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Abstract

The thesis High resolution coding of point processes and the Boolean model is a
contribution to the field of coding theory, with a special focus on the problem
of quantization, entropy constrained coding and random coding. We provide an
asymptotic upper bound for the quantization error of point processes on bounded
metric spaces with finite upper Minkowski-dimension. Therefore we consider the
point process conditioned upon the number of points and construct specific code-
books for these conditional processes. Via the cardinality of these codebooks we
get a relation between the quantization error and the given rate. As a special
case, we establish upper and lower bounds for the quantization error asymptotics
of a stationary Poisson point process on a compact subset of Rd under Hausdorff-
distance. For the lower bound we use the relation between the quantization error
and the so called small ball probabilities. Furthermore we compute an asymptotic
upper bound of the entropy constrained error and compare the results with the
Gaussian case.
In the case of one dimension we introduce aD ([0, a], {w1, . . . , wq})-valued random
element induced by a point process on the compact interval [0, a] ⊂ R satisfying
a certain growth condition and provide an asymptotic upper bound of the quan-
tization error under L1-distance. For a D ([0, 1], {0, 1})-valued random element
induced by a stationary Poisson point process on [0, 1] we give asymptotic upper
and lower bounds of the quantization error and compare these to the asymptotics
of the random coding error and the entropy constrained error.
We further discuss the Boolean model, where a random set is constructed as the
Minkowski sum of the points of a Poisson point process and a given random set,
e.g. a ball with random radius. For an asymptotic upper bound of the quantiza-
tion error under Hausdorff-distance we consider the corresponding Poisson point
process conditioned upon the number of points in a compact set. We use one
part of the given rate to code the number and the position of these points and
the rest of the rate to code the random compact sets. For the lower bound we use
again the relation between the quantization error and the small ball probabilities.
Therewith we provide asymptotic upper and lower bounds for the quantization
error under Hausdorff-distance and compare these with the asymptotics of the
quantization error of the Boolean model under the L1-distance.
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Zusammenfassung

Die Arbeit High resolution coding of point processes and the Boolean model be-
schäftigt sich mit der Kodierungstheorie, wobei ein besonderes Augenmerk auf
das Problem der Quantisierung, der Entropie beschränkten Kodierung und der
zufälligen Kodierung gelegt wird. Wir berechnen unter anderem asymptotische
obere Schranken des Quantisierungsfehlers eines Punkt Prozesses, dessen Ver-
teilung der Punktanzahl eine bestimmte Wachstumsbedingung erfüllt, auf einem
beschränkten metrischen Raum mit endlicher oberer Minkowski-Dimension. Dazu
betrachten wir den Prozess bedingt auf die Anzahl seiner Punkte und konstruieren
für diese bedingten Prozesse spezielle Kodebücher. Mit Hilfe der Mächtigkeit der
Kodebücher erhalten wir Beziehungen zwischen dem Fehler und der vorgegebenen
Rate. Insbesondere geben wir obere und untere Schranken für die Asymptotik des
Quantisierungsfehlers eines stationären Poisson Punkt Prozesses auf einer kom-
pakten Teilmenge des Rd unter Hausdorff-Abstand an. Für die untere Schranke
benutzen wir den Zusammenhang zwischen dem Quantisierungsfehler und der
Wahrscheinlichkeit kleiner ε-Umgebungen um gegebene beliebige Kodebuchele-
mente. Ausserdem berechnen wir die Asymptotik des Entropie beschränkten
Fehlers und vergleichen die Ergebnisse mit dem Gaußschen Fall.
Im eindimensionalen Fall führen wir ein D ([0, a], {w1, . . . , wq})-wertiges Zufallse-
lement ein, dessen Sprünge durch einen Punkt Prozess auf dem kompakten Inter-
vall [0, a] ⊂ R erzeugt werden, der eine bestimmte Wachstumsbedingung erfüllt.
Für dieses berechnen wir eine obere asymptotische Schranke des Quantisierungs-
fehlers unter L1-Abstand. Für ein D ([0, 1], {0, 1})-wertiges Zufallselement, dessen
Sprünge durch einen stationären Poisson Punkt Prozess auf [0, 1] erzeugt werden,
geben wir asymptotische obere und untere Schranken des Quantisierungsfehlers
an und vergleichen diese mit der Asymptotik des zufälligen Kodierungsfehlers
und der des Entropie beschränkten Fehlers.
Außerdem betrachten wir das Boolesche Modell, bei dem eine zufällige Menge
durch die Minkowski-Summe der Punkte eines Poisson Punkt Prozesses und einer
gegebenen zufälligen kompakten Menge, zum Beispiel ein Ball mit zufälligem
Radius, konstruiert wird. Für eine asymptotische obere Schranke des Quan-
tisierungsfehlers unter Hausdorff-Abstand betrachten wir erneut den zugrunde-
liegenden Punkt Prozess bedingt auf die Anzahl der Punkte in der kompak-
ten Menge. Wir benutzen einen Teil der zur Verfügung stehenden Rate für die
Kodierung dieser Punkte und den restlichen Teil für die Kodierung der zufälligen
kompakten Mengen, die zu den Poisson Punkten addiert werden. Für die un-
tere Schranke benutzen wir wieder den Zusammenhang zwischen dem Quan-
tisierungsfehler und der Wahrscheinlichkeit kleiner ε-Umgebungen um gegebene
beliebige Kodebuchelemente. Damit erhalten wir obere und untere asymptotische
Schranken für den Quantisierungsfehler des Booleschen Modells unter Hausdorff-
Abstand und vergleichen diese mit der Asymptotik des Quantisierungsfehlers
unter L1-Abstand.
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Introduction

The present work is a contribution to the field of coding theory, with a special
focus on the problem of quantization. The aim is to send a random signal from a
source to a user via a given channel. One speaks of lossless source coding when-
ever it is possible to reconstruct the original signal perfectly. Else, there will be a
discrepancy between the original and the reconstruction: in this case one speaks
of lossy source coding, and we shall assume that this difference is measured by
a distortion measure. Usually, this inaccuracy is due to some constraints on the
capacity of the channel. In such a case, it becomes necessary to measure the
information one can transmit; as explained in the sequel, we shall be using four
different ways of measuring this information. A good introduction to the funda-
mentals of information theory can be found in Cover and Thomas [6] or in Gersho
and Gray [22].
From a mathematical standpoint, the problem is modeled using a separable Ba-
nach space (E, ‖.‖) and a Borel measurable random element X. The main aim
of the present work is to give asymptotic upper and lower bounds for the mini-
mization problem

inf(E[‖X − X̂‖s])
1
s (1)

with s ∈ (0,∞), where the infimum is taken over a set of random elements X̂,
the received signals or reconstructions, which has an information constraint pa-
rameterized by n ∈ N.
Let us present the four different ways in which we shall be measuring the infor-
mation. The first one uses a set of deterministic subsets of E, whose cardinality
is bounded by n. In this case, we call (1) the quantization error of order s of X,
denoted by D(q),s(log n |X, ‖.‖).
Another way of measuring the information is to use a codebook having random
elements, with a cardinality again bounded from above by n. In such a case, (1) is
called the random coding error of order s and is denoted by D(R),s(log n |X, ‖.‖).
The third kind of constraint uses a bound on the entropy of the codebook ele-
ments, giving rise to D(e),s(log n |X, ‖.‖) the entropy constrained error of order
s. The fourth kind of constraint uses the so called Shannon mutual informa-
tion of the original signal respective to the codebook element, which results in
Ds(log n |X, ‖.‖) the Shannon distortion rate function. The first and the last two
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kinds of constraints were proposed by Kolmogorov in 1965 [31].
However, the leading pioneering figure of modern information theory is most cer-
tainly C.E. Shannon, who contributed fundamental reference works such as [40],
[41] and [37] in the 1940s, [42] in the 1950s and e.g. [38] in the 1970s, together
with his collaborators Oliver and Pierce. They introduced the idea of measur-
ing the complexity of a given signal through its entropy, and defined the mutual
information of two random elements via their conditional entropy.

Known results

An overview of the history of quantization and rate distortion theory was given
by Berger and Gray in 1998 ([2]), such an overview may also be found in [29].
In the 1960s, Zador issued several articles on this theme. Among other things,
he gave results for the asymptotic high-rate behavior of the entropy constrained
vector quantization (see [44] and [45]), which were generalized by Gray et al. (see
[30]).
Recent years saw a renewed interest for the topic, which resulted in a great
number of research publications from e.g. Graf, Luschgy, Pagès, Dereich et al.
Dembo and Kontoyiannis studied in 2001 the convergence of the compression
ratio of a memoryless source, which is compressed using a variable length fixed-
distortion code (see[12]). In 2002 they presented a development of parts of rate-
distortion theory and pattern-matching algorithms for lossy data compression,
centered around a lossy version of the asymptotic equipartition property (AEP)
which relies on recent results of large deviation theory (see [13]).
Some of the main results for quantization error of continuous random variables
in a finite dimensional space are given in Bucklew and Wise [5] and in Graf
and Luschgy [23]. One of the essential contributions of [23] is to establish that
the asymptotics of the quantization error are related to the asymptotics of the
quantization error of a uniform distribution on the unit cube: let Y be a Rd-valued
random vector with E[‖Y ‖s+ε] < ∞ for some ε > 0. Denote the distribution of
Y by ν. Then it follows

lim
n→∞

n
s
d

(
D(q),s(log n |Y, ‖.‖))s

= Qs([0, 1]d)

∥∥∥∥
dνa

dλ(d)

∥∥∥∥
d/(d+s)

,

where dνa

dλ(d) is the Radon-Nikodym density of the absolutely continuous part of ν

with respect to the Lebesgue measure λ(d) on Rd and ‖.‖p denotes the Lp-norm
induced by the probability measure P on the set of real-valued random variables.
Qs([0, 1]d) denotes a constant depending on the quantization error of order s of
the uniform distribution on [0, 1]d.
The more general case of the quantization error in an infinite-dimensional Banach
space was treated by Fehringer in 2001 [21], by Dereich in 2003 (see [14] and
[15]), and by Dereich et al. in 2003 [16]. In these references, upper and lower
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bounds are given for the quantization error appearing in the reconstruction of a
centered Gaussian random element on a separable, infinite-dimensional Banach
space. Thereby, the asymptotics of the quantization problem are related to some
small ball probabilities: let µ be a centered Gaussian measure on a separable
Banach space (E, ‖.‖). Define the small ball function ϕ of the measure µ as

ϕ(ε) = − log µ(B(0, ε)),

where B(b, ε) denotes the closed ball with center b and radius ε. Under the
assumption that x 7→ ϕ(1/x) is regularly varying at infinity with index a > 0
Dereich et al. stated in [16]

ϕ−1(log n) . D(q),s(log n |µ, ‖.‖) ≤ D(R),s(log n |µ, ‖.‖) . 21+1/aϕ−1(log n),

the notation f(x) . g(x), x → a, signifying that for any sequence (xk)k∈N in R
with lim

k→∞
xk = a, one has lim sup

k→∞
f(xk)
g(xk)

≤ 1.

Moreover we write f(x) ∼ g(x), x → a, if f(x) . g(x) and g(x) . f(x), x → a.
In this case we call the functions f and g (strongly) asymptotically equivalent.
Moreover, f and g are called weakly asymptotically equivalent if there exists
C ∈ R+ such that f(x) . Cg(x) and g(x) . Cf(x) as x → a. In this case we
write f(x) ≈ g(x) as x → a.
Recall that x 7→ ϕ(1/x) is regularly varying at infinity with index a > 0 if there
exists a function L which is slowly varying at infinity such that

ϕ(ε) = ε−aL

(
1

ε

)
, ε > 0,

and that the function L :]0,∞[→]0,∞[ is called slowly varying at infinity if

lim
t→∞

L(st)
L(t)

= 1 for each s > 0 (see Bingham et al. [4]).

Furthermore, Dereich gave in his dissertation [14] asymptotic upper and lower
bounds for the distortion rate function via the small ball function: suppose that
ϕ−1(log n) ≈ ϕ−1(2 log n) as n →∞. Then, for any s ≥ 1,

ϕ−1(log n) . Ds(log n |µ, ‖.‖) ≤ D(R),s(log n |µ, ‖.‖) . ϕ−1

(
log n

2

)

as n →∞.
Interestingly, in this case the asymptotics of the quantization error and of the
random coding error are related to the distortion rate function.
Furthermore, Dereich stated in his dissertation results for the quantization prob-
lem of a centered Gaussian random measure µ on a separable real Hilbert space
(H, 〈·, ·〉). Under the assumption that µ has infinite dimensional support denote
the sequence of eigenvalues of the covariance operator of µ by {λk}k∈N. If this
sequence satisfies

lim
k→∞

log log(1/λk)

k
= 0
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he gave for the distortion rate function, the quantization error and the entropy
constrained error the following relation: for any s ∈ (0,∞) it follows

D(q),s(log n |µ, ‖.‖) ∼ D 2(log n |µ, ‖.‖), (2)

as n →∞. And for any s ∈ (0,∞) it follows

D(e),s(log n |µ, ‖.‖) ∼ Ds(log n |µ, ‖.‖) ∼ D 2(log n |µ, ‖.‖), (3)

as n →∞ (see [14]).
In 2005 Dereich and Scheutzow gave results for the quantization and the entropy
coding of the fractional Brownian motion for the supremum and Lp[0, 1]-norm
distortions (see [17]): Let H ∈ (0, 1) and let W = (Wt)t≥0 denote fractional
Brownian motion with Hurst index H. Denote by C([0, a]), a > 0, the space of
real-valued functions on the interval [0, a]. Furthermore denote by D([0, a]) the
space of right continuous functions with left limits (RCLL) on [0, a]. Both spaces
are endowed with the supremum norm ‖.‖[0,a]. Let (Lp[0, a], ‖.‖Lp[0,a]) denote the

standard Lp-space of real-valued functions defined on [0, a]. Let E and Ê denote
measurable spaces, and let d : E× Ê → [0,∞) be a product measurable function.
Define the quantization error of the original W by

D(q),s(log n |W,E, Ê, d) := inf
π
‖d(W,π(W ))‖s,

where the infimum is taken over all measurable functions π : E → Ê with discrete
image that has quantization rate log n > 0.
The entropy constrained error is defined by

D(e),s(log n |W,E, Ê, d) := inf
π
‖d(W,π(W ))‖s,

where the infimum is taken over all measurable functions π : E → Ê with discrete
image that has entropy rate log n > 0.
Choose as original space E = C([0,∞)). In the case where Ê = D([0, 1]) and
d(f, g) = ‖f − g‖[0,1] Dereich and Scheutzow state in [17] that there exists a
constant κ = κ(H) ∈ (0,∞) such that for all s1 ∈ (0,∞] and s2 ∈ (0,∞),

lim
n→∞

(log n)HD(e),s1(log n|W,E, Ê, d) = lim
n→∞

(log n)HD(q),s2(log n|W,E, Ê, d) = κ.

(4)

In the case where Ê = Lp[0, 1] and d(f, g) = ‖f − g‖Lp[0,1] for some p ≥ 1 it
follows that for every p ≥ 1 there exists a constant κ = κ(H, p) ∈ (0,∞) such
that for all s ∈ (0,∞),

lim
n→∞

(log n)HD(e),s(log n|W,E, Ê, d) = lim
n→∞

(log n)HD(q),s(log n|W,E, Ê, d) = κ.

(5)
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They showed that for the supremum norm-based distortion, all moments and
both information constraints lead to the same asymptotic approximation qual-
ity. For the Lp[0, 1] norm-based distortions both information constraints lead to
the same asymptotic approximation quality, too. In particular, quantization is
asymptotically just as efficient as entropy coding.
Another approach to the quantization error problem is studied by Creutzig in his
doctoral dissertation ([8]), who established that the quantization error is related
to an approximation quantity called average Kolmogorov width. In 2006 Dereich
et al. studied in [19] the relation between quantization and numerical integration
of Lipschitz functionals on a Banach space by means of deterministic and ran-
domized (Monte Carlo) algorithms. In the course of that they determined the
asymptotic behavior of quantization numbers and Kolmogorov widths for diffu-
sion processes.
Further generalizations of the quantization problem and entropy constrained cod-
ing of Gaussian measures are studied by Graf and Luschgy. In [25], the exact
rates of convergence of the quantization error are derived for absolutely continu-
ous distributions and for self-similar distributions, and the rates of convergence
are related to the Hausdorff dimension of the distribution of the original signal.
The case of self-similar probabilities, corresponding to an iterated function sys-
tem of contracting similitudes, is treated in [26]. In this article, the authors gave
properties of the quantization dimension, which is studied in detail by Zhu [47]
in his doctoral dissertation. The sharp asymptotics for the entropy constrained
L2-quantization errors of Gaussian measures on a Hilbert space, in particular for
Gaussian processes, is derived by Graf and Luschgy in [27].
In 2003 Graf, Luschgy and Pagès established a complete relationship between
upper and lower bounds of the quantization error and small ball probabilities
(see [24]). In 2006 they investigated the quantization problem for Radon random
vectors in Banach spaces, studied the existence of optimal quantizers and derived
their stationarity (see [28]).
Luschgy and Pagès worked in 2002 on the quantization problem for random
vectors in an infinite-dimensional Hilbert space and in particular, for stochastic
processes (Xt)t∈[0,1] viewed as L2([0, 1], dt)-valued random vectors. For Gaussian
vectors and the L2-error, they presented detailed results for stationary and opti-
mal quantizers and established a precise link between the rate problem and the
Shannon-Kolmogorov entropy of X. This yields the exact rate of convergence
to zero of the minimal L2-quantization error under rather general conditions on
the eigenvalues of the covariance operator (see [34]). In [35] Luschgy and Pagès
investigated the functional quantization problem for one-dimensional Brownian
diffusions on [0, T ]. They proposed several methods to construct some rate-
optimal quantizers and extended the results to d-dimensional diffusions when the
diffusion coefficient is the inverse of a gradient function.
In 2004 and 2006 Delattre, Graf, Luschgy and Pagès considered the minimiza-
tion problem inf E[V (‖X − X̂‖)], where V is a nondecreasing function. Under
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certain conditions on V , they derived the precise asymptotics of the quantization
error for nonsingular distributions (see [10]) and for self-similar distributions (see
[11]), and gave the asymptotic performance of optimal quantizers using weighted
empirical measures.
Another generalization of the problem of quantization error asymptotics for a
Rd-valued random vector X with distribution µ is given in Dereich and Vormoor
[18], where the quantity (E[‖X − X̂‖s])

1
s , which is to be minimized, is replaced

by

‖X − X̂‖ϑ := inf
{

t ≥ 0 : Eϑ
(
‖X−X̂‖

t

)
≤ 1

}
.

The norm ‖.‖ϑ is called an Orlicz norm. Thereby the function ϑ : (0,∞) → (0,∞)
is monotonically increasing, left continuous with lim

t→0
ϑ(t) = 0. Defining by

δ(n|X,ϑ) := inf
X̂

|range X̂|≤n

‖X − X̂‖ϑ

the quantization error under ϑ one says that the quantization error problem is
studied under Orlicz norm distortion. The main result is the following: assume
that there exists a function W with E[W(‖X‖)] < ∞ and that W satisfies
a certain growth condition which depends on the function ϑ. If additionally
µa(Rd) supt≥1 ϑ(t) > 1 there exists a constant 0 < I < ∞ such that

lim
n→∞

n1/dδ(n|X,ϑ) = I1/d.

Alternating renewal processes, point processes

and the Boolean model

In this thesis we consider the quantization error of point processes on bounded
metric spaces and of alternating renewal processes induced by a point process
on [0, a] ⊂ R, a > 0, a compact interval. As a special case, we establish upper
and lower bounds for the quantization error asymptotics of a stationary Poisson
point process on a compact subset of Rd, and compare these to the asymp-
totics of the entropy constrained error. We further consider the Boolean model,
where a random set is constructed as the Minkowski sum of the points of a Pois-
son point process and a given random set, e.g. a ball with random radius. We
study the quantization error under two sorts of distances, the L1-distance and
the Hausdorff-distance.
In the first chapter we describe the basics of coding theory and give some nota-
tions and definitions corresponding to the several ways of measuring information
and the corresponding error functions.
In Chapter 2, we introduce simple point processes in Rd for d ≥ 1. Let (E, dE)
be an arbitrary metric space. Furthermore let q ∈ N with 2 ≤ q < ∞ and
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w1, . . . , wq ∈ E with wi 6= wj for i 6= j and w := maxi,j=1,...,q dE(wi, wj) < ∞.
We define a jump process Y as a D ([0, a], {w1, . . . , wq})-valued random element,
where D ([0, a], {w1, . . . , wq}) denotes the Skorohod-space, the set of all RCLL
functions from [0, a] to {w1, . . . , wq}. The number and position of the jumps are
given by a simple point process Ψ on the interval [0, a] satisfying the following
growth condition. Defining for every B ⊂ [0, a] the number of the points of Ψ in
B as NΨ(B) := ](Ψ ∩B) it satisfies: there exists a constant c ∈ R+ such that

P [NΨ([0, a]) = k] ≤ ck · e−k log k, for all k ∈ N.

In Figure 1 we give a sketch of a realization of Y .

t

Y

0 a

w5

4

3

2

1w

w

w

w

Figure 1: A jump process on [0, a]

We can interpret this kind of process firstly as a sound signal with finite number
of different notes, or alternatively as a picture with finite number of different
colors without combination colors.
For two D ([0, a], E)-valued processes Y and Z, we define the L1-distance as

ρE
a (Y, Z) :=

∫ a

0

dE(Yt, Zt) dt,

the Lebesgue measure of the parts of the interval [0, a], where Y and Z are
in different states weigthed with the distance of the states in E. With these
preliminaries, we compute an asymptotic upper bound for the s-th moment of
the quantization error of Y . Denoting the quantization error of order s for rate
n ∈ N under ρE

a -distance as D(q),s(log n |Y, ρE
a ), the main theorem of this section

yields

D(q),s(log n |Y, ρE
a ) ≤ e−(1+o(1))·

√
2
s

log n log log n as n →∞,

xiii



where o denotes the Landau symbol.
Furthermore, we introduce a special alternating renewal process X as a
D ([0, a], {0, 1})-valued random element. The waiting times of X are described by
independent identically exponential-λ-distributed random variables with λ > 0.
This means that the number and positions of the renewals are described by a sta-
tionary Poisson point process Φ on [0, a] with parameter λ. We call this process
X an alternating Poisson renewal process. Moreover, we give asymptotic upper
and lower bounds for the quantization error of order s of X under L1-distance on
[0, a], denoted by ρa, that are stated in the following

D(q),s(log n |X, ρa) = e−(1+o(1))·
√

2
s

log n log log n, n →∞.

For the lower bound we use the relation between the quantization problem and
small ball probabilities which is explained in [14], [15] or [16].
In the following sections we consider the random coding error and the entropy
coding error of the process X. For the entropy constrained error of order s, we
obtain the following upper bound:
there is a constant C(λ, s), depending only on λ and s such that

D(e),s(log n|X, ρ1) . eC(λ,s) · n− 1
λ as n →∞.

Let us remark that the asymptotic approximation bounds of the quantization
and the entropy constrained errors of the alternating renewal process X under
L1-norm distortion behave differently in contrast to the Gaussian case (see Equa-
tions (2) and (3)). Furthermore, it is interesting to observe that the asymptotic
upper bound of the quantization error depends on the s-th moment of the dis-
tortion while the asymptotic bound for the entropy constrained error is the same
for every s ∈ R+. On the other hand the asymptotics of the quantization error
do not depend on λ, the intensity of Φ, but the asymptotic upper estimate of the
entropy constrained error does.
This brings a contrast to the Gaussian case, where for the supremum norm-based
distortion, both information constraints lead to the same asymptotic approxi-
mation quality (see Equation (4)). For the Lp[0, 1] norm-based distortions, both
information constraints lead again to the same asymptotic approximation quality
(see Equation (5)). In particular, quantization is asymptotically just as efficient
as entropy coding. This was shown by Dereich and Scheutzow in [17].
In the third chapter we turn to a more general subject. We introduce a simple
point process on an arbitrary metric space (E, dE). To compare two arbitrary
subsets of E we define the Hausdorff distance for A,B ⊂ E as

dH(A,B) := max

{
sup
a∈A

d(a,B) , sup
b∈B

d(b, A)

}
, where d(A,B) := inf

b∈B
a∈A

dE(a, b).
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Moreover, for a bounded metric space (E, dE) we define the upper Minkowski
dimension to be

dimME := lim sup
ε→0

log M(E, ε)

log(1/ε)
.

Here, M(E, ε) denotes the smallest number of ε-balls needed to cover E.

M(E, ε) = min

{
j ≥ 1 : there exist x1, . . . , xj ∈ E with E ⊂

j⋃
i=1

Bε(xi)

}
,

where Bε(x) := {y ∈ E : dE(x, y) < ε} is the open ball around x of radius ε.
On a bounded metric space (E, dE) with upper Minkowski dimension dimM(E) =:
d < ∞, we introduce a special simple point process Υ, for which the total number
of the points in E has a distribution satisfying

P [](Υ ∩ E) = k] ≤ ck · e−k log k for all k ≥ 1

with c ∈ R+ constant. We give an asymptotic upper bound for the quantization
error of order s relative to this process Υ:

D(q),s(log n |Υ, dH) ≤ e−(1+o(1))·( 2
sd
·log n·log log n)

1
2

, n →∞.

Using this, we prove asymptotic upper and lower bounds for the quantization
error of order s of a stationary Poisson point process Φ on a compact cube
C := [−l, l]d ⊂ Rd, l > 0, namely

D(q),s(log n |Φ, dH) = e−(1+o(1))·( 2
sd
·log n·log log n)

1
2

, n →∞.

Again, we consider in the following section the entropy constrained error of order
s and give an asymptotic upper bound for Φ on C := [−l, l]d

D(e),s(log n |Φ, dH) .
√

d ·
(

1

λ

)1/d

· n−
1

d·λ·(2l)d , n →∞.

This time, one may notice that the quantization error asymptotics do not depend
on the intensity of Φ or on λ(d)(C), the Lebesgue measure of the cube C, but on
s, while the entropy constrained error asymptotics do not depend on s but on λ
and on λ(d)(C).
In Chapter 4, we come to a more general situation, that of the so called Boolean
model, denoted by Ξ. Let Kd be the system of compact subsets of Rd and B(Kd)
the corresponding σ-field. The Boolean model is composed of the Minkowski
sum of a stationary Poisson point process Φ = {x1, x2, . . .} in Rd, the so called
germs, and a sequence of independent identically distributed random compact sets
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Y1, Y2, . . . (here we deal with a ball with random radius) which are independent
of Φ, the so called grains. Let Y1 satisfy

E
[
λ(d)(Y1 + K)

]
< ∞ for all compact K.

The Boolean model is defined as follows: Given the germs xi and the grains
Yi as above a Boolean model is defined as a measurable map Ξ : (Ω,F , P ) →
(Kd,B(Kd)) with

Ξ :=
∞⋃
i=1

{xi + Yi}.

In Figure 2 we give a sketch of a realization of Ξ for the case d = 2 in the unit
square. Furthermore, Y0 is a ball with random bounded radius.

(1,0) (1,1)

(0,1)(0,0)

Figure 2: The Boolean model with bounded balls

This construct is useful to model quite complicated compact sets in Rd with
irregular boundaries. If the intensity λ of Φ is small relative to the size of the
grains, then primary grains will not often overlap and hence, Ξ will consist mainly
of separated particles. A typical example of such systems is the set of nodular
graphite particles in cast iron. A random sparse configuration of plants may also
yield such a pattern over an area covered by vegetation.
With increasing λ, the number of overlaps increases. Simple examples of such
occurrences in nature are pores in cheese or areas of weeds in fields.
We differentiate between the cases d = 1 and d > 1. In the case of one dimension
and balls with random but bounded radii, the balls turn into intervals, so that
we can compare the Boolean model on the interval [0, 1] with a D ([0, 1], {0, 1})-
valued random element as considered in Section 2.3. As a consequence, we obtain
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the following asymptotics for the quantization error of order s ∈ R+ of Ξ:

D(q),s(log n |Ξ, dH) = e−(1+o(1))
√

2
s
·log n log log n as n →∞.

This corresponds to the asymptotics of the quantization error of order s of the
stationary Poisson point process in dimension one.
In the case d > 1 we obtain the following asymptotic upper bound for the quan-
tization error of order s corresponding to the Boolean model on a compact cube,
where the germs consist of a stationary Poisson point process and the grains of
balls with random but bounded radius:

D(q),s(log n |Ξ, dH) ≤ e
−(1+o(1))

√
2

s(d+1)
·log n log log n

as n →∞.

In the case where the grains consist of compact sets that can be included in
a certain way by balls with independent identically distributed radii we get an
asymptotic lower bound for the quantization error of order s of the Boolean model

D(q),s(log n |Ξ, dH) ≥ e−(1+o(1))
√

2
sd
·log n log log n as n →∞.

The asymptotics of the upper bound are the same as the asymptotics of the
quantization error of a (d + 1)-dimensional Poisson point process. The reason
for this lies in the construction of the codebook: we use a codebook that first
codes a d-dimensional Poisson point process and uses more rate to code the radii
of the balls. Hence, intuitively we have d dimensions for the point process and
one dimension for the radii. But as the lower bound yields in the case d = 1 the
right asymptotics, we conjecture that this yields the right asymptotics as well in
the case d > 1. Heuristically, this may be understood by considering the overlaps
of the Boolean model. If the radii are quite large with high probability, we have
many overlaps in the Boolean model (e.g. some balls may be entirely contained
in other balls), and we need not code all points of the Poisson point process. If
the radii are that small that we do not have any overlaps, the Boolean model is
very close to the d-dimensional Poisson point process, and thus the quantization
error asymptotics may be equal.
In the last section of this chapter, we discuss the quantization error of the d-
dimensional Boolean model under ρ(d), the L1-distance on Rd. Although the
Hausdorff distance and the L1-distance are not equivalent, we obtain the same
asymptotic upper bound for the quantization error of a special Boolean model
on a compact cube with bounded grains, namely

D(q),s(log n |Ξ, ρ(d)) ≤ e
−(1+o(1))

√
2

s(d+1)
·log n log log n

as n →∞.

Finally, Chapter 5 discusses open problems.
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Chapter 1

Preliminaries

1.1 Coding theory

The basic problem of coding theory consists in transmitting a message from a
source to an user. The fundamental choice of communication is whether the
message is reproduced either exactly or approximately. We will discuss the ap-
proximation approach and evaluate its fidelity.
The coding problem consists of

• a polish space (E, d), called the source alphabet,

• a probability distribution µ on the Borel sets of E, called the source distri-
bution,

• a Borel measurable function ρ : E × E → [0,∞) with

– ρ(x, y) = ρ(y, x) ∀x, y ∈ E

– ρ(x, y) ≥ 0 ∀x, y ∈ E and ρ(x, y) = 0 ⇔ x = y,

called distortion measure.

Notice that ρ is not necessarily a metric, because the triangle inequality need not
hold. Let (Ω,F , P ) be the underlying probability space and X : Ω → E be a
µ-distributed random element (hereafter abbreviated by r.e.) on E, the original
data signal. Let X̂ : Ω → E be a random element on E which is called the
received signal. The distortion between X and X̂ is modeled by ρ(X, X̂).
As we have a capacity constraint of the channel we use for transmitting the signal,
it is important to measure the quantity of “information” we can transmit. We
measure this information by the following quantities: One possibility is admitting
a finite number of deterministic received signals, called the codebook.
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Definition 1.1.1 For s ∈ R+ we define the quantization error of order s of a
source (µ, ρ) in terms of the rate n ∈ N as follows

D(q),s(log n|µ, ρ) :=


 inf

C⊂E,|C|≤n





∫

E

min
y∈C

ρ(x, y)s µ(dx)








1
s

.

Here C 6= ∅ is called a codebook that is associated with a quantizer which associates
X with an optimal replication X̂ in C. Sometimes we write D(q),s(log n|X, ρ)
instead of D(q),s(log n|µ, ρ) and for the case where s = 1 we use the notation
D(q)(log n|µ, ρ) := D(q),1(log n|µ, ρ).

One method of generalizing the quantization error is to use instead of a deter-
ministic codebook a codebook consisting of independent µ-distributed random
variables.

Definition 1.1.2 Let {Yj}j∈N be a sequence of independent µ-distributed random
elements which are independent of the original X. Denote for s ∈ R+ and n ∈ N
by

D(R),s(log n|µ, ρ) =
(
E[ min

j∈{1,...,n}
ρ(X, Yj)

s]
) 1

s

the average coding error when using the random sequence {Yj}j∈N as codebook
elements. Again we use for the case where s = 1 the notation D(R)(log n|µ, ρ).

Another way of measuring the information is the entropy of X̂.

Definition 1.1.3 For a random element X̂ : Ω → E with countable range define

H(X̂) := −
∑

x∈supp(X̂)

P (X̂ = x) log P (X̂ = x)

the entropy of X̂.

Entropy can be seen as a measure of “uncertainty” or “randomness” of a random
phenomenon. For a given probability distribution µ the entropy H measures
how much freedom one is given to select an event, or how difficult to predict the
outcome.

Definition 1.1.4 We define the distortion under entropy constrained coding of
order s ∈ R+ for rate log n > 0 by

D(e),s(log n|µ, ρ)

:=
(

inf
{

E[ρ(X, X̂)s] : (X, X̂) r.e. in E2, L(X) = µ, H(X̂) ≤ log n
} ) 1

s
.

Analogously we define D(e)(log n|µ, ρ) := D(e),1(log n|µ, ρ).
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D(e),s(log n|µ, ρ) is the minimal distortion that arises under the constraint that
the “uncertainty” of the replication X̂ is smaller than log n ≥ 0.
The fourth sort of constraining the capacity is the mutual information between
X and X̂.

Definition 1.1.5 For any Borel probability measures ξ and ν on a Polish space
let

H(ξ||ν) :=

{ ∫
log

(
dξ
dν

)
dν, if ξ ¿ ν

∞, else

the relative entropy of ξ with respect to ν.

The relative entropy measures the distance between two distributions. H(ξ||ν)
is a measure of the inefficiency of assuming that the distribution is ν if the
true distribution is ξ. Note that it is not a true distance, because it is neither
symmetric nor does it satisfy the triangle inequality.

Definition 1.1.6 For two random elements X and X̂ on E with joint distribu-
tion P(X,X̂) and marginal distributions PX and PX̂ we define the mutual informa-

tion I(X, X̂) as the relative entropy of the joint distribution with respect to the
product distribution PXPX̂

I(X, X̂) := H
(
P(X,X̂)||PXPX̂

)
.

The mutual information measures the amount of information that one random
element contains about another random element. It describes the reduction of
uncertainty of one element due to the knowledge of the other.

Definition 1.1.7 For n > 1 the Shannon distortion rate function of order s ∈
R+ is defined by

D(s)(log n|µ, ρ)

:=
(

inf
{

E[ρ(X, X̂)s] : (X, X̂) r.e. in E2, L(X) = µ, I(X, X̂) ≤ log n
}) 1

s

with the convention D(log n|µ, ρ) := D(1)(log n|µ, ρ).

D(log n|µ, ρ) is the minimum distortion attainable by sending mutual information
not greater than log n. It is the main object used by Shannon in his works
1948 (see [40]) and 1959 ([42]). He considered the problem of reconstructing an
original X on the basis of the information received via a channel with restricted
capacity. One of his main results is that the distortion rate function gives the
asymptotically best achievable accuracy between the original and its replication
in the latter problem.
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Remark 1.1.8 Due to the fact that for any discrete replication X̂

H(X̂) ≤ log |supp(X̂)|

and
I(X, X̂) ≤ H(X̂),

the coding quantities are ordered as follows

D(log n|µ, ρ) ≤ D(e)(log n|µ, ρ) ≤ D(q)(log n|µ, ρ), n ∈ N.

1.2 Notation

Let f, g be two nonnegative real-valued functions on R. For a ∈ R∪{∞}∪{−∞}
we write

f(x) . g(x), x → a,

if and only if for any sequence (xk)k∈N in R with lim
k→∞

xk = a it follows that

lim sup
k→∞

f(xk)

g(xk)
≤ 1.

Moreover we write

f(x) & g(x), x → a, if g(x) . f(x), x → a,

and
f(x) ∼ g(x), x → a, if f(x) . g(x) and f(x) & g(x), x → a.

In this case we call the functions f and g (strongly) asymptotically equivalent.
Moreover, f and g are called weakly asymptotically equivalent if there exists
C ∈ R+ such that f(x) . Cg(x) and g(x) . Cf(x) as x → a. In this case we
write f(x) ≈ g(x) as x → a.
Let f, g be two positive real-valued functions on R. For a ∈ R ∪ {∞} ∪ {−∞}
we write the Landau symbols

f(x) = O(g(x)), x → a,

if and only if for any sequence (xk)k∈N in R with lim
k→∞

xk = a there exist M > 0

and k0 ∈ N such that for all k > k0

f(xk) < M · g(xk) ,

and
f(x) = o(g(x)), x → a,
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if and only if for any sequence (xk)k∈N in R with lim
k→∞

xk = a it follows that

lim
k→∞

f(xk)

g(xk)
= 0.

Denote the Lebesgue measure in Rd by λ(d) and let bxc := max{j ∈ N0 | j ≤ x}
and dxe := min{j ∈ N0 | j ≥ x} for x ∈ R+.
During the whole work we will use the following proposition.

Proposition 1.2.1 There exist constants 0 < c1 ≤ 1 ≤ c2 < ∞ such that for all
x ∈ R with x ≥ 1 it follows

c1 ·
√

x ·
(x

e

)x

≤ Γ(x + 1) ≤ c2 ·
√

x ·
(x

e

)x

.

Proof: From Theorem 8.22 (Stirling’s formula) in Rudin [39] we conclude that

lim
x→∞

Γ(x + 1)√
2πx · (x

e

)x = 1.

Hence, for every ε > 0 there exists x0 ≥ 1 such that for all x > x0 we have

(1− ε) ·
√

2π · √x ·
(x

e

)x

≤ Γ(x + 1) ≤ (1 + ε) ·
√

2π · √x ·
(x

e

)x

.

The functions Γ(x + 1) and f(x) :=
√

2πx · (x
e

)x
are continuous and strictly

monotonically increasing on [1,∞). Therefore we have Γ(x + 1) ≥ 1 and f(x) ≥√
2π · e−1 for all x ≥ 1. Thus

g(x) :=
Γ(x + 1)√
2πx · (x

e

)x

is continuous for all x ≥ 1. For all x ≤ x0 it follows

Γ(2)√
2πx0 ·

(
x0

e

)x0
≤ g(x) ≤ Γ(x0 + 1)√

2π · e−1
.

Hence, g is continuous and strictly positive on [1, x0] and there exist constants
0 < c1 ≤ 1 ≤ c2 < ∞ such that for all x ∈ R with x ≥ 1 it follows

c1 ·
√

x ·
(x

e

)x

≤ Γ(x + 1) ≤ c2 ·
√

x ·
(x

e

)x

.

¤
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Chapter 2

Jump processes, alternating
renewal processes and the
L1-distance

2.1 Definition and basic properties

One of the original signals we are going to code will be the Poisson point process.
In this section we introduce point processes, in particular the Poisson point pro-
cess and give some properties. Furthermore we define two jump processes whose
jumps are related to a special point process and to the Poisson point process on
R, respectively. Moreover, we introduce the distortion measure, which is defined
via the L1-norm. We follow the definition of point processes from Stoyan et al.
[43].
For δ > 0, a ∈ Rd denote the open ball in Rd with center a and radius δ by
Bδ(a). Denote the system of the bounded Borel sets by Bb(Rd). A simple point
process is defined as a random element in a measurable space (G,G), where G is
the family of all locally finite subsets ϕ, of Rd. Each ϕ in G can be regarded as
a closed subset of Rd. An element ϕ of G can also be regarded as a measure on
Rd so that Nϕ(B) is the number of points of ϕ in B. The σ-field G is defined as
the smallest σ-field on G to make measurable all mappings ϕ → Nϕ(B) (for B
an arbitrary bounded Borel set).

Definition 2.1.1 A simple point process is defined as a random element Φ in a
measurable space (G,G), i.e. Φ : (Ω,F , P ) → (G,G) is measurable.
We denote the intensity measure of Φ by

Λ(B) := E[NΦ(B)], B ∈ Bb(Rd).

It is the expected number of points of Φ in B.

Stationarity of a point process Φ means that Φ and the shifted process Φx := Φ+x
for all x ∈ Rd have the same distribution.
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Remark 2.1.2 If Φ is stationary then Λ is of the form

Λ(B) = λ · λ(d)(B), 0 ≤ λ ≤ ∞.

λ is called the intensity of the point process (see Stoyan et al. [43], Section 4.1).
Choosing B to have measure 1 shows that λ may be interpreted as the mean
number of points of Φ per unit volume. We shall always assume that 0 < λ < ∞.

Definition 2.1.3 A stationary Poisson point process with parameter λ > 0 is
defined as a point process Φ on (G,G) with the following properties:

• The number of points in pairwise disjoint sets B1, . . . , Bn ∈ Bb(Rd), i.e. the
random variables NΦ(B1), . . . , NΦ(Bn) are independent for all n = 1, 2, . . ..

• The number of points NΦ(B) in B ∈ Bb(Rd) is Poisson distributed with
parameter λ · λ(d)(B), i.e.

P (NΦ(B) = m) =
(λ · λ(d)(B))m

m!
exp(−λ · λ(d)(B)).

Remark 2.1.4 If it is known that exactly n points of Φ are in B ∈ Bb(Rd) then
the position of the points is uniformly distributed in B (see Daley and Vere-Jones
[9], page 21).

Let (E, dE) be an arbitrary metric space. For a ∈ R+ the Skorohod-space
D ([0, a], E) is the set of all right continuous functions with left limits (RCLL)
from [0, a] to E. We denote by B (D ([0, a], E)) the smallest σ-field containing
all finite dimensional cylinder sets of the form

C := {f ∈ D ([0, a], E) ; (f(t1), . . . , f(td)) ∈ A},

where ti ∈ [0, a], i = 1, . . . , d and A ∈ B
(
Ed

)
where B

(
Ed

)
denotes the system

of Borel-sets in Ed.

Remark 2.1.5 In Chapter 3 of [3] Billingsley showed that for E = R the space
D ([0, a], E) is metrizable by the Skorohod metric in such a way that D ([0, a], E)
is a complete and separable metric space and that B (D ([0, a], E)) is the smallest
σ-field containing all open sets.

Let q ∈ N satisfy 2 ≤ q < ∞ and let w1, . . . , wq ∈ E with wi 6= wj for i 6= j and
w := maxi,j=1,...,q dE(wi, wj) < ∞. Let D ([0, a], {w1, , . . . , wq}) ⊂ D ([0, a], E)
denote the Skorohod-space of the RCLL mappings from [0, a] to {w1, , . . . , wq}
and B (D ([0, a], {w1, , . . . , wq})) the corresponding σ-field.
Define

G[0,a] := {φ ⊂ [0, a] : ](φ) < ∞},
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and G[0,a] as the smallest σ-field on G[0,a] to make all mappings φ → Nφ(B)
measurable for all bounded Borel sets B.
We define a jump process which lives on the time interval [0, a]. The distribution
of the number of the jumps has to satisfy a certain growth condition.

Definition 2.1.6 Let a ∈ R+. Let Y be a D ([0, a], {w1, , . . . , wq})-valued random
element that satisfies the following condition: The number and the position of the
jumps are described by a simple point process Ψ on

(
G[0,a],G[0,a]

)
that satisfies

P [NΨ([0, a]) = k] ≤ ck · e−k log k for all k ≥ 1

with c ≥ 1 constant. Denote by ψ the distribution of Ψ. We call this random
element Y a jump process.

Now we define a special alternating renewal process with fixed starting distribu-
tion and corresponding to a Poisson point process.

Definition 2.1.7 Let X be a D ([0, a], {0, 1})-valued random element that satis-
fies the following conditions

• P [X0 = 1] = P [X0 = 0] = 1
2
.

• The number and the position of the jumps are described by a stationary
Poisson point process ΦX on

(
G[0,a],G[0,a]

)
with parameter λ > 0. Denote

by µX the distribution of ΦX .

We call this random element X an alternating Poisson renewal process.

The process jumps between zero and one, so we can think of it as a sound signal
that is either high or low. The number and the position of the jumps are described
by a Poisson point process ΦX on the interval [0, a]. We define a random variable
NΦX

that is Poisson distributed with intensity λ to characterize the distribution
of the number of jumps. The waiting times of X in state zero or state one
respectively can be described by a sequence of exponential-λ-distributed random
variables (T1, T2, . . .), i.e.

P (Ti ≤ t) = 1− e−λt with i = 1, 2, . . . and t ∈ [0, a].

Denote by Si, i = 1, . . . the position of the i-th jump, i.e. Si =
i∑

k=1

Tk.

The definition of this process corresponds to the definition of a renewal process
with exponentially distributed waiting times (see Alsmeyer [1] or Cox [7]), but
normally the renewal process jumps at every renewal upwards, our process alter-
nates between jumping upwards and downwards.
Now we are going to define three distortion measures, one for jump processes, one
for alternating jump processes and one for random elements of the form (X0, ΦX).

9



Definition 2.1.8 For two D ([0, a], E)-valued maps Z and Y define the distor-
tion measure ρE

a : D ([0, a], E)×D ([0, a], E) → [0,∞) by

ρE
a (Z, Y ) :=

∫ a

0

dE(Zs, Ys) ds.

Remark 2.1.9 For two D ([0, a], {w1, , . . . , wq})-valued maps Ỹ and Z̃ clearly it
holds the upper bound

ρE
a (Z̃, Ỹ ) ≤ w · a.

Consider now two D ([0, a], {0, 1})-valued random elements, i.e. two alternating
jump processes Y and Z. Denote the point process corresponding to Z by ΦZ

and the point process corresponding to Y by ΦY . Via Z0 and ΦZ the stochastic
process Z is uniquely determined.
The next definition introduces a special case of the definition above with E = R,
dE(., .) = dR(., .) with dR(x, y) = |x − y| for all x, y ∈ R, q = 2, w1 = 0 and
w2 = 1:

Definition 2.1.10 For two D ([0, a], {0, 1})-valued random elements Z and Y
define the distortion measure ρa : D ([0, a], {0, 1})×D ([0, a], {0, 1}) → [0, a] by

ρa(Z, Y ) := ‖Z − Y ‖L1([0,a],λ(1)) :=

∫ a

0

|Zs − Ys|ds.

In the following we write ‖.‖L1 instead of ‖.‖L1([0,a],λ(1)) and in the case a = 1 we
write ρ(., .) instead of ρ1(., .).

With the preliminaries above we define the distortion measure between (Z0, ΦZ)
and (Y0, ΦY ) as follows: we consider all points of ΦZ and ΦY , order them and
express the distortion measure via Z0, Y0 and ΦZ , ΦY .

Remark 2.1.11 For the case that Y has dY ∈ N jumps and Z has dZ ∈ N
jumps we denote the position of the jumps by 0 < SY

1 < . . . < SY
dY
≤ a and

0 < SZ
1 < . . . < SZ

dZ
≤ a respectively. Now let

S̃1 := SZ
1 ,

S̃2 := SZ
2 ,

...

S̃dZ
:= SZ

dZ
,

S̃dZ+1 := SY
1 ,

S̃dZ+2 := SY
2 ,

...

S̃dZ+dY
:= SY

dY

10



and

A1 := min
j∈{1,...,dZ+dY }

{S̃j}.

Without loss of generality let A1 = S̃i1 with i1 ∈ {1, . . . , dZ + dY }. Let

A2 := min
j∈{1,...,dZ+dY }\{i1}

{S̃j}.

Without loss of generality let A2 = S̃i2 with i2 ∈ {1, . . . , dZ + dY } \ {i1}. Let

A3 := min
j∈{1,...,dZ+dY }\{i1,i2}

{S̃j}
...

AdY +dZ
:= min{S̃j : j ∈ {1, . . . , dZ + dY } \ {i1, i2, . . . idY +dZ−1}}.

Then we have
0 < A1 ≤ A2 ≤ . . . ≤ AdY +dZ

≤ a.

Definition 2.1.12 With the preliminaries above and with
0∑

i=1

|A2i − A2i−1| := 0

we define ρ̃[0,a] : G[0,a] ×G[0,a] → [0, a]

ρ̃[0,a](ΦZ , ΦY ) :=
∞∑

dZ=0

∞∑

dY =0

1{ΦZ([0,a])=dZ ,ΦY ([0,a])=dY }

·


1{dZ+dY even} ·

dZ+dY
2∑

i=1

|A2i − A2i−1|

+1{dZ+dY odd} ·




dZ+dY −1

2∑
i=1

|A2i − A2i−1|+ |a− AdZ+dY
|







and ρ[0,a] :
({0, 1} ×G[0,a]

)× ({0, 1} ×G[0,a]

) → [0, a] with

ρ[0,a]((Z0, ΦZ), (Y0, ΦY )) := 1{Z0=Y0} · ρ̃[0,a](ΦZ , ΦY )

+1{Z0 6=Y0} · (a− ρ̃[0,a](ΦZ , ΦY )).

Lemma 2.1.13 With these definitions we have

‖Z − Y ‖L1 = ρ[0,a]((Z0, ΦZ), (Y0, ΦY )).

Hence, it suffices to code (X0, ΦX) instead of X.

Remark 2.1.14 As ρa(., .) defines a metric on D ([0, a], {0, 1}), by ρ[0,a](., .) is
defined a metric on

({0, 1} ×G[0,a]

)
and thus ρ̃[0,a](., .) is a metric on G[0,a].
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2.2 A jump process

In this section we consider the jump process from Definition 2.1.6 which lives on
the time interval [0, a] with a ∈ R+. The distribution of the number of the jumps
satisfies a growth condition. For this process we give an asymptotic upper bound
of the quantization error.

Theorem 2.2.1 Let s, a ∈ R+ and E = {w1, . . . , wq}. Let Y be a jump pro-
cess as stated in Definition 2.1.6. Denote the distribution of Y by ν. Let ψ
denote the distribution of the corresponding point process Ψ. Then we have for
the quantization error the following asymptotic upper bound

D(q),s(log n |Y, ρE
a ) ≤ e−(1+o(1))·( 2

s
log n·log log n)

1
2 as n →∞.

Proof:
The proof is outlined as follows: first we split the distribution ν of Y into a
sum of several distributions. Then we deduce an upper bound for the sum by
constructing concrete codebooks for each of the summands.
Define NΨ(a) := ](Ψ∩ [0, a]). Let Yk := Y |{NΨ(a)=k} and νk be the distribution of
Yk. We split the distribution of Y via

ν =
∞∑

k=0

P [NΨ(a) = k] · νk.

Let Ψk := Ψ|{NΨ(a)=k} and ψk be the distribution of Ψk. Analogously we split the
distribution of Ψ via

ψ =
∞∑

k=0

P [NΨ(a) = k] · ψk,

where Ψ0 = ∅ almost surely.
Following the reasoning in Graf and Luschgy [23] we estimate the quantization
error of Y by the sum of the quantization errors of the Yk.

Let (nk)k∈N0 be a sequence such that for all 0 ≤ k ≤ 4 ·
√

2s log n
log log n

and for n large

enough it holds that nk ≥ 1 and

∞∑

k=0

nk ≤ n.

For 0 ≤ k ≤ 4 ·
√

2s log n
log log n

let Ck be an arbitrary codebook for νk with |Ck| ≤ nk.

Let C :=

b4·
√

2s log n
log log n

c⋃
k=0

Ck. For k > 4 ·
√

2s log n
log log n

we code the case of k jumps with

12



the codebook C0.
We estimate the quantization error of Y in the following way. Since C is a
codebook for ν with |C| ≤ n, we deduce

(D(q),s(log n | ν , ρE
a ))s

≤
∫

min
y∈C

(ρE
a (x, y))s dν(x)

=
∞∑

k=0

P [NΨ(a) = k] ·
∫

min
y∈C

(ρE
a (x, y))s dνk(x)

≤
b4·

√
2s log n
log log n

c∑

k=0

P [NΨ(a) = k] ·
∫

min
y∈Ck

(ρE
a (x, y))s dνk(x)

+
∞∑

k=b4·
√

2s log n
log log n

c+1

P [NΨ(a) = k] ·
∫

min
y∈C0

(ρE
a (x, y))s dνk(x). (2.1)

Now we are going to construct the specific codebooks Ck we are going to use for
the upper bound.
Without loss of generality assume e−1 n ≥ q. In the case of no jumps we define
n0 := q and C0 := {ŷ(1)

0 , . . . , ŷ
(q)
0 } with ŷ

(i)
0 (t) = wi for all t ∈ [0, a], i = 1, . . . , q as

the codebook for ν0. Hence, we can transmit and reconstruct the signal exactly
with only q elements in the codebook C0 and it follows

∫
min
y∈C0

(ρE
a (x, y))s dν0(x) = 0 for n0 = q. (2.2)

For the case where 1 ≤ k ≤ 4 ·
√

2s log n
log log n

we first construct codebooks for the point

process Ψk and therewith we introduce codebooks for Yk.
Let

Γ(k)
a := {(x1, . . . , xk) ∈ [0, a]k : 0 < x1 < x2 < . . . < xk ≤ a}

and

∆(k)
a := {(x1, . . . , xk) ∈ Rd : xi > 0, ∀i = 1, . . . , k and

k∑
i=1

xi ≤ a}.

Consider a realization of Ψk and denote the points in [0, a] by 0 < s1 < s2 <

. . . < sk ≤ a. Thus (s1, s2, . . . , sk) ∈ Γ
(k)
a . Then using the bijective map

T : Γ
(k)
a → ∆

(k)
a



s1

s2
...
sk




7→




t1
t2
...
tk




:=




s1

s2 − s1
...
sk − sk−1




(2.3)
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yields the tuple
(t1, t2, . . . , tk) ∈ ∆(k)

a .

Let

δ := a ·
(⌊

q−
1
k · (q − 1)−1 · e− 1

k · (k!)−
1
k · n 1

k

⌋)−1

. (2.4)

We show that for all 1 ≤ k ≤ 4 ·
√

2s log n
log log n

and for n large enough it holds a
δ
≥ 1

and this is valid if

q−1 · (q − 1)−k · e−1 · (k!)−1 · n ≥ 1.

Using Proposition 1.2.1 yields

q−1 · (q − 1)−k · e−1 · (k!)−1 · n ≥ q−1 · (q − 1)−k · e−1 · (c2 ·
√

k · kk)−1 · n.

Thus there exists c̃ ≤ 1 such that for all 1 ≤ k ≤ 4 ·
√

2s log n
log log n

we have

q−1·(q − 1)−k · e−1 · (k!)−1 · n
≥ c̃k · k−k · n
≥ exp

(
4 ·

√
2s log n
log log n

· log c̃− 4 ·
√

2s log n
log log n

log
(
4 ·

√
2s log n
log log n

)
+ log n

)

= exp
(
4 ·

√
2s log n
log log n

· log c̃− 2
√

2s log n log log n
)

· exp
(
−4 ·

√
2s log n
log log n

log
(
4 ·

√
2s

log log n

)
+ log n

)

−→∞ as n →∞.

Hence, for all 1 ≤ k ≤ 4 ·
√

2s log n
log log n

and for n large enough we have

a

δ
≥ 1 (2.5)

and therefore a
δ
∈ N.

We cover the simplex ∆
(k)
a with small k−dimensional cubes with side length δ.

To cover the simplex we need

n
(1)
k :=

{
a
δ
, k = 1,∑a

δ
mk−1=1

∑mk−1

mk−2=1 . . .
∑m2

m1=1 m1, k ≥ 2,

small cubes. Since for all k ≥ 1 it holds ∆
(k)
a ⊆ [0, a]k and we need

(
a
δ

)k
small

cubes to cover [0, a]k it follows

1

k!
·
(a

δ

)k

≤ n
(1)
k ≤

(a

δ

)k

, for all k ≥ 1. (2.6)
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Denote the small cubes by K
(k),j
δ , j = 1 . . . , n

(1)
k . We put in the center of each

small cube a coding point, denoted by (t̂
(j)
1 , . . . , t̂

(j)
k ), j = 1, . . . , n

(1)
k . Our code-

book on the simplex is defined as the set of the center points of these small cubes.
Hence, we define the codebook for ψk by

Ck := {(ŝ(j)
1 , . . . , ŝ

(j)
k ) := T−1

(
(t̂

(j)
1 , . . . , t̂

(j)
k )

)
: j = 1, . . . , n

(1)
k }.

Now we define the codebook Ck for Yk.

Ck := {ŷ : [0, a] → {w1, . . . , wq} : ŷs ∈ {w1, . . . , wq}, s ∈ [0, ŝ
(j)
1 [,

ŷs ∈ {w1, . . . , wq} \ {ŷŝ
(j)
i −}, s ∈ [ŝ

(j)
i , ŝ

(j)
i+1[, i = 1, . . . , k − 1,

ŷs ∈ {w1, . . . , wq} \ {ŷŝ
(j)
k −}, s ∈ [ŝ

(j)
k , a], j = 1, . . . , nk}

with ŷt− := lim
s↗t

ŷs. Hence, |Ck| = n
(1)
k · q · (q − 1)k.

The cardinality of Ck is the rate we use for this case and thus we define

nk := n
(1)
k · q · (q − 1)k for all 1 ≤ k ≤ 4 ·

√
2s log n

log log n
.

Since a
δ
≥ 1 (see equation (2.5)) we have n

(1)
k ≥ 1 and therefore for n large enough

nk ≥ 1 for all 1 ≤ k ≤ 4 ·
√

2s log n

log log n
. (2.7)

Furthermore for k > 4 ·
√

2s log n
log log n

we define nk := 0. With equation (2.6) and the

definition of δ follows

nk = n
(1)
k · q · (q − 1)k

≤
(a

δ

)k

· q · (q − 1)k

=
(⌊

q−
1
k · (q − 1)−1 · e− 1

k · (k!)−
1
k · n 1

k

⌋)k

· q · (q − 1)k

≤ e−1 · 1

k!
· n, for all 1 ≤ k ≤ 4 ·

√
2s log n

log log n
,

and, hence,

∞∑

k=0

nk ≤ q +

b4·
√

2s log n
log log n

c∑

k=1

e−1 · 1

k!
· n

≤
∞∑

k=0

e−1 · 1

k!
· n

= n. (2.8)
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Now we give an upper bound of the error on the simplex ∆
(k)
a . Let h ∈ {1, . . . , n(1)

k }
be fixed. For the case the original tuple (t1, . . . , tk) is in the small cube K

(k),h
δ

our coding point (t̂
(h)
1 , . . . , t̂

(h)
k ) is in the middle of this cube with side length δ.

Hence,

|ti − t̂
(h)
i | ≤ δ

2
, for all i = 1, . . . , k, h = 1, . . . , n

(1)
k . (2.9)

By construction we have ŝ
(h)
i =

∑i
j=1 t̂

(h)
j for all i = 1, . . . , k, h = 1, . . . , n

(1)
k .

This leads with (2.9) to

nk∑

h=1

1{(t1,...,tk)∈K
(k),h
δ } ·

k∑
i=1

|si − ŝ
(h)
i |

=

nk∑

h=1

1{(t1,...,tk)∈K
(k),h
δ } ·

k∑
i=1

∣∣∣∣∣
i∑

j=1

tj −
i∑

j=1

t̂
(h)
j

∣∣∣∣∣

≤
nk∑

h=1

1{(t1,...,tk)∈K
(k),h
δ } ·

k∑
i=1

i∑
j=1

|tj − t̂
(h)
j |

≤
k∑

i=1

i∑
j=1

δ

2

=
k∑

i=1

i · δ

2

= k · (k + 1) · δ

4
(2.10)

Consider a given realization yk of Yk with jumps (s1, . . . , sk). Let (ŝ
(h)
1 , . . . , ŝ

(h)
k ) be

the corresponding codebook element for the jumps out of Ck with h ∈ {1, . . . , n(1)
k }.

For the realization of the jump process we choose the codebook element ŷ
(m)
k out

of Ck that satisfies (ŷ
(m)
k )0 = (yk)0 and (ŷ

(m)
k )

ŝ
(h)
i

= (yk)si
for all i = 1, . . . , k and

m ∈ {1, . . . , |Ck|}.
Clearly it holds

min
ŷk∈Ck

ρE
a (yk, ŷk) ≤ ρE

a (yk, ŷ
(m)
k )

≤ w · λ(1)
({t ∈ [0, a] : (ŷ

(m)
k )t 6= (yk)t}

)

and

{t ∈ [0, a] : (ŷ
(m)
k )t 6= (yk)t} ⊂

k⋃
i=1

[
min{si, ŝ

(h)
i }, max{si, ŝ

(h)
i }

]
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Therewith and with equation (2.10) we can deduce

min
ŷk∈Ck

ρE
a (yk, ŷk) ≤ w ·

nk∑

h=1

1{(t1,...,tk)∈K
(k),h
δ } ·

k∑
i=1

|si − ŝ
(h)
i |

≤ w · k · (k + 1) · δ

4

and therefore for s ∈ R+

min
ŷk∈Ck

(
ρE

a (yk, ŷk)
)s ≤

(
w · k · (k + 1) · δ

4

)s

. (2.11)

Thus, with the definition of δ (see (2.4)) we deduce

∫
min
y∈Ck

(ρE
a (x, y))s dνk(x)

≤
(

w · k(k + 1)

4

)s

· as ·
(⌊

q−
1
k · (q − 1)−1 · e− 1

k · (k!)−
1
k · n 1

k

⌋)−s

∼
(

w · a · k(k + 1) · (q − 1)

4

)s

· q s
k · e s

k · (k!)
s
k · n− s

k as n →∞

uniformly in k ∈ {1, . . . , b4 ·
√

2s log n
log log n

c}.

Let C :=

b4·
√

2s log n
log log n

c⋃
k=0

Ck. Due to equation (2.8) C is a codebook for Y with |C| ≤ n.

With equations (2.1) and (2.2) and with the growth condition satisfied by Y , it
follows for large n that

(D(q),s(log n|Y, ρE
a ))s

≤
b4·

√
2s log n
log log n

c∑

k=1

ck · e−k log k

∫
min
y∈Ck

(ρE
a (x, y))s dνk(x)

+
∞∑

k=b4·
√

2s log n
log log n

c+1

ck · e−k log k ·
∫

min
y∈C0

(ρE
a (x, y))s dνk(x)

.
b4·

√
2s log n
log log n

c∑

k=1

ck · e−k log k ·
(

w · a · (q − 1) · k(k + 1)

4

)s

·
(

1

qe
· 1

k!
· n

)− s
k

+
∞∑

k=b4·
√

2s log n
log log n

c+1

ck · e−k log k ·
∫

min
y∈C0

(ρE
a (x, y))s dνk(x) (2.12)
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For all n ∈ N we introduce the function

f̃n : R+ → R+

k 7→ ck · (k(k + 1))s ·
(

1

q
· e−1 1

Γ(k + 1)

)− s
k

· e−k log k · n− s
k .

From Proposition 1.2.1 we know there exists a constant c2 ≥ 1 such that c2 ·
√

k ·(
k
e

)k ≥ Γ(k + 1) and therefore

f̃n(k) ≤ fn(k)

:= c
s
k
2 · k

s
2k · ks · e−s · ck · (k(k + 1))s ·

(
1
q
· e−1

)− s
k · e−k log k · n− s

k .

From equation (2.12) and with the definition of fn we split the sum and get for
large n

(D(q),s(log n |Y, ρE
a ))s

.
b4

√
2s log n
log log n

c∑

k=1

(
aw(q − 1)

4

)s

· fn(k)

+
∞∑

k=b4
√

2s log n
log log n

c+1

ck · e−k log k ·
∫

min
y∈C0

(ρE
a (x, y))s dνk(x)

=

bcc∑

k=1

(
aw(q − 1)

4

)s

· fn(k) +

b 1
2

√
2s log n
log log n

c∑

k=bcc+1

(
aw(q − 1)

4

)s

· fn(k)

+

b4·
√

2s log n
log log n

c∑

k=b 1
2

√
2s log n
log log n

c+1

(
aw(q − 1)

4

)s

· fn(k)

+
∞∑

k=b4·
√

2s log n
log log n

c+1

ck · e−k log k ·
∫

min
y∈C0

(ρE
a (x, y))s dνk(x). (2.13)

We assert that the sum is of order

(D(q),s(log n |Y, ρE
a ))s ≤ e−(1+o(1))·√2s log n log log n, n →∞.

To prove this we will discuss each part of the sum and start with the first one.
Part 1: We consider the case where 1 ≤ k ≤ c. Define

α1(c, c2) := c · log c + s log c2 + s log
√

c + log((qe)s)− s

+2s log c + s log(c + 1).
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For these k we consider

fn(k)

e−
√

2s log n log log n

= exp
(√

2s log n log log n + k(log c− log k) +
s

k
(log c2 + log

√
k)

)

· exp

(
1

k
log((qe)s) + 2s log k − s + s log(k + 1)− s

k
log n

)

≤ exp
(√

2 log n log log n + c · log c + s log c2 + s log
√

c
)

· exp
(
log((qe)s) + 2s log c− s + s log(c + 1)− s

c
log n

)

= exp
(√

2s log n log log n− s

c
log n + α1(c, c2)

)

−→ 0 as n →∞.

which yields

∑bcc
k=1

(
aw(q−1)

4

)s

· fn(k)

e−
√

2s log n log log n

=

bcc∑

k=1

(
aw(q − 1)

4

)s

· fn(k)

e−
√

2 log n log log n

≤ bcc ·
(

aw(q − 1)

4

)s

· exp
(√

2s log n log log n− s
c
log n + α1(c, c2)

)

−→ 0, n →∞.

Hence,

bcc∑

k=1

(
aw(q − 1)

4

)s

· fn(k) = o(e−
√

2s log n log log n), n →∞. (2.14)

Part 2: In the second part of the sum k lies between c and 1
2

√
2s log n
log log n

. It is easy

to see that

α2(c, c2, n) := s
c

(
log c2 + 1

4
log s log n

2 log log n

)
+ 1

c
log((qe)s) + 2s · log

(
1
2

√
2s log n
log log n

)

−s + s log
(

1
2

√
2s log n
log log n

+ 1
)

= o
(
−

√
2s log n log log n

)
, n →∞.
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Therewith we can give an upper bound

fn(k) ≤ exp

(
s
c

(
log c2 + log

√
1
2

√
2s log n
log log n

)
+ 1

c
log((qe)s)

)

· exp
(
2s log

(
1
2

√
2s log n
log log n

)
− s + s log

(
1
2

√
2s log n
log log n

+ 1
))

· exp
(−√2s log n log log n

)

= exp
(
α2(c, c2, n)−

√
2s log n log log n

)

and hence,

b 1
2

√
2s log n
log log n

c∑

k=bcc+1

(
aw(q − 1)

4

)s

· fn(k)

≤
(

aw(q−1)
4

)s

· exp
(
log

(
1
2

√
2s log n
log log n

)
+ α2(c, c2, n)−√2s log n log log n

)
.

Since

log
(

1
2

√
2s log n
log log n

)
+ α2(c, c2, n)−

√
2s log n log log n

∼ −
√

2s log n log log n as n →∞,

we get

b 1
2

√
2s log n
log log n

c∑

k=bcc+1

(
aw(q − 1)

4

)s

· fn(k) ≤ e−(1+o(1))·√2s log n log log n (2.15)

as n →∞.
Part 3: For the third part of the sum we first prove the following assertion: for

I := {1, . . . , b4 ·
√

2s log n
log log n

c − b1
2

√
2s log n
log log n

c} we define

li :=
b1

2

√
2s log n
log log n

c+ i

b
√

2s log n
log log n

c

and

kli := li · b
√

2s log n

log log n
c, i ∈ I.

We assert

log fn(kli) ≤ −(1 + o(1))
√

2s log n log log n, n →∞, i ∈ I.
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To prove this we use the fact that

α3(c, c2, n) := 8 ·
√

2s log n
log log n

log c− 1
2
·
√

2s log n
log log n

· log

(
1
2
·
(√

2s−
√

(log log n)/ log n√
log log n

))

+8 · log
(
8 ·

(√
2s log n
log log n

− 1
))

+ s
1
2
·
(√

2s log n
log log n

−1
) ·

(
log c2 + 1

2
log

(
8 ·

√
2s log n
log log n

))

+ 1
1
2
·
(√

2s log n
log log n

−1
) log((qe)s) + 2s log

(
8 ·

√
2s log n
log log n

)
− s

+s log
(
8 ·

√
2s log n
log log n

+ 1
)

= o(
√

2s log n log log n), n →∞.

Without loss of generality assume
√

2s log n
log log n

≥ 2. Therewith we deduce

li ≤
b4 ·

√
2s log n
log log n

c
b
√

2s log n
log log n

c
≤ 4 ·

√
2s log n
log log n√

2s log n
log log n

− 1
≤ 8 for all i ∈ I

and

li ≥
b1

2

√
2s log n
log log n

c+ 1

b
√

2s log n
log log n

c
≥

1
2
·
√

2s log n
log log n√

2s log n
log log n

=
1

2
for all i ∈ I.

We consider log fn(kli)). As c ≥ 1 we have log c ≥ 0. Using the fact that for all
b ∈ R+ it holds 1

2
b + 1

2b
≥ 1 we get

log fn(kli)) ≤ li ·
√

2s log n
log log n

log c− li ·
(√

2s log n
log log n

− 1
)

log
(
li ·

(√
2s log n
log log n

− 1
))

+ s

li·
(√

2s log n
log log n

−1
) ·

(
log c2 + 1

2
log

(
li ·

√
2s log n
log log n

))

+ 1

li·
(√

2s log n
log log n

−1
) log((qe)s) + 2s log

(
li ·

√
2s log n
log log n

)
− s

+s log
(
li ·

√
2s log n
log log n

+ 1
)
− s

li·
√

2s log n
log log n

log n

= −(1
2
li + 1

2li
)
√

2s log n log log n + li ·
√

2s log n
log log n

log c

−li ·
√

2s log n
log log n

· log

(
li ·

(√
2s−
√

(log log n)/ log n√
log log n

))

+li · log
(
li ·

(√
2s log n
log log n

− 1
))

21



+ s

li·
(√

2s log n
log log n

−1
) ·

(
log c2 + 1

2
log

(
li ·

√
2s log n
log log n

))

+ 1

li·
(√

2s log n
log log n

−1
) log((qe)s) + 2s log

(
li ·

√
2s log n
log log n

)
− s

+s log
(
li ·

√
2s log n
log log n

+ 1
)

≤ −√2s log n log log n + 8 ·
√

2s log n
log log n

log c

−1
2
·
√

2s log n
log log n

· log

(
1
2
·
(√

2s−
√

(log log n)/ log n√
log log n

))

+8 · log
(
8 ·

(√
2s log n
log log n

− 1
))

+ s
1
2
·
(√

2s log n
log log n

−1
) ·

(
log c2 + 1

2
log

(
8 ·

√
2s log n
log log n

))

+ 1
1
2
·
(√

2s log n
log log n

−1
) log((qe)s) + 2s log

(
8 ·

√
2s log n
log log n

)
− s

+s log
(
8 ·

√
2s log n
log log n

+ 1
)

= −√2s log n log log n + α3(c, c2, n).

Using this in the third part of the sum yields

b4
√

2s log n
log log n

c∑

k=b 1
2

√
2s log n
log log n

c+1

(
aw(q − 1)

4

)s

· fn(k)

≤
b4

√
2s log n
log log n

c∑

k=b 1
2

√
2s log n
log log n

c+1

(
aw(q − 1)

4

)s

· exp(−√2s log n log log n + α3(c, c2, n))

≤
(

aw(q−1)
4

)s

· 4
√

2s log n
log log n

· exp(−√2s log n log log n + α3(c, c2, n))

=
(

aw(q−1)
4

)s

· exp
(

log
(
4
√

2s log n
log log n

)−√2s log n log log n + α3(c, c2, n)
)

and since

log
(
4
√

2s log n
log log n

)−√2s log n log log n + α3(c, c2, n)

∼ −√2s log n log log n as n →∞
we get for large n

b4
√

2s log n
log log n

c∑

k=b 1
2

√
2s log n
log log n

c+1

(
aw(q − 1)

4

)s

· fn(k) ≤ e−(1+o(1))
√

2s log n log log n. (2.16)
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Part 4: We consider the last part of the sum, where k > 4 ·
√

2s log n
log log n

. We code

the case of k jumps with one of the n0 codebook elements of C0, denoted by

Ỹ
(1)
0 , . . . , Ỹ

(n0)
0 .

Due to Remark 2.1.9 we estimate the distortion between these codebook elements
and Yk by ∫

min
i=1,...,n0

(ρE
a (Ỹ

(i)
0 , x))s dνk(x) ≤ (aw)s.

Therefore we estimate the fourth part of the sum
∞∑

k=b4·
√

2s log n
log log n

c+1

ck · e−k log k ·
∫

min
Ŷ ∈C0

(ρE
a (x, Ŷ ))s dνk(x)

≤
∞∑

k=b4·
√

2s log n
log log n

c+1

ck · e−k log k · (aw)s.

Define
g(k) := ek·(log c−log k).

Consider

g(b4 ·
√

2s log n
log log n

c+ 1)

e−
√

2s log n log log n
≤ exp

(√
2s log n log log n

)

· exp
(
4 ·

√
2s log n
log log n

(
log c− log

(
4 ·

√
2s log n
log log n

)))

= exp
(−√2s log n log log n

)

· exp
(
4 ·

√
2s log n
log log n

(
log c− log

(
4 ·

√
2s

log log n

)))

−→ 0 as n →∞.

Therefore g(b4 ·
√

2s log n
log log n

c+ 1) = o(e−
√

2s log n log log n) as n →∞.

For 4 ·
√

2s log n
log log n

< k consider now

g(k + 1)

g(k)
= c · kk

(k + 1)k+1

= c ·
(

k

k + 1

)k

· 1

k + 1

≤ c · 1

k + 1

≤ c · 1

4 ·
√

2s log n
log log n

+ 1

−→ 0, n →∞.
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Thus there exists a ñ > 0 such that for all n > ñ and k > 4 ·
√

2s log n
log log n

we have

g(k + 1)

g(k)
<

1

2
.

Hence, for n > ñ it holds

∞∑

k=b4·
√

2s log n
log log n

c+1

g(k)

≤ g

(
b4 ·

√
2s log n

log log n
c+ 1

)
·

∞∑

k=b4·
√

2s log n
log log n

c+1

(
1

2

)k−b4·
√

2s log n
log log n

c−1

= 2 · g(b4 ·
√

2s log n
log log n

c+ 1)

= o(e−
√

2s log n log log n), n →∞. (2.17)

Combining now equations (2.13), (2.14), (2.15), (2.16) and (2.17) yields

(D(q),s(log n |Y, ρE
a ))s ≤ e−(1+o(1))·√2s log n log log n as n →∞

and thus

D(q),s(log n |Y, ρE
a ) ≤ e−(1+o(1))·

√
2
s

log n log log n as n →∞.

¤

In the following we consider the question whether the quantization error asymp-
totics will get better, if D ([0, a], E)-valued codebook elements are admitted in-
stead of D ([0, a], {w1, . . . , wq})-valued. That this is not the case is shown by the
following lemma.

Lemma 2.2.2 Let (E, dE) be a metric space and Ẽ ⊆ E measurable. Let Y be
a Ẽ-valued random element. Let C = {f1, . . . , fn} ⊂ E be an arbitrary codebook
with n ∈ N elements. Then there exists a codebook C̃ = {g1, . . . , gn} with n
elements which are taken from Ẽ, such that

E
[
min
g∈C̃

dE(Y, g)
]
≤ 2 · E

[
min
f∈C

dE(Y, f)
]
.

Proof:
Consider an arbitrary Ẽ-valued random element Y and an arbitrary codebook
C = {f1, . . . , fn} with n ∈ N elements which are taken from E. Let (Ai)i=1,...,n

be a measurable partition of E satisfying

dE(g, fi) = min
j=1,...,n

dE(g, fj) for all g ∈ Ai
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for i = 1, . . . , n, the so called Voronoi-regions (see Graf and Luschgy [23]). Let
Pi(.) := P (.|Ai). In the definition of the quantization error we consider

E
[

min
j=1,...,n

dE(Y, fj) |Y ∈ Ai

]
= E[dE(Y, fi) |Y ∈ Ai]

= EPi [dE(Y, fi)].

Assume that EPi [dE(Y, fi)] = κi with κi ∈ R+ constant. Then there exists gi ∈ Ẽ
such that dE(fi, gi) ≤ κi and P [Y = gi] > 0. Thus it follows

EPi [dE(Y, gi)] ≤ EPi [dE(Y, fi)] + dE(fi, gi)

≤ 2 · EPi [dE(Y, fi)].

This is valid for all i = 1, . . . , n. If we define the codebook C̃ := {g1, . . . , gn} we
can deduce

E
[
min
g∈C̃

dE(Y, g)
]
≤ 2 · E

[
min
f∈C

dE(Y, f)
]
.

¤
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2.3 Deterministic coding of the alternating Pois-

son renewal process under L1-distance

In this section we deal with an alternating renewal process induced by a Poisson
point process and give upper and lower bounds for the asymptotics of the quan-
tization error.
Consider a D ([0, a], {0, 1})-valued random element X as stated in Definition
2.1.7. The aim is to give asymptotically upper and lower bounds for the quanti-
zation error of X with rate n ∈ N with respect to the distortion measure ρa from
Definition 2.1.10.

Theorem 2.3.1 Let a, s ∈ R+. Let X be an alternating Poisson renewal process
as stated in Definition 2.1.7. Let µX denote the distribution of the corresponding
Poisson point process ΦX with intensity λ > 0. Then we have for the quantization
error the following estimate

D(q),s(log n|X, ρa) = e−(1+o(1))·( 2
s

log n·log log n)
1
2

, n →∞.

Proof:
We split the proof into two parts, one for the upper and one for the lower bound.
We start with the upper bound.
We use Theorem 2.2.1. Hence, we have to prove, that X satisfies the conditions
of the theorem. By definition X is a D ([0, a], {0, 1})-valued process which means
we can apply the results we got for the D ([0, a], {w1, . . . , wq})-valued random
element using E = R, dE(., .) = dR(., .) with dR(x, y) = |x − y| for all x, y ∈ R,
q = 2, w1 = 0 and w2 = 1. It remains to show, that the Poisson point process
ΦX satisfies the condition

P [](ΦX ∩ [0, a]) = k] ≤ ck · e−k log k for all k ≥ 1

with c ∈ R+ constant.
By definition of ΦX we estimate with Proposition 1.2.1

P [](ΦX ∩ [0, a]) = k] = e−λa · (λa)k

k!
(2.18)

≤ (λa)k

c1 ·
√

k · (k
e
)k

(2.19)

≤ 1

c1

· (λae)k · e−k log k (2.20)

≤
(

λae

c1

)k

· e−k log k. (2.21)

Thus the growth condition is fulfilled, too. And we can apply Theorem 2.2.1 with
q = 2, w1 = 0 and w2 = 1 and it follows

D(q),s(log n|X, ρa) ≤ e−(1+o(1))·( 2
s

log n·log log n)
1
2

, n →∞. (2.22)
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Now we proceed with the lower bound.
Let

ε :=
a⌈√

2s log n
log log n

⌉ .

Hence, a
ε
∈ N. We split the interval [0, a] into small intervals with length ε and

denote them by Ĩ1, . . . , Ĩ 1
ε
. Put in the center of every interval Ĩi a smaller interval

Ii, i = 1, . . . , a
ε
, with length ε

2
. Consider the event A that X0 = 0 and every Ii

contains one of the points of the Poisson point process ΦX , i.e. the jumps of X,

and that [0, a]\(∪
a
ε
i=1Ii) contains no point. Now we give for small ε the probability

that this event A occurs.

P [A] = P [X0 = 0] · P
[ a

ε⋂
i=1

(
{NΦX

(Ii) = 1}}
)
∩ {NΦX

([0, a] \ (

a
ε⋃

i=1

Ii)) = 0}
]

=
1

2
·

a
ε∏

i=1

(
e−λ· ε

2 · λ · ε
2

)
· e−λ(a−a

ε
· ε
2
)

=
1

2
· e−λa ·

(λ

2

)a
ε · εa

ε . (2.23)

Let XA := X|A be the alternating Poisson renewal process X conditioned upon
A and let µX

A be the distribution of XA. Denote the jumps of XA by {x1, . . . , xa
ε
}

where xj ∈ Ij. Let

δ :=

(
sε

a + sε

) sε
a

·
(ε

4

)s

· n− sε
a .

Hence, δ
1
s < ε

4
. Consider an arbitrary codebook with n elements X̂1, . . . , X̂n,

where the X̂j, j = 1, . . . , n, are taken from D ([0, a], {0, 1}). As

P [ρa(XA, X̂j)
s < δ] = P [ρa(XA, X̂j) < δ

1
s ]

we estimate the probability that the original signal XA and a codebook element
X̂j have a distance less than δ

1
s . Due to Proposition A.1.1 we have

P [ρa(XA, X̂j) < δ
1
s ] ≤

(4δ1/s

ε

)a/ε

for all j = 1, . . . , n.

Using this we can estimate the quantization error of XA depending on ε and δ as
follows

(
D(q),s(log n |XA, ρa)

)s ≥ δ · inf
C codebook

(
1− µX

A

(
n⋃

j=1

B
δ

1
s
(X̂j)

))

≥ δ · inf
C codebook

(
1−

n∑
i=1

P [ρa(XA, X̂j) < δ
1
s ]

)

≥ δ ·
(

1− n ·
(4δ1/s

ε

)a/ε
)

.
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Using the definition of δ =
(

sε
a+sε

) sε
a · ( ε

4

)s · n− sε
a yields

(
D(q),s(log n |XA, ρa)

)s ≥
(

sε

a + sε

) sε
a

·
(ε

4

)s

· n− sε
a ·

(
a

a + sε

)
.

Weighting this estimate with the probability of A yields combined with equation
(2.23) a lower bound for the quantization error
(
D(q),s(log n |X, ρa)

)s

≥ P [A] · (D(q),s(log n |XA, ρa)
)s

≥ 1

2
· e−λa ·

(λa

2

)a
ε ·

(ε

a

)a
ε ·

(
sε

a + sε

) sε
a

·
(ε

4

)s

· n− sε
a ·

(
a

a + sε

)

= exp
(
− log 2− λa + a

ε
log(λa

2
)− a

ε
log(a

ε
) + sε

a
log

( sε
a

1+ sε
a

))

· exp
(
s log( ε

4
)− sε

a
log n + log

(
1

1+ sε
a

))
.

With the definition of ε = a⌈√
2s log n
log log n

⌉ we deduce

(
D(q),s(log n |X, ρa)

)s

≥ exp
(
− log 2− λa +

√
2s log n
log log n

· log(λa
2

)−
(√

2s log n
log log n

+ 1
)

log
(√

2s log n
log log n

+ 1
))

· exp

(
s

(
1√

2s log n
log log n

+1

)
log

(
s√

2s log n
log log n

+1+s

)
+ s log

(
a

4(
√

2s log n
log log n

+1)

))

· exp

(
−s

√
log log n
2s log n

log n + log

(
1

1+s
√

log log n
2s log n

))

= exp

(
− log 2− λa +

√
2s log n
log log n

· log(λa
2

)−
√

2s log n
log log n

· log

(√
2s+

√
log log n

log n√
log log n

))

· exp

(
− log

(√
2s log n
log log n

+ 1
)

+ s

(
1√

2s log n
log log n

+1

)
log

(
s√

2s log n
log log n

+1+s

))

· exp

(
s log

(
a

4(
√

2s log n
log log n

+1)

)
+ log

(
1

1+s
√

log log n
2s log n

))

· exp
(−√2s log n log log n

)

= exp
(−(1 + o(1)) · √2s log n log log n

)
as n →∞,

and therefore

D(q),s(log n|X, ρa) ≥ exp
(
−(1 + o(1)) ·

√
2
s
· log n log log n

)
(2.24)

as n →∞. Combining estimates (2.22) and (2.24) yields

D(q),s(log n |X, ρa) = exp
(
−(1 + o(1)) · (2

s
log n · log log n

) 1
2

)
as n →∞.
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2.4 Random coding of the alternating Poisson

renewal process under L1-distance

In this section we compute an upper bound for the random quantization error.

Theorem 2.4.1 Let X be a D ([0, 1], {0, 1})-valued process as stated in Defini-
tion 2.1.7 whose jumps are generated by a Poisson point process ΦX with intensity
λ. Let µ denote the distribution of X and µX the distribution of ΦX . Then we
have

D(R)(log n |X, ρ1) ≤ e−(1+o(1))·(2 log n·log log n)
1
2 as n →∞.

Proof:
As in the proof of the quantization error we consider the distribution µ of X and
decompose it as follows

µ =
∞∑

k=0

e−λ λk

k!
· µk,

where µk denotes the distribution of X conditioned upon k jumps in [0, 1].
Let n ∈ N and denote by {Y (1), . . . , Y (n)} a sequence of D ([0, 1], {0, 1})-valued,
independent µ-distributed random elements.
Therewith we can write D(R)(r |X, ρ1) as

D(R)(log n |X, ρ1)

= E[ min
j∈{1,...,n}

‖X − Y (j)‖L1 ]

=
∞∑

k=0

e−λ λk

k!

∫ ∫ 1

0

P [ min
j∈{1,...,n}

‖xk − Y (j)‖L1 ≥ ε] dε dµk(xk)

=
∞∑

k=0

e−λ λk

k!

∫ ∫ 1

0

P [‖xk − Y (1)‖L1 ≥ ε, . . . , ‖xk − Y (n)‖L1 ≥ ε] dε dµk(xk)

=
∞∑

k=0

e−λ λk

k!

∫ ∫ 1

0

n∏
j=1

P [‖xk − Y (j)‖L1 ≥ ε] dε dµk(xk)

=
∞∑

k=0

e−λ λk

k!

∫ ∫ 1

0

(
P [‖xk − Y (1)‖L1 ≥ ε]

)n
dε dµk(xk). (2.25)

Now we estimate the inner integral.
The deterministic realization xk, k = 1, 2, . . . , has k jumps. The codebook
element Y (1) is µ-distributed. Denote by ΦY (1) the corresponding Poisson point
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process. Let 0 < εk ≤ 1. Then we estimate

∫ 1

0

P
(‖xk − Y (1)‖L1 ≥ ε

)n
dε =

∫ εk

0

P
(‖xk − Y (1)‖L1 ≥ ε

)n
dε

+

∫ 1

εk

P
(‖xk − Y (1)‖L1 ≥ ε

)n
dε

≤ εk +
(
1− P

(‖xk − Y (1)‖L1 < εk

))n

Consider P
(‖xk − Y (1)‖L1 < εk

)
. Denote the jumps of the realization xk by s1 <

. . . < sk. We construct a diluted version of the set {s1, . . . , sk} as follows: starting
from the left we remove the first pair (sj, sj+1) that satisfies |sj+1− sj| ≤ εk/k or
the first point that satisfies |1− sj| ≤ εk/k. Repeating this procedure until every
remaining point has a distance more than εk/k to his neighbor points or to the
point 1 leads to a new set {s̃1, . . . , s̃k̃} with k̃ ≤ k and |s̃j+1 − s̃j| > εk/k for all
j = 1, . . . , k̃− 1 and |1− sj| > εk/k for all j = 1, . . . , k̃. Consider the case where

k̃ ≥ 1. Let A be the event, that Y
(1)
0 = (xk)0 and Y (1) has exactly one jump inside

each interval [s̃j, s̃j +εk/k] for all j = 1, . . . , k̃. Thus A ⊂ {‖xk−Y (1)‖ < εk} and

P
[‖xk − Y (1)‖L1 < εk

] ≥ P [A]

≥ 1

2
· e−λ · λk̃

k̃!
· k̃! ·

(εk

k

)k̃

≥ 1

2
· e−λ · λk̃ ·

(εk

k

)k

.

In the case where the diluted version has no jump we have

P
[‖xk − Y (1)‖L1 < εk

] ≥ 1

2
· e−λ.

Since εk ≤ 1 and k̃ = 0 we estimate

P
[‖xk − Y (1)‖L1 < εk

] ≥ 1

2
· e−λ

≥ 1

2
· e−λ · λk̃ ·

(εk

k

)k

.

Let λ̃ := min{1, λ} which leads to λk̃ ≥ λ̃k. Hence,

∫ 1

0

P
(‖xk − Y (1)‖L1 ≥ ε

)n
dε ≤ εk +

(
1− P

(‖xk − Y (1)‖L1 < εk

))n

≤ εk +

(
1− 1

2
· e−λ · λ̃k ·

(εk

k

)k
)
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Let αk := 2
k
eλkk · λ̃−k and εk :=

(
αk · log n

n

) 1
k ∧ 1. Hence,

∫ 1

0

P (‖xk − Y (1)‖L1 ≥ ε)ndε

≤
((

αk · log n
n

) 1
k ∧ 1

)
+

((
1− e−λ · λ̃k

kk · αk·log n
2n

)n

∨ 0
)

≤
(

αk · log n

n

) 1
k

+ e
n·

(
−e−λ· λ̃k

kk ·
αk·log n

2n

)

=

(
αk · log n

n

) 1
k

+ n−e−λ· λ̃k

kk ·
αk
2 .

and thus

∫ ∫ 1

0

P
(‖xk − Y (1)‖L1 ≥ ε

)n
dε dµk(xk)

≤
((

αk · log n

n

) 1
k

+ n−e−λ· λ̃k

kk ·
αk
2 ·

) ∫
dµk(xk)

=

(
αk · log n

n

) 1
k

+ n−e−λ· λ̃k

kk ·
αk
2 .

For the case where the realization x0 of the original signal is constant, we will
have a positive distortion if every element of the codebook has at least one jump
or if (Y (i))0 6= (x0)0 with i ∈ {1, . . . , n}. Denote the realization of Y (i) by y(i).
Then ‖x0 − y(i)‖L1 ≤ 1 for all i = 1, . . . n. The probability that this event occurs

is e−λ · (1− e−λ

2
)n. Thus we estimate the random quantization error in equation

(2.25) as follows

D(R)(log n |X, ρ1) ≤ e−λ · (1− e−λ

2
)n

+
∞∑

k=1

e−λ λk

k!
·
((

αk · log n
n

) 1
k + n−e−λ· λ̃k

kk ·
αk
2

)

Using e−λ < 1 for λ > 0 and with the definition of αk follows

D(R)(log n |X, ρ1) ≤ (1− e−λ

2
)n +

∞∑
k=1

e−λ λk

k!
· ( 2

k
eλ

) 1
k · k · λ̃−1 · ( log n

n

) 1
k

+
∞∑

k=1

e−λ λk

k!
· n− 1

k . (2.26)

We consider the first part of the estimate and assert

(1− e−λ

2
)n ≤ o(e−

√
2 log n log log n) as n →∞.
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Since λ > 0 it follows log(1− e−λ

2
) < 0 and therefore

(1− e−λ

2
)n

e−
√

2 log n log log n
= exp

(
n · log(1− e−λ

2
) +

√
2 log n log log n

)

→ 0 as n →∞.

Thus

(1− e−λ

2
)n ≤ o(e−

√
2 log n log log n) as n →∞. (2.27)

Now we consider the first sum in estimate (2.26).
For all n ∈ N we introduce the function

γ̃n : R+ → R+

k 7→ e−λ

λ̃
· λk

Γ(k + 1)
·
(

2eλ

k

) 1
k

· k ·
(

log n

n

) 1
k

.

Using Proposition 1.2.1 we estimate

γ̃n(k) ≤ e−λ

λ̃
λk · (c1 ·

√
k · (k

e

)k
)−1 ·

(
2eλ

k

) 1
k · k · ( log n

n

) 1
k .

For all k ≥ 1 it follows k
1
2 ≤ 2k and therefore

e−λ

λ̃
λk · c−1

1 · ek ·
(

2eλ

k

) 1
k

· k 1
2 ≤ e−λ(λe)k · 2eλ

λ̃c1

· k 1
2

≤ (2λe)k · 2

λ̃c1

.

and hence,

γ̃n(k) ≤ γn(k)

:= (2λe)k · 2

λ̃c1

· k−k ·
(

log n

n

) 1
k

. (2.28)
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From equation (2.26) and with the definition of γ̃n and γn we split the sum and
get

∞∑

k=1

e−λ

λ̃
· λk

k!
·
(

2

k
eλ

) 1
k

· k ·
(

log n

n

) 1
k

≤
∞∑

k=1

γn(k)

=

b2λec∑

k=1

γn(k) +

b 1
2

√
2 log n

log log n
c∑

k=b2λec+1

γn(k) +

b2·
√

2 log n
log log n

c∑

k=b 1
2

√
2 log n

log log n
c+1

γn(k)

+

b log n
log log n

c∑

k=b2·
√

2 log n
log log n

c+1

γn(k) +
∞∑

k=b log n
log log n

c+1

γn(k). (2.29)

We assert ∞∑

k=1

γn(k) ≤ e−(1+o(1))·(2 log n·log log n)
1
2 as n →∞.

To prove this we discuss the five parts and start with the first one.
Part 1: In the first part of the sum we have 1 ≤ k ≤ 2λe. Therewith we give an
upper bound for γn

γn(k) = exp
(
k(log(2λe)− log k) + log( 2

λ̃c1
) + 1

k
· log log n− 1

k
log n

)

≤ exp
(
log(2λe) + log( 2

λ̃c1
) + log log n− 1

2λe
log n

)
.

Thus it follows∑b2λec
k=1 γn(k)

e−
√

2 log n·log log n
≤ exp

(
log(2λe) + log( 2

λ̃c1
) + log log n

)

· exp

(
− 1

2λe
log n +

√
2 log n · log log n

)

→ 0 as n →∞.

Hence,

b2λec∑

k=1

γn(k) = o
(
e−

√
2 log n·log log n

)
as n →∞. (2.30)

Part 2: In the second part of the sum k lies between 2λe and 1
2

√
2 log n

log log n
. There-

with we estimate

γn(k) = exp
(
k(log(2λe)− log k) + log( 2

λ̃c1
) + 1

k
· log log n− 1

k
log n

)

≤ exp
(
log( 2

λ̃c1
) + 1

2λe
log log n−√2 log n log log n

)
.
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and hence,

b 1
2

√
2 log n

log log n
c∑

k=b2λec+1

γn(k) ≤ exp
(
log(1

2

√
2 log n

log log n
) + log( 2

λ̃c1
)
)

· exp
(

1
2λe

log log n−√2 log n log log n
)
.

Since

log(1
2

√
2 log n

log log n
) + 1

2

√
2 log n

log log n
· log(2λe) + log( 2

λ̃c1
) + 1

2λe
log log n−√2 log n log log n

∼ −(2 log n log log n)
1
2 as n →∞,

we get

b 1
2

√
log n

log log n
c∑

k=1

γn(k) ≤ e−(1+o(1))
√

2 log n log log n as n →∞. (2.31)

Part 3: For the third part of the sum we first prove the following assertion: for

I := {1, . . . , b2 ·
√

2 log n
log log n

c − b1
2

√
2 log n

log log n
c} we define

li :=
b1

2

√
2 log n

log log n
c+ i

b
√

2 log n
log log n

c

and

kli := li · b
√

2 log n

log log n
c, i ∈ I,

and deduce

log γn(kli) ≤ −(1 + o(1))
√

2 log n log log n, n →∞, i ∈ I.

To prove this we consider

β1(λ̃c1, λ, n) := 4 ·
√

2 log n
log log n

· log(2λe) + log( 2
λ̃c1

)

+4 · log(4 · (
√

2 log n
log log n

− 1)) + 2

(
√

2 log n
log log n

−1)
log log n

−1
2
·
√

2 log n
log log n

· log(1
2
· (
√

2−
√

(log log n)/ log n√
log log n

))

= o(−
√

2 log n log log n), n →∞ for all i ∈ I.
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Without loss of generality assume
√

2 log n
log log n

≥ 2. Therewith we can deduce

li ≤
b2 ·

√
2 log n

log log n
c

b
√

2 log n
log log n

c
≤ 2 ·

√
2 log n

log log n√
2 log n

log log n
− 1

≤ 4 for all i ∈ I

and

li ≥
b1

2

√
2 log n

log log n
c+ 1

b
√

2 log n
log log n

c
≥

1
2
·
√

2 log n
log log n√

2 log n
log log n

=
1

2
for all i ∈ I.

Now consider log γn(kli). Using the fact that for all c ∈ R it holds 1
2
c+ 1

2c
≥ 1 we

get

log γn(kli) ≤ li ·
√

2 log n
log log n

· log(2λe) + log( 2
λ̃c1

)

−li ·
(√

2 log n
log log n

− 1
)

log
(
li ·

(√
2 log n

log log n
− 1

))

+ 1

li·
(√

2 log n
log log n

−1
) · log log n− 1

li·
√

2 log n
log log n

log n

= −(1
2
li + 1

2li
)
√

2 log n log log n + li ·
√

2 log n
log log n

· log(2λe) + log( 2
λ̃c1

)

+li · log(li · (
√

2 log n
log log n

− 1)) + 1

li·(
√

2 log n
log log n

−1)
log log n

−li ·
√

2 log n
log log n

· log(li · (
√

2−
√

(log log n)/ log n√
log log n

))

≤ −1 · √2 log n log log n + 4 ·
√

2 log n
log log n

· log(2λe) + log( 2
λ̃c1

)

+4 · log(4 · (
√

2 log n
log log n

− 1)) + 2

(
√

2 log n
log log n

−1)
log log n

−1
2
·
√

2 log n
log log n

· log(1
2
· (
√

2−
√

(log log n)/ log n√
log log n

))

= −√2 log n log log n + β1(λ̃c1, λ, n), for all i ∈ I.

Hence,

log γn(kli) ≤ −(1 + o(1))
√

2 log n log log n as n →∞ for all i ∈ I.

Using this in the third part of the sum yields for large n

b2
√

2 log n
log log n

c∑

k=b 1
2

√
2 log n

log log n
c+1

γn(k) ≤ 3
2

√
2 log n

log log n
· exp(log γn(k))

= exp
(

log
(

3
2

√
log n

log log n

)
+ log γn(k)

)

= exp(−(1 + o(1))
√

2 log n log log n). (2.32)
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Part 4: In the fourth part of the sum we have 2
√

2 log n
log log n

≤ k ≤ log n
log log n

. There-

with we estimate

γn(k) = exp
(
k(log(2λe)− log k) + log( 2

λ̃c1
) + 1

k
· log log n− 1

k
log n

)

≤ exp
(
2
√

2 log n
log log n

·
(
log(2λe)− log

(
2
√

2 log n
log log n

))
+ log( 2

λ̃c1
)
)

· exp
(
+1

2

√
log log n
2 log n

· log log n− log log n
)

= exp
(
2
√

2 log n
log log n

·
(
log(2λe)− log

(
2
√

2
log log n

))
+ log( 2

λ̃c1
)
)

· exp
(
+1

2

√
log log n
2 log n

· log log n− log log n−√2 log n log log n
)

= exp
(
−(1 + o(1))

√
2 log n log log n

)
as n →∞.

Hence, we can estimate the fourth part of the sum

b log n
log log n

c∑

k=b2
√

2 log n
log log n

c+1

γn(k)

≤ exp
(
log( log n

log log n
) + log γn(k)

)

= exp
(
−(1 + o(1))

√
2 log n log log n

)
as n →∞. (2.33)

Part 5: We consider the last part of the sum. For k → ∞ the term
(

log n
n

) 1
k

increases monotonically to one for n > 1, hence, we can give an upper bound for
this part of the sum

∞∑

k=b log n
log log n

c+1

γn(k) ≤
∞∑

k=b log n
log log n

c+1

(2λe)k · 2

λ̃c1

· k−k.

Define h(k) := (2λe)k · 2
λ̃c1
· k−k and consider

h(b log n
log log n

c+ 1)

e−
√

2 log n log log n

≤ exp
(

log n
log log n

(log(2λe)− log( log n
log log n

)) + log( 2
λ̃c1

) +
√

2 log n log log n
)

−→ 0 as n →∞.
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Thus, h( log n
log log n

) ≤ o(e−
√

2 log n log log n) as n →∞. Consider now for log n
log log n

< k

h(k + 1)

h(k)
=

2λe

k + 1
·
( k

k + 1

)k

≤ 2λe

k + 1

≤ 2λe
log n

log log n

−→ 0 as n →∞.

Hence, there exists a n0 > 0 such that for all n > n0 and k > log n
log log n

we have

h(k + 1)

h(k)
<

1

2
.

Therefore,

∞∑
k=b log n

log log n
c+1

γn(k) ≤
∞∑

k=b log n
log log n

c+1

h(k)

≤ h(b log n
log log n

c+ 1) ·
∞∑

k=b log n
log log n

c+1

(
1
2

)k−b log n
log log n

c−1

= 2 · h(b log n
log log n

c+ 1)

= o(e−
√

2 log n log log n), n →∞. (2.34)

Combining now equations (2.29), (2.30), (2.31), (2.32), (2.33) and (2.34) yields

∞∑
k=1

e−λ

λ̃
λk

k!
· ( 2

k
eλ

) 1
k · k · ( log n

n

) 1
k

≤
∞∑

k=1

γn(k)

≤ e−(1+o(1))·(2 log · log log n)
1
2 as n →∞. (2.35)

We consider now the second sum in equation (2.26) and assert

∞∑
k=1

e−λ λk

k!
· n− 1

k ≤ e−(1+o(1))·(2 log · log log n)
1
2 as n →∞.

To prove this we introduce the function

γ̂n : R+ → R+

k 7→ e−λ · λk

Γ(k + 1)
·
(

1

n

) 1
k

.
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Without loss of generality assume n ≥ e. This yields 1/n ≤ (log n)/n. Using
Proposition 1.2.1 we can estimate

γ̂n(k) ≤ e−λλk · (c1 ·
√

k · (k
e

)k
)−1

(
1
n

) 1
k

≤ 1
c1
· (λe)k · k−k · ( 1

n

) 1
k

≤ 1
c1
· (2λe)k · k−k · ( log n

n

) 1
k

=
λ̃

2
· γn(k)

with γn(k) defined in (2.28). Due to equation (2.35) we get

∞∑
k=1

e−λ λk

k!
· n− 1

k ≤
∞∑

k=1

λ̃
2
· γn(k)

≤ e−(1+o(1))·(2 log · log log n)
1
2 as n →∞. (2.36)

Combining now equations (2.26), (2.27), (2.35) and (2.36) yields

D(R)(log n |X, ρ1) ≤ e−(1+o(1))·(2 log · log log n)
1
2 as n →∞.

¤
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2.5 The entropy constrained coding of the al-

ternating Poisson renewal process under L1-

distance

Theorem 2.5.1 Let s ∈ R+. Let X be a D ([0, 1], {0, 1})-valued process as stated
in Definition 2.1.7. Let µX be the distribution of the corresponding Poisson point
process ΦX with intensity λ > 0. Let

C(λ, s) := 1
λ
·
(

log 2 + λ− λ log λ +
∞∑

k=2

e−λ λk

k!
log(k!)

+λ
s
· log

( ∞∑
k=0

e−λ λk

k!
·
(

k(k+1)
4

)s
))

.

Then we have for the entropy constrained error the following asymptotic upper
bound

D(e),s(log n |X, ρ1) . eC(λ,s) · n− 1
λ as n →∞.

Proof:
The proof is outlined as follows: similarly to the proof of the upper bound for the
quantization error we construct a codebook by splitting the distribution µ into a
sum of distributions µk and create for each of the µk a random codebook. For this
codebook we estimate the expected error and compute the entropy. Comparing
this with the rate log n yields an upper bound for the entropy constrained error.
Due to Lemma 2.1.13 it suffices to code (X0, ΦX) instead of X. Let Nt :=
NΦX

([0, t]) be the number of jumps of X in [0, t]. Let (ΦX)k := ΦX |{N1=k} be the
process ΦX conditioned upon ΦX has k points in [0, 1]. Let µX

k be the distribution
of (ΦX)k. We decompose µX into

µX =
∞∑

k=0

e−λ λk

k!
· µX

k .

Due to Remark 2.1.4 µX
k is a product distribution of k uniform distributions on

[0, 1]. µX
0 describes the case of no jumps and we set µX

0 (∅) = 1.
Recall the definitions

Γ(k) := Γ
(k)
1 = {(x1, . . . , xk) ∈ [0, 1]k : 0 < x1 < x2 < . . . < xk < 1}

and

∆(k) := ∆
(k)
1 = {(x1, . . . , xk) ∈ Rd : xi > 0, ∀i = 1, . . . , k and

k∑
i=1

xi < 1}.

We identify µX
k with a uniform distribution U(∆(k)) on the simplex ∆(k) in the

following way. By Remark 2.1.4 µX
k is a product distribution of pairwise indepen-

dent uniform distributions on [0, 1]. Denote by S̃1, . . . , S̃k the points. Hence, the
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unordered tuple (S̃1, . . . , S̃k) is uniformly distributed on [0, 1]k. By sorting the
tuple we get an ordered tuple (S1, . . . , Sk) that is uniformly distributed on Γ(k).
Using the bijective and measure preserving map T defined in (2.3) with a = 1 we
get the tuple (T1, . . . , Tk) that is uniformly distributed on ∆(k).
Let

C(λ, s) := 1
λ
·
(

log 2 + λ− λ log λ +
∞∑

k=2

e−λ λk

k!
log(k!)

+λ
s
· log

( ∞∑
k=0

e−λ λk

k!
·
(

k(k+1)
4

)s
))

.

and

δ :=

(⌊
e−C(λ,s) · n 1

λ ·
( ∞∑

k=0

e−λ λk

k!
·
(

k(k+1)
4

)s
) 1

s

⌋)−1

. (2.37)

Hence, for n large enough we have 1
δ
∈ N. We cover the simplex ∆(k) with small

k−dimensional cubes with side-length δ. Denote the number of the cubes we
need to cover ∆(k) by jk. Hence,

jk =

1
δ∑

lk−1=1

lk−1∑

lk−2=1

. . .

l2∑

l1=1

l1

Denote the small cubes by K
(k),m
δ , m = 1, . . . , jk and the number of the cubes

that are completely inside ∆(k) by j
(1)
k . Hence,

j
(1)
k =

1
δ
−1∑

lk−1=1

lk−1∑

lk−2=1

. . .

l2∑

l1=1

l1.

Denote the number of the cubes that are not completely inside ∆(k) by j
(2)
k .

Hence,

j
(2)
k = jk − j

(1)
k =

1
δ∑

lk−2=1

lk−2∑

lk−3=1

. . .

l2∑

l1=1

l1.

Therefore we have

U(∆(k))
[
K

(k),m
δ

]
=

{
k! · δk, m = 1, . . . , j

(1)
k

δk, m = j
(1)
k + 1, . . . , jk

and, hence,

U(∆(k))
[
K

(k),m
δ

]
≥ δk for all m = 1, . . . , jk. (2.38)
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Denote the center of the cube K
(k),m
δ by (t̂

(m)
1 , . . . , t̂

(m)
k ) for m = 1, . . . , jk. We

introduce the random codebook. Let X̂ be a D ([0, 1], {0, 1})-valued process with
starting point X̂0 and jump variable Φ̂X̂ with

X̂0 := X0

and Φ̂X̂ :=
∞∑

k=0

1{N1=k}
jk∑

m=1

T−1
(
(t̂

(m)
1 , . . . t̂

(m)
k )

)
· 1{

T (ΦX∩[0,1])∈K
(k),m
δ

}.

Denote by X|{N1=k} the original signal X under the condition X has exactly
k jumps. Consider a realization xk of X|{N1=k} and denote the corresponding
realization of (ΦX)k by φk. Denote the corresponging realizations of the random
codebook defined above by x̂k and φ̂k. Analogously to the proof of the upper
bound for the quantization error (see equation (2.10)) we estimate the distortion
of φk and φ̂k

ρ̃[0,1](φk, φ̂k) ≤ k · (k + 1) · δ

4
.

As X̂0 = X0 this yields by Lemma 2.1.13

‖xk − x̂k‖L1 ≤ k · (k + 1) · δ

4

and, hence, for s ∈ R+

‖xk − x̂k‖s
L1

≤
(

k · (k + 1) · δ

4

)s

.

Hence, we deduce

E

[(∫ 1

0

|Xt − X̂t|dt

)s]
=

∞∑

k=0

P [N1 = k] · E
[(∫ 1

0

|Xt − X̂t|dt

)s

|N1 = k

]

≤
∞∑

k=0

e−λ · λk

k!
·
(

k(k + 1)

4

)s

· δs. (2.39)

In the following we compute the entropy of X̂ and show that it is smaller or equal
to log n.
Let

ΦX̂ |{N1=k} :=

jk∑
m=1

T−1
(
(t̂

(m)
1 , . . . t̂

(m)
k )

)
· 1{

T (ΦX∩[0,1])∈K
(k),m
δ

}
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be the random element of the jumps of the codebook element under the condition
N1 = k. Then we have

H[X̂] = H[X̂0] + H[N1] + H[ΦX̂ |N1]

= H[X̂0] + H[N1] +
∞∑

k=0

P [N1 = k] ·H[ΦX̂ |N1 = k]

= H[X̂0] + H[N1] +
∞∑

k=0

e−λ λk

k!
·H[ΦX̂ |N1 = k]

We compute the terms of the sum. It is easily seen that H[X̂0] = log 2. Further-
more

H[N1] = −
∞∑

k=0

e−λ λk

k!
· log

(
e−λ λk

k!

)

= λ− λ log λ +
∞∑

k=2

e−λ λk

k!
log(k!)

Now with equation (2.38) follows

H[ΦX̂ |N1 = k] = −
jk∑

m=1

U(∆(k))
[
K

(k),m
δ

]
· log

(
U(∆(k))

[
K

(k),m
δ

])

≥ −
jk∑

m=1

U(∆(k))
[
K

(k),m
δ

]
· log

(
δk

)

= log

((
1

δ

)k
)
·

jk∑
m=1

U(∆(k))
[
K

(k),m
δ

]

= k · log

(
1

δ

)
.

Therefore we have

H[X̂] = H[X̂0] + H[N1] +
∞∑

k=0

e−λ λk

k!
·H[ΦX̂ |N1 = k]

≤ log 2 + λ− λ log λ +
∞∑

k=2

e−λ λk

k!
log(k!) +

∞∑

k=1

e−λ λk

k!
· k · log

(
1

δ

)
.
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Thus with the definition of δ and C(λ, s) we estimate

H[X̂] ≤ log 2 + λ− λ log λ +
∞∑

k=2

e−λ λk

k!
log(k!) +

∞∑

k=1

e−λ λk

k!
· k · log

(
1

δ

)

= log 2 + λ− λ log λ +
∞∑

k=2

e−λ λk

k!
log(k!) + λ · log

(
1

δ

)

≤ log 2 + λ− λ log λ +
∞∑

k=2

e−λ λk

k!
log(k!)

−λ · C(λ, s) + log n +
λ

s
log

( ∞∑

k=0

e−λ λk

k!
·
(

k(k + 1)

4

)s
)

= log n.

By construction of the codebook, equation (2.39) and the definition of δ we have

(D(e),s(log n|X, ρ1))
s

≤
∞∑

k=0

e−λ · λk

k!
·
(

k(k+1)
4

)s

· δs

=
∞∑

k=0

e−λ · λk

k!
·
(

k(k+1)
4

)s

·
(⌊

e−C(λ,s) · n 1
λ ·

( ∞∑
k=0

e−λ λk

k!
·
(

k(k+1)
4

)s
) 1

s

⌋)−s

∼ esC(λ,s) · n− s
λ as n →∞

and hence,

D(e),s(log n|X, ρ1) . eC(λ,s) · n− 1
λ as n →∞.

¤

We compare the asymptotic bounds of the quantization error and the entropy
constrained error of the alternating Poisson renewal process with the asymptotics
of the fractional Brownian motion. The results for the quantization and the
entropy coding of the fractional Brownian motion for the supremum and Lp[0, 1]
norm distortions are given by Dereich and Scheutzow in [17]. We repeat Theorem
1.1 and Theorem 1.3 of [17].
Let H ∈ (0, 1) and let W = (Wt)t≥0 denote fractional Brownian motion with
Hurst index H. Denote by C[0, a], a > 0, and by D[0, a] the space of real-
valued functions on the interval [0, a] and the space of RCLL functions on [0, a],
respectively. Both spaces are endowed with the supremum norm ‖.‖[0,a]. Let
(Lp[0, a], ‖.‖Lp[0,a]) denote the standard Lp-space of real-valued functions defined
on [0, a]. Furthermore, ‖.‖q, q ∈ (0,∞] denotes the Lq-norm induced by the

probability measure P on the set of real-valued random variables. Let E and Ê
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denote measurable spaces, and let d : E × Ê → [0,∞) be a product measurable
function. Define the quantization error of an original Y by

D(q)(log n |Y, E, Ê, d, q) := inf
π
‖d(Y, π(Y ))‖q,

where the infimum is taken over all measurable functions π : E → Ê with discrete
image that has quantization rate log n > 0.
The entropy constrained error is defined by

D(e)(log n |Y, E, Ê, d, q) := inf
π
‖d(Y, π(Y ))‖q,

where the infimum is taken over all measurable functions π : E → Ê with discrete
image that has entropy rate log n > 0.
Choose as original Y = W and as original space E = C[0,∞). First treat the
case where Ê = D[0, 1] and d(f, g) = ‖f − g‖[0,1]. Then Theorem 1.1 of Dereich
and Scheutzow [17] states

Theorem 2.5.2 There exists a constant κ = κ(H) ∈ (0,∞) such that for all
q1 ∈ (0,∞] and q2 ∈ (0,∞),

lim
n→∞

(log n)HD(e)(log n|W, q1) = lim
n→∞

(log n)HD(q)(log n|W, q2) = κ.

In the case where Ê = Lp[0, 1] and d(f, g) = ‖f−g‖Lp[0,1] for some p ≥ 1 Theorem
1.3 of [17] yields

Theorem 2.5.3 For every p ≥ 1 there exists a constant κ = κ(H, p) ∈ (0,∞)
such that for all q ∈ (0,∞),

lim
n→∞

(log n)HD(e)(log n|W, q) = lim
n→∞

(log n)HD(q)(log n|W, q) = κ.

They showed that for the supremum norm-based distortion, all moments and
both information constraints lead to the same asymptotic approximation qual-
ity. For the Lp[0, 1] norm-based distortions both information constraints lead to
the same asymptotic approximation quality, too. In particular, quantization is
asymptotically just as efficient as entropy coding.
In our case comparing the results of Theorem 2.5.1 and Theorem 2.3.1 shows that
the asymptotic bounds of the quantization and the entropy constrained error of
the renewal process under L1 norm distortion are different. Furthermore it is
interesting that the asymptotic upper bound of the quantization error depends
on the s-th moment of the distortion while the asymptotic bound for the entropy
constrained error is the same for every s ∈ R+.
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Chapter 3

Point processes and the
Hausdorff distance

3.1 Definition and basic properties

In the previous chapter we gave upper and lower bounds for the quantization
error of an alternating renewal process related to a Poisson point process in di-
mension one under L1-norm. In this chapter we deal with a more general subject,
the d-dimensional simple point processes which will be defined in the next section
and a d-dimensional Poisson point process as stated in Definition 2.1.3.
To compare two sets in Rd, we need a convenient distance. We define the Haus-
dorff distance for an arbitrary metric space (E, dE) and for (Rd, dRd).

Definition 3.1.1 Let (E, dE) be an arbitrary metric space. Let A,B ⊂ E be two
arbitrary sets. The Hausdorff-distance of A and B is defined as

dH(A, B) := max

{
sup
a∈A

d(a,B) , sup
b∈B

d(b, A)

}
,

where
d(A,B) := inf

b∈B
a∈A

dE(a, b).

For the special case of the empty set, we define dH(∅, ∅) := 0 and dH(∅, A) := ∞
for A 6= ∅.
Definition 3.1.2 In the case E := Rd we denote for x := (x1, . . . , xd) ∈ Rd the
absolute value as follows

|x| :=

√√√√
d∑

i=1

x2
i .

We define the Hausdorff distance on Rd as stated in the above definition with
dE(a, b) = dRd(a, b) := |a− b|.
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Remark 3.1.3 If A and B are unbounded subsets of Rd, the Hausdorff distance
may be infinite. Denoting by Kc(Rd) the set of non-empty compact subsets of
Rd, the space (Kc(Rd), dH(., .)) is a complete separable metric space (see Li et al.
[33], Theorems 1.1.2 and 1.1.3).

We define the L1-distance in Rd as follows

Definition 3.1.4 Let A,B ⊂ Rd two arbitrary sets. Denote by

1A(x) =

{
1, x ∈ A,
0, x 6∈ A

the indicator function of A. Therewith define

ρ(d)(A,B) := ‖1A − 1B‖L1 :=

∫

Rd

|1A(x)− 1B(x)| dx

= λ(d)(A4B).

Which kind of distance one prefers depends on the intention: in case one is
interested in the exact volume of the set, where A and B do not intersect, the
L1 distance is the right one. If one is more interested in the gap between A and
every part of B, the Hausdorff-distance yields the desired quantity.

Remark 3.1.5 The two distances are not equivalent which will be argued via
an example. For a ∈ N arbitrary let

A1 := {x = (x1, . . . , xd) |xi ∈ (Z ∩ [0, a]), i = 1, . . . , d}
and B1 := {x = (x1, . . . , xd) |xi ∈ (Z ∩ [−a, 0]), i = 1, . . . , d}.

Hence
dH(A1, B1) =

√
d · a and ρ(d)(A1, B1) = 0.

On the other hand for ε > 0 we define εZ := {ε · j | j ∈ Z}. For a ∈ N let

A2 := {x = (x1, . . . , xd) |xi ∈ (εZ ∩ [0, a]), i = 1, . . . , d}
and B2 := [0, a]d.

Therefore

dH(A2, B2) =

√
d

2
· ε and ρ(d)(A2, B2) = ad.
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3.2 The quantization error of a point process in

a bounded metric space

In the following section we will consider a bounded metric space that satisfies
some dimension conditions. Therefore we recall some definitions of Mattila [36].
Let (E, dE) be a bounded metric space. Here bounded means that the diameter
of E is finite. The example we have in mind is a bounded subset of Rm.

Definition 3.2.1 For 0 < ε < ∞ let M(E, ε) be the smallest number of ε-balls
needed to cover E.

M(E, ε) = min

{
j ≥ 1 : there exist x1, . . . , xj ∈ E with E ⊂

j⋃
i=1

Bε(xi)

}
,

where Bε(x) := {y ∈ E : dE(x, y) < ε} is the open ball around x of radius ε.

With this definition we introduce the so called Minkowski dimension.

Definition 3.2.2 For a bounded metric space we define the lower Minkowski
dimension as

dimME := lim inf
ε→0

log M(E, ε)

log(1/ε)
,

and the upper Minkowski dimension as

dimME := lim sup
ε→0

log M(E, ε)

log(1/ε)
.

We always have dimME ≤ dimME, but equality need not hold. If it holds we
write

dimME = dimME = dimME.

Remark 3.2.3 The upper and lower Minkowski dimension are also introduced
as the upper and lower box counting dimension (see Falconer, [20]).

Consider now a bounded metric space (E, dE) with d := dimME < ∞.
A simple point process is defined as a random element in a measurable space
(G̃, G̃), where G̃ is the family of all finite subsets ϕ of E. Each ϕ in G̃ can be
regarded as a closed subset of E. An element ϕ of G̃ can also be regarded as a
measure on E so that Nϕ(B) is the number of points of ϕ in B. The σ-field G̃ is
defined as the smallest σ-field on G̃ to make all mappings ϕ → Nϕ(B) measurable
for all bounded Borel sets B.

Definition 3.2.4 A simple point process is defined as a random element Φ in a
measurable space (G̃, G̃), i.e. Φ : (Ω,F , P ) → (G̃, G̃) is measurable.
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We now define the special point process we are going to give an asymptotic upper
bound for the quantization error.

Definition 3.2.5 Let Υ be a simple point process on (G̃, G̃), that satisfies

P [](Υ) = k] ≤ ck · e−k log k for all k ≥ 1

with c ∈ R+ constant. Denote the distribution of Υ by υ.

Theorem 3.2.6 Let (E, dE) be a bounded metric space with d := dimME < ∞.
Let s ∈ R+ and denote the Hausdorff distance defined in 3.1.1 by dH . Let Υ be
a point process as stated in Definition 3.2.5. Let υ denote the distribution of Υ.
Then we have for the quantization error the following asymptotic upper bound

D(q),s(log n |Υ, dH) ≤ e−(1+o(1))·( 2
sd
·log n·log log n)

1
2

, n →∞.

Proof:
The proof is outlined as follows: first we split the distribution υ of Υ into a sum
of several distributions. By constructing concrete codebooks we give for each
of them an upper estimate and therewith deduce an upper bound for the whole
sum.
Recall the definition NΥ(B) = ](Υ ∩ B) for all B ⊆ E. Let Υk := Υ|{NΥ(E)=k}
and υk be the the distribution of Υk. We split the distribution of Υ via

υ =
∞∑

k=0

P [NΥ(E) = k] · υk.

By definition of d = dimME we have the following:

lim sup
ε→0

log M(E, ε)

log(1/ε)
= d,

and thus, for all δ > 0 there exists ε1 > 0 such that for all ε ≤ ε1 we have

log M(E, ε) ≤ (d + δ) · log(1/ε),

and hence,

M(E, ε) ≤ ε−(d+δ). (3.1)

Let δ > 0 and let (nk)k∈N0 be a sequence such that for all 0 ≤ k ≤ 4·
√

2s log n
(d+δ) log log n

it holds that nk ≥ 1 and
∞∑

k=0

nk ≤ n
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for n large enough. For 0 ≤ k ≤ 4
√

2s log n
(d+δ) log log n

let Ck be an arbitrary codebook

for υk with |Ck| ≤ nk. Let C :=

b4
√

2s log n
(d+δ) log log n

c⋃
k=0

Ck. For k > 4 ·
√

2s log n
(d+δ) log log n

we

code the case of k points with one of the n1 codebook elements of C1. Since C is
a codebook for υ with |C| ≤ n, we can deduce

(D(q),s(log n |Υ , dH))s

≤
∫

min
y∈C

(dH(x, y))s dυ(x)

=
∞∑

k=0

P [NΥ(E) = k] ·
∫

min
y∈C

(dH(x, y))s dυk(x)

≤
b4

√
2s log n

(d+δ) log log n
c∑

k=0

P [NΥ(E) = k] ·
∫

min
y∈Ck

(dH(x, y))s dυk(x)

+
∞∑

k=b4
√

2s log n
(d+δ) log log n

c+1

P [NΥ(E) = k] ·
∫

min
y∈C1

(dH(x, y))s dυk(x). (3.2)

Now we are going to construct the codebooks Ck we use for the estimate.
Without loss of generality assume e−1 · n ≥ 1 and define n0 := 1. In the case
where the realization of Υ has no point we define C0 := {∅} as the codebook for
υ0. Hence,

∫
min
y∈C0

(dH(x, y))s dυ0(x) = 0 for n0 = 1. (3.3)

Consider the case where 1 ≤ k ≤ 4
√

2s log n
(d+δ) log log n

and let

εk,n := e
1

k(d+δ) · (k!)
1

k(d+δ) · n− 1
k(d+δ) .

Without loss of generality assume n to be large enough such that equation (3.1)
is satisfied. Denote the smallest number of εk,n-balls needed to cover E by M :=

M(E, εk,n) and let M̂ := M̂(E, εk,n, δ) := ε
−(d+δ)
k,n . For n large enough we have

that εk,n is small uniformly for all 1 ≤ k ≤ 4
√

2s log n
(d+δ) log log n

. Hence, due to equation

(3.1) for large n we have

M ≤ M̂. (3.4)

Denote the M ε-balls by B̂1, . . . , B̂M and their centers by x̂1, . . . , x̂M . Let I :=
{x̂1, . . . , x̂M}. As the original signal has exactly k points we have to allocate k
or less than k coding points in the centers of the M balls to get a distortion less
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than εk,n. We define the codebook Ck for the point process as the set of all these
allocations

Ck := {ŷ ⊂ I : |ŷ| = i, i = 1, . . . , k},
which yields

|Ck| =
k∑

i=1

(
M

i

)
.

We define the rate we are going to use for this case by

nk := |Ck|.

It is easy to verify, that for all 1 ≤ k ≤ 4
√

2s log n
(d+δ) log log n

and M̂ ≥ 2 it holds

1 ≤ nk ≤ Mk ≤ M̂k (3.5)

due to equation (3.4). For k > 4 ·
√

2s log n
(d+δ) log log n

we define nk := 0. Due to

equations (3.5) and the definitions of M̂ and of εn,k it follows for large n

∞∑

k=0

nk ≤ 1 +

b4·
√

2s log n
(d+δ) log log n

c∑

k=1

M̂k

≤ 1 +

b4·
√

2s log n
(d+δ) log log n

c∑

k=1

e−1 · 1

k!
· n

≤
∞∑

k=0

e−1 · 1

k!
· n

≤ n.

By construction of Ck we get for a given realization φk of Υk

min
ŷ∈Ck

dH(ŷ, φk) ≤ εn,k.

Combining this with the definition of εn,k yields for all δ > 0 and for 1 ≤ k ≤
4
√

2s log n
(d+δ) log log n

∫
min
ŷ∈Ck

(dH(x, ŷ))s dυk(x) .
(

1

e−1 · 1
k!
· n

) s
k(d+δ)

, n →∞, (3.6)
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uniformly for all 1 ≤ k ≤ 4
√

2s log n
(d+δ) log log n

.

Consider the case where k > 4 ·
√

2s log n
(d+δ) log log n

. We have nk = 0. As E is bounded

by assumption there exists b ∈ R+ such that

sup
x,y∈E

dH(x, y) ≤ b.

Therewith we can estimate the distortion we make using the codebook C1 by

∫
min
y∈C1

(dH(x, y))s dυk(x) ≤ bs. (3.7)

Combining equations (3.2), (3.3),(3.6) and (3.7) yields for all δ > 0

(D(q),s(log n |Υ , dH))s .
b4·

√
2s log n

(d+δ) log log n
c∑

k=1

P [NΥ(E) = k] ·
(

1

e−1 · 1
k!
· n

) s
k(d+δ)

+
∞∑

k=b4·
√

2s log n
(d+δ) log log n

c+1

P [NΥ(E) = k] · bs

≤
b4·

√
2s log n

(d+δ) log log n
c∑

k=1

ck · e−k log k ·
(

1

e−1 · 1
k!
· n

) s
k(d+δ)

+
∞∑

k=b4·
√

2s log n
(d+δ) log log n

c+1

ck · e−k log k · bs (3.8)

as n →∞.
For all n ∈ N we introduce the function

f̃n : R+ → R+

k 7→ ck ·
(

e−1 1

Γ(k + 1)

)− s
k(d+δ)

· e−k log k · n− s
k(d+δ) .

From Proposition 1.2.1 we know there exists a constant c2 such that c2·
√

k·(k
e

)k ≥
Γ(k + 1) and therefore

f̃n(k) ≤ fn(k)

:= c
s

k(d+δ)

2 · k s
2k(d+δ) · k s

d+δ · e− s
d+δ · ck · e s

k(d+δ) · e−k log k · n− s
k(d+δ) .
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From equation (3.8) and with the definition of fn we split the sum and get for
all δ > 0

(D(q),s(log n |Υ, dH))s

.
b4·

√
2s log n

(d+δ) log log n
c∑

k=1

fn(k) +
∞∑

k=b4·
√

2s log n
(d+δ) log log n

c+1

ck · e−k log k · bs

=

bcc∑

k=1

fn(k) +

b 1
2

√
2s log n

(d+δ) log log n
c∑

k=bcc+1

fn(k)

+

b4·
√

2s log n
(d+δ) log log n

c∑

k=b 1
2

√
2s log n

(d+δ) log log n
c+1

fn(k)

+
∞∑

k=b4·
√

2s log n
(d+δ) log log n

c+1

ck · e−k log k · bs, n →∞. (3.9)

We assert that for all δ > 0 the sum is of order

(D(q),s(log n |Υ, dH))s ≤ e−(1+o(1))·
√

2s
d+δ

log n log log n, n →∞.

To prove this we estimate each part of the sum and start with the first one.
Part 1: We consider the case where 1 ≤ k ≤ c. Define

α1(c, c2, d, δ) := c · log c + s
d+δ

log c2 + s
d+δ

log
√

c + s
d+δ

log c.

For these k we consider

fn(k)

e−
√

2s
d+δ

log n log log n

= exp
(√

2s
d+δ

log n log log n + k(log c− log k) + s
d+δ

log k
)

· exp
(

s
k(d+δ)

(log c2 + log
√

k) + s
k(d+δ)

− s
d+δ

− s
k(d+δ)

log n
)

≤ exp
(√

2 log n log log n + c · log c + s
d+δ

log c2 + s
d+δ

log
√

c
)

· exp
(

s
d+δ

+ s
d+δ

log c− s
d+δ

− s
c(d+δ)

log n
)

= exp
(√

2s
d+δ

log n log log n− s
c(d+δ)

log n + α1(c, c2, d, δ)
)

−→ 0, n →∞,
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which yields for all δ > 0

∑bcc
k=1 fn(k)

e−
√

2s
d+δ

log n log log n

=

bcc∑

k=1

fn(k)

e

√
− 2 log n

d+δ
log log n

≤ bcc · exp
(√

2s
d+δ

log n log log n− s
c(d+δ)

log n + α1(c, c2, d, δ)
)

−→ 0, n →∞.

Hence, for all δ > 0 we have

bcc∑

k=1

fn(k) = o
(
e−
√

2s
d+δ

log n log log n
)

as n →∞. (3.10)

Part 2: In the second part of the sum k lies between c and 1
2

√
2s log n

(d+δ) log log n
.

Clearly for all δ > 0 it holds that

α2(c, c2, d, δ, n)

:= s
c(d+δ)

(
log c2 + 1

2
log 1

2

√
2s log n

(d+δ) log log n

)
+ s

c(d+δ)
+ s

d+δ
log c− s

d+δ

= o
(
−

√
2s

d+δ
log n log log n

)
, n →∞.

Therewith we estimate

fn(k) ≤ exp
(

s
c(d+δ)

(
log c2 + 1

2
log 1

2

√
2s log n

(d+δ) log log n

))

· exp
(

s
c(d+δ)

+ s
d+δ

log c− s
d+δ

−
√

2s
d+δ

log n log log n
)

= exp
(
α2(c, c2, d, δ, n)−

√
2s

d+δ
log n log log n

)

and hence,

b 1
2

√
2s log n

(d+δ) log log n
c∑

k=bcc+1

fn(k)

≤ exp
(
log

(
1
2

√
2s log n

(d+δ) log log n

)
+ α2(c, c2, d, δ, n)−

√
2s

d+δ
log n log log n

)
.

Since

log
(

1
2

√
2s log n

(d+δ) log log n

)
+ α2(c, c2, d, δ, n)−

√
2s

d+δ
log n log log n

∼ −
√

2s
d+δ

log n log log n as n →∞,
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for all δ > 0 we get

b 1
2

√
2s log n

(d+δ) log log n
c∑

k=bcc+1

fn(k) ≤ e−(1+o(1))·
√

2s
d+δ

log n log log n, n →∞. (3.11)

Part 3: For the third part of the sum we first prove the following assertion: for

I := {1, . . . , b4 ·
√

2s log n
(d+δ) log log n

c − b1
2

√
2s log n

(d+δ) log log n
c} we define

li :=
b1

2

√
2s log n

(d+δ) log log n
c+ i

b
√

2s log n
(d+δ) log log n

c
and

kli := li · b
√

2s log n

(d + δ) log log n
c, i ∈ I.

For all δ > 0 we assert

log fn(kli) ≤ −(1 + o(1))
√

2s
d+δ

log n log log n, n →∞, i ∈ I.

To prove this we consider

α3(c,c2, d, δ, n)

:= 8 ·
√

2s log n
(d+δ) log log n

log c + 8 · log
(
8 ·

(√
2s log n

(d+δ) log log n
− 1

))

− 1
2
·
√

2s log n
(d+δ) log log n

· log

(
1
2
·
(√

2s log n−
√

(d+δ) log log n√
(d+δ) log n log log n

))

+ s
1
2
(d+δ)·

(√
2s log n

(d+δ) log log n
−1

) ·
(
log c2 + 1

2
log

(
8 ·

√
2s log n

(d+δ) log log n

)
+ 1

)

+ s
d+δ

log
(
8 ·

√
2s log n

(d+δ) log log n

)
− s

d+δ

= o(−
√

2s
d+δ

log n log log n), n →∞, for all δ > 0.

Without loss of generality assume
√

2s log n
(d+δ) log log n

≥ 2. Therewith for all i ∈ I we

can deduce

li ≤
b4 ·

√
2s log n

(d+δ) log log n
c

b
√

2s log n
(d+δ) log log n

c
≤ 4 ·

√
2s log n

(d+δ) log log n√
2s log n

(d+δ) log log n
− 1

≤ 8 (3.12)

and

li ≥
b1

2

√
2s log n

d(1+δ) log log n
c+ 1

b
√

2s log n
(d+δ) log log n

c
≥

1
2
·
√

2s log n
(d+δ) log log n√
2s log n

(d+δ) log log n

=
1

2
. (3.13)
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We consider log fn(kli) and use the fact that for all b ∈ R it is 1
2
b+ 1

2b
≥ 1. Hence,

log fn(kli) ≤ li ·
√

2s log n
(d+δ) log log n

log c

−li ·
(√

2s log n
(d+δ) log log n

− 1
)

log
(
li ·

(√
2s log n

(d+δ) log log n
− 1

))

+ s

(d+δ)li·
(√

2s log n
(d+δ) log log n

−1
) ·

(
log c2 + 1

2
log

(
li ·

√
2s log n

(d+δ) log log n

))

+ s

(d+δ)li·
(√

2s log n
(d+δ) log log n

−1
) + s

d+δ
log

(
li ·

√
2s log n

(d+δ) log log n

)
− s

d+δ

− s log n

(d+δ)li·
√

2s log n
(d+δ) log log n

= −(1
2
li + 1

2li
)
√

2s
d+δ

log n log log n + li ·
√

2s log n
(d+δ) log log n

log c

−li ·
√

2s log n
(d+δ) log log n

· log

(
li ·

(√
2s log n−

√
(d+δ) log log n√

d(1+δ) log n log log n

))

+li · log
(
li ·

(√
2s log n

(d+δ) log log n
− 1

))

+ s

d(1+δ)li·
(√

2s log n
(d+δ) log log n

−1
) ·

(
log c2 + 1

2
log

(
li ·

√
2s log n

(d+δ) log log n

))

+ s

(d+δ)li·
(√

2s log n
(d+δ) log log n

−1
) + s

d+δ
log

(
li ·

√
2s log n

(d+δ) log log n

)
− s

d+δ

≤ −
√

2s
d+δ

log n log log n + 8 ·
√

2s log n
(d+δ) log log n

log c

−1
2
·
√

2s log n
(d+δ) log log n

· log

(
1
2
·
(√

2s log n−
√

(d+δ) log log n√
(d+δ) log n log log n

))

+8 · log
(
8 ·

(√
2s log n

(d+δ) log log n
− 1

))

+ s
1
2
(d+δ)·

(√
2s log n

(d+δ) log log n
−1

) ·
(
log c2 + 1

2
log

(
8 ·

√
2s log n

(d+δ) log log n

)
+ 1

)

+ s
d+δ

log
(
8 ·

√
2s log n

(d+δ) log log n

)
− s

d+δ

= −
√

2s
d+δ

log n log log n + α3(c, c2, d, δ, n).

Using this in the third part of the sum yields

b4
√

2s log n
(d+δ) log log n

c∑

k=b 1
2

√
2s log n

(d+δ) log log n
c+1

fn(k)

≤
b4

√
2s log n

(d+δ) log log n
c∑

k=b 1
2

√
2s log n

(d+δ) log log n
c+1

exp
(
−

√
2s

d+δ
log n log log n + α3(c, c2, d, δ, n)

)
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≤ exp
(

log
(
4
√

2s log n
(d+δ) log log n

)−
√

2s
d+δ

log n log log n + α3(c, c2, d, δ, n)
)

and since

log
(
4
√

2s log n
(d+δ) log log n

)−
√

2s
d+δ

log n log log n+α3(c, c2, d, δ, n)

∼ −
√

2s
d+δ

log n log log n

as n →∞, for all δ > 0 we get

b4
√

2s log n
(d+δ) log log n

c∑

k=b 1
2

√
2s log n

(d+δ) log log n
c+1

fn(k) ≤ e−(1+o(1))
√

2s
d+δ

log n log log n, n →∞. (3.14)

Part 4: We consider the last part of the sum, where k > 4 ·
√

2s log n
(d+δ) log log n

. Define

g(k) := ek·(log c−log k).

Consider

g(b4 ·
√

2s log n
(d+δ) log log n

c+ 1)

e−
√

2s
d+δ

log n log log n

≤ exp
(√

2s
d+δ

log n log log n
)

· exp
(
4 ·

√
2s log n

(d+δ) log log n

(
log c− log

(
4 ·

√
2s log n

(d+δ) log log n

)))

= exp
(
−

√
2s

d+δ
log n log log n

)

· exp
(
4 ·

√
2s log n

(d+δ) log log n

(
log c− log

(
4 ·

√
2s

(d+δ) log log n

)))

−→ 0 as n →∞.

Therefore for all δ > 0 we have g
(b4 ·

√
2s log n

(d+δ) log log n
c+ 1

)
= o

(
e−
√

2s
d+δ

log n log log n
)

as n →∞.
Consider now for 4 ·

√
2s log n

(d+δ) log log n
< k

g(k + 1)

g(k)
= c · kk

(k + 1)k+1

= c ·
(

k

k + 1

)k

· 1

k + 1

≤ c · 1

k + 1

≤ c · 1

4 ·
√

2s log n
(d+δ) log log n

+ 1

−→ 0, n →∞.
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Thus there exists a ñ > 0 such that for all n > ñ, for all δ > 0 and k >

4 ·
√

2s log n
(d+δ) log log n

we have

g(k + 1)

g(k)
<

1

2
.

Hence, for n > ñ and for all δ > 0 this yields

∞∑
k=b4·

√
2s log n

(d+δ) log log n
c+1

g(k)

≤ g
(⌊

4 ·
√

2s log n
(d+δ) log log n

⌋
+ 1

)
·

∞∑
k=b4·

√
2s log n

(d+δ) log log n
c+1

(
1
2

)k−b4·
√

2s log n
(d+δ) log log n

c−1

= 2 · g(b4 ·
√

2s log n
(d+δ) log log n

c+ 1)

= o(e−
√

2s
d+δ

log n log log n), n →∞. (3.15)

Combining now equations (3.9), (3.10), (3.11), (3.14) and (3.15) yields for all
δ > 0

(D(q),s(log n |Υ, dH))s ≤ e−(1+o(1))·
√

2s
d+δ

log n log log n, n →∞

or

log((D(q),s(log n |Υ,dH))s)√
log n log log n

. −
√

2s
d+δ

as n →∞

for all δ > 0. With δ → 0 it follows

log((D(q),s(log n |Υ,dH))s)√
log n log log n

. −
√

2s
d

as n →∞

which leads to

(D(q),s(log n |Υ, dH))s ≤ e−(1+o(1))·
√

2s
d

log n log log n, n →∞

and thus

D(q),s(log n |Υ, dH) ≤ e−(1+o(1))·
√

2
sd

log n log log n, n →∞.
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3.3 The quantization error of the Poisson point

process under Hausdorff distance

In the following section we give upper and lower bounds for the asymptotics of
the quantization error of a Poisson point process on a compact cube in Rd.

Theorem 3.3.1 Let s ∈ R+. Consider for l ∈ R+ the Poisson point process Φ
from Definition 2.1.3 on the cube C := [−l, l]d ⊂ Rd. Denote the distribution of
Φ by µ. Denoting by dH the Hausdorff distance on Rd from Definition 3.1.2 we
have

D(q),s(log n |Φ, dH) = exp

(
−(1 + o(1))

√
2

d · s · log n log log n

)
, n →∞.

Proof.
First we use Theorem 3.2.6 to prove the upper bound. By assumption (C, ρ) with
ρ(a, b) := |a − b| is a bounded metric space with diam(C) ≤

√
d · 2l. We show

that dimM(C) = d. Denote the uniform distribution on the cube C by UC , i.e.
the density is defined by uC(x) := 1

(2l)d · 1C(x) for all x ∈ Rd. Therewith follows

0 < UC(C) = UC(Rd) = 1 < ∞

and there is δ0 > 0 such that for all x ∈ C and 0 < δ ≤ δ0

1

2d
· πd/2

Γ(d
2

+ 1)(2l)d
· δd ≤ UC(Bδ(x)) ≤ πd/2

Γ(d
2

+ 1)(2l)d
· δd.

Due to Theorem 5.7 in Mattila [36] the Minkowski dimension of C equals d and
hence, dimM(C) = dimM(C) = d.
Analogously to equation (2.18) it follows, that the Poisson point process Φ satis-
fies the condition

P [](Φ ∩ C) = k] ≤ ck · e−k log k for all k ≥ 1

with c ∈ R+ constant.
Hence, we can apply Theorem 3.2.6 and it follows

D(q),s(log n |Φ, dH) ≤ exp
(
−(1 + o(1))

√
2
ds
· log n log log n

)
(3.16)

as n →∞.
Now we proceed with the lower bound.
Let

ε := 2l ·
(⌈(

2s log n

d log log n

) 1
2d

⌉)−1

.
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Hence, 2l
ε
∈ N. We split the cube C = [−l, l]d into small ε-cubes C̃1, . . . , C̃( 2l

ε
)d .

Put in every cube C̃i a smaller cube Ci, i = 1, . . . , (2l
ε
)d, with side length 4ε

5
.

Consider the event A that inside every small cube Ci is exactly one of the points

of the Poisson point process Φ and C \ (∪( 2l
ε

)d

i=1 Ci) contains no point. In Figure
3.1 we give a sketch for the case l = 1

2
, d = 2 and ε = 1

2
.

x

x x

x

(−1
2
, −1

2
)

(−1
2
, 1

2
)

(1
2
, −1

2
)

}
ε

Figure 3.1: The Poisson point process conditioned A

Now we give for small ε the probability that this event A occurs.

P [A] = P
[ ( 2l

ε
)d⋂

i=1

(
{Φ(Ci) = 1}}

)
∩ {Φ(C \ (

( 2l
ε

)d⋃
i=1

Ci)) = 0}
]

=

( 2l
ε

)d∏
i=1

(
e−λ·( 4ε

5
)d · λ · (4ε

5
)d

)
· e−λ((2l)d−( 2l

ε
)d·( 4ε

5
)d)

= e−λ(2l)d · λ( 2l
ε

)d ·
(4ε

5

) (2l)dd

εd

. (3.17)

Denote by ΦA the Poisson point process Φ under the condition that A occurs and
by µA the distribution of ΦA. Denote the points of ΦA by {x1, . . . , x( 2l

ε
)d} where

xj ∈ Cj. Let

δ :=
εs

5s
·
(
n ·

( d

sεd
+ 1

))− sεd

(2l)dd
.

Thus for n large enough we have δ
1
s < ε

10
. Consider an arbitrary codebook with n

elements Φ̂1, . . . , Φ̂n, where the Φ̂i, i = 1, . . . , n, are arbitrary subsets of [−l, l]d.
As

P [dH(ΦA, Φ̂i)
s < δ] = P [dH(ΦA, Φ̂i) < δ

1
s ]

we estimate the probability that the original signal ΦA and a codebook element
Φ̂i have a Hausdorff distance less than δ

1
s .
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Case 1: If there exists j ∈ {1, . . . , (2l
ε
)d} such that C̃j ∩ Φ̂i = ∅, then

dH(ΦA, Φ̂i) >
ε

10
> δ

1
s

because Cj ∩ ΦA 6= ∅. Hence,

P [dH(ΦA, Φ̂i) < δ
1
s ] = 0.

Case 2: For every j ∈ {1, . . . , (2l
ε
)d} we have C̃j ∩ Φ̂i 6= ∅.

For j fixed denote Mij := Cj ∩ Φ̂i. Assume diam(Mij) > 2δ
1
s . Then again we

have
dH(ΦA, Φ̂i) > δ

1
s

because ΦA ∩ Cj = {xj} consists in only one point. Thus

P [dH(ΦA, Φ̂i) < δ
1
s ] = 0.

If diam(Mij) ≤ 2δ
1
s there is a cube Kij with side length 2δ

1
s such that Mij ⊂ Kij.

As ΦA ∩ Cj = {xj} is uniformly distributed in Cj we can deduce

P [dH({xj},Mij) < δ
1
s ] ≤ P [dH({xj}, Kij) < δ

1
s ]

≤ (4δ
1
s )d

( 4
5
ε)d , for all j = 1, . . . ,

(
2l
ε

)d
.

Thus for all i = 1, . . . , n it follows

P [dH(ΦA, Φ̂i) < δ
1
s ] ≤ P

[ ( 2l
ε

)d⋂
j=1

{dH({xj},Mij) < δ
1
s}

]

=

( 2l
ε

)d∏
j=1

P [dH({xj},Mij) < δ
1
s ]

=
(

5dδ
d
s

εd

)( 2l
ε

)d

. (3.18)

Using this we can estimate the quantization error depending on ε and δ by

(
D(q),s(log n |ΦA, dH)

)s ≥ δ · inf
C codebook on C

(
1− µA

(
n⋃

i=1

B
δ

1
s
(Φ̂i)

))

≥ δ · inf
C codebook on C

(
1−

n∑
i=1

P [dH(ΦA, Φ̂i) < δ
1
s ]

)

≥ δ ·
(

1− n ·
(5d

εd
· δ d

s

)( 2l
ε

)d
)

.
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With the definition of δ = εs

5s · (n · ( d
sεd + 1))

− sεd

(2l)dd it follows

(
D(q),s(log n |ΦA, dH)

)s ≥ εs

5s
·
(

n ·
(

d + sεd

sεd

))− sεd

(2l)dd

· d

d + sεd
.

Weighting this estimate with the probability of A yields combined with equation
(3.17) a lower bound for the quantization error

(
D(q),s(log n |Φ, dH)

)s ≥ P [A] · (D(q),s(log n |ΦA, dH)
)s

≥ e−λ · λ( 2l
ε

)d ·
(4ε

5

) (2l)dd

εd · εs

5s

·
(

n ·
(

d + sεd

sεd

))− sεd

(2l)dd

· d

d + sεd
.

For simplicity denote α(λ, s) := −λ− s log 5. Hence,
(
D(q),s(log n |Φ, dH)

)s ≥ exp
(
α(λ, s) + (2l

ε
)d · (log λ + d log

(
4
5

))
+ s log(ε)

)

· exp
(
− (2l)d

εd log
(

1
εd

)− sεd

(2l)dd
log n

)

· exp
(
− sεd

(2l)dd
log

(
d+sεd

sεd

)
+ log

(
d

d+sεd

))
.

With the definition of ε = 2l ·
(⌈(

2s log n
d log log n

) 1
2d

⌉)−1

∼ 2l ·
(

d log log n
2s log n

) 1
2d

as n →∞
it holds for large n that

(
D(q),s( log n |Φ, dH)

)s

& exp

(
α(λ, s) +

(
2s log n

d log log n

) 1
2 · (log λ + d log

(
4
5

)))

· exp

(
s log

(
2l ·

(
d log log n
2s log n

) 1
2d

))

· exp

(
−

(
2s log n

d log log n

) 1
2 · log

(
(2l)−d ·

(
2s log n

d log log n

) 1
2

))

· exp

(
− s

d

(
d log log n
2s log n

) 1
2 · log n + log

(
d

d+s(2l)d( d log log n
2 log n )

1
2

))

· exp

(
− s

d

(
d log log n
2s log n

) 1
2
log

(
d+s(2l)d( d log log n

2 log n )
1
2

s(2l)d( d log log n
2 log n )

1
2

))

= exp

(
α(λ, s) +

(
2s log n

d log log n

) 1
2 · (log λ + d log

(
4
5

)))

· exp

(
s log

(
2l ·

(
d log log n
2s log n

) 1
2d

))
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· exp

(
−

(
2s log n

d log log n

) 1
2 · log

(
(2l)−d ·

(√
2s+
√

d log log n/ log n√
d log log n

)))

· exp

(
− log

(
(2l)−d ·

(
2s log n

d log log n

) 1
2

))

· exp

(
− (

2s
d

log n · log log n
) 1

2 + log

(
d

d+s(2l)d( d log log n
2 log n )

1
2

))

· exp

(
− s

d

(
d log log n
2s log n

) 1
2
log

(
d+s(2l)d( d log log n

2 log n )
1
2

s(2l)d( d log log n
2 log n )

1
2

))
.

Hence,

D(q),s(log n |Φ, dH)

& exp

(
1
s
α(λ, s) +

(
2 log n

ds log log n

) 1
2 · (log λ + d log

(
4
5

)))

· exp

(
log

(
2l ·

(
d log log n
2s log n

) 1
2d

))

· exp

(
−1

s

(
2s log n

d log log n

) 1
2 · log

(
(2l)−d ·

(√
2s+
√

d log log n/ log n√
d log log n

)))

· exp

(
−1

s
log

(
(2l)−d ·

(
2s log n

d log log n

) 1
2

))

· exp

(
− (

2
ds

log n · log log n
) 1

2 + 1
s
log

(
d

d+s(2l)d( d log log n
2 log n )

1
2

))

· exp

(
−1

d

(
d log log n
2s log n

) 1
2
log

(
d+s(2l)d( d log log n

2 log n )
1
2

s(2l)d( d log log n
2 log n )

1
2

))

= exp

(
−(1 + o(1)) ·

( 2

ds
log n · log log n

) 1
2

)
, n →∞.

Together with equation (3.16) this proves the assertion.
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3.4 The entropy constrained error of the Pois-

son point process under Hausdorff distance

As in the previous section we consider for b ∈ R+ a stationary Poisson point
process Φ = {x1, x2, . . .} with intensity λ > 0 from Definition 2.1.3 in the cube
C := [−b, b]d ⊂ Rd. We give an asymptotic upper bound for the entropy con-
strained error of order s ∈ R+.

Theorem 3.4.1

D(e),s(log n |Φ, dH) .
√

d ·
(

1

λ

)1/d

· n−
1

d·λ·(2b)d , n →∞.

Proof.
During the proof we will use the following: for all λ > 0 it holds that

lim
ε→0

−(
1− e−λεd)

log
(
1− e−λεd)

+ λεd · e−λεd

−λεd log(λεd)
= 1.

Thus for all δ1 > 0 there is ε1 > 0 such that for all ε < ε1 we have

−(
1− e−λεd)

log
(
1− e−λεd)

+ λεd · e−λεd ≤ (1 + δ1) · λεd log( 1
λεd ). (3.19)

Now we construct a specific codebook and appoint the rate for this codebook.
Let δ1 > 0 and

ε := 2b ·
(⌊

2b · λ 1
d · n

1

d(1+δ1)·λ·(2b)d

⌋)−1

.

Without loss of generality assume n to be large enough such that we have 2b
ε
∈ N

and such that equation (3.19) is satisfied. We divide the cube [−b, b]d into small
cubes with side length ε. To fill the big cube we need (2b

ε
)d small cubes, say

K1, . . . K( 2b
ε

)d . Denote the center of the small cube Ki by x̂i for all i = 1, . . . , (2b
ε
)d.

We put in the center of a small cube a coding point if at least one of the original
points is inside this small cube. Define the codebook

X̂(Φ) :=

( 2b
ε

)d⋃
i=1

{x̂i | NΦ(Ki) ≥ 1}.

We appoint the likelihood that at least one point of the original signal is inside
one small cube Ki

pi := P (NΦ(Ki) ≥ 1)

= 1− e−λ·λ(d)(Ki)

= 1− exp
(−λ · εd

)
, i = 1, . . . ,

(2b

ε

)d

.
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We compute the entropy of this codebook and show that it is smaller or equal to
log n. Due to equation (3.19) it follows

H[X̂(Φ)] =

( 2b
ε )

d

∑
i=1

(−pi log pi − (1− pi) log(1− pi))

=
(2b

ε

)d

· (−p1 log p1 − (1− p1) log(1− p1))

=
(2b

ε

)d

·
(
− (

1− e−λεd)
log

(
1− e−λεd)

+ λεd · e−λεd
)

≤ (1 + δ1) · (2b)d · λ log
(

1
λεd

)
.

With the definition of ε this leads to

H[X̂(Φ)] ≤ (1 + δ1) · (2b)d · λ log
(

1
λεd

)

≤ (1 + δ1) · (2b)d · λ log
(
n

1

(1+δ1)λ(2b)d
)

= log n.

Let φ be a realization of Φ. By construction of the codebook the distortion is
bounded by (

dH(φ, X̂(φ))
)s

≤ (
√

d · ε)s

and with the definition of ε we deduce

(D(e),s(log n |Φ, dH))s ≤
(√

d · 2b ·
(⌊

2b · λ 1
d · n

1

d(1+δ1)·λ·(2b)d

⌋)−1
)s

∼
(√

d ·
(

1

λ

)1/d

· n−
1

d(1+δ1)·λ·(2b)d

)s

, n →∞,

and with δ1 → 0

(D(e),s(log n |Φ, dH))s .
(√

d ·
(

1

λ

)1/d

· n−
1

d·λ·(2b)d

)s

, n →∞,

and thus

D(e),s(log n |Φ, dH) .
√

d ·
(

1

λ

)1/d

· n−
1

d·λ·(2b)d , n →∞.

¤
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Chapter 4

The Boolean model

4.1 Definition and basic properties

In the previous chapter we considered the quantization error of point processes
in dimension d ≥ 1, especially of the Poisson point process. In this chapter we
deal with a more general subject, the so called d-dimensional Boolean model.
For this we follow the definition of Stoyan, Kendall and Mecke (see [43]). For
d ∈ N let Kd be the system of all compact subsets of Rd. Hence, (Kd, dH) is also
a complete separable metric space. The corresponding open subsets generate a
σ-field on Kd, the Borel-σ-field B(Kd). A random compact set Y is defined as a
measurable map Y : (Ω,F , P ) → (Kd,B(Kd)).

Definition 4.1.1 The basis of the Boolean model is a stationary Poisson point
process Φ = {x1, x2, . . .} in Rd with intensity λ, the so-called germs. Let Y1, Y2, . . .
be a sequence of independent identically distributed random compact sets in Rd

which are independent of Φ, the so-called grains. Let Y1 satisfy

E
[
λ(d)(Y1 + K)

]
< ∞ for all compact K. (4.1)

The Boolean model is defined as follows: Given the germs xi and the grains
Yi as above a Boolean model is defined as a measurable map Ξ : (Ω,F , P ) →
(Kd,B(Kd)) with

Ξ :=
∞⋃
i=1

{xi + Yi}.

We say Ξ is a Boolean model with primary grain Y1.

Remark 4.1.2 The technical condition (4.1) ensures that only finitely many of
the grains xi+Yi have a nonempty intersection with any given compact set. Thus,
in particular, it ensures that the property of being a closed set is inherited by Ξ
from the primary grains.
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From the stationarity of the Poisson point process Φ of germs and the identical
distribution of the primary grains it follows that the Boolean model defined above
is stationary, i.e. its distribution is translation-invariant. We give two examples
for application of the Boolean model. In the first place, it is a natural model
for sparse systems of particles distributed at random. Here, the sparse nature
of the system is modeled by a low value of the intensity λ of the Poisson point
process Φ. If λ is small relative to the size of the grains then primary grains
will not often overlap and hence, Ξ will consist mainly of separate particles. A
typical example of such systems is the set of nodular graphite particles in cast
iron. A random sparse pattern of plants may also yield such a pattern in an area
covered by vegetation. With increasing λ the number of overlaps increases. E.g.
this happens with pores in cheese or areas of weeds in fields.

Remark 4.1.3 The grains of the Boolean model are not required to be connected
sets. For example, they may be sets of discrete points. In such a case the Boolean
model is a point process, more precisely, a Neymann-Scott point process (see
Stoyan et al. [43], Section 5.3).

Our main object in this section will be a special form of the Boolean model
defined as follows.

Definition 4.1.4 Let Φ = {x1, x2, . . .} be a stationary Poisson point process in
Rd, d ≥ 1, with intensity λ. Let (Yi)i∈N, be a sequence of independent identically
distributed random compact sets in Rd, which satisfies the following: There is a
ball with center 0, denoted by B(i)(0), such that Yi ⊆ B(i)(0) and diam(Yi) =
diam(B(i)(0)). Denote the Radius of B(i)(0) by Ri. Assume that the Ri are
independent identically distributed and denote the distribution function of the Ri

by F . Moreover assume that there exists a constant κ ∈ R+ such that the Ri

satisfy P (Ri < t) = F (t) ∼ κ · t as t → 0 and E[Rd
i ] < ∞ for all i ∈ N. We

define a special Boolean model as

Ξ :=
∞⋃
i=1

{xi + Yi}.

We denote by ξ the law of Ξ.

Now we define a specialization of the Boolean model given above, where the
grains are balls with random radii.

Definition 4.1.5 Let Φ = {x1, x2, . . .} be a stationary Poisson point process in
Rd, d ≥ 1, with intensity λ. Let Ŷi, i ∈ N, be balls in Rd with random radii
Ri, i ∈ N, where the Ri are i.i.d on the interval [0,∞) with density f for all
i ∈ N, where f is continuous in 0 with f(0) > 0. Let E[Rd

1] < ∞. We define a
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special Boolean model as

Ξ̌ :=
∞⋃
i=1

{xi + Ŷi}.

We denote by ξ̌ the law of Ξ̌.

We will mainly consider the Boolean model on a compact subset of Rd. The case
where the whole set is completely overlapped by one ball is trivial. The following
lemma guarantees that this does not happen almost surely on the set [−1

2
, 1

2
]d.

Lemma 4.1.6 Consider the Boolean model from Definition 4.1.5. Let F (t) :=∫ t

0
f(x) dx and E[Rd

1] < ∞. Let A denote the event that the cube [−1
2
, 1

2
]d is not

completely covered by the balls of the Boolean model. Then we have

P [A] ≥
(
e
−λ· lim

b→∞
lim
δ→0

∑b/δ
j=0((2δ(j+1))d−(2δj)d)·(1−F (δj))

)

> 0.

Proof.
Define for j ∈ N and δ > 0

Vδj := [−(j + 1)δ, (j + 1)δ]d \ [−jδ, jδ]d.

As the sets Vδj and Vδj̃ are disjoint for j 6= j̃ with j, j̃ ∈ N, and the radii Rm,
m ∈ N, are independent of each other and of Φ we can deduce

P [A]

≥ lim
b→∞

lim
δ→0

P
[
{Φ([δ, δ]d) = 0}∩

b/δ⋂
j=1

(
{Φ(Vδj) = 0} ∪ ( ∪∞i=1

({Φ(Vδj) = i} ∩ (∩i
m=1{Rm ≤ jδ})))

)]

= lim
b→∞

lim
δ→0

b/δ∏
j=0

( ∞∑
i=0

e−λ((2δ(j+1))d−(2δj)d) · (λ((2δ(j + 1))d − (2δj)d))i

i!
· (F (δj)

)i
)

= lim
b→∞

lim
δ→0

b/δ∏
j=0

e−λ·((2δ(j+1))d−(2δj)d)·(1−F (δj))

= exp
(
− λ2d · lim

b→∞
lim
δ→0

b/δ∑
j=0

δd((j + 1)d − jd) · (1− F (δj))
)
.

And this does not vanish if and only if

lim
b→∞

lim
δ→0

b/δ∑
j=0

δd((j + 1)d − jd) · (1− F (δj)) < ∞.
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Since F is the distribution function of R1 this is equivalent to E[Rd
1] < ∞.

¤

Remark 4.1.7 This result can be generalized to arbitrary compact sets that
contain the origin.

We introduce now another special form of the Boolean model which differs from
the last definition in the boundedness of the Ri, i ∈ N, which describe the radii.

Definition 4.1.8 Let b > 0, λ > 0 and Φ = {x1, x2, . . .} be a stationary Poisson
point process in Rd, d ≥ 1, with intensity λ. Let Ỹi, i ∈ N, be balls in Rd with
random radii Ri, i ∈ N, where the Ri are i.i.d on the interval [0,∞) with density
f for all i ∈ N. Let f be continuous in 0 with f(0) > 0 and f(x) = 0 for all
x > b. We define another special Boolean model as

Ξ(b) :=
∞⋃
i=1

{xi + Ỹi}.

We denote by ξ the law of Ξ.
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4.2 The quantization error of the Boolean model

under Hausdorff distortion in one dimension

In the following section we consider the Boolean model from Definition 4.1.5 in
the case where d = 1. In one dimension the balls of the Boolean model are
actually intervals. This is a special case, because the union of two intervals with
non-empty intersection is again an interval. In higher dimension this does not
remain valid for balls generally.

Theorem 4.2.1 Consider the Boolean model from Definition 4.1.5 for the case
d = 1 on the interval [0, 1] ⊂ R. Denoting the Hausdorff-distance by dH we have
for every s ∈ R+

D(q),s(log n | Ξ̌, dH) = exp

(
−(1 + o(1))

√
2
s
· log n log log n

)
as n →∞.

Proof.
Here we prove just the upper bound and refer for the lower bound to Theorem
4.3.3, where an asymptotic lower bound for the d-dimensional Boolean model on
a compact cube is given.
The outline of the proof is as follows. First we study some properties of the
one-dimensional Boolean model. Then we construct a concrete codebook and
compute the distortion for this codebook.
For the upper bound it is sufficient to code (instead of the points of Φ and the
radii of the intervals) just the starting and ending points of the intervals. The
advantage of this method lies in the lower complexity, e.g. for two overlapping
intervals where none of them is a subset of the other we have to code just two
points (the starting point of the left interval and the ending point of the right
interval) instead of four points (the two points of Φ and the two radii). We call
these points the visible starting and ending points of the Boolean model. These
visible points form a random point process on R which we denote by Ψ and its
distribution by ψ. Denote for all t ≥ 0 the number of the visible starting and
ending points of the Boolean model in the interval [0, t] by NΨ(t).
We denote the area that is covered by Ξ̌ as a sequence of ”green” intervals where
the length of the i-th interval is modeled by a random variable Gi. The remaining
area will be interpreted as a sequence of ”white” intervals, denoted by W̃i and
their length by Wi. Hence, we can interpret the process as an alternating jump
process that changes between white and green. We define

S2k :=
k∑

i=1

(Wi + Gi) =
k∑

i=1

Wi +
k∑

i=1

Gi

and

S2k+1 :=
k+1∑
i=1

Wi +
k∑

i=1

Gi
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if the process starts with a white area and analogously for the other case. Let
Ξ̌k := Ξ̌|{NΨ(1)=k} and let ξ̌k be the distribution of Ξ̌k. Therewith we split the
distribution of Ξ̌ on the interval [0, 1] via

ξ̌ =
∞∑

k=0

P [NΨ(1) = k] · ξ̌k.

Analogously let Ψk := Ψk|{NΨ(1)=k} and ψk be the distribution of Ψk. We split
the distribution of Ψ via

ψ =
∞∑

k=0

P [NΨ(1) = k] · ψk.

Now we give bounds for the number of points we are going to code. We interpret
the Boolean model Ξ̌ as a marked Poisson point process

(Ψ,m) = {(x1,m1), (x2,m2), . . .},

where the mark describes the radius of the corresponding interval. We consider
the measurepreserving translation T̃ : R2 → R2 with T̃ ((a, b)) = (a−b, b). Hence,
this translated marked point process T̃ ((Ψ,m)) can be interpreted as a Boolean
model where the germs xj are the starting points of the corresponding grain
intervals with length 2mj. Assume ti ∈ R+ to be the starting point of a white
interval Wi, and since f is the density of the random radius it follows

P [Wi ≥ z |Wi starts in ti] = exp
(
− λ

∫ ti+z

ti

∫ ∞

0

f(r) dr dλ(1)(x)
)

= exp
(
− λ

∫ ti+z

ti

dλ(1)(x) ·
∫ ∞

0

f(r) dr
)

= e−λz.

Denote the starting point of the i-th white interval by Ti. Let A := {Wi ≥ z}
and for η > 0 let (tηl )l∈N0 be a partition of [0,∞) with |tηl+1 − tηl | = η. Let

Â(ti, a) := {there is no jump in [ti, ti + a)} and

Aη :=
⋃

l∈N0

{Ti ∈ [tηl , t
η
l+1)} ∩ Â(tηl+1, z).
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Hence, Aη ↗ A as η → 0. Therewith we deduce

P [Wi ≥ z] = lim
η→0

P [Aη]

= lim
η→0

∑

l∈N0

P [Â(tηl+1, z)] · P [Ti ∈ [tηl , t
η
l+1) |Â(tηl+1, z)]

= e−λz · lim
η→0

∑

l∈N0

P [Ti ∈ [tηl , t
η
l+1) | Â(tηl+1, z)]

= e−λz · lim
η→0

P
[ ⋃

l∈N0

{Ti ∈ [tηl , t
η
l+1) | Â(tηl+1, z)]

= e−λz.

To show that the (Wi)i∈N are independent we show the independence of a pair
Wi, Wj with j > i. The proofs for the other combinations follow analogously. Let
Ã := {Wi ≥ a1,Wj ≥ a2} and for η > 0 let (tηl )l∈N0 be a partition of [0,∞) with
|tηl+1 − tηl | = η. Let

Ãη :=
⋃

l,m∈N0,
l+1+

a1
η

<m

({Ti ∈ [tηl , t
η
l+1) , Tj ∈ [tηm, tηm+1)} ∩ Â(tηl+1, a1) ∩ Â(tηm+1, a2)

)
.

Hence, Ãη ↗ Ã as η → 0. Therewith we deduce

P [Wi ≥ a1,Wj ≥ a2]

= lim
η→0

P [Ãη]

= lim
η→0

∑

l,m∈N0,
l+1+

a1
η

<m

P [Â(tηl+1, a1) ∩ Â(tηm+1, a2)]

· P [Ti ∈ [tηl , t
η
l+1) , Tj ∈ [tηm, tηm+1)| Â(tηl+1, a1) ∩ Â(tηm+1, a2)]

= e−λ(a1+a2)·
· lim

η→0

∑

l,m∈N0,
l+1+

a1
η

<m

P [Ti ∈ [tηl , t
η
l+1) , Tj ∈ [tηm, tηm+1)| Â(tηl+1, a1) ∩ Â(tηm+1, a2)]

= e−λ(a1+a2)·
· lim

η→0
P

[ ⋃

l,m∈N0,
l+1+

a1
η

<m

({Ti ∈ [tηl , t
η
l+1) , Tj ∈ [tηm, tηm+1)}| Â(tηl+1, a1) ∩ Â(tηm+1, a2)

)]

= e−λ(a1+a2)

= P [Wi ≥ a1] · P [Wj ≥ a2].
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Using this and the exponential Tchebycheff inequality we get for t > 0 and θ > 0
the estimate

P
[1

t

k∑
i=1

Wi ≤ 1
]
≤ eθ · E[e−

θ
t

∑k
i=1 Wi ]

= ek·log(E[e−
θ
t W1 ])+θ

Define ΛW1(θ) := log(E[e−
θ
t
W1 ]) = log(

∫∞
0

λ · e−λs · e− θ
t
s ds). We deduce

ΛW1(θ) = log(

∫ ∞

0

λ · e−λs · e− θ
t
s ds)

= log
( λ

λ + θ/t

)
.

Hence,

P
[1

t

k∑
i=1

Wi ≤ 1
]
≤ ek·log( λ

λ+θ/t)+θ

and with θ = k

P
[ k∑

i=1

Wi ≤ t
]
≤ ek log( λt

λt+k)+k

= e−k log k+k
(
1+log(λt)−log(λt

k
+1)

)

≤ e−k log k+k(1+log(λt)). (4.2)

Consider now the G1, . . . Gk. As before we interpret the Boolean model Ξ̌ as
a marked Poisson point process (Ψ,m) = {(x1, m1), (x2,m2), . . .} and translate
it via T̃ : R2 → R2 with T̃ ((a, b)) = (a − b, b). Hence, this translated marked
point process can be interpreted as a Boolean model where the germs xj are
the starting points of the corresponding grain intervals with length 2mj. Denote

these translated green intervals by Ĝ1, . . . , Ĝk. Assume that the green interval Ĝi

starts in the point xĜi
1 of the Poisson point process and denote the corresponding

random radius by RĜi
1 . Hence, we estimate for small a ∈ R+

P [Gi ≤ a] = P [Ĝi ≤ a]

≤ P [2RĜi
1 ≤ a]

= 2

∫ a

0

f(x) dx

∼ 2 · f(0) · a, for all i = 1, . . . , k.

Hence, for all ε > 0 there exists aε > 0 such that for all a ≤ aε we have

P [Gi ≤ a] ≤ (1 + ε) · 2 · f(0) · a.
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Let ε := 1. Since P [Gi ≤ a] ≤ 1 for all a ∈ [a1, 1] there exists a constant
c := max{ 1

a1
, 4 · f(0), 1} ≥ 1 such that

P [Gi ≤ a] ≤ c · a, for all 0 ≤ a ≤ 1, i = 1, . . . , k. (4.3)

For an upper estimate we use again the exponential Tchebycheff inequality which
yields for t > 0 and θ > 0

P [
1

t

k∑
i=1

Gi ≤ 1] ≤ eθ · E[e−
θ
t

∑k
i=1 Gi ]

= ek·log(E[e−
θ
t G1 ])+θ

Define ΛG1(θ) := log(E[e−
θ
t
G1 ]) = log(

∫∞
0

θ
t
· e− θ

t
s ·P [G1 ≤ s] ds). Using estimate

(4.3) we deduce

ΛG1(θ) = log
( ∫ 1

0

θ

t
· e− θ

t
s · P [G1 ≤ s] ds +

∫ ∞

1

θ

t
· e− θ

t
s · P [G1 ≤ s] ds

)

≤ log
( ∫ 1

0

θ

t
· e− θ

t
s · c · s ds +

∫ ∞

1

θ

t
· e− θ

t
s ds

)

= log
(
− ce−

θ
t − c t

θ
e−

θ
t + c t

θ
+ e−

θ
t

)

= log
(
(1− c− ct

θ
) · e− θ

t + ct
θ

)
.

Hence,

P
[1

t

k∑
i=1

Gi ≤ 1
]
≤ ek·log((1−c− ct

θ
)·e− θ

t + ct
θ

)+θ,

and with θ = k this yields

P
[ k∑

i=1

Gi ≤ t
]
≤ ek log((1−c− ct

k
)k·e− k

t +ct)−k log k+k

≤ ek log(−(c−1)k·e− k
t +ct)−k log k+k

≤ e−k log k+k log(ct)+k (4.4)

as c ≥ 1. Hence, we gave upper bounds for the number of ending points of the
white intervals and of the green intervals in the interval [0, 1]. From now on we
assume that the process starts with a white interval. We distinguish between two
cases. First we consider the case where we have an even number of color changes.
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Using equations (4.2) and (4.4) we conclude

P [NΨ(1) = 2k] = P [S2k ≤ 1]− P [S2k+1 ≤ 1]

≤ P [S2k ≤ 1]

= P
[ k∑

i=1

Wi + Gi ≤ 1
]

≤ P
[ k∑

i=1

Wi ≤ 1
]
· P

[ k∑
i=1

Gi ≤ 1
]

≤ e−k log k+k(1+log λ) · e−k log k+k log c+k

= e−2k log(2k) · ek(2 log 2+2+log λ+log c)

≤ e−2k log(2k) · (e2 log 2+2+log λ+log c
)2k

.

Analogously we get for an odd number of color changes

P [NΨ(1) = 2k + 1]

= P [S2k+1 ≤ 1]− P [S2k+2 ≤ 1]

≤ P [S2k+1 ≤ 1]

= P
[ k+1∑

i=1

Wi +
k∑

i=1

Gi ≤ 1
]

≤ P
[ k+1∑

i=1

Wi ≤ 1
]
· P

[ k∑
i=1

Gi ≤ 1
]

≤ e−(k+1) log(k+1)+(k+1)(1+log λ) · e−k log k+k log c+k

= e
−(2k+1) log(2k+1)+(k+1)(1+log λ)+k log( 4k2+4k+1

k2+k
)+log( 2k+1

k+1
)+k log c+k

≤ e−(2k+1) log(2k+1) · e(k+1)(1+log λ)+k log( 9
2
)+log(2)+k log c+k

≤ e−(2k+1) log(2k+1) ·
(
e1+log λ+log( 9

2
)+log 2+log c+1

)2k+1

.

Define

γ := max{e2 log 2+2+log λ+log c, e1+log λ+log( 9
2
)+log 2+log c+1}.

This yields

P [NΨ(1) = k] ≤ γk · e−k log k for all k ≥ 1. (4.5)

Thus we got an upper bound for the distribution of the number of interval ending
points in [0, 1].
Now we are going to construct the codebook with n elements which we will use
to code the model. Analogously to the proof of Theorem 2.3.1 in Section 2.3 we
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consider a sequence (nk)k∈N0 such that for all 0 ≤ k ≤ 4 ·
√

2 log n
log log n

it holds nk ≥ 1

for n large enough and
∞∑

k=0

nk ≤ n,

where k denotes the number of color changes in the interval [0, 1]. For 0 ≤ k ≤
4 ·

√
2 log n

log log n
let Ck be an arbitrary codebook for ξ̌k with |Ck| ≤ nk. Therewith we

get analogously to equation (2.1)

(D(q),s( log n | ξ̌, dH))s

≤
b4·

√
2 log n

log log n
c∑

k=0

P [NΨ(1) = k] ·
∫

min
y∈Ck

(dH(x, y))s dξ̌k(x)

+
∞∑

k=b4·
√

2 log n
log log n

c+1

P [NΨ(1) = k] ·
∫

min
y∈C0

(dH(x, y))s dξ̌k(x) (4.6)

Consider the case where 0 is inside a white area, i.e. 0 6∈ Ξ̌. We construct the
codebook for ξ̌k similar to the codebook we used for the point process in Section
2.2. Nevertheless, as we here consider the Hausdorff-distance instead of the L1-
distance we have to make some modifications.
Recall the definitions

Γ(k) := {(x1, . . . , xk) ∈ [0, 1]k : 0 < x1 < x2 < . . . < xk ≤ 1}
and

∆(k) := {(x1, . . . , xk) ∈ Rd : xi > 0, for all i = 1, . . . , k and
k∑

i=1

xi ≤ 1}.

Consider a realization yk of Ξ̌k and denote the visible points of this realization in
[0, 1] by 0 < s1 < s2 < . . . < sk ≤ 1. Thus (s1, s2, . . . , sk) ∈ Γ(k). Using the map
T defined by (2.3) for a = 1 yields a tuple

T
(
(s1, s2, . . . , sk)

)
= (t1, t2, . . . , tk) ∈ ∆(k).

Let

δ :=
(⌊

2−
1
k · e− 1

k · (k!)−
1
k · n 1

k

⌋)−1

. (4.7)

Analogously to equation (2.5) we deduce 1
δ
≥ 1 and, hence, 1

δ
∈ N. As in the

proof of Theorem 2.2.1 we cover the k-dimensional simplex ∆(k) with small cubes
with side length δ. As before we need

n
(1)
k =

{
1
δ
, k = 1,∑ 1

δ
mk−1=1

∑mk−1

mk−2=1 . . .
∑m2

m1=1 m1, k ≥ 2,
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cubes to cover the simplex, and get analogously to equation (2.6) with a = 1 the
relation

n
(1)
k ≤

(
1

δ

)k

, for all k ≥ 1. (4.8)

Denote the small cubes by K
(k),j
δ , j = 1 . . . , n

(1)
k . In the center of each small cube

we put a coding point (t̂
(j)
1 , . . . , t̂

(j)
k ), j = 1, . . . , n

(1)
k . The codebook consists of

the union of all these center points. It is composed in such a way that

min
l=1,...,n

(1)
k

|ti − t̂
(l)
i | ≤ δ

2
for all i = 1, . . . , k (4.9)

Let
(ŝ

(j)
1 , . . . , ŝ

(j)
k ) := T−1

(
(t̂

(j)
1 , . . . t̂

(j)
k )

)
, j = 1, . . . , n

(1)
k .

Now we define the codebook for the case where 0 6∈ Ξ̌ via

Ξ̂
(j),w
k :=

{
{b ∈ R | b ∈ ⋃k/2

i=1[ŝ
(j)
2i−1, ŝ

(j)
2i ]} k even,

{b ∈ R | b ∈ ⋃k−1/2
i=1 [ŝ

(j)
2i−1, ŝ

(j)
2i ] ∪ [ŝ2k+1, 1]} k odd.

for j = 1, . . . , n
(1)
k and

Ξ̂w
k := {Ξ̂(j),w

k , j = 1, . . . , n
(1)
k }.

Hence, we can estimate the minimal Hausdorff-distance between yk and the ele-
ments of Ξ̂w

k using equation (4.9)

min
ŷk∈Ξ̂w

k

dH(yk, ŷk) ≤
n

(1)
k∑

j=1

1{
T ((s1,...,sk))∈K

(k),j
δ

} · max
i∈{1,...,k}

|ŝi − si|

≤ k ·
n

(1)
k∑

j=1

1{
T ((s1,...,sk))∈K

(k),j
δ

} · max
i∈{1,...,k}

|t̂(j)i − ti|

≤ k · δ

2
. (4.10)

For the case where 0 ∈ Ξ̌ we get analogous results if we use the codebook defined
by

Ξ̂g
k := {[0, 1] \ Ξ̂

(j),w
k , j = 1, . . . , n

(1)
k }.

Define the codebook for Ξ̌k by

Ξ̂0 := {∅, [0, 1]} and Ξ̂k := Ξ̂w
k ∪ Ξ̂g

k for 1 ≤ k ≤ 4 ·
√

2 log n

log log n
.
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Without loss of generality assume e−1 · 1
k!
· n ≥ 2. If we define n0 := 2, nk :=

|Ξ̂k| = 2 · n(1)
k for all 1 ≤ k ≤ 4 ·

√
2 log n

log log n
and nk := 0 for k > 4 ·

√
2 log n

log log n
we get

analogously to equation (2.8) with a = 1 and q = 2

∞∑

k=0

nk ≤ n.

The definition of δ and equation (4.10) yield for s ∈ R+

∫
min
y∈Ξ̂k

(dH(x, y))s dξ̌k(x) ≤
(

k

2
·
(⌊

2−
1
k · e− 1

k · (k!)−
1
k · n 1

k

⌋)−1
)s

∼
(

k

2

)s

· 2 s
k · e s

k · (k!)
s
k · n− s

k as n →∞

uniformly for all 1 ≤ k ≤ 4 ·
√

2 log n
log log n

. For the case where k > 4 ·
√

2 log n
log log n

we use

the codebook Ξ̂0 and get
∫

min
y∈Ξ̂0

(dH(x, y))s dξ̌k(x) ≤ 1.

Combining these estimates with equation (4.6) yields

(D(q),s(log n | ξ̌, dH))s .
b4·

√
2 log n

log log n
c∑

k=0

P [NΨ(1) = k] ·
(

k

2

)s

· 2 s
k · e s

k · (k!)
s
k · n− s

k

+
∞∑

k=b4·
√

2 log n
log log n

c+1

P [NΨ(1) = k] as n →∞.

In the proof of Theorem 2.2.1 we got the same upper bound sum for the quanti-
zation error of a jump process in R with a = 1 and q = 2 (see equation (2.12))
besides the factor k instead of k(k + 1). As this factor is not important for the
asymptotics of the sum, we can determine the asymptotics of the whole sum
following exactly the way there which yields

(D(q),s(log n | ξ̌, dH))s ≤ e−(1+o(1))·(2s·log n·log log n)
1
2 as n →∞

and, hence,

D(q),s(log n | ξ̌, dH) ≤ e−(1+o(1))·( 2
s
·log n·log log n)

1
2 as n →∞.

¤
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4.3 The quantization error of the Boolean model

under Hausdorff distortion

In this section we give an upper bound for the quantization error of the Boolean
model as specified in Definition 4.1.8 and a lower bound for the quantization error
of the Boolean model as specified in Definition 4.1.5 both in the special case where
C = [−1

2
, 1

2
]d. As the radii of the balls Ri are distributed on the interval [0,∞),

every ball of the Boolean model might have a nonempty intersection with the
compact set C.

Lemma 4.3.1 1.) Consider the Boolean model from Definition 4.1.5 on Rd. Let
F (t) :=

∫ t

0
f(x) dx and E[Rd

1] < ∞.
For l > 0, l ∈ R, let A be the event that all balls of the Boolean model with
center outside the cube [−l, l]d have an empty intersection with the compact cube
[−1

2
, 1

2
]d. Then we have

P [A] ≥ exp
(
− λ2d ·

d∑
i=1

(
d

i

) ∫ ∞

l

sd−i · (1− F (s)) ds
)

−→ 1 for l →∞.

2.) Consider the Boolean model from Definition 4.1.4 on Rd. For l > 0, l ∈ R,
let Ã be the event that all grains of the Boolean model with corresponding germ
outside the cube [−l, l]d have an empty intersection with the cube [−l, l]d. Then
we have

P [Ã]

≥ exp
(
− λ2d · lim

a→∞
lim
δ→0

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d − (l + jδ)d) · P [F1 > 2jδ])
)

=: c(λ, l, d)

with 0 < c(λ, l, d) ≤ 1 for all λ, l ∈ R+ and d ∈ N.

Proof.
1.) Let δ > 0 and j, j̃ ∈ N. Define

Vjδ := [−l − (j + 1)δ, l + (j + 1)δ]d \ [−l − jδ, l + jδ]d

and

h(l, j, δ) := λ(d)(Vjδ) = 2d · ((l + (j + 1)δ)d − (l + jδ)d).
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As the sets Vjδ and Vj̃δ are disjoint for j 6= j̃, j, j̃ ∈ N, and the Rm are independent
of each other and of Φ we can deduce that

P [A]

≥ lim
a→∞

lim
δ→0

P
[ b(a−l)/δc⋂

j=0

(
{Φ(Vjδ) = 0} ∪

∪ ( ∪∞i=1

({Φ(Vjδ) = i} ∩ (∩i
m=1{Rm ≤ l + jδ})))

)]

= lim
a→∞

lim
δ→0

b(a−l)/δc∏
j=0

(
e−λh(l,j,δ) +

( ∞∑
i=1

(
e−λh(l,j,δ) · (λh(l, j, δ))i

i!
·

i∏
m=1

F (l + jδ)
)))

= lim
a→∞

lim
δ→0

b(a−l)/δc∏
j=0

( ∞∑
i=0

(
e−λh(l,j,δ) · (λh(l, j, δ)F (l + jδ))i

i!

))

= lim
a→∞

lim
δ→0

b(a−l)/δc∏
j=0

e−λ2d·((l+(j+1)δ)d−(l+jδ)d)·(1−F (l+jδ))

= exp
(
− λ2d · lim

a→∞
lim
δ→0

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d − (l + jδ)d) · (1− F (l + jδ))
)

Consider the sum

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d − (l + jδ)d) · (1− F (l + jδ))

=

b(a−l)/δc∑
j=0

[
(l + jδ)d + d · (l + jδ)d−1δ +

(
d

2

)
(l + jδ)d−2δ2 + . . .

. . . +δd − (l + jδ)d
] · (1− F (l + jδ))

=

b(a−l)/δc∑
j=0

[
d · (l + jδ)d−1δ +

(
d

2

)
(l + jδ)d−2δ2 + . . . + δd

]
· (1− F (l + jδ))

=

b(a−l)/δc∑
j=0

d · (l + jδ)d−1δ · (1− F (l + jδ)) + . . .

. . . +

b(a−l)/δc∑
j=0

δd · (1− F (l + jδ)). (4.11)

We analyze the limits of the sums.

d · lim
a→∞

lim
δ→0

b(a−l)/δc∑
j=0

δ · (l + jδ)d−1(1− F (l + jδ))
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= d · lim
a→∞

∫ a−l

0

(l + s)d−1 · (1− F (l + s)) ds

= d · lim
a→∞

∫ a

l

sd−1 · (1− F (s)) ds

= d ·
∫ ∞

l

sd−1 · (1− F (s)) ds

< ∞ for all l > 0

since F is the distribution function of the Ri and E[Rd
1] < ∞.

Without loss of generality let δ < 1. Thus the second sum can be estimated

(
d

2

)
· lim

a→∞
lim
δ→0

b(a−l)/δc∑
j=0

δ2 · (l + jδ)d−2(1− F (l + jδ))

≤
(

d

2

)
· lim

a→∞
lim
δ→0

b(a−l)/δc∑
j=0

δ · (l + jδ)d−2(1− F (l + jδ))

=

(
d

2

)
· lim

a→∞

∫ a

l

sd−2 · (1− F (s)) ds

=

(
d

2

)
·
∫ ∞

l

sd−2 · (1− F (s)) ds

< ∞ for all l > 0.

We get analogous results for the other sums in equation (4.11) and hence,

P [A] ≥ exp
(
− λ2d ·

d∑
i=1

(
d

i

) ∫ ∞

l

sd−i · (1− F (s)) ds
)
.

Since all the integrals are finite due to E[Rd
1] < ∞ we get for every i = 1, . . . , d

lim
l→∞

∫ ∞

l

sd−i · (1− F (s)) ds = 0,

and the first part is proved.

2.) Analogously to the first part it follows that

P [Ã] ≥ exp
(
− λ2d · lim

a→∞
lim
δ→0

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d − (l + jδ)d) · (1− F (jδ))
)

We will show now that

lim
a→∞

lim
δ→0

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d − (l + jδ)d) · (1− F (jδ))
)

< ∞ for all l ∈ R+
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because then the second part will be proved. As in equation (4.11) we get

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d − (l + jδ)d) · (1− F (jδ))

=

b(a−l)/δc∑
j=0

d · (l + jδ)d−1δ · (1− F (jδ)) + . . . +

b(a−l)/δc∑
j=0

δd · (1− F (jδ)).

Again we have to analyze the limits of the sums.

d · lim
a→∞

lim
δ→0

b(a−l)/δc∑
j=0

δ · (l + jδ)d−1(1− F (jδ))

= d · lim
a→∞

∫ a−l

0

(l + s)d−1 · (1− F (s)) ds

= d · lim
a→∞

∫ a−l

0

ld−1 · (1− F (s)) ds + . . .

. . . + d · lim
a→∞

∫ a−l

0

sd−1 · (1− F (s)) ds

= d · ld−1 · E[R1] + . . . + d · 1

d
· E[Rd

1]

< ∞ for all l > 0.

We get analogous results for the other sums. Thus

0 ≤ lim
a→∞

lim
δ→0

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d − (l + jδ)d) · (1− F (jδ)) < ∞

and hence, with

c(λ, l, d) := exp
(
−λ2d · lim

a→∞
lim
δ→0

b(a−l)/δc∑
j=0

((l + (j + 1)δ)d− (l + jδ)d) · (1−F (jδ))
)

it follows

0 < c(λ, l, d) ≤ 1

and the assertion is proved.

¤

Now we give an upper bound for the quantization error of the Boolean model in
the case where the radii are bounded by b > 0.
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Theorem 4.3.2 Consider the Boolean model from Definition 4.1.8 on the com-
pact cube [−1

2
, 1

2
]d. For b > 0 and s > 0 we have

D(q),s(log n |Ξ(b), dH) ≤ exp

(
−(1 + o(1))

√
2

s(d + 1)
· log n log log n

)

as n →∞.

Proof:
Let b > 0. As the radii take values in the interval [0, b] every point of the
corresponding Poisson point process in the cube [−b, b]d may have influence on
the cube [−1

2
, 1

2
]d. Therefore we will construct a codebook whose elements will

be composed of points in [−b, b]d (to code the Poisson point process) and values
in R to code the radii of the balls. We decompose the distribution ξ(b) of Ξ(b) by
decomposing the distribution µ of the corresponding Poisson point process Φ. As
in Section 2.3 we split µ into

µ =
∞∑

k=0

e−λ·(2b)d · (λ · (2b)d)k

k!
· µk,

where µ0(∅) := 1 and µk is the distribution of Φk := Φ|{NΦ([−b,b]d)=k}. Note
that µk is a product distribution of k uniform distributions on [−b, b]d for k ≥
1. Let Ξ

(b)
k := Ξ(b)|{NΦ([−b,b]d)=k} be the Boolean model on [−1

2
, 1

2
]d that has

exactly k points of the corresponding Poisson point process in [−b, b]d. Denote

the distribution of Ξ
(b)
k by ξ

(b)
k .

Consider a sequence (nk)k∈N0 such that for all 0 ≤ k ≤ 4 ·
√

2s log n
(d+1) log log n

it holds

nk ≥ 1 and
∞∑

k=0

nk ≤ n.

For 0 ≤ k ≤ 4 ·
√

2s log n
(d+1) log log n

let Ck be an arbitrary codebook for ξ
(b)
k with

|Ck| ≤ nk. Let C :=

b4·
√

2s log n
(d+1) log log n

c⋃
k=0

Ck. Since C is a codebook for ξ(b) with

|C| ≤ n we deduce analogously to equation (2.1)

(D(q),s( log n |Ξ(b), dH))s

≤
b4·

√
2s log n

(d+1) log log n
c∑

k=0

e−λ·(2b)d (λ · (2b)d)k

k!
·
∫

min
y∈Ck

dH(x, y)s dξ
(b)
k (x)

+
∞∑

k=b4·
√

2s log n
(d+1) log log n

c+1

e−λ·(2b)d (λ · (2b)d)k

k!
·
∫

min
y∈C0∪C1

dH(x, y)s dξ
(b)
k (x)

(4.12)

82



Without loss of generality assume e−1 · n ≥ 1. In the case where k = 0 we have
no point in [−b, b]d. Thus we define Ĉ0 := {∅}, which leads to

(D(q),s(log n0 |Ξ(b)
0 , dH))s = 0 for n0 = 1. (4.13)

Now we construct a specific codebook, say Ĉk, for Ξ
(b)
k for 1 ≤ k ≤ 4·

√
2s log n

(d+1) log log n
.

It will be composed of k balls with center in [−b, b]d. These balls are specified by
the position of the centers and the length of the radii. We use one part of the
codebook to code Φk, the point process in [−b, b]d with exactly k points, and the
remaining part is used for the R1, . . . , Rk, the radii of the balls in the Boolean
model.
Consider a realization y

(b)
k of Ξ

(b)
k . Denote the germs of this realization by φk and

the radii of the grains by r1, . . . , rk. Let

δ := 2b ·
(⌊

(2b)
1

d+1 · (
√

d + 1)−
1

d+1 · e− 1
k(d+1) · (k!)−

1
k(d+1) · n 1

k(d+1)

⌋)−1

. (4.14)

Analogously to equation (2.5) it can be shown that for all 1 ≤ k ≤ 4·
√

2s log n
(d+1) log log n

and for n large enough we have 2b
δ
≥ 1 and, hence, 2b

δ
∈ N. We divide the cube

[−b, b]d into small cubes with side length δ. To fill the big cube we need (2b/δ)d

small cubes, denoted by K1, . . . , K( 2b
δ

)d . Denote the center of Kj by x̂j for all

j = 1, . . . , (2b/δ)d. Let I := {x̂1, . . . , x̂( 2b
δ

)d}. We put a coding point in the center

of a small cube if at least one of the original points is inside this small cube. We
define the codebook for this part

ĈΦ
k := {φ̂ ⊂ I : |φ̂| = i, i = 1, . . . , k}.

Thus we allocate k or, if two or more original points are in one small cube, less
than k coding points to (2b/δ)d cubes. Hence, we need

n
(1)
k := |ĈΦ

k | =
k∑

i=1

(
(2b

δ
)d

i

)

codebook elements, denoted by φ̂
(1)
k , . . . , φ̂

(n
(1)
k )

k . It is easy to verify that for all
2b
δ
≥ 2 and k ≥ 1 it holds

1 ≤ n
(1)
k ≤

(2b

δ

)dk

. (4.15)

With this codebook the Hausdorff distance between the realization φk and the
coding points is smaller than (

√
dδ)/2

min
i=1,...,n

(1)
k

dH(φk, φ̂
(i)
k ) ≤

√
d

2
· δ. (4.16)
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To code also the radii we need more coding points. As we are only interested
in the length of the radii inside [−1

2
, 1

2
]d, we need one point to code if the ball

is completely outside the cube and use
√

d/δ points to mark the ending of the
radius inside the cube. For this we divide the interval [0,

√
d] into small intervals

with length δ and put in the middle of each small interval a coding point. As we
do this for each of the k points we need for this part the rate

n
(2)
k :=

(√d

δ
+ 1

)k

,

which satisfies

1 ≤ n
(2)
k ≤

(√d + 1

δ

)k

. (4.17)

Denote these radii codebook elements by r̂
(1)
k , . . . , r̂

(n(2))
k . Let k1 ≤ k and assume

that r1, . . . , rk1 are the radii of all original balls that end inside the cube [−1
2
, 1

2
]d.

Then it follows

min
j=1,...,n

(2)
k

dH(rm, r̂
(j)
k ) ≤ δ

2
for all m = 1, . . . , k1. (4.18)

Now we define the codebook for Ξ
(b)
k

Ĉk := {φ̂(i)
k + B

r̂
(j)
k

(0) : i = 1, . . . , n
(1)
k , j = 1, . . . , n

(2)
k }. (4.19)

We code each ball of the original signal by a ball whose center is less than (
√

dδ)/2
away from the original center and whose radius differs for less than δ/2 from the
original radius. Thus, with equations (4.16) and (4.18) we deduce

min
ŷk∈Ĉk

dH(y
(b)
k , ŷk) ≤

√
d + 1

2
· δ

and hence, for s > 0 it follows

min
ŷk∈Ĉk

dH(y
(b)
k , ŷk)

s ≤ (
√

d + 1)s

2s
· δs. (4.20)

Thus we need a total rate of nk := |Ĉk| = n
(1)
k · n(2)

k for ξ
(b)
k to get Hausdorff

distortion less than
√

d+1
2

δ for 1 ≤ k ≤ 4 ·
√

2s log n
(d+1) log log n

. For k > 4 ·
√

2s log n
(d+1) log log n

let nk := 0.
Now we show that with these definitions it holds that

∑∞
k=0 nk ≤ n. Due to
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equations (4.15) and (4.17) and the definition of δ we get

nk = n
(1)
k · n(2)

k

≤ (2b)dk·(
√

d+1)k

δk(d+1)

= (2b)dk·(
√

d+1)k

(2b)k(d+1) ·
(⌊

(2b)
1

d+1 · (
√

d + 1)−
1

d+1 · e− 1
k(d+1) · (k!)−

1
k(d+1) · n 1

k(d+1)

⌋)k(d+1)

≤ (
√

d+1)k

(2b)k ·
(
(2b)

1
d+1 · (

√
d + 1)−

1
d+1 · e− 1

k(d+1) · (k!)−
1

k(d+1) · n 1
k(d+1)

)k(d+1)

≤ e−1 · (k!)−1 · n,

which leads to

∞∑

k=0

nk ≤ 1 +

b4·
√

2s log n
(d+1) log log n

c∑

k=0

e−1 · (k!)−1 · n

≤ n. (4.21)

By construction of the codebook Ĉk and in particular by (4.20) and the definition
of δ (4.14) we have for large n∫

min
y∈Ĉk

dH(x, y)s dξ
(b)
k (x)

≤ (
√

d + 1)s

2s
· δs

∼ (
√

d + 1)s

2s
· (2b) ds

d+1 · (
√

d + 1)
s

d+1 · e s
k(d+1) · (k!)

s
k(d+1) · n− s

k(d+1) . (4.22)

Now let k > 4 ·
√

2s log n
(d+1) log log n

. We code the case of k jumps with one of the n0+n1

codebook elements from Ĉ0∪ Ĉ1, denoted by ỹ(1), . . . , ỹ(n0+n1). Thus, we can give
an upper bound for the distortion between these codebook elements and Ξ

(b)
k∫

min
{i=1,...,n0+n1}

(dH(ỹ(i), x))s dξ
(b)
k (x) ≤ (

√
d · 2b)s. (4.23)

Combining equations (4.12), (4.13), (4.22) and (4.23) yields

(D(q),s(log n |Ξ(b), dH))s (4.24)

.
b4·

√
2s log n

(d+1) log log n
c∑

k=1

e−λ·(2b)d (λ · (2b)d)k

k!
· (
√

d + 1)s

2s
·

· (2b) ds
d+1 · (

√
d + 1)

s
d+1 · e s

k(d+1) · (k!)
s

k(d+1) · n− s
k(d+1)

+
∞∑

k=b4·
√

2s log n
(d+1) log log n

c+1

e−λ·(2b)d (λ · (2b)d)k

k!
· (
√

d · 2b)s as n →∞.

(4.25)
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We consider the first sum and assert

b4·
√

2s log n
(d+1) log log n

c∑

k=1

e−λ·(2b)d (λ · (2b)d)k

k!
· (2b)

sd
d+1 (

√
d + 1)s d+2

d+1

2s
·
(k! · e

n

) s
k(d+1)

≤ e−(1+o(1))
√

2s
d+1

log n log log n, n →∞. (4.26)

To prove this we define

β̃(d, λ, b) := log

(
e−λ·(2b)d · (2b)

sd
d+1 (

√
d + 1)s d+2

d+1

2s

)

and for every n ∈ N the function

fn : R+ → R+

k 7→ eβ̃(d,λ,b) · (λ · (2b)d)k · Γ(k + 1)−1+ s
k(d+1) · e s

k(d+1) · n− s
k(d+1)

With Proposition 1.2.1 and 1 ≤ k, which implies log k
k

≤ 1, we give an upper
bound for fn

fn(k) = eβ̃(d,λ,b) · (λ(2b)d)k · (Γ(k + 1))−1+ s
k(d+1) · e s

k(d+1) n−
s

k(d+1)

≤ eβ̃(d,λ,b) · (λ(2b)d)k · (c1 ·
√

k · (k
e
)k)−1+ s

k(d+1) · e s
k(d+1) n−

s
k(d+1)

= exp
(
β̃(d, λ, b) + k log(λ(2b)d) + ( s

k(d+1)
− 1) log c1 + ( s

2k(d+1)
− 1

2
) log k

)

· exp
(
( s

d+1
− k) log k − ( s

d+1
− k) + s

k(d+1)
− s

k(d+1)
log n

)

≤ exp
(
β̃(d, λ, b) + k log(λ(2b)d) + ( s

d+1
− 1) log c1 + s

2(d+1)
− 1

2
log k

)

· exp
(

s
d+1

log k − k log k − s
d+1

+ k + s
d+1

− s
k(d+1)

log n
)

= exp
(
β̃(d, λ, b) + k · (log(λ(2b)d) + 1− log k) + ( s

d+1
− 1

2
) log k

)

· exp
(
− s

k(d+1)
log n + s

2(d+1)
+ ( s

d+1
− 1) log c1

)

=: hn(k). (4.27)

For simplicity denote β(d, λ, b) := β̃(d, λ, b) + s
2(d+1)

+ ( s
d+1

− 1) log c1.

We split the sum from equation (4.24) into the following four parts

(
D(q),s(log n |Ξ(b), dH)

)s

.
bλe(2b)dc∑

k=1

fn(k) +

b
√

s log n
2(d+1) log log n

c∑

k=b(λe(2b)d)c+1

fn(k)
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+

b4
√

2s log n
(d+1) log log n

c∑

k=b
√

s log n
2(d+1) log log n

c+1

fn(k)

+
∞∑

k=b4
√

2s log n
(d+1) log log n

c+1

e−λ(2b)d (λ(2b)d)k

k!
· (
√

d · 2b)s (4.28)

as n →∞.
Part 1: Consider the first part where 1 ≤ k ≤ λe·(2b)d. First assume s

d+1
− 1

2
≥ 0.

For these k we give an upper bound for fn

fn(k) ≤ hn(k)

≤ exp(λe(2b)d · (log(λ(2b)d) + 1) + ( s
d+1

− 1
2
) log(λe(2b)d))

· exp(− s log n
(λe(2b)d)(d+1)

+ β(d, λ, b)).

Therefore we have

∑b(λ(2b)d)ec
k=1 fn(k)

e−
√

2s
d+1

log n log log n

≤ exp
(
λ(2b)de · (log(λ(2b)d) + 1) + ( s

d+1
− 1

2
) log(λe(2b)d)

)

· exp
(
− s log n

(λ(2b)d)e(d+1)
+ β(d, λ, b) +

√
2s

d+1
log n log log n

)

−→ 0 as n →∞.

In the second case we have s
d+1

− 1
2

< 0. Thus, we estimate

fn(k) ≤ hn(k)

≤ exp(λe(2b)d · (log(λ(2b)d) + 1)− s log n
(λe(2b)d)(d+1)

+ β(d, λ, b))

and

∑b(λe(2b)d)c
k=1 fn(k)

e−
√

2s
d+1

log n log log n
≤ exp(λe(2b)d · (log(λ(2b)d) + 1))

· exp(− s log n
(λe(2b)d)(d+1)

+ β(d, λ, b) +
√

2s
d+1

log n log log n)

−→ 0, n →∞.

Hence,

bλ(2b)dec∑

k=1

fn(k) = o
(
e−
√

2s
d+1

log n log log n
)
, n →∞. (4.29)
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Part 2: Consider the second part where λe(2b)d ≤ k ≤
√

s log n
2(d+1) log log n

. For these

k we give an upper bound for hn(k) for s
d+1

− 1
2
≥ 0

hn(k)

= exp
(
k · (log(λ(2b)d) + 1− log k) + ( s

d+1
− 1

2
) log k − s

k(d+1)
log n + β(d, λ, b)

)

≤ exp
(
0 + ( 1

d+1
− 1

2
) log(

√
s log n

2(d+1) log log n
)− s log n

(d+1)
√

s log n
2(d+1) log log n

+ β(d, λ, b)
)

= exp
(
( 1

d+1
− 1

2
) log(

√
s log n

2(d+1) log log n
)−

√
2s

d+1
log n log log n + β(d, λ, b)

)

This leads with equation (4.27) to

b
√

s log n
2(d+1) log log n

c∑

k=bλ(2b)dec+1

fn(k) ≤ exp
(
(1 + 1

d+1
− 1

2
) log(

√
s log n

2(d+1) log log n
)
)

· exp
(
−

√
2s

d+1
log n log log n + β(d, λ, b)

)

and since

( 1
d+1

+ 1
2
) log(

√
s log n

2(d+1) log log n
)−

√
2s

d+1
log n log log n + β(d, λ, b)

∼ −
√

2s
d+1

log n log log n as n →∞,

we have

b
√

s log n
2(d+1) log log n

c∑

k=bλ(2b)dec+1

fn(k) ≤ e−(1+o(1))
√

2s
d+1

log n log log n as n →∞.

For s
d+1

− 1
2

< 0 we estimate

hn(k) ≤ exp
(
( 1

d+1
− 1

2
) log(λe(2b)d)−

√
2s

d+1
log n log log n + β(d, λ, b)

)

and obtain again

b
√

s log n
2(d+1) log log n

c∑

k=bλ(2b)dec+1

fn(k) ≤ e−(1+o(1))
√

2s
d+1

log n log log n as n →∞. (4.30)

Part 3: Now we come to the third part of the sum. Define

I := {1, . . . , b4 ·
√

2s log n
(d+1) log log n

c − b1
2

√
2s log n

(d+1) log log n
c − 1}

mi :=
b1

2

√
2s log n

(d+1) log log n
c+ i

b
√

2s log n
(d+1) log log n

c
,

and k̃mi
:= mi · b

√
2s log n

(d+1) log log n
c, i ∈ I.
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Without loss of generality assume
√

2s log n
(d+1) log log n

≥ 2. Using the same arguments

as in (3.12) and (3.13) we deduce

1

2
≤ mi ≤ 8 for all i ∈ I.

Consider the case where s
d+1

− 1
2
≥ 0. Using the fact that 1

2
c + 1

2c
≥ 1 for all

c ∈ R we give an upper bound

log(hn(kmi
))

= kmi
· (log(λ(2b)d) + 1− log kmi

) + ( s
d+1

− 1
2
) log kmi

− s log n
(d+1)kmi

+ β(d, λ, b)

≤ mi ·
√

2s log n
(d+1) log log n

·
(
log(λ(2b)d) + 1− log

(
mi ·

√
2s log n

(d+1) log log n

))

+ ( s
d+1

− 1
2
) log

(
mi · (

√
2s log n

(d+1) log log n
+ 1)

)
− s log n

(d+1)·mi·(
√

2s log n
(d+1) log log n

+1)

+ β(d, λ, b)

= − (1
2
mi + 1

2mi
) ·

√
2s

d+1
log n log log n + β(d, λ, b)

+ mi ·
√

2s log n
(d+1) log log n

·
(
log(λ(2b)d) + 1− log

(
mi ·

√
2s

(d+1) log log n

))

+ ( s
d+1

− 1
2
) log

(
mi · (

√
2s log n

(d+1) log log n
+ 1)

)
+

√
s log n log log n

mi

√
2(
√

2s log n+
√

(d+1) log log n)

≤ −
√

2s
d+1

log n log log n + β(d, λ, b)

+ 8 ·
√

2s log n
(d+1) log log n

·
(
log(λ(2b)d) + 1− log

(
1
2
·
√

2s
(d+1) log log n

))

+ ( s
d+1

− 1
2
) log

(
8 · (

√
2s log n

(d+1) log log n
+ 1)

)
+

√
s log n log log n

1
2

√
2(
√

2s log n+
√

(d+1) log log n)

= − (1 + o(1)) ·
√

2s

d + 1
log n log log n as n →∞.

In the case where s
d+1

− 1
2

< 0 we get analogously

log(hn(kmi
))

≤ mi ·
√

2s log n
(d+1) log log n

·
(
log(λ(2b)d) + 1− log

(
mi ·

√
2s log n

(d+1) log log n

))

+ ( s
d+1

− 1
2
) log

(
mi ·

√
2s log n

(d+1) log log n

)
− s log n

(d+1)·mi·(
√

2s log n
(d+1) log log n

+1)
+ β(d, λ, b)

≤ −
√

2s
d+1

log n log log n + β(d, λ, b)

+ 8 ·
√

2s log n
(d+1) log log n

·
(
log(λ(2b)d) + 1− log

(
1
2
·
√

2s
(d+1) log log n

))

+ ( s
d+1

− 1
2
) log

(
1
2
·
√

2s log n
(d+1) log log n

)
+

√
s log n log log n

1
2

√
2(
√

2s log n+
√

(d+1) log log n)
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= − (1 + o(1)) ·
√

2s

d + 1
log n log log n as n →∞.

Therefore we estimate the third part of the sum

b4
√

2s log n
(d+1) log log n

c∑

k=b
√

s log n
2(d+1) log log n

c+1

fn(k) ≤
b4

√
2s log n

(d+1) log log n
c∑

k=b
√

s log n
2(d+1) log log n

c+1

hn(k)

≤ 4
√

2s log n
(d+1) log log n

· exp
(
−(1 + o(1)) ·

√
2s

d+1
log n log log n

)

= exp
(
−(1 + o(1)) ·

√
2s

d+1
log n log log n

)
(4.31)

as n →∞.
Part 4: It remains the last part of the sum. Remember the estimate

∞∑

k=b4
√

2s log n
(d+1) log log n

c+1

e−λ(2b)d (λ(2b)d)k

k!
·
∫

min
y∈C0∪C1

(dH(x, y))s dξ
(b)
k (x)

≤
∞∑

k=b4
√

2s log n
(d+1) log log n

c+1

e−λ(2b)d (λ(2b)d)k

k!
· (
√

d · 2b)s.

Define

h̃(k) := e−λ(2b)d (λ(2b)d)k

Γ(k + 1)
· (
√

d · 2b)s

Due to Proposition 1.2.1 it follows

h̃(k) ≤ e−λ(2b)d (λ(2b)d)k

c1 ·
√

k(k
e
)k
· (
√

d · 2b)s

=: h(k).

Hence,

h̃(b4
√

2s log n
(d+1) log log n

c+ 1)

e−
√

2s
d+1

·log n log log n

≤
h(4

√
2s log n

(d+1) log log n
)

e−
√

2s
d+1

·log n log log n

= exp
(
λ(2b)d + 4

√
2s log n

(d+1) log log n
(log(λ(2b)d) + 1)− 1

2
log(4

√
2s log n

(d+1) log log n
)
)

· exp
(
−2

√
2s

d+1
log n log log n− 4

√
2s log n

(d+1) log log n
log

(
4
√

2s
(d+1) log log n

))
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· exp
(
− log(c1) + 4

√
2s log n

(d+1) log log n
+ s log(

√
d · 2b) +

√
2s

d+1
log n log log n

)

= exp
(
λ(2b)d + 4

√
2s log n

(d+1) log log n
(log(λ(2b)d) + 1)− 1

2
log(4

√
2s log n

(d+1) log log n
)
)

· exp
(
−4

√
2s log n

(d+1) log log n
log

(
4
√

2s
(d+1) log log n

))

· exp
(
− log(c1) + 4

√
2s log n

(d+1) log log n
+ s log(

√
d · 2b)−

√
2s

d+1
log n log log n

)

−→ 0 as n →∞.

Therefore h̃(b4
√

2s log n
(d+1) log log n

c + 1) = o(e−
√

2s
d+1

log n log log n), n → ∞. Then it

follows for 4
√

2s log n
(d+1) log log n

< k that

h̃(k + 1)

h̃(k)
=

λ(2b)d

k + 1

<
λ(2b)d

4
√

2s log n
(d+1) log log n

+ 1

−→ 0, n →∞.

Thus, there exists a ñ ∈ N such that for all n > ñ and k > 4
√

2s log n
(d+1) log log n

we

have
h̃(k + 1)

h̃(k)
<

1

2
.

Hence,

∞∑
k=b4

√
2s log n

(d+1) log log n
c+1

h̃(k)

≤ h̃(b4
√

2s log n
(d+1) log log n

c+ 1) ·
∞∑

k=b4
√

2s log n
(d+1) log log n

c+1

(
1
2

)k−b4
√

2s log n
(d+1) log log n

c−1

= 2 · h̃(b4
√

2s log n
(d+1) log log n

c+ 1)

= o(e−
√

2s
d+1

log n log log n), n →∞
and thus,

∞∑

k=b4
√

2s log n
(d+1) log log n

c+1

e−λ(2b)d (λ(2b)d)k

k!
· (
√

d · 2b)s ≤ o
(
e−
√

2s
d+1

log n log log n
)

(4.32)

as n → ∞. Combining now equations (4.28), (4.29), (4.30), (4.31) and (4.32)
yields

(
D(q),s(log n |Ξ(b), dH)

)s ≤ e−(1+o(1))·
√

2s
d+1

log n log log n, n →∞,
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and thus

D(q),s(log n |Ξ(b), dH) ≤ e
−(1+o(1))·

√
2

s(d+1)
log n log log n

, n →∞.

¤

Now we turn to the lower bound for the quantization error of the special Boolean
model with random compact grains.

Theorem 4.3.3 Let l > 0. Consider the Boolean model from Definition 4.1.4
on the cube C := [−l, l]d ⊂ Rd. Denoting by dH the Hausdorff-distance we have
for s > 0

D(q),s(log n |Ξ, dH) ≥ exp

(
−(1 + o(1))

√
2

sd
· log n log log n

)
, n →∞.

Proof:
Let

ε := 2l ·
(⌈(

2sd · log n

(d + 1)2 · log log n

) 1
2

⌉)− 1
d

.

Hence, for n large enough we have (2l
ε
)d ∈ N. We split the cube C = [−l, l]d into

small cubes C̃1, . . . , C̃( 2l
ε

)d with side length ε. In the center of each cube we put

a smaller cube with side length ε
2
, say C1, . . . , C( 2l

ε
)d .

Denote by Ã the same event as in Lemma 4.3.1 (i.e. the event that all grains of the
Boolean model with germ outside C have empty intersection with C). Consider
the event Â that inside every small cube Ci is exactly one of the points of the
Poisson point process Φ and that Ri < ε/4 for all i = 1, . . . , (2l/ε)d. Moreover
assume that all grains of the Boolean model with germ outside C have an empty
intersection with C. In particular in this special case we get that the grains of
the Boolean model, say K1, . . . , K( 2l

ε
)d , satisfy Ki∩Kj = ∅ for i 6= j. Denote by xj

the germs of the Boolean model. In Figure 4.1 we give a sketch for a realization
of the Boolean model given Â with d = 2 and l = ε = 1

2
.

Using Lemma 4.3.1 we give the likelihood of Â for small ε

P [Â] = P
[ ( 2l

ε
)d⋂

i=1

(
{Φ(Ci) = 1} ∩ {Ri < ε

4
}
)
∩ {Φ(C \ (

⋃( 2l
ε

)d

i=1 Ci)) = 0} ∩ Ã
]

=

( 2l
ε

)d∏
i=1

(
e−λ( ε

2
)d · λ( ε

2
)d · P [Ri < ε

4
]
)
· e−λ((2l)d−( 2l

ε
)d·( ε

2
)d) · c(λ, l, d)

& e−λ(2l)d · (κ · λ)(2l)d/εd · ( εd+1

2d+2 )
(2l)d/εd · c(λ, l, d) as ε → 0. (4.33)
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(−1/2,−1/2)

(−1/2,1/2)

(1/2,−1/2)

(1/2,1/2)

Figure 4.1: The Boolean model conditioned Â

Denote by ΞÂ the Boolean model Ξ conditioned on Â.
Let

δ :=
( 1

n · ( (d+1)(2l)d

sεd + 1)

) sεd

(d+1)(2l)d ·
(Γ(d/2 + 1) · (ε/2)d · (d + 1)

πd/2

) s
d+1

.

Assume n to be large enough such that we have δ
1
s < ε

8
. Consider an arbitrary

codebook with n elements Ξ̂1, . . . , Ξ̂n, where Ξ̂i is an arbitrary compact subset of
[−l, l]d for all i = 1, . . . , n. Denote by

Ξ̂ij := Ξ̂i ∩ C̃j

the subset of the codebook element Ξ̂i that is a subset of C̃j.
As

P [dH(ΞÂ, Ξ̂i)
s < δ] = P [dH(ΞÂ, Ξ̂i) < δ

1
s ]

we estimate the likelihood that the original signal ΞÂ and a codebook element Ξ̂i

have a Hausdorff-distance less than δ
1
s .

Case 1: If there exists j ∈ {1, . . . , (2l
ε
)d} such that Ξ̂ij = C̃j ∩ Ξ̂i = ∅, then

dH(ΞÂ, Ξ̂i) >
ε

8
> δ

1
s

because Cj ∩ ΞÂ 6= ∅. Hence,

P [dH(ΞÂ, Ξ̂i) < δ
1
s ] = 0.

Case 2: For every j ∈ {1, . . . , (2l
ε
)d} we have Ξ̂ij 6= ∅.

We discuss some properties of Kj. By definition there is a closed ball with center

93



xj and radius Rj = 1
2
· diam(Kj) such that Kj ⊂ BRj

(xj). Thus there exist at

least two points y
(1)
j and y

(2)
j in Kj which satisfy |y(1)

j − y
(2)
j | = diam(Kj) and

|y(1)
j − xj| = |y(2)

j − xj| = 1
2
· diam(Kj). Let

E := {there is A ⊂ Ξ̂ij with diam(A) = diam(Ξ̂ij) and |A| = 3,

such that dH({xj, y
(1)
j , y

(2)
j }, A) < δ

1
s}.

Clearly {dH(Kj, Ξ̂ij) < δ
1
s} ⊂ E. We denote the three points of A by {x̂ij, ŷ

(1)
ij , ŷ

(2)
ij }

and assume that |ŷ(1)
ij − ŷ

(2)
ij | = diam(Ξ̂ij).

We discuss some properties of A. If |ŷ(1)
ij − x̂ij| > 1

2
·diam(Ξ̂ij)+δ

1
s or |ŷ(2)

ij − x̂ij| >
1
2
· diam(Ξ̂ij) + δ

1
s it follows directly

dH({xj, y
(1)
j , y

(2)
j }, A) > δ

1
s .

Thus it follows

P [dH(Kj, Ξ̂ij) < δ
1
s ]

≤ P [E]

= P [dH({xj, y
(1)
j , y

(2)
j }, {x̂ij, ŷ

(1)
ij , ŷ

(2)
ij }) < δ

1
s}

≤
∫ δ

1
s

0

P [xj ∈ Bτ (x̂ij)] · P
[

1
2
|diam({xj, y

(1)
j , y

(2)
j })− diam(A)| ≤ δ

1
s − τ

]
dτ

≤
∫ δ

1
s

0

P [xj ∈ Bτ (x̂ij)] dτ

=

∫ δ
1
s

0

πd/2 · τ d

Γ(d/2 + 1) · (ε/2)d
dτ

=
1

(d + 1)
· πd/2

Γ(d/2 + 1) · (ε/2)d
· δ d+1

s

As this is valid for all j = 1, . . . , (2l
ε
)d we deduce

P [dH(ΞÂ, Ξ̂i) < δ
1
s ]

≤
( 1

(d + 1)
· πd/2

Γ(d/2 + 1) · (ε/2)d
· δ d+1

s

)( 2l
ε

)d

for all i = 1, . . . , n.

We denote the distribution of ΞÂ by ξÂ. With the same arguments as in Section
2.3 we get a lower bound for the quantization error of ΞÂ depending on δ and ε,
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namely

(D(q),s(log n |ΞÂ, dH))s

≥ δ · inf
C codebook

P
[
min
Ξ̂i∈C

dH(XA, Ξ̂i)
s ≥ δ

]

≥ δ · inf
C codebook

(
1− ξÂ

( n⋃
i=1

B
δ

1
s
(Ξ̂i)

))

≥ δ · inf
C codebook

(
1−

n∑
i=1

ξÂ

(
B

δ
1
s
(Ξ̂i)

))

≥ δ · inf
C codebook

(
1− n · sup

i
ξÂ

(
B

δ
1
s
(Ξ̂i)

))

≥ δ ·
(
1− n ·

( 1

(d + 1)
· πd/2

Γ(d/2 + 1) · (ε/2)d
· δ d+1

s

)( 2l
ε

)d)
.

Using the definition of

δ =
( 1

n · ( (d+1)(2l)d

sεd + 1)

) sεd

(d+1)(2l)d ·
(Γ(d/2 + 1) · (ε/2)d · (d + 1)

πd/2

) s
d+1

this leads to

(D(q),s(log n |ΞÂ, dH))s ≥
( sεd

(d + 1)(2l)d + sεd

) sεd

(d+1)(2l)d ·

·
(Γ(d/2 + 1) · (ε/2)d · (d + 1)

πd/2

) s
d+1 ·

· (d + 1)(2l)d

(d + 1)(2l)d + sεd
· n−

sεd

(d+1)(2l)d .

Weighting the distortion of the event ΞÂ with the probability that this event
occurs (see equation (4.33)) yields a lower bound for the quantization error of Ξ.

(D(q),s(log n |Ξ, dH))s ≥ P [A] · (D(q),s(log n |ΞÂ, dH))s

& e−λ(2l)d · (f(0) · λ)(2l)d/εd · ( εd+1

2d+3 )
(2l)d/εd · c(λ, l, d)

·
( sεd

(d + 1)(2l)d + sεd

) sεd

(d+1)(2l)d ·

·
(Γ(d/2 + 1) · (ε/2)d · (d + 1)

πd/2

) s
d+1 ·

· (d + 1)(2l)d

(d + 1)(2l)d + sεd
· n−

sεd

(d+1)(2l)d as ε → 0.

For simplicity denote

γ(λ, l, d, s) := −λ(2l)d + log

((Γ(d/2 + 1) · (d + 1)

πd/2

) s
d+1

)
+ log(c(λ, l, d))
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and with this we get for small ε

(D(q),s(log n |Ξ, dH))s & exp

(
γ(λ, l, d, s) +

(2l

ε

)d

log
(f(0)λ(2l)d+1

2d+3

))

· exp

(
−d + 1

d

(2l

ε

)d

log
((2l

ε

)d))

· exp

(
sεd

(d + 1)(2l)d
log

( sεd

(d + 1)(2l)d + sεd

))

· exp

(
s

d + 1
log((ε/2)d)

)

· exp

(
log

( (d + 1)(2l)d

(d + 1)(2l)d + sεd

)
− sεd

(d + 1)(2l)d
log n

)
.

With the definition of

ε = 2l ·
(⌈(

2sd · log n

(d + 1)2 · log log n

) 1
2

⌉)− 1
d

n→∞−→ 0

it holds

2l ·
((

2sd · log n

(d + 1)2 · log log n

) 1
2

+ 1

)− 1
d

≤ ε ≤ 2l ·
(

(d + 1)2 · log log n

2sd · log n

) 1
2d

.

This yields for large n

(D(q),s(log n |Ξ, dH))s

& exp

(
γ(λ, l, d, s) +

(
2sd·log n

(d+1)2 log log n

) 1
2
log

(
f(0)λ(2l)d+1

2d+3

))

· exp

(
−d+1

d

((
2sd·log n

(d+1)2 log log n

) 1
2

+ 1

)
log

((
2sd·log n

(d+1)2 log log n

) 1
2

+ 1

))

· exp




s

((
2sd·log n

(d+1)2 log log n

) 1
2 +1

)−1

(d+1)
log




s

((
2sd·log n

(d+1)2 log log n

) 1
2 +1

)−1

(d+1)+s
(

(d+1)2 log log n
2sd·log n

) 1
2







· exp

(
s

d+1
log

(
ld

((
2sd·log n

(d+1)2 log log n

) 1
2

+ 1

)−1
))

· exp


log

(
d+1

(d+1)+s
(

(d+1)2 log log n
2sd·log n

) 1
2

)
−

s

(
(d+1)2 log log n

2sd·log n

) 1
2

d+1
log n


 .
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Simplifying this expression yields

(D(q),s(log n |Ξ, dH))s

& exp

(
γ(λ, l, d, s) +

(
2sd·log n

(d+1)2 log log n

) 1
2
log

(
f(0)λ(2l)d+1

2d+3

))

· exp

(
−

(
2s·log n

d log log n

) 1
2
log

(√
2sd+(d+1)

√
log log n/ log n

(d+1)
√

log log n

))

· exp

(
− log

((
2sd·log n

(d+1)2 log log n

) 1
2

+ 1

))

· exp




s

((
2sd·log n

(d+1)2 log log n

) 1
2 +1

)−1

(d+1)
log




s

((
2sd·log n

(d+1)2 log log n

) 1
2 +1

)−1

(d+1)+s
(

(d+1)2 log log n
2sd·log n

) 1
2







· exp

(
s

d+1
log

(
ld

((
2sd·log n

(d+1)2 log log n

) 1
2

+ 1

)−1
))

· exp

(
log

(
d+1

(d+1)+s
(

(d+1)2 log log n
2sd·log n

) 1
2

))

· exp
(
− (

2s
d

log n log log n
) 1

2

)
as n →∞

and, hence,

D(q),s(log n |Ξ, dH)

& exp

(
1
s
γ(λ, l, d, s) +

(
2d·log n

s(d+1)2 log log n

) 1
2
log

(
f(0)λ(2l)d+1

2d+3

))

· exp

(
−

(
2·log n

ds log log n

) 1
2
log

(√
2sd+(d+1)

√
log log n/ log n

(d+1)
√

log log n

))

· exp

(
−1

s
log

((
2sd·log n

(d+1)2 log log n

) 1
2

+ 1

))

· exp




((
2sd·log n

(d+1)2 log log n

) 1
2 +1

)−1

(d+1)
log




s

((
2sd·log n

(d+1)2 log log n

) 1
2 +1

)−1

(d+1)+s
(

(d+1)2 log log n
2sd·log n

) 1
2







· exp

(
1

d+1
log

(
ld

((
2sd·log n

(d+1)2 log log n

) 1
2

+ 1

)−1
))

· exp

(
1
s
log

(
d+1

(d+1)+s
(

(d+1)2 log log n
2sd·log n

) 1
2

)
− (

2
ds

log n log log n
) 1

2

)

= exp
(
−(1 + o(1)) · ( 2

sd
· log n log log n

) 1
2

)
as n →∞.
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and the assertion is proved. Furthermore, for d = 1 and for the case where the
grains are balls with random radii this proves the assertion of Theorem 4.2.1.

¤

Notice that the asymptotics of the upper and the lower bound differ. The asymp-
totics of the lower bound are equal to the asymptotics of the quantization error
of the Poisson point process on a compact cube in Rd. In the case where d = 1
we showed in Section 4.2 that the asymptotics of the quantization error of the
Boolean model are the same as the asymptotics of the quantization error of the
Poisson point process. Thus we conjecture that the lower bound yields the right
asymptotics in the case where d > 1, too. Heuristically, this may be understood
by considering the overlaps of the Boolean model. If the radii are quite large with
high probability, we have many overlaps in the Boolean model (e.g. some grains
may be entirely contained in other grains), and we need not code all points of the
Poisson point process. If the radii are that small that we do not have any over-
laps, the Boolean model is very close to the d-dimensional Poisson point process,
and thus the quantization error asymptotics may be equal.
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4.4 The quantization error of the Boolean model

under L1- distance

In this section we give an upper bound for the Boolean model from Definition
4.1.8, the special Boolean model with bounded radii. But now we use the L1-
distance in Rd, given by Definition 3.1.4 instead of the Hausdorff distance.

Theorem 4.4.1 Consider the Boolean model from Definition 4.1.8 on the com-
pact cube [−1

2
, 1

2
]d. For b > 0 and s > 0 we have

D(q),s(log n |Ξ(b), ρ(d)) ≤ exp

(
−(1 + o(1))

√
2

s(d + 1)
· log n log log n

)

as n →∞.

Proof:
Let b > 0. As the radii are distributed on the interval [0, b] every point of the
corresponding Poisson point process in the cube [−b, b]d may have influence on
the cube [−1

2
, 1

2
]d.

As in the proof of Theorem 4.3.2 we split the model into the number of balls, the
location of the centers and the length of the radii and use the same notations as
in this proof. In the case where k = 0 we have no point in [−b, b]d. As in the
proof of Theorem 4.3.2 we define Ĉ0 := {∅}, which leads to

(D(q),s(log n0 |Ξ(b)
0 , ρ(d)))s = 0 for n0 = 1. (4.34)

In the case where 1 ≤ k ≤ 4
√

2s log n
(d+1) log log n

remember the definition

δ := 2b ·
(⌊

(2b)
1

d+1 · (
√

d + 1)−
1

d+1 · e− 1
k(d+1) · (k!)−

1
k(d+1) · n 1

k(d+1)

⌋)−1

.

Analogously to equation (2.5) we get 2b
δ
∈ N. We use the codebooks Ĉk that are

defined in (4.19)

Ĉk := {φ̂(i)
k + B

r̂
(j)
k

(0) : i = 1, . . . , n
(1)
k , j = 1, . . . , n

(2)
k }

with n
(1)
k =

∑k
i=1

(
(2b

δ
)d

i

)
and n

(2)
k =

(√
d

δ
+ 1

)k

and we define nk := |Ĉk|.
Analogously to the equation (4.21) we get

∞∑

k=0

nk ≤ n

and
nk ≥ 1 for 0 ≤ k ≤ 4

√
2s log n

(d+1) log log n
.
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In the case where 1 ≤ k ≤ 4
√

2s log n
(d+1) log log n

consider a given realization y
(b)
k of Ξ

(b)
k .

We have in the codebook Ĉk for each ball of the original signal a corresponding
coding ball whose center is less than (

√
dδ)/2 away from the original center and

whose radius differs for less than δ/2 from the original radius (see equations (4.16)
and (4.18)). Hence, we can bound the L1-distance of this two balls by c(d, b) · δ
where c(d, b) is a constant depending only on d and b. A very rough estimate
would be the Hausdorff-distance of the two balls times the surface of the bigger
ball. The surface is bounded by 2πd/2·bd−1

Γ(d/2)
, since the radius is bounded by b.

Because the realization y
(b)
k of the original signal consists of k balls we deduce

min
ŷk∈Ĉk

ρ(d)(y
(b)
k , ŷk) ≤ k · c(b, d) · δ

and, hence, we get analogously to equation (4.22) for s > 0

∫
min

ŷk∈Ĉk

ρ(d)(x, ŷk)
s dξ

(b)
k (x) ≤ ks · c(b, d)s · δs. (4.35)

By construction of the codebook Ĉk, by (4.35) and the definition of δ we have for
large n

∫
min
y∈Ĉk

ρ(d)(x, y)s dξ
(b)
k (x) . ks · c(b, d)s ·

((2b)dk · (
√

d + 1)k

e−1(k!)−1n

) s
k(d+1)

.

Since we deal with the cube [−1
2
, 1

2
]d we use the codebook Ĉ0 ∪ Ĉ1 for the case

where k > b4
√

2s log n
(d+1) log log n

c and give an upper bound for the L1-distance

∫
min

y∈Ĉ0∪Ĉ1

ρ(d)(x, y)s dξ
(b)
k (x) ≤ 1.

It follows analogously to equation (4.24) with the definition of δ that for large n
it holds

(D(q),s(log n |Ξ(b), ρ(d)))s .
b4

√
2s log n

(d+1) log log n
c∑

k=0

e−λ·(2b)d (λ · (2b)d)k

k!
· ks · c(l, d)s ·

·
((2b)dk · (

√
d + 1)k

e−1 1
k!
· n

) s
k(d+1)

+
∞∑

k=b4
√

2s log n
(d+1) log log n

c+1

e−λ·(2b)d (λ · (2b)d)k

k!
. (4.36)
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We consider the first sum and assert

b4
√

2s log n
(d+1) log log n

c∑

k=1

e−λ·(2b)d (λ · (2b)d)k

k!
· ks · c(b, d)s ·

((2b)dk · e · k! · (
√

d + 1)k

n

) s
k(d+1)

≤ e−(1+o(1))
√

2s
d+1

log n log log n, n →∞.

To prove this we define

β̂(d, λ, b) := log
(
e−λ·(2b)d · c(b, d)s · (2b) sd

d+1 · (
√

d + 1)
) s

(d+1)

and for every n ∈ N the function

yn : R+ → R+

k 7→ eβ̂(d,λ,b) · (λ · (2b)d)k · Γ(k + 1)−1+ s
k(d+1) · ks · e s

k(d+1) · n− s
k(d+1)

Analogously to estimate (4.27) we use Proposition 1.2.1 and the relation 1 ≤ k,
which implies log k

k
≤ 1, to give an upper bound for yn

yn(k) = eβ̂(d,λ,b) · (λ · (2b)d)k · Γ(k + 1)−1+ s
k(d+1) · ks · e s

k(d+1) · n− s
k(d+1)

≤ exp
(
k · (log(λ(2b)d) + 1− log k) + (s + s

d+1
− 1

2
) log k − s log n

k(d+1)

)

· exp
(

s
2(d+1)

+ ( s
d+1

− 1) log c1 − s
d+1

+ s
d+1

+ β̂(d, λ, b)
)

=: ĥn(k). (4.37)

This function ĥn is similar to the bounding function hn from (4.27). Only the
term ( s

d+1
− 1

2
) log k is replaced by (s+ s

d+1
− 1

2
) log k. Hence, we can use the same

arguments as for the sum from equation (4.24), i.e. splitting the sum into three
parts and estimating each part doing a case differentiation for (s + s

d+1
− 1

2
) less

or greater than zero. This yields

b4
√

2s log n
(d+1) log log n

c∑

k=1

yn(k) ≤ e−(1+o(1))
√

2s
d+1

log n log log n, n →∞. (4.38)

The asymptotic upper bound for large n

∞∑

k=b4
√

2s log n
(d+1) log log n

c+1

e−λ·(2b)d (λ · (2b)d)k

k!
≤ o(e−( 2s

d+1
log n log log n)

1
2
) (4.39)

can also be proved via the methods used in Section 4.3 (see equation (4.32)).
Combining equations (4.36), (4.38) and (4.39) yields

(D(q),s(log n |Ξ(b), ρ(d)))s ≤ e−(1+o(1))
√

2s
d+1

log n log log n, n →∞,
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which leads to

D(q),s(log n |Ξ(b), ρ(d)) ≤ e
−(1+o(1))

√
2

s(d+1)
log n log log n

as n →∞.

¤

Although the Hausdorff distance and the L1-distance are not equivalent (see
Remark 3.1.5) we get under both distance terms for the special Boolean model
with bounded grains on a compact cube the same asymptotic upper bound. This
may be caused by the coherency of the Hausdorff and the L1-distance in this
special case. In our constructed codebook we compare every ball of the Boolean
model with another ball in Rd whose center and radius is closer than δ to the
center and the radius of the original, respectively. Therefore we estimate both
the L1-distance and the Hausdorff distance by a constant depending only on the
dimension d and on the bound for the radii times δ.
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Chapter 5

Open problems

In this chapter we list open problems that result from the last preceding chapters.

5.1 Coding alternating renewal processes

In Chapter 2 we gave asymptotic bounds for the several coding errors of jump pro-
cesses on a bounded interval. In particular we discussed the asymptotic bounds
of a D ([0, 1], {0, 1})-valued process induced by a Poisson point process Φ on
[0, 1] and compared the results with the Gaussian case. We found out that in
contrast to the Gaussian case deterministic coding and entropy coding yield dif-
ferent asymptotic errors. In our case entropy coding yields better asymptotics
than coding in a deterministic way.

Question 5.1.1 1.) Will the quantization error asymptotics of Theorem 2.2.1
and Theorem 2.3.1 and the entropy error asymptotics of Theorem 2.5.1 still hold
if we consider a D ([0, a], I)-valued process, where a ∈ R+ and I is not a finite
but an arbitrary subset of R?
2.) Which properties have to be assumed for getting the same asymptotic bounds?

5.2 Coding point processes in bounded metric

spaces

In Chapter 3 we discussed the quantization error of a point process on a bounded
metric space with finite upper Minkowski dimension. Under certain assumptions
on the probability of the number of points we gave an asymptotic upper bound
depending on this upper Minkowski dimension.

Question 5.2.1 1.) What is the asymptotic lower bound of the quantization
error? Does it depend on the lower Minkowski dimension?
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2.) What changes if we consider not a bounded metric space but an arbitrary
metric space with for example finite Hausdorff dimension?

5.3 Coding the Boolean model

In Chapter 4 we dealt with the Boolean model in Rd in the special case of grains
included by balls with random but bounded radii Ri whose distribution satisfies
P [Ri < t] ∼ κ · t for some constant κ and t → 0. We gave upper and lower
bounds for the quantization error asymptotics. But only in the case of dimension
one the asymptotics of the upper and lower bound coincide.

Question 5.3.1 1.) What are the correct quantization error asymptotics in the
case d > 1?
2.) What would change if the distribution of the radii satisfies P [Ri < t] ∼ κ · tα
for some α > 0?
3.) Do the bounds hold if the grains of the Boolean model are arbitrary ran-
dom compact sets? Which properties have to be assumed for getting the same
asymptotic bounds?
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Appendix A

Appendix

A.1 A small ball inequality

Let a ∈ R+ and X be a D ([0, a], {0, 1})-valued random element as stated in
Definition 2.1.7. For ε > 0 with a

ε
∈ N we split the interval [0, a] into small

intervals with length ε, denoted by Ĩ1, . . . , Ĩa
ε
. Put in the center of every interval

Ĩi a smaller interval Ii, i = 1, . . . , a
ε
, with length ε

2
. Consider the event A that

X0 = 0 and inside every small interval Ii is exactly one of the points of the
Poisson point process ΦX , i.e. the jumps of X, and [0, a] \ (∪a/ε

i=1Ii) contains no
point. Let XA := X|A be the alternating Poisson renewal process X conditioned
upon A and let µX

A be the distribution of XA. Let δ > 0 with δ < ε/4. Let X̂ be
an arbitrary element of D ([0, a], {0, 1}).
Proposition A.1.1 Let ε > 0 and A and XA be as above. Let δ > 0 with
δ < ε/4. Then for every X̂ ∈ D ([0, a], {0, 1}), it holds that

P
[
ρa(XA, X̂) < δ

]
≤

(
4δ

ε

)a
ε

.

Proof:
Denote the jumps of XA by {x1, . . . , xa

ε
} where xj ∈ Ij. For arbitrary X̂ ∈

D ([0, a], {0, 1}) it holds

P
[
ρa(XA, X̂) < δ

]
≤ sup

f :[0,a]→R+

RC, mb., bounded

P
[ ∫ a

0

|f(s)− (XA)s| ds < δ
]

≤ sup
f :[0,a]→R+

RC, mb., bounded

P
[ a/ε⋂

i=1

{∫ iε

(i−1)ε

|f(s)− (XA)s| ds < δ
}]

= sup
f :[0,a]→R+

RC, mb., bounded

a/ε∏
i=1

P
[ ∫ iε

(i−1)ε

|f(s)− (XA)s| ds < δ
]
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= sup
f :[0,a]→R+

RC, mb., bounded

(
P

[ ∫ ε

0

|f(s)− (XA)s| ds < δ
])a/ε

≤ sup
f :[0,a]→R+

RC, mb., bounded

(
P

[ ∫ 3ε
4

ε
4

|f(s)− (XA)s| ds < δ
])a/ε

≤ sup
f :[0,a]→R+

RC, mb., bounded

(
P

[∣∣
∫ 3ε

4

ε
4

f(s) ds−
∫ 3ε

4

ε
4

(XA)s ds
∣∣ < δ

])a/ε

.

Since f is bounded we have κ :=
∫ 3ε

4
ε
4

f(s) ds < ∞. The process XA has in the

interval [0, ε] only the jump x1 that is uniformly distributed in the interval [ ε
4
, 3ε

4
].

Hence, x1 − ε
4

is uniformly distributed in the interval [0, ε
2
] and we deduce

P [ρa(XA,X̂) < δ]

≤ sup
f :[0,a]→R+

RC, mb., bounded

(
P

[∣∣
∫ 3ε

4

ε
4

f(s) ds−
∫ 3ε

4

ε
4

(XA)s ds
∣∣ < δ

])a/ε

= sup
f :[0,a]→R+

RC, mb., bounded

(
P

[
|κ− (x1 − ε

4
)| < δ

])a/ε

= sup
f :[0,a]→R+

RC, mb., bounded

(
P

[
x1 ∈ [ ε

4
+ κ− δ, ε

4
+ κ + δ]

])a/ε

≤
(

4δ

ε

)a
ε

.

¤
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