where
(

qi ⋆ f j
)

t
:=

∑

k,τ qi
k,t+τ f j

k,τ, see also Fig. 4.1. This interpretation of filtering will be
useful in the next section.

4.2.4 Deconfusion

The linear filters derived in Sec. 4.2.2 should suppress all signal components except their
corresponding template with zero shift. Thus, the filter response to all templates (and
their shifted variants) has to be minimal. This already leads to

(

2T f − 1
)

·M minimisation
constraints; a number which is normally greater than the number of free variables of a
filter which isT f ·N, whereT f is the dimension of the filter. In addition, if the SNR is low,
the data covariance matrixR is similar to the noise covariance matrixC, i.e. R ≈ C. The
lower the SNR, the less spikes from other neurons a filter willsuppress. Thresholding
of every filter outputyi individually will, thus, lead to many false positive detections.
The idea is to de-correlated the filter output first in order toachieve an improved spike
detection and classification.

We have seen in the previous section that each templateqi can be represented in the
filter output byM vectorsqi ⋆ f j , j = 1, ...,M. Since the detection and classification
of the spikes is based on the detection of high positive peak values in the filter output
(by construction), all values below zero in the filter outputare irrelevant, and thus, can
be discarded. As a result, we ignore all values below zero by applying a half-wave
rectificationI (x) to the filter outputY, where

I (x) :=



















x, x > 0

0, x ≤ 0
. (4.4)

The next step is to considerI (Y) as a linear mixture of different sources, where every
source is the intrinsic spike trainsi of a neuron. Since there are as many filters as neurons,

†The obtained filters are called MPDR beamformers, see Sec. 2.2.1.
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the dimension of the filter output space is equal to the numberof neurons, and therefore,
the detection and classification problem can be considered as a complete BSS problem.
However, it is not guaranteed that the maximal response of filter f i to spikes from neuron
j will be at a shift of 0, i.e., when the filter and the template overlap entirely. This leads
to the following model for the rectified filter output:

I (yi
t) =

∑

j

(A)i, j sj
t+τi, j (4.5)

with A being the mixture matrix, andτi, j being the shifts between the maximum response
of filter f j to templateqi ; i.e.,

(A)i, j = max
τ

{(

qi ⋆ f j
)

τ

}

(4.6)

τi, j = argmax
τ

{(

qi ⋆ f j
)

τ

}

where(A)i,i = 1 andτi,i = 0 ∀i by construction. We want to reconstruct the sourcessi

by solving the corresponding inverse problem:

si
t ≈ zi

t =
∑

j

(W)i, j I (y j
t−τ j,i

) (4.7)

with W = A−1. Here, the relation to ICA becomes clear, since this is a similar inverse
problem ICA solves. In contrast to ICA, we do not have to estimateW andτi, j from the
data, but can calculate them directly from the responses (i.e. cross-correlation functions)
of all filters to all templates, as illustrated in Fig. 4.1.

Once the matrixW is applied toI (y), all values which were zero inI (y) are set to
zero inz as well. All steps of these procedure are summarised under the term “Deconfu-
sion”. After Deconfusion the false responses of the filters to non-matching templates are
suppressed (see Fig. 4.2). In principle, it is possible thatthe inverse problem in Eq. 4.7
is not exactly solvable, if the shifts are not consistent. Consistent shifts have to satisfy
the following equation

τ j1,k − τ j1,i = τ j2,k − τ j2,i ∀i, j1, j2, k. (4.8)

A derivation is given in Sec. 4.7.2. For arbitrary templatesand data covariance structures,
Eq. 4.8 can in principle be violated. However, with templates from real experiments we
did not observe this to be a problem.

4.2.5 Spike detection and classification

In the final step, thresholding is applied to every rowi of Z, whereZ i,t := zi
t. Again, by

construction we have only to consider positive peaks. All local maxima after a threshold
crossing are identified as spiking times of neuroni. In this sense, spike detection and
spike classification is performed simultaneously.

The threshold is set for each row ofZ individually such that the total relative error
of false negative and false positive detections is minimal.Amongst others, the thresh-
old depends on the variance of the noise, on the Deconfusion output, and on the firing
frequencies of the neurons. A detailed derivation is given in Sec. 4.7.3.
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Figure 4.1:This figure illustrates the representation of the templates in the filter output space and the calculation
of the Deconfusion parameters. In this example, three templates (q1, q2, q3, top row of the figure) originating from
tetrode recordings are used. The corresponding linear filters are calculated by Eq. 4.3 and are shown on the left.
The 9 plots show the responses of the linear filters to the templates, i.e. the cross-correlations qi ⋆ f j , i, j = 1, 2, 3.
The template qi is now represented by the three vectors qi ⋆ f j , j = 1, 2, 3. Although filter f i has a maximum
response of 1 to template qi , the filters do not provide an exact deconvolution, as the responses of filters f j,i to
template qi are not equal to zero. However, since every template is represented on all filter output channels, the
problem of extracting the signal from neuron i can be viewed as a source separation problem. The entry at position
i, j of the mixing matrix A is given by the maximum peak value of qi ⋆ f j ; as an example (A)2,3 and (A)3,2 are
shown. The shift indicates the position at which this maximum values occur; as an example the shifts τ2,3 and τ3,2
are shown.

4.2.6 Artifact detection

Artifacts were removed from our data in two ways. Firstly, all periods during which the
animal had to perform a physical task (e.g., pressing a button) were not considered for
further analysis. Secondly, for each period of length 10 ms the number of zero-crossings
on each data channel was counted and summed up. All periods, in which this number
was below 10% of the maximum number of possible zero crossings, were not considered
for further analysis. This second type of heuristic removalaims at eliminating artifacts
caused by oscillations of the electrode shaft inside the guiding tube (e.g., caused by
movement of the animal).

4.2.7 Noise estimation

The noise covariance matrixC is determined by calculating the auto- and cross correla-
tion functions of every channel. Only data points which werenot part of any spike nor
any artifact period, were used for the calculation. The noise covariance matrix is needed
for the initialization phase, see Sec. 4.2.9, and for evaluation of the sorting result on real
data, see Sec. 4.4.1.
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Figure 4.2:The figure shows the effect of Deconfusion on the filter outputs. The input for Deconfusion were the
filter responses qi ⋆ f j , i, j = 1, 2,3 shown in Fig. 4.1. After Deconfusion the signal of neuron i is mainly present
on the output channel i.

4.2.8 Adaptation

Due to tissue relaxations the measured waveforms change over time as the relative
distance between the multi-electrode and the neurons change. In order to track these
changes we re-estimate the templates as well as the data covariance matrix after ev-
ery time period of lengthT. Each templateqi is re-estimated as the mean of the last
350 spikes detected from neuroni; whereas the spikes of neuroni are aligned on the
maximal peak of the response of filterf i∗. For the re-estimation only spikes which were
classified by our method as non-overlapping spikes are used.The data covariance matrix
is re-estimated from the last 30s of the recordings and the linear filters are re-calculated.
Consequently, the Deconfusion and the thresholds are re-computed as well. In Sec. 4.4.1
we show that we can indeed track drifts with this approach.

Templates whose SNR decreases over time might be a concern. By constantly adapt-
ing the template, finally, there is a risk of getting a template which is very close to the
noise signature, and the corresponding filter will detect pure noise. This can be pre-
vented by removing filters at the appropriate moment. Consequently, we stop tracking
templates whose SNR drops below 0.65. This value proved to be appropriate during
simulations (see Sec. 4.4.1).

4.2.9 Initialisation phase

Most of the analysis done in the precedent sections was basedon the assumption of
known initial templatesqi . Hence, before applying our method, one needs an initial-
isation phase during which the templates are found. In principle, any supervised or
unsupervised learning method can be applied.

∗The adaptation scheme proposed in Chap. 3 is not applied here, but rather a heuristic value for the
number of spikes for averaging is used. This is due to the large number of filters required in tetrode
recordings (see Sec. 4.4.1) and the resulting computational load. The adaptation scheme from Chap. 3,
however, will be applied in the case of single electrode recordings in Chap. 5.
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Figure 4.3: Schematic illustration of the way data are processed: The data are bandpass filtered and periods
containing artifacts are excluded from further analysis (Sec. 4.2.6). During the initialisation phase a conventional
spike detection and clustering method is used to determine initial templates (Sec. 4.2.9). The data covariance ma-
trix R is estimated and for every template the corresponding linear filter is calculated as described in Sec. 4.2.2.
The data are filtered and all values in the filter output below zero are set to zero (half-wave rectification). From
all filter responses to all templates the un-mixing transformation is determined and applied to the processed data
(Sec. 4.2.4). A threshold is applied to the Deconfusion output resulting in simultaneous spike detection and classi-
fication. The newly found spikes are used to re-estimated the templates. Also the covariance matrix of the data is
re-calculated after regular time intervals (Sec. 4.2.8).

We want to emphasise that the initialisation phase is only necessary at the beginning
of a recording session: Once the initial templates are estimated, the main algorithm runs
online. Furthermore, because of the feedback described in Sec. 4.2.8, the initialisation
does not have to be very accurate, as the templates are re-estimated after every period
of lengthT. Usually we used an initialisation phase of about 30s in our real recordings
(Sec. 4.3.3). This time window is short enough so that the templates change only very
slightly in time and can, therefore, be clustered reliably,but long enough to acquire
enough spikes to estimate robustly the mean waveforms.

Initial spike detection and initial spike alignment

During the initialization phase spike detection can be donewith any conventional tech-
nique. We used an energy based approach, since it usually delivers a better performance
than simple amplitude based approaches methods [144, 152].In particular, we applied
the MTEO detector (see [38] for definition) withk-values [1, 3, 5] to each recording
channel separately and set the threshold to 3.5 times the median of its output. Spike
periods were defined as intervals of length 1.5ms, in which the output of the MTEO
detector exceeded the threshold value at least once.

Correct spike alignment is crucial for a good clustering result. While in many studies
an alignment based on the maximum and/or minimum peak value of a spike is used,
again, methods based on the energy of a spike usually yield better results [55]. After
cutting out all spikes around the peak of the detector, we used the following algorithm
for alignment:

1. Calculate the average template overall spikes

2. Minimise the energy difference between every spike and the template by shifting
the spikes
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3. Repeat until convergence or a maximum number of iterations is reached

In our experiments described in Sec. 4.3.3 the average number of spikes in the first 30s of
recordings is around 2500 and convergence is usually obtained after 15 to 20 iterations.

Initial clustering

Although a broad range of sophisticated clustering algorithms is available, we used a
standard approach, since a very accurate initialization isnot crucial for our method.
The aligned spikes are whitened (e.g., see [168]) and projected into the space of the
first 6 principle components. The clustering consists of a Gaussian mixture model in
combination with the Expectation-Maximisation algorithm[236]. For every number of
cluster means between 1 and 15 the clustering procedure is executed 3 times with random
initial means. The covariance matrices are fixed to 2.5 times the identity matrix. The
run and the number of means with the highest score according to the Bayesian inference
criterion [236] are selected as initialisation for the mainalgorithm.

4.2.10 Signal-to-noise ratio (SNR)

The SNR is a scalar value which is an indicator for the difficulty of detecting a signal
in noisy data. In this sense, the SNR definition should be dependent on the method
used for signal detection. Several definitions of the SNR areused in the spike sorting
literature. A very common one is to define the SNR by some maximal value, e.g., the
maximum amplitude, the maximum difference in amplitudes (peak to peak distance), or
the maximum of the absolute value of the amplitude, divided by the variance of noise
σ2, i.e.,

SNRp (q) :=

√

||q||2∞
σ2

(e.g. see [38]). Another current definition for the SNR is based on the energy of a signal,
i.e.,

SNRe (q) :=

√

||q||22
N · T f · σ2

(e.g. see [180]). We introduce a definition of SNR which is based on the Mahalanobis
distance of a templateq to zero:

SNRm (q) :=

√

q⊤C−1q
N · T f

. (4.9)

In the special case of single electrode data and of 1-dimensional templates (T f = 1), all
SNR definitions are equivalent. To show that SNRm is an appropriate SNR definition for
linear filters, while the other definitions are in contradiction with the meaning of signal-
to-noise ratio, we simulated datasets containing a single neuron, which fired according
to a Poisson statistic, and a noise covariance matrixC (α) := (1− α) · 1+ α · Cexp

σ2 , where
1 denotes the identity matrix, andCexp is a noise covariance matrix from one of the
experiments described in Sec. 4.3.1, with

(

Cexp

)

i,i
= σ2 for all i. The used template was
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extracted from the same experiment. We simulated datasets for ten differentα values
between 0 and 1. The SNRm decreased with increasingα, and consistently the detection
performance of our method decreased, see Fig. 4.4. Note thatSNRp = SNRe = 1 for all
α values, which means that those definitions are inappropriate for the proposed method.
Nevertheless, we always provide values for all three definitions of SNR in order to allow
comparisons with other publications.
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Figure 4.4: (a) Template q (in arbitrary units) used for the simulations. (b) Noise autocorrelation function of
the same experiment from which the template was extracted. This autocorrelation was used to calculate Cexp.
(c) Plot of SNRp (q), of SNRe (q) and of SNRm (q) in dependence of α (see text for definition). (d) Average detection
performance of different spike detection methods for different values of α. The method ”squaring” consists of point
wise squaring and thresholding, while ”MTEO” is described in [38]. For each α value the average was done over 5
simulations, each with a noise covariance matrix C (α) (see text for definition).
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4.3 Experiments and datasets

For the performance evaluation of our method, three different datasets were used. All
experiments were performed in accordance with German law for the protection of exper-
imental animals, approved by the local authorities (“Regierungspräsidium”), and are in
full compliance with the guidelines of the European Community (EUVD 86/609/EEC)
for the care and use of laboratory animals.

4.3.1 Simultaneous intra/extra-cellular recordings

The experiments were done† in acute brain slices from Long Evans rats (P17 - P25). In
every experiment a pyramidal cell from visual cortex, Layer3 or 5 depending on the
experiment, was simultaneously recorded intracellularlyand extracellularly. Extracellu-
lar spike waveforms were recorded using a 4-core-MultifiberElectrode (Tetrode) from
Thomas RECORDING GmbH, Germany. The cell was intracellularly stimulated by a
current injection (varying from experiment to experiment between 80pA and 350pA).
Extracellular recordings were sampled at 28kHz and filteredwith a bandpass FIR filter
(300Hz to 5000Hz).

The intracellularly recorded spikes were detected using a manually set threshold on
the membrane potential. The threshold crossings in the membrane potential were used
as triggers to cut out periods from the extracellular recordings (2ms before and 5ms after
the trigger). In total, data were recorded from 6 different cells, which resulted in 9957
intracellularly detected spikes. For analysis only the recording channel with the highest
SNR was considered. The SNR of the different experiments varied from SNRm = 0.20
(SNRp = 0.79, SNRe = 0.39) to SNRm = 2.37 (SNRp = 7.09, SNRe = 3.64).

4.3.2 Simulated data

Datasets with overlapping spikes

Dataset A1 The artificially generated data mimics a single channel recording of 15s
length at a sample frequency of 32kHz containing activity from three neurons. Every
simulation contained exactly 750 equidistantly distributed spikes of every neuron, which
corresponds to a firing frequency of 50Hz. The three used templates were extracted
from the recordings described in Sec. 4.3.1 and had a length of 2.1ms. The noise was
generated by an ARMA model [81] approximating the noise characteristic shown in
Fig. 4.4(b).

The relative number of overlapping spikes was systematically varied from 1% up to
50%. 75% of all overlapping spikes consist of overlaps between two templates (25%
for each combination), and 25% of all overlapping spikes consist of overlaps between
all three templates. The amount of overlap, i.e., how much the templates overlap, is
distributed according to a uniform distribution on the interval [1/3, 1]. The SNR was
kept constant for all overlapping ratios, namely, all threetemplates were scaled to an

†By Dr. Clemens Boucsein from the Institute for Biology III, Albert-Ludwigs-University, Freiburg,
Germany.
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equal SNR, which was SNRm = 1.2. This corresponds to SNRp = 5.42 and SNRe = 2.12
(average values over the three templates).

Dataset B1 The second dataset contained activity from two neurons firing with a fre-
quency of 10Hz each. The data were simulated with a sampling frequency of 25kHz and
had a length of 50s. The noise was generated in the same way as for the dataset A1. The
number of overlapping spikes was varied from 0% up to 60%, andthe amount of overlap
was drawn form a standard normal distribution. The two templates were scaled to equal
height resulting in SNRp = 4.76.

Datasets with SNR variation

Dataset A2 The SNRm was systematically varied from 0.6 to 1.4 (which is equivalent
to 2.71 to 6.32 average SNRp and 1.06 to 2.48 average SNRe). The amount of over-
lapping spikes was constant and set to 7%, which is approximately the overlap ratio
resulting by chance under the assumption of independent spike trains. The three used
templates and the way how noise was generated were the same asin dataset A1.

Dataset B2 Again, both templates had equal height, and the SNRp was systematically
varied from 2.78 up to 100. The amount of overlapping spikes was set to 1.6%, corre-
sponding to chance probability.

The over-completeness, the equal SNR of all templates, and the presence of overlap-
ping spikes make these datasets particularly challenging.

4.3.3 Acute recordings

Tetrodes were placed in ventral prefrontal cortex for individual recording sessions, sam-
pling data from the same region across experiments. Recordings were performed‡ si-
multaneously from up to 16 adjacent sites with an array of individually movable fiber
micro-tetrodes [49]. Recording positions of individual tetrodes were manually chosen to
maximise the recorded activity and the signal quality. Datawere sampled at 32kHz and
bandpass filtered between 0.5kHz and 10kHz.

Neuronal activity was recorded while 2 macaque monkeys performed a visual short-
term memory task. The task required the monkeys to compare a test stimulus to a sample
stimulus presented after a 3 second long delay and to decide by differential button press
whether both stimuli were the same or not. Stimuli consistedof 20 different pictures
of fruits and vegetables which were presented for 0.5s (test stimulus) or for 2s (sample
stimulus). Correct responses were rewarded. Match and non-match trials were randomly
presented with an equal probability. This experimental setup was presented in [234].

Approximately, the monkeys performed 2000 trials per session, which is equivalent
to almost 4 hours of recording time. For the evaluation of ouralgorithm only the first
5 seconds of every trial were processed, as the remaining data might contain severe
artifacts caused by the monkey’s movement.

‡By Dr. Matthias Munk, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
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Table 4.1: Average performance of the proposed method for non overlapping and overlapping spikes. Each
column represents the true category of events detected as spikes (e.g. “N” meaning “noise”, “AB” meaning an
overlapping spike of template A and template B, etc.), while each row represents the category to which they were
assigned by our algorithm. Each total number of classifications was divided by the number of corresponding spike
events, resulting in a percentage value. The bold numbers represent the percentage of correct classifications. The
table shows the average performance over 10 simulations with an overlap ratio of 40% (see Sec. 4.3.2). For a
systematic evaluation over different overlap ratios the absolute numbers of the correct classifications were added
and divided by the total number of inserted spikes; see Fig. 4.5

N A B C AB AC BC ABC

A 0.0 96.0 0.1 0.0 91.7 93.5 1.7 92.0
B 0.0 0.0 98.2 0.1 87.4 9.7 92.8 87.2
C 0.0 0.0 0.0 97.8 1.1 92.0 92.1 88.7

4.4 Results and discussion

The performance of a spike sorting method depends on its capability to detect spikes
and to assign every spike to a putative neuron. As described in Sec. 4.2.5, our method
achieves both simultaneously. We evaluated the performance of our approach thus as
a combined detection and classification technique, and compare it against techniques
commonly used.

4.4.1 Spike sorting performance

Resolution of overlapping spikes

We recall that the applied operations to the recorded data could be summarised in Eq. 4.7.
The cross-correlation between the filters and the data is a linear operation. The following
Deconfusion consists of a half-wave rectification, which isa non-linear operation, but
affects only noise and not the action potentials (represented in the filter output), and the
un-mixing, which is linear again. Hence, one can expect thatif the superposition of
spike waveforms is also linear, overlaps should be resolvedsuccessfully. We validated
this assumption on the dataset A1 described in Sec. 4.3.2. The algorithm was executed in
the same way as described in Sec 4.2. In order to allow the method to adapt (Sec. 4.2.8),
the method was iterated 5 times on the same dataset. We also compared the performance
of our method to those of two popular clustering based offline methods, one of them
being the method described in Sec. 4.2.9, which will be abbreviated as “GMM”. Since
this is also the method which is used for initialisation of our algorithm, the comparison
with GMM directly provides information about the improvements in sorting when our
method is used.

The other algorithm, called “KlustaKwik”, was explicitly developed for clustering
neuronal data and was first introduced in [79]. The clustering parameters were set to
their default values. Spike detection and alignment was done in the same way as de-
scribed in Sec. 4.2.9. To provide an upper bound on the performance our approach could
achieve, we included the evaluation with the optimal filterscalculated directly from the
real templates. Note that other existing, purely clustering-based sorting methods, either
in the PCA space or in the original data space, would perform similarly to GMM and
KlustaKwik.
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Table 4.2: Same evaluation as in Tab. 4.1, but for the method “GMM” described in Sec. 4.2.9. The method sorts
non overlapping spikes well, but has difficulties in resolving overlapping spikes

N A B C AB AC BC ABC

A 0 81.0 0.0 0.1 27.8 27.3 0.4 21.5
B 0.2 14.5 100.0 0.6 68.0 4.2 45.0 42.7
C 0.1 4.4 0.1 99.4 4.7 69.0 53.2 41.7

For the evaluation the relative number of TP was counted (Tab. 4.1, Tab. 4.2). The
simulations show that our method indeed resolves overlapping spikes and outperforms
the clustering based methods; see Fig. 4.5. Our method workseven for datasets with a
large amount of overlapping spikes, and the performance is close to the theoretical bound
of this approach. On the other hand, the performance of the purely clustering based
methods rapidly decreases with an increasing amount of overlapping spikes. Overlap-
ping spikes are mostly detected as single events by conventional spike detection tech-
niques, which leads to a high FN rate. Furthermore, since thewaveforms of overlapping
spikes are distorted, their distances to the correspondingcluster means are large, making
it difficult to assign them to a neuron. This results in a low TP score for clustering based
methods.
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Figure 4.5:Average performance of the different spike sorting methods over 10simulations. The x-axis indicates
the overlap ratio, i.e. the relative number of overlapping spikes (see Sec. 4.3.2) while the y-axis represents the
correct classifications in percentage (true positives divided by total number of spikes).

On the dataset B1 we compared our method with two other existing approaches,
namely ”OSort” and ”WaveClus” presented in [180] and in [171] respectively. ”OSort”
is an online sorting algorithm based on Euclidean distance classification of pre-whitened
spikes. Spikes are detected by thresholding the local energy of the data and pre-whitened
using an estimated noise covariance matrix. The euclidean distance to each mean wave-
form form every cluster is calculated, and either the spike is assigned to one of the
clusters or a new cluster is created. Since the mean waveforms are updated after every
spike assignment, at the end, it is tested whether the distances between all the clusters
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are still large enough, and merged if necessary.
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Figure 4.6: Average performances over 10 simulations of different spike sorting methods. The error is defined
as the sum of false positive detections and false negative detections times 100, divided by the total number of
inserted spikes. Left: Performance for different noise levels. The noise level is varied by changing the noise
standard deviation with respect to the maximal height of the template. Right: Performance for different amounts of
overlapping spikes; the noise level was set to 21%.

”WaveClus” is an offline method based on wavelet feature extraction and super-
paramagnetic clustering. Spikes are detected by positive thresholding and features are
extracted by wavelet decomposition. In particular, the Haar wavelets are applied, and
the 10 most discriminative coefficients are used for further processing, whereas discrim-
inative power is determined by a statistical test for normality. Finally, the superpara-
magnetic clustering algorithm with an automatically selected temperature is used for
clustering.

The parameters for the mentioned competing algorithm were set according to their
reference. The sorting results are shown in Fig. 4.6, right,and confirm the findings on
dataset A1.

Performance for various SNR

The evaluation on the dataset with a varying SNR (see Sec. 4.3.2) was done in the same
way as in the previous section. The results for dataset A2 areshown in Fig. 4.7, whereas
the results for dataset B2 are shown in Fig. 4.6, left. The performance of the cluster-
ing based methods is severely affected by a low SNR. The performance of the proposed
method follows the one of the GMM algorithm, since it relies on its output for initiali-
sation. Nevertheless, our method is always superior to it. Because of the rapid decrease
in performance from a SNR level of 0.7 to an SNR level of 0.6, we stop the algorithm
from detecting spikes from neurons with a SNR lower than 0.65 in real recordings by
deleting the corresponding templates and filters. In contrast, the optimal filter method
is only slightly affected by a low SNR level, indicating that a more elaborate initialisa-
tion would increase the performance of the proposed method on datasets with very low
SNRs.
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Figure 4.7: Average performance of the different spike sorting methods over 10 simulations with respect to
various SNR levels. Note that the performance of the proposed method degrades with the performance of the GMM
algorithm. This is because the output of the GMM is used as the initialisation for our method. However, our method
is always superior to it. Low SNRs do not severely affect the performance of the optimal filter.

Performance on experimental data

We applied our method to data recorded in the prefrontal cortex of monkeys performing
a short-term memory task as described in Sec. 4.3.3. For illustrative purposes, we show
the results obtained by processing data from one tetrode, since the qualitative outcomes
from processing other tetrodes and different recording sessions are similar.

For the initialisation phase we used the first 7 trials of the recording. The initial spike
detection and clustering was done as described in Sec. 4.2.9, resulting in a total of 3219
detected spikes, which were assigned to 8 clusters. This basic clustering was used as an
initialisation for the main algorithm, which was executed in the same way and with the
same parameters as described in Sec. 4.2 (see also Fig. 4.3 for a summary). The 7 trials
used for initialisation were also processed with the main method in order to improve the
sorting quality.

The templates after the first 90 trials are shown in Fig. 4.8, and seem to be reasonable
by visual inspection. In total, our method found almost 200000 spikes (57111, 18060,
50724, 51709, 3974, 7057, 444, 10915 for each template). Twowell-established tests to
quantitatively assess the sorting quality of a method performing on real data are the inter
spike interval distribution and the projection test [180, 168]; the evaluation of our sorting
with both tests is shown in Fig. 4.8. The relative number of spikes during the first 3ms
is smaller than 1.5% for all neurons, implying that the refractory period is respected.
On the other hand, the projection test verifies that the spikes of a single neuron have
not been artificially split by the sorting algorithm into multiple clusters or that spikes
from multiple neurons are assigned to the same cluster. The sorting of our method also
passes the projection test since the cluster distributionsdo not overlap and are close to
the theoretical prediction of a normal distribution with a variance of 1. In sum, the good
results of these two tests imply that the found clusters are well separated and indeed
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correspond to single neurons, as well as that the assumptions made in Sec. 4.2.1 are
justified.
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Figure 4.8: (a) Plot of the concatenated templates and their standard deviation. For the averag-
ing all detected spikes from trial 50 to trial 90 were used. The vertical lines indicate the concatenation
points of the individual tetrode channels, while the colored dots on the right serve as a label. On the
left, the SNRm value is shown, the channel dimension of the template being T f = 47 and N = 4. The
corresponding SNRp values are (10.06, 13.28, 21.82, 11.57, 13.12, 13.32, 14.27, 10.34), and the SNRe values are
(1.84, 3.73, 4.22,2.91, 2.90, 3.45, 2.99, 2.53), respectively. (b) Histograms of the inter-spike interval distributions with
a bin size of 1ms. The numbers on the left indicate the percentage of spikes with an inter-spike interval of less than
3ms. (c) Projection test of the found clusters. The fit (solid line) represents a Gaussian distribution whose mean is
the corresponding template and with variance 1. The D value indicates the distance in standard deviations between
the means. Note that in the case of acute recordings, the waveforms change over time and thus the projection test
is only meaningful for short time intervals. For the projection test the same spikes as in (a) were used.

Since we inserted the tetrodes before every experiment anew, our algorithm has to
deal with the variability in the data caused by tissue drifts. The adaption procedure
described in Sec. 4.2.8 was executed after every trial and adapted the algorithm cor-
respondingly. The time period over which the templates wereassumed to be constant
was set toT = 5s ∗. As a result, 2 neurons could be tracked from the beginning tothe

∗The value ofT was set to 5s just for convenience of implementation, since the first 5s of each trial
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very end of the experiment. The other templates were deletedearlier, since their SNRm
dropped below 0.65.

The disappearance of neurons from the recording volume is a common phenomenon
in our recordings. However, the opposite, i.e., the appearance of new neurons during
recordings, is rarely observed. This might be explained by the fact, that at the beginning
of the experiments, the tetrodes are explicitly placed at a position where a lot of neuronal
activity is measured. Therefore, it is more probable that during the tissue drifts the high
activity population of neurons disappears than that new, highly active neurons appear.
We discuss this problem also in Sec. 4.4.3.

The evaluation in Fig. 4.8 shows that the clustered spikes, although whitened, are
not perfectly Gaussian distributed. This deviation is caused by overlapping spikes, but
it is also due to an intrinsic waveform variability, as it is observed for example during
bursts [56]. In this sense, the generative model assumed in Sec. 4.2.1 is not strictly valid
anymore. Nevertheless, our method achieves a good performance, even for datasets
containing bursting neurons identified by visual inspection. This can be explained by
the fact that the scaling of the waveform during burst is close to linear [180]. Because of
the linear character of our method (e.g. see Sec. 4.4.1), theresponse to a linearly scaled
waveform will also only be scaled by the same factor. Hence, the algorithm classifies
spikes from bursting neurons correctly as long as the amplitude degradation of the spikes
is not too strong.

4.4.2 Limitations of our method

We have shown that our method is of great potential for spike detection and classification
applications. However, there is a principle limitation: Since the filtering and the Decon-
fusion are linear operations, it is impossible to discriminate waveforms which are strictly
linear dependent, i.e., when the spike waveform of one neuron is a multiple of the wave-
form of another neuron. A possible way to solve this problem is to sort the templates
according to their SNR. Spikes with the highest SNR are detected first. Whenever a
spike is found, the corresponding template is subtracted from the data and all other filter
outputs are re-calculated for the affected period. This procedure is repeated for templates
with a lower SNR. Further, if the sum of the waveforms of two different neurons with
a certain shift is nearly identical to another neurons spikewaveform, it is impossible to
judge whether a spike is an overlap or not. Only probabilistic methods or soft clustering
could give a hint at where the waveform came from.

4.4.3 Newly appearing neurons

We have not addressed the problem of neurons which are not detected during the initial-
ization phase. As we observe spikes from neurons whose SNR decreases due to tissue
drifts, and finally disappear completely from the recorded data, the opposite might also
happen; i.e., neurons, previously undetected, slowly appear in the recording volume. A
possible solution would be to run a conventional spike detection method in parallel to our
method. All spikes detected by the conventional spike detection technique, but not by

were processed.
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our method, could be collected, aligned and clustered. Respecting the newly found clus-
ters, corresponding filters could be initialised and the Deconfusion procedure adapted
accordingly.

4.4.4 Implementation and computational complexity

Especially for a real-time implementation the runtime of analgorithm is crucial. After
the initialisation phase, the proposed method consists mainly of linear operations. The
adaptation of the covariance matrix, of the templates and ofthe Deconfusion parameters
need only to be computed every few seconds. Therefore, the computational burden lies
in the application of the linear filters and the Deconfusion to a new sample of recorded
(multi-channel) data.

Parallel computing

It is important to note that the cross-correlation for everyfilter - even for every channel
of every filter - are independent of each other and can, thus, be computed in parallel as
simple vector-matrix multiplications. For a so called vector processor such a multiplica-
tion would be one single operation only or could be implemented efficiently on a modern
consumer computer-graphics hardware or on programmable digital signal processors.

4.5 Discussion and related literature

As the last survey paper [110] is already outdated, we present in this section a short
summary of some existing approaches to spike sorting, and point out the differences to
our method. In most cases, spike sorting is seen as a three stage process consisting of
spike detection, feature extraction, and clustering. In this sense any combination of any
detection, extraction and clustering algorithm is possible, which explains the extensive
spike sorting literature. The main drawback of most approaches is, however, that there
is no feedback incorporating the gained knowledge. This means that the clustering step
is the final step, and the gained information about waveform shape and noise statistics
is not used to improve the spike detection, feature extraction and finally again the clus-
tering. In contrast, in our approach any existing spike sorting algorithm can be used as
initialisation, and the obtained information is used to construct filters which not only
offer improved detection performance, but also allow for driftadaptation and overlap
resolution.

The focus of the selected literature in this chapter lies on feature extraction and clus-
tering procedures, as spike detection methods will be discussed in Chap. 5. Most of the
published spike sorting algorithms indeed apply the just mentioned three stage process
and will be discussed in Sec. 4.5.1. There are only few spike sorting methods relying
on blind source separation (BSS), probably due to the fact that BSS is not a simple
approach for spike sorting, as only few methods deal with theover-complete convolu-
tive case. Some approaches will be discussed in Sec. 4.5.2. Moreover, in App. B.2 we
list some more general studies on BSS and blind deconvolution as a starting point for
developing spike sorting algorithm based on their principles in future work.
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4.5.1 Spike sorting based on clustering

We begin the discussion with studies which also rely on template extraction, and then
move to algorithms relying on other principles.

In [198] a supervised neural network, supervised template matching and supervised
classification based on principle components (PC) are compared. Template matching
is done by calculating the squared distance. The data/noise covariance matrix is not
taken into account. The neural network achieves best performance followed by template
matching. For the PCA method only the first 2 PC were used.

On the other hand, in [8] the data are whitened first, and the euclidean distance to
templates is used for classification. The templates are not learnt blindly, but given a
priori (supervised method). The method is non-adaptive, and overlapping spikes are
only resolved when not more than two waveforms superimpose.

Also in [36] it is assumed that the templates are already estimated. The method
yields an improvement if the different neuron clusters have different variances. The vari-
ance of a cluster is estimated by the Levenberg-Marquart algorithm, which is basically
an iteration procedure for minimising a function which is a sum of squared non-linear
functions. Once the variance estimate is done, spikes are assigned to a cluster by a
modified Euclidean distance (which is not well motivated).

In the work [78] the templates are assumed to be known, and spikes are sorted by
computing the variance of the output signal after filtering with the templates (in order to
reduce the computational complexity). The method is intended for low power devices,
such as implantable prosthetics.

In [220] detected spikes are projected into PC space. In thisspace the density is
computed, and templates are then extracted from point regions of high density. Next,
spike sorting is performed by template matching using the Chebyshev norm. Overlap-
ping spikes are not processed directly, but must be first recognised as such and then
resolved by a more complex sub-routine.

The authors of [172] present a method designed for non-convex clustering, i.e. when
the data distributions are non-convex. A relation between the entropy and the Cauchy-
Schwartz divergence is established. As such, the entropy between clusters is maximised
while the entropy within a cluster is minimised. The method requires a training phase,
and the number of clusters must be given. The problem of classifying overlaps is not
mentioned.

The main focus of [9] is handling non-stationarities in the data, such as changing
templates and noise characteristics. The data are split into many frames, in which the
data are assumed to be stationary. In every frame a clustering based on a Gaussian
mixture model is applied (local clustering). In order to combine the local clustering into
a global one the theory of types is used. The algorithm allowsfor splitting and merging
of clusters. On the other hand, this approach is not capable of online processing and
overlaps are also not resolved.

In [231, 232] another spike sorting method is presented which is capable of dealing
with non-stationarities. The classification is based on a Gaussian mixture model. In each
new frame the Expectation-Maximisation algorithm is initialised by the clustering result
of the previous frame. Model selection is not done by the BIC,but a more accurate ap-
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proximation based on Laplace’s approximation is used. There is also a routine dealing
with the case when the number of clusters is different in two subsequent frames. In con-
trast to [9] the algorithm processes one frame after another; there is no global clustering.
Still, the clustering can only take place after the data of a full frame is acquired, and
spike overlaps are not handled (probably overlaps are classified as background by the
uniform mixture component).

The method presented in [82] uses a hidden Markov model to represent spikes. In
this way the refractory period is incorporated. In order to estimate the model param-
eters, such as transition probability, template, etc., theBaum-Welch algorithm is em-
ployed. Once these parameters are learnt, spikes are found and classified by applying
the Viterbi algorithm. In principle, this method can resolve overlapping spikes. How-
ever, the computational load is enormous, making a real-time implementation infeasible
(the algorithm is not even capable of online processing though). Moreover, a lot of hand-
tuning is required (see section 2.4 in the paper), which classifies this algorithm rather as
semi-supervised.

The proposed method in [32] is similar to the one in [180], in the sense that clusters
are built online, merged and split. However, this is all doneon wavelet coefficients and
not on the original data as in [180]. Also the spike alignmentis more sophisticated.

A good comparison of several approaches is found in [203], and the code is available
online. However, the paper does not address the problem of overlapping spikes. The raw
data are filtered with a bandpass FIR filter, and two different FIR filters are compared
for this task. Spike detection is done by simple amplitude thresholding. For feature
extraction PCA and wavelet coefficients were compared. Finally, 2 clustering techniques
and two estimation techniques were compared: mixture of Normal distributions, mixture
of Student‘s t-distributions, and 2 estimation techniques, namely Normal expectation
maximisation and robust variational Bayes. The number of clusters is estimated with
minimum message length, as it is argued that this method performs better than Akaike
information criterion and Bayes information criterion. The algorithms are tested on
simulated and real data. Robust variational Bayes, with wavelet features and Student‘s
t-distribution mixture model performs best.

In the work of [16] spikes are detected by amplitude thresholding and projected
into PC space. A hierarchical classification algorithm is used for clustering, whereas
overlapping spikes are not handled.

The focus of [100] is on feature extraction and clustering. Feature extraction is done
by projection pursuit maximising the negentropy, which leads to better results than PCA.
Clustering is done by a Gaussian mixture model, whereas the number of components is
determined visually. Overlapping spikes are not considered.

The algorithm presented in [167] is computationally expensive, but makes use of
almost all available information; not only is the waveform information used, but also
the temporal aspects, such as the inter spike interval distribution and altered waveforms
due to bursting are considered as well. Specific models for all statistics are assumed,
whereby their parameters have to be estimated from the data.This is done by construct-
ing corresponding Markov chains and Monte Carlo simulations of them. The number of
clusters has to be user specified, thus, the method is semi-automatic. Overlapping spikes
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are not considered. A slightly modified version of the algorithm was published in [42].
The authors of [191] argue that a Gaussian distribution is not appropriate for mod-

elling the variability of a waveform and instead a t-distribution should be used. An
expectation-maximisation algorithm adapted for t-distributions is presented and used for
clustering. Overlapping spikes are treated as outliers or noise.

The paper [87] proposes to perform spike sorting in the wavelet coefficient space.
However, the most discriminative wavelets are chosen by hand, and no method is pre-
sented how to do this automatically.

In [55] the found spikes are initially clustered, whereas the number of clusters is
set to a value around 10 times larger than the number of estimated neurons. Then, an
aggregation process merges the clusters based on the interface energy and inter spike
interval times. No online scheme is presented nor are overlapping spikes considered.

It is argued in [241] that the derivative of the spike waveform in the frequency do-
main is better suited for distinguishing spikes form different neurons than the origi-
nal waveform. The overall spike sorting algorithm is as follows: Spike detection with
NEO detector (see [145]), pre-processing with a frequency shaping filter (in this case the
derivative), feature extraction via PCA, and clustering with the mean shift clustering al-
gorithm. Similar to [168] a measure is defined which indicates the sorting performance.
This measure relies on the earth mover distance.

In [4] a method is presented which is based on spike trajectories (i.e. derivatives of
the signal), i.e. a spike is assigned to the class to which it has minimum distance in phase
space. The method does not resolve overlapping spikes, but it is automatic and online
(however, it needs a learning phase).

A neural network approach is used in [33], which needs human supervision for learn-
ing. All overlaps must be also trained with the network, meaning that when many neu-
rons are present and when not only overlaps between pairs of neurons are considered,
this approach is computationally very expensive and contains a lot of human dependent
parameters such as the number of hidden layer, appropriate summation function, etc.

4.5.2 Spike sorting based on source separation

An offline algorithm is presented in [200], which combines clustering with ICA. Firstly,
all regular spikes are clustered with thek-means algorithm, whereas the number of clus-
ters is around twice the number of neurons. Each cluster is then decomposed using the
FastICA algorithm. The obtained independent basis vectorsare compared between the
clusters, and clusters with similar basis vector are merged(i.e. only the spatial wave-
form, not the temporal waveform is used). A similar procedure is applied to irregular
spikes, which most probably represent overlapping spikes.However, some of the prob-
lems mentioned in Sec. 4.1 for the pure ICA approaches are also of concern in this
method.

In [206] spikes are enhanced by filters which respond to discontinuities in the data.
FastICA is then applied to the filter output in order to achieve spike sorting. However,
the number of filters is not determined automatically. Also,spike detection methods
based on transiency detection are not optimal as will be discussed in Chap. 5.

In the work of [86] a method based on array processing is presented, which is de-
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rived from the field of radar applications (see Sec. 1.2.1). This methods works for multi-
channel electrodes which are aligned parallel to an axon, asthe algorithm relies on spe-
cific propagation velocities of spikes from individual neurons, and the resulting time
delays when the spike is visible on a channel. The method is supervised, and does not
consider blind beamforming approaches as proposed for example in [174, 39, 246].

The paper [121] claims to have solved the general convolutive MIMO source sep-
aration problem, assuming sparse sources. However, only a method in the case of two
sensors is presented which works only in a high SNR setting.

As the neuroscience literature deals with algorithms basedon blind source separation
only to a limited extent, we investigate also some methods from the blind source sep-
aration literature, which, however, were not applied to neural data. In the blind source
separation literature there exist approaches dealing withover-complete systems contain-
ing sparse and finite alphabet sources. However, they are often limited to the noise-free
case (e.g. [65, 111]), deal only with instantaneous mixtures (e.g. [62, 34]), or work only
for under-complete mixtures (e.g. [112]). In principle, a convolutive mixture can be
transformed into an instantaneous one by applying the Fourier transform, however, this
approach is not without problems [160] and will not be discussed further in this thesis.
Nevertheless, as a pure BSS approach might improve the sorting quality (as it will for
spike detection, see Chap. 5), it should be pursued in the future, hence in B.2 we give an
overview over some existing BSS literature.

4.6 Conclusion and outlook

An automatic method for simultaneous spike detection and spike classification was pre-
sented, having several advantages which were demonstratedon various datasets. Explic-
itly, the method makes use of the additional information provided by multi-electrodes
and has no constraints concerning the number of recording channels or the number of
neurons present in the data. It resolves overlapping spikesinstantaneously, performs
well on datasets with a low SNR, and it adapts to non-stationarities present in the data.
Moreover, the method operates online and is well suited for areal-time implementation.

In the first step of our algorithm, optimal linear filters wereused to enhance the
SNR. Linear filters account for the noise statistics as well as for the full, multi-channel
template, and are, therefore, superior to other methods in detecting spikes of a specific
neuron. Further, we used the output of the linear filters as a new representation of the
data. The advantage of the filter output space is that its dimension is equal to the number
of neurons, whereas this was not the case in the original dataspace. This allowed us to
treat the spike sorting problem as a well defined source separation problem and solve it
by Deconfusion.

In the final step, a channel specific threshold was applied providing simultaneous
spike detection and classification. Unlike in many other methods, the thresholds need not
to be set manually by a human supervisor but are determined automatically in an optimal
way. The advantage of a combined spike detection and classification, in contrast to ex-
isting spike sorting methods, was demonstrated on simulated datasets. Especially in the
presence of overlapping spike and low SNR, our method achieved better performances.
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We showed that, in the case of linear filters, a proper definition of the signal-to-noise
ratio is based on the Mahalanobis distance, whereas other commonly used definitions do
not reflect the difficulty in detecting the signal.

By iteratively updating all quantities, namely the linear filters, the Deconfusion pa-
rameters, and the thresholds, the algorithm adopts to non-stationarities present in the
data. As such, the method is also suitable for recordings made in acute experiments in
which the multi-electrodes are inserted each time anew.

Two drawbacks of the proposed method were discussed, namelythe incapability to
detect newly appearing neurons and the problem of strictly linear dependent templates.
However, for both problems a possible solution was sketched. The detailed study and
realisation of these solutions is left for future studies.

By qualitative arguments, systematic runs on realistically simulated data and on real
data from awake behaving macaques, we have shown that the algorithm is capable of
resolving overlapping spikes; without additional computing time. However, for the
acute recordings in awake behaving monkeys we cannot proof that the found solution
is correct, since the ground truth is unknown. Only massive simultaneous intra- and
extracellular recordings in vivo could be used to assess thequality of the sorting in real
experiments. Due to technical limitations, such a dataset is currently not available.

The algorithm mainly consist of linear, independent operations, which can be exe-
cuted in parallel and implemented in hardware. Therefore, the algorithm can be used
for real-time implementations, making it an potential spike sorting method for brain-
machine interfaces and for the execution of closed-loop experiments.

4.7 Derivations

4.7.1 Derivation of optimal linear filters

Filter f i should respond with a peak to its matching templateqi , but should have minimal
response to the rest of the data. In particular, one demands that the response to the
matching template is 1, i.e.qi⊤ · f i = 1. The response of the filter to the data isX ⋆ f i ,
where

(

X ⋆ f i
)

t
=

∑

k,τ xk,τ+t · f i
k,τ. Using the third assumption of Sec. 4.2.1 the response

of a filter to X will be small (and therefore well distinguishable from the peak response
of 1 to the matching template) if the variance of the filter output is small, i.e., one has to
minimise Var

(

X ⋆ f i
)

. In summary, the constrained minimisation problem is stated as

f i = argmin
f i

{

Var
(

X ⋆ f i
)}

subject toqi⊤ · f i = 1. (4.10)

A short calculation (see Sec. 2.1) shows that

Var
(

X ⋆ f i
)

= f i⊤ · R · f i . (4.11)

Thus, the LagrangianL of this minimisation problem is given by

L = f i⊤ · R · f i + λ
(

qi⊤ · f i − 1
)

(4.12)

whereλ is the Lagrange multiplier. Since the objective function isconvex inf i , there ex-
ists a single minimum, which can be found by solving∇ f i ,λL = 0. In fact, the minimum
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is attained at

f i =
R−1qi

qi⊤R−1qi
. (4.13)

Often, linear filters are derived in the frequency domain instead, but linear filter defined
in the time domain have several advantages, see [224].

4.7.2 Derivation of Deconfusion

I (yi
t) can be expressed as a linear combination of the sourcessj at shiftsτi, j :

I (yi
t) =

∑

j

(A)i, j sj
t+τi, j (4.14)

We show that
zi
t :=

∑

j

(W)i, j I (y j
t−τ j,i

) (4.15)

with W = A−1 is the corresponding inverse problem. By inserting the expression in
Eq. 4.14 into Eq. 4.15 one obtains

zi
t =

∑

j

(W)i, j

∑

k

(A) j,k sk
t+τ j,k−τ j,i

(4.16)

=
∑

j,k

(W)i, j (A) j,k sk
t+τ j,k−τ j,i

=
∑

j

(W)i, j (A) j,i si
t+τ j,i−τ j,i

+
∑

j,k,i

(W)i, j (A) j,k sk
t+τ j,k−τ j,i

= si
t +

∑

j,k,i

(W)i, j (A) j,k sk
t+τ j,k−τ j,i

Hence,

zi
t = si

t ⇐⇒
∑

j,k,i

(W)i, j (A) j,k sk
t+τ j,k−τ j,i

= 0 ∀ j, k, i , k (4.17)

This is true, if

τ j1,k − τ j1,i = τ j2,k − τ j2,i ∀ j1, j2, i, k. (4.18)

Note that this condition is always satisfied fork = i.
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4.7.3 Derivation of the optimal threshold

If we assume that the noise in the Deconfusion output is stilla mixture of Gaussians (as
an approximation for a mixture of truncated Gaussians), it follows for its variance

σ2
k := Var

(

zk
)

(4.19)

= Var
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)2 f i⊤C f i + 2

M
∑

i=1

M
∑

j>i

wk,iwk, j f i⊤C|τk, j−τk,i | f
j

whereC|τk, j−τk,i| are shifted covariance matrices, i.e. taking temporal correlations into
account of orderT f + |τk, j − τk,i |.

The optimal threshold for the detection and classification of spikes from neuronk is
chosen such that the overlap between the distribution of thespikes from neuronk and
the distribution of the other spikes (from neuronsj, j = 1, ...,M, j , k) is minimal. We
assume the distributions to be Gaussian, with meansµk, j and varianceσ j

2. Theµk, j are
given by the maximal response values of filterj to templatek after Deconfusion, i.e.

µk, j = max
τ

{

(

W · I
(

(

q1 ⋆ f j . . . qM ⋆ f j
)⊤))

k,τ

}

(4.20)

whereas the variance is given by Eq. 4.19. One has only to consider the maximal false
response and not the whole response, because the refractoryperiod is in general longer
than the length of the template. Thus the optimal thresholdγk is given by

γk = argmin
γk
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(4.21)

whereer f c denotes the complementary error function, andβ j is a normalised weight.
Namely, if one wants to have an equally good detection performance as false alarm per-
formance, then the weights should be chosen asβk = 0.5, and theβ j j , k proportional
to the firing frequency of neuronj such that

∑

j,k β j = 0.5. Note that the threshold must
lie in the interval [0, 1], hence this minimisation problem can be solved numerically with
a line search algorithm, for example using the “fminbnd” command of MATLAB.



Chapter 5

Hybrid blind beamforming for
spike detection

In this chapter we address the problem of spike detection, asdefined in Eq. 1.3. We
present a new spike detection algorithm which is based on methods from the field of
blind equalisation and beamforming, and which is particularly adapted to the specific
signal structure neuronal data exhibit. In contrast to existing approaches, our method
blindly estimates several waveforms directly from the data, selects automatically an ap-
propriate detection threshold, and is also able to track neurons by filter adaptation. The
few parameters of the algorithm are biologically motivated, thus, easy to set. We com-
pare our method with current state-of-the-art spike detection algorithms, and show that
the proposed method achieves favourable results. Realistically simulated data, as well
as data acquired from simultaneous intra/extra-cellular recording in rat slices are used as
evaluation datasets.

5.1 Introduction

Extracellular recordings with electrodes constitute one of the main techniques for ac-
quiring data from the central nervous system in order to study the neuronal code. One of
the first processing stages of the recorded data, hence, consist of identifying the occur-
rence times of these spikes. To this end, various spike detection algorithms have been
developed. To give a structured overview of the recent development in this field, we
use a categorisation scheme based on the working principle of the methods. Note, that
although the spike detection stage is one of the earliest, basically all algorithm require al-
ready some pre-processing. This includes a band pass filtering (usually between 0.5kHz
and 10kHz), and a zero mean normalisation. In the following,we will still refer to this
kind of pre-processed data as “raw” data, since all techniques rely on this initial step.

The first category of spike detection methods assumes that the spikes exhibit a larger
amplitude than noise fluctuations. Hence, spikes can be detected as data segments which
amplitude cross a certain threshold value. In [152] three different variations of this
detection paradigm were described, including maximum, minimum and absolute value

70
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thresholding. Other related approaches rely on the distance between the minimum and
maximum value within a certain time frame [124], or temporally hierarchical maximum
and minimum value thresholding [18].

The principle of the second category is based on the transient nature of a spike,
thus, spikes can be detected by measuring some quantity describing the discontinuity of
data. An example is the nonlinear energy operator which takes into account instanta-
neous energy and frequency, and which was used for spike detection in [145]. Further
adaptations of this method to neural data have been proposedin [37, 38]. On the other
hand, the approach in [158] considers only the instantaneous energy difference, while the
proposed method in [144] calculates the derivative of a temporally accumulated energy.
Also based on the first derivative of the data are methods presented in [4, 206].

The algorithms falling into the third category rely on the fact that spikes from a
specific neuron exhibit a characteristic waveform. The similarity between a data segment
and a specified waveform decides whether the considered datasegment contains a spike.
When the actual waveform in the data is unknown, a generic approach can be used. For
example in [101, 147] a biorthogonal respectively a coiflet mother wavelet is used, since
they exhibit a certain similarity in shape to waveforms found in some real recordings, and
a spike is said to be detected when a specific function of wavelet coefficients exceeds a
threshold value. In contrast, unsupervised estimation (also called blind estimation) of the
waveform or blind equalisation has been performed in [41] bylinear prediction, in [102]
by automatic threshold setting, or in [187, 188] by using thecepstrum of bispectrum.

The choice which algorithm should be used in an application,surely depends on the
two important aspects of computational complexity and detection performance. Limited
power and computing resources, as encountered in implantable circuits [247], restrict
applicable algorithm to have a very low computational load,hence mostly methods from
the first category, and some few from the second one are used. When not limited by such
constraints, it is favourable with respect to the detectionperformance to use algorithms
belonging to the third category. This is motivated by the fact, that given the waveform
and the noise covariance matrix, the matched filter, or equivalently the minimum vari-
ance distortionless response beamformer (MVDR)†, is the optimal detector in case of
Gaussian noise [210].

The aforementioned spike detection methods based on blind equalisation suffer from
three main drawbacks. Firstly, they construct only a singlefilter. In many experimental
situations, however, spikes from more than one neuron, having distinct waveforms, are
present in the electrode recordings. The single filter either captures just one waveform,
meaning that spikes from the other neurons will be detected poorly, or the filter is an
average filter which will have a sub-optimal response to spikes from all the neurons.
This problem aggravates the more neurons are present, and the more the waveforms
are distinct, which is especially the case in multi-channelrecording devices, such as
tetrodes [75].

Secondly, few methods offer an automatic threshold selection mechanism, thus al-
lowing for a truly unsupervised operation. The available approaches [227, 209, 31, 16]
focus on the case when spike detection is done by amplitude thresholding (first cate-

†See Sec. 2.2.1 for more information about these and similar filters.
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gory). For the above mentioned methods which rely on blind equalisation, none or only
heuristic values are given regarding the choice of an appropriate threshold.

Thirdly, the mentioned methods are non-adaptive. Once a filter is calculated on
a data segment in the time interval [t, t + T], it is also applied to all subsequent data
segments at timesτ > t + T. Particularly in acute recordings, the shape of the waveform
will change over time [21], hence the performance of the filter will be sub-optimal if
it is not adapted. One could re-estimate the template and re-calculate the filter after
every time interval, however, this would increase the computational load significantly,
and tracking of neurons would become difficult.

In this chapter, we propose a new spike detection algorithm which overcomes all
those drawbacks. The algorithm is derived by considering the spike detection task as
a blind equalisation problem in a multiple-input, single-output system. The algorithm
consists of a two step procedure: In the first step, an iterative algorithm based on higher
order statistics and deflation is used, which leads to an initial filter estimate. In the
next step, the minimum variance distortionless responses (MVDR) beamformers are
calculated, leading to an increased detection performance. This also allows to formulate
a threshold selection algorithm as well as an effective adaptation scheme (see Fig.5.1
for a graphical representation of the whole algorithm). Because we use techniques from
both fields, i.e. blind equalisation and classical beamforming, in the context of spike
detection, we call our method hybrid blind beamforming for spike detection (HBBSD).

The rest of the chapter is organised as following: In Sec. 5.2the algorithm and all its
individual steps are described. The evaluation of its performance and comparison with
existing spike detection methods are presented in Sec. 5.3.Conclusive remarks are given
in Sec. 5.5.

5.2 Methods

5.2.1 Model of recorded data

In order to derive a well motivated algorithm avoiding heuristics as much as possible, the
recorded data has to be described by some signal model. In theneuroscience community,
it is widely accepted that the datax recorded at an electrode can often be represented as
a linear sum of convolutions of the intrinsic spike trainssi with constant waveformsqi

and colored Gaussian noisen (having a noise covariance matrixC), see e.g. [181, 168].
Explicitly, it is

x(t) =
M
∑

i=1

∑

τ

qi(τ)si(t − τ) + n(t), (5.1)

whereM is the number of neurons whose spikes are present in the recordings. For the
sake of clarity, we restricted the model to single channel recordings, i.e. electrodes, but
an extension to multi-channel data as provided by tetrodes is straightforward∗ .

Since the goal of spike detection is to recover the spike trains si from a linear time-
invariant system without a priori knowledge about the shapeof the waveformsqi , this

∗SinceN = 1, the indexk in Eq. 1.1 can be omitted. For convenience the indexi denoting thei-th
source is now written as sub-script compared to Eq. 1.1 whereit was a super-script.
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can be viewed as a blind equalisation∗ problem. An overview about this topic and a
survey of available methods dealing with such problems can be found in [35], for further
literature see also Sec. 5.4 and App. B.2.

Most often,M, the number of sources, will be larger than the number of recording
channels. In the model of a single electrode as described in Eq. 5.1, the number of
recording channels is equal to one, in which case the generative system is referred to
as multiple-input, single-output. In general, it is not possible to extract more sources
than available recording channels [35]. In the following, we make explicit use of the
unique properties of neural data, such as sparseness and binary alphabet, to overcome
this restriction partially.

SEA Mode detection

Sparse deflation

MVDR 

calculation

Filtering +

thresholding

if abortion criteria met

Threshold 

calculation

Adaptation 

Figure 5.1: Schematic illustration of the proposed algorithm HBBSD. The algorithm starts with the super-
exponential algorithm (SEA), and iterates between SEA, Mode detection and Sparse deflation repetitively, until
certain abortion criteria described in Sec. 5.2.5 are met. Finally, the MVDR filters and the corresponding thresholds
are calculated. Spike detection is done by thresholding the filter output and the newly detected spike are used to
update the filters, allowing for neuron tracking.

5.2.2 Application of the super-exponential algorithm

The super-exponential algorithm (SEA) developed in [189] achieves blind equalisation
via filter calculation by higher order cross cumulants. For real valued data, the filterh at
iterationk+ 1 is computed as

h(k+1) =
R−1 · d(k)

√

d(k)⊤R−1 · d(k)
(5.2)

∗Often also called blind deconvolution, blind identification, or convolutive blind source separation.
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whereR is the data covariance matrix,d(k)(n) denotes the cross-cumulant§ betweenp-
timesy(k)(t) andx(t − n), andy(k)(t) is the filter output, i.e.:

(R)i, j = cov(x(t − i), x(t − j)) (5.3)

d(k)(n) = cum(y(k)(t) : p, x(t − n) : 1)

y(k)(t) =
∑

τ

h(k)(τ)x(t + τ)

The algorithm works when the signalssi are non-Gaussian and when theqi are sta-
ble†. In the context of neural recordings, both requirements aresurely met. Firstly,
the si represent the intrinsic spike trains, thus taking values ofeither 0 or 1, and whose
probability density function follow most likely a sparse Bernoulli distribution, or their
inter spike interval a Poisson distribution. Secondly, thewaveformsqi are finite impulse
response filters, and hence are stable. The SEA algorithm is said to have reached con-
vergence when the difference between two consecutive iterations is small enough (see
also Sec. 5.3.3). For convenience, we call the filter obtained at the last iteration simply
h, instead ofh(klast).

The choice of the SEA instead of other blind equalisation algorithms was motivated
by several of its features. It is shown that in the noise-freecase, the algorithm con-
verges independently of the initial condition to the globally optimal solution with a
super-exponential convergence rate [189]. If one had access to an infinite amount of
data, this property should also hold when Gaussian noise is present, as higher order
cumulants are zero for Gaussian signals [189]. Moreover, the algorithm is not gradi-
ent based like Bussgang type algorithms, thus no step size selection is required, which
reduces the amount of parameter settings for the user.

For neural data, we chose the order of the cumulant to bep = 2 or p = 3. In the
former case, the vectord is proportional to a function of the skewness, a statistic which
is well suited for asymmetric signals such as thesi [155]. For p = 3, this makes the
vector d proportional to a function of the kurtosis, which is a good statistics in case of
sparse data following a model as in Eq. 5.1 [95, 88]. These findings were also confirmed
in [116].

5.2.3 Mode detection in the SEA filter output

The SEA computes a single filter on the basis of a vectord which contains the statistics
of all M waveforms. Nevertheless, as it is most likely that the characteristics of the neu-
rons will be different with respect to signal-to-noise ratio, spiking frequency, or shape of
waveform, it is expected that the filter will have various responses to the different neu-
ronal waveforms. The idea is to identify spikes which belongto a single component and
re-calculate the filter using only these spikes. The identification is done by a technique
called mode finding [27].

Firstly, only the maximum values, denoted asmi , of the filter outputy within a certain
range 2Ls + 1 are extracted. Then, the probability density functionpm of the mi is

§See Sec. 1.4.2 for a short introduction to higher order statistics and used notation for cumulants.
†Stable in the sense of robust against noise, not in the sense of stationary in time.



CHAPTER 5. HYBRID BLIND BEAMFORMING FOR SPIKE DETECTION 75

estimated by a kernel density estimator, which in the assumed case of Gaussian noise is
favourable to be a Gaussian kernel. The kernel bandwidth is chosen optimally depending
on the amount of data [93]. The functionpm will exhibit a high amplitude mode due
to noise, and possibly several low amplitude modes caused byspikes‡, see Fig.5.2.
Hence, the second largest modeb2 is the prominent spike mode, i.e. caused by spikes to
which the filter responded the most, and which consequently should be extracted from
the data first (see also Sec.5.2.3). Allmi which have a smaller distance tob2 than to any
other spike mode, and which are also larger than the first minimum separating the noise
peak from the first spike mode, are considered to belong tob2, see Fig.5.2. However,
modes which are in the range of±2σ̂nh aroundb2 are not regarded as separate modes,
whereas ˆσnh denotes the estimated standard deviation of the noise in thefilter output (of
filter h) (see Sec.5.2.3).This is motivated by the fact that two Gaussian distributions with
identical standard deviation do not exhibit two separate modes, unless their means are
at least 2σnh apart [179]. This merging of modes is necessary in order to minimise the
number of spurious modes which do not represent an individual component but are mere
artifacts caused by the kernel smoothing.
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Figure 5.2: Top: Estimated probability density of the local maxima values mi . The spareness of the data is
clearly exhibited by the large noise peak (at around 1 on the x-axis) and some small spike peaks (at around 4 and
5 on the x-axis). Bottom: Zoom in on the spike modes. The circles indicate the local maxima of the modes that
were found. The mode at around 3.9 was identified as largest (b2), and the two modes indicated by blue circles are
discarded, as they are within the range of ±2σ̂nh . The estimated noise standard deviation σ̂nh is indicated by the
thick bar. The green cross indicates the first local minimum, separating the noise peak from the spike modes.

Estimation of the filter output noise variance

To estimateσnh, first the mean ˆµnh of the filter output noise is estimated. If one can
assume thatn is zero mean, this step can be avoided, since then, it immediately follows
that µnh = 0 as well. Otherwise, the probability density function ofy is estimated by
a Gaussian kernel density estimator as described in the previous section. Making again
use of the sparseness of the data, the mean ˆµnh is found as the global maximum of this
probability density function.

‡Due to the large amount of noise samples, the kernel bandwidth will be relatively small, which guar-
antees that the modes caused by spikes will not be smoothed away.
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As we expect that the response of filterh to spikes is larger thanµnh, we ignore all
values ofy which are above ˆµnh, since they are likely to contain spikes. Hence, ˆσnh is
solely estimated on values ofy which are smaller than ˆµnh.

Gaussianity of the modes

Strictly speaking, due to the maximum operation, themi do not follow a Gauss distribu-
tion anymore, but rather an extreme value distribution. Nevertheless, a Gaussian kernel
is used for density estimation and the spike modes are assumed to be Gauss distributed
as well. This is justified by the fact that the spike modes exhibit large amplitudes in the
filter output, and thus their maxima values are still almost Gauss distributed even after a
maximum operation.

Even when the noise in the original data is not perfectly Gauss distributed, after
filtering it probably is due to the central limit theorem. Thus, it is justified to assume
Gauss distributed noise in the filter output.

Largest spike mode finding

From the kernel density of themi, first a Gaussian distribution with mean ˆµnh and stan-
dard deviation ˆσnh is subtracted (not shown in Fig.5.2). This removes the noisecon-
tribution to modes, and ensures that the largest spike modeb2 is indeed the prominent
one.

Note that in [102] also a mode detection procedure was applied. In contrast to our
approach, it was done on a generic filter output consisting ofsquaring and lowpass fil-
tering. Moreover, we merge modes based on their proximity inorder to find all spikes
belonging to the largest spike mode, whereas in [102] only the local minimum separating
the noise mode from the spike mode is found and a single template is constructed.

5.2.4 Sparse deflation

In classical algorithms designed for multiple-input, multiple-output systems, sources
are extracted one by one using a technique called deflation [92]. As such, one single
waveformq j is estimated via second order statistics, the sourcesj is estimated via the
convolution of the corresponding filterh j with x, and the convolution betweenq j and
sj is subtracted from the datax. This classical deflation procedure was developed by
assuming that the sources are continuous signals, and that the waveforms have to be
known only up to a scalar factor. In contrast, the signals representing the occurrences of
spikes are discrete and sparse, and, as will be shown in Sec. 5.2.6, the waveforms need
to be known without ambiguity.

Therefore, we propose an adapted deflation procedure which we call sparse deflation,
as it relies on the sparseness of the data. At iterationj data segmentsx( j)

i of length
2L f + 1 are cut out ofx around the occurrence timestmi + tshift of the maximami , i =
1, ...,K, which belong to modeb2. The shifttshift is determined so that the cut out data
segments have maximum total energy. Without this step, extraction of different parts of
the same waveform at several iterations would be possible, as the SEA filter does not
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necessarily respond maximally at the middle of a waveform. Finally, the waveform is
estimated as the median of all data segments§, i.e.

q̂ j(t) = med
{

x( j)
1 (t), . . . , x( j)

K (t)
}

t = −L f , ..., L f , (5.4)

whereK is the total number of maximami belonging to modeb2. Instead of subtracting
the estimated contribution of sourcesj, the data segmentsx( j)

i are simply removed from
the data. The reduced data setx \ x( j)

i , i = 1, ...,K, is now used as the starting point for
the next iteration of the algorithm. In particular, the steps described in Sec. 5.2.2 - 5.2.4
are repeated on the updated datax \ x( j)

i=1,...,K =: x.

5.2.5 Abortion criteria

The iteration loop is terminated if at least one of the following criteria is met:

• No spike mode can be identified in the filter output anymore, orthe number of
spikes belonging to the spike mode is below a relative threshold min f

• A maximum number of iterations is reached

If the loop abortion happens after the first iteration already, the filter obtained by Eq. 5.2
is used for further spike detection instead of the MVDR beamformers.

5.2.6 Calculation of the MVDR beamformers

Once the iteration loop described in the previous sections is completed, the final filters
used for spike detection are calculated. Namely, we use the MVDR beamformer¶ which
is given by [210]

fi =
Ĉ−1 · q̂i

q̂⊤i · Ĉ−1 · q̂i
, (5.5)

whereĈ is the estimate of the noise covariance matrix, and ˆq denotes the vectorial rep-
resentation of thei-th estimated waveform, the individual entries being ˆq−T f , . . . , q̂+T f .
The estimate ofC is done after the last algorithm iteration, as the deflated data set
x \ x( j=1,...,J)

i=1,...,KJ contains far less spikes than the original datax allowing for a more
accurate noise estimation.

5.2.7 Filtering and spike detection

After calculating the MVDR beamformers, the data are filtered with each of them, and a
spike is declared as detected when the filter outputzexceeds a certain thresholdγ, i.e.

zj(t) =
∑

τ

f j(τ)x(t + τ) detection ifzj(t) ≥ γ j (5.6)

=: ( f ⋆ x)t .

§An even better performance could be achieved if the data segments were first upsampled, aligned,
averaged and then downsampled [168].

¶Note that other filters could be used instead, e.g. adapted toa real-time detection task, as discussed in
Chap. 2.



CHAPTER 5. HYBRID BLIND BEAMFORMING FOR SPIKE DETECTION 78

5.2.8 Threshold selection

The threshold for every filter is selected individually suchthat the probability of detec-
tion PD is maximal (probability of a true positive detection), whereas the probability of
false alarmPFA (probability of a false positive detection) should be minimal. If one ad-
mits a certain tolerance∆ in the arrival time estimation, meaning that a spike is declared
as correctly detected when the filter output exceeds the threshold somewhere in the in-
terval

[

tspike− ∆, tspike+ ∆
]

, the probability of detection for filterf j given thresholdγ j is
expressed as

PD j(γ j) = 1−
∆

∏

τ=−∆
PN j

((

f j ⋆ q̄ j

)

τ

)

(5.7)

wherePN j(x) := 1/2 ·
(

1+ erf
(

γ j−x√
2σ j

))

with σ j =

√

f⊤j Ĉ f j . ThusPN j(x|x=( f j⋆q̄ j)τ) is the

probability that the spike is not detected at sampleτ, whereas ¯q j is defined in the next
Sec. 5.2.9. Similarly, the probability that a noise segmentof length 2∆ + 1 is falsely
detected is given by

PFA j(γ j) = 1−
(

PN j(0)
)2∆+1

. (5.8)

An optimal detector would always achieve a perfect performance ofPD = 1 andPFA = 0,
thus any detector should have a performance as close as possible to the perfect perfor-
mance¶. The optimal threshold, hence, is selected according to

γ j = argmin
γ j
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. (5.9)

This optimisation problem can be solved efficiently as it involves only a single parameter,
namely the thresholdγ j , which should lie in the interval [0, 1]. In practice, we evaluate
PFA j andPD j for all threshold values in [0, 1] with a resolution of 0.0005, and select as
optimal threshold the one which minimises Eq. 5.9‡.

When the threshold is obtained by Eq. 5.9, it is assumed that detecting a spike is
equally important as avoiding a false positive detection. However, with respect to sub-
sequent analysis for understanding the working principlesof the nervous system, it was
shown, that not detecting a spike has more impact than declaring incorrectly a piece of
noise as a spike [159]. This particular characteristic of neural data could be incorporated
by introducing a weighting parameter in Eq. 5.9.

5.2.9 Adaptation to changing waveforms

In Eq. 5.1 we assumed that the waveformsqi are constant in time, which is approxi-
mately true for short periods at the beginning of an experiment. Due to tissue relaxation,
however, the distance between the electrode and the neuronschanges, which leads to
altered recorded waveforms [21]. In Chap. 3 we proposed an adaptation scheme for an

¶Note that in contrast to Sec. 2.1.2 we omit for simplicity theself-suppression term in the calculation
of PFA, and solely consider the false detections of noise samples.

‡Note, that the difference between Eq. 5.9 and the derivation in Sec. 4.7.3 are different norms. In
Eq. 5.9 the|| · ||p, p = 2 norm was applied, whereas in Sec. 4.7.3p = 1 was used.
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estimated spatial waveform and the corresponding filter. This method was especially de-
signed for sparse binary data such as neuronal data. Herein,we shortly summarise this
method and extend it to multiple, temporal waveforms. In brief, after every time interval
T, each waveform is updated as the mean of theKopt last data chunksx of length 2L f +1
which were detected as spikes, i.e.

q̂ j = 1/Kopt j ·
Kmax
∑

i=Kmaxj−Kopt j+1

r j,i (5.10)

where r j,i :=
(

x(t(i) − L f ), . . . , x(t(i) + L f )
)⊤

such thatf⊤j · r j,i ≥ γ j , and Kmaxj

denotes the maximum number of found spikes by filterf j . If two or more filters detect
the same spike, the spike is assigned to one filter only, namely, to the one which had a
response closest to 1. The optimal number of spikes for averaging is determined by

Kopt j = argmax
K

{

M j(K)
}

(5.11)

whereM := PD j + (1 − PFA j), and q̄ j is estimated as the mean waveform of theQ last
detections of filterf j.

5.2.10 Implementation

The higher order cross cumulants were calculated by the use of the HOSA toolbox [199].
The proposed algorithm was implemented in MATLABr version 7.6, but not optimised
for maximum computational speed yet. The code and a sample file will be made avail-
able at the website http://user.cs.tu-berlin.de/∼natora/

Regarding computational complexity, the most expensive task is the computation of
the cross cumulants during the SEA algorithm. This computation, however, can be done
in parallel, in the sense that every time shift can be computed on a separate computing
unit.

5.3 Performance Evaluation

5.3.1 Generation of artificial data

Artificial data were generated according to the model in Eq. 5.1. The waveforms were
constructed from sorted spikes obtained from acute recordings in the prefrontal cortex
of macaque monkeys and had a length of about 0.9ms, see Fig. 5.3. Detailed informa-
tion about the sorting method and the experimental setup were described in Chap. 4.
The spike arrival times were simulated as independent homogeneous Poisson processes
with an enforced refractory period of 2ms. The noiseless data were simulated at a sam-
pling frequency of 40kHz and then downsampled to 10kHz, in order to include the phe-
nomenon of sampling jitter as encountered in real recordings. Gaussian noise with an
autocorrelation structure measured in real recordings wassimulated by an ARMA pro-
cess and added to the spike trains (see Sec. 4.3.2 for more details). Three types of
datasets were simulated, containing activity from one, twoor three neurons.

Two data snapshots from the latter type are shown in Fig.5.4.
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Figure 5.3:Waveform templates obtained from extracellular recordings in macaques and used for generation of
artificial datasets.
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Figure 5.4:Data chunks of simulated data with different SNR values (in the top figure all waveforms had a SNR
of 3.0, in the bottom figure the SNR was 4.0). The markers indicate the occurrence times of the inserted spikes,
whereas the templates shown in Fig.5.3 were used.

5.3.2 Performance assessment

To allow for a better comparison, the most common definition of signal-to-noise ra-
tio (SNR) utilised in the neuroscience community (see for example [147]), was used.
Namely, the SNR of thei-th spike train is defined as the ratio between the norm of the
corresponding waveform and the standard deviation of noise,

SNRi =
||qi ||∞
σn
. (5.12)

The detection performance of an algorithm was investigatedby means of receiver op-
erator characteristic (ROC) curves and the corresponding areas under the curves (AUC),
similarly defined as in [102]. The ROC curves were calculatedby evaluating the relative
number of true positive (TP) and false positive detections (FP), given by

TP=
# of correct detections

# of inserted spikes
, (5.13)

FP=
# of false detections

maximum # of possible false detections
.
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A detection was classified as correct, if the detectors response was within±0.4ms of
the true spiking time, which implied∆ = 2, see Sec. 5.2.8, in the parameter setting of
theHBBSDalgorithm. Multiple detections within this time frame wereignored. Conse-
quently, there is a maximum number of possible false positive detections a detector can
produce in a dataset of finite length. By the definition in Eq. 5.13, both quantities TP
and FP are bounded on the interval [0, 1].

5.3.3 Parameter settings of HBBSD

In all subsequent simulations the following parameters were used in theHBBSD
algorithm: The SEA algorithm was said to have reached convergence if
||h(k+1) − h(k)||2 ≤ 10−10. The SEA algorithm used higher order statistics withp = 2,
but switched automatically top = 3 if no convergence could be achieved in the former
case. The SEA algorithm was initialised with a sine wave, butany other initialisation
could be used. To ensure convergence following conditions were checked after every
150 iterations:

• If the skewness of the filter output was negative, the filter was changed to
h(k) −→ −h(k).

• If the last 10 D(k) were not monotonically decreasing, where
D(k) := ||h(k+1) − h(k)||2, the SEA algorithm was re-initialised with a random
filter.

The minimum firing frequencymin f was set to 5Hz, the filter length was equal to 9
samples (L f = Ls = 4), and a maximum number of 3 filters was allowed. Here we would
like to point out that, unlike in some other methods, where the parameters are algorithm
specific and thus their value setting is not an obvious task, the parameters ofHBBSPare
biologically motivated, allowing for a reasonable choice of their values. For example,
since single channel data is analysed, it is sound to assume that action potentials from not
more than 3 to 4 nearby neurons will be recorded, justifying amaximum filter amount of
3. The filter length can be chosen as the length of a spike, which is most often in the range
of 0.4 to 1.0ms [147]. Besides, there exist methods to estimate the filter length even
when no biologically motivated a priori knowledge is available [116, 176]. In Fig. 5.5 it
is shown that the filter lengthL f has only limited influence on the detection performance
of the SEA algorithm. Finally, it is unlikely that neurons ina task relevant brain region
will exhibit very low firing frequencies, but, as a matter of fact, the parametermin f
could be dropped entirely from the algorithm structure. Theneeded estimate of the
waveform q̄ (see Sec.5.2.9) was obtained as the mean theQ = 75 last detections. As
was demonstrated in Chap. 3, the choice of the value forQ is not critical.

Comparison of p = 2 vs. p = 3

The signalssi are asymmetric as well as sparse, hence both statisticsp = 2 andp = 3
should work in the SEA algorithm. In Fig. 5.6 the results are shown for both cases and
also the performance of the corresponding MVDR filters (the maximum number filters
set in HBBSD algorithm was one). The SEA algorithm achieved better performance in
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Figure 5.5:Same data and evaluation was used as in Sec. 5.3.5. The filter length L f was varied and the AUC
for the SEA algorithm was computed. The bars indicate the standard deviation over ten independent simulations.

the case ofp = 3, and this performance advantage was propagated to the MVDRfilters.
The results were consistent for both datasets containing differently shaped waveforms.
Nevertheless, since the performance difference between HBBSDkurt and HBBSDskew
is quite small, the casep = 2 is used in the subsequent experiments. A lower order
statistics has also the advantage of lower computational load and higher robustness to
data outliers.

5.3.4 Competing algorithms

The algorithms chosen for comparison covered all three categories mentioned in
Sec. 5.1. The focus, however, was on methods which make use ofwaveform infor-
mation, since in general they achieve the best performance.In the case of amplitude
crossing, the absolute value thresholding method was considered, hereinafter abbrevi-
ated asABS. The non linear energy operator with a 5 point Bartlett window smooth-
ing (SNEO) as described in [145] was chosen, representing a commonly used method
based on the transient property of spikes. At last, 3 different methods relying on wave-
form information were compared. These included the waveletmethod (Wav) presented
in [147], the cepstrum of bispectrum method (CoB) from [187, 188], and the classical,
single iteration, super-exponential method (SEA). The parameters forWavandCoBwere
chosen according to their reference and adapted to the herein considered sampling fre-
quency and spike length. Explicitly, for theWavmethod, the wavelet family was set to
“bior1.5”, scales were set toWmin = 0.5ms andWmax = 1.0ms, number of scales was set
to J = 5, acceptance mode was set to “liberal”, and the sampling frequency was set to
fs = 10 kHz. In the case ofCoB, the number of Fourier points was set to nfft = 80, the
minimum spike interval was set to 2 ms, and sampling frequency was set to 10 kHz.

5.3.5 Performance on data with a single neuron

The first dataset contained spikes form a single neuron spiking at a frequency of 25Hz,
whereas the waveform is shown on the left in Fig. 5.3. The ROC curves for every con-
sidered method are shown in Fig. 5.7.

In general, methods which estimate the waveform from the data outperform the
generic approaches such asABSandSNEO. Wavrelies on an accordingly chosen mother
wavelet by the user. However, if the shape information is notavailable, and thus the
default mother wavelet is used, the performance of this method might be very poor, as
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Figure 5.6:Average ROC curves for various spike detection methods. The shown results are an average over
10 independent simulations with a SNR = 3.0 and length of 6s. Top: The simulated data contained the left most
waveform shown in Fig. 5.3. Bottom: The simulated data contained the middle waveform shown in Fig. 5.3.

indicated in Fig. 5.7. The decreasing number of true positive detections despite a de-
creasing threshold is explained by the fact, thatWavmerges detected spike epochs if
they are too close‖. The methods which estimate the filter from the data itself show good
performance, whereasHBBSDachieves the highest score, followed bySEAandCoB.
Based on these findings, we will focus on the comparison ofCoB, SEAandHBBSDin
the remaining sections.

5.3.6 Performance on data with two waveforms

Ten independent datasets, each of 6s in length, containing activity from two neurons
with the first two waveforms shown in Fig.5.3 were simulated.The spiking frequencies
were 15Hz and 25Hz respectively.

‖Of courseWav will achieve good results and outperformABSandSNEOif the waveform is more
similar to the used mother wavelet.
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Figure 5.7: ROC curves for various spike detection methods. The shown results are an average over 10
independent simulations. Each simulation contained spikes from a single neuron, the signal-to-noise ratio being
SNR = 3.0.

The SNR was varied from 3.0 to 4.25 in steps of 0.25 (all three spike trains always
had equal SNR values), and again the ROC curves were computedfor every method. To
assess the overall performance for various SNR levels, the area under the ROC curves
(AUC) was evaluated. In Fig. 5.8 the results for all comparedmethods are shown.
HBBSDachieves a clearly better performance than the competing methods, since it cal-
culates several filters. When the threshold is selected automatically, the performance of
HBBSDoften lies above the ROC curves (as e.g. in Fig. 5.8, bottom, or Fig. 5.9, top),
since the threshold is selected for every filter individually, whereas for the ROC curves
generation, the threshold is varied uniformly for all filters.

5.3.7 Performance on data with three waveforms

Five independents simulations, each of 10s in length, containing activity from three neu-
rons with the three waveforms shown in Fig.5.3 were simulated. The spiking frequencies
were 15Hz, 25Hz and 20Hz respectively. The SNR was varied from 3.0 to 4.25 in steps
of 0.25 (all three spike trains always had equal SNR values), and again the ROC curves
were computed for every method. To assess the overall performance for various SNR
levels, the area under the ROC curves (AUC) was evaluated andis reported in Fig. 5.9.
Again,HBBSDachieves the best performance throughout all SNR levels. The large stan-
dard deviation in the case of low SNR value (Fig. 5.9, bottom)is explained by the fact
that sometimes only one or two MVDR filters were calculated, since, due to the high
noise, no further modes in the SEA output could be identified.

5.3.8 Performance on simultaneous intra/extra-cellular r ecordings

The same data as described in Sec. 4.3.1 were used, however, only single channel data
were considered, and the data were downsampled to 10kHz for faster processing. Two
cells from Long Evans rats (P17-P25) were stimulated by a current injection and simul-
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Figure 5.8: Average ROC curves and AUC for various spike detection methods. The shown results are an
average over 10 independent simulations. The top figure shows the ROC curves the case of SNR = 3.25, the
next figure in the case of SNR = 3.75. The circle indicates the performance of the HBBSD algorithm when the
threshold is selected automatically according to Sec.5.2.8. The bottom figure shows the average relative AUC and
the corresponding standard deviations for several SNR levels.
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Figure 5.9:Average ROC curves for various spike detection methods. The shown results are an average over
5 independent simulations. The upper two plots show the performance for SNR values of 3.5 and 4.0 respectively.
The circle indicates the performance of HBBSD when the threshold is selected automatically. The bottom plot
shows the relative area under the ROC curves and the corresponding standard deviations for several SNR levels.
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taneously the extracellular potential was recorded. In oneof the experiments, the total
number of spikes was 244, and the SNR was empirically determined as 3.050. Since the
ground truth was known, the spikes were removed from the data, and higher order statis-
tics were calculated on the remaining noise samples indicating a skewness of−0.053 and
an excess kurtosis of−0.161. In the second experiment, a total of 103 spikes were found,
the SNR being 3.008, the skewness being−0.012, and the excess kurtosis being−0.295.
All the algorithms were applied to these real data with the same parameter settings as in
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Figure 5.10:ROC curves for various spike detection methods on two datasets from simultaneous intra- and
extracellular recordings of cells in rat slices. The circle indicates the performance of HBBSD when the threshold is
selected automatically. Top: Performance on a dataset with an empirical SNR value of 3.050containing 244spikes.
Bottom: Performance on a dataset with an empirical SNR value of 3.008containing 103spikes.

the case of artificial data. The results are shown in Fig. 5.10. As the data contained activ-
ity from only one cell, the performance gain ofHBBSDcompared to the other methods
is not that pronounced as on datasets containing several distinct waveforms. The results
show also, thatHBBSDis robust to violations of the assumptions made in the data model
Eq. 5.1. Neither the skewness nor the excess kurtosis of the noise were equal to zero,
nevertheless, the algorithm still achieved favourable results.
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5.3.9 Performance on non-stationary data

Data with temporally changing waveforms were generated in the following manner: The
first 8s contained temporally constant waveforms and servedas initialisation data for the
spike detection algorithms. Afterwards, the waveforms started to change for the next
2.5min according to a normalised linear mixture (drift data),and finally in the last 50s,
again constant waveforms were present (end data). To sum up,the waveforms followed
the model∗∗

q[t] =































qi1,∀t ≤ 8s

αi3[t] · qi3[t],∀t ∈ [8s, 158s]

qi2,∀t ≥ 158s

(5.14)

whereqi3[t] :=
qi2−qi1

150s ·t+
158·qi1−8·qi2

150 . The value ofαi3[t] is set so that the SNR value stays
constant all the time. Two different scenarios were simulated. In the first one, the data
contained a 25Hz firing neuron, whose waveform had a SNR of 3.5 and changed from the
second to the first waveform shown in Fig. 5.3. In the second scenario, data containing
two neurons firing at 15Hz and 25Hz respectively were simulated. The waveform of
one neuron changed from the second to the first waveform, whereas the waveform of the
second neuron changed from the first to the third waveform shown in Fig. 5.3.
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Figure 5.11:Average relative total error of various spike detection method in the case of non-stationary wave-
form templates. The shown results are an average over 10 independent simulations. Top: Data containing a single,
temporally changing waveform. Bottom: Data containing two, temporally changing waveforms.

The filters of theHBBSDmethod were adapted as described in Sec. 5.2.9 after every
T = 5s, whereas the thresholds as described in Sec. 5.2.8. For comparison to non-

∗∗In order to distinguish the time dependent waveforms from the notation in previous section where the
time index referred to a vector entry, the notationq[t] is used here.
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adaptive methods, the MVDR filter from the SEA algorithm applied on the initialisation
data was calculated and used for spike detection on the driftand end data. The threshold
was also kept constant to the value obtained on the initialisation data by the method
described in Sec. 5.2.8 (this method is still denoted asSEAin Fig. 5.11, since it relies
on a single filter). Similarly the filter computed by theCoBmethod on the initialisation
data, was used for spike detection on all subsequent data segments. The threshold was
set to the default value of 0.04 · ki , whereki denotes the maximum of the filter output
on thei-th data segment [187]. The performance of the algorithm wasevaluated with
respect to the relative total error TE which is defined as

TE =
FP+ (1− TP)

2
(5.15)

where FP and TP are given by Eq. 5.13. The worst possible detector would have a score
of TE = 1, the score for any reasonable detector, however, should not exceed TE= 0.5,
as it either detects all spikes but also generates a lot of false positive detections or vice
versa.

The results for both scenarios are shown in Fig. 5.11. TheHBBSDalgorithm was
run in one of the scenarios without adapting the threshold, which is denoted asHBBSD
NT. Clearly, the adaptive algorithms achieve much better performance than the static
methods, whereas the fully adaptiveHBBSDscores best.CoB achieves in general a
better performance thenSEA, because the threshold is data driven (i.e. relative value of
maximum filter output amplitude), while on the other hand a fixed absolute value for
SEAwas used.

5.4 Discussion and related literature

The reason whyHBBSDachieves better performance than the spike detection algorithms
belonging to the first two categories mentioned in Sec. 5.1 isclear: Taking into account
the full waveform shape for detecting a spike is always more advantageous than just
considering its amplitude or energy. In this section we wantto discuss some of the
differences to other blind equalisation methods, but also pointto some relevant literature,
which might be useful for further development of spike detection algorithms.

The question remains whyHBBSDoutperformsCoB, even thoughCoB also uses
higher-order statistics. The difference is thatCoBintendeds to construct an inverse filter,
whereas our method constructs a matched filter, resp. the MVDR filter. An exact inverse
filter, denoted asf−1, achieves perfect channel equalisation, meaning thatf−1 ⋆ q = δ0.
In general,f−1 will be an IIR filter, and only in some exceptional cases it reduces to a
FIR filter. Then again, chances are high that the exact inverse filter is not stable, which
is an essential requirement in the case of spike detection, as all recordings are noisy.
The problem of stability is avoided in [188] by computing an approximate inverse filter
which is a FIR filter. To further suppress the noise, a waveletbased denoising algorithm
is applied on the filter output. However, if the waveform and noise statistics are estimated
well enough, the resulting matched filter outperforms in terms of detection performance
any two stage method combing inverse filtering with denoising. Another advantage of
HBBSD is that the actual waveforms are estimated, and thus can be displayed to the
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user. This allows for a semi-supervised operation mode, in which the algorithm finds
the waveforms, and the user decides whether they are used forfurther spike detection or
not.

Wavelet based methods achieve in general a good performancewhen the mother
wavelet is similar to the actual waveform, and new methods still continue to appear.
For example in [244] a good literature list of existing approaches to spike detection via
wavelet transform is given. The proposed method uses biorthogonal mother wavelet,
but instead of thresholding on individual wavelet coefficients (as in [147]), the output
at different scales is multiplied, i.e. multiscale correlation coefficient are considered. A
spike is detected when this coefficient is larger than the output at a single scale.

On the other hand, in [11] the continuous wavelet transform is used as feature ex-
traction. Spike detection is then done by hypothesis testing in the wavelet space. First, it
is tested if there are spikes at all. If there is only noise, the hypothesis is that the wavelet
coefficients are Gauss distributed, whereas if there are spikes present, the hypothesis is
that the distribution is a mixture of a Gauss and an uniform distribution. Which hypoth-
esis is true is decided by the Bayesian information criterion. If the second hypothesis is
true, spikes are detected via maximum posteriori probability.

The biggest advantage of wavelet methods is that they do not need an initialisa-
tion/learning phase, but can be directly applied to the recordings. This is especially
important in acute recordings, as due to tissue drifts, new neurons might appear which
were not present during the initialisation phase. As all spikes are generated by neurons,
the waveforms cannot be completely arbitrary but follow a mono-, bi-, or tri-phasic
shape. Therefore, an approach relying on a single mother wavelet family might deliver
poor performance, but a future attempt which combines multiple wavelets families could
overcome the problem.

Another issue with blind deconvolution methods relying on higher order statics
might be their susceptibility to data outliers. This problem, however, might be mitigated
by using robust higher order statistics [230].

In Sec. 5.2.3 we used a rather heuristic approach to identifythe modes in the filter
output. For example we did not employ any tests to decide whether a found maxi-
mum corresponds to a mode resulted from a true underlying probability distribution, or
whether it is just an artifact/outlier. Nevertheless, the problem of identifying modes isa
known problem and several test has been proposed. They rely for example on the amount
of excess mass [146, 57], critical bandwidth selection [194, 127], or graphical mode tree
representations [142, 143]. Such a test was not implementedin our algorithm to avoid
further computational complexity. It is also important to notice that we do not attempt
to identify true components in the filter output, as this would correspond to the task of
spike sorting. The found mode can, e.g. in the case of similarwaveform of two neurons,
still be a mixture of two or more components. In this scenario, however, the MVDR
filter will also be calculated from an average template, and spike from both neurons will
be detected well. TheHBBSDalgorithm solely aims at deliver favourable performance,
when this is not the case, i.e. when highly various waveformsare present in the data.
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5.5 Conclusion

To our knowledge, blind equalisation algorithms relying onhigher order statistics have
rarely been applied to the task of neural spike detection. Inthis work, the super-
exponential algorithm has been used for initial filter estimation. Furthermore, a mode
detection and a sparse deflation procedure have been proposed in order to extract multi-
ple spike waveforms, which have then been used for constructing MVDR filters.

To sum up, a novel method for unsupervised spike detection has been presented,
which relies on the inherent characteristics of data from neural recordings, such as
sparseness and binary sources. For instance, the sparseness of the neuronal signal was
exploited for mode finding in the filter output and for proposing a sparse deflation pro-
cedure which reduces error propagation. On the other hand, the binary source property
allowed for an appropriate choice of the statistics for the SEA algorithm as well as for
an easy estimation of the waveforms and construction of the MVDR filters.

In contrast to existing blind devonvolution methods which assume a finite alphabet
or binary sources such as [242, 112, 114, 43], we also made useof the spareness property
and formulated a statistical algorithm (as opposed to deterministic/algebraic ones) which
does not rely on extensive optimisation of some cost functions. On the other hand, exist-
ing approaches dealing with sparse signals often assume instantaneous mixtures or apply
a corresponding transformation into the frequency domain [153], or use clustering tech-
niques together with further assumptions about the data (like high SNR) [121]. In this
contribution, we operated always in the time domain wherebyno further assumptions
had to be made about the data. Moreover, we focused on the taskof spike detection,
thus, the complete separation of all sources is not requiredas it is in the existing ap-
proaches. The special structure induced by spareness and convolutive filters is currently
still being investigated and only first attempts have been made to fully incorporate it into
algorithm design [131, 237].

The main advantage of our method, namely that several data driven filters are cal-
culated, resulted in a superior performance ofHBBSDcompared to wavelet methods or
other existing blind equalisation algorithms. Furthermore, since the waveforms are esti-
mated, this could be used as an initialisation for a spike sorting algorithm, for example
using the idea of [103]. On the basis of waveform estimation,we also proposed a proce-
dure for optimal threshold selection and drift adaptation.Especially the latter one again
relies on the distinct properties of neural data.

The whole algorithm was tested on various datasets and compared to current state-of-
the-art spike detection techniques. The used data covered simulated datasets containing
one, two, or three distinct waveforms, but also experimental data containing a single
waveform. In all these different conditions the proposed algorithm worked well and
delivered better performance than the competing methods.



Chapter 6

Unsupervised (multi-channel)
electrode positioning

Although nowadays most multi-electrode arrays are equipped with an electric motor
drive unit which could be controlled automatically by a machine, this unit is still op-
erated manually in most laboratories. Manual control, however, is not only a tedious
procedure which consumes a lot of potential experiment timeand is infeasible for large
arrays containing up to 64 electrodes, but can also be very inaccurate due to continu-
ous tissue drifts. We propose a quality measure which indicates the difficulty to detect
spikes at a given electrode position, as well as the difficulty to classify spikes correctly.
Furthermore, a positioning algorithm based on stochastic approximation is developed,
which finds an optimal recording position with respect to this quality measure. The
algorithm does not only position the electrode in an unsupervised manner, but also mon-
itors continuously the quality and corrects for tissue drifts. The method is demonstrated
on realistically simulated data, and it is shown that it is indeed able to find favourable
recording positions even in drifting environments.

6.1 Introduction

The use of large arrays of multi-electrodes (AME) is a popular recording technique,
since it combines two favourable aspects with respect to data analysis‡. Namely, the
temporal resolution is high enough so that the activity of single neurons is available,
and at the same time the activity from a large number of neurons from the same sub-
networks is recorded, allowing for a spatial resolution high enough to study neural in-
teraction phenomena. While more and more methods are published about the problems
how to process, sort and analyse such large amounts of data obtained from AME record-
ings (see e.g. [16, 203], and Chap. 4, 5), only few contributions deal with the task of
properly positioning the individual multi-electrodes. When considering acute recording
experiments, in which often arrays of 16 or up to 64 tetrodes are used, it is evident that

‡see also Chap. 1 for more information about electrophysiological multi-electrodes.
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positioning every tetrode manually is a time consuming partof the experiment. This
is of particular concern when carrying out experiments withprimates, as maximum ex-
periment duration is often limited by national animal protection laws. Hence, there is
a need for unsupervised multi-electrode positioning algorithms which would place in-
dividual electrodes not only faster and more reliably than ahuman, but possibly also
several electrodes simultaneously, considerably reducing the setup time.

Two other important factors motivate the use of such an unsupervised positioning
system. First of all, a manual placement of the electrodes introduces a certain bias in
the subsequent recording. Most often, the experimenter will try to place the electrode at
positions where neurons with high firing frequency and high signal-to-noise ratio (SNR)
are present. The quality assessment of these two criteria isdone by visual inspection,
thus, the final electrode position depends on personal judgement of a human and might
be far away form the actual optimal recording position. Moreover, in brain regions in
which computing is done in a distributed way (ensemble coding), criteria other than high
firing frequency might be more appropriate.

Secondly, even when the experimenter succeeds to place all electrodes at favourable
positions at the beginning of the recording session, this effort may have only limited ben-
efit. In fact, due to the insertion of electrodes during the setup period, the brain tissue is
compressed, while during the experiment, the tissue relaxes again, which leads to a dis-
placement between the electrodes and the surrounding neurons [21]. Consequently, an
experimenter would have to monitor the recording quality ofeach electrode constantly,
and adapt its position in order to maintain acceptable recording performance.

In [148, 21] an autonomous electrode positioning algorithmwas proposed, which
was designed to positionsingle channelelectrodes such thatsingle unitrecordings are
achieved. In combination with a micro drive unit described in [29, 22] this algorithm
was used to autonomously control electrodes in implantableelectrode devices. The po-
sitioning algorithm was then slightly improved, mainly theclustering part, in the work
of [231, 232]. Because basically all the fundamental research on which the later publi-
cations rely was done in [148], we will always refer to this paper for comparison.

The hereinafter proposed method differs from the existing approach in several ways.
In brief, the use of tetrodes (or other multi-channel electrodes) allows for a superior
discrimination performance of the recorded spikes, simplifying spike classification on
such data as compared to data from single channel electrodes[75]. This is due to the
fact, that a spike waveform is recorded simultaneously on several recording channels
(”stereo-effect”), thus, the discrimination task is facilitated thanksto the higher dimen-
sional space in which the spikes are represented. Keeping this advantage in mind, it
should be preferred to record from several neurons in order to maximise the information
yield about the local neural population. Hence, we propose aquality measure which
favours electrode positions where it is most likely that several well discriminable neu-
rons are present, and not just a single cell. Moreover, in contrast to the work presented
in [148, 231] the proposed quality measure does not rely on error-prone results of spike
sorting. Since our algorithm is especially designed for multi-channel electrodes, and in
particular it will be tested with 4-channel electrodes, theterm ”tetrode” will be often
used in the following sections, but the method applies to anyk-channel electrode in fact.
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In general, a positioning algorithm relies on a processing flow as shown in Fig. 6.1.
After detecting spikes (first step), features are extractedfrom them and eventually a clus-
tering procedure is applied (second step). This is then usedto compute a quality measure
which indicates the goodness of the current electrode position (third step). Based on this
measure a positioning/control algorithm decides where to move the electrode in thenext
time step (fourth step). The differences between the steps in our approach and the one
presented in [148] will be discussed in the corresponding subsequent sections.

Spike detection Feature extraction/

Clustering
Quality measure Positioning/Control

logic

Figure 6.1:Processing stages needed for an unsupervised electrode positioning algorithm.

To evaluate the proposed automatic positioning algorithm,realistically simulated
extracellular potential recordings were utilised. Namely, compartmental membrane cur-
rents of a spiking, reconstructed L5 pyramidal cell from [126] were simulated by the
group of Prof. Gaute T. Einevoll (Norwegian University of Life Sciences) using the
simulation tool NEURON [149, 83], and used to calculate extracellular potential-traces
using the line-source method presented in [85]. The field potentials were then used in a
simulation environment which allows the simulation of virtual tetrode movements in a
volume containing several neurons and realistic noise.

The remainder of this chapter is organised as follows. The simulator used for eval-
uation of the system is outlined in Sec. 6.2. In Sec. 6.3 all the processing stages of the
algorithm are presented, including the new quality measureand the positioning algo-
rithm. The results of the evaluation can be found in Sec. 6.4,and conclusive remarks are
given in Sec. 6.5.

6.2 Extracellular action potential simulation

The simulation of extracellular action potentials is a research field of its own. In this
section a very brief description is given of how the data provided by the group of Prof.
Gaute T. Einevoll were simulated. More detailed explanations and discussions about the
problematics in calculating extracellular action potential can be found in [161, 162, 164,
163].

6.2.1 Calculation of extracellular field potentials

Extracellular field potentials around a reconstructed layer 5 pyramidal neuron were cal-
culated using a forward electrostatic scheme similar to theline-source method described
in [85]. The reconstructed neuron was a cat L5 pyramidal neuron published in [126]. The
membrane currents for each of the 1094 compartments of the reconstructed neuron were
calculated using the simulation tool NEURON [149] with the Python interpreter [83],
using a somatic action potential (AP) trace as a forced boundary condition in the single
compartment representing soma.
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For the compartmental neuron simulation, purely passive membrane properties were
assumed, with an intracellular, axial resistivity ofRa = 150Ωcm, membrane resistivity
rm = 30000Ωcm2, membrane capacitancecm = 1.0µF/cm2, and an initial crossmem-
brane potential ofvinit = −65V. The simulated membrane currents and the correspond-
ing coordinates of these sources were used to estimate the extracellular potential (EP)
at each time-step using the line-source method [85], with a homogenous extracellular
conductivity ofσe = 0.3S/m.

The soma, with mid-point positionrsoma = (0, 0, 0)⊤, was treated as a point
source, and the contribution to the EP from the somatic membrane currentIsoma(t)
in coordinater is in the quasistatic approximation to Maxwell’s equationsgiven by
Φ(r, t) = 1

4πσe

Isoma(t)
|r−rsoma| . The analytical solution to the linearly super-positioned potential

from n segments, whereIk(t) is the membrane current of segmentk, is given by [85];

Φ(~r , t) =
n

∑

k=1
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where∆sk is the segment length,ρk the distance perpendicular to the axis of the line-
source,hk the longitudinal distance to the end-point of the segment, and lk = ∆sk + hk

the longitudinal distance from the start-point of the segment [162, 85]. The calculations
of EPs were done during the same simulations as the NEURON simulations, still using
the Python interpreter.

In order to avoid singularities in the EP when the distance toindividual segments
was small, the minimum allowable distance to each line source was set to be the same
as the diameter of each segment. This also ensured that the potential is not calculated
within the intracellular space of the chosen morphology. The calculation of the EP was
performed over the coordinates of 3D cubic grids spanning [-200, 200]µm and [-100,
100]µm, with spatial resolutions of 5 and 10µm respectively, sampling the extracellular
signature of the AP in the volume surrounding the somatic compartment and basal den-
drites. The calculation of potentials at larger distances was not deemed necessary due to
the low resulting extracellular amplitudes compared to thenoise added at a later point.
The resulting potential traces and corresponding coordinates were written to file on the
HDF5-format, and then used by the extracellular recording simulator.

6.2.2 3-dimensional extracellular recording simulator

The simulator was mainly developed by Philip Meier, and by Felix Franke, and is pub-
licly available [137]. It allows to compose a scene containing an arbitrary number of
neurons of the type described in Sec. 6.2.1, each neuron having a unique orientation
and firing rate. A multi-channel electrode recording is thensimulated by generating a
spike train according to a Poisson process with the corresponding firing frequency and
the pre-calculated waveforms inserted∗ . An arbitrary fixed spatial channel configuration
can be defined, but in this chapter we solely used a configuration imitating a tetrode. In

∗The pre-simulated waveforms are only available at the resolution of 5µm, see Sec. 6.2.1. In order to
allow electrode movements on finer resolutions, the waveforms were linearly interpolated inbetween using
trilinear interpolation.
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Figure 6.2:A single neuron was placed at the position (10, 15, 150)⊤ ·µm. The five sections (separated by the
blue vertical lines) show the waveforms recorded with a tetrode whose tip was at the position (10, 15,z)⊤·µm, with z
being 125, 137.5, 150, 162.5, and 175.

detail, the 3 rear channels were 10µm apart from one another, and the distance from the
tip channel to each of the rear channels was 10.4µm.

Finally, Gaussian noise with a covariance structure fitted to real recording noise (see
Sec. 4.3.2 for more details) is added to the spike trains. Thecapabilities of this simulator
are illustrated in Fig. 6.2.

6.3 Processing stages of the positioning algorithm

In the following subsection all the processing stages needed to achieve an unsupervised
multi-channel electrode positioning (see Fig. 6.1) are described.

6.3.1 Spike detection

The positioning algorithm should work fast, i.e. find a good recording position in an
amount of time which is considerably shorter than a human operator would need. The
used spike detection must, hence, detect spikes reliably given only few seconds of data.
For this reason we suggest to use an algorithm based on amplitude or transiency detec-
tion, rather than relying on waveform information (see Sec.5.1 for an introduction to
spike detection). The proposed spike detection algorithm in Chap. 5 needs a learning
phase in order to estimate the waveforms blindly, whereas a method based on wavelets
(as e.g. in [147] and used in [148]) might perform poorly whenthe mother wavelet
does not match the actual waveforms. A spike detection method based on amplitude or
transiency seems, therefore, to be a good tradeoff between detection performance and
processing time needed.

6.3.2 Feature extraction, clustering

In the approach presented in [148] the found spikes are aligned and projected into a
wavelet space. Only the largest wavelet coefficients are then used for the subsequent
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clustering, which relies on a Gaussian mixture model. The clustering is done for each
electrode position individually, whereas in [232] the clustering is more sophisticated in
the sense that information from the previous clustering at step k − 1 is incorporated in
stepk.

Nevertheless, an unsupervised clustering on short data chunks will always be prone
to errors. The biggest issue is the reliable estimate of the number of clusters, which cor-
responds to the number of neurons. Since the quality measurewill depend on the number
of clusters, a suddenly changed number will greatly influence the score of the quality and
the following positioning logic. Moreover, clustering is always a time consuming task,
thus, prolonging the positioning time in total. We, therefore, omit the clustering step
completely and define a quality measure solely relying on unsorted spike information.
Of course such a measure might not predict the true optimal position in all cases, but it
will be shown that the chosen approach works well.

6.3.3 Quality measure

The goal of the positioning system presented in [148, 21] wasto isolate asingleneuron.
Accordingly, the quality measure was designed in such a way that the better a single
neuron is isolated from the ”rest”, the higher the quality. In [20] several quality measures
were proposed and compared, including SNR of dominant cluster, projection t-statistics,
L-ratio, isolation distance, silhouette ratio and symmetric Kullback-Leibler divergence.
Finally, however, the simplest measure was chosen, i.e. theSNR of the dominant cluster
whereas the SNR was defined as the peak-to-peak amplitude of the waveform. This was
due to the sensitivity of the other measures to clustering errors.

On the other hand, the objective of the proposed method is to find a position where
activity from many, well separable neurons is recorded. Therefore, we need a quality
measure which does not indicate how well the dominant cluster is separated, but how
well all present clusters are separable. In the following, again the data model presented
in Eq. 1.1 and Eq. 1.2 is assumed, whereqi represents the waveform of neuroni. Further,
let us assume that all neurons have equal firing rates, and that the noise is white§. Then,
using linear decision boundaries, the data is easier to cluster the more the waveforms are
apart [80], i.e. the largerQD is, where

QD :=
2

M · (M − 1)

M
∑
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M
∑

j>i
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∣

∣

∣

∣ , (6.2)

andM is the number of neurons. The idea is to find a similar measure for un-clustered
data. Letςi

k denote the empirical SNR∗∗ of the i-th detected spike on channelk. Then,
we defineQstereoas

Qstereo:=
1
N

N
∑

k=1

1
W

W
∑

i

(

〈ς〉k − ςi
k

)2
=: 〈Var(ςk)〉N , (6.3)

§This last assumption is not necessary. Instead once the cluster centres are determined, a whitening
transformation can be applied, see e.g. [168, 180].

∗∗We chose the SNR for simplicity, but in principle, any other feature of a spike could have been chosen,
including the waveform itself. A more advanced feature diminishes the risk that two neurons will have quite
distinct waveforms, but still cancel each other out in the quality calculation.
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A) B) C)

Figure 6.3: Toy examples illustrating Qstereo. Assume that both neurons/waveforms have a SNR of 1 or 0,
depending on the recording channel (in this toy example a multi-channel electrode with 2 channels is assumed).
Then, the configuration in A) yields Qstereo = 0, whereas for B) one has Qstereo = 0.5, and Qstereo = 0.25 for C).
This means, that the configuration in A) does not allow a separation of the two neurons (at least not based on the
SNR values), while the configuration B) is more favourable than C), since there is not any overlap in the SNRs of
the waveforms.

where〈ς〉k := 1/W
∑W

i=1 ς
i
k, W denotes the total number of detected spikes, andN in-

dicates the number of recording channels. The motivation behind this definition is the
following: When two neurons have different SNR values on a channel, this implies that
their spikes can be easily separated, as one can take the SNR value as a discrimina-
tive feature. Hence, the discirminability between neuronsbecomes better, the larger the
spread of SNR values. The spread is expressed as the sample variance of the found
spikes, and the mean over all channels is taken for a consistent normalisation in the
case of various multi-channel recording devices. The usefulness of this measure is also
illustrated in Fig. 6.3.

On the other hand, we defineQSNR as

QSNR := 〈〈ς〉k〉N . (6.4)

This measure simply indicates the average SNR value of the recording, hence, how easily
spikes can be detected at the current recording position. The corresponding measure, if
clustering were done, would be

QS :=
1
M

M
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i=1
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In order to check the usefulness of these two quality measures QSNR and Qstereo,
some prototypical neuron configurations were constructed and a virtual tetrode track
simulated using the simulator described in Sec. 6.2.2, see Fig. 6.4. The tetrode was
moved in steps of 0.5µm. No spike detection was used†, instead the noise free wave-
forms simulated at each position were directly used for computing both of the quality
measuresQSNR andQstereo, see Fig. 6.5. As can be seen from this figure, the proposed
measures exhibit very similar properties as the true onesQS andQD. Note, that these
results were obtained in the case of equal fire rates of neurons belonging to the same
cluster (namely 10Hz). As is turns out, however, simulations show that the proposed
measures are quite robust, and will approximately display local maxima near the true
local maxima even if the fire rates are not equal. Exemplarily, two cases are shown in
Fig. 6.6. All simulations and quality measure calculationswere also done in the case
of a rotated tetrode configuration. The results show that a simple rotation of the tetrode

†Spike detection errors and noise might introduce some errors complicating the evaluation of the prop-
erties of a quality measure.
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Figure 6.4:The blue dots symbolise neurons, whereas the black line indicates the track of the virtual tetrode. In
this plot, the x-axis was shortened for illustration purposes, when in fact during the simulation each cluster a)-d) was
at least 200µm apart from the next one, so that there is no interference between them. All neurons were identical
and oriented identically, namely along the x-axis. Cluster a) consists of neurons in a line parallel to the tetrode track
(inter neuronal distance being 10µm). Cluster b) consists of 4 neurons in a line perpendicular to the tetrode track
(inter neuronal distance being 5µm). Neurons in cluster c) are arranged in the corners of a rectangle parallel to the
track (inter neuronal distance being 20µm), whereas the rectangle in cluster d) is perpendicular to the track, i.e. the
track runs trough its central point (inter neuronal distance being 20/30µm).

could significantly improve the recording quality, since the quality maxima are still at
the same position. This suggests the development of motor drive units which allow for
one-dimensional translational as well as for one-dimensional rotational movements.

6.3.4 Positioning and control logic

The objective of the positioning logic is to find a suitable position for the tetrode, where
the quality measure exhibits a local maximum. This task is usually required at the be-
ginning of an acute recording session. Once such a position is found, the quality of this
position will most likely decrease after a while due to tissue relaxation. Consequently,
the algorithm should detect such a decrease and re-positionthe tetrode until an accept-
able recording quality is found again.

Since in Sec. 6.3.3 we defined two quality measures, the question arises whether they
should be combined into a single quality or optimised separately. QSNR indicates only
the difficulty to detect spikes, but contains no information about their discriminability. If
one simply adds the two qualities,QSNR andQstereo, there is a high chance of losing im-
portant information and, thus, moving the tetrode to a position where the discriminability
is sub-optimal∗ . Hence, we propose the following optimisation scheme: The tetrode is
advanced with a constant step size, untilQSNR exceeds a certain threshold. Once this
happens, the positioning logic described in this section isactivated, which attempts to
find an optimal position with respect toQstereo. The advantage of this scheme is that

∗See for example the first row in Fig. 6.5, in whichQSNR exhibits a local maximum at a position where
Qstereoexhibits a local minimum.
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Figure 6.5:QSNR, left column, and Qstereo, right column, are plotted in blue for various neuron configurations,
i.e. row one corresponds to configuration a) in Fig. 6.4, row two corresponds to configuration b), and so on. In
black are plotted QS, left, and QD, right. The dotted lines show the corresponding quality profile when the neurons
are rotated by 45 degree around the axis defined by the tetrode track in Fig. 6.4. The red lines indicate the x-axis
positions of the neurons.

it finds the position where the neurons are discriminated best, under the condition that
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Figure 6.6:Shown in blue are Qstereo for configuration a) in Fig. 6.4 when the individual neurons have different
firing rates; and in black again is QD is plotted. On the left hand side, the neurons had firing rates of 30, 10, 10,
1 Hz, (the order corresponds to the order on the x-axis), while on the right hand side the firing rates were 10, 30,
1,10 Hz.

they can be detected sufficiently well. Note that in [148, 231] only a single quality was
defined, hence, such two step optimisation scheme was not necessary.

The decision logic of the positioning algorithm was realised by implementing a finite
state machine consisting of 4 states, see Fig. 6.7. The electrode stays at each position
for a certain amount of time for gathering sufficient data to reliably estimate the quality
measure. Depending on this value, the algorithm decides to which subsequent state the
system should transit. In the following subsections each state as well as the transition
criteria are described in detail. The term ”quality” or simply ”Q” will always refer to
Qstereo.

Search

This is the initial state and as long as the quality of the signal is below a certain threshold
Qmin, the electrode is simply advanced in the directionD (D is either -1 or 1, since
electrodes can be moved only in either of two directions, namely back or forth) by a
constant step sizeSs. If three consecutive quality estimates yield a value larger than
Qmin, the algorithm changes to the ”optimize” state†.

Optimize

The goal of this state is to determine the position at which the quality function exhibits
a local maximum, thus, where the tetrode should be moved to, i.e. to find a tetrode
positionu∗ such that

u∗ = argmax
u∈U

Q(u) =
{

u∗ ∈ U | Q(u∗) ≥ Q(u) ∀u ∈ U
}

(6.6)

The optimal position can be found by applying some optimisation techniques, however,
some aspects must be considered: The functionQ(u) is not given, but only noisy mea-
surements of it are available. Therefore, the gradientg(u) := ∇Q(u) is not available

†We require three consecutive quality estimations to be above threshold in order not to trigger the
”optimize” state by an outlier.



CHAPTER 6. UNSUPERVISED (MULTI-CHANNEL) ELECTRODE POSITIONING 102

directly either. In this sense, one is dealing with a subclass of stochastic optimisation
problems, namely stochastic approximation [64]. A common way to solve this kind of
problems is to approximate the gradient by a finite difference. One could, for example,
use the two-sided finite difference approximation, as described in [196]. Although this
technique is widely applied, it is inappropriate for use in our setting. Namely, a realisa-
tion of a two-sided finite difference would imply that, in order to estimate the derivative,
the tetrode would have to be moved forward and backward at every position (dithering).
This might damage the brain tissue and also evoke further drifts. Similarly, any random
search algorithm is inappropriate as well. Two feasible approaches are presented in the
following.

Optimisation 1: Steepest ascent In [15] methods, called pseudo-gradient schemes,
which avoid the direct estimation of the gradient are listed. In general, one attempts to
transfer the idea of the steepest ascent algorithm to stochastic optimisation, i.e.uk+1 =

uk+ak ·g(uk). One of them, presented in [219, 218], relies only on the sign estimation of
the gradient. However, in this case the information about the quality at previous positions
cannot be used directly, but a two step update rules has to be applied. For simplicity let
us define the following basic update rule approximating the gradient by the difference
between the last two consecutive steps, i.e.

uk+1 = uk + ak ·
Q(uk) − Q(uk−1)

uk − uk−1
. (6.7)

This update scheme can be related to the one-sided finite difference algorithm in [196]
on p. 157, by the relationck = uk − uk−1. In [196] it is shown that sufficient condi-
tions for convergence of the finite difference algorithm include, amongst other, all of the

Figure 6.7:Illustration of the decision logic of the proposed positioning algorithm implemented as a finite state
machine. The initial state is the ”search” state, in which the tetrode is advanced in the same direction until a
reasonable quality is detected. After the transition to the ”optimze” state, the algorithm tries to find an optimal
position such that the quality is maximum. Once such a position is reached, the algorithm switches to the ”maintain”
state, and the quality is monitored. If the quality drops below a threshold value, the ”re-optimize” state is triggered,
which decides in which direction the tetrode should be moved in order to find the maximum quality again.
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following:

ak > 0 ck > 0 ∀k (6.8)

ak → 0 ck → 0 if k→∞
∞
∑

k=0

ak = ∞
∞
∑

k=0

ak
2

ck
2
< ∞

















∞
∑

k=0

akck < ∞
















The last inequality in parentheses can be avoided when some conditions regarding the
third derivative ofQ are fulfilled (see p. 160, [196] for a detailed list). From these
conditions it is evident that the convergence of such a simple update rule as the one in
Eq. 6.7 is hard to guarantee, since theck cannot be chosen arbitrarily, but depend on the
positions themselves. Therefore, we propose a second optimisation procedure.

Optimisation 2: Newton-Raphson A slightly different approach is to try to transfer the
Newton-Raphson method to stochastic optimisation, havingin mind that the Newton-
Raphson method has a faster convergence in the near of the solution than the steepest
ascent algorithm. The Newton-Raphson is for finding a rootxof a function, i.e.f (x) = 0.
Adapting this algorithm to find a local minimum/maximum of a function instead, leads
to the update ruleuk+1 = uk − ak · g(uk)/g′(uk) (in the original algorithmak = 1 ∀k, but
a different choice might increase stability, which is particularly important in the case of
stochastic optimisation, see [196], chapter 1). In order toguarantee that the algorithm
converges to a local maximum and not minimum wheng′ > 0, one can combine it with
the steepest ascent algorithm, i.e.

uk+1 = uk + ak ·
g(uk)
|g′(uk)|

. (6.9)

The problem of direct estimation of the gradient and the second derivativeg′ can be
avoided by introducing an interpolation function. In [148]a single polynomial is fitted
through all available quality measurements. The order of the polynomial is determined
by maximising the model posterior probability, and has to bere-estimated at every new
electrode position. At each position the quality is measured several times, although it
is not specified how often exactly. The polynomial is fitted insuch a way that the dis-
tance to all measured data is minimised in the least square sense. The Newton-Raphson
scheme in Eq. 6.9 is then applied, and the optimal positionu∗ is said to be found at
iterationk whenak · g(uk)/|g′(uk)| < ǫ.

In order to simplify this procedure and to omit the error-prone task of order esti-
mation [20], we use piecewise interpolation instead. As interpolation functions cubic
Hermite polynomials are a reasonable choice, as, for example, they have no overshoots
and oscillations in contrast to splines [45]. This avoids the task of order estimation
and there is no risk of oscillations at the ends of the fitted data. Furthermore, in order
to avoid a convergence which might oscillate around the optimal position as in [148],
which would imply a passing of the tetrode through the same tissue several times re-
sulting again in tissue damage and drift evocation, the following rule is applied: If
Q(uk+1) < Q(uk), then a second order polynomialP2(u) is fitted through the last three
qualitiesQ(uk+1),Q(uk),Q(uk−1). The final position is then determined as the maximum
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Table 6.1:Default parameter values for the proposed positioning algorithm.

Parameter Value Reference

Ss 10µm page 101

ak 0.25 Eq. 6.9

Tmm 0.8 page 104

Sr 2µm page 104

δmin, δmax 2µm , 15µm page 105

of this polynomial, i.e.u+ = argmaxu P2(u). Of course, it is probable thatu+ will not
necessarily correspond to the optimalu∗. However, due to the fact that for small devi-
ations any function is locally well approximated by a secondorder polynomial,u+ and
u∗ will for the problem at hand lie close enough to each other, while the more important
issue of tissue damaging is avoided. Once the optimal electrode position is reached, the
algorithm switches to the ”maintain” state.

Maintain

The electrode stays at the best found position and the current quality is monitored in
regular time intervals, until the quality drops under a certain value. Explicitly, if the
quality Q drops below a certain absolute value, i.e.Q < Qmm, or below a certain relative
value, i.e.Q < Tmm · Q∗, whereQ∗ denotes the highest quality which was measured at
positionu+, the ”re-optimize” state is triggered. On the other hand, ifthere is a sudden
dramatic quality drop,Q < Qmin, the algorithm returns to the ”search” state.

Re-optimze

Once the quality is not sufficient anymore, the algorithm has to find out in which direc-
tion the tetrode should be moved in order to find higher qualities again. Therefore, in this
state the algorithm moves the electrode in an arbitrary direction‡ by a constant step size
of Sr . If the quality is even lower than at the previous position, the direction is inverted
and the algorithm switches back to the ”optimize” state.

6.3.5 Exception handling

In a practical application of the positioning algorithm some additional constraints should
be introduced in order to deal with unexpected events and technical limitations encoun-
tered in real recordings. Some of them are listed below:

• The transitions between states were mainly defined by some conditions onQstereo.
In an ideal experiment, the algorithm should transit from the ”search” to the ”opti-
mize” state, and then, depending on the tissue drift, iterate between the three states
”maintain”, ”re-optimize” and ”optimize”. If, however, for some reason there is

‡In fact, only when the ”re-optimize” state is reached for thefirst time, the direction is random. For
subsequent decisions, the direction from the previous visit of the ”re-optimize” state is used first.
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Figure 6.8:Visualisation of the positioning algorithm in the case of a static and noise-free quality profile. Left:
Result in the case of ak = 0.15. Right: Result in the case of ak = 0.25. The other parameters are identical and given
in Tabl. 6.1.

suddenly a huge quality loss, i.e.Qstereo< Qmin or QSNR < QSNRmin, the position
logic immediately returns back to the search state.

• The position update scheme in Eq. 6.7 and Eq. 6.9 compute the position to which
the tetrode should be moved. However, due to some errors in measurement the
returned values might be either below the precision of the used motor drive unit,
or very large, making it risky to drive such long distances without checking the
quality in between. Thus, it makes sense to restrict the predicted position updates
to some interval, i.e.δmin < |uk+1 − uk| < δmax.

• The regionU (see Eq. 6.6), in which an optimal position should be found, must
be set in order to prevent the advancement of the tetrode in tissue layers not un-
der investigation. Whenever the algorithm reaches a boundary of this region, the
tetrode changes direction.

• There is always a chance that a neuron lies directly on the track of the tetrode.
Since the SNR will be higher the smaller the distance betweenthe tetrode and
the neuron, it is likely that the tetrode will be advanced until it penetrates the
neuron and possibly damages it. This could be avoided by introducing a maximum
allowedQSNR value, which once measured causes the tetrode to stop at the current
position.

• A maximum number of iterations should be defined in which the algorithm re-
mains in the ”optimize” state. Due to fluctuations (such as very irregular fire
frequencies) the algorithm might not be able to find the optimal position in rea-
sonable time. In such a cases, the algorithm should switch tothe ”search” state
and try to find a different region with acceptable quality.

6.4 Results

In this section we present some results regarding the capabilities of the positioning al-
gorithm described in Sec. 6.3.4. The used data was again generated with the simulator
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Figure 6.9:Visualisation of the positioning algorithm in the case of a periodically drifting (in time) and noisy
quality profile. The parameters are set as in Tabl. 6.1, whereas the minimum quality Qmm, see Sec. 6.3.4, was set
to 0.5. In the top figure the drift velocity was set to vd = 0.75 µm

time step , whereas in the bottom figure it was set to

vd = 1.5 µm
time step .

described in Sec. 6.2.2. If not stated otherwise, the default parameters listed in Tabl. 6.1
are used for the positioning algorithm. These values were obtained by testing the algo-
rithm in various scenarios. As it turns out, they are quite similar to the values obtained
in [148].

6.4.1 Static environment

This section serves as a demonstration and visualisation ofthe positioning algorithm.
For this, the noise-free, flipped quality profileQstereoalready shown in the first row of
Fig. 6.5 was used. The positioning algorithm was executed with the parameter values
summarised in Tabl. 6.1, and the results are shown in Fig. 6.8. As can be seen from this
figure, the algorithm successfully finds a position close to the local maximum. Ideally,
the algorithm would find the second local maximum, which is even the global maximum.
This, however, would be only possible when some exploratorymechanism would be
added, which, on the other hand, would cause additional electrode movement and, thus,
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Figure 6.10:Visualization of the positioning algorithm in the case of a continuously drifting and noisy quality
profile. Same notation and paramters as in Fig. 6.9 are used. In the top figure the drift velocity was set to vd =

0.75 µm
time step , whereas in the bottom figure it was vd = 1.5 µm

time step .

more tissue damage.

6.4.2 Drifting environment

The positioning system was also tested in a noisy and drifting environment. In partic-
ular, the quality profile shown in the last row of Fig. 6.5 was used, but the sampling
resolution was increased to 0.1µm. At every time instance Gaussian zero mean noise
with a standard deviation of 0.02 was added in order to mimic a real recording and the
resulting uncertainty in the computed quality measure. Twoscenarios were considered:
In the first one a periodically occurring neuron drift was assumed. After an initial con-
stant period of 30 time steps, a drift with a velocity ofvd

µm
time stepand duration of 5 time

steps followed by a constant period of 20 time steps occurredperiodically. In the second
scenario, after a constant period of 20 time steps, a continuous drift with a velocity of
vd

µm
time stepoccurred. A time step was defined as one cycle of the entire algorithm, i.e. as

one iteration through all the stages shown in Fig. 6.1. A drift was mimicked by shifting
the whole quality profile byvd per time step. This corresponds to a tissue drift such that
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only the distance on the x-axis between the tetrode and the neurons changes, while the
distances between all neurons are not changed (i.e. 1-dimensional translation of a rigid
configuration).

The results are shown in Fig. 6.9 and Fig. 6.10. For both configurations the proposed
algorithm is able to follow the drift and to retain an acceptable recording quality. The
maximum drift velocity the algorithm is able to handle depends on its parameter values
and on the quality profile itself. For example, if the drift per time step is larger than the
search step sizeSs, the algorithm will never be able to find a good recording position.
Even if there is a constant phase first, so that the algorithm finds a good initial position,
a following drift with a high velocity might cause such a sudden quality drop, that im-
mediately the ”search” state is triggered, and the algorithm will not be able to track the
drift.

6.5 Conclusion

We defined two quality measures for extracellular recordings, which indicate the de-
tectability of spikes and their separability. These two measures did not require any spike
clustering, but can be directly computed on unclassified spikes. Nevertheless, the pro-
posed measures correspond well to the true qualities obtained if ground truth information
were available.

Furthermore, we proposed a positioning algorithm whose goal is to find an opti-
mal recording position. In particular, based on a stochastic approximation scheme, the
quality measure is optimised until an optimal position is found. The positioning algo-
rithm operates in an unsupervised manner, and its parameters can be determined from
simulations. Their values agree well with the ones obtainedin [148]. Furthermore, the
numerous differences of our approach compared to the existing works with respect to the
proposed quality measures and positioning algorithm were discussed at the correspond-
ing places in the preceding sections. A summary of the key differences can be found in
Tab. 6.2. In short, to our knowledge the proposed quality measure and positioning logic
are the first ones especially designed for multi-channel electrodes in order to achieve
recording positions with favourable information yield, incontrast to existing approaches

Table 6.2:Main differences between the existing approach presented in [148] and our proposed approach for
unsupervised electrode positioning.

Existing approach Our approach

Developed for obtaining single cell record-
ings for single channel elec-
trodes

obtaining good neuron
discriminability for multi-
channel electrodes

Quality measure SNR of dominant neuron
(spike clustering required)

SNR of all neurons, and
variance of SNR distribution
(spike clusteringnot required)

Stochastic approx. order estimation and global
polynomial fitting

piecewise Hermite polynomi-
als and final second order
polynomial fit
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which aim for single cell measurements.
The proposed positioning algorithm was run on realistically simulated data. It was

able to find good recording positions in static environmentsas well as to retain sufficient
quality in drifting environments. An application to real experiments should be the next
step to take.
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Appendix A

Appendix to Chap. 3

A.1 Limits of integrand

Sinceu = (1 − v)/v, the two boundaries ofv = 0 andv = 1 correspond tou = ∞ and
u = 0. For the case ofu = ∞ it is easy to see that (with the definitionρ(u) = er(u))

lim
u→∞

sin(β(u))

u · er(u)
= 0 (A.1)

since the enumerator is bounded sin(β(u)) ≤ 1, and limu→∞ r(u) = ∞ (becauseθi ≥ 0
∀i).

To prove the second limit, we use l’Hospital’s rule, namely

lim
u→0

sin(β(u))

u · er(u)
= lim

u→0

∂
∂u sin(β(u))
∂
∂u

(

u · er(u))
= lim

u→0

β′(u) · cos(β(u))

er(u) + u · r′(u) · er(u)
. (A.2)

It is

lim
u→0
β(u) = 0 (A.3)

lim
u→0
β′(u) = 1/2

∑

i

λi + θiλi

lim
u→0

r(u) = 0

lim
u→0

r′(u) = 0

hence

lim
u→0

sin(β(u))

u · er(u)
= 1/2

∑

i

λi + θiλi . (A.4)

�
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Appendix B

Appendix to Chap. 4

B.1 Threshold calculation with truncated Gaussians

The distribution of the rectified filter outputI (y j ) of filter f j is proportional to

I (y j ) ∼
∑

i

∑

τ

tGqi , f j

τ (B.1)

where tGqi , f j

τ ∼ tG

(

(

qi ⋆ f j
)

τ
,

√

f j⊤C f j , 0,∞
)

is a truncated Normal distribution∗ . Af-

ter applying the Deconfusion matrix, the threshold is obtained by minimising the false
negative and the false positive probability, hence

γ j = argmin
γ j



















β j ·
∫ γ j

−∞

∑

i

w j,i

∆
∑
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tGqj , f i

τ +

∫ ∞

γ j

∑

i

w j,i

∑

k, j

∑

τ

βk · tGqk, f i

τ



















(B.2)

whereβ j = 0.5 and theβk, k , j, are proportional to the firing frequency of neuronk
such that

∑

k, j β j = 0.5. The∆ is the tolerance zone in which a spike is still classified
correctly (see Sec. 2.1.2). Note that in Eq. B.2 we neglectedto include the region of the
filter response outside the delta zone in the right expression, as the contribution of this
region is usually quite small. The optimisation problem canbe solved by a line search
algorithm.

B.2 Literature overview

This section serves as a pointer to some of the existing literature in the fields of blind
source separation and blind deconvolution.

B.2.1 Blind source separation

In [153] a survey of methods for blind source separation, especially when data is sparse,
is given. Instantaneous, anechoic and echoic (convolutive) cases and as well as the over-

∗The first argument being the mean, the second one being the standard deviation, followed by the lower
and upper truncation bounds.
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complete case are considered. Algorithms are divided into two classes: staged estimation
of mixing parameters and estimation of sources, and joint estimation. However, the
deflation approach is not considered.

The paper [160] also provides a survey of methods for blind source separation, con-
sidering especially non-instantaneous mixtures. Algorithms are grouped in two cate-
gories: higher-order statistics, and second order statistics (+ additional conditions). The
advantage of second order methods is that in general they areless sensitive to noise
and outliers, and are often computationally more efficient. The paper discusses well the
problems of BSS in the frequency domain.

The survey paper [129] considers instantaneous and convolutive mixtures. As far
as instantaneous mixtures are concerned, methods are discussed which are based on
moments, contrast functions, deflation, or whitening plus rotation. In the case of convo-
lutive mixtures, higher-order statistics, frequency approach, and second order statistics
are considered.

The paper [40] makes a distinction between blind signal extraction and blind source
separation. In the later case, all sources are extracted at the same time. In the former
case, one aims only at extracting a certain number of sources. The paper proposes a
unifying framework for both cases.

In [89] an algorithm for separating instantaneous sources from a linear mixture is
presented. The mutual information is formulated in terms ofNegentropy, i.e. the mutual
information is minimised (independent sources) when the Negentropy is maximised. In
order to allow for fast computation, the negentropy is approximated by an expression
depending on a functionG, for which almost any arbitrary non-quadratic function is
allowed. A criterion how to choose this function optimally with regards to the signal
distribution is presented. Finally, a newton method to find the maximum of the negen-
tropy is presented. This leads to the following update rule:

w1 = R−1 · E
[

x ·G′(w⊤x)
]

− E
[

G′′(w⊤x)
]

· w (B.3)

w2 =
w1√

w1
⊤ · R · w1

which is quite similar to the SEA (see Sec. B.2.2, Eq. B.4) update rule.
The paper [237] solves the MIMO problem in the time domain, when there are more

sensors than sources. The algorithm makes explicit use of the Toeplitz structure of the
matrices. The FIR filters are estimated by minimizing a novelcost function. The cost
function can be minimised efficiently by introducing a new variable, consequently the
function is not quartic but only quadratic, and, hence, can be optimised efficiently. In
comparison to other approaches, this is a one stage algorithm.

The work in [46] extends the FastICA (from [89]) algorithm tounder-complete con-
volutive blind source separation, and works in the spatio-temporal domain. Two ver-
sions of the algorithm are proposed, one in which the sourcesare extracted sequentially
(deflation) and one for parallel source extraction. In the deflation approach the error
accumulates at each separation stage, therefore, parallelextraction should be preferred.
Since the method is not gradient based, no step size has to be adapted, and the algorithm
works well for a wide range of initial conditions. However, the method assumes spatially
and temporally white signals. The filters are learnt with theFastICA algorithm together
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with a heuristics. This ensures that the filters are paraunitary, which is an extension of
the orthogonality constraints in FastICA.

In [28] the sources do not necessarily have to be independentand identical, but no
noise in the model is assumed. A contrast function with a reference signal is used. An it-
erative approach is developed such that the reference signal is updated and does not have
to be defined by the user. This approach has the advantage thatthe contrast function has
to be optimised only in the non-reference variables, which allows for faster calculation.
The filters correspond to the minimum power distortionless response beamformers, and
the sources are extracted sequentially† .

B.2.2 Blind channel estimation/identification/equalisat ion

A good overview is offered in [35] which treats the SISO as well as MIMO case. The
paper divides the algorithms into two classes: implicit andexplicit methods, i.e. whether
they use higher-order statistics implicitly or explicitly. For example, Bussgang type
algorithms (including the Sato and the constant modulus algorithm (CMA)) belong to
the former category, whereas the super-exponential algorithm (SEA) to the latter. The
IFC algorithm (gradient based), the SEA and the CMA algorithm are presented in more
detail. Their relation to one another as well as their dis/advantages are pointed out.
Several improvements for these algorithms are proposed: Hybrid algorithm of SEA and
IFC, prewhitening of data, and smart initial condition (viasimplified SEA algorithm).

Another survey paper is [208], in which, however, mostly only the SIMO case is
considered.

A survey over some instantaneous blind source separation methods and some blind
deconvolution methods is also given in [214], also comparing their respective perfor-
mances.

In [211] the constant modulus algorithm is developed. Constant modulus means that
the transmitted signal is of the form|s(t)| = 1∀t, whereass(t) is a complex valued signal.
Hence, the output after equalisation must also have constant modulus which is directly
incorporated into the algorithm. No further assumptions about the signal statistics are
necessary.

In [189] an algorithm called super-exponential algorithm (SEA) is presented, which
achieves blind equalisation by higher-order statistics computations, namely

w1 = R−1 · d (B.4)

w2 =
w1√

w1
⊤ · R · w1

where d is a cross-cumulant between the filter output and the original data. The al-
gorithm on page 49 in [222] is a special case of the super-exponential algorithm. In
particular, p (from [189])= d (from [222]), and q= 1.

In [193] blind filtering is done by two different approaches: Gradient based or Hes-
sian based‡. However, the paper also cites literature which states thatthe cost function of
the constant modulus algorithm (gradient based) is the sameas the optimisation criterion

†The deflation approach is often also called hierarchical or multistage approach.
‡Which are just different terms for implicit and explicit methods.
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for the super-exponential algorithm (Hessian based). The later converges much faster in
the case of stationary sources, but also requires more computational cost. In the case of
non-stationary sources, however, the gradient based method might be faster. The paper
considers a convex combination of both approaches.

In [155] it is argued that when the signal is spiky and non-symmetric, it is better to
learn filters based on maximisation of skewness instead of kurtosis. By better, the paper
means that less iterations are needed to achieve convergence to the correct deconvolution
filter. The filer is calculated via steepest ascent iterations, and resembles the MPDR filter.
All algorithms are developed for SISO systems. Two different algorithms are presented:
One in which after every step the filter must be normalised, and one in which this is
approximately ensured by the adaptation step already.

In [132] an analysis of the convergence properties of a wide family of Bussgang
blind deconvolution algorithms is conduced. Kurtosis and Skewness maximisation can
be viewed as special cases of this more general approach.

In [183] another Bussgang type algorithm is presented, however, spikes are modelled
as the sum of two Gaussian distributions.

The authors of [109] develop an algorithm for retrieving thewaveform/channel re-
sponse when only a single measurement is available, i.e. thesignal appears only once
(no repetition). This is a deterministic method using the z-transform and its greatest
common divisor via eigenvalues calculation. The same authors presented a very similar
method in [108], only the greatest common divisor is achieved in a different way.

Another deterministic algorithm for impulsive, i.e. non-repetitive, sources in the
case of a SIMO system is presented in [169]. A version of the algorithm is developed
when the channel response is sparse (not the source).

In [116] the super-exponential algorithm in the case of skewness and of kurtosis
maximisation in a SISO system is compared with each other. Itis concluded that skew-
ness is better when the signal has an asymmetric distribution, whereas kurtosis is better
when the signal changes abruptly. The paper also proposes a heuristics how to choose
the filter length.

The super-exponential algorithm is modified in [97] in the sense that higher-order
cumulants are used to estimate the template as well as the multiplication matrix (instead
of second order statistics). This makes the algorithm less sensitive to Gaussian noise,
but decreases a little the convergence speed and requires more computation time.

A different modification of the super-exponential algorithm is proposed in [233]. A
SISO system and white Gaussian noise are assumed. The noise variance is first estimated
using minimum description length. This estimate is then used to modify the Hessian
matrix of the adaptive matched filter. The algorithm is computationally more efficient
than [97], converges faster, and has better performance in noisy settings.

A deflation algorithm for MIMO system is presented in [96]. Sources can be tempo-
rally correlated, but have to be spatially uncorrelated. Furthermore, no noise is assumed
in the model. The algorithm is very similar to the super-exponential algorithm, but is
only exponential.

The authors of [239] come form the field of CDMA. In contrast tomost other works,
not the AMF but the MPDR is obtained. This is done by jointly optimising a cost func-
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tion (basically the variance of the filter output) with respect to the filter and the steering
vector/template, respecting some constraints. Several gradient based algorithms are pro-
posed, and global convergence is shown. The methods aim at extracting a single source
from a mixture of several sources and noise.

The minimum mean square error receiver (MMSE) solution is the MVDR solution
in the case when the steering vector is perfectly known. Since, however, the steering
vector is not known, all blind methods will be inferior. The authors of [212] show how
the steering vector can be estimated blindly. In particular, the steering vector should be
chosen such that the variance of the filter output is maximum under the unity constraint
of the steering vector. The vector is then given by the smallest eigenvector of the inverse
of the data covariance matrix.

The paper [238] modifies the method presented in [212]. The cost function is very
similar, the only difference is that the data matrix is now to the power ofm. The op-
timal detector for this problem would be the maximum likelihood sequence estimator,
but it requires exponential computational load. A linear solution, like the proposed one,
is sub-optimal, but computationally feasible. The optimallinear solution is called the
minimum mean square error receiver (MMSE). The MOE (proposed in [212]) which is
similar to the MVDR beamformer, provides an approximated solution that approaches
the MMSE. The proposed method allows also for a noise estimation without using min-
imum description length techniques.

In [92] the SEA is extended to the MIMO case, but no noise is assumed. The paper
proposes a two stage algorithm. First, SEA together with deflation is applied. This gives
first estimates of the channel responses. From this, filters are constructed which are then
used as initial condition for the second SEA algorithm. Thissecond SEA algorithm is a
straightforward extension of the SISO SEA algorithm. The advantage of deflation is its
global convergence, however, a disadvantage is the error propagation. The second SEA
algorithm has no error propagation, but does not exhibit global convergence. Thus, a
combination of both seems to be a good choice.

In [76] discrete sources are assumed, but the method is designed for under-complete,
instantaneous mixtures. The method is based on maximum a posteriori estimation. The
sources and the mixing matrix are estimated simultaneously. A gradient based approach
has to be applied in order to solve the optimisation problem.Multiple sources are ex-
tracted by deflation.

The authors of [112] consider the under-complete MIMO case,and when the source
signals are finite alphabet random variables. It is assumed that the finite alphabet is
known. The paper presents a cost function which must be minimised by gradient ap-
proaches in order to obtain the filters. The method even workswhen the sources are
correlated. This is the main advantage provided by the finitealphabet information. In
the case of uncorrelated sources, the sources can be extracted one by one (deflation) and
the paper gives references to the literature concerned withhow to estimate noise.

A method which aims at recovering binary sources from an over-complete MIMO
system is presented in [114]. This algorithm, however, is deterministic and resembles
more a clustering procedure, and the waveforms cannot be completely arbitrary. Multi-
ple sources are extracted by a deflation procedure.
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In [115] an algorithm for blind deconvolution for a MIMO system, when there are
more sourcesM than senorsN, is proposed. The algorithm can extractN sources which
are true sources. The algorithm also works for analog sources, not only binary/discrete
sources. It is a two stage algorithm, whereas in the first stepa single source is extracted
based on a contrast function involving fourth order cross moments. It is argued that a
contrast function involving only fourth order moments likekurtosis (no cross moments)
is unsuitable in the case of over complete systems. After onesource is extracted, this
source is deconvolved using a FIR filter, which is obtained byoptimising a different
contrast function.

The approach in [43] is clustering based and assumes a MISO system with binary
sources. The technique is similar to the one presented in [242]. Although the paper deals
with noisy systems, the method does not seem to be very robust, as it is formulated on
the original raw data.

In [134] or [30], the waveform/template is known. The underlying process is as-
sumed to be a combination of sparse Bernoulli and Gauss distribution, and must be
estimated.

The authors of [47] analyse the relation between blind deconvolution (SISO) and
blind source separation. It is shown that in the case of circulant matrices the algorithms
for blind deconvolution and BSS are the same. In the limit of very large dimensions
circulant matrices approach Toepiltz matrices.

Similarities between blind deconvolution and blind sourceseparation are also
pointed out in [5, 6]. However, the discussion is more from a point of view of un-
derstanding, i.e. qualitative rather than quantitative.
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