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Abstract

In the present work, excited-state nuclear gradients within linear-response time-dependent

density functional theory are developed for local hybrid functionals (local hybrids). The

derived equations are implemented in the quantum chemical program TURBOMOLE us-

ing an efficient seminumerical integration scheme. The implementation is used to validate

local hybrids for a range of excited-state properties that have not been accessible with

this class of functionals before. While the performance of local hybrids for excited-state

structural parameters, adiabatic singlet excitation energies, fluorescence energies, and

harmonic excited-state vibrational frequencies is comparable to that of established global

and range-separated hybrid functionals, results for adiabatic triplet excitation energies

and phosphorescence energies are outstanding. Combined with a robust performance for

the prediction of the shapes of vibronic spectra, this makes local hybrids a promising tool

for the calculation of phosphorescence spectra.

In a second part, local hybrids are assessed for the prediction of more fundamental

properties namely electric dipole moments and polarizabilities. Competitive and robust

performance was found for both properties, in particular with more recent local hybrids.

Compared to some highly parameterized global hybrid functionals, no signs of overparam-

eterization leading to unrealistic electron densities and related properties were observed.

It is argued that this also supports the optimization procedure used in the development

of recent local hybrids.
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Zusammenfassung

In der vorliegenden Arbeit werden Gradienten elektronisch angeregter Zustände bezüglich

Kernauslenkungen innerhalb der zeitabhängigen Dichtefunktionaltheorie für lokale Hy-

bridfunktionale (lokale Hybride) entwickelt. Die abgeleiteten Gleichungen werden im

quantenchemischen Programm TURBOMOLE unter Verwendung eines effizienten seminu-

merischen Integrationsschemas implementiert. Die Implementierung wird verwendet, um

lokale Hybride für eine Reihe von Eigenschaften angeregter Zustände zu validieren, die mit

dieser Funktionalklasse bisher nicht zugänglich waren. Während die Leistungsfähigkeit

lokaler Hybride für Strukturparameter angeregter Zustände, adiabatische Singulett-Anre-

gungsenergien, Fluoreszenzenergien und harmonische Schwingungsfrequenzen angeregter

Zustände mit der von etablierten globalen und reichweiten-separierten Hybridfunktionalen

vergleichbar ist, sind die Ergebnisse für adiabatische Triplett-Anregungsenergien und

Phosphoreszenzenergien herausragend. Kombiniert mit einer robusten Leistung für die

Vorhersage der Form von vibronischen Spektren macht dies lokale Hybride zu einem

vielversprechenden Werkzeug für die Berechnung von Phosphoreszenzspektren.

In einem zweiten Teil werden lokale Hybride für die Vorhersage grundlegenderer Eigen-

schaften, nämlich elektrischer Dipolmomente und Polarisierbarkeiten, untersucht. Dabei

wurde eine solide und konkurrenzfähige Leistungsfähigkeit für beide Eigenschaften ge-

funden, insbesondere mit neueren lokalen Hybriden. Im Vergleich zu einigen hochgradig

parametrisierten globalen Hybridfunktionalen wurden keine Anzeichen einer Überpara-

metrisierung beobachtet, die zu unrealistischen Elektronendichten und damit verbundenen

Eigenschaften führten. Es wird dargelegt, dass diese Befunde auch die Eignung des Op-

timierungsverfahrens, das bei der Entwicklung neuerer lokaler Hybride angewandt wird,

bestätigen.
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1 Introduction

Chemistry tries to understand the properties and behavior of matter using the concept of

molecules, atoms, and electrons. The submicroscopic size of these particles puts them in

the realm of quantum mechanics. Citing Paul Dirac, the physical laws to treat molecular

systems are “completely known, and the difficulty is only that the exact application of

these laws leads to equations much too complicated to be soluble.” [1] Therefore, it has

been and still is the mission of quantum chemistry to develop methods that produce

approximate yet useful results within reasonable computation times. One of the most

successful theories in this regard is density functional theory (DFT) [2] within the Kohn–

Sham formalism, [3] which has allowed calculations for systems with hundreds of atoms

within a few hours of computation time already on personal computers from the 1990s. [4]

With today’s hardware, parallel computing architectures, and advances in algorithms,

calculations on systems with several thousand atoms are feasible. [5] Of course, even the

fastest calculation is useless if the results are not sufficiently accurate or cannot be trusted.

The accuracy of DFT calculations crucially depends on the chosen exchange-correlation

(XC) functional. Hundreds of XC functionals were developed over time, [6,7] and selecting

an appropriate functional can be a difficult task. Although there are attempts to autom-

atize this step, [8] the traditional approach relies on the user’s experience and knowledge

from benchmark studies. [6,7] Many of the most popular and accurate XC functionals are

so-called hybrid functionals that incorporate a portion of exact exchange (EXX) to miti-

gate unphysical self-interaction. [9,10] The two most widespread hybrid schemes are global

hybrid functionals (global hybrids), where a globally constant EXX admixture is used,

and range-separated hybrid functionals for which the amount of EXX is flexible along the

interelectronic coordinate.

Another class of hybrid functionals and the focus of this work are local hybrid func-

tionals (local hybrids). [11,12] They use a local mixing function (LMF) that controls the

position-dependent admixture of EXX within real space. Thereby, the self-interaction er-

ror is reduced adaptively in different electronic regions of the system. One of the earliest

local hybrids by Bahmann et al. from 2007 has shown competitive performance for ther-

mochemistry despite using just local spin-density exchange and correlation functionals for

1



1 Introduction

the DFT part and a simple one-parameter LMF model based on the well-known iso-orbital

indicator τW/τ . [13] Since then, the field has made massive progress. [12] Several conceptual

problems were addressed including the ambiguity encountered when mixing different ex-

change energy densities known as the “gauge problem”, [14–16] new LMF models were

proposed, and several functionals were constructed. [12] One recently reported local hybrid

is LH20t, [17] which exhibits wide chemical applicability and excellent performance for

the GMTKN55 test suite for main-group energetics outperforming all global hybrids. [17]

Apart from this general applicability, local hybrids are particularly well suited for prob-

lems that involve a fine balance of mitigating delocalization errors and emulating left-right

correlation as encountered, e.g., in mixed-valence systems. [17–20] Another area where local

hybrids were shown to provide substantial benefits is electronic excitations. The method

of choice [21] to treat excitations within DFT is linear-response time-dependent density

functional theory (LR-TDDFT) [22] that just like conventional DFT offers an excellent

cost-performance ratio. Development of LR-TDDFT excitation energies for a given XC

functional involves the implementation of the XC kernel, which was reported by Maier et

al. for local hybrids. [23] While the performance for singlet valence excitations was found

to be comparable to that of standard global hybrids, [17,24,25] remarkable performance was

seen for triplet excitations, Rydberg excitations, and first-row core excitations from the

Thiel [26,27] and Tozer [28,29] test sets. [17,24] The good performance for triplet excitations

has been deployed for the development of a local hybrid based protocol for the screening

of singlet fission chromophores, [25] where accurate predictions of singlet-triplet gaps are

crucial. Even for the quite demanding singlet fission test set of captodatively stabilized

biradicaloids from that work, it could be shown that some local hybrids reach an accuracy

close to 0.2 eV for the prediction of triplet absorption energies, which is the targeted ac-

curacy for reliable predictions in this field. [25] The new protocol has recently been applied

in a spectroscopic study of potential singlet fission chromophores. [30]

The above-mentioned findings refer to excitation energies obtained at ground-state

structures, i.e. vertical excitation energies. Although they are in common use for the

emulation of absorption spectra, they generally do not coincide with the experimentally

measured absorption maxima. [31,32] To obtain the proper shape and position of these max-

ima, vibronic effects have to be considered, which require knowledge of the ground- and

excited-state minimum structures and vibrational frequencies. Furthermore, excited-state

structures are required for the prediction of vertical emission energies such as fluorescence

and phosphorescence energies. Insights into the structural changes during excitations

can also provide a basis for a deeper understanding of the respective photophysical or

photochemical processes. Since energy-based numerical optimizations of excited-state

2



structures become prohibitively expensive for larger molecules, excited-state analytical

gradients are required for convenient access to excited-state structures and any related

property. The first implementation of excited-state gradients within LR-TDDFT was re-

alized in the CADPAC package by Van Caillie et al. [33,34] Furche and Ahlrichs presented

an alternative approach [35] that was implemented in the TURBOMOLE program [36,37]

and which is the basis for the present work. Several implementations in other quantum

chemistry codes with various modifications and extensions were reported since then. [38–46]

To extend the applicability of local hybrids within LR-TDDFT beyond vertical exci-

tation energies, the development and implementation of their excited-state gradients are

reported here and constitute the core subject of this thesis. In general, a LR-TDDFT

implementation of excited-state gradients requires the XC hyper-kernel, i.e. the third func-

tional derivative of the XC energy w.r.t. to the density as well as the nuclear derivatives

of the XC kernel and potential. Due to the position-dependent mixing of EXX in local

hybrids, the derivation and implementation of higher-order functional derivatives for this

class of functionals lead to several additional terms compared to global hybrids that also

involve non-standard integrals. As already successfully done for LR-TDDFT energies [23]

and ground-state gradients, [47] those are tackled here using seminumerical integration

techniques. [48]

The outline of this thesis is as follows. After a review of the underlying theory (Chap-

ter 2), the necessary equations for an implementation are derived in Chapter 3. The

implementation (Chapter 4) was realized in the TURBOMOLE program suite as an ex-

tension of the global hybrid excited-state gradients implementation in the egrad program

by Furche and Ahlrichs. [35] In Chapter 5, the new implementation is used to validate

local hybrids for a wide range of excited-state properties including structural parameters,

adiabatic excitation energies, 0–0 energies, emission energies, and harmonic vibrational

frequencies. Moreover, the implementation is used for the emulation of absorption and

emission spectra within the Franck–Condon approximation. In addition to the extensive

studies for excited states, a more fundamental assessment of local hybrids is presented

in Chapter 6. In this chapter, a comprehensive benchmark study for electric properties

including dipole moments and static and dynamic polarizabilities is reported. This aims

at analyzing if local hybrids “have strayed from the path toward the exact functional”,

which was lately claimed to have happened with several other XC functionals developed

past the year 2000 as they tend to fail more often at reproducing correct electron densities

than earlier XC functionals. [49–56]

3





2 Theoretical Background

In this chapter, the basics of quantum chemistry relevant to the derivations in subse-

quent chapters are reviewed. Starting with the Schrödinger equation and Hartree–Fock

approximation, two different routes in quantum chemistry are discussed. On one side

there are wave function based methods that aim at systematically improving on Hartree–

Fock results by refining the ansatz for the wave function. The focus here is, however,

on the other side, i.e. density functional theory which takes the electron density as the

central quantity. The details of the theory are described and various approximations are

discussed with an emphasis on local hybrid functionals which are most relevant for the

work at hand. Finally, time-dependent density functional theory is presented as a method

to treat excited states within density functional theory, and the formalism that is used to

derive the excited-state gradients for local hybrid functionals is outlined.

2.1 Fundamentals of Quantum Chemistry

2.1.1 The Wave Function

According to the basic principles of quantum mechanics, the physical state of a particle

is fully described by a ket |Ψ⟩ that belongs to a given Hilbert space. [57] In a measurement

of a physical observable, the eigenvalues ε of a corresponding Hermitian operator with

eigenstates |ε⟩ are measured with the probability [57]

P (ε) = |⟨ε|Ψ⟩|2 . (2.1)

|Ψ⟩ may be expanded in an orthonormal set of position-spin kets |n⟩

|Ψ⟩ =
∑︂
n

|n⟩ ⟨n|Ψ⟩ =
∑︂
n

Ψn |n⟩ , (2.2)
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2 Theoretical Background

which in the limiting case of infinitesimally spaced position-spin kets becomes the integral

|Ψ⟩ =

∫︂
Ψ(x) |x⟩ dx , (2.3)

where x is the collective variable for the position r and spin projection σ of the particle,

implying
∫︁

dx ≡
∑︁

σ

∫︁
dr. [57] The continuous function Ψ(x) is called the wave function of

the particle. Using eq. 2.1 for the probability of finding the particle at position x′ yields

P (x′) = |⟨x′|Ψ⟩|2 =

⃓⃓⃓⃓∫︂
Ψ(x) ⟨x′|x⟩ dx

⃓⃓⃓⃓2
=

⃓⃓⃓⃓∫︂
Ψ(x)δ(x′ − x) dx

⃓⃓⃓⃓2
= |Ψ(x′)|2 (2.4)

and therefore allows the interpretation of the wave function as a probability amplitude

with its squared absolute value |Ψ(x)|2 being the probability density at position x. [57] The

extension to many-particle systems is straightforward, i.e.

|Ψ⟩ =

∫︂
Ψ(x1, . . . ,xN) |x1⟩ . . . |xN⟩ dx1 . . . dxN , (2.5)

where Ψ(x1, . . . ,xN) is the N -particle wave function. For the special case of indistin-

guishable particles, the position-spin kets may be denoted as |x1 . . .xN⟩. Because the

particles are indistinguishable, the ket |x1x2 . . .xN⟩ has to correspond to the same state

as |x2x1 . . .xN⟩. [57] Exploiting that the ket of any physical state is uniquely defined up to

a phase factor eiα

|x1x2 . . .xN⟩ = eiα |x2x1 . . .xN⟩ = eiαeiα |x1x2 . . .xN⟩ = e2iα |x1x2 . . .xN⟩ (2.6)

yields e2iα = 1 or eiα = ±1, so that for any N -particle state

|x1x2 . . .xN⟩ = ± |x2x1 . . .xN⟩ (2.7)

holds. [57] Hence, the ket |x1x2 . . .xN⟩ is either symmetric or antisymmetric with respect to

the interchange of the particle positions and the corresponding particles are called bosons

and fermions, respectively. For fermions, the observation |x1x1 . . .xN⟩ = − |x1x1 . . .xN⟩
implies that |x1x1 . . .xN⟩ is not a valid state, i.e. two fermions cannot take the same

position and spin. [57] For electrons, this is known as the Pauli exclusion principle. [58] A

fermionic N -particle state may be constructed as an antisymmetrized product of one-

particle kets

|x1 . . .xN⟩ =
1√
N !

∑︂
P

(−1)P
⃓⃓
xP (1)

⟩︁
. . .
⃓⃓
xP (N)

⟩︁
, (2.8)
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2.1 Fundamentals of Quantum Chemistry

where the sum runs over all permutations P and the sign (−1)P gets positive for even num-

bers of interchanges in the permutation and negative for odd numbers of interchanges. [57]

Projection of a given state |Ψ⟩ on this ansatz for the position-spin ket gives the corre-

sponding antisymmetrized wave function.

2.1.2 The Schrödinger Equation

The time evolution of a quantum state |Ψ(t)⟩ is described by the time-dependent Schrö-

dinger equation

Ĥ(t) |Ψ(t)⟩ = i
∂

∂t
|Ψ(t)⟩ , (2.9)

where Ĥ is the system’s Hamiltonian. For this work, it seems natural to think of the

system as some molecule exposed to an external time-dependent scalar potential Vext(t).

The Hamiltonian may then be split up according to

Ĥ(t) = T̂ e + V̂ ee + V̂ eN + T̂N + V̂ NN + V̂ ext(t) , (2.10)

into the operators for the kinetic energy of the electrons (T̂ e) and nuclei (T̂N), the electron-

electron (V̂ ee), nucleus-nucleus (V̂ NN) and electron-nucleus (V̂ eN) potential operators and

some external time-dependent scalar potential operator V̂ ext(t). Due to the substantial

difference in the mass, and hence velocity, of electrons and atomic nuclei, their motions

may be separated, i.e. the electrons can be imagined to move in a potential of fixed nuclei.

This is known as the Born–Oppenheimer approximation. [59,60] The total state |Ψ(t)⟩ may

be separated in an electronic |Ψe(t)⟩ and a nuclear |ΨN(t)⟩ state. Likewise, the nuclear

part T̂N+V̂ NN of the Hamiltonian is separated out. The remaining electronic Hamiltonian

reads

Ĥe(t) = T̂ e + V̂ ee + V̂ eN + V̂ ext(t)

= −
∑︂
i

1

2
∇2

i +
∑︂
i,j>i

1

|ri − rj|
−
∑︂
i,A

ZA

|RA − ri|
+ V̂ ext(t) , (2.11)

where the explicit form in the second line uses the iterator A for nuclei with coordinates

RA and charge ZA and i, j for electrons with coordinates ri and rj.
[61]

Restricting the external potential to a time-independent potential makes the Hamilto-

nian time-independent Ĥe(t) = Ĥe(t0) and eq. 2.9 is solved by

|Ψ(t)⟩ = e−iĤe(t0)(t−t0) |Ψ(t0)⟩ , (2.12)
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2 Theoretical Background

where |Ψ(t0)⟩ is the state of interest at a fixed point in time t0.
[62] The time-evolution

of a molecular system will be reconsidered in Section 2.4 and the focus here is on time-

independent states |Ψ⟩ := |Ψ(t0)⟩, which are obtained as eigenstates of Ĥe := Ĥe(t0), i.e.

from the time-independent Schrödinger equation

Ĥe |Ψ⟩ = E |Ψ⟩ , (2.13)

with the eigenvalue E corresponding to the energy of the state. The ground state (GS)

of a system is the state |Ψ0⟩ which yields the smallest eigenvalue E0. Inserting |Ψ0⟩ in

eq. 2.13 and multiplying from the left with the GS bra vector ⟨Ψ0| leads to an expression

for the ground state energy E0

E0 =
⟨Ψ0|Ĥe|Ψ0⟩
⟨Ψ0|Ψ0⟩

. (2.14)

Eq. 2.14 also defines the lower bound of the energy, i.e. inserting any trial state |Ψtrial⟩ will

always yield a higher energy Etrial ≥ E0, which is known as the variational principle. [63,64]

A rather direct implementation of this trial-and-error idea is seen in variational quantum

Monte-Carlo methods [65] but the variational principle is also deeply ingrained in other

quantum chemical methods that are based on the idea of expanding the wave function in

a suitable subset.

2.1.3 The Hartree–Fock Method

One of the simplest of such expansion approaches is the Hartree–Fock (HF) method,

where the N -electron wave function is constructed from N one-electron wave functions

ϕ(x), also called spin orbitals, from a set of orthonormal functions {ϕi}. They may be split

into a spin function σ(s) which itself is an eigenfunction of the ŝz operator with possible

eigenvalues 1
2

and −1
2
, labeled as α(s) and β(s) respectively, and a spatial (molecular)

orbital φσ(r)

ϕ(x) = σ(s)φσ(r) . (2.15)

Using a simple product of N such spin orbitals and the ansatz for a fermionic state from

eq. 2.8 leads to the HF ground state

⃓⃓
ΨHF

0

⟩︁
=

∫︂ (︄ N∏︂
i=1

ϕi(xi)

)︄
1√
N !

∑︂
P

(−1)P
⃓⃓
xP (1)

⟩︁
. . .
⃓⃓
xP (N)

⟩︁
dx1 . . . dxN . (2.16)
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2.1 Fundamentals of Quantum Chemistry

To simplify notations, it is common practice in quantum chemistry to deal with an equiv-

alent wave function instead of the state itself. To incorporate the antisymmetry of the

state in the N -electron wave function, eq. 2.16 is projected onto the product of involved

one-particle position-spin kets yielding the Hartree–Fock wave function, written here as

a Slater determinant [66]

ΨHF
0 (x1, . . . ,xN) =

1√
N !

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
ϕ1 (x1) ϕ1 (x2) · · · ϕ1 (xN)

ϕ2 (x1) ϕ2 (x2) · · · ϕ2 (xN)
...

...
. . .

...

ϕN (x1) ϕN (x2) · · · ϕN (xN)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ . (2.17)

Using this wave function to calculate the energy expectation value of the electronic (time-

independent) Hamiltonian from eq. 2.11 by following eq. 2.14 gives [67]

EHF =
∑︂
σ

∑︂
pq

[︄
hσ
pq +

1

2

∑︂
σ′

∑︂
rs

[︂
vσσ

′

pqrs − vσσ
′

psrqδσσ′

]︂
Dσ′

rs

]︄
Dσ

pq , (2.18)

where hσ
pq are elements of the core Hamilton matrix, given by the one-electron integrals

hσ
pq = −1

2

∫︂
φ∗
p,σ(r)∇2φq,σ(r) dr−

∑︂
A

ZA

∫︂
φ∗
p,σ(r)φq,σ(r)

|RA − r|
dr , (2.19)

and where vσσ
′

pqrs are two-electron integrals defined as

vσσ
′

pqrs =

∫︂∫︂
φ∗
p,σ(r)φq,σ(r)φ∗

r,σ′(r′)φs,σ′(r′)

|r− r′|
dr dr′ . (2.20)

In eq. 2.18, these two- and four-index quantities are contracted with elements of the

one-electron density matrix D [67,68] given in the MO basis as

Dσ
ij = δij, Dσ

ia = 0, Dσ
ai = 0, Dσ

ab = 0 , (2.21)

where the convention is used that indices i, j, . . . refer to occupied and a, b, . . . to virtual

(unoccupied) orbitals. Inserting the definition of the density matrix elements into eq. 2.18

generates a more commonly seen form of this equation, where the summations run over

occupied orbitals only. [69] The density matrix based notation, however, offers a general

framework to take derivatives w.r.t. the GS density or orbitals by rewriting them as

derivative w.r.t. the density matrix itself. This concept will be extended in Sections 2.2.2

and 3.2.1.
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2 Theoretical Background

Using the energy expression from eq. 2.18, the optimal set of spin orbitals that minimizes

the energy can be determined using the variational principle. [70] In the notation of density

matrices, this means that the Fock matrix F that represents the change of the energy EHF

w.r.t. the density matrix

F σ
pq =

∂EHF

∂Dσ
pq

= hσ
pq +

∑︂
σ′

∑︂
rs

[︂
vσσ

′

pqrs − vσσ
′

psrqδσσ′

]︂
Dσ′

rs (2.22)

has non-zero entries only in the occupied-occupied block, which is expressed in the

Hartree–Fock equations [71]

FσDσ = DσFσ . (2.23)

In other words, interchanging the occupations among occupied and virtual orbitals does

not lower the energy, i.e. the optimal set of orbitals has been found. Computationally,

finding the optimal set of spin orbitals has to be done in an iterative fashion because the

Fock matrix, in turn, depends on the orbitals and the density matrix. Note, that the set

of spin orbitals that makes the energy stationary is not unique [72] and that by convention,

the condition F σ
pq = ϵσpδpq is used to derive such a unique set, called the canonical HF spin

orbitals, for which the values ϵσp are interpreted as the orbital energies. [67,73]

2.1.4 Basis Sets and Integral Evaluation

Up to this point, the orbitals and the way in which they may change during optimization

were not specified. The customary solution is expanding the molecular orbitals in a linear

combination of atomic orbitals (LCAO) [74]

φp,σ(r) =

Nb∑︂
µ

Cµpσχµ(r) , (2.24)

where the expansion coefficients Cµpσ are flexible and the atomic orbitals χµ(r) are from

a set of Nb basis functions. Applying the LCAO ansatz from eq. 2.24 to the equations

from HF theory yields the Roothaan–Hall equations, [74–76] which are the common working

equations for a HF computer program.

The most common choice of basis functions for molecular systems are atom-centered

Gaussian-type orbitals. For an atom positioned at RA = (xA yA zA)T, they have the

form

χµ(r) = (x− xA)lµ,x(y − yA)lµ,y(z − zA)lµ,z · exp
{︁
−αµ |r−RA|2

}︁
, (2.25)
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2.1 Fundamentals of Quantum Chemistry

where lµ = lµ,x + lµ,y + lµ,z is the angular quantum number of the basis function de-

termining the spatial shape of the basis function and where the exponent αµ defines its

radial drop-off. [77] All required matrix elements are calculated within the AO basis and

the results are then back-transformed to the MO basis using the coefficients Cµpσ. There

exist well-established strategies to calculate typically occurring matrix elements like the

two-center one-electron integrals hµν (eq. 2.19) or the four-center two-electron integrals

vµνκλ (eq. 2.20) analytically within a Gaussian basis set. Typical examples for such in-

tegral algorithms include the Gauss–Rys quadrature, [78] the Obara–Saika scheme, [79] and

the McMurchie–Davidson scheme. [80] The calculation of four-center two-electron integrals

within these analytical schemes scales as N4
b making it the most time-consuming part of

a HF calculation. A common strategy to accelerate these computation steps is the use

of prescreening techniques that calculate a computationally inexpensive estimate of the

integral, compare this estimate to a predefined threshold, and decide if the integral is ne-

glected and the more demanding exact computation can be skipped. Equations for such

estimates can, for example, be derived using the Cauchy–Schwarz inequality. [81,82] An-

other approach is the resolution of the identity (RI) method, [83] where one basis function

pair of a four-center integral is approximated within an auxiliary basis set of size Naux.

The coefficients for this expansions are obtained by fitting, where typically the Coulomb

or overlap norm is minimized. Using the RI method for the Coulomb four-center inte-

grals (RI-J) reduces the N4
b scaling to a N2

b · Naux scaling and thus gives an appreciable

speed-up. [83] For the application of the RI to the exchange four-center integral (RI-K),

an improved scaling is not obtained due to increased complexity of the transformations

required for the fitting process, but reduced prefactors can be achieved nonetheless. [84,85]

2.1.5 Post Hartree–Fock Methods

The electron-electron interaction operator in the definition of Ĥe covers all interactions be-

tween electrons explicitly. In HF theory, the energy contributions from this term (eq. 2.18

and eq. 2.20) describe the interaction of an electron only with the spatial distribution of

electrons as specified by set of occupied orbitals. That is, the HF methods is a mean-

field approximation, where the electron-electron interactions are only considered in an

averaged way. [73] The difference of the exact energy E0 resulting from an exact treatment

of the electron-electron interaction and the HF energy is called the electron correlation

energy [86,87]

Ecorr. = E0 − EHF . (2.26)
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Although the correlation energy makes up only about 1% of the total energy of a molecule,

large parts of the correlation energy have to be accounted for if chemical accuracy, typ-

ically defined as 1 kcal/mol (∼ 0.04 eV) accuracy, is targeted. Although no clear-cut

partitioning has been established, it is common to distinguish two kinds of contributions

to the correlation energy that have different physical origins. [88,89] Effects of the explicit

electron-electron repulsion, which is not considered in the mean-field approximation, are

declared as dynamical correlation. In contrast, nondynamical (or static) correlation is

associated with effects of near-degeneracy of different HF determinants for the same sys-

tem. While some static correlation effects can already be captured by an unrestricted

HF calculation that introduces the required flexibility in the wave function via the addi-

tional spin functions (“absolute near-degeneracy”), other static correlation effects cannot

(“relative near-degeneracy”). [90]

There exist various strategies to account for electron correlation and to systematically

improve on a converged HF wave function. One route of methods builds upon a sin-

gle HF determinant and introduces additional excited determinants constructed from the

occupied and virtual orbitals of the reference HF state. Pictorially speaking, electrons

gain more flexibility to avoid each other by populating virtual orbitals associated with

some excited determinant. Mathematical implementations of this concept were realized

in different fashions with configuration interaction (CI), [91,92] Møller–Plesset (MP) per-

turbation theory, [93,94] and coupled-cluster (CC) theory [95,96] being the most prominent

variants. Depending on the number of excited electrons, the excited determinants used

in expansion methods like CI or CC are referred to as singles, doubles, etc., where inclu-

sion up to N -tuple excited determinants corresponds to a complete expansion for a given

N -electron system and would yield the exact energy within a given basis set. Hence,

such expansion methods are in principle able to restore the full electron correlation in-

cluding static correlation. However, a full expansion is computationally unfeasible for

all but the smallest molecules. In situations where static correlation effects are mild,

single-reference CI or CC methods may recover sufficient amounts of static correlation

already at computationally accessible, truncated expansion levels. In more severe cases

of near-degeneracy, commonly referred to as multi-reference cases, it is a useful strategy

to start from a multi-configurational self-consistent field (MCSCF) calculation, [97] where

in addition to the expansion coefficients also the orbital coefficients are optimized for the

many-determinant wave function thereby accounting for static correlation. Additional

correction schemes like perturbation theory, CI or CC may be applied on top to recover

dynamical correlation. A common strategy to balance computational cost and accuracy

is the restriction to a space of active orbitals in the initial MCSCF calculation, in which

12



2.2 Density Functional Theory

a full CI is performed. This method is called complete active space self-consistent field

(CASSCF) and is often combined with second-order perturbation theory leading to the

CASPT2 method. [97] Typically, the active orbitals are those close to the HOMO-LUMO

gap of a HF reference but the decision which and how many orbitals and electrons are

to be included is often not straightforward [98] making this method more of an expert’s

method rather than a “black-box” tool.

2.2 Density Functional Theory

The ab initio post-HF wave function methods described above provide clearly defined

routes to systematically improve on the results from HF theory. A crucial drawback is

their scaling with system size which limits the applicability of the higher-order methods

to relatively small systems. As an alternative approach to wave function based methods,

density functional theory (DFT) is introduced.

2.2.1 The Electron Density as the Central Quantity

While the N -electron wave function Ψ generally depends on 3N position variables and N

spin variables, the electron density

ρ(r) := ρ(r1) = N

∫︂
|Ψ(x1, . . . ,xN)|2 ds1 dx2 . . . dxN (2.27)

depends on only three spatial variables where s1 is used to denote integration over spin

for electron 1. The multiplication of the integral in eq. 2.27 with N ensures that ρ(r)

integrates to the total number of electrons∫︂
ρ(r) dr = N . (2.28)

The significantly smaller number of variables makes the electron density an attractive

quantity for electronic structure calculations. If it was possible to obtain the energy

expectation value of the N -electron wave function from just knowing the electron density,

exact results would be accessible potentially at a fraction of the cost of methods dealing

with the N -electron wave function itself.

The theoretical foundation for this idea was laid by Hohenberg and Kohn in 1964. [2]

They proved that there exists a one-to-one mapping between an external potential V (r)

(defined, e.g., by the nuclei of a molecule) and the electron density ρ and that therefore
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the energy is an unique functional of the density (up to an additive constant). The general

form of this functional reads [2]

E[ρ] =

∫︂
V (r)ρ(r) dr + F [ρ] . (2.29)

Additionally, they showed that only the true GS electron density, i.e. the electron density

associated with the wave function that yields the exact energy expectation value (eq. 2.14),

minimizes that functional such that E0 is obtained

E0 = E[ρ̃]

⃓⃓⃓⃓
ρ̃=ρ0

≤ E[ρ̃] , (2.30)

where ρ̃ is a test density. The first term on the RHS of eq. 2.29 is system dependent

and describes the interaction of the density with a given external potential, which for

molecules is simply the Coulomb attraction from the nuclei. The second term F [ρ] is

universally valid and has to cover the remaining energy contributions, i.e. the sum of

the electron-electron repulsion Eee and the kinetic energy of the electrons T . With this

partition, the GS energy may be written as

E0 = E[ρ0] = EeN[ρ0] + Eee[ρ0] + T [ρ0] . (2.31)

While the electron-nuclei attraction functional

EeN[ρ] = −
∑︂
A

ZA

∫︂
ρ(r)

|RA − r|
dr (2.32)

is known exactly, the other two functionals Eee[ρ] and T [ρ] are not. Therefore, the idea

by Hohenberg and Kohn shifts the problem of minimizing the energy expectation value

of a N -electron wave function to finding the universal functional F [ρ] = Eee[ρ] + T [ρ]. If

this expression was found (and simple enough for evaluation), the remaining process of

minimizing the electron density would be comparatively straightforward. [2] As a matter

of fact, such a universal functional has not been found to date. As a practical solution,

approximations have been put forward but it was also realized that good approximations

for the kinetic energy were difficult to obtain in the original, orbital-free framework by

Hohenberg and Kohn. [99–101]
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2.2.2 Kohn–Sham Density Functional Theory

That is why Kohn and Sham have brought the concept of molecular orbitals familiar from

HF theory to DFT. [3] Their idea was to start from a fictitious non-interacting reference

systems for which the exact wave function is a single Slater determinant. The kinetic

energy of this Slater determinant is readily accessible from the MOs

TS[{φ}] = −1

2

∑︂
σ

∑︂
pq

Dσ
pq

∫︂
φ∗
p,σ(r)∇2φq,σ(r) dr , (2.33)

where here and below the density-matrix notation from ref. 67 is used instead of a sum-

mation over occupied orbitals to simplify notations in upcoming chapters. By definition,

it is enforced that the electron density of the fictitious non-interacting reference system

is equal to the density of the real, interacting system ρ(r) = ρS(r) and hence may also be

calculated from the MOs [67]

ρ(r) =
∑︂
σ

ρσ(r) =
∑︂
σ

∑︂
pq

Dσ
pqφ

∗
p,σ(r)φq,σ(r) . (2.34)

The two densities can only be equal if the external potential for the fictitious reference

system adapts accordingly. This effective potential is called the Kohn–Sham (KS) poten-

tial. The idea of KS-DFT is to calculate the kinetic energy as if the system was in this KS

potential and later correct for the difference from the true kinetic energy T . Similarly (but

independent from the idea of a non-interacting reference system) the electron-electron re-

pulsion functional Eee[ρ] may be split into a classical part J [ρ] that covers the Coulomb

repulsion energy of two charge densities

J [ρ] =
1

2

∫︂∫︂
ρ(r)ρ(r′)

|r− r′|
dr dr′ (2.35)

and some correction term that accounts for all non-classical effects of the electron-electron

interaction. With the correction terms for the kinetic energy and the electron-electron

interaction collected in the exchange-correlation (XC) functional

Exc[ρ] = T [ρ]− TS[{φ}] + Eee[ρ]− J [ρ] , (2.36)

the total energy functional may be expressed as

E[ρ] = TS[{φ}] + EeN[ρ] + J [ρ] + Exc[ρ] . (2.37)
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Compared to conventional DFT, the challenge of finding a universal functional F [ρ] for

the total kinetic and total electron-electron interaction energy is shifted to finding the

correction functional Exc[ρ], while about 99% of the energy is already covered by the first

three functionals on the RHS of eq. 2.37, whose exact forms are known. However, just

like for F [ρ], the exact form of Exc[ρ] is unknown and approximations have to be made

(see below).

To minimize the energy functional eq. 2.37, the optimal set of KS orbitals has to be

found. The corresponding KS equation is formally identical to eq. 2.23 except that the

Fock matrix is replaced by the KS matrix F. Its matrix elements are obtained by inserting

the definitions from eq. 2.34-2.35 in eq. 2.37 and taking the derivative w.r.t. the density

matrix

F σ
pq =

δE[ρ]

δDσ
pq

= hσ
pq +

∑︂
σ′

∑︂
rs

vσσ
′

pqrsD
σ′

rs + V xc
pq,σ , (2.38)

where V xc
pq,σ are matrix elements of the XC potential which may be expressed as the

derivative of the XC energy

V xc
pq,σ =

δExc

δDσ
pq

. (2.39)

The somewhat non-standard notation as a density matrix derivative [67] is used to conve-

niently cover the more general case of orbital-dependent XC functionals to be introduced

below (Sections 2.2.4 and 2.3). For a pure density functional, invoking the functional

chain-rule and inserting the definition of the density (eq. 2.34) recovers the more com-

monly seen notation of V xc
pq,σ as the matrix element of a functional derivative

V xc
pq,σ =

δExc

δDσ
pq

=

∫︂
δExc[ρσ(r)]

δρσ(r)

δρσ(r)

δDσ
pq

dr =

∫︂
δExc

δρσ(r)
φ∗
p,σ(r)φq,σ(r) dr . (2.40)

2.2.3 The Quest for the Exact Exchange-Correlation Functional

Over half a century after the original paper by Kohn and Sham, [3] the exact XC func-

tional remains unknown and the success of KS-DFT is due to the pragmatic approach

of using approximated XC functionals (see Section 2.2.4). Likewise, considerable effort

was devoted to illuminating the nature of the exact XC functional and several lines of

thinking, mathematical formalisms, and exact constraints were derived. [102]

One important such concept is the hole formalism. Pictorially speaking, each electron

digs a hole around itself so that the probability of finding another electron in its vicinity

is reduced and the exchange and correlation effects may be expressed as the interaction

of an electron density with a hole function h(r1, r2).
[103] The electron-electron interaction
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2.2 Density Functional Theory

energy is then obtained as [104]

Eee = J [ρ] +
1

2

∑︂
σσ′

∫︂∫︂
ρσ(r1)hσσ′(r1, r2)

|r1 − r2|
dr1 dr2 , (2.41)

i.e. as the sum of the classical Coulomb interaction, which misses all quantum mechanical

effects and contains unphysical self-interaction (see below), and a correcting term governed

by the hole function hσσ′(r1, r2), which is formally obtained from the pair density [71,104]

P σσ′

2 (r1, r2) := P2(x1,x2) = N(N − 1)

∫︂
|Ψ(x1,x2, . . . ,xN)|2 dx3 . . . dxN (2.42)

as

hσσ′(r1, r2) =
P σσ′
2 (r1, r2)

ρσ(r1)
− ρσ′(r2) . (2.43)

To transfer the hole function formalism to KS-DFT, the Adiabatic Connection (AC)

is introduced. [105] The AC builds on the fact that in KS-DFT, the density of the non-

interacting reference system is the same as for the real, interacting system, while the

external potential Vext is thought to adapt accordingly. The AC generalizes this idea

by introducing a coupling parameter λ that moderates the transition between the non-

interacting (fictitious) reference system (λ = 0) and the real system (λ = 1) while the

density remains unchanged along this line giving rise to the term “adiabatic” connection.

The idea is expressed in the λ-dependent Hamiltonian [105]

Ĥ
λ

= T̂ + λV̂ ee + V̂
λ

ext , 0 ≤ λ ≤ 1 , (2.44)

which enters the Schrödinger equation Ĥ
λ
Ψλ = EλΨλ, where all wave functions Ψλ yield

the same density ρ if plugged into eq. 2.27. The energy Eλ will also change depending on

λ with the difference in energy of the interacting and non-interacting being simply [106]

Eλ=1 − Eλ=0 =

∫︂ 1

0

dEλ . (2.45)

Proceeding from this equation using the hole formalism from eq. 2.41 for Vee as well as

the KS kinetic energy density for T in the limiting case for λ = 0 in eq. 2.44, eventually

leads to the following energy expression for the interacting system [106]

Eλ=1 = TS[{φ}] + EeN[ρ] + J [ρ] +
∑︂
σσ′

1

2

∫︂∫︂ ∫︂ 1

0

ρσ(r1)h
λ
σσ′(r1, r2)

|r1 − r2|
dλ dr1 dr2 , (2.46)
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so that by comparison with eq. 2.37, the XC functional is identified to be

Exc =
1

2

∑︂
σσ′

∫︂∫︂
ρσ(r1)h

σσ′
xc (r1, r2)

|r1 − r2|
dr1 dr2 , (2.47)

where the XC hole

hσσ′

xc (r1, r2) =

∫︂ 1

0

hλ
σσ′(r1, r2) dλ (2.48)

is defined as the coupling-strength integrated hole function. [104,106] Although hσσ′
xc (r1, r2)

can be expected to be a rather complicated function, the 1/|r1−r2| term in eq. 2.47 implies

that at least its angular dependence is unimportant and only its spherical average has

to be considered. [104] With that, the problem of the unknown universal functional has

been once more shifted to a new quantity. The advantage of this formalism is that exact

constraints known for the hole function [104] transfer to the XC hole, as they are unaffected

by the integration over λ. [106] First, the XC hole follows the simple integration rule∫︂
hσσ′

xc (r1, r2) dr2 = −δσσ′ (2.49)

for any position of the reference point r1, i.e. it integrates to −1 for the same-spin case

and vanishes for the opposite-spin case. [104] For the special case of r2 = r1, the so called

“on-top” values [106] of the same-spin XC hole are obtained as

hσσ
xc (r1, r1) = −ρσ(r1) , (2.50)

which is an immediate consequence of the antisymmetry built into P σσ′
2 (r1, r2). Also,

it is customary to split the XC hole into a Fermi hole hx, which is known exactly from

the one-body spin-density matrix (see ref. 104) and a correlation hole hc, defined as the

difference hσσ′
c = hσσ′

xc − hσσ′
x . Because the same-spin Fermi hole hσσ

x is known to contain

exactly one electron, [104] the integration rules for the separate holes read∫︂
hσσ
x (r1, r2) dr2 = −1 (2.51a)

∫︂
hσσ′

c (r1, r2) dr2 = 0 . (2.51b)

Like the same-spin XC hole (eq. 2.50), the Fermi hole has the on-top value hσσ
x (r1, r1) =

−ρσ(r1) and takes only negative values hσσ
x (r1, r1) < 0. [107] Note, however, that the on-top

value of the total XC hole is not known.
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2.2 Density Functional Theory

Besides the conditions implied by the XC, Fermi and correlation holes, several other

exact constraints and desirable properties are known for the exact XC functional. [108,109]

Of particular importance in the context of this work is the requirement that the functional

has to be self-interaction free. This means that in a one-electron system, the unphysical

interaction of a density with itself (as obtained from J [ρ], eq. 2.35) has to be corrected

for by the XC functional [110]

J [ρ1-El.] = −Exc[ρ
1-El.] . (2.52)

2.2.4 Exchange-Correlation Functional Approximations

As outlined above, the exact XC functional is not known and approximations have to

be made for practical applications of KS-DFT. For convenience, these approximations

are nonetheless referred to as “XC functionals” within this work. In the development of

such functionals, it is customary to a) split the XC functional into an exchange and a

correlation part and b) deal with spatially resolved X/C energy densities ex/c(r) instead

of total energies

Exc = Ex + Ec =

∫︂
ex(r) dr +

∫︂
ec(r) dr , (2.53)

where the energy densities ex/c(r) must not be confused with the per-electron energy den-

sities, which would require multiplication with the density under the integrals in eq. 2.53.

The separation into an exchange and a correlation part is to some degree arbitrary for

approximate functionals, i.e. the exchange functional may cover effects that could also be

viewed as correlation. [111]

Over the past decades, several hundred XC functionals have been put forward. [7] A

popular way to systematize these developments is expressed in the metaphorical Jacob’s

Ladder of density functional approximations suggested by Perdew and Schmidt. [112] Step-

ping up from the “Hartree world” (where no XC functional is used), additional quantities

are introduced as inputs to the XC functional at each rung of the ladder. In principle, the

larger input of information allows to satisfy more of the exact constraints at each rung,

potentially leading to improved accuracy and ultimately to the “heaven of chemical accu-

racy”. [112] Below, some of the most important developments are outlined. The selection

of representatives for each rung is based on general popularity as well as usage within this

work and is by no means exhaustive.
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Local (Spin-)Density Approximation

The local density approximation (LDA) and local spin-density approximation (LSDA)

constitute the lowest rung (rung 1) of the Jacob’s Ladder and solely depend on the density

and spin-density, respectively. They assume that at each point in space, the density is a

slowly varying function and may be treated as a uniform electron gas (UEG). [113] Hence,

the LDA expression for the exchange term is equivalent to an expression by Dirac for the

UEG, [113] which was later taken up by Slater [114] as an approximation to the exchange-

term in HF theory. For LDA, it reads

eLDA
x (r) = −Cxρ

4/3(r) = −Cx

(︄∑︂
σ

ρσ(r)

)︄4/3

, (2.54)

where Cx = 3
4

(︁
3
π

)︁1/3
is a constant. As opposed to LDA, LSDA is not based on the total

density but is formulated for individual spin-channels, so that the total exchange energy

density is obtained as the sum of both spin channels

eLSDA
x (r) =

∑︂
σ

eLSDA
x,σ (r) = −2

1/3Cx

∑︂
σ

ρ
4/3
σ (r) . (2.55)

As this makes LSDA better suited for unrestricted calculations and situations were sym-

metry breaking has to be described, it is usually preferred over LDA. [115] For the cor-

relation part of the UEG, no exact formula is known. Instead, the respective LSDA

correlation functionals were obtained by fitting to highly accurate quantum Monte Carlo

results. [113] Popular fits are those by Vosko, Wilk and Nusair (VWN), [116] and by Perdew

and Wang (PW92). [117] LSDA is (essentially) an exact method for the model system of an

UEG and therefore very successful for comparable real systems, i.e. systems with a rather

slowly varying electron density such as simple metals. [113] Molecules, on the other hand,

are clearly distinct from this situation because of the steep increase of the density around

individual atomic nuclei. Nonetheless, LSDA provides some benefits over HF, e.g., for

atomization energies, ionization potentials, and electron affinities. [118] Barrier heights, on

the other hand, are notably deteriorated, [118] which is related to the strong overbinding

observed for LSDA and limits applicability for chemical reactions. [115]

Generalized Gradient Approximation

To account for more rapid changes in the density of molecules, a natural extension of the

LSDA is the inclusion of the density’s spatial derivatives, first and foremost its gradient.
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2.2 Density Functional Theory

The basic idea of a gradient expansion of the density has already been introduced by

Kohn and Sham [3] and pursued for some time also by others, [119] until eventually, clear

pitfalls were noticed [120] and developments shifted to the related ansatz of a generalized

gradient approximation (GGA) that restores theoretical constraints violated by the sim-

pler gradient expansions. [121] GGAs constitute the second rung of the Jacob’s Ladder, and

since they include information beyond the local density, they are classified as semilocal

functionals. Among many other variants, some of the most popular GGA functionals

for the exchange part are those by Becke from 1988 (B88) [122] and by Perdew, Burke

and Ernzerhof (PBE). [123] Both functionals may be expressed as corrections to the LSDA

exchange energy density where the correction terms depend on the reduced spin density

gradient for which two forms are in common use

xσ(r) =
|∇ρσ(r)|
ρ

4/3
σ (r)

, (2.56a)

sσ(r) =
xσ(r)

2(3π2)1/3
. (2.56b)

Also note that the absolute value of the density gradient |∇ρσ(r)| is typically implemented

as γ
1/2
σσ(r), where

γσσ′(r) = ∇Tρσ(r)∇ρσ′(r) (2.57)

is the squared density gradient and where here and below the transpose notation from

ref. 67 is adopted to simplify notations in upcoming chapters. With that, the exchange

energy density for the B88 model reads

eB88
x,σ (r) = eLSDA

x,σ (r)− ρ
4/3
σ (r) · βx2

σ(r)

1 + 6βxσ(r)asinh (xσ(r))
, (2.58)

where β = 0.0042 was found by fitting to exact values for the exchange energies of the

noble gas atoms (He–Rn). [122] The PBE exchange energy density has a similar form and

is typically written as the LSDA exchange energy density multiplied by an enhancement

factor

ePBE
x,σ (r) = eLSDA

x,σ (r) ·
(︃

1 + κ− κ

1 + µs2σ(r)/κ

)︃
. (2.59)

In contrast to B88, the parameters κ = 0.804 and µ = 0.21951 are nonempirical. [123] They

were derived from theoretical constraints, i.e. the value of κ ensures that the Lieb–Oxford

bound is satisfied and µ was chosen such that the LSDA linear response is recovered. [123]

For the correlation part, again, many different GGA functionals were developed. The

popular LYP functional [124] was derived by Lee, Yang and Parr from the Colle-Salvetti
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formula [125] that approximates the the correlation energy starting from the one and two-

electron density matrix of a HF wave function. The performance of GGA functionals

is generally superior to LSDA functionals and has led to a major breakthrough of DFT

in chemistry. [121] In particular, GGAs were shown to significantly reduce the problem of

overbinding inherent to LSDA functionals. [126]

Meta Generalized Gradient Approximation

Considering the improvements seen with the inclusion of density gradient terms in GGAs

it seems natural to also include higher-order derivatives of the density such as its Lapla-

cian. [127] It turned out, however, that it is numerically more stable to use the orbital

kinetic energy density τ which is directly related to the Laplacian via the effective poten-

tial and the orbitals of the KS system. [127] Functionals that include τ or the Laplacian

represent the third rung of the Jacob’s Ladder and are termed meta-GGAs (mGGAs).

The orbital kinetic energy density is defined from the gradient of the occupied KS orbitals

τσ(r) =
1

2

∑︂
pq

Dσ
pq∇Tφ∗

p,σ(r)∇φq,σ(r) . (2.60)

In the case of a one-orbital system, it is easy to show that the kinetic energy density may

be expressed in terms of the density and its gradient (assuming a real-valued orbital)

τ 1-Orb.
σ =

1

2
∇Tφ1,σ∇φ1,σ =

1

2
∇Tφ1,σ∇φ1,σ ·

4φ1,σφ1,σ

4φ1,σφ1,σ

=
∇Tρ1-Orb.

σ ∇ρ1-Orb.
σ

8ρ1-Orb.
σ

, (2.61)

where the last term is equivalent to the von Weizsäcker kinetic energy density

τW,σ(r) =
γσσ(r)

8ρσ(r)
. (2.62)

For systems with multiple orbitals, this observation suggests that comparison of τσ(r) and

τW,σ(r) allows to identify one-orbital regions which is useful to address the self-interaction

problem. Both, the difference of the kinetic energy densitiesa

Dσ(r) = 2 · [τσ(r)− τW,σ(r)] (2.63)

and their ratio

tσ(r) =
τW,σ(r)

τσ(r)
(2.64)

aThe prefactor of 2 in eq. 2.63 is introduced for consistency with the definition by Becke in ref. 128.
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are in common use in mGGAs. [128,129]

An early attempt for a mGGA exchange functional is the non-empirical ansatz by Becke

and Roussel [130] that uses both Laplacian and τ terms to model the exchange hole within

an iterative procedure proceeding from the exactly known exchange hole of a hydrogen-

like system. The model provides significantly improved atomic exchange energies when

compared to LSDA but lags behind the GGA functional B88 described above. [131] In 1995,

Becke also suggested a mGGA correlation functional (B95) [128] that uses the quantity Dσ

defined above and its uniform gas limit DUEG
σ = 3

5
(6π2)2/3ρ

5/3
σ to construct a functional that

is free from one-electron self-interaction. [128] Dropping the spatial variable r for brevity,

the B95 correlation energy density reads [17,128]

eB95
c = dopp

[︁
1 + copp

(︁
x2
α + x2

β

)︁]︁−1
ePW92
c, opp +

∑︂
σ

dσσ
[︁
1 + cσσx

2
σ

]︁−2 Dσ

DUEG
σ

ePW92
c,σσ , (2.65)

where ePW92
c,σσ = ePW92

c (ρσ, 0) is either one of the same-spin parts of the PW92 LSDA corre-

lation energy density and the remaining opposite-spin correlation is defined by subtracting

the same-spin correlation parts, i.e. ePW92
c, opp(ρα, ρβ) = ePW92

c (ρα, ρβ)−
∑︁

σ e
PW92
c (ρσ, 0). [128]

Perdew, Kurth, Zupan and Blaha (PKZB) presented another mGGA in which they

systematically improved the PBE model by including τ terms in the enhancement fac-

tor. [129] In the correlation part, the ratio tσ(r) defined in eq. 2.64 is used to construct a

self-interaction free version of the PBE correlation functional. [129] This led to improve-

ments compared to PBE for surface and atomization energies, but other properties like

bond-lengths or binding energies in hydrogen-bonded complexes were deteriorated. [132]

Building on PKZB, Tao, Perdew, Staroverov and Scuseria (TPSS) developed a mGGA

that fulfills additional exact constraints. [132] The TPSS functional cured its predecessor

problems with bond lengths and hydrogen-bonded complexes while maintaining good at-

omization energies. [132] Perdew and co-workers continued the strategy of satisfying more of

the known exact constraints introducing a strongly constrained and appropriately normed

(SCAN) mGGA functional that fulfills all 17 known constraints for a mGGA functional

and gives particularly good results for weak interactions and lattice constants. [133]

Hybrid Functionals

The fourth rung of the Jacob’s Ladder is held by functionals that explicitly depend on

the occupied KS orbitals. The motivation for this step can be understood within the AC

formalism described in section Section 2.2.3. Rearranging the definitions from eq. 2.47

and eq. 2.48, the XC functional is obtained as an integral over the coupling strength
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dependent XC functional

Exc =

∫︂ 1

0

Uλ
xc dλ , (2.66)

where Uλ
xc is the potential energy part of the XC energy at intermediate coupling strength

λ. [10] Note that the kinetic energy part of the XC energy is obtained by integration over

λ. [10] Considering first the λ = 0 limit, it is clear that correlation is absent and that

only exchange has to be considered. Because the exact wave function is a single Slater

determinant in the non-interacting limit, the exchange energy can be expressed as in HF

theory but using the KS orbitals {φ}, which is referred to as exact exchange (EXX)

Eex
x = −1

2

∑︂
σ

∑︂
pqrs

Dσ
pqD

σ
rs

∫︂∫︂
φ∗
p,σ(r)φs,σ(r)φ∗

r,σ(r′)φq,σ(r′)

|r− r′|
dr dr′ , (2.67)

where the density matrix elements are non-zero only for occupied-occupied orbital indices

(cf. eq. 2.21). For the other limit of the AC, namely the fully interacting, λ = 1 limit, Uλ=1
xc

has to cover both exchange and correlation. For the correlation, the simplest approach

is to use the potential energy part from LSDA functionals ULSDA
c . Opposed to the exact

correlation hole, the correlation hole from LSDA is localized around the reference electron.

Combining it with the correct, non-local exact-exchange hole would not give the correct,

rather localized XC hole structure but a too delocalized hole. [9,134] Therefore, the exchange

part in the λ = 1 limit must not be Eex
x but has to be more localized, so that if combined

with LSDA correlation the qualitatively correct XC hole is obtained. [9,134] Of course, this

requirement is fulfilled if the exchange part is also LSDA exchange. If the connection

between the two limits Uλ
xc was assumed to be linear in λ, solving the integral in eq. 2.66

is straightforward

EH&H
xc =

1

2
Eex

x +
1

2
ULSDA
xc , (2.68)

which is exactly the half-and-half (H&H) theory by Becke. [9] The inclusion of HF like

EXX makes the functional explicitly orbital dependent and gives rise to the term “hybrid

functional”. Soon after the original H&H theory, hybrid functionals with other fractions a

of EXX and any desired (semi)local exchange and correlation functionals were suggested.

Their general form may be denoted as

EGH
xc = aEex

x + (1− a)Esl
x + Esl

c , (2.69)

and they are referred to in this work as global hybrid functionals (global hybrids, GHs)

because 0 < a ≤ 1 is constant in space. Becke extended the hybrid concept by intro-
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ducing additional semi-empirical parameters fitted to various properties, which became

known as the Becke3 (B3) parameterization and substantially improved the performance

for atomization energies. [10] Using the same fitting parameters but employing the LYP

functional [124] in the correlation part instead of LSDA, [135] has led to the well-known

B3LYP functional

EB3LYP
xc = aEex

x + (1− a)ELSDA
x + b∆EB88

x + cELYP
c + (1− c)EVWN

c , (2.70)

where a = 0.2, b = 0.72, and c = 0.81. Overall, B3LYP provided substantial improve-

ments over rung 1–3 functionals at the time for thermochemistry and barriers, [118] which

caused unprecedented popularity of this functional in chemistry. [136,137]

Over time, numerous other GHs were developed and two major design philosophies can

be identified. One strategy is starting from an existing non-empirical GGA or mGGA

functional like PBE or SCAN and then identify a suitable amount of EXX following theo-

retical arguments leading to functionals like PBE0 [138] or SCAN0. [139] Another strategy is

to determine the optimal amount of EXX empirically by fitting to some dataset as done

in TPSSh, [140] B97, [141] PW6B95, [142] or many of the functionals from the Minnesota class

of functionals by Truhlar [143] to name only a few.

A major reason for the success of GHs is the mitigation of the self-interaction error

inherent in the classical Coulomb term J [ρ] (eq. 2.35). If J is expressed as a four-center

integral J = 1
2

∑︁
pqσrsσ′ vσσ

′
pqrsD

σ
pqD

σ′
rs, comparison with eq. 2.67 illustrates that for same-

electron interactions, i.e. identical density matrix elements and spin-indices, the EXX term

from GHs compensates the artificial repulsive term from J just as it does in HF theory

(cf. eq. 2.18). The extent of this effect depends, of course, on the prefactor a in eq. 2.69.

However, as outlined above, 100% EXX (a = 1) is typically not desirable as it gives a

qualitatively incorrect XC hole when combined with conventional (semi)local correlation

functionals. Developments of compatible non-local correlation functionals like the B05

functional by Becke aim at solving this problem. [144,145] Apart from that, (semi)local

exchange functionals emulate some effects of static correlation [111] and can therefore be

preferable over a complete cancellation of self-interaction. [18,146]

As EXX admixture has revealed to cut both ways, more flexible approaches than a

globally constant admixture are a natural extension. One such approach are local hybrid

functionals, which are central to this work and will be discussed in detail in Section 2.3.

Another popular scheme are range-separated hybrid (RSH) functionals. Their basic idea

is the range-separation (RS) of the interelectronic interaction operator 1/r12 = 1/|r1 − r2|

25



2 Theoretical Background

into a short-range part and a long-range part using the error-function [131]

1

r12
=

1− erf(ωr12)

r12
+

erf(ωr12)

r12
, (2.71)

where ω is the RS parameter. The inverse of ω corresponds to the characteristic length at

which the second term (long-range) in eq. 2.71 starts to dominate, i.e. small values ω give

an extended short-range contribution, and larger values of ω lead to an earlier onset of

the long-range part along the interelectronic coordinate. In RSHs, this separation scheme

is used for a mixing of exact and (semi)local exchange. For functionals devoted to the

application in molecular systems, the common choice is to use EXX in the long-range

part and some suitably modified (semi)local exchange functional in the short-range part.

100% EXX for r12 → ∞ ensures the correct asymptotic −1/r increase of the exchange

potential, which is required to compensate the +1/r drop-off of the Coulomb potential

and thus avoids self-interaction at large r12.
[147] This behavior makes RSHs particularly

successful for situations were charge-separation has to be described as it is the case with

charge-transfer excitations or zwitterionic electronic structures. [148–150] An early RSH that

is based on the PBE model is LC-ωPBE, [148] which uses a range-separation parameter

of ω = 0.4 and proved to be suitable for the description of charge-separation phenom-

ena while providing moderate performance for thermochemistry, barrier heights, and bond

lengths. [148] Based on B3LYP, the RSH CAM-B3LYP has been developed, where the range

separation (ω = 0.33) is not between 0% and 100% EXX but between a constant fraction

of EXX at SR (19%) and long range (65%), which was termed the ’Coulomb-attenuating

method’. [151] Other popular RSHs are the more parametrized functionals from the ωB97

family developed by Head-Gordon. [152–155] Notably, three of those functionals hold the

top 3 of best performing rung 4 functionals for the extensive and diverse GMTKN55 main

group energetics test suite which, however, cannot be attributed to the RS scheme exclu-

sively. [6] It has also been realized that the optimal RS parameter ω exhibits a significant

system dependence. [156,157] This has led to the development of optimally tuned RSHs, [158]

which derive this optimal parameter from the IP theorem. [159] Although this approach can

give superior results, it lacks size-consistency and the tuning-process makes practical ap-

plications somewhat cumbersome. [158] As a strategy to overcome the system-dependency

of the RS parameter, the idea of local range-separation has been put forward [160] and has

recently been advanced with the first self-consistent implementation of these functionals

becoming available. [161] The idea here is to replace the constant RS parameter in RSHs

by a real-space dependent RS function. The approach was particularly successful and
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2.3 Local Hybrid Functionals

competitive with optimally tuned RSHs for the prediction of outer-valence spectra but

does not have the pitfalls associated with the tuning process. [161]

Virtual Orbital Dependent Functionals

While the explicit orbital-dependence of rung 4 hybrid functionals is limited to occupied

orbitals, functionals from the fifth and topmost rung of the Jacob’s Ladder also depend on

virtual orbitals. The subclass of double hybrid (DH) functionals extend the hybrid scheme,

previously used exclusively for exchange, to the correlation part. A certain fraction b of

(semi)local correlation is replaced by a perturbative MP2-like term EPT2
c

[162]

EDH
xc = aEex

x + (1− a)Esl
x + cEPT2

c + (1− c)Esl
c . (2.72)

A popular DH is B2PLYP by Grimme, [162] which was at the time of its development

claimed to be the best general purpose XC functional and delivered significant improve-

ments over rung 4 functionals for thermochemistry and barriers. [162] However, the inclusion

of the virtual orbital space increases the formal N4
b scaling of rung 4 functionals to a formal

N5
b scaling, which somewhat limits the applicability. However, applying a spin-opposite

scaled scheme for the perturbative part and combining this ansatz with a Laplace trans-

formation algorithm, [163] reduces the scaling of energy calculations to N4
b . [164,165] Over the

past years, several other DHs have been developed [165] including functionals that apply

the RS scheme to the correlation part, [166] the exchange part, [167] or both. [168]

A different ansatz to include virtual orbitals for the description of correlation is the Ran-

dom Phase Approximation (RPA), which deduces the correlation energy from a response

treatment of the density. [169,170] The quality is comparable to the MP2-like approach used

in DHs but the computational cost and sensitivity to small differences in the orbital

energies are reduced. [171]

2.3 Local Hybrid Functionals

The admixture of EXX has proven useful both in the GH, RSH, and DH scheme to

mitigate the self-interaction error and for (partly) satisfying theoretical constraints (cf.

Section 2.2.4). Another natural extension of the hybrid concept is the real-space depen-

dent admixture of EXX. This idea was originally envisaged by Burke and co-workers in

1998 [172] and the first explicit functional was specified by Jaramillo, Scuseria and Ernzer-

hof in 2003 [11] and the corresponding class of functionals is called local hybrid functionals

(local hybrids, LHs).
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2 Theoretical Background

2.3.1 General Formulation

To accomplish the desired real-space mixing of EXX, the fixed hybrid parameter a in

the definition of a GH (eq. 2.69) has to be replaced by a position-dependent function

aσ(r), termed local mixing function (LMF) that is bound to 0 ≤ aσ(r) ≤ 1. The choice

of this LMF is crucial and possible forms are discussed in Section 2.3.2. While GHs are

conveniently denoted as a mixing of exchange energies (cf. eq. 2.69), the concept of real-

space mixing can only be formulated as a mixing of exchange energy-densities. For EXX,

this energy density is simply the integrand from eq. 2.67 [67]

eexx,σ(r) = −1

2

∑︂
pqrs

Dσ
pqD

σ
rs

∫︂
φ∗
p,σ(r)φs,σ(r)φ∗

r,σ(r′)φq,σ(r′)

|r− r′|
dr′ . (2.73)

However, exchange energy-densities, and energy densities in general, are not unambigu-

ously defined, [172,173] i.e. it is always possible to add some gauge function G̃(r) that inte-

grates to zero without changing the integrated energy

Ex =

∫︂
ex(r) dr =

∫︂
ex(r) dr +

∫︂
G̃(r) dr⏞ ⏟⏟ ⏞
=0

=

∫︂ [︂
ex(r) + G̃(r)

]︂
dr =

∫︂
ẽx(r) dr . (2.74)

If two different exchange energies are mixed, differences in their gauges have to be cor-

rected for, which is accomplished by a calibration function (CF) Gσ(r), which will be

discussed in more detail in Section 2.3.3. With these definitions, the general form of a

local hybrid reads

ELH
xc =

∑︂
σ

∫︂
aσ(r) · eexx,σ(r) dr +

∑︂
σ

∫︂
[1− aσ(r)] ·

[︁
eslx,σ(r) + Gσ(r)

]︁
dr + Esl

c . (2.75)

This formulation of LHs is closely related to the GH scheme from eq. 2.69 and gives some

intuition of the underlying hybrid concept. By minor rearrangements, the alternative

formulation

ELH
xc = Eex

x +
∑︂
σ

∫︂
[1− aσ(r)] ·

[︁
eslx,σ(r)− eexx,σ(r) + Gσ(r)

]︁
dr + Esl

c (2.76)

is obtained. [174] Since exchange is accounted for by Eex
x and because the correlation func-

tional Ec can be assumed to mainly capture dynamical correlation, the middle term in

eq. 2.76 can be interpreted as a non-dynamical correlation term.
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2.3 Local Hybrid Functionals

It is also possible to combine the real-space dependent mixing concept of local hybrids

with the range-separation idea. One such approach is local range-separation discussed

in the context of RSHs in Section 2.2.4 above. Another ansatz are functionals that mix

range-separated exchange energy densities via a LMF, which are called range-separated

local hybrids. [175,176]

2.3.2 Local Mixing Functions

The LMF is central to the LH concept. It controls how much of the EXX energy-density

and (semi)local exchange energy-density, respectively, is used in different regions of the

system. The basic motivation to use different amounts of EXX is the following: While

100% EXX (aσ(r) = 1) is desirable in one-electron regions to counteract the problem

of self-interaction, it is rather undesirable in other regions like the valence or bonding

region. There, the use of a (semi)local functional can help to describe non-dynamical

correlation. [111] Compared to the constant mixing parameter in GHs, the LMF in LHs

provides this additional flexibility.

Aside from this basic construction principle, other constraints and guidelines for the

development of LMFs were identified. [12] Consider first the real-space asymptotic region

of a molecule. An electron in this region is infinitely separated from all other electrons,

which makes this a one-electron region and requires an LMF value of 1 to cancel self-

interaction. [12] Secondly, at and around the nuclei the density is distinctly larger than in

the rest of the molecule. In these high-density regions, the correlation energy becomes

negligible compared to the exchange energy. [12] With correlation being relatively unim-

portant, (semi)local exchange does not provide any benefits and it is favorable to use

EXX, and hence, aσ(r) = 1 is required. [12] A third construction principle for LMFs is

obtained by considering the homogeneous limit, i.e. the limit of uniform electron density.

Here, most (semi)local functionals as well as EXX are exact, but the (semi)local exchange

has the aforementioned advantage of emulating effects of non-dynamical correlation. [12]

This makes (semi)local exchange desirable in this regions and implies aσ(r) = 0. The

discussed constraints give guidance on how to construct LMFs but their exact fulfillment

is not necessarily required to yield useful functionals. [12] For some constraints, such as the

one-electron limit, certain LMF models (e.g., the t-LMF, see below) perform better for

general thermochemistry, if the exact constraint is lifted and a scaled version is used. [13]

Also, apart from the correct height of the LMF in different regions, its shape in these

regions and the transition between different regions has to be taken into account. [12]
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2 Theoretical Background

One of the simplest LMFs is based on the inhomogeneity parameter tσ(r) introduced

in the context of mGGA functionals (eq. 2.64). It takes values of 1 in iso-orbital regions

and is therefore capable to determine one-electron regions. It is also bound to 0 ≤
tσ(r) ≤ 1 and hence can be used as is as an LMF, which has been done in the first local

hybrid by Jaramillo et al. [11] Although this LMF satisfies the one-electron, homogenous,

and asymptotic limit [12] and gives promising results for reaction barriers and dissociation

curves, [11] it was realized by Bahmann et al. [13] that a linear down-scaling of tσ(r) by a

prefactor b as in

aσ(r) = b · tσ(r) = b · τW,σ

τσ
(2.77)

gives improved performance for thermochemistry when combined with LSDA exchange

and correlation. The LMF in eq. 2.77 is referred to as “t-LMF”. With b = 0.48, the

performance for the G2-1 set of atomization energies was shown to be competitive with

contemporary GGA based GHs. [13]

Another early LMF is based on the reduced spin-density gradient sσ(r) as defined in

eq. 2.56b. This quantity is commonly used in (m)GGAs as a measure of inhomogeneity.

For vanishing density gradients |∇ρσ(r)| it goes to 0 thus indicating a region of homoge-

neous electron density. [177] However, it diverges for vanishing densities which prevents a

direct use as an LMF. Instead, it has to be mapped from the interval [0;∞) to the interval

[0;1], which can be achieved with various functions [177] of which a simple error-function

prevailed. This LMF is called “s-LMF” and reads

aσ(r) = erf (β · sσ(r)) , (2.78)

where the empirical parameter β was optimized for the G2-1 test set of atomization energy

yielding an optimal value of β = 0.22 when the s-LMF is combined with LSDA exchange

and correlation. [177] The s-LMF fulfills the homogeneous limit because just like the original

quantity sσ(r), it vanishes for uniform electron densities (|∇ρσ(r)| = 0). [12] The mapping

function also ensures that in asymptotic regions where ρσ(r) → 0, i.e. sσ(r) → ∞, the

LMF will approach 1 independent of the scaling factor β. [12]

Important variants of the t- and s-LMF are the so-called “common” versions, [178] which

are obtained by replacing the spin-resolved quantities in the definition of tσ(r) and sσ(r)

by the spin-summed quantities, i.e.

t(r) =
τW(r)

τ(r)
=

γαα(r) + 2γαβ(r) + γββ(r)

8 (τα(r) + τβ(r)) (ρα(r) + ρβ(r))
, (2.79a)
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s(r) =
21/3

k

(γαα(r) + 2γαβ(r) + γββ(r))
1/2

(ρα(r) + ρβ(r))
4/3

, (2.79b)

where the factor of 21/3 in the definition of the reduced density gradient ensures s(r) =

sσ(r) for spin-restricted calculations. [67] To distinguish the standard LMFs from their

common variants, the former are also referred to as spin-channel LMFs. While the two

forms are identical for the spin-restricted case, the common LMF versions bring in addi-

tional opposite-spin terms in unrestricted calculations of open-shell systems or in the case

of triplet excitations. [178] It is assumed that these cross-terms help with the description

of non-dynamical correlation. [24,178]

Apart from the simple t-LMF and s-LMF, several other LMF models have been sug-

gested such as an LMF by Kümmel and co-workers [179] that depends on the spin-polari-

zation, an LMF by de Silva and Corminbeouf [180] that uses an ingredient from the density

overlap region indicator, [181] LMFs that are constructed as perturbations to a constant

EXX mixing factor by Haunschild et al., [182] an LMF based on a density-matrix similarity

metric suggested by Janesko et al., [183] or LMF models by Arbuznikov and Kaupp [184]

derived from the AC formalism. [12]

2.3.3 Calibration Functions

As mentioned in Section 2.3.1, the ambiguity in the definition of energy densities leads

to the problem of possibly incompatible gauges of the (semi)local and exact exchange

energy-densities. Because the exchange energy density is multiplied with an LMF within

the LH scheme, an additive gauge function does not integrate to zero but gives rise to an

additional term∫︂
a(r)ex(r) dr ̸=

∫︂
a(r)

[︂
ex(r) + G̃(r)

]︂
dr =

∫︂
a(r)ex(r) dr +

∫︂
a(r)G̃(r) dr⏞ ⏟⏟ ⏞

̸=0

. (2.80)

This circumstance is known as the “gauge problem” and presents a major challenge in

the development of LHs. [12,15] As this problem affects both the exact and the (semi)local

exchange energy-density, it is sufficient to correct for the difference of the individual gauge

functions. This is the purpose of the CF Gσ(r) = G̃
sl

σ(r)− G̃
ex

σ (r), which, by definition, is

required to integrate to zero ∫︂
Gσ(r) dr = 0 . (2.81)
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Apart from that, several other requirements for suitable CFs were deduced, [14,15] of which

the condition of being totally symmetric, having the same uniform coordinate scaling

as an exchange energy density, featuring an asymptotic decay and vanishing in the ho-

mogeneous limit are most important. [15] Tao et al. [14] suggested a CF that fulfills all

these requirements, but due to its dependence on the Laplacian of the exact exchange

energy-density, an efficient implementation seems elusive. [15] Following Tao’s basic ansatz

of constructing the CF as the divergence of some vector field Wσ(r)

Gσ(r) = ∇ ·Wσ(r) , (2.82)

a related approach was followed by Arbuznikov et al. [15] and later generalized by Maier

et al. [16] Importantly, their ansatz for W exclusively uses (semi)local quantities and dis-

penses with the exact exchange energy-density used by Tao, which facilitates efficient

implementation. The scheme by Maier is derived using a partial integration formula

and was thus termed partial integration gauge (pig). [16] The general expression for the

Nth-order CF reads [16]

Gσ =
N∑︂

m=1

[︄
m∏︂

n=1

fn

]︄
∇ ·

[︄
∇ρσsm−1

σ

ρ
1/3
σ

dm−1F (sσ)

dsm−1
σ

]︄
, (2.83)

where dependence on r was dropped for clarity, and where fn are flexible parameters,

and F (sσ) is some damping function that can be of the same type as GGA damping

functions or also a simple Gaussian damping.b As these CFs were deduced for the GGA

case, they might be less compatible with mGGA exchange energy-densities, which led to

the development of a related scheme that explicitly includes the kinetic energy density. [16]

The first (N = 1) and second (N = 2) order versions of eq. 2.83 are labeled pig1 and

pig2, respectively, and are used in recent LHs. [15,17] The flexible prefactors f1 (and f2)

are typically optimized so that the middle term on the RHS of eq. 2.76 is minimized for

systems where non-dynamical correlation should be absent. [16] In such cases, the CF has to

cancel any spurious non-dynamical correlation that arises from an incompatibility of the

exact and (semi)local exchange energy density. [16] A convenient approach is the fitting of

dissociation curves of weakly bound noble gas dimers using HF as a reference. [12,15–17,185]

While (semi)local functionals give a much to attractive potential, increasing amounts

of EXX in GHs brings the curve closer to the HF reference. LHs would be expected

to fall somewhere in between the curves of (semi)local functionals and GHs. However,

bNote that in ref. 16, sσ was defined with a slightly different prefactor than in this work (eq. 2.56b),
which has to be accounted for in the definition of F (sσ).
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uncalibrated LHs were found to give a much too repulsive curve due to positive spurious

non-dynamical correlation contributions. [15] Calibration diminishes these terms yielding

weakly bound dissociation curves in excellent agreement with the HF reference. [16,185]

Note that for the calibration of a more recent LH, the reference calculation is HF plus

B95 correlation to account for attractive contributions from the B95 correlation functional

used for this LH. [17] Calibration also improves the compatibility of LHs with dispersion

corrections like Grimme’s D3 [186] or D4 [187] corrections because these corrections no longer

have to correct for gauge artifacts as they do in uncalibrated LHs. [17,185]

2.3.4 Established Local Hybrids Used in this Work

Although the LMF and CF are clearly the characteristic features of LHs, the choice of

the (semi)local exchange and correlation energy densities considerably affects the perfor-

mance of a LH as well. In this section, some successful combinations of LMFs, CFs and

(semi)local energy densities are reviewed. They are summarized in Table 2.1. All of these

LHs are implemented in the quantum chemistry program package TURBOMOLE [36,37]

and are part of the investigations in later chapters.

LH07t-SVWN [13] and LH07s-SVWN [177] are based on LSDA (Slater) exchange and

VWN correlation. Despite not using gradient corrections in the (semi)local exchange

and correlation energy densities, they showed results for thermochemistry and barriers

competitive with standard GHs. [13,177] They use a scaled spin-channel t-LMF and s-LMF,

respectively, which are plotted in Figure 2.1 along the bonding axis of the carbon monoxide

molecule for demonstration. The LMFs look somewhat similar in the bonding and valence

region but the behavior around the cores and in the asymptotics is distinctly different.

While the t-LMF rapidly approaches the value of its prefactor as τW,σ/τσ approaches 1

Table 2.1: Overview of the local hybrids used in this work.

Functional LMF Scal. Exchange Calib. Correlation Ref.

LH07t-SVWN tσ 0.480 LSDA − VWN [13]
LH07s-SVWN sσ 0.220 LSDA − VWN [177]
LH12ct-SsirPW92 t 0.646 LSDA − sir-PW92a [178]
LH12ct-SsifPW92 t 0.709 LSDA − sif-PW92b [178]
LH14t-calPBE tσ 0.500 0.49·LSDA + 0.51·PBE pig1 0.55·PW92 + 0.45·PBE [15]
LH20t t 0.715 0.22·LSDA + 0.78·PBE pig2 modified B95c [17]
LH20t* t 0.715 0.22·LSDA + 0.78·PBE − modified B95c [17]

a Short-range self-interaction-reduced PW92 correlation functional. [178]
b Short-range self-interaction-free PW92 correlation functional. [178]
c With parameters dopp= 1.23, copp= 0.00499, dσσ= 0.82, and cσσ= 0.0954 (cf. eq. 2.65). [17]
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Figure 2.1: Plot of the LMFs used in some of the LHs studied in this work along the
bonding axis of the carbon monoxide molecule with the carbon atom positioned at 0.
Calculations were performed with TURBOMOLE 7.5 using the aug-cc-pVQZ basis set.
Spikes at the positions of the nuclei are related to vanishing density gradients at nuclei
within Gaussian basis sets.

in these one-electron regions, the s-LMF shows a rather slow increase towards 1 in the

asymptotics and has a minimum instead of a maximum at the position of the nuclei.

LH12ct-SsirPW92 and LH12ct-SsifPW92 [178] are both based on a common t-LMF with

prefactors of 0.646 and 0.709, respectively. For LH12ct-SsirPW92, this LMF is plotted

in Figure 2.1 which is simply a scaled version of the t-LMF from LH07t-SVWN for this

closed-shell molecule. These two LHs use a short-range self-interaction reduced (sir) and

short-range self-interaction free (sif) version of the PW92 correlation functional. [178] It is

constructed by subtracting the short range part eSR-PW92
c,µ of the PW92 correlation energy

density from the conventional PW92 correlation energy density

esir-PW92
c,µ,λ (r) = ePW92

c [ρα(r), ρβ(r)]− λ
∑︂
σ

tσ(r)eSR-PW92
c,µ [ρσ(r), 0] , (2.84)

where a t-LMF with prefactor λ is used to concentrate this effect around one-electron

regions and the parameter µ tunes the range-separation of the PW92 functional. [178]

Choosing µ = 0.8 and enforcing λ = b, where b is the prefactor of the common t-LMF from

the exchange part, LH12ct-SsirPW92 was obtained by optimizing the free parameter b
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w.r.t. atomization energies. By enforcing λ = b, the short-range self-interaction is reduced

by the same amount of which Coulomb self-interaction is reduced by the exchange part.

Compared to LH07t-SVWN, this allows the use of larger LMF prefactors, which help with

the description of barriers, without loss in accuracy for atomization energies. [178] LH12ct-

SsifPW92 also uses µ = 0.8 but enforces λ = 1, which makes the correlation part short-

range self-interaction free in one-electron regions. The optimal LMF prefactor of 0.709

in LH12ct-SsifPW92 is a bit larger than the 0.646 prefactor found for LH12ct-SsirPW92.

Likewise, atomization energies are deteriorated very slightly with LH12ct-SsifPW92 when

compared to LH12ct-SsirPW92 but barrier heights are further improved. [178]

The LHs presented so far do not use GGA components in the (semi)local parts because

these increase the sensitivity to the gauge problem. With the use of a pig1 CF in LH14t-

calPBE, inclusion of PBE exchange and correlation became feasible. [15] This t-LMF based

LH was found to give excellent performance for the GMTKN30 test suite [164] competitive

with PW6B95 (both including D3 [186] dispersion corrections), which is one of the best

performing GHs. [185] Further improvements were achieved with the recent LH20t, which

utilizes a common t-LMF, a larger fraction of PBE exchange in the (semi)local exchange

energy density, a pig2 CF and a modified B95 correlation functional. [17] The overall nine

empirical parameters were optimized in a multistep procedure for atomization energies

and barrier heights as well as for noble gas dimer curves to adjust the pig2 CF as out-

lined in Section 2.3.3. LH20t shows excellent performance for the GMTKN55 test suite [6]

which is further improved when the functional is combined with D4 [187] dispersion cor-

rections. With a WTMAD-1 of 2.64 kcal/mol and a WTMAD-2 of 4.74 kcal/mol (both

including D4 dispersion corrections) [17] its performance surpasses all GHs and puts LH20t

among the best rung 4 functionals, [17] i.e. the range-separated, dispersion corrected hy-

brids ωB97X-D3 (WTMAD-1 = 2.71 kcal/mol, WTMAD-2 = 4.77 kcal/mol), [6] ωB97X-V

(2.32 kcal/mol, 3.98 kcal/mol), [6] and ωB97M-V (2.01 kcal/mol, 3.53 kcal/mol). [188] With

that, LH20t is the so far most successful of all LHs. It is also particularly well suited

for the description of mixed-valence compounds, [17] which often require a fine balance

of avoiding delocalization errors and correctly simulating left-right correlation. [189] The

additional flexibility in EXX admixture governed by the LMF makes LHs particularly

suited for this challenge. [18,190] For a demanding test set of mixed-valence oxide systems

(MVO-10), [18] LH20t is the only investigated XC functional that simultaneously describes

the most localized case (Al2O
−
4 ) and delocalized case (V4O

−
10) correctly. [17] In addition to

the excellent performance for ground state properties, LH20t also proved to be accurate

for excited state calculations. [17]
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2.4 Excited State Theory

DFT, both in its original formulation by Hohenberg and Kohn (cf. Section 2.2.1) and

in the KS formalism (cf. Section 2.2.2), is strictly a GS theory. That is, even with

knowledge of the exact functional, the theory provides no universal access to the energy

or properties of electronically excited states (ESs). A pragmatic and often successful [25]

approach is the ∆SCF method [191,192] that treats ESs as if they were GSs. Excitation

energies are obtained as the difference of the minimized ES energy and that of the true

GS. To achieve converged solutions for the ES, collapse to the GS or lower-energy ESs

has to be precluded, e.g. by (spin-)symmetry, which limits the applicability of the original

∆SCF method. This limitation has been overcome with the development of constricted

variational DFT, [193–197] which mixes a fraction of every virtual GS orbital into each of

the occupied GS orbitals to create a new set of occupied ES orbitals. [194] The additional

constraints enforced on the involved mixing coefficients prevent the variational collapse of

higher lying ESs in SCF calculations. [194] Besides, other approaches like the generalized

adiabatic connection KS formalism were developed and allow a DFT treatment of specific

ESs. [198]

Despite these developments, the more widespread theory for the treatment of excited

states within DFT is time-dependent density functional theory (TDDFT). Just like DFT

is an exact theory to solve the stationary Schrödinger equation (eq. 2.13), TDDFT is a

formally exact theory to solve the time-dependent Schrödinger equation (eq. 2.9). And

while DFT uses the GS electron density ρ(r), the central quantity in TDDFT is the

time-dependent electron density

ρ(r, t) := ρ(r1, t) = N

∫︂
|Ψ(x1, . . . ,xN , t)|2 ds1 dx2 . . . dxN (2.85)

derived from the time-dependent N -electron wave function Ψ(x1, . . . ,xN , t), the latter

denoted below as Ψ(r, t) to simplify notations. Although it is possible to propagate the

time-dependent density in real-time, [199,200] the more widespread approach [21] is linear

response TDDFT [22] (LR-TDDFT) that extracts excitation energies and ES properties

from the linear response function of the density in frequency space. For a comprehensible

derivation of the relevant equations, the foundations of response theory are introduced

in a general scheme first (Section 2.4.1). In this context, the important special case of

the dynamic polarizability tensor is derived as well. Next, the time-dependent Kohn–

Sham (TDKS) framework is introduced, and eventually, the linear response scheme is
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2.4 Excited State Theory

applied within TDKS to derive Casida’s equations, [22] which are the working equations

of LR-TDDFT.

2.4.1 Response Theory

Derivation of the Linear Response Function

The basic idea of response theory is to express the response of a system to some time-

dependent perturbation using a response function χ. Consider, for example, the response

of the time-dependent density δρ(r, t) to a change in the external potential δvext(r, t)

which is formally obtained as

δρ(r, t) =

∫︂
dt′
∫︂

dr′
δρ(r, t)

δvext(r′, t′)

⃓⃓⃓⃓
vext,0⏞ ⏟⏟ ⏞

χ(r,r′,t−t′)

δvext(r
′, t′) , (2.86)

where the response function χ(r, r′, t−t′) is simply the functional derivative. [201] Using the

convolution theorem,c an equivalent representation of eq. 2.86 in the frequency domain

reads

δρ(r, ω) =

∫︂
dr′ χ(r, r′, ω)δvext(r

′, ω) . (2.87)

To determine the response function, the change in the density δρ(r, ω) is derived from

time-dependent perturbation theory and later compared to eq. 2.87.

In general, a quantum chemical system with Hamilton operator Ĥ
0

that is perturbed

by a small, time-dependent perturbation δĤ(t) obeys the time-dependent Schrödinger

equation

i
∂

∂t
|Ψ(r, t)⟩ =

[︂
Ĥ

0
+ δĤ(t)

]︂
|Ψ(r, t)⟩ . (2.88)

The time-dependency of the state |Ψ(r, t)⟩ can be expanded in terms of eigenstates of

the unperturbed, time-independent Schrödinger equation Ĥ
0
|Ψ0

n⟩ = En |Ψ0
n⟩ and a time-

dependent function an(t) as [202]

|Ψ(t)⟩ =
∑︂
n

an(t)e−iEnt
⃓⃓
Ψ0

n

⟩︁
. (2.89)

cThis work uses the Fourier convention from ref. 22: f(ω) =
∫︁ +∞
−∞ dt e+iωtf(t) , f(t) =

∫︁ +∞
−∞

dω
2π e

−iωtf(ω)

and the convolution theorem: h(t) =
∫︁ +∞
−∞ dt′ g(t− t′)f(t′)⇔ h(ω) = g(ω) · f(ω)
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Inserting this ansatz into eq. 2.88, left-multiplying with ⟨Ψ0
k| and exploiting the orthonor-

mality condition ⟨Ψ0
k|Ψ0

n⟩ = δkn gives [202]

∂ak(t)

∂t
= −i

∑︂
n

⟨︁
Ψ0

k

⃓⃓
δĤ(t)

⃓⃓
Ψ0

n

⟩︁
an(t)e+i(Ek−En)t . (2.90)

Next, the time-dependent function ak(t) is expanded in a power series [202]

ak(t) = a0k(t) + λa
(1)
k (t) + λ2a

(2)
k (t) + . . . , (2.91)

where λ determines the strength of the perturbation. Inserting this ansatz into eq. 2.90

and collecting only terms up to first order gives after time-integration [202]

a
(1)
k (t) = −i

∫︂ t

−∞
dt′
⟨︁
Ψ0

k

⃓⃓
δĤ(t)

⃓⃓
Ψ0

0

⟩︁
e+iΩkt

′
, (2.92)

where Ωk = Ek − E0 is the excitation energy for the state with energy Ek and where it

was assumed that the system was at the unperturbed state at t = −∞. To relate this

general scheme to the response of the density which is of interest here, an explicit ansatz

for the perturbing term δĤ(t) has to be made

δĤ(t) = eηt
Ne∑︂
q=1

δvext(rq, t) . (2.93)

Here, the exponential with 0 < η ≪ 1 is used to guarantee a slow switch-on of the

perturbation and the external potential is written as the sum of all individual one-body

terms (in the simplest case, electron-nuclei interactions). [201] Introducing now the density

operator

ρ̂(r) =
Ne∑︂
q=1

δ(rq − r) (2.94)

and writing δvext(rq, t) in the frequency domain gives [201]

δĤ(t) =

∫︂
dr

∫︂
dω

2π
e−i(ω+iη)tδvext(r, ω)ρ̂(r) . (2.95)

This expression may now be inserted in eq. 2.92, which after time integration yields [201]

a(1)n (t) = −
∫︂

dr

∫︂
dω

2π

⟨︁
Ψ0

n

⃓⃓
ρ̂(r)

⃓⃓
Ψ0

0

⟩︁
δvext(r, ω)

e+i(Ωn−ω−iη)t

Ωn − ω − iη
, (2.96)
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2.4 Excited State Theory

which may be used to get a first-order approximation of the time-dependent wave func-

tion [201]

|Ψ(t)⟩ = e−iE0t
⃓⃓
Ψ0

0

⟩︁
+
∑︂
n ̸=0

a(1)n (t)e−iEnt
⃓⃓
Ψ0

n

⟩︁
. (2.97)

With this expression for the wave function, the linear change in the density may be written

as

δρ(r, t) = ⟨Ψ(t)|ρ̂(r)|Ψ(t)⟩ −
⟨︁
Ψ0

0

⃓⃓
ρ̂(r)

⃓⃓
Ψ0

0

⟩︁
=
∑︂
n ̸=0

[︁
a(1)n (t)e−iΩnt

⟨︁
Ψ0

0

⃓⃓
ρ̂(r)

⃓⃓
Ψ0

n

⟩︁
+ a(1)∗n (t)e+iΩnt

⟨︁
Ψ0

n

⃓⃓
ρ̂(r)

⃓⃓
Ψ0

0

⟩︁]︁
=

∫︂
dr′
∫︂

dω

2π
δvext(r

′, ω)e−i(ω+iη)t
∑︂
n ̸=0

[︃
⟨Ψ0

n|ρ̂(r′)|Ψ0
0⟩⟨Ψ0

0|ρ̂(r)|Ψ0
n⟩

ω + iη − Ωn

− ⟨Ψ
0
0|ρ̂(r′)|Ψ0

n⟩⟨Ψ0
n|ρ̂(r)|Ψ0

0⟩
ω + iη + Ωn

]︃
, (2.98)

where second-order terms were neglected and terms were rearranged so that the Fourier

transformation is easy to see [201]

δρ(r, ω) =

∫︂
dr′ δvext(r

′, ω)
∑︂
n ̸=0

[︃
⟨Ψ0

n|ρ̂(r′)|Ψ0
0⟩⟨Ψ0

0|ρ̂(r)|Ψ0
n⟩

ω + iη − Ωn

− ⟨Ψ
0
0|ρ̂(r′)|Ψ0

n⟩⟨Ψ0
n|ρ̂(r)|Ψ0

0⟩
ω + iη + Ωn

]︃
. (2.99)

Comparison of this expression with eq. 2.87 gives the density response function [201]

χ(r, r′, ω) =
∑︂
n ̸=0

[︃
⟨Ψ0

n|ρ̂(r′)|Ψ0
0⟩⟨Ψ0

0|ρ̂(r)|Ψ0
n⟩

ω + iη − Ωn

− ⟨Ψ
0
0|ρ̂(r′)|Ψ0

n⟩⟨Ψ0
n|ρ̂(r)|Ψ0

0⟩
ω + iη + Ωn

]︃
. (2.100)

Response to an External Electric Field

Equation 2.100 gives the general response function of the density under the influence of

a (time-dependent) change in the external potential. As a first concrete example, the

response of the dipole moment

µ =

∫︂
r · ρ(r) dr (2.101)
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to an external electric field E with field strength E(t) is considered. From the time-

independent case it is known that the Taylor expansion of the dipole moment

µ = µ0 + αE +
1

2
ETβE + . . . (2.102)

can be used to express its change under the influence of an electric field in terms of its

polarizability α, hyperpolarizability β, and higher-order terms, where

αij =
∂µi

∂Ej

⃓⃓⃓⃓
E=0

, βijk =
∂2µi

∂Ej∂Ek

⃓⃓⃓⃓
E=0

, i, j, k ∈ {x, y, z} . (2.103)

The extension to the time-dependent case requires an appropriate time-integration

µx(t) = µ0
x +

∫︂ +∞

−∞
dt′

δµx(t)

δEz(t′)

⃓⃓⃓⃓
Ez=0

Ez(t) + . . .

= µ0
x +

∫︂ +∞

−∞
dt′ αxz(t− t′)Ez(t) + . . . , (2.104)

where, without loss of generality, the field is assumed to be oriented in z-direction and

the response of the dipole moment is considered in x-direction to simplify notations. [22]

Subtracting µ0
x from both sides of eq. 2.104 and applying the convolution theorem yields

δµx(ω) = αxz(ω) · Ez(ω) . (2.105)

Alternatively, the change in the dipole moment can be calculated from the density fol-

lowing eq. 2.101

δµx(ω) = −
∫︂

dr r̂x · δρ(r, ω) , (2.106)

where the minus sign accounts for the negative charge of the electron density and the

position in x-direction is written as a position operator r̂x. Inserting the definition of

δρ(r, ω) from eq. 2.87 and the ansatz δvext(t) = r̂zEz(t) for the change in the external

potential gives

δµx(ω) = −
∫︂

dr

∫︂
dr′ r̂x · χ(r, r′, ω) · r̂′zEz(ω) (2.107)

Comparison of this equation with eq. 2.105 gives the frequency-dependent (dynamic)

polarizability [203]

αxz(ω) = −
∫︂

dr

∫︂
dr′ r̂x · χ(r, r′, ω) · r̂z (2.108)
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2.4 Excited State Theory

expressed in terms of the general density response function χ(r, r′, ω). Using the explicit

expression for χ(r, r′, ω) (eq. 2.100), considering the η → 0+ limit and exploiting symmetry

of the position operators finally yields [22]

αxz(ω) =
∑︂
n ̸=0

2Ωn ⟨Ψ0
0|r̂x|Ψ0

n⟩⟨Ψ0
n|r̂z|Ψ0

0⟩
Ω2

n − ω2
. (2.109)

Of particular interest is the mean polarizability

ᾱ(ω) =
1

3
tr(α(ω)) =

2

3

∑︂
k∈{x,y,z}

∑︂
n ̸=0

Ωn| ⟨Ψ0
0|r̂k|Ψ0

n⟩|
2

Ω2
n − ω2

, (2.110)

which by comparison with the definition of spectroscopic oscillator strengths

fn =
2

3
Ωn

∑︂
k∈{x,y,z}

⃓⃓ ⟨︁
Ψ0

0

⃓⃓
r̂k
⃓⃓
Ψ0

n

⟩︁⃓⃓2
(2.111)

is transformed to the simple expression [22]

ᾱ(ω) =
∑︂
n ̸=0

fn
Ω2

n − ω2
. (2.112)

Two basic conclusions can be drawn from this equation. First, excitation energies are

associated with poles of the mean dynamic polarizability as can be seen from the de-

nominator in eq. 2.112 which gets zero if the irradiated frequency ω equals an excitation

energy Ωn. [22] Second, the residues at these poles correspond to the oscillator strength of

the respective excitation. [22] In the limiting case of ω → 0, eq. 2.112 yields the mean static

polarizability. This goes to show that the mean static polarizability can be interpreted as

the oscillator-strength weighted sum of the reciprocal squares of all (single) excitation en-

ergies. Just like the dipole moment obtained from an approximate method can be viewed

as a globally averaged measure of the method’s accuracy for predicting GS densities, [204]

the static polarizability can be considered as a state-averagedd measure of a method’s

accuracy for predicting excitation energies and oscillator strengths. [205]

dStrictly speaking, this only includes dipole-allowed transitions where fn ̸= 0.
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2.4.2 Time-Dependent Density Functional Theory

With the basic working equations of response theory at hand, their application to DFT is

discussed in this section. As a first step, the formal justification of TDDFT is presented

and the TDKS equations are derived.

Runge–Gross Theorems and Formal Foundations

As a time-dependent analogue to the first Hohenberg–Kohn theorem, Runge and Gross

proved [206] that the time-dependent electron density ρ(r, t) uniquely determines the time-

dependent external potential v(r, t) up to a time-dependent function. [207] In other words, if

two time-dependent densities are equivalent ρ(r, t) = ρ′(r, t)+C(t) and have evolved from

the same initial state, the underlying potentials have to be equivalent, v(r, t) = v′(r, t).

An analogue to the second Hohenberg–Kohn theorem was developed by Runge and Gross

starting from the quantum chemical action integral

A =

∫︂ t1

t0

dt

⟨︃
Ψ(r, t)

⃓⃓⃓⃓
i
∂

∂t
− Ĥ(r, t)

⃓⃓⃓⃓
Ψ(r, t)

⟩︃
, (2.113)

which is immediately obtained by left-multiplying the time-dependent Schrödinger equa-

tion (eq. 2.9) with ⟨Ψ(r, t)| and performing a time-integration over the interval of interest.

According to the Runge–Gross theorem, A is a functional of the density A = A[ρ]. Thus,

the time-dependent electron density ρ(r, t) is obtained from the stationarity condition

δA[ρ]

δρ(r, t)
= 0 . (2.114)

Note that there have been some discussions if the action integral (eq. 2.113) and station-

arity condition (eq. 2.114) present an adequate formalism. [208] However, ultimately, it was

shown by Vignale, [209] that enforcing proper boundary conditions on eq. 2.114 restores the

previously violated causality relation. [208] Also, he showed that the original formulation

by Runge and Gross leads to the same results for the cases relevant to this work and

hence, eq. 2.114 is kept for simplicity. [208,209]

To proceed, the Hamilton Operator from eq. 2.11 is inserted into the action functional

from eq. 2.113, which is then split according to

A[ρ] = B[ρ]−
∫︂ t1

t0

dt

∫︂
dr ρ(r, t)vext(r, t) (2.115)
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into a universal functional

B[ρ] =

∫︂ t1

t0

dt

⟨︃
Ψ(r, t)

⃓⃓⃓⃓
i
∂

∂t
− T̂ (r)− V̂ ee(r)

⃓⃓⃓⃓
Ψ(r, t)

⟩︃
(2.116)

independent from the external potential, and a part dependent on the external potential

(second term of the RHS in eq. 2.115), where the external potential is typically vext(r, t) =

V̂ eN(r) + V̂ ext(t).
[207]

Time-Dependent Kohn–Sham Theory

In analogy to the procedure by Kohn and Sham for GS DFT (cf. Section 2.2.2), a time-

dependent non-interacting reference system is introduced, for which the external potential

vS(r, t) adapts so that the time-dependent density of the real interacting system is equal

to that of the non-interacting one. Accordingly, the time-dependent electron density may

be expanded in a one-particle basis of time-dependent KS orbitals [207]

ρ(r, t) = ρS(r, t) =
occ∑︂
i

|φi(r, t)|2 . (2.117)

These orbitals are solutions of the simple one-particle time-dependent Schrödinger equa-

tion [207]

i
∂

∂t
φi(r, t) =

[︂
T̂ (r) + vS(r, t)

]︂
φi(r, t) , (2.118)

with the kinetic energy operator for the one-particle case being simply T̂ (r) = −1
2
∇2

i . For

the non-interacting system, the action functional becomes

AS[ρ] = BS[ρ]−
∫︂ t1

t0

dt

∫︂
dr ρ(r, t)vS(r, t) , (2.119)

where the functional

BS[ρ] =

∫︂ t1

t0

dt

⟨︃
Ψ(r, t)

⃓⃓⃓⃓
i
∂

∂t
− T̂ (r)

⃓⃓⃓⃓
Ψ(r, t)

⟩︃
(2.120)

is exactly known and may be calculated by inserting a single Slater determinant for

Ψ(r, t). [207] Applying the stationarity condition from eq. 2.114 to eq. 2.119 yields [207]

vS(r, t) =
δBS[ρ]

δρ̃(r, t)

⃓⃓⃓⃓
ρ̃(r,t)=ρ(r,t)

. (2.121)
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Turning back to the functional A of the interacting system (eq. 2.115) and rewriting it as

A[ρ] = BS[ρ]−
∫︂ t1

t0

dt

∫︂
dr ρ(r, t)vext(r, t)−

1

2

∫︂ t1

t0

dt

∫︂
dr

∫︂
dr′

ρ(r, t)ρ(r′, t)

|r− r′|
− Axc[ρ]

(2.122)

with

Axc[ρ] = BS[ρ]− 1

2

∫︂ t1

t0

dt

∫︂
dr

∫︂
dr′

ρ(r, t)ρ(r′, t)

|r− r′|
− B[ρ] , (2.123)

gives after application of the stationarity condition and comparison with eq. 2.121

vS(r, t) = vext(r, t) +

∫︂
dr′

ρ(r′, t)

|r− r′|⏞ ⏟⏟ ⏞
vH(r,t)

+
δAxc[ρ]

δρ(r, t)⏞ ⏟⏟ ⏞
vxc(r,t)

(2.124)

for the time-dependent single-particle potential. [207] Inserting this expression into eq. 2.118

finally yields the time-dependent Kohn–Sham (TDKS) equations [206]

i
∂

∂t
φi(r, t) =

[︃
−1

2
∇2

i + vext(r, t) + vH(r, t) + vxc(r, t)

]︃
φi(r, t) . (2.125)

The computation of vxc(r, t) is complicated by the fact that Axc depends on the changes

in the density within the time interval [t0; t1] (cf. eq. 2.123). As an approximate solution,

the limiting case of a slowly varying external potential

Axc =

∫︂ t1

t0

dt Exc[ρt] (2.126)

is considered, [22] where the conventional XC functional from GS KS-DFT is evaluated

at the density ρ at time t (ρt). Since Exc is always evaluated for densities fixed in

time, this ansatz eliminates the time-dependence and is hence known as the “adiabatic

approximation” (AA) or “adiabatic local density approximation” because the density is

treated as local in time. [22] The derivative vxc(r, t) then becomes [22]

vxc[ρ](r, t) =
δAxc[ρ]

δρ(r, t)
≈ δExc[ρt]

δρt(r)
= vxc[ρt](r) . (2.127)

Linear Response TDDFT

The introduction of a non-interacting reference system in TDKS theory having at each

point in time the same density as the true, interacting system allows to rewrite the density
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response from eq. 2.86 using the time-dependent single-particle potential (eq. 2.124) [201]

δρ(r, t) =

∫︂
dt′
∫︂

dr′
δρ(r, t)

δvS(r′, t′)

⃓⃓⃓⃓
vS[ρ0]

δvS(r′, t′)

=

∫︂
dt′
∫︂

dr′ χKS(r, r′, t− t′)δvS(r′, t′)

=

∫︂
dt′
∫︂

dr′ χKS(r, r′, t− t′) [δvext(r
′, t′) + δvH(r′, t′) + δvxc(r

′, t′)] . (2.128)

While the variation δvH(r, t) is straightforward to calculate,e the variation δvxc(r, t) re-

quires the use of the AA, which eliminates the time-dependence in the second derivative [22]

δvxc[ρ](r, t)

δρ(r′, t′)
≈ δ(t− t′)

δvxc[ρt](r, t)

δρt(r′)
(2.129)

encoded here by a Dirac δ function. This allows to express the variation in the XC

potential as an ordinary second functional derivative of the XC functional [201]

δvxc(r, t) =

∫︂
dr′
∫︂

dt′
δvxc[ρ](r, t)

δρ(r′, t′)
δρ(r′, t′) ≈

∫︂
dr′ fxc(r, r

′)δρ(r′, t) , (2.130)

where

fxc(r, r
′) =

δ2Exc[ρ0]

δρ0(r)δρ0(r′)
(2.131)

is called the XC kernel. Resubstituting the explicit expressions for δvH and δvxc back into

eq. 2.128 and using the convolution theorem gives [201,210]

δρ(r, ω) =

∫︂
dr′ χKS(r, r′, ω)

[︃
δvext(r

′, ω) +

∫︂
dr′′

(︃
1

|r′ − r′′|
+ fxc(r

′, r′′)

)︃
δρ(r′′, ω)

]︃
.

(2.132)

For future discussions, extension to the spin-resolved case is required and achieved by

minor modifications

δρσ(r, ω) =
∑︂
σ′

∫︂
dr′ χKS

σσ′(r, r′, ω)[︄
δvext(r

′, ω) +
∑︂
σ′′

∫︂
dr′′

(︃
1

|r′ − r′′|
+ fσ′σ′′

xc (r′, r′′)

)︃
δρσ′′(r′′, ω)

]︄
,

(2.133)

where the external potential was assumed to be spin-independent. [201,210]

eUsing the functional chain rule gives: δvH(r, t) =
∫︁
dr′ δvH(r,t)

δρ(r′,t) δρ(r
′, t) =

∫︁
dr′ 1

|r−r′|δρ(r
′, t). [201]
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Next, the density response function of the KS system χKS(r, r′, ω) has to be determined.

It is obtained by inserting the KS Slater determinant as an ansatz for the wave function

Ψ0
0 into the general response function from eq. 2.100. Because the density operator ρ̂ =∑︁Ne

i=1 δ(ri − r) is a one-body operator, matrix elements of type ⟨Ψ0
0|ρ̂(r)|Ψ0

n⟩ in eq. 2.100

are non-zero only if the ES determinant is singly excited, i.e. constructed from promoting

one electron from an occupied orbital φi to a virtual orbital φa.
[201] Hence, the sum of

matrix elements
∑︁

n ̸=0 ⟨Ψ0
0|ρ̂(r)|Ψ0

n⟩ reduces to a summation over orbital pairs φ∗
a(r)φi(r)

and the energy difference Ωn = En − E0 has to be replaced by the difference in orbital

energies (ϵa − ϵi)
[201,203]

χKS(r, r′, ω) =
Nocc∑︂
i

Nvirt∑︂
a

[︃
φ∗
a(r

′)φi(r
′)φ∗

i (r)φa(r)

ω + iη − (ϵa − ϵi)
− φ∗

i (r
′)φa(r

′)φ∗
a(r)φi(r)

ω + iη + (ϵa − ϵi)

]︃
. (2.134)

Again, the spin-resolved generalization is straightforward [201,210]

χKS
σσ′(r, r′, ω) = δσσ′

Nocc∑︂
i

Nvirt∑︂
a

[︃
φ∗
aσ(r′)φiσ(r′)φ∗

iσ(r)φaσ(r)

ω + iη − (ϵaσ − ϵiσ)
− φ∗

iσ(r′)φaσ(r′)φ∗
aσ(r)φiσ(r)

ω + iη + (ϵaσ − ϵiσ)

]︃
.

(2.135)

As an ansatz for the left-hand-side of eq. 2.133, the density response is expanded in the

change in occupation of occupied and virtual orbitals [201,210]

δρσ(r, ω) =
Nocc∑︂
i

Nvirt∑︂
a

[Piaσ(ω)φ∗
aσ(r)φiσ(r) + Paiσ(ω)φ∗

iσ(r)φaσ(r)] , (2.136)

with the expansion coefficients Piaσ(ω) and Paiσ(ω) being elements of the transition density

matrix P(ω). Combining equations 2.133, 2.135 and 2.136 eventually gives the set of

equations [201,210]∑︂
jbσ′

[︂(︂
δσσ′δijδab (ϵaσ − ϵiσ + ω + iη) + vσσ

′

iabj + fσσ′

iabj

)︂
Pjbσ′ +

(︂
vσσ

′

iajb + fσσ′

iajb

)︂
Pbjσ′

]︂
= −δV ext

iaσ∑︂
jbσ′

[︂(︂
δσσ′δijδab (ϵaσ − ϵiσ − ω − iη) + vσσ

′

aijb + fσσ′

aijb

)︂
Pbjσ′ +

(︂
vσσ

′

aibj + fσσ′

aibj

)︂
Pjbσ′

]︂
= −δV ext

aiσ ,

(2.137)

in which

δV ext
iaσ =

∫︂
φ∗
iσ(r)δvext(r, ω)φaσ(r) dr (2.138)
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are matrix elements of the change in the external potential, vσσ
′

pqrs are usual four-center

Coulomb integrals (cf. eq. 2.20) and fσσ′
pqrs are matrix elements of the XC kernel

fσσ′

pqrs =
δ2Exc

δDσ
pqδD

σ′
rs

=

∫︂∫︂
φ∗
p,σ(r)φq,σ(r)fσσ′

xc (r, r′)φ∗
r,σ′(r′)φs,σ′(r′) dr dr′ . (2.139)

In eq. 2.139, the density-matrix derivative notation from ref. 67 is used in addition to the

standard matrix-element notation to cover explicitly orbital-dependent functionals like

LHs. It is customary to set Xiaσ = Paiσ and Yiaσ = Piaσ and to introduce the matrices A

and B given byf

Aiaσjbσ′ = δσσ′δijδab (ϵaσ − ϵiσ) + vσσ
′

iabj + fσσ′

iabj (2.140a)

Biaσjbσ′ = vσσ
′

iajb + fσσ′

iajb . (2.140b)

For non-relativistic calculations and in the absence of magnetic fields, it is common to

assume that real orbitals are used and thus Aiaσjbσ′ = A∗
iaσjbσ′ and Biaσjbσ′ = B∗

iaσjbσ′ .

Using the matrices X, Y, A, B, and Vext as elements within a 2× 2 super vector space,

leads to a compact reformulation of eq. 2.137 [201,210]

[︄(︄
A B

B A

)︄
− (ω + iη)

(︄
1 0

0 −1

)︄]︄(︄
X

Y

)︄
= −

(︄
δVext

δV∗
ext

)︄
, (2.141)

typically written with suppressed spin-indices for clarity. As known from the discussion of

general response theory (cf. Section 2.4.1), the poles of the response function in the limit

η → 0+ are related to excitation energies ω = Ωn. Because poles in the response function

are associated with an infinite density response for an arbitrarily small change δvext(r, ω)

in the external potential, [201] eq. 2.141 takes the schematic form □ · (+∞) = 0, [208] which

can be interpreted as □, i.e. the term in square brackets in eq. 2.141, having a zero

eigenvalue, [201] which yields the well-known Casida’s equations, [22,208](︄
A B

B A

)︄(︄
X

Y

)︄
= Ω

(︄
1 0

0 −1

)︄(︄
X

Y

)︄
, (2.142)

which, without loss of generality, consider only one excitation with excitation energy

Ω = Ωn and transition matrices X = Xn,Y = Yn to further simplify notations.g An-

other common notation of eq. 2.142 is via the (anti)symmetrized matrices (A±B) and

fNote that A and B must not be confused with the functionals of the same name from the above
discussion of TDKS theory.

gAlternatively, the quantities Ω, X and Y may be viewed as sets holding all excitations.
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(X±Y); it reads

(A±B)(X±Y) = Ω(X∓Y) . (2.143)

The matrices (A ± B) are obtained from the definitions of A and B in eq. 2.140a and

eq. 2.140b and by using the symmetry properties of the Coulomb-Integral

(A + B)iaσjbσ′ = δσσ′δijδab (ϵaσ − ϵiσ) + 2vσσ
′

iajb + fσσ′

+iajb (2.144a)

(A− B)iaσjbσ′ = δσσ′δijδab (ϵaσ − ϵiσ) + fσσ′

−iajb , (2.144b)

where the XC kernel notation from ref. 211 is introduced

fσσ′

±iajb = fσσ′

iabj ± fσσ′

iajb . (2.145)

For (semi)local XC functionals, the orbital index interchange in eq. 2.145 does not affect

the value of the kernel integrals, hence the relations fσσ′

+iajb = 2fσσ′

iajb and fσσ′

−iajb = 0 hold,

leading to convenient simplifications in eq. 2.144a and eq. 2.144b. However, this is not the

case for LHs where generally fσσ′

+iajb ̸= 2fσσ′

iajb and fσσ′

−iajb ̸= 0. This is because the real-space

dependence of the LMF prevents the required interchange of orbital indices and their

associated integration variables of EXX-like integrals. [67,212]

If the XC kernel was replaced with that derived from exact exchange, i.e. fσσ′

±iajb =

−δσσ′
(︁
vσσ

′

ijba ± vσσ
′

ibja

)︁
, eq. 2.142 recovers the equation from time-dependent Hartree–Fock

(TDHF) theory, also referred to as RPAh in the literature. [207] Another notable relation-

ship is revealed when the B matrix is set to zero, which results in a simplified eigenvalue

problem

AX = ΩX , (2.146)

which is known as the Tamm–Dancoff approximation (TDA). [213] Applying the TDA to

the TDHF method results in equations equivalent to the Configuration Interaction with

Singles (CIS) method. [207]

To obtain frequency dependent (dynamic) polarizabilities within LR-TDDFT, the gen-

eral expression for the polarizability (eq. 2.108) is evaluated for the KS response function

from eq. 2.134. The final result for the elements of the polarizability tensor α with

k, l ∈ {x, y, z} reads [214,215]

αkl(ω) = −2
(︂
Mk −Mk

)︂(︄ω1−A B

B −ω1−A

)︄−1(︄
Ml

−Ml

)︄
, (2.147)

hNote that the term RPA is used for various methods [170] and must not the be confused with RPA
correlation functionals discussed in Section 2.2.4 (although the methods are related).
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2.4 Excited State Theory

where Mk is the matrix of transition dipole moments in k-direction with elements Mk,ia =

⟨φi|µ̂k|φa⟩. This result was obtained within the AA (eq. 2.129). If a frequency-dependent

XC kernel was used, the frequency dependency would transfer to the matrices A and

B. [215] Note that computing the inverse matrix from eq. 2.147 can be impractical for

larger vector spaces. Hence, in practice, polarizabilities are not obtained via eq. 2.147

but by solving the eigenvalue problem eq. 2.141 for δVext = Mk in the η → 0+ limit and

projecting the solution vector on the matrix of transition dipole moments [214]

αkl(ω) = −
(︂
Xk,ω Yk,ω

)︂(︄Ml

Ml

)︄
= −2Ml(X + Y)k,ω . (2.148)

Variational Formulation of LR-TDDFT

To prepare the way for the derivation of ES gradients (Section 3.1), the variational for-

mulation of LR-TDDFT suggested by Furche [215] is introduced. Within this formalism,

excitation energies Ω are stationary points of the functional

G[X,Y,Ω] =
1

2

∑︂
iaσjbσ′

(X + Y )iaσ(A + B)iaσjbσ′(X + Y )jbσ′

+
1

2

∑︂
iaσjbσ′

(X − Y )iaσ(A− B)iaσjbσ′(X − Y )jbσ′

− Ω

[︄∑︂
iaσ

(X + Y )iaσ(X − Y )iaσ − 1

]︄
. (2.149)

While variation of G w.r.t. (X ± Y )iaσ

δG

δ(X ± Y )iaσ
=
∑︂
jbσ′

(A± B)iaσjbσ′(X ± Y )jbσ′ − Ω(X ∓ Y )iaσ = 0 (2.150)

leads back to eq. 2.143, variation with respect to Ω

δG

δΩ
=
∑︂
iaσ

(X + Y )iaσ(X − Y )iaσ − 1 = 0 , (2.151)

recovers the normalization constraint enforced on the matrices X and Y [35]

∑︂
iaσ

(X + Y )iaσ(X − Y )iaσ = 1 . (2.152)
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Note, however, that G is not fully variational. In particular, it is not variational w.r.t.

the coefficients of molecular orbitals involved in the calculation of (A ± B). A suitable

extension was suggested by Furche and Ahlrichs in ref. 35 and is presented in Section 3.1.

2.4.3 Vibrational Corrections

So far, molecules were treated within the Born–Oppenheimer (BO) approximation intro-

duced in Section 2.1.2, which is founded on the large difference in the velocities of electrons

and nuclei and has allowed to treat the nuclei as if they were fixed in space. The energy

of a quantum state then depends parametrically on the positions of the nuclei. Plotting

the energy within this parameter space yields the potential energy surface (PES), which

can be intuitively interpreted as an ”energy landscape” a molecule is moving on when the

positions of the nuclei are changed.

Molecular Vibrations

The fact that the nuclei are treated as fixed in space from the perspective of the electrons

is, of course, not supposed to say that the nuclei are at rest in reality. They are constantly

moving having 3N degrees of freedom, where N is the number of nuclei. It is customary to

separate the translational and rotational movements of the entire molecule as they do not

affect the distances between individual nuclei leaving 3N−6 degrees of freedom (or 3N−5

for linear molecules). Those are described in terms of molecular vibrations. There is no

unique way of defining a vibration in a molecule but it is helpful to use mass-weighted

coordinates qi = m
1/2
i Ri and constructing linear combination of the individual nuclear

coordinates. [216] If these combinations are chosen such that a) no cross-terms contribute

to the potential energy within an harmonic ansatz and b) translations and rotations can

be separated out, the coordinates are called normal coordinates Q. [216] The vibrations

along these normal coordinates are the normal modes θ, which are eigenfunctions of the

(harmonic) vibrational Hamilton operator

Ĥ
vib

j = −1

2

∂2

∂Q2
j

+
1

2
kjQ

2
j , (2.153)

with eigenvalues

Eνj =

(︃
νj +

1

2

)︃
ωj (2.154)
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2.4 Excited State Theory

where kj is the force constant, ωj = k
1/2
j the vibrational frequency and νj = 0, 1, . . . a

quantum number for the j-th normal mode.i [216] The total vibrational wave function Θ is

the eigenfunction of the total vibrational operator Ĥ
vib

=
∑︁

j Ĥ
vib

j . Since Ĥ
vib

is sum of

independent Hamiltonians, the total vibrational energy is simply the sum of the energies

of all individual normal modes within their quantum states νj

Evib =
3N−6∑︂

j

(︃
νj +

1

2

)︃
ωj (2.155)

and the total vibrational wave function is the product of all 3N − 6 normal modes [216]

Θν(Q) =
3N−6∏︂

j

θνj (Qj) , (2.156)

where ν is a vector that collects the vibrational quantum numbers of the individual

modes. [217]

Vibronic Transitions

In previous sections, expressions derived for excitation energies, like those from linear

response TDDFT, always corresponded to vertical excitation energies (VEEs). That is,

the positions of the nuclei do not change during the excitation process, which corresponds

to drawing a vertical line between two PESs as schematically represented by the blue and

red arrows in Figure 2.2. For the absorption process (blue arrow), the VEE is obtained

as

∆Eabs = EES(RGS)− EGS(RGS) , (2.157)

i.e. at the GS structure, where for the emission process (red arrow), the VEE is obtained

as

∆Eemi = EES(RES)− EGS(RES) , (2.158)

i.e. at the ES structure. It is common practice to use these VEEs (possibly for more than

one ES) to generate absorption and emission spectra either as line spectra or using an em-

pirical Gaussian broadening to obtain a continuous line shape with maxima at the VEEs.

However, even when using an exact electronic structure method, these VEEs generally do

not coincide with the maxima of experimental (gas phase) spectra. This is because the

energy of the absorbed or emitted photon will not only depend on the electronic state of

iNote that the value of j does not fix νj to a value from the set {0, 1, . . . } but is just an index that
counts over all 3N − 6 normal modes.
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Figure 2.2: Schematic diagram of GS and ES potential energy curves with their vibra-
tional energy levels. Characteristic energies are marked and explained in the text.

the GS and ES but also on their vibrational states (see Figure 2.2 for a schematic repre-

sentation). Instead of one excitation with a fixed energy, several other excitations shifted

by the energy difference of the respective vibrational levels are in principle possible. The

combined transition process among electronic and vibrational levels is called a vibronic

transition. The intensity of the associated absorption or emission bands is obtained from

the transition probability of these vibronic excitations. According to Fermi’s golden rule,

the transition probability is (considering only one-photon transitions) proportional to the

square of the absolute value of the transition dipole moment |µfi|2, [31] which are the matrix

elements of the dipole moment operator µ

µfi = ⟨Φf|µ|Φi⟩ , (2.159)

where indices i and f indicate the initial and final state, respectively. The total wave

function Φ of a vibronic state is obtained as the product of the electronic wave function

Ψ and the nuclear vibrational wave function Θν(Q), i.e. |Φ⟩ = |ΨΘν⟩. The total dipole

moment is the sum of the nuclear dipole moment µN caused by the positively charged

nuclei and the electronic dipole moment µel from the negative charge density of the

electrons. Substitution in eq. 2.159 gives [218]

µfi = ⟨ΨfΘνf
|µel + µN|ΨiΘνi

⟩

= ⟨ΨfΘνf
|µel|ΨiΘνi

⟩+ ⟨ΨfΘνf
|µN|ΨiΘνi

⟩
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= ⟨Θνf
|Θνi
⟩ ⟨Ψf|µel|Ψi⟩+ ⟨Ψf|Ψi⟩⏞ ⏟⏟ ⏞

=0

⟨Θνf
|µN|Θνi

⟩

= ⟨Θνf
|Θνi
⟩µel

fi , (2.160)

where ⟨Ψf|Ψi⟩ is zero due to the orthonormality of the electronic states. The integral

⟨Θνf
(Qf)|Θνi

(Qi)⟩ gives the overlap of the vibrational wave functions of the initial and

final states and is called the Franck–Condon (FC) factor. [219] Note that this integral is

generally not zero because the final state has an equilibrium structure displaced by some

vector D from that of the initial state. This also affects the normal coordinates of the

final state which are related to the initial state via the Duschinsky transformation [217,220]

Qf = JQi + D , (2.161)

with J being a rotation matrix. Note that eq. 2.160 gives the transition dipole moment

for just one specific excitation, where the initial (final) vibronic state is defined by a set

of normal modes depending on normal coordinates Qi (Qf) in vibrational quantum states

defined by quantum numbers collected in νi (νf). To obtain the complete spectrum, all

possible FC factors have to be obtained. This is summarized in the expression for the

absorption/ emission cross-section [217]

σ(ω) =
4π2ω

3c

⃓⃓
µel
fi

⃓⃓2∑︂
νi

∑︂
νf

|⟨Θνf
(Qf)|Θνi

(Qi)⟩|2δ
(︁
∆Eadi

if + Evib
νf
− Evib

νi
− ω

)︁
, (2.162)

where c is the speed of light and the δ function is used generate peaks at frequencies

ω = ∆Eadi
if + Evib

νf
− Evib

νi
with the height of the peak given by the respective prefactor

of the δ function. ∆Eadi
if is the adiabatic excitation energy (AEE) defined as the energy

difference of the final and initial states at their respective equilibrium structures (see

Figure 2.2 for illustration)

∆Eadi
if = Ef(Rf)− Ei(Ri) . (2.163)

Assuming that the initial state is in its ground electronic and vibrational state (i.e. νi = 0),

the absorption cross-section is given by [217]

σabs(ω) =
4π2ω

3c

⃓⃓
µel
f0

⃓⃓2∑︂
νf

|⟨Θνf
(Qf)|Θ0(Qi)⟩|2δ

(︁
∆Eadi

if + Evib
νf
− Evib

0i
− ω

)︁
, (2.164)
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with Evib
0i

=
∑︁3N−6

j
1
2
ωj being the GS vibrational energy. The computation of FC fac-

tors is theoretically quite involved already for the simple case of a diatomic molecule

where only one normal mode has to be considered. Matters are further complicated for

polyatomic molecules, both theoretically and computationally. [221,222] Consider, e.g., the

glucose molecule with 24 atoms and thus 66 vibrational degrees of freedom. Already when

considering just three vibrational levels (i.e. ν ∈ {0, 1, 2}) for the final state and assuming

that the initial state is always in its vibrational ground state 366 = 3.1 · 1031 FC factors

have to be calculated. [223] However, although the FC factors are generally not exactly

zero, the overlap of two vibrational wave functions might in fact be negligible. Hence it is

possible to use selection schemes that only calculate the most important FC factors and

check for the completeness of this selection using sum rules. [224] Another strategy is to use

a real-time generating function approach. [217,225] It allows to replace the summation over

vibrational states and the FC integrals so that after expressing the δ function in eq. 2.164

in terms of its Fourier transform, the absorption cross-section reads [226]

σabs(ω) =
4π2ω

3c

⃓⃓
µel
f0

⃓⃓2 1

2π

∫︂ ∞

−∞
dt exp

{︁
−it

(︁
∆Eadi

if − Evib
0i
− ω

)︁}︁
G(t) , (2.165)

where G(t) is the generating function derived by Etinski, Tatchen and Marian [225] using

Mehler’s formula; [227] it reads [217]

G(t) = 2
(3N−6)/2

(︃
det (S−1ΩiΩf)

det(L) det(M)

)︃1/2

exp
(︁
DT
(︁
ΩfBJM−1JTΩfB−ΩfB

)︁
D
)︁
, (2.166)

where M = JTΩfBJ + Ωi and L = JTΩfB
−1J + Ωi with Ωi, Ωf, S, and B being di-

agonal matrices with matrix elements (Ωi)kk = ωi
k, (Ωf)kk = ωf

k, Skk = sinh
(︁
iωf

kt
)︁
, and

Bkk = tanh
(︁
iωf

kt/2
)︁
. [217] For an implementation, the integral over G(t) in eq. 2.165 has

to be solved, which is done numerically with G(t) being truncated after a maximum time

tmax.
[217] Multiplication of G(t) by a damping function exp(−t/τ) with lifetime τ allows to

introduce an empirical Lorentzian line broadening of the spectrum. [217] For the emission

process, an analogous equation to that of eq. 2.165 can be derived. [228]

When the absorption and emission spectra are calculated (or measured), the spectra

intersect at some specific energy, which is identified to coincide with the 0−0 transition,

i.e. the transition where the initial and final states are in their ground vibrational state

(νi/f = 0). For illustration, computed absorption and fluorescence spectra for the 1 1Ag→
1 1B2u transition of anthracene are shown in Figure 2.3. The 0−0 energy is formally

obtained as the adiabatic energy corrected by the difference in the zero-point vibrational
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E

Figure 2.3: Normalized vibronic absorption and fluorescence spectra for the 1 1Ag→
1 1B2u transition of anthracene computed using the generating function approach as im-
plemented in TURBOMOLE’s radless module. The dashed line at the intersection of
both spectra corresponds to the 0−0 energy. A lifetime of 36.3 fs was used for the line
broadening and the maximum integration time was set to tmax = 217 au = 131072 au.
Electronic structure calculations were performed at the B3LYP/ def2-TZVP level.

energy (ZPVE) of the ground and excited state (see Figure 2.2 for energy levels)

∆E0−0 = ∆Eadi +
(︁
∆EZPVE

ES −∆EZPVE
GS

)︁
. (2.167)

Since this quantity is in fact measurable it is often preferred over VEEs to benchmark the

quality of computational methods. [31,229–232]

It should be noted that the FC approximation assumes that the dipole moment operator

is not changed during the excitation, which is only true to the zero-th order, i.e. in a Taylor

expansion of the dipole moment as a function of normal coordinates Q

µ(Q) = µ0 +
3N−6∑︂

j

(︃
∂µ

∂Qi
j

)︃
Qi

Qi
j + . . . (2.168)

only the zero-th order term µ0 has been considered in eq. 2.160. [31] The first-order terms

that cover the linear dependency of the dipole moment on the change in normal coordi-

nates, are called the Herzberg–Teller contributions. [31] They can become important if the

structural differences of the GS and ES are substantial, e.g., when a bulky substituent
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is rotated. Other effects that have to be considered in the simulation of experimental

spectra include anharmonicity and solvent effects. [233]
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3 Development of Excited-State

Gradients for Local Hybrid

Functionals

Nuclear gradients are important quantities for optimizations and simulations on a mole-

cule’s PES. For any given configuration of nuclei in a molecule, the gradient vector points

in the direction of the largest slope on the multidimensional PES. This information can

be used in an optimization algorithm to move the nuclei in the opposite direction until,

after several iterations, a stationary point with a vanishing gradient is found. Analysis

of the nuclear Hessian then clarifies if a local maximum, saddle-point or local minimum

has been found. Nuclear gradients may be calculated either numerically from a finite-

difference approximation using the energy at multiple displaced structures, or analytically,

i.e. from the analytical expression for the first derivative of the energy w.r.t. the nuclear

coordinates. While numerical gradients require no additional method development when

energies are available, they require a significant amount of single-point calculations, which

makes this approach computationally costly for larger molecules. Analytical gradients are

typically favorable in terms of computational cost, but require additional development and

implementation steps for the respective method. For LHs, self-consistent GS energies, [234]

GS gradients, [47] and ES energies within LR-TDDFT [23] have already been implemented.

Building on the implementation by Furche and Ahlrichs for GH ES gradients, [35] the

formal derivation of LH ES gradients is presented in this chapter. It has been published

as part of ref. 212 and is reproduced in this chapter with some additional explanations and

details. Reprinted (adapted) with permission from R. Grotjahn, F. Furche, M. Kaupp, J.

Chem. Theory Comput. 2019, 15, 5508. Copyright 2019 American Chemical Society.

3.1 Derivation of TDDFT Excited State Gradients

The ES gradients are the derivatives of the ES energy w.r.t. all nuclear coordinates. Since

the ES energy is the sum of the GS energy and the excitation energy Ω of the state

of interest, the ES gradients are the sum of the gradients of these energies. Since GS
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3 Development of Excited-State Gradients for Local Hybrid Functionals

gradients for LHs are readily accessible from the existing implementation [47] only the

gradients of the excitation energy are discussed and loosely referred to as ES gradients.

They are denoted as Ωξ or equivalently∇ξΩ where the super/subscript ξ is used to indicate

a set of coordinates with respect to which the gradients are calculated. The derivation

of Ωξ for LHs [212] uses the the variational formulation of TDDFT (Section 2.4.2) and

follows the strategy by Furche and Ahlrichs for the ES gradients of conventional (hybrid)

functionals. [35] The ES gradients may be calculated from the functional G defined in

eq. 2.149 as

Ωξ = Gξ[X,Y,Ω] . (3.1)

Since G is variational w.r.t. the matrices (X ± Y), the calculation of this first-order

property does not require derivatives of G w.r.t. (X±Y). [35] However, the derivatives of

the matrices (A ±B) require derivatives of the molecular orbitals φpσ(r). As usual, the

MOs are expanded in a LCAO as given by eq. 2.24, rewritten here for convenience

φpσ(r) =

Nb∑︂
µ

Cµpσχµ(r) . (3.2)

While derivatives of the basis functions χµ(r) are straightforward to calculate and are

non-zero only for those nuclear coordinates from the set ξ associated with a nucleus

a given basis function is centered at, the derivatives of the MO coefficients Cµpσ are

more involved. [35] Compared to the unperturbed MO coefficients, the computational effort

for all Cξ
µpσ would be larger by a factor equivalent to the degrees of freedom in the

molecule. [35] It is possible to circumvent the need to calculate Cξ
µpσ by eliminating them

via the introduction of relaxed densities and use of the Z vector method. [235] Although

this strategy has been successfully applied to TDDFT [34] it remains a rather cumbersome

method. [35] The strategy by Furche and Ahlrichs, [35] also used here, avoids derivatives of

MO coefficients from the beginning by starting from a fully variational functional L that

is made stationary w.r.t. the MO coefficients,

∂L

∂Cµpσ

= 0, (3.3)

so that the associated derivatives of the MO coefficients are no longer required

Ωξ =
dL

dξ
=

∂L

∂ξ
+

∂L

∂Cµpσ⏞ ⏟⏟ ⏞
=0

∂Cµpσ

∂ξ
. (3.4)
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3.1 Derivation of TDDFT Excited State Gradients

The ES gradients are then obtained as an explicit derivative Ωξ = ∂L
∂ξ

= L(ξ) (indicated

by the superscript (ξ)). A suitable ansatz for L reads [35]

L [X,Y,Ω,C,Z,W] = G[X,Y,Ω] +
∑︂
iaσ

ZiaσFiaσ −
∑︂
pqσ
p≤q

Wpqσ (Spqσ − δpq) , (3.5)

where Fiaσ are matrix elements of the occupied-virtual block of the KS matrix defined in

eq. 2.38. Via the Lagrange multiplier Z, these elements are enforced to be zero

∂L

∂Ziaσ

= Fiaσ = 0 , (3.6)

which ensures that the GS KS equations are always satisfied. [35] In eq. 3.5, the addi-

tional Lagrange multiplier W fixes the elements of the overlap matrix Spqσ such that

orthonormality of the MOs is preserved [35]

∂L

∂Wpqσ

= Spqσ − δpq = 0 . (3.7)

Further note that for L being fully variational, the orbital energy difference term in the

definition of the matrix elements of (A ± B) in eq. 2.144a has to be expressed in terms

of the KS matrix

δσσ′δijδab (ϵaσ − ϵiσ) = δσσ′ (Fabσδij − Fijσδab) , (3.8)

which corresponds to lifting the (basically arbitrary) choice of canonical KS MOs. [35] After

Z and W are calculated, the ES gradients are obtained as [35]

Lξ [X,Y,Ω,C,Z,W] =
1

2

∑︂
iaσjbσ′

(X + Y )iaσ(A + B)
(ξ)
iaσjbσ′(X + Y )jbσ′

+
1

2

∑︂
iaσjbσ′

(X − Y )iaσ(A− B)
(ξ)
iaσjbσ′(X − Y )jbσ′

+
∑︂
iaσ

ZiaσF
(ξ)
iaσ −

∑︂
pqσ
p≤q

WpqσS
(ξ)
pqσ , (3.9)

i.e. as an explicit derivative w.r.t. ξ without the need to calculate MO coefficient deriva-

tives. Expressions for the additional matrices Z and W are derived from the stationarity

condition (eq. 3.3). For this purpose, the first step is to explicitly denote the derivative
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3 Development of Excited-State Gradients for Local Hybrid Functionals

w.r.t. MO coefficients Cµpσ for each term in L that depends on Cµpσ

∂G

∂Cµpσ

+
∑︂
iaσ′

Ziaσ′
∂Fiaσ′

∂Cµpσ

−
∑︂
rsσ′
r≤s

Wrsσ′
∂Srsσ′

∂Cµpσ

= 0 . (3.10)

The last term is transferred to the RHS, the total equation is multiplied by Cµqσ, and a

summation over all AO indices µ is performed [35]

Qpqσ +
∑︂
iaσ′

Ziaσ′

∑︂
µ

∂Fiaσ′

∂Cµpσ

Cµqσ =
∑︂
rsσ′
r≤s

Wrsσ′

∑︂
µ

∂Srsσ′

∂Cµpσ

Cµqσ , (3.11)

where

Qpqσ =
∑︂
µ

∂G

∂Cµpσ

Cµqσ . (3.12)

Next, the derivatives w.r.t. Cµpσ are evaluated. For this purpose, each matrix element is

transformed from the MO to the AO basis, the derivative is carried out, and the result

is back-transformed to the MO basis. Detailed steps are provided in Appendix A.3 using

the XC potential as an example. In the derivation, the block-shape of the matrices in

eq. 3.11 is exploited and hence a separate equation is obtained for each block, which

are the occupied-occupied (indices ij), occupied-virtual (ia), virtual-occupied (ai), and

virtual-virtual (ab) blocks. Also, some additional notation is required to compactly note

the following equations. The linear transformations [35,212]

H+
pqσ[M] =

∑︂
rsσ′

[︂
2 vσσ

′

pqrs + fσσ′

+pqrs

]︂
Mrsσ′ , (3.13a)

H−
pqσ[M] =

∑︂
rsσ′

fσσ′

−pqrsMrsσ′ , (3.13b)

are applied at various points to some matrix M. The unrelaxed difference density matrix

T is used and defined as [35]

Tijσ = −1

2

∑︂
c

[(X + Y )icσ(X + Y )jcσ + (X − Y )icσ(X − Y )jcσ] (3.14a)

Tabσ =
1

2

∑︂
k

[(X + Y )kaσ(X + Y )kbσ + (X − Y )kaσ(X − Y )kbσ] (3.14b)

Tiaσ = Taiσ = 0 . (3.14c)
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3.1 Derivation of TDDFT Excited State Gradients

Derivatives of G w.r.t. to MO coefficients involve derivatives of the XC kernel w.r.t.

to MO coefficients. These derivatives are expressed in terms of the XC hyper-kernel

gσσ
′σ′′

xc (r, r′, r′′), i.e. the third functional derivative of the XC energy. Its matrix elements

are expressed using the density-matrix derivative notation

gσσ
′σ′′

pqrstu =
δ3Exc

δDσ
pqδD

σ′
rsδD

σ′′
tu

, (3.15)

where, similar to the XC kernel, the convention

gσσ
′σ′′

±pqrstu = gσσ
′σ′′

pqrsut ± gσσ
′σ′′

pqrstu (3.16)

is used. Returning now to the four different equations resulting from eq. 3.11 for the

different blocks, they read [35]

Qijσ + H+
ijσ[Z] = (1 + δij)Wijσ (3.17a)

Qiaσ + ϵσaZiaσ + H+
iaσ[Z] = Wiaσ (3.17b)

Qaiσ + ϵσi Ziaσ = Wiaσ (3.17c)

Qabσ = (1 + δab)Wabσ , (3.17d)

where the matrix elements of Q are different for each block

Qijσ =
∑︂
a

Ω [(X + Y )iaσ(X − Y )jaσ + (X − Y )iaσ(X + Y )jaσ] (3.18a)

−
∑︂
a

ϵσa [(X + Y )iaσ(X + Y )jaσ + (X − Y )iaσ(X − Y )jaσ] + H+
ijσ[T]

+
∑︂

kaσ′lbσ′′

[︂
gσσ

′σ′′

+ijkalb(X + Y )kaσ′(X + Y )lbσ′′ + gσσ
′σ′′

−ijkalb(X − Y )kaσ′(X − Y )lbσ′′

]︂
Qiaσ =

∑︂
c

[︁
(X + Y )icσH

+
acσ[(X + Y)] + (X − Y )icσH

−
acσ[(X−Y)]

]︁
+ H+

iaσ[T] (3.18b)

+
∑︂

kcσ′ldσ′′

[︂
gσσ

′σ′′

+iakcld(X + Y )kcσ′(X + Y )ldσ′′ + gσσ
′σ′′

−iakcld(X − Y )kcσ′(X − Y )ldσ′′

]︂
Qaiσ =

∑︂
k

[︁
(X + Y )kaσH

+
kiσ[(X + Y)] + (X − Y )kaσH

−
kiσ[(X−Y)]

]︁
(3.18c)

Qabσ =
∑︂
i

Ω [(X + Y )iaσ(X − Y )ibσ + (X − Y )iaσ(X + Y )ibσ] (3.18d)

+
∑︂
i

ϵσi [(X + Y )iaσ(X + Y )ibσ + (X − Y )iaσ(X − Y )ibσ] .
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3 Development of Excited-State Gradients for Local Hybrid Functionals

Comparison of the above equations with those derived by Furche and Ahlrichs [35] reveals

that the more general LH scheme leads to additional antisymmetric kernel and hyper-

kernel terms that vanish for GHs and (semi)local XC functionals. To solve for the different

blocks, eq. 3.17c is subtracted from eq. 3.17b yielding [35]

(ϵσa − ϵσi )Ziaσ + H+
iaσ[Z] = − (Qiaσ −Qaiσ ) (3.19)

Writing out the explicit terms for the transformation H+
iaσ[Z], combining it with the

orbital energy difference term, and comparing everything to the definition of the matrix

elements of the (A + B) matrix (eq. 2.144a) leads to the so-called Z vector equation [35]

∑︂
jbσ′

(A + B)iaσjbσ′Zjbσ′ = −Riaσ, (3.20)

where the RHS Riaσ is the difference Qiaσ −Qaiσ reading

Riaσ =
∑︂
b

[︁
(X + Y )ibσH

+
abσ[(X + Y)] + (X − Y )ibσH

−
abσ[(X−Y)]

]︁
(3.21)

−
∑︂
j

[︁
(X + Y )jaσH

+
jiσ[(X + Y)] + (X − Y )jaσH

−
jiσ[(X−Y)]

]︁
+ H+

iaσ[T]

+
∑︂

jbσ′kcσ′′

[︂
gσσ

′σ′′

+iajbkc(X + Y )jbσ′(X + Y )kcσ′′ + gσσ
′σ′′

−iajbkc(X − Y )jbσ′(X − Y )kcσ′′

]︂
.

After the RHS has been calculated from the transition density matrices (X ±Y), the Z

vector equation can be solved iteratively for Z, where the occupied-occupied and virtual-

virtual blocks of Z are zero. Having solved for Z allows to calculate the elements of W via

eq. 3.17a-d and eq. 3.18a-d. For this purpose, it is convenient to define the one-particle

difference density matrix P asa

P = Z + T . (3.22)

Explicit expressions for the different blocks of W are given in Appendix A.1.

With solutions for Z and W, all that remains for the evaluation of the ES gradients in

eq. 3.9 is taking all derivatives w.r.t. ξ. This step is straightforward after the definitions

of (A ± B) (eq. 2.144a-b, eq. 3.8) and of the KS matrix F (eq. 2.38) are inserted into

eq. 3.9. After transformation from the MO to the AO basis (cf. also Section 3.2.1), the

aP must not be confused with the same-named general transition density matrix from Section 2.4.2.
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3.2 Derivation of the LH Hyper-Kernel and Potential/ Kernel Gradients

final equation for the ES gradients reads

Ωξ =
∑︂
µνσ

hξ
µνPµνσ −

∑︂
µνσ

Sξ
µνσWµνσ +

∑︂
µνσ

V xc (ξ)
µνσ Pµνσ

+
∑︂

µνσκλσ′

vξµνκλ [PµνσDκλσ′ + (X + Y )µνσ(X + Y )κλσ′ ]

+
1

2

∑︂
µνσκλσ′

f
(ξ)
+µνσκλσ′(X + Y )µνσ(X + Y )κλσ′

+
1

2

∑︂
µνσκλσ′

f
(ξ)
−µνσκλσ′(X − Y )µνσ(X − Y )κλσ′ . (3.23)

To summarize, the calculation of ES gradients requires three steps subsequent to a con-

verged solution of the GS KS equations. [35]

1. Solve the Casida’s equations to obtain (X±Y) and Ω (eq. 2.143).

2. Obtain Z and W by solving the Z vector equation (eq. 3.20).

3. Calculate the ES gradient from eq. 3.23.

The first step is an ordinary LR-TDDFT calculation of a VEE. All LH specific devel-

opments for this step have been previously reported by Maier et al. [23] The second step

requires the development of the LH hyper-kernel gσσ
′σ′′

pqrstu. However, it is in fact preferable

in terms of performance to never actually calculate and store this six-index quantity as

it is always contracted with two transition density matrices anyway. [35] Hence, the more

relevant quantities are the contracted (anti)symmetric LH hyper-kernel elements. For the

third step, the LH potential gradients V
xc (ξ)
µνσ and kernel gradients f

(ξ)
±µνσκλσ′ are required.

Again, these quantities are directly contracted with other matrices.

3.2 Derivation of the LH Hyper-Kernel and Potential/

Kernel Gradients

The derivation of the aforementioned quantities for the LH case is the subject of this

section. Compared to the expressions for (semi)local functionals and GHs, LHs require

a special treatment because they feature additional LMF derivative terms. The LMF

derivatives by themselves are treated just like a (semi)local energy density and do not

present a major problem for an implementation. However, due to the product rule of

differentiation, each derivative of the LMF or of the LMF complement is multiplied with
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3 Development of Excited-State Gradients for Local Hybrid Functionals

the derivatives of the exact-exchange energy density or of the (semi)local exchange energy

density, respectively. This significantly increases the complexity of higher-order deriva-

tives like the third-order derivatives needed for the hyper-kernel. To make the vast amount

of terms more manageable, various shorthand notations are introduced, which were previ-

ously developed in the context of the SCF, [234] GS gradients, [47] and VEE LR-TDDFT [23]

implementations and extended here for use within the LR-TDDFT ES gradients imple-

mentation. Furthermore, the LMF weighted EXX-like integrals are non-standard integrals

and thus require an adequate integration scheme. On that account, the seminumerical

integration scheme is introduced [48] and its particularities for the use with LHs are dis-

cussed.

3.2.1 Formalism and Notation

This work uses the density matrix derivative notation from ref. 67 and 23. It has been

used in previous sections to denote general expressions for the XC potential (eq. 2.39),

XC kernel (eq. 2.139) and XC hyper-kernel (eq. 3.15). It is generally valid in the sense

that it allows denoting derivatives of explicitly orbital dependent terms and (semi)local

(implicitly orbital dependent) terms, alike.

Derivatives of the Exact Exchange Energy Density

First, it is demonstrated how the density matrix derivative scheme can be used to calculate

derivatives of the EXX energy density defined in eq. 2.73, rewritten here for convenience

eexx,σ(r) = −1

2

∑︂
pqrs

Dσ
pqD

σ
rs

∫︂
wσσ

psrq(r, r
′) dr′ , (3.24)

where the short-hand notation

wσσ′

psrq(r, r
′) =

φ∗
p,σ(r)φs,σ(r)φ∗

r,σ′(r′)φq,σ′(r′)

|r− r′|
(3.25)

is used. The first derivative w.r.t. some density matrix element Dς
mn, where ς is used as

a spin-index, is obtained as an explicit derivative

∂eexx,σ(r)

∂Dς
mn

=− 1

2

∑︂
rs

Dσ
rsδσς

∫︂
wσσ

msrn(r, r′) dr′ − 1

2

∑︂
pq

Dσ
pqδσς

∫︂
wσσ

pnmq(r, r
′) dr′

=− 1

2

∑︂
pq

Dσ
pqδσς

∫︂ [︁
wσσ

mqpn(r, r′) + wσσ
pnmq(r, r

′)
]︁

dr′ , (3.26)
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where in the first line, the product rule of differentiation has been applied and summation

indices were relabeled in the second line. [67] If the derivative of the EXX energy density

eexx,σ(r) was integrated over r to yield the derivative of the EXX energy Eex
x,σ, it would

be possible to summarize the two four-center integrals in the second line of eq. 3.26 by

interchanging the integration variables r and r′. Importantly, this is not possible when

dealing with the EXX energy density itself and also for the situation where eexx,σ(r) is

multiplied by an LMF aσ(r) before it is integrated over r.b The second derivative is

obtained in the same manner and reads

∂2eexx,σ(r)

∂Dς
mn∂D

ς′
tu

= −1

2
δσςδσς′

∫︂
[wσσ

mutn(r, r′) + wσσ
tnmu(r, r′)] dr′ . (3.27)

Note that the second derivative vanishes if ς ̸= ς ′, i.e. second partial derivatives of EXX

energy densities are only non-zero if both differentiation variables have the same spin. [67]

The third derivative of the EXX energy density w.r.t. the density matrix is always zero

because the second derivative does not depend on the density matrix

∂3eexx,σ(r)

∂Dς
mn∂D

ς′
tu∂D

ς′′
vw

= 0 . (3.28)

Semilocal Potential Operator

The density matrix derivative scheme can also be applied to the (semi)local energy densi-

ties esl(r) of a functional or the LMF in a LH. In this case, the dependence of the density

matrix is not explicit (as for the EXX energy density) but implicit through the definitions

of the (semi)local quantities, i.e. the spin density, squared spin density gradient and the

spin resolved kinetic energy density. Their definitions are repeated here for convenience

ρσ(r) =
∑︂
pq

Dσ
pqφ

∗
pσ(r)φqσ(r) (3.29)

γσσ′(r) = ∇Tρσ(r)∇ρσ′(r) (3.30)

τσ(r) =
1

2

∑︂
pq

Dσ
pq∇Tφ∗

pσ(r)∇φqσ(r) . (3.31)

The derivative δesl(r)
δDσ

pq
is obtained by applying the functional chain rule for each (semi)local

quantity Q that appears in the definition of esl(r). As a short hand notation for this

bAt least not without introducing an additional dependence of the LMF on r′.
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procedure, the semilocal potential operator ˆ︁dpqσ is introduced [23,67]

ˆ︁dpqσ =
∑︂
Q∈Q

∫︂
∂Q(r′)

∂Dσ
pq

δ

δQ(r′)
dr′ , Q = {ρα, ρβ, γαα, γαβ, γββ, τα, τβ} . (3.32)

Within this notation, the derivative of some (semi)local energy density w.r.t. a density

matrix element reads [67]

δesl(r)

δDσ
pq

=ˆ︁dpqσesl(r)
=

∫︂
∂ρσ(r′)

∂Dσ
pq

δesl(r)

δρσ(r′)
dr′ +

∫︂
∂τσ(r′)

∂Dσ
pq

δesl(r)

δτσ(r′)
dr′

+

∫︂
∂γσσ(r′)

∂Dσ
pq

δesl(r)

δγσσ(r′)
dr′ +

∫︂
∂γσσ′(r′)

∂Dσ
pq

δesl(r)

δγσσ′(r′)
dr′

=φ∗
pσ(r)φqσ(r)

δesl(r)

δρσ(r)
+

1

2
∇Tφ∗

pσ(r)∇φqσ(r)
δesl(r)

δτσ(r)

+ 2∇T
[︁
φ∗
pσ(r)φqσ(r)

]︁
∇ρσ(r)

δesl(r)

δγσσ(r)
+∇T

[︁
φ∗
pσ(r)φqσ(r)

]︁
∇ρσ′(r)

δesl(r)

δγσσ′(r)
.

(3.33)

Repeated application of the semilocal potential operator gives the corresponding higher

derivatives. The semilocal kernel operator was derived by Maier [67] and reads

ˆ︁dpqσ ˆ︁drsσ′ =
∑︂
Q∈Q

∑︂
Q′∈Q

∫︂∫︂
∂Q(r)

∂Dσ
pq

∂Q′(r′)

∂Dσ′
rs

δ2

δQ(r)δQ′(r′)
dr dr′

+
∑︂
Q∈Q

∫︂
∂2Q(r)

∂Dσ
pq∂D

σ′
rs

δ

δQ(r)
dr . (3.34)

In the context of this work, the semilocal hyper-kernel operator is required, which is

obtained by applying the semilocal potential operator three times [212]

ˆ︁dpqσ ˆ︁drsσ′ ˆ︁dtuσ′′ =
∑︂
Q∈Q

∑︂
Q′∈Q

∑︂
Q′′∈Q

∫︂∫︂∫︂
∂Q(r)

∂Dσ
pq

∂Q′(r′)

∂Dσ′
rs

∂Q′′(r′′)

∂Dσ′′
tu

δ3

δQ(r)δQ′(r′)δQ′′(r′′)
dr dr′ dr′′

+
∑︂
Q∈Q

∑︂
Q′∈Q

∫︂∫︂ [︃
∂2Q(r)

∂Dσ′
rs∂D

σ′′
tu

∂Q′(r′)

∂Dσ
pq

+
∂2Q(r)

∂Dσ
pq∂D

σ′′
tu

∂Q′(r′)

∂Dσ′
rs

+
∂2Q(r)

∂Dσ
pq∂D

σ′
rs

∂Q′(r′)

∂Dσ′′
tu

]︃
δ2

δQ(r)δQ′(r′)
dr dr′

+
∑︂
Q∈Q

∫︂
∂3Q(r)

∂Dσ
pq∂D

σ′
rs∂D

σ′′
tu

δ

δQ(r)
dr . (3.35)
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Note, that the last term in eq. 3.35 vanishes for the set of (semi)local quantities considered

in this work (cf. eq. 3.32) because all third derivatives of ρσ, γσσ, γσσ′ and τσ w.r.t. density

matrices are zero. To cover the most general case, the term is nonetheless included here

and below.

Transformation to the Atomic Orbital Basis

Except for eq. 3.23, all equations relevant for the calculation of ES gradients and the

associated derivatives are written in the MO basis. However, for an implementation, the

MOs are typically expanded in an AO basis (cf. eq. 3.2)

φpσ(r) =

Nb∑︂
µ

Cµpσχµ(r) . (3.36)

Conveniently, the density matrix formalism developed within the MO basis, also transfers

to the AO basis, where

Dσ
µν =

∑︂
pq

C∗
pµσCqνσD

σ
pq (3.37)

defines the transformation between the MO and AO density matrices. A derivative w.r.t.

an MO density matrix element Dσ
pq is transferred via

∂

∂Dσ
pq

=
∑︂
µν

∂Dσ
µν

∂Dσ
pq

∂

∂Dσ
µν

=
∑︂
µν

C∗
pµσCqνσ

∂

∂Dσ
µν

(3.38)

to the AO basis. Hence, all derivative schemes denoted above in the MO basis are straight-

forwardly transferred to the AO basis by formally replacing Roman letters (MO indices)

with Greek letters (AO indices). This also holds for the semilocal potential operator,

which is abbreviated as ˆ︁∂µνσ in the AO basis.

Numerical Integration

Standard AO matrix elements in (TD)DFT are calculated as outlined in Section 2.1.4

for HF theory. For the XC energy and its derivatives, an analytical integration is not

reasonably possible and the integrals are evaluated using numerical integration. The

integral over some energy density e(r) is approximated as the sum over Ng grid points

positioned at ri with associated grid weights qi

E =

∫︂
e(r) dr ≈

Ng∑︂
i

qi e(ri) . (3.39)
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The grids are typically constructed based on atomic grids distributed around each atom, [236]

where the atomic grids are separated into a spherical and a radial grid. For the spheri-

cal grid, schemes by Lebedev [237] and Gauss-Lobatto [238,239] are in common use. For the

radial integration, a popular choice are Chebychev grids, which are mapped from their

originally defined interval [0, 1] onto the interval [0,∞). [240] To evaluate eq. 3.39, e(ri) has

to be calculated from the values of the (semi)local quantities at any given grid point. In

the AO basis, their values are obtained as

ρσ(ri) =
∑︂
µν

Dσ
µνχµ(ri)χν(ri) = XT

i D
σXi (3.40a)

∇ρσ(ri) =
∑︂
µν

Dσ
µν∇ [χµ(ri)χν(ri)] = 2XT

i D
σ∇Xi (3.40b)

γσσ′(ri) = ∇Tρσ(ri)∇ρσ′(ri) (3.40c)

τσ(ri) =
1

2

∑︂
µν

Dσ
µν∇Tχµ(ri)∇χν(ri) =

1

2
∇TXT

i D
σ∇Xi , (3.40d)

where the basis function vector at grid point ri

Xi :=

⎛⎜⎜⎜⎜⎝
χ1(ri)

χ2(ri)
...

χNb
(ri)

⎞⎟⎟⎟⎟⎠ (3.41)

is introduced to express summations over AO indices as matrix-vector products.c

If numerical integration is used for the calculation of the gradient of an energy E,

applying the product rule of differentiation to eq. 3.39 gives two terms

∇E ≈
Ng∑︂
i

[∇qi · e(ri) + qi · ∇e(ri)] . (3.42)

The first term including the derivatives of the quadrature weights ∇qi (weight derivatives,

WD) arises because the quadrature weights depend on the position of the nuclei. This

first term is usually small, in particular when fine quadrature grids are used, which is

why they are often neglected and only the second term is implemented. [241] However, if

accurate gradients are needed (e.g. for numerical frequency calculations) or coarse grids

are used, it is advisable to include WDs. Because energy densities are a necessity for the

cThe basis function vector Xi must not be confused with the same-named transition density matrix
(cf., e.g., eq. 2.142), which is relabeled further below (eq. 3.51).
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3.2 Derivation of the LH Hyper-Kernel and Potential/ Kernel Gradients

development of gradients, the WD term ∇qi · e(ri) requires only minor development work

for the ∇qi part [241] and causes negligible extra computational cost.

Seminumerical Integration

The functional form of LHs (eq. 2.75) requires the calculation of integrals where the EXX

energy density (or one of its derivatives) is weighted by an LMF (or one of its derivatives).

In the AO basis, the simplest of these integrals reads∫︂
aσ(r) · eexσ (r) dr = −1

2

∑︂
µνκλ

Dσ
µνD

σ
κλ

∫︂
aσ(r)χµ(r)χλ(r)

∫︂
χκ(r′)χν(r′)

|r− r′|
dr′ dr . (3.43)

Multiplication of the four-center two-electron integral with the position-dependent LMF

aσ(r) prevents the use of standard analytical techniques to calculate the EXX integral

(cf. Section 2.1.4). Instead, a seminumerical integration scheme [48] inspired by Friesner’s

pseudospectral method [242] is followed, where one integration is done analytically, while

the second integral is solved via numerical quadrature. In eq. 3.43, it is sensible to perform

the integral over r on a numerical quadrature grid, because the LMF aσ(r) depends on

this coordinate. The remaining integral defines the A matrixd

Aκν(ri) =

∫︂
χκ(r′)χν(r′)

|ri − r′|
dr′ , (3.44)

which is evaluated analytically at each grid point ri. Since the values of ri are fixed, the

integral in eq. 3.44 has the same structure as a nuclear-electron interaction integral for

which efficient evaluation schemes are well established (cf. Section 2.1.4). With the above

definition of the A matrix, the integral from eq. 3.43 is obtained as [234]

∫︂
aσ(r) · eexσ (r) dr =− 1

2

Ng∑︂
i

qi
∑︂
µνκλ

Dσ
µνD

σ
κλaσ(ri)χµ(ri)χλ(ri)Aκν(ri)

=− 1

2

Ng∑︂
i

qiaσ(ri) ·
∑︂
λ

χλ(ri)
∑︂
κ

Dσ
κλ

∑︂
ν

Aκν(ri)
∑︂
µ

Dσ
µνχµ(ri)

=− 1

2

Ng∑︂
i

qiaσ(ri) ·XT
i D

σAiD
σXi

=− 1

2
aσ ·XTDσADσX , (3.45)

dNote that A must not be confused with the matrix of identical name from eq. 2.142.
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where the summations over AO indices were expressed as matrix-vector products and

where in the last line, the convention was introduced that suppressed grid indices imply

a qi-weighted summation over all grid points. Also note that the symmetry of the GS

density matrix Dσ was exploited. Overall, a formal scaling of Ng ·N2
b is obtained, which

makes the seminumerical scheme superior for calculations with large basis sets compared

to an analytical implementation (as often used for GHs) that scales as N4
b . Of course,

the seminumerical scheme is not exclusively suited for LHs [23,47,234,243–246] and it has been

implemented also for GHs before. [45,48,247] A convenient side effect of the seminumerical

scheme is that it is well suited for parallelization because the loop over grid points (or

batches of grid points) can be spread effectively over multiple processors without caus-

ing significant overheads. [244,248] Because the bottle-neck of the seminumerical scheme is

the calculation of the A matrix, it is desirable to avoid any unnecessary calculations

of elements of this matrix. For this purpose, various prescreening techniques may be

used that identify negligible or non-contributing matrix elements. One such technique is

adopted from the chain-of-spheres exchange (COSX) method [48] and aims at identifying

basis function shell pairs that have negligible overlap at a given grid point and thus result

in negligible A matrix elements (S-junctions). Another technique tries to identify negligi-

ble elements of the vector DσX, which allows to skip not only the multiplication with the

A matrix but also the calculation of the A matrix elements this vector is contracted with

(P-junctions). [234] It is also possible to exploit the asymptotic decay of the Coulomb op-

erator in the definition of the A matrix as done in the recently suggested F-junctions. [249]

For this method, a spheree with minimal radius is constructed around all grid points of

a given grid batch and, based on an asymptotic integral estimate, [249] an upper bound of

the respective A matrix element is determined for any basis function pair which center

lies outside this sphere. If the contraction of this estimate with the maximum values of

the DσX vector leads to negligible contributions, the exact evaluation of the A matrix

for this basis function pair can be skipped for the complete grid batch.

For the evaluation of LH GS/ES gradients, integrals where the gradient of the EXX

energy density is weighted by an LMF (or derivative versions of the same general form)

eTo avoid the mathematical problem of finding such a sphere, a cuboid is used in practice. [249]
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have to be calculated. Following again the idea of seminumerical integration gives∫︂
aσ(r) · ∇ξe

ex
σ (r) dr

=− 1

2

Ng∑︂
i

qi
∑︂
µνκλ

Dσ
µνD

σ
κλaσ(ri)∇ξ

[︃
χµ(ri)χλ(ri)

∫︂
χκ(r′)χν(r′)

|ri − r′|
dr′
]︃

=−
Ng∑︂
i

qi
∑︂
µνκλ

Dσ
µνD

σ
κλaσ(ri)

[︁
∇ξχµ(ri)χλ(ri)Aκν(ri) + χµ(ri)χλ(ri)A

ξ
κν(ri)

]︁
=aσ ·

[︁
XTDσADσ∇ξX + XTDσAξDσX

]︁
, (3.46)

with

Aξ
κν(ri) =

∫︂
∇ξχκ(r′)χν(r′)

|ri − r′|
dr′ , (3.47)

being a derivative version of the A matrix. [47] In the third line of eq. 3.46, the fact

that the matrix Dσ, the basis function pair χµχλ and the A matrix are symmetric was

exploited, which has allowed to summarize a total of four gradient terms resulting from

the product rule of differentiation to two gradient terms. If no LMF was used, the

second term in the last line of eq. 3.46 could be brought into the same form as the

first term thus avoiding the need to calculate Aξ. In the case of GHs, this is indeed a

valid step and leads to significant savings in computation time because opposed to A,

the matrix Aξ is not symmetric and, in fact, represents a set of three matrices with one

matrix for each direction in space. [212] Hence, computing and storing Aξ takes about six

times the amount of memory and computation time as it does for A while the overall

scaling remains unaffected. [47] Since the real-space dependence of the LMF precludes this

summation for LHs, algorithms for calculating Aξ have been developed in the context of

the implementation of GS gradients. [47]
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3.2.2 The LH Hyper-Kernel

For the calculation of the RHS of the Z vector equation (eq. 3.21) as well as for some of the

blocks of W (cf. Appendix A.1), the matrix elements of the XC hyper-kernel gσσ
′σ′′

pqrstu are

needed. Using the density matrix derivative scheme and the semilocal potential operator,

these matrix elements are derived in Appendix A.2 and the result is given below

gσσ
′σ′′

pqrstu =− 1

2

∫︂∫︂ ˆ︁drsσ′aσ(r) · δσσ′′ ·
[︁
wσσ

tqpu(r, r′) + wσσ
putq(r, r

′)
]︁

dr dr′

− 1

2

∫︂∫︂ ˆ︁dtuσ′′aσ(r) · δσσ′ ·
[︁
wσσ

rqps(r, r
′) + wσσ

psrq(r, r
′)
]︁

dr dr′

− 1

2

∫︂∫︂ ˆ︁drsσ′ ˆ︁dtuσ′′aσ(r) ·
∑︂
mn

Dσ
mn

[︁
wσσ

mqpn(r, r′) + wσσ
pnmq(r, r

′)
]︁

dr dr′

− 1

2

∫︂∫︂ ˆ︁dpqσaσ′(r) · δσ′σ′′ ·
[︂
wσ′σ′

tsru(r, r′) + wσ′σ′

ruts(r, r
′)
]︂

dr dr′

−
∑︂
ς

∫︂ ˆ︁dpqσaς(r) · ˆ︁drsσ′ ˆ︁dtuσ′′eslx,ς(r) dr−
∑︂
ς

∫︂ ˆ︁dpqσeslx,ς(r) · ˆ︁drsσ′ ˆ︁dtuσ′′aς(r) dr

− 1

2

∫︂∫︂ ˆ︁dpqσ ˆ︁drsσ′aσ′′(r) ·
∑︂
mn

Dσ′′

mn

[︂
wσ′′σ′′

mutn(r, r′) + wσ′′σ′′

tnmu(r, r′)
]︂

dr dr′

− 1

2

∫︂∫︂ ˆ︁dpqσ ˆ︁dtuσ′′aσ′(r) ·
∑︂
mn

Dσ′

mn

[︂
wσ′σ′

msrn(r, r′) + wσ′σ′

rnms(r, r
′)
]︂

dr dr′

−
∑︂
ς

∫︂ ˆ︁dpqσ ˆ︁drsσ′aς(r) · ˆ︁dtuσ′′eslx,ς(r) dr−
∑︂
ς

∫︂ ˆ︁dpqσ ˆ︁dtuσ′′aς(r) · ˆ︁drsσ′eslx,ς(r) dr

−
∑︂
ς

∫︂ ˆ︁drsσ′aς(r) · ˆ︁dpqσ ˆ︁dtuσ′′eslx,ς(r) dr−
∑︂
ς

∫︂ ˆ︁dtuσ′′aς(r) · ˆ︁dpqσ ˆ︁drsσ′eslx,ς(r) dr

−
∑︂
ς

∫︂∫︂ ˆ︁dpqσ ˆ︁drsσ′ ˆ︁dtuσ′′aς(r) ·

[︄
1

2

∑︂
mnkl

Dς
mnD

ς
klw

ςς
mlkn(r, r′) + eslx,ς(r)

]︄
dr dr′

+
∑︂
ς

∫︂
[1− aς(r)] · ˆ︁dpqσ ˆ︁drsσ′ ˆ︁dtuσ′′eslx,ς(r) dr +

∫︂ ˆ︁dpqσ ˆ︁drsσ′ ˆ︁dtuσ′′eslc (r) dr . (3.48)

This expression looks rather intimidating, especially when compared to the matrix ele-

ments of the GH hyper-kernel, which is simply the last line of the above equation. All

other terms include derivatives of the LMF aσ(r) that vanish in the GH case, where

aσ(r) = const. However, ultimately, the LH expression is nothing but the result of subse-

quently applying the product rule of differentiation to the LH energy expression (eq. 2.75)

and utilizing the rules and notations outline in Section 3.2.1. Note that the CF Gσ(r) is

not explicitly shown in eq. 3.48 for clarity. Formally, it can be thought of as being part

of eslx,σ(r). For reasons outlined below, the CF is nonetheless neglected within this work.
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As mentioned in Section 3.1, setting up and storing this six-index quantity explicitly

would be excessively expensive. Fortunately, however, this can be avoided because the

matrix elements are always contracted with two transition density matrices resulting in

an overall two-index quantity. Hence, the actual LH hyper-kernel does not have to be

implemented. Instead, what is needed for an implementation are the quantities∑︂
jbσ′kcσ′′

gσσ
′σ′′

±iajbkc(X ± Y )jbσ′(X ± Y )kcσ′′ , (3.49)

which are calculated in the AO basis and transformed with the respective MO coefficients

to the MO basis. In the AO basis, these terms read∑︂
κληι

∑︂
σ′σ′′

gσσ
′σ′′

±µνκληιU
±
κλσ′U

±
ηισ′′ , (3.50)

where the transition density matrices (X±Y) are relabeled according to

U+ = (X + Y) , U− = (X−Y) (3.51)

to avoid confusion with the basis function vector X. Since these transition matrices are

either symmetric (U+) or antisymmetric (U−), it is possible to summarize several terms

that appear in the definition of the LH hyper-kernel (eq. 3.48) with flipped index order.

Also, recall that the definition of gσσ
′σ′′

±µνκληι includes two hyper-kernel terms as indicated by

the ± sign (cf. eq. 3.16). To condense the summation over AO indices, additional (partly)

contracted versions of the semilocal potential operator are introduced. [212] Their effect is

demonstrated below for the LMF a(r) but the effect is equivalent for a (semi)local energy

density; the space variable r (or ri if evaluated on a grid point) is dropped for brevity

ˆ︁∂µνσa =
∑︂
Q∈Q

∫︂
dr′

∂Q(r′)

∂Dσ
µν

δ

δQ(r′)
a , (3.52a)

ˆ︁∂+a =
∑︂
κλσ′

ˆ︁∂κλσ′a · U+

κλσ′ , (3.52b)

ˆ︂∂∂+

µνσa =
∑︂
κλσ′

ˆ︁∂µνσˆ︁∂κλσ′a · U+

κλσ′ , (3.52c)

ˆ︂∂∂++

a =
∑︂

ηϵσ′κλσ′′

ˆ︁∂ηϵσ′ ˆ︁∂κλσ′′a · U+

ηϵσ′U
+

κλσ′′ , (3.52d)

ˆ︃∂∂∂++

µνσa =
∑︂

ηϵσ′κλσ′′

ˆ︁∂µνσˆ︁∂ηϵσ′ ˆ︁∂κλσ′′a · U+

ηϵσ′U
+

κλσ′′ . (3.52e)
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Explicitly expanded expressions for these terms are given in Appendix A.4. Note that for

the XC hyper-kernel of a global hybrid or purely semilocal functional, only the ˆ︃∂∂∂++

µνσ

operator is required. It has been reported, e.g., in ref. 41 using a different notation

but yields the same terms as given in Appendix A.4. With the above notations, the

symmetric LH hyper-kernel contracted with two symmetric transition-density matrices is

finally obtained as [212]∑︂
κληι

∑︂
σ′σ′′

gσσ
′σ′′

+µνκληιU
+

κλσ′U
+

ηισ′′

=− 2 ˆ︁∂+aσ · [Xµ(AU+

σX)ν + (AU+

σX)µXν ]

−ˆ︂∂∂++

aσ · [Xµ(ADσX)ν + (ADσX)µXν ]

− 2
∑︂
σ′

ˆ︁∂µνσaσ′ ·
[︂
XTU+

σ′AU+

σ′X + ˆ︂∂∂++

eslx,σ′

]︂
− 2

∑︂
σ′

ˆ︁∂µνσeslx,σ′ ·ˆ︂∂∂++

aσ′

− 4
∑︂
σ′

ˆ︂∂∂+

µνσaσ′ ·
[︂
XTDσ′

AU+

σ′X + ˆ︁∂+eslx,σ′

]︂
− 4

∑︂
σ′

ˆ︂∂∂+

µνσe
sl
x,σ′ · ˆ︁∂+aσ′

− 2
∑︂
σ′

ˆ︃∂∂∂++

µνσaσ′ ·
[︃

1

2
XTDσ′

ADσ′
X + eslx,σ′

]︃
+ 2

∑︂
σ′

[1− aσ′ ] ·ˆ︃∂∂∂++

µνσe
sl
x,σ′

+ 2 ˆ︃∂∂∂++

µνσe
sl
c , (3.53)

where grid indices are suppressed and an implicit summation over all grid points is as-

sumed. For the antisymmetric LH hyper-kernel, a much simpler expression is obtained [212]

∑︂
κληι

∑︂
σ′σ′′

gσσ
′σ′′

−µνκληιU
−
κλσ′U

−
ηισ′′ = −2

∑︂
σ′

ˆ︁∂µνσaσ′ ·
[︁
XTU−

σ′AU−
σ′X
]︁
. (3.54)

The main reason for this simple structure is the assumption that the semilocal po-

tential operator is symmetric w.r.t. to the interchange of basis function indices, i.e.ˆ︁∂κλσ − ˆ︁∂λκσ = 0. This assumption is in fact valid for the set of (semi)local quantities

considered in this work (cf. eq. 3.32). However, this symmetry property would get lost, if

the paramagnetic current-density

jσ(r) =
1

2

∑︂
µν

Dσ
µν [∇χµ(r)χν(r)− χµ(r)∇χν(r)] (3.55)

was included as part of a modified kinetic-energy term suggested for ensuring gauge invari-

ance of τ -dependent functionals. [211] LR-TDDFT implementations of excitation energies

including the response of the current-density were reported by Bates and Furche [211] for

mGGAs and mGGA based GHs as well as by Maier et al. for LHs. [23] Given that only
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minor effects on excitation energies were found [24,211] and that a full inclusion of the cur-

rent terms would result in a severely more complicated equation for the antisymmetric

part, the current-density response is neglected in the equations for ES gradients within

this work. The validity of this approximation is analyzed in Section 4.3.3.

The equations above are given for the most general case of spin-unrestricted calcula-

tions. For closed-shell GSs, it is customary to perform spin-restricted calculations that

exploit symmetry of the GS density matrix (Dα = Dβ) and consider singlet excitations

(U±
α = U±

β ) and triplet excitations (U±
α = −U±

β ) separately. The respective transition-

density matrix contracted hyper-kernels are obtained by inserting these spin relations into

eq. 3.53-3.54 and executing all spin summations explicitly.

3.2.3 The LH Potential and Kernel Gradients

For the evaluation of the final ES gradients (eq. 3.23), the gradients of the XC potential

contracted with the relaxed one-particle difference-density matrix∑︂
µνσ

V xc (ξ)
µνσ Pµνσ (3.56)

and the gradients of the (anti)symmetric XC kernel contracted with two (anti)symmetric

transition density matrices

1

2

∑︂
µνσκλσ′

f
(ξ)
±µνσκλσ′U

±
µνσU

±
κλσ′ (3.57)

are required. Both terms have to be derived for the LH case. For the (semi)local parts,

derivatives w.r.t. nuclear coordinates (ξ) are easily transformed to conventional derivatives

w.r.t. (semi)local quantities. In analogy to the semilocal potential operator, the semilocal

gradient operator ˆ︁∇ξ is introduced

ˆ︁∇ξ =
∑︂
Q∈Q

∫︂
∂Q(r′)

∂ξ

δ

δQ(r′)
dr′ , (3.58)

where ∂Q(r′)
∂ξ

is used to denote the gradients of the (semi)local quantities. Exploiting that

the nuclear gradient of a Gaussian basis function is equivalent to the negative of the

gradient w.r.t. electronic coordinates, i.e. ∇ξχ = −∇χ, these derivatives read

∂ρσ
∂ξ

=− 2XTDσ∇X (3.59a)
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∂γσσ′

∂ξ
=− 2

[︁
∇XTDσ∇TX +∇∇TXTDσX

]︁
∇ρσ′

− 2
[︁
∇XTDσ′∇TX +∇∇TXTDσ′X

]︁
∇ρσ (3.59b)

∂τσ
∂ξ

=−∇∇TXTDσ∇X . (3.59c)

Additionally, two transition-density matrix contracted operators are defined as

ˆ︃∇ξ∂+
a =

∑︂
κλσ′

ˆ︁∇ξˆ︁∂κλσ′a · U+
κλσ′ , (3.60a)

ˆ︁∇ξ∂∂
++

a =
∑︂

ηϵσ′κλσ′′

ˆ︁∇ξˆ︁∂ηϵσ′ ˆ︁∂κλσ′′a · U+
ηϵσ′U

+
κλσ′′ (3.60b)

acting here on the LMF a for demonstration. Their explicitly expanded forms are given

in Appendix A.4. Proceeding from the LH kernel [23] as given in Appendix A.2 and using

these notations, the symmetric contracted kernel gradients read [212]

1

2

∑︂
µνσκλσ′

f
(ξ)
+µνσκλσ′U

+

µνσU
+

κλσ′

=− 2
∑︂
σ

aσ
[︁
XTU+

σAU+

σ∇ξX + XTU+

σA
ξU+

σX
]︁

− 2
∑︂
σ

ˆ︁∂+aσ
[︁
XTDσAU+

σ∇ξX +∇ξXTDσAU+

σX + XTDσAξU+

σX + XTDσAξTU+

σX
]︁

−
∑︂
σ

ˆ︂∂∂++

aσ
[︁
XTDσADσ∇ξX + XTDσAξDσX

]︁
−
∑︂
σ

ˆ︁∇ξaσ [︂XTU+

σAU+

σX + ˆ︂∂∂++

eslx,σ

]︂
−
∑︂
σ

ˆ︁∇ξeslx,σˆ︂∂∂++

aσ

− 2
∑︂
σ

ˆ︃∇ξ∂+
aσ

[︂
XTDσAU+

σX + ˆ︁∂+eslx,σ

]︂
− 2

∑︂
σ

ˆ︃∇ξ∂+
eslx,σ

ˆ︁∂+aσ

−
∑︂
σ

ˆ︁∇ξ∂∂
++

aσ

[︃
1

2
XTDσADσX + eslx,σ

]︃
+
∑︂
σ

[1− aσ] ˆ︁∇ξ∂∂
++

eslx,σ + ˆ︁∇ξ∂∂
++

eslc . (3.61)

From this equation, the GH case is formally recovered by setting the LMF to a constant

value (aσ = const.), which zeros out all LMF derivative terms leaving only the first and

last line of the RHS of eq. 3.61. Just like the antisymmetric contracted hyper-kernel, the

antisymmetric contracted kernel gradients have a much simpler form than their symmetric
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counterparts; they read [212]

1

2

∑︂
µνσκλσ′

f
(ξ)
−µνσκλσ′U

−
µνσU

−
κλσ′

=−
∑︂
σ

ˆ︁∇ξaσXTU−
σAU−

σX− 2
∑︂
σ

aσ
[︁
XTU−

σAU−
σ∇ξX + XTU−

σA
ξU−

σX
]︁
. (3.62)

The first term of this equation vanishes for the GH case due to multiplication with a

LMF derivative. The second term does, however, remain also for the GH case. Note

however, that in the work by Furche and Ahlrichs [35] this term it is not written as an

additional kernel gradient but instead included in a matrix Γ that collects all four-center

two-electron contributions. This also holds for the equivalent symmetric contracted kernel

gradient term (first line of the RHS of eq. 3.61).

For the LH potential gradients contracted with the relaxed one-particle difference den-

sity matrix Pσ, the formalism is completely analogous. Proceeding from the LH poten-

tial [234] given in Appendix A.2 the application of the gradient operator and contraction

with Pσ yields [212]∑︂
µνσ

V xc (ξ)
µνσ Pµνσ

=−
∑︂
σ

aσ ·
[︁
XTDσAPσ∇ξX +∇ξXTDσAPσX + XTDσAξPσX + XTDσAξTPσX

]︁
−
∑︂
σ

ˆ︁∂Paσ ·
[︁
XTDσADσ∇ξX + XTDσA′DσX

]︁
−
∑︂
σ

∇ξaσ ·
[︂
XTDσAPσX + ˆ︁∂Peslx,σ

]︂
−
∑︂
σ

ˆ︁∂Paσ · ∇ξeslx,σ

−
∑︂
σ

ˆ︃∇ξ∂P
aσ ·

[︃
1

2
XTDσADσX + eslx,σ

]︃
+
∑︂
σ

[1− aσ] ·ˆ︃∇ξ∂P
eslx,σ + ˆ︃∇ξ∂P

eslc , (3.63)

where the operators ˆ︁∂P and ˆ︃∇ξ∂P
are defined analogous to those given in eq. 3.52b and

eq. 3.60a, respectively, but using Pσ instead of U+
σ .
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This chapter describes the implementation of ES gradients for LHs in the egrad program

of the quantum chemical software package TURBOMOLE. [36,37] The implementation is

included in the official 7.5 version released in 2020. [36] First, a brief review of the existing

program structure of TURBOMOLE, the egrad program, and the LH specific software

infrastructure is given. Next, the details of the new implementation are presented and

connected challenges are discussed. In the technical evaluation, it is explained how the

correctness of the implementation was ensured and the performance of the implementation

is analyzed. Finally, the influence of the current-density response on the ES gradients is

assessed to judge the validity of its neglect in the present implementation. The second half

of Section 4.3.2 (starting from the second paragraph) and Section 4.3.3 are reproduced

(adapted) and reprinted with permission from ref. 212 [R. Grotjahn, F. Furche, M. Kaupp,

J. Chem. Theory Comput. 2019, 15, 5508]. Copyright 2019 American Chemical Society.

4.1 Existing Program Structure

4.1.1 The Software Package TURBOMOLE

The development of TURBOMOLE dates back to 1987, where Häser and Ahlrichs ini-

tiated the project [250] intending to deliver a quantum chemical program with industry-

standard robustness and efficiency. [37] Starting with HF and MP2, numerous methods

were added over time to the package such as CC2, KS-DFT, and LR-TDDFT. The dif-

ferent functionalities were added in the form of separate programs and scripts. For this

work, the most relevant programs for GS calculations are the dscf program, which fa-

cilitates HF and KS-DFT calculations, and the grad program, which features gradient

calculations as well as the ridft and rdgrad programs, which do the same within the RI

approximation. For ES calculations, the escf program is used for LR-TDDFT energy,

oscillator strength, and polarizability calculations, and the egrad program facilitates the

calculation of ES gradients and some other ES properties. For structure optimizations,

the script jobex can be used to perform subsequent runs of one of the energy programs,
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one of the gradient programs, and a program for approximate Hessians and structural

displacements (statpt) until convergence w.r.t. to a given criterium (typical the gradient

norm gcart) is reached. The stationary points may then be further characterized by

calculating the Hessian matrix, which can be done via aoforce for GS stationary points

(excluding LH functionals) or via the script NumForce for both GS and ES stationary

points. This script performs gradient calculations (either via grad/rdgrad or egrad) for

a set of displaced coordinates (in C1 symmetry) to calculate the Hessian as a numerical

first derivative of the gradients. Accurate gradient calculations are important here to

avoid numerical noise.

4.1.2 The egrad Program

The egrad program was developed by Furche and Ahlrichs in 2002 and originally con-

tained their implementation of LR-TDDFT ES gradients for (semi)local and global hy-

brid XC functionals. [35] Other features like non-adiabatic coupling matrix elements [251]

or polarizability derivatives [252] were added later on as they require many of the steps

and routines already available from the ES gradients implementation. As these are not

relevant to this work, they are disregarded in the following explanation of the program

structure.

In Figure 4.1, a simplified overview of the main routines of the egrad program is

given. In addition, the most important matrices from the Z vector equation (eq. 3.20)

and the final ES gradients equation (eq. 3.23) are given. It is assumed that a KS-DFT

calculation was performed with either dscf or ridft so that the GS density matrix D

is readily available from the MOs stored on disk. After an input processing section (not

shown in Figure 4.1), the routine respon is called. The general purpose of this routine

is to find the lowest eigenvalues and eigenvectors of a given matrix using the Davidson

algorithm. [253] This first call of respon serves to solve Casida’s equations (eq. 2.143),

yielding the excitation vectors (U± = (X±Y)) and excitation energies Ω. Solving Casida’s

equation involves setting up the matrix-vector product (A±B)(X±Y) which is done in the

subroutine mvproduct. First, it transforms the excitation vector obtained in the previous

iteration (or as a start guess) from the MO to the AO basis (tramocao), calculates the

Coulombic contributions in colrsp and all XC kernel contributions in df2nd, and finally

back transforms the result to the MO basis (tracaomo). For GHs, additional routines

handle the analytical EXX evaluation (not shown). The EXX contributions featured by

LHs are accounted for as part of the XC kernel in df2nd. Depending on the DFT level,

i.e. the rung of the functional, the appropriate subroutine is called. The corresponding
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egdfin

etwoder

dstv

tracaomo

dfegrd_lochyb

dfegrd_gga

dfegrd_lda

erelax
trovmocao

solscal

trovcaomo

df2nd

colsrsp

tramocao

respon mvproduct

tracaomo

df2nd

colsrsp

tramocao

relrhs wunrel

tracaomo

df2nd

colsrsp

unreld

wrhs

tracaomo trovcaomo

trarel

df3dg

colsrsp

tramocao

df3dg_lochyb

df3dg_gga

df3dg_lda

respon mvproduct

tracaomo

df2nd

colsrsp

tramocao

W

T

R

X±Y

Z

P

Wx

Figure 4.1: Simplified scheme of the egrad program and its main routines. Routines in
dark red boxes were added as part of this work.
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LH routine has been implemented by Maier as part of the LR-TDDFT excitation energy

implementation in the escf program that uses the same routines. [23] Only one of the

excitation vectors that corresponds to the state of interest is needed in subsequent routines

but if this state is not the lowest ES in a given irreducible representation, all lower

excitation vectors will have to be calculated initially to access the state of interest. The

next step is setting up the RHS R (eq. 3.21) of the Z vector equation (eq. 3.20). Except for

the contribution H+
iaσ[T], which is calculated separately in relrhs, this is done in whrs.

This includes the calculation of the XC hyper-kernel contributions given by eq. 3.61 and

3.62 for the LH case. The kernel and hyper-kernel contributions are obtained in df3dg,

which calls either one of the routines df3dg_* depending on the chosen XC functional (red

boxes in Figure 4.1). The functionality of the new df3dg_lochyb routine is described in

detail in Section 4.2. As side products, some of the blocks of the energy-weighted difference

density matrix W as well as the unrelaxed difference density matrix T are obtained in

the routines wrhs and relrhs and stored on disk for later usage. Subsequently, the RHS

R is passed to the respon routine that now serves as a solver for the Z vector equation.

After convergence, Z is passed to erelax where it is added to T to form the relaxed one-

particle difference density matrix P. Moreover, the remaining parts of W are calculated,

in particular the contribution H+
ijσ[P] which requires another call to colrsp and df2nd

for the linear-transformations defined in eq. 3.13a-b. Now, all matrices required for the

final evaluation of ES gradients are available and passed to the egdfin routine or are

read from disk. The one-electron contributions from the final ES gradients expression

(eq. 3.23) are calculated in dstv, while the Coulomb-like two-electron parts are obtained

via etwoder for the case of a RI-J calculation [39] and are otherwise obtained via a separate

routine (not shown). In a last step, the XC potential and kernel contributions to the ES

gradients are calculated in either one of the routines dfegrd_* depending on the chosen

XC functional (red boxes in Figure 4.1). The new dfegrd_lochyb routine is described in

detail in Section 4.2.

To simplify the above explanations, the calculation of the GS gradients has been omit-

ted. They are calculated on the fly using the respective GS density matrices and are

added to the gradients of the excitation energy (loosely referred to ”ES gradients” above)

to yield the true ES gradients. After some minor finalizing steps, the ES gradients are

written to the gradient file for subsequent usage by other programs such as those called

by jobex as part of a structure optimization.
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4.1.3 Local Hybrid Specific Software Infrastructure

On account of previous implementations of LH SCF energies in ridft, [234] GS gradients

in rdgrad, [47] and LR-TDDFT excitation energies in escf, [23] several LH specific rou-

tines required for the calculation of ES gradients are already available. In particular, the

calculation of the A and Aξ matrices required for the seminumerical integration scheme

has been implemented in routines named a_matrix and a_matrices, respectively. Rou-

tines for the calculation of matrix-vector products and (contracted) semilocal quantities

Q named ondes_ks and a general matrix-vector multiplication routine onval_1 are also

available.

Partial derivatives of various LMFs and typically used (semi)local exchange and cor-

relation energy densities are already implemented up to second derivatives and accessed

via the routines lmf_u2 and fdiff_u2. Extension to third partial derivatives is straight-

forward and can be assisted by computer algebra systems and code generation for more

intricate derivatives. Note that these partial derivatives alone do not constitute the XC

potential, contracted kernel, or contracted hyper-kernel matrix elements. It is required

to appropriately combine the various terms derived from the product rule of differentia-

tion and multiply with the contracted transition density matrix quantities if applicable.

For the existing SCF and LR-TDDFT implementations, the routines lochyb_u1 and

lochyb_u2 handle these steps. The resulting contributions are stored on a variable array

named oper for the (semi)local parts and adx_s/as for the non-local contributions. Their

addition to the KS matrix (SCF, ridft) or the (A±B)(X±Y) matrix-vector product

(LR-TDDFT, escf) is handled by the routine onf_k for the (semi)local parts and by

onfx_1/1as for the non-local parts. In onf_k, the density matrix derivatives of the quan-

tities Q ∈ Qa are multiplied with the respective contributions stored previously on oper,

the summation over grid points of the current grid batch is performed, and the result is

put on the global KS matrix or the (A±B)(X±Y) matrix-vector product. In the case

of GS gradients (rdgrad), a similar routine ongrd_k handles the multiplication of the

values stored on oper with the spatial derivatives of the quantities Q ∈ Q,b summation

over basis functions and grid points, and writing to the gradient vector.

aConsider the basis function pairs XµXν for Q = ρ as an example.
bConsider the basis function pairs Xµ∇Xν for Q = ρ as an example.
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subroutine df3dg_lochyb

for n = 1 to Ng do
call funct ▷ Evaluate basis function vector X
call ondes_ks ▷ Perform matrix-vector multiplication Bσ = DσX

▷ Determine GS quantities Q
call lmf_u3 ▷ Evaluate LMF derivatives
call fdiff_u3 ▷ Evaluate (semi)local energy density derivatives
call a_matrix ▷ Calculate A Matrix
call onval_1 ▷ Perform matrix-vector multiplication Gσ = ABσ

for i = 1 to Nexi do (Loop over Excitations)
call ondes_ks/2as ▷ Perform matrix-vector multiplication B±

σ = U±
σX

▷ Determine ES quantities Q±

call onval_1 ▷ Perform matrix-vector multiplication G±
σ = AB±

σ

call lochyb_u3 ▷ Calculate non-local parts G±
σ,nl

▷ Calculate (semi)local parts G±
σ,sl

call onfx_1/1as ▷ Finish calculation of non-local parts
call onf_k/kas rg ▷ Finish calculation of (semi)local parts

end

end
end subroutine

Algorithm 4.1: Simplified pseudocode and explanations for the new subroutine
df3dg lochyb in TURBOMOLE’s egrad program.

4.2 Implementation of ES Gradients for Local Hybrids

4.2.1 Implementation of the Contracted LH Hyper-Kernel

The implementation of the contracted LH hyper-kernel can be broken down into the same

basic steps as required for the contracted LH kernel implemented in df2nd_lochyb. The

new routine is called df3dg_lochyb and presented in Algorithm 4.1. It starts with a loop

over grid points in which all other routines are called. In practice, this loop is organized

as a loop over batches of grid points. These batches may be distributed over multiple

CPU cores by a parallelization wrapper-routine (not shown). In a first step, the basis

function vector X is calculated (funct) as well as its derivatives (∇X, ∇T∇X). Then,

X is contracted with the GS density matrix Dσ to yield the B vector (ondes_ks, cf. also

ref. 67)

Bσ = DσX . (4.1)

In the same routine, the basis function vector and its derivatives are used to evaluate the

(semi)local quantities Q ∈ Q. The results are used in lmf_3 and fdiff_3 to determine

the partial derivatives of the LMF and X/C energy densities up to third derivatives. While
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these derivatives are easily obtained for simple quantities like the t-LMF, computer algebra

and code generation were used for more intricate cases such as the s-LMF or the B95

correlation energy density. Next, the A matrix is calculated in a_matrix and multiplied

with the Bσ vector in onval_1 to yield the Gσ vector (cf. also ref. 67)

Gσ = ABσ . (4.2)

The setup and storing of the Bσ and Gσ serves to calculate many of the EXX related

terms from the contracted hyper-kernel as given in eq. 3.53. For example, the contribution

Xµ(ADσX)ν from the second line of the RHS of eq. 3.53 can be formed by multiplying

the µ-th element of the basis function vector X with the ν-th element of the Gσ vector,

and the EXX energy density 1
2
XTDσADσX as required in the fifth line of the RHS of

eq. 3.53 is obtained as the dot product of Bσ and Gσ. Next, a loop over excitation vectors

is entered. However, since egrad handles only the state of interest, this loop is usually

terminated after one iteration. An exception to this occurs if symmetry is used and the

state of interest is described by a degenerate irreducible representation, which is internally

handled via multiple excitation vectors. Within this loop, the same steps as for the GS

density matrix are performed using the transition density matrices U±
σ . Instead of the

GS quantities Q, ondes_ks now calculates the analogous transition density quantities

Q± =
∑︂
κλσ′

∂Q

∂Dσ′
κλ

U±
κλσ′ (4.3)

as occurring in the definitions of the contracted semilocal potential operators (eq. 3.52b-d

and eq. A.9). All intermediate quantities calculated so far are passed to the lochyb_u3

routine that handles the combination of partial derivatives, (semi)local quantities Q(±),

B(±)
σ vectors and G(±)

σ vectors as expressed by eq. 3.53-3.54. For the symmetric non-local

part, the vector

G+

σ,nl = −2ˆ︁∂+aσG
+

σ −ˆ︂∂∂++

aσGσ (4.4)

is constructed and stored on the variable gadx_s, while for the antisymmetric part, there

are no non-local contributions to the contracted hyper-kernel. For the (semi)local part, the

numerous terms generated by the (contracted) semilocal potential operators are collected

on different vectors depending on the required basis function pair

G±
σ,sl = G±

σ,xx + G±
σ,dxx + G±

σ,dxdx , (4.5)
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where G±
σ,xx is intended for multiplication with the basis function pair XµXν , G±

σ,dxx with

∇T(XµXν), and G±
σ,dxdx with ∇TXµ∇Xν . These contributions are collectively stored on

an array called goper for the symmetric part and goper_as for the antisymmetric part.

The calculation of the kernel contributions to the (A±B)(X±Y) matrix-vector product

also required in the superordinated wrhs routine (cf. Figure 4.1), is handled on the fly in

lochyb_u3 using the same code as in lochyb_u2 and the results are stored on adx_s/as

and oper. Finally, the non-local contributions stored on gadx_s are passed to onfx_1,

where they are multiplied with the basis function vector X. A summation over all grid

points of the grid batch is performed and the results are written to the final contracted

hyper-kernel. Similarly, the (semi)local contributions stored on goper and goper_as are

processed by onf_k using the appropriate basis function pair for each contribution.

4.2.2 Implementation of the LH Potential and Kernel Gradients

The implementation of the LH potential gradients (eq. 3.63) and the (anti)symmetric

kernel gradients (eq. 3.61-3.62) is realized in the routine dfegrd_lochyb which is called

by egdfin as the last step of the ES gradients calculation in egrad (cf. Figure 4.1). A

simplified overview of the routine is given in Algorithm 4.2. Many of the steps are similar

to those explained for the df3dg_lochyb routine in Section 4.2.1 and not discussed again.

Note that an additional call to ondes_ks is invoked passing the relaxed one-particle

difference density matrix P instead of the GS density matrix to obtain the respective BP
σ

vector and contracted quantities QP . Additionally, a derivative analog of the B vector is

calculated (cf. also ref. 47)

Bξ
σ = Dσ∇X . (4.6)

The calculation of the A and Aξ matrices is handled by the routine a_matrices that

directly contracts these matrices with each of the B vectors yielding the respective G and

Gξ vectors (multiplications yielding Gξ are not shown in Algorithm 4.2). [47] All terms

are combined in lochyb_gradfx_u according to eq. 3.61-3.62 for the kernel gradients and

in lochyb_gradvp_u according to eq. 3.63 for the potential gradients. Similar to the

onf_k routine used in df3dg_lochyb, the routine ongrd_k handles the processing of the

(semi)local contributions, performs the final grid summation and writes the contributions

to the gradient vector. The non-local contributions Gσ,nl, G
±
σ,nl, and GP

σ,nl are multiplied

with the appropriate Bξ vectors in get_hfx1_rg, while get_hfx2_rg, is used to multiply

Gξ
σ,nl, G

±ξ
σ,nl, and GPξ

σ,nl with the appropriate B vectors (cf. also ref. 47). Derivatives of the

quadrature weights (cf. eq. 3.42) are calculated at several points on the fly. Some of the

remaining contributions are added in a final step using the routine wmgrd.
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subroutine dfegrd_lochyb

for n = 1 to Ng do
call funct ▷ Evaluate basis function vector X
call ondes_ks ▷ Perform matrix-vector multiplication Bσ = DσX

▷ Determine GS quantities Q
call ondes_ks ▷ Perform matrix-vector multiplication BP

σ = PσX
▷ Determine P contracted quantities QP

call lmf_u3 ▷ Evaluate LMF derivatives
call fdiff_u3 ▷ Evaluate (semi)local energy density derivatives
for i = 1 to Nexi do (Loop over Excitations)

call ondes_ks/2as ▷ Perform matrix-vector multiplication B±
σ = U±

σX
▷ Determine ES quantities Q±

call a_matrices ▷ Calculate A and Aξ Matrix
▷ Perform matrix-vector multiplication Gσ = ABσ

▷ Perform matrix-vector multiplication G±
σ = AB±

σ

▷ Perform matrix-vector multiplication GP
σ = ABP

σ

call lochyb_gradfx_u ▷ Calculate non-local kernel parts G
(±)

σ,nl, G
(±)ξ
σ,nl

▷ Calculate (semi)local kernel parts G±
σ,sl

call ongrd_k ▷ Finish calculation of (semi)local parts G±
σ,sl

call get_hfx1_rg ▷ Finish calculation of non-local parts G
(±)

σ,nl

call get_hfx2_rg ▷ Finish calculation of non-local parts G
(±)ξ
σ,nl

end

call lochyb_gradvp_u ▷ Calculate non-local potential parts GP
σ,nl, G

P,ξ
σ,nl

▷ Calculate (semi)local potential parts GP
σ,sl

call ongrd_k ▷ Finish calculation of (semi)local parts GP
σ,sl

call get_hfx1_rg ▷ Finish calculation of non-local parts GP
σ,nl

call get_hfx2_rg ▷ Finish calculation of non-local parts GP,ξ
σ,nl

call wmgrd ▷ Add weight derivatives

end
end subroutine

Algorithm 4.2: Simplified pseudocode and explanations for the new subroutine
dfegrd lochyb in TURBOMOLE’s egrad program.

4.3 Technical Evaluation

4.3.1 Numerical Validation

The intricate form of the contracted LH hyper-kernel, kernel gradients, and potential

gradients makes their implementation very prone to man-made errors. To check the cor-

rectness of the implementation, the ES gradients calculated using egrad are compared to

numerical gradients calculated using ES energies from escf. Importantly, such numerical
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tests require that the ES energies from escf are correct, i.e. the LH XC kernel has been

correctly implemented. This was verified by comparing static polarizabilities from LR-

TDDFT calculations (escf) with numerical results obtained within a finite-field ansatz

using an external electric field and GS energies calculated with dscf (cf. Section 6.3.2

for details). Numerical gradients can be calculated with finite-difference (FD) formulas

for the first derivative using energies obtained at structures displaced along a Cartesian

coordinate by a step size δ. The three-point formula

∂E(z)

∂z

⃓⃓⃓⃓
z=z0

≈ E(z0 + δ)− E(z0 − δ)

2δ
+O

(︁
δ2
)︁

(4.7)

is commonly used for this purpose and gives reasonably accurate results with an error

term quadratic in δ. [254] Even better accuracy can be achieved using the five-point formula

∂E(z)

∂z

⃓⃓⃓⃓
z=z0

≈ −E(z0 + 2δ) + 8E(z0 + δ)− 8E(z0 − δ) + E(z0 − 2δ)

12δ
+O

(︁
δ4
)︁

(4.8)

for which the error term is quartic in δ. [254]

Test calculations using these FD formulas have been performed for various molecules,

functionals, and excitation types (singlet, triplet, and closed-shell/open-shell unrestricted).

As an illustrative example, results are presented here for the first singlet ES of the carbon

monoxide (CO) molecule using the LH07t-SVWN functional. The def2-TZVP [255] basis

set was used and very strict convergence criteria were set for all calculation steps (GS

energy convergence: scfconv 12, GS density matrix convergence: denconv 1d-10, exci-

tation vector convergence: rpaconv 10). For the DFT part, very fine quadrature grids

(gridsize 7, radsize 14) and tight numerical cutoffs were enabled using the reference

keyword. The RI-J approximation and S- and P-junctions were not used. To judge the

accuracy of the egrad gradients, two comparisons are made. On the one hand, GS gra-

dients were calculated using the grad program to test the consistency of errors among

GS and ES gradients. On the other hand, gradient calculations were repeated with the

PBE0 functional using the standard analytical EXX implementation to ensure that the

seminumerical implementation does not introduce any additional errors.

All results for energies and gradients are reported in Table 4.1. The deviation of the

gradient components obtained with grad or egrad from those obtained using a three-

point FD formula are on the order of 10−6 au. Although this is already a good agreement,

it does not rule out the possibility of minor bugs in the implementation in parts that

marginally contribute to the final gradients. However, when comparing to the results
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Table 4.1: GS and ES energies for the CO molecules at different internuclear separations
(top) and z-components of the GS and ES gradient for the oxygen atom (O) evaluated
with different methods (see text) at R = 2.000 (bottom). All values in au.

LH07t-SVWN PBE0

R(C–O) EGS EES EGS EES

2.002 −112.934775540 −112.592270075 −113.219903624 −112.883241109
2.001 −112.934567601 −112.591867220 −113.219705174 −112.882849554
2.000 −112.934357634 −112.591462321 −113.219504708 −112.882455974
1.999 −112.934145631 −112.591055371 −113.219302219 −112.882060362
1.998 −112.933931586 −112.590646365 −113.219097700 −112.881662711

Method ∂EGS

∂zO
∂EES

∂zO
∂EGS

∂zO
∂EES

∂zO

FD-3 (eq. 4.7)a −0.210984920 −0.405924226 −0.201477515 −0.394596092
FD-5 (eq. 4.8) −0.210983741 −0.405923128 −0.201476337 −0.394595013
grad/ egrad −0.210983776 −0.405923100 −0.201476335 −0.394594955
Deviation (FD-3) 1.1 · 10−6 1.1 · 10−6 1.2 · 10−6 1.1 · 10−6

Deviation (FD-5) −3.6 · 10−8 2.8 · 10−8 2.1 · 10−9 5.8 · 10−8

a Using a step size of 0.001 au.

obtained with the five-point FD formula, deviations drop by almost two orders of magni-

tude to about 10−8 au, which approaches the convergence settings chosen for the energy

calculations. Considering that the errors are consistent among different programs (grad/

egrad) and different implementations (seminumerical/ analytical EXX), the correctness

of the implementation can be considered as given.

4.3.2 Grid Dependence

For the numerical validation of the implementation presented above, very fine numerical

quadrature grids were used for the seminumerical integration scheme. Due to the formal

Ng ·N2
b scaling of the A matrix evaluation, the grid size directly affects the time-critical

step of the seminumerical scheme. For practical applications, it is therefore desirable

to keep the grid size as small as tolerable with regard to accuracy. As a first assess-

ment, the 1 1A′′ excited state of the HCN molecule is studied. It was optimized with

the PBE0 functional using the new seminumerical implementation of EXX integrals as

well as the standard analytical implementation for comparison. The def2-QZVPPD basis

set [256,257] was used and strict convergence criteria were applied (GS energy convergence:

scfconv 10, GS density matrix convergence: denconv 1d-9, excitation vector conver-

gence: rpaconv 7). The RI-J approximation [39] was used to reduce the computational
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Figure 4.2: Deviation of seminumerical PBE0 results from the corresponding analytical
results for the C−H bond length, the ∠(HCN) bond angle and the energy of the optimized
1 1A′′ excited state of HCN for different grid sizes. Underlying numerical data and total
number of grid points are provided in Table A.3.

costs.c The influence of including quadrature weight derivatives has also been studied.

Deviations from the analytical results for TURBOMOLE grid sizes between 1 and 7 are

plotted in Figure 4.2 and numerical data is provided in Table A.3. Note that the an-

alytical PBE0 result were calculated using the same grid settings for the DFT part as

for the seminumerical PBE0 results. Hence, the deviations do not reflect the total grid

error but the additional grid error from the seminumerical EXX evaluation.d Already for

the smallest grid, errors are below 0.01 pm for the C–H bond length, below 0.1 deg for

the bond angle, and below 10−5 ha for the ES energy. Inclusion of WDs has almost no

influence on the absolute errors for energies, which is as expected since WDs affect the en-

ergy only indirectly via changes in the structures and these structural changes are minor.

WDs help, however, to reach excellent accuracy already at small and medium-sized grids

for the bond length and bond angle without adding much to the computational costs.

Errors for TURBOMOLE grid sizes above 4 are extremely small. In fact, they are too

small to be detected with sufficient accuracy compared to the reached convergence for

cErrors from the RI-J approximation are grid independent and indirect changes in errors for the RI-J
part via structural changes are negligible in this comparison.

dA plot that reflects the total grid error is included in Appendix A.6 (Figure A.1).
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the residual gradient vector norms, which is why the trends seen in Figure 4.2 for these

low-error regimes are of no significance.

The above example indicates that the additional grid errors from the seminumerical

EXX evaluation should be negligible even with the smallest grid. To confirm the general-

ity of this observation, a broader test set of molecules and ESs has been considered. The

test set includes several ESs of small molecules for which high-resolution experimental gas

phase data was available. It was compiled by Furche and Ahlrichs [35,39] and is also used

to benchmark different XC functionals as part of this work (cf. Section 5.3.1, 5.4.1 and

5.5.1). To study the influence of ES parameters on the grid size, the ESs were optimized

at the PBE0/ def2-QZVPPD level of theory, where either the new seminumerical EXX

evaluation was used or the standard analytical EXX integration scheme. Two TURBO-

MOLE grid settings were tested, i.e. the smallest grid size 1 as well as grid size 2 with

diffuse 1 option for additional radial grid points further away from the nuclei. Reference

values were obtained at grid size 5, diffuse 2 using the analytical EXX implementation.

Convergence thresholds were the same as above. Deviations of ES structural parameters

for the smaller grid sizes from the reference calculations are plotted in Figure 4.3 for those

25 parameters where deviations larger than 0.1 pm or 0.1 deg at grid size 1 were deter-

mined. The remaining 38 parameters evaluated for the test set showed smaller deviations

already at grid size 1 and are not plotted (see Table A.4 for numerical data). While

the deviation of the data points from the zero line in Figure 4.3 is related to the total

grid error, differences between the conventional and seminumerical results at the same

grid size (squares and crosses in Figure 4.3) reveal the additional error introduced by the

seminumerical scheme.

No systematic over- or underestimation of structural parameters is observed when using

smaller grids. For the small grid (red labels), several parameters show notable but small

total absolute deviations of around 0.5 pm or 0.5 deg. Somewhat larger effects include a

distinct 3.0 deg deviation for the out-of-plane dihedral angle in the 1 3A′′ state of CH2S

and a 1.8 pm deviation for the bond length in the 1 1Σ+
u state of Mg2. These deviations

have to be put into perspective since the potential energy surfaces of these states are very

flat along the respective coordinates. Nonetheless, these cases expose the limitations of

the small grid. However, even a moderate increase of the grid size (green labels) eliminates

almost all deviations. Note that diffuse grids are of course only required for diffuse states

(ESs with notable Rydberg character) and do not necessarily entail an increased number

of grid points as a tuning of the radial mapping parameter is often sufficient. [23] Errors

introduced by the seminumerical scheme are mostly small with the largest deviation being
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Figure 4.3: Dependence of the ES structures on the grid size for the analytical and the
seminumerical implementation, respectively (PBE0/ def2-QZVPPD level). Datapoints
indicate deviations for smaller grid sizes (see key) from analytical results obtained with a
large diffuse grid (TURBOMOLE: grid size 5 diffuse 2). From a total of 63 parameters in
the test set only those parameters with a deviation larger than 0.1 pm or 0.1 deg at grid
size 1 (25 parameters) were plotted for clarity.

0.4 deg for the 1 1B1 state of SiF2 for the small grid (excluding here the two most severe

absolute outliers). They are further reduced when switching to the medium-sized grid.

In conclusion, errors of the seminumerical scheme are well controlled and the choice of

grid requires no particular additional care for LHs compared to standard DFT functionals.

For most applications, the smallest grid (TURBOMOLE grid size 1) is expected to deliver

sufficient accuracy. Potentially more demanding cases such as Rydberg states should be

checked for grid convergence especially for the radial grid.
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4.3.3 Neglect of the Current Density Response

As discussed in Section 3.2.2, the neglect of the current-density response for τ -dependent

functionals considerably reduces the theoretical and computational complexity of the

antisymmetric XC hyper-kernel and XC kernel-gradient terms. An ad-hoc test of the

validity of this approximation can be performed for the diatomic molecules from the

test set by Furche and Ahlrichs [35,39] by scanning the potential energy curves of the ESs

for their minima. This was done using the LH implementation of ES energies in escf,

which fully considers the current-density response. [23] Minimum bond lengths are then

compared against those obtained from the gradient-based optimization using egrad. The

results in Table 4.2 indicate that the effects of the current-density response are rather

Table 4.2: Effects of the current-density response on ES bond lengths (in pm) for di-
atomic molecules at the LH07t-SVWN/ def2-QZVPPD level of theory. Optimizations
without inclusion of the current-density response (rno cure ) were performed using the new
gradient implementation, while optimizations with inclusion of the current-density re-
sponse (rcure ) were performed using a linear-search algorithm for ES single-point energies.

Mol. State ka rno cur
e rcure ∆re ∆re/r

cur
e

AsF 1 3Π 149 197.70 197.08 0.62 0.31%
BeH 1 2Π 249 133.10 133.10 0.00 0.00%
BeO 1 1Π 501 144.35 143.88 0.47 0.32%
BF 1 1Π 673 130.68 130.33 0.35 0.27%
BH 1 1Π 316 121.47 121.23 0.24 0.20%
CO 1 1Π 996 122.91 122.62 0.29 0.24%
CO 1 3Π 1334 119.94 119.80 0.14 0.12%
CuH 2 1Σ+ 173 158.44 158.03 0.41 0.26%
Li2 1 1Σ+

u 13 313.20 307.64 5.56 1.81%
Mg2 1 1Σ+

u 17 323.08 325.82 −2.74 −0.84%
N2 1 1∆u 1074 127.38 127.27 0.11 0.09%
N2 1 1Πg 1291 121.16 121.06 0.10 0.09%
N2 1 1Σ−

u 1020 126.57 126.47 0.10 0.08%
N2 1 3Πg 1409 120.20 120.10 0.10 0.08%
NH 1 3Π 561 104.42 104.21 0.21 0.20%
NO 1 2Σ+ 2904 104.92 104.67 0.25 0.24%
P2 1 1Πg 374 198.37 198.23 0.14 0.07%
SiO 1 1Π 513 160.17 159.91 0.26 0.16%
ScO 1 2Π 520 168.33 168.19 0.14 0.08%
VO 1 4Π 664 163.03 163.10 −0.07 −0.05%

MAE 0.62 0.28%
MAE*b 0.22 0.16%

a ES force constants (in kg s−2) from calculations without current-density
response are given as an estimate of the steepness of the potential-
energy curves.

b Calculated excluding Li2 and Mg2.
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small and in most cases on the order of 0.2 pm. A notable deviation of 5.6 pm (2%) is

found for the 1 1Σu
+ state of Li2 and a −2.7 pm (−0.8%) deviation for the 1 1Σu

+ state

of Mg2. These deviations can be attributed to the flatness of the ES potential-energy

surfaces (weak partial M-M bonds) in those two cases, where small changes in the energy

can cause drastic changes in the minimum bond lengths. Moreover, the unoccupied

orbitals involved in this excitation are comparatively diffuse. For VEEs of low-lying

Rydberg states, it is known that the steep change of the LMF in the intermediate valence/

asymptotic region of the molecule has a large impact. [24] This is because the LMF controls

the amount of locally admixed EXX, which predominantly affects Rydberg excitations.

This explanation is supported by the results for the 1 1Σu
+ state of Li2 obtained with

the mGGA functional TPSSh. While this functional is τ -dependent as well, optimized

bond lengths including and neglecting the current-density response deviate by only 0.9 pm

(305.6 pm vs. 304.7 pm). Overall, the neglect of the current-density response appears to

be well justified for ES gradients with the exception of extremely weak (stretched) bonds

in Rydberg ESs.

4.3.4 Timings

Computational Details

To analyze the efficiency of the new implementation, two scaling tests are performed.

First, the scaling w.r.t. system size is determined and compared to that of the standard

analytical implementation used for GHs. For this purpose, the lowest singlet ESs of conju-

gated all-trans polyene chains with an increasing number of carbon atoms are considered.

These systems were previously studied for the LH implementation in escf. [23] Limit-

ing the increase of the system size to one dimension benefits the efficiency of the overlap

prescreening used in the conventional analytical implementation of EXX integrals (cf. Sec-

tion 2.1.4). [23] While the choice of the smallest grid (TURBOMOLE grid size 1) avoids

large prefactors for the seminumerical scheme, the use of the only medium-sized def2-

TZVP basis set somewhat hinders to see the profits expected from the improved formal

scaling w.r.t. basis set size of the seminumerical implementation. However, both choices

seem realistic if calculations are envisaged for molecules with a hundred or more atoms,

which is a typical field of application for (TD)DFT methods. Because the analytical imple-

mentation of EXX integrals uses a prescreening for non-overlapping basis function pairs,

an S-junction-based prescreening was used for the seminumerical scheme as well, where

the same threshold (scftol) is used and left at its default value (10−(scfconv+1)/(3 ·NBF)).

Thus, overall, the setup makes for a fair and realistic comparison.
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As a second analysis, the scaling w.r.t. basis-set size was studied for the BODIPY

molecule and its first singlet ES. The same settings as described above were used and

calculations with various basis sets were performed including the STO-3G basis set, [258]

the Karlsruhe basis sets (def2-SV(P), def2-SVP, def2-SVPD, def2-TZVP, def2-TZVPP,

def2-TZVPD, def2-QZVP, def2-QZVPD), [255–257] the Dunning basis sets (cc-pVXZ, where

X=D,T,Q), [259] augmented Dunning basis sets (aug-cc-pVXZ, where X=D,T,Q), [259,260]

and the Jensen basis sets (pc-1, pc-2, pc-3). [261,262]

For both setups, the LH07t-SVWN and PBE0 functional were used for (seminumerical)

LH and (analytical) GH calculations, respectively. The RI-J approximation was used and

standard convergence criteria were set (GS energy convergence: scfconv 9, GS density

matrix convergence: denconv 1d-7, excitation vector convergence: rpaconv 5). In ad-

dition to timings for egrad, timings for the calculation of GS gradients (rdgrad) and ES

energies (escf) are determined for comparison. Linear fits were determined on double-

logarithmic scales using the number of primitive basis functions and the total wall time,

which is virtually identical to the total CPU time with differences not exceeding 1 second

for the largest systems.

Scaling w.r.t. System Size

The timings for the calculations on polyene chains obtained with the def2-TZVP basis set

at grid size 1 are given in Table A.2 (Appendix A.5) and are plotted in Figure 4.4 along

with linear equations for fits on the double-logarithmic scales. For both the seminumerical

LH and the analytical GH implementation, the rdgrad program requires the least com-

putation time followed by escf and egrad. This is as expected because a GS gradients

calculation in rdgrad does not require an iterative procedure. An escf run requires one

call to the iterative respon routine, whereas egrad requires two such iterative steps as

well as additional steps for intermediate quantities and the final gradient step (cf. Sec-

tion 4.1.2). For all system sizes, the seminumerical LH implementation is slower than

the analytical GH implementation. This finding contradicts that from ref. 23, where the

seminumerical escf implementation was found to be faster than the analytical imple-

mentation for all studied polyene chains. The reason for that is massive improvements

in the analytical routines of the escf program in the more recent TURBOMOLE ver-

sion used here. The introduction of nonorthonormal Krylov space methods [263] and the

RI-J approximation [263] has enabled to reduce the computational cost for GH calculations

considerably compared to that of the conventional implementation used before TURBO-

MOLE V7.2 and in the investigations by Maier et al. [23] Also note, that the seminumerical
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Figure 4.4: Double-logarithmic plot of the wall times and the system size of polyene
chains for calculations with different TURBOMOLE programs using the def2-TZVP basis
set and a small grid (grid size 1). The number of primitive basis functions is used for
the horizontal axis with the number of carbon atoms marked for illustration. Linear
fits are shown for LH calculations (solid lines) using the seminumerical implementation
and GH calculations (dashed lines) using the standard analytical implementation of EXX
integrals.

implementation can be considerably faster than the analytical implementation for larger

basis sets (see also below) while this comparison uses the medium-sized def2-TZVP basis

set.

Overall, all programs show a scaling that is roughly quadratic with system size with

moderate advantages for the analytical GH implementations. Notably, the new seminu-

merical egrad implementation of LHs does not show significantly deteriorated scaling. As

expected, the prefactor is notably increased by a factor of 10−3.18/10−3.74 ≈ 3.63 compared

to the seminumerical escf implementation. Considering the additional iterative step for

solving the Z vector equation, the setup of intermediate quantities that also involve the

costly A matrix evaluation, and the final ES gradients step involving the A and Aξ matri-

ces, such additional costs are inevitable. The increase of the prefactor is virtually identical
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to that for the same comparison of the respective analytical GH implementations, where

it amounts to 10−2.93/10−3.48 ≈ 3.55.

The timings presented so far only include an overlap prescreening (via S-junctions)

using the rather tight default threshold. This was done for better comparison with the

analytical implementation which uses the same threshold for the overlap prescreening.

Previous investigations for the LH implementation in escf [23] and rdgrad [47] revealed

that looser thresholds can be applied without significant loss in accuracy. Besides, P-

Junctions (cf. Section 3.2.1) can be applied to screen for non-contributing elements of the

B(±)
σ vectors. However, a test calculation revealed only a moderate additional reduction in

computation time of about 4% in an escf run for the C40H42 molecule using the fairly loose

threshold of 10−6 for S- and P-junctions. Moreover, for some systems such as the C60H62

molecule, the escf calculations no longer converge if the default convergence criterium

(rpaconv 5) is applied. Slightly tightening the thresholds for S- and P-junctions to 10−8

gives converged results but leads to a 0.7% increase in computation time compared to

calculations where no P-junctions are used (and the prescreening routines can be skipped)

and only default S-junctions are applied. Of course, such problems transfer to the egrad

implementation. Despite that, it should be noted that S- and P-junctions can still be

useful for practical applications where convergence criteria can be loosened, which was not

reasonable within the formal comparison intended here. However, even with a loosened

convergence threshold, a calculation may take more iterations to converge when loose S-

and P-junctions are used which might lead to overall longer wall times than accepting

slightly longer computation times per iteration at tighter S- and P-junction thresholds.

Predicting upfront what is favorable for a particular case is hardly possible. Also, the risk

of unconverged calculations that require additional human work in adapting the settings

and restarting has to be weighed against the moderate (relative) savings in computation

time.

Scaling w.r.t. Basis-Set Size

The increasing length of the polyene chain in the setup described above does not only

entail an increased number of basis functions, but also an increased number of grid points.

While the increase in grid size hardly affects the analytical GH implementation, it linearly

increases the computation time for the seminumerical LH implementation. For an isolated

investigation of the scaling w.r.t. basis-set size, one given molecule (BODIPY) was studied

at the same grid size using various basis sets. The results for these calculations are given

in Table A.1 (Appendix A.5) and are plotted in Figure 4.5 along with linear equations
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Figure 4.5: Double logarithmic plot of the wall times and the number of primitive basis
functions Nprim for calculations with different TURBOMOLE programs for the BODIPY
molecule using various basis sets (see text). Linear fits are shown for LH calculations
(solid lines) using the seminumerical implementation and GH calculations (dashed lines)
using the standard analytical implementation of EXX integrals.

for fits on the double-logarithmic scales. The analytical GH implementations exhibit a

roughly quartic scaling w.r.t. basis-set size as expected from the formal N4
b scaling of the

EXX integral evaluation scheme. The formal quadratic (N2
b) scaling of the seminumerical

implementation is reached in neither of the three investigated programs. The reason for

that is the dependence of the scaling of the integral calculations on the angular-momentum

quantum number l (cf. eq. 2.25), which scales as l5 and l10 for two-center and four-center

integrals, respectively. [23] The theoretically expected advantage of the seminumerical im-

plementation over the analytical implementation for larger basis sets arises at around 800

primitive basis functionse consistent among the investigated programs. This cross-over

depends on the number of grid points and therefore on the grid size setting and system

size.

eThis corresponds to the def2-TZVPD or cc-pVTZ basis set for the BODIPY molecule.
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The linear fits for the scaling w.r.t. basis-set size in Figure 4.5 are less accurate than

those for the scaling w.r.t. system size from Figure 4.4. This has to do with the different

types of basis sets investigated in the former case. In particular, augmentation with diffuse

functions entails a less effective overlap prescreening and thus increases computational

cost compared to a non-augmented basis set with the same number of primitive basis

functions.

As a final remark, note that all benefits seen for the LH implementation will transfer

to calculations with GHs if the same seminumerical implementation is used.f In fact, the

performance for seminumerical GH calculations can be expected to be even better than

for LHs because Aξ matrices do not have to be calculated (cf. Section 3.2.1).

fThis is feasible in TURBOMOLE either by specifying a constant LMF (c-LMF) in the LH input or by
using the separate senex implementation.
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5 Validation of Local Hybrids for

Excited-State Properties

The presented implementation of ES gradients for LHs facilitates for the first time the

efficient optimization of ES structures with this class of functionals. Besides obtaining

structural parameters of ESs, it is now possible to determine emission energies at relaxed

structures as well as adiabatic excitation energies (AEEs). Via numerical differentiation

of ES gradients, harmonic ES vibrational frequencies can be computed which allows to

simulate absorption and emission spectra within the Franck–Condon approximation and

provides access to 0–0 energies (cf. Section 2.4.3). In contrast to absorption VEEs that

were already investigated with LHs, [17,24,25] 0–0 energies are experimentally measurable

and are thus interesting quantities for benchmarking LHs. In this chapter, LHs are inves-

tigated for ES structural parameters, fluorescence and phosphorescence emission energies,

AEEs and 0–0 energies, harmonic ES vibrational frequencies, and the emulation of vi-

bronically resolved spectra. The studies were originally published in ref. 212 and ref. 264

and are reproduced here in a new order (refer to the front matter for details). Parts from

ref. 212 are reprinted with permission from R. Grotjahn, F. Furche, M. Kaupp, J. Chem.

Theory Comput. 2019, 15, 5508. Copyright 2019 American Chemical Society. Parts from

ref. 264 are reprinted with permission from R. Grotjahn, M. Kaupp, J. Chem. Theory

Comput. 2020, 16, 5821. Copyright 2020 American Chemical Society.

5.1 Introduction

The significance of benchmark studies crucially depends on the selection of test sets and

the quality of the underlying reference data. While gas phase experimental data are closest

to the real value of a quantity of interest, they also contain contributions not covered by the

electronic structure method under investigation. For the LR-TDDFT methods to be eval-

uated here, this includes, e.g., effects of higher-order excitations, non-Born-Oppenheimer

effects, anharmonicity effects, and relativistic effects. Given that such contributions are

small relative to the expected error of the electronic structure method (here, mainly the

XC functional error), gas-phase experimental data can still be used for benchmarking
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Figure 5.1: Chemical formulas of the molecules included in the Furche and Ahlrichs test
set. [35,39]

purposes. Also note that the accuracy at which molecular parameters can be deduced

from experimental data varies. While ES bond lengths of diatomic molecules and AEEs

can usually be deduced from experimental spectra with great accuracy, structural param-

eters of polyatomic molecules can be more problematic. [212] They are typically obtained

from vibronic spectra via complex fitting procedures (cf., e.g., ref. 265) and are thus

more prone to errors. [212] Reference values determined by an accurate electronic structure

method such as correlated wave-function methods are more closely related to the quantity

calculated with the method under investigation but do not necessarily correspond to an

experimentally measured quantity.

The first test set under investigation here has been compiled by Furche and Ahlrichs [35,39]

and uses gas-phase experimental data as reference values. The molecules under inves-

tigation are shown in Figure 5.1 and are mainly small inorganic molecules, but some

organic molecules are also included. The test set covers ES structural parameters for

different bond types, harmonic ES vibrational frequencies, and a mixture of AEEs (di-

atomic molecules) and 0–0 energies (polyatomic molecules) for a variety of ESs with a

different character (valence and Rydberg) and spin multiplicity. For some molecules,

two or more ESs are considered. The experimental reference values are mostly in satis-

factory agreement with available theoretical reference values, [266,267] except for the 1 1Au

state of acetylene. For this state, the reference values were updated to more recent ex-

perimental values, [268] which improves the agreement with the high-level computational

results. [266,269,270]

A larger test set containing small and medium-sized organic and inorganic molecules

has been compiled from several works by Jacquemin and coworkers [266,267,271–273] and

is shown in Figure 5.2. It is used here to benchmark the performance for ES bond

lengths for different bond types as well as for fluorescence energies. The reference val-

ues are coupled-cluster results obtained at different levels of theory. Results obtained

at the CC3/aug-cc-pVTZ level of theory are the most trusted, but structure optimiza-

tions at this level are prohibitively expensive for all but the smallest molecules. [264] The

(slightly) lower computational levels used for the reference values are CC3/def2-TZVPP,

CCSDR(3)/aug-cc-pVTZ, and CCSDR(3)/def2-TZVPP. [264] Compared to CC3/aug-cc-
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Figure 5.2: Chemical formulas of the molecules included in the Jacquemin test
set. [266,267,271–273] Molecules shown in gray were excluded from the statistical analysis be-
cause of convergence problems with several functionals.

pVTZ or CASPT2/aug-cc-pVTZ reference values, the latter gives an average error of 0.3

pm (MAE) for bond lengths. [264,266]

For the assessment of phosphorescence energies, a set of medium-sized organic molecules

previously studied by Adamo, Ehara, and coworkers [274] at the SAC-CI and PBE0 level

of theory is considered. Additionally, three smaller molecules from ref. 271 were added

to the test set. The molecules are shown in Figure 5.3 and one or more triplet ESs are

studied for each molecule. For the triplet states previously studied at the SAC-CI level,

improved reference values for the phosphorescence energies were obtained at the CC3 level

using a basis set extrapolation at the CC2 level (cf. Section 5.2.3 for details), all at the

SAC-CI structures from ref. 274.

While ES structural parameters, vertical fluorescence energies, and vertical phosphores-

cence energies are undoubtedly valuable quantities for benchmarking TDDFT methods,
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Figure 5.3: Chemical formulas of the molecules included in the Adamo and Ehara test
set [274] and additional molecules studied alongside (dashed box) from ref. 271.
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they are either difficult to measure and therefore rarely reported (ES structural parame-

ters) or not at all measurable (vertical transition energies). By contrast, absorption and

emission spectra are routinely recorded and frequently published. Computationally, the

position of absorption or emission bands are often approximated as the vertical absorption

or emission energies and empirically broadened using Gaussian line shapes. While this

approach is often successful, especially when thermal averaging conceals details in the

shape of the experimental spectrum, it cannot recover vibronic effects typically observed

in the fine structure of high-resolution spectra at low temperatures (cf. Section 2.4.3 for

theoretical details).

For vibronically resolved absorption spectra, the performance of the XC functionals

BP86, B3LYP, and BHLYP has been previously studied for 43 transitions of organic

molecules by Dierksen and Grimme. [275] The amount of EXX admixture affects the shape

of these spectra significantly, but a generally optimal value could not be established. [275,276]

Besides evaluating the general performance of LHs for the emulation of vibronic spectra,

it is therefore also interesting to analyze if the more flexible mixing scheme used in LHs

provides a more uniform behavior among different systems compared to GHs that use a

constant admixture of EXX.

5.2 Computational Details

5.2.1 Furche and Ahlrichs Test Set

The 1 1B1 ES of CCl2 was excluded from the Furche and Ahlrichs test set here, as it

showed non-real instabilities for all considered LH functionals. Pyridine and porphyrin

were excluded from the test set because reference data was not available for all investigated

properties. Note that pyridine is contained in the test set of phosphorescence energies

from ref. 274 also discussed within this chapter. In ref. 39, the 1 4Π state of VO, the 1 3Π

state of AsF, and the 2 1A state of propynal were added to the test set and are included

here as well.

If not stated otherwise, all calculations have been performed using the def2-QZVPPD

basis set. [257] Compared to the aug-TZVPP basis set used in ref. 35, this basis set is of

quadruple-ζ quality and has been optimized for the calculation of molecular properties.

While impractically large for many applications, this basis set is feasible for the given test

set and is used here to essentially work at the orbital-basis limit. The 2 1B1 ES of the H2O

molecule exhibits distinct Rydberg character and thus required additional diffuse f - and

g-functions. The corresponding exponents were taken from Dunning’s aug-cc-pVQZ basis
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set. [260] Although investigations in Section 4.3.2 suggest that smaller grids are sufficient,

large and diffuse integration grids (TURBOMOLE grid size 5, diffuse 2) were used in

producing the benchmark results, to preclude any errors from the seminumerical integra-

tion. Additionally, neither S- nor P-junctions were used for an integral prescreening in

the seminumerical scheme. For the optimization of the GS and ES structures, very tight

convergence criteria were used, i.e. GS calculations were converged to energy changes

⩽ 10−10 ha (scfconv 10) and density-matrix changes ⩽ 10−9 a.u (denconv 1d-9). Ex-

citation vectors were converged to residual excitation-vector norms ⩽ 10−7 a.u (rpaconv

7). The maximum gradient norms were converged to ⩽ 10−4 a.u (gcart 4). Harmonic

vibrational frequencies of the ground and excited states were calculated using the TUR-

BOMOLE NumForce script, i.e. by means of numerical differentiation (first derivative,

central differences) of the gradients. The displacement of the atoms generally breaks the

molecular symmetry, and calculations were thus performed in C1. However, this led to

non-real instabilities for the displaced structure with some functionals. Since this was

only observed for the 1 2Σ+ state of NO, the 1 2Π state of ScO, and the 1 4Π state of

VO, i.e. some linear molecules, the calculation of the corresponding harmonic vibrational

frequencies was carried out by manually displacing one atom along the molecular axis

and exploiting full point group symmetry. Weight derivatives were used to improve the

numerical accuracy of gradients in displaced structures during frequency calculations and

to improve the convergence of structure optimizations. In general, the resolution of the

identity (RI-J) [39] approximation was used for the Coulomb part, with the only exceptions

being ES gradients calculations of triplet ESs, which were empirically found to be unstable

with RI-J. The standard TURBOMOLE auxiliary basis sets (def2-universal) was used. [277]

The LHs LH07t-SVWN, LH07s-SVWN, LH12ct-SsirPW92, and LH12ct-SsifPW92 were

investigated (see Section 2.3.4 for a detailed description). Additionally, the LSDA funci-

tonal SVWN, [114,116] the GGA functional PBE, [123], the mGGA functional TPSS, [109,132]

and the GHs PBE0 [138] and TPSSh [140] were studied for comparison.

5.2.2 Jaquemin Test Set

All (TD)DFT calculations for this test set used the def2-TZVPD basis set [257] and fairly

large and diffuse integration grids (TURBOMOLE grid size 3, diffuse 1) were employed to

preclude any errors from the (semi)numerical integration. Derivatives of the quadrature

weights were included to improve the numerical accuracy of gradients. Neither S- nor

P-junctions were used for an integral prescreening in the seminumerical scheme. The res-

olution of the identity (RI-J) [39] approximation was used for the Coulomb part, with the
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exception of gradient calculations of triplet ESs (see above). Standard TURBOMOLE

auxiliary basis sets (def2-universal) were used for the RI. [277] Tight convergence criteria

were applied, i.e. GS calculations were typically converged to energy changes of ⩽ 10−9 ha

(scfconv 9) and density-matrix root mean squares of ⩽ 10−8 au (denconv 1d-8). Exci-

tation vectors were converged to residual excitation-vector norms of ⩽ 10−5 au (rpaconv

5). The maximum gradient norms were converged to ⩽ 10−4 au (gcart 4).

The LHs LH07t-SVWN, LH07s-SVWN, LH12ct-SsirPW92, and LH12ct-SsifPW92 were

investigated (see Section 2.3.4 for a detailed describtion). In addition, the new LH20t [17]

functional (cf. Section 2.3.4) was investigated, where the pig2 calibration function was

neglected as it depends on the density Laplacian and Hessian, for which third derivatives

are not included in the egrad implementation. To distinguish this functional from the

original, it is termed LH20t*. The CF’s relatively small importance for the target ES

structures and emission energies is supported by a comparison of numerically optimized

ES structures with and without CF for the diatomic molecules from the Furche and

Ahlrichs test set (cf. Table A.5 in Appendix A.7 for details). For comparison, the popular

XC functionals BLYP, [122,124] B3-LYP, [10,124] BLYP35, [122,124,146] PBE0, [123,138] TPSSh, [140]

M06, [143] M06-2X, [143] ωB97X, [153] and CAM-B3LYP [151] were tested as well.

5.2.3 Adamo and Ehara Test Set

For the study of phosphorescence energies, new reference values were calculated as single-

point excitation energies using the SAC-CI structures from ref 274. To that end, CC2

results extrapolated to the complete basis set limit (CBS) were combined with a high-level

CC3/cc-pVDZ correction

∆ECC3
CBS ≈ ∆ECC2

CBS +
(︁
∆ECC3

DZ −∆ECC2
DZ

)︁
. (5.1)

Comparison with CC3/aug-cc-pVTZ results for small molecules (cf. Table A.7 in Ap-

pendix A.10) shows that the composite CC2/CBS+CC3 values deviate by less than

0.02 eV from these data, which is clearly sufficient for the purposes of the present work.

CC3 calculations were performed with the Dalton package [278–280] using default conver-

gence settings and the frozen-core approximation. Dunning’s correlation-consistent cc-

pVDZ basis set was used for this step. [259] CC2 calculations were performed within the

RI approximation using TURBOMOLE’s ricc2 module, [281–283] again using default set-

tings and the frozen-core approximation. For the basis-set extrapolation of excitation

energies, the same 2-3-4 approach [284] as described in detail in ref. 25 using Dunning’s

augmented aug-cc-pVXZ (X=D,T,Q) basis sets [259,260] was employed. To this set, three
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triplet ES structures from ref. 271 obtained at the CC3/aug-cc-pVTZ level were added

and phosphorescence energies were calculated at the CC3/aug-cc-pVQZ level for these

smaller molecules. The (TD)DFT calculations used the same settings and functionals as

described in Section 5.2.2 above.

5.2.4 Dierksen and Grimme Test Set

The performance of the LHs LH07t-SVWN and LH12ct-SsifPW92 is studied for a sizeable

subset of the 43 spectra compiled in ref. 275 along with B3LYP and BLYP35 for com-

parison. Vibronic spectra were simulated with the radless module of TURBOMOLE,

i.e. within the real-time generating function approach described in Section 2.4.3. [217] For

better comparability, the intensities of the experimental and calculated spectra are scaled

to a maximum of 1.0 and the frequencies were shifted so that the first maximum occurs at

0 cm−1. The lifetimes used for the broadening of the spectra were adjusted to match the

experimental spectra and are typically on the order of 103 au (∼ 24 fs). The maximum

integration time was set to 217 au = 131072 au with a sample rate of 1.0 au.

Harmonic vibrational frequencies of the ground and excited states were calculated using

TURBOMOLE’s NumForce script. These calculations take up considerable computational

resources for large molecules. Hence, a mindful choice of the basis set is important.

The influence of the basis set on the shape of vibronic spectra has already been tested

by Grimme and coworkers. [275] The (shifted and scaled) spectrum of the 1 1Ag→1 1B2u

transition of tetracene calculated with the SVP basis set using B3LYP was qualitatively

correct but noticeably deviated from the one generated with the QZVP basis set. With

the TZVP basis set, the spectrum was almost indistinguishable from the QZVP result.

For the spectra of anionic species, a rather strong influence of diffuse functions might be

suspected. But their impact was in fact found to be negligible for the spectral shapes of

the studied systems. [275] Hence, the TZVP basis set was used in this study but updated to

the more recent def2-TZVP version. [255] The associated less diffuse basis set also rendered

the diffuse option for the DFT quadrature grid unnecessary. Otherwise, the (TD)DFT

calculations used the same settings as described in Section 5.2.2 above.

Note that most experimental reference spectra were recorded in a solvent or an or-

ganic glass matrix. As in ref. 275, effects from these environments were neglected. As a

molecule’s polarizability is typically larger in its ES than in its GS, the ES is stabilized on

a relative basis in solution, leading to a red-shift in the absorption spectrum. Such effects

can be quite large and were estimated to be 0.15 eV for the molecules under investigation

in ref. 275. However, such shifts are obviously irrelevant in the zero-shifted spectra con-
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sidered here. Possible more intricate solvent effects on the band shapes are missing in the

calculated spectra presented here. Although these effects are expected to be more or less

similar for different XC functionals, this makes it harder to decide if subtle differences

between two spectra are actually favorable or not if both spectra are already close to the

experimental spectrum.

5.3 Results for Excited-State Structures

5.3.1 Furche and Ahlrichs Test Set

As discussed in ref. 35, the significance of a statistical analysis in terms of MAEs is

limited for this test set due to the different nature of the ESs and differences in the

practical significance of the individual molecular parameters. Nonetheless, this test set

gives a first impression of the performance of LHs and is discussed first before proceeding

with a more in-depth analysis. All raw data and the gas-phase experimental reference

data as well as optimized structures are provided in ref. 212 as Supporting Information.

In Table 5.1, MAEs for ES structural parameters are given for all XC functionals

evaluated. The 1 1Σ+
u states of Li2 and Mg2 were excluded from the statistical analysis

Table 5.1: Mean absolute errors for bond lengths (R in pm), bond angles (∡ in deg), and
out-of-plane angles (ϕ in deg) from the Furche and Ahlrichs test set [35,39] calculated with
various standard functionals and four LHs. The number of parameters for each subset is
given in parentheses in the header line. ’Total’ also contains unrestricted calculations not
falling into the ’Singlet’ or ’Triplet’ categories.

Total Singlet Triplet

Functional R (43) ∡ (15) ϕ (3) R (28) ∡ (10) ϕ (1) R (10) ∡ (4) ϕ (2)

SVWN 1.4a 3.9 5.1 1.4 4.3 0.4 1.5 3.8 7.4
PBE 1.2b 2.2b 6.3 1.3b 1.5b 1.1 1.3 3.9 8.9
TPSS 1.2b,c 1.6b,c 10.0c 1.2b 1.4b 1.4 1.3c 2.2c 18.6c

TPSSh 1.1 2.4 10.5 1.2 1.3 2.2 0.9 5.4 14.7
PBE0 1.4 2.3 4.4 1.5 1.6 3.3 1.4 4.2 4.9
LH07s-SVWN 1.1 2.1 5.5 1.2 1.5 2.3 1.3 3.7 7.2
LH07t-SVWN 1.1 1.9 6.6 1.2 1.2 6.7 1.3 3.7 6.6
LH12ct-SsirPW92 1.2 1.8 7.2 1.2 1.3 8.4 1.3 3.4 6.6
LH12ct-SsifPW92 1.2 1.9 7.6 1.2 1.4 9.0 1.3 3.4 6.9

Due to instabilities of the reference state, the statistics exclude:
a 1 2Σ+ state of NO.
b 2 1A state of propynal.
c 1 3A′′ state of CH2O.
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because the large absolute deviations would otherwise distort the overall evaluation. With

the exception of the somewhat poorer performance of the LDA functional SVWN for

bond angles, all MAEs for bond lengths and bond angles are essentially on par. EXX

admixture in the GHs TPSSh and PBE0 tends to shorten bond lengths compared to

their non-hybrid counterparts leading to left-shifted error histograms (cf. Figure A.2 in

Appendix A.8). Among the LHs, no clear trends are observed, i.e. neither the underlying

LMF model nor the LMF prefactor significantly alters the averaged results. Moderate

prefactors as in LH07t-SVWN tend to deliver somewhat more uniform performance for

bond lengths as can be seen from Figure A.2. Out-of-plane angles show significantly

larger MAEs than bond angles for all functionals, but the low number of values in the

test set prevents a more definite analysis. No major differences between singlet and triplet

ESs are observed for bond lengths indicating that structures of the considered triplet ESs

are not particularly more challenging than the singlet ESs included in the test set. The

distinctly larger MAEs for bond angles of triplet ESs presumably are a statistical artifact

of the small number of values for the triplet case.

5.3.2 Jacquemin Test Set

Compared to the smaller Furche and Ahlrichs test set discussed above, the larger sample

size of the Jacquemin test set permits a more differentiated analysis, e.g. regarding bond

types. The raw data for this test set and a set of optimized coordinates is contained in

ref. 264 as Supporting Information. For the investigated standard functionals, the results

presented here are in line with those by Jacquemin and coworkers (see ref. 267 for a more

detailed discussion). Results obtained within the present study are nonetheless included

for comparison with the LH data. Overall, TPSSh shows the best performance (MAE

1.1 pm) closely followed by LH07t-SVWN (MAE 1.2 pm) and by BLYP, LH07s-SVWN,

LH12ct-SsirPW92 and LH20t* (MAEs 1.3 pm). The total MAEs of LH12ct-SsifPW92

(1.4 pm) and PBE0 (1.5 pm) are slightly larger. The MAEs of M06 (1.6 pm), CAM-

B3LYP (1.7 pm), and particularly ωB97X and M06-2X (1.8 pm) are noticeably larger.

The absolute results and relative performance found for the local hybrids compared to

TPSSh and PBE0 closely match those obtained for the Furche and Ahlrichs test set that

used experimental reference values (Section 5.3.1).

However, comparisons in terms of total MAEs do not necessarily give the best insight

into the applicability of a given functional for ES structure optimizations. A more dif-

ferentiated analysis regarding bond types is desirable and provided in Figure 5.4 for the

MAEs (top) and mean signed errors (MSEs, bottom). First note that the BLYP GGA

109



5 Validation of Local Hybrids for Excited-State Properties

Figure 5.4: Mean absolute errors (top) and mean signed errors (bottom) in pm for ES
bond lengths obtained with various XC functionals for different bond types, where X = F,
Cl, Br and E = C, N, O, Si, P. CO, CN and CC exclude all clear-cut single bonds to im-
prove comparability. The underlying numerical data are given in ref. 264. In the bottom
plot, the total heights of the error bars reflect one standard deviation. Functional ab-
breviations: LH07t: LH07t-SVWN, LH07s: LH07s-SVWN, LH12sir: LH12ct-SsirPW92,
LH12sif: LH12ct-SsifPW92, LH20t*: LH20t w/o CF.

functional (and other GGA functionals such as PBE or B97D [267]) gives overall larger

bond lengths than the hybrids; moderate EXX admixture in the bonding region as in

TPSSh and partly in the LHs seems to provide a good compromise for the different bond

types; and functionals with substantial EXX admixture, such as CAM-B3LYP, ωB97X

and M06-2X, give the overall shortest bonds.

Starting with element-hydrogen (EH) bonds (gray bars in Figure 5.4), the overall small-

est error is found with LH20t* (0.6 pm) and CAM-B3LYP (0.7 pm) while BLYP gives the

largest MAE (1.3 pm) and overestimates the bond lengths more or less systematically

with an MSE of 0.7 pm, which may still be classified as moderate deviations. MAEs for

the LHs based on a t-LMF and LSDA exchange and correlation are very similar, rang-
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ing from 0.9 pm to 1.0 pm. LH07s-SVWN, which is based on an s-LMF, falls somewhat

behind the t-LMF-based LHs for the EH bonds. This might be related to the peculiar

shape of the t-LMF along an EH bond. [285] It is characterized by a steep increase to-

wards hydrogen (and therefore elevated EXX admixture) in the bonding region and a

constant value (prefactor of the LMF) behind the hydrogen atom. While the deteriorated

description of nondynamical correlation in the bonding region was found to be potentially

detrimental for other properties like hydrogen nuclear shieldings [245] and molecular dipole

moments [286] (see also Section 6.3.1), the enhanced EXX admixture seems to be beneficial

for the ES bond lengths. Reduced left-right correlation tends to give shorter bonds [111]

and therefore reduces their typical overestimation in the present EH bond set.

The carbon-halogen (CX) bonds (green bars in Figure 5.4) are the most prominent out-

liers for the otherwise well-performing BLYP functional (MAE 2.6 pm, MSE +2.6 pm).

Here the overall longer bonds at the BLYP level are detrimental, whereas the best re-

sults are achieved by the LHs (down to MAEs as low as 0.6 pm for LH12ct-SsirPW92).

Comparing the MSEs of the local and global hybrids suggests that LHs reduce the under-

estimation of CX bond lengths seen with most GHs. But overall the performance for the

CX bond lengths is reasonable for most functionals. Given that ES bond lengths are typ-

ically more difficult to compute than GS ones, [266,267] the lengths of the carbon-nitrogen

(CN) and carbon-carbon (CC) bonds (blue and black bars, respectively, in Figure 5.4) are

generally reproduced relatively well by most functionals. Only M06 and CAM-B3LYP

exhibit underestimates beyond 1 pm.

The carbonyl (CO), thionyl and selenonyl (CS/Se) bond lengths (red and yellow bars

in Figure 5.4) are clearly the most challenging for all hybrid functionals, featuring MSEs

below −3.0 pm for the majority of functionals. Note that even LR-CC2 and EOM-CCSD

struggle with an accurate description of the carbonyl ES bond lengths, giving MSEs of

+2.9 pm and −2.5 pm, respectively (while CC methods including triple excitations reduce

errors to below 1.0 pm). [266] Here, the overall relatively long bonds of BLYP are beneficial,

leading to an almost vanishing MSE and an MAE of 1.1 pm, while a shortening due to

EXX admixture in the various types of hybrid functionals seems detrimental. The low

EXX admixture of TPSSh gives better agreement with the reference values than larger

admixtures in global or range-separated hybrids, and the LHs with the lowest t-LMF

prefactors provide somewhat less negative MSEs than those with larger prefactors.

Considering the good performance of hybrid functionals for CN and CX bonds, their

inferior performance for CO (and CS/Se) bonds cannot be explained merely by the polar-

ized nature of such bonds. A more detailed analysis of the relevant electronic transitions

in systems with carbonyl bonds reveals that the performance of hybrid functionals corre-
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lates with the n→ π∗ nature of the transition (cf. Table A.6 in Appendix A.9). In fact,

the 1 1A′′ ES of ketene is the only state among the carbonyl compounds with no n→π∗

character, and its CO bond length is much better reproduced by hybrid functionals (MSE

−1.4 pm for PBE0 and −1.0 pm for LH12ct-SsifPW92). On the flip side, even nonpolar

bonds like CC bonds can be challenging for hybrid functionals. For example, the H2C=C

carbon-carbon bond length of the 1 1A2 ES of H2C3 is underestimated (MSEs −3.3 pm for

PBE0, −2.6 pm for LH12ct-SsifPW92, compared to general MAEs for CC bonds of 0.9 pm

and 0.7 pm, respectively). As shown in Figure A.6, the shapes of the orbitals involved

in the transition of this ES are almost identical to the prototypical n→π∗ transition in

formaldehyde. Similarly, Filippi and coworkers found that the carbonyl bond in s-trans-

acrolein is well described by both hybrid functionals and CC2 for the π→ π∗ excitation

but poorly for the n→ π∗ excitation. [287] In a recent study by Wang and Durbeej, [288]

CO bond lengths were found to be not particularly challenging for TDDFT which was

rationalized by the predominant π→π∗ character of the investigated transitions. There

is evidence that the difficulties with n→ π∗ excited states are related to static correla-

tion. This is indicated, e.g., by the importance of triple excitations in CC approaches

(see above), [266] by large D1 and D2 diagnostics for CC2, [289] or by the detrimental effects

of increased EXX admixture observed here. However, more definite conclusions require

further investigations that are outside the scope of this work.

So far, only bond lengths were discussed because the changes for bond angles were found

to be much more system-dependent and a meaningful breakdown and classification (as

for bond types) is less obvious. Notably, however, the bond angles formed by a carbonyl

group and some adjacent atom show a somewhat reversed trend to what was seen for the

C=O bond lengths. While errors with BLYP (2.8◦) and TPSSh (2.2◦) are comparatively

large, M06-2X (1.1◦) and the LHs LH12ct-SsirPW92 (1.2◦) and LH12ct-SsifPW92 (1.2◦)

give the best results for these angles.

5.4 Results for Excitation Energies

5.4.1 Adiabatic Excitation Energies and 0–0 Energies

As discussed by Send et al., [229] benchmark studies of 0–0 energies (or AEEs) give a more

realistic view of the performance of different functionals for the simulation of absorption

spectra than VEE benchmarks do. Hence, the following results for LHs complement

the insights obtained from previous studies of VEEs. [17,24,25] In addition to the MAEs in

Figure 5.5, error histograms are given in Appendix A.8 (Figure A.3).
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Figure 5.5: Mean absolute errors in eV for AEEs (0–0 energies for polyatomic molecules)
of singlet and triplet ESs from the Furche and Ahlrichs test set [35,39] calculated with
various standard functionals and four LHs.

In terms of total MAEs, LHs show slightly superior performance compared to GHs with

the lowest MAE being 0.22 eV for LH07t-SVWN compared to 0.26 eV for PBE0. Besides,

the performance with LH07t-SVWN is somewhat more uniform, i.e. errors are distributed

more densely around the median signed error of −0.07 eV (PBE0: −0.17 eV) as can be

seen from Figure A.3. A larger error of 1.11 eV for the 1 2Σ+ state of NO (PBE0: 0.60 eV)

gives rise to a larger maximum error (outlier in Figure A.3). Considering only singlet ESs,

the performance for LH07t-SVWN is further improved with an MAE of 0.19 eV, which

can be attributed to the omission of the open-shell 1 2Σ+ state of NO (see above). In

contrast, a slight performance drop for LH12ct-SsifPW92 is noticed, indicating that the

overall EXX admixture with this LH might be too large for the given cases.

For triplet ESs, LH12ct-SsirPW92 outperforms the standard functionals, giving an

MAE of 0.08 eV. Errors are also closely distributed (cf. green bars in Figure A.3) around

the median of −0.02 eV, with a maximum error of −0.16 eV. Similar performance is seen

for LH12ct-SsifPW92, while LH07s-SVWN and LH07t-SVWN perform well but somewhat

less dramatically so in triplet excitations. In contrast, most GHs are known to underesti-

mate triplet excitation energies systematically. This is exposed here by the distribution of

errors in Figure A.3 (green bars) and manifests in typically negative median signed errors

of, for instance, −0.31 eV for PBE0. The improvement of triplet AEEs/ 0–0 energies

with LHs is consistent with previous observations for VEEs. [24,25] These had suggested

that the LMF-weighted EXX admixture introduces additional static correlation effects
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that improve the description of triplet ESs. The importance of such left-right correlation

effects is supported by the observation that the performance is further improved when a

common t-LMF (”ct”) instead of a spin-channel t-LMF is used, as additional cross-term

contributions arise in this case. [24]

Note, however, that the remarkable performance for triplet AEEs/ 0–0 energies is not

derived from a significantly improved description of the underlying ground- and excited-

state structures. A correlation plot of signed AEEs/ 0–0 energy errors obtained with

LH12ct-SsifPW92 at LH12ct-SsifPW92 structures and with LH12ct-SsifPW92 at PBE0

structures reveals that the structural effects do not exceed ±0.02 eV (cf. Figure A.5). This

is as expected and does not invalidate the need for ES gradients at the given computational

level.

5.4.2 Fluorescence Energies

For the study of fluorescence energies, a subset of 40 singlet ESs for which CC reference

energies were provided in ref. 271 and 272 is analyzed. Generally, TDDFT energies were

computed at the relaxed ES structures optimized with the respective XC functional. To

assess the impact of the underlying structures, single-point calculations with LH12ct-

SsifPW92 at relaxed BLYP ES structures and with BLYP at relaxed LH12ct-SsifPW92

ES structures were also performed. The statistical results for the investigated XC func-

tionals are given in Table 5.2 and the raw data and reference values are provided in ref.

264 as Supporting Information. Overall, the differences in the MAEs are rather small,

ranging from 0.29 eV for BLYP to 0.45 eV for ωB97X. Also among the top performers are

TPSSh (0.32 eV) and LH07s-SVWN (0.32 eV). For BLYP, the errors are almost entirely

caused by a systematic underestimation (MSE of −0.21 eV) while they are stochastic for

TPSSh and LH07s-SVWN (MSEs of 0.02 eV and −0.05 eV respectively). In terms of error

distributions, most functionals are comparable with standard deviations of around 0.4 eV

and maximum absolute errors of around 0.8 eV. Notably, the highly empirical M06-2X

functional exhibits larger maximum absolute errors (1.52 eV) and standard deviations

(0.60 eV). The t-LMF based LHs are not particularly better or worse than the remaining

hybrid functionals but larger prefactors seem to lead to an overestimation of fluorescence

energies and therefore increased MAEs.

Considering the good performance of LH12ct-SsirPW92 and LH12ct-SsifPW92 for the

singlet VEEs of the Thiel test set, [24] their less convincing performance for fluorescence

energies is conspicuous. The results obtained with LH12ct-SsifPW92 at BLYP struc-

tures are, however, significantly better than at the relaxed (LH12ct-SsifPW92) structures
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Table 5.2: Mean absolute errors, mean signed errors, maximum signed errors, and
standard deviations (σ) in eV for 40 fluorescence emission energies using various XC
functionals and the def2-TZVPD basis set. Unless stated otherwise, ES structures were
optimized with the same functional.

Functional MAE MSE MaxE σ

BLYP 0.29 −0.21 0.77 0.33
PBE0 0.36 0.03 0.87 0.42
TPSSh 0.32 0.02 0.76 0.37
M06 0.36 −0.09 1.13 0.47
M06-2X 0.44 −0.10 1.52 0.60
ωB97X 0.45 0.11 0.93 0.52
CAM-B3LYP 0.40 0.07 0.85 0.47
LH07t-SVWN 0.36 0.08 0.88 0.41
LH07s-SVWN 0.32 −0.05 0.78 0.39
LH12ct-SsirPW92 0.40 0.12 0.96 0.46
LH12ct-SsifPW92 0.42 0.13 0.98 0.48
LH20t* 0.42 0.13 0.94 0.48
LH12ct-SsifPW92//BLYP 0.32 −0.02 0.87 0.43
BLYP//LH12ct-SsifPW92 0.32 −0.08 0.73 0.38

(MAE 0.32 eV). Obviously, the LH12ct-SsifPW92 structures have an adverse effect on the

fluorescence energies. This can be traced back to the rather poor description of carbonyl

and thionyl compounds (cf. Section 5.3.2) with LH12ct-SsifPW92 as compared to BLYP.

In Figure 5.6, the absolute errors with LH12ct-SsifPW92 at the BLYP structures are

plotted against those at the LH12ct-SsifPW92 structures. All larger errors with LH12ct-

SsifPW92 at LH12ct-SsifPW92 structures are associated with excitations in which a CO

or CS/Se bond is predominantly involved (Figure 5.6, red diamonds). The errors are

drastically reduced in these cases when BLYP structures are used. The opposite is seen

for many excitations that mostly affect CC or CN bonds (blue squares), which is in line

with the good performance of LH12ct-SsifPW92 for these bond lengths (see above).

5.4.3 Phosphorescence Energies

As outlined in Section 5.2.3, new reference values were obtained for the phosphorescence

energies from the Adamo and Ehara test set using the SAC-CI/D95(d) structures from

ref. 274 at which CC2/CBS+CC3 single-point energies were obtained. The results are

compared against SAC-CI, RI-CC2, CC3/cc-pVDZ and some experimental values in Ta-

ble A.8 (Appendix A.10). The better agreement of the new CC3/CC2/CBS values with

the available experimental data is in line with the established and broad reliability of

CC3 for VEEs. [26,290–292] Therefore, the CC3/CC2/CBS values are used as the reference
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Figure 5.6: Effect of the ES structures on the absolute errors for fluorescence energies
with LH12ct-SsifPW92. The classification of the data points is based on the bond that
is predominantly involved in the excitation (breakdown in Supporting Information of ref.
264).

data for the present benchmarking. Note, that it is possible, however, to draw the same

qualitative conclusions when using the SAC-CI/D95(d) phosphorescence energies from

ref. 274.

As for fluorescence (cf. Section 5.4.2), TDDFT energies were computed at the relaxed ES

structures optimized with the respective XC functional. Additionally, BLYP and LH12ct-

SsifPW92 single-point calculations were performed at LH12ct-SsifPW92 and BLYP struc-

tures and analogous comparisons were done for PBE0. The statistical results are sum-

marized in Table 5.3 and the raw data is provided in ref. 264 as Supporting Information.

Overall, the errors for phosphorescence energies show a much stronger dependence on the

XC functional than the fluorescence energies (cf. Section 5.4.2). The MSEs and maximum

signed errors are negative throughout, consistent with the well known underestimation of

triplet excitation energies by TDDFT. [24,27] While BLYP performs best for fluorescence

energies (cf. Section 5.4.2), it exhibits the largest MAE (0.65 eV) for the phosphorescence

energies. Similary, TPSSh (0.61 eV) and PBE0 (0.53 eV) also trail behind. In contrast

to fluorescence, larger EXX admixtures tend to be beneficial for the phosphorescence
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Table 5.3: Mean absolute errors, mean signed errors, maximum signed errors, and
standard deviations (σ) in eV for 23 phosphorescence emission energies using various XC
functionals and the def2-TZVPD basis set. Unless stated otherwise, ES structures were
optimized with the same functional.a

Functional MAE MSE MaxE σ

BLYP 0.65 −0.65 −1.54 0.36
PBE0 0.53 −0.53 −1.02 0.23
TPSSh 0.61 −0.42 −1.06 0.24
M06 0.41 −0.41 −0.83 0.21
M06-2X 0.20 −0.13 −0.75 0.22
ωB97Xa 0.35 −0.26 −0.97 0.40
CAM-B3LYPb 0.44 −0.42 −1.34 0.39
LH07t-SVWN 0.35 −0.35 −0.72 0.18
LH07s-SVWN 0.42 −0.42 −0.73 0.17
LH12ct-SsirPW92 0.20 −0.16 −0.57 0.18
LH12ct-SsifPW92 0.19 −0.13 −0.56 0.19
LH20t* 0.22 −0.19 −0.71 0.21
LH12ct-SsifPW92//BLYP 0.23 −0.20 −0.60 0.18
BLYP//LH12ct-SsifPW92 0.56 −0.55 −1.37 0.31
LH12ct-SsifPW92//PBE0 0.21 −0.13 −0.62 0.21
PBE0//LH12ct-SsifPW92 0.52 −0.52 −0.96 0.21
TDA PBE0 0.24 −0.24 −0.51 0.15
TDA M06-2X 0.14 0.06 0.39 0.17
TDA LH12ct-SsifPW92 0.12 0.03 0.30 0.15

Due to convergence problems (instabilities) results exclude:
a Furan (1 3B2), uracil (1

3A′), and coumarin (1 3A′).
b Uracil (1 3A′) and coumarin (1 3A′).

energies. This is also observed for the M06-type functionals for which the MAE is drasti-

cally reduced from of 0.41 eV to 0.20 eV when the amount of EXX is doubled from 27%

in M06 to 54% in M06-2X. The RSHs ωB97X and CAM-B3LYP do not improve over

GHs, and CAM-B3LYP even produces the largest individual error of −1.34 eV. LH12ct-

SsifPW92 exhibits the overall best performance (MAE of 0.19 eV and maximum signed

error −0.56 eV). LH12ct-SsirPW92 performs almost as well as LH12ct-SsifPW92. Errors

with LH07t-SVWN and LH07s-SVWN are distinctly larger but not worse than with GHs.

The good performance of LHs for phosphorescence energies is consistent with previous

results for triplet absorption energies [24,25] and for AEEs/ 0–0 energies (see above, Sec-

tion 5.4.1). The superior performance of the LH12 local hybrids compared to the LH07

functionals is largely due to the use of a common t-LMF in LH12ct-SsirPW92 and LH12ct-

SsifPW92, i.e. an LMF constructed from the total (spin summed) quantities as given in

eq. 2.79a-b. For closed-shell GSs and singlet excitations, these common-LMFs are identi-

cal to the spin-resolved versions used in LH07t-SVWN and LH07s-SVWN. However, for
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triplet excitations, where the α and β transition density matrices carry opposite signs,

the common LMF leads to cross terms in the XC kernel. It is assumed that these terms

recover some of the static correlation of the triplet excited states (cf. Section 2.3.2).

The single-point calculations with LH12ct-SsifPW92 at BLYP and PBE0 optimized ES

structures give slightly larger MAEs (0.23 eV and 0.21 eV) than those obtained at LH12ct-

SsifPW92 optimized structures (0.19 eV) and also slightly larger maximum signed errors

and standard deviations. But the differences are too small (particularly with PBE0) to

indicate a significant advantage of using triplet ES structures optimized using LHs. Note,

however, that optimized ES structures at a given computational level are required if ES

vibrational frequencies are to be calculated at the respective level.

The effect of the Tamm–Dancoff approximation (eq. 2.146) has also been studied as it

is well known that the TDA mitigates the triplet instability problem [293] and counteracts

the systematic underestimation of triplet VEEs. [24,25,294] For the present test set of phos-

phorescence energies, these trends are confirmed for the GHs PBE0 and M06-2X as well

as for LH12ct-SsifPW92 (Table 5.3). The underestimation of phosphorescence energies

is significantly reduced, as indicated by increased (less negative) MSEs and maximum

signed errors. This blue-shift is associated with a considerable reduction of the MAE for

all three functionals. The effect is strongest for PBE0, which shows the most distinct un-

derestimation at the full linear-response level of theory and hence benefits most from the

blue-shift. LH12ct-SsifPW92 and M06-2X already perform well at the full linear-response

level and exhibit only a moderate underestimation of phosphorescence energies. There-

fore, the blue-shift by the TDA also turns out to be less effective in reducing the MAE

and even leads to a slight overestimation of phosphorescence energies in some individual

cases.

5.5 Results for Vibrational Frequencies and Vibronic

Spectra

5.5.1 Harmonic Excited-State Vibrational Frequencies

The analysis of ES vibrational frequencies indicates how well a given XC functional de-

scribes the curvature of the ES potential-energy surface at stationary points. It must be

noted, however, that vibrational frequencies are usually significantly overestimated (cf.

error distribution in Figure A.4 in Appendix A.8). This is largely due to the harmonic

approximation and can be addressed by calculating a functional-specific scaling factor

118



5.5 Results for Vibrational Frequencies and Vibronic Spectra

Table 5.4: Mean absolute errors (in cm−1) for raw (unscaled, νraw) and scaled (νscal)
vibrational ES frequencies from the Furche and Ahlrichs test set [35,39] calculated with
various standard XC functionals and four LHs. The number of parameters for each subset
is given in parentheses in the header line. ’Total’ also contains unrestricted calculations
not falling into the ’Singlet’ or ’Triplet’ categories.

Total (80) Singlet (64) Triplet(11)

Functional νraw νscal νraw νscal νraw νscal

SVWN 70a 68a 75 72 63 62
PBE 48b 48b 50b 48b 49 53
TPSS 53b,c 48b,c 56b 49b 46c 54c

TPSSh 63 45 67 46 41 47
PBE0 76 44 81 45 50 40
LH07s-SVWN 70 46 74 48 50 40
LH07t-SVWN 75 44 80 45 52 39
LH12ct-SsirPW92 81 45 85 46 60 42
LH12ct-SsifPW92 82 47 86 48 66 42

Due to instabilities of the reference state, the statistics exclude:
a 1 2Σ+ state of NO.
b 2 1A state of propynal.
c 1 3A′′ state of CH2O.

based on a minimization of the mean squared error that evens out the systematic overes-

timations. [295] Hence, the scaled MAEs give a more adequate view of the statistical errors

of a given functional.

From the results in Table 5.4, it can be seen that LHs perform comparably well as the

GH PBE0, regardless of whether scaled or raw MAEs are considered (unprocessed data is

provided in ref. 212). Overall, TPSS and TPSSh show the smallest raw MAEs, but their

advantages disappear for scaled MAEs and TPSSh falls behind somewhat for triplet ESs.

Turning to the LHs, the performance for triplet-state vibrational frequencies is better

than for singlet states. A slight systematic increase in the raw MAEs is observed with

increasing prefactor of the t-LMF, most apparently so for triplet ESs.

5.5.2 Vibronic Spectra

Technical Considerations

The accuracy of the seminumerical integration scheme used for the LH implementation

depends on the quality and size of the quadrature grid. In contrast to the conventional

analytical implementation used for GHs, the rate-determining step of the LH implementa-

tion scales linearly with the total number of grid points (cf. Section 4.3.4). It is therefore
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Figure 5.7: Influence of the DFT quadrature grid size on the shape of the vibronic
absorption spectra for the 1 1Ag→1 1B2u transition of naphthalene computed at the LH07t-
SVWN/ def2-TZVP level. The blue bold line shows the grid 5 result, which serves as
a reference for the other grid settings. The dashed line corresponds to the experimental
spectrum from ref. 296.

desirable to keep the grid size reasonably small, especially when several hundred LH gra-

dients are to be calculated within a finite-difference calculation of vibrational frequencies.

As analyzed in Section 4.3.2, using the smallest TURBOMOLE grid (grid size 1) is usually

sufficient for accurate ES structures. However, some outliers occurred, and the effect on

vibrational frequencies was not scrutinized so far. Hence, the effect on the shape of the

vibronic spectra for the 1 1Ag→1 1B2u transition of naphthalene for three grid sizes was

investigated and is shown in Figure 5.7. The spectrum obtained with grid size 3 is virtu-

ally identical to the one using the very large grid (grid size 5) and only small deviations

are observed for grid size 1. While these are certainly irrelevant for most applications,

the medium-sized grid (grid size 3) is used for the present benchmarking. The mean ab-

solute deviations (maximum signed deviations) for the GS vibrational frequencies with

the smaller grids compared to the large grid (grid size 5) are 5.0 cm−1(+17.8 cm−1) for

grid size 1 and 0.4 cm−1(−1.6 cm−1) for grid size 3. They are slightly larger for the ES,

6.2 cm−1(+24.8 cm−1) for grid 1 and 0.5 cm−1(−1.9 cm−1) for grid size 3.

Note that a technical discussion of the features and peculiarities of the real-time generat-

ing function approach within the radless implementation is outside the scope of this the-

sis. It is discussed in detail in works of Tapavicza, Sundholm and coworkers. [217,226,228,297]
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Figure 5.8: Vibronic absorption spectra for the 1 1Ag→1 1B2u transition of anthracene
computed with various XC functionals in comparison with the experimental vapor absorp-
tion spectrum. [296] A lifetime of 36.3 fs was used for the line broadening. Functional ab-
breviations: LH07s: LH07s-SVWN, LH07t: LH07t-SVWN, LH12sif: LH12ct-SsifPW92.

Closed-Shell Singlet Absorption Spectra

First, several absorption spectra of molecules with a closed-shell GS are considered. The

1 1Ag→1 1B2u transition of anthracene is used as an illustrative example for the differ-

ences among the XC functionals evaluated (Figure 5.8). Comparing B3LYP (20% EXX),

BLYP35 (35% EXX), and BHLYP (50% EXX) gives a good impression of how EXX ad-

mixture can affect the shape of vibronic spectra. While the intensity of the first two peaks

is lowered with increasing EXX admixture, and the large middle peak remains rather unaf-

fected, the trend is reversed for the last dominant peak where the intensities increase. This

trend is in line with the observations by Grimme and coworkers. [275] The mGGA-based GH

TPSSh, which was very successful for CC and EH bond lengths (cf. Section 5.3.2) and for

the fluorescence energies (cf. Section 5.4.2), was tested here as well. Note, however, that

advantages for energetics are not visible in the zero-shifted spectra and that good struc-

tures do not necessarily entail correct vibrational frequencies. Then the comparatively

poor intensity ratios with TPSSh can be understood. They underline that the amount of

EXX admixture is usually more important than the choice of the (semi-)local XC contri-

butions. Even results with the highly empirical mGGA-based M06-2X GH (54% EXX)

closely resemble the spectra obtained with the much simpler BHLYP functional. Likewise,
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Figure 5.9: Vibronic absorption spectra for the 1 1Ag→1 1Bu transition of stilbene com-
puted with the LHs LH07t-SVWN and LH12ct-SsifPW92 as well as with the GHs B3LYP,
BLYP35 and SVWN35 in comparison with the experimental spectrum (recorded at 77 K
in methylpentane). [298] A lifetime of 20.6 fs was used for the line broadening to match the
experimental spectrum.

the LH spectra are similar to spectra of GHs with comparable (density-averaged) EXX

admixture, i.e. LH07t-SVWN is close to B3LYP and LH12ct-SsifPW92 almost coincides

with BLYP35. This resemblance is observed for many of the investigated absorption spec-

tra, which are compiled in Appendix A.11. This mainly applies to molecules with a rather

rigid structure like acenes. For transitions in more flexible molecules like the 1 1Ag→1 1Bu

transition of stilbene (Figure 5.9), somewhat larger differences are observed. In this case,

LH12ct-SsifPW92 gives slightly better results than BLYP35, and the resulting overall fit

with the experimental spectrum is remarkable. To validate that these differences are not

the result of the altered underlying (semi-)local exchange and correlation functional in

the LHs, the calculations were repeated with an SVWN-based GH with 35% EXX. This

provides a spectrum that differs distinctly from that obtained with LH12ct-SsifPW92.

For the 1 1Ag→1 1Bu transition of a similar molecule with an extended polyene bridge

between the two phenyl moieties (1,14-diphenyltetradecaheptaene), the differences are

smaller but interestingly in favor of the LH for both comparison settings, i.e. B3LYP vs.

LH07t-SVWN and BLYP35 vs. LH12ct-SsifPW92, respectively (Figure 5.10). The dif-

ferences are relatively subtle, and counterexamples likely exist. Hence, at this stage, the
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Figure 5.10: Vibronic absorption spectra for the 1 1Ag→1 1Bu transition of 1,14-
diphenyltetradecaheptaene computed with the LHs LH07t-SVWN and LH12ct-SsifPW92
as well as with the GHs B3LYP and BLYP35 in comparison with the experimental spec-
trum (recorded at 18 °C in carbon disulfide). [299] A lifetime of 13.3 fs was used for the line
broadening to match the experimental spectrum.

overall conclusion is that LHs do not significantly improve or deteriorate results obtained

with comparable GHs for the simulation of the shape of singlet absorption spectra of

ordinary organic molecules.

Open-Shell Absorption Spectra

For the eleven spectra of open-shell molecules (two are shown in Figure 5.11 and 5.12)

a more definite statement is possible. The general observation is that for larger EXX

admixture, i.e. when comparing BLYP35 and LH12ct-SsifPW92, the LH usually gives

somewhat better results than the GH. The only exception is the 1 2Au→1 2B2g transition

of the PMDA radical anion (Figure A.33 in Appendix A.11). Overall, for lower EXX

admixture (i.e. B3LYP vs. LH07t-SVWN) the differences are smaller and the LH is not

necessarily better. The good performance of LHs in the case of open-shell molecules can be

understood in terms of the more balanced description of spin localization/ delocalization

and left-right (static) correlation in local hybrid functionals. [18] The benefits are expected

to be much more pronounced for systems with a mixed-valence GS or ES, where this

delicate balance is often decisive.
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Figure 5.11: Vibronic absorption spectra for the 1 2A2→1 2A2 transition of the naphthalic
anhydride radical anion computed with the LHs LH07t-SVWN and LH12ct-SsifPW92 as
well as with the GHs B3LYP, BLYP35 and SVWN35 in comparison with the experimental
spectrum (recorded at 77 K in methyltetrahydrofuran). [300] A lifetime of 50.8 fs was used
for the line broadening to match the experimental spectrum.

For the spectra of the 1 2A2→1 2A2 transition of the naphthalic anhydride radical anion,

a striking similarity of the LH07t-SVWN and LH12ct-SsifPW92 spectra on one side and

of the B3LYP and BLYP35 spectra on the other side is observed (Figure 5.11). At first

sight, this seemed like a potential showcase for the intrinsic advantages of LHs. However,

additional test calculations with a GH based on the SVWN functional (SVWN35) indicate

that, in this case, favorable error compensation from the underlying LSDA exchange and

correlation functionals, rather than the sophistication of the LHs, provides advantages

over the GGA-based BLYP-GHs.

As a final case, the agreement of the LH12ct-SsifPW92 absorption spectrum with the

experimental spectrum for the 1 2B2g→1 2B1u transition of the tetracyanoquinodimethane

anion deserves special notice. As analyzed by Tapavicza et al., [217] this case is particularly

challenging in the sense that the vibronic effects cannot be recovered by a BO molecular

dynamics sampling but require a quantum harmonic oscillator treatment as achieved by

their radless implementation. Compared to the PBE0 spectrum reported in ref. 217,

LH12ct-SsifPW92 gives an even better agreement with the experimental spectrum. Such
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Figure 5.12: Vibronic absorption spectra for the 1 2B2g→1 2B1u transition of the tetra-
cyanoquinodimethane radical anion computed with the local hybrids LH07t-SVWN and
LH12ct-SsifPW92 as well as with the global hybrids B3LYP and BLYP35 in comparison
with the experimental spectrum (recorded in acetonitrile). [301] A lifetime of 29.0 fs was
used for the line broadening to match the experimental spectrum.

cases highlight the importance of the availability of ES gradients at a certain computa-

tional level already for supposedly simple tasks such as computing absorption spectra.

Phosphorescence Spectra

Finally, vibronic phosphorescence spectra for the T1→S0 transition of p-methylacetophe-

none (Figure 5.13) and p-hydroxybenzaldehyde (Figure 5.14) are presented as illustrative

examples for the favorable interplay of the good performance of LHs for ES structural

parameters and for the shape of vibronic spectra on one hand and the remarkable perfor-

mance for phosphorescence energies on the other hand. First, it is important to note,

that triplet-singlet transitions are spin-forbidden and that oscillator strengths calculated

from the electronic transition dipole moment obtained within a non-relativistic TDDFT

calculations are therefore not physically meaningful. In the scaled vibronic spectra, how-

ever, the ratio of the intensities depends on the ratio of the underlying FC factors, i.e. on

overlap integrals of the nuclear vibrational wave functions. Hence, the same approach as

for singlet transition spectra is applied here.
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Figure 5.13: Vibronic phosphorescence spectra for the T1→S0 transition of p-
methylacetophenone computed with LH12ct-SsirPW92 as well as with B3LYP and M06-
2X in comparison with the experimental spectrum (recorded at 77 K in EPA glass). [302]

The position of the absorption maxima was not adjusted for this plot. A lifetime of 30.0 fs
was used for the line broadening to match the experimental spectrum.

The shape of the B3LYP spectrum for p-methylacetophenone in Figure 5.13 exhibits the

best agreement with the experimental spectrum. In particular, B3LYP gets the intensity

ratio of the two rightmost peaks correct. As with the other functionals, the drop of

the intensity for lower wavenumbers is not as rapid as in the experimental spectrum.

The major shortcoming of the B3LYP spectrum is the distinct underestimation of the

phosphorescence energy (red shift) by ca. 2500 cm−1(0.31 eV). M06-2X gives a much better

agreement in terms of energies, underestimating the phosphorescence energy by only ca.

300 cm−1(0.04 eV), but it gives a poorer description for the shape of the spectrum. The

LH12ct-SsirPW92 spectrum offers both, an excellent agreement of the transition energy

(blue shift by ca. 200 cm−1or 0.02 eV) and a reasonable description of the major features

and intensity ratios of the vibronic fine structure of the spectrum. The situation is similar

for the spectra of p-hydroxybenzaldehyde (Figure 5.14). While the shape of the B3LYP

and LH12ct-SsirPW92 spectra are very similar, the LH12ct-SsirPW92 spectrum is much

less red shifted. Again, the red shift is also small with M06-2X but the overall shape

of the spectrum does not fit as well with experiment. For a more definite assessment,

further phosphorescence spectra will have to be considered, which is beyond the scope
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Figure 5.14: Vibronic phosphorescence spectra for the T1→S0 transition of p-
hydroxybenzaldehyde computed with LH12ct-SsirPW92 as well as with B3LYP and M06-
2X in comparison with the experimental spectrum (recorded at 77 K in PME). [303] The
position of the absorption maxima was not adjusted for this plot. A lifetime of 33.1 fs
was used for the line broadening to match the experimental spectrum.

of this thesis. For completeness, note that some unsuccessful attempts to simulate the

phosphorescence spectra of p-chloroacetophenone and indanone are included in ref. 264,

where none of the tested functionals delivered satisfactory agreement with the shape of

the experimental spectra, presumably because of the neglect of environmental effects.

5.6 Conclusions

The ES gradients implementation of LHs described in Chapter 4 was used to validate LHs

for a wide range of ES properties including ES structures, emission energies, AEEs, 0–0

energies, and harmonic vibrational frequencies. Moreover, the implementation was used

to compute the ingredients for the simulation of vibronically resolved spectra within the

FC approximation.

For the ES structural parameters, a first assessment for a test set of small molecules with

available experimental gas-phase data revealed comparable performance as with standard

GHs such as PBE0. No significant differences were observed regarding the multiplicity of

the ESs. For a larger test set of small to medium-sized molecules that employs coupled-
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cluster reference values, a more differentiated analysis w.r.t. bond types was conducted.

The overall performance is mixed: Compared to a range of semilocal functionals, GHs,

and RSHs, the investigated LHs provide some of the best ES carbon-nitrogen, carbon-

carbon, element-hydrogen, and particularly carbon-halogen bond lengths. They do not,

however, improve notably on the too short ES carbonyl, thiocarbonyl, or selenocarbonyl

bonds provided by most GHs and RSHs. Here any type of EXX admixture appears to

deteriorate the agreement with the high-level reference data. Notably, however, these are

also the bonds where the inclusion of triple excitations is crucial in ES coupled-cluster

computations as well.

The benchmark of spectroscopic AEEs/ 0–0 energies revealed competitive performance

of LHs for singlet excitations and remarkable performance for triplet excitations outper-

forming standard GHs. These findings are consistent with previous findings for VEEs.

In the case of fluorescence energies, the currently available LHs also do not generally

improve over standard GHs such as TPSSh or even over the BLYP semilocal functional.

However, closer analysis revealed this to be due to the too short ES carbonyl or thiocar-

bonyl bonds (see above). The already proven strength of LHs for VEEs and AEEs/ 0–0

energies of triplet ESs has also been confirmed for the emission energies of triplet ESs for

a test set of medium-sized organic chromophores. Only the highly parameterized M06-2X

functional was found to be on a par with the most successful LHs LH12ct-SsirPW92,

LH12ct-SsifPW92, and LH20t* for these phosphorescence energies.

LHs were found to be reliable for the calculation of harmonic ES vibrational frequen-

cies without particular advantages over standard GHs. Likewise, the shapes of vibronic

absorption spectra for singlet ESs did not provide any indications for substantial improve-

ments by LHs over standard global ones. In particular, LHs do not overcome the system

dependence of optimal EXX admixtures found previously with GHs. [275] The vibronic

absorption spectra with LHs for closed-shell GSs are on par with those obtained with

GHs, while a slight improvement of the shapes appears to be achieved for systems with

open-shell GSs. The advantages for phosphorescence energies and the robust performance

for the shape of vibronic spectra worked together for reliable emulation of some experi-

mental phosphorescence spectra. The M06-2X functional, which was also among the top

performers for phosphorescence energies, has been found to give the position of the peaks

correctly but was not capable to reproduce the vibronic shape of these spectra accurately.

The opposite was seen with B3LYP, whereas local hybrids provide both good energies and

spectral shapes. Therefore, local hybrids could become a valuable tool for the prediction

of phosphorescence spectra.
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6 Validation of Local Hybrid

Functionals for Electric Properties

In this chapter, an extensive benchmark study of local hybrid functionals for dipole mo-

ments and static and dynamic polarizabilities is conducted. It is reproduced (adapted)

and reprinted with permission from ref. 286 [R. Grotjahn, G. J. Lauter, M. Haasler, M.

Kaupp, J. Chem. Phys. A, 2020, 124, 8346]. Copyright 2020 American Chemical Society.

6.1 Introduction

As discussed in previous chapters, the accuracy of (TD)DFT results depends on the se-

lected XC functional and the associated XC potential, kernel and hyper-kernel. To guide

this selection process, meaningful benchmark studies are a vital source of information and

numerous such studies attracted considerable attention (see, e.g., ref. 6,7,118,304–307 and

references cited therein). As most of chemistry happens on GS potential-energy surfaces,

flexible parameters in (semi-)empirical XC functionals are often optimized with respect

to GS energies, e.g. thermochemistry and reaction barriers. [7] Lately, this energy-focused

approach has led to lively discussions if DFT is ”straying from the path toward the exact

functional” by not producing very good electron densities. [49–56] While opinions are di-

vided on this issue, a bottom line may be that an XC functional’s ability to give reasonable

electron densities should not be sacrificed light-mindedly. Spectroscopic examples where

electronic (spin-)densities in particular regions of space are sampled, e.g. near nuclei as

for hyperfine couplings, [308,309] are pertinent to this discussion. As a simple, more global

measure of the electron density, and of bond polarity, a molecule’s dipole moment may

be considered. [204] In the context of ES properties, which are related to the response of

the density to an external electromagnetic field, a logical extension is to also consider

polarizabilities, i.e. the first-order change of the dipole moment due to an external elec-

tric field (cf. Section 2.4.1). Improving the accuracy for such simple electric properties

may then also translate into improved performance for more complex photophysical and

photochemical aspects, [310] and evaluation of such parameters at the same time may serve

as an important check on the underlying physical soundness of a given XC functional.
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6 Validation of Local Hybrid Functionals for Electric Properties

Besides some smaller studies, [311–315] the by far most comprehensive benchmark data

sets available to date for dipole moments and static polarizabilities are those by Hait

and Head-Gordon. [204,205] They generated CCSD(T) reference values extrapolated to the

complete basis set limit (CBS) for 152 dipole moments (HHdip-152) [204] as well as po-

larizabilities (HHpol-132) [205] for 132 small molecules and atoms, and they assessed the

performance of a considerable number of popular and modern XC functionals. While

for both properties improvements were seen when stepping up the Jacob’s Ladder of XC

functionals, [112] differences in performance between individual functionals from the same

rung were substantial. For comparison, note that the (regularized) root-mean-square er-

rors (RMSEs) of the wave function methods Hartree–Fock and coupled-cluster singles

and doubles (CCSD) are 18.61% and 3.95%, respectively, for the dipole moments, [204] and

8.45% and 1.62%, respectively, for static polarizabilities. [205] Considering now only rung

4 functionals, performances for dipole moments range from 4.84% (SOGGA11-X) up to

27.11% (MN12-SX) with standard GH functionals like PBE0 (5.18%), B3LYP (6.98%), or

TPSSh (7.42%) falling in between. [204] For polarizabilities, the RMSEs range from 3.27%

(MPW1K) up to 10.69% (M06-HF), and the simpler standard hybrid functionals PBE0

(4.29%), B3LYP(6.25%), and TPSSh (5.44%) are again in the middle. [205] The authors

also noted that the poorer performances of some mGGA or hybrid mGGA functionals

are caused by rare but severe failures for some molecules of the test sets, which might be

related to overfitting. [205]

Compared to conventional, global hybrids, the additional flexibility introduced by the

LMF in local hybrids allows to adaptively compensate the self-interaction error in some

areas of the molecule while maintaining the benefits of the (semi-)local exchange func-

tional in other areas (cf. Section 2.3.2 for details). The recently reported LH20t func-

tional [17] showed excellent performance for the GMTKN55 main-group energetics test

suite, [6] where it outperformed all GHs and was found to be among the best rung 4 func-

tionals evaluated to date and performs excellent also in other areas such as mixed-valence

systems or excitation energies (see Section 2.3.4 for a detailed discussion). However,

LH20t exhibits a more sophisticated construction compared to previous, typically one-

or two-parameter LSDA-based LHs with nine optimized parameters. [17] While this is still

a small number compared to many highly parameterized semi-empirical hGGAs in wide

use, in view of the exclusive optimization for energy quantities and the excellent energetic

performance [17] it seems prudent to make sure that this performance is not obtained by

sacrificing the quality of the density distribution and related properties. That is, it should

be assure that this new LH “has not strayed from the path”. [49–56] To assess this issue,

and as a basis for evaluating future LHs, here LH20t and some simpler first-generation
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LHs are evaluated for their performance for dipole moments and polarizabilities as sim-

ple global measures for the accuracy of electron densities and electric-field response. So

far only two early LHs have been studied for polarizabilities but for the much narrower

case of (hyper)polarizabilities of hydrogen chains and noble-gas atoms using a finite-field

approach, which gave promising results. [316]

The dipole moment µ of a molecule is readily accessible from the charge density and

is defined in eq. 2.101. Alternatively, e.g. when densities are not available at a given

computational level, the k-th component (k ∈ {x, y, z}) of µ may be obtained from the

change of the energy E when a static external electric field E with field strength Ek is

applied

µk = − ∂E

∂Ek

⃓⃓⃓⃓
Ek=0

≈ −E(+δEk)− E(−δEk)

2δEk
, (6.1)

which is typically approximated (truncation error O
(︁
δ2Ek
)︁
) within a central FD approach

(eq. 4.7) with finite-field strength δEk . This approach was used in ref. 204 to obtain

reference dipole moments at the CCSD(T)/ CBS level of theory. In a similar spirit, the

components of the static polarizability tensor α, which is defined as the first-order change

of the dipole moment w.r.t. a static external electric field (eq. 2.103) may be obtained as

a second derivative of the energy

αkk = − ∂2E

∂E2k

⃓⃓⃓⃓
Ek=0

≈ −E(+δEk)− 2E(0) + E(−δEk)

δ2Ek
, (6.2)

written here only for the diagonal components and again approximated using a FD for-

mula. Alternatively, the static polarizability as well as the frequency-dependent (dynamic)

polarizability can be obtained via LR-TDDFT as outlined in Section 2.4.1.

6.2 Computational Details

The HHdip-152 test set was evaluated using TURBOMOLE’s dscf module, i.e. dipole

moments were obtained from the converged densities following eq 2.101. All calculations

were performed as unrestricted Kohn–Sham calculations using the structures provided in

ref. 204. No point-group symmetry was exploited. As suggested in ref. 204, the aug-pc-4

basis set [261,262,317–319] was used to work essentially at the basis-set limit. Dipole moment

calculations for the HF and FCl dissociation curves were performed with the aug-pc-3

basis set. As a recent study by Zapata et al. showed, [320] calculations employing some-

what smaller basis sets do not deliver significantly less accurate results for this test set

as long as diffuse functions are included. The DFT quadrature grid settings from ref.
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204 were best matched by TURBOMOLE’s gridsize 7. This grid was solely chosen for

benchmark purposes and is impractically large for most applications. For the scans of the

GH mixing factor and LMF prefactor, a smaller grid (gridsize 4) was used to reduce

the computational costs. For the HHpol-132 test set, the structures from ref. 205 and

the same settings as for dipole moments were used. In contrast to ref. 205, the default

methodology of the present work for the calculation of polarizabilities uses the response

approach described in Section 2.4.1. For comparison, the finite-field scheme (eq 6.2) was

applied for the global hybrid PBE0 as well as the local hybrid LH20t. For consistency

with the original publication, the calculation of static and dynamic polarizabilities from

ref. 310 used different settings: the structures for benzene, furan, pyrrole, imidazole, pyri-

dine, pyrimidine, pyrazine, and pyridazine were taken from the Thiel test set, [26] and the

remaining structures (benzonitrile, oxazole, phenol, phosphole, thiazole, thiophene) were

optimized at the same level (MP2/6-31G(d)) using Gaussian 16. [321] For the calculation of

(dynamic) polarizabilities, the aug-cc-pVTZ basis set [259,260] was used. Dynamic polariz-

abilities were calculated at frequencies of 0.072003 au and 0.093215 au chosen in ref. 310 to

match experimentally relevant laser wave lengths (632.8 nm and 488.8 nm, respectively).

The LHs LH07t-SVWN, LH07s-SVWN, LH12ct-SsirPW92, LH12ct-SsifPW92, LH14t-

calPBE, and LH20t were investigated (see Section 2.3.4 for a detailed description). To

evaluate the impact of the CF, the LH20t* functional obtained upon removing the CF was

also studied. The impact of cross spin-channel terms in common-LMFs, which are thought

to bring in some additional nondynamical correlation contributions, [178] was assessed by

examining a common-LMF variant of LH07t-SVWN with the same prefactor b = 0.48 (LH-

0.48ct-SVWN). To explore the impact of the self-interaction reduction in the correlation

part of the LH12 functionals, a custom local hybrid termed LH-0.709ct-SVWN, which

uses the LMF of LH12ct-SsifPW92 but the simpler VWN correlation functional, was

studied. Some additional results for comparison were obtained with the XC functionals

PBE, [123] B3-LYP, [10,124] PBE0, [123,138] BHLYP, [9,124] TPSSh, [132,140] M06, [143] M06-2X, [143]

PW6B95, [142] ωB97M-V, [155] SCAN0, [139] and CAM-B3LYP. [151] To analyze how EXX

admixture affects dipole moments and static polarizabilities, the hybrid mixing factor in

GHs and the LMF prefactor in LHs were scanned systematically in steps of 0.05 from 0.0

to 1.0 for some GHs and LHs (keeping all other parameters the same for a given type of

functional). This was done for the subset of 58 non-spin-polarized (NSP) cases contained

in both the HHdip-152 and the HHpol-132 test sets. The NSP character makes SCF and

TDDFT convergence easier for the more extreme parameter ranges.

The dipole moments from the HHdip-152 test set span a range of almost three orders of

magnitude ranging from 0.021 D for the OF molecule to 9.007 D for the ionic NaCl species
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(CCSD(T)/ CBS values). This is a challenge for the statistical evaluation, i.e. which error

definition is appropriate to use. On the one hand, rather small absolute changes in the

dipole moment can lead to considerable relative errors if the respective dipole moment

is small. On the other hand, absolute errors can become relatively large and dominate

the statistics for species with large dipole moments. As a solution to this problem, a

“regularized” error is used in ref. 204, which is adopted for this work. That is, up to

reference dipole moments of 1 D, (dimensionless) total errors enter the statistics, and

above that mark relative errors are considered. With that convention, the “regularized”

root-mean-square error (RMSE) and mean signed error (MSE) read

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(︃
µi − µref

i

max(µref
i , 1D)

)︃2

(6.3)

and

MSE =
1

n

n∑︂
i=1

µi − µref
i

max(µref
i , 1D)

(6.4)

respectively. Although µi generally refers to the norm of the dipole moment vector |µ| for

a given molecule, it does include the sign of the vector if the direction of the calculated

(DFT) dipole moment vector is opposite to that of the reference dipole moment vector.

For the static polarizabilities from the HHpol-132 test set, the regularization used for

dipole moments is not needed and errors are defined as:

RMSE =
1

3

∑︂
k=x,y,z

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(︄
αkk,i − αref

kk,i

αref
kk,i

)︄2

, (6.5)

MSE =
1

3n

∑︂
k=x,y,z

n∑︂
i=1

αkk,i − αref
kk,i

αref
kk,i

. (6.6)

Finally, for the set of static and dynamical polarizabilities from ref. 310, isotropic polar-

izabilities, i.e. the average of the three diagonal components of the polarizability tensor

(1
3

tr(α)), were considered for consistency with the available reference data, and the RMSE

is defined as

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(︄
tr(αi)− tr

(︁
αref

i

)︁
tr
(︁
αref

i

)︁ )︄2

. (6.7)

Note that all raw data for this study are provided as Supporting Information in ref. 286.
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6.3 Results

6.3.1 Dipole Moments

Results for the Benchmark Set

The HHdip-152 test set contains 71 spin-polarized (SP) and 81 non-spin-polarized (NSP)

molecules. This classification was made by Hait et al. [204] based on unrestricted HF

calculations for which SP molecules do and NSP systems do not break the spin symmetry.

Regularized RMSEs for both subsets are presented in Figure 6.1 for a variety of functionals

and additional statistical data for the LHs are in Table 6.1. Overall, the results for all

LHs cover a relatively narrow range from a total RMSE of 7.46% for LH-0.709ct-SVWN

to 5.87% with the most recent LH20t functional. In comparison, the rung 4 functionals

investigated in ref. 204 span a much larger range from 27.11% (MN12-SX) down to 4.84%

(SOGGA11-X). On one side, this a natural consequence of the conceptional similarity of

the investigated LHs, in particular the almost exclusive use of a scaled t-LMF with LH07s-

SVWN being the only functional using a different LMF. On the other side, it also shows

that none of the local hybrids studied here has a serious problem with the prediction of

dipole moments.

For a more differentiated discussion, first note the impact of the LMF on the perfor-

mance for dipole moments. LH07s-SVWN is the only LH in this study that uses an

s-LMF. It gives a very similar RMSE as the t-LMF based LH07t-SVWN for the NSP

subset but a very slightly improved performance for the SP subset. More notably, all

Figure 6.1: Regularized root-mean-square percentage errors w.r.t. CCSD(T)/CBS ref-
erence values for various LHs for the HHdip-152 test set [204] in comparison with previous
results [204] for some hybrid-mGGAs and hybrid-GGAs.
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Table 6.1: Statistical measures in percentages w.r.t. CCSD(T)/CBS reference values
for the HHdip-152 test set [204] for LHs. RMSE is the root-mean-square regularized error,
MAX the maximum absolute regularized error, MSE the mean signed regularized error,
and σ the standard deviation. SP (NSP) is the subset of (non-)spin-polarized systems.

RMSE

Functional all NSP SP MAX MSE σ

LH07s-SVWN 6.39 5.44 7.32 30.69 0.67 6.37
LH07t-SVWN 6.75 5.43 8.00 31.46 2.15 6.42
LH-0.48ct-SVWN 6.94 5.43 8.35 33.17 2.13 6.63
LH12ct-SsirPW92 7.08 6.10 8.06 26.57 3.10 6.39
LH12ct-SsifPW92 7.36 6.48 8.24 24.37 3.42 6.53
LH-0.709ct-SVWN 7.46 6.29 8.59 27.10 3.90 6.38
LH14t-calPBE 6.00 4.62 7.26 28.07 1.96 5.69
LH20t 5.87 4.86 6.84 22.63 3.39 4.81
LH20t* 6.40 5.52 7.28 22.21 3.53 5.36

t-LMF-based LHs have a positive MSE between 2-4%, indicating a small but systematic

overestimate of the dipole moments, while that for LH07s-SVWN is only 0.67%. This will

be analyzed in more detail further below. Going from a spin-channel to a common t-LMF

(from LH07t-SVWN to LH-0.48ct-SVWN), while keeping all other things equal, increases

the RMSE and standard deviation for the SP systems only very slightly (Table 6.1).

Considering the advantages of the common version of the t-LMF for other properties like

triplet excitation energies (cf. Section 5.4.1 and 5.4.3 as well as ref. 24 and 25) this minor

drawback for dipole moments of SP molecules is probably of secondary importance. As

expected, results for the NSP subset remain unaffected because the two LMF versions

become identical if the α and β spin channels are equivalent. Increasing just the t-LMF

prefactor from LH-0.48ct-SVWN to LH-0.709ct-SVWN increases the RMSE further some-

what for both NSP and SP systems. This finding is consistent with a general trend found

also for simpler GHs: larger EXX admixtures can lead to overestimated dipole moments,

e.g., PBE0 gives an RMSE of 4.52% for the NSP set and PBE50 an RMSE of 5.15%. [204]

A more detailed analysis of the impact of the LMF prefactor is provided in Section 6.3.3

below.

Replacing VWN correlation in LH-0.709ct-SVWN by short-range self-interaction-free

(sif) PW92 correlation gives the energy-optimized LH12ct-SsifPW92. [178] Effects are mar-

ginal, with a slightly increased/ decreased RMSE for NSP/ SP systems, respectively.

LH12ct-SsirPW92 has short-range self-interaction-reduced (sir) PW92 correlation and a

slightly smaller prefactor (b = 0.646). [178] As one might expect from the above discussion,

it gives an overall somewhat smaller RMSE and MSE. Introduction of PBE exchange and
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correlation and a pig1 CF in LH14t-calPBE (and having b = 0.50) gives a more notable

improvement for both NSP and SP systems and the lowest MSE of all t-LMF-based LHs.

LH20t, which is based on PBE exchange and B95 correlation and a more advanced

pig2 CF, has a larger t-LMF prefactor (b = 0.715) and thus gives a larger positive MSE

than LH14t-calPBE. However, the RMSE is similar for both NSP and SP systems, and

thus the two more advanced LHs with calibrated energy densities perform slightly better

than the uncalibrated ones (LH20t also exhibits the smallest standard deviation, Table

6.1). Removing the pig2 CF that adjusts the gauge of semilocal and exact exchange-

energy densities [17] worsens performance of LH20t slightly. These results show clearly

that the more sophisticated construction and parameterization that gives LH20t major

advantages over other LHs for, e.g., GMTKN55 energetics, [17] has no disadvantageous

effects on dipole moments as indicators of electron density distributions.

Figure 6.1 includes results from ref. 204 for a selection of other rung 4 XC function-

als and several of them provide slightly better dipole moments than LHs. In particular,

PW6B95, which uses the B95 correlation functional also utilized in LH20t, surpasses the

performance of LH20t with a total RMSE of 4.87%. [204] For some of the highly parame-

terized XC functionals, such as M06-2X, the difference between the NSP and SP subset

is striking. It is caused by some isolated cases with significant errors that deteriorate the

performance for the SP subset, which may indicate overparameterization of the respective

functionals. [204] The data for LHs, especially the MaxEs stated in Table 6.1, confirm that

none of the LHs suffer from this problem.

Analysis of Performance for Specific Subsets

To further explore the strengths and weaknesses of local hybrids for dipole moments,

smaller selections of molecules are analyzed in more detail. First, a subset of 11 molecules

classified in ref. 204 as “difficult cases” is considered. Individual errors are given in

Table 6.2. For these molecules, even the best performers from ref. 204, SOGGA11-X or

PW6B95, exhibit appreciable RMSEs (10.5% and 13.6%, respectively), while functionals

like M06-2X or TPSSh perform even more poorly. The earlier LH07s-SVWN and LH07t-

SVWN also fall behind but the new LH20t is overall on par with the best-performing

functionals for this subset (RMSE 11.7%). Notably, the errors for SOGGA11-X and

PW6B95 are largely statistical (small MSE) but those for LH20t exhibit a positive MSE.

Indeed, the critical molecules are different for those functionals: LH20t has somewhat

larger positive deviations for BF or BCl compared to those two global hybrids, but it does

not share with them the systematic underestimate for NaLi and for fluoroethyne (HCCF)
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Table 6.2: Comparison of local hybrids and other rung 4 functionals for the “difficult
cases” [204] from the HHdip-152 test set expressed as regularized percentage deviations.a

Mol. TPSShb ωB97M-Vb PW6B95b SOGGA11-Xb M06-2Xb LH07s LH07t LH12sif LH20t LH20t*

BF 21.0 10.1 7.7 10.4 2.7 19.5 22.8 22.8 15.3 18.9
BS 1.6 12.5 6.3 9.6 15.4 14.0 12.7 13.7 17.1 15.2
CF 14.5 10.2 5.0 4.2 −1.6 13.2 13.6 12.0 4.3 7.6
CF2 14.0 6.1 3.9 3.0 −2.0 13.0 13.7 11.9 4.5 7.5
H2O−Cl 29.0 10.1 19.2 11.0 3.9 25.6 25.7 22.1 18.8 20.0
H2O−F 31.9 15.6 23.2 11.2 3.5 30.7 31.5 24.4 21.2 21.5
H2O−Li −12.8 −26.2 −24.2 0.6 −21.5 −0.2 −4.1 12.1 −2.4 7.6
HCCCl −13.4 −10.0 −12.2 −8.5 −8.1 −13.0 −8.0 −4.9 −0.2 −1.9
HCCF −16.9 −11.2 −7.2 −8.9 −1.7 −16.3 −11.5 −11.0 −0.3 −5.2
NaLi 25.2 −31.9 −9.9 −23.9 −67.1 3.2 −13.3 4.8 −2.6 10.7
NOCl −10.5 −4.1 −10.2 −3.6 −6.9 −10.6 −11.4 −7.8 −10.7 −8.7

MSE 7.6 −1.7 0.1 0.5 −7.6 7.2 6.5 9.1 5.9 8.5
RMSE 19.3 15.6 13.6 10.5 22.1 16.7 17.1 14.9 11.7 12.9

a Abbreviations: LH07s: LH07s-SVWN, LH07t: LH07t-SVWN, LH12sif: LH12ct-SsifPW92.
b Results from ref. 204.

and chloroethyne (HCCCl). Hait et al. hypothesized that unrecognized delocalization

errors connected to the C≡C−X moiety might be the reason for the poor performance of

established functionals for the two substituted acetylenes. [204] LH20t, which was designed

with a good balance between (de)localization and left-right correlation in mind, [17] gives

an almost perfect agreement for these systems. LH20t also performs particularly well for

the H2O−Li complex. Neglecting the CF used in LH20t (i.e. LH20t*) deteriorates the

accuracy for weakly bound systems like NaLi or H2O−Li, consistent with the importance

of the gauge problem for weaker noncovalent interactions. [16,17,185] Also note that all LHs

and TPSSh have positive MSEs for this subset, while M06-2X exhibits a negative one,

and SOGGA11-X, PW6B95 and ωB97M-V show more statistical behavior. This may be

of interest in the construction future LH functionals.

Except for LH07s-SVWN, all local hybrids studied here are based on a (spin-channel

or common) t-LMF. While this LMF has proven its suitability for many properties, its

shortcomings have also been pointed out. [12] In particular, its steep increase in bonds

towards hydrogen atoms was suspected to be undesirable for the nuclear shieldings of

protons or of their neighboring nuclei, [245] and possibly for the atomization energies of

element-hydrogen bonds. [12] Results in Table 6.3 suggest that this feature of the t-LMF

may also manifest in systematically overestimated dipole moments for simple diatomic

hydride species. The MSEs of all t-LMF-based LHs are clearly more positive than with

the s-LMF (LH07s-SVWN), which exhibits a more gradual increase along the E−H bond.

While this functional still overestimates the dipole moments to some extent, its overall

RMSE of 4.5% for this particular subset of molecules is comparable to that of other rung 4
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Table 6.3: Comparison of local hybrids and other rung 4 functionals for dipole moments
of diatomic hydrides from the HHdip-152 test set expressed as regularized percentage
deviations.a

Mol. TPSShb ωB97M-Vb PW6B95b SOGGA11-Xb M06-2Xb LH07s LH07t LH12sif LH20t LH20t*

LiH −1.1 −1.2 −1.6 0.4 −1.1 0.7 2.9 4.0 2.6 3.6
BeH −3.7 10.3 7.9 −3.0 1.9 5.5 3.8 −4.8 2.4 −0.2
BH −1.1 7.7 7.6 12.0 10.6 11.9 18.8 22.5 22.6 22.2
CH −2.2 2.3 0.2 1.6 3.4 3.1 8.0 8.5 8.7 8.8
NH −1.2 −0.1 −1.8 −1.7 0.3 −0.3 3.4 2.9 3.7 3.8
OH −2.1 −0.1 −0.4 −0.3 1.3 0.5 2.7 3.9 3.9 4.0
HF −1.7 −0.6 0.1 0.3 1.4 0.7 2.1 3.4 3.5 3.5
NaH −2.2 −0.1 −3.5 3.7 1.1 3.8 6.0 9.5 6.5 8.6
SiH 6.4 −9.0 −4.8 5.2 −2.3 5.5 8.7 12.7 6.7 10.3
PH 2.6 −4.6 −3.8 1.9 −1.9 3.3 6.2 8.5 3.6 6.6
SH −0.3 −1.9 −2.3 1.3 −1.0 2.5 5.1 8.0 4.3 6.4
HCl −1.2 −0.8 −1.3 1.2 −0.2 1.7 3.9 6.5 4.3 5.6

MSE −0.7 0.2 -0.3 1.9 1.1 3.2 6.0 7.1 6.1 6.9
RMSE 2.6 4.8 3.9 4.2 3.5 4.5 7.4 9.5 8.1 8.8

a Abbreviations: LH07s: LH07s-SVWN, LH07t: LH07t-SVWN, LH12sif: LH12ct-SsifPW92.
b Results from ref. 204.

functionals. This gives further indications that improved LH constructions, e.g., using

more sophisticated LMFs, may provide additional improvements for dipole moments.

Dipole Moments Along Dissociation Curves of HF and FCl

For an assessment of the quality of XC functionals in challenging stretched-bond situa-

tions, Hait et al. provided CCSD(2) and CCSD(T) reference data for the dipole moments

along the dissociation curves of the HF and FCl molecule, respectively. They found that

many semilocal XC functionals exhibit delocalization errors and thus produce a resid-

ual charge and non-vanishing dipole moments at large nuclear separations for HF (less

so for the less polar FCl). [204] GHs improve the long-range behavior but, depending on

the EXX admixture, still tend to decay too slowly towards neutral atoms at intermedi-

ate distances. Double hybrids were found to exhibit some specific artifacts due to MP2

correlation added post-SCF. [204] However, orbital-optimized double hybrids may resolve

these issues. [322,323] Figure 6.2 compares the curves for LH20t and LH12ct-SsifPW92 with

those of ωB97X-V and PW6B95 and the benchmark CC data. For the dissociation of

HF, all functionals shown in Figure 6.2 (top) give reasonably fast decay to neutral atoms

at larger distances, with PW6B95 having a somewhat longer tail. The largest dipole

moments near the Coulson–Fischer point are overestimated by all XC functionals, likely

reflecting strong correlation effects at this distance. This holds also for the two LHs

which, however, decay particularly fast, indicating low delocalization errors. The trends
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6.3 Results

Figure 6.2: Dipole moments (in Debye) along the dissociation curves of HF (top) and
FCl (bottom) with selected XC functionals compared to CCSD(2) or CCSD(T) reference
data from ref. 204. Data for PW6B95 and ωB97X-V are also from ref. 204.

for the dissociation of FCl (Figure 6.2, bottom) confirm smaller residual charges for all

functionals, with ωB97X-V performing marginally better than the two LHs.

6.3.2 Static Polarizabilities

Comparison of Response and Finite-Field Approaches

In ref. 205, the polarizabilities for the HHpol-132 test set were computed within a finite-

field scheme (eq. 6.2) at both CCSD(T) reference level and for DFT. Here TURBOMOLE’s

LR-TDDFT implementation of polarizabilities is used. It is not only more convenient but
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Figure 6.3: Histogram of the relative deviations of LR-TDDFT results from results
obtained within a finite-field approach for the static polarizabilities (αxx, αyy, and αzz) of
the HHpol-132 test set. [205] An artificial offset between the two distributions is used to
unveil their overlap.

also more closely related to the calculation of other optical or spectroscopical properties,

which are typically obtained within response theory. Also, the finite-field scheme is sus-

ceptible to errors from an improper choice of the differentiation increment. Too large

differentiation increments could introduce non-negligible contributions from higher-order

terms, whereas too small increments can lead to numerical problems, i.e. energy changes

are not detected with sufficient accuracy. To ensure comparability of the LR-TDDFT

results and the finite-field results from ref. 205, the deviations between both schemes are

quantified first. This was done for the GH PBE0, for which finite-field results are also

available from ref. 205, as well as for LH20t to ensure transferability to local hybrids. De-

viations of the LR-TDDFT calculations from the finite-field results are negligibly small,

with a mean signed deviation of −0.21% for PBE0 and of −0.19% for LH20t. The dis-

tribution of deviations shown in Figure 6.3 confirms that in the vast majority of cases

LR-TDDFT gives marginally smaller polarizabilities than the finite-field approach, pre-

sumably because non-vanishing higher order terms in the finite-difference evaluation lead

to artificially a bit increased polarizabilities. Absolute deviations above 0.3% are relatively

rare indicating that such errors from the finite-difference scheme are well under control.

Note that for a handful of systems smaller differentiation increments than those chosen

in ref. 205 (0.001 au instead of 0.01 au) would give even better accuracy (see Supporting
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Information of ref. 286 for details). Similarly, a recent study by Brakestad et al., [324] that

uses multiwavelet basis sets and linear response theory, found some rather large individual

errors associated with the finite-field scheme. Also note that the focus of that study was

on basis-set completeness, and the aug-pc-4 basis set used in ref. 205 and in the present

work was found to be adequate.

Judging from the marginal differences between PBE0 and LH20t in Figure 6.3, the XC

functional seems to have a negligible impact on the comparability of the finite-field and

LR-TDDFT results. Overall, the conclusion from this is that the present LR-TDDFT

results can be compared straightforwardly to the finite-field results from ref. 205.

Results for the Benchmark Set

Results for the HHpol-132 test set that contains 57 spin-polarized (SP) and 75 non-spin-

polarized (NSP) systems, are presented in the form of RMSEs for a variety of functionals

in Figure 6.4 along with additional statistical data for LHs in Table 6.4. The overall pic-

ture resulting from Figure 6.4 appears quite similar to the findings for dipole moments.

LHs are among the better-performing rung 4 functionals without claiming the top perfor-

mance (which in this case is held by MPW1K [205]), and they notably do not exhibit larger

outliers as some other hGGAs do for the SP cases. Taking a closer look at the individual

LHs, the role of the LMF is discussed first. In contrast to the above findings for dipole

moments, the s-LMF-based LH07s-SVWN gives inferior polarizabilities when compared

to the t-LMF-based LH07t-SVWN (including a more positive MSE, Table 6.4). This may

Figure 6.4: Root-mean-square percentage errors w.r.t. CCSD(T)/CBS reference values
for static polarizabilities of the HHpol-132 test set. [205] for various LHs compared to
previous results [205] for some hybrid-mGGAs and hybrid-GGAs.
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Table 6.4: Statistical measures in percentages w.r.t. CCSD(T)/CBS reference values for
static polarizabilities from the HHpol-132 test set [205] for LHs. RMSE is the root-mean-
square error, MAX the maximum absolute error, MSE the mean signed error, and σ the
standard deviation. SP (NSP) is the subset of (non-)spin-polarized systems.

RMSE

Functional all NSP SP MAX MSE σ

LH07s-SVWN 5.38 5.05 5.77 19.37 4.26 3.27
LH07t-SVWN 4.35 3.89 4.88 19.39 2.81 3.30
LH-0.48ct-SVWN 4.56 3.89 5.30 19.39 2.98 3.42
LH12ct-SsirPW92 4.83 3.94 5.76 21.49 2.60 4.05
LH12ct-SsifPW92 5.08 4.07 6.11 22.33 2.62 4.33
LH-0.709ct-SVWN 5.25 4.40 6.09 24.91 1.15 5.10
LH14t-calPBE 4.19 3.77 4.68 17.63 2.59 3.26
LH20t 4.30 3.84 4.83 19.60 1.76 3.91
LH20t* 4.50 3.87 5.18 20.09 1.58 4.21

be related to the different behavior of s- and t-LMFs in the intermediate region between

valence and asymptotics, which is thought to be responsible for t-LMFs to perform better,

e.g., for low-lying Rydberg states. [24] As already seen for the dipole moments, use of a

common LMF (LH-0.48ct-SVWN) and increase of the prefactor very slightly deteriorate

the polarizabilities. A more detailed analysis of the impact of the LMF prefactor is pro-

vided in Section 6.3.3 below. Using the short-range self-interaction-free PW92 correlation

functional (LH12ct-SsifPW92) improves the results somewhat compared to LH-0.709ct-

SVWN, but the effects are minor. The recent LH20t functional is among the best LHs for

polarizabilities, but the differences to the earlier LHs are again not very pronounced (the

RMSE is the second-lowest). Probably, disadvantages from the common t-LMF with large

prefactor (b = 0.715) are compensated by the more advanced GGA/mGGA XC contribu-

tions. This is supported also by the results for the second PBE-based LH, LH14t-calPBE.

It has a spin-channel t-LMF with smaller prefactor (b = 0.50) and performs slightly better

than the closely related LH07t-SVWN (b = 0.48). The CF seems to have a small impact,

as indicated by the effect of its removal (cf. LH20t* entry in Table 6.4). Importantly, the

more highly parameterized LH20t performs robustly and exhibits no sign whatsoever of

overparameterization.

6.3.3 Influence of the LMF Prefactor and GH Mixing Factor

In extension of the discussion on the LMF prefactor, it is analyzed in more detail how

EXX admixture, as encoded by the constant admixture of GHs and the t-LMF prefactor

for LHs, influences both dipole moments and static polarizabilities. Figure 6.5 provides
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Figure 6.5: RMSEs for dipole moments (top) and polarizabilities (bottom) for 58 non-
spin-polarized molecules from refs. 204 and 205 with global and local hybrids using dif-
ferent EXX admixtures (GHs) or t-LMF prefactors (LHs).

plots of the computed RMSEs for increasing hybrid mixing parameters in GHs and in-

creasing t-LMF prefactors in LHs respectively. Additionally, histograms reflecting the

distribution of optimal prefactors with each functional are provided in Figure A.36-A.37

in Appendix A.12.

As a t-LMF-based LH features EXX real-space admixtures between 0 and the LMF

prefactor, the density-averaged EXX admixture will always be lower than for a GH with
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the same prefactor. The exact ratio depends on the molecule, but as a rule of thumb,

the appropriate t-LMF prefactor to generate the same density-averaged admixture as the

corresponding GH is about twice the EXX admixture of the latter. [212,285,325] This explains

why all curves for LHs in Figure 6.5 are shifted to higher prefactors. For the PBE-based

GH (light blue curves in Figure 6.5), the optimal prefactor for both properties is 0.35,

i.e. 35% EXX admixture. This is somewhat larger than in the popular PBE0 functional

but close to the prefactor in PBE0-1/3, for which theoretical and numerical arguments

have been put forward, [326,327] and which performs better than PBE0 for the MVO-10

test set of gas-phase mixed-valence oxo systems. [18] For the BLYP-based GH (dark blue

curves in Figure 6.5), the optimal prefactor differs notably between dipole moments and

polarizabilities, with larger EXX admixtures performing better for the latter. The scan for

LH07t-SVWN (purple curves in Figure 6.5) confirms that the thermochemically optimized

t-LMF prefactor of b = 0.48 [13] is also optimal for the prediction of dipole moments and

close to optimal for polarizabilities. For LH12ct-SsifPW92 (red curves in Figure 6.5),

the thermochemically optimized t-LMF prefactor of b = 0.709 [178] is a bit too high for

dipole moments but optimal for polarizabilities. LH12ct-SsifPW92 is also known to give

very reliable excitation energies and other ES properties (see, e.g., ref. 24,25,30 and

Chapter 5). Apparently, a prefactor of around 0.7 is generally optimal for electric-field

response calculations with this type of functional. A very similar picture is found for

LH20t (green curves in Figure 6.5), except that much smaller RMSEs are achieved for

dipole moments. The energy-optimized LMF prefactor b = 0.715 [17] turns out to be close

to optimal for polarizabilities, yet a bit too large for dipole moments. Comparison to a

specifically constructed PBE-based LHt-PBEPBE functional that uses a t-LMF (orange

curves in Figure 6.5), shows that the advantages of LH20t for dipole moments cannot be

emulated by simply replacing the LSDA components from LH07t-SVWN with GGA ones.

Besides, LHt-PBEPBE would yield a smaller optimal prefactor for polarizabilities, which

is undesirable for other properties like excitation energies or the balance of (de-)locali-

zation and left-right correlation. [17] The construction of LH20t allows such larger LMF

prefactors without compromising on the accuracy for electric-field response.

6.3.4 Dynamic Polarizabilities

By definition, static polarizabilities, as those from the HHpol-132 test set, are evaluated in

the zero-frequency limit. Excitation energies or other ES properties, on the other hand, are

clearly not obtained in this limit. To widen the view on the performance of LHs and other

XC functionals for electric response further, they are evaluated here for a recent test set
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Figure 6.6: Root-mean-square percentage errors (RMSEs) w.r.t. CC3 reference values
for static and dynamic polarizabilities of 14 (hetero)aromatic molecules. [310] Errors for
CC2, SOPPA and CCSD are for data from ref. 310.

of dynamic (frequency-dependent) polarizabilities of 14 (hetero)aromatic medium-sized

molecules. [310] Figure 6.6 shows percentage RMSEs relative to CC3 reference data [310] for a

series of LHs and some other XC functionals and wave-function methods, looking at static

polarizabilities and at dynamic polarizabilities at two different frequencies. Compared to

the HHpol-132 test set, the percentage deviations of DFT results from the reference data

are overall smaller. This can be rationalized by the larger size of the molecules contained

(which are furthermore exclusively NSP cases), which leads to larger polarizabilities and

therefore smaller relative errors. Also, isotropic polarizabilities are given, which may help

with some error compensation, as suggested by a comparison of RMSEs for the HHpol-132

test set calculated on the basis of individual polarizability components and on isotropic

polarizabilities, respectively (see Supporting Information of ref. 286). Notably, CC2 and

the second-order polarization propagator approximation (SOPPA) methods studied in

ref. 310 perform worse than time-dependent Hartree–Fock (TDHF, also referred to as the

random phase approximation, RPA). Except for one outlier (see Supporting Information

of ref. 286 for details), the TDHF results from this work are in almost perfect agreement

with those obtained in a separate study. [328] Going from CC2 to CCSD gives results close

to the CC3 reference data.

The GGA functional PBE is inferior to HF, reflecting the overestimated polarizabilities

of such π systems at semilocal levels. [329,330] Judging from the general trend of the errors

with increasing EXX admixture in GHs, somewhat larger fractions are required to perform
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better than HF. For instance, errors are reduced significantly for BHLYP (50%) compared

to B3LYP (20%) or for M06-2X (54%) compared to M06 (27%). This trend is much more

pronounced than for the mostly smaller (NSP and SP) molecules of the HHpol-132 test

set discussed above (cf., e.g., Figure 6.4). On the other hand, errors with PBE0-50

(50%) are significantly larger than with BHLYP. This agrees with the trends seen for

the scan of the GH mixing parameter for static polarizabilities (Figure 6.5) and indicates

that the underlying semilocal functionals are also important. The larger importance

of EXX admixture carries over also to the LHs. For example, LH12ct-SsifPW92 gives

significantly better results than LH07t-SVWN. Note that the pig2 CF in LH20t actually

now deteriorates agreement with the reference data somewhat for this set of molecules,

i.e. LH20t* exhibits a smaller percentage deviation than LH20t. This is also different

from the HHpol-132 data above, indicating that the choice of molecules clearly matters

for those trends.

Deviations for dynamic polarizabilities in Figure 6.6 are strongly correlated with those

for the static polarizabilities of the same set. In contrast to CCSD data, but as for HF and

CC2, for each XC functional deviations to the CC3 reference data increase with increasing

frequency, likely due to the AA (eq. 2.129) for the XC kernel becoming more critical

with increasing frequency. [215] For the frequencies considered here, the increase in the

deviations is, however, rather small compared to the total error of a given XC functional,

which indicates that the AA is not a major concern in the UV-Vis-NIR frequency range.

6.4 Conclusions

Given their relation to the GS electron density and to ESs, dipole moments and polariz-

abilities, respectively, are good measures of the quality of an electronic-structure method

when going beyond energies. In the context of recent discussions on how the development

of XC functionals in KS-DFT has progressed since the year 2000, two recent large test

sets of dipole moments and static polarizabilities, as well as a smaller set of dynamic

polarizabilities, were used here to evaluate the status of first-generation and more recent

LHs for electric properties, in comparison with other functionals from the literature.

Overall LHs are found to be reliable for these properties, among the better and more

robust hybrid functionals without outperforming the leading functionals in each case

(SOGGA11-X for dipole moments, MPW1K for polarizabilities). Given that the perfor-

mance approaches CCSD quality, and that no larger outliers are observed, the results for

these purely energy-optimized LHs are thus encouraging. This holds also for the most

recent LH20t functional, which has a more advanced construction than earlier LHs and
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thus exhibits nine adjustable energy-optimized parameters. No indications of overparam-

eterization are found, in contrast to some other semi-empirical rung 4 functionals. Indeed,

deviations are overall even slightly below those of the simpler LHs evaluated. The intro-

duction of CFs to deal with the gauge problem of exchange-energy densities in LHs also

does not introduce any artifacts. This is borne out by the good performance of both “cal-

ibrated” LHs evaluated here. The AA used for the XC kernel in TDDFT computations

of dynamic polarizabilities also does not seem to introduce any larger errors.
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In this work, the development of local hybrid functionals and the knowledge base around

the performance of this class of functionals has been advanced. The focus was on excited-

state properties, where the first implementation of excited-state gradients for local hybrids

has been presented and extensively validated. As another aspect, the performance of local

hybrids for the prediction of dipole moments as well as static and dynamic polarizabilities

has been assessed to provide evidence that reasonable electron densities and electric-field

response are obtained with functionals from this rather new class.

For the ES gradients, the original derivation for global hybrids by Furche and Ahlrichs [35]

was reassessed and extended to cover the more general local hybrid scheme. The local

hybrid hyper-kernel, kernel gradients, and potential gradients were derived. Because of

the explicit orbital dependence of local hybrids the density-matrix derivative scheme from

ref. 67 was applied and extended to cover third derivatives, additional matrix-vector con-

tractions, and mixed derivative w.r.t. density-matrices and nuclear coordinates. These

developments were implemented in the egrad program of the TURBOMOLE software

suite using seminumerical techniques for exact-exchange like integrals. The correctness

of the implementation was assured by comparison with ES gradients calculated from ES

energies via numerical differentiation. The impact of the size of the numerical quadra-

ture grid was carefully investigated and no special grid requirements were identified for

the seminumerical local hybrid implementation as compared to that of the conventional

numerical quadrature for other XC functionals. The smallest standard grid available in

TURBOMOLE was found to be sufficient in most cases, while weakly bound systems may

require slightly larger grids. The efficiency of the implementation has been compared to

other TURBOMOLE programs where seminumerical local hybrid implementations are

available. The scaling w.r.t. system size for the ES gradients implementation was found

to be almost quadratic and thereby similar to that of the ES energy and GS gradients

implementations. Like for the analytical implementation of global hybrids, the seminu-

merical local hybrid implementation of ES gradients exhibits an about 3.6 (5.0) times

larger prefactor compared to ES energies (GS gradients) due to the additional steps in-

volved including also one (two) additional iterative step(s). Compared to the standard
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analytical implementation used for global hybrids, slightly inferior scaling w.r.t. system

size and somewhat longer total computation times were found when using the medium-

sized def2-TZVP basis set. However, the absolute difference in computation times between

these implementations strongly depends on the grid and basis set size. As expected, the

seminumerical ES gradients implementation of local hybrids features much better scaling

w.r.t. basis set size and lower total computation times for calculations with larger basis

sets when compared to the standard analytical implementation of global hybrids.

The new implementation was used to study the performance of local hybrid functionals

for various ES properties. For many categories, the performance was found to be similar

to that of state-of-the-art global or range-separated hybrid functionals. This applies to

ES structural parameters, adiabatic excitation energies/ 0–0 energies for singlet states,

fluorescence energies, and harmonic ES vibrational frequencies. While some trends could

be extracted from a detailed analysis of the benchmark results, such as slight advan-

tages of local hybrids for some specific bond types (carbon-nitrogen, carbon-carbon, and

carbon-halogen) or slightly inferior performance for fluorescence energies, the differences

to global hybrids are not particularly striking. More definite conclusions can be drawn

regarding AEEs/ 0–0 energies for triplet ES as well as for emission energies from triplet

ESs (phosphorescence) for which some local hybrids outperform most global and range-

separated hybrids and are only matched by the highly empirical M06-2X functional. The

decisive feature here is the use of a common t-LMF with relatively large prefactors as

in LH12ct-SsirPW92, LH12ct-SsifPW92, and LH20t. This is in agreement with previous

results for vertical absorption energies and underlines the great potential of this class of

functionals for applications involving triplet ESs. With the ability to efficiently optimize

ES structures and to obtain harmonic ES vibrational frequencies via numerical differen-

tiation of the ES gradients, the emulation of vibronically resolved spectra has become

possible with local hybrid functionals. The initial hope to overcome the strong system

dependence of the optimal exact-exchange admixture previously observed with global

hybrids has not been fulfilled. While the performance for the prediction of absorption

spectra of closed-shell species was found to be comparable to that of standard global

hybrids, some advantages for the absorption spectra of open-shell systems are promis-

ing. Moreover, two case studies for phosphorescence spectra suggest that the outstanding

performance of some local hybrids for phosphorescence energies and their reliability for

the prediction of the band-shape work together to accurately reproduce the experimental

spectra which was not achieved with the studied global hybrids.

In a separate study of dipole moments and polarizabilities, it could be shown that

present local hybrids are reliable for the prediction of these quantities. The main reason
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to study these properties has been to analyze if the energy-focused optimization approach

used for the parameterization of modern local hybrids such as LH20t has negative side

effects on the quality of the density as argued for other highly parameterized global and

range-separated hybrid functionals. With dipole moments and polarizabilities being well

described even with the nine-parameter LH20t functional without exhibiting strikingly

large outliers, it is concluded that overparameterization is not an issue with this functional

and the other investigated local hybrids. However, since more subtle local features of

the electron density are concealed in the dipole moments due to the (position-weighted)

averaging over space, this study should only be viewed as a first step towards considering

the quality of the electron density in the development of local hybrid functionals.

With regard to the development of new local hybrids, the local mixing function plays a

key role. Despite some remarkable results obtained with the simple t-LMF and its broad

applicability, its steep increase towards hydrogen is suspected to cause the significantly

overestimated dipole moments observed here for some hydride species. Similarly, hydro-

gen nuclear shieldings are known to be more difficult to reproduce with t-LMF based

local hybrids compared to shieldings for other nuclei. However, such adverse effects are

absent for polarizabilities of hydrides and also for element-hydrogen ES bond lengths.

Nonetheless, a more uniform and robust behavior of the LMF would be desirable. For

new LMF models being under development at this point in time, [331] it will be interesting

to reconsider these hydrogen-related subsets.

One field of remaining development work regarding the ES gradients is related to the

inclusion of a calibration function to address the gauge problem. While this is in principle

possible with the existing implementation, the dependence of currently available CFs on

the density Laplacian and reduced spin density Hessian requires an extension of the ES

gradients implementation to cover contributions from these terms. While the implemen-

tation of partial derivatives of the CF with respect to these quantities is trivial if aided by

computer algebra systems, accounting for all combinations of these derivatives with the

respective density-matrix derivatives of the Laplacian or reduced spin density Hessian as

well as contracted versions of the latter is tremendously more involved. For the present

implementation that covers dependence up to mGGA level, i.e. 7 semilocal quantities

(ρα, ρβ, γαα, γαβ, γββ, τα, τβ), there are already
(︁
7+3−1

3

)︁
= 84 unique third partial deriva-

tives of a (hypothetical) CF that have to be mapped on the corresponding derivatives of

semilocal quantities. Including the Laplacian (lα, lβ) and reduced spin density Hessian

(ηα,αα, ηα,αβ, ηα,ββ, ηβ,αα, ηβ,αβ, ηβ,ββ) increases this number to
(︁
15+3−1

3

)︁
= 680 unique third

partial derivatives (in addition to 120 unique second and 15 first derivatives). While

the impact of the CF was found to be small for most ES structures studied herein, the
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7 Conclusions and Outlook

CF could become important for weakly bound systems or in stretched-bond situations as

during dissociation and thus could become relevant if local hybrids should be used for

molecular dynamics simulations of ESs. Apart from that, new LMF models [67] suggest

the use of the Laplacian and Hessian terms. If these developments lead to promising

new functionals, this could also justify the considerable effort to extend the ES gradient

implementation for Laplacian and Hessian terms.

Considering that local hybrids and in particular the recent LH20t functional were pre-

viously shown to perform well for ground-state properties and vertical absorption energies

of mixed-valence systems, which typically require a fine balance of (de)localization errors

and left-right correlation, such benefits are also expected for excited-states. Because the

solvent typically has a strong influence on the electronic structure of mixed-valence sys-

tems, meaningful comparisons with experimental data have to include these effects at

least at the level of a continuum model. While such models have been developed for ES

gradients, they are currently not available in TURBOMOLE’s egrad program. They are

envisaged by other developers already. [332] Together with the ES gradients implementa-

tion presented here, this is expected to make local hybrids even more useful for the study

of mixed-valence systems.

Another direction of possible methodological improvements concerns the neglect of the

current-density response in the present implementation. Although it was shown here that

this hardly affects the ES structural parameters, a proper inclusion would still be desirable

to avoid problems with any unforeseen special cases. The lack of the current-density

response for ES gradients does not only apply to local hybrids but τ -dependent functionals

in general and is also not covered in other quantum chemical programs. One obstacle for

the inclusion of the current-density response is the lack of antisymmetric XC hyper-

kernel and antisymmetric XC kernel gradient contributions in standard global hybrid

implementations. This has been overcome with the developments presented herein since

local hybrids require antisymmetric contributions already when neglecting the current-

density response. Hence, this lowers the hurdle for future developments.

The development of the local hybrid hyper-kernel also paves the way for the devel-

opment of quadratic response theory [215,333] for these functionals, which could become

important if nonlinear optical properties such as hyperpolarizabilities or state-to-state

absorption amplitudes are on demand. Aside from the use in structure optimizations,

which was exclusively considered here, ES gradients can also be used in nonadiabatic

molecular dynamics simulations of ESs to compute the forces. To perform such simula-

tions, additional work on the nonadiabatic coupling matrix elements [251] for local hybrids
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is required. Given the excellent performance of local hybrids for triplet ES states, this

also is a promising direction.

At this point in time, local hybrid functionals have not yet entered the mainstream

of quantum chemical methods. The work presented here contributes to this up-and-

coming field with the development of excited-state gradients for these functionals and

with numerous benchmark studies for excited-state related properties as well as for more

fundamental electric properties. The availability of excited-state gradients now opens up

several new fields of application for local hybrids and their efficient implementation in a

widely used quantum chemical program provides this new tool to the scientific community.
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A Appendix

A.1 Solutions for the Energy-Weighted Difference

Density Matrix W

The solutions for the different blocks of W read:

Wijσ =
1

1 + δij

(︂∑︂
c

Ω [(X + Y )icσ(X − Y )jcσ + (X − Y )icσ(X + Y )jcσ]

−
∑︂
c

ϵσc [(X + Y )icσ(X + Y )jcσ + (X − Y )icσ(X − Y )jcσ] + H+
ijσ[P]

+
∑︂

kcσ′ldσ′′

[︂
gσσ

′σ′′

+ijkcld(X + Y )kcσ′(X + Y )ldσ′′ + gσσ
′σ′′

−ijkcld(X − Y )kcσ′(X − Y )ldσ′′

]︂ )︂
,

(A.1)

Wabσ =
1

1 + δab

(︂∑︂
i

Ω [(X + Y )iaσ(X − Y )ibσ + (X − Y )iaσ(X + Y )ibσ]

+
∑︂
i

ϵσi [(X + Y )iaσ(X + Y )ibσ + (X − Y )iaσ(X − Y )ibσ]
)︂
, (A.2)

Wiaσ =
∑︂
k

[︁
(X + Y )kaσH

+
kiσ[(X + Y)] + (X − Y )kaσH

−
kiσ[(X−Y)]

]︁
+ ϵσi Ziaσ . (A.3)

A.2 Derivation of the Local Hybrid Hyper-Kernel

The LH hyper-kernel is obtained as the third derivative of the LH energy (eq. 2.75)

ELH
xc =− 1

2

∑︂
ς

∑︂
mnkl

Dς
mnD

ς
kl

∫︂∫︂
aς(r) · wςς

mlkn dr′ dr

+
∑︂
ς

∫︂
[1− aς(r)] · eslx,ς(r) dr +

∫︂
eslc (r) dr (A.4)

w.r.t. the density matrix

gσσ
′σ′′

pqrstu =
δ3ELH

xc

δDσ
pqδD

σ′
rsδD

σ′′
tu

. (A.5)
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Note that the CF Gσ(r) was omitted in eq. A.4 to simplify notations as it can be formally

treated as a part of the (semi)local exchange energy density. Moreover, the exact ex-

change energy-density has been written using eq. 3.24. Derivatives are now obtained via

the product rule of differentiation. For the explicitly density-matrix depended part, the

derivatives are directly taken using the relations derived in eq. 3.26, eq. 3.27, and eq. 3.28.

For the implicitly density-matrix dependent (semi)local quantities, i.e. the LMF aς(r) and

the exchange and correlation energy densities eslx/c,ς(r), the derivatives are obtained via

the functional chain rule denoted using the semilocal potential operator (eq. 3.32) to con-

dense the otherwise lengthy expressions. Proceeding step-by-step, the first derivative, i.e.

the LH potential, reads

δELH
xc

δDσ
pq

=− 1

2

∫︂∫︂
aσ(r) ·

∑︂
mn

Dσ
mn

[︁
wσσ

mqpn(r, r′) + wσσ
pnmq(r, r

′)
]︁

dr′ dr

−
∑︂
ς

∫︂∫︂ ˆ︁dpqσaς(r) · [︄1

2

∑︂
mnkl

Dς
mnD

ς
klw

ςς
mlkn(r, r′) + eslx,ς(r)

]︄
dr′ dr

+
∑︂
ς

∫︂
[1− aς(r)] · ˆ︁dpqσeslx,ς(r) dr +

∫︂ ˆ︁dpqσeslc (r) dr (A.6)

in agreement with the expression derived in ref. 67. Taking the derivative of this expres-

sion gives the LH kernel, which reads

δ2ELH
xc

δDσ′
rsδD

σ
pq

=− 1

2

∫︂∫︂
aσ(r) · δσσ′

[︁
wσσ

rqps(r, r
′) + wσσ

psrq(r, r
′)
]︁

dr′ dr

− 1

2

∫︂∫︂ ˆ︁drsσ′aσ(r) ·
∑︂
mn

Dσ
mn

[︁
wσσ

mqpn(r, r′) + wσσ
pnmq(r, r

′)
]︁

dr′ dr

− 1

2

∫︂∫︂ ˆ︁dpqσaσ′(r) ·
∑︂
mn

Dσ′

mn

[︂
wσ′σ′

msrn(r, r′) + wσ′σ′

rnms(r, r
′)
]︂

dr′ dr

−
∑︂
ς

∫︂ ˆ︁dpqσaς(r) · ˆ︁drsσ′eslx,ς(r) dr

−
∑︂
ς

∫︂∫︂ ˆ︁drsσ′ ˆ︁dpqσaς(r) · [︄1

2

∑︂
mnkl

Dς
mnD

ς
klw

ςς
mlkn + eslx,ς(r)

]︄
dr′ dr

−
∑︂
ς

∫︂ ˆ︁drsσ′aς(r) · ˆ︁dpqσeslx,ς(r) dr

+
∑︂
ς

∫︂
[1− aς(r)] · ˆ︁drsσ′ ˆ︁dpqσeslx,ς(r) dr +

∫︂ ˆ︁drsσ′ ˆ︁dpqσeslc (r) dr . (A.7)
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A.3 Derivatives w.r.t. MO Coefficients

This equation is equivalent to the equation derived by Maier in ref. 16, where flipped

index orders for some of the wσσ
psrq terms are noted as an interchange of the integration

variable of the LMF.

Eventually, taking the derivative of the XC kernel following the same rules as before

leads to the XC hyper-kernel given in eq. 3.48.

A.3 Derivatives w.r.t. MO Coefficients

Derivatives of the type denoted in eq. 3.12 are frequently used in the derivation of the Z

vector equation. The involved steps are demonstrated here for the derivative of the XC

potential (leading to two XC kernel terms) and is completely analogous for derivatives

of the XC kernel (leading to two XC hyper-kernel terms). Consider the derivative of the

exchange-correlation potential w.r.t. Cιp, multiplied by Cιq and summed over the atomic-

orbital index ι. Evaluation of this term gives two XC kernel terms with a flipped index

pair (spin indices are dropped for clarity)

∑︂
ι

∂V xc
rs

∂Cιp

Cιq

=
∑︂
ι

[︄
∂

∂Cιp

∑︂
µν

V xc
µνCµrCνs

]︄
Cιq (expanded V xc

rs in AO basis)

=
∑︂
ι

∑︂
µν

[︃
∂V xc

µν

∂Cιp

CµrCνs + V xc
µν

∂Cµr

∂Cιp

Cνs + V xc
µνCµr

∂Cνs

∂Cιp

]︃
Cιq (applied product rule)

=
∑︂
ι

[︄∑︂
µν

∂V xc
µν

∂Cιp

CµrCνs

]︄
Cιq +

∑︂
ιµν

[︁
V xc
µν δrpδµιCνs + V xc

µνCµrδspδνι
]︁
Cιq (took derivatives)

=
∑︂
ι

[︄∑︂
µν

∂V xc
µν

∂Cιp

CµrCνs

]︄
Cιq + V xc

qs δrp + V xc
rq δsp (back-transformed to MO basis)

Working only on the remaining term:

∑︂
ι

[︄∑︂
µν

∂V xc
µν

∂Cιp

CµrCνs

]︄
Cιq

=
∑︂
µνι

[︄∑︂
κλ

∂Dκλ

∂Cιp

∂V xc
µν

∂Dκλ

]︄
CµrCνsCιq (applied chain rule)

=
∑︂
µνικλ

∂

∂Cιp

[︄∑︂
tu

DtuCκtCλu

]︄
fxc
κλµνCµrCνsCιq (took derivative and expanded Dκλ)
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=
∑︂
t

Dpt

∑︂
µνκλ

[CκqCλt + CλqCκt] f
xc
κλµνCµrCνs (took MO coeff. derivative)

=
∑︂
µνκλ

[CκqCλp + CλqCκp] f
xc
κλµνCµrCνs (summed over t, used Dpt = δpt)

=fxc
qprs + fxc

pqrs = fxc
+pqrs ̸= 2 · fxc

pqrs . (back-transformed to MO basis)

A.4 Expanded Form of Operators

A.4.1 Semilocal Potential Operators

In the main part, the operators ˆ︁∂µνσ, ˆ︁∂+, ˆ︂∂∂+

µνσ, ˆ︂∂∂++

, and ˆ︃∂∂∂++

µνσ were used for a more

convenient notation of the contracted local hybrid hyper-kernel and kernel/potential-

gradients. Here, their definitions are given in expanded form. It is assumed that the

(semi-)local quantities on which these operators act, themselves depend on the (semi)local

quantities Q from the set Q = {ρσ, γσσ, γσσ′ , τσ, . . . }. Derivatives of these quantities w.r.t.

density matrices read:

∂ρσ′

∂Dσ
µν

=
∂

∂Dσ
µν

∑︂
κλ

Dσ′

κλχκχλ =
∑︂
κλ

∂Dσ′

κλ

∂Dσ
µν

χκχλ =
∑︂
κλ

δσσ′δκµδλνχκχλ = δσσ′χµχν

∂γσ′σ′′

∂Dσ
µν

=
∂

∂Dσ
µν

[∇ρσ′ · ∇ρσ′′ ] = (δσσ′′∇ρσ′ + δσσ′∇ρσ′′) · ∇ [χµχν ]

∂τσ′

∂Dσ
µν

=
∂

∂Dσ
µν

1

2

∑︂
κλ

Dσ′

κλ∇χκ · ∇χλ =
1

2
δσσ′∇χµ · ∇χν . (A.8)

Note that the spatial integration (grid summation) and dependencies on the space variable

r was omitted for brevity. To obtain explicit equations for an implementation, these

derivatives (and their higher-order equivalents) have to be inserted into the following

definitions of the semilocal potential operators for terms of the kind “ ∂Q
∂Dσ

µν
”:

ˆ︁∂+ =
∑︂
Q∈Q

[︄∑︂
µνσ

∂Q
∂Dσ

µν

U+

µνσ

]︄
· ∂

∂Q
,

ˆ︂∂∂+

µνσ =
∑︂
Q∈Q

∑︂
Q′∈Q

[︄∑︂
κλσ′

∂Q′

∂Dσ′
κλ

U+

κλσ′

]︄
· ∂Q
∂Dσ

µν

· ∂2

∂Q∂Q′

+
∑︂
Q∈Q

[︄∑︂
κλσ′

∂2Q
∂Dσ

µν∂D
σ′
κλ

U+

κλσ′

]︄
· ∂

∂Q
,
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A.4 Expanded Form of Operators

ˆ︂∂∂++

=
∑︂
Q∈Q

∑︂
Q′∈Q

[︄∑︂
µνσ

∂Q
∂Dσ

µν

U+

µνσ

]︄
·

[︄∑︂
κλσ′

∂Q′

∂Dσ′
κλ

U+

κλσ′

]︄
· ∂2

∂Q∂Q′

+
∑︂
Q∈Q

[︄ ∑︂
µνσκλσ′

∂2Q
∂Dσ

µν∂D
σ′
κλ

U+

µνσU
+

κλσ′

]︄
· ∂

∂Q
,

ˆ︃∂∂∂++

µνσ =
∑︂
Q∈Q

∑︂
Q′∈Q

∑︂
Q′′∈Q

[︄∑︂
κλσ′

∂Q′

∂Dσ′
κλ

U+

κλσ′

]︄
·

[︄∑︂
ηϵσ′′

∂Q′′

∂Dσ′′
ηϵ

U+

ηϵσ′′

]︄
· ∂Q
∂Dσ

µν

· ∂3

∂Q∂Q′∂Q′′

+ 2
∑︂
Q∈Q

∑︂
Q′∈Q

[︄∑︂
κλσ′

∂Q′

∂Dσ′
κλ

U+

κλσ′

]︄
·

[︄∑︂
ηϵσ′′

∂2Q
∂Dσ′′

ηϵ ∂D
σ
µν

U+

ηϵσ′′

]︄
· ∂2

∂Q∂Q′

+
∑︂
Q∈Q

∑︂
Q′∈Q

[︄ ∑︂
κλσ′ηϵσ′′

∂2Q
∂Dσ′

κλ∂D
σ′′
ηϵ

U+

κλσ′U
+

ηϵσ′′

]︄
· ∂Q′

∂Dσ
µν

· ∂2

∂Q∂Q′

+
∑︂
Q∈Q

[︄ ∑︂
κλσ′ηϵσ′′

∂3Q
∂Dσ′

κλ∂D
σ′′
ηϵ ∂D

σ
µν

U+

κλσ′U
+

ηϵσ′′

]︄
· ∂

∂Q
. (A.9)

A.4.2 Semilocal Gradient Operators

In the main part, the operators ˆ︃∇ξ∂+
and ˆ︁∇ξ∂∂

++
were used. The definitions of oper-

ators containing the gradient operator ˆ︁∇ξ are defined in complete analogy to those in

Appendix A.4.1. It was also exploited that nuclear derivatives of atom-centered Gaussian

basis functions are only non-zero if the derivatives refer to the atom on which the basis

function χ is centered and then may be expressed as a derivative w.r.t. the electronic

coordinate

∇ξχ = −∇χ . (A.10)

The gradient of the semilocal quantities are given in eq. 3.59a-c. To obtain the explicit

equations for the semilocal gradient operators, these derivatives (and their higher-order

equivalents) have to be inserted into the following definitions of the gradient operators

for terms of the kind “∂Q
∂ξ

”:

ˆ︃∇ξ∂+
=
∑︂
Q∈Q

∑︂
Q′∈Q

[︄∑︂
κλσ′

∂Q′

∂Dσ′
κλ

U+

κλσ′

]︄
· ∂Q
∂ξ
· ∂2

∂Q∂Q′
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+
∑︂
Q∈Q

[︄∑︂
κλσ′

∂2Q
∂ξ∂Dσ′

κλ

U+

κλσ′

]︄
· ∂

∂Q
,

ˆ︁∇ξ∂∂
++

=
∑︂
Q∈Q

∑︂
Q′∈Q

∑︂
Q′′∈Q

[︄∑︂
κλσ′

∂Q′

∂Dσ′
κλ

U+

κλσ′

]︄
·

[︄∑︂
ηϵσ′′

∂Q′′

∂Dσ′′
ηϵ

U+

ηϵσ′′

]︄
· ∂Q
∂ξ
· ∂3

∂Q∂Q′∂Q′′

+ 2
∑︂
Q∈Q

∑︂
Q′∈Q

[︄∑︂
κλσ′

∂Q′

∂Dσ′
κλ

U+

κλσ′

]︄
·

[︄∑︂
ηϵσ′′

∂2Q
∂Dσ′′

ηϵ ∂ξ
U+

ηϵσ′′

]︄
· ∂2

∂Q∂Q′

+
∑︂
Q∈Q

∑︂
Q′∈Q

[︄ ∑︂
κλσ′ηϵσ′′

∂2Q
∂Dσ′

κλ∂D
σ′′
ηϵ

U+

κλσ′U
+

ηϵσ′′

]︄
· ∂Q

′

∂ξ
· ∂2

∂Q∂Q′

+
∑︂
Q∈Q

[︄ ∑︂
κλσ′ηϵσ′′

∂3Q
∂Dσ′

κλ∂D
σ′′
ηϵ ∂ξ

U+

κλσ′U
+

ηϵσ′′

]︄
· ∂

∂Q
. (A.11)

A.5 Timings

Table A.1: Wall times (in seconds) and the number of primitive basis functions Nprim

and grid points Ngrid for calculations with different TURBOMOLE programs for polyene
chains. The LH07t-SVWN calculations use the seminumerical EXX evaluation scheme
and PBE0 the standard analytical EXX integrals.

LH07t-SVWN PBE0

Molecule Ngrid Nprim escf rdgrad egrad escf rdgrad egrad

C2H4
a 6970 124 4 3 9 2 1 4

C4H6
a 12160 232 23 11 65 14 6 36

C6H8 17336 340 69 30 189 47 17 114
C8H10 22506 448 147 59 378 100 34 233
C10H12 27684 556 239 96 616 167 56 383
C12H14 32852 664 354 143 944 246 84 561
C14H16 38024 772 540 199 1358 362 115 803
C16H18 43196 880 710 263 1794 476 152 1036
C18H20 48374 988 752 337 2288 609 192 1312
C20H22 53548 1096 1123 429 2828 746 237 1608
C40H42 105432 2176 4988 1772 12061 2882 862 5906
C60H62 157222 3256 11397 4025 27449 6096 1714 12585
C80H82 208976 4336 22130 7246 52688 10318 2770 20791

a This data point is not included in Figure 4.4 and the linear fits because of
the potentially large relative errors for small computation times on logarithmic
scales. The data is shown here for completeness.
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A.5 Timings

Table A.2: Wall times (in seconds) and the number of primitive basis functions Nprim

for calculations with different TURBOMOLE programs for the BODIPY molecule using
various basis sets. The LH07t-SVWN calculations use the seminumerical EXX evaluation
scheme and PBE0 the standard analytical EXX integrals.

LH07t-SVWN PBE0

basis set Nprim escf rdgrad egrad escf rdgrad egrad

STO-3G 231 20 12 59 4 2 12
def2-SV(P) 364 95 32 249 33 12 80
def2-SVP 385 106 35 275 38 13 93
pc-1 441 114 40 297 48 17 117
def2-SVPD 496 265 77 682 232 81 555
cc-pVDZ 525 135 52 357 72 25 181
aug-cc-pVDZ 679 390 124 996 567 200 1385
def2-TZVP 700 559 200 1408 527 140 1203
def2-TZVPP 756 647 223 1619 661 163 1490
def2-TZVPD 811 920 290 2281 1613 459 3663
cc-pVTZ 812 642 237 1618 646 163 1483
pc-2 833 642 232 1576 657 158 1500
def2-TZVPPD 867 1035 319 2551 1908 515 4300
aug-cc-pVTZ 1099 1827 644 4592 5776 1644 13168
cc-pVQZ 1302 2800 891 6979 5253 741 11285
def2-QZVP 1309 2968 914 7313 6069 803 12944
def2-QZVPD 1420 3826 1123 9392 12917 2229 27601
pc-3 1550 3521 1085 8706 9115 1077 19398
aug-cc-pVQZ 1764 7960 2378 19581 48930 8163 104478
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A.6 Grid Dependence

Table A.3: Results for the optimization of the 1 1A′′ excited state of HCN using the
PBE0 functional within the new seminumerical EXX evaluation scheme in egrad. Results
for different grid sizes are reported both for calculations neglecting and including weight
derivatives (WD).

without WD with WD

grid sizea C−H/pm ∠(HCN)/◦ EES/ha C−H/pm ∠(HCN)/◦ EES/ha

seminumerical results

1 2583 112.0850982 122.5930666 −93.12434322 112.0934825 122.6500454 −93.12434696
2 5113 112.1170726 122.6798110 −93.12445774 112.1061817 122.6633526 −93.12445816
3 8901 112.1062114 122.6651366 −93.12442473 112.1046236 122.6644097 −93.12442472
4 17358 112.1047449 122.6669796 −93.12442742 112.1045244 122.6664808 −93.12442742
5 27748 112.1044829 122.6655968 −93.12442734 112.1045807 122.6662419 −93.12442733
6 54887 112.1045506 122.6660600 −93.12442732 112.1045596 122.6661110 −93.12442732
7 86137 112.1045412 122.6660012 −93.12442728 112.1045588 122.6659615 −93.12442728

analytical results

1 2583 112.0773749 122.6079200 −93.12434376 112.0969835 122.6538886 −93.12434397
2 5113 112.1172879 122.6800026 −93.12445798 112.1062459 122.6634861 −93.12445801
3 8901 112.1059022 122.6639690 −93.12442493 112.1045146 122.6648053 −93.12442493
4 17358 112.1047382 122.6669435 −93.12442736 112.1045276 122.6664436 −93.12442736
5 27748 112.1044988 122.6656861 −93.12442733 112.1045910 122.6662110 −93.12442733
6 54887 112.1045518 122.6660710 −93.12442731 112.1045591 122.6660832 −93.12442731
7 86137 112.1045422 122.6660037 −93.12442728 112.1045620 122.6659854 −93.12442728

deviations from analytical results evaluated at grid size 7 (Figure A.1)

1 2583 −1.94E−02 −7.29E−02 8.41E−05 −1.11E−02 −1.59E−02 8.03E−05
2 5113 1.25E−02 1.38E−02 −3.05E−05 1.62E−03 −2.63E−03 −3.09E−05
3 8901 1.67E−03 −8.67E−04 2.55E−06 6.16E−05 −1.58E−03 2.56E−06
4 17358 2.03E−04 9.76E−04 −1.41E−07 −3.76E−05 4.95E−04 −1.40E−07
5 27748 −5.93E−05 −4.07E−04 −5.29E−08 1.87E−05 2.57E−04 −5.01E−08
6 54887 8.40E−06 5.63E−05 −3.41E−08 −2.40E−06 1.26E−04 −3.81E−08
7 86137 −1.00E−06 −2.50E−06 −3.00E−10 −3.20E−06 −2.39E−05 8.00E−10

deviations from analytical results evaluated at the same grid size (Figure 4.2)

1 2583 7.72E−03 −1.49E−02 5.39E−07 −3.50E−03 −3.84E−03 −2.99E−06
2 5113 −2.15E−04 −1.92E−04 2.33E−07 −6.42E−05 −1.34E−04 −1.54E−07
3 8901 3.09E−04 1.17E−03 1.95E−07 1.09E−04 −3.96E−04 2.01E−07
4 17358 6.70E−06 3.61E−05 −6.41E−08 −3.20E−06 3.72E−05 −6.41E−08
5 27748 −1.59E−05 −8.93E−05 −3.40E−09 −1.03E−05 3.09E−05 −2.70E−09
6 54887 −1.20E−06 −1.10E−05 −3.90E−09 5.00E−07 2.78E−05 −8.10E−09
7 86137 −1.00E−06 −2.50E−06 −3.00E−10 −3.20E−06 −2.39E−05 8.00E−10
a TURBOMOLE grid size and total number of grid points for the HCN molecule.

162



A.6 Grid Dependence
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Figure A.1: Deviation of seminumerical PBE0 results from the corresponding analytical
results (at grid size 7) for the C−H bond length, the ∠(HCN) bond angle and the energy
of the optimized 1 1A′′ excited state of HCN for different grid sizes.
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Table A.4: ES structural parameters for the molecules from the test set from ref. 35
and 39 optimized at the PBE0/ def2-QZVPPD level of theory using different grid sizes
and integration schemes for EXX. The upper half of the table is plotted in Figure 4.3.

analytical seminumerical

Molecule State Param. referencea grid 2 diff. 1 grid 1 grid2 diff. 1 grid 1

AsF 1 3Π re 195.22 195.17 195.61 195.16 195.70

BeO 1 1Π re 142.95 142.96 142.62 142.97 142.57

CH2O 1 1A” ϕ 30.72 30.71 31.13 30.67 31.25

CH2O 1 3A” ϕ 47.42 47.40 47.63 47.40 47.69

CH2O 1 1A” ∠(HCH) 116.36 116.37 116.21 116.38 116.17

CH2O 1 3A” ∠(HCH) 110.00 110.01 109.91 110.01 109.88

CH2S 1 3A” ϕ 15.42 15.41 17.93 15.41 18.42

CH2S 1 3A” ∠(HCH) 119.00 118.99 118.63 118.99 118.55

CH2S 1 1A2 ∠(HCH) 119.14 119.13 119.33 119.13 119.38

CS2 1 3A2 ∠(SCS) 139.18 139.18 138.99 139.21 138.93

H2O 1 1B1 ∠(HOH) 104.88 104.89 104.35 104.89 104.50

H2O 1 1B1 O–H 98.95 98.95 98.98 98.95 98.79

HCP 1 1A” ∠(HCP) 131.00 131.01 130.91 131.01 130.89

Li2 1 1Σ+
u re 304.85 305.06 305.04 305.02 305.11

Mg2 1 1Σ+
u re 319.78 320.28 321.09 320.43 321.54

P2 1 1Πg re 197.73 197.73 198.06 197.73 198.17

Propynal 2 1A ∠(HCacetC) 179.52 179.52 179.11 179.52 178.97

Propynal 2 1A C–O 129.54 129.54 129.68 129.54 129.71

ScO 1 2Π re 167.16 167.16 166.94 167.16 166.90

SiF2 1 1B1 ∠(FSiF) 114.06 114.07 114.23 114.08 114.59

SiF2 1 1B1 Si–F 161.13 161.14 160.93 161.13 160.82

SiO 1 1Π re 159.60 159.62 159.46 159.63 159.42

SO2 1 3B1 ∠(OSO) 127.52 127.54 127.08 127.54 126.95

tr.-(CH2O)2 1 1Au ∠(HCC) 113.00 113.00 112.89 113.00 112.85

VO 1 4Π re 163.02 163.05 162.90 163.05 162.87

Deviations below 0.1 pm/ degb

SO2 1 3B1 S–O 148.13 148.13 148.20 148.13 148.22

BH 1 1Π re 121.35 121.35 121.42 121.35 121.43

tr.-(CH2O)2 1 1Au C–C 147.62 147.63 147.68 147.63 147.70

N2 1 1Πg re 120.61 120.61 120.56 120.61 120.54

BF 1 1Π re 129.72 129.78 129.66 129.80 129.66

CH2S 1 1A2 C–S 166.07 166.06 166.11 166.06 166.13

CO 1 3Π re 119.52 119.51 119.48 119.50 119.46

N2 1 3Πg re 119.79 119.79 119.74 119.79 119.73

CS2 1 3A2 C–S 161.61 161.60 161.66 161.60 161.67

CH2S 1 3A” C–H 108.19 108.19 108.23 108.19 108.24

CO 1 1Π re 122.30 122.28 122.27 122.27 122.25

tr.-(CH2O)2 1 1Au C–O 122.08 122.08 122.04 122.08 122.03

N2 1 1Σ−
u re 126.89 126.90 126.93 126.91 126.94

C2H2 1 1Au C–C 136.37 136.37 136.41 136.37 136.42

CH2S 1 3A” C–S 165.74 165.71 165.78 165.71 165.79

C2H2 1 1Au ∠(HCC) 122.47 122.48 122.44 122.48 122.43

HCP 1 1A” P–C 168.85 168.85 168.89 168.85 168.89

CH2O 1 3A” C–H 110.48 110.47 110.51 110.47 110.51

N2 1 1∆u re 126.20 126.21 126.23 126.21 126.23

Benzene 1 1B2u C–C 141.72 141.71 141.74 141.71 141.75

NH 1 3Π re 103.79 103.79 103.81 103.79 103.82

BeH 1 2Π re 132.96 132.96 132.93 132.96 132.94

CH2O 1 1A” C–H 109.61 109.60 109.62 109.60 109.63

tr.-(CH2O)2 1 1Au C–H 110.07 110.06 110.05 110.07 110.05

HCN 1 1A” ∠(HCN) 122.67 122.67 122.65 122.67 122.65

Propynal 2 1A C≡C 121.50 121.50 121.48 121.51 121.48

HCN 1 1A” N–C 129.37 129.37 129.39 129.37 129.39

PH2 1 2A1 P–H 139.73 139.72 139.72 139.73 139.71

Propynal 2 1A Cacet–H 106.31 106.29 106.29 106.28 106.30

Benzene 1 1B2u C–H 108.11 108.11 108.12 108.10 108.12

CH2O 1 1A” C–O 128.13 128.14 128.12 128.15 128.12

CH2O 1 3A” C–O 128.25 128.26 128.26 128.26 128.26

CuH 2 1Σ+ re 156.91 156.91 156.91 156.92 156.92

HCN 1 1A” C–H 112.10 112.10 112.09 112.10 112.09

CH2S 1 1A2 C–H 108.30 108.30 108.30 108.30 108.30

tr.-(CH2O)2 1 1Au ∠(OCC) 125.11 125.11 125.11 125.10 125.11

NO 1 2Σ+ re 104.76 104.76 104.76 104.76 104.76

PH2 1 2A1 ∠(HPH) 121.73 121.71 121.73 121.71 121.73

a Grid settings: grid size 5 diffuse 2.
b Ordered by decreasing deviations of the last column (seminumerical, grid size 1) from the reference.
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A.7 Effect of the Calibration Function on ESs

Table A.5: Effect of the pig2 calibration function on ES bond lengths (re in pm) and
emission energies (∆E in eV) for diatomic molecules from the Furche and Ahlrichs test
set [35,39] calculated at the LH20t/def2-QZVPPD level of theory. MAEs refer to experi-
mental values and MADs to results without pig2.

ES bond lengths/ pm Emission energy/ eV

Mol. State Exp. rno pig2
e rpig2e ∆re

∆re
rpig2e

∆Eno pig2 ∆Epig2 ∆∆E

AsF 1 3Π 195 194.6 197.4 2.8 1.4% 2.79 2.84 0.04
BeH 1 2Π 133 131.8 132.6 0.7 0.5% 2.61 2.63 0.02
BeO 1 1Π 146 143.4 143.8 0.4 0.3% 1.36 1.32 −0.04
BF 1 1Π 130 130.3 131.0 0.7 0.5% 6.12 6.10 −0.02
BH 1 1Π 122 120.0 120.8 0.7 0.6% 2.72 2.77 0.05
CO 1 1Π 124 122.5 122.9 0.4 0.3% 7.61 7.59 −0.02
CO 1 3Π 121 119.6 120.0 0.4 0.4% 5.69 5.69 0.00
CuH 2 1Σ+ 157 156.0 157.1 1.1 0.7% 2.87 2.85 −0.02
Li2 1 1Σ+

u 311 323.1 330.1 7.0 2.2% 2.55 2.57 0.02
Mg2 1 1Σ+

u 308 317.3 324.0 6.7 2.1% 3.05 3.02 −0.03
N2 1 1∆u 127 125.8 126.0 0.2 0.2% 6.05 6.04 −0.01
N2 1 1Πg 122 120.7 120.9 0.2 0.2% 7.92 7.88 −0.04
N2 1 1Σ−

u 128 126.9 127.2 0.4 0.3% 6.94 6.85 −0.08
N2 1 3Πg 121 119.8 120.0 0.3 0.2% 6.63 6.63 0.00
NH 1 3Π 104 104.1 103.9 −0.2 −0.2% 3.75 3.75 0.00
P2 1 1Πg 197 197.1 197.7 0.6 0.3% 3.95 3.93 −0.02
SiO 1 1Π 162 159.0 160.0 0.9 0.6% 5.17 5.17 0.00
ScO 1 2Π 169 167.7 168.1 0.3 0.2% 1.72 1.76 0.04

MAE/MAD 2.3 2.9 1.3 0.6% 0.03
MAE*/MAD* b 1.2 1.1 0.6 0.4% 0.03

a Optimizations without inclusion of the pig2 calibration function (rno pig2
e , ∆Eno pig2) were

performed using the egrad implementation, while optimizations with inclusion of pig2 (rpig2e ,
∆Epig2) were performed using a linear-search algorithm for ES single-point energies.

b Calculated excluding Li2 and Mg2.
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A.8 Additional Statistics for the Furche and Ahlrichs

Test Set

Figure A.2: Error histograms of bond lengths obtained with several functionals for the
Furche and Ahlrichs test set. [35,39] Triplet states are highlighted in green (vertical bars are
stacked). Normal distributions were computed using the mean signed error and standard
deviation of the total set of states. Functional abbreviations are LH-s: LH07s-SVWN,
LH-t: LH07t-SVWN, LH-sir: LH12ct-SsirPW92, LH-sif: LH12ct-SsifPW92.
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A.8 Additional Statistics for the Furche and Ahlrichs Test Set

Figure A.3: Error histograms of AEEs/ 0–0 energies obtained with several functionals
for the Furche and Ahlrichs test set. [35,39] Triplet states are highlighted in green (vertical
bars are stacked). Normal distributions were computed using the mean signed error and
standard deviation of the total set of states. Functional abbreviations are LH-s: LH07s-
SVWN, LH-t: LH07t-SVWN, LH-sir: LH12ct-SsirPW92, LH-sif: LH12ct-SsifPW92.
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Figure A.4: Error histograms of harmonic ES vibrational frequencies obtained with
several functionals for the Furche and Ahlrichs test set. [35,39] Triplet states are highlighted
in green (vertical bars are stacked). Normal distributions were computed using the mean
signed error and standard deviation of the total set of states. Functional abbreviations are
LH-s: LH07s-SVWN, LH-t: LH07t-SVWN, LH-sir: LH12ct-SsirPW92, LH-sif: LH12ct-
SsifPW92.
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Figure A.5: Comparison of signed errors of AEEs/ 0–0 energies obtained with LH12ct-
SsifPW92 at LH12ct-SsifPW92 structures and with LH12ct-SsifPW92 at PBE0 structures
for the Furche and Ahlrichs test set. [35,39]
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A.9 Analysis of Excitation Character in Carbonyl

Compounds

Table A.6: Errors for ES CO bond lengths and the nature of the involved transitions.
Rows are ordered by PBE0 errors. 2n stands for a molecular orbital dominated by two
lone pairs. π∗

conj. stands for a π∗ molecular orbital from a conjugated π system.

Molecule State Transition BLYP PBE0 LH12ct-SsifPW92

Maleimide 1 1B1 2n→π∗
conj. 0.6 −1.4 −1.2

Ketene 1 1A′′ π→n 0.1 −1.4 −1.0
Benzoquinone 1 1Au 2n→π∗

conj. 0.7 −1.6 −1.6
Propenoic acid anion 1 1A′′ n→π∗

conj. −1.0 −2.0 −1.3
Glyoxal 1 1Au 2n→π∗

conj. 0.4 −2.1 −1.8
Propenoic acid anion 1 1A′′ 2n→π∗

conj. −0.5 −2.4 −1.9
Formylfluoride 2 1A n→π∗ −0.5 −3.4 −3.1
Acetaldehyde 1 1A′′ n→π∗ −0.2 −3.6 −3.6
Carbonyldifluoride 1 1A′′ n→π∗ −1.8 −3.7 −3.3
Acetone 1 1A′′ n→π∗ −0.4 −3.9 −4.1
Formic acid 2 1A n→π∗ −1.7 −4.0 −3.5
Propynal 1 1A′′ n→π∗

conj. −1.7 −4.3 −3.6
Formaledhyde 1 1A′′ n→π∗ −1.2 −4.4 −3.9
Acrolein 1 1A′′ n→π∗

conj. −2.9 −4.7 −3.7
Phosgene 1 1A′′ n→π∗ −a −4.7 −4.2
Cyanoformaldehyde 1 1A′′ n→π∗

conj. −2.4 −4.9 −4.3
a Optimization failed.

Formaldehyde:

Methylenecyclopropene:

H2C3:

Figure A.6: Comparison of the molecular orbitals predominantly involved in the n→π∗

excitation in formaldehyde (top) and the π→π∗ excitation in H2C3 (bottom). Plotted at
a contour value of ±0.1 au using gMolden.
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A.10 New Reference Values for the Adamo and Ehara

Test Set

Table A.7: Validation of the high level correction scheme (CC2/CBS+CC3) from eq. 5.1
by comparison with conventional CC3/aug-cc-pVTZ results. All values in eV.

Molecule State CC2/CBS CC3/cc-pVDZ CC2/CBS+CC3 CC3/aug-cc-pVTZ ∆a

Furan 1 3B2 3.2597 3.0814 3.0053 2.9925 0.0128
1 3A1 5.0077 4.8894 4.8101 4.7854 0.0247

Pyrrole 1 3B2 3.6500 3.5146 3.4284 3.4138 0.0146
1 3A1 5.1060 5.0058 4.8847 4.8747 0.0100

Pyridine 1 3A1 3.6784 3.4630 3.4634 3.4461 0.0174
1 3B1 3.5939 3.5770 3.5493 3.5329 0.0164
1 3B2 4.5592 4.5319 4.3639 4.3642 −0.0003

a Deviation of CC2/CBS+CC3 result from CC3/aug-cc-pVTZ.

Table A.8: Phosphorescence energies in eV obtained at SAC-CI/D95(d) structures from
ref. 274 using CC2 with the aug-cc-pVXZ (X=D,T,Q) basis set and CC3 with the cc-
pVDZ basis set. The last value in each row is the reference value used for benchmarking
the TDDFT results. Experimental values are given as compiled in ref. 274.

CC2

Molecule State Exp. SAC-CIa augDZ augTZ augQZ CBSb CC3/DZ CC2/CBS+CC3c

Furan 1 3B2 2.97 3.264 3.247 3.251 3.260 3.081 3.005

1 3A1 4.93 4.995 4.982 4.992 5.008 4.889 4.810

Pyrrole 1 3B2 3.40 3.657 3.635 3.640 3.650 3.515 3.428

1 3A1 5.04 5.100 5.084 5.092 5.106 5.006 4.885

Pyridine 1 3A1 3.32 3.666 3.659 3.667 3.678 3.463 3.463

1 3B1 3.59 3.570 3.565 3.577 3.594 3.577 3.549

1 3B2 4.54 4.586 4.552 4.552 4.559 4.532 4.364

1,4-Benzoquinone 1 3Au 2.25d, 2.28e 2.29 2.173 2.190 2.207 2.227 2.187 2.247

1 3B1g 2.30d, 2.31e 2.41 2.289 2.295 2.309 2.325 2.330 2.359

Uracil 1 3A′ 2.70 2.978 2.973 2.983 2.998 2.904 2.893

1 3A′′ 3.41 3.360 3.332 3.344 3.368 3.491 3.480

Adenine 1 3A′ 2.99f 2.92 3.180 3.172 3.177 3.185 3.028 2.967

1 3A′′ 3.74 3.794 3.770 3.778 3.794 3.909 3.860

9,10-Anthraquinone 1 3B1g ∼2.53g 2.51 2.674 2.679 2.696 2.717 2.818 2.784

1 3B1u 2.91 3.161 3.154 3.162 3.174 2.976 2.972

Coumarin 1 3A′ ∼2.48h 2.26 2.560 2.554 2.560 2.571 2.404 2.415

2 3A′ 2.93 3.439 3.430 3.437 3.447 3.383 3.351

Naphthalimide 1 3A1 2.31i 1.83 2.283 2.280 2.285 2.293 2.150 2.127

1 3B1 3.25 3.312 3.314 3.332 3.357 3.477 3.484

1 3B2 3.58 3.666 3.651 3.654 3.663 3.580 3.504

Formaldehyde 1 3A′′ − 2.332 2.358 2.377 2.400 2.307 2.390 (2.360)j

Thioformaldehyde 1 3A′′ − 1.769 1.757 1.769 1.788 1.785 1.796 (1.769)j

Selenoformaldehyde 1 3A2 − 1.466 1.476 1.501 1.606 1.514 1.636 (1.504)j

a SAC-CI/D95(d) values taken from ref. 274.
b Complete basis set limit, extrapolated as described in Section 5.2.3.
c Complete basis set limit (CBS) with a high-level CC3/cc-pVDZ correction as described in Section 5.2.3.
d-i As cited in ref. 274: d ref. 334, e ref. 335, f ref. 336, g ref. 334 (maximum peak ∼490 nm), h ref. 337 (maximum second

peak ∼500 nm), i ref. 338.
j Values in parentheses are obtained at the CC3/aug-cc-pVQZ level of theory and are used as the reference for this state.
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A.11 Vibronic Absorption Spectra
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Figure A.7: Vibronic absorption spectra for the 1 1Ag→1 1B2u
transition of naphtalene computed with different LHs and GHs in

comparison with the experimental vapor absorption spectrum. [296]

A lifetime of 36.3 fs was used for the line broadening to match the
experimental spectrum.
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Figure A.8: Vibronic absorption spectra for the 1 1Ag→1 1B2u
transition of tetracene computed with different LHs and GHs in
comparison with the experimental spectrum (recorded in ben-

zene). [339] A lifetime of 29.0 fs was used for the line broadening
to match the experimental spectrum.
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Figure A.9: Vibronic absorption spectra for the 1 1Ag→1 1B3u
transition of pyrene computed with different LHs and GHs in com-

parison with the experimental vapor absorption spectrum. [296] A
lifetime of 43.5 fs was used for the line broadening to match the
experimental spectrum.
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Figure A.10: Vibronic absorption spectra for the 1 1Ag→1 1B2u
transition of anthracene computed with different LHs and GHs in

comparison with the experimental vapor absorption spectrum. [296]

A lifetime of 36.3 fs was used for the line broadening to match the
experimental spectrum.
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Figure A.11: Vibronic absorption spectra for the 1 1Ag→1 1B2u
transition of pentacene with different LHs and GHs in com-
parison with the experimental spectrum (recorded in 1,2-

dichlorobenzene). [340] A lifetime of 26.6 fs was used for the line
broadening to match the experimental spectrum.
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Figure A.12: Vibronic absorption spectra for the 1 1Ag→1 1B3u
transition of perylene with different LHs and GHs in comparison

with the experimental spectrum (recorded in neon). [341] A lifetime
of 193.5 fs was used for the line broadening to match the experi-
mental spectrum.
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A.11 Vibronic Absorption Spectra
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Figure A.13: Vibronic absorption spectra for the 1 1A1→1 1B1
transition of benzoperylene computed with different LHs and
the GH B3LYP in comparison with the experimental spectrum

(recorded in cyclohexane). [342] A lifetime of 24.2 fs was used for
the line broadening to match the experimental spectrum.

1000 0 1000 2000 3000 4000 5000
E/ cm 1

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

in
te

ns
ity

Experiment
B3LYP
LH07t
BLYP35
LH12sif

Figure A.14: Vibronic absorption spectra for the 1 1Ag→1 1Bu

transition of LPPP-2 (ladder-type poly-(p-phenylene), cf. ref 343)
computed with different LHs and GHs in comparison with the ex-

perimental spectrum (recorded in dichlormethane). [343] A lifetime
of 15.7 fs was used for the line broadening to match the experimen-
tal spectrum.
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Figure A.15: Vibronic absorption spectra for the 1 1A1→2 1A1
transition of xanthone computed with different LHs and GHs in
comparison with the experimental spectrum (recorded in a super-

sonic argon jet). [344] A lifetime of 145.1 fs was used for the line
broadening to match the experimental spectrum.
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Figure A.16: Vibronic absorption spectra for the
1 1A1→1 1B1 transition of thieno[2’,3’:4,5]thieno[3,2-
b]thieno[2’,3’:4,5]thieno[2,3-d]thiophene (”pentathienoacene”)
computed with different LHs and GHs in comparison with the

experimental spectrum (recorded in dichlormethane). [345] A
lifetime of 16.9 fs was used for the line broadening to match the
experimental spectrum.
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Figure A.17: Vibronic absorption spectra for the 1 1Ag→1 1B3u
transition of 3,4,9,10-perylene-tetracarboxylic-dianhydride com-
puted with different LHs and GHs in comparison with the experi-

mental spectrum (recorded in dimethyl sulfoxide). [346] A lifetime
of 21.0 fs was used for the line broadening to match the experimen-
tal spectrum.
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Figure A.18: Vibronic absorption spectra for the 1 1Ag→1 1B3u

transition of benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H )-
tetraone computed with different LHs and GHs in comparison

with the experimental spectrum (recorded in toluene). [347] A
lifetime of 18.9 fs was used for the line broadening to match the
experimental spectrum. The experimentally studied molecule
has C6H13 entities bound to the nitrogen atoms (replaced by
hydrogen atoms in computations).
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Figure A.19: Vibronic absorption spectra for the 1 1Ag→1 1Bu

transition of 1,4-bis((E)-4-((E)-styryl)styryl)benzene computed
with different LHs and GHs in comparison with the experimental

spectrum. [348] A lifetime of 26.8 fs was used for the line broadening
to match the experimental spectrum.
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Figure A.20: Vibronic absorption spectra for the 1 1A1→1 1B1
transition of azobenzene computed with different LHs and the GH
B3LYP in comparison with the experimental spectrum (recorded

in 2-methyltetrahydrofuran). [349] A lifetime of 19.4 fs was used for
the line broadening to match the experimental spectrum.
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Figure A.21: Vibronic absorption spectra for the 1 1Ag→1 1B3u
transition of diphenylacetylene computed with different LHs and
GHs in comparison with the experimental spectrum (recorded in

cyclohexane). [350] A lifetime of 16.9 fs was used for the line broad-
ening to match the experimental spectrum.
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Figure A.22: Vibronic absorption spectra for the 1 1Ag→1 1Bu
transition of octatetraene computed with different LHs and GHs in
comparison with the experimental spectrum (recorded in a super-

sonic argon jet). [351] A lifetime of 241.9 fs was used for the line
broadening to match the experimental spectrum.
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Figure A.23: Vibronic absorption spectra for the 1 1Ag→1 1Bu

transition of (3E,7E,11E)-tetradeca-3,7,11-trien-1,5,9,13-tetrayne
computed with different LHs and GHs in comparison with the ex-

perimental spectrum (recorded in 3-methylpentane). [352] A life-
time of 19.8 fs was used for the line broadening to match the ex-
perimental spectrum.
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Figure A.24: Vibronic absorption spectra for the 1 1Σ+
g →1 1Σ+

u
transition of decayne computed with different LHs and the GH
B3LYP in comparison with the experimental spectrum (TIPS end-

capped derivative, spectrum recorded in hexane). [353] A lifetime of
36.3 fs was used for the line broadening to match the experimental
spectrum.
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Figure A.25: Vibronic absorption spectra for the 1 1A1→1 1B1
transition of diphenylfurane computed with different LHs and GHs
in comparison with the experimental spectrum (recorded in cyclo-

hexane). [354] A lifetime of 9.7 fs was used for the line broadening
to match the experimental spectrum.
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Figure A.26: Vibronic absorption spectra for the 1 1A1→1 1B2
transition of 3H-1,2,4-triazole-3,5(4H)-dione computed with differ-
ent LHs and GHs in comparison with the experimental spectrum

(recorded in carbon tetrachloride). [355] A lifetime of 29.0 fs was
used for the line broadening to match the experimental spectrum.
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Figure A.27: Vibronic absorption spectra for the 1 2B2→1 2A2
transition of the phenoxyl radical computed with different LHs and
GHs in comparison with the experimental spectrum (recorded in

cryogenic argon matrix). [356] A lifetime of 36.3 fs was used for the
line broadening to match the experimental spectrum.
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Figure A.28: Vibronic absorption spectra for the 1 2B2→2 2A2
transition of the benzyl radical computed with different LHs and

GHs in comparison with the experimental spectrum. [357] A lifetime
of 20.3 fs was used for the line broadening to match the experimen-
tal spectrum.
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Figure A.29: Vibronic absorption spectra for the 1 2Au→1 2B3g
transition of the naphthalene radical cation computed with dif-
ferent LHs and GHs in comparison with the experimental spec-

trum (recorded in Ar:CCl4:N = 300:4:1 matrix). [358] A lifetime of
120.9 fs was used for the line broadening to match the experimental
spectrum.
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Figure A.30: Vibronic absorption spectra for the 1 2B3g→1 2Au
transition of the anthracene radical cation computed with differ-
ent LHs and GHs in comparison with the experimental spectrum

(recorded in argon matrix). [359] A lifetime of 26.6 fs was used for
the line broadening to match the experimental spectrum.
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Figure A.31: Vibronic absorption spectra for the 1 2A2→1 2B2
transition of the fluorene radical cation computed with differ-
ent LHs and GHs in comparison with the experimental spectrum

(recorded in neon matrix). [360] A lifetime of 72.6 fs was used for
the line broadening to match the experimental spectrum.
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Figure A.32: Vibronic absorption spectra for the 1 2Au→1 2B3g

transition of the 1H,3H-benzo[1,2-c:4,5-c’]difuran-1,3,5,7-tetraone
radical anion computed with different LHs and GHs in comparison

with the experimental spectrum. [357] A lifetime of 43.5 fs was used
for the line broadening to match the experimental spectrum.
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Figure A.33: Vibronic absorption spectra for the 1 2Au→1 2B2g

transition of the 1H,3H-benzo[1,2-c:4,5-c’]difuran-1,3,5,7-tetraone
radical anion computed with LH12ct-SsifPW92 and BLYP35 in

comparison with the experimental spectrum. [357] A lifetime of
31.4 fs was used for the line broadening to match the experimental
spectrum.
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Figure A.34: Vibronic absorption spectra for the 1 2A2→1 2B2
transition of the naphthalic anhydride radical anion computed with
different LHs and GHs in comparison with the experimental spec-

trum (recorded in methyltetrahydrofuran). [300] A lifetime of 50.8 fs
was used for the line broadening to match the experimental spec-
trum.
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Figure A.35: Vibronic absorption spectra for the
1 2B2→1 2A2 transition of the 2,2’-(2,4,5-trioxocyclopentane-
1,3-diylidene)dimalononitrile (”croconate violet”) radical anion
computed with different LHs and GHs in comparison with the

experimental spectrum (recorded in dimethylformamide). [361] A
lifetime of 26.6 fs was used for the line broadening to match the
experimental spectrum.
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A.12 Additional Data for Studies on Dipole Moments

and Polarizabilities
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Figure A.36: Histograms reflecting the distribution of optimal GH or LH prefactors for
dipole moments of 58 molecules from the HHdip-152 test set, [204] i.e. how often a given
prefactor yields the lowest absolute percentage error for a given molecule.
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Figure A.37: Histograms reflecting the distribution of optimal GH or LH prefactors for
static polarizabilities of 58 molecules from the HHpol-132 test set, [205] i.e. how often a
given prefactor yields the lowest absolute percentage error for a given molecule (total:
3 · 58 = 174 polarizabilities).
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nach Laplaceschen Functionen höherer Ordnung.. J. Reine Angew. Math. 1866,

1866, 161–176.

[228] Tapavicza, E. Generating Function Approach to Single Vibronic Level Fluorescence

Spectra. J. Phys. Chem. Lett. 2019, 10, 6003–6009.

198

http://dx.doi.org/10.1021/acs.jctc.6b00720
http://dx.doi.org/10.1021/acs.jctc.6b00720
http://dx.doi.org/10.1103/PhysRev.32.858
http://dx.doi.org/10.1103/PhysRev.32.858
http://dx.doi.org/10.1063/1.1725748
http://dx.doi.org/10.1063/1.1725748
http://dx.doi.org/10.1063/1.451216
http://dx.doi.org/10.1063/1.451216
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118794821
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118794821
http://dx.doi.org/10.1063/1.2805398
http://dx.doi.org/10.1063/1.2805398
http://dx.doi.org/10.1063/1.3575582
http://dx.doi.org/10.1063/1.3575582
http://dx.doi.org/10.1039/c9cp04178h
http://dx.doi.org/10.1039/c9cp04178h
http://dx.doi.org/10.1515/crll.1866.66.161
http://dx.doi.org/10.1515/crll.1866.66.161
http://dx.doi.org/10.1021/acs.jpclett.9b02273
http://dx.doi.org/10.1021/acs.jpclett.9b02273


BIBLIOGRAPHY
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[267] Brémond, E.; Savarese, M.; Adamo, C.; Jacquemin, D. Accuracy of TD-DFT

Geometries: A Fresh Look. J. Chem. Theory Comput. 2018, 14, 3715–3727.

[268] Huet, T.; Godefroid, M.; Herman, M. The Ã electronic state of acetylene: Geometry

and axis-switching effects. J. Mol. Spectrosc. 1990, 144, 32–44.

[269] Ventura, E.; Dallos, M.; Lischka, H. The valence-excited states T1–T4 and S1–

S2 of acetylene: A high-level MR-CISD and MR-AQCC investigation of stationary

points, potential energy surfaces, and surface crossings. J. Chem. Phys. 2003, 118,

1702–1713.
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