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Zusammenfassung – German abstract

In dieser Arbeit untersuchen wir verschiedene niederdimensionale Kohlenstoffstrukturen
mittels ab initio und semi-empirischen Berechnungen. Die Arbeit gliedert sich in zwei
Teile. Zunächst beschäftigen wir uns mit Picotube Molekülen sowie deren Verhältnis zu
Kohlenstoff Nanotubes. Im zweiten Teil wird der Einfluss von mechanischer Verspan-
nung einerseits sowie Funktionalisierung andererseits auf die Materialeigenschaften von
Graphen untersucht.
Picotubes sind hoch-symmetrische, ringförmige Kohlenwasserstoffe, die Substrukturen
von armchair Nanotubes darstellen. Wir zeigen, dass sich die strukturelle Ähnlichkeit
beider Materialsysteme in den Eigenschwingungen widerspiegelt. Erstens weisen Picotu-
bes und Nanotubes optische Schwingungsmoden bei ähnlichen Frequenzen auf. Weiterhin
finden wir in allen untersuchten Picotubes radiale Atmungsmoden, deren Frequenzen wie
im Falle von Nanotubes indirekt proportional zum Durchmesser sind. Aufgrund der weit-
gehenden Analogien zwischen beiden Strukturen gelten Picotubes als Ausgangspunkt für
eine potentielle gezielte Synthese sortenreiner Nanotubes. Wir widmen uns dieser Fra-
gestellung mit molekulardynamischen Simulationen von in Nanotubes eingefüllten Pico-
tubemolekülen. Abhängig von der simulierten Temperatur zeigen unsere Berechnungen
Oszillationen sowie eine kontinuierliche axiale Bewegung der Picotubes im Nanotube.
Bei Temperaturen über 2500K führen chemische Umwandlungen zu einer Transforma-
tion der Picotubestruktur in eine kurze, geschlossene Röhre. Insbesondere das zuletzt
genannte Ergebnis ist im Hinblick auf eine mögliche Herstellung definierter Nanotubes
von großer Bedeutung.
Im zweiten Teil beschäftigen wir uns mit Graphen Nanoribbons. Mechanische Verspan-
nung sowie die Art der Passivierung der Randatome haben einen großen Einfluss auf
die elektronischen Eigenschaften und die Phononen von Nanoribbons. Die Bandlücke
von verspannten armchair Nanoribbons vergrößert oder verkleinert sich je nach dem,
welcher Familie der Nanoribbon gemäß der gängigen Klassifikation angehört. Dieses
Phänomen lässt sich konsistent im Sinne früherer Arbeiten zu verspanntem Graphen
interpretieren. Dasselbe gilt für die Frequenzen der wichtigsten Schwingungsmoden, die
alle eine Verschiebung zu kleineren Werten zeigen. Unter dem Einfluss einer Funktionali-
sierung der Ränder mit Hydroxylgruppen beobachten wir zum Teil ähnliche Effekte. Wir
zeigen, dass sich die Bandlücke funktionalisierter Nanoribbons einerseits durch Verspan-
nung, aber auch durch eine Änderung der Quantisierungsbedingung der elektronischen
Wellenfunktionen ändert. Des Weiteren untersuchen wir die energetischen Verschiebun-
gen charakteristischer Phononen. Unsere Daten legen die Möglichkeit nahe, den Grad
der Funktionalisierung in Raman Experimenten zu bestimmen. Insbesondere die starke
Abhängigkeit der Bandlücke von potentiell einstellbaren äußeren Faktoren könnte sich
in zukünftigen nanoelektronischen Anwendungen als nützlich erweisen.



Abstract

In this work we study a variety of low-dimensional carbon structures by means of ab
initio and semi-empirical calculations. The thesis comprises two main parts. The first
one deals with picotube molecules and their relation to carbon nanotubes. In the sec-
ond part, we investigate how strain and edge functionalization affect the fundamental
properties of graphene nanoribbons.
Carbon picotubes are a class of highly symmetric, ringlike hydrocarbons which closely
resemble short sections from armchair nanotubes. We demonstrate that this structural
analogy leads to typical vibrational characteristics of nanotubes being inherited onto pi-
cotubes. Apart from optical modes found in the same frequency range as in nanotubes,
picotubes exhibit radial-breathing modes as well. We find the frequency of this mode to
depend inversely on the picotube diameter in accordance with the relation known from
carbon nanotubes. Owing to the close relation of both carbon allotropes picotubes are
considered suitable starting points for a controlled synthesis of nanotubes. We address
this issue by molecular dynamics simulations of picotubes encapsulated in nanotubes
in a peapod-like configuration. Our temperature-dependent studies reveal three inde-
pendent effects. Besides oscillations of the picotubes in the nanotube and a continuous
molecular transport along its axis we observe a transformation of the picotube structure
into a tubular form at temperatures around 2500K. The latter result might be a step
along the path to a bottom-up synthesis of specific types of nanotubes.
Another form of fascinating one-dimensional carbon materials besides nanotubes are
graphene nanoribbons. The second part of this thesis covers uniaxial strain and hydroxyl
edge passivation in armchair nanoribbons. The electronic and vibrational properties of
these ribbons prove to be highly sensitive to both of the mentioned modifications. We
find the band-gap of strained nanoribbons to strongly increase or decrease depending
on the family armchair nanoribbons are commonly classified in. These shifts, which are
linear in a large strain range, can be interpreted in terms of earlier reports on the band
structure of uniaxially strained graphene. The main vibrational modes of nanoribbons
show a severe red-shift under tensile strain which can be related to corresponding studies
on graphene as well. Introducing hydroxyl edge passivation leads to partially compa-
rable effects since the ribbon structure is strained upon this type of functionalization.
We successfully explain the observed band-gap energies of hydroxylized nanoribbons by
a combination of strain effects and a modified effective confinement condition for the
electronic wave functions. Finally we present data on prominent phonons including spe-
cific vibrations of the hydroxyl groups which suggest that the degree of functionalization
may be determined in Raman experiments. Especially our findings on tunable band-gap
energies by applying strain or attaching functional edge groups might be of significant
technological relevance in future nano-electronic applications.
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1 Introduction

Elemental carbon occurs in a large variety of allotropes. The two basic crystalline phases
of bulk carbon, diamond and graphite, differ in the configuration of the atomic valence
shells. In diamond, all valence electrons occupy sp3 hybrid orbitals leading to a tetra-
hedral bonding pattern. A graphitic plane, by contrast, has a flat hexagonal crystal
structure which results from the hybridization of the s orbital with only two out of three
p orbitals. Whereas in both cases neighboring carbon atoms form strong covalent bonds,
the inter-planar coupling in a graphite crystal is given by the relatively weak van der
Waals interaction.
Both of the electronic configurations mentioned above are also found in carbon nanos-
tructures, i.e., in structures with one or more dimensions being limited to the nanometer
range. The most prominent sp3 hybridized nanomaterials are small sections of a dia-
mond crystal with hydrogen-terminated surfaces referred to as diamondoids [1,2]. While
these hydrocarbons have a molecular character, the sp2 configuration, in addition, per-
mits one- and two-dimensional crystalline structures, all of which can be deduced from
a single graphitic plane. The first sp2-like nanostructures to be discovered were the
fullerenes [3]. In these cage-like spherical molecules certain hexagons are replaced by
pentagons enabling a biaxial curvature. Apart from coiling a graphitic sheet into a
sphere, one could also imagine rolling it into a hollow cylinder. The resulting carbon
nanotubes, which were first discovered in 1991, typically have a large aspect ratio and
can therefore be considered to be quasi one-dimensional [4]. The underlying material of
these structures, a single sheet from a graphite crystal, is referred to as graphene. It was
isolated in 2004 by Novoselov et al. in a remarkably simple approach [5]. Another class
of one-dimensional substructures of graphene which became accessible thereby is given
by narrow stripes from a graphene sheet, the so-called graphene nanoribbons.
The availability of the nanostructures described above has triggered enormous research
efforts in this field. Reducing a dimension to the order of a nanometer introduces quan-
tum confinement and thus induces fundamentally new phenomena compared to bulk
materials. Besides the pure scientific ambition to explore new physics, the huge interest
in these materials is driven by the prospect of exploiting their fascinating properties
in a wide range of potential applications. In particular, carbon nanotubes as well as
graphene combine a wealth of outstanding characteristics. Extreme values have been
reported on their mechanical stabilities, their low mass densities, and their high thermal
conductivities, to name a few [6–9]. The most intriguing aspect, however, is the peculiar
band structure of graphene, which is inherited in a modified version onto carbon nan-
otubes. This leads, amongst other effects, to extraordinarily high electronic mobilities
of graphene and nanotubes suggesting a carbon-based miniaturization of electronic de-
vices [10–12].



1 Introduction 4

Graphene does not have a band-gap which would be necessary in many applications like
transistors. Here, carbon nanotubes can serve as complementary building blocks. One
peculiarity of nanotubes is that slight changes in their geometrical structure determine
whether an actual tube is semiconducting or metallic [13]. Therefore, an important goal
is either to synthesize nanotubes in a controlled manner or sort the mixtures in the
outputs of typical production processes. Although various separation techniques allow
the enrichment of nanotubes of a certain diameter or according to their metallicity, none
of these methods provide a way to obtain tubes of a defined diameter and chirality up
to now [14, 15]. An entirely different approach aims for a controlled bottom-up synthe-
sis of specific types of carbon nanotubes starting from ring-shaped hydrocarbons [16].
These fully conjugated molecules which closely resemble short sections of nanotubes are
referred to as carbon picotubes [17]. The nature of these molecules and their relation to
carbon nanotubes form the first part of this thesis.
Similar to the case of nanotubes the lateral confinement in graphene nanoribbons in-
troduces a band-gap [18,19]. Therefore, nanoribbons may potentially complement nan-
otubes in future electronic devices. However, it should be noted that the electron mobil-
ity is expected to be reduced in ribbons compared to that in nanotubes and graphene [20].
Whereas some concepts of carbon nanotubes can be transferred to nanoribbons, the
edges represent an additional crucial factor which strongly affects the basic properties of
nanoribbons. The band-gap has been shown to depend on the edge type as well as on the
ribbon width. Thus, a precise control of these parameters is required in the production
process of nanoribbons in order to make use of them in nano-electronic applications.
Whereas lithographic methods leave problems comparable to those encountered when
manufacturing nanotubes, the chemical synthesis of a specific type of nanoribbon in a
bottom-up approach has recently been reported [21]. Although this is a significant step
forward in nanoribbon research some vital issues still have to be clarified. One open
question concerns the effect of strain in graphene nanoribbons which can arise, for ex-
ample, due to lattice mismatch if the ribbon is deposited on some arbitrary substrate.
Another vital issue is the type of passivation of the dangling edge bonds. Previous
reports show that different edge configurations strongly influence the characteristics of
the ribbon [22–24]. Apart from a simple reconstruction, the high reactivity of the edges
enhances the probability of functional groups being attached to the ribbon edges. In
the second part of this work, we address these questions by investigating the influence
of uniaxial strain as well as the effect of hydroxyl groups attached to the ribbon edges.
It turns out that both topics are closely correlated.
This thesis is organized as follows. We first review our approaches to simulate the proper-
ties of the nanostructures described above in Chap. 2. We make use of ab initio methods
in our studies of isolated picotube molecules and graphene nanoribbons. In addition,
semi-empirical calculations are employed in order to simulate the dynamical behavior of
compound systems including a large number of atoms. In Chap. 3, we demonstrate the
close analogy of carbon pico- and nanotubes with respect to their structural and vibra-
tional properties. Furthermore, the interaction between both allotropes is investigated in
a configuration which possibly facilitates the transformation of picotubes into closed nan-
otube sections. To this end, we arrange a series of picotubes along the axis of a nanotube
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in analogy to fullerene peapods [25]. Different aspects of the temperature-dependent dy-
namics of this system are discussed in Chap. 4. Our findings are in accordance with a
previous work pointing to a reorganization of encapsulated picotubes towards tubular
structures which is a remarkable result in the light of a potential controlled synthesis of
carbon nanotubes, one of the big goals in nanotube research [26].
The following three chapters are devoted to another one-dimensional carbon system,
graphene nanoribbons. After reviewing their basic properties in Chap. 5 we investigate
how the electronic band structure and characteristic phonons of nanoribbons are affected
by strain. The band-gap variations and phonon shifts are then discussed in the context
of previous studies on strained graphene (see Chap. 6). Chapter 7 deals with hydroxyl
functionalization of nanoribbon edges. We concentrate on nanoribbons with so-called
armchair edges as functionalization of these structures has hardly been considered in the
literature. It turns out that, beyond effects reported on other types of functionalized
nanoribbons, further issues like a functionalization-induced deformation of the ribbon
itself play an important role. In this picture, we thoroughly discuss the impact of hy-
droxyl passivation on the electronic spectrum and the phonon frequencies. The main
results of this thesis are summarized in Chap. 8.



2 Computational methods

2.1 Ab initio calculations

Ab initio approaches aim for a description of the physical properties of molecules and
solids by means of purely quantum mechanical methods while excluding the use of experi-
mentally derived parameters. The basic simplification of the full many-body hamiltonian
is the Born-Oppenheimer approximation which seperates the treatment of the electrons
from that of the ions due to the large mass ratio of both particles [27]. Since the re-
maining electronic hamiltonian is still impractical to solve directly, several approaches
have been developed which constrict the ansatz of the many-body electronic wave func-
tion. For example, the electrons are decoupled within the Hartree approximation. This
ansatz has the disadvantage of not satisfying the Pauli exclusion principle. A possible
way to overcome this problem is to express the all-electron wave function as a slater
determinant which is referred to as Hartree-Fock method. In both approaches, applying
the variational method leads to quasi one-particle equations for the different orbitals.
The methods mentioned above have in common that the principle approximation to the
electronic wave function is introduced before finding the ground state by variation of the
energy. Since in both approaches the ansatz does not span the whole Hilbert space of
possible solutions of the Schrödinger equation, the true ground state can not necessarily
be reached. This fundamental problem can be solved by considering the density as the
basic variable as described in the following.

2.1.1 Density functional theory

In 1964, Hohenberg and Kohn demonstrated that the ground state density n0(r) of
a many body system uniquely determines its hamiltonian [28, 29]. In particular, the
electronic ground state wave function can be expressed as a functional of the density

Ψ0(r1, ..., rN ) = Ψ[n0(r)], (2.1)

where N is the number of electrons. This implies that all observables are functionals of
n0(r) as well. Hence, the ground state energy can now be obtained as

E0 = min
n→n0

{

T [n(r)] + U [n(r)] + V [n(r)]
}

. (2.2)

T [n(r)] and U [n(r)] denote the kinetic energy and the electron-electron potential, re-
spectively. Both functionals are universal in the sense that they do not depend on the
external potential of the nuclei v(r) which defines the specific system. V [n(r)] is the
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expectation value of v(r)

V (r) =

∫

d3rn(r)v(r). (2.3)

Equation 2.2 shows that the energy is now to be minimized with respect to 3 coordinates
instead of 1023 variables of the wave functions in typical solids. Carrying out the explicit
variation of the total energy functional results in effective single-particle equations

{

− ~
2

2m
∇2 + veff (r)

}

ϕj = ǫjϕj . (2.4)

Note that veff (r) depends on the solutions ϕj , hence the term ’effective’ one-particle
equation. These equations have the same form as those found in the Hartree and Hartree-
Fock methods. While the Hartree ansatz neglects exchange and correlation between the
electrons the Hartree-Fock approach includes the exchange interaction by satisfying the
Pauli principle, but still excludes correlation. In contrast, density functional theory
allows a formally exact treatment of the electronic interaction by introducing the so-
called exchange-correlation energy Exc [30]. Kohn and Sham suggested to summarize all
contributions that are not covered by the kinetic energy of non-interacting particles and
the mean-field Coulomb interaction in Exc. The resulting effective potential in Equ. 2.4
takes the form

veff (r) = v(r) +
e2

4πǫ0

∫

dr′
n(r′)

|r − r
′| + vxc(r), (2.5)

where the second term on the right-hand side is the mean-field Coulomb energy, i.e.,
the Hartree energy. In practice, the set of equations 2.4 is solved iteratively until a
self-consistent set of n(r) and veff (r) is found. Strictly speaking, the eigenvalues of the
Kohn-Sham equations ǫj do not have a direct physical meaning. Nevertheless, they are
often interpreted as the true electronic energy states of the given system, which proves
to be a reasonable approximation since they are consistent with the correct electron
density [31].
Up to this point, no approximation has been introduced into the density-functional
approach. However, the universal functional Exc[n(r)] is unknown. Considering a series
expansion of Exc[n(r)] the simplest approximation is that of a locally constant electron
density. In this picture the functional can be written as

Exc =

∫

dr exc(n)n(r). (2.6)

Since n(r) is assumed to be constant here, exc does not depend on a function, but on
the scalar variable n. The function exc(n) is identical for every system. In the limits
of low and high densities it has been determined already prior to the developement of
the density-functional theory [32, 33]. In 1981, the function was calculated also in the
intermediate range by means of Monte-Carlo simulations [34].
The concept of a locally constant exc(n) is known as the local-density approximation
(LDA). Although it is a rough description of the real physical situation the method



2 Computational methods 8

gives surprisingly precise results and is therefore widely used in the computation of a
broad range of material properties. The accuracy of the LDA depends on how much
the real electron distribution differs from a homogeneous electron liquid. Hence, metals
are particularly well described within this approach. For semiconducting and isolating
materials, which involve localized electronic states, it has been shown that the LDA
underestimates the band-gaps. A correction to the electron-electron interaction based
on the Green’s functions formalism, which fixes these discrepancies, was suggested by
Hybertsen and Louie [35].
All ab initio calculations in this work have been derived by means of the density-
functional theory in the LDA. We do not take into account corrections to Exc as we
believe that the effects investigated here are not affected by a scaling of the energy
levels.

2.1.2 The SIESTA code

The density-functional theory has been implemented in a variety of codes. Besides
different approaches being used to evaluate the exchange-correlation energy, the codes
differ in the type of basis functions chosen to describe the Kohn-Sham eigenvectors. The
DFT calculations presented in this thesis have been carried out with the help of the
SIESTA code [36–38]. This program package is particularly efficient for low-dimensional
systems as it employs strictly localized basis sets. Therefore, one does not have to
integrate over the empty space between periodic images of the calculated structure in
contrast to approaches using plane wave basis sets. In SIESTA the wave functions are
written in sets of pseudo-atomic orbitals. For an atom of a given element these functions
are calculated from a corresponding pseudopotential. This potential coincides with the
real atomic one beyond a certain cutoff radius rC but is, for r < rC , chosen such that
the resulting orbital declines smoothly towards r = 0 suppressing the otherwise strong
oscillations of the valence wave functions in the vicinity of the core [39, 40]. In order
to avoid negligible interaction contributions of orbitals that are situated far apart from
each other the pseudo-atomic orbitals are confined by an outer cutoff radius. Due to
the strict confinement of the basis functions, SIESTA offers the possibility to perform
so-called order-N calculations. These methods are characterized by the computational
cost scaling linearly with the number of atoms.
The pseudo-atomic orbitals are expressed as the product of a numerical radial function
and a spherical harmonic, which correspond to the shells and the angular momenta,
respectively. At the beginning of every calculation the radial functions are derived from
the pseudopotentials which have to be provided be the user. This procedure ensures that
the basis orbitals and the atomic pseudopotentials used in the simulation are perfectly
consistent. One crucial aspect concerns the number of basis orbitals. Obviously, the
correct electronic many-body wave functions are described more accurately with an
increasing number of basis functions. On the other hand, the computation time and
the required memory rise considerably when the basis is extended. The minimal basis
consists of one radial component per angular function and is known as single-ζ (or SZ)
basis. Adding more radial functions per spherical harmonic results in multiple-ζ basis
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sets. Furthermore, SIESTA allows to include higher angular momenta per shell, which
are referred to as polarization orbitals. Before starting to study a given system it is
necessary to investigate the influence of the basis size on the material properties of
interest in order to find a convenient compromise between accuracy and computational
cost. This issue is explored comprehensively in Ref. [41].
Several other parameters offer the possibility to further tune the ratio of efficiency and
precision. These include the fineness of the real-space integration grid and the k-point
sampling of the reciprocal lattice. In order to find a suitable value for a certain parameter
it is appropriate to converge the total energy of the system or the maximal atomic force
component with respect to this quantity. The Kohn-Sham equations are solved in a
self-consistent procedure as described in Sec. 2.1.1 until the density difference between
two consecutive loops falls below a tolerance value that can be specified by the user.
In usual calculations, one aims at finding the optimized geometry of a system which
yields the minimal total energy. To achieve this task, the conjugate gradient algorithm
is implemented in SIESTA [42]. In addition, it is possible to define certain constraints
within which the geometric relaxation is to be performed. We make use of this option
in our simulations of strained graphene nanoribbons presented in Chap. 6.
The derivation of phonon frequencies and eigenvectors requires knowledge of the force
constant matrix. SIESTA uses the method of finite differences to compute the force
constants [43, 44]. Within this approach one atom is displaced in a certain direction
and the resulting forces on all other atoms are calculated. This procedure is repeated
for displacements along all three coordinate axes in positive and negative directions for
every atom. Thus, in total, 6N displacements are evaluated, with N being the number
of atoms. For the calculation of zone center phonons (or molecular vibrations) it is
sufficient to consider the atoms of one unit cell. In order to derive the dispersion of
phonons one has to include the displacements of all atoms in a sufficiently large super
cell.

2.2 Molecular dynamics simulations

2.2.1 Semi-empirical approximations

In a dynamical study of a molecular system the Schrödinger equation must be solved
for a large number of different configurations. Doing this by means of ab initio methods
is only feasible for very small systems due to the otherwise exorbitant computation
time. However, the systems typically investigated via molecular dynamics simulations
comprise large numbers of atoms. Thus, there is a need for more efficient methods
than those described in Sec. 2.1. In the field of quantum chemistry a broad variety
of approaches have been developed which are based on different ab initio theories, but
introduce certain approximations employing experimental parameters. These methods
are therefore referred to as semi-empirical. The approach used within this work is based
on the so-called modified neglect of diatomic overlap (MNDO) [45]. It is derived from
the Hartree-Fock theory, i.e., the solutions to the electronic hamiltonian are expressed
as Slater determinants. The basic approximation is to neglect overlap integrals of basis
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orbitals centered at different atoms [46]. This simplification greatly reduces the number
of integrals to be evaluated and thus saves a substantial part of the computational
capacity. On the other hand, it is obvious that the electronic interaction is described
more roughly than it is by the Hartree-Fock method. In order to compensate for this
deficiency, the remaining integrals are parametrized based on atomic and molecular
experimental data. The original MNDO approach suggested by Dewar et al. has been
adjusted in order to overcome certain weaknesses, resulting in the two improved models
AM1 and the PM3 [47,48]. Both methods do not show significant differences in efficiency
or accuracy for our purpose. In this thesis, we employ the AM1 method as implemented
in the simulation package pDynamo [49,50].

2.2.2 Classical dynamical simulations

The time-dependence of a system can be explored by means of Newton’s mechanics.
Although neglecting quantum mechanical effects like tunneling, classical simulations
still describe the real dynamical behavior properly in many cases. The usual approach
is to expand the coordinates of the particles at the times (t+∆t) and (t−∆t) in Taylor
series up to the second order. In this way, coupled recursive formulas can be derived
for the developement of ri(t) and vi(t) over time, where i denotes the i-th particle. A
widely used formulation of these relations is given by the velocity Verlet algorithm which
reads [51]

ri(t+∆t) = ri(t) + ∆tvi(t) +
∆t2

2mi
Fi(t) (2.7)

vi(t+∆t) = vi(t) +
∆t

2mi

[

Fi(t) + Fi(t+∆t)
]

. (2.8)

The force on the i-th atom is given by

Fi =
∂

∂ri
V (r1, ..., rN ), (2.9)

where V denotes the potential energy of the N -particle system. At this point, the
different methods to approximate the energy of the investigated structure come into
play. Since Fi and hence the potential energy have to be computed after every time step
∆t, it is practically impossible to use ab initio methods for this task. Usually, it is done
either via molecular mechanical potentials or semi-empirical approaches [49]. We chose
the latter option for the simulations presented in this thesis.
At the beginning of a simulation initial velocities must be assigned to the atoms in
order to start a dynamical evolution. A suitable method is to choose the velocities
such that they comply with the Maxwell-Boltzmann distribution at a desired simulation
temperature. During a simulation the system will move along arbitrary directions on
the potential energy surface, i.e., kinetic energy will be converted to potential energy
and vice versa. Therefore, the temperature corresponding to the atomic velocities will
change in general. In order to still maintain a temperature control the velocities are
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scaled according to

Ekin = f
kBT

2
, (2.10)

where Ekin is total kinetic energy of the system with f degrees of freedom. The pDynamo
library, which we employ for all simulations in this work, allows the temperature to be
scaled either constantly, linearly, or exponentially [49]. The usual procedure is to start
a simulation at low temperatures and heat the system up to the desired temperature of
interest, for which the actual simulation is then performed isothermal.
One crucial parameter in molecular dynamics simulations is the time step ∆t. On the
one hand, it is favorable to minimize the computational capacity needed to study a
given time period by choosing a large time step. On the other hand, the system is
described best using a very small ∆t. The value for this parameter should be taken
smaller than the time scale of the highest frequency vibrations in the system. It turns
out that a reasonable choice for the time step is 1 fs. We used this value in all calculations
presented in this work.



3 Carbon picotubes
Parts of this chapter were published in Refs. [52] and [53].

Beginning in 1996, the synthesis of picotubes established a new class of remarkable
nanostructures. These highly symmetric, ringlike hydrocarbons are closely related to
the smallest possible armchair carbon nanotubes (CNTs). The first picotube to be syn-
thesized was the tetramer molecule [17]. Its structural similarity to a (4,4) CNT was
shown to be reflected in the electronic and vibrational properties [54]. Next on the
scene were the semitrimer, corresponding to a (3,3) armchair nanotube and Kammer-
meierphane, a substructure of a (5,5) nanotube [52,55]. Both compounds reveal strong
analogies to the tetramer as well as to nanotubes, as will be discussed below. Another
molecule, referred to as tetradehydrodianthracene (TDDA), represents a substructure
of the smallest possible armchair tube, the (2,2) CNT and thus completes the series of
armchair-like picotubes [17,56,57].
The successful synthesis of picotubes represents a crucial step in the field of organic
chemistry [58]. Besides their fascinating chemical properties, picotubes are of significant
importance with regard to a possible specific synthesis of nanotubes [16]. Up to date
methods for the production of CNTs are based on self-organization and therefore yield
mixtures of nanotubes of different chiralities and lengths. In many potential electronic
applications, nanotubes of a defined chirality would be advantageous. Hence, a con-
trolled, specific production of CNTs is one of the big challenges in nanotube research.
Picotubes are possible suitable starting points to achieve this goal [16,26].
In the following, we first review structural properties of picotubes in Sec. 3.1 before
analyzing their most prominent eigenmodes in Sec. 3.2. We further address the dynamic
behavior of picotubes inserted into armchair CNTs in analogy to fullerene peapods at
different temperatures (Sec. 4) [25].

3.1 Atomic structure

Carbon picotubes can be thought of as short sections from armchair CNTs, but with
both ends being opened into several wings. Two examples of the short nanotubes cor-
responding to picotube molecules are shown in Fig. 3.1. Each of the three smallest
picotubes is three hexagons long as indicated by the black section of the (3,3) CNT in
Fig. 3.1(a). In contrast, the two halves of Kammermeierphane are arranged with an
axial offset of a0/2, where a0 is the lattice constant of the (5,5) CNT. Thus, the overall
length of this molecule is increased by this amount as can be seen in Fig. 3.1(b). In all
picotubes, the central hexagons remain linked resulting in a fully conjugated ring. The
splitting of the ends leaves anthracene units, i.e., modules of three consecutive carbon
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a0 /2

(a) (b)

Figure 3.1: (a) Structure of a (3,3) CNT with a section of three carbon hexagons in
length being highlighted. (b) Structure of a (5,5) CNT with the black atoms indicating
the closed picotube which would correspond to Kammermeierphane.

hexagons, which are arranged in varying regularity depending on the picotube radius.
For example, the semitrimer is missing a hexagon at one end and in Kammermeierphane,
two dianthracene units are connected by chains which are extended by two additional
sp2 hybridized carbon atoms each. The dangling bonds at the ends are saturated with
hydrogen atoms in all picotubes. It should be noted that the described correspondence
between the structures of picotubes and nanotubes does by no means represent the way
the molecules are produced. Instead, picotubes are designed in a precise bottom-up
approach based on ring-expanding reactions of TDDA, the smallest member of the pi-
cotube family [17, 55]. In fact, as mentioned above, the synthesis of picotubes is partly
motivated by the prospect of gaining CNTs of a defined radius and chirality.
A survey of the picotubes synthesized up to now is presented in Fig. 3.2. The shown
structures result from first principles calculations on single molecules with the tetramer
data being taken from Ref. [54]. With a diameter of only 2.4 Å, TDDA (C28H16) is the
smallest possible picotube [57]. Our calculations on the TDDA molecule confirm the
experimentally determined radius [57]. This highly strained molecule belongs to the di-

(a) TDDA (b) Semitrimer (c) Tetramer (d) Kammermeierphane

Figure 3.2: Atomic structures of the four smallest carbon picotubes. Foreground (back-
ground) carbon-carbon bonds are shown in black (gray) and hydrogen passivations are
indicated in light gray.
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Figure 3.3: Symmetry operations
in the TDDA picotube. Solid lines
denote 2-fold rotational symme-
try and dashed rectangles indicate
mirror planes. In addition, the
molecule has a center of inversion.

hedral group D2h, with the symmetry operations specified in Fig. 3.3. In the semitrimer
(C36H22), which is next in size, the symmetry is reduced significantly compared to the
other picotubes due to a missing wing (see Fig. 3.2(b)). The resulting group C1h, also
referred to as Cs in the literature, contains one mirror plane only [52]. Concerning the
size of the semitrimer, our calculations predict a diameter of 4.0 Å, which is close to the
diameter of 4.2 Å calculated for a closed (3,3) nanotube [59]. A detailed discussion of
the semitrimer structure will be reported elsewhere [60]. The tetramer (C56H32) which
is shown in Fig. 3.2(c), is another highly symmetric picotube (molecular point group
D2d) [54]. In perfect agreement between experiment and theory, the diameter of this
molecule was found to be 5.4 Å. This value is again very close to the diameter of the cor-
responding (4,4) nanotube of 5.5 Å [54]. The structure and symmetry properties of the
tetramer are analyzed in detail in Refs. [17, 54]. In contrast to the picotubes described
above, the cross-section of Kammermeierphane (C60H36) differs considerably from a
uniform circle which makes the definition of a diameter difficult (see Fig. 3.2(d)) [55].
Averaging over several atomic distances in the central ring of the molecule, we find a
value of 6.5 Å in accordance with the theoretically predicted value for a closed (5,5) nan-
otube of 6.8 Å [61]. Although being distorted, the molecule clearly represents a subunit
of a (5,5) CNT. As visualized in Fig. 3.4, the molecule belongs to the symmetry group
C2h. A summary of the structural parameters of all picotubes is given in Tab. 3.1.
All picotubes are available in crystal form. However, neighboring molecules in the solid
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Figure 3.4: The 2-fold rota-
tional symmetry axis and the
mirror plane of a Kammer-
meierphane molecule with a
center of inversion symmetry.

have been shown to hardly interact with each other. For tetramer and semitrimer pi-
cotubes, an excellent agreement of structural parameters from X-ray scattering of the
whole crystal and ab initio calculations of isolated molecules has been found [17,54,62].
The same holds for calculated vibrational frequencies of these molecules which are in
accordance with results from Raman spectroscopy [52, 54]. As far as TDDA is con-
cerned, our calculations yield again structural parameters matching those determined
experimentally very well. These findings clearly indicate that the interaction between
picotube molecules in the crystal is weak. Despite the lack of equally comprehensive
experimental data about Kammermeierphane, we assume that our computational re-
sults about this molecule approximate the properties of the associated picotube crystal
similarly well.

3.2 Vibrational properties

In the following, we concentrate on the vibrational eigenmodes of the series of picotubes
described above. Raman measurements performed on semitrimer and tetramer picotubes
reveal strong similarities among each other as well as to the vibrational spectrum of car-
bon nanotubes [52, 54]. By means of polarized Raman spectroscopy combined with ab

initio simulations, a well-defined assignment of eigenvectors to measured Raman peaks
was found allowing a direct comparison of semitrimer and tetramer eigenmodes [53,54].
In this context, we analyze the DFT-derived vibrations of TDDA and Kammermeier-
phane. As will be discussed below, the behavior of the most characteristic eigenmodes,
the radial breathing mode (Sec. 3.2.1) and the high-energy modes (Sec. 3.2.2), reconfirm
the analogies in the spectra of picotubes and CNTs.
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(a) (b) (c) (d)

Calc.    303 cm-1

Exp.     314 cm-1

Calc.    262 cm-1

Exp.   250-290 cm-1

Calc.    215 cm-1Calc.    718 cm-1

Figure 3.5: Eigenvectors and frequencies of the RBM in different picotubes. For clarity,
foreground (background) carbon-carbon bonds are indicated black (gray), and the atomic
displacements of the background atoms are omitted.

3.2.1 Radial breathing mode

For semitrimer and tetramer picotubes, radial breathing modes (RBMs) have been iden-
tified in ab initio calculations. Like in CNTs, these vibrations show an in-phase radial
displacement of all carbon atoms. Our calculations on TDDA and Kammermeierphane
predict breathing-like modes in these compounds, too. Figure 3.5 shows the RBM eigen-
vectors derived for the four different picotubes together with their calculated frequen-
cies and the experimentally determined frequencies in semitrimer and tetramer crys-
tals [52, 54]. The displacement patterns of all RBMs are fully symmetric just as found
for nanotubes. Thus, it is expected that the mode gives rise to a strong Raman signal,
which has indeed been found for semitrimer and tetramer crystals. Please note that the
semitrimer data shown in Fig. 3.5 is from DFT calculations in the local density approx-
imation (LDA) in contrast to the results shown in Ref. [52] which have been derived by
means of the B3LYP functional. The eigenfrequencies derived via LDA slightly differ
from those given in Ref. [52], but show a better overall agreement with Raman measure-
ments.
Although the molecular structure of picotubes deviates considerably from that of closed
nanotubes, the RBMs exhibit atomic displacements which are predominantly in radial
direction and in phase. The strongest discrepancy from a breathing-like motion occurs
in the eight wings of Kammermeierphane (see Fig. 3.5(d)). Due to the elongated cross
section of the molecule, a radial direction is not clearly defined. Furthermore, Kammer-
meierphane has two centers of mass linked by two comparably long carbon chains. In
this configuration, a breathing-like motion of the central ring leads to a tangential bend-
ing of the wings towards the two connecting carbon chains. Nevertheless, the overall
breathing-like character of the vibration is evident.
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Table 3.1: Characteristic structural and vibrational parameters of carbon picotubes. The
radii and RBM frequencies of the picotubes result from first principles calculations [54].
The RBM frequencies of the corresponding nanotubes are derived using the frequency-
diameter dependence found by Telg et al. and calculated nanotube diameters [54,59,61,
63].

Chem. Symmetry Radius ωRBM ωnanotube
RBM

formula (Å) (cm−1) (cm−1)

TDDA C28H16 D2h 2.4 718
semitrimer C36H22 C1h 4.0 303 531
tetramer C56H32 D2d 5.4 262 408
Kammermeierphane C60H36 C2h 6.5 215 334

In the spectroscopic characterization of CNTs, the RBM is of central importance as
it offers a fingerprint of the specific type of the tube [13, 64, 65]. This is particularly
expressed by the direct relation between the energy of this mode and the nanotube ra-
dius. The RBM frequency of a nanotube increases with decreasing tube diameter, since
smaller tubes are more strained. In principle, we expect the same effect in picotubes.
The splitting of the tube wall into separate wings in picotubes leads to a reduced effective
curvature and hence a lower strain in picotubes compared to CNTs. Therefore, we ex-
pect the RBMs at lower energies in picotubes than in nanotubes in accordance with the
observations made on semitrimer and tetramer picotubes [52,54]. As shown in Tab. 3.1,
this assumption is confirmed by comparing the RBM frequencies of Kammermeierphane
and a (5,5) CNT. The theoretically determined RBM frequencies of the investigated
picotubes versus their diameter are plotted in Fig. 3.6. The red fit curve was obtained
using the frequency-diameter relation of carbon nanotubes ωRBM = C1/d + C2 [13].
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Figure 3.6: Calculated RBM fre-
quencies of carbon picotubes as a
function of the diameter. The red
curve represents a 1/d - fit.
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Obviously, the picotube data available up to now roughly satisfies this relation using
the parameters C1 = 1938 cm−1 nm and C2 = −113 cm−1. The RBM frequency of the
semitrimer is lower than according to the d−1 - dependence. This possibly originates
from the fact that the structure of the molecule is further relaxed due to one missing
wing. A full trimer, which has not been synthesized yet, most likely yields a higher RBM
frequency. We expect the same effect to occur in the case of Kammermeierphane as this
molecule consists of four anthracene units in contrast to a hypothetical complete (5,5)
picotube.
Another issue concerns the value derived for C2 which would imply negative RBM fre-
quencies at large picotube diameters. The strongly negative value stated above can be
partially attributed to the lowered frequencies of the Semitrimer and Kammermeier-
phane picotubes compared to those expected for full (3,3) and (5,5) picotube molecules.
Furthermore, it should be noted that the RBMs of very small nanotubes show deviations
from an ideal d−1 - dependence [66]. Possibly, a similar effect in picotubes might affect
our results. In order to clarify this issue, larger picotubes will have to be considered
which have not been synthesized up to now.

3.2.2 High-energy modes

The Raman spectra of semitrimer and tetramer picotubes are dominated by high-energy
bands at about 1600 cm−1, which is typical for curved sp2 carbon compounds [52, 54].
In case of armchair CNTs, this band contains vibrations along and perpendicular to
the tube axis, referred to as longitudinal (LO) and transversal (TO) optical modes,
respectively [13]. Calculations on picotube molecules predict eigenmodes with analo-
gous displacement patterns. Since picotubes are not subject to translational symmetry
in contrast to CNTs, the molecules show plenty of LO- and TO-like modes. This is
illustrated by the displacement patterns of high-energy modes of different picotubes pre-
sented in Fig. 3.7. For example, the longitudinal semitrimer mode shown on the right
side of Fig. 3.7(c) exhibits an opposite-phase motion of the atoms in the lower and up-
per hexagons. The direct counterpart of this mode in the corresponding (3,3) CNT is
forbidden by symmetry at the Γ point as it would mean different atomic displacements
in neighboring unit cells of the tube.
The main contributions to the high-energy Raman band of tetramer picotubes can be
ascribed to totally symmetric modes [54]. These are transversal vibrations, since LO
modes are antisymmetric with respect to the mirror planes of the molecule. Accord-
ingly, the longitudinal mode shown in Fig. 3.7(d) can not be assigned to a measured
Raman peak. The same situation applies to TDDA, where only TO modes are totally
symmetric. From group theory, all eigenmodes which are invariant under inversion are
expected to be Raman active (see App.) [67]. Apart from the fully symmetric Ag modes,
this includes eigenvectors transforming according to the representations B1g, B2g, and
B3g, each of which is antisymmetric with respect to two out of the three 2-fold rotations
and two out of the three mirror planes (see Fig. 3.3). However, totally symmetric vibra-
tions generally are expected to exhibit stronger Raman intensities than antisymmetric
ones in agreement with the findings on semitrimer and tetramer crystals [68]. Therefore,
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Figure 3.7: Eigenvectors and calculated frequencies of selected high-energy vibrations
of (a) TDDA, (b) Kammermeierphane, (c) semitrimer, and (d) tetramer picotubes. For
each molecule, we show a longitudinal (left) and a transversal vibration (right). Ex-
perimental frequencies are assigned to the two semitrimer modes and the transversal
tetramer mode (see left pattern in (d)) [54]. For clarity, background atoms are shown in
gray and displacement arrows in the background are omitted.

we assume that the high-energy Raman signal of TDDA picotubes can be attributed
to TO modes. Our calculations predict two such modes at 1609 cm−1 and 1585 cm−1,
the latter of which is shown in Fig. 3.7(a). Thus, Raman experiments on TDDA most
probably exhibit a narrow, clearly structured high-energy band similar to the tetramer
spectrum. The behavior described above is equivalent to that of armchair CNTs, for
which the axial E1g high-energy phonons are not expected to yield considerable Raman
intensity [13].
In principle, the above considerations can be transferred to the semitrimer molecule.
Nonetheless, we find totally symmetric A′ vibrations with pronounced LO-like displace-
ment patterns in both complete anthracene units of the semitrimer. In the single carbon
hexagon forming the third - partial - anthracene block, neighboring atoms do not move
in opposite phase, but in phase, which leaves the pattern symmetric with respect to the
mirror plane σh, the only non-trivial symmetry element of the semitrimer point group.
The eigenvector shown in Fig. 3.7(c) is an example for an A′ longitudinal mode of the
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semitrimer. Although not all of the - much lighter - hydrogen atoms, which terminate
the dangling carbon bonds, follow the axial motion of the carbon atoms, the LO char-
acter of the vibration is evident. We conclude that longitudinal as well as transversal
modes contribute to the semitrimer high-energy band giving rise to the extended Raman
band in this region compared to tetramer picotubes [52–54]. Furthermore, the number
of fully symmetric modes is higher for semitrimers than for all other picotubes due to
the low symmetry of the molecule [52].
Similar to the semitrimer case, the structure of Kammermeierphane picotubes allows
both LO and TO eigenvectors with the full symmetry of the molecular point group.
This is a consequence of no anthracene unit being crossed lengthwise by a mirror plane
as can be seen in Fig. 3.4. Like the TDDA picotube, Kammermeierphane has an in-
version center, which limits Raman activity to the modes that are invariant under this
symmetry transformation as described in the appendix. However, it is expected that
the Bg modes, which are antisymmetric with respect to the rotation C2 and the mirror
plane σh, yield lower Raman intensity than Ag modes [67]. Our simulations show a total
of five fully symmetric modes in the high-energy region, two of which exhibit longitudi-
nal displacements and three have transversal character. One example of each group is
presented in Fig. 3.7(b). Thus, our results suggest that the high-energy Raman band of
Kammermeierphane is similarly broadened as found for semitrimer picotubes.
All picotubes have in common that the LO vibrations are found at higher frequencies
than the TO modes. This is in contrast to the corresponding armchair nanotubes, which
exhibit softened LO phonon frequencies due to a Kohn anomaly effect: The lattice dis-
tortion of the LO phonon leads to a band-gap opening in these otherwise metallic CNTs,
which compensates part of the energy needed to distort the tube [13, 69, 70]. In nan-
otubes which are not subject to this mechanism, i.e., in semiconducting tubes, the LO
mode frequency exceeds that of the TO mode [13]. A similar effect for molecules, which
could damp the LO mode frequencies of picotubes in analogy to those of armchair CNTs,
is not known.

3.3 Summary

We performed a comparative ab initio study of the structures and vibrations of four
consecutive carbon picotubes. These ring-shaped hydrocarbons closely resemble narrow
armchair nanotubes. Therefore, picotubes are considered to be possible starting points
for a specific synthesis of carbon nanotubes. The structural regularity and symmetry
differ considerably among the different picotube types, which is reflected in the molecu-
lar vibrations as well. The vibrations of picotube molecules and nanotubes show similar
characteristics. Whereas the high-energy band of two picotube species is expected to
be dominated by transversal optical modes analogous to armchair nanotubes, the lower
symmetry of the two other picotubes allows both totally symmetric longitudinal and
transversal optical vibrations. This is in accordance with previous Raman experiments
on semitrimer and tetramer picotubes. Furthermore, our calculations of picotubes ex-
hibit radial breathing modes and thus counterparts to the well-known fingerprint modes
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of carbon nanotubes. The breathing-mode frequencies of picotubes roughly satisfy a
d−1 - dependence in accordance with the relation in carbon nanotubes.



4 Molecular dynamics of picotube
peapods

Parts of this chapter were published in Ref. [71].

An intriguing question about carbon picotubes concerns the possibility to obtain closed
nanotubes of a well-defined chirality from these molecules. In a first step, this would re-
quire the transformation of the picotube structures presented above into short nanotube
sections with closed ends. These building blocks might subsequently serve as starting
points for the formation of longer tubes under appropriate conditions [16]. Schaman
et al. suggest an approach to configurate picotubes to a tubular structure by means of
the interaction of picotubes with CNTs [26]. They report about Raman experiments
which point to a successful formation of closed picotubes. Furthermore, the authors
present two interesting theoretical results: First, according to their ab initio calcula-
tions, the tubular configuration of the tetramer is favorable compared to the one with
separate wings at the ends. In addition, they show an energy gain for the encapsulation
of picotubes in certain types of CNTs. These findings motivate a further investigation of
how picotubes behave in the presence of nanotubes and, in particular, inside nanotubes.
We address this question by studying the dynamic behavior of tetramer molecules in-
serted into armchair nanotubes in analogy to fullerene peapods [25, 72]. This system
is examined by means of molecular dynamics simulations under varying thermal con-
ditions. In the following, we first describe the simulated system and demonstrate the
suitability of the applied semi-empirical model (Sec. 4.1). In Sec. 4.2, we show that
the dynamics of the picotube-nanotube system can be classified into oscillations, axial
transport, and structural reconfiguration of the picotubes.

4.1 Setup of the simulation

4.1.1 Composition of the investigated system

All picotubes presented in Chap. 3 are prospective starting points for the synthesis of
the corresponding closed nanotubes. However, the tetramer seems to be the most ap-
propriate candidate. Semitrimer and Kammermeierphane picotubes are of a less regular
structure than the tetramer molecule, which impedes the formation of nanotubes due
to missing sections in the potential tube wall. TDDA, the second highly symmetric and
regular picotube apart from the tetramer, corresponds to the (2,2) CNT, which is con-
sidered hypothetical as it would be highly strained. Thus, we choose tetramer picotubes
for our simulations.
The choice of the surrounding tube has to fulfill two requirements: First, the tube diam-
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(a)

(b)

Figure 4.1: (a) Initial configuration of
three consecutive tetramer molecules encap-
sulated coaxially in a (9,9) CNT. (b) Axial
view of the position of a tetramer molecule
oriented coaxially inside the (9,9) nanotube.

eter should be large enough to ensure that no bonds form between the hydrogen atoms
of the tetramer and the tube wall. On the other hand, the number of atoms, e.g., the
computation time, is minimized by taking the smallest possible tube. Concentrating on
armchair tubes, the (9,9) nanotube with a diameter of 1.22 nm turns out to be a suitable
candidate. In this type of nanotube, the most likely orientation of a tetramer molecules
is coaxial as shown in Fig. 4.1. This configuration possibly facilitates a transformation
of the picotubes towards short closed tubes.
As mentioned above, the encapsulation of a tetramer into a (19,0) tube, which has a
larger diameter of 1.49 nm compared to the (9,9) tube, results in an energy gain [26]. In
contrast, inserting a tetramer into a (9,9) nanotube requires an energy input of 15 eV.
Nevertheless we consider the narrower (9,9) nanotube a better model case for two rea-
sons: First, the interaction between the tube and the tetramer molecules, which is the
main subject to the present investigation, is expected to play a greater role in a nar-
rower tube. Furthermore, the inter-wall distance of 3.35 Å in a (4,4)@(9,9) double wall
nanotube that might potentially evolve from the tetramer-nanotube system, comes very
close to the values predicted and found for actual double wall tubes [73,74]. Therefore,
we expect the possible formation of an inner (4,4) nanotube from the tetramer molecules
to be favored by this choice for the outer tube.
Besides the picotube-nanotube interactions, mutual influence of different tetramer mole-
cules might have an impact on the dynamic behavior. In order to cover interactions
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Table 4.1: Structural parameters of the tetramer molecule as calculated within the AM1
approximation compared to reference values from ab initio simulations and x-ray diffrac-
tion [54].

AM1 DFT x-ray

Diameter (Å) 5.4 5.4 5.4
C-C bond lengths (Å) 1 1.35 1.37 1.36

2i 1.48 1.49 1.51
2o 1.47 1.48 1.49
3i 1.43 1.43 1.42
3o 1.42 1.42 1.41
4i 1.39 1.40 1.39
4o 1.39 1.40 1.39
5i 1.40 1.40 1.39
5o 1.40 1.40 1.39
6i 1.39 1.40 1.39
6o 1.39 1.40 1.39

C-H bond length (Å) 1.10 1.11 0.99
C-C-C angles (◦) 2i− 2o 108 109 108

1− 2i 126 126 126
1− 2o 126 125 126

Wing angles (◦) θ 48 51 51
φ 71 73 70

between the picotubes we comprise three consecutively arranged tetramers in our stud-
ies. The resulting input configuration for the dynamical simulations is shown in Fig. 4.1.

4.1.2 Suitability of the computational approach

The configuration described above contains 1020 atoms in total. Given the large number
of time steps evaluated in molecular dynamics simulations, the use of ab initio methods
for such a large system would require disproportionately high computational resources.
Instead, we employ the semi-empirical AM1 approach introduced in Sec. 2.2.1, which
is widely used in molecular dynamics studies involving nanotubes [47, 75–77]. In the
following we demonstrate the accuracy of this method with respect to the particular
composition of picotubes.
We first simulate an isolated tetramer and compare the results to previous reference
work. Figure 4.2 shows the AM1-relaxed structure of the tetramer. The notation of the
different bonds is largely adopted from Ref. [54]. As shown in Tab. 4.1 the bond lengths
and angles found by means of the AM1 model are in excellent agreement with the results
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Figure 4.2: The tetramer picotube as
seen from the side. We adopt the bond
labeling introduced in Ref. [54], accord-
ing to which the indices i and o denote
bonds in the wings bending inward and
outward, respectively.

of DFT calculations and x-ray scattering experiments. The configuration of the tetramer
shown here, which has D2d symmetry, represents the global minimum of the potential
energy surface. Actually, the molecule has been shown to oscillate rapidly between two
equivalent D2d states by interchanging in- and outward bending benzene wings [17]. This
leads to a time-averaged intermediate state with D4h symmetry, which corresponds to a
local energy maximum. Our calculations show the energy of this metastable configura-
tion to be 266meV higher than that of the two D2d structures in accordance with the
DFT-derived value and a prior AM1 study [17,54]. These results indicate that tetramer
picotubes are described accurately within our approach. In addition, our calculations
confirm the energy gain from inserting a tetramer into a (19,0) nanotube reported ear-
lier [26]. We find the encapsulation in this tube to be favorable by 1.44 eV in agreement
with Schaman et al. who found an energy difference of 1.2 eV.

4.2 Temperature-dependent dynamics

To develop a comprehensive picture of the dynamical behavior of tetramer molecules
inside (9,9) nanotubes, we perform simulations at various temperatures ranging from
100K up to 3000K. We observe three independent effects in different temperature
ranges. At low temperatures the picotubes perform periodic motions inside the nan-
otube (Sec. 4.2.1). Depending on the particular simulation temperature we find axial
oscillations, rotations about certain axes perpendicular to the nanotube wall, and su-
perpositions of different modes. Above 800K the tetramers move collectively along
the nanotube axis (Sec. 4.2.2). Further investigations reveal that in the case of indi-
vidual picotubes inserted into nanotubes, this transport effect occurs already at much
lower temperatures. While previous investigations on transport in carbon nanotubes
are based on pressure gradients, external electric fields, or thermophoretic forces, our
simulations yield molecular transport as a consequence of a homogeneous heating of the
whole system [78–80]. Another remarkable result is found for temperatures above 2500K
(Sec. 4.2.3). We observe a partial dehydrogenation of the tetramer molecules as well as
the formation of new bonds. Eventually, this may lead to the transformation of the open
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Figure 4.3: Motional patterns of the tetramers inside the nanotube at low temperatures.
Bright ends of the red arrows denote in-phase states of the single molecular oscillations.

picotubes to a closed tubular configuration as suggested by Schaman et al. [26].

4.2.1 Low temperature oscillations

Two different periodic motions of the picotubes are shown in Fig. 4.3. When cooled down
to 100K the tetramers perform an in-phase oscillation along the axis of the surrounding
nanotube (see Fig. 4.3(a)). The frequency of this oscillation compares to an energy
of about 2.2meV and thus a factor of ten less than the energy of the radial breathing
modes of the smallest pico- and nanotubes [53,54]. Figure 4.3(b) shows an opposite phase
rotation of neighboring tetramers around axes perpendicular to the nanotube axis. The
image shown here stems from a simulation at 600K, but the same rotational pattern is
also found at lower temperatures. At 400K, one tetramer even performs a rotation by
180◦ about an axis perpendicular to the nanotube. In all simulated cases, the oscillation
presented here is superimposed by axial modes of the molecules resulting in complicated
motional patterns which are less regular than the one shown in Fig. 4.3(a). Therefore,
it is not possible to determine a frequency of the rotational mode.
Superpositions of different oscillations occur throughout most of the lower thermal range.
In general, the out-of-phase motion of all picotubes with different frequencies thereby
leads to a complex vibrational pattern. In cases of nonuniform axial motions we observe
elastic collisions of the molecules. Subsequently, tetramers which do not collide again
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Figure 4.4: Transport of the picotubes through the nanotube at a simulated temperature
of 2000K. All tetramer molecules move to one end of the tube simultaneously.

move continuously through the nanotube. This effect will be described in more detail
in Sec. 4.2.2. One possible additional degree of freedom of the tetramer molecules is
given by rotary oscillations about the nanotube axis. However, we do not observe such
a vibration in any simulation.

4.2.2 Molecular transport

A qualitatively different effect compared to the oscillations described above is found at
higher temperatures. As shown in Fig. 4.4 at a temperature of 2000K the three picotubes
move towards one end of the nanotube and do not oscillate against each other. The si-
multaneous motion of all molecules sets in at about 800K. However, at this temperature
the motion of the molecules is not perfectly collective but the rearmost picotube follows
the first two at a lower velocity. With increasing temperature all three tetramers move
synchronously as can be seen in the example shown in Fig. 4.4. The molecular transport
also occurs if a single tetramer is encapsulated in the nanotube. In this case, we observe
a continuous motion already at temperatures as low as 50K. Apparently, the interaction
among different picotubes leads to a higher thermal energy being required to enable a
collective motion of the whole picotube ensemble. We choose the simplified case of an
individual tetramer to further study the conditions of the picotube transport. In doing
so, we can reduce the length of the surrounding nanotube compared to the configuration
shown in Fig. 4.4 and thus save computational capacity.
The higher total potential energy of the system with the tetramer situated inside the
nanotube suggests that the tetramer follows an energy gradient towards the tube end.
In order to clarify this issue we performed simulations with a tetramer placed at differ-
ent positions along the nanotube axis. These calculations show that the direction the
picotube moves in does clearly not depend on the distance to the nearest end of the
nanotube. When placed near one end of the nanotube, the picotube in some cases still
moves all the way to the opposite end before escaping the nanotube. This result strongly
indicates that effects induced by the tube ends are irrelevant.
Obviously the motion is driven by interactions of the picotubes with the nanotube wall.
We therefore consider the symmetry of the entire system which depends on the initial
position and orientation of the tetramer in the nanotube. The two parameters that
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Figure 4.5: (a) Relative axial position of a tetramer picotube inside a (9,9) carbon
nanotube. ∆z denotes the offset of the tetramer with respect to a hexagon in the
nanotube wall and c is the lattice constant of the tube. (b) Total energy of the complete
system depending on the relative axial offset as defined in (a).

determine the relative configuration of both compounds are the axial position ∆z of the
tetramer with respect to the unit cell of the nanotube (see Fig. 4.5(a)) and the angular
orientation ∆α (see Fig. 4.6(a)). We find the potential energy of the system to depend
on the axial offset as shown in Fig. 4.5(b). A picotube moving along the nanotube axis
undergoes a varying potential and thus encounters small local energy gradients. The
height of the energy barrier along the unit cell of the nanotube is 110meV in total and
0.27meV/atom. Notably, this value is very close to the translational potential barrier
of 0.23 eV/atom derived for a double wall carbon nanotube composed by a (5,5) and
a (10,10) CNT [81]. The interlayer distance of the latter system is comparable to the
distance between the picotube ’wall’ and the surrounding (9,9) nanotube. The energy
barrier stated above impedes an axial translation of the picotube only close to absolute
zero. Accordingly, our simulations exhibit a motion of individual tetramer molecules
through the nanotube down to a temperature of 50K. Most probably, molecular trans-
port will be observable even at lower temperatures. However, the mean velocity of the
picotubes strongly decreases when cooling down the system. Thus, detecting a transla-
tion at lower temperatures requires the simulation of a longer time span, which limits
the technical feasibility of such a study. The total energy as a function of the angular
orientation is shown in Fig. 4.6(b). Due to the 9-fold symmetry axis of the nanotube, the
potential exhibits a periodicity of 40◦. The energy varies in a margin of about 100meV
in correspondence to the axial barrier height.
The picotubes move in randomly distributed directions independent of the temperature.
A possible influence of the local energy gradients in the phase space spanned by ∆z and
∆α on the direction of motion is examined by varying the initial position and orientation
of the tetramer and starting a dynamical simulation in each case. Our findings clearly
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Figure 4.6: (a) Relative angular offset between a tetramer picotube and the surrounding
(9,9) nanotube. (b) Total energy of the system depending on the relative orientation
∆α as defined in (a).

show that there is no connection between the direction of the axial momentum obtained
by the molecule and the gradient of the potential at the initial position.
While the velocity of the picotubes approaches zero at low temperatures, we find values
of the order of 103 m/s for 1000K. Simulations at several temperature levels up to 2500K
yield an increase of the mean tetramer velocity. From 2500K on, the picotubes again
move slower as the thermal energy is partially taken up by additional reconfiguration
effects in the molecules as described in the following Section.

4.2.3 Chemical modifications

Another remarkable result is found for very high temperatures. Above 2500K the ther-
mal energy allows the breaking of carbon-hydrogen bonds in the picotubes. The dehy-

Figure 4.7: Schematic view of a hy-
drogen atom (light gray) bound ra-
dially to a closed tubular wall of car-
bon atoms (black).
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Figure 4.8: Close-up view of a tetramer molecule during a simulation at a temperature
of 2500K. Obviously a structural reorganization takes place resulting in an almost closed
configuration, e.g., a very short (4,4) nanotube.

drogenated outer carbon atoms at the wings of the tetramer tend to form new bonds,
which leads to a closing of the tetramer wings to a tubular configuration. However, our
simulations show the removal of only a few hydrogen atoms of the picotubes. Mostly
sp3-like configurations form as a result of a hydrogen atom being attached to the outside
of a closed tubular section of the tetramer (see Fig. 4.7). The resulting partially closed
picotube structure with radially oriented C-H bonds is shown in Fig. 4.8. Those hydro-
gen atoms which are removed from the picotube join and form H2 molecules inside the
nanotube. Furthermore, at 3000K we observe the dissociation of entire C2H2 groups of
the tetramer molecules. The latter effect also results in a tubular structure, although
a shorter one. Anyhow, a temperature of 3000K seems to be too high to achieve a
preparation of a closed (4,4) tube as the tetramer structure starts to become unstable.
This will presumably promote the formation of defects in the produced tube. The sur-
rounding (9,9) nanotube remains unaffected of any chemical modification in all of our
simulations.
A transformation of the open tetramer to a closed picotube structure is consequential
as this process has been shown to reduce the potential energy [26]. Nevertheless, it
is an intriguing result which at longer simulation times might lead to a fully dehydro-
genated closed configuration. In fact, it is the first step to a selective formation of a
(4,4) nanotube.
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4.3 Summary

We presented a molecular dynamical study on the behavior of tetramer picotubes aligned
inside a (9,9) nanotube. Our investigations in this field of interacting pico- and nan-
otubes yield several interesting results. At low temperatures we observe rotations and
axial vibrations of the tetramers inside the nanotube. Furthermore, a molecular trans-
port occurs at arbitrary temperatures in the case of individual picotubes and from 800K
on if a group of interacting picotubes is considered. Finally, we find a structural trans-
formation of the tetramer molecules inside the nanotube at higher temperatures. At
2500K the thermal energy causes the breaking of C-H bonds and the formation of new
bonds. Different structural transformations of the tetramer molecules result in short,
tubular structures. This is a promising result on the way to a possible chirality-selective
preparation method of carbon nanotubes.



5 Basic properties of graphene
nanoribbons

Parts of this chapter were published in Refs. [82,83].

Graphene has drawn extensive research interest since its discovery in 2004 [5]. This
two-dimensional carbon allotrope exhibits a broad range of fascinating characteristics.
The planar, hexagonal configuration of carbon atoms represents the thinnest possible
membrane which at the same time proofs to be extraordinarily stable [8]. However,
great potential of graphene is also to be found in its remarkable electronic properties.
Graphene is a semimetal, i.e., a zero-band-gap semiconductor. Its Fermi surface exists
only at the corners of the Brillouin zone, the six K points. The bands formed by the
π orbitals of the sp2 hybridized carbon atoms show a locally linear dispersion near the
Fermi level. This unusual band structure allows a formal treatment of the electrons as
quasi-relativistic Dirac fermions, with a Fermi velocity of vF ≈ 1 · 106 m/s [5, 84–86].
The exceptional electronic configuration of graphene is also reflected in the observation
of the quantum hall effect at room temperature [87]. These findings have triggered
tremendous efforts towards applications and the first graphene transistors have shown
very high charge mobilities of up to 20000 cm2/(V·s) [12]. Despite its striking electronic
features, the gap-less band structure of graphene impedes a direct use in many potential
nanoelectronic devices. A possible way to overcome this obstacle is to design narrow
stripes of a graphene sheet, which opens a gap due to the lateral confinement of the
electronic wave function [18, 19, 88]. These so-called graphene nanoribbons (GNRs) are
therefore considered promising building blocks in future nanoelectronic circuits [89–
91]. In the following, we will review the fundamental properties of intrinsic GNRs,
starting with geometrical aspects in Sec. 5.1. Subsequently we address how different
edge configurations and widths affect the electronic and vibrational properties of GNRs
(see Secs. 5.2 and 5.3).

5.1 Edge types and classification

There are unlimited possibilities of how to cut a ribbon out of a graphene sheet, giving
infinite possible edge geometries. However, recent reports on imaging of graphene by
means of high-resolution transmission electron microscopy suggest that edges favorably
form along the crystal directions [92, 93]. These so-called armchair and zigzag direc-
tions of the hexagonal graphene lattice are illustrated in Fig. 5.1. As edges along these
lines are expected to be most stable, the majority of the research work on GNRs con-
centrates on ribbons cut in these directions, i.e., armchair GNRs (AGNRs) and zigzag
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Figure 5.1: Crystallographic axes in a
graphene sheet. The black lines show
the honeycomb lattice of graphene and
the blue (red) line depicts the armchair
(zigzag) high symmetry direction.

GNRs (ZGNRs). The width of GNRs is conventionally denoted by the number of carbon
dimers per unit cell. Figure 5.2 shows the elementary cells of N -AGNRs (Fig. 5.2(a) and
N -ZGNRs (Fig. 5.2(b) each with one dimer being highlighted in green. The outermost
carbon atoms in Fig. 5.2 are saturated with hydrogen. In order to describe pristine
GNRs, the passivation with hydrogen is commonly assumed since a pure carbon edge
would yield dangling bonds leaving it chemically unstable. It should be noted that divers
configurations of hydrogen saturation have been shown to be stable depending on the
edge type [23].
Various approaches to produce GNRs have been suggested ranging from lithographic
methods to the longitudinal unzipping of CNTs [94–99]. However GNRs prepared with
these top-down techniques have in common one disadvantage well-known from the pro-
duction of CNTs: It is hard to extract ribbons of a defined edge structure and width,

(a) (b)

� 2 3 4 N-1 N

Figure 5.2: Structure of (a) a N -AGNR and (b) a N -ZGNR. In each case, carbon
(hydrogen) atoms of one unit cell are shown in black (white), whereas the the neighboring
unit cell is indicated in gray and white, respectively. One carbon dimer line of each unit
cell is emphasized in green.
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similar to the typical chirality distributions in CNT outputs. Even though annealing
procedures can help reconstructing ribbon edges, the above described methods yield too
unspecific compounds given that the exact width and edge structure essentially deter-
mine the basic properties of GNRs which will be described below [100]. In this context,
the recent successful synthesis of a specific 7-AGNR with defect-free edges and a well-
defined width by Cai et al. is a major breakthrough [21]. However, the reported bottom-
up method is an exception, as other GNRs so far cannot be prepared in a comparably
accurate way.

5.2 Electronic properties

GNRs exhibit pronounced analogies to CNTs as a quantization condition perpendicular
to the axis holds in both quasi one-dimensional structures. Thus, in the simplest ap-
proximation the electronic spectrum of GNRs can be derived from zone folding of the
graphene band structure analogous to the case of CNTs. While the cylindric structure of
CNTs implies continuous standing waves along the circumference, i.e., circular bound-
ary conditions, fixed boundary conditions must be applied at the GNR edges. In the
following, we define the ribbon width as the average distance of all outermost carbon
atoms along the unit cell (see Fig. 5.2). Ideally, i.e., cutting a ribbon from graphene
without relaxing it, the width of a N -AGNR is

w(N -AGNR) =
a

2
(N − 2) (5.1)

and that of a N -ZGNR is

w(N -ZGNR) =

√
3a

2
(N − 1), (5.2)

where a is the lattice constant of graphene. Obviously, the perpendicular components
of all wave functions with respect to the GNR axis must fulfill the condition

n · λ⊥,n

2
= w or k⊥,n =

π

w
· n, n ∈ N. (5.3)

Hence, the Brillouin zones of GNRs consist of equidistant lines separated by

∆k(N -AGNR) =
2π

a(N − 2)
(5.4)

and

∆k(N -ZGNR) =
2π√

3a(N − 1)
, (5.5)

respectively. Using the examples of a 7-AGNR and a 7-ZGNR, this condition is visualized
in Fig. 5.3 projected on the Brillouin zone of graphene. In this picture, all those GNRs
are metallic whose allowed states include the K (K’) points, i.e., the Fermi crossings of
graphene. This comprises all ZGNRs as their maximum k⊥,n coincides with the K’MK
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Figure 5.3: Brillouin zones of a 7-AGNR
(blue lines), a 7-ZGNR (green lines), and
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lattice vectors of graphene and ~k1,2 are their
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line:

ΓM =
2π√
3a

= k⊥,N−1(ZGNR) (5.6)

Accordingly, the Brillouin zone of the 7-ZGNR in Fig. 5.3 exhibits 7 lines including the
one at k⊥ = 0. In case of AGNRs the Brillouin zone contains the K point only if

k⊥,n(AGNR) = n · 2π

a(N − 2)
!
= ΓK =

4π

3a
(5.7)

which translates to N=3p+2, with p being integer (compare Eq. 5.2). In the above
approximation of an ideal graphene-like geometry, these N -AGNRs are found to be
metallic while all others are predicted to have a band-gap.
However, two effects substantially modify the findings described so far. First, carbon
atoms in relaxed GNRs are not all pairwise equivalent as in graphene, but show different
bond lengths in the center and at the edge of the ribbon. It turns out that in AGNRs,
C-C bonds parallel to the ribbon axis are shorter close to the edges than in the center [19].
This modifies the boundary condition at the edges in such a way that a band-gap opens
also in N -AGNRs with N=3p+ 2 which are metallic in the zone folding picture. Thus,
all actual AGNRs are semiconducting. Relaxed ZGNRs show a comparable geometric
effect. These ribbons do not have C-C bonds parallel to the ribbon axis, but we find C-C
bonds formed by dimer lines as defined in Fig. 5.2(b) to be shortened towards the edges.
Nonetheless, this does not seem to have an impact as severe as in case of AGNRs. The
dominating factor in ZGNRs is rather the appearance of ferro-magnetically ordered spin
states along the ribbon edges [19, 101]. When the spin degree of freedom is taken into
account, net magnetized edges prove to be energetically favorable. This involves a shift
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in the spin polarized density of states at the edges such that a band-gap opens in all
ZGNRs [101]. The bottom line is that there are no metallic armchair or zigzag GNRs.
The size of the band-gap of a given GNR strongly depends on its width. Figure 5.4

shows the band-gaps of relaxed AGNRs as a function of the number of carbon dimers
per unit cell. The data presented here, which are taken from our DFT calculations in
the local-density approximation, agree very well with previous reference work [19, 88].
An overall trend of decreasing band-gaps with increasing ribbon width is evident. In
the limit of very wide ribbons, the high density of allowed values for k⊥,n induces a
vanishing band-gap. Furthermore, the gap values of N -AGNRs are clearly subject to N
either being 3p, 3p + 1, or 3p + 2, where p ∈ N. This pronounced family dependence
may be interpreted in terms of the above discussed zone folding approximation, which
led to N -AGNRs with N = 3p + 2 being metallic. Note that this family still exhibits
the smallest band-gaps of all AGNRs. A slightly different behavior is found for ZGNRs,
which do not show any family pattern. Their maximum band-gaps are about 0.35 eV
and thus much smaller than those of narrow AGNRs [19]. As expected, growing ribbon
widths diminish the energy gaps of ZGNRs. We did not investigate the band-gaps of
ZGNRs systematically and would like to refer the interested reader to Son et al. [19].

5.3 Vibrational characteristics

The phonon spectrum of GNRs shows significant analogies to that of CNTs. Since both
systems are one-dimensional subspecies of graphene, their fundamental vibrations are
closely related to those of graphene. This is reflected most obviously in the high-energy
band around 1600 cm−1 formed by the two-dimensional E2g mode in graphene. These
optical vibrations are doubly degenerate at the Γ point in intrinsic graphene, but split if
the system becomes anisotropic, e.g., under strain or when a unique axis is specified, like
in the case of GNRs and CNTs [13,102,103]. In GNRs with armchair and zigzag edges,
the two resulting modes show in-plane atomic displacements axial and perpendicular
to the ribbon axis and are therefore commonly referred to as longitudinal (LO) and
transversal optical (TO) mode (see Fig. 5.5(b) and (c)). It should be noted that an
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382 cm
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Figure 5.5: Eigenvectors and corresponding phonon frequencies of (a) the BLM, (b) the
longitudinal, and (c) the transversal optical fundamental mode of a 7-AGNR at the Γ
point. Carbon (hydrogen) atoms are shown in black (gray) and atomic displacements
are marked by red arrows.

alternative notation is frequently used throughout the literature referring to the LO and
TO modes as G− and G+, respectively. For all AGNRs and ZGNRs, the TO was found
at higher frequencies than the LO [104]. Furthermore, it was shown that both the LO
and TO energies in AGNRs behave according to the family classification described in
Sec. 5.2. As expected, the LO and TO frequencies converge to the value of the graphene
E2g mode in very wide ribbons.
Gillen et al. showed that the Γ point vibrations of GNRs contain six fundamental
modes which represent the zone center phonons of graphene [104]. Beside the LO and
TO modes, these are the ZO mode, in which neighboring carbon atoms perform out-of-
plane vibrations in opposite directions, and three acoustic phonons. All other vibrations
are overtones of these fundamentals in terms of a modulation of the eigenvector by
transversal standing waves. These waves correspond to the allowed k states derived
from the boundary conditions of zig-zag and armchair edges in Sec. 5.2. That way,
the harmonics of the GNR fundamental vibration can be mapped onto the respective
branches of the phonon dispersion of graphene [104].
The first overtone of the transversal acoustical mode arouses special interest. As shown
in Fig. 5.5(a), its displacement pattern represents a totally symmetric breathing motion
of the whole ribbon resembling the radial breathing mode in CNTs. It is usually denoted
as breathing-like mode (BLM). The energy of the BLM depends inversely on the width of
the GNR in close analogy to the radial breathing mode in CNTs [13,65,105,106]. Since
the BLM is Raman active in ZGNRs and AGNRs, this relation provides a straight-
forward way to determine the width of a GNR via Raman spectroscopy [106]. Ab initio

studies of scattering intensities predict that the BLM and the high energy band are
of central importance in the Raman spectrum of GNRs, which is confirmed in a first
experimental characterization of precisely synthesized 7-AGNRs [21, 107]. Cai et al.

further found strong Raman bands between 1200 and 1350 cm−1. These modes most
likely stem from either the LO, TO, or LA branches, which all have Raman active
overtones in this frequency range around the K point of graphene [104,106].
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5.4 Summary

The properties of GNRs are largely governed by the ribbon width and the edge configu-
ration. While common top-down production methods still yield inaccurate results in this
respect, one specific type of armchair ribbon has been synthesized in a precise way. This
is essential in view of possible applications as, e.g., a small deviation in ribbon width has
drastic effects on basic properties of the GNR. The electronic band structure of GNRs
can be approximated from the graphene Brillouin zone by means of zone folding. In
this picture, one third of the AGNRs and all ZGNRs would be semimetallic which turns
out to be not correct. Ab initio calculations show that all AGNRs and - taking into
account spin polarization - also ZGNRs have at least a small band-gap. Furthermore,
the band-gaps of AGNRs follow a clear family behavior suggesting a classification into
three groups depending on the number of carbon dimers per unit cell. This family de-
pendence is also reflected in the high-energy band vibrations of AGNRs. ZGNRs, in
contrast, can not be classified in a similar way. In analogy to the RBM in CNTs, GNRs
exhibit a breathing-like eigenmode, which relates to the ribbon width in the same way
as the RBM does to the tube diameter. The BLM thus could potentially play a key role
in the experimental characterization of GNRs.



6 Strain in graphene nanoribbons
Parts of this chapter were published in Ref. [82].

A major part of possible applications most probably will include GNRs deposited on a
substrate. In these cases, lattice mismatch, i.e., different lattice constants of the sub-
strate crystal and the GNR, causes strain. Since the thickness of graphene and GNRs is
a single atomic layer, interface-strain induced variations in the electronic and vibrational
structure are expected to play a greater role than in bulk materials. A further motiva-
tion to explore the effect of strain is the prospect of tuning certain properties of GNRs
intentionally. Together with the exploitation of other influences like defects, functional-
ization, and edge type, this may widen the range of applications substantially. In this
work, we concentrate on strain along the nanoribbon axis as it is assumed to be most
relevant in practice. In the following, we examine how uniaxial strain affects the geo-
metric (Sec. 6.1), the electronic (Sec. 6.2), and the vibrational (Sec. 6.3) characteristics
of AGNRs.

6.1 Structural effects

We introduced strain in our simulations by fixing the lattice constant c of a given rib-
bon to values differing from the unstrained case and relaxing the structure within this
constraint. We simulated a series of strain magnitudes of up to 5% for each ribbon,
both in tensile and compressive mode. Being exposed to tensile strain, GNRs - like any
other material - shrink in the lateral dimension. For axial strain this implies a width
variation which in turn causes deviations in the boundary conditions for the allowed
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Figure 6.2: Band structure of a uniaxially strained 13-AGNR. Black solid lines denote
the unstrained case and red dotted (blue dashed) lines correspond to a ribbon under
1.8% (3.5%) tensile strain along the ribbon axis.

k states of the GNR. The ratio of the transversal response of a system to strain and
the strain itself is known as Poisson’s ratio ν. In case of GNRs, this quantity may be
expressed as the relative variations in width and lattice constant c. Figure 6.1 displays
the values found for ν in AGNRs as a function of their width. As the Poisson’s ratio of
a GNR is sensitive to the amount of strain, we present here the average of the values
derived in the mentioned strain range. While the mean Poisson’s ratio of different nar-
row ribbons oscillates considerably, it tends to converge to the value of 0.164 found for
graphene already from N = 10 onwards [108]. The family behavior of AGNRs, which
was introduced in Chap. 5, does not seem to be reflected in these results.

6.2 Band structure of strained nanoribbons

The geometric distortion has a severe impact on the electronic structure. Figure 6.2
shows the band structure of a 13-AGNR in the relaxed configuration and at two dif-
ferent strain levels. First of all, it is apparent that pairwise connected valence and
conduction bands shift in opposite directions, either further apart or closer together.
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.K
Figure 6.3: Diagram of a sec-
tion of the Brillouin zones of
graphene and AGNRs around
the K point. Light gray lines
indicate the edges of the Bril-
louin zone of graphene, vertical
red lines denote the allowed elec-
tronic states of AGNRs. The
Dirac cone is shown as black spot
which shifts along the high sym-
metry line under strain.

Whereas the highest π band energy increases, the second highest π band drops in en-
ergy. This corresponds to a declining lowest π∗ band and a rise in energy of the second
lowest unoccupied band. The opposite shift of the two lowest electronic Γ point band-
to-band transitions can be interpreted in terms of the zone folding picture taking into
account reports on the strain-influenced band structure of graphene [108]. Calculations
of uniaxially strained graphene show the Dirac cone to shift away from the K point. In
the special case of strain along the armchair or zigzag direction, it shifts along the high-
symmetry line Γ-K-M [108]. This motion of the graphene Dirac cone is schematically
shown in Fig. 6.3 projected on the Brillouin zone of AGNRs. As discussed in Sec. 5.2,
the allowed states of AGNRs are given by equally spaced lines perpendicular to the line
Γ-K-M. Thus, strain makes the Fermi crossing move between the quantized states k⊥,n

of an AGNR. The consequence of this relation is evident in the exemplary band structure
of a strained 13-AGNR shown in Fig. 6.2. Obviously, tensile strain makes the Dirac cone
approach the nearest allowed AGNR state resulting in a diminished lowest π∗ and an
increased highest π band energy. At the same time, the Dirac cone moves away from the
second nearest allowed line, which is located on the other side. This implies an up-shift
(down-shift) of the corresponding second lowest π∗ (second highest π) band which can
be seen in Fig. 6.2. Hence, qualitatively, the band structure of the strained 13-AGNR
can be explained by considering strain in 2D graphene.
When evaluating the strain-induced band-gap shifts of various AGNRs, we find a funda-
mentally different behavior for ribbons belonging to different families. Figure 6.4 shows
the relation between gap and strain for N -AGNRs with N =13, 14, and 15, which be-
long to a different family each. For N = 13 (N = 3p + 1), we see a declining band-gap
under tensile strain as discussed above. At a compressive strain of about 1.4%, the
gap of this ribbon reaches a maximum before reducing again under further compression.
Within the interpretation given above, the gap maximum occurs when the Dirac cone is
located between two allowed k states in such a way that the energies of the direct elec-
tronic transitions at these k points are identical. Only in the pure geometrical picture
and assuming perfect circular-symmetric cones, this coincides with the Dirac cone being
equally distant from the two neighboring k⊥,n. However, due to the trigonal warping
of the graphene electronic dispersion around the K point, the maximal gap is expected
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for the Dirac cone being slightly closer to the nearest k⊥,n on the line K-Γ than to the
nearest allowed state in the direction K-M [109].
The band-gap of a 14-AGNR (N = 3p + 2) decreases with the same rate as that of a
13-AGNR at small amounts of tensile strain. At 1% tensile strain, the band-gap van-
ishes, but reopens if the ribbon is strained more. This can be attributed to a crossing of
the Dirac cone across an allowed state of the ribbon as indicated by the black arrow in
Fig. 6.3. If the Fermi crossing is driven away from the zone-folding derived AGNR state
by additional strain, the gap opens up again.
Whereas the band-gap strain dependencies of 13- and 14-AGNRs mark the maximal
and minimal gap in the investigated strain range, the band-gap of a 15-AGNR (N = 3p)
shows a continuous shift in a large range. Based on the previous considerations, an
equivalent behavior is expected at turning points that lie outside the strain range con-
sidered here. The strain-shifted band-gaps of all other N -AGNRs down to N = 3 strictly
show the same family pattern as the three examples shown in Fig. 6.4.
An interesting aspect of the results shown in Fig. 6.4 is the fact that all shifts are per-
fectly linear between the extreme points. This originates in the locally linear dispersion
of the π and π∗ bands in graphene. We find shift rates of ±0.1 eV/% for all exam-
ples shown here, which in principle allows a well controllable tuning of the band-gap.
This could be useful for applications like strain sensors or nanoelectronic devices re-
quiring a certain gap energy. It should be noted that our computational approach does
not include many-body effects [110, 111]. However, since the alterations of the band
structure presented above are evidently induced by geometric deformation, we expect
the effects described here to be conserved despite a scaling of the quasiparticle energies
due to electron-electron interaction. Our results are in good accordance with a recent
tight-binding study on the band structure of strained GNRs [112]. In that work, which
considers strain of up to 15%, oscillations of the band-gap depending on the strain are
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reported. Furthermore the authors introduce a tight-binding based perturbation model
which reproduces main features of the band-gap-strain dependence [112].

6.3 Phonon shifts under strain

As outlined in Sec. 5.3, the most characteristic vibrations of GNRs are the LO and
TO modes which originate from the graphene E2g phonon, and the breathing-like mode
(BLM). We therefore restrict the following systematic investigation of the impact of
strain to these three phonons. As we consider strain in axial direction, the above defini-
tion of the attributes longitudinal and transversal holds also with respect to the strain
direction.
Figure 6.5 displays the shift of the LO and TO frequencies in a strained 7-AGNR. Like
in graphene both modes depend linearly on the applied strain over a wide range [108].
While the shift rate of the TO mode of 16 cm−1/% agrees well with findings on graphene,
the LO frequency of the investigated ribbon is altered much less than it is in graphene.
To obtain a better picture of this issue we compare the shift rates of different AGNRs
and graphene in Fig. 6.6. Strain affects the LO energy stronger than that of the TO
for every ribbon in accordance with the results on graphene [108]. The shift rates of
both modes clearly reflect the family behavior of AGNRs although this effect is more
pronounced in case of the LO. In the limit of large ribbon widths the shift rates of both
phonons are expected to converge to the values found for graphene. Concerning the LO
mode, the N = 3p+2 family exhibits slightly stronger shifts than graphene. In contrast,
the two other families show smaller, but steadily growing rates with increasing N . The
family with the most strain-sensitive LO frequency, N = 3p+2, yields by far the lowest
LO frequency in the unstrained case [104]. This is attributed to a Kohn anomaly effect
related to the small band-gap of this AGNR family [113].
The TO phonon shifts more uniformly in AGNRs belonging to different families. All
but three narrow ribbons show the TO mode being more sensitive to strain than it is
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Figure 6.6: Shift rates of (a) the LO and (b) TO frequencies in uniaxially strained
AGNRs of different widths. Values derived for N−AGNRs with N = 3p are shown as
black circles, with N = 3p + 1 as red triangles, and with N = 3p + 2 as blue squares.
The black dashed lines mark the shift rates in graphene [108].

in graphene. For wider ribbons, the TO shift rates of all families quickly converge to
a margin close to the graphene value. However, the values shown in Fig. 6.6(b) seem
to approach a slightly higher limit than the shift rate in graphene. This discrepancy
can be partially attributed to the different approximation being used in the simulation
of strained graphene. In the work referred to above, the exchange-correlation func-
tional was approximated within the GGA as implemented in the DFT code QUANTUM-
ESPRESSO, which is known to yield softened phonon frequencies [114, 115]. This was
indeed accounted for by scaling all frequencies such that the unstrained E2g frequency
matches the experimentally determined value of 1580 cm−1 in the same way as we do
it in this work (cf. Sec. 2) [108]. However, we still find somewhat higher shift rates
when calculating strained graphene with the computational method used for AGNRs.
The deviation amounts to 0.9 cm−1/% in case of the TO phonon and thus reduces the
apparent mismatch between the converging AGNR shift rates and the limit value in
Fig. 6.6(b). A much smaller deviation of 0.4 cm−1/% between our method and Ref. [108]
is found for the LO mode in graphene. Hence, there are no significant changes to the
above discussion of Fig. 6.6(a). The large shift rates of both LO and TO modes allow
to determine the strain of an AGNR sample experimentally.
Finally, we present our results on the BLM in AGNRs. For narrow ribbons of up to
N ≈ 11 we observe a linear dependence of the Raman shift on the strain. At larger
widths the frequency variation falls below the computational accuracy. Like in case of
the LO and TO, tensile (compressive) strain softens (hardens) the BLM frequency. As
presented in Fig. 6.7, the BLM of small AGNRs shifts considerably whereas this rate
decreases rapidly with growing ribbon width. This finding agrees well with the quickly
declining frequency of the BLM with increasing width.
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6.4 Summary

Potential applications of GNRs make strain an inevitable topic which we find to offer
in turn interesting opportunities. Stretching a GNR along its axis induces severe alter-
ations of its band-gap. All AGNRs show a linear shifting gap under strain in a range
which depends on the family the ribbon is classified in. At sufficiently high strains,
ribbons of all families reach maximal and vanishing gaps. This behavior is in perfect
accordance with reports on strained graphene and can be explained within the zone
folding approximation. Prominent phonons of AGNRs are strongly affected by strain as
well. The high-energy modes yield shifts similar to those found in graphene. However,
the family classification of AGNRs plays an important role in this respect, too. While
the LO and TO modes may be used to measure the strain via Raman spectroscopy, the
BLM shows significant shift rates only in very narrow ribbons.



7 Edge functionalized nanoribbons
Parts of this chapter were published in Ref. [83].

The edges of GNRs hold a great potential for various chemical modifications since cut-
ting a graphene sheet into ribbons leaves dangling bonds. In the previous discussions,
we assumed that the GNR edges are saturated with hydrogen atoms. However, typical
lithographic fabrication of GNRs includes treatment with e.g., oxygen plasma, which
makes it very likely that GNRs are passivated other than with hydrogen [94,96,116]. In
fact, diverse functional groups may be side products of the manufacturing process. In
this case it is crucial to know how the physical properties of the GNR are affected. Fur-
thermore, functionalization might be introduced intentionally in order to tune certain
properties.
Previous works on this topic focus on ZGNRs, which have edge states near the Fermi-level
when passivated with hydrogen as reviewed in Sec. 5.2 [22, 24, 117, 118]. The electronic
structure of ZGNRs is thus very sensitive to edge modifications. To the best of our
knowledge, edge functionalization of AGNRs has rarely been considered in previous re-
ports. Apart from Vanin et al., who restrict their investigation concerning functionalized
armchair edges to the stability of edge configurations, only two works address the impact
on the physical properties of AGNRs [119]. Cervantes-Sodi et al. do not expect major
effects due to missing impurity levels in the band-gap [24]. In contrast, our results sug-
gest that other mechanisms like functionalization-induced strain play an important role,
too. A recent study which concentrates on mechanical parameters of edge functionalized
AGNRs confirms our findings [120].
In this thesis, we study the influence of edge passivation with hydroxyl groups on the
structural, electronic, and vibrational properties of AGNRs of varying width. We present
deviations in the geometries of functionalized ribbons compared to their hydrogen ter-
minated counterparts in Sec. 7.1. We further demonstrate that passivation of the ribbon
edges with OH-groups is energetically favorable over H passivation, with a high degree
of functionalization being likely (Sec. 7.2). Section 7.3 deals with the effect of hydroxyl
functionalization on the electronic band structure of AGNRs. We find a strong shift
of the band-gap with increasing degree of functionalization, which is of great interest
with regard to possible applications such as GNR-based transistors. The impact of func-
tional groups on characteristic vibrational modes is described in Sec. 7.4. Besides the
characteristic Raman active phonons of GNRs, we also consider modes specific to the
hydroxyl groups. As will be discussed below, our findings suggest that the degree of
functionalization may be determined by means of vibrational spectroscopy.
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w
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Figure 7.1: (a) Unit cell of a 7-AGNR with one hydroxyl-passivated edge atom. Carbon
atoms are shown in black, oxygen atoms in red (gray), and hydrogen atoms in light gray.
The blue (gray) arrows indicate the lattice constant c and the ribbon width w. (b) Super-
cell of a 7-AGNR allowing a greater variety of configurations of edge functionalization.
The example shown here has a degree of edge functionalization of 5/8.

7.1 Geometric effects

The addition of hydroxyl groups to the edges of AGNRs induces considerable geometric
effects on the ribbon itself as discussed in the following. To get a clear picture, we simu-
lated different configurations with varying degree of functionalization, i.e., with varying
linear density of the OH groups. Apart from calculating a single unit cell, we also con-
sidered a super-cell containing two unit cells as shown for the example of a 7-AGNR
in Fig. 7.1. This allows the simulation of more intermediate values of the degree of
functionalization. We find the planar configuration of AGNR and hydroxyl group to be
metastable in contrast to reports on hydroxyl-functionalized ZGNRs [24]. A bending of
the functional groups out of the ribbon plane is energetically favorable for all investigated
AGNRs. For a single unit cell (Fig. 7.1a) our results show an opposite displacement of

Figure 7.2: Out-of-plane arrangement of
the functional groups of a 7-AGNR. The
bottom picture shows the view along the
ribbon axis as indicated by the black ar-
row.
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Figure 7.3: Relative variation of the lattice
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ent degrees of functionalization. Solid lines
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neighboring carbon edge atoms under functionalization (see Fig. 7.2). In case of the
1 × 1 × 2 super-cell, the lower translational symmetry leads to an opposite bending of
entire carbon hexagons at one edge if at least one functional group is involved. The
existence of these edge-localized static ripples has recently been confirmed by Wagner
et al. for an identical super-cell size as in our calculations [120]. A further expansion of
the super-cell might possibly yield ripples of longer range. However, the simulation of
these large systems remains a challenging computational task.
Apart from the out-of-plane arrangement, the edge passivation with OH groups causes
a stretching along the ribbon axis accompanied by a squeezing across the width. The
relative variations of the lattice constant c and the ribbon width w of a hydroxylized
7-AGNR are shown in Fig. 7.3. Obviously the strain on the unit cell increases consider-
ably with growing degree of functionalization. Although the total width of the ribbon is
strongly decreased, the C-C bonds along the width are shortened only close to the edges.
In contrast, central C-C bonds in this direction are even longer in the functionalized case
than in the pristine ribbon. It turns out that the overall deformation of the unit cell of
functionalized ribbons is due to a decrease of the bond angles along the width by about
2◦. In summary, we observe remarkably high Poisson ratios ∆w/w

∆c/c of e.g., 0.65 for the
7-AGNR. It should be noted that this value is much higher than the Poisson ratios of
uniaxially strained ribbons (cf. Fig. 6.1). This distinction has to be taken into account
when comparing functionalized and strained AGNRs as discussed in Sec. 7.3.

7.2 Chemical stability

Since the thermodynamic stability of the given structures is crucial for any experimental
realization, we calculated the binding energy per OH group EB for all investigated
configurations as follows:

EB =
1

Nf
{E(GNRf )− [E(GNRH−term) +Nf ·E(O)]}.
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Figure 7.4: (a) Binding energy per hydroxyl group depending on the degree of function-
alization in a 7-AGNR. Red diagonal crosses represent data derived from calculations
of one unit cell. Black crosses are values found for a super-cell containing two unit cells
along the ribbon axis. The solid black line is a guide to the eye. (b) Three inequivalent
configurations with two OH groups per unit cell.

E(GNRf ) and E(GNRH−term) are the total energies of a ribbon passivated with Nf hy-
droxyl groups and a fully H-terminated ribbon, respectively. E(O) represents the total
energy of an isolated oxygen atom. The resulting binding energies from calculations of
a hydroxylated 7-AGNR in both the super-cell and unit cell approaches are shown in
Fig. 7.4(a). First of all, we observe a substantial energy gain under functionalization
in agreement with studies of the same effect in ZGNRs [22]. Furthermore, the bind-
ing energy clearly increases with growing degree of functionalization. Therefore a fully
functionalized ribbon represents the most stable configuration as found for ZGNRs [22].
Figure 7.4(a) further shows consistently higher energy gains for super-cell simulations.
This is in agreement with the above discussed enhanced possibilities for an out-of-plane
arrangement - and thus for the energy minimization - at lower translational symmetry
restrictions.
In many cases it is possible to construct inequivalent configurations with the same num-
ber of OH groups which then yield differing binding energies. This effect is most pro-
nounced in the unit cell approach for a degree of functionalization of 0.5. The corre-
sponding three inequivalent structures of a half functionalized 7-AGNR are presented in
Fig. 7.4(b). A complete hydroxylation of one edge is obviously by far more stable than
both edges being half functionalized, whereas the two possibilities of the latter case yield
a smaller difference. The particularly high stability of a fully saturated edge indicates
the occurrence of hydrogen bonds between neighboring OH groups which have also been
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Figure 7.5: Band structures of an H-terminated 7-AGNR (solid black line) and a
7-AGNR with every edge atom being hydroxyl-passivated (dashed blue line).

predicted for hydroxylized ZGNRs by Hod et al. [22]. The results presented here on the
basis of a 7-AGNR can be transferred to all studied ribbon widths which cover a range of
N -AGNRs with N = 5, ..., 10. In particular, all ribbons show a strong affinity to being
fully hydroxylated. In cases of different structures with the same number of functional
groups, we find a clear energetic preference of single edge functionalization in all studied
ribbons.

7.3 Electronic properties

A high potential of various edge modifications for altering the band structure of ZGNRs
has been reported previously [22, 24, 117]. In contrast to ZGNRs, AGNRs do not have
edge states near the Fermi level which are obviously sensitive to edge functionalization.
Nevertheless, our studies reveal drastic modifications of the band structure of AGNRs
under edge functionalization with OH groups. In the following, we first analyze the
example of a 7-AGNR before addressing the width dependence of our findings.
Figure 7.5 shows the electronic bands of a pristine and a maximally functionalized
7-AGNR. The most striking feature is the shift of the valence and conduction bands
which leads to a strong decrease of the band-gap. We find a linear dependence of the
band-gap on the degree of functionalization as presented in Fig. 7.6. Inequivalent con-
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figurations with the same degree of functionalization give different gap values in analogy
to the discussion of the total energy in Sec. 7.2. Furthermore, simulations of one unit
cell yield slightly lower band-gaps than super-cell calculations. Nevertheless both ap-
proaches result in a perfectly matching linear shift of the band-gap with increasing degree
of functionalization. Altogether the band-gap of 7-AGNRs can be reduced by ∼ 0.7 eV
or almost 50% by means of edge functionalization with hydroxyl groups. This is highly
interesting with regard to nano-electronic applications as it offers in principle a tun-
able band-gap over a wide range. We did not take into account electron-electron and
electron-hole interaction [110, 111]. However, we believe that the general behavior will
remain valid, as the dominant contribution to the band-gap shift is from geometrical
effects as discussed in the following.
The observed band-gap dependence clearly resembles previous results on uniaxially
strained AGNRs, suggesting an interpretation based on the geometric deformation of
the ribbon produced by the hydroxylation. However, tensile strain along the ribbon axis
of 2%, which is the maximum deviation of the lattice constant under functionalization,
corresponds to a decrease of only 0.2 eV in the band-gap. Considering the extraordinarily
high Poisson ratio caused by the OH passivation of the ribbon edges, we directly compare
the variations in width and band-gap. The width reduction of 1.4% observed for the
fully functionalized 7-AGNR (see Fig. 7.3) would correspond to a tensile strain along the



7 Edge functionalized nanoribbons 52

(a) (b)

Figure 7.7: (a) Wave function of the highest π electronic state at the Γ point in a fully
OH-functionalized 7-AGNR as seen from above the ribbon plane (top) and along the
ribbon axis (bottom). The surfaces shown are given by a probability amplitude of 0.11
where green and blue areas denote different signs of the wave function. Atoms of different
elements are shown in the same colors as in Fig. 7.1. (b) Γ point wave function of the
lowest π∗ state in the same ribbon.

ribbon axis of 5.6%. This high strain value would give rise to a band-gap reduction of
0.6 eV which is close to the effect found for functionalized ribbons. When applying the
same procedure to intermediate values of different degrees of functionalization, we find
this trend being confirmed. In order to further check the role of deformation as an origin
for the band-gap reduction, we calculate the band structure of an H-terminated ribbon,
but with the carbon atoms being fixed at the altered positions corresponding to the fully
functionalized case. This results in a more moderate reduction of the band-gap by only
0.4 eV, indicating that apart from the geometric deformation, another effect contributes
to the change in the band-gap. It turns out that the substitution of OH groups affects
the boundary condition of the electronic wave function. This is illustrated in Fig. 7.7 for
the highest π and the lowest π∗ orbital at the Γ point in a completely OH-functionalized
7-AGNR. Obviously, electrons in these states have a considerable probability density at
the oxygen atoms in the functional groups. Thus, the quantum confinement close to
the Fermi-level is weakened by the hydroxylation resulting in a lowered band-gap. We
therefore conclude that a combination of geometric deformation and a reduced effective
confinement potential gives rise to the observed strong reduction of the band-gap.
At this point, we want to refer to the family behavior of the band-gaps of strained
AGNRs described in Sec. 6.2. In view of the crucial role of structural deformation in
functionalized ribbons, one might expect that AGNRs of other families than that of the
7-AGNR show a contrary band-gap shift under hydroxylation. Our results presented in
Fig. 7.8(a) indeed show an increasing gap under functionalization for N -AGNRs with
N = 3p, whereas ribbons of the family N = 3p+2 have a minimal gap around a degree of
functionalization of 0.4. In contrast, the band-gap of functionalized 10-AGNRs decreases
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Figure 7.8: (a) Band-gaps of N -AGNRs with N = 5, ..., 10 depending on the degree of
functionalization. (b) Dependence of the band-gaps of the same ribbons upon uniaxial
strain. Solid lines are linear fits. For clarity, we only show results of the most stable
configurations, i.e., single-edge functionalized ribbons, at a degree of functionalization
of 0.5 in (a) (cf. Sec. 7.2).
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linearly in the same way as that of 7-AGNRs. These family behaviors match those found
for the band-gaps of strained AGNRs, which are summarized in Fig. 7.8(b), very well.
The strain ranges from 0% to ∼ 5.5%, where the upper limit corresponds to the reduc-
tion of the ribbon width in the fully functionalized case, as stated above. The accordance
in the patterns of functionalized and strained ribbons, respectively, clearly emphasizes
that the main contribution to the band-gap variation in hydroxylated AGNRs is due to
strain.

7.4 Vibrational spectrum

In the following, we investigate the behavior of the most important vibrational modes of
AGNRs under different degrees of hydroxylation. We present data on the BLM and the
LO and TOmodes that dominate the Raman spectrum, as shown in Sec. 5.3. In addition,
characteristic modes of the hydroxyl groups and the influence of the functionalization
on the stretching modes of the remaining C-H bonds are discussed.

7.4.1 Breathing-like mode

In non-symmetric configurations with one or three OH groups per unit cell, the regular
displacement pattern of the BLM can be distorted considerably by edge functionalization.
Nevertheless, the basic breathing-like vibration is preserved in all investigated examples.
Figure 7.9(a) shows the BLM frequency of various AGNRs depending on the degree of
functionalization. As presented in Sec. 7.2, a degree of functionalization of 0.5 yields
several inequivalent possibilities to arrange the OH groups. These configurations result
in slightly different BLM frequencies. Nonetheless, since single edge functionalization
is always energetically favorable, we neglect in the following discussions data from the
other isomers and show, for clarity, only results of the thermodynamically most stable
structure (cf. Fig. 7.4(b)).
Obviously, the addition of OH groups substantially damps the BLM in ribbons of all
families, resulting in a red-shift of up to 160 cm−1 in case of the smallest studied ribbon,
the 5-AGNR. As the BLM is Raman active, this huge down-shift allows the experimental
determination of the degree of functionalization. It should be noted that in practice
this goal may be hindered by the multitude of Raman active modes in less symmetric
compounds. In Sec. 6.3, we showed that uniaxial strain also provokes a linear red-shift
of the BLM. However, the dimension of the observed shift in functionalized AGNRs
does not allow an exclusive ascription to the functionalization-induced strain even if we
consider the unusually large Poisson ratio as described in Sec. 7.3. Most likely, multiple
factors contribute to the strong frequency shift. Thus, the addition of functional groups
to the ribbon edges may produce a similar effect as a broadening of the ribbon which is
known to reduce the BLM frequency citegillen10. This assumption is supported by the
displacement pattern of the BLM shown in Fig. 7.9(b). All atoms of the functional groups
largely follow the breathing-like motion of the ribbon itself and vibrate in phase with
the carbon atoms perpendicular to the ribbon axis and in the ribbon plane. Within the
picture of an expanded ribbon structure, the oxygen atoms stand for an additional dimer
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Figure 7.9: (a) Down-shift
of the BLM for various
hydroxyl-functionalized
N -AGNRs. Solid lines are
linear fits. (b) Eigenvector
of the BLM of a fully
hydroxylized 7-AGNR.
Carbon, oxygen, and hy-
drogen atoms are shown
in black, red, and light
gray, respectively. Blue
arrows indicate the atomic
displacements.

at each edge of the ribbon. Thus, a fully functionalized N -AGNR can be thought of as
a H-passivated (N + 2)-AGNR. The BLM frequencies of the studied fully hydroxylized
N -AGNRs are compared to those of their pristine, but two dimers wider counterparts,
in Tab. 7.1. Given the rough underlying approximation and in view of the huge overall
down-shift, the model explains the observed trend fairly well. Table 7.1 shows higher
frequencies for the BLMs of pristine (N + 2)-AGNRs, with a maximal deviation of
23 cm−1 in case of the 5-AGNR. This can be attributed to the fact that the heavier
oxygen atoms in case of the functionalized ribbons damp the vibration compared to the
equally wide AGNR consisting of carbon atoms only. Hence, we conclude that the large
red-shift of the BLM can be attributed to both the functionalization-induced strain and
an effective extension of the ribbon width by the hydroxyl groups.

N ωN, fully funct. (cm
−1) ωN+2, non-funct. (cm

−1)

5 357 380
6 317 334
7 285 300
8 261 273
10 211 230

Table 7.1: Frequency of the
BLM in fully hydroxylized
N -AGNRs and H-passivated
(N + 2)-AGNRs.
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Figure 7.10: Displacement pattern of
the TO mode in a 7-AGNR with one
functional group per unit cell. The same
color code as in Fig. 7.9(b) is used.

7.4.2 High energy band

As in case of the BLM, the eigenvectors of the LO and TO are distorted if the symmetry
of the unit cell is limited by the addition of an odd number of OH groups. The example
given in Fig. 7.10 shows that under this condition in particular, the carbon atoms do
not vibrate purely along or perpendicular to the ribbon axis. However, the principle
character of the phonons is well distinguishable in all structures examined here. Figure
7.11(a) displays the LO and TO frequencies of several AGNRs as a function of the degree
of hydroxylation. As in Sec. 7.4.1, we do not take into account less stable isomers of
single edge functionalized ribbons. For all AGNRs, we find a fundamentally different
behavior of the two high-energy modes upon functionalization. Whereas the TO mode
shifts to lower energies similar to the BLM, the LO frequency does not show such a clear
trend. In N -AGNRs with N = 3p and N = 3p+1, the LO seems to be independent of the
edge passivation. In contrast, the N = 3p+2 family shows a declining LO frequency up
to a degree of functionalization of 0.5, but a sharp blue-shift under hydroxylation of the
remaining edge atoms. Interestingly, the condition under which the minimal LO energy
is observed, coincides with that for a vanishing band-gap in this family (cf. Fig. 7.8(a)).
This is in accordance with the significantly lowered LO frequency in pristine ribbons
of the N = 3p + 2 family, which exhibit only small band-gaps [19, 88]. The correlation
between lowered band-gap and softened LO energy is analogous to the softening of the
LO frequency in metallic CNTs, which is interpreted in terms of an oscillating band-gap
imposed by the specific atomic displacement of this phonon [69, 121]. Recently, it has
been shown that the same Kohn anomaly effect as in CNTs plays an important role for
the LO in quasi-metallic GNRs as well [113]. We therefore assume that the LO softening
shown in Fig. 7.11(a) can be attributed to the same mechanism.
A different interpretation might be obtained when looking at the eigenvectors shown in
Fig. 7.11(b). A noticeable difference between the two displacement patterns concerns
the behavior of the functional groups. Whereas the oscillation of the carbon atoms
in the TO eigenvector provokes a stretching of the C-O bonds, a strong bending of
the OH group dominates the LO pattern. In both cases the motion of the outermost
carbon atoms induces these characteristic vibrations of hydroxyl groups which are usually
found at lower frequencies. Depending on the compound which is hydroxylized, in-
plane deformations of the O-H groups are usually localized at 1260-1440 cm−1 and C-O
stretching modes are found at 800-1150 cm−1 [122,123]. The coupling of the TO to the
low-energetic C-O stretching mode could potentially give rise to the observed softening of
the TO frequency. In contrast, the C-O-H bending which couples to the LO is expected
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Figure 7.11: (a) Frequencies of the fundamentals of the LO (left) and TO phonons
(right) of hydroxylized AGNRs. Solid lines are guides to the eye. (b) Eigenvectors
of these modes in a fully functionalized 7-AGNR. Again, the same color code as in
Fig. 7.9(b) is used.

to be closer in frequency to the LO-TO region. Therefore the LO should be affected less
than the TO in agreement with our findings.

7.4.3 Vibrations of the functional groups

Finally, we discuss the high-energy range of the vibrational spectrum comprising the
stretching modes of C-H and O-H bonds. We investigate these phonons taking the ex-
ample of a 7-AGNR. All findings presented in the following also apply to ribbons of other
widths, although the overall frequency range of the discussed modes varies depending
on the specific type of AGNR.
A hydrogen-terminated AGNR yields two doubly degenerate pairs of C-H stretching vi-
brations. This number is reduced in functionalized ribbons to the number of remaining
C-H bonds. Consequently we find as many O-H stretching modes as hydroxyl groups in-
volved per unit cell. As displayed in Fig. 7.12(a), C-H stretching generally occurs in two
narrow frequency ranges around 3000 and 3020 cm−1. Figure 7.12(b) shows the three
above-mentioned inequivalent structures with a degree of functionalization of 0.5. The
two cases with one hydroxyl group per edge maintain C2 rotational symmetry or, alter-
natively, a mirror plane. Hence, each of these configurations yields a doubly degenerate
C-H stretching mode which is found at 2997 cm−1. As expected, the non-symmetric
single-edge hydroxylated 7-AGNR shows two separated C-H stretches. Measuring the
C-H stretching frequencies would allow some insight in how many OH-groups are bound
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Figure 7.12: Stretching frequencies of (a) the C-H bonds and (c) the O-H bonds in
7-AGNRs depending on the degree of hydroxylation. Vibrational frequencies found for
single-edge functionalization and the two different cases with half-functionalized edges
are represented with the symbols stated in (b). (b) Three inequivalent configurations
with two OH groups per unit cell. Different elements are again displayed in the color
code of Fig. 7.9(b).

to the ribbon edges. From the absence of the modes at 3020 cm−1, a high degree of
functionalization may be deduced.
We now turn our attention to the O-H stretching vibrations presented in Fig. 7.12(c).
Apart from the fully functionalized 7-AGNR, all configurations exhibit such modes
around 3200 cm−1. It turns out that these are vibrations of half functionalized edges,
i.e., of OH groups which do not have direct hydroxyl neighbors. As soon as a completely
hydroxylized edge is involved, we observe a severe down-shift, which is a clear indication
of hydrogen bonds. Opposite-phase stretching vibrations of neighboring OH groups are
found at 2605 to 2630 cm−1, whereas the corresponding in-phase modes are further low-
ered to 2120 to 2145 cm−1. Accordingly the fully hydroxylized 7-AGNR does not show
any OH-vibrations around 3200 cm−1. The experimental detection of the O-H stretching
modes thus allows to further narrow down the degree of functionalization of a given sam-
ple. Together with the results presented in Secs. 7.4.1 and 7.4.2, this suggests that an
extensive characterization of hydroxyl-functionalized AGNRs is feasible via vibrational
spectroscopy.

7.5 Summary

We presented a thorough investigation of the structural, electronic, and vibrational prop-
erties of AGNRs of various widths with hydroxyl-functionalized edges. The passivation
of every carbon edge atom with an OH group gives the most stable configuration. At
the same time, this maximum functionalization has the largest effect on the electronic
band structure and on the main vibrational modes. The most striking result with regard
to possible applications is the large linear shift of the band-gap which can be partially
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attributed to strain induced by the hydroxylation. A tunable band-gap might be very
useful in future nanometer-sized electronic devices. Finally, we showed that the degree
of edge functionalization may be determined by Raman spectroscopy. These findings
are particularly exciting in the light of the successful preparation of pure 7-AGNRs. An
experimental verification of our results is thus within the realms of possibility. Moreover,
in view of the enormous potential for chemical modifications at nanoribbon edges, it will
be enlightening to further study the impact of other types of edge functionalization.
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In this work, we studied fundamental characteristics of a variety of low-dimensional car-
bon allotropes by means of quantum mechanics based methods. The two main parts of
this thesis dealt with carbon picotubes and different modifications of graphene nanorib-
bons. Most of the given structures were calculated using density-functional theory. A
great advantage of this approach is that no experimental parameters are needed to model
the materials of interest. In order to manage large systems – in our case compositions of a
nanotube and several encapsulated picotubes – we complemented the ab initio method
with semi-empirical calculations. These theoretical approaches allowed the investiga-
tion of arbitrary pristine materials which are inaccessible experimentally, e.g., graphene
nanoribbons other than some rare exceptions of precisely manufactured species like the
7-AGNR.
In the first part of this thesis, we studied substructures of narrow carbon nanotubes
known as picotubes. Up to now, four different picotubes have been synthesized which
correspond to the four smallest armchair nanotubes. Due to the structural resemblance
to nanotubes, these ringlike molecules are considered to be possible starting points for
a controlled synthesis of nanotubes. The close relationship between both materials is
strongly reflected in the vibrational eigenmodes. We found radial breathing modes in all
picotubes in direct correspondence to the same modes in nanotubes. Moreover, the pico-
tube breathing vibrations satisfy the same frequency-diameter relation as the one known
from nanotubes. Besides the radial breathing mode optical vibrations with atomic dis-
placements longitudinal and transversal to the tube axis caught our attention. These
modes, which are found at ∼ 1600 cm−1, are typical for sp2 hybridized carbon mate-
rials. In nanotubes, optical phonons occur at similar energies and are widely used for
characterization. Every picotube molecule exhibits a variety of such modes due to the
reduced symmetry compared to nanotubes. We demonstrated that for two highly sym-
metric picotube species the longitudinal optical modes are not expected to contribute
to the high-energy Raman spectrum. This behavior is in analogy to that of armchair
nanotubes. By contrast, the Raman spectra of the two less symmetric picotubes are
expected to show a wealth of longitudinal and optical contributions in accordance with
experimental data.
With regard to a possible synthesis of closed nanotubes from picotubes we pursued an
approach suggested by Schaman et al. which is based on the interaction of picotubes
and nanotubes [26]. In that work, the authors present Raman data which points to a
transformation of picotubes towards a short tubular configuration when the picotubes
are placed next to or inside nanotubes. We performed temperature-dependent molecu-
lar dynamics simulations of tetramer picotubes encapsulated in a nanotube and found
three independent effects. First, an ensemble of several consecutively arranged picotubes
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shows oscillations or, in most cases, superpositions of rotational translational oscillations
up to a temperature of 600K. Secondly, we observe a continuous motion of the picotube
molecules along the nanotube axis. The small energetic barrier for such a translation
allows the transport of individual picotubes at very low temperatures. In contrast, a
group of molecules shows a collective motion only above 800K. Starting at temperatures
of about 2500K our calculations show structural conversions of the picotubes. In par-
ticular, a partial dehydrogenation leads to a closing of the separate picotube wings to a
closed tubular wall. This finding confirms the work referred to above although the au-
thors report the transformation to occur at lower temperatures. Further investigations
could enlighten this issue since the experimental time-scale of one hour of annealing
is not accessible within our approach. Possibly, longer simulation times might show a
structural reconfiguration at lower temperatures. Optimizing various conditions like the
temperature and the type of the surrounding nanotube might lead to a concatenation of
the closed picotubes towards an inner nanotube of a predefined chirality. This remains
an interesting task from both a theoretical and an experimental point of view.
The second part of this work dealt with graphene nanoribbons, a slightly different sys-
tem which is related to carbon nanotubes by their common basic material graphene.
Therefore, concepts like the zone-folding approximation can be applied to nanoribbons
in a similar way as to nanotubes. Here, we investigated how strain on the one hand, and
edge functionalization on the other hand affect the fundamental properties of nanorib-
bons. Our calculations on uniaxially strained armchair nanoribbons showed a severe
impact on the band-gap. The same amount of strain leads to a widening of the gap in
certain ribbons but a decreased gap in others. This behavior follows a classification of
armchair nanoribbons into three distinct families reported earlier. A remarkable aspect
is that the band-gap variation depends linearly on the applied strain with a shift rate
of ±0.1 eV/% in all ribbons independent of the family. Furthermore, when considering
a sufficiently large strain, the band-gap turns out to oscillate between zero and a max-
imum value. We interpreted these findings in terms of previous reports on the band
structure of uniaxially strained graphene and found a good correspondence between the
phenomena observed in both allotropes [108]. In addition to the electronic structure,
high-energy and breathing-like phonons of strained nanoribbons were studied. We found
linear frequency shifts for all of these vibrations in accordance with reports on the optical
phonons in strained graphene. While the shift rate of the high-energy phonons is large
enough to be made use of in the detection of strain, the shift of the breathing-like mode
is much weaker and not likely to be exploited experimentally.
The edges of a nanoribbon are susceptible to a wide range of possible chemical modifi-
cations. Throughout the literature, hydrogen passivation of the dangling edge bonds is
commonly assumed in order to describe pristine ribbons. The effect of functional groups
has mainly been investigated in zigzag ribbons which exhibit edge states near the Fermi
level. Nevertheless, functionalization is also a crucial issue in other types of ribbons as
it can occur unintentionally during the manufacturing process or might be introduced
on purpose in order to control certain ribbon characteristics. In order to provide a
theoretical view on this topic, we performed calculations on armchair nanoribbons func-
tionalized with hydroxyl groups. This type of passivation turns out to be particularly
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stable although the ribbon structure is strained under the edge hydroxylation. We ob-
served a significant influence of the functionalization on the band-gap which very much
resembles the behavior of pristine strained ribbons. On closer inspection it turns out
that, in addition, an effective softening of the lateral confinement potential of the elec-
tronic wave function plays an important role. A similar interpretation of a combination
of strain and an effective broadening of the ribbon structure is proposed for explaining
the observed red-shift of the breathing-like vibrational mode. Furthermore, we analyzed
how the optical phonon frequencies depend on the degree of functionalization which re-
vealed the following remarkable result: While the transversal modes of all ribbons show
a continuous down-shift, the longitudinal phonons are softened only in those configura-
tions that exhibit a vanishing band-gap. This is in accordance with a recent report on a
Kohn-anomaly induced down-shift of the longitudinal optical phonon in quasi-metallic
armchair nanoribbons [113]. Finally, we presented data on the vibrations of the hydroxyl
groups that suggest a possible characterization of functionalized ribbons via these modes
in Raman experiments.
In particular, our findings on the band structure of strained and hydroxylized nanorib-
bons are noteworthy with regard to future nanometer-sized electronic applications. Our
results suggest that the band-gap of armchair graphene nanoribbons can be tuned to a
desired value by means of mechanical or chemical modifications. However, it should be
noted that this would require the availability of nanoribbons of a pristine edge config-
uration and width. This prerequisite is so far only fulfilled in the case of the 7-AGNR.
Furthermore, as far as functionalization is concerned a precise control of the chemical
reactions would be necessary as it is unclear how other functional groups will affect the
ribbon characteristics. Further studies on this topic are to be performed to gain a more
general insight into the wide field of possible edge passivations of nanoribbons.



Appendix: Symmetry of picotube
vibrations

The symmetry of a molecular or crystalline system provides useful information about its
vibrational properties. Including translations and rotations, a structure with N atoms
per unit cell (or atoms contained in the molecule) exhibits 3N eigenmodes. These can
be classified into categories of modes with eigenvectors of one type behaving identically
with respect to the symmetry operations of the structure. In the group theoretical for-
malism, these categories are irreducible representations of the symmetry group [124,125].
Taking into account the permutation of the atoms under symmetry transformations, we
can determine how many eigenmodes of each irreducible representation occur in a given
system. Furthermore, symmetry determines whether modes behaving according to a
certain representation are Raman active or not.
We start by analyzing the TDDA molecule, which belongs to the point group D2h (see
Sec. 3.1). A specific irreducible representation transforms with respect to the symmetry
elements of the group according to a character table. These tables are found in books on
group theory like Ref. [67], or [125]. For the group D2h it is given in Tab. A.1. In order
to describe the symmetry of molecular eigenmodes, information on the atomic displace-
ments as well as on how the positions of the atoms are interchanged under symmetry
operations is required. Thus, the dynamical representation Γdyn, which characterizes the
vibrations of a system completely, can be expressed as the direct product of the vector
representation and the permutation representation [67]:

Γdyn = Γvec ⊗ P. (A.1)

Γvec is given by the direct sum of the irreducible representations describing the trans-
formations of the components x, y, z. In the case of D2h symmetry, this means

Γvec = B3u ⊕B2u ⊕B1u, (A.2)

as specified in Tab. A.1. P(Ri) is the matrix which permutes the atoms under the
symmetry operation Ri. The character, which is defined as the trace of the representation
matrix, is therefore given by the number of atom sites that are invariant with respect
to Ri. The resulting characters for P in the case of TDDA are presented in the lowest
line of Tab. A.1. Apart from the identity, only the horizontal mirror plane leaves some
atom sites unchanged (cf. Fig. 3.3). Now the characters of Γdyn can be calculated as

χ(Γdyn) = χ(Γvec) · χ(P). (A.3)
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Table A.1: Character table of the symmetry group D2h taken from Ref. [125]. The last
three lines show the characters of the vector (Γvec) and tensor (R) representation and
the permutation representation of TDDA (P), all of which are reducible.

D2h E Cz
2 Cy

2 Cx
2 i σ(xy) σ(xz) σ(yz)

Ag 1 1 1 1 1 1 1 1
B1g 1 1 -1 -1 1 1 -1 -1
B2g 1 -1 1 -1 1 -1 1 -1
B3g 1 -1 -1 1 1 -1 -1 1
Au 1 1 1 1 -1 -1 -1 -1
B1u 1 1 -1 -1 -1 -1 1 1 z
B2u 1 -1 1 -1 -1 1 -1 1 y
B3u 1 -1 -1 1 -1 1 1 -1 x

Γvec 3 -1 -1 -1 -3 1 1 1
R 9 1 1 1 9 1 1 1

PTDDA 44 0 0 0 0 4 0 0

In order to obtain the molecular vibrations of TDDA, we decompose the (reducible)
representation Γdyn into its irreducible components:

Γdyn =
∑

i

ciΓi, (A.4)

with i labeling the irreducible representations. The coefficients ci are given by

ci =
1

g

∑

j

χi(Rj)χ
(dyn)(Rj), (A.5)

where the sum is over all symmetry operations and g is the order of the group, i.e., the
number of symmetry elements. Evaluating these relations yields

ΓTDDA
dyn = 17Ag ⊕ 17B1g ⊕ 16B2g ⊕ 16B3g ⊕ 16Au ⊕ 16B1u ⊕B2u ⊕B3u. (A.6)

Let us now address the question which of these eigenmodes are expected to be Raman
active. The Raman tensor is a second rank tensor and can thus be written as the outer
product of two vectors. Therefore, we obtain the tensor representation from Γvec as

R = Γvec ⊗ Γvec (A.7)

with the associated characters stated in Tab. A.1. In analogy to Eqs. A.4 and A.5, R
can be reduced into irreducible representations:

RTDDA = 3Ag ⊕ 2B1g ⊕ 2B2g ⊕ 2B3g. (A.8)
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Table A.2: Character table of the symmetry group D2h taken from Ref. [125]. Again,
the last three lines show the (reducible) vector and tensor representation as well as the
permutation representation of Kammermeierphane.

C2h E C2 i σh

Ag 1 1 1 1
Au 1 1 -1 -1 z
Bg 1 -1 1 -1
Bu 1 -1 -1 1 x,y

Γvec 3 -1 -3 1
R 9 1 9 1

PKP 96 0 0 0

Only the eigenmodes transforming according to these representations are Raman active.
Table A.1 shows that this comprises precisely those vibrations which are invariant under
inversion. This has been proved to be a general rule in molecules [67]. The forms of
the Raman tensors corresponding to the different representations are given in Ref. [126].
Note that Raman activity is determined purely by symmetry and therefore independent
of the specific system.

An analogous investigation can be done for Kammermeierphane, which belongs to the
point group C2h. The character table of this group together with the characters of the
representations Γvec, R, and P is presented in Tab. A.2. The dynamical representation
of Kammermeierphane contains 72 eigenmodes of each of the four irreducible represen-
tations, respectively. The tensor representation decomposes to

RKP = 5Ag ⊕ 4Bg (A.9)

thus confirming the Raman activity of modes which are invariant under inversion.
As far as the selection rules of semitrimer and tetramer picotubes are concerned the
reader is referred to Refs. [52, 54,127].
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[66] J. Kürti, V. Zólyomi, M. Kertesz, and G. Sun, “The geometry and the radial
breathing mode of carbon nanotubes: beyond the ideal behaviour”, New. J. Phys
5, 125 (2003).

[67] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to

the Physics of Condensed Matter (Springer-Verlag, Berlin, Heidelberg, 2008).

[68] C. N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, Maiden-
head, 1972).

[69] O. Dubay, G. Kresse, and H. Kuzmany, “Phonon softening in metallic nanotube
by a Peierls-like mechanism”, Phys. Rev. Lett. 88, 235 506 (2002).

[70] H. Farhat, H. Son, G. G. Samsonidze, S. Reich, M. S. Dresselhaus, and J. Kong,
“Phonon softening in individual metallic carbon nanotubes due to the kohn
anomaly”, Phys. Rev. Lett. 99, 145 506 (2007).

[71] N. Rosenkranz and C. Thomsen, “Molecular dynamics simulations of picotube
peapods”, Phys. Status Solidi (B) 246, 2622 (2009).



Bibliography 71

[72] H. Kataura, Y. Maniwa, T. K. K. Kikuchi, K. Hirahara, S. Iijima, et al., “Fullerene-
peapods: Synthesis, structure, and raman spectroscopy”, in Proceedings of the

XVth International Winterschool on Electronic Properties of Novel Materials

(2001), vol. 591 of AIP Conference Proceedings, p. 251.

[73] R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. Dresselhaus, “Anomalous
potential barrier of double-wall carbon nanotube”, Chem. Phys. Lett. 348, 187
(2001).

[74] L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, et al., “Double wall carbon nanotubes
promoted by sulfur in a floating iron catalyst cvd system”, Chem. Phys. Lett. 359,
63 (2002).

[75] K. Kelly, I. Chiang, E. Mickelson, R. Hauge, J. Margrave, et al., “Insight into
the mechanism of sidewall functionalization of single-walled nanotubes: an STM
study”, Chem. Phys. Lett. 313, 445 (1999).

[76] E. V. Basiuk, M. Monroy-Peláez, I. Puente-Lee, and V. A. Basiuk, “Direct solvent-
free amination of closed-cap carbon nanotubes: A link to fullerene chemistry”,
Nano Lett. 4, 863 (2004).

[77] C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, et al., “Resonance raman
study of linear carbon chains formed by the heat treatment of double-wall carbon
nanotubes”, Phys. Rev. B 73, 193 408 (2006).

[78] M. Whitby and N. Quirke, “Fluid Flow in Carbon Nanotubes and Nanopipes”,
Nature Nanotech. 2, 87 (2007).

[79] S. Joseph, R. J. Mashl, E. Jakobsson, and N. R. Aluru, “Electrolytic Transport in
Modified Carbon Nanotubes”, Nano Lett. 3, 1399 (2003).

[80] P. A. E. Schoen, J. H. Walther, S. Arcidiacono, D. Poulikakos, and P. Koumout-
sakos, “Nanoparticle Traffic on Helical Tracks: Thermophoretic Mass Transport
through Carbon Nanotubes”, Nano Lett. 6, 1910 (2006).

[81] J.-C. Charlier and J.-P. Michenaud, “Energetics of multilayered carbon tubules”,
Phys. Rev. Lett. 70, 1858 (1993).

[82] N. Rosenkranz, M. Mohr, and C. Thomsen, “Uniaxial strain in graphene and
armchair graphene nanoribbons: An ab initio study”, Ann. Phys. 523, 137 (2011).

[83] N. Rosenkranz, C. Till, C. Thomsen, and J. Maultzsch, “Ab initio calculations
of edge-functionalized armchair graphene nanoribbons: Structural, electronic, and
vibrational effects”, Phys. Rev. B 84, 195 438 (2011).

[84] P. R. Wallace, “The band theory of graphite”, Phys. Rev. 71, 622 (1947).

[85] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mat. 6, 183 (2007).



Bibliography 72

[86] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The
electronic properties of graphene”, Rev. Mod. Phys. 81, 109 (2009).

[87] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, et al., “Room-
temperature quantum hall effect in graphene”, Science 315, 1379 (2007).

[88] V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of
semiconducting graphene nanoribbons”, Nano Lett. 6, 2748 (2006).

[89] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room-temperature
all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors”, Phys.
Rev. Lett. 100, 206 803 (2008).

[90] Z. Xu, Q.-S. Zheng, and G. Chen, “Elementary building blocks of graphene-
nanoribbon-based electronic devices”, Appl. Phys. Lett. 90, 223 115 (2007).

[91] B. Huang, Q. Yan, Z. Li, and W. Duan, “Towards graphene nanoribbon-based
electronics”, Front. Phys. China 4, 296 (2009).

[92] S. Neubeck, Y. M. You, Z. H.Ni, P. Blake, Z. X. Shen, A. K. Geim, and K. S.
Novoselov, “Direct determination of the crystallographic orientation of graphene
edges by atomic resolution imaging”, Appl. Phys. Lett. 97, 053 110 (2010).
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