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ABSTRACT (max. 200 words) 

The use of Pickering emulsions for biocatalytical applications has recently received 

increased attention in cases where hydrophobic reactants are involved. For process applications, 

knowledge of the emulsion’s rheology is crucial for the fluid dynamical design of equipment 

and selection of operating conditions. Colloidal silica nanoparticle stabilized Pickering 

emulsions usually exhibit shear-thinning behavior caused by a complex particle-particle 

network. While this has been observed by many authors, no publication has yet dealt with the 

rheology of silica nanoparticle stabilized Pickering emulsions containing enzymes. Thus, the 

aim of this study was to investigate the impact of the commonly used biocatalyst lipase (type 

and concentration), the dispersed phase volume fraction and the silica particle concentration on 

the rheological behavior of water-in-oil Pickering emulsions. For this purpose, the impact of 

the named parameters on the viscosity curves were measured. Lipases reduced the viscosities 

and transferred the rheological behavior from shear-thinning to Newtonian, which might be due 

to interactions of the lipase molecules via the formation of intermolecular disulfide bonds, 

which disturb the hydrogen-bond based silica particle-particle network. However, by increasing 

the dispersed phase volume fraction or the silica particle concentration the rheological behavior 

of emulsions became again shear-thinning. This work will help to produce bioactive Pickering 

emulsions with tailor-made characteristics. 

GRAPHICAL ABSTRACT 
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ABBREVIATIONS 

CalA   Candida antarctica lipase A 
CalB   Candida antarctica lipase B 
cP   continuous phase 
CPME   cyclopentyl methyl ether 
dP   dispersed phase 
LipTL   Lipase TL from Pseudomonas stutzeri 
NE   no enzyme 
PE   Pickering emulsion 
w/o   water-in-oil 

SYMBOLS 

ci [gL-1]  concentration of compound i 
dD,i [µm]  droplet diameter 
d1,0 [µm]  arithmetic mean diameter 
d3,2 [µm]  Sauter mean diameter 
ND [-]  number of droplets 
VdP [L]  volume of dispersed phase 
VcP [L]  volume of continuous phase 
 
γ̇ [s-1]  shear rate 
η [mPa s] dynamic viscosity 
φdp [-]  dispersed phase volume fraction 

1. INTRODUCTION 

To cover the high demand of synthesis involving hydrophobic substrates and/or products, 

biocatalysis in unconventional media (i.e., organic solvents) is a powerful technique leading to 

high yields [1–3]. However, biocatalysts require a minimum water activity in the media to 

achieve an adequate catalytic activity [4–6]. To provide this, two-phase systems in which the 

biocatalyst is located in the aqueous phase, guaranteeing its activity, and the hydrophobic 

reactants predominate in the organic phase are promising alternatives. During the reaction, the 



reactants will come into contact with the biocatalyst at the interface; hence, a high interfacial 

area is needed for high reaction rates. To that end, high power must be introduced to the system 

(i.e., by stirring [5, 7]), which might damage the biocatalysts due to shear stress can [8]. 

Lipases are interfacially active enzymes of special interest for the biotechnological 

production of fine chemicals and pharmaceutically active compounds [9–11] that are easily 

deactivated by shearing [8, 12]. In this context, the application of nanoparticle-stabilized 

emulsions, so-called Pickering emulsions (PEs) appears to be a promising option to create stable 

dispersed droplets with large interfacial areas and a minimal energy input [13, 14]. The 

feasibility of using water-in-oil (w/o) PEs for biocatalysis has been proven to positively affect 

their activity [13]. Even without stirring the PE, higher yields were achieved for lipase-

catalyzed reactions in w/o PEs in batch processes in comparison to batch reactions in stirred 

dispersions [15]. Furthermore, continuous lipase-catalyzed reactions with a subsequent liquid-

liquid separation have been recently demonstrated in a fixed-bed reactor or a membrane reactor 

[14, 16]. Particularly in the case of continuous operations, the fluid dynamical design of 

equipment and operating conditions, e.g., for the latter case membrane modules, the rheological 

behavior and flow properties of an emulsion are significant characteristics. PEs can be stabilized 

by colloidal silica nanoparticles, which easily adsorb at interfaces [3, 16–18] and which can 

create a thixotropic and shear-thinning rheological behavior [19]. This is due to a particle-

particle network formed by hydrogen bonds between residual silanol groups on the surface of 

the silica nanoparticles. This network is highly affected by interfacially active additives, such 

as proteins, and can be interrupted and destabilized [20]. Furthermore, the shear-thinning 

character of an emulsion is more pronounced for fine and monodisperse than for coarse and 

polydisperse emulsions [21]. It can be expected that the rheological properties of PEs are 

influenced by interfacially active lipases due to their ability to adsorb to interfaces [22, 23] and 

due to their impact on reducing the droplet sizes and on increasing the monodispersity of w/o 

PEs [16, 24]. However, no literature about the rheology of PEs containing lipases is available 

yet. To that end, the impact of lipases on the rheological behavior of w/o PEs was investigated 

in this study. Colloidal silica nanoparticles were used to prepare the w/o PEs and the impact of 

the lipase type, dispersed phase volume fraction, silica nanoparticle concentration and lipase 

concentration on the viscosity curves and the drop size distributions of the PEs was evaluated. 



2. MATERIALS AND METHODS 

2.1. Materials 

Cyclopentyl methyl ether (CPME) (8465.360, VWR, Germany) was used as the 

continuous phase since it had already been used for lipase-catalyzed reactions in previous 

studies [16, 24].  

The lipases Candida antarctica lipase A (CalA), Lipase TL from Pseudomonas stutzeri 

(LipTL), and Candida antarctica lipase B (CalB) were purified by dialysis with a 10 mM 

phosphate buffer (dialysis tube with 14 kDa molecular weight cut off, D9527, Sigma Aldrich 

Chemie GmbH, Germany) and lyophilized. The dialyzed and lyophilized lipase powder (16-

17 % total protein content determined with Bradford assay) were kindly provided by the 

research group of M.B. Ansorge-Schumacher (Technische Universität Dresden, Germany). The 

properties and structural characteristics of the used lipases are listed in Table 1. Casein sodium 

salt was purchased from Sigma Aldrich Chemie GmbH, Germany (C8654-500G). The colloidal 

silica nanoparticles HDK® H20 used in this study were kindly donated by Wacker Chemie, 

Germany. For all experiments, ultra-pure water was used. 

Table 1: Properties and structural characteristics of the used lipases CalA, CalB, 
and LipTL. 

 CalA [25] CalB [25] LipTL [26] 
molecular weight [kDa] 45 [27] 33 [28] 27 

isoelectric point 7.5 6 6.6 
pH optimum 7 7 7-8 

thermostability [°C] <70 <60 [29] <40 
pH stability 6-9 7-10 6-9  

protein conformation globular globular globular 
presence of typical lipase lid yes no (α-helix instead) yes 

interfacial activation yes no yes 
number of intramolecular disulfide bonds 2 [30] 3 [31] 3 [32] 

 

2.2. Pickering emulsion preparation 

Silica nanoparticles were dispersed in the continuous phase (cP) CPME. Ultrapure water 

was used as a dispersed phase (dP) to minimize salts effects from the buffer [33, 34]. The lipase 

(LipTL, CalA or CalB) was dissolved in the aqueous dispersed phase (dP). The phases were 

dispersed using a rotor/stator homogenizer (UltraTurrax T25, IKA GmbH, Germany) at 17500 

min-1 for two minutes. 

The dispersed phase volume fraction was varied from 0.1-0.5 and is defined as: 



φdP= VdP
VcP+VdP

    (1) 

A w/o PE with a dispersed volume fraction of 0.7 was unstable. The silica nanoparticle 

and lipase concentration were varied between 15-60 gLdP
-1  and 1-5 gLdP

-1  (regarding the dispersed 

phase), respectively. The specific parameters used for the investigation in this study are listed 

in Table 2. 

Table 2: Parameters used for emulsion preparation 

Emulsion 
composition 

Varied parameters for the specific investigations on the rheological behavior of a 
w/o PE 

impact of lipase type 
impact of 

dispersed phase 
volume fraction 

impact of silica 
nanoparticle 
concentration 

impact of 
lipase 

concentration 
lipase type LipTL, CalA, CalB CalA CalA CalA 

φdP [-] 0.2 0.1, 0.2, 0.5 0.2 0.2 
cparticle [gLdP

-1 ] 15 15 15, 30, 40, 50, 60 60 
clipase [gLdP

-1 ] 1 1 1 1, 3, 5 
 

2.3. Image acquisition and drop size determination 

Microscopic pictures (Axio Scope A1 Microscope, Zeiss, Germany) of PE samples were 

taken with a magnification factor of 20. Emulsion samples were diluted 10-fold with the 

continuous phase to visualize separate droplets. SOPAT image analysis software (Smart Online 

Particle Analysis Technology – SOPAT GmbH, Berlin, Germany) was used for data evaluation, 

picture analysis and droplet size measurement [35, 36]. 

The Sauter mean diameter (d3,2) (eq. (2)) and the arithmetic mean diameter (d1,0) (eq. (3)) 

were calculated from the droplet diameters dD,i of at least ND = 500 droplets of each sample. 

d3,2=∑ dD,i
3n

i=1 ∑ dD,i
2n

i=1�    (2) 

d1,0= ∑ dD,i

ND

n
i=1     (3) 

The ratio of arithmetic to Sauter mean diameter (eq. (4)) is used as an indicator of the 

degree of monodispersity of the PE: the larger the ratio, the greater is the monodispersity. 

degreemonodisp= d1,0

d3,2
   (4) 

2.4. Rheological measurement 

An MCR 302 rheometer (Anton Paar GmbH, Germany) was used to measure the 

rheological behavior. The term rheological behavior is used in this study to describe the group 

of fluid classifications determined by shear rheology. From previous experiments, the emulsion 

https://sopat.de/de/
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droplet sizes were expected to be up to 50 µm [16]. To ensure a gap size of at least 10-fold 

larger than the expected droplet sizes, a plate and plate measurement system (PP50; 49.97 mm 

diameter) with a gap size of 0.5 mm was used for all experiments. All emulsions were shaken 

before measurements to avoid droplet sedimentation. Shaking does not affect the droplet size 

distribution of w/o PE stabilized with colloidal silica nanoparticles [37]. The rheological 

behavior (fluid classification) was analyzed using shear rates from 1 to 1000 s-1 (logarithmic 

ramp) to ensure comparability with the relevant literature [17, 18, 38, 39]. Afterwards, the same 

sample was also analyzed from 1000 to 1 s-1 to study potential hysteresis effects. Rheology 

measurements were performed at 20.0 ± 0.1 °C. All experiments were performed in triplicate. 

3. RESULTS AND DISCUSSION 

3.1. Impact of lipase type 

The viscosity curves of w/o PEs containing no enzymes (NE-PE) or one of the three 

lipases (LipTL-, CalA-, and CalB-PE) are shown in Fig 1A. The NE- and CalB-PE showed 

shear-thinning behavior (indicated by a decreasing curve), while the LipTL- and CalA-PE 

showed Newtonian flow behavior (indicated by a horizontal curve). 

The HDK® H20 stabilized NE-PE possessed shear-thinning behavior, which indicates the 

presence of attractive forces of the particles between the emulsion droplets. These attractive 

forces caused the formation of a weak, elastic network via hydrogen bonds of the residual 

silanol groups on the particle surface [19]. A highly pronounced shear-thinning behavior was 

also observed for 1-dodecene based w/o PEs prepared with the same silica nanoparticles 

HDK® H20 (no bioadditives), which was explained by the strong ability of HDK® H20 to form 

networks in the nonpolar solvent [18]. The viscosities of the w/o PEs prepared with either 1-

dodecene [18] or CPME (this study) were comparable, even though the viscosity of pure 

1- dodecene (1.3 mPas [18]) is about twice the viscosity of pure CPME (0.55±0.05 mPas, own 

triplicate measurements) at the same temperature, and 1-dodecene is more hydrophobic 

(logP1-dodecene = 6.8 vs. logPCPME = 1.3 [40, 41]). Raghavan et al. found that the residual silanol 

groups of the particles interact directly and build hydrogen bonds with adjacent particles and 

not with the weakly hydrogen bonding solvent [42]. Hence, the viscosities and rheological 

behavior of w/o PEs are predominated by the used particles and the formed particle-particle 

network rather than the used organic solvents. 



The addition of the lipases CalA and LipTL transformed the rheological behavior of the 

PE from shear-thinning to Newtonian (Fig. 1A). In contrast, for shear rates lower than 100 s-1, 

the CalB-PE showed shear-thinning behavior comparable to the NE-PE. Despite CalB-PE 

showing shear-thinning behavior, its viscosity was comparable to the viscosities of the CalA- 

and LipTL-PEs for shear rates >100 s-1. A small bump indicating shear-thickening behavior of 

PE can be observed around 30, 6, and 2 s-1 for CalA-, LipTL- and CalB-PE, respectively. Bumps 

were also found for w/o PEs without bioadditives, in which the increasing appearance of bumps 

was related to decreasing shear-thinning behavior of the w/o PEs [18]. The shear-thinning 

behavior of emulsions is a result of weak particle-particle interactions (hydrogen bonds). The 

switch of the rheological behavior of emulsions from shear-thinning behavior to Newtonian 

behavior can be caused by an interruption of the built particle-particle network, i.e., due to 

electric repulsion caused by small changes of the pH [20]. Lipases at the interface of water-oil 

systems reduce the interfacial tension causing a ‘skin’ formation due to intermolecular disulfide 

bonds, which has been described during the aging at interfaces [22]. Hence, the lipases may 

also interrupt the hydrogen bonds based particle-particle network causing the observed bumps 

and transition of the rheological behavior. However, the amount of disulfide bonds differs based 

on the type of lipase [22]. The difference in the surface structures of the lipases used in this 

study is due to their mechanisms for the protection against denaturation of the enzyme at liquid-

liquid interfaces (see table 1). CalA and LipTL have a typical lipase lid structure that protects 

the active center and leads to the interfacial activation of the enzyme (both are interfacially 

active lipases); whereas CalB possesses an α-helix molecular structure covering the active 

center. Due to those molecular differences, CalB might have formed fewer disulfide bonds than 

CalA and LipTL, which would explain why the stiffening of the emulsion network might be 

less pronounced in the CalA- or LipTL-PE than in the CalB-PE. Therefore, the CalB-PE showed 

only a slight reduction of the viscosity in comparison to NE-PE and still showed a shear-

thinning behavior caused by the HDK® H20 particle-particle network. 

The Sauter mean diameter of the investigated PEs, as well as the ratio of the arithmetic 

mean diameter to the Sauter mean diameter (d1,0/d3,2) (an indicator of the monodispersity of an 

emulsion) are depicted in Fig.1B. Here, all lipases significantly decreased the Sauter mean 

diameter of the w/o PE and showed a higher degree of monodispersity (i.e., ratio of d1,0/d3,2) 

when compared to NE-PE. Among the lipase-PEs, CalB-PE had the largest Sauter mean 

diameter, and LipTL-PE the smallest. In a previous study about the filterability of lipase 

containing PEs stabilized with spherical silica particles, a decrease of the Sauter mean diameter 

was also observed when CalA or LipTL were added, but not for CalB [24]. The used lipases 



varied in their molecular size and structure. The sizes of LipTL, CalA, and CalB were 27, 45 

and 33 kDa, respectively [25, 26, 28]. Almost all lipases possess a hydrophilic protein structure 

lid [43], which protects the hydrophobic active center located inside the protein, and that opens 

and exposes the active center when lipase is adsorbed at the interface. Thus, the hydrophobic 

active center sticks out to the organic phase [44]. This activation mechanism is the same for 

almost all lipases. In comparison to CalA and LipTL, CalB has a helix structure instead of the 

typical lipase lid structure and does not exhibit an interfacial activation behavior [45]. Hence, 

the differences in the molecular size and structure of the lipases might cause the observed 

differences in the droplet size of the lipase-PEs. 

For the rheological behavior of w/o PE, it can be concluded that all used lipases decreased 

the viscosity and decreased the shear-thinning behavior. The impact of the lipases was more 

pronounced for CalA and LipTL than for CalB. Furthermore, the addition of the lipases 

possessing the typical lipase lid structure, namely CalA and LipTL, resulted in the transfer of 

the rheological behavior of the w/o PE from shear-thinning to Newtonian rheological behavior. 

In biocatalytical batch reactions, the lipase CalA showed the highest activity in w/o PE 

(Supplementary information, Fig. S2); thus, CalA was chosen for further investigations. 

  



 
Fig.1: A) Emulsion viscosity (at 20 °C) as a function of shear rate and B) Sauter 
mean diameter d3,2 and ratio of arithmetic to Sauter mean diameter (d1,0/d3,2) for w/o 
PEs without enzyme (NE) or containing 1 gLdP

-1  lipase (CalA, CalB, or LipTL). PEs 
were stabilized with 15 gLdP

-1  HDK® H20 colloidal silica nanoparticles and the 
dispersed phase volume fraction was 0.2. The hysteresis of the viscosity curve of 
HDK® H20 stabilized PE was negligible, thus, for clarity reasons, only the viscosity 
curves for 1 to 1000 s-1 were depicted. The dotted grey line represents the viscosity 
of the continuous phase CPME. Measurements were performed in triplicates. Error 
bars represent max. and min. error. 

3.2. Impact of dispersed phase volume fraction 

The viscosity curves of CalA-PEs prepared with several dispersed phase volume fractions 

(0.1-0.5) are shown in Fig 2A. The viscosity and the degree of shear-thinning behavior of a 

CalA-PE increase with increasing dispersed phase volume fraction. The viscosity of the 

emulsion with a dispersed phase volume fraction of 0.2 was slightly higher than that of the 

emulsion with a dispersed phase volume fraction of 0.1 (at shear rates above 10 s-1), but both 
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emulsions showed Newtonian flow behavior (Fig. 2A). At smaller shear rates (<10 s-1), the 

CalA-PE prepared with a 0.1 dispersed phase volume fraction showed a bump in the viscosity 

curve. As discussed before, the appearance of a bump is related to the beginning of shear-

thickening behavior. In contrast, the emulsion with a dispersed phase volume fraction of 0.5 

showed shear-thinning behavior. This might be due to that fact that the increase in dispersed 

phase volume led to more dispersed phase droplets per emulsion volume. Hence, droplets are 

closer to each other and particle-particle network bonding between colloidal silica nanoparticles 

(hydrogen bonds) is more likely to occur, which also creates emulsions being more stable 

against coalescence [38]. However, for the PE without CalA (NE-PE) but with the silica particle 

concentration and dispersed phase volume fraction, the NE-PEs demonstrated shear-thinning 

behavior without any differences in viscosity curves (see Fig. S1A, Supplementary 

information). 

The Sauter mean diameter of the CalA-PE slightly decreased with increasing dispersed 

phase volume fraction (Fig. 2B). However, the degree of monodispersity of the CalA-PEs varied 

strongly. This is in contrast to the results obtained for NE-PEs, where the Sauter mean diameter 

increased with increasing dispersed phase, while the degree of monodispersity stayed constant 

(see Fig. S1B, Supplementary information). The latter was also observed for 1-dodecene based 

w/o PEs (no bioactive additives) [18]. Hence, the observed impact of the dispersed phase 

volume fraction of the CalA-PEs on the rheological behavior cannot be related to the droplet 

sizes. Another aspect can be the amount of stabilizing particles. Here, the amount of stabilizing 

particles per volume of the dispersed phase was kept constant. By that, it was ensured that 

observed effects are not caused by the relatively decreased availability of particles and the 

Sauter mean diameter was indeed almost unaffected (see Fig. 2B). For CalA-PE, the increase 

of dispersed phase volume fraction might increase the probability of droplets coming close into 

contact, and thus it might increase the silica particle-particle interaction. Thus, it can be 

concluded that the increase in dispersed phase volume fraction due to an increase of particle-

particle interaction outweighed the impact of the lipase on the rheological behavior. 



 
Fig 2: A) Emulsion viscosity (at 20 °C) as a function of shear rate and B) Sauter 
mean diameter d3,2 and ratio of arithmetic to Sauter mean diameter (d1,0/d3,2) for w/o 
PEs containing 1 gLdP

-1  CalA-PEs were stabilized with 15 gLdP
-1  HDK® H20 colloidal 

silica nanoparticles and the dispersed phase volume fraction was varied from 0.1 to 
0.5. 

3.3. Impact of colloidal silica nanoparticle concentration 

The viscosity curves of CalA-PEs prepared with several concentrations of the colloidal 

silica nanoparticles (15-60 gLdP
-1 ) are shown in Fig 3A. The shear-thinning behavior of a CalA-

PE increased with increasing silica nanoparticle concentration. The CalA-PE prepared with 

< 30 gLdP
-1  HDK® H20 showed almost Newtonian flow behavior while at higher concentrations 

they presented shear-thinning behavior. In all cases, at 1000 s-1, the viscosities of the CalA-PEs 

did not vary anymore due to the high applied shear stress, which broke the particle-particle 

network of the PE regardless of the amount of used particles. In contrast to the 15 gLdP
-1  
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HDK® H20 stabilized CalA-PE, all other CalA-PE do not show a bump around 30 s-1. The 

viscosity of CalA-PE stabilized with 15 gLdP
-1  HDK® H20 decreased by the factor of 2 from 4 to 

2 mPas with increasing shear rate. In contrast, the viscosities of CalA-PE stabilized with 

60 gLdP
-1  HDK® H20 decreased by a factor of 75 from 150 to 2 mPas with increasing shear rate. 

The CalA-PE prepared with 60 gLdP
-1  HDK® H20 had the same rheological behavior as the NE-

PE prepared with 15 gLdP
-1  HDK® H20 (compare to Fig. 1A). 

The Sauter mean diameter of the CalA-PE decreased with increasing HDK® H20 

concentration (see Fig. 3B) because the additional particles helped to stabilize smaller droplets 

with a larger total interfacial area [18]. The degree of monodispersity of the CalA-PE (ratio of 

d1,0/d3,2) varied only slightly and no significant differences could be observed for the 

HDK® H20 stabilized CalA-PE. The deviation of the Sauter mean diameter was relatively small 

(± 2.6 µm). Hence, the deviation of the ratio (+0.15/-0.2) was mainly due to the deviation of the 

arithmetic mean diameter (± 7µm). 

For the rheological behavior of w/o PE, it can be concluded that the increase of the silica 

particle concentration outweighed the impact of the lipase. This can be due to the fact that with 

increasing silica nanoparticle concentration, the amount of excess silica that was not bound in 

the emulsion interface increased [46]. This excess silica can form and create a particle-particle 

network between single droplets in the continuous phase. This might explain why with 

increasing silica nanoparticle concentration in the dP; the rheological behavior of the PE was 

mostly defined by the HDK® H20 particles (shear-thinning flow behavior) rather than by the 

lipase. The particle-particle interaction outweighed the effect of the lipase in the same way as 

it was observed for increasing dispersed phase volume fraction. A scheme of possible PE 

properties at low and high silica particle concentration with or without the presence of lipases 

is given in Fig. 4.  



 
Fig. 3: A) Emulsion viscosity (at 20 °C) as a function of shear rate and B) Sauter 
mean diameter d3,2 and ratio of arithmetic to Sauter mean diameter (d1,0/d3,2) for w/o 
PEs without enzyme (NE) or containing 1 gLdP

-1  CalA. PEs were stabilized with 
15 gLdP

-1  HDK® H20 colloidal silica nanoparticles. 
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Fig. 4: Hypothetical scheme of w/o PE properties at low and high silica particle 
concentrations with or without the presence of lipases. Lipases are embedded in the 
sublayer. Dashed lines represent silica particle-particle interaction (hydrogen 
bonds). Solid lines illustrate disulfide bonds caused by enzyme-enzyme interactions 
of two lipases. Adapted from [24]. 

3.4. Impact of lipase concentration 

The viscosity curves of CalA-PEs prepared with several lipase concentrations (1-5 gLdP
-1 ) 

are shown in Fig 5A. The viscosity curves of the CalA-PEs remained constant for all evaluated 

concentrations of lipase. Here, a silica particle concentration of 60 gLdP
-1  was used, at which the 

impact of the lipase was already outweighed (see Fig. 3A). Hence, the impact of outweighing 

was also present when the concentration of lipase was increased. The ratio of lipase to silica 

concentration of 1 gLdP
-1  to 15 gLdP

-1  (~0.07, Newtonian; see data from chapter 3.1) was within 

the range of used ratios in this chapter, namely 3 to 60 (~0.05, shear-thinning) and 5 to 60 (0.08, 

shear-thinning), but showed different rheological behavior. Hence, the lipases, which are 

embedded in an interfacial sublayer, might only disturb the particle-particle network due to 

formation of intermolecular disulfide bonds between lipase molecules until a specific surface 

coverage degree by the silica particles is reached. This competition for the available spaces will 

also influence the reaction rates and yields through both its influence on droplet size and thus 

available mass transfer area and also on the number of biocatalyst molecules at the reaction site. 

The Sauter mean diameter decreased by about 60 % from 19.61 +2.16 -2.91⁄ µm to 

7.32 +1.10/-0.72 µm with increasing lipase concentration from 1 to 5 gLdP
-1  (see Fig. 5B). 

However, the degree of monodispersity (<0.8) remained constant with increasing lipase 

concentration. The adsorption kinetics of lipase and silica nanoparticles differ significantly. 

Even though silica nanoparticles stabilize the emulsion interface, they do not reduce the 

interfacial tension [47]. In contrast, lipase significantly reduces the interfacial tension: the 
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interfacial tension (after 500 s) of a vegetable oil/ water system (without any further surfactants) 

was reduced about 26 % by adding lipase [48], while it was only reduced about 2 % by adding 

silica nanoparticles [47]. The addition of interfacial active substances reduces the interfacial 

tension, which causes the decrease of the droplet size and enhances the resistance against 

coalescence [49]. Hence, the increase of lipase concentration might lead to more embedded 

lipases in the sublayer which might further decrease the interfacial tension. This would explain 

the observed decrease of the droplet size of lipase containing Pickering emulsions. 

 
Fig. 5: A) Emulsion viscosity (at 20 °C) as a function of shear rate and B) Sauter 
mean diameter d3,2 and ratio of arithmetic to Sauter mean diameter (d1,0/d3,2) for w/o 
PEs containing 1-5 gLdP

-1  CalA. PEs were stabilized with 60 gLdP
-1  HDK® H20 

colloidal silica nanoparticles. 

γ̇ [s-1]

CPME

d3,2
ratio

HDK® H20 gLdP−1φdP = 0.2 cparticle= 60 gLdP−1cCalA= 1-5 

A

B

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

20

25

30

35

0 1 2 3 4 5

d 1
,0

/d
3,

2
[-

]

d 3
,2

[µ
m

]

cCalA [gLdP
-1]

0.1

1

10

100

1000

1 10 100 1000

η
[m

Pa
 s

]

1
3
5

gLdP−1



4. CONCLUSIONS 

In order to study the impact of the biocatalyst on the rheological properties of a 

nanoparticle-stabilized two-phase system, the impact of the lipase type, the dispersed phase 

volume fraction, the colloidal silica nanoparticle concentration and the lipase concentration of 

water-in-oil Pickering emulsions stabilized with colloidal silica nanoparticles was investigated. 

It was shown that the addition of the lipases (Lipase TL from Pseudomonas stutzeri, 

Candida antarctica lipase A or B) reduced of the viscosity and the shear-thinning behavior. 

Furthermore, when the lipases possessed the typical lipase lid structure, the rheological 

behavior was transferred from shear-thinning to Newtonian rheological behavior. In addition, 

the lipases significantly reduced the droplet size of the Pickering emulsion. The differences in 

rheological behavior and drop sizes might be caused by different molecular properties of the 

lipases. With higher dispersed phase volume fraction or silica nanoparticle concentration, the 

effects of the lipases on the rheological behavior of the Pickering emulsion was outweighed, by 

the higher degree of particle-particle interaction. In contrast, the increase of lipases 

concentration had no effect on the rheological behavior of the Pickering emulsion but further 

decreased the droplet size. 

In combination with the obtained results, it can be concluded that the impact of the lipases 

is relevant until the interface is fully covered by the silica particles and/or for dilute emulsions 

(low dispersed phase volume fractions). Lipase is still quite small in comparison to the 

interfacial pore size between colloidal silica at the interface and thus, even if the interface is 

fully covered, the lipase can still act at those pores. However, the high interface coverage by 

particles diminishes the number of biocatalyst molecules that can reach the reaction site. In 

addition, H20 have been found to form multilayers which decrease the overall mass transfer 

rate at excessive particle concentrations [50]. The drop size of colloidal silica nanoparticle 

stabilized water-in-oil Pickering emulsions depends on the used lipase source and can be tuned 

by varying the concentration of the particles and/or the concentration of lipases. In turn, this 

affects the viscosity and rheological behavior of lipase containing Pickering emulsions, which 

are crucial parameters for the design of operating conditions or process equipment: e.g., for the 

design of a membrane reactor for the continuous liquid/liquid separation of the emulsion. 
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SUPPORTING MATERIAL (SUPPLEMENTARY INFORMATION) 

 
Fig. S1: A) Emulsion viscosity (at 20 °C) as a function of shear rate and B) Sauter 
mean diameter d3,2 and the ratio of arithmetic to Sauter mean diameter (d1,0/d3,2) for 
w/o NE-PEs stabilized with 15 gLdP

-1  HDK® H20 colloidal silica nanoparticles. The 
dispersed phase volume fraction was either 0.1 or 0.5. 

Batch reactions with different types of lipases 

The lipase-catalyzed transesterification of 1-phenyl ethanol with vinyl butyrate to 1-

phenylethyl butyrate was chosen as a model reaction, which has already been used in previous 

studies (biocatalysis in w/o PEs) [16, 24]. 

The transesterification was performed by using a total emulsion volume of 20 mL with 

an aqueous volume fraction of 0.2. The dP contained 1 gLdP
-1  lipase (CalA, CalB, or LipTL) in 

50 mmolL-1 phosphate buffer pH 7. The continuous phase was CPME. The emulsion was 

prepared as described in Materials and Methods. The PE was stirred at 500 min-1 and the 

temperature was set to 35 °C. To start the reaction (batch-wise mode), the substrate 1-phenyl 

ethanol (82 mmolL-1) and the co-substrate vinyl butyrate (520 mmolL-1) was added to the 

emulsion. The co-substrate concentration was chosen to be 6 times higher, so that co-substrate 

limitation can safely be neglected. The sample which was taken from the emulsions was 

centrifuged for 10 min at 14000 g to separate the liquids. Product (1-phenylethyl butyrate) 

concentration in the continuous phase was analyzed by HPLC (Knauer GmbH, Germany) on a 

C18 phase column (Machery Nagel, EC 125/4 Nucleosil 100 5) with 60 % ethanol in MilliQ 

water as the eluent. 100 µL of the continuous phase of the separated emulsion was mixed with 
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900 µL EtOH and analyzed. The flow rate and temperature were set to 0.5 mLmin-1 and 25 °C, 

respectively. The samples were analyzed with a UV detector (K-2600, Knauer GmbH, 

Germany) at 254 nm wavelength. 

Fig. S2 shows the time-dependent product concentration for the transesterification 

catalyzed by the three lipases. The highest product formation was observed for CalA-PE, while 

the product formation was significantly lower for LipTL- and CalB-PE. The substrate range of 

the lipases are different; thus, the chosen model reaction might be feasible for CalA, but not for 

LipTL or CalB. 

 
Fig. S2: Product concentration over time for transesterification catalyzed with 
lipases in w/o PEs (cparticle=30 gLdP

-1 ; φaq=0.2; dP: 1 gLdP
-1  lipase in 50 mmolL-1 

phosphate buffer pH 7.2. Measurements represent technical triplicates. Error bars 
represent max. and min. error. 
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